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Abstract

Machine learning models, specifically deep convolutional neural networks, have ex-
ceeded human-level performance in many research areas, such as object classification and
voice recognition. However, they are not comparable to humans in real-world learning
scenarios when the training data is non-i.i.d. infinite streaming data. An example of those
real-world scenarios is continual learning.

Continual learning, as a new area of research in the field of machine learning, has
become quite popular. It is the process of learning sequential data that comprises different
domains and tasks. The main feature of a continual leaning problem is that the learning
model does not have access to previously trained data. The main challenge of training a
machine learning model on sequential data is catastrophic forgetting, which happens when
a model forgets the previously learned tasks after being trained on new ones.

There are three different solutions for the problems of continual learning: prior-focused
(regularization-based) solutions, likelihood-focused (rehearsal-based) solutions, and hybrid
(ensemble) approaches.

In this thesis, semi-supervised video object segmentation (VOS) is addressed as a con-
tinual learning problem specifically for long video sequences, and three solutions are pro-
posed. The first solution is Gated-Regularizer Continual Learning (GRCL) which is a
prior-focused solution. The second proposed solution is aligned with likelihood-focused
solutions and is Reconstruction-based Memory Selection Continual Learning (RMSCL).
The third proposed solution is a hybrid solution (Hybrid) that benefits from GRCL and
RMSCL.

All of the proposed solutions improve the performance of two baseline Online VOS
methods (LWL and JOINT) but they can augment any online VOS and improve its per-
formance on long videos.
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Chapter 1

Introduction

The understanding of the world that children have at the beginning of their lives is grad-
ually expanded and refined throughout the course of their entire lives. Similarly, if we
want to achieve the ultimate goal of artificial intelligence, we will need to construct in-
telligent models that interact with the world, learn like children, and continually update
themselves on real-world events. In the field of machine learning, an evaluation scenario
is more analogous to an assessment that would be carried out in a traditional educational
environment. To make this point clear, an example of the evaluation of students in a school
is provided. Usually, students have access to all of the materials that they require for a
course exam, and they are given instructions on how to study and learn those resources
for answering all of the questions prior to the exam. There is a problem with this learning
and testing scenario for machine learning models. To explain the problem, a more specific
example is provided in which an exam designed for preschoolers is used to classify different
kinds of animals. If a young child already knows how to categorize the many different
kinds of animals that exist, then informing that child about the many different kinds of
trees that are out there should not cause that child to forget how to categorize animals.
However, the mentioned example addresses a problem in machine learning that is referred
to as catastrophic forgetting [2, 3, 4, 5]. Catastrophic forgetting is one of the primary
obstacles that must be overcome in order to achieve continual learning. If we think of a
child as an intelligent agent in the world, we can see that they are always learning new
things, updating their knowledge, and judging how well they are doing based on a variety
of inputs and provided labels. Thus, their training is not limited to the school’s classes
and academic evaluation. In other words, a real-world learning process for a child is an
online continual learning process, and achieving this level of intelligence that can do online
continual learning could be one of the most important goals of machine learning.
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Continual learning is the process of learning a sequence of data consisting of different
tasks and domains. Continual learning is also addressed as lifelong learning, sequential
learning, and incremental learning [6, 7, 8]. In the general problem of continual learning,
data come from an instance domain X ; however, the domain X can be changed over
time, and this change can be gradual or abrupt. To refer to the school class example,
children could have many classes in one day, and different classes could have different topics
(different domains), and in each class, a student could also face different information with
gradual changes in sub-topics.

In continual learning, it is important to handle the so-called abrupt change on the input
domain, which is similar to the concept drift [9] on the input domain.

Figure 1.1: The continual learning and multi-task offline learning. In continual learning a
model is trained on each task separately. However, in multi-task offline learning, the data
for all tasks is available for the model at the same time.

Figure 1.1 shows the training scenario of a continual learning problem and a multi-task
offline learning problem. In the training phase of the multi-task offline learning problem,
the model has access to the data samples of all tasks, whereas in the continual learning
scenario, the model has access to the sample data of only one task at a time. For exam-
ple, the model is first trained on the “cats” category and does not have access to other
categories. After training the model on the “cats” category, the model will be trained on
the next category of data, which is “flowers, and during this training, the model will have
no access to the “cats” category. It is worth noting that the independent and identically
distributed (i.i.d.) assumption is not valid in continual learning [6]. The reason for this is
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that in real world problems, there is no guarantee that samples are drawn independently
from a distribution without distribution drift. In other words, The i.i.d. assumption implies
an equal probability of seeing the current data in comparison to any other possible data
where the current data are independent of past data. In practice, if the training data were
shuffled, then the training data would be independently distributed; however, streaming
data in an online learning scenario usually cannot be shuffled, and there are some temporal
dependencies in the data stream, so the i.i.d. assumption is not valid for many real world
problems where the data cannot be shuffled for training.

The main challenge in continual learning is catastrophic forgetting. The term catas-
trophic forgetting was first defined for Neural Networks [2, 3]; however, it could be a
problem of other machine learning models [10]. It happens when a machine learning model
is trained on a sequence of tasks while only having access to the training data of the current
task and not the training data of preceding tasks. Consequently, the model updates its
parameters (all of the parameters are changed) using the current task data and will forget
some aspects of the proceeding tasks. For example, in Figure 1.1 the model is not able to
classify “cats” well after training on “flowers”. In an online-continual learning problem, the
model should be trained online on streaming data, where task boundaries are not provided
in the training. Thus, the model has to determine them by detecting concept drifts in the
data.

In this thesis, Convolutional Neural Networks (CNNs) are considered the online learning
model. CNNs are a type of neural network that is generally used in deep learning for
image and video recognition, classification, and processing tasks. CNNs are made up of
multiple layers of neurons that perform convolution. The convolution layer detects features
such as edges, corners, and shapes in the input image by applying a set of filters, or
kernels. Additionally, it will reduce the computational complexity of the training process
using parameter sharing and local connectivity of the kernel operations [11] in comparison
to fully connected layers in neural networks. CNNs are more effective when they become
deeper, which means using more layers to build the network. When the number of layers
is increased, the number of parameters (weights) in the network also increases, making it
harder to train the networks well.

To address the challenges of training a deep CNN, a new set of Deep Convolutional Neu-
ral Networks (DCNNs) [12, 13, 14] was proposed that can be efficiently trained specifically
on large datasets such as Imagenet [15]. DCNNs outperform other machine learning meth-
ods in many applications and areas; however, in continual learning scenarios, DCNNs suffer
from the catastrophic forgetting problem. This problem is more visible in online-continual
learning when the DCNNs have to be trained online on the streaming data. In this thesis,
DCNNs are not going to be trained online; however, the baseline methods [16, 17] benefit
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from trained DCNNs as feature extractors.

When we are talking about streaming data, the first thing that comes to mind is video.
There are many fields of research in computer vision that deal with video data, such as
activity recognition [18], object tracking [19], and Video Object Segmentation (VOS) [20].

This thesis studies and improves a subset of semi-supervised VOS approaches that deal
with non-i.i.d. data (video sequences). In semi-supervised VOS solutions, the VOS model
always has access, even during the evaluation time, to information about only one frame
(the ground truth) of each video sequence. When dealing with long video sequences, this
given information may become invalid after a period of time. In other words, because of
the distribution drift that happens in videos and because the appearance of the object can
be considerably changed, the given first frame ground truth may no longer be a valid label
for the target object. The most recent semi-supervised solutions [16, 17, 21] incorporate
some information from previously evaluated frames in order to segment the object in the
current frame. Online VOS methods [16, 22, 23] are one type of semi-supervised VOS.
These methods continuously train a part of their model on the frames that have been
evaluated in order to perform VOS on the current frame. For the purpose of this thesis, I
am going to approach the formulation of VOS from the perspective of continual learning.
Moreover, three continual learning solutions are proposed to improve the performance of
Online VOS on long video sequences. To the best of our knowledge, this is the first time
that continual learning has been addressed in VOS approaches.

1.1 Challenges

Although CNNs are highly desirable and useful in many multi-task offline applications,
there are many challenges for CNNs in continual learning:

• Catastrophic forgetting: Training the model on the current task should not de-
grade the model’s performance on previously learned tasks. Catastrophic forgetting
is the main challenge of continual learning.

• The i.i.d. assumption: The i.i.d. is an assumption, which makes the problems
easier to solve by considering an identical distribution for data without distribution
drift where data are drawn from the distribution independently.

• Online learning: Another significant challenge to continual learning is online learn-
ing. CNNs are trained by looping over a batch of data using the gradient of a loss
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function. The training process is designed for a batch learning process; however, a
general problem of continual learning as explained in [6] should avoid offline batch
training. In other words, in an online-continual learning problem, CNNs models have
to be trained and updated online.

• Learning with limited memory and computational resources: A simple so-
lution for continual learning is to create a new model for each task and keep it in
memory, or use one model and keep all of the observed data in memory. However,
with a growing memory and a growing number of tasks, this is not possible. In other
words, we want to develop solutions that do not assume infinite storage size, which
requires an unbounded system as a solution. Thus, having a solution that tolerates
a limited amount of memory and computational resources is another challenge.

• Real-world scenario: Many of the current datasets, setups, and scenarios for prob-
lems of continual learning are not practical enough [24]. In other words, the datasets,
setups, and scenarios are not adequately addressing real-world problems. For exam-
ple in [25] authors forms MNIST [26] dataset as stream data which is not a real world
scenario.

Some of the aforementioned challenges are addressed in continual learning [27]; however,
there is still room for improvement.

In this thesis, it is shown that a semi-supervised VOS solution which deals with video
data faces continual learning challenges, specifically if the VOS solution has a CNN module
for online learning.

• Forgetting: Given the distribution drift that occurs in long videos, a VOS model
could forget its learning on the segment of the video prior to distribution drift. I
would not call this catastrophic forgetting because the distribution drift is not as
dramatic as domain shift in the standard continual learning scenario of learning to
identify new image classes, but it is still forgetting.

• The i.i.d. assumption: Generally, video data, specifically long video data, is not
i.i.d. since it has some temporal correlation between frames and also could have some
domain shifts if the camera and point of view are changed.

• Online learning: Online VOS [16, 17, 28] is a good example of online learning-based
solutions, where a part of the model is trained online and updated throughout the
video frames.
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• Learning with limited memory and computational resources: State-of-the-
art VOS solutions all benefit from memory to store information from past evaluated
frames to use for segmenting the current frame.

• Real-world scenario: There are many meaningful applications for VOS, such as
augmented reality, autonomous driving, and robotic.

A solution for Online VOS should address all of these significant challenges. The major
distinction between VOS and other video processing is that in VOS we need to do es-
timation on every frame of the video, which necessitates online training to improve the
performance of the model, making it plausible as a target for a continual learning-based
solution. On the other hand, for other video processing fields of research such as Video
Action Recognition [18], the estimation is on the whole video sequence, and usually there
is no need to do online learning on every frame of video.

1.2 Contributions

The main contributions of this thesis are as follows:

• The general formulation of continual learning on online video object segmentation
(Chapter 3) is the first contribution of this thesis. A general Online VOS structure is
defined and formulated from a continual learning perspective alongside the limitations
and motivations of the proposed formulation.

• A prior-focused continual learning-inspired solution is proposed in Chapter 4. The
proposed gated regularization-based continual learning (GRCL) approach can aug-
ment and improve any Online VOS model.

• Another contribution of this thesis is to propose a reconstruction-based memory
selection continual learning (RMSCL) method (Chapter 5) for Online VOS models.
The proposed likelihood-focused approach is able to add to Online VOS and improve
its speed and accuracy.

• The last contribution of this thesis is the proposed the Hybrid (Chapter 6) continual
learning approach that is a smart fusion of RMSCL and GRCL. The objective of
Hybrid method is to improve robustness and accuracy of Online VOS on long videos.
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1.3 Thesis structure

Chapter 2 begins with an overview of convolutional neural networks, and a discussion of
the challenges associated with both online and continual learning. This chapter continues
its presentation of a literature overview of contemporary approaches for the segmentation
of video objects in long video sequences. In Chapter 3, a general formulation of Online
VOS is proposed from the standpoint of continual learning.

In Chapter 4, the gated regularization-based continual learning (GRCL) approach is
presented, and in Chapter 5, an alternate solution to GRCL known as the likelihood-
focused method (RMSCL) based on a memory selection methodology is discussed. GRCL
is presented as a prior-focused solution.

In Chapter 6, the suggested Hybrid technique is discussed. This method incorporates
aspects of both GRCL and RMSCL. To put it another way, the Hybrid technique is a
smart fusion of the GRCL and the RMSCL.

In Chapter 7, we go into depth about the experimental findings of the strategies that
were suggested using long video sequences. In addition, the ablation research of the sug-
gested approaches is discussed in Chapter 7.

The thesis is brought to a close with Chapter 8, which provides a summary of the
contributions made by the thesis as well as suggested study paths for further work.
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Chapter 2

Background

Ideal machine learning model should outperform humans; however, in many areas there
is still a significant gap between machine learning and human performance. Online learn-
ing and continual learning are two major challenges in many machine learning problems
including deep learning. Convolutional Neural Networks (CNNs) are widely used models
for a wide range of machine learning tasks, particularly video processing. Video is one
of the most complicated data in the machine learning field because it is temporal, high-
dimensional, and highly variable, and consequently video analysis tasks such as Video
Object Segmentation (VOS) are difficult. In order to perform video object segmentation,
this dissertation addresses the continual learning of small CNNs on long video sequences.
Convolutional neural networks are discussed in this chapter, as are online, continual, online-
continual learning, and video object segmentation.

2.1 Convolutional Neural Networks

A Neural Network (NN) [29, 30, 31] is a function f that, given a set of input training data
X = [x1, x2, ..., xn] and training target data Y = [y1, y2, ..., yn], learns to map input X to
the target Y . As illustrated in Figure 2.1, a NN consists of some layers fi that together
form the function f . Thus, f is defined as:

f(x) = fn

(
fn−1

(
...
(
f1(x)

)))
(2.1)

where fn is the nth layer in the NN.
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In theory, if each layer function of NN is a linear function, then a NN function f with
n layers is equal to a NN with one layer. Thus, in NNs, to get benefits of increasing the
number of layers, each layer has an activation function which makes the layer function fn
non-linear. In Figure 2.1, the network has three layers and the outputs of last layer (f3)
are the labels.

In a Convolutional Neural Network (CNN) [12, 32, 33], the network benefits from convo-
lutional layers which are different from the fully connected layers in Figure 2.1. Figure 2.2
shows the structure of a typical CNN. The convolutional layers extract useful features that
contain the spatial information of their input. In each CNN model, the convolutional layers
are followed by at least one fully connected layer, shown with blue circles in Figure 2.2.
CNNs are more effective when they become deep. In other words, increasing the number
of layers will increase the number of parameters and improve the feature extraction power
of the model. It is worth noting that the number of needed training samples is related to
the number of parameters of the network.

Deep Convolutional Neural Networks (DCNNs) [12, 33, 34] are the state of the art
in many areas of machine learning and computer vision. One of the first CNN models
is the LeNet [26] architecture, with only three convolutional layers and proposed for digit
recognition. LeNet is not a DCNN model and it fails to work well on bigger datasets. After
LeNet, in 2012 AlexNet [35] was proposed and it was the best solution of the ImageNet
Large-Scale Visual Recognition Challenge (ILSVRC) [35] at that time. AlexNen has 5
convolutional layers and three fully connected layers. In 2014 the VGG [13] network was
proposed. VGG has 19 layers and it was the state of the art network architecture in
2014. Over time, the network architectures became deeper and deeper and training a
network with millions of parameters was a big challenge due to some problems such as
high computational complexity and vanishing gradients [36], limiting the network depth
to about 22 layers. In 2016, ResNet [14] was proposed; the residual blocks [37] of ResNet
architecture work like a shortcut path between the layers and makes it possible to train a
network with more that 150 layers. Current networks benefit from the ResNet structure
and many of them are a combination of different variants of ResNet and other architectures.

For training a DCNN a loss function must be defined. For an input x, a loss function
takes the models output f(x) and the label y and calculates the error of the model’s
prediction. To train a network, the model’s prediction error on the training data (the loss
function) should be minimized. A DCNN is trained using batch training such that the
network does a loop over a batch of data {X ′, Y ′} and each time takes the derivative of the
loss function L(f(X ′), Y ′), calculates the gradients, and back-propagates [38] them to the
network to update its parameters. Currently, DCNNs surpassed human performance on
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 Output layer 

 Second layer First layer 

Input layer 

Figure 2.1: An example of a Neural Network structure, consisting of four fully connected
layers.

Figure 2.2: A Convolutional Neural Network structure. The convolutional layers act as
feature extractors and extract the spatial information of their input. In the last stage, the
network has a fully connected layer which is used for classification.
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many supervised problems such as image classification [39] but remains a big gap between
human performance and DCNNs in real-world scenarios, in particular in online learning [40,
41].

2.2 Online Learning

In supervised learning, a pair of training data (xt, yt) come from a joint distribution p(x, y).
The space of input and output are X and Y respectively. The learning procedure tries
to find the optimal function f from the space of hypothesis functions H. Thus, f ∈ H and
f is a mapping function f : X → Y [40]. The learning procedure tries to minimize the
following expected loss to find the optimal f :

E[L(f(x), y)] =

∫
L(f(x), y)dp(x, y) (2.2)

where L is the loss function and can be the Euclidean distance between the output of f
and the label y.

L(f(x), y) = ||y − f(x)||2 (2.3)

In the learning, the learning procedure has access to all of the training data (x, y) in
advance.

DCNNs, as the state-of-the-art in machine learning, fail in online learning [40, 41] since
they can not do training and testing at the same time with the same performance and
efficiency of offline training. The main reason for that difference is the huge amount of
time that a DCNN takes to be trained. In traditional offline learning, the whole training
data are available and the model can be trained over multiple epochs (iterations on data).
However, in online learning, the model f t, which is the model f after training on avaiable
data at time t, is learnt based on the current sample (xt, yt) and the preceding models
f t−1. Training a big model online using one sample is a highly challenging task. There
are some solutions for this problem. First, the current sample (xt, yt) can be added to a
set containing all of seen data and the model f t−1 can be trained or fine-tuned on that
set. But the first solution requires an unlimited memory size. Thus, the other solution for
online learning is to use a dynamic memory [42] containing a subset of previously visited
data with an update mechanism instead of whole training data.

There is an assumption in some machine learning problems that the data used for
training and evaluation are independent and identically distributed (i.i.d.), which makes
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the problems easier to solve. The i.i.d. assumption is an important assumption of the
central limit theorem, which indicates the probability distribution of i.i.d. samples with a
finite variance reaches a Gaussian distribution. When the Gaussian assumption is correct,
we can choose a linear model to solve the problem. However, the data in this thesis are not
from a Gaussian distribution, and the solution models (CNNs) are also non-linear. Next,
continual learning will be explained and discussed in details.

2.3 Continual Learning

Continual learning [4, 6, 43] is a learning method of a sequence of data comprising different
tasks and domains. The i.i.d. assumption (independence and identically distributed) is
divided into two parts. The first part is the independence assumption states each data
point is drawn independently of the others, implying that the occurrence of other data
points has no effect on the probability of each data point being drawn. In both online and
continual learning, the independence assumption could be considered. The second part,
however, assumes that the data distribution remains constant over time, which may not be
true in continual learning because the data distribution can change over time for a variety
of reasons, such as concept drift or domain shift [9]. An example of domain change in
a continual learning problem is training a CNN model to classify different objects after
the CNN model has already been trained on a class of “cats” images prior to a class of
“flowers” images. Considering the absence of “cats” in the training process of the model
on “flowers”, there is a shift on the domain of training data. In the context of continual
learning, the i.i.d. assumption is not true. In continual learning, the model should be able
to adapt to new data from various distributions or domains. This necessitates that the
model be capable of dealing with potential concept drift and adapting to the new data
distribution without forgetting previously learned knowledge.

Assume, in the supervised learning scenario which is defined in Section 2.2, the training
data consist of T different tasks (probability distributions) where p = {p1, p2, ..., pt, ..., pT}.
Here, tasks could be considered to be different image classification classes (“cats” , “flow-
ers”). As such, each time Equation 2.2 is minimised on the data (x, y) that come from
the joint probability distribution pt(x, y) of the task t. An ideal continual learning method
should possess the following three properties:

1. It models current tasks data pt, building on the knowledge of previous tasks (p1, p2, ..., pt−1).

2. It has the ability to improve or maintain performance on the previously learned tasks
while learning a new task.
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3. It is scalable, handling small and large numbers of tasks in different scenarios.

Based on these properties, it is possible to categorize the continual learning methods from
different perspectives into two streams:

• The first stream is based on Bayesian frameworks [44, 45, 46] and including prior-
focused, likelihood-focused, and hybrid approaches. This stream formulates the con-
tinual learning problems from a Bayesian perspective. The goal is to maximise the
posterior probability of model’s parameters given data. However, the posterior eval-
uation is intractable and the posterior is calculated using the normalized multiplica-
tion of likelihood and prior. In prior-focused methods, the model’s posterior of the
previous task is used as a prior for the current task and also for likelihood-focused
methods, the model itself is adapted by modifying the likelihood of the model. The
hybrid approaches try to approximate the posterior of new task by using both prior
and likelihood.

• A second stream [47, 48] categorises based on regularization, rehearsal and ensemble
methods. In this stream, regularization methods try to add a constraint to the
training phase of the model to mitigate the model’s forgetting problem of previous
tasks. On the other hand, the rehearsal methods keep some data samples of previous
tasks and use them in the training of new tasks. Finally the ensemble methods point
to the methods that expand the network or use a combinations of the mentioned
methods (regularization and rehearsal) to solve the problem.

It is worth noting that the prior-focused methods are quite similar to regularization-based
solutions. Additionally, the likelihood-focused and the hybrid methods are the same as
rehearsal and ensemble methods. Thus, the main idea is the same in both streams, but
each stream has a different perspective. This thesis is built on the first first stream which
is the Bayesian framework. Prior-focused methods, such as Elastic Weight Consolidation
(EWC) [5] and Memory Aware Synopses (MAS) [49], assume a previously-learned model’s
weights to be a prior for training the current network weights, responsible for learning a
new task, and apply regularization during the training to prevent previous related weights
from changing too significantly. In particular, these two strategies try to keep impor-
tant parameters, associated with the previous tasks, fixed via a penalty term in the loss
function. In general, in regularization approaches, the network regularized loss function
LR(Θ, f(x), y) is formulated as below, where a regularization term is added to the loss
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function:

LR(Θ, f(x), y) = L(f(x), y)(2.3) + λ

K∑
k=1

ωk(θk − θ∗k)2, (2.4)

here R in LR stands for regularized loss function, Θ is the set of all model’s parameters
where Θ = {θ1, θ2, ..., θk, ..., θK}, L (2.3) is the loss for training the current task, λ is the
regularization coefficient, ωk is the parameter importance for the k-th parameter across
all previous tasks, θ∗k is the k-th weight learned from the previously seen tasks, and K
is the number of weights (parameters) in the model. ωk quantifies the importance of the
parameters and it is calculated differently in various algorithms. For example, parameter
freezing [50] can be considered as one extreme in regularization approach. In EWC [5],
ωk is calculated as the diagonal of the Fisher information matrix, while in MAS [49] ωk is
calculated as the gradient of l2-norm of the neural network output given the inputs. The
calculated gradients in the back-propagation step of training the model are used in both
EWC and MAS for determining important parameters of the training model. Sparsity
constraint methods [51, 52, 53] are other examples of regularization approach, whereby an
l1-norm constraint on the network weights during training preserves certain weights. In
other words, the training procedure should not be selfish, and specifies a part of the model
for training future tasks. Sparsity allows the model to leave enough room for other tasks
to be learned.

The likelihood-focused and rehearsal methods perform similarly, wherein the methods
focus on maximizing the likelihood function by incorporating previous data information.
Examples such as deep generative replay (DGR) [54] and variational generative replay
(VGR) [46] involve storing past data or training generative models for past tasks and then
using stored information to train new tasks. For instance, Shin et al. [54] used generative
adversarial networks (GANs) to generate data from each task as examples to be utilized
during the training of new tasks.

Likelihood-focused methods are interpreted as rehearsal, since the algorithm is able to
rehearse with examples from the previous tasks during the training phase of new task via
stored information. Eventually this way, it maximizes the likelihood function across all of
the tasks, as described in [45]. These methods are the most effective solutions, given a large
data set and in the absence of any memory constraint. Despite their superior performance,
these methods are not scalable as memory requirement grows with the number of tasks.

Hybrid methods, as their name suggests, take advantage of a prior-focused technique
and a likelihood-focused method at the same time. For example, variational continual
learning (VCL) [45] combines the posterior from the previous task (i.e., the prior in the
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current task) with information from the new task (i.e., its likelihood) through multiplication
and normalization.

Progressive networks [55] and dynamic expandable networks (DEN) [56] increase the
number of parameters in the neural network as the network learns new tasks. They com-
bine these new parameters with those from the original model. In particular, in progressive
networks the parameters were “frozen” to ensure that information related to the previous
tasks was not lost, and then a new neural network of the same size was initialized with
lateral connections to the previous network. A limitation to this approach is that the
number of parameters increases linearly with the number of tasks. DEN tries to address
this issue by dynamically varying the number of parameters, addressing the issue of contin-
ual growth in the number of network parameters by applying sparsity regularization and
removing those weight which not activated frequently.

In continual learning problems the tasks may have discrete labels such as class names or
categories and the model can benefit from the task’s labels in the training or even testing
stage. In the literature, the majority of solutions address the continual learning problems
with divided tasks, where the task boundaries are known. However, for a more realistic
and real-world scenario the online-continual learning is defined.

2.3.1 Online-Continual Learning

An online-continual learning [25, 27] is an integration of online learning and continuous
learning. Typically, continual learning scenarios are classification-based scenarios in which
each task is defined by a class and contains a fixed number of images of a specific sub-
ject and domain; however, in online learning scenarios, there is usually a stream of data
that becomes accessible to the model at each time step. Parisi et al. [27] described some
desiderata for an online-continual learning problem:

• Streaming data: It is assumed the data are never-ending stream and temporaly
correlated.

• Unsupervised in terms of task labels: The task boundaries and labels are not provided
for training.

• Limited resources: The number of tasks on the data stream can be infinite; however,
if the computational complexity and the required memory be directly proportional
to the number of tasks, the solution would be unbounded.
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• The training data stream are non-i.i.d.

The solutions for online-continual learning are usually rehearsal methods. iCARL [57] as
a rehearsal method selects some samples and features from each task and puts them in a
replay buffer to use them for future training. The method calculates the average of the
selected features and uses them in the nearest neighbor algorithm on the feature space
of the network to do the classification. Additionally, the iCARL method uses knowledge
distillation [58] to keep the model’s parameters unchanged. To do so, before training a
new task, the model stores the logits of the selected replay samples of previous tasks and
tries to keep them unchanged during training using a distillation loss. Another rehearsal
method, GEM [59], uses the last samples of each task and put them in replay memory
and uses them to modify the gradients of the current task to mitigate the catastrophic
forgetting. But these two well-known methods do not update their reply-buffer and they
would have problem of exploding memory when the number of tasks increased. Currently
two methods [60, 61] are supposed to update their replay buffer to keep the distribution
of the replay-buffer the same as the distribution of the data which is currently seen by the
model.

In [25] a gradient-based sample selection method is proposed for online-continual learn-
ing. Based on the constrained optimization view of continual learning, they formulate
sample selection as a constraint reduction issue. The objective is to choose a fixed subset
of constraints that best approximate the feasible region outlined by the initial constraints.
They also demonstrate that choosing a fixed subset of constraints is equal to maximizing
the diversity of samples in the replay buffer with the feature parameters gradient. They
evaluate their method on MNIST [26] and CIFAR10 [62] datasets.

Continual learning methods are typically tested on classification datasets, like MNIST [26],
CIFAR10 [62], and ImageNet [15]. Another dataset that specifically designed for continual
learning is Core50 [63] which has been used to assess the performance of continual learning
algorithms because it contains a diverse collection of classes and images that can be used
to mimic a stream of data.

All the mentioned datasets for cintinual learning scenarios are classification datasets.
A classification dataset usually is fed to the model as a sequential stream of data in online-
continual learning evaluation scenarios [25]. Thus, the datasets and their related testing
scenarios share the issue of having few practical real-world applications; however, video
data has the potential to be a suitable data for the problem of continual learning. This
study chooses Video Object Segmentation (VOS) and its related datasets from various
video analysis methods to assess the effect of proposed continual learning solutions. VOS
issues and solutions are addressed in the following section.
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2.4 Video Object Segmentation (VOS)

Video object segmentation (VOS) aims to extract an accurate pixel-wise object mask in
each frame of a given video. VOS has many real-world applications, such as video summa-
rization, human computer interaction, and autonomous vehicles [64]. Broadly, proposed
VOS algorithms can be divided into two different streams: i) semi-supervised or one-shot
VOS, when the ground truth masks of the target objects are provided in at least one frame
at inference time, and ii) unsupervised VOS, when no information about the objects is
provided. The focus of this thesis is on the former context, that of semi-supervised VOS.

The intuition behind semi-supervised VOS is to perform fine-tuned learning on a VOS
model, separately for each test video, based on the given target information (i.e., the
given object mask). However, training a big model on a given frame and mask of each
testing video is a challenging task since it requires fine-tuning of a big model on very
frame of a video which is computationally expensive and not efficient. Early solutions in
the literature [65, 66] fine-tuned a pretrained VOS on the given information in a video at
evaluation time. This idea is not feasible, due to the limited training samples, the VOS
model size, and the time-consuming training process. In practice, online learning-based
VOS approaches [16, 17, 20, 22] address these challenges by introducing efficient training
mechanisms, specifying a part of model for online updating, and keeping some amount of
information in memory to augment the training set for model fine-tuning.

Approaches to VOS can be split up into three distinct streams, including Online VOS,
matching-based VOS, and propagation-based VOS. Having a memory to keep and use
information (features and segmented masks) about the evaluated frames is a feature that
is shared by the most advanced methods in each of these three streams, which together
form the memory-based VOS broad category. In addition to the memory-based VOS and
its three streams, the VOS solutions can be divided into two categories: those that are
designed for and function most effectively with short videos, and those that are designed
for and work best with long video datasets. Following this categorization of VOS methods,
a discussion of memory-based VOS solutions will take place.

2.4.1 Memory-based VOS

Memory-based approaches [16, 17, 20, 21, 22, 67] try to address semi-supervised VOS
problems by storing feature representations and predicted output masks of preceding frames
in a memory and use them for evaluating the current frame.

17



Using this strategy, there are different approaches proposed to retrieve information from
this dynamic model’s memory.

A first solution is to propagate the information of the most recent frames received from
the predicted masks [66] or a hidden representation proposed by the recurrent methods [68,
69].

A second solution is to update (fine-tune) a small model on the memory proposed by
the online learning methods [16, 22, 23, 65, 70].

A third solution is to match the representations of previous frames stored in the mem-
ory with the corresponding features extracted from the current frame proposed by the
matching-based methods [20, 71, 72, 73, 74, 75, 76, 77, 78].

Each stream will be discussed in detail. The propagation-based VOS solutions are
discussed next.

Propagation-based VOS

In propagation-based VOS techniques [79, 80, 81], the segmented masks of previous evalu-
ated frames are repeatedly propagated to the current frame using propagation-based VOS
techniques [79, 80, 81].

The optical flow VOS methods align the object segmentation mask from the previous
frame to the current frame using the estimated optical flow vectors [82]. Following that,
the aligned segmentation mask is utilized to initialize the current frame, and the mask is
refined further using additional data such as appearance features. Following studies focus
on offline learning by employing optical flow to convey temporal information [80, 83, 84].
RVOS [69] employs recurrent neural networks (RNNs) to analyze both spatial and temporal
knowledge. The spatial recurrence allows the model to identify and distinguish between
different object instances within a single frame. Meanwhile, temporal recurrence allows the
model to maintain consistency in the segmentation of these objects across multiple frames
over time.

Despite the encouraging findings of propagation-based VOS methods, these techniques
are frequently susceptible to error buildup caused by occlusion or drifting.

Matching-based VOS

Matching-based methods try to send a query contains the encoded information of current
frame to the memory and extract some useful information helping segmenting the current
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frame. Among the matching-based methods is the STM [20], which uses a similarity
matching algorithm to retrieve encoded information from the memory and pass it through
a decoder to produce an output.

In VOS the target object in the query frame usually appears in the local neighborhood
of the target’s appearance in the memory frames, but STM is based on non-local match-
ing between the query and memory frames. Therefore, to solve this problem, KMN [77]
proposed a kernelized memory network applying a Gaussian kernel to address the non-
localization aspect of the STM.

HMMN [78] also proposed kernel-based memory matching to achieve temporal smooth-
ness by restricting possible correspondences between two adjacent frames to a local window
and applying a kernel guidance to the non-local memory matching. For matching of dis-
tant frames, HMMN applies tracking of the most probable correspondence of a memory
pixel to a query pixel. Instead of building a specific memory bank and therefore affinity
for every object in the video as in STM, STCN [73] builds a model, which learns all object
relations beyond just the labeled ones by using an affinity matrix based on RGB relations.
For querying, a target object passes through the same affinity matrix for feature transfer.
To deal with appearance changes and deformation, LCM [71] proposed applying a memory
mechanism to retrieve pixels globally, and to learn position consistency for more reliable
segmentation.

The current state-of-the-art methods [21, 85] for VOS follow the STM structure and
are matching-based methods.

Online VOS

Another stream of memory-based VOS methods is online learning-based VOS which learns
the new object appearance within an online learning-based approach [16, 17, 28] simulta-
neously at inference time. In this category of solutions, instead of using a matching-based
(matching based) algorithm on each frame, a small latent model network, the so-called
target model, is updated every s frames which is eventually used to learn the updated
information stored in the memory for segmenting the proceeding video frames.

The target model proposed by FRTM [22], LWL [16] and the induction branch of
JOINT [17] is formulated as a small convolutional neural network, which performs online
learning on the available training data in the memory M. As such, these methods can
provide an efficient yet effective dynamic update process for VOS frameworks. The target
model structure for LWL and JOINT is a two layers CNN with the kernel size of 1× 1 for
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the first layer to do dimensionality reduction and a kernel size of 3× 3 for the second layer
for training on the memory.

While target model-based approaches improve the performance of VOS, the effective-
ness of online learning algorithms is highly dependent on their memory capacity and usage.
In other words, to obtain the best performance, these models require to store all preceding
output masks and the encoded features in their memory and also make a way to increase
the generalization of the updated model. Therefore, memory limitation results in facing
similar challenges already known in the domain of continual learning and was discussed in
Section 2.3.1. This thesis hypothesizes that these issues can be mitigated, which is moti-
vated by the success of continual learning algorithms in preserving learned knowledge while
limiting the required memory. The approach proposed in this thesis stems from Online
VOS.

2.4.2 Video Sequence Length

Recent proposed VOS solutions are mainly designed for short video datasets. Three well-
known VOS datasets are DAVIS16 [86], DAVIS17 [87], and the YouTube-VOS18 [88]
datasets. The DAVIS16 [86] validation set has 20 videos, each of which has a single
object for segmentation; the validation set of DAVIS17 [87] contains 30 video sequences
with multiple objects to be segmented in each frame. The validation set of YouTube-
VOS18 has 474 video sequences of 65 seen (which are present in the training set) and
26 unseen object classes. Figure 2.3 shows three video sequences from the DAVIS2016
dataset, where we can see that target objects do not have an abrupt change through video
frames. Objects could have small changes, such as in the “cow” video (the longest video
in DAVIS2016 at 104 frames), and the other two videos (soapbox and motocross-jump)
possess variations in object appearance, however the changes are gradual. As a result, for
such datasets the identically distributed assumption of frames is usually valid, particularly
for short videos. It is thus worth mentioning that the YouTube-VOS18 sequences are even
shorter than those in DAVIS16 and DAVIS17, where the longest video in the validation set
of YouTube-VOS18 has 36 frames. Considering these short video sequences for evaluating
a VOS solution makes a specific design for each VOS solution. For example, as is clearly
mentioned in [21], STM [20] is not computationally efficient to handle long video sequences.
Another example is JOINT [17], where its transformer branch does not work efficiently on
large video sequences [21].

The semi-supervised VOS approaches maintain the identically distributed assumption,
despite the fact that i.i.d. assumption is clearly not valid in all video sequences, particularly
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cow

motocross-jump

soapbox

Figure 2.3: A set of sub-sampled frames from three videos of the DAVIS16 dataset [86], in
each case two rows: actual images (top) and segmented objects (bottom). The first video,
“cow” is the longest in DAVIS16, however there is no significant change between frames.
There is a gradual change in appearance in the other two videos. The given annotated
(ground-truth) frame in each video is highlighted in green.

longer ones. It is precisely for this reason that state-of-the-art semi-supervised VOS models
are not expected to have similar performance on long video datasets [21] in comparison to
their performance on short video datasets.

Figure 2.4 shows the “dressage” video from the Long Videos dataset [1], which consisting
of three long sequences with a total of 7411 frames. The dataset has 21 labeled frames for
each video for evaluation. As is clear from Figure 2.4, an i.i.d. assumption is not at all
valid on the “dressage” video, because of the 22 substantial distribution drifts which take
place, a behaviour which is much more closely aligned with the non-i.i.d. assumption of
continual learning. The labelled masks in the Long Videos dataset [1] does not cover all
the challenges of the dataset as shown in Figure 2.4. It is worth noting that the evaluation
label mask is chosen uniformly in the Long Videos dataset.
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Long video sequences containing several concepts are more challenging to be learned
since the memory-based VOS model requires a memory with large capacity to store the
previously learned frames representations.

To address the limitations in memory and training time of an online solution, AFB-URR
[1] uses an exponential moving averages to merge a new memory component with earlier
ones if they are similar, or to store it as a new component in the memory otherwise. The
model removes unused features from the memory when its capacity reaches a predefined
limit.

Using a global context module [89] is another way to deal with the limitations caused
by long video sequences. The model calculates a mean of the entire memory components
and apply it as a single representation.

However, both methods apply a compact representation of the memory, which sacrifices
the segmentation accuracy [1, 21, 89]. On the other hand, XMem [21] uses a multi-store
feature memory to avoid compression and achieves much higher accuracy in both short-
term and long-term predictions.

The current state-of-the-art VOS method on both long and short video datasets is
ISVOS [85]. They propose a new method for Video Object Segmentation (VOS) that
combines instance understanding and matching-based VOS. They recommend a two-branch
network, with one branch focusing on instance segmentation (IS) and the other on VOS.
The network uses object queries in the IS branch to obtain instance-specific information
about the current frame. This data is then included in the query key used by the VOS
branch, which performs spatial-temporal matching with a memory bank. As a result,
an instance-augmented matching approach is developed that improves VOS accuracy. To
produce the final segmentation results, they include a multi-path fusion block that combines
memory readout with multi-scale features from the instance segmentation decoder.

In this thesis, we focus on improving Online VOS by providing an efficient memory
usage method (RMSCL) and a regularization based continual learning approach (GRCL).

22



Text

distribution drift

Figure 2.4: A subset of frames from “dressage” video of the Long Videos dataset [1]. The
video consists of 23 sub-chunks that are separated from each other by significant distribu-
tional drifts or discontinuities. The lower (sparse) row, in each set, shows the annotated
frames. The four sub-chunks that do not have any labelled frame in the evaluation set of
Long Videos dataset are encircled in red.
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Chapter 3

Problem Formulation

Current online Video Object Segmentation (VOS) methods [16, 17, 20, 22] aim to segment
target objects from background in every frame of a video sequence and they suffer from
many limitations, usually on long video sequences. In this chapter, first, the general Online
VOS framework is formulated and explained in Section 3.1. The main online learning part
of this framework, the “target model” C, as is suggested in [22], is specifically discussed.
This framework is adopted in all of the contributions to this thesis. Finally, limitations
and the related motivations of proposing the continual learning-based VOS solutions are
explained in Section 3.2. The proposed problem formulation is used in the next few chap-
ters.

3.1 General Online VOS Model

An Online VOS model [16, 17, 22] usually has a U-Net structure [90] as is shown in
Figure 3.1. The goal of Online VOS is to segment an object from each image frame F of
a video and provide a segmented mask Y which is a binary segmented image such that
the pixels belonging to the object are labelled 1, and the background pixels are labelled 0.
Typically, a general Online VOS model comprises the following pieces:

1. A pretrained encoder, extracting feature X from each frame F ;

2. A memoryM = {X ,Y}, storing a set of features X = {X0, X1, ..., Xt−1} and their
associated labels Y = {Y0, Y1, ..., Yt−1} masks that could be updated with input
feature Xt and estimated output Yt at time t;
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3. A target model Ct, which potentially is trained on the memoryMt at every time t,
and provides information to the decoder D;

4. Pretrained decoder D and the label encoder E [16], networks which obtain temporal
information from the target model alongside the encoder’s output, to generate a
fine-grain output mask Y from its associated frame F .

Here, the time index t is based on input time frame. Thus, at time t, Ct−1 is updated to
Ct onMt. Next, the output Yt+1 is estimated using Ct and thenMt can be updated with
pairs of (Xt+1, Yt+1) to create Mt+1. Potentially, we could update M every time frame
t, but there is also a possibility to update the memory every ∆M frames. Considering
t indicates time frame, if ∆M > 1 then there are some time steps that the memory M
remains constant. The same thing could happen on the target model C when ∆C > 1.
These concepts are defined in the lines 5 and 12 of Algorithm 1. In addition to ∆M and
∆C, two update time indices tM and tC are defined as the most recent update time index
of memoryM and target model C, respectively. This process is explained in Algorithm 1.
There is an order for updating target model C and memory M, which is explained in
Algorithm 1 and is depicted in Figure 3.1. Thus, for segmenting the current frame Ft+1,
the memory Mt is the most updated version of itself; it should be checked if the target
model needs to be updated, and then the segmentation could be done using the most
updated target model Ct.

An Online VOS model SΞ is first trained offline to minimize the following loss function
and find the model parameters Ξ:

Ξ = argmin
Ξ′

L(SΞ′(F ), Y ). (3.1)

In Equation (3.1), L is usually a pixel-wise cross entropy loss [91], F is an image frame and
Y is the segmented mask. All of the parameters of the Online VOS model (Ξ) are trained
offline; however, some parameters of the model Θ are supposed to be updated online at
the evaluation time.

For the general Online VOS model described earlier in Section 3.1, the parameters of
the target model C are called Θ, which are primarily the target model’s convolutional filter
weights, and Θ = {θl}Kl=1 , where K is the total number of parameters of the target model
C. It is worth noting that Θ is a small subset of Ξ, the whole framework’s parameters. For
example in a framework including an encoder, a decoder, and a target model, Θ can be the
set of parameters of the target model, while Ξ is a set including all of parameters of the
encoder, decoder and the target model. Θ is trained online on the memory, and the target
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Figure 3.1: General Online VOS framework: The target model Ct−1 is updated on memory
Mt to form Ct. The dashed lines shows how the target model C is updated based on mem-
oryM every ∆C frames. MemoryMt is updated every ∆M frames with new information
(Xt+1, Yt+1). The dotted lines show the memory update. The proposed methods in this
thesis are mainly engaged with the target model component (C) of the framework. The
frame images used in the figure are taken from the Long Videos dataset [1].

model C is usually a small convolutional neural network, for reasons of efficiency. The
target model is updated every ∆C frames throughout the video, repeatedly trained on
feature X and their associated encoded labels E(Y) based on stored decoder outputs Y
from preceding frames. Both X and Y are stored in memory M, where the memory is
constrained to some size N . In Figure 3.1, the maximum memory size is limited to 3. It
is worth noting that E is a label encoder, generating sub-mask labels from each Y [16].
For online training of Ct at time t, every Y ∈ Mt is fed to E and E(Y ) generates some
encoded masks that the target model Ct tries to learn. In other words, the target model
Ct learns what E specifies from each Y given X as the input. Thus, given input feature
Xt the output of trained target model Ct is an estimation of E(Yt). The target model acts
like a dynamic attention model to generate a set of score maps E

(
Ct(X)

)
in order for the

segmentation network (D) to produce the segmented output mask Y associated with each
frame F . The loss function L which is used for the online training of target model at time
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Algorithm 1: General Online VOS.

Input: {Xt+1,Mt,Θt−1,D,E,∆C,∆M, tC, tM}
// Updating the target model Ct−1.

1 if t− tC = ∆C then
2 tC ← t

// Updating the target model Ct−1 parameters using Equation (3.2).
3 Θt ← L(Θt−1,Mt)

4 else
5 Θt ← Θt−1

6 end
// Segmenting the object using the decoder D.

7 Yt+1 ← D
(
Xt+1,E

(
Ct(Xt+1)

))
// Updating the memory Mt.

8 if t− tM = ∆M then
9 tM ← t

10 Mt+1 ←Mt ∪ {Xt+1, Yt+1}
11 else
12 Mt+1 ←Mt

13 end
14 return {Yt+1,Mt+1,Θt, tC, tM}

t is

L(Θt,Mt) =

|Mt|∑
n=1

∥∥∥dnWn

(
E(Yn)− E

(
Ct(Xn)

))∥∥∥2
2
+

K∑
k=1

λ θtk
2
, (3.2)

where
∣∣Mt

∣∣ is the number of feature and mask pairs {X, Y } in the memoryMt.

Depending on the overall architecture, E is an offline / pre-trained label encoder net-
work, as in [16], or just a pass-through identity function, as in [22]. It is worth noting that
the influence and effect of E is not the focus or interest of this thesis.

In Equation (3.2), Wn is the spatial pixel weight, deduced from Yn, and dn is the
associated temporal weight decay coefficient. In the loss function L(Θt,Mt), Wn balances
the importance of the target and the background pixels in each frame, whereas dn defines
the temporal importance of a pair of feature and mask (Xn, Yn) in memory, typically
emphasizing more recent frames [16].
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In another point of view, each frame F is fed to the Online VOS framework, and a
pair of extracted feature X and the estimated segmented object mask Y become available
for updating the framework. In Online VOS frameworks, it is usually assumed that F
is identically distributed, which is one of the i.i.d. properties; however, in general, a new
input frame F can be non-identically distributed from some jointly distributions of video
frames that form a continual learning problem [6].

In most video sequences, the given input frame (F ) can have a sudden change from
previous frames. Thus, we need to get benefit from all the available data while doing
evaluation. The most efficient model for updating the parameters Θt−1 of an Online VOS
framework given all available (seen) data Dt at time t is formulated as Maximum A Poste-
riori (MAP) [92] of p(Θ|Dt). Since finding the true posterior probability is not tractable,
the following optimization based on Bayesian theory is suggested

Θt = argmax
Θ

p(Θ|Dt) = argmax
Θ

(
p(Dt|Θ)p(Θ)

p(Dt)

)
, (3.3)

where p(Dt|Θ) is the likelihood and p(Θ) is the prior. This Bayesian interpretation of the
target model’s updating step C serves as a framework for proposing the contributions of
this thesis. In the next section, the limitations of Online VOS and the proposed methods
are addressed using the Bayesian interpretation of Online VOS.

3.2 Limitation and Motivations

Online VOS methods suffer from three main limitations [16, 21] which deteriorate their
performance, particularly on long videos:

1. Memory Size: To maximize performance, Online VOS would need to store all
or most of the extracted information of preceding frames Dt in the memory Mt.
However, for videos of arbitrary length this requires an unlimited memory size, which
is infeasible.

2. Target Model Updating: Even with an unlimited memory size, updating the
target model C on an arbitrarily large memory with many redundancies would be
computationally problematic for an online solution.

3. Robustness: The sensitivity of Online VOS approaches to the selection of different
hyper-parameters, such as the target model’s step size ∆C and memory updating
step size ∆M, which could mitigate both speed and accuracy.
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The proposed contributions of this thesis address these limitations by incorporating effec-
tive methods applied to the target model C and memoryM. Since video frame information
is provided consecutively into the Online VOS framework and the i.i.d. assumption is not
valid in video sequences, there is a high possibility of drift in the object’s appearance,
especially in long-video sequences. As such, the conventional approach of passing all of
the information, as a whole, to the model to decide which to use, is not effective and can
lead to ineffective learning or even divergence in the training process of the target model.
Thus, all available data information D cannot be placed in the memory and we need to
limit the memory size.

Given the first two mentioned limitations (memory size and the target model updating),
we need to be able to handle long video sequences; the solution to do this is to limit the
memory size. Taking this limitation into account, when the memory reaches its maximum
capacity, we must remove some data from the memory to make room for new incoming
data. In this case, all available data information could be regarded as the sum of all
previous memories Dt =

⋃t
l=1Ml, and the most recently updated memory version would

be a subset of all the visited informationMt ⊂ Dt. Considering the memory size limitation,
Equation (3.3) is re-written as

Θt = argmax
Θ

p(Θ|Dt) = argmax
Θ

(
p(
⋃t

l=1Ml|Θ) p(Θ)

p(Dt)

)
. (3.4)

Maximizing Equation (3.4) over Θ does not have anything to do with p(Dt), thus we can
remove the denominator. Additionally, the available information is limited to the last
updated memoryMt assuming Dt is equal toMt.

Thus, the Bayesian formulation for updating target model C would be

Θt = argmax
Θ

log p(Θ|Dt) ≃ argmax
Θ

(
log p

(
Mt|Θ

)
+ log p(Θ)

)
. (3.5)

Optimizing Equation (3.5) equals minimizing loss function in Equation (3.2), thus

Θt = argmax
Θ

log p(Θ|Dt) ≃ argmax
Θ

−L(Θ,Mt). (3.6)

Given Equation (3.5) and inspired by continual learning [4, 6, 43], there are three different
solutions which are proposed in this thesis:

1. Prior-focused: To maximize the posterior probability, we can focus only on the prior
p(Θ) and simply limit the memory size N and remove the old data from the memory.
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To this end, the posterior p(Θ|Dt−1) of previous update could be considered as prior
p(Θ) for current update. Inspired by continual learning [4, 6, 43], the knowledge
learned during preceding updates could be helpful to overcome the memory limitation
problem. To achieve this goal, the parameters, Θt−1, of the target model Ct−1 are
regularized in each online learning step, with a goal of preserving the prior knowledge,
acquired from those earlier information that might not be presented in the memory
Mt. The proposed prior-focused solution will be defined in Chapter 4.

2. Likelihood-focused: The other solution for this problem is to focus on the likeli-
hood probability p

(
Mt|Θ

)
by providing the best possibleMt ⊂ Dt using a memory

and a memory selection method or a data generation model. The provided likelihood-
focused method helps to improve the efficiency of the solution inspired by rehearsal
methods [46, 54] in continual leaning. The goal of the likelihood-focused solution is
to target the second limitation of Online VOS, which is the target model updating
for a small number of epochs on a large memory, as explained in Chapter 5.

3. Posterior-focused: The final proposed solution benefits from both likelihood- and
prior-focused solutions and tries to find a hybrid method covering the limitations
of the preceding solutions (prior-focused and likelihood-focused) to improve the ro-
bustness of Online VOS. The proposed posterior-focused solution is similar to hybrid
methods [56] in continual learning and is discussed in Chapter 6.
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Chapter 4

Prior-focused VOS solution

As discussed in Section 3.2, prior-focused approaches in continual learning rely on prior
knowledge learned from previous tasks to learn a new task. In Equation (3.5), p(Θ) is
the prior probability of target model’s parameters Θ. A prior-focused approach tries to
maximize the posterior probability, i.e optimizing Equation (3.5) by focusing on the prior
p(Θ) to update Θ. To do this, we first need to understand the purpose of p(Θ) for Online
VOS. Generally, the available prior knowledge for an Online VOS framework that is about
to update its target model Ct−1 at time t, is the collection of features from the seen frames
X = {Xl}tl=1 and their associated predicted object masks Y = {Yl}tl=1, which are placed
in Dt = {Xl, Yl}tl=1 and Dt is the set of all visited data up to time t. However, in practice,
a subset of this data is available in the memory Mt at time t, where Mt ⊂ Dt due to
memory size restrictions. In addition to the preserved information in the memory Mt,
the target model parameters Θt−1 also implicitly carry information from previous updates
of the target model. Thus, the prior model p(Θt−1) is defined as p(Θt−1|Dt−1). Given
available dataMt at time t, maximizing the Bayesian formulation of posterior probability
in Equation (3.5) can be done by focusing on the prior p(Θt−1) to regularize the important
parameters in Θt−1 while updating Θt−1 to learn new information inMt. Those important
parameters could be selected based on their calculated gradients in the preceding update
steps, and will be explained in Section 4.1.

4.1 Gradient-based parameter regularization

Parameter regularization seeks to preserve important parameters of the target model, C,
specifically those parameters which were learned or significantly modified (and therefore
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important) in the preceding update steps. This parameter regularization will be added to
the loss function of Equation (3.2) and will be minimized alongside the loss function.

In continual learning, Elastic Weight Consolidation (EWC) [5] and Memory Aware
Synopses (MAS) [49] are two gradient based regularization methods. The MAS algorithm
is formulated such that at update step t, the importance of each parameter θtk is associated
with its gradient magnitudes {ulk}t−1

l=1 found during the back-propagation [93] in all pre-
ceding update steps. Therefore, during each online learning step, the parameter’s gradient
weight ωt

k is updated based on the gradient magnitudes,

ωt
k = ωt−1

k + utk (4.1)

ωt
k indicates the importance of parameter θtk. In MAS [49], ωk is used to regularize the

MAS loss function. Here, similar loss function as used in MAS is defined and regularized
and is named the regularized loss function LR for updating the target model C onM. As
such, for the set of features X and their related output masks Y in memoryMt, and given
a target model Ct−1 with K parameters Θt−1, the regularized loss function LR is defined
as

LR(Θ
t,Mt) = L(Θt,Mt) + γ

K∑
k=1

ωt−1
k

(
θtk − θt−1

k

)2
, (4.2)

where L(Θt,Mt) is as described in Equation (3.2). The latter term is the MAS regu-
larization, controlled by γ which is set by cross-validation, and t is the time index. This
regularization term adds a focus on prior p(Θt−1|Dt−1) by involving the learned information
Θt−1 at the time of updating the target model’s parameters Θt. The overall goal of the
MAS solution is that the loss LR allows the target model to be updated while preserving
its most important previously learned knowledge in Θt−1.

The effectiveness of the loss function LR for MAS deteriorates over time (frames) as
Ωt = {ωt

k}Kk=1 loses its effectiveness in regularization, since most parameters become more
important as the number of tasks (target model updates) is increased. In other words, in
many target model update steps, the memoryM would be different in different time step
t, and samples in the memory also would have different temporal weights d. Consequently,
different gradient magnitudes would be added to Ωt and all ωt ∈ Ωt would be a big number,
indicating the same importance of other parameters. On the other hand, EWC [5] keeps
gradients {utk}Kk=1 and the parameters {θtk}Kk=1 of each update step t for regularizing the loss
function in the Equation (3.2); however, this solution is also not efficient for Online VOS
since it requires to store the parameters of the target model Θ after each update step. In
other words, the proposed solution by EWC [5] requires keeping a copy of the target model’s
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parameters alongside their importance indicators in a memory. Given the drawbacks of
EWC and MAS, the Gated-Regularization Continual Learning (GRCL) proposed in the
following section aims to address those drawbacks and improve the performance of Online
VOS from a continual learning perspective.

4.2 Gated-Regularizer Continual Learning

In Section 4.1, limitations of two conventional continual learning methods (MAS [49] and
EWC [5]) are discussed, in the context of being used directly in an Online VOS framework.
The comparison between the proposed prior-focused approach and MAS will be demon-
strated in Section 7.4. In this section, a proposed Gated Regularized Continual Learning
(GRCL) is introduced that tackles the conventional continual learning methods on Online
VOS. The proposed GRCL addresses the limitations of MAS and EWC:

• GRCL uses a binary data structure (map) as the importance parameter indicator,
which is more feasible than EWS’s to store in memory. It targets and solves the
EWC memory limitation problem.

• GRCL is inspired by MAS and does not need to store the target model’s parameters
after each update step. It also addresses the EWC memory requirement problem.

• Considering the speed limitations of some Online VOS methods, GRCL considers
each binary importance parameter as a gating function, which is more effective than
LWL and MAS for training a model over a small number of epochs.

• Another mechanism that is used in GRCL is a dynamic gated-regularizer memory,
which is expanded and shrunk based on the target model’s regularized parameter
and keeps the target model effective during evaluation.

GRCL uses a binary regularizer that acts like a gating function that lets a parameter
θ be updated or frozen and fixed. This gated regularizer has some benefits such as smaller
memory requirement and more efficiency on a target model C which is supposed to be
updated in some small number of epochs.

Here, similar to prior-focused approaches in continual learning (MAS and LWL), the
regularizer is associated with the parameter importance and is calculated based on the
magnitude of the gradients found during the back-propagation in each updating step.
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Figure 4.1: The proposed Online VOS framework, with adopted Gated-Regularized Con-
tinual Learning (GRCL): At time t, the overall gated-regularizer map Gt−1 is calculated
using the stored gated maps in the gated-regularizer memory Mt−1

G and regularizes the
process of updating Ct−1 on Mt. Finally, after updating Ct−1 to Ct, Mt−1

G is updated
using the calculated Gt from Ct. The frame images used in the figure are taken from the
Long Video dataset [1].

Thus, GRCL is formulated such that, instead of accumulating the importance parameters
in Ωt as was suggested in Section 4.1, it stores a maximum limited number of P bina-

rized gated maps {Gj}|M
t
G|

j=1 in a gated-regularizer memory Mt
G, where the size of Mt

G is

limited
(∣∣Mt

G

∣∣ ≤ P
)
. Each gated-regularized map Gt contains the information about the

important parameter of updating step t. It is worth mentioning that Gt has the same
dimension of the target model’s parameters Θ but in binary form . To calculate Gt, after
accumulating the magnitude of the gradients in U t = {utk}Kk=1, an element of a binary
gated-regularizer map gtk ∈ Gt will be defined as

gtk =

1 if
ut
k

maxk(Ut)
> h

0 else
(4.3)
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where 0 < h < 1 is a threshold which is determined based on the distribution of the
gradients in U t. The threshold h is mainly dependent on the size of the target model CC.
To set the value for h, U t is normalized by the maximum gradient stored maxk(U

t) and
the nth percentile of the normalized distribution would define the selected value for the
threshold h which is selected using cross-validation and would be different for different
target model sizes and the updating process. The bigger the value of h, the more sparse
the resulting gated-regularized map Gt.

For regularization, we need to benefit from allG inMG and the overall gated-regularized
map G is introduced. Thus, at each update step t, an overall gated-regularized map Gt−1

is defined from all stored gated-regularized maps {Gj}|M
t−1
G |

j=1 in the memoryMt−1
G as

Gt−1 =
J∨

j=1

Gj , J =
∣∣Mt−1

G

∣∣ . (4.4)

Here
∨

is the “Logical Or” operator, and
∣∣Mt−1

G

∣∣ is the number of occupied memory cells in
Mt−1

G . For example, in Figure 4.1,
∣∣Mt−1

G

∣∣ is 4. Given the current overall gated-regularizer
map Gt−1, the gated-regularized loss function LG can be formulated as

LG(Θ
t,Mt,Gt−1) = L(Θt,Mt) + γ

K∑
k=1

gt−1
k

(
θtk − θt−1

k

)2
, (4.5)

where gt−1
k ∈ Gt−1 is a binary element of the overall gated regularizer map Gt−1 =

{gt−1
k }Kk=1 and it is different from g in Equation (4.3), each element of each gated-regularizer

map G in the gated-regularizer memoryMG. With a large enough coefficient γ, the binary
regularization term acts as a gating function that allows some parameters to be updated
and others to be frozen. After updating the target model Ct−1 and creating Ct is the
time to determine the important parameter of the current update and make sure they are
preserved for some further updates. Thus, a new gated-regularizer map (Gt) is defined and
memoryMt−1

G is updated by (Gt) to formMt
G. It is worth mentioning thatMt−1

G would
be updated if Ct was updated, thus ∆C specifies the updating step size forMG as well.

Figure 4.1 shows an Online VOS framework at time t when the target model Ct is
regularized by the proposed GRCL. Algorithm 2 described the steps of GRCL, where
updatingMt−1

G toMt
G happens after updating the target model Ct−1 to Ct (line 5 and 6

in Algorithm 2). One of the main advantages in formulating the prior-focused loss function

of the Online VOS framework as LG, is to store an efficient set of binary maps {Gj}|MG|
j=1 in

Mt
G which is much smaller in size compared to the sets of features X and masks Y stored
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in Mt. For example, in computers, a single bit can be either 0 or 1 and it can be used
for storing binary data, while a “double” data type (which provides greater precision than
a “float”) is typically eight bytes (64 bits) in size. thus, a data unit of a binary file is 64
time smaller that the double data unit type. A quantitative comparison betweenM and
MG is done in Section 7.4.4.

It is worth noting that the feature encoder, decoder D, and label encoder network E
in the proposed architecture all trained offline, and the same trained models were used
in all experiments in Chapter 7. Additionally, the memory is initialized by the encoded
features of the given frame Fg with the provided ground-truth mask Yg, as defined in
semi-supervised VOS frameworks.

4.2.1 Dynamic Gated-Regularizer Memory

The gated-regularizer memory Mt
G can have a fixed size of P similar to Mt that has a

fixed size of N ; however, as the number of stored gated-regularized maps is increased, the
degrees of freedom of the target model Ct for learning new information in the memory
will be decreased, and that could have negative effects on the performance of the model.
To handle this problem, In this section, a dynamic mechanism is proposed to make the
gated-regularizer memory Mt

G of GRCL dynamic in size. To do this, when the overall
gated-regularized map Gt−1 is calculated, the number of ones in Gt−1 determines the
number of regularized parameters of the target model, and if it is smaller than a certain
threshold, GRCL tends to expand Mt

G. On the other hand, if the number of ones in
Gt−1 is greater than another threshold, Gt−1 will be shrunk, and the oldest stored gated-
regularized maps in the memoryMt−1

G will be removed from memory to keep the number
of regularized parameters below and above certain thresholds.

The number of regularized parameters upper bound threshold ηu is proportionate to the
number of target model parameters K, thus, the upper-bound of P is when the number
of regularized parameters (ones in Gt−1) reaches ηu = ξu × K and the lower-bound of
P is when the number of regularized parameters be less than ηl = ξl × K. The two ξu
and ξl ratios would be found for each target model and number of training epochs using
cross-validation.

Thus, GRCL does not need to make any changes on Online VOS methods. It only
needs to regularize the target model C updating loss function. Additionally, the hyper-
parameters for GRCL that should be tuned are h that is used to binarize the gated maps
(G) and also two other ratios (ξl and ξu) which determine the the lower bound and upper
bound of regularized parameters (ηu and ηl) in C and make theMG dynamic in size.
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Algorithm 2: Proposed GRCL solution.

Input: {Xt+1,Mt,Mt−1
G ,Θt−1,D,E,∆C,∆M, tC, tM}

// Updating the target model Ct−1.

1 if t− tC = ∆C then
2 tC ← t

// Creating the overall gated-regularizer map using Equation (4.4).
3 Gt−1 ← Equation 4.4

// Updating the target model Ct−1 parameters using Equation (4.5).
4 Θt ← LG(Θ

t−1,Mt,Gt−1)
// Creating a new gated-regularizer map from Ct.

5 Gt ← Θt

// Updating the gated-regularizer memory Mt−1
G .

6 Mt
G ←Mt−1

G ∪Gt

7 else
8 Θt ← Θt−1

9 Mt
G ←Mt−1

G

10 end
// Segmenting the object using the decoder D.

11 Yt+1 ← D
(
Xt+1,E

(
Ct(Xt+1)

))
// Updating the memory Mt.

12 if t− tM = ∆M then
13 tM ← t
14 Mt+1 ←Mt ∪ {Xt+1, Yt+1}
15 else
16 Mt+1 ←Mt

17 end
18 return {Yt+1,Mt+1,Mt

G,Θ
t, tC, tM}
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Chapter 5

Likelihood-focused VOS solution

Likelihood-focused approaches [46, 54] are used in continual learning to benefit from a sub-
set of data that is used in the training of preceding tasks in order to keep their performance
reasonable on previously trained tasks. In other words, a likelihood-focused approach tries
to provide the best data that the Maximum Likelihood Estimation (MLE) approach could
provide for the most generalized model. One challenge for these approaches is to provide
the most compact and informative subset of previously used data in the training process
of the current task. It is worth noting that in this chapter, similar to Chapter 4, we still
maximize the Bayesian formulation of the posterior probability, which is defined in Equa-
tion (3.6). In other words, the focus the proposed approach in this chapter is on likelihood
part p

(
Mt|Θ

)
whereMt is the memory and Θ is the set of the target model’s parameters;

however, the prior is still implicitly involved in the optimization of Equation (3.5). The
fine-tuning of target model parameters, which implicitly contains some past information
from previous update steps, is an example of involving prior information in a likelihood-
focused approach. Likelihood-focused methods try to have a more compact and efficient
subset of available data, which is Mt in the general online Video Object Segmentation
(VOS) framework. By minimizing p

(
Θ|Mt

)
, we are solving a Maximum A Posteriori

(MAP) problem, but the question here is how we can focus on the likelihood part of the
Bayesian formulation of an Online VOS by providing a compact and efficient subset of
data. Section 5.1 discusses what it means by an ”efficient” subset of data by defining the
limitations of the memoryMt in an Online VOS framework. In Section 5.2, the proposed
likelihood-focused method is introduced.
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5.1 Memory limitation

In online VOS, each updating step t is done on memoryMt and this memory is different
from one updating step to another updating step. If a sudden appearance drift happens
on the object, the model cannot handle this drift even though it has already been trained
on the similar object appearance on preceding memory updates, and this is the same
as catastrophic forgetting of network models in continual learning. Given this forgetting
behaviour of an Online VOS, a trivial solution for mitigating this problem is simply to
have an unlimited memory size and keep all already visited information in the memoryM.
However, there are some problems with this idea for an Online VOS:

1. The bottleneck of an Online VOS method is the target model C updating computa-
tional complexity. This complexity is related to the size of target model, the number
of training samples, and the number of training epochs. For a long video with an
unlimited memory size M, the computational complexity of updating the target
model would be increased as the memory grows over time. Thus, the the memory
size should be limited to handle this problem.

2. It is difficult for a limited-size target model C to extract generalized discriminating
information from a large memoryM with a gigantic set of highly variable and unbal-
anced data. Here “unbalanced” refers to the situation that many similar frames are
placed continuously in a video sequence, and their features and estimated masks will
be placed in the memoryM; however, there are a small number of related and useful
samples in the memory for segmenting the current frame. As such, the effectiveness
of updating the target model Ct on long videos deteriorates even without considering
the computational complexity.

3. Another limitation of Online VOS is determining the importance of samples for the
current update of target model C in which dn is used as the temporal weight for
each sample in the memory and is used in the loss function of Equation (3.2). The
temporal weight is a deterministic weight decay coefficient that is larger for the most
recent sample in the memoryMt and smaller for the oldest evaluated sample in the
memory. This weighting mechanism will cause the target modelM to forget about
old samples in its memory. An old sample in the memory could be forgotten, even if
it is very helpful for segmenting the current frame.

To tackle these limitations, the proposed likelihood-focused approach in this chapter, bene-
fits from a dynamic working memoryMW which is a subset ofM, and is used for updating
the target model. This new approach addresses the mentioned problems:
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i. Allowing a limited-size target model to benefit from a large memory, and

ii. The update step becomes significantly more efficient, since it is training on a smaller
working memoryMt

W .

iii. All of the samples in the memory could have a considerable weight in the training loss
function of target model independent of their temporal weight dn, by re-weighting the
selected samples fromM.

To form the dynamic working memoryMt
W at time t, we need a memory selection method

that selects a subset ofMt and this method should have the following properties:

1. It should be fast enough to not have negative effects on the efficiency of the Online
VOS framework.

2. It should output a diverse working memoryMt
W to handle the drift that may happen

between current target model update and next update.

3. The proposed memory selection method should output a sufficiently small working
memoryMt

W in comparison toMt.

4. It should also provide a weight for each selected sample in Mt
W indicating the im-

portance of the selected sample for the current update.

The proposed Reconstruction-based Memory Selection Continual Learning (RMSCL) is a
fast and efficient Online VOS approach which benefits from a diverse working memory and
is introduced in Section 5.2.

5.2 Reconstruction-based Memory Selection Contin-

ual Learning

The RMSCL approach proposed in this section adapts a methodology similar to those
of likelihood-based (rehearsal) approaches in continual learning, where a set of selected
observations from the preceding tasks is preserved in a so-called working memoryMt

W to
mitigate the catastrophic forgetting by the online model of proceeding tasks.

RMSCL does not change the memory update mechanism of Online VOS; instead, it
offers a memory selection mechanism to select diverse samples from the memory M. In
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general, likelihood-focused methods make an effort to keep the memory diverse enough
with the samples that come from the tasks and domains that came before them. To put
it another way, in the hypothetical situation that a drift happens in the video sequence
and the memoryM does not contain any useful information related to the current drift,
RMSCL could possibly experience some difficulty handling that drift.

As was discussed in Section 5.1,Mt
W needs to be a small diverse memory which contains

the required features and masks of preceding evaluated frames. Thus, the goal of the
proposed RMSCL is to select some pairs of samples from memory Mt and place them
in Mt

W to be used for updating target model Ct−1 at time t. This memory selection is
performed on Mt every ∆C. The selection of samples from memory is formulated as a
LASSO [94] optimization problem: To update the target model Ct−1, the optimal linear
reconstruction of the stored features X ∈ Mt for the next feature Xt+1 is identified via a
LRMSCL constraint on a randomly initialized vector of coefficients Ψ by minimizing

Ψt = argmin
Ψ

LRMSCL(Ψ,Mt, Xt+1) = argmin
Ψ

(
1

2

∥∥Xt+1 −ΨX
∥∥2
2
+ λ∥Ψ∥1

)
. (5.1)

It is worth noting that updating the target model Ct−1 and creating Ct will happen before
segmenting the object in frame Ft+1 and predicting Yt+1 using the updated Ct at time

t. Moreover, X contains
∣∣Mt

∣∣ features (X = {Xl}
|Mt|
l=1 ), similarly Ψ consists of

∣∣Mt
∣∣

coefficients (Ψ = {ψl}
|Mt|
l=1 ) weighting each feature Xl in reconstructing of Xt+1. In other

words, we want to have the best sparse linear reconstruction of new received frame Xt+1

using the stored features X in memoryMt.

The LRMSCL loss leads to a sparse set of coefficients because of L1-norm in Equa-
tion (5.1) [95], meaning that only a small number of coefficients Ψ are non-zero after the
optimization process, and the positive coefficients ψ and their associated features X are
selected and are placed inMt

W for updating target model Ct−1.

It is important to mention that the deterministic temporal weight dn is not involved
in LRMSCL loss function in Equation (5.1) and instead RMSCL re-weights the selected
samples inMt

W by the coefficient Ψ calculated in Equation (5.1). This re-weighting enables
RMSCL to include the significance of selected samples in the current update phase. Thus,
dn is replaced with ψn in Equation (3.2) as:

L(Θt,Mt
W ) =

|Mt
W |∑

n=1

∥∥∥ψnWn

(
E(Yn)− E

(
Ct(Xn)

))∥∥∥2
2
+

K∑
k=1

λ θtk
2
. (5.2)
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Algorithm 3: Proposed RMSCL solution.

Input: {Xt+1,Mt,Θt−1,D,E,∆C,∆M, tC, tM}
// Updating the target model Ct−1.

1 if t− tC = ∆C then
2 tC ← t

// Creating the working memory by optimizing Equation (5.3).
3 Mt

W ← LRMSCL(Ψ,Mt, Xt+1)
// Updating the target model Ct−1 parameters using Equation (3.2).

4 Θt ← L(Θt−1,Mt
W )

5 else
6 Θt ← Θt−1

7 end
// Segmenting the object using the decoder D.

8 Yt+1 ← D
(
Xt+1,E

(
Ct(Xt+1)

))
// Updating the memory Mt.

9 if t− tM = ∆M then
10 tM ← t
11 Mt+1 ←Mt ∪ {Xt+1, Yt+1}
12 else
13 Mt+1 ←Mt

14 end
15 return {Yt+1,Mt+1,Θt, tC, tM}

Here,
∣∣Mt

W

∣∣ is the size of dynamic working memory Mt
W , equal to number of non-zero

positive {ψn}. The only problem with the LASSO minimization of Equation (5.1) is
that its computational complexity depends on the dimensionality of feature X, such that
a gigantic feature size can lead optimizing Equation (5.1) to becoming the bottleneck of
Online VOS. In order to handle this problem, a channel based max pooling function pool(·)
is applied on each feature X, such that Equation (5.1) becomes

Ψt = argmin
Ψ

LRMSCL(Ψ,Mt, Xt+1)

≃ argmin
Ψ

(
1

2

∥∥pool(Xt+1)−Ψpool(X )
∥∥2
2
+ λ∥Ψ∥1 s.t. Ψ ≥ 0

)
. (5.3)

The pooling function pools the feature X with dimension of C ×W ×H to 1×W ×H by
pooling over channels C. In other words, the pooling function acts like a dimensionality
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reduction function which makes the input data be C times smaller in size. It is worth
noting that the pooling function is only performed for estimating the coefficient set Ψ; it
is still the actual features X which are used for creating the working memory Mt

W and
updating the target model. Moreover, a constrain is used in Equation (5.3) that force Ψ
to be not negative.

Figure 5.1 shows an Online VOS pipeline resulting from the proposed RMSCL. The
flow diagram of RMSCL is shown in Algorithm 3, where the order of updating memories
and target model are shown. Moreover, two update time indices tM, tC for memory and
target model are updated alongside the memoryM and target model C.

The proposed RMSCL method has two main contributions: first, it makes updating
the target model C on a small number of samples inMt

W which has more efficient compu-
tational complexity in comparison to updating the target model on all of the samples in
Mt. The second contribution is to re-weight the selected samples inMt

W by considering
Ψ as the set of sample weights for selected samples from memoryMt. The re-weighting of
selected old samples fromMt addresses the problem of ignoring (forgetting) information
in the memoryMt which would have a small temporal weight dn which is shown in Equa-
tion (3.2). The reconstruction-based sample selection and the re-weighting idea place the
proposed RMSCL in the category of likelihood-focused solutions for Online VOS.
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Figure 5.1: The proposed Online VOS framework with augmented Reconstruction-based
Memory Selection Continual Learning (RMSCL). At time t, three samples associated to
three positive ψ are selected using a reconstruction based (LASSO) optimization. The
frame images used in the figure are taken from Long Video Dataset [1].
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Chapter 6

Posterior-focused VOS solution

Bayesian inference [96] computes the posterior probability based on the likelihood and
prior probabilities defined in Bayes’ theorem. In Bayesian inference, we are looking for
the posterior probability. Chapter 4 and 5 focus on prior and likelihood; however, the
proposed method in this chapter focuses on the end results or outputs p(Θ|M) to find
the best solution given all available information, including data in memory M and prior
knowledge in the model parameters Θ. In other words, the proposed posterior-focused VOS
solution in this chapter focuses on maximizing all probability distributions of an Online
VOS problem formulation, which is defined in Equation (3.5). Focusing on both prior
and likelihood at the same time increases the computational complexity of the model in
comparison to GRCL and RMCL. Using both RMSCL and GRCL at the same time would
have some limitations such as inefficiencies, or, in other words, overlapped effects, between
the likelihood-focused (RMSCL) and prior-focused (GRCL) methods. The overlapped
effects here mean GRCL and RMSCL have almost the same impact on the Online VOS
method. Section 6.1, the proposed Hybrid solution is discussed.

6.1 Hybrid solution

The proposed posterior-focused solution in this chapter is classified as a Hybrid method [56,
97] as is defined as continual learning. Hybrid methods usually benefit from three different
continual learning solutions: regularization-based, replay-based, and structural based [56].
Here, structural solutions of continual learning are not used since those models try to
expand the model (increasing the parameters of the model) while keeping other important
parameters fixed. For an Online VOS solution, expanding the model size over time is not
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an option since the bottleneck of an Online VOS is the target model, and the computational
complexity of Online VOS would be strongly affected by increasing the size of the target
model C. The challenges that a Hybrid method of continual learning aims for are better
robustness and generalization in different situations.

The proposed Hybrid solution in this chapter includes GRCL and RMSCL modules, but
it also includes a message-passing mechanism between the GRCL and RMSCL components,
which is the fundamental contribution of Hybrid. The reason the Hybrid approach need
the message -passing module is because GRCL can amplifies the positive and negative
effects of RMSCL and we need to find a way to control and handle this problem. GRCL
essentially force the model to not forget the preceding update of the target model C on
the working memoryMW of RMSCL.

The message-passing mechanism tells GRCL when to store the gated-regularized map
Gt into Mt−1

G after updating the target model Ct on Mt
W . Therefore, it is necessary to

have an indicator that demonstrates how usefull is the most recent update of Ct for the
purpose of regularizing updates in the future. It is abundantly clear that the quality of
an updated Ct has a direct and substantial relationship with the working memory Mt

W

that is utilized. The reconstruction error, represented by rte, of the current input frame’s
feature Xt+1 is specified as the indicator for placing Gt inMt−1

G :

rte = R(Xt+1,Ψ
t,XW ) =

∥∥Xt+1 −ΨtXW

∥∥2
2
. (6.1)

Here, as explained in Equation (5.3), Ψt is a vector of coefficients estimated from the
minimization of Equation (5.3) in the RMSCL approach. Ψt contains some important
information. First, the positive elements of Ψt determine the selected samples from memory
M. Second, the value of each element in Ψt indicates the importance of the selected samples
in working memoryMW . The positive and non-zero coefficients (Ψt) are multiplied by XW

which are selected features fromMt and are stored inMt
W . It is worth noting that ΨtXW

presents a linear reconstruction of current input feature Xt+1 without applying pooling
function; while the positive and non-zero coefficients Ψt is calculated using the pooled
features as is shown in Equation (5.3). Another indicator that shows the quality of current
update is the number of selected samples inMt

W which is shown by
∣∣Mt

W

∣∣.
After calculating the reconstruction error rte, two thresholds are considered to determine

whetherMt−1
G should be updated with Gt. The first proposed threshold used in the Hybrid

method is τ , which is set specifically for each adopted Online VOS method. On the other
hand, β is the threshold for number of selected samples inMt

W .

If the associated reconstruction error rte is greater than the threshold (rte > τ) and the
number of selected samples in Mt

W is greater than β (i.e.,
∣∣Mt

W

∣∣ > β), then the gated-
regularized map Gt is placed in the gated-regularizer memoryMt−1

G . The idea behind this
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decision-making process is that if the reconstruction error rte is greater than the threshold τ ,
the current frame’s feature Xt+1 is most likely from a typical frame at the middle of a video
sub-chunk (of which examples are shown in Figure 2.4), and we may want to remember
the important parameters of Ct associated with Gt of this update for dealing with similar
frame features when segmenting future frames. Furthermore, the small reconstruction error
occurs on very similar frames with no significant differences or missing objects, and the
Hybrid method does not need or want to remember those updates. In addition to the
reconstruction error threshold τ , β specifies the number of chosen samples to be utilized to
reconstruct the current feature. If the number of selected samples is fewer than a specific
threshold β, the new update most likely has selected the most recent frames’ features
and has not provided useful information compared to the prior update steps. The two
thresholds (τ and β) are selected using cross-validation for each baseline, augmented by
the Hybrid approach separately.

The Hybrid solution module is shown in Figure 6.1 in a grey border box. The green
dotted arrows shows the message-passing part of Hybrid. The proposed Hybrid solution,
with the explained message-passing approach, has an algorithmic structure that is defined
in Algorithm 4. The proposed Hybrid algorithm has three main parts:

1. The likelihood-focused (RMSCL) part that generates the working memoryMt
W by

optimizing Equation (5.3). Hybrid does not need to tune the hyper parameters of

2. The prior-focused (GRCL) part that calculates the overall gated regularizer map
Gt−1 from the gated-regularizer memory Mt−1

G to the target model’s updating loss
function in Equation (4.5).

3. The message-passing mechanism that decides whether Mt−1
G should be updated by

Gt calculated from the updated target model onMt
W .

The loss function LH that is used in the proposed posterior-focused solution is

LH(Θ
t,Mt

W ,G
t−1) = L(Θt,Mt

W ) + γ
K∑
k=1

gt
k

(
θtk − θt−1

k

)2
. (6.2)

The only difference between Equation (6.2) and Equation (4.5) is that in Equation (6.2), a
working memoryMt

W is used that is smaller thanMt; thus the proposed Hybrid solution
could be faster than the proposed GRCL method with a large memory Mt. It is worth
noting that for doing the fusion between the RMSCL and GRCL methods, we first need
to apply the RMSCL method and then update the target model’s parameters using the
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gated regularizer and after that, the message-passing mechanism of Hybrid decides whether
the gated-regularizer memory Mt−1

G should be updated. Algorithm 4 demonstrates the
proposed Hybrid method in detail. The order of performing different parts of the proposed
Hybrid method is shown in Algorithm 4. The contribution of the proposed Hybrid approach
is that it gets the likelihood (RMSCL) and prior (GRCL) methods with the specified hyper-
parameters and does a smart fusion over those two methods to achieve the best performance
in terms of accuracy and robustness.
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Figure 6.1: The proposed Hybrid Online VOS framework. The green dotted arrows shows
the message-passing mechanism discussed in Section 6.1. The Hybrid module is shown in
a grey rectangle and augments the Online VOS framework. The frame images used in the
figure are taken from Long Video Dataset [1]
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Algorithm 4: Proposed Hybrid solution.

Input: {Xt+1,Mt,Mt−1
G ,Θt−1,D,E,∆C, τ, β,∆M, tC, tM}

// Updating the target model Ct−1.

1 if t− tC = ∆C then
2 tC ← t // Creating the working memory by optimizing Equation (5.3).
3 Mt

W ,Ψ
t ← LRMCL(Ψ,Mt, Xt+1)

// Creating the overall gated-regularizer map using Equation (4.4).
4 Gt−1 ← Equation (4.4)

// Updating the target model Ct−1 parameters using Equation (6.2)
5 . Θt ← LH(Θ

t−1,Mt
W ,G

t−1)

6 else
7 Θt ← Θt−1

8 end
// Calculating the reconstruction error using Equation (6.1)

9 rte ← R(Xt+1,Ψ
t,XW )

// Updating the gated-regularizer memory Mt−1
G .

10 if rte > τ and
∣∣Mt

W

∣∣ > β then
// Creating a new gated-regularizer map from Ct.

11 Gj ← Θt

// Updating the gated-regularizer memory Mt−1
G .

12 Mt
G ←Mt−1

G ∪Gj

13 else
14 Mt

G ←Mt−1
G

15 end
// Segmenting the object using the decoder D.

16 Yt+1 ← D
(
Xt+1,E

(
Ct(Xt+1)

))
// Updating the memory Mt.

17 if t− tM = ∆M then
18 tM ← t
19 Mt+1 ←Mt ∪ {Xt+1, Yt+1}
20 else
21 Mt+1 ←Mt

22 end
23 return {Yt+1,Mt+1,Mt

G,Θ
t, tC, tM}

50



Chapter 7

Experimental Results

In this chapter, the efficacy of the proposed methods to improve the performance of Online
VOS is evaluated by augmenting and assessing state-of-the-art Online VOS frameworks. It
is worth noting that all of the proposed solutions, such as prior-focused gated-regularizer
continual learning (GRCL), likelihood-focused reconstruction-based memory selection con-
tinual learning (RMSCL), and the posterior-focused Hybrid approach, can augment any
given Online VOS framework. In Section 7.1, two well-known and state-of-the-art On-
line VOS frameworks that are used and adopted in this thesis as baseline methods are
explained.

7.1 Baseline Online VOS frameworks

To show the impact of the proposed methods of this thesis, two Online VOS methods are
chosen. The adopted baseline methods are listed and explained.
LWL [16] is an extension over the well-known FRTM [22] framework, benefiting from a
label encoder network E which tells its target model C what to learn [16]. LWL follows
the framework structure that is explained in Figure 3.1. In LWL, the encoder, decoder D
and label encoder E are trained offline, thus we do not make any changes to them in using
the proposed solutions.
JOINT [17] approaches the VOS problem by using an online learning induction branch
jointly with a transduction branch, which benefits from a lightweight transformer for pro-
viding sufficient temporal and spatial attention to its decoder. In other words, JOINT has
all of the parts explained in Figure 3.1 in addition to the transduction part. JOINT has
its own trained encoder and decoder D models different from LWL. Moreover, JOINT has
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reported the state-of-the-art Online VOS in terms of accuracy. Both methods are mainly
designed and explained for segmenting a single object in each frame of a video; however,
as is mentioned in the LWL and JOINT papers [16, 17] to work on multiple objects, their
method processes each object in each frame independently and blends the predicted masks
using the soft-aggregation function [98] over each frame.

The mentioned baselines are augmented by the proposed methods of Chapters 4, 5, and
6 on the datasets that are introduced in the next section.

7.2 Datasets

The proposed solutions are compared for two different types of video sequences: long and
short. The Long Videos dataset [1] contains objects with a long trajectory with multiple
distribution drifts; the short videos are from the standard DAVIS16 [86], DAVIS17 [87],
and YouTube-VOS18 [88] datasets, where the target objects are being tracked in a short
period of time and usually without significant abrupt changes in appearance. Evaluating
the competing methods on both long and short video datasets demonstrates the robustness
of the evaluated methods in different environments.

The Long Videos dataset [1] contains three videos with a single object that are recorded
for more than 7000 frames. The target objects could have some sudden appearance changes,
which lead to significant representation drifts of the video objects. Each of the videos in
the dataset has 21 labelled frames for the evaluation.

With regards to short video datasets, the DAVIS16 [86] validation set has 20 videos,
each of which has a single object for segmentation; the validation set of DAVIS17 [87]
contains 30 video sequences with multiple objects to be segmented in each frame. The
validation set of YouTube-VOS18 has 474 video sequences of 65 seen (which are present in
the training set) and 26 unseen object classes. The target objects in short video datasets
have mostly a short trajectory, with modest changes in object appearance.

7.3 Experimental setup

In this section, the default setup of the selected methods (LWL and JOINT) and the
evaluation scenarios are discussed. A fixed and default setup specified for each baseline is
used, with a memoryM with maximum memory sizes of N = 32 for LWL and N = 20
for JOINT, as suggested in their original publications [16, 17] on the evaluated datasets.
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Each unit of memory M includes a pair of feature and mask label (X and Y ). For all
experiments, the target model C is updated for only three epochs in each updating step,
and to have a fair comparison with the baselines, their suggested hyper-parameters [16, 17]
are used for all of the experiments. The target model is updated every time the memory
is updated, following the proposed setup in [21].

The memoryM0 is initialized by the feature and the given ground-truth label (Xg, Yg)
of given (ground truth) frame Fg. In all of the experiments, as suggested in semi-supervised
Online VOS baselines (LWL and JOINT), the information extracted from Fg is preserved
and is used throughout the evaluation of other frames in the video sequence. In the
proposed methods, the same concept is followed where in GRCL, the gated-regularizer
map G0 related to the training of the target model C0 on Xg and Yg is kept inMG. For
RMSCL, the feature Xg and mask Yg are always placed in the working memory with a
minimum weight ψg as shown in Figure 5.1. To maintain the same level of focus on the
given frame’s information as it is in the baselines, Ψ is normalized in order to keep the
same ratio between the maximum element of Ψ and ψg. It is worth noting that ψg is set
to 0.25 for LWL and JOINT based on their original publications [16, 17].

The same pretrained decoder D and encoder models are used for all experiments of
LWL, and similarly the same decoder D and encoder models are used for all experiments
on JOINT. It is worth to mention that the hyper parameters of the proposed approaches
in this thesis are find empirically by using cross-validation and running tests on both short
and long video datasets.

To measure the effectiveness of the competing methods, consistent with the standard
DAVIS protocol [86], the mean Jaccard J index, mean boundary F scores, and the average
of J&F are reported for all of the methods. For YouTube-VOS18, the reported results
are found using the YouTube-VOS18 official evaluation server [88]. The mean Jaccard J
index, mean boundary F scores, and the overall score G of seen and unseen object classes
are also reported. The speed of each method is reported on the DAVIS16 dataset [22] in
units of Frames Per Second (FPS) when ∆C = ∆M = 1. All experiments were performed
using one NVIDIA V100 GPU.

7.4 Experimental results

In this section, the proposed methods are compared and evaluated in different scenarios
with baselines and other VOS methods on long and short videos. Before comparing the
results with other methods and with different scenarios, we need to investigate the supe-
riority of Online VOS methods over XMem [21] which is the state-of-the-art method on
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Figure 7.1: GPU memory usage of XMem, LWL and JOINT when processing 2416 frames
of the “blueboy” video in the Long Videos dataset [1]. As shown, the GPU memory usage
of XMem increases significantly over time, whereas LWL and JOINT have a fixed GPU
memory usage.

long video sequences. As is mentioned in XMem [21], but not highlighted, matching-based
methods suffer from memory expansion when evaluating long video sequences; however,
Online VOS methods are designed to work with a fixed memory size. Figure 7.1 shows the
GPU memory usage of LWL, JOINT and XMem on the “blueboy” video sequence from
the Long Videos dataset [1]. The Online VOS methods (LWL and JOINT) require only a
fixed GPU memory size, which enables them to be used on small devices with more modest
GPUs. Figure 7.1 demonstrates that the Online VOS methods do not further increase the
GPU memory requirement.

7.4.1 Long Video Evaluation

The effectiveness of the proposed GRCL, RMSCL and Hybrid solutions can be evaluated
by augmenting two state-of-the-art Online VOS frameworks, LWL and JOINT; however,
the proposed methods can be extended to any Online VOS method having a periodically-

54



Table 7.1: Comparison results on the Long Videos dataset [1], based on the online VOS
baseline methods (LWL and JOINT), their augmented versions with GRCL, RMSCL,
Hybrid, and four matching-based VOS methods. The evaluation metric J is related to the
Intersection over Union (IoU) of an estimated object mask and the ground truth, and F
is about how accurate is the boundary.

Method J&F J F
LWL 79.8 ± 4.2 78.0 ± 4.3 81.6 ± 4.2
LWL-GRCL (proposed) 84.5 ± 1.6 82.8 ± 1.3 86.1 ± 2.0
LWL-RMSCL (proposed) 83.4 ± 2.7 81.5 ± 2.6 85.2 ± 2.8
LWL-Hybrid (proposed) 86.1 ± 1.4 84.5 ± 1.4 87.6 ± 1.4
JOINT 67.5 ± 4.4 65.7 ± 4.2 69.3 ± 4.7
JOINT-GRCL (proposed) 70.5 ± 6.8 68.7 ± 6.6 72.3 ± 7.0
JOINT-RMSCL (proposed) 75.6 ± 5.1 73.6 ± 5.0 77.5 ± 5.2
JOINT-Hybrid (proposed) 76.3 ± 4.6 74.6 ± 4.3 78.0 ± 4.9
RMNet 59.8 ± 3.9 59.7 ± 8.3 60.0 ± 7.5
STM 80.6 ± 1.3 79.9 ± 0.9 81.3 ± 1.0
STCN 87.3 ± 0.7 85.4 ± 1.1 89.2 ± 1.1
XMem 89.8 ± 0.2 88.0 ± 0.2 91.6 ± 0.2

updated target model C, as in Figure 3.1. Table 7.1 shows the results of the selected
baselines (LWL and JOINT), each augmented by the proposed GRCL, RMSCL and Hybrid
methods, evaluated on the Long Videos dataset [1]. For LWL-GRCL and JOINT-GRCL,
the threshold h is dynamically set to the 99.5th percentile of the distribution of normalized
U t in Equation (4.3). Additionally, h is limited (0.1 < h < 0.55) for LWL-GRCL and
(0.1 < h < 0.6) for JOINT-GRCL. Bounding the threshold h prevents the model from
regularizing many not important parameters or very few important parameters. The hyper-
parameters related to h were selected by cross-validation.

The chosen ratios of GRCL (ξl and ξu) are 0.07 and 0.15, respectively. These ratios
are defined for the target model C and are identical for LWL and JOINT. Taking these
two ratios into account, the maximum and lower bounds of number regularized parameters
for LWL and JOINT are ηu = 0.15 × K and ηu = ξu × K, respectively. For LWL, with
K = 73728, two chosen upper and lower limit thresholds (ηl and ηu) on the number of
regularized parameters of the target model C would be 5000 and 11000, respectively. To
study the influence of dynamic gated-regularizer memory in GRCL, the effect of employing
different constant gated-regularizer memory sizes P in GRCL is discussed in Section 7.5.2.
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For the adopted frameworks by RMSCL, the parameter λ defines the sparsity of Ψ
in Equation (5.3). To select the best λ, Akaike Information Criterion (AIC) [99, 100] is
used for model selection, automatically selecting λ and the number of positive non-zero
coefficients Ψt, which defines the size of the working memoryMt

W . Thus, for each update
step t, in principleMt

W could have a different size in comparison toMt, depending upon
the selected λ, the current feature Xt−1, and the set features X in the memoryMt.

It is worth noting that the selected hyper-parameters for Hybrid solution are the sames
as the selected parameters for GRCL and RMSCL for each dataset assuming the Hybrid
method benefits from the best version of both GRCL and RMSCL and does not need to
re-tune new hyper-parameters for its GRCL and RMSCL parts. In addition to the hyper-
parameters for GRCL and RMSCL, there are two hyper-parameters (thresholds) for Hybrid
which are τ and β. For both LWL and JOINT, β = 2 which means that in addition to
the given ground-truth data which is always placed in the working memoryMt

W , the size
of workingMt

W should also be bigger than β = 2 in order to update the gated-regularizer
memoryMt−1

G . Additionally, τ is set to 2000 for LWL and 6000 for JOINT.

For the evaluation of the proposed methods of this thesis, six experiments with six
different memory and target model update step sizes ∆C ∈ {1, 2, 4, 6, 8, 10} are conducted,
where an updated memoryMt is used to update Ct−1 to Ct (∆M = ∆C). The performances
of the Online VOS methods vary with different step sizes ∆C and specifically ∆M, because
of the differing distributions that are formed in the memoryM as a function of sampling
frequency. This is also induced by looking at the reported standard deviation of the results
in XMem [21]. Similarly, in this thesis, the means and standard deviations of six runs of
the proposed methods in Chapters 4, 5, and 6 are reported in Table 7.1.

In [21], authors compare the performance of different methods by taking the average of
five runs; however, they did not report the five update steps that they used. Comparing
the standard deviations of JOINT in Table 7.1 with those reported in [21], we can see that
the selected six memory update steps are reasonably close to those in [21].

As seen in Table 7.1, the proposed solutions improve the performance of both selected
Online VOS baseline models (LWL and JOINT) on long videos when the objects in the
video have a long trajectory with sudden representation drifts. Furthermore, as illustrated
in Table 7.1, by comparing LWL and LWL-GRCL methods, we can deduce that the pro-
posed prior-focused GRCL can improve the robustness of the LWL model against selecting
different values for target model update size ∆C, evident by the lower reported standard
deviation in table; however, we will see in Section 7.5.1 that is not generally true.

It is worth mentioning that JOINT has a parallel transduction branch in its structure,
which benefits from a transformer model that acts like a matching-based method. This
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is an important factor leading the proposed GRCL to be less effective in reducing the
standard deviation of JOINT-GRCL performance. Although the transduction branch of
JOINT can boost the positive or even negative effects of the proposed solutions, the average
performance J&F of JOINT-GRCL is improved significantly by 3% relative to the JOINT
baseline.

For LWL, RMSCL improves the robustness of the model against different target model
update step size ∆C by decreasing the standard deviation of LWL in LWL-RMSCL. The
effect of RMSCL on JOINT is on both branches of JOINT’s structure, which amplifies the
positive and negative effects of JOINT and consequently increases the standard deviation
of JOINT performance; however, it outperforms JOINT by almost 8% on the Long Videos
dataset. On LWL, RMSCL improves the accuracy of the baseline by more than 3%.

The performances of Hybrid methods on baselines are also shown in Table 7.1. The
proposed Hybrid solution improves the robustness (smaller standard deviation) of LWL
with the most significant accuracy improvement of more than 6%. JOINT-Hybrid also
outperforms both the accuracy and robustness of JOINT-RMSCL and JOINT-GRCL. We
will discuss the performance of the Hybrid approach on Figures 7.2 and 7.3.

To have a fair comparison, the proposed methods and the baseline Online VOS frame-
works are compared with four matching-based methods, including RMNet [72], STM [20],
STCN [73], and the current VOS state-of-the-art approach XMem [21]. The reported
results of the matching-based methods are from [21]. STM is a matching-based VOS
baseline that has been a state-of-the-art method for a long period of time in VOS and
RMNet, STCN and XMem are its follow-up methods. RMNet and STCN try to improve
the memory functionality of STM by having better memory encoding and memory reading
methods. XMem also be considered an extension of STM which is specifically designed to
work on long video sequences.

Figures 7.2 and 7.3 demonstrate the comparison between the performances of each 6
runs based on different memory and target model update step sizes while the two update
step sizes are the same for this experiment (∆C = ∆M). Figures 7.2 and 7.3 shows first eight
methods’ performance of Table 7.1 on LWL and JOINT respectively. In addition to those
eight performances, LWL-No-Update and JOINT-No-Update show the performance of the
two baselines method without updating the target model C on the extracted information
of the evaluated frames. These two results show the impact of the given ground truth label
alone on the Long Videos dataset.

As shown in Figures 7.2, LWL-GRCL outperforms LWL with a large margin when the
memory and target model step size are small (∆C = ∆M = {1, 2, 4, 6}) whereas, for a
bigger target model and memory update step size (∆C = ∆M = {8, 10}), the performance
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Figure 7.2: Performance comparison of competing methods as a function of memory and
target model update step sizes, (∆C = ∆M), on the Long Videos dataset [1]. The left figure
shows J and the right one illustrates F over 6 runs for LWL and LWL augmented by three
proposed methods. The green line shows the performance of LWL without updating its
target model on the memory.

of LWL-GRCL is better than LWL with a smaller margin. This is because of having a
more diverse memory M with a bigger memory step size ∆M that makes the updating
target model alone without GRCL regularization effective.

In Figures 7.2 and 7.3, the impact of the Hybrid solution is more highlighted than the
results in Table 7.1, as LWL-Hybrid and JOINT-Hybrid have better robustness against
different update step sizes. As you can see in Figure 7.3, the Hybrid methods have fewer
fluctuations in performance in comparison to the prior and likelihood-focused methods
(JOINT-GRCL and JOINT-RMSCL). Additionally, the Hybrid approach is the best ap-
proach among the proposed continual learning approaches in this thesis in terms of per-
formance (J and F) on both baseline methods (LWL and JOINT).

It is worth nothing that with a small target model update size, the Hybrid methods
could implicitly benefit from their GRCL part, and with a large target model update size
(∆C = {6, 8, 10}), the likelihood-focused part (RMSCL) of the Hybrid approach mostly
improves the performance of the baseline. In better words, the proposed posterior-focused
solution (Hybrid) counts on its likelihood when there is enough data available in the mem-
ory, and it counts on its prior-focused part (GRCL) when the memory does not contain
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Figure 7.3: Performance comparison of competing methods as a function of memory and
target model update step sizes on the Long Videos dataset [1]. Each figure illustrates
adopted JOINT’s performance (J and F) over 6 runs. The green line shows the perfor-
mance of JOINT without updating its target model on the memory.

enough data from the past. Note that, by “enough”, I mean enough diverse data samples
that are a good representative of the video sequence that its frames are evaluating.

RMSCL has a more positive effect on JOINT since it provides the updated working
memoryMW for its transduction branch as well. It is interesting to see that LWL outper-
forms JOINT on the Long Videos dataset, and the reason could be the lack of generalization
in its offline-trained parts, specifically its transformer part.

Figure 7.4 shows the qualitative results of the proposed methods (GRCL, RMSCL,
and Hybrid) and baselines (LWL and JOINT) on 7 selected frames of the “dressage” video
sequence from the Long Videos dataset. The results in Figure 7.4 are produced by applying
the evaluated methods to the Long Videos dataset when ∆C = ∆M = 1. The results show
RMSCL improves the performance of LWL and JOINT; however, GRCL improves the
performance of LWL but cannot improve the performance of JOINT on the selected frames.
Thus, GRCL improves the performance of the baselines if the prior information is correct
(it happens with LWL). As shown in the figure, LWL-Hybrid has the best performance on
the Long Videos dataset; however, baseline methods are more vulnerable to the distribution
drift of the target object. The distribution drifts that happen on the “dressage” video are
shown in Figure 2.4 in Chapter 2.
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Figure 7.4: Qualitative comparison of the competing frameworks in the context of the Long
Videos dataset [1]. The associated frame number for each image is shown at the bottom
of the figure. The leftmost column shows the given mask Yg, which is the same for all of
the methods. The results show that the proposed methods, when augmenting the baseline
frameworks, can lead to robust representation drift. The missed part of the estimated
object mask is shown in gray while the segmented mask is shown in pink. Additionally,
the frameworks based on RMSCL (LWL-RMSCL, JOINT-RMCSL) are less vulnerable to
the distribution changes that take place in long video sequences. Finally, as shown in the
figure, LWL-Hybrid has the best performance among all the proposed methods.
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Figure 7.5: The effect of different memory size N on the proposed methods compared to
the baseline (LWL) on the Long Videos dataset [1]. The performance of the LWL baseline
fluctuates with memory size (N), while LWL-GRCL, LWL-RMSCL, and LWL-RMSCL
are more robust to the selection of different memory size N . Here, the target model and
memory update step are ∆M = ∆C = 4.

On long video sequences, it is not feasible to store all of the previously evaluated frames’
information in the memoryM, as such, it is important to limit the memory size N . Here,
we aim to evaluate how different memory sizes affect baselines and the proposed methods.
For this experiment, we compare the performance of LWL, LWL-RMSCL, LWL-GRCL,
and LWL-Hybrid on the Long Videos dataset N ∈ {8, 16, 32, 64, 128} and the target model
and memory update step are ∆M = ∆C = 4. As seen in Figure 7.5, increasing the memory
size N improves the performance of the methods, but it also increases the computational
complexity of the evaluated Online VOS methods. Increasing the size of memoryM does
not have a considerable effect on LWL-RMSCL since it does not have any hyper-parameters
that are affected by the size ofM; however, tuning the hyper-parameters (thresholds) of
LWL-GRCL and LWL-Hybrid is implicitly affected by the size of the memory N . This is
the reason that LWL-GRCL and LWL-Hybrid performance fluctuated with changing the
size of M. RMSCL on the other hand, provides a small set of diverse enough data with
new weights Ψ in its dynamic working memory MW which improves both accuracy and
speed of the baseline methods on long video datasets.

Figure 7.6 illustrates how increasing the memory size N affects the speed, measured
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Figure 7.6: Run-time evaluation: The proposed methods’ run-times are compared against
the LWL baseline on the DAVIS16 dataset. LWL-RMSCL leads to higher Frame Per
Second (FPS) when the memory size N is increased. The memory and the target model
update step is set to ∆M = ∆C = 1 for all of selected N .

in FPS, of the evaluated methods (LWL, LWL-GRCL, LWL-RMSCL, and LWL-Hybrid)
on DAVIS16. The memory and the target model update step is set to ∆M = ∆C = 1
for the results in Figure 7.6. As shown, the FPS of LWL-RMSCL is degraded less than
LWL, LWL-GRCL and LWL-Hybrid while LWL-GRCL and LWL reported almost the same
degradation with increasing the memory size N . Since LWL-RMSCL uses smaller working
memoryMW for training the target model, it would be faster than LWL and LWL-GRCL
when the memory size is increased (bigger than 32). It is worth mentioning that minimizing
Equation (5.3) in the RMSCL approach is affected by increasing the memory size N and
consequently it affects the FPS of LWL-RMSCL as well. LWL-Hybrid has the lowest FPS
among the proposed approaches since it has the computational complexity of both GRCL
and RMSCL. When the memory size (N) is increased, the Hybrid approach degrades at
the same rate as RMSCL.
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Figure 7.7: Quantitative evaluation (J left, F right) of the proposed GRCL with a con-
ventional continual learning (MAS) [49] on the Long Videos dataset [1]. As seen, standard
MAS [49] is not as effective as the proposed GRCL when incorporated into the Online VOS
framework.

7.4.2 Conventional Continual Learning

One important aspect of the proposed prior-focused continual learning method to augment
Online VOS frameworks is that it be customized and designed specially for Online VOS. To
illustrate that, the performance of the proposed method (LWL-GRCL) is compared against
the LWL framework when is augmented with standard MAS continual learning regular-
izer [49] as a prior-focused regularizer for updating the target model (LWL-MAS). The
evaluation is conducted on the Long Videos dataset, where the results are demonstrated
in Figure 7.7. As shown in Figure 7.7, LWL-GRCL reports higher average performance J
and F compared to LWL-MAS. Two main reasons can be provided to further elaborate
the reported gap on the performance of these two compared frameworks: i) The overall
gated-regularized map Gt−1 described in Figure 5.1 and Algorithm 3 keeps the efficiency
of the proposed GRCL compared to the MAS approach, where the MAS regularizer loses
its efficiency when the update steps are increased, as explained in Section 4.1. MAS highly
benefits from Ωt, however the efficiency of Ωt is being degraded as more and more target
model gradients are processed and stored over time. It causes all of the parameters to be-
come important as the number of updates increases. On the other hand, LWL-GRCL with
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its dynamic memory size, guarantees that the target model C has enough free parameters
to learn new tasks. ii) For a small number of training epochs, in each updating step of Ct

the binarized regularizer Gt−1 (hard regularizer) is more effective than MAS with a soft
regularizer Ωt.

7.4.3 Short Video Evaluation

Table 7.2 demonstrates the performance of the adopted Online VOS frameworks based on
the proposed approaches and competing methods on short video datasets (i.e., DAVIS16,
DAVIS17, and YouTube-VOS18). The same hyper-parameters are used for short and long
videos, meaning that the models do not have prior knowledge of the length of the video
sequence being processed. As mentioned in Section 2.4.2, objects in short video datasets
have a short trajectory and their representations are mostly kept intact or gradually chang-
ing through the frames. As seen in Table 7.2, the augmented frameworks by the proposed
prior-focused GRCL perform the same as the baseline methods, and the proposed regu-
larizer not only does not affect the performance of the baseline method when there is no
representation drift on objects in videos, but also LWL-GRCL performs slightly better
compared to LWL on YouTube-VOS18.
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In Table 7.2, the baseline models’ parameters suggested in their respective original
publications are utilized for reporting J , F and FPS. On short videos, one target model
update step is selected for each dataset, in contrast to the results on the Long Videos
dataset, where a set of 6 target model update step sizes are used. For JOINT, C is
updated every 3 frames (∆C = 3), and for LWL, C is updated every frame (∆C = 1);
however, XMem updates its so-called working memory every 5 frames (∆M = 5). All of the
mentioned parameters are suggested for their best performances on short videos suggested
in their papers [16, 17]. The proposed RMSCL slightly degrades the performance of LWL
on all of the short video datasets, but it improves the speed of the baselines, specifically
JOINT because both its branches are affected by RMSCL. In JOINT-RMSCL both its
online learning part and its transformer part use MW and that is why JOINT-RMSCL
reports more improvement in speed (higher FPS) in comparison with JOINT. Table 7.2
also shows the baselines perform slightly better in terms of FPS since GRCL needs to
calculate a new Gt after every updating step t; however, for a small target model Ct this
FPS degradation is not significant.

The Hybrid method also gets almost the same performance as RMSCL on short videos;
however, the Hybrid method is slower than RMSCL since it has the computational com-
plexity of both GRCL and RMSCL.

The performance degradation of the proposed methods on short video datasets in all
cases except LWL-RMSCL and LWL-Hybrid are negligable (less than 1%); however, the
impacts of the proposed methods on the Long Videos dataset make it reasonable to use
them on the Online VOS methods. LWL-RMSCL and LWL-Hybrid also decrease the per-
formances of LWL on the short video datasets less than 2% .

Figure 7.8 demonstrates the qualitative results of the proposed methods and baselines
on the the “soapbox” video sequence of DAVIS16 [86]. As illustrated, the proposed con-
tinual learning methods offer positive improvement on JOINT shown with red border in
Figure 7.8 with slight and tiny changes in LWL results, which is in agreement with the
reported results in Table 7.2. The “Soapbox” video is one of the longest video sequences
of DAVIS16 with 99 frames.

7.4.4 Memory Efficiency

To compare the memory efficiency of the proposed prior-focused GRCL against the base-
line, we compare each unit of memoryM of LWL and each memory unit ofM of adopted
LWL-GRCL. In LWL, each sample in the memoryM consists of the preceding estimated
object masks Y and its related input frames’ extracted features X . Each feature X ∈ X
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Figure 7.8: The qualitative comparison of the evaluated methods on a short video dataset
(DAVIS16 [86]). The results show that the proposed GRCL, RMSCL, and Hybrid almost
keep the performances of baselines intact on DAVIS16 and improve the object segmentation
of some frames shown in red compared to JOINT. These qualitative results reflect the
quantitative results of Table 7.2.

has a dimension of 512×30×52 floats (64 bits). In contrast, each binary regularized-gated
map (G) has a dimension of 512 × 16 × 3 × 3 bits. Moreover, each unit ofM also has a
binary mask of the target model C output size of 30× 52. As a result, each unit ofMG is
almost 693 times smaller than each unit ofM. This comparison would be more important
if there was a need to improve the performance of an Online VOS implemented on a small
device. Thus, having a larger gated-regularizer memoryMG is less expensive than having
a large memoryM.
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Figure 7.9: The effect (J left, F right) of target model update step size ∆C: The competing
methods are evaluated via Long Videos dataset [1]. The results show that the proposed
LWL-GRCL and LWL-RMSCL are more robust to different target model update step sizes
∆C when the memory update step size is fixed ∆M = 1.

7.5 Ablation study

In this section, the effects of some key parameters of the proposed methods are evaluated
on the adopted method’s performance. Additionally, the effects of some part of the pro-
posed methods also will be discussed in this section. The comparisons are mainly on the
LWL approach when augmented with prior-focused GRCL, likelihood-focused RMSCL,
and Hybrid. This section shows a range of experimental results and ablation studies on
the Long Videos dataset.
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Figure 7.10: Per-class and per-frame performances (J ) of LWL and LWL-GRCL on the
Long Videos dataset [1] when N = 4, ∆C ∈ {4, 8, 10}, and ∆M = 1. The figure shows
the segmentation scores of each method on the labelled frames of three videos of the
Long Videos dataset. This figure shows that LWL-GRCL has difficulties recovering from
incorrect segmentation in the ”dressage” video (∆C = 4), whereas it helps LWL avoid this
situation (∆C ∈ {8, 10}).

7.5.1 Target Model Update Step Size ∆C

To justify the effect of target model update step size on the proposed methods, an ablation
study is conducted to compare the performance of LWL-GRCL, LWL-RMSCL and LWL
on the Long Videos dataset. Here, the memory update step size is fixed to ∆M = 1 and
only the target model update step size varies ∆C ∈ {2, 4, 6, 8, 10, 12, 14}. It is worth noting

69



that, in all of the results in Section 7.4, memoryM and Ct were updated sequentially but
at the same time index (∆C = ∆M). For this experiment, the memory size is set to N = 4
to make the situation hard for all of the evaluated methods. As seen in Figure 7.9, LWL’s
performance has the lowest performance in comparison to LWL-GRCL and LWL-RMSCL.
LWL also experiences a drop in the update step size ∆C ∈ {6, 10, 12}, but by undertaking
the proposed methods, the degree of this degradation of performance is decreased, except
for LWL-GRCL at ∆C = 4. This degradation of performance by GRCL shows a drawback
of the prior-focused method when the model focuses on a wrong prior and that wrong prior
is kept and intensified through the evaluation of future frames.

The first row of Figure 7.10 shows the details of the performance degradation of LWL-
GRCL in Figure 7.9 when ∆C = 4. The per-calss and per-frame performances of LWL
and LWL-GRCL are shown as a bar plot of the segmentation scores J and compared in
Figure 7.10. The figure shows LWL-GRCL cannot recover from a wrong segmentation
because of the blind parameter regularization of GRCL; however, GRCL improves the
performance of LWL on the other two target model step sizes (∆C ∈ {8, 10}). In other
words, GRCL helps Online VOS not to do wrong object segmentation, but if it does,
and usually with small target model update sizes, the important parameters of the target
model being trained on the wrong object segmentation frames would be kept intact and
remembered along the video frames.

It is worth noting that for this experiment, the hyper-parameters of GRCL are the same
as the hyper-parameters that are tuned for LWL setup with memory N = 32. As shown
in Figure 7.5, LWL has more difficulty segmenting the object in long video sequences with
a considerably limited memory size.

In Figure 7.9, the impact of the proposed RMSCL method is more considerable. RM-
SCL has lower performance in comparison to GRCL with large step sizes ∆C ∈ {8, 10, 12, 14})
since the memory is not diverse enough and RMSCL cannot provide any better compact
version of a working memoryMW for the baseline. It is worth mentioning that the impact
of RMSCL with a small memory size N = 4 is more initiated by its re-weighting mechanism
of using Ψt instead of dn as explained in Section 5.2. Next, the ablation studies related to
GRCL are discussed.

7.5.2 GRCL

For the experimental results in Section 7.4, the gated-regularizer memory size P is varying
during the evaluation time, which makes the gated-regularizer memoryMG dynamic. In
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Figure 7.11: The effect of gated-regularizer memory size P on the LWL-GRCL-Fixed
framework. For this experiment, the memory size is fixed and limited to (N = 8) in order
to properly analyze the impact of the proposed GRCL-Fixed. The experiment also is done
on Long Videos dataset. By setting P to a large number, the target model Ct will not
have enough free parameters to be updated on memoryM.

GRCL, the size ofMG depends on the regularized parameters of the target model Ct, if it
crosses two certain thresholds, the gated-regularizer memory size will be adjusted.

First, in order to show thatMG should be dynamic, an experiment is done considering a
static gated-regularizer memoryMG size and with this change the prior-focused approach
is named GRCL-Fixed. Next, the effect ofMG size is discussed on LWL-GRCL-Fixed.

Gated-Regularizer Memory Size

Figure 7.11 shows the performance of LWL-GRCL-Fixed with different gated-memory sizes
P ∈ {4, 20, 32, 64, 80, 128} on the Long Videos dataset. As demonstrated in Figure 7.11,
increasing P improves the performance of LWL-GRCL until the number of regularized
parameters does not degrade target model learning. For the main experimental results in
Section 7.4, the gated-regularizer memory size is varying based on the number of regularized
parameters of the target model, and it makesMG dynamic in size where the memoryM
size is fixed and set to N = 32. The reason for limiting the memory size to N = 8 is
to highlight the impact of gated-regularizer memory. In other words, we need to limit
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Figure 7.12: The number of regularized target model parameters Θ when incorporated into
LWL-GRCL-Fixed, as a function of gated-regularizer memory size (P = {20, 32, 80, 128}).
The number of regularized parameters of LWL-GRCL are shown with solid blue line. The
results are based on 1416 frames of the “rat” video sequence of the Long Videos dataset [1].
For this experiment, C is updated every frame (∆C = 1), and the memory size is set to
(N = 8).

the memory size N to make more severe forgetting happens on the video sequence. This
effect can also be seen from another perspective in Figures 7.2 where, with a small memory
update step size (∆M < 4), LWL-GRCL improves the baseline considerably, assuming with
a small memory update step size the memory is updated with similar information more
frequently.

Regularized Parameters of the Target Model

The number of regularized parameters in Ct is important factor related to the ability
of the target model to learn new information. As seen in Figure 7.12, the regularized
parameters of the target model Ct is increased, while the gated-regularizer memory MG

is growing by evaluating new frames (the evaluation of first P frames). This growth in
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Figure 7.13: Quantitative evaluation (J on the left and F on the right) of the proposed
GRCL with GRCL-Fixed (p=20) on the Long Videos dataset [1]. As seen, GRCL with
dynamic gated-regularizer memoryMG has better performance than GRCL-Fixed with a
constant sizeMG.

the number of regularized parameters is different for different P for GRCL-Fixed where
the gated-regularizer memory size is fixed. For P = 128, almost all of the parameters of
C are regularized, and in this case Ct does not have any free parameters to be trained,
and even removing or replacing one gated-regularization map Gj fromMG would not free
enough parameters and solve the problem. In other words, Ct would not have enough free
parameters to be updated on the new updated memoryMt. When the gated-regularizer
memoryMG reaches its maximum capacity, the oldest G in the gated-regularizer memory
will be replaced by the next gated-regularizer map Gt. This will free up some parameters
since Gt has a lower number of “1” in its map in comparison with the oldest G in the
memory. This decreasing number of regularized parameters in the overall gated-regularizer
Gt−1 will continue untill it reaches the balance number, and then this phenomenon will
continue in a periodic order. This can be seen in Figure 7.12 on LWL-GRCL-Fixed (P=80).
The same pattern with smaller intensity happens to the other two, LWL-GRCL-Fixed
(P=32) and LWL-GRCL-Fixed (P=20). To address the discussed issue in GRCL-Fixed,
a mechanism is proposed for GRCL that makes MG dynamic in size. For LWL-GRCL,
no P is set, and as shown in Figure 7.12 and as you can see, the number of the target
model’s regularized parameters is bounded between 5000 and 11000. These two numbers
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are set based on two GRCL hyper-parameters (ξl and ξu) which are set to 0.07 and 0.15,
respectively. The results in this section show it is more meaningful to provide a gated-
regularizer memoryMG with dynamic size for GRCL.

Dynamic Gated-Regularizer Memory

Based on the discussions about the impact ofMG size and its relationship to the number of
regularized parameters of the target model, GRCL benefits from a dynamicMG size using
two thresholds ξl and ξu which were discussed in the Section 4.2.1. Figure 7.13 shows the
comparison between LWL-GRCL with dynamicMG, LWL-GRCL-Fixed with a staticMG

with size P = 20, and LWL. For LWL-GRCL-Fixed, the size of gated-regularizer memory
is set to P = 20 as the closest P which regularizes almost the same number of parameters
as GRCL as shown in Figure 7.12. The result shows the superiority of LWL-GRCL over
other methods on the Long Videos dataset.

Figure 7.13 again illustrates the main important limitation of the prior-focused method
when the prior information is not correct. As shown in Figure 7.10, this problem happens
when an update is done on the wrong segmented targets, and GRCL wants to remember
that update for segmenting future frames of video. Clearly, it happens on LWL-GRCL-
Fixed (P=20) when ∆M = ∆C = 6; however, for LWL-GRCL with dynamicMG it does
not happen. It is worth noting that the chosen hyper-parameters of GRCL are selected
empirically by conducting multiple tests with the goal of increasing the performance of
selected Online VOS methods (LWL and JOINT) on the Long Videos dataset and main-
taining the performance of the model on short video datasets.

7.5.3 RMSCL

Working Memory Size

The reconstruction-based memory selection part of RMSCL selects samples from memory
Mt and places them in the working memoryMt

W for updating the target model Ct−1 to
form the target model Ct. This memory selection mechanism provides a smaller an more
diverse working memory in comparison to Online VOS that usesMt for the target model
Ct. The performance of RMSCL and the Hybrid method is strongly dependent on the
quality of the selected samples in the working memory. Figure 7.14 shows the number of
selected samples fromM in every update step of LWL-RMSCL on the “rat” video of the
Long Videos dataset. In this figure, the target model and the memoryM is updated every
frame (∆M = ∆C = 1).
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Figure 7.14: The reconstruction error and the number of selected samples for each update
step in the RMSCL method on the “rat” video of the Long Videos dataset [1]. As seen
in bottom plot of this figure, LWL-RMSCL usually select small number of selected sam-
ples with the mean of 6 from the memory of size 32 which decreases the computational
complexity of LWL-RMSCL in comparison to LWL that updates the target model C on
32 samples ofM.

As illustrated in Figure 7.14, the required samples for updating the target model is
less than all of the available data in the memoryM (N = 32). It is worth noting that in
RMSCL, the given frame feature and segmented labels always are placed in the memory
with a fixed weight. Additionally, the reconstructed error that is shown in Figure 7.14
indicates that the Reconstruction errors of the current frame’s feature Xt+1 is usually
between 2000 to 9000. This results justify the message-passing mechanism of the Hybrid
approach and will be discussed more in the next section.
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Figure 7.15: Quantitative evaluation (J left, F right) of the proposed Hybrid with a
simple fusion of RMSCL and GRCL (GRCL + RMSCL) on the Long Videos dataset [1].
As seen, LWL-Hybrid with the message-passing mechanism between its RMSCL and GRCL
parts has better performance than a simple fusion of RMSCL and GRCL LWL-(GRCL +
RMSCL). Both proposed methods have better performance than LWL.

7.5.4 Hybrid

The most difficult aspect of developing the proposed Hybrid method is its hyper-parameter
tuning of its two thresholds (τ and β). These two thresholds are the most important
parameters of the Hybrid method’s message-passing module. Following that, a comparison
between the Hybrid method’s performance with and without the message-passing module
is conducted. Additionally, the influence of Hybrid’s hyper-parameters is also discussed
next.

Message-Passing Module between GRCL and RMSCL

The proposed Hybrid method with its message-passing module between GRCL and RM-
SCL was explained in Section 6.1. The message-passing module has two important hyper-
parameter which are the selected threshold on the reconstruction error τ and the threshold
β on the number of selected samples in the working memory. Figure 7.15 shows the com-
parison between LWL-Hybrid with and LWL-Hybrid without the message-passing module,
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which is just the simple usage of RMSCL and GRCL (LWL-(GRCL+RMSCL)). As shown
in Figure 7.15, there is a big performance degradation for LWL-(GRCL+RMSCL) on
∆M = ∆C = 4 and it is GRCL that amplifies and propagates the effect of segmentation
errors which are placed in the memory M and are selected by RMSCL for updating the
target model. This situation was discussed in Section 7.5.1 and Figure 7.10; however, this
time the wrong segmented frame’s information is selected by RMSCL and placed in the
working memory. The proposed message-passing in LWL-Hybrid tackles this problem by
not remembering all of the preceding continuously target model updates and giving the
target model a chance to recover from remembering a wrong update. When a wrong tar-
get object is learned in an update and there are many visually similar adjacent frames in
a video, RMSCL could select the same wrong set of samples from memory, which could
amplify the effect of the wrong updated parameters. This problem can be handled by
not updating the gated-regularizer memory when the selected samples for update are very
similar when there are less than 3 selected samples for reconstructing the pooled version
of the current sample Xt+1. The intuition behind the selected hyper-parameters of Hybrid
is to avoid remembering the updates in which RMSCL is very confident. This situations
happens when a set of selected samples with a small size (less than 3) is able to linearly
reconstruct the current sample Xt+1 using the estimated coefficients Ψt with a small re-
construction error (less than 2000).

7.5.5 Discussion

In [101], the authors explain theoretically why a likelihood-focused (replay-based) strategy
is generally better than a prior-focused (regularization-based) solution. However, for an
Online VOS method, based on the input video sequence, different situation could happen
and the proposed Hybrid solution is the most general and efficient solution for Online VOS
on long videos. There are also some concerns about the proposed Hybrid approach which
are its computational complexity and the challenging hyper-parameters tuning. Addition-
ally, Hybrid degrade the performance of Online VOS more than GRCL on short video
datasets. It is worth noting that in Section 7.4, it was shown that the proposed methods
do not have a significant negative or positive effect on the performance of baseline methods
on short video sequences.

Another important benefits of the proposed approaches is that the offline trained parts
of the adopted methods (LWL and JOINT) which are the encoder, decoder D, and the
label encoder E, do not need to be re-trained for each proposed method. This makes it
possible to apply the proposed methods on any Online VOS that follows the explained
general Online VOS in Figure 3.1 and Algorithm 1 without any fine-tuning process.
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Finally, it is important to mention again that the proposed methods are solving Equa-
tion 3.5; however, the focus of the optimizer algorithm is altered by focusing on each term
of Bayesian equation by regularizing the model parameters (prior-focused) in GRCL or
by changing the distribution of data in the memory (likelihood-focused) in RMSCL, and
considering both in Hybrid.
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Chapter 8

Conclusion

In this thesis, we proposed three novel methods, Gated-Regularizer Continual Learning
(GRCL), Reconstruction-based Memory Selection Continual Learning (RMSCL), and Hy-
brid, that can be integrated with any Online VOS algorithm to improve its performance
on long video sequences. The proposed approaches in this thesis can improve the capa-
bility of any Online VOS framework by making it more memory efficient and accurate in
terms of performance. Furthermore, it is demonstrated that the proposed Hybrid method
improves the robustness of the augmented baselines while increasing their computational
complexity. The experimental results of this thesis show that the proposed approaches
improved the accuracy of two baseline approaches (LWL [16] and JOINT [17]) on the Long
Videos dataset, but did not significantly improve the baselines’ performance on short video
datasets (DAVIS16 [86], DAVIS17 [87], and YouTube-VOS18 [88]).
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8.1 Summary of Contributions

In this thesis, continual learning was addressed in video object segmentation (VOS) leading
to the following contributions:

• In Chapter 3, a general framework for Online VOS was presented, allowing the video
object segmentation (VOS) challenge on long video sequences with concept drift to
be formulated as a continual learning problem. The role of the target model C was
highlighted in the problem formulation as a critical component for the adoption of
the proposed continuous learning-inspired solutions (GRCL, RMSCL, and Hybrid).

• The proposed Gated Regularization-based Continual Learning (GRCL) approach
(Chapter 4) is able to add a regularization term to any Online VOS loss function
and regularizes important parameters associated with previous update steps. An-
other contribution of GRCL was its dynamic gated-regularizer memoryMW , which
is adjusted based on the number of the target model’s regularized parameters.

• This thesis also contributed the Reconstruction-based Memory Selection Continual
Learning (RMSCL) method explained in Chapter 5 for Online VOS models. The
proposed likelihood-focused approach can be integrated into Online VOS to increase
its speed and accuracy on long video sequences. The main challenge in the proposed
RMSCL was to take the computational complexity of memory selection into account
in order to have the most efficient memory selection for Online VOS. RMSCL de-
creases the computational complexity of Online VOS by providing smaller working
memory MW for each update step in comparison to Online VOS that updates the
target model C on M. Additionally, RMSCL re-weights the selected samples in
MW with its calculated coefficients Ψ which could bring a selected old sample from
memoryM bring back to the attention of the updating step.

• The Hybrid approach developed in Chapter 6, which combines RMSCL and GRCL,
was the thesis’s fourth contribution. The most important contribution of Hybrid
was the message-passing mechanism between its RMSCL and GRCL parts, in which
RMSCL tells GRCL when to remember the important parameter of the update step
and when to ignore preserving the important parameters of an update step. The
primary goal of the Hybrid method is to increase the robustness and accuracy of the
fusion of RMSCL and GRCL; however, it increases the computational complexity of
Online VOS.
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8.2 Limitations and Future works

There are some limitations for each of the mentioned contributions to the thesis, which
can be addressed in future work.

Continual Learning Formulation for Video Analysis

The first contribution of this thesis was addressing VOS from a continual learning per-
spective. The limitation for this problem formulation is that recently, matching-based
VOS methods have become the state-of-the-art in terms of accuracy and speed on short
and long videos; however, they usually use no online learning in their process. Thus,
the first future work of this thesis is to combine matching-based methods with the on-
line learning-based method and apply the proposed methods to provide a state-of-the-art
semi-supervised VOS solution.

Additionally, the encode and decoder D part of the evaluated baseline methods (LWL
and JOINT) were trained offline on short video VOS datasets; however, one future work of
this study is to fine-tune the encoder and decoder parts of general Online VOS explained
in Section 3.1 to be able to get better results on long video sequences. The concept behind
this future work is that there could be some better features that encoders could provide
specifically for long video sequences, which is partly addressed in ISVOS [85].

As is shown in Section 7.4, the proposed methods of this thesis do not have many
impacts on short video datasets and there are not many publicly available long video VOS
datasets. Recently, CLVOS23 [102] released to extend the Long Videos dataset [1] to 9
videos and 281 labelled frames for evaluation. Applying and refining the proposed methods
suggested in this thesis to CLVOS23 is planned for the future.

Another potential future work of this thesis is to expand the proposed method to other
areas of video processing, specifically object tracking, which could suffer from forgetting
during the online learning process of the online tracking.

Gated-Regularizer Continual Learning (GRCL)

In GRCL, all the hyper-parameters are tuned for the evaluated Online VOS baselines
on short and long VOS datasets; however, training the target model for more epochs
alongside re-traninig the encoder and decoder can show a bigger impact of GRCL since
the regularization is more effective with better training. It is worth noting that for all the
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proposed methods, the goal was to add the proposed approach to the baselines without
any need for change to the structure or the hyper-parameters of the baseline.

The main limitation of GRCL is that when the prior knowledge learned during the
preceding update time is wrong, as discussed in Section 7.5.1 and Figure 7.10, GRCL
insists on remembering the wrong prior (learned information) for the next update steps,
which causes the model to lose the correct target object and cannot be recovered from the
wrong information in the memory. Considering this issue, another future work of this thesis
is to propose a solution (using heuristic data) to define a quality metric for the available
data in the memory as an indicator for remembering a target model update step.

Reconstruction-based Memory Selection Continual Learning (RMSCL)

The memory selection method in RMSCL uses the input frame features in Equation (5.3);
however, the features are used for segmenting the object. In other words, the feature
selection could be more accurate if the features were combined with the object information
for doing the reconstruction in Equation (5.3). Thus, one of the future tasks for RMSCL
would be finding more related sets of features that is provided by RMSCL and related
weights (Ψt) for updating the target model before segmenting the current feature Xt+1 .

Hybrid Approach

The main limitation of the Hybrid approach is its hyper-parameter tuning, which makes it
difficult to generalize to all situations. The hyper-parameters should be the same for long
and short video sequences, indicating the method does not have prior knowledge about the
length of the video. In the proposed Hybrid method, the message-passing between RMSCL
and GRCL is done in one way, which means RMSCL provides some information for GRCL
to update its memory; however, the impact of GRCL on RMSCL is not considered. In
future work, we can consider having a stronger two-way connection between RMSCL and
GRCL for a better Hybrid method.

Additionally, the selected thresholds of Hybrid (β and τ) are static; however, online
learning is dynamic. The last future work of this thesis is to set dynamic thresholds for
Hybrid method, which could make the proposed Hybrid method more generalized the the
proposed Hybrid method in this thesis.
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