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Abstract

Originally developed within the natural language processing community, Recurrent neu-
ral networks (RNNs) have enabled remarkable progress in speech recognition and machine
translation. These architectures belong to the class of autoregressive generative models
which allow for exact likelihood estimation and for a perfect sampling of multi-modal com-
plex probability distributions. These desirable features suggest that RNNs may serve as
ansätzes wave functions in the context of Variational Monte Carlo (VMC), where ansätzes
based on a Markov chain Monte Carlo sampling scheme can be limited by long autocorrela-
tion time. The main vision developed here replaces words with physical degrees of freedom
as inputs to the RNN in order to transfer this technology to the context of many-body
physics. In this thesis, we develop RNN wave functions in multiple spatial dimensions
and with different flavors and symmetry considerations that can suit the need for different
variational calculations. We demonstrate the power of RNN wave functions on various
prototypical systems in one, two, and three spatial dimensions. We show that our ansatz
can compete and outperform state-of-the-art methods such as Density Matrix Renormal-
ization Group (DMRG). We also illustrate how to estimate observables, and entanglement,
with which we can study different phases of matter including conventional and topologi-
cally ordered states, as well as phase transitions among different phases. We also develop
a scheme for simulating a variational version of classical and quantum annealing for the
purpose of solving combinatorial optimization problems. We demonstrate that our scheme,
tested on various RNNs architectures, shows superior average performances compared to
Markov-chain Monte Carlo implementation of classical annealing and quantum annealing
on prototypical and real-world combinatorial optimization problems. We also highlight
the importance of the annealing scheme in overcoming local minima in a traditional VMC
optimization, especially in frustrated systems. We conclude this thesis with examples of
exact constructions of traditional probability distributions based on RNNs as a first step
toward understanding the promising performances of these architectures. In addition to
tensor network and Monte Carlo methods, we believe that RNNs are a valuable toolbox
for physicists to help address open questions in classical and quantum many-body physics.
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Chapter 1

Introduction

The contemporary advances in our understanding of quantum systems (quantum ma-
terials, molecules, and light) are at the origin of many technological revolutions during
the last century, such as nanotechnology, medical imaging with MRI machines, lasers, and
LED light bulbs. Throughout these advancements, the interplay between theoretical, ex-
perimental, and numerical studies is crucial to igniting these revolutions. With theoretical
studies alone, we cannot provide a full description of quantum systems with their exotic
phenomena as they carry an exponential number of degrees of freedom. There, numerical
studies are great tools to bridge this gap. Yet, there is still an open challenge; can we use
classical computers to simulate quantum systems that live in an exponential complexity
space?

Monte Carlo simulations are one example of many other numerical tools aiming to an-
swer this question. The goal of these methods is to estimate observables by taking into
account the most important configurations without having to explore the space of all possi-
ble configurations [1–3]. Monte Carlo methods gained significant success as they provided
us with a lot of answers in the case of bosonic systems [4]. However, these methods are
limited in the fermionic case where the sign problem is often the biggest challenge [5].
Historically, variational methods have played an important role in circumventing the sign
problem as in the case of Helium superfluidity [6, 7]. Other variational approaches have
also emerged to come to the rescue. One of them is tensor network methods, which proved
to be very powerful at estimating ground state energies of 1D and 2D systems [8]. Inter-
estingly, tensor networks are considered the gold standard for studying one-dimensional
systems. However, in two spatial dimensions, tensor network methods start to face prac-
tical challenges where the computational cost becomes unrealistic compared to the 1D
case [8]. Other variational approaches are based on quantum computers where the param-
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eters of a quantum circuit can be optimized to find an approximation of a ground state
of interest. Yet this approach is still limited in terms of quantum hardware as well as in
terms of optimization hurdles [9, 10]. All in all, there is still a lack of efficient numerical
methods for studying quantum many-body systems with unknown physics. An interesting
example is the case of quantum systems establishing high-temperature superconductivity
(electricity conduction without dissipation). Without doubt, devising more efficient nu-
merical methods to shed more light on this phenomenon can help to achieve the long-term
goal of building high-temperature superconductors under realistic lab conditions (e.g., at
room temperature and close to atmospheric pressure), and thus promoting the next gener-
ation of future technologies with promising applications ranging from quantum computing
to energy efficiency.

Nowadays, neural networks are making a breakthrough in the artificial intelligence (AI)
community [11] since the AlexNet breakthrough in computer vision [12]. These systems
can recognize faces and objects in a picture [13], understand human speech [14, 15], drive
cars [16], assist people in need [17], write new music symphonies [18], and even win over
world champions in very difficult games such as Alpha Go [19]. Their phenomenal success
is spreading out to all areas of science as they provide great solutions for many interest-
ing real-world problems. In particular, they are used in chemistry to better understand
complicated chemical reactions and to predict new ones [20]. In biology, they proved to be
useful in the quest for solving the protein folding problem whose resolution would uncover
the reason behind many diseases [21]. In climatology, they can be used to correct the
weather prediction errors due to Chaos [22]. In medicine, they can promote discoveries of
new drugs [23] and assist doctors in analyzing scans of patients to ensure better disease di-
agnostics [24]. The power of neural networks has also been harnessed to explore interesting
problems in cosmology, material science, quantum chemistry, and statistical physics [25].
Just like physics has inspired the machine learning community to develop more advanced
architectures [26, 27], we are now in the era where machine learning research is giving back
tremendous benefits to the physics community.

All in all, machine learning with neural networks demonstrated its success at solving
tasks that require, in principle, an exponential number of resources. This interesting
property is what makes neural networks a great candidate for the study of many-body
systems. These architectures have also demonstrated phenomenal success in the context of
many-body physics. They have proved useful for a wide array of tasks including the
classification of phases of matter [28–31], quantum state tomography [32, 33], finding
ground states of quantum systems [34–43], studying open quantum systems [44, 45], and
simulating quantum circuits [46–48], among many others [49–52].

After the computer vision revolution in 2012, a new revolution has recently emerged
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in natural language processing (NLP) with new algorithmic advances that allow comput-
ers to produce coherent language and understand human speech. This revolution has
been enabled by the surge of large language models (LLMs) [53–55]. Famous examples
are ChatGPT and GPT-4 exhibiting human-level performances on different professional
and academic tasks [56]. As language and many-body physics, both share the curse of
dimensionality in the space of words and physical degrees of freedom respectively, it is a
plausible idea to take advantage of the recent advances of LLMs for applications in many-
body physics. This thesis is a preliminary step in this direction where we make use of
recurrent neural networks (RNNs) [57–61], a key language model that has been used since
the infancy of NLP. We show that RNNs constitute powerful models for studying many-
body systems including quantum systems. They are particularly flexible and intuitive;
they have interesting correspondence with tensor networks and they can also handle rele-
vant physical symmetries. Furthermore, they can be defined in multiple spatial dimensions
as well as in the context where the dimension is not well defined. They also have a low
computational cost and are also very competitive with state-of-the-art numerical methods.

In this thesis, we focus most of the time on the ground state problems of classical and
quantum many-body systems and we demonstrate that RNNs are establishing competitive
results with state-of-the-art numerical methods on various benchmarks in different spatial
dimensions. We also show that RNNs can approximate low-energy excited states. Further-
more, we showcase the ability of RNNs to handle complex numbers to target the ground
state of non-stosquatic Hamiltonians, such as the Heisenberg model, and the J1−J2 models.
We also illustrate that RNNs are capable of encoding topological order in quantum matter
through the examples of 2D toric code, Bose-Hubbard model on the Kagome lattice. We
also provide a real-world use case for using RNNs in investigating topological order on the
new platform of analog simulators, namely in Rydberg atom arrays.

Moreover, we also develop a novel annealing framework to find global solutions to
classical optimization problems. This framework turns out to be also useful for mitigating
local minima in a generic variational calculation aiming to find the ground state of a
quantum many-body system. Finally, we provide examples of exact RNN constructions
of prototypical probability distributions, which turn out to be competitive in terms of
computational cost compared to other classical and quantum models. To highlight and
describe our findings while introducing the necessary preliminaries, we divide the main
body of the thesis into seven different chapters as follows:
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Chapter 2:

We define preliminary concepts in statistical physics and quantum many-body physics
to lay the foundation for the definition of the variational principle in the next chapter. On
the classical side of many-body physics, we motivate the concepts of free energy, phase
transitions as well as critical exponents. On the quantum side, we define the notions of a
wave function, observables, and of entanglement entropy. We also motivate the existence
of phase transitions in a quantum system. We finally illustrate the difficulty of solving
a generic ground state problem as a motivation for using the variational principle in the
following chapter.

Chapter 3:

We introduce the framework of variational Monte Carlo that is based on the variational
principle. This principle is typically used for estimating the ground state and low-energy
excited states of quantum many-body systems. We also demonstrate how this framework
can be used to estimate observables and entanglement entropies. We further illustrate the
possibility of using this framework to study classical many-body systems.

Chapter 4:

We motivate the use of RNNs as ansätzes wave functions and probability distributions.
We first define the process of autoregressive sampling in RNNs to produce perfect and
uncorrelated configurations. We then define positive RNN wave function and complex
RNN wave functions as a class of ansätzes aimed to target the ground states of stoquastic
and non-stoquastic Hamiltonians respectively. We also extend the definition of RNNs to
multiple spatial dimensions and also in the case of an undefined spatial dimension. We
further highlight the possibility to include tensor structures in RNNs in a similar fashion to
tensor networks. We then show how to encode continuous and discrete physical symmetries
in an RNN wave function to enhance accuracy in a variational calculation.

Chapter 5:

We demonstrate the ability of RNN to find accurate ground state energies as well as
to estimate observables and entanglement entropies. We also showcase their ability to
compete with state-of-the-art numerical methods, especially in two spatial dimensions.
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We further illustrate that RNNs can target excited states through the use of a built-in
U(1) symmetry. We also show that RNNs are valuable tools for studying phase transitions
through the example of the 3D transverse-field Ising model. Finally, we provide benchmarks
for different hyperparameters of the RNN with their effect on accuracy in a variational
calculation.

Chapter 6:

We develop a new framework for solving optimization problems based on the physical
principle of annealing. We introduce both classical and quantum versions of our annealing
frameworks and we demonstrate their effectiveness at solving combinatorial optimization
problems using RNNs. In particular, we show that our variational classical annealing frame-
work is superior on average compared to traditional annealing algorithms when targeting
prototypical spin-glass models as well as real-world combinatorial optimization problems.
We also highlight the value of annealing in mitigating the effect of local minima when
searching for the ground state of frustrated quantum systems.

Chapter 7:

We shift our attention to topological order which is of practical value in the area of
topological quantum computing. We showcase the ability of RNNs to encode and de-
tect topological order on the 2D toric code as well as in a Bose-Hubbard model on the
Kagome lattice. We also show that RNNs provide a negative signature for the existence
of topological order in Rydberg atom arrays on the Kagome lattice.

Chapter 8:

We demonstrate different RNN constructions of prototypical probability distributions,
and we compare them to other generative models namely tensor networks, restricted Boltz-
mann machines, as well as quantum circuit Born machines. We compare the generative
models on the bimodal distribution, parity distribution, cardinality distribution, as well as
on toric code distributions. We find that RNNs are competitive with the constructions of
the other models in terms of computational cost.
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Chapter 2

Many-body Physics

The behavior of many-body systems is a topic of interest in a wide variety of areas
of science including physics, chemistry, and biology. Exotic properties of a many-body
system, at the macroscopic scale, are a consequence of the collective behavior of microscopic
degrees of freedom that are interacting under elementary rules. In this chapter, we provide
an introduction to many-body physics from the point of view of statistical physics on the
classical side (Sec. 2.1), and quantum many-body physics on the quantum side (Sec. 2.2).
We discuss different elementary concepts which are aimed at laying the foundation for the
concepts discussed in the following chapters.

2.1 Statistical physics

Statistical mechanics is a probabilistic approach to studying the equilibrium properties
of a many-body system. This approach circumvents the need for an intractable approach
that tracks the evolution of every elementary particle in order to predict the physics of
a many-body system of interest. To provide the necessary prerequisites of statistical me-
chanics for the following chapters, we discuss the concepts of Shannon entropy, Boltzmann
probability, free energy, observables, phase transitions, as well as critical exponents in the
following sections.
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2.1.1 Shannon entropy

Entropy is a quantity that is often associated with a disorder or uncertainty. It has
known its first origins in classical thermodynamics where the entropy is assumed to be
increasing with the flow of time according to the second law of thermodynamics. In the
context of statistical physics, it is associated with a measure of lack of information about
a certain system.

This concept has an interesting correspondence with information entropy in the context
of information theory. To illustrate this concept, let us take the example of a treasure
hidden in one of Ω = 2Q seats in a room [62] with an equal probability of being in one of
the seats. The uncertainty about the location of the treasure corresponds to the minimal
number of questions that can be asked to dismantle the uncertainty about the location of
the treasure. An efficient way to do that is by the mean of dichotomy. Thus we would
need to ask Q = log2(Ω) questions. In this case, the information entropy is defined as Q.
In general, it is given by

S = log2(Ω),

which is the same expression predicted by Ludwig Boltzmann S = kB log(Ω), up to a
constant, for the entropy of a physical system since the nineteen century. The previous
formula corresponds to the case when all configurations are equiprobable. In the generic
case, this assumption does not generally hold. In this case, each configuration σ in our
system of interest1 has a probability P (σ), then the entropy, also known as Shannon
entropy, is given as:

S = kB
∑

σ

P (σ) log(1/P (σ)) = −kB
∑

σ

P (σ) log(P (σ)),

where log2(1/P (σ)) can be interpreted as the minimal number of questions to be asked to
know the configuration σ with certainty.

Hereafter, we assume that the physical constants such as the Boltzmann constants are
set to 1 for the sake of simplicity and numerical convenience.

2.1.2 Boltzmann probability

Computing expected values of observables such as magnetization, pressure, or other
physical quantities can be done through the use of different statistical ensembles with

1Here we focus on the discrete case, where σ corresponds to a bitstring (σ1, σ2, . . . , σN ) that can be
used to identify each configuration. This convention is more relevant in the context of spin configurations
that are of interest in this thesis.
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different assumptions namely the micro-canonical ensemble, canonical ensemble, and the
grand canonical ensemble, which are equivalent in the thermodynamic limit [63]. The
micro-canonical ensemble assumes a physical system is isolated, i.e., the energy, particle
numbers, and volume are conserved, which means that all possible configurations (or micro-
states) are equiprobable. In this chapter, we focus on the canonical ensemble, which is the
most relevant to the work conducted in this thesis. This ensemble relaxes the conserved
energy assumption of the micro-canonical ensemble and assumes that a macroscopic system
of interest has a fixed temperature T which is imposed by an external large heat path. For
the grand-canonical ensemble, we further relax the conservation of the number of particles
while imposing a fixed chemical potential. However, this ensemble is beyond the scope of
this thesis.

To derive the expression of the probabilities P (σ) in the canonical ensemble, we can
start from the principle of maximum entropy, where entropy is assumed to be maximized
at equilibrium as expected from the second law of classical thermodynamics. This maxi-
mization is subject to two constraints. The first one corresponds to the normalization of
the probability P to one to maintain a probabilistic interpretation. The second condition
forces the measured energy to be equal to the expected energy. This idea comes from
the intuition that, the energy of a system at thermal equilibrium should only depend on
temperature. This principle allows us to obtain the Boltzmann probability distribution at
a given temperature T :

P (σ) =
exp(−βE(σ))

Z
, (2.1)

where β = 1/T is the inverse temperature, and Z is the normalization known as the
partition function:

Z =
∑

σ

exp(−βE(σ)). (2.2)

Based on the Boltzmann probability, we can show that the equilibrium entropy is given as:

S = −
∑

σ

P (σ) log(P (σ)),

= β⟨E⟩ + log(Z). (2.3)

2.1.3 Free energy

Free energy is a state function known in the context of classical thermodynamics as the
amount of useful energy (or work) after deducting the energy lost in the form of heat. In
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statistical physics, the free energy F can be defined as:

F = ⟨E⟩ − TS,

where TS can be interpreted as the amount of heat that is subtracted from the expected
energy of the system. From Eq. (2.3), we can also show that at thermal equilibrium:

F = −T log(Z). (2.4)

2.1.4 Classical observables

The derivatives of the free energy contain sufficient information about all other ther-
modynamic quantities. In particular, the entropy is given by:

S = −∂F
∂T

.

Additionally, the expected energy can be computed as:

⟨E⟩ =
∂(βF )

∂β
.

Furthermore, the heat capacity is given as:

Cv = −β2∂
2(βF )

∂β2
.

A similar analysis can be conducted for other quantities, such as magnetization, magnetic
susceptibility, and so on. From the expression (2.4), it is also clear that the partition
function Z holds sufficient information about the observables.

2.1.5 Phase transitions

The collective behavior of a large number of microscopic degrees of freedom can result
in specific phases of matter, such as the paramagnetic phase which corresponds to a state
that has zero magnetization. There is also the example of a ferromagnetic phase where
the magnetization is non-zero in such as way that the system can interact with magnets.
Under a change in external conditions such as temperature, a system can endure a phase
transition.
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The non-analyticity of the free energy F for a system at the thermodynamic limit
is a clear indicator of a phase transition. This non-analyticity can be in the form of a
discontinuity in the derivatives of F . In a first-order phase transition, the first derivative of
the free energy becomes discontinuous, which results in an energy discontinuity. A famous
real-world example of this transition is the ice-liquid transition in water. Furthermore, in
a second-order phase transition (also known as a continuous phase transition), the second
derivative of the free energy is discontinuous, which results in quantities like the heat
capacity being divergent. An example of this transition is the ferromagnetic-paramagnetic
phase transition.

For a finite system size, the free energy is always analytic, meaning there is no phase
transition for a finite number of degrees of freedom N . However, when taking the limit
N to or close to infinity, such as in the case of the Avogadro number, the non-analytic
behavior of the free energy starts to emerge in a phase transition. This observation high-
lights the importance of conducting finite-size scaling through extrapolation in numerical
experiments. This step allows us to derive conclusions about the expected behavior in the
thermodynamic limit, as indicated in the next section.

2.1.6 Critical exponents

Critical exponents are quantities that characterize the behavior of observables near a
second-order phase transition [63–66]. The values of these exponents are insensitive to
the fine details of a many-body system, and they only depend on the general features (or
relevant features). In particular, they are conjectured to be universal quantities, that can
allow classifying different types of phase transitions based on the values of these critical
exponents.

Near a phase transition, correlations are expected to be stronger among the different
physical degrees of freedom. For this reason, it is expected to diverge at the phase transition
with the following power law:

ξ ∼ |t|−ν , (2.5)

where t = (T − Tc)/Tc is the reduced temperature and Tc is the critical temperature.
This power-law decay is predicted by the phenomenological Landau theory of phase tran-
sitions [65]. This theory also predicts the divergence of other quantities. In this thesis, we
focus on the magnetization per site, which has the following scaling law:

⟨|m|⟩ ∼ |t|β. (2.6)
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The scaling laws of other physical quantities such as heat capacity and magnetic suscepti-
bility also follow a power law but with different exponents.

The scaling hypothesis of statistical physics [66] provides a finite-scaling of the physical
quantities such as the magnetization as follows:

⟨|m|⟩ = |t|βf(ξ/L), (2.7)

where f is a universal scaling function. For a finite system size, the correlation length ξ is
limited by the linear system size L, thus ξ reaches the maximum length L. As a result:

L ∼ |t|−ν , (2.8)

or equivalently:
|t| ∼ L−1/ν , (2.9)

which means, that near the transition, the critical temperature is size-dependent and tends
the critical temperature Tc in the infinite limit L → ∞. This also means that there is no
divergence for finite system sizes. From the previous equation, we can deduce, based on
Eq. (2.7), that:

⟨|m|⟩Lβ/ν = g(tL1/ν) (2.10)

for a universal scaling function g. Here the argument g is independent of the system size
L. As a result, we can extract the critical temperature Tc as well as the exponent β and
ν by finding the right values that collapse different ‘⟨|m|⟩Lβ/ν ’ versus ‘tL1/ν ’ curves. This
setup can be also implemented for other quantities to extract other critical exponents.
An interesting choice for the finite size scaling study, that is dimensionless, is the Binder
cumulant:

B = 1 − ⟨m4⟩
3⟨m2⟩ , (2.11)

which follows the finite scaling law:

B = l(tL1/ν), (2.12)

for a universal scaling function l, thus allowing for the extraction of the exponent ν in-
dependently of other critical exponents. The finite size scaling procedure is numerically
illustrated in Sec. 5.4.
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2.2 Quantum many-body physics

After introducing the preliminary concepts in statistical physics, we now shift our at-
tention to quantum many-body systems where quantum fluctuations play a key role in
addition to the collective behavior addressed in the previous section. By starting from the
basic law of quantum mechanics and with simple interaction rules, the collective behavior
of many quantum particles can give rise to exotic phases of matter as highlighted by the
famous quote ‘More is different’ by Anderson [67]. The latter can be of interest to real-
world applications. To name a few, there is superconductivity that is useful for conducting
electricity without resistance and for magnetic levitation. Additionally, some fluids known
as superfluids can flow without viscosity. We can also mention topological materials which
hold promising potential for the future generation of quantum computers.

In this chapter, we introduce the concept of many-body wave functions in quantum
mechanics and we provide key definitions such as observables, entanglement, entanglement
entropy as well as quantum phase transitions that are of practical use in this thesis. Finally,
we highlight a key problem that we aim to solve throughout this thesis, known as the ground
state problem, using recurrent neural networks.

2.2.1 Quantum wave functions

The wave function is the most fundamental object in quantum physics and under-
standing its properties is at the heart of many areas of science such as condensed matter,
high-energy physics, and quantum chemistry. It can have several interpretations based on
different contexts. Here we focus on the case of particles with discrete quantum degrees of
freedom.

For a quantum particle that has two degrees of freedom 0 and 1 (also known as a qubit),
the wave function can be seen here as a two-dimensional complex-valued vector. This wave
function can be denoted as |Ψ⟩ and it can generally correspond to a superposition of the
state particle being in ‘0’ (denoted as ‘ket’ |0⟩ ≡ (1, 0)t), and the state of the particle
being in ‘1’ (denoted as |1⟩ ≡ (0, 1)t). This superposition encodes the quantum mechanical
uncertainty of the particle being in one of the possible states. This superposition can be
written as:

|Ψ⟩ = α |0⟩ + β |1⟩ , (2.13)

where α and β are complex numbers. Within the context of quantum mechanics, |α|2
and |β|2 can be interpreted as the probabilities of the particle being in states ‘0’ and ‘1’
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respectively. For this reason, the wave function is required to be L2 normalized to 1, i.e.

||Ψ||2 = 1.

In our example, this property corresponds to |α|2 + |β|2 = 1. Additionally, a probability
can be written as a projection. For instance:

|α|2 = | ⟨0|Ψ⟩|2,
where ‘bra’ ⟨0| can be interpreted as a co-vector or as a transpose of the ‘ket’ vector |0⟩.

For N particles with two degrees of freedom, the wave function can be a superposition
of all possible states of the N particles, i.e.,

|Ψ⟩ =
∑

σ1,σ2,...σN

Ψ(σ1, σ2, . . . σN) |σ1⟩ ⊗ |σ2⟩ ⊗ · · · ⊗ |σN⟩ , (2.14)

where ⊗ is the tensor product operators between the different vectors (or kets). In this
case, the wave function can be thought of as a 2N complex-valued vector. For simplicity
of notation, quantum physicists usually prefer to drop the tensor product and use the
following:

|Ψ⟩ =
∑

σ1,σ2,...σN

Ψ(σ1, σ2, . . . σN) |σ1, σ2, . . . , σN⟩ . (2.15)

It is worth noting that the space where wave functions live is known as the Hilbert space
H, which is our example has a dimensionality of 2N , and can be constructed as a tensor
product of the individual (local) Hilbert spaces of each individual particle.

2.2.2 Operators and observables

One way to act on wave functions is by applying operators Ô, which correspond in the
example of N qubits to matrices with 2N × 2N . These operators can be either used to
evolve the wave function or to compute observables as we discuss in this section.

A key operator in quantum physics is the quantum Hamiltonian, which is the coun-
terpart of an energy function in statistical physics. This operator typically dictates the
interactions in a many-body system of particles. Additionally, its eigenvalues can be in-
terpreted as energy spectra with the lowest being the lowest energy the system can have.
The corresponding eigenvectors are wave functions describing the state of the many-body
system. A typical example of a many-body Hamiltonian is the following:

Ĥ = −
N∑

i,j=1

Jijσ̂
z
i σ̂

z
j −

N∑

i=1

hiσ̂
x
i ,
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where Jij, hi are coupling parameters. Furthermore, σ̂
(x,y,z)
i are Pauli matrices acting on

site i, and that are defined as follows:

σ̂z =

(
1 0
0 −1

)
, σ̂y =

(
0 −i
i 0

)
, σ̂x =

(
0 1
1 0

)
. (2.16)

The notation σ̂x
i is in reality defined as a tensor product I2 ⊗ . . . ⊗ σ̂x

i ⊗ . . . ⊗ I2 with
identity operators I2. The full expression is omitted for the sake of simplicity. The same
also holds for the terms σ̂z

i σ̂
z
j . For instance, if we assume 1 < i < j < N then σ̂z

i σ̂
z
j ≡

I2 ⊗ . . .⊗ σ̂x
i ⊗ . . .⊗ σ̂x

j ⊗ . . .⊗ I2.

Importantly, given a ground state or a low energy state |Ψ⟩ of a many-body Hamiltonian
Ĥ, it is of practical use to compute physical observables that we can measure in the lab,
such as magnetization or magnetic susceptibility of a spin system. An observable is given
by an operator Ô that can be seen, in the case of a system with N spin-1/2 particles, as a
matrix with size 2N × 2N . In this case, the observable expectation value is given by:

⟨Ô⟩ = ⟨Ψ|Ô|Ψ⟩.

The latter is in the form of a vector-matrix-vector contraction, which is very inefficient for
a large number of degrees of freedom N . In Sec. 3.7, we present a variational scheme for
computing approximations of these observables with a more efficient computational cost.
It is important to note that Ô has to be Hermitian in order to obtain real expectation
values.

2.2.3 Density matrices and quantum entanglement

A quantum many-body system described by a single wave function |Ψ⟩ can be referred
to as a quantum system in a pure state. In this case, our system is characterized by a
‘density matrix’ ρ with the following expression:

ρ = |Ψ⟩ ⟨Ψ| .

If our quantum many-body system is in a statistical mixture of different quantum states
{|Ψi⟩}ni=1 with probabilities {pi}ni=1, then we say that our system is described by a ‘mixed
state’ with the following density matrix:

ρ =
n∑

i=1

pi |Ψi⟩ ⟨Ψi| .
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If we divide our system with Hibert space H into two portions A and B with corresponding
Hilbert spaces HA and HB, then we can define a reduced density matrix as:

ρA = TrA(ρ),

where the trace operation over HA can be interpreted as the operation of preserving the
B part of our system while discarding the A part of our system. This operation turns
out to be very helpful in defining the notion of quantum entanglement, where we call
that a quantum system in its pure state with two regions A and B are entangled if its
wave function cannot be factorized into a tensor product of two wave functions living on
separate Hilbert spaces HA and HB. Equivalently, we can say that the wave function of
the quantum system cannot be written as a product state.

The characterization of quantum entanglement can be done through the definition of
the α-Renyi entropies between region A and B as:

Sα(A) =
1

1 − α
log (Tr(ραA)) , (2.17)

where ρA = TrB |Ψ⟩ ⟨Ψ| and α is an integer [68]. In particular, S1(A) corresponds to the
von Neumann entropy defined as:

S1(A) = −Tr (ρA log(ρA)) ,

which is the quantum counterpart of the Shannon entropy in Sec. 2.1.1. The estimation
of this entanglement is challenging as it is difficult to provide an estimate of the logarithm
of a matrix with an exponential size. In Sec. 3.8, we explain how to go around that by
estimating the second Renyi entropy with α = 2, which carries similar information about
entanglement compared to the von Neumann entropy.

To understand why S2(A) is a good measure of entanglement, we can take the example
of the GHZ state [69] for two qubits, which is defined as:

|Ψ⟩ =
1√
2

(|00⟩ + |11⟩),

where we can see that measuring 0 along the first qubit automatically projects the second
qubit to state 0 with the same behavior occurring if we measure state 1 on the first qubit.
This property is a clear manifestation of entanglement since the GHZ state cannot be
written as a product state. For this state, the reduced density matrix on one qubit can be
estimated as:

ρ =
1

2
|0⟩ ⟨0| +

1

2
|1⟩ ⟨1| ,

15



and which corresponds to S2 = log(2). Now in the case where our system is described by
a product state:

|Ψ⟩ = |00⟩ ,
which has no entanglement, then the second Renyi entropy is vanishing, i.e., S2 = 0.

Finally, we note that in Sec. 5.1.1, we demonstrate the numerical estimation of the
second Renyi entropy on a prototypical 1D quantum many-body model, and in Chap. 7,
we show how entanglement can be used as a proxy to detect topological order in a quantum
many-body system.

2.2.4 Quantum phase transitions and critical exponents

In Sec. 2.1.5, we indicated that a classical many-body system can endure phase tran-
sitions upon crossing a critical temperature. Quantum many-body systems also share
the same property, and can also change phases if a coupling term in the Hamiltonian
is tuned [70]. A prominent real-world example is the phase transition ‘Superconductor-
Insulator’ transition where the addition of disorder was shown to have a destructive effect
on superconductivity [71, 72].

By virtue of the path-integral formulation of quantum mechanics [73, 74], there is a
one-to-one mapping of a quantum system in D spatial dimensions to a classical statistical
system in D + 1 dimensions. Note that there are examples of quantum systems where
this mapping fails due to the presence of a Berry phase term [75]. We also note that this
mapping shows that quantum phase transitions can have critical exponents characterized by
the divergence of different quantum observables in a similar fashion to classical observables
in statistical physics as shown in Sec. 2.1.6. More details about the definition of the critical
exponents can be found in Sec. 2.1.6. In Sec. 5.4, we demonstrate a numerical approach for
investigating phase transitions and estimating critical exponents in three spatial dimensions
through the example of a prototypical quantum spin system.

2.2.5 Ground state problem

Understanding quantum materials in real-world settings often boils down to solving a
ground state problem, where given a Hamiltonian Ĥ that dictates the interactions between
quantum degrees of freedom in our system, we are interested in finding the lowest eigenvalue
of Ĥ that corresponds to the lowest energy of the system. The corresponding eigenvector
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|ΨG⟩ is called the ground state. To extract this state |ΨG⟩, one can solve the Schrödinger
equation

Ĥ |ΨG⟩ = EG |ΨG⟩ , (2.18)

which is in a form of an eigenvalue equation. To appreciate the difficulty of this problem,
we can consider a physical system of N spins, where each spin can be in a superposition
of ups and downs. The number of total possibilities a spin configuration can have is
2N . Thus, we can deduce that the ground state |ΨG⟩ will be of size 2N . Thus from the
previous eigenvalue equation, it makes sense to think of the Hamiltonian Ĥ as a square
matrix with size 2N×2N . Now, one naive way to solve the Schrödinger equation above is by
diagonalizing the Hamiltonian Ĥ to extract EG and |ΨG⟩. However, one important problem
with this approach is that the complexity of the best-known diagonalization algorithm is
exponential as O(2cN) where c is a positive constant, where c depends on the nature of
the diagonalization algorithm. Thus we would need an exponential number of resources if
we were to solve the ground-state problem using this approach. To illustrate the hardness
of this task, one can observe that 2266 ≈ 1080 is at the order of the number of atoms in
our known universe, which is an unpractical complexity to handle with realistic resources.
Furthermore, for a system size at the order of N ∼ 50, this problem becomes impossible
to solve even with the best contemporary super-computing powers.

All in all, finding the exact ground state |ΨG⟩ of a generic Hamiltonian Ĥ is a tough
problem in general as the Hilbert space scales exponentially with the number of degrees
of freedom. A way to go around this issue is to rely on approximate methods to find
|ΨG⟩. Thankfully, the amount of information needed to capture the relevant degrees of
freedom of |ΨG⟩ is much smaller than the dimension of the total Hilbert space. This
observation is motivated by the ability of physically-motivated ansatz wave functions to
target the ground state of systems establishing exotic phenomena, such as low-temperature
superconductors [76] and systems with a fractional Hall effect [77]. This idea is also put
forward by the conjectured area law en entanglement in low energy sectors [78] instead of
a volume law of entanglement for a random quantum state.
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Chapter 3

Variational Monte Carlo

In memory of Sandro Sorella (1960 - 2022)

Our main goal in this chapter is to give a brief overview of the framework of Varia-
tional Monte Carlo (VMC) with its technical details, which will clarify the relevance of
machine learning tools namely Recurrent Neural Networks (RNNs) in the quest of find-
ing ground states as well as approximating Boltzmann probability distributions with an
efficient computational cost without sacrificing too much accuracy. In Sec. 3.1, we define
the variational principle and the concept of an ansatz, we then focus in Sec. 3.2 on the
optimization of ansatz wave functions. In Sec. 3.3, we demonstrate the feasibility of esti-
mating expectation values with a realistic cost up to some statistical noise. Furthermore,
in Sec. 3.4, we define the zero-variance principle as a criterion for assessing the convergence
of a variational calculation. Additionally, in Sec. 3.5, we demonstrate that the gradients’
noise can be reduced for a normalized ansatz wave function. In Sec. 3.6, we highlight the
possibility of bounding the distance from the ground state using the energy accuracy of a
variational calculation. Moreover, we explain how observables and entanglements entropies
can be computed from an optimized wave function in Secs. 3.7, 3.8. We also illustrate how
the VMC framework can be used to find excited low-energy states in Sec. 3.9. Finally, in
Sec. 3.10, we highlight the possibility of using the VMC framework for targeting Boltzmann
probability distributions in the case of classical many-body systems at finite temperature.
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3.1 Variational Principle

The variational principle can serve as an alternative way to approximately find a ground
state (or an excited state) with a cheaper computational cost compared to exact diagonal-
ization. These methods are called variational since they rely on a trial wave function or
an ansatz with a set of parameters that one has to tune, using an optimization procedure,
to find an approximation of the ground state as well as the ground state energy with a
cheaper cost as motivated in Sec. 2.2.5.

One can first notice that the ground state energy is the minimal energy our quantum
system of interest can have, i.e.

EG = min
|Ψ⟩

⟨Ψ| Ĥ |Ψ⟩
⟨Ψ|Ψ⟩ .

Given an ansatz wave function |Ψλ⟩ defined by a set of parameters λ = (λ1, λ2, ...), one
can define the variational energy Eλ as follows:

Eλ ≡ ⟨Ψλ| Ĥ |Ψλ⟩
⟨Ψλ|Ψλ⟩

,

where Ĥ is the Hamiltonian of a system of interest. In this case, since a family of |Ψλ⟩
only occupies a subspace of all possible wave functions (see Fig. 3.1), then:

min
λ
Eλ ≥ EG.

The latter implies that the problem of finding an approximation of the ground state can
be mapped to a minimization problem on the parameters λ. Thus, looking for the op-
timal parameters λ∗ may lead to an approximation of the ground state energy EG, and
consequently to an approximation of the true ground state |ΨG⟩, i.e., |Ψλ∗⟩ ≈ |ΨG⟩, pro-
viding that |Ψλ⟩ is a good guess. Fig. 3.1 illustrates that a family of ground states of
local and relevant Hamiltonians typically occupies a tiny region in the Hilbert space of all
possible states. Thus, a physically informed choice of |Ψλ⟩ can allow us to provide a good
approximation to the ground state.

3.2 Optimization

Our ultimate goal now is to optimize the parameters λ to minimize the energy Eλ so
that the variational state |Ψλ⟩ is as close as possible to the ground state |ΨG⟩. The first
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Figure 3.1: Illustration of the Hilbert space with a tiny region occupied by an ensemble
of ground states |ΨG⟩ for local Hamiltonians of interest. A good choice of the variational
wave function |Ψλ⟩ corresponds to an ensemble of states that can reach most of the relevant
space we are interested in.

thing one can think about to find the minimum of Eλ is to take the partial derivative and
set them to zero, i.e.

∂λEλ = 0.

Solving this equation can be possible in some cases. This approach has led to two Nobel
prizes for the understanding of low-temperature superconductivity (BCS theory) [76] and
of the fractional Hall effect (Laughlin state) [77]. In other cases, an exact theoretical
derivation might not be possible, so we can use other numerical techniques to minimize
the variational energy, namely gradient descent.

Gradient descent consists of changing the parameters λ in the direction of opposite
gradients of Eλ, i.e.

λ → λ′ = λ− η
∂Eλ

∂λ
(3.1)

for η (referred to as the learning rate) positive and small enough so that the new variational
energy:

Eλ′ = Eλ +
∑

i

δλi
∂Eλ

∂λi
+ O((δλ)2) = Eλ − η

∑

i

(
∂Eλ

∂λi

)2

+ O(η2) (3.2)
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Figure 3.2: (a) Illustration of the gradient descent algorithm applied on the variational
energy Eλ using a reasonably small learning rate. (b) Using large learning rates can lead
to unstable training.

is smaller than Eλ. Fig. 3.2(a) illustrates how the gradient descent algorithm and how it
can be iterated to reach the minimum of the variational energy. If a large learning rate η
is used, the training can be very unstable, as a large magnitude of η violates the first-order
Taylor approximation in Eq. (3.2).

In some cases, using plain gradient descent can lead to local minima as illustrated by
the variational energy landscape of Fig. 3.2. This problem can be partially mitigated by
introducing momentum to vanilla gradient descent [79]. The latter can be done through
the following change of parameters at step i:

δλ(i) = −ηv(i),

where
v(i) = (1 − β)v(i− 1) + β∂λ(i)Eλ(i) ,

and v(0) = 0. Here β is another hyperparameter called momentum. In this case, we can
see that:

v(i) = (1 − β)
i−1∑

j=0

βi−jv(j).

The last expression shows that by introducing β, we are keeping a memory of the previous
gradients. In particular, if the current gradient is zero, the previous gradients are not likely
to be vanishing. In this spirit, the use of momentum can circumvent some shallow local
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minima in the optimization landscape. The use of momentum also enables a smoother and
faster optimization as opposed to plain gradient descent [79]. Nowadays, more sophisticated
versions of gradient descent optimizers with momentum have been devised. The most
famous and successful one is the so-called Adam optimizer, which we use actively with
RNNs in this study [80].

The previous class of gradient descent algorithms is referred to as first-order opti-
mization algorithms. There exists another class of gradient descent algorithms that are
second-order and that exploits the curvature of the optimization landscape, namely natural
gradient or equivalently stochastic reconfiguration. It has been used both in the context of
machine learning [81], as well as in the optimization of variational wave functions [2, 37,
82]. In this study, we do not use those classes of algorithms mainly due to their expensive
computational cost. Thankfully, there is more space for exploration in the direction of
harnessing the power of approximate natural gradients methods, such as K-FAC [83, 84]
and conjugate gradient methods [85, 86] to improve the trainability of RNNs. An exam-
ple of a prior application of variational wave functions to quantum systems using these
second-order methods can be found in Ref. [40].

3.3 Importance Sampling

Variational Monte Carlo (VMC) takes advantage of sampling important configurations
to substantially reduce the computation time from an exponential scaling to a more budget-
friendly computational cost using the so-called importance sampling[2].

To explain this concept, let us say that our degrees of freedom correspond to spins such
as a spin configuration can be represented as σ = (σ1, σ2, . . . , σN) where each σi = 0, 1.
Then, by writing the variational wave function in the computational basis |σ⟩ as:

|Ψλ⟩ =
∑

σ

Ψλ(σ) |σ⟩ , (3.3)

and assuming that the variational wave function is normalized (i.e. ⟨Ψλ|Ψλ⟩ = 1), the
variational energy can be expanded as follows:

Eλ =
∑

σ′σ

Ψ∗
λ(σ)Hσσ′Ψλ(σ′). (3.4)

We can see that the previous sum runs over an exponential number of configurations σ,
σ′. One idea contributing toward circumventing this limitation is to multiply and divide
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with Ψλ(σ) such that:

Eλ =
∑

σ

|Ψλ(σ)|2
∑

σ′

Hσσ′
Ψλ(σ′)

Ψλ(σ)
. (3.5)

The latter can be rewritten as:

Eλ =
∑

σ

|Ψλ(σ)|2Eloc(σ), (3.6)

= ⟨Eloc(σ)⟩ . (3.7)

where

Eloc(σ) ≡
∑

σ′

Hσσ′
Ψλ(σ′)

Ψλ(σ)
(3.8)

is known as ‘local energy’. This quantity can be computed efficiently for a local Hamil-
tonian Ĥ, since there is only O(N) non-zero matrix elements Hσσ′ for a fixed σ. The
notation ⟨.⟩ stands for an expectation value over the probability distribution |Ψλ(σ)|2.
From the previous equation (3.6), we can see that we ended up with another sum over all
possible configurations, which is still intractable. Luckily, it is a sum over a probability
times another term which can be approximated through the so-called importance sampling.
This step can be accomplished by stochastically sampling configurations according to the
probability weights |Ψλ(σ)|2.

Several algorithms have been devised to do importance sampling. These algorithms are
discussed in detail in Chap. 4. Here let us assume that such a procedure that can generate
M important and independent samples {σ(i)}Mi=1 exists. In this case, we can approximate
the variational energy as follows:

Eλ ≈ 1

M

M∑

i=1

Eloc(σ
(i)), (3.9)

where the error bars on the energy estimator are given by

ϵo =

√
Var(Eloc(σ(i)))

M
.

Here, it is clear that the approximation becomes exact in the limit M → ∞.

To quantify the cost of computing the energy, let us assume that the cost of computing
an amplitude Ψλ(σ) is f(N) and that there O(N) of non-diagonal matrix elements in our
Hamiltonian Ĥ, then the cost of estimating the energy is O(MNf(N)).
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Now to optimize the variational energy using gradient descent, we can derive the ex-
pression of the gradients as follows:

∂λEλ =
∑

σ′σ

∂λΨ∗
λ(σ)Hσσ′Ψλ(σ′) +

∑

σ′σ

Ψ∗
λ(σ)Hσσ′∂λΨλ(σ′),

= 2Re

(∑

σ′σ

∂λΨ∗
λ(σ)Hσσ′Ψλ(σ′)

)
,

= 2Re

(∑

σ

∂λΨ∗
λ(σ)

∑

σ′

Hσσ′Ψλ(σ′)

)
,

= 2Re

(∑

σ

|Ψλ(σ)|2∂λΨ∗
λ(σ)

Ψ∗
λ(σ)

∑

σ′

Hσσ′
Ψλ(σ′)

Ψλ(σ)

)
,

= 2Re

(∑

σ

|Ψλ(σ)|2∂λΨ∗
λ(σ)

Ψ∗
λ(σ)

Eloc(σ)

)
,

= 2Re

(∑

σ

|Ψλ(σ)|2∂λ log (Ψ∗
λ(σ))Eloc(σ)

)
. (3.10)

Here Re(z) stands for the real part of a complex number z. Similarly to the variational
energy, we use a finite number M of important samples to estimate the gradients as:

∂λEλ ≈ 2Re

(
1

M

M∑

i=1

∂λ log
(
Ψ∗

λ(σ(i))
)
Eloc(σ

(i))

)
. (3.11)

A standard trick one can use is to define a fake cost function

Efake =
1

M

(
M∑

i=1

log
(
Ψ∗

λ(σ(i))
)
E⊥

loc(σ
(i))

)
,

where E⊥
loc(σ

(i)) is considered as a constant when a gradient operation is applied. Thus

∂λEλ ≈ ∂λEfake.

This idea allows avoiding the computation of the individual gradients of log
(
Ψ∗

λ(σ(i))
)

and to parallelize the computation through the use of the fake cost function and automatic
differentiation [87].

In practice, M = 100 samples to 1000 samples is usually enough to achieve conver-
gence during the training if we use a first-order optimization scheme such as Adam with
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RNNs [80]. For second-order optimization methods such as stochastic reconfiguration, the
number of samples M needs to be much larger compared to the number of parameters of
the ansatz to guarantee a stable convergence [2]. The latter can be a serious limitation
with current hardware if the ansatz reaches tens of thousands to millions of parameters.
Recent work has addressed this limitation for stochastic reconfiguration opening the door
for scalability of training ansatz wave functions with a large number of parameters using
stochastic reconfiguration [88].

3.4 Zero-variance principle

So far, we have discussed the optimization of a variational ansatz as a strategy to
obtain an approximation of the ground state. However, we have not yet covered how to
determine whether a variational calculation has converged. An important concept is the
zero-variance principle, which can serve as a heuristic to estimate how close we are to the
ground state. To understand how this principle works, let us recall the eigenvalue equation
of the ground state in Eq. (2.18). Here we can apply ⟨σ| for a fixed configuration σ to
obtain the following: ∑

σ′

Hσσ′ΨG(σ′) = EGΨG(σ).

Thus for a non-zero amplitude ΨG(σ), we can see that:

∑

σ′

Hσσ′
ΨG(σ′)

ΨG(σ)
= EG.

In this case, it is clear that if our variational wave function |Ψλ⟩ = |ΨG⟩, then:

Eloc(σ) = EG.

for all spin configurations σ that have a non-zero amplitude. As a consequence, close to
convergence, we expect that the local energies will be close to each other, and thus their
variance will be closer to zero. A measure of this quantity is the energy variance per spin
defined as:

σ2 ≡ ⟨Ψλ|Ĥ2|Ψλ⟩ − ⟨Ψλ|Ĥ|Ψλ⟩2
N

, (3.12)

where N is the system size. We can show that this quantity is related to the variance of
the local energies, i.e.

σ2 =
Var(Eloc(σ))

N
,
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where the variance is taken over the probability distribution |Ψλ(σ)|2. Since the energy
variance is always positive, then the closer we are to convergence the closer our energy
variance to zero. This makes the variance an efficient measure to monitor the convergence
of our variational energy toward the ground state energy, during the VMC training process.
The variance measure is also helpful in assessing the quality of variational approximation
of the ground state [2, 89, 90], as previously done in the case of matrix product state
based techniques [91, 92]. A variant of the energy variance has been also used to quantify
the difficulty of finding the ground state of quantum many-body systems as described in
Ref. [93]. The energy variance can allow obtaining a more accurate estimate of the ground
state through extrapolation if we have a way to systematically improve the variational
energy as described in Refs. [94, 95].

One important caveat to note is that the variance of the local energies could be also
very small when our variational wave function is close to an excited state. To heuristically
go around this limitation, one can take advantage of symmetries and group characters as
described in Chap. 4. One could also use annealing techniques to overcome local minima
by introducing thermal fluctuations as described in Chap. 6.

3.5 Noise reduction of the energy gradients

The estimation of the energy gradients in Eq. (3.11) is noisy due to the use of a finite
number of samples M . This noise can potentially be an obstacle to achieving a smooth
convergence to an approximate ground state. To reduce the noise in our estimation of the
gradients, we use the following unbiased estimator of the gradient

∂λEλ ≈ 2Re

(
1

M

M∑

i=1

∂λ log
(
Ψ∗

λ(σ(i))
) (
Eloc(σ

(i)) − Eλ

)
)
, (3.13)

= 2Re

(
1

M

M∑

i=1

∂λ log
(
Ψ∗

λ(σ(i))
)
Eloc(σ

(i))

)
, (3.14)

where Eloc(σ
(i)) ≡ Eloc(σ

(i)) − Eλ = Eloc(σ
(i)) − ⟨Eloc(σ

(i))⟩. Here the additional term
compared to Eq. (3.11) allows for reducing the variance of the gradients close to conver-
gence, i.e., when Eloc(σ

(i)) ≈ Eλ. This idea is very similar in essence to control variate
methods in Monte Carlo [96] and to baseline methods in Reinforcement learning [97].

To show that the additional baseline term does not bias the true gradients in Eq. (3.10).
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It is sufficient to show that:

Re (⟨∂λ log (Ψ∗
λ(σ))⟩Eλ) = 0. (3.15)

Let us first write Ψλ(σ) =
√
Pλ(σ) exp(iϕλ(σ)), which leads to the following expression:

log (Ψ∗
λ(σ)) =

1

2
log (Pλ(σ)) − iϕλ(σ).

Thus, we have to prove the following:

1

2
⟨∂λ log (Pλ(σ))⟩Re(Eλ) + ⟨∂λϕλ(σ)⟩ Im(Eλ) = 0. (3.16)

We can remark that [97, 98]:

⟨∂λ log (Pλ(σ))⟩ =
∑

σ

Pλ(σ) ∂λ log (Pλ(σ)) ,

=
∑

σ

Pλ(σ)
∂λPλ(σ)

Pλ(σ)
,

= ∂λ
∑

σ

Pλ(σ),

= ∂λ1 = 0.

Hence it is sufficient to show that ⟨∂λϕλ(σ)⟩ Im(Eλ) = 0. In fact, since the Hamiltonian Ĥ
is Hermitian, the variational energy Eλ is real. The latter finishes our proof of Eq. (3.15).

To demonstrate the noise reduction claim more rigorously, let us focus on the variance of
the gradient for a parameter λ in the set of the variational parameters λ, after subtracting
the baseline. Here we focus on the case of a positive ansatz wave function Ψλ(σ) =

√
Pλ(σ)

that we used in our study. First of all, we define:

Oλ(σ) ≡ ∂λ log (Ψ∗
λ(σ)) =

1

2
∂λ log(Pλ(σ)).

Thus, the gradient with a baseline can be written as:

∂λEλ = 2
〈
Oλ(σ)Eloc(σ)

〉
,

where Eloc(σ) ≡ Eloc(σ) − Eλ and ⟨.⟩ denotes an expectation value over the Born distri-
bution |Ψλ(σ)|2. To estimate the gradients’ noise, we look at the variance of the gradient
estimator, which can be decomposed as follows:

Var(OλEloc) = Var(OλEloc)

− 2Cov(OλEloc, OλEλ) + E2
λVar(Oλ).
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Thus the variance reduction R, after subtracting the baseline, is given as:

R ≡ Var(OλEloc) − Var(OλEloc),

= −2EλCov(OλEloc, Oλ) + E2
λVar(Oλ).

Since the gradients’ magnitude tends to near-zero values close to convergence, statistical
errors are more likely to make the VMC optimization more challenging. We focus on this
regime for this derivation to show the importance of the baseline in reducing noise. Thus,
we assume that Eloc(σ) = Eλ+ξ(σ), where the supremum of the local energies fluctuations
is much smaller compared to the variational energy, i.e., (supσ |ξ(σ)|) ≪ Eλ. From this
assumption, we can deduce that:

R = −2E2
λCov(Oλ, Oλ) (3.17)

− 2EλCov(Oλξ, Oλ) + E2
λVar(Oλ), (3.18)

= −E2
λVar(Oλ) − 2EλCov(Oλξ, Oλ). (3.19)

The second term can be decomposed as follows:

Cov(Oλξ, Oλ)) = ⟨O2
λξ⟩ − ⟨Oλξ⟩⟨Oλ⟩. (3.20)

Since ⟨Oλ⟩ = 1
2
⟨∂λ log(Pλ)⟩ = 0 [97, 98], then we can bound the covariance term from

above as:

Cov(Oλξ, Oλ) ≤
(

sup
σ

|ξ(σ)|
)
⟨O2

λ⟩

=

(
sup
σ

|ξ(σ)|
)

Var(Oλ),

≪ EλVar(Oλ).

Thus, we can conclude that the variance reduction R in Eq. (3.19) is negative. This
observation highlights the importance of the baseline in reducing the statistical noise of
the energy gradients near convergence.

For a complex ansatz wave function Ψλ(σ) =
√
Pλ(σ) exp (iϕλ(σ)), the expectation

value ⟨Oλ⟩ = 1
2
⟨∂λ log(Pλ)⟩− i⟨∂λϕλ⟩ = −i⟨∂λϕλ⟩ is no longer equal to zero in general. This

term is related to the phase variations, which are susceptible to contributing to the variance
of the gradients. This observation is also an interesting indication for why optimizing wave
functions with a sign is more challenging compared to positive wave functions. We leave
the investigation of this point for future studies.

28



3.6 Distance from the ground state

Getting lower variational energies is always desirable, but knowing how much accuracy
is needed to achieve a certain variational calculation is crucial to know when to stop the
training and how powerful our ansatz should be. In this section, we discuss how we can
bound the distance between the ground state |ΨG⟩ and the variational wave function |Ψλ⟩
in terms of the variational energy accuracy. To do so, let us write our variational wave
function as [2]:

|Ψλ⟩ = (1 − ϵ)
1
2 |ΨG⟩ + ϵ

1
2 |Ψ⊥⟩ , (3.21)

where |Ψ⊥⟩ corresponds to a superposition of excited states that are orthogonal to the
ground state. 1 − ϵ is the overlap between the variational state and the ground state
or equivalently the fidelity measure between these two states. Here we assume that the
ground state is not degenerate for simplicity but our analysis is similar in the degenerate
case. Now, we can show that the variational energy satisfies the following:

Eλ = ⟨Ψλ| Ĥ |Ψλ⟩ = (1 − ϵ)EG + ϵ ⟨Ψ⊥| Ĥ |Ψ⊥⟩ , (3.22)

using the orthogonality property between the ground state |ΨG⟩ and the perpendicular
state |Ψ⊥⟩ and the observation Ĥ |ΨG⟩ = EG |ΨG⟩. Assuming that the system we are
interested in has a gap g between the ground state and the first excited state, then we can
show:

⟨Ψ⊥| Ĥ |Ψ⊥⟩ ≥ EG + g.

Plugging this inequality in Eq. (3.22), allows us to prove that:

Eλ ≥ EG + ϵg,

or equivalently:

ϵ ≤ Eλ − EG

g
. (3.23)

This bound provides us with valuable information about how much accuracy is needed so
that the discrepancy ϵ between the variational state and the ground state is as small as
possible. More specifically, we need to have a residual energy Eλ −EG to be much smaller
compared to the system gap g. This requirement can be difficult to fulfill for gapless
systems in the thermodynamic limit as the gap typically decreases with the system size.
In the worst case, the gap decay can be exponential in the system size. Fortunately, the
use of symmetries is useful to construct a variational state that is initially orthogonal to
some of the lowest-energy excited states.
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It is important to note that it is intractable to compute the gap in general, but the
hope is that knowing the scaling of the gap with the system size can provide valuable
information on how to scale our numerical resources.

As pointed out in Sec. 3.4, the variance of the local energies is a good heuristic to
monitor the variations of ϵ. In fact, one can show that [90]:

Eloc − Eλ =

(
⟨σ|Ĥ|Ψλ⟩

Ψλ(σ)
− EG

)
− (Eλ − EG),

=
⟨σ|Ĥ − EG|Ψλ −ΨG⟩

Ψλ(σ)
− (Eλ − EG).

From Eq. (3.22), we can show that Eλ − EG = O(ϵ). From Eq. (3.21), we also have
Ψλ −ΨG = O(ϵ1/2). Thus, we have

Eloc − ⟨Eloc⟩ = Eloc − Eλ = O(ϵ1/2).

As a consequence, the variance of the local energies is given as:

Var(Eloc) = O(ϵ).

The latter justifies the use of the energy variance for tracking how close our variational
wave function is from the ground state.

3.7 Observable estimators

Estimating observables is an important step to extract more information about the
ground state once we have obtained an approximation with our wave functions ansatz.
Examples of such observables include magnetization and two-point correlations which are
commonly used to assess the nature of the phase of the quantum system of our interest.

The expectation value of an observable in our optimized ansatz wave function can be
computed as follows:

〈
Ô
〉
λ

=
∑

σ′σ

Ψ∗
λ(σ)Oσσ′Ψλ(σ′),

=
∑

σ

|Ψλ(σ)|2
∑

σ′

Oσσ′
Ψλ(σ′)

Ψλ(σ)
,

=
〈
Ôloc(σ)

〉
,
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where Oloc(σ) =
∑

σ′ Oσσ′
Ψλ(σ

′)
Ψλ(σ)

. In this case, the estimation of the observable expectation

value is simple for a diagonal observable in the computational basis |σ⟩. In this case, we
have:

〈
Ô
〉
λ
≈ 1

Mo

Mo∑

i=1

Oσ(i)σ(i) .

For non-diagonal observables, we need to compute the amplitudes of the off-diagonal
elements. Thus, they are computationally more expensive and can be harder to estimate
compared to diagonal operators. Note that the number of samples Mo can be much larger
compared to the number of samples M used for training our ansatz wave function. In-

creasing Mo allows to reduce the statistical error on
〈
Ô
〉

and which can be estimated as

follows:

ϵ(⟨Ô⟩) =

√
Var(Oloc(σ))

Mo

.

With respect to the accuracy of our estimate compared to the ground state estimate,
we can recall the decomposition in Eq.(3.21) and compute the expectation value as

⟨Ô⟩λ = (1 − ϵ) ⟨ΨG| Ô |ΨG⟩ + ϵ ⟨Ψ⊥| Ô |Ψ⊥⟩ + 2
√
ϵ(1 − ϵ) ⟨ΨG| Ô |Ψ⊥⟩ .

Thus,
|⟨Ô⟩λ − ⟨Ô⟩G| = |ϵ(⟨Ô⟩G + ⟨Ô⟩⊥) + 2

√
ϵ(1 − ϵ) ⟨ΨG| Ô |Ψ⊥⟩ |.

If the observable Ô commutes with the Hamiltonian Ĥ, or equivalent if Ô corresponds to a
conserved quantity that came out of a symmetry of Ĥ, then ⟨ΨG| Ô |Ψ⊥⟩ = 0, since ⟨ΨG|
would be also an eigenvalue for Ô. In this case:

|⟨Ô⟩λ − ⟨Ô⟩G| = O(ϵ),

which is very desirable in practice, since targeting a good accuracy on the variational
energy can provide us with the same level of accuracy for our observable. On the other
hand if [Ô, Ĥ] ̸= 0, then

|⟨Ô⟩λ − ⟨Ô⟩G| = O(ϵ
1
2 ).

The latter means that we have only a square root accuracy on observables that do not
commute with Ĥ, such as correlation functions in the typical case. In some cases, this
accuracy is enough to resolve the physics we are interested in. If more accuracy is needed,
one might resort to constructing improved observable estimators using Hellman-Feynman
theorem [90] or through variance reduction techniques [96].
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3.8 Entanglement entropy estimator

In some applications, it could be useful to go beyond computing physical observables to
compute non-local measures that can provide us with information about the entanglement
in our system of interest and can also provide us with valuable insights about topological
properties [99, 100]. In this section, we will talk about how we can heuristically estimate
entanglement in our system after the end of a variational calculation.

Given a quantum system with a spatial bipartition (A,B), one can write the variational
wave function |Ψλ⟩ as

|Ψλ⟩ =
∑

σA,σB

Ψλ(σAσB) |σAσB⟩ ,

where σA/B denotes the spin configuration that lives in the partition A/B and σAσB stands
for a concatenation of σA and σB.

The estimation of entanglement between A and B can be done through the calculation
of the Renyi entropies defined in Sec. 2.2.3. In this thesis, we focus on the second Renyi
entropy with α = 2 (see Sec. 2.2.3). Here we use the so-called replica trick [68], where we
consider the action of the SwapA operator on the two copies of our ansatz wave function,
which swaps the spins in the region A between the two copies (as demonstrated in Fig. 3.3)
such that

SwapA |Ψλ⟩ ⊗ |Ψλ⟩
=
∑

σ, σ̃

Ψλ(σAσB)Ψλ(σ̃Aσ̃B) |σ̃AσB⟩ ⊗ |σAσ̃B⟩ . (3.24)

The expectation value of SwapA in the double copy of our ansatz “|Ψλ⟩ ⊗ |Ψλ⟩” is given
by [32, 68]

⟨SwapA⟩ =
∑

σ, σ̃

Ψ∗
λ(σAσB)Ψ∗

λ(σ̃Aσ̃B)Ψλ(σ̃AσB)Ψλ(σAσ̃B)

= Trρ2A = exp(−S2(A)). (3.25)

Hence, by calculating the expectation of the value of the Swap operator in the double
copy of the variational wave function, we can access the second Rényi entropy. The Rényi
entropies Sα have been shown to encode similar properties independently of α, namely
topological properties [68, 101].
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Figure 3.3: The Swap operator acting on the tensor product of two samples σ and σ′.

Although an exact evaluation of Eq. (3.25) is numerically intractable, we can use im-
portance sampling to estimate it as [68]

⟨SwapA⟩ =
∑

σ, σ̃

|Ψλ(σAσB)|2|Ψλ(σ̃Aσ̃B)|2Ψλ(σ̃AσB)Ψλ(σAσ̃B)

Ψλ(σAσB)Ψλ(σ̃Aσ̃B)
,

≈ 1

Me

Me∑

i=1

Ψλ(σ̃
(i)
A σ

(i)
B )Ψλ(σ

(i)
A σ̃

(i)
B )

Ψλ(σ
(i)
A σ

(i)
B )Ψλ(σ̃

(i)
A σ̃

(i)
B )

. (3.26)

Using this trick, it is sufficient to generate two sets of exact samples {σ(i)}Me
i=1 and {σ̃(i)}Me

i=1

independently from |Ψλ|2. By defining

Swap
(i)
A ≡ Ψλ(σ̃

(i)
A σ

(i)
B )Ψλ(σ

(i)
A σ̃

(i)
B )

Ψλ(σ
(i)
A σ

(i)
B )Ψλ(σ̃

(i)
A σ̃

(i)
B )

,

the statistical error on the estimation of the Rényi-2 entropy can be calculated, using error
propagation on the log, as

ϵ =
1

⟨SwapA⟩

√√√√Var
(
{Swap

(i)
A }
)

Me

.

Note that the number of samples Me can be much larger compared to the number of
samples M that is used for training our ansatz, in order to reduce the statistical error ϵ.
In some cases, the Renyi entropy becomes very large, i.e, Swap expectation value is very
small, especially for systems with a spatial dimension larger or equal to 2. This implies
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that the signal-to-noise ratio can become small. To go around these limitations, one might
resort to the improved ratio trick [32, 68]. One can also estimate the Renyi entropy with
a lower statistical error through conditional sampling as shown in Ref. [102].

3.9 Targeting excited states

So far, we only talked about how the variational principle can be used to target ground
states of a Hamiltonian of our interest. In this section, we will briefly talk about how we
can target excited states using our variational wave function.

Similarly to DMRG, the first way to target an excited state is to target the ground
state first and then aim for the first-excited state by minimizing the loss:

Lλ = ⟨Ψ′
λ|Ĥ|Ψ′

λ⟩,

where Ψ′
λ = Ψλ − αΨ

(G)
approx. Here |Ψ(G)

approx⟩ is an approximation of the ground state that
was found in a previous variational calculation. α is a positive Lagrange multiplier that
aims to encourage the minimization of the overlap ⟨Ψ(G)

approx|Ψ′
λ⟩. To ensure this overlap is

vanishing, we can use α = ⟨Ψ(G)
approx|Ψλ⟩ [103]. Targeting other excited states can be done

sequentially through the use of additional Lagrange multipliers.

The previous method can be computationally expensive and assume the knowledge of
an approximation of the ground state before targeting the excited states. To go around
that, one can make use of useful quantum numbers when a quantum system has a certain
symmetry. For instance, if a quantum system has U(1) symmetry, i.e. the Hamiltonian
Ĥ and the magnetization M̂ commute, then we construct a variational ansatz with a
fixed magnetization. In this case, the task of finding an excited state boils down to the
optimization of the variational energy in a similar fashion to the ground state.

To illustrate the previous point, let us take the example of the Heisenberg model, here
we can use an ansatz with a fixed non-zero integer magnetization. This approach is very
beneficial since we can estimate excited state energies without having access to a ground
state approximation. The challenging part of this approach is figuring out how to fix a
quantum number in our ansatz. We will see in the following chapter how this procedure
can be done for the magnetization using our ansatz based on Recurrent Neural Networks.
Discrete point group symmetries can be also useful to narrow the search space, through the
use of character tables that can allow targeting different eigenstates with different group
characters [104].
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3.10 Variational principle in statistical physics

Previously, we have talked about how we can define a variational principle to estimate
ground states or excited states of a quantum Hamiltonian. Here we will see that it is
also possible to apply a similar approach to approximate the Boltzmann distribution of a
classical system at a fixed temperature.

Let us consider a classical system, whose physics is governed by a classical Hamiltonian
H. Such a system is considered to be at equilibrium in a fixed temperature T if it is
described by the Boltzmann probability P . The latter corresponds to the minimum of the
free energy FQ (see Secs. 2.1.2 and 2.1.3), which can be written in the computational basis
{σ} as:

FQ =
∑

σ

Q(σ) (H(σ) + T log(Q(σ))) = ⟨H⟩Q − TS(Q). (3.27)

where the first term is the expectation value of the Hamiltonian over a probability distri-
bution Q. T is the temperature and S corresponds to the Shannon entropy which is given
by:

S(Q) = −
∑

σ

Q(σ) log(Q(σ)) = ⟨− log(Q)⟩Q.

Since the Boltzmann distribution P minimizes the free energy then we have:

FQ ≥ FP ; ∀Q. (3.28)

The previous inequality is key to understanding the variational principle in statistical
physics [105]. Similarly to the variational principle in quantum physics, we can intro-
duce a well-chosen parametrized probability Pλ with some parameters λ and minimize the
variational free energy Fλ which is defined as:

Fλ(T ) =
∑

σ

Pλ(σ)H(σ) − TS(Pλ), (3.29)

where H is a classical Hamiltonian of interest and its expected value is defined over a
variational probability distribution Pλ. The more expressive our model Pλ the closer we
expect our variational free energy to be from the minimum free energy. In this case, using
the identity on the KL divergence [105]:

KL(P ||Pλ) = T (Fλ − FP ),

we can deduce that when (Fλ − FP ) gets smaller during training, then Pλ approaches the
true Boltzmann distribution P .
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Similarly to the VMC scheme presented in the previous section, we use importance
samples to get M samples to compute the variational free energy as follows:

Fλ(T ) ≈ 1

M

∑

σ∼Pλ(σ)

Floc(σ),

where Floc(σ) = H(σ)+T log(Pλ(σ)) [105]. Here the ansatz must be capable of computing
Pλ(σ) exactly and efficiently, which is the case for autoregressive models [43, 106]. For
approximate likelihood models (Restricted Boltzmann Machine, Variational Autoencoder,
. . . ), it is intractable to estimate log(Pλ(σ)) and thus it would not be possible to compute
the variational free energy.

Additionally, the gradients of Fλ can be computed as follows:

∂λFλ(T ) ≈ 1

M

∑

σ∼Pλ

∂λ log (Pλ(σ)) (Floc(σ) − Fλ(T )) ,

where we subtract Fλ(T ) in order to reduce noise in the gradients [43, 105]. For approximate-
likelihood models, the computation of the gradients is efficient but as mentioned earlier
the exact estimation of the variational free energy is not efficient [107].

Since phases are not necessary within this scheme, we can use a variational wave func-
tion ansatz that is positive instead of a complex-valued ansatz. It is worth noting that this
variational scheme also enjoys a zero-variance principle similar to VMC, i.e. in the absence
of mode collapse, the free energy variance per spin

σ2
F ≡ var({Floc(σ)})

N
, (3.30)

allows to heuristically characterize the probabilistic distance between the variational prob-
ability distribution Pλ and the Boltzmann factor which minimizes the free energy [105].

For a quantum Hamiltonian Ĥ, we can also define the variational free energy to add
thermal-like fluctuations to the VMC scheme to cope with local minima [35, 108]. Here we
can add a pseudo-entropy [35, 106, 108] so that the cost function is defined as a pseudo
variational free energy F̃λ, i.e.

F̃λ(T ) = ⟨Ψλ|Ĥ|Ψλ⟩ − TSclassical(|Ψλ|2). (3.31)

Here, Ĥ is a quantum Hamiltonian with non-zero diagonal elements, as opposed to H in
the expression of the variational free energy (3.29). Here, we can similarly estimate F̃λ(T )
stochastically as follows:

F̃λ(T ) ≈ 1

M

∑

σ∼|Ψλ(σ)|2
F̃loc(σ),
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where F̃loc(σ) ≡ Eloc(σ) + T log(|Ψλ(σ))|2, such that Eloc(σ) is given by Eq. (3.8). The
gradients of F̃λ(T ) can be also estimated stochastically using the following expression:

∂λi
F̃λ(T ) ≈ 1

M

∑

σ∼|Ψλ(σ)|2
∂λi

log
(
|Ψλ(σ(i))|2

)

(
F̃loc(σ) − F̃λ(T )

)
.

This scheme also enjoys a zero-variance principle, where the variance of {F̃loc} characterizes
the distance from a global or a local minimum. We also note that in the limit of zero-
temperature T = 0, this scheme is nothing but VMC described in the previous sections of
this chapter.

In terms of computational complexity, the cost of computing the free energy gradients
scales as O(Mf(N)) if Ĥ is classical Hamiltonian with no off-diagonal elements, where
f(N) is the cost of a forward-pass of a one spin configuration. The latter is N times cheaper
compared to the case when Ĥ is a local Hamiltonian that has off-diagonal elements similar
to VMC.

Conclusions

To sum up, in this chapter we have explained the VMC scheme, where starting from a
variational ansatz |Ψλ⟩, we estimate its energy expectation value, as well as its gradients
stochastically to optimize until reaching an approximation of a ground state or an excited
state of interest. We demonstrated how to reduce the noise in the stochastic estimation of
the gradients and how to monitor the convergence of our optimization through the energy
variance. At the end of a variational calculation, we showed how to estimate observables
and entanglement entropies. We have also shown that the VMC scheme can be applied
to classical many-body systems within the framework of statistical physics. In the next
chapter, we take our ansatz wave function as a recurrent neural network that is inspired by
the field of natural language processing. We also demonstrate that these architectures have
desirable properties, which allow competing with state-of-the-art numerical methods.
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Chapter 4

Recurrent Neural Network Wave
Functions

This chapter contains material from Refs. [43, 106] in addition to
other material not published elsewhere.

4.1 Introduction

After discussing the variational principle framework in statistical and quantum physics
in the previous chapter, we shift our focus to a promising ansatz based on recurrent neural
networks (RNNs), that is efficient, highly flexible, and with a cheap computational cost.
Historically, RNNs have been discovered in 1986 [109] and have been shown to be universal
approximators of sequential data [110] as well as simulators of Turing machines [111]. Com-
pared to traditional neural network architectures, RNNs have the flexibility to model inputs
with a variable length such as in the case of language modeling [112]. We demonstrate this
advantage also for the case of many-body systems where RNNs can be transferred across
multiple system sizes. Additionally, RNNs are capable of handling long-range dependen-
cies, unlike Hidden Markov models which require an exponential complexity for modeling
such dependencies [58]. In the last few years, these architectures have set the stage for
impressive performances in speech recognition and machine translation [53–55, 60]. Addi-
tionally, RNNs have proven to be powerful tools within the field of many-body physics [33,
113, 114].
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In this chapter, we define RNNs and their extensions as efficient and highly flexible
ansätzes for many-body variational calculations. We introduce the autoregressive prop-
erty of RNNs which allows for uncorrelated sampling as well for the exact and efficient
computation of probabilities and amplitudes. We present different flavors of RNNs and
we demonstrate their flexibility in studying systems with multiple spatial dimensions and
different types of lattices. We also illustrate the possibility to extend their definition in the
case where the spatial dimension is not well defined, such as in the case of fully-connected
systems. Furthermore, we show the ability of RNNs to handle physical symmetries as
well as to tackle disordered and spin-glass models. Finally, we showcase the cheaper com-
putational cost of RNNs as a highly desirable property compared to other autoregressive
models.

4.2 Metropolis-Hastings Scheme

Getting the most relevant samples {σ(i)} with the highest probabilities Pλ(σ) as in
Eq. 3.9 is an important step toward a better estimation of the variational energy Eλ.
This task is numerically intractable if one attempts to do it exactly since one needs prior
knowledge of the probability Pλ(σ) over the full Hilbert space. One way to go around this
issue is to use a stochastic approach called the Metropolis-Hastings scheme [115].

The main idea of this scheme is to generate a Markov-Chain of the spin configurations
σ̃(1) → σ̃(2)...→ σ̃(NMC), where at each step i a random spin σ of σ̃(i) is flipped according
to the acceptance probability:

A(σ̃(i) → σ̃(i+1)) = min

(
1,

|Ψλ(σ̃(i+1))|2
|Ψλ(σ̃(i))|2

)
. (4.1)

As a rule of thumb, a new sample is taken after N steps where N is the system size. Follow-
ing this procedure, one can get a set of configurations (σ(1),σ(2), ...,σ(M)) sampled from
the probability distribution Pλ(σ) obtained from the variational wave function through
the Born rule. With this scheme, we perform NMC = MN metropolis move (4.1).

Although this scheme opened the door for Monte Carlo methods to estimate ground
state energies of quantum many-body systems [2, 37], it has a serious downside often
referred to as the auto-correlation problem which limits their performances [2]. One can
clearly see that if the ratio |Ψλ(σ̃(i+1))|2/|Ψλ(σ̃(i))|2 is very small in the case where σ̃(i) is
highly probable compared to σ̃(i+1). In this case, the move (4.1) is going to be frequently
rejected leading to samples that are correlated and hence not faithfully representing the
probability distribution Pλ(σ). Thus limiting the quality of observables’ estimates.

39



4.3 Autoregressive Sampling

To go around the auto-correlation problem of the Metropolis-Hastings sampling scheme,
one can make use of an effective form of sampling called autoregressive sampling. This
way of sampling has been originally introduced in Sigmoid belief networks [116], later on
in feed-forward neural networks [117–119], in convolutional neural networks [120], as well
as in (RNNs) [121]. This autoregressive property makes these models more advantageous
in terms of sampling compared to energy-based models such as Restricted Boltzmann
Machines (RBMs) [122, 123], based on approximate sampling schemes such as Metropolis-
Hasting scheme introduced in the previous section.

Autoregressive sampling relies on casting the joint distribution Pλ(σ1, σ2, ..., σN) into a
product of conditional probabilities [117, 120, 121], i.e.,

Pλ(σ1, σ2, ..., σN) = Pλ(σ1)Pλ(σ2 |σ1)Pλ(σ3 |σ2, σ1)...Pλ(σN |σN−1, ..., σ2, σ1). (4.2)

In this case, we map the problem of sampling from the joint probability to a sequential
sampling from the conditional probabilities. In our case, a single configuration consists of
a list σ ≡ (σ1, σ2, . . . , σN) of N variables σn, and σn ∈ {0, 1, . . . , dv − 1}. Here, the input
dimension dv represents the number of possible values that any given variable σn can take.

Specifying every conditional probability Pλ(σi|σ<i) gives a full characterization of any
possible distribution Pλ(σ), but in general such a representation grows exponentially with
system size N . Typically, real-world distributions are assumed to endow enough structure
on the problem to allow for accurate approximate descriptions of Pλ(σ) that use far fewer
resources [124]. This assumption is also applicable in the context of ground state wave
functions that arise in physical systems, which we will discuss at length in this thesis. In
the following section, we define RNNs as a class of variational wave functions that enjoy
the autoregressive sampling property.

4.4 Vanilla RNNs

RNNs form a class of correlated probability distributions of the form (4.2), where the
Pλ(σ) are entirely specified through the conditionals Pλ(σi|σ<i). The elementary building
block of an RNN is a recurrent cell, that has emerged in different versions in the past [61].
In its simplest form, a recurrent cell is a non-linear function that maps the direct sum (or
concatenation) of an incoming hidden vector hn−1 of dimension dh and an input vector
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σn−1 to an output hidden vector hn of dimension dh such that

hn = f (W [hn−1;σn−1] + b) , (4.3)

where f is a non-linear activation function.

The parameters of this simple RNN (vanilla RNN) are given by the weight matrix
W ∈ Rdh×(dh+dv), the bias vector b ∈ Rdh , and the states h0 and σ0 that initialize the
recursion. Here h0 and σ0 are initialized to constant values. The standard initialization
is a null vector. The vector σn is a one-hot encoding of the input σn such that, e.g.,
σn = (1, 0), (0, 1) for σn = 0, 1 (respectively) when the input dimension is two. The
computation of the full probability P (σ) is carried out by sequentially computing the
conditionals, starting with P (σ1), as

Pλ (σn|σn−1, . . . , σ1) = yn · σn,

where the right-hand side contains the usual scalar product between vectors and

yn ≡ S (Uhn + c) . (4.4)

Here, U ∈ Rdv×dh and c ∈ Rdv are weights and biases of a so-called Softmax layer, and the
Softmax activation function S is given by

S(vn) =
exp(vn)∑
i exp(vi)

.

By setting U = 0, our RNN can produce a product state controlled by the biases c. This
observation can play an important role in choosing a good initialization of the parameters
of the RNN before starting a variational calculation. We note that advanced constructions
of probability distributions using RNNs can be found in Chap. 8.

In Eq. (4.4) yn = (y1n, . . . , y
dv
n ) is a dv-component vector of positive, real numbers

summing up to 1, i.e.,

∥yn∥1 = 1, (4.5)

and thus forms a probability distribution over the states σn. Once the vectors yn have
been specified, the full probability P (σ) is given by

Pλ(σ) =
N∏

n=1

yn · σn.
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Note that P (σ) is already properly normalized to unity such that

∥Pλ(σ)∥1 = 1, (4.6)

thanks to the conditional probability normalization in Eq. (4.5). Sampling from an RNN
probability distribution is achieved in a similar sequential fashion. To generate a sample
σ = (σ1, . . . , σN) consisting of a set of N configurations σn, one first calculates the hidden
state h1 and the probability y1 from the initial vectors h0 and σ0. A sample σ1 from the
probability distribution y1 is drawn, which is then fed as a one-hot vector σ1 along with
h1 back into the recurrent cell to obtain y2,h2 and then σ2. The procedure is then iterated
until N configurations σn have been obtained as illustrated in Fig. 4.1(c).

From Eqs. (4.3) and (4.4), it is evident that the hidden vector hn encodes information
about previous spin configurations σ<n. For correlated probabilities, the history σ<n is
relevant to the prediction of the probabilities of the following σn. By passing on hidden
states in Eq. (4.4) between sites, the RNN is capable of modeling strongly correlated dis-
tributions. Hereafter, we shall call the dimension dh of the hidden state hn the number of
memory units. We emphasize that the weights W and U and the biases b and c together
comprise the variational parameters of our ansatz wave function of the next section. These
parameters are typically shared among the different values of n, giving rise to a highly com-
pact parametrization of the probability distribution. Once the dimension dh is specified,
the number of parameters in the ansatz is independent of the system size N .

By construction, the model allows for efficient estimation of the normalized probabil-
ity of a given configuration σ. This construction is unlike energy-based models, which
require intractable calculations of the partition function, or likelihood-free models such as
Generative Adversarial Networks (GANs) that do not allow for an explicit estimation of
probabilities [124, 125]. The sequential process of computing the probability vectors yn is
schematically depicted in Fig. 4.1(a). Deep architectures can be obtained by stacking sev-
eral RNN cells as shown in Fig. 4.1(b) for a general activation function A (not necessarily
Softmax). As illustrated in Fig. 4.1(c), RNNs have the autoregressive property, meaning
that the conditional probability Pλ(σn|σ<n) depends only on configurations σ1, . . . σn−1.
We also note that the computational cost of sampling a configuration σ1, . . . σN is linear
in the length N of the configuration. Another important property of the normalized RNN
probability distribution is that it can be used to produce successive samples σ and σ′

that are independent. Taking advantage of this property, the sampling procedure can be
parallelized.
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yn<latexit sha1_base64="IBAjgHPxccfMcaELheitygVoGfs=">AAAB+nicbVC7TsMwFL0pr1JeKYwsERUSU5UgJBgrWBiLRB9SG0WO47ZWHTuyHVAU+iksDCDEypew8Tc4bQZoOZLlo3PulY9PmDCqtOt+W5W19Y3Nrep2bWd3b//Arh92lUglJh0smJD9ECnCKCcdTTUj/UQSFIeM9MLpTeH3HohUVPB7nSXEj9GY0xHFSBspsOvDULBIZbG58mwW8FpgN9ymO4ezSrySNKBEO7C/hpHAaUy4xgwpNfDcRPs5kppiRma1YapIgvAUjcnAUI5iovx8Hn3mnBolckZCmsO1M1d/b+QoVkU6MxkjPVHLXiH+5w1SPbryc8qTVBOOFw+NUuZo4RQ9OBGVBGuWGYKwpCargydIIqxNW0UJ3vKXV0n3vOm5Te/uotG6LuuowjGcwBl4cAktuIU2dADDIzzDK7xZT9aL9W59LEYrVrlzBH9gff4AlPaUMA==</latexit><latexit sha1_base64="IBAjgHPxccfMcaELheitygVoGfs=">AAAB+nicbVC7TsMwFL0pr1JeKYwsERUSU5UgJBgrWBiLRB9SG0WO47ZWHTuyHVAU+iksDCDEypew8Tc4bQZoOZLlo3PulY9PmDCqtOt+W5W19Y3Nrep2bWd3b//Arh92lUglJh0smJD9ECnCKCcdTTUj/UQSFIeM9MLpTeH3HohUVPB7nSXEj9GY0xHFSBspsOvDULBIZbG58mwW8FpgN9ymO4ezSrySNKBEO7C/hpHAaUy4xgwpNfDcRPs5kppiRma1YapIgvAUjcnAUI5iovx8Hn3mnBolckZCmsO1M1d/b+QoVkU6MxkjPVHLXiH+5w1SPbryc8qTVBOOFw+NUuZo4RQ9OBGVBGuWGYKwpCargydIIqxNW0UJ3vKXV0n3vOm5Te/uotG6LuuowjGcwBl4cAktuIU2dADDIzzDK7xZT9aL9W59LEYrVrlzBH9gff4AlPaUMA==</latexit><latexit sha1_base64="IBAjgHPxccfMcaELheitygVoGfs=">AAAB+nicbVC7TsMwFL0pr1JeKYwsERUSU5UgJBgrWBiLRB9SG0WO47ZWHTuyHVAU+iksDCDEypew8Tc4bQZoOZLlo3PulY9PmDCqtOt+W5W19Y3Nrep2bWd3b//Arh92lUglJh0smJD9ECnCKCcdTTUj/UQSFIeM9MLpTeH3HohUVPB7nSXEj9GY0xHFSBspsOvDULBIZbG58mwW8FpgN9ymO4ezSrySNKBEO7C/hpHAaUy4xgwpNfDcRPs5kppiRma1YapIgvAUjcnAUI5iovx8Hn3mnBolckZCmsO1M1d/b+QoVkU6MxkjPVHLXiH+5w1SPbryc8qTVBOOFw+NUuZo4RQ9OBGVBGuWGYKwpCargydIIqxNW0UJ3vKXV0n3vOm5Te/uotG6LuuowjGcwBl4cAktuIU2dADDIzzDK7xZT9aL9W59LEYrVrlzBH9gff4AlPaUMA==</latexit><latexit sha1_base64="IBAjgHPxccfMcaELheitygVoGfs=">AAAB+nicbVC7TsMwFL0pr1JeKYwsERUSU5UgJBgrWBiLRB9SG0WO47ZWHTuyHVAU+iksDCDEypew8Tc4bQZoOZLlo3PulY9PmDCqtOt+W5W19Y3Nrep2bWd3b//Arh92lUglJh0smJD9ECnCKCcdTTUj/UQSFIeM9MLpTeH3HohUVPB7nSXEj9GY0xHFSBspsOvDULBIZbG58mwW8FpgN9ymO4ezSrySNKBEO7C/hpHAaUy4xgwpNfDcRPs5kppiRma1YapIgvAUjcnAUI5iovx8Hn3mnBolckZCmsO1M1d/b+QoVkU6MxkjPVHLXiH+5w1SPbryc8qTVBOOFw+NUuZo4RQ9OBGVBGuWGYKwpCargydIIqxNW0UJ3vKXV0n3vOm5Te/uotG6LuuowjGcwBl4cAktuIU2dADDIzzDK7xZT9aL9W59LEYrVrlzBH9gff4AlPaUMA==</latexit>

=<latexit sha1_base64="Wr3dgGP3QtVmXgNU1dt1x8UBTVI=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0ItQ9OKxirWFNpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LQ5aOuDgcd7M8zMCxLBtXHdb6e0srq2vlHerGxt7+zuVfcPHnWcKoYtFotYdQKqUXCJLcONwE6ikEaBwHYwvsn99hMqzWP5YCYJ+hEdSh5yRo2V7q8q/WrNrbszkGXiFaQGBZr96ldvELM0QmmYoFp3PTcxfkaV4UzgtNJLNSaUjekQu5ZKGqH2s9mlU3JilQEJY2VLGjJTf09kNNJ6EgW2M6JmpBe9XPzP66YmvPQzLpPUoGTzRWEqiIlJ/jYZcIXMiIkllClubyVsRBVlxoaTh+AtvrxMHs/qnlv37s5rjesijjIcwTGcggcX0IBbaEILGITwDK/w5oydF+fd+Zi3lpxi5hD+wPn8AcEWjNU=</latexit><latexit sha1_base64="Wr3dgGP3QtVmXgNU1dt1x8UBTVI=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0ItQ9OKxirWFNpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LQ5aOuDgcd7M8zMCxLBtXHdb6e0srq2vlHerGxt7+zuVfcPHnWcKoYtFotYdQKqUXCJLcONwE6ikEaBwHYwvsn99hMqzWP5YCYJ+hEdSh5yRo2V7q8q/WrNrbszkGXiFaQGBZr96ldvELM0QmmYoFp3PTcxfkaV4UzgtNJLNSaUjekQu5ZKGqH2s9mlU3JilQEJY2VLGjJTf09kNNJ6EgW2M6JmpBe9XPzP66YmvPQzLpPUoGTzRWEqiIlJ/jYZcIXMiIkllClubyVsRBVlxoaTh+AtvrxMHs/qnlv37s5rjesijjIcwTGcggcX0IBbaEILGITwDK/w5oydF+fd+Zi3lpxi5hD+wPn8AcEWjNU=</latexit><latexit sha1_base64="Wr3dgGP3QtVmXgNU1dt1x8UBTVI=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0ItQ9OKxirWFNpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LQ5aOuDgcd7M8zMCxLBtXHdb6e0srq2vlHerGxt7+zuVfcPHnWcKoYtFotYdQKqUXCJLcONwE6ikEaBwHYwvsn99hMqzWP5YCYJ+hEdSh5yRo2V7q8q/WrNrbszkGXiFaQGBZr96ldvELM0QmmYoFp3PTcxfkaV4UzgtNJLNSaUjekQu5ZKGqH2s9mlU3JilQEJY2VLGjJTf09kNNJ6EgW2M6JmpBe9XPzP66YmvPQzLpPUoGTzRWEqiIlJ/jYZcIXMiIkllClubyVsRBVlxoaTh+AtvrxMHs/qnlv37s5rjesijjIcwTGcggcX0IBbaEILGITwDK/w5oydF+fd+Zi3lpxi5hD+wPn8AcEWjNU=</latexit><latexit sha1_base64="Wr3dgGP3QtVmXgNU1dt1x8UBTVI=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0ItQ9OKxirWFNpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LQ5aOuDgcd7M8zMCxLBtXHdb6e0srq2vlHerGxt7+zuVfcPHnWcKoYtFotYdQKqUXCJLcONwE6ikEaBwHYwvsn99hMqzWP5YCYJ+hEdSh5yRo2V7q8q/WrNrbszkGXiFaQGBZr96ldvELM0QmmYoFp3PTcxfkaV4UzgtNJLNSaUjekQu5ZKGqH2s9mlU3JilQEJY2VLGjJTf09kNNJ6EgW2M6JmpBe9XPzP66YmvPQzLpPUoGTzRWEqiIlJ/jYZcIXMiIkllClubyVsRBVlxoaTh+AtvrxMHs/qnlv37s5rjesijjIcwTGcggcX0IBbaEILGITwDK/w5oydF+fd+Zi3lpxi5hD+wPn8AcEWjNU=</latexit>

RNN
<latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit><latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit><latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit><latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit>

S
<latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit><latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit><latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit><latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit>

�0
<latexit sha1_base64="Jenv/hyCjrsyvMxKVve+rWvvKUE=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARPJVdEfRY9OKxgn1Ad1my2bQNzWNJskJZe/CvePGgiFf/hjf/jdl2D9o6EDLMfB+ZTJwyqo3nfTuVldW19Y3qZm1re2d3z90/6GiZKUzaWDKpejHShFFB2oYaRnqpIojHjHTj8U3hdx+I0lSKezNJScjRUNABxchYKXKPgliyRE+4vfJA0yFH08irRW7da3gzwGXil6QOSrQi9ytIJM44EQYzpHXf91IT5kgZihmZ1oJMkxThMRqSvqUCcaLDfJZ/Ck+tksCBVPYIA2fq740ccV1EtJMcmZFe9ArxP6+fmcFVmFORZoYIPH9okDFoJCzKgAlVBBs2sQRhRW1WiEdIIWxsZUUJ/uKXl0nnvOF7Df/uot68LuuogmNwAs6ADy5BE9yCFmgDDB7BM3gFb86T8+K8Ox/z0YpT7hyCP3A+fwANs5YY</latexit><latexit sha1_base64="Jenv/hyCjrsyvMxKVve+rWvvKUE=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARPJVdEfRY9OKxgn1Ad1my2bQNzWNJskJZe/CvePGgiFf/hjf/jdl2D9o6EDLMfB+ZTJwyqo3nfTuVldW19Y3qZm1re2d3z90/6GiZKUzaWDKpejHShFFB2oYaRnqpIojHjHTj8U3hdx+I0lSKezNJScjRUNABxchYKXKPgliyRE+4vfJA0yFH08irRW7da3gzwGXil6QOSrQi9ytIJM44EQYzpHXf91IT5kgZihmZ1oJMkxThMRqSvqUCcaLDfJZ/Ck+tksCBVPYIA2fq740ccV1EtJMcmZFe9ArxP6+fmcFVmFORZoYIPH9okDFoJCzKgAlVBBs2sQRhRW1WiEdIIWxsZUUJ/uKXl0nnvOF7Df/uot68LuuogmNwAs6ADy5BE9yCFmgDDB7BM3gFb86T8+K8Ox/z0YpT7hyCP3A+fwANs5YY</latexit><latexit sha1_base64="Jenv/hyCjrsyvMxKVve+rWvvKUE=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARPJVdEfRY9OKxgn1Ad1my2bQNzWNJskJZe/CvePGgiFf/hjf/jdl2D9o6EDLMfB+ZTJwyqo3nfTuVldW19Y3qZm1re2d3z90/6GiZKUzaWDKpejHShFFB2oYaRnqpIojHjHTj8U3hdx+I0lSKezNJScjRUNABxchYKXKPgliyRE+4vfJA0yFH08irRW7da3gzwGXil6QOSrQi9ytIJM44EQYzpHXf91IT5kgZihmZ1oJMkxThMRqSvqUCcaLDfJZ/Ck+tksCBVPYIA2fq740ccV1EtJMcmZFe9ArxP6+fmcFVmFORZoYIPH9okDFoJCzKgAlVBBs2sQRhRW1WiEdIIWxsZUUJ/uKXl0nnvOF7Df/uot68LuuogmNwAs6ADy5BE9yCFmgDDB7BM3gFb86T8+K8Ox/z0YpT7hyCP3A+fwANs5YY</latexit><latexit sha1_base64="Jenv/hyCjrsyvMxKVve+rWvvKUE=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARPJVdEfRY9OKxgn1Ad1my2bQNzWNJskJZe/CvePGgiFf/hjf/jdl2D9o6EDLMfB+ZTJwyqo3nfTuVldW19Y3qZm1re2d3z90/6GiZKUzaWDKpejHShFFB2oYaRnqpIojHjHTj8U3hdx+I0lSKezNJScjRUNABxchYKXKPgliyRE+4vfJA0yFH08irRW7da3gzwGXil6QOSrQi9ytIJM44EQYzpHXf91IT5kgZihmZ1oJMkxThMRqSvqUCcaLDfJZ/Ck+tksCBVPYIA2fq740ccV1EtJMcmZFe9ArxP6+fmcFVmFORZoYIPH9okDFoJCzKgAlVBBs2sQRhRW1WiEdIIWxsZUUJ/uKXl0nnvOF7Df/uot68LuuogmNwAs6ADy5BE9yCFmgDDB7BM3gFb86T8+K8Ox/z0YpT7hyCP3A+fwANs5YY</latexit>

RNN
<latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit><latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit><latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit><latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit>

S
<latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit><latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit><latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit><latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit>

y1
<latexit sha1_base64="tmmChzGEYOS9d5dA+roRoZApu60=">AAAB+nicbVC7TsMwFL0pr1JeKYwsERUSU5UgJBgrWBiLRB9SG0WO47ZWHTuyHVAU+iksDCDEypew8Tc4bQZoOZLlo3PulY9PmDCqtOt+W5W19Y3Nrep2bWd3b//Arh92lUglJh0smJD9ECnCKCcdTTUj/UQSFIeM9MLpTeH3HohUVPB7nSXEj9GY0xHFSBspsOvDULBIZbG58mwWeLXAbrhNdw5nlXglaUCJdmB/DSOB05hwjRlSauC5ifZzJDXFjMxqw1SRBOEpGpOBoRzFRPn5PPrMOTVK5IyENIdrZ67+3shRrIp0ZjJGeqKWvUL8zxukenTl55QnqSYcLx4apczRwil6cCIqCdYsMwRhSU1WB0+QRFibtooSvOUvr5LuedNzm97dRaN1XdZRhWM4gTPw4BJacAtt6ACGR3iGV3iznqwX6936WIxWrHLnCP7A+vwBOEWT8w==</latexit><latexit sha1_base64="tmmChzGEYOS9d5dA+roRoZApu60=">AAAB+nicbVC7TsMwFL0pr1JeKYwsERUSU5UgJBgrWBiLRB9SG0WO47ZWHTuyHVAU+iksDCDEypew8Tc4bQZoOZLlo3PulY9PmDCqtOt+W5W19Y3Nrep2bWd3b//Arh92lUglJh0smJD9ECnCKCcdTTUj/UQSFIeM9MLpTeH3HohUVPB7nSXEj9GY0xHFSBspsOvDULBIZbG58mwWeLXAbrhNdw5nlXglaUCJdmB/DSOB05hwjRlSauC5ifZzJDXFjMxqw1SRBOEpGpOBoRzFRPn5PPrMOTVK5IyENIdrZ67+3shRrIp0ZjJGeqKWvUL8zxukenTl55QnqSYcLx4apczRwil6cCIqCdYsMwRhSU1WB0+QRFibtooSvOUvr5LuedNzm97dRaN1XdZRhWM4gTPw4BJacAtt6ACGR3iGV3iznqwX6936WIxWrHLnCP7A+vwBOEWT8w==</latexit><latexit sha1_base64="tmmChzGEYOS9d5dA+roRoZApu60=">AAAB+nicbVC7TsMwFL0pr1JeKYwsERUSU5UgJBgrWBiLRB9SG0WO47ZWHTuyHVAU+iksDCDEypew8Tc4bQZoOZLlo3PulY9PmDCqtOt+W5W19Y3Nrep2bWd3b//Arh92lUglJh0smJD9ECnCKCcdTTUj/UQSFIeM9MLpTeH3HohUVPB7nSXEj9GY0xHFSBspsOvDULBIZbG58mwWeLXAbrhNdw5nlXglaUCJdmB/DSOB05hwjRlSauC5ifZzJDXFjMxqw1SRBOEpGpOBoRzFRPn5PPrMOTVK5IyENIdrZ67+3shRrIp0ZjJGeqKWvUL8zxukenTl55QnqSYcLx4apczRwil6cCIqCdYsMwRhSU1WB0+QRFibtooSvOUvr5LuedNzm97dRaN1XdZRhWM4gTPw4BJacAtt6ACGR3iGV3iznqwX6936WIxWrHLnCP7A+vwBOEWT8w==</latexit><latexit sha1_base64="tmmChzGEYOS9d5dA+roRoZApu60=">AAAB+nicbVC7TsMwFL0pr1JeKYwsERUSU5UgJBgrWBiLRB9SG0WO47ZWHTuyHVAU+iksDCDEypew8Tc4bQZoOZLlo3PulY9PmDCqtOt+W5W19Y3Nrep2bWd3b//Arh92lUglJh0smJD9ECnCKCcdTTUj/UQSFIeM9MLpTeH3HohUVPB7nSXEj9GY0xHFSBspsOvDULBIZbG58mwWeLXAbrhNdw5nlXglaUCJdmB/DSOB05hwjRlSauC5ifZzJDXFjMxqw1SRBOEpGpOBoRzFRPn5PPrMOTVK5IyENIdrZ67+3shRrIp0ZjJGeqKWvUL8zxukenTl55QnqSYcLx4apczRwil6cCIqCdYsMwRhSU1WB0+QRFibtooSvOUvr5LuedNzm97dRaN1XdZRhWM4gTPw4BJacAtt6ACGR3iGV3iznqwX6936WIxWrHLnCP7A+vwBOEWT8w==</latexit>

y2<latexit sha1_base64="ifgvL5PZ7kCqRNsDwpICQTyghbk=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBFclaQIuiy6cVnBPqANYTKZtEMnkzAzKYTQP3HjQhG3/ok7/8ZJm4W2HhjmcM69zJkTpJwp7Tjf1sbm1vbObm2vvn9weHRsn5z2VJJJQrsk4YkcBFhRzgTtaqY5HaSS4jjgtB9M70u/P6NSsUQ86TylXozHgkWMYG0k37ZHQcJDlcfmKvK53/LthtN0FkDrxK1IAyp0fPtrFCYki6nQhGOlhq6Taq/AUjPC6bw+yhRNMZniMR0aKnBMlVcsks/RpVFCFCXSHKHRQv29UeBYleHMZIz1RK16pfifN8x0dOsVTKSZpoIsH4oyjnSCyhpQyCQlmueGYCKZyYrIBEtMtCmrbkpwV7+8Tnqtpus03cfrRvuuqqMG53ABV+DCDbThATrQBQIzeIZXeLMK68V6tz6WoxtWtXMGf2B9/gD+3ZPg</latexit><latexit sha1_base64="ifgvL5PZ7kCqRNsDwpICQTyghbk=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBFclaQIuiy6cVnBPqANYTKZtEMnkzAzKYTQP3HjQhG3/ok7/8ZJm4W2HhjmcM69zJkTpJwp7Tjf1sbm1vbObm2vvn9weHRsn5z2VJJJQrsk4YkcBFhRzgTtaqY5HaSS4jjgtB9M70u/P6NSsUQ86TylXozHgkWMYG0k37ZHQcJDlcfmKvK53/LthtN0FkDrxK1IAyp0fPtrFCYki6nQhGOlhq6Taq/AUjPC6bw+yhRNMZniMR0aKnBMlVcsks/RpVFCFCXSHKHRQv29UeBYleHMZIz1RK16pfifN8x0dOsVTKSZpoIsH4oyjnSCyhpQyCQlmueGYCKZyYrIBEtMtCmrbkpwV7+8Tnqtpus03cfrRvuuqqMG53ABV+DCDbThATrQBQIzeIZXeLMK68V6tz6WoxtWtXMGf2B9/gD+3ZPg</latexit><latexit sha1_base64="ifgvL5PZ7kCqRNsDwpICQTyghbk=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBFclaQIuiy6cVnBPqANYTKZtEMnkzAzKYTQP3HjQhG3/ok7/8ZJm4W2HhjmcM69zJkTpJwp7Tjf1sbm1vbObm2vvn9weHRsn5z2VJJJQrsk4YkcBFhRzgTtaqY5HaSS4jjgtB9M70u/P6NSsUQ86TylXozHgkWMYG0k37ZHQcJDlcfmKvK53/LthtN0FkDrxK1IAyp0fPtrFCYki6nQhGOlhq6Taq/AUjPC6bw+yhRNMZniMR0aKnBMlVcsks/RpVFCFCXSHKHRQv29UeBYleHMZIz1RK16pfifN8x0dOsVTKSZpoIsH4oyjnSCyhpQyCQlmueGYCKZyYrIBEtMtCmrbkpwV7+8Tnqtpus03cfrRvuuqqMG53ABV+DCDbThATrQBQIzeIZXeLMK68V6tz6WoxtWtXMGf2B9/gD+3ZPg</latexit><latexit sha1_base64="ifgvL5PZ7kCqRNsDwpICQTyghbk=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBFclaQIuiy6cVnBPqANYTKZtEMnkzAzKYTQP3HjQhG3/ok7/8ZJm4W2HhjmcM69zJkTpJwp7Tjf1sbm1vbObm2vvn9weHRsn5z2VJJJQrsk4YkcBFhRzgTtaqY5HaSS4jjgtB9M70u/P6NSsUQ86TylXozHgkWMYG0k37ZHQcJDlcfmKvK53/LthtN0FkDrxK1IAyp0fPtrFCYki6nQhGOlhq6Taq/AUjPC6bw+yhRNMZniMR0aKnBMlVcsks/RpVFCFCXSHKHRQv29UeBYleHMZIz1RK16pfifN8x0dOsVTKSZpoIsH4oyjnSCyhpQyCQlmueGYCKZyYrIBEtMtCmrbkpwV7+8Tnqtpus03cfrRvuuqqMG53ABV+DCDbThATrQBQIzeIZXeLMK68V6tz6WoxtWtXMGf2B9/gD+3ZPg</latexit>

�1
<latexit sha1_base64="kSoFpoto/NxS8vNWd/QjS9Rr8XE=">AAAB/nicbVDNS8MwHE3n15xfVfHkJTgET6MVQY9DLx4nuDlYS0nTdAvLR0lSYZSB/4oXD4p49e/w5n9juvWgmw9CHu/9fuTlxRmj2njet1NbWV1b36hvNra2d3b33P2Dnpa5wqSLJZOqHyNNGBWka6hhpJ8pgnjMyEM8vin9h0eiNJXi3kwyEnI0FDSlGBkrRe5REEuW6Am3VxFoOuRoGvmR2/Ra3gxwmfgVaYIKncj9ChKJc06EwQxpPfC9zIQFUoZiRqaNINckQ3iMhmRgqUCc6LCYxZ/CU6skMJXKHmHgTP29USCuy4R2kiMz0oteKf7nDXKTXoUFFVluiMDzh9KcQSNh2QVMqCLYsIklCCtqs0I8QgphYxtr2BL8xS8vk955y/da/t1Fs31d1VEHx+AEnAEfXII2uAUd0AUYFOAZvII358l5cd6dj/lozal2DsEfOJ8/0k6WBQ==</latexit><latexit sha1_base64="kSoFpoto/NxS8vNWd/QjS9Rr8XE=">AAAB/nicbVDNS8MwHE3n15xfVfHkJTgET6MVQY9DLx4nuDlYS0nTdAvLR0lSYZSB/4oXD4p49e/w5n9juvWgmw9CHu/9fuTlxRmj2njet1NbWV1b36hvNra2d3b33P2Dnpa5wqSLJZOqHyNNGBWka6hhpJ8pgnjMyEM8vin9h0eiNJXi3kwyEnI0FDSlGBkrRe5REEuW6Am3VxFoOuRoGvmR2/Ra3gxwmfgVaYIKncj9ChKJc06EwQxpPfC9zIQFUoZiRqaNINckQ3iMhmRgqUCc6LCYxZ/CU6skMJXKHmHgTP29USCuy4R2kiMz0oteKf7nDXKTXoUFFVluiMDzh9KcQSNh2QVMqCLYsIklCCtqs0I8QgphYxtr2BL8xS8vk955y/da/t1Fs31d1VEHx+AEnAEfXII2uAUd0AUYFOAZvII358l5cd6dj/lozal2DsEfOJ8/0k6WBQ==</latexit><latexit sha1_base64="kSoFpoto/NxS8vNWd/QjS9Rr8XE=">AAAB/nicbVDNS8MwHE3n15xfVfHkJTgET6MVQY9DLx4nuDlYS0nTdAvLR0lSYZSB/4oXD4p49e/w5n9juvWgmw9CHu/9fuTlxRmj2njet1NbWV1b36hvNra2d3b33P2Dnpa5wqSLJZOqHyNNGBWka6hhpJ8pgnjMyEM8vin9h0eiNJXi3kwyEnI0FDSlGBkrRe5REEuW6Am3VxFoOuRoGvmR2/Ra3gxwmfgVaYIKncj9ChKJc06EwQxpPfC9zIQFUoZiRqaNINckQ3iMhmRgqUCc6LCYxZ/CU6skMJXKHmHgTP29USCuy4R2kiMz0oteKf7nDXKTXoUFFVluiMDzh9KcQSNh2QVMqCLYsIklCCtqs0I8QgphYxtr2BL8xS8vk955y/da/t1Fs31d1VEHx+AEnAEfXII2uAUd0AUYFOAZvII358l5cd6dj/lozal2DsEfOJ8/0k6WBQ==</latexit><latexit sha1_base64="kSoFpoto/NxS8vNWd/QjS9Rr8XE=">AAAB/nicbVDNS8MwHE3n15xfVfHkJTgET6MVQY9DLx4nuDlYS0nTdAvLR0lSYZSB/4oXD4p49e/w5n9juvWgmw9CHu/9fuTlxRmj2njet1NbWV1b36hvNra2d3b33P2Dnpa5wqSLJZOqHyNNGBWka6hhpJ8pgnjMyEM8vin9h0eiNJXi3kwyEnI0FDSlGBkrRe5REEuW6Am3VxFoOuRoGvmR2/Ra3gxwmfgVaYIKncj9ChKJc06EwQxpPfC9zIQFUoZiRqaNINckQ3iMhmRgqUCc6LCYxZ/CU6skMJXKHmHgTP29USCuy4R2kiMz0oteKf7nDXKTXoUFFVluiMDzh9KcQSNh2QVMqCLYsIklCCtqs0I8QgphYxtr2BL8xS8vk955y/da/t1Fs31d1VEHx+AEnAEfXII2uAUd0AUYFOAZvII358l5cd6dj/lozal2DsEfOJ8/0k6WBQ==</latexit>

… RNN
<latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit><latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit><latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit><latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit>

S
<latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit><latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit><latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit><latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit>

�N�1
<latexit sha1_base64="8dA424+Yn10OKk1oRqJYD792LUw=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1gEN5ZEBF0W3biSCvYBTQiTybQdOpMJMxOhhODGX3HjQhG3foU7/8ZJm4W2HhjmcM693HtPmDCqtON8W5Wl5ZXVtep6bWNza3vH3t3rKJFKTNpYMCF7IVKE0Zi0NdWM9BJJEA8Z6Ybj68LvPhCpqIjv9SQhPkfDmA4oRtpIgX3ghYJFasLNl3mKDjnKg+z21M0Du+40nCngInFLUgclWoH95UUCp5zEGjOkVN91Eu1nSGqKGclrXqpIgvAYDUnf0BhxovxsekIOj40SwYGQ5sUaTtXfHRniqtjSVHKkR2reK8T/vH6qB5d+RuMk1STGs0GDlEEtYJEHjKgkWLOJIQhLanaFeIQkwtqkVjMhuPMnL5LOWcN1Gu7deb15VcZRBYfgCJwAF1yAJrgBLdAGGDyCZ/AK3qwn68V6tz5mpRWr7NkHf2B9/gC+PJeg</latexit><latexit sha1_base64="8dA424+Yn10OKk1oRqJYD792LUw=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1gEN5ZEBF0W3biSCvYBTQiTybQdOpMJMxOhhODGX3HjQhG3foU7/8ZJm4W2HhjmcM693HtPmDCqtON8W5Wl5ZXVtep6bWNza3vH3t3rKJFKTNpYMCF7IVKE0Zi0NdWM9BJJEA8Z6Ybj68LvPhCpqIjv9SQhPkfDmA4oRtpIgX3ghYJFasLNl3mKDjnKg+z21M0Du+40nCngInFLUgclWoH95UUCp5zEGjOkVN91Eu1nSGqKGclrXqpIgvAYDUnf0BhxovxsekIOj40SwYGQ5sUaTtXfHRniqtjSVHKkR2reK8T/vH6qB5d+RuMk1STGs0GDlEEtYJEHjKgkWLOJIQhLanaFeIQkwtqkVjMhuPMnL5LOWcN1Gu7deb15VcZRBYfgCJwAF1yAJrgBLdAGGDyCZ/AK3qwn68V6tz5mpRWr7NkHf2B9/gC+PJeg</latexit><latexit sha1_base64="8dA424+Yn10OKk1oRqJYD792LUw=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1gEN5ZEBF0W3biSCvYBTQiTybQdOpMJMxOhhODGX3HjQhG3foU7/8ZJm4W2HhjmcM693HtPmDCqtON8W5Wl5ZXVtep6bWNza3vH3t3rKJFKTNpYMCF7IVKE0Zi0NdWM9BJJEA8Z6Ybj68LvPhCpqIjv9SQhPkfDmA4oRtpIgX3ghYJFasLNl3mKDjnKg+z21M0Du+40nCngInFLUgclWoH95UUCp5zEGjOkVN91Eu1nSGqKGclrXqpIgvAYDUnf0BhxovxsekIOj40SwYGQ5sUaTtXfHRniqtjSVHKkR2reK8T/vH6qB5d+RuMk1STGs0GDlEEtYJEHjKgkWLOJIQhLanaFeIQkwtqkVjMhuPMnL5LOWcN1Gu7deb15VcZRBYfgCJwAF1yAJrgBLdAGGDyCZ/AK3qwn68V6tz5mpRWr7NkHf2B9/gC+PJeg</latexit><latexit sha1_base64="8dA424+Yn10OKk1oRqJYD792LUw=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1gEN5ZEBF0W3biSCvYBTQiTybQdOpMJMxOhhODGX3HjQhG3foU7/8ZJm4W2HhjmcM693HtPmDCqtON8W5Wl5ZXVtep6bWNza3vH3t3rKJFKTNpYMCF7IVKE0Zi0NdWM9BJJEA8Z6Ybj68LvPhCpqIjv9SQhPkfDmA4oRtpIgX3ghYJFasLNl3mKDjnKg+z21M0Du+40nCngInFLUgclWoH95UUCp5zEGjOkVN91Eu1nSGqKGclrXqpIgvAYDUnf0BhxovxsekIOj40SwYGQ5sUaTtXfHRniqtjSVHKkR2reK8T/vH6qB5d+RuMk1STGs0GDlEEtYJEHjKgkWLOJIQhLanaFeIQkwtqkVjMhuPMnL5LOWcN1Gu7deb15VcZRBYfgCJwAF1yAJrgBLdAGGDyCZ/AK3qwn68V6tz5mpRWr7NkHf2B9/gC+PJeg</latexit>

yN<latexit sha1_base64="e8WmB6ONfjwziGThzE15yD/ZPic=">AAAB+3icbVDNS8MwHE3n15xfdR69BIfgabQi6HHoxZNMcB+wlZKm6RaWJiVJxVL6r3jxoIhX/xFv/jemWw+6+SDk8d7vR15ekDCqtON8W7W19Y3Nrfp2Y2d3b//APmz2lUglJj0smJDDACnCKCc9TTUjw0QSFAeMDILZTekPHolUVPAHnSXEi9GE04hipI3k281xIFiosthceVb4+V3h2y2n7cwBV4lbkRao0PXtr3EocBoTrjFDSo1cJ9FejqSmmJGiMU4VSRCeoQkZGcpRTJSXz7MX8NQoIYyENIdrOFd/b+QoVmU8MxkjPVXLXin+541SHV15OeVJqgnHi4eilEEtYFkEDKkkWLPMEIQlNVkhniKJsDZ1NUwJ7vKXV0n/vO06bff+otW5ruqog2NwAs6ACy5BB9yCLugBDJ7AM3gFb1ZhvVjv1sditGZVO0fgD6zPH/mZlQg=</latexit><latexit sha1_base64="e8WmB6ONfjwziGThzE15yD/ZPic=">AAAB+3icbVDNS8MwHE3n15xfdR69BIfgabQi6HHoxZNMcB+wlZKm6RaWJiVJxVL6r3jxoIhX/xFv/jemWw+6+SDk8d7vR15ekDCqtON8W7W19Y3Nrfp2Y2d3b//APmz2lUglJj0smJDDACnCKCc9TTUjw0QSFAeMDILZTekPHolUVPAHnSXEi9GE04hipI3k281xIFiosthceVb4+V3h2y2n7cwBV4lbkRao0PXtr3EocBoTrjFDSo1cJ9FejqSmmJGiMU4VSRCeoQkZGcpRTJSXz7MX8NQoIYyENIdrOFd/b+QoVmU8MxkjPVXLXin+541SHV15OeVJqgnHi4eilEEtYFkEDKkkWLPMEIQlNVkhniKJsDZ1NUwJ7vKXV0n/vO06bff+otW5ruqog2NwAs6ACy5BB9yCLugBDJ7AM3gFb1ZhvVjv1sditGZVO0fgD6zPH/mZlQg=</latexit><latexit sha1_base64="e8WmB6ONfjwziGThzE15yD/ZPic=">AAAB+3icbVDNS8MwHE3n15xfdR69BIfgabQi6HHoxZNMcB+wlZKm6RaWJiVJxVL6r3jxoIhX/xFv/jemWw+6+SDk8d7vR15ekDCqtON8W7W19Y3Nrfp2Y2d3b//APmz2lUglJj0smJDDACnCKCc9TTUjw0QSFAeMDILZTekPHolUVPAHnSXEi9GE04hipI3k281xIFiosthceVb4+V3h2y2n7cwBV4lbkRao0PXtr3EocBoTrjFDSo1cJ9FejqSmmJGiMU4VSRCeoQkZGcpRTJSXz7MX8NQoIYyENIdrOFd/b+QoVmU8MxkjPVXLXin+541SHV15OeVJqgnHi4eilEEtYFkEDKkkWLPMEIQlNVkhniKJsDZ1NUwJ7vKXV0n/vO06bff+otW5ruqog2NwAs6ACy5BB9yCLugBDJ7AM3gFb1ZhvVjv1sditGZVO0fgD6zPH/mZlQg=</latexit><latexit sha1_base64="e8WmB6ONfjwziGThzE15yD/ZPic=">AAAB+3icbVDNS8MwHE3n15xfdR69BIfgabQi6HHoxZNMcB+wlZKm6RaWJiVJxVL6r3jxoIhX/xFv/jemWw+6+SDk8d7vR15ekDCqtON8W7W19Y3Nrfp2Y2d3b//APmz2lUglJj0smJDDACnCKCc9TTUjw0QSFAeMDILZTekPHolUVPAHnSXEi9GE04hipI3k281xIFiosthceVb4+V3h2y2n7cwBV4lbkRao0PXtr3EocBoTrjFDSo1cJ9FejqSmmJGiMU4VSRCeoQkZGcpRTJSXz7MX8NQoIYyENIdrOFd/b+QoVmU8MxkjPVXLXin+541SHV15OeVJqgnHi4eilEEtYFkEDKkkWLPMEIQlNVkhniKJsDZ1NUwJ7vKXV0n/vO06bff+otW5ruqog2NwAs6ACy5BB9yCLugBDJ7AM3gFb1ZhvVjv1sditGZVO0fgD6zPH/mZlQg=</latexit>

�n�1
<latexit sha1_base64="pjuuVkzziLzp5ZSdpHe92FA3pkE=">AAACAnicbVDLSsNAFJ3UV62vqCtxEyyCG0sigi6LblxWsLXQhDCZTNqh8wgzE6GE4MZfceNCEbd+hTv/xkmbhbYeGOZwzr3ce0+UUqK0635btaXlldW1+npjY3Nre8fe3espkUmEu0hQIfsRVJgSjruaaIr7qcSQRRTfR+Pr0r9/wFIRwe/0JMUBg0NOEoKgNlJoH/iRoLGaMPPlviJDBosw56deEdpNt+VO4SwSryJNUKET2l9+LFDGMNeIQqUGnpvqIIdSE0Rx0fAzhVOIxnCIB4ZyyLAK8ukJhXNslNhJhDSPa2eq/u7IIVPllqaSQT1S814p/ucNMp1cBjnhaaYxR7NBSUYdLZwyDycmEiNNJ4ZAJInZ1UEjKCHSJrWGCcGbP3mR9M5antvybs+b7asqjjo4BEfgBHjgArTBDeiALkDgETyDV/BmPVkv1rv1MSutWVXPPvgD6/MH7xyXwA==</latexit><latexit sha1_base64="pjuuVkzziLzp5ZSdpHe92FA3pkE=">AAACAnicbVDLSsNAFJ3UV62vqCtxEyyCG0sigi6LblxWsLXQhDCZTNqh8wgzE6GE4MZfceNCEbd+hTv/xkmbhbYeGOZwzr3ce0+UUqK0635btaXlldW1+npjY3Nre8fe3espkUmEu0hQIfsRVJgSjruaaIr7qcSQRRTfR+Pr0r9/wFIRwe/0JMUBg0NOEoKgNlJoH/iRoLGaMPPlviJDBosw56deEdpNt+VO4SwSryJNUKET2l9+LFDGMNeIQqUGnpvqIIdSE0Rx0fAzhVOIxnCIB4ZyyLAK8ukJhXNslNhJhDSPa2eq/u7IIVPllqaSQT1S814p/ucNMp1cBjnhaaYxR7NBSUYdLZwyDycmEiNNJ4ZAJInZ1UEjKCHSJrWGCcGbP3mR9M5antvybs+b7asqjjo4BEfgBHjgArTBDeiALkDgETyDV/BmPVkv1rv1MSutWVXPPvgD6/MH7xyXwA==</latexit><latexit sha1_base64="pjuuVkzziLzp5ZSdpHe92FA3pkE=">AAACAnicbVDLSsNAFJ3UV62vqCtxEyyCG0sigi6LblxWsLXQhDCZTNqh8wgzE6GE4MZfceNCEbd+hTv/xkmbhbYeGOZwzr3ce0+UUqK0635btaXlldW1+npjY3Nre8fe3espkUmEu0hQIfsRVJgSjruaaIr7qcSQRRTfR+Pr0r9/wFIRwe/0JMUBg0NOEoKgNlJoH/iRoLGaMPPlviJDBosw56deEdpNt+VO4SwSryJNUKET2l9+LFDGMNeIQqUGnpvqIIdSE0Rx0fAzhVOIxnCIB4ZyyLAK8ukJhXNslNhJhDSPa2eq/u7IIVPllqaSQT1S814p/ucNMp1cBjnhaaYxR7NBSUYdLZwyDycmEiNNJ4ZAJInZ1UEjKCHSJrWGCcGbP3mR9M5antvybs+b7asqjjo4BEfgBHjgArTBDeiALkDgETyDV/BmPVkv1rv1MSutWVXPPvgD6/MH7xyXwA==</latexit><latexit sha1_base64="pjuuVkzziLzp5ZSdpHe92FA3pkE=">AAACAnicbVDLSsNAFJ3UV62vqCtxEyyCG0sigi6LblxWsLXQhDCZTNqh8wgzE6GE4MZfceNCEbd+hTv/xkmbhbYeGOZwzr3ce0+UUqK0635btaXlldW1+npjY3Nre8fe3espkUmEu0hQIfsRVJgSjruaaIr7qcSQRRTfR+Pr0r9/wFIRwe/0JMUBg0NOEoKgNlJoH/iRoLGaMPPlviJDBosw56deEdpNt+VO4SwSryJNUKET2l9+LFDGMNeIQqUGnpvqIIdSE0Rx0fAzhVOIxnCIB4ZyyLAK8ukJhXNslNhJhDSPa2eq/u7IIVPllqaSQT1S814p/ucNMp1cBjnhaaYxR7NBSUYdLZwyDycmEiNNJ4ZAJInZ1UEjKCHSJrWGCcGbP3mR9M5antvybs+b7asqjjo4BEfgBHjgArTBDeiALkDgETyDV/BmPVkv1rv1MSutWVXPPvgD6/MH7xyXwA==</latexit>

. . . 

RNN
<latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit><latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit><latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit><latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit>

S
<latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit><latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit><latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit><latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit>

�0
<latexit sha1_base64="Jenv/hyCjrsyvMxKVve+rWvvKUE=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARPJVdEfRY9OKxgn1Ad1my2bQNzWNJskJZe/CvePGgiFf/hjf/jdl2D9o6EDLMfB+ZTJwyqo3nfTuVldW19Y3qZm1re2d3z90/6GiZKUzaWDKpejHShFFB2oYaRnqpIojHjHTj8U3hdx+I0lSKezNJScjRUNABxchYKXKPgliyRE+4vfJA0yFH08irRW7da3gzwGXil6QOSrQi9ytIJM44EQYzpHXf91IT5kgZihmZ1oJMkxThMRqSvqUCcaLDfJZ/Ck+tksCBVPYIA2fq740ccV1EtJMcmZFe9ArxP6+fmcFVmFORZoYIPH9okDFoJCzKgAlVBBs2sQRhRW1WiEdIIWxsZUUJ/uKXl0nnvOF7Df/uot68LuuogmNwAs6ADy5BE9yCFmgDDB7BM3gFb86T8+K8Ox/z0YpT7hyCP3A+fwANs5YY</latexit><latexit sha1_base64="Jenv/hyCjrsyvMxKVve+rWvvKUE=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARPJVdEfRY9OKxgn1Ad1my2bQNzWNJskJZe/CvePGgiFf/hjf/jdl2D9o6EDLMfB+ZTJwyqo3nfTuVldW19Y3qZm1re2d3z90/6GiZKUzaWDKpejHShFFB2oYaRnqpIojHjHTj8U3hdx+I0lSKezNJScjRUNABxchYKXKPgliyRE+4vfJA0yFH08irRW7da3gzwGXil6QOSrQi9ytIJM44EQYzpHXf91IT5kgZihmZ1oJMkxThMRqSvqUCcaLDfJZ/Ck+tksCBVPYIA2fq740ccV1EtJMcmZFe9ArxP6+fmcFVmFORZoYIPH9okDFoJCzKgAlVBBs2sQRhRW1WiEdIIWxsZUUJ/uKXl0nnvOF7Df/uot68LuuogmNwAs6ADy5BE9yCFmgDDB7BM3gFb86T8+K8Ox/z0YpT7hyCP3A+fwANs5YY</latexit><latexit sha1_base64="Jenv/hyCjrsyvMxKVve+rWvvKUE=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARPJVdEfRY9OKxgn1Ad1my2bQNzWNJskJZe/CvePGgiFf/hjf/jdl2D9o6EDLMfB+ZTJwyqo3nfTuVldW19Y3qZm1re2d3z90/6GiZKUzaWDKpejHShFFB2oYaRnqpIojHjHTj8U3hdx+I0lSKezNJScjRUNABxchYKXKPgliyRE+4vfJA0yFH08irRW7da3gzwGXil6QOSrQi9ytIJM44EQYzpHXf91IT5kgZihmZ1oJMkxThMRqSvqUCcaLDfJZ/Ck+tksCBVPYIA2fq740ccV1EtJMcmZFe9ArxP6+fmcFVmFORZoYIPH9okDFoJCzKgAlVBBs2sQRhRW1WiEdIIWxsZUUJ/uKXl0nnvOF7Df/uot68LuuogmNwAs6ADy5BE9yCFmgDDB7BM3gFb86T8+K8Ox/z0YpT7hyCP3A+fwANs5YY</latexit><latexit sha1_base64="Jenv/hyCjrsyvMxKVve+rWvvKUE=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARPJVdEfRY9OKxgn1Ad1my2bQNzWNJskJZe/CvePGgiFf/hjf/jdl2D9o6EDLMfB+ZTJwyqo3nfTuVldW19Y3qZm1re2d3z90/6GiZKUzaWDKpejHShFFB2oYaRnqpIojHjHTj8U3hdx+I0lSKezNJScjRUNABxchYKXKPgliyRE+4vfJA0yFH08irRW7da3gzwGXil6QOSrQi9ytIJM44EQYzpHXf91IT5kgZihmZ1oJMkxThMRqSvqUCcaLDfJZ/Ck+tksCBVPYIA2fq740ccV1EtJMcmZFe9ArxP6+fmcFVmFORZoYIPH9okDFoJCzKgAlVBBs2sQRhRW1WiEdIIWxsZUUJ/uKXl0nnvOF7Df/uot68LuuogmNwAs6ADy5BE9yCFmgDDB7BM3gFb86T8+K8Ox/z0YpT7hyCP3A+fwANs5YY</latexit>

RNN
<latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit><latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit><latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit><latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit>

S
<latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit><latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit><latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit><latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit>

y1
<latexit sha1_base64="tmmChzGEYOS9d5dA+roRoZApu60=">AAAB+nicbVC7TsMwFL0pr1JeKYwsERUSU5UgJBgrWBiLRB9SG0WO47ZWHTuyHVAU+iksDCDEypew8Tc4bQZoOZLlo3PulY9PmDCqtOt+W5W19Y3Nrep2bWd3b//Arh92lUglJh0smJD9ECnCKCcdTTUj/UQSFIeM9MLpTeH3HohUVPB7nSXEj9GY0xHFSBspsOvDULBIZbG58mwWeLXAbrhNdw5nlXglaUCJdmB/DSOB05hwjRlSauC5ifZzJDXFjMxqw1SRBOEpGpOBoRzFRPn5PPrMOTVK5IyENIdrZ67+3shRrIp0ZjJGeqKWvUL8zxukenTl55QnqSYcLx4apczRwil6cCIqCdYsMwRhSU1WB0+QRFibtooSvOUvr5LuedNzm97dRaN1XdZRhWM4gTPw4BJacAtt6ACGR3iGV3iznqwX6936WIxWrHLnCP7A+vwBOEWT8w==</latexit><latexit sha1_base64="tmmChzGEYOS9d5dA+roRoZApu60=">AAAB+nicbVC7TsMwFL0pr1JeKYwsERUSU5UgJBgrWBiLRB9SG0WO47ZWHTuyHVAU+iksDCDEypew8Tc4bQZoOZLlo3PulY9PmDCqtOt+W5W19Y3Nrep2bWd3b//Arh92lUglJh0smJD9ECnCKCcdTTUj/UQSFIeM9MLpTeH3HohUVPB7nSXEj9GY0xHFSBspsOvDULBIZbG58mwWeLXAbrhNdw5nlXglaUCJdmB/DSOB05hwjRlSauC5ifZzJDXFjMxqw1SRBOEpGpOBoRzFRPn5PPrMOTVK5IyENIdrZ67+3shRrIp0ZjJGeqKWvUL8zxukenTl55QnqSYcLx4apczRwil6cCIqCdYsMwRhSU1WB0+QRFibtooSvOUvr5LuedNzm97dRaN1XdZRhWM4gTPw4BJacAtt6ACGR3iGV3iznqwX6936WIxWrHLnCP7A+vwBOEWT8w==</latexit><latexit sha1_base64="tmmChzGEYOS9d5dA+roRoZApu60=">AAAB+nicbVC7TsMwFL0pr1JeKYwsERUSU5UgJBgrWBiLRB9SG0WO47ZWHTuyHVAU+iksDCDEypew8Tc4bQZoOZLlo3PulY9PmDCqtOt+W5W19Y3Nrep2bWd3b//Arh92lUglJh0smJD9ECnCKCcdTTUj/UQSFIeM9MLpTeH3HohUVPB7nSXEj9GY0xHFSBspsOvDULBIZbG58mwWeLXAbrhNdw5nlXglaUCJdmB/DSOB05hwjRlSauC5ifZzJDXFjMxqw1SRBOEpGpOBoRzFRPn5PPrMOTVK5IyENIdrZ67+3shRrIp0ZjJGeqKWvUL8zxukenTl55QnqSYcLx4apczRwil6cCIqCdYsMwRhSU1WB0+QRFibtooSvOUvr5LuedNzm97dRaN1XdZRhWM4gTPw4BJacAtt6ACGR3iGV3iznqwX6936WIxWrHLnCP7A+vwBOEWT8w==</latexit><latexit sha1_base64="tmmChzGEYOS9d5dA+roRoZApu60=">AAAB+nicbVC7TsMwFL0pr1JeKYwsERUSU5UgJBgrWBiLRB9SG0WO47ZWHTuyHVAU+iksDCDEypew8Tc4bQZoOZLlo3PulY9PmDCqtOt+W5W19Y3Nrep2bWd3b//Arh92lUglJh0smJD9ECnCKCcdTTUj/UQSFIeM9MLpTeH3HohUVPB7nSXEj9GY0xHFSBspsOvDULBIZbG58mwWeLXAbrhNdw5nlXglaUCJdmB/DSOB05hwjRlSauC5ifZzJDXFjMxqw1SRBOEpGpOBoRzFRPn5PPrMOTVK5IyENIdrZ67+3shRrIp0ZjJGeqKWvUL8zxukenTl55QnqSYcLx4apczRwil6cCIqCdYsMwRhSU1WB0+QRFibtooSvOUvr5LuedNzm97dRaN1XdZRhWM4gTPw4BJacAtt6ACGR3iGV3iznqwX6936WIxWrHLnCP7A+vwBOEWT8w==</latexit>

y2<latexit sha1_base64="ifgvL5PZ7kCqRNsDwpICQTyghbk=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBFclaQIuiy6cVnBPqANYTKZtEMnkzAzKYTQP3HjQhG3/ok7/8ZJm4W2HhjmcM69zJkTpJwp7Tjf1sbm1vbObm2vvn9weHRsn5z2VJJJQrsk4YkcBFhRzgTtaqY5HaSS4jjgtB9M70u/P6NSsUQ86TylXozHgkWMYG0k37ZHQcJDlcfmKvK53/LthtN0FkDrxK1IAyp0fPtrFCYki6nQhGOlhq6Taq/AUjPC6bw+yhRNMZniMR0aKnBMlVcsks/RpVFCFCXSHKHRQv29UeBYleHMZIz1RK16pfifN8x0dOsVTKSZpoIsH4oyjnSCyhpQyCQlmueGYCKZyYrIBEtMtCmrbkpwV7+8Tnqtpus03cfrRvuuqqMG53ABV+DCDbThATrQBQIzeIZXeLMK68V6tz6WoxtWtXMGf2B9/gD+3ZPg</latexit><latexit sha1_base64="ifgvL5PZ7kCqRNsDwpICQTyghbk=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBFclaQIuiy6cVnBPqANYTKZtEMnkzAzKYTQP3HjQhG3/ok7/8ZJm4W2HhjmcM69zJkTpJwp7Tjf1sbm1vbObm2vvn9weHRsn5z2VJJJQrsk4YkcBFhRzgTtaqY5HaSS4jjgtB9M70u/P6NSsUQ86TylXozHgkWMYG0k37ZHQcJDlcfmKvK53/LthtN0FkDrxK1IAyp0fPtrFCYki6nQhGOlhq6Taq/AUjPC6bw+yhRNMZniMR0aKnBMlVcsks/RpVFCFCXSHKHRQv29UeBYleHMZIz1RK16pfifN8x0dOsVTKSZpoIsH4oyjnSCyhpQyCQlmueGYCKZyYrIBEtMtCmrbkpwV7+8Tnqtpus03cfrRvuuqqMG53ABV+DCDbThATrQBQIzeIZXeLMK68V6tz6WoxtWtXMGf2B9/gD+3ZPg</latexit><latexit sha1_base64="ifgvL5PZ7kCqRNsDwpICQTyghbk=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBFclaQIuiy6cVnBPqANYTKZtEMnkzAzKYTQP3HjQhG3/ok7/8ZJm4W2HhjmcM69zJkTpJwp7Tjf1sbm1vbObm2vvn9weHRsn5z2VJJJQrsk4YkcBFhRzgTtaqY5HaSS4jjgtB9M70u/P6NSsUQ86TylXozHgkWMYG0k37ZHQcJDlcfmKvK53/LthtN0FkDrxK1IAyp0fPtrFCYki6nQhGOlhq6Taq/AUjPC6bw+yhRNMZniMR0aKnBMlVcsks/RpVFCFCXSHKHRQv29UeBYleHMZIz1RK16pfifN8x0dOsVTKSZpoIsH4oyjnSCyhpQyCQlmueGYCKZyYrIBEtMtCmrbkpwV7+8Tnqtpus03cfrRvuuqqMG53ABV+DCDbThATrQBQIzeIZXeLMK68V6tz6WoxtWtXMGf2B9/gD+3ZPg</latexit><latexit sha1_base64="ifgvL5PZ7kCqRNsDwpICQTyghbk=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBFclaQIuiy6cVnBPqANYTKZtEMnkzAzKYTQP3HjQhG3/ok7/8ZJm4W2HhjmcM69zJkTpJwp7Tjf1sbm1vbObm2vvn9weHRsn5z2VJJJQrsk4YkcBFhRzgTtaqY5HaSS4jjgtB9M70u/P6NSsUQ86TylXozHgkWMYG0k37ZHQcJDlcfmKvK53/LthtN0FkDrxK1IAyp0fPtrFCYki6nQhGOlhq6Taq/AUjPC6bw+yhRNMZniMR0aKnBMlVcsks/RpVFCFCXSHKHRQv29UeBYleHMZIz1RK16pfifN8x0dOsVTKSZpoIsH4oyjnSCyhpQyCQlmueGYCKZyYrIBEtMtCmrbkpwV7+8Tnqtpus03cfrRvuuqqMG53ABV+DCDbThATrQBQIzeIZXeLMK68V6tz6WoxtWtXMGf2B9/gD+3ZPg</latexit>

�1
<latexit sha1_base64="kSoFpoto/NxS8vNWd/QjS9Rr8XE=">AAAB/nicbVDNS8MwHE3n15xfVfHkJTgET6MVQY9DLx4nuDlYS0nTdAvLR0lSYZSB/4oXD4p49e/w5n9juvWgmw9CHu/9fuTlxRmj2njet1NbWV1b36hvNra2d3b33P2Dnpa5wqSLJZOqHyNNGBWka6hhpJ8pgnjMyEM8vin9h0eiNJXi3kwyEnI0FDSlGBkrRe5REEuW6Am3VxFoOuRoGvmR2/Ra3gxwmfgVaYIKncj9ChKJc06EwQxpPfC9zIQFUoZiRqaNINckQ3iMhmRgqUCc6LCYxZ/CU6skMJXKHmHgTP29USCuy4R2kiMz0oteKf7nDXKTXoUFFVluiMDzh9KcQSNh2QVMqCLYsIklCCtqs0I8QgphYxtr2BL8xS8vk955y/da/t1Fs31d1VEHx+AEnAEfXII2uAUd0AUYFOAZvII358l5cd6dj/lozal2DsEfOJ8/0k6WBQ==</latexit><latexit sha1_base64="kSoFpoto/NxS8vNWd/QjS9Rr8XE=">AAAB/nicbVDNS8MwHE3n15xfVfHkJTgET6MVQY9DLx4nuDlYS0nTdAvLR0lSYZSB/4oXD4p49e/w5n9juvWgmw9CHu/9fuTlxRmj2njet1NbWV1b36hvNra2d3b33P2Dnpa5wqSLJZOqHyNNGBWka6hhpJ8pgnjMyEM8vin9h0eiNJXi3kwyEnI0FDSlGBkrRe5REEuW6Am3VxFoOuRoGvmR2/Ra3gxwmfgVaYIKncj9ChKJc06EwQxpPfC9zIQFUoZiRqaNINckQ3iMhmRgqUCc6LCYxZ/CU6skMJXKHmHgTP29USCuy4R2kiMz0oteKf7nDXKTXoUFFVluiMDzh9KcQSNh2QVMqCLYsIklCCtqs0I8QgphYxtr2BL8xS8vk955y/da/t1Fs31d1VEHx+AEnAEfXII2uAUd0AUYFOAZvII358l5cd6dj/lozal2DsEfOJ8/0k6WBQ==</latexit><latexit sha1_base64="kSoFpoto/NxS8vNWd/QjS9Rr8XE=">AAAB/nicbVDNS8MwHE3n15xfVfHkJTgET6MVQY9DLx4nuDlYS0nTdAvLR0lSYZSB/4oXD4p49e/w5n9juvWgmw9CHu/9fuTlxRmj2njet1NbWV1b36hvNra2d3b33P2Dnpa5wqSLJZOqHyNNGBWka6hhpJ8pgnjMyEM8vin9h0eiNJXi3kwyEnI0FDSlGBkrRe5REEuW6Am3VxFoOuRoGvmR2/Ra3gxwmfgVaYIKncj9ChKJc06EwQxpPfC9zIQFUoZiRqaNINckQ3iMhmRgqUCc6LCYxZ/CU6skMJXKHmHgTP29USCuy4R2kiMz0oteKf7nDXKTXoUFFVluiMDzh9KcQSNh2QVMqCLYsIklCCtqs0I8QgphYxtr2BL8xS8vk955y/da/t1Fs31d1VEHx+AEnAEfXII2uAUd0AUYFOAZvII358l5cd6dj/lozal2DsEfOJ8/0k6WBQ==</latexit><latexit sha1_base64="kSoFpoto/NxS8vNWd/QjS9Rr8XE=">AAAB/nicbVDNS8MwHE3n15xfVfHkJTgET6MVQY9DLx4nuDlYS0nTdAvLR0lSYZSB/4oXD4p49e/w5n9juvWgmw9CHu/9fuTlxRmj2njet1NbWV1b36hvNra2d3b33P2Dnpa5wqSLJZOqHyNNGBWka6hhpJ8pgnjMyEM8vin9h0eiNJXi3kwyEnI0FDSlGBkrRe5REEuW6Am3VxFoOuRoGvmR2/Ra3gxwmfgVaYIKncj9ChKJc06EwQxpPfC9zIQFUoZiRqaNINckQ3iMhmRgqUCc6LCYxZ/CU6skMJXKHmHgTP29USCuy4R2kiMz0oteKf7nDXKTXoUFFVluiMDzh9KcQSNh2QVMqCLYsIklCCtqs0I8QgphYxtr2BL8xS8vk955y/da/t1Fs31d1VEHx+AEnAEfXII2uAUd0AUYFOAZvII358l5cd6dj/lozal2DsEfOJ8/0k6WBQ==</latexit>

… RNN
<latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit><latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit><latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit><latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit>
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<latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit><latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit><latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit><latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit>

�N�1
<latexit sha1_base64="8dA424+Yn10OKk1oRqJYD792LUw=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1gEN5ZEBF0W3biSCvYBTQiTybQdOpMJMxOhhODGX3HjQhG3foU7/8ZJm4W2HhjmcM693HtPmDCqtON8W5Wl5ZXVtep6bWNza3vH3t3rKJFKTNpYMCF7IVKE0Zi0NdWM9BJJEA8Z6Ybj68LvPhCpqIjv9SQhPkfDmA4oRtpIgX3ghYJFasLNl3mKDjnKg+z21M0Du+40nCngInFLUgclWoH95UUCp5zEGjOkVN91Eu1nSGqKGclrXqpIgvAYDUnf0BhxovxsekIOj40SwYGQ5sUaTtXfHRniqtjSVHKkR2reK8T/vH6qB5d+RuMk1STGs0GDlEEtYJEHjKgkWLOJIQhLanaFeIQkwtqkVjMhuPMnL5LOWcN1Gu7deb15VcZRBYfgCJwAF1yAJrgBLdAGGDyCZ/AK3qwn68V6tz5mpRWr7NkHf2B9/gC+PJeg</latexit><latexit sha1_base64="8dA424+Yn10OKk1oRqJYD792LUw=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1gEN5ZEBF0W3biSCvYBTQiTybQdOpMJMxOhhODGX3HjQhG3foU7/8ZJm4W2HhjmcM693HtPmDCqtON8W5Wl5ZXVtep6bWNza3vH3t3rKJFKTNpYMCF7IVKE0Zi0NdWM9BJJEA8Z6Ybj68LvPhCpqIjv9SQhPkfDmA4oRtpIgX3ghYJFasLNl3mKDjnKg+z21M0Du+40nCngInFLUgclWoH95UUCp5zEGjOkVN91Eu1nSGqKGclrXqpIgvAYDUnf0BhxovxsekIOj40SwYGQ5sUaTtXfHRniqtjSVHKkR2reK8T/vH6qB5d+RuMk1STGs0GDlEEtYJEHjKgkWLOJIQhLanaFeIQkwtqkVjMhuPMnL5LOWcN1Gu7deb15VcZRBYfgCJwAF1yAJrgBLdAGGDyCZ/AK3qwn68V6tz5mpRWr7NkHf2B9/gC+PJeg</latexit><latexit sha1_base64="8dA424+Yn10OKk1oRqJYD792LUw=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1gEN5ZEBF0W3biSCvYBTQiTybQdOpMJMxOhhODGX3HjQhG3foU7/8ZJm4W2HhjmcM693HtPmDCqtON8W5Wl5ZXVtep6bWNza3vH3t3rKJFKTNpYMCF7IVKE0Zi0NdWM9BJJEA8Z6Ybj68LvPhCpqIjv9SQhPkfDmA4oRtpIgX3ghYJFasLNl3mKDjnKg+z21M0Du+40nCngInFLUgclWoH95UUCp5zEGjOkVN91Eu1nSGqKGclrXqpIgvAYDUnf0BhxovxsekIOj40SwYGQ5sUaTtXfHRniqtjSVHKkR2reK8T/vH6qB5d+RuMk1STGs0GDlEEtYJEHjKgkWLOJIQhLanaFeIQkwtqkVjMhuPMnL5LOWcN1Gu7deb15VcZRBYfgCJwAF1yAJrgBLdAGGDyCZ/AK3qwn68V6tz5mpRWr7NkHf2B9/gC+PJeg</latexit><latexit sha1_base64="8dA424+Yn10OKk1oRqJYD792LUw=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1gEN5ZEBF0W3biSCvYBTQiTybQdOpMJMxOhhODGX3HjQhG3foU7/8ZJm4W2HhjmcM693HtPmDCqtON8W5Wl5ZXVtep6bWNza3vH3t3rKJFKTNpYMCF7IVKE0Zi0NdWM9BJJEA8Z6Ybj68LvPhCpqIjv9SQhPkfDmA4oRtpIgX3ghYJFasLNl3mKDjnKg+z21M0Du+40nCngInFLUgclWoH95UUCp5zEGjOkVN91Eu1nSGqKGclrXqpIgvAYDUnf0BhxovxsekIOj40SwYGQ5sUaTtXfHRniqtjSVHKkR2reK8T/vH6qB5d+RuMk1STGs0GDlEEtYJEHjKgkWLOJIQhLanaFeIQkwtqkVjMhuPMnL5LOWcN1Gu7deb15VcZRBYfgCJwAF1yAJrgBLdAGGDyCZ/AK3qwn68V6tz5mpRWr7NkHf2B9/gC+PJeg</latexit>

yN<latexit sha1_base64="e8WmB6ONfjwziGThzE15yD/ZPic=">AAAB+3icbVDNS8MwHE3n15xfdR69BIfgabQi6HHoxZNMcB+wlZKm6RaWJiVJxVL6r3jxoIhX/xFv/jemWw+6+SDk8d7vR15ekDCqtON8W7W19Y3Nrfp2Y2d3b//APmz2lUglJj0smJDDACnCKCc9TTUjw0QSFAeMDILZTekPHolUVPAHnSXEi9GE04hipI3k281xIFiosthceVb4+V3h2y2n7cwBV4lbkRao0PXtr3EocBoTrjFDSo1cJ9FejqSmmJGiMU4VSRCeoQkZGcpRTJSXz7MX8NQoIYyENIdrOFd/b+QoVmU8MxkjPVXLXin+541SHV15OeVJqgnHi4eilEEtYFkEDKkkWLPMEIQlNVkhniKJsDZ1NUwJ7vKXV0n/vO06bff+otW5ruqog2NwAs6ACy5BB9yCLugBDJ7AM3gFb1ZhvVjv1sditGZVO0fgD6zPH/mZlQg=</latexit><latexit sha1_base64="e8WmB6ONfjwziGThzE15yD/ZPic=">AAAB+3icbVDNS8MwHE3n15xfdR69BIfgabQi6HHoxZNMcB+wlZKm6RaWJiVJxVL6r3jxoIhX/xFv/jemWw+6+SDk8d7vR15ekDCqtON8W7W19Y3Nrfp2Y2d3b//APmz2lUglJj0smJDDACnCKCc9TTUjw0QSFAeMDILZTekPHolUVPAHnSXEi9GE04hipI3k281xIFiosthceVb4+V3h2y2n7cwBV4lbkRao0PXtr3EocBoTrjFDSo1cJ9FejqSmmJGiMU4VSRCeoQkZGcpRTJSXz7MX8NQoIYyENIdrOFd/b+QoVmU8MxkjPVXLXin+541SHV15OeVJqgnHi4eilEEtYFkEDKkkWLPMEIQlNVkhniKJsDZ1NUwJ7vKXV0n/vO06bff+otW5ruqog2NwAs6ACy5BB9yCLugBDJ7AM3gFb1ZhvVjv1sditGZVO0fgD6zPH/mZlQg=</latexit><latexit sha1_base64="e8WmB6ONfjwziGThzE15yD/ZPic=">AAAB+3icbVDNS8MwHE3n15xfdR69BIfgabQi6HHoxZNMcB+wlZKm6RaWJiVJxVL6r3jxoIhX/xFv/jemWw+6+SDk8d7vR15ekDCqtON8W7W19Y3Nrfp2Y2d3b//APmz2lUglJj0smJDDACnCKCc9TTUjw0QSFAeMDILZTekPHolUVPAHnSXEi9GE04hipI3k281xIFiosthceVb4+V3h2y2n7cwBV4lbkRao0PXtr3EocBoTrjFDSo1cJ9FejqSmmJGiMU4VSRCeoQkZGcpRTJSXz7MX8NQoIYyENIdrOFd/b+QoVmU8MxkjPVXLXin+541SHV15OeVJqgnHi4eilEEtYFkEDKkkWLPMEIQlNVkhniKJsDZ1NUwJ7vKXV0n/vO06bff+otW5ruqog2NwAs6ACy5BB9yCLugBDJ7AM3gFb1ZhvVjv1sditGZVO0fgD6zPH/mZlQg=</latexit><latexit sha1_base64="e8WmB6ONfjwziGThzE15yD/ZPic=">AAAB+3icbVDNS8MwHE3n15xfdR69BIfgabQi6HHoxZNMcB+wlZKm6RaWJiVJxVL6r3jxoIhX/xFv/jemWw+6+SDk8d7vR15ekDCqtON8W7W19Y3Nrfp2Y2d3b//APmz2lUglJj0smJDDACnCKCc9TTUjw0QSFAeMDILZTekPHolUVPAHnSXEi9GE04hipI3k281xIFiosthceVb4+V3h2y2n7cwBV4lbkRao0PXtr3EocBoTrjFDSo1cJ9FejqSmmJGiMU4VSRCeoQkZGcpRTJSXz7MX8NQoIYyENIdrOFd/b+QoVmU8MxkjPVXLXin+541SHV15OeVJqgnHi4eilEEtYFkEDKkkWLPMEIQlNVkhniKJsDZ1NUwJ7vKXV0n/vO06bff+otW5ruqog2NwAs6ACy5BB9yCLugBDJ7AM3gFb1ZhvVjv1sditGZVO0fgD6zPH/mZlQg=</latexit>
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<latexit sha1_base64="kSoFpoto/NxS8vNWd/QjS9Rr8XE=">AAAB/nicbVDNS8MwHE3n15xfVfHkJTgET6MVQY9DLx4nuDlYS0nTdAvLR0lSYZSB/4oXD4p49e/w5n9juvWgmw9CHu/9fuTlxRmj2njet1NbWV1b36hvNra2d3b33P2Dnpa5wqSLJZOqHyNNGBWka6hhpJ8pgnjMyEM8vin9h0eiNJXi3kwyEnI0FDSlGBkrRe5REEuW6Am3VxFoOuRoGvmR2/Ra3gxwmfgVaYIKncj9ChKJc06EwQxpPfC9zIQFUoZiRqaNINckQ3iMhmRgqUCc6LCYxZ/CU6skMJXKHmHgTP29USCuy4R2kiMz0oteKf7nDXKTXoUFFVluiMDzh9KcQSNh2QVMqCLYsIklCCtqs0I8QgphYxtr2BL8xS8vk955y/da/t1Fs31d1VEHx+AEnAEfXII2uAUd0AUYFOAZvII358l5cd6dj/lozal2DsEfOJ8/0k6WBQ==</latexit><latexit sha1_base64="kSoFpoto/NxS8vNWd/QjS9Rr8XE=">AAAB/nicbVDNS8MwHE3n15xfVfHkJTgET6MVQY9DLx4nuDlYS0nTdAvLR0lSYZSB/4oXD4p49e/w5n9juvWgmw9CHu/9fuTlxRmj2njet1NbWV1b36hvNra2d3b33P2Dnpa5wqSLJZOqHyNNGBWka6hhpJ8pgnjMyEM8vin9h0eiNJXi3kwyEnI0FDSlGBkrRe5REEuW6Am3VxFoOuRoGvmR2/Ra3gxwmfgVaYIKncj9ChKJc06EwQxpPfC9zIQFUoZiRqaNINckQ3iMhmRgqUCc6LCYxZ/CU6skMJXKHmHgTP29USCuy4R2kiMz0oteKf7nDXKTXoUFFVluiMDzh9KcQSNh2QVMqCLYsIklCCtqs0I8QgphYxtr2BL8xS8vk955y/da/t1Fs31d1VEHx+AEnAEfXII2uAUd0AUYFOAZvII358l5cd6dj/lozal2DsEfOJ8/0k6WBQ==</latexit><latexit sha1_base64="kSoFpoto/NxS8vNWd/QjS9Rr8XE=">AAAB/nicbVDNS8MwHE3n15xfVfHkJTgET6MVQY9DLx4nuDlYS0nTdAvLR0lSYZSB/4oXD4p49e/w5n9juvWgmw9CHu/9fuTlxRmj2njet1NbWV1b36hvNra2d3b33P2Dnpa5wqSLJZOqHyNNGBWka6hhpJ8pgnjMyEM8vin9h0eiNJXi3kwyEnI0FDSlGBkrRe5REEuW6Am3VxFoOuRoGvmR2/Ra3gxwmfgVaYIKncj9ChKJc06EwQxpPfC9zIQFUoZiRqaNINckQ3iMhmRgqUCc6LCYxZ/CU6skMJXKHmHgTP29USCuy4R2kiMz0oteKf7nDXKTXoUFFVluiMDzh9KcQSNh2QVMqCLYsIklCCtqs0I8QgphYxtr2BL8xS8vk955y/da/t1Fs31d1VEHx+AEnAEfXII2uAUd0AUYFOAZvII358l5cd6dj/lozal2DsEfOJ8/0k6WBQ==</latexit><latexit sha1_base64="kSoFpoto/NxS8vNWd/QjS9Rr8XE=">AAAB/nicbVDNS8MwHE3n15xfVfHkJTgET6MVQY9DLx4nuDlYS0nTdAvLR0lSYZSB/4oXD4p49e/w5n9juvWgmw9CHu/9fuTlxRmj2njet1NbWV1b36hvNra2d3b33P2Dnpa5wqSLJZOqHyNNGBWka6hhpJ8pgnjMyEM8vin9h0eiNJXi3kwyEnI0FDSlGBkrRe5REEuW6Am3VxFoOuRoGvmR2/Ra3gxwmfgVaYIKncj9ChKJc06EwQxpPfC9zIQFUoZiRqaNINckQ3iMhmRgqUCc6LCYxZ/CU6skMJXKHmHgTP29USCuy4R2kiMz0oteKf7nDXKTXoUFFVluiMDzh9KcQSNh2QVMqCLYsIklCCtqs0I8QgphYxtr2BL8xS8vk955y/da/t1Fs31d1VEHx+AEnAEfXII2uAUd0AUYFOAZvII358l5cd6dj/lozal2DsEfOJ8/0k6WBQ==</latexit>

�2
<latexit sha1_base64="JH5HzsTDWf/bzqCEuB8Q1phBmhk=">AAACAHicbVC7TsMwFHXKq5RXgIGBxaJCYqqSCgnGChbGItGH1ESR4zitVduJbAepirLwKywMIMTKZ7DxNzhtBmg5kuWjc+7VvfeEKaNKO863VVtb39jcqm83dnb39g/sw6O+SjKJSQ8nLJHDECnCqCA9TTUjw1QSxENGBuH0tvQHj0QqmogHPUuJz9FY0JhipI0U2CdemLBIzbj5ck/RMUdFkLeLwG46LWcOuErcijRBhW5gf3lRgjNOhMYMKTVynVT7OZKaYkaKhpcpkiI8RWMyMlQgTpSfzw8o4LlRIhgn0jyh4Vz93ZEjrsodTSVHeqKWvVL8zxtlOr72cyrSTBOBF4PijEGdwDINGFFJsGYzQxCW1OwK8QRJhLXJrGFCcJdPXiX9dst1Wu79ZbNzU8VRB6fgDFwAF1yBDrgDXdADGBTgGbyCN+vJerHerY9Fac2qeo7BH1ifP6f+lxI=</latexit><latexit sha1_base64="JH5HzsTDWf/bzqCEuB8Q1phBmhk=">AAACAHicbVC7TsMwFHXKq5RXgIGBxaJCYqqSCgnGChbGItGH1ESR4zitVduJbAepirLwKywMIMTKZ7DxNzhtBmg5kuWjc+7VvfeEKaNKO863VVtb39jcqm83dnb39g/sw6O+SjKJSQ8nLJHDECnCqCA9TTUjw1QSxENGBuH0tvQHj0QqmogHPUuJz9FY0JhipI0U2CdemLBIzbj5ck/RMUdFkLeLwG46LWcOuErcijRBhW5gf3lRgjNOhMYMKTVynVT7OZKaYkaKhpcpkiI8RWMyMlQgTpSfzw8o4LlRIhgn0jyh4Vz93ZEjrsodTSVHeqKWvVL8zxtlOr72cyrSTBOBF4PijEGdwDINGFFJsGYzQxCW1OwK8QRJhLXJrGFCcJdPXiX9dst1Wu79ZbNzU8VRB6fgDFwAF1yBDrgDXdADGBTgGbyCN+vJerHerY9Fac2qeo7BH1ifP6f+lxI=</latexit><latexit sha1_base64="JH5HzsTDWf/bzqCEuB8Q1phBmhk=">AAACAHicbVC7TsMwFHXKq5RXgIGBxaJCYqqSCgnGChbGItGH1ESR4zitVduJbAepirLwKywMIMTKZ7DxNzhtBmg5kuWjc+7VvfeEKaNKO863VVtb39jcqm83dnb39g/sw6O+SjKJSQ8nLJHDECnCqCA9TTUjw1QSxENGBuH0tvQHj0QqmogHPUuJz9FY0JhipI0U2CdemLBIzbj5ck/RMUdFkLeLwG46LWcOuErcijRBhW5gf3lRgjNOhMYMKTVynVT7OZKaYkaKhpcpkiI8RWMyMlQgTpSfzw8o4LlRIhgn0jyh4Vz93ZEjrsodTSVHeqKWvVL8zxtlOr72cyrSTBOBF4PijEGdwDINGFFJsGYzQxCW1OwK8QRJhLXJrGFCcJdPXiX9dst1Wu79ZbNzU8VRB6fgDFwAF1yBDrgDXdADGBTgGbyCN+vJerHerY9Fac2qeo7BH1ifP6f+lxI=</latexit><latexit sha1_base64="JH5HzsTDWf/bzqCEuB8Q1phBmhk=">AAACAHicbVC7TsMwFHXKq5RXgIGBxaJCYqqSCgnGChbGItGH1ESR4zitVduJbAepirLwKywMIMTKZ7DxNzhtBmg5kuWjc+7VvfeEKaNKO863VVtb39jcqm83dnb39g/sw6O+SjKJSQ8nLJHDECnCqCA9TTUjw1QSxENGBuH0tvQHj0QqmogHPUuJz9FY0JhipI0U2CdemLBIzbj5ck/RMUdFkLeLwG46LWcOuErcijRBhW5gf3lRgjNOhMYMKTVynVT7OZKaYkaKhpcpkiI8RWMyMlQgTpSfzw8o4LlRIhgn0jyh4Vz93ZEjrsodTSVHeqKWvVL8zxtlOr72cyrSTBOBF4PijEGdwDINGFFJsGYzQxCW1OwK8QRJhLXJrGFCcJdPXiX9dst1Wu79ZbNzU8VRB6fgDFwAF1yBDrgDXdADGBTgGbyCN+vJerHerY9Fac2qeo7BH1ifP6f+lxI=</latexit>

�N
<latexit sha1_base64="jxrQ6jUJ5+sBSXgPitXK8p0J25c=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokIuiy6MaVVLAPaEKYTCbt0JlMmJkIJWTjr7hxoYhbP8Odf+OkzUJbDwxzOOde7r0nTBlV2nG+rdrK6tr6Rn2zsbW9s7tn7x/0lMgkJl0smJCDECnCaEK6mmpGBqkkiIeM9MPJTen3H4lUVCQPepoSn6NRQmOKkTZSYB95oWCRmnLz5Z6iI46KIL8rArvptJwZ4DJxK9IEFTqB/eVFAmecJBozpNTQdVLt50hqihkpGl6mSIrwBI3I0NAEcaL8fHZAAU+NEsFYSPMSDWfq744ccVXuaCo50mO16JXif94w0/GVn9MkzTRJ8HxQnDGoBSzTgBGVBGs2NQRhSc2uEI+RRFibzBomBHfx5GXSO2+5Tsu9v2i2r6s46uAYnIAz4IJL0Aa3oAO6AIMCPINX8GY9WS/Wu/UxL61ZVc8h+APr8wfSipcu</latexit><latexit sha1_base64="jxrQ6jUJ5+sBSXgPitXK8p0J25c=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokIuiy6MaVVLAPaEKYTCbt0JlMmJkIJWTjr7hxoYhbP8Odf+OkzUJbDwxzOOde7r0nTBlV2nG+rdrK6tr6Rn2zsbW9s7tn7x/0lMgkJl0smJCDECnCaEK6mmpGBqkkiIeM9MPJTen3H4lUVCQPepoSn6NRQmOKkTZSYB95oWCRmnLz5Z6iI46KIL8rArvptJwZ4DJxK9IEFTqB/eVFAmecJBozpNTQdVLt50hqihkpGl6mSIrwBI3I0NAEcaL8fHZAAU+NEsFYSPMSDWfq744ccVXuaCo50mO16JXif94w0/GVn9MkzTRJ8HxQnDGoBSzTgBGVBGs2NQRhSc2uEI+RRFibzBomBHfx5GXSO2+5Tsu9v2i2r6s46uAYnIAz4IJL0Aa3oAO6AIMCPINX8GY9WS/Wu/UxL61ZVc8h+APr8wfSipcu</latexit><latexit sha1_base64="jxrQ6jUJ5+sBSXgPitXK8p0J25c=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokIuiy6MaVVLAPaEKYTCbt0JlMmJkIJWTjr7hxoYhbP8Odf+OkzUJbDwxzOOde7r0nTBlV2nG+rdrK6tr6Rn2zsbW9s7tn7x/0lMgkJl0smJCDECnCaEK6mmpGBqkkiIeM9MPJTen3H4lUVCQPepoSn6NRQmOKkTZSYB95oWCRmnLz5Z6iI46KIL8rArvptJwZ4DJxK9IEFTqB/eVFAmecJBozpNTQdVLt50hqihkpGl6mSIrwBI3I0NAEcaL8fHZAAU+NEsFYSPMSDWfq744ccVXuaCo50mO16JXif94w0/GVn9MkzTRJ8HxQnDGoBSzTgBGVBGs2NQRhSc2uEI+RRFibzBomBHfx5GXSO2+5Tsu9v2i2r6s46uAYnIAz4IJL0Aa3oAO6AIMCPINX8GY9WS/Wu/UxL61ZVc8h+APr8wfSipcu</latexit><latexit sha1_base64="jxrQ6jUJ5+sBSXgPitXK8p0J25c=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokIuiy6MaVVLAPaEKYTCbt0JlMmJkIJWTjr7hxoYhbP8Odf+OkzUJbDwxzOOde7r0nTBlV2nG+rdrK6tr6Rn2zsbW9s7tn7x/0lMgkJl0smJCDECnCaEK6mmpGBqkkiIeM9MPJTen3H4lUVCQPepoSn6NRQmOKkTZSYB95oWCRmnLz5Z6iI46KIL8rArvptJwZ4DJxK9IEFTqB/eVFAmecJBozpNTQdVLt50hqihkpGl6mSIrwBI3I0NAEcaL8fHZAAU+NEsFYSPMSDWfq744ccVXuaCo50mO16JXif94w0/GVn9MkzTRJ8HxQnDGoBSzTgBGVBGs2NQRhSc2uEI+RRFibzBomBHfx5GXSO2+5Tsu9v2i2r6s46uAYnIAz4IJL0Aa3oAO6AIMCPINX8GY9WS/Wu/UxL61ZVc8h+APr8wfSipcu</latexit>

…

…

�
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Figure 4.1: (a) Left-hand side: An RNN cell (green box) takes a sequence of inputs {σn},
where at each step n the input σn−1 and the vector hn−1 are fed in the RNN cell which
generates a vector hn called the hidden state of the RNN. hn is meant to encode the history
of the previous inputs σn′<n. Moreover, the hidden state hn is fed to a fully connected
layer with Softmax activation S (magenta circles) to compute conditional probabilities.
Right-hand side: The unrolled version of the RNN layer on the left-hand side. (b) A deep
RNN model with Nl stacked single RNN cells (green blocks) followed by a fully connected
layer with activation function A (magenta circle). Each single RNN cell at the ℓ-th layer
has its corresponding hidden state hℓ

n, which serves also as an input for the RNN cell at
the (ℓ+ 1)-th layer. (c) A graphical representation of autoregressive sampling of RNNs.
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4.5 Positive and Complex RNNs

The previous section focused exclusively on the efficient parametrization of classical
probability distributions P (σ). In contrast, quantum mechanical wave functions are in
general a set of complex-valued amplitudes Ψ(σ), rather than conventional probabilities.
Before discussing how to modify the RNN ansatz to represent complex wave functions, we
note that an important class of stoquastic many-body Hamiltonians has ground states |Ψ⟩
with real and positive amplitudes in the standard product spin basis [126]. Thus, these
ground states have representations in terms of probability distributions,

|Ψ⟩ =
∑

σ

Ψ(σ) |σ⟩ =
∑

σ

√
P (σ) |σ⟩ . (4.7)

This property has been exploited extensively in wave function representations using gen-
erative models such as RBMs [123]. For such wave functions, it is also natural to try to
approximate P (σ) with a conventional RNN, as illustrated in Fig. 4.2(a). For later ref-
erence, we call this architecture a positive recurrent neural network wave function (pRNN
wave function).

The generalization to the complex case starts by splitting the wave function into am-
plitude and phase ϕ(σ) [32] as

|Ψ⟩ =
∑

σ

√
P (σ) exp(iϕ(σ)) |σ⟩ . (4.8)

As illustrated in Fig. 4.2(b), we use one RNN cell and a Softmax layer to model the
probability, together with a Softsign layer (as defined below) to model the phase. In this
parametrization, the first layer uses the Softmax activation function to get conditional
probabilities Pn as

Pn = y(1)
n · σn, (4.9)

where
y(1)
n = S

(
U (1)hn + c(1)

)
, (4.10)

in a similar fashion to Eq. (4.4). The Softsign layer is used to compute the phases as

ϕn = y(2)
n · σn, (4.11)

where
y(2)
n = π Softsign

(
U (2)hn + c(2)

)
. (4.12)
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The Softsign function is defined as

Softsign(x) =
x

1 + |x| ∈ (−1, 1),

so that the conditional phases ϕn are between −π and π. Finally, the probability P (σ) is
obtained from the N individual contributions Pn as

P (σ) ≡ ΠN
n=1Pn, (4.13)

and, similarly, the phase ϕ(σ) is computed as

ϕ(σ) ≡
N∑

n=1

ϕn. (4.14)

Note that sampling from the square of the amplitudes P (σ) is unaffected by the Softsign
layer and is carried out, as described above, using only the Softmax layer as in Fig. 4.1(c).
This observation motivates the use of complex numbers with a module-phase decompo-
sition. In fact, with our construction, the change of the phase does not a-prior affect
the probabilities, whereas, for a real-valued ansatz, one has to cross zero to change the
amplitudes signs. The latter can introduce numerical instabilities (see denominator in
Eq. (3.8)) and make the sampling of important configurations highly improbable during
the training [127].

For later reference, we call this architecture a complex recurrent neural network wave
function (cRNN wave function), and hereafter, the term RNN wave function will refer to
both pRNN wave functions and cRNN wave functions.

4.6 Vanishing/Exploding Gradient Problem

In practice, training vanilla RNNs can be challenging, since capturing long-distance
correlations between the variables σn tends to make the gradients either explode or van-
ish [60, 128–130]. Similar to MPS [131], long-distance correlations in RNNs are suppressed
exponentially [132]. To better understand this issue, let us a simple toy model of a vanilla
RNN with no activation function and with a hidden dimension dh = 1. Here the RNN
recursion relation can be written as:

hn = αhn−1 + βσn−1 + γ.
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RNN
<latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit><latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit><latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit><latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit>

S
<latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit><latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit><latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit><latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit>

�0
<latexit sha1_base64="Jenv/hyCjrsyvMxKVve+rWvvKUE=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARPJVdEfRY9OKxgn1Ad1my2bQNzWNJskJZe/CvePGgiFf/hjf/jdl2D9o6EDLMfB+ZTJwyqo3nfTuVldW19Y3qZm1re2d3z90/6GiZKUzaWDKpejHShFFB2oYaRnqpIojHjHTj8U3hdx+I0lSKezNJScjRUNABxchYKXKPgliyRE+4vfJA0yFH08irRW7da3gzwGXil6QOSrQi9ytIJM44EQYzpHXf91IT5kgZihmZ1oJMkxThMRqSvqUCcaLDfJZ/Ck+tksCBVPYIA2fq740ccV1EtJMcmZFe9ArxP6+fmcFVmFORZoYIPH9okDFoJCzKgAlVBBs2sQRhRW1WiEdIIWxsZUUJ/uKXl0nnvOF7Df/uot68LuuogmNwAs6ADy5BE9yCFmgDDB7BM3gFb86T8+K8Ox/z0YpT7hyCP3A+fwANs5YY</latexit><latexit sha1_base64="Jenv/hyCjrsyvMxKVve+rWvvKUE=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARPJVdEfRY9OKxgn1Ad1my2bQNzWNJskJZe/CvePGgiFf/hjf/jdl2D9o6EDLMfB+ZTJwyqo3nfTuVldW19Y3qZm1re2d3z90/6GiZKUzaWDKpejHShFFB2oYaRnqpIojHjHTj8U3hdx+I0lSKezNJScjRUNABxchYKXKPgliyRE+4vfJA0yFH08irRW7da3gzwGXil6QOSrQi9ytIJM44EQYzpHXf91IT5kgZihmZ1oJMkxThMRqSvqUCcaLDfJZ/Ck+tksCBVPYIA2fq740ccV1EtJMcmZFe9ArxP6+fmcFVmFORZoYIPH9okDFoJCzKgAlVBBs2sQRhRW1WiEdIIWxsZUUJ/uKXl0nnvOF7Df/uot68LuuogmNwAs6ADy5BE9yCFmgDDB7BM3gFb86T8+K8Ox/z0YpT7hyCP3A+fwANs5YY</latexit><latexit sha1_base64="Jenv/hyCjrsyvMxKVve+rWvvKUE=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARPJVdEfRY9OKxgn1Ad1my2bQNzWNJskJZe/CvePGgiFf/hjf/jdl2D9o6EDLMfB+ZTJwyqo3nfTuVldW19Y3qZm1re2d3z90/6GiZKUzaWDKpejHShFFB2oYaRnqpIojHjHTj8U3hdx+I0lSKezNJScjRUNABxchYKXKPgliyRE+4vfJA0yFH08irRW7da3gzwGXil6QOSrQi9ytIJM44EQYzpHXf91IT5kgZihmZ1oJMkxThMRqSvqUCcaLDfJZ/Ck+tksCBVPYIA2fq740ccV1EtJMcmZFe9ArxP6+fmcFVmFORZoYIPH9okDFoJCzKgAlVBBs2sQRhRW1WiEdIIWxsZUUJ/uKXl0nnvOF7Df/uot68LuuogmNwAs6ADy5BE9yCFmgDDB7BM3gFb86T8+K8Ox/z0YpT7hyCP3A+fwANs5YY</latexit><latexit sha1_base64="Jenv/hyCjrsyvMxKVve+rWvvKUE=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARPJVdEfRY9OKxgn1Ad1my2bQNzWNJskJZe/CvePGgiFf/hjf/jdl2D9o6EDLMfB+ZTJwyqo3nfTuVldW19Y3qZm1re2d3z90/6GiZKUzaWDKpejHShFFB2oYaRnqpIojHjHTj8U3hdx+I0lSKezNJScjRUNABxchYKXKPgliyRE+4vfJA0yFH08irRW7da3gzwGXil6QOSrQi9ytIJM44EQYzpHXf91IT5kgZihmZ1oJMkxThMRqSvqUCcaLDfJZ/Ck+tksCBVPYIA2fq740ccV1EtJMcmZFe9ArxP6+fmcFVmFORZoYIPH9okDFoJCzKgAlVBBs2sQRhRW1WiEdIIWxsZUUJ/uKXl0nnvOF7Df/uot68LuuogmNwAs6ADy5BE9yCFmgDDB7BM3gFb86T8+K8Ox/z0YpT7hyCP3A+fwANs5YY</latexit>

RNN
<latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit><latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit><latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit><latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit>

S
<latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit><latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit><latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit><latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit>

�1
<latexit sha1_base64="kSoFpoto/NxS8vNWd/QjS9Rr8XE=">AAAB/nicbVDNS8MwHE3n15xfVfHkJTgET6MVQY9DLx4nuDlYS0nTdAvLR0lSYZSB/4oXD4p49e/w5n9juvWgmw9CHu/9fuTlxRmj2njet1NbWV1b36hvNra2d3b33P2Dnpa5wqSLJZOqHyNNGBWka6hhpJ8pgnjMyEM8vin9h0eiNJXi3kwyEnI0FDSlGBkrRe5REEuW6Am3VxFoOuRoGvmR2/Ra3gxwmfgVaYIKncj9ChKJc06EwQxpPfC9zIQFUoZiRqaNINckQ3iMhmRgqUCc6LCYxZ/CU6skMJXKHmHgTP29USCuy4R2kiMz0oteKf7nDXKTXoUFFVluiMDzh9KcQSNh2QVMqCLYsIklCCtqs0I8QgphYxtr2BL8xS8vk955y/da/t1Fs31d1VEHx+AEnAEfXII2uAUd0AUYFOAZvII358l5cd6dj/lozal2DsEfOJ8/0k6WBQ==</latexit><latexit sha1_base64="kSoFpoto/NxS8vNWd/QjS9Rr8XE=">AAAB/nicbVDNS8MwHE3n15xfVfHkJTgET6MVQY9DLx4nuDlYS0nTdAvLR0lSYZSB/4oXD4p49e/w5n9juvWgmw9CHu/9fuTlxRmj2njet1NbWV1b36hvNra2d3b33P2Dnpa5wqSLJZOqHyNNGBWka6hhpJ8pgnjMyEM8vin9h0eiNJXi3kwyEnI0FDSlGBkrRe5REEuW6Am3VxFoOuRoGvmR2/Ra3gxwmfgVaYIKncj9ChKJc06EwQxpPfC9zIQFUoZiRqaNINckQ3iMhmRgqUCc6LCYxZ/CU6skMJXKHmHgTP29USCuy4R2kiMz0oteKf7nDXKTXoUFFVluiMDzh9KcQSNh2QVMqCLYsIklCCtqs0I8QgphYxtr2BL8xS8vk955y/da/t1Fs31d1VEHx+AEnAEfXII2uAUd0AUYFOAZvII358l5cd6dj/lozal2DsEfOJ8/0k6WBQ==</latexit><latexit sha1_base64="kSoFpoto/NxS8vNWd/QjS9Rr8XE=">AAAB/nicbVDNS8MwHE3n15xfVfHkJTgET6MVQY9DLx4nuDlYS0nTdAvLR0lSYZSB/4oXD4p49e/w5n9juvWgmw9CHu/9fuTlxRmj2njet1NbWV1b36hvNra2d3b33P2Dnpa5wqSLJZOqHyNNGBWka6hhpJ8pgnjMyEM8vin9h0eiNJXi3kwyEnI0FDSlGBkrRe5REEuW6Am3VxFoOuRoGvmR2/Ra3gxwmfgVaYIKncj9ChKJc06EwQxpPfC9zIQFUoZiRqaNINckQ3iMhmRgqUCc6LCYxZ/CU6skMJXKHmHgTP29USCuy4R2kiMz0oteKf7nDXKTXoUFFVluiMDzh9KcQSNh2QVMqCLYsIklCCtqs0I8QgphYxtr2BL8xS8vk955y/da/t1Fs31d1VEHx+AEnAEfXII2uAUd0AUYFOAZvII358l5cd6dj/lozal2DsEfOJ8/0k6WBQ==</latexit><latexit sha1_base64="kSoFpoto/NxS8vNWd/QjS9Rr8XE=">AAAB/nicbVDNS8MwHE3n15xfVfHkJTgET6MVQY9DLx4nuDlYS0nTdAvLR0lSYZSB/4oXD4p49e/w5n9juvWgmw9CHu/9fuTlxRmj2njet1NbWV1b36hvNra2d3b33P2Dnpa5wqSLJZOqHyNNGBWka6hhpJ8pgnjMyEM8vin9h0eiNJXi3kwyEnI0FDSlGBkrRe5REEuW6Am3VxFoOuRoGvmR2/Ra3gxwmfgVaYIKncj9ChKJc06EwQxpPfC9zIQFUoZiRqaNINckQ3iMhmRgqUCc6LCYxZ/CU6skMJXKHmHgTP29USCuy4R2kiMz0oteKf7nDXKTXoUFFVluiMDzh9KcQSNh2QVMqCLYsIklCCtqs0I8QgphYxtr2BL8xS8vk955y/da/t1Fs31d1VEHx+AEnAEfXII2uAUd0AUYFOAZvII358l5cd6dj/lozal2DsEfOJ8/0k6WBQ==</latexit>

RNN
<latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit><latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit><latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit><latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit>

S
<latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit><latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit><latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit><latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit>

�2
<latexit sha1_base64="JH5HzsTDWf/bzqCEuB8Q1phBmhk=">AAACAHicbVC7TsMwFHXKq5RXgIGBxaJCYqqSCgnGChbGItGH1ESR4zitVduJbAepirLwKywMIMTKZ7DxNzhtBmg5kuWjc+7VvfeEKaNKO863VVtb39jcqm83dnb39g/sw6O+SjKJSQ8nLJHDECnCqCA9TTUjw1QSxENGBuH0tvQHj0QqmogHPUuJz9FY0JhipI0U2CdemLBIzbj5ck/RMUdFkLeLwG46LWcOuErcijRBhW5gf3lRgjNOhMYMKTVynVT7OZKaYkaKhpcpkiI8RWMyMlQgTpSfzw8o4LlRIhgn0jyh4Vz93ZEjrsodTSVHeqKWvVL8zxtlOr72cyrSTBOBF4PijEGdwDINGFFJsGYzQxCW1OwK8QRJhLXJrGFCcJdPXiX9dst1Wu79ZbNzU8VRB6fgDFwAF1yBDrgDXdADGBTgGbyCN+vJerHerY9Fac2qeo7BH1ifP6f+lxI=</latexit><latexit sha1_base64="JH5HzsTDWf/bzqCEuB8Q1phBmhk=">AAACAHicbVC7TsMwFHXKq5RXgIGBxaJCYqqSCgnGChbGItGH1ESR4zitVduJbAepirLwKywMIMTKZ7DxNzhtBmg5kuWjc+7VvfeEKaNKO863VVtb39jcqm83dnb39g/sw6O+SjKJSQ8nLJHDECnCqCA9TTUjw1QSxENGBuH0tvQHj0QqmogHPUuJz9FY0JhipI0U2CdemLBIzbj5ck/RMUdFkLeLwG46LWcOuErcijRBhW5gf3lRgjNOhMYMKTVynVT7OZKaYkaKhpcpkiI8RWMyMlQgTpSfzw8o4LlRIhgn0jyh4Vz93ZEjrsodTSVHeqKWvVL8zxtlOr72cyrSTBOBF4PijEGdwDINGFFJsGYzQxCW1OwK8QRJhLXJrGFCcJdPXiX9dst1Wu79ZbNzU8VRB6fgDFwAF1yBDrgDXdADGBTgGbyCN+vJerHerY9Fac2qeo7BH1ifP6f+lxI=</latexit><latexit sha1_base64="JH5HzsTDWf/bzqCEuB8Q1phBmhk=">AAACAHicbVC7TsMwFHXKq5RXgIGBxaJCYqqSCgnGChbGItGH1ESR4zitVduJbAepirLwKywMIMTKZ7DxNzhtBmg5kuWjc+7VvfeEKaNKO863VVtb39jcqm83dnb39g/sw6O+SjKJSQ8nLJHDECnCqCA9TTUjw1QSxENGBuH0tvQHj0QqmogHPUuJz9FY0JhipI0U2CdemLBIzbj5ck/RMUdFkLeLwG46LWcOuErcijRBhW5gf3lRgjNOhMYMKTVynVT7OZKaYkaKhpcpkiI8RWMyMlQgTpSfzw8o4LlRIhgn0jyh4Vz93ZEjrsodTSVHeqKWvVL8zxtlOr72cyrSTBOBF4PijEGdwDINGFFJsGYzQxCW1OwK8QRJhLXJrGFCcJdPXiX9dst1Wu79ZbNzU8VRB6fgDFwAF1yBDrgDXdADGBTgGbyCN+vJerHerY9Fac2qeo7BH1ifP6f+lxI=</latexit><latexit sha1_base64="JH5HzsTDWf/bzqCEuB8Q1phBmhk=">AAACAHicbVC7TsMwFHXKq5RXgIGBxaJCYqqSCgnGChbGItGH1ESR4zitVduJbAepirLwKywMIMTKZ7DxNzhtBmg5kuWjc+7VvfeEKaNKO863VVtb39jcqm83dnb39g/sw6O+SjKJSQ8nLJHDECnCqCA9TTUjw1QSxENGBuH0tvQHj0QqmogHPUuJz9FY0JhipI0U2CdemLBIzbj5ck/RMUdFkLeLwG46LWcOuErcijRBhW5gf3lRgjNOhMYMKTVynVT7OZKaYkaKhpcpkiI8RWMyMlQgTpSfzw8o4LlRIhgn0jyh4Vz93ZEjrsodTSVHeqKWvVL8zxtlOr72cyrSTBOBF4PijEGdwDINGFFJsGYzQxCW1OwK8QRJhLXJrGFCcJdPXiX9dst1Wu79ZbNzU8VRB6fgDFwAF1yBDrgDXdADGBTgGbyCN+vJerHerY9Fac2qeo7BH1ifP6f+lxI=</latexit>

P1
<latexit sha1_base64="H7gUl/4E21BHHUR2PFWjbIzT39s=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpodH3+27Vq3lzkFXiF6QKBRp996s3SFgWc4VMUmO6vpdikFONgkk+rfQyw1PKxnTIu5YqGnMT5PNTp+TMKgMSJdqWQjJXf0/kNDZmEoe2M6Y4MsveTPzP62YYXQe5UGmGXLHFoiiTBBMy+5sMhOYM5cQSyrSwtxI2opoytOlUbAj+8surpHVR872af39Zrd8UcZThBE7hHHy4gjrcQQOawGAIz/AKb450Xpx352PRWnKKmWP4A+fzB86xjXg=</latexit><latexit sha1_base64="H7gUl/4E21BHHUR2PFWjbIzT39s=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpodH3+27Vq3lzkFXiF6QKBRp996s3SFgWc4VMUmO6vpdikFONgkk+rfQyw1PKxnTIu5YqGnMT5PNTp+TMKgMSJdqWQjJXf0/kNDZmEoe2M6Y4MsveTPzP62YYXQe5UGmGXLHFoiiTBBMy+5sMhOYM5cQSyrSwtxI2opoytOlUbAj+8surpHVR872af39Zrd8UcZThBE7hHHy4gjrcQQOawGAIz/AKb450Xpx352PRWnKKmWP4A+fzB86xjXg=</latexit><latexit sha1_base64="H7gUl/4E21BHHUR2PFWjbIzT39s=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpodH3+27Vq3lzkFXiF6QKBRp996s3SFgWc4VMUmO6vpdikFONgkk+rfQyw1PKxnTIu5YqGnMT5PNTp+TMKgMSJdqWQjJXf0/kNDZmEoe2M6Y4MsveTPzP62YYXQe5UGmGXLHFoiiTBBMy+5sMhOYM5cQSyrSwtxI2opoytOlUbAj+8surpHVR872af39Zrd8UcZThBE7hHHy4gjrcQQOawGAIz/AKb450Xpx352PRWnKKmWP4A+fzB86xjXg=</latexit><latexit sha1_base64="H7gUl/4E21BHHUR2PFWjbIzT39s=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpodH3+27Vq3lzkFXiF6QKBRp996s3SFgWc4VMUmO6vpdikFONgkk+rfQyw1PKxnTIu5YqGnMT5PNTp+TMKgMSJdqWQjJXf0/kNDZmEoe2M6Y4MsveTPzP62YYXQe5UGmGXLHFoiiTBBMy+5sMhOYM5cQSyrSwtxI2opoytOlUbAj+8surpHVR872af39Zrd8UcZThBE7hHHy4gjrcQQOawGAIz/AKb450Xpx352PRWnKKmWP4A+fzB86xjXg=</latexit>

P2
<latexit sha1_base64="lSzqROD0s+VosWM1kBImgIJk6yo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD81BbVCuuFV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophtd+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOmnXqp5b9e6vKo2bPI4inME5XIIHdWjAHTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwDQNY15</latexit><latexit sha1_base64="lSzqROD0s+VosWM1kBImgIJk6yo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD81BbVCuuFV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophtd+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOmnXqp5b9e6vKo2bPI4inME5XIIHdWjAHTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwDQNY15</latexit><latexit sha1_base64="lSzqROD0s+VosWM1kBImgIJk6yo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD81BbVCuuFV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophtd+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOmnXqp5b9e6vKo2bPI4inME5XIIHdWjAHTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwDQNY15</latexit><latexit sha1_base64="lSzqROD0s+VosWM1kBImgIJk6yo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD81BbVCuuFV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophtd+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOmnXqp5b9e6vKo2bPI4inME5XIIHdWjAHTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwDQNY15</latexit>

P3
<latexit sha1_base64="l74AQsz3bi+O3h7+xb0forB7Jrk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Ohf9ssVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14bWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmldVD236t3XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gDRuY16</latexit><latexit sha1_base64="l74AQsz3bi+O3h7+xb0forB7Jrk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Ohf9ssVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14bWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmldVD236t3XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gDRuY16</latexit><latexit sha1_base64="l74AQsz3bi+O3h7+xb0forB7Jrk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Ohf9ssVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14bWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmldVD236t3XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gDRuY16</latexit><latexit sha1_base64="l74AQsz3bi+O3h7+xb0forB7Jrk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Ohf9ssVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14bWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmldVD236t3XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gDRuY16</latexit>

 (�)
<latexit sha1_base64="r8on/rknK+UF/u76yie5LhVv0y8=">AAACD3icbVDLSsNAFJ3UV62vqEs3g0Wpm5KIoMuiG5cV7AOaUCaTSTp08mDmRiihf+DGX3HjQhG3bt35N07aLLT1wDCHc+7l3nu8VHAFlvVtVFZW19Y3qpu1re2d3T1z/6CrkkxS1qGJSGTfI4oJHrMOcBCsn0pGIk+wnje+KfzeA5OKJ/E9TFLmRiSMecApAS0NzVMnVdwRLIAGdrxE+GoS6S93FA8jMsWO5OEIzoZm3WpaM+BlYpekjkq0h+aX4yc0i1gMVBClBraVgpsTCZwKNq05mWIpoWMSsoGmMYmYcvPZPVN8ohUfB4nULwY8U3935CRSxZ66MiIwUoteIf7nDTIIrtycx2kGLKbzQUEmMCS4CAf7XDIKYqIJoZLrXTEdEUko6AhrOgR78eRl0j1v2lbTvruot67LOKroCB2jBrLRJWqhW9RGHUTRI3pGr+jNeDJejHfjY15aMcqeQ/QHxucPXZqc2Q==</latexit><latexit sha1_base64="r8on/rknK+UF/u76yie5LhVv0y8=">AAACD3icbVDLSsNAFJ3UV62vqEs3g0Wpm5KIoMuiG5cV7AOaUCaTSTp08mDmRiihf+DGX3HjQhG3bt35N07aLLT1wDCHc+7l3nu8VHAFlvVtVFZW19Y3qpu1re2d3T1z/6CrkkxS1qGJSGTfI4oJHrMOcBCsn0pGIk+wnje+KfzeA5OKJ/E9TFLmRiSMecApAS0NzVMnVdwRLIAGdrxE+GoS6S93FA8jMsWO5OEIzoZm3WpaM+BlYpekjkq0h+aX4yc0i1gMVBClBraVgpsTCZwKNq05mWIpoWMSsoGmMYmYcvPZPVN8ohUfB4nULwY8U3935CRSxZ66MiIwUoteIf7nDTIIrtycx2kGLKbzQUEmMCS4CAf7XDIKYqIJoZLrXTEdEUko6AhrOgR78eRl0j1v2lbTvruot67LOKroCB2jBrLRJWqhW9RGHUTRI3pGr+jNeDJejHfjY15aMcqeQ/QHxucPXZqc2Q==</latexit><latexit sha1_base64="r8on/rknK+UF/u76yie5LhVv0y8=">AAACD3icbVDLSsNAFJ3UV62vqEs3g0Wpm5KIoMuiG5cV7AOaUCaTSTp08mDmRiihf+DGX3HjQhG3bt35N07aLLT1wDCHc+7l3nu8VHAFlvVtVFZW19Y3qpu1re2d3T1z/6CrkkxS1qGJSGTfI4oJHrMOcBCsn0pGIk+wnje+KfzeA5OKJ/E9TFLmRiSMecApAS0NzVMnVdwRLIAGdrxE+GoS6S93FA8jMsWO5OEIzoZm3WpaM+BlYpekjkq0h+aX4yc0i1gMVBClBraVgpsTCZwKNq05mWIpoWMSsoGmMYmYcvPZPVN8ohUfB4nULwY8U3935CRSxZ66MiIwUoteIf7nDTIIrtycx2kGLKbzQUEmMCS4CAf7XDIKYqIJoZLrXTEdEUko6AhrOgR78eRl0j1v2lbTvruot67LOKroCB2jBrLRJWqhW9RGHUTRI3pGr+jNeDJejHfjY15aMcqeQ/QHxucPXZqc2Q==</latexit><latexit sha1_base64="r8on/rknK+UF/u76yie5LhVv0y8=">AAACD3icbVDLSsNAFJ3UV62vqEs3g0Wpm5KIoMuiG5cV7AOaUCaTSTp08mDmRiihf+DGX3HjQhG3bt35N07aLLT1wDCHc+7l3nu8VHAFlvVtVFZW19Y3qpu1re2d3T1z/6CrkkxS1qGJSGTfI4oJHrMOcBCsn0pGIk+wnje+KfzeA5OKJ/E9TFLmRiSMecApAS0NzVMnVdwRLIAGdrxE+GoS6S93FA8jMsWO5OEIzoZm3WpaM+BlYpekjkq0h+aX4yc0i1gMVBClBraVgpsTCZwKNq05mWIpoWMSsoGmMYmYcvPZPVN8ohUfB4nULwY8U3935CRSxZ66MiIwUoteIf7nDTIIrtycx2kGLKbzQUEmMCS4CAf7XDIKYqIJoZLrXTEdEUko6AhrOgR78eRl0j1v2lbTvruot67LOKroCB2jBrLRJWqhW9RGHUTRI3pGr+jNeDJejHfjY15aMcqeQ/QHxucPXZqc2Q==</latexit>

RNN
<latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit><latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit><latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit><latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit>

S
<latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit><latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit><latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit><latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit>

�0
<latexit sha1_base64="Jenv/hyCjrsyvMxKVve+rWvvKUE=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARPJVdEfRY9OKxgn1Ad1my2bQNzWNJskJZe/CvePGgiFf/hjf/jdl2D9o6EDLMfB+ZTJwyqo3nfTuVldW19Y3qZm1re2d3z90/6GiZKUzaWDKpejHShFFB2oYaRnqpIojHjHTj8U3hdx+I0lSKezNJScjRUNABxchYKXKPgliyRE+4vfJA0yFH08irRW7da3gzwGXil6QOSrQi9ytIJM44EQYzpHXf91IT5kgZihmZ1oJMkxThMRqSvqUCcaLDfJZ/Ck+tksCBVPYIA2fq740ccV1EtJMcmZFe9ArxP6+fmcFVmFORZoYIPH9okDFoJCzKgAlVBBs2sQRhRW1WiEdIIWxsZUUJ/uKXl0nnvOF7Df/uot68LuuogmNwAs6ADy5BE9yCFmgDDB7BM3gFb86T8+K8Ox/z0YpT7hyCP3A+fwANs5YY</latexit><latexit sha1_base64="Jenv/hyCjrsyvMxKVve+rWvvKUE=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARPJVdEfRY9OKxgn1Ad1my2bQNzWNJskJZe/CvePGgiFf/hjf/jdl2D9o6EDLMfB+ZTJwyqo3nfTuVldW19Y3qZm1re2d3z90/6GiZKUzaWDKpejHShFFB2oYaRnqpIojHjHTj8U3hdx+I0lSKezNJScjRUNABxchYKXKPgliyRE+4vfJA0yFH08irRW7da3gzwGXil6QOSrQi9ytIJM44EQYzpHXf91IT5kgZihmZ1oJMkxThMRqSvqUCcaLDfJZ/Ck+tksCBVPYIA2fq740ccV1EtJMcmZFe9ArxP6+fmcFVmFORZoYIPH9okDFoJCzKgAlVBBs2sQRhRW1WiEdIIWxsZUUJ/uKXl0nnvOF7Df/uot68LuuogmNwAs6ADy5BE9yCFmgDDB7BM3gFb86T8+K8Ox/z0YpT7hyCP3A+fwANs5YY</latexit><latexit sha1_base64="Jenv/hyCjrsyvMxKVve+rWvvKUE=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARPJVdEfRY9OKxgn1Ad1my2bQNzWNJskJZe/CvePGgiFf/hjf/jdl2D9o6EDLMfB+ZTJwyqo3nfTuVldW19Y3qZm1re2d3z90/6GiZKUzaWDKpejHShFFB2oYaRnqpIojHjHTj8U3hdx+I0lSKezNJScjRUNABxchYKXKPgliyRE+4vfJA0yFH08irRW7da3gzwGXil6QOSrQi9ytIJM44EQYzpHXf91IT5kgZihmZ1oJMkxThMRqSvqUCcaLDfJZ/Ck+tksCBVPYIA2fq740ccV1EtJMcmZFe9ArxP6+fmcFVmFORZoYIPH9okDFoJCzKgAlVBBs2sQRhRW1WiEdIIWxsZUUJ/uKXl0nnvOF7Df/uot68LuuogmNwAs6ADy5BE9yCFmgDDB7BM3gFb86T8+K8Ox/z0YpT7hyCP3A+fwANs5YY</latexit><latexit sha1_base64="Jenv/hyCjrsyvMxKVve+rWvvKUE=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARPJVdEfRY9OKxgn1Ad1my2bQNzWNJskJZe/CvePGgiFf/hjf/jdl2D9o6EDLMfB+ZTJwyqo3nfTuVldW19Y3qZm1re2d3z90/6GiZKUzaWDKpejHShFFB2oYaRnqpIojHjHTj8U3hdx+I0lSKezNJScjRUNABxchYKXKPgliyRE+4vfJA0yFH08irRW7da3gzwGXil6QOSrQi9ytIJM44EQYzpHXf91IT5kgZihmZ1oJMkxThMRqSvqUCcaLDfJZ/Ck+tksCBVPYIA2fq740ccV1EtJMcmZFe9ArxP6+fmcFVmFORZoYIPH9okDFoJCzKgAlVBBs2sQRhRW1WiEdIIWxsZUUJ/uKXl0nnvOF7Df/uot68LuuogmNwAs6ADy5BE9yCFmgDDB7BM3gFb86T8+K8Ox/z0YpT7hyCP3A+fwANs5YY</latexit>

RNN
<latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit><latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit><latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit><latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit>

�1
<latexit sha1_base64="kSoFpoto/NxS8vNWd/QjS9Rr8XE=">AAAB/nicbVDNS8MwHE3n15xfVfHkJTgET6MVQY9DLx4nuDlYS0nTdAvLR0lSYZSB/4oXD4p49e/w5n9juvWgmw9CHu/9fuTlxRmj2njet1NbWV1b36hvNra2d3b33P2Dnpa5wqSLJZOqHyNNGBWka6hhpJ8pgnjMyEM8vin9h0eiNJXi3kwyEnI0FDSlGBkrRe5REEuW6Am3VxFoOuRoGvmR2/Ra3gxwmfgVaYIKncj9ChKJc06EwQxpPfC9zIQFUoZiRqaNINckQ3iMhmRgqUCc6LCYxZ/CU6skMJXKHmHgTP29USCuy4R2kiMz0oteKf7nDXKTXoUFFVluiMDzh9KcQSNh2QVMqCLYsIklCCtqs0I8QgphYxtr2BL8xS8vk955y/da/t1Fs31d1VEHx+AEnAEfXII2uAUd0AUYFOAZvII358l5cd6dj/lozal2DsEfOJ8/0k6WBQ==</latexit><latexit sha1_base64="kSoFpoto/NxS8vNWd/QjS9Rr8XE=">AAAB/nicbVDNS8MwHE3n15xfVfHkJTgET6MVQY9DLx4nuDlYS0nTdAvLR0lSYZSB/4oXD4p49e/w5n9juvWgmw9CHu/9fuTlxRmj2njet1NbWV1b36hvNra2d3b33P2Dnpa5wqSLJZOqHyNNGBWka6hhpJ8pgnjMyEM8vin9h0eiNJXi3kwyEnI0FDSlGBkrRe5REEuW6Am3VxFoOuRoGvmR2/Ra3gxwmfgVaYIKncj9ChKJc06EwQxpPfC9zIQFUoZiRqaNINckQ3iMhmRgqUCc6LCYxZ/CU6skMJXKHmHgTP29USCuy4R2kiMz0oteKf7nDXKTXoUFFVluiMDzh9KcQSNh2QVMqCLYsIklCCtqs0I8QgphYxtr2BL8xS8vk955y/da/t1Fs31d1VEHx+AEnAEfXII2uAUd0AUYFOAZvII358l5cd6dj/lozal2DsEfOJ8/0k6WBQ==</latexit><latexit sha1_base64="kSoFpoto/NxS8vNWd/QjS9Rr8XE=">AAAB/nicbVDNS8MwHE3n15xfVfHkJTgET6MVQY9DLx4nuDlYS0nTdAvLR0lSYZSB/4oXD4p49e/w5n9juvWgmw9CHu/9fuTlxRmj2njet1NbWV1b36hvNra2d3b33P2Dnpa5wqSLJZOqHyNNGBWka6hhpJ8pgnjMyEM8vin9h0eiNJXi3kwyEnI0FDSlGBkrRe5REEuW6Am3VxFoOuRoGvmR2/Ra3gxwmfgVaYIKncj9ChKJc06EwQxpPfC9zIQFUoZiRqaNINckQ3iMhmRgqUCc6LCYxZ/CU6skMJXKHmHgTP29USCuy4R2kiMz0oteKf7nDXKTXoUFFVluiMDzh9KcQSNh2QVMqCLYsIklCCtqs0I8QgphYxtr2BL8xS8vk955y/da/t1Fs31d1VEHx+AEnAEfXII2uAUd0AUYFOAZvII358l5cd6dj/lozal2DsEfOJ8/0k6WBQ==</latexit><latexit sha1_base64="kSoFpoto/NxS8vNWd/QjS9Rr8XE=">AAAB/nicbVDNS8MwHE3n15xfVfHkJTgET6MVQY9DLx4nuDlYS0nTdAvLR0lSYZSB/4oXD4p49e/w5n9juvWgmw9CHu/9fuTlxRmj2njet1NbWV1b36hvNra2d3b33P2Dnpa5wqSLJZOqHyNNGBWka6hhpJ8pgnjMyEM8vin9h0eiNJXi3kwyEnI0FDSlGBkrRe5REEuW6Am3VxFoOuRoGvmR2/Ra3gxwmfgVaYIKncj9ChKJc06EwQxpPfC9zIQFUoZiRqaNINckQ3iMhmRgqUCc6LCYxZ/CU6skMJXKHmHgTP29USCuy4R2kiMz0oteKf7nDXKTXoUFFVluiMDzh9KcQSNh2QVMqCLYsIklCCtqs0I8QgphYxtr2BL8xS8vk955y/da/t1Fs31d1VEHx+AEnAEfXII2uAUd0AUYFOAZvII358l5cd6dj/lozal2DsEfOJ8/0k6WBQ==</latexit>

RNN
<latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit><latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit><latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit><latexit sha1_base64="Z3qkTg0hx4U2t/snaENeYB+2j1o=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VSq2A9IQ9lsN+3SzW7YnYgl9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHN7nfeWTacCUfYJKwICZDySNOCVjJ7wF7guy+0ZiW+5WqW3NnwMvEK0gVFWj2K1+9gaJpzCRQQYzxPTeBICMaOBVsWu6lhiWEjsmQ+ZZKEjMTZLOTp/jUKgMcKW1LAp6pvycyEhsziUPbGRMYmUUvF//z/BSiqyDjMkmBSTpfFKUCg8L5/3jANaMgJpYQqrm9FdMR0YSCTSkPwVt8eZm0z2ueW/PuLqr16yKOEjpGJ+gMeegS1dEtaqIWokihZ/SK3hxwXpx352PeuuIUM0foD5zPH+JOkPk=</latexit>

�2
<latexit sha1_base64="JH5HzsTDWf/bzqCEuB8Q1phBmhk=">AAACAHicbVC7TsMwFHXKq5RXgIGBxaJCYqqSCgnGChbGItGH1ESR4zitVduJbAepirLwKywMIMTKZ7DxNzhtBmg5kuWjc+7VvfeEKaNKO863VVtb39jcqm83dnb39g/sw6O+SjKJSQ8nLJHDECnCqCA9TTUjw1QSxENGBuH0tvQHj0QqmogHPUuJz9FY0JhipI0U2CdemLBIzbj5ck/RMUdFkLeLwG46LWcOuErcijRBhW5gf3lRgjNOhMYMKTVynVT7OZKaYkaKhpcpkiI8RWMyMlQgTpSfzw8o4LlRIhgn0jyh4Vz93ZEjrsodTSVHeqKWvVL8zxtlOr72cyrSTBOBF4PijEGdwDINGFFJsGYzQxCW1OwK8QRJhLXJrGFCcJdPXiX9dst1Wu79ZbNzU8VRB6fgDFwAF1yBDrgDXdADGBTgGbyCN+vJerHerY9Fac2qeo7BH1ifP6f+lxI=</latexit><latexit sha1_base64="JH5HzsTDWf/bzqCEuB8Q1phBmhk=">AAACAHicbVC7TsMwFHXKq5RXgIGBxaJCYqqSCgnGChbGItGH1ESR4zitVduJbAepirLwKywMIMTKZ7DxNzhtBmg5kuWjc+7VvfeEKaNKO863VVtb39jcqm83dnb39g/sw6O+SjKJSQ8nLJHDECnCqCA9TTUjw1QSxENGBuH0tvQHj0QqmogHPUuJz9FY0JhipI0U2CdemLBIzbj5ck/RMUdFkLeLwG46LWcOuErcijRBhW5gf3lRgjNOhMYMKTVynVT7OZKaYkaKhpcpkiI8RWMyMlQgTpSfzw8o4LlRIhgn0jyh4Vz93ZEjrsodTSVHeqKWvVL8zxtlOr72cyrSTBOBF4PijEGdwDINGFFJsGYzQxCW1OwK8QRJhLXJrGFCcJdPXiX9dst1Wu79ZbNzU8VRB6fgDFwAF1yBDrgDXdADGBTgGbyCN+vJerHerY9Fac2qeo7BH1ifP6f+lxI=</latexit><latexit sha1_base64="JH5HzsTDWf/bzqCEuB8Q1phBmhk=">AAACAHicbVC7TsMwFHXKq5RXgIGBxaJCYqqSCgnGChbGItGH1ESR4zitVduJbAepirLwKywMIMTKZ7DxNzhtBmg5kuWjc+7VvfeEKaNKO863VVtb39jcqm83dnb39g/sw6O+SjKJSQ8nLJHDECnCqCA9TTUjw1QSxENGBuH0tvQHj0QqmogHPUuJz9FY0JhipI0U2CdemLBIzbj5ck/RMUdFkLeLwG46LWcOuErcijRBhW5gf3lRgjNOhMYMKTVynVT7OZKaYkaKhpcpkiI8RWMyMlQgTpSfzw8o4LlRIhgn0jyh4Vz93ZEjrsodTSVHeqKWvVL8zxtlOr72cyrSTBOBF4PijEGdwDINGFFJsGYzQxCW1OwK8QRJhLXJrGFCcJdPXiX9dst1Wu79ZbNzU8VRB6fgDFwAF1yBDrgDXdADGBTgGbyCN+vJerHerY9Fac2qeo7BH1ifP6f+lxI=</latexit><latexit sha1_base64="JH5HzsTDWf/bzqCEuB8Q1phBmhk=">AAACAHicbVC7TsMwFHXKq5RXgIGBxaJCYqqSCgnGChbGItGH1ESR4zitVduJbAepirLwKywMIMTKZ7DxNzhtBmg5kuWjc+7VvfeEKaNKO863VVtb39jcqm83dnb39g/sw6O+SjKJSQ8nLJHDECnCqCA9TTUjw1QSxENGBuH0tvQHj0QqmogHPUuJz9FY0JhipI0U2CdemLBIzbj5ck/RMUdFkLeLwG46LWcOuErcijRBhW5gf3lRgjNOhMYMKTVynVT7OZKaYkaKhpcpkiI8RWMyMlQgTpSfzw8o4LlRIhgn0jyh4Vz93ZEjrsodTSVHeqKWvVL8zxtlOr72cyrSTBOBF4PijEGdwDINGFFJsGYzQxCW1OwK8QRJhLXJrGFCcJdPXiX9dst1Wu79ZbNzU8VRB6fgDFwAF1yBDrgDXdADGBTgGbyCN+vJerHerY9Fac2qeo7BH1ifP6f+lxI=</latexit>

P2
<latexit sha1_base64="lSzqROD0s+VosWM1kBImgIJk6yo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD81BbVCuuFV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophtd+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOmnXqp5b9e6vKo2bPI4inME5XIIHdWjAHTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwDQNY15</latexit><latexit sha1_base64="lSzqROD0s+VosWM1kBImgIJk6yo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD81BbVCuuFV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophtd+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOmnXqp5b9e6vKo2bPI4inME5XIIHdWjAHTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwDQNY15</latexit><latexit sha1_base64="lSzqROD0s+VosWM1kBImgIJk6yo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD81BbVCuuFV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophtd+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOmnXqp5b9e6vKo2bPI4inME5XIIHdWjAHTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwDQNY15</latexit><latexit sha1_base64="lSzqROD0s+VosWM1kBImgIJk6yo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD81BbVCuuFV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophtd+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOmnXqp5b9e6vKo2bPI4inME5XIIHdWjAHTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwDQNY15</latexit>

P3
<latexit sha1_base64="l74AQsz3bi+O3h7+xb0forB7Jrk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Ohf9ssVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14bWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmldVD236t3XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gDRuY16</latexit><latexit sha1_base64="l74AQsz3bi+O3h7+xb0forB7Jrk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Ohf9ssVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14bWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmldVD236t3XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gDRuY16</latexit><latexit sha1_base64="l74AQsz3bi+O3h7+xb0forB7Jrk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Ohf9ssVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14bWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmldVD236t3XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gDRuY16</latexit><latexit sha1_base64="l74AQsz3bi+O3h7+xb0forB7Jrk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Ohf9ssVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14bWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmldVD236t3XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gDRuY16</latexit>

 (�)
<latexit sha1_base64="r8on/rknK+UF/u76yie5LhVv0y8=">AAACD3icbVDLSsNAFJ3UV62vqEs3g0Wpm5KIoMuiG5cV7AOaUCaTSTp08mDmRiihf+DGX3HjQhG3bt35N07aLLT1wDCHc+7l3nu8VHAFlvVtVFZW19Y3qpu1re2d3T1z/6CrkkxS1qGJSGTfI4oJHrMOcBCsn0pGIk+wnje+KfzeA5OKJ/E9TFLmRiSMecApAS0NzVMnVdwRLIAGdrxE+GoS6S93FA8jMsWO5OEIzoZm3WpaM+BlYpekjkq0h+aX4yc0i1gMVBClBraVgpsTCZwKNq05mWIpoWMSsoGmMYmYcvPZPVN8ohUfB4nULwY8U3935CRSxZ66MiIwUoteIf7nDTIIrtycx2kGLKbzQUEmMCS4CAf7XDIKYqIJoZLrXTEdEUko6AhrOgR78eRl0j1v2lbTvruot67LOKroCB2jBrLRJWqhW9RGHUTRI3pGr+jNeDJejHfjY15aMcqeQ/QHxucPXZqc2Q==</latexit><latexit sha1_base64="r8on/rknK+UF/u76yie5LhVv0y8=">AAACD3icbVDLSsNAFJ3UV62vqEs3g0Wpm5KIoMuiG5cV7AOaUCaTSTp08mDmRiihf+DGX3HjQhG3bt35N07aLLT1wDCHc+7l3nu8VHAFlvVtVFZW19Y3qpu1re2d3T1z/6CrkkxS1qGJSGTfI4oJHrMOcBCsn0pGIk+wnje+KfzeA5OKJ/E9TFLmRiSMecApAS0NzVMnVdwRLIAGdrxE+GoS6S93FA8jMsWO5OEIzoZm3WpaM+BlYpekjkq0h+aX4yc0i1gMVBClBraVgpsTCZwKNq05mWIpoWMSsoGmMYmYcvPZPVN8ohUfB4nULwY8U3935CRSxZ66MiIwUoteIf7nDTIIrtycx2kGLKbzQUEmMCS4CAf7XDIKYqIJoZLrXTEdEUko6AhrOgR78eRl0j1v2lbTvruot67LOKroCB2jBrLRJWqhW9RGHUTRI3pGr+jNeDJejHfjY15aMcqeQ/QHxucPXZqc2Q==</latexit><latexit sha1_base64="r8on/rknK+UF/u76yie5LhVv0y8=">AAACD3icbVDLSsNAFJ3UV62vqEs3g0Wpm5KIoMuiG5cV7AOaUCaTSTp08mDmRiihf+DGX3HjQhG3bt35N07aLLT1wDCHc+7l3nu8VHAFlvVtVFZW19Y3qpu1re2d3T1z/6CrkkxS1qGJSGTfI4oJHrMOcBCsn0pGIk+wnje+KfzeA5OKJ/E9TFLmRiSMecApAS0NzVMnVdwRLIAGdrxE+GoS6S93FA8jMsWO5OEIzoZm3WpaM+BlYpekjkq0h+aX4yc0i1gMVBClBraVgpsTCZwKNq05mWIpoWMSsoGmMYmYcvPZPVN8ohUfB4nULwY8U3935CRSxZ66MiIwUoteIf7nDTIIrtycx2kGLKbzQUEmMCS4CAf7XDIKYqIJoZLrXTEdEUko6AhrOgR78eRl0j1v2lbTvruot67LOKroCB2jBrLRJWqhW9RGHUTRI3pGr+jNeDJejHfjY15aMcqeQ/QHxucPXZqc2Q==</latexit><latexit sha1_base64="r8on/rknK+UF/u76yie5LhVv0y8=">AAACD3icbVDLSsNAFJ3UV62vqEs3g0Wpm5KIoMuiG5cV7AOaUCaTSTp08mDmRiihf+DGX3HjQhG3bt35N07aLLT1wDCHc+7l3nu8VHAFlvVtVFZW19Y3qpu1re2d3T1z/6CrkkxS1qGJSGTfI4oJHrMOcBCsn0pGIk+wnje+KfzeA5OKJ/E9TFLmRiSMecApAS0NzVMnVdwRLIAGdrxE+GoS6S93FA8jMsWO5OEIzoZm3WpaM+BlYpekjkq0h+aX4yc0i1gMVBClBraVgpsTCZwKNq05mWIpoWMSsoGmMYmYcvPZPVN8ohUfB4nULwY8U3935CRSxZ66MiIwUoteIf7nDTIIrtycx2kGLKbzQUEmMCS4CAf7XDIKYqIJoZLrXTEdEUko6AhrOgR78eRl0j1v2lbTvruot67LOKroCB2jBrLRJWqhW9RGHUTRI3pGr+jNeDJejHfjY15aMcqeQ/QHxucPXZqc2Q==</latexit>

P1
<latexit sha1_base64="H7gUl/4E21BHHUR2PFWjbIzT39s=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpodH3+27Vq3lzkFXiF6QKBRp996s3SFgWc4VMUmO6vpdikFONgkk+rfQyw1PKxnTIu5YqGnMT5PNTp+TMKgMSJdqWQjJXf0/kNDZmEoe2M6Y4MsveTPzP62YYXQe5UGmGXLHFoiiTBBMy+5sMhOYM5cQSyrSwtxI2opoytOlUbAj+8surpHVR872af39Zrd8UcZThBE7hHHy4gjrcQQOawGAIz/AKb450Xpx352PRWnKKmWP4A+fzB86xjXg=</latexit><latexit sha1_base64="H7gUl/4E21BHHUR2PFWjbIzT39s=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpodH3+27Vq3lzkFXiF6QKBRp996s3SFgWc4VMUmO6vpdikFONgkk+rfQyw1PKxnTIu5YqGnMT5PNTp+TMKgMSJdqWQjJXf0/kNDZmEoe2M6Y4MsveTPzP62YYXQe5UGmGXLHFoiiTBBMy+5sMhOYM5cQSyrSwtxI2opoytOlUbAj+8surpHVR872af39Zrd8UcZThBE7hHHy4gjrcQQOawGAIz/AKb450Xpx352PRWnKKmWP4A+fzB86xjXg=</latexit><latexit sha1_base64="H7gUl/4E21BHHUR2PFWjbIzT39s=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpodH3+27Vq3lzkFXiF6QKBRp996s3SFgWc4VMUmO6vpdikFONgkk+rfQyw1PKxnTIu5YqGnMT5PNTp+TMKgMSJdqWQjJXf0/kNDZmEoe2M6Y4MsveTPzP62YYXQe5UGmGXLHFoiiTBBMy+5sMhOYM5cQSyrSwtxI2opoytOlUbAj+8surpHVR872af39Zrd8UcZThBE7hHHy4gjrcQQOawGAIz/AKb450Xpx352PRWnKKmWP4A+fzB86xjXg=</latexit><latexit sha1_base64="H7gUl/4E21BHHUR2PFWjbIzT39s=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpodH3+27Vq3lzkFXiF6QKBRp996s3SFgWc4VMUmO6vpdikFONgkk+rfQyw1PKxnTIu5YqGnMT5PNTp+TMKgMSJdqWQjJXf0/kNDZmEoe2M6Y4MsveTPzP62YYXQe5UGmGXLHFoiiTBBMy+5sMhOYM5cQSyrSwtxI2opoytOlUbAj+8surpHVR872af39Zrd8UcZThBE7hHHy4gjrcQQOawGAIz/AKb450Xpx352PRWnKKmWP4A+fzB86xjXg=</latexit>

SS
<latexit sha1_base64="ZWkeEkN/jSPmgixsH9bQPTDSpzo=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8dq7Qe0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Gj0yxW36s5BVomXkwrkqPfLX71BzNIIpWGCat313MT4GVWGM4HTUi/VmFA2pkPsWipphNrP5pdOyZlVBiSMlS1pyFz9PZHRSOtJFNjOiJqRXvZm4n9eNzXhtZ9xmaQGJVssClNBTExmb5MBV8iMmFhCmeL2VsJGVFFmbDglG4K3/PIqaV1UPbfq3V9Wajd5HEU4gVM4Bw+uoAZ3UIcmMAjhGV7hzRk7L86787FoLTj5zDH8gfP5A1E3jTQ=</latexit><latexit sha1_base64="ZWkeEkN/jSPmgixsH9bQPTDSpzo=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8dq7Qe0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Gj0yxW36s5BVomXkwrkqPfLX71BzNIIpWGCat313MT4GVWGM4HTUi/VmFA2pkPsWipphNrP5pdOyZlVBiSMlS1pyFz9PZHRSOtJFNjOiJqRXvZm4n9eNzXhtZ9xmaQGJVssClNBTExmb5MBV8iMmFhCmeL2VsJGVFFmbDglG4K3/PIqaV1UPbfq3V9Wajd5HEU4gVM4Bw+uoAZ3UIcmMAjhGV7hzRk7L86787FoLTj5zDH8gfP5A1E3jTQ=</latexit><latexit sha1_base64="ZWkeEkN/jSPmgixsH9bQPTDSpzo=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8dq7Qe0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Gj0yxW36s5BVomXkwrkqPfLX71BzNIIpWGCat313MT4GVWGM4HTUi/VmFA2pkPsWipphNrP5pdOyZlVBiSMlS1pyFz9PZHRSOtJFNjOiJqRXvZm4n9eNzXhtZ9xmaQGJVssClNBTExmb5MBV8iMmFhCmeL2VsJGVFFmbDglG4K3/PIqaV1UPbfq3V9Wajd5HEU4gVM4Bw+uoAZ3UIcmMAjhGV7hzRk7L86787FoLTj5zDH8gfP5A1E3jTQ=</latexit><latexit sha1_base64="ZWkeEkN/jSPmgixsH9bQPTDSpzo=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8dq7Qe0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Gj0yxW36s5BVomXkwrkqPfLX71BzNIIpWGCat313MT4GVWGM4HTUi/VmFA2pkPsWipphNrP5pdOyZlVBiSMlS1pyFz9PZHRSOtJFNjOiJqRXvZm4n9eNzXhtZ9xmaQGJVssClNBTExmb5MBV8iMmFhCmeL2VsJGVFFmbDglG4K3/PIqaV1UPbfq3V9Wajd5HEU4gVM4Bw+uoAZ3UIcmMAjhGV7hzRk7L86787FoLTj5zDH8gfP5A1E3jTQ=</latexit>

�1
<latexit sha1_base64="28NH/mpTLoJn1ZeidGBZCd7O26U=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKpi20oWy2k3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+nfntJ1SaJ/LBTFIMYjqUPOKMGit1eumI93Nv2q/W3Lo7B1klXkFqUKDZr371BgnLYpSGCap113NTE+RUGc4ETiu9TGNK2ZgOsWuppDHqIJ/fOyVnVhmQKFG2pCFz9fdETmOtJ3FoO2NqRnrZm4n/ed3MRNdBzmWaGZRssSjKBDEJmT1PBlwhM2JiCWWK21sJG1FFmbERVWwI3vLLq6R1Uffcund/WWvcFHGU4QRO4Rw8uIIG3EETfGAg4Ble4c15dF6cd+dj0Vpyiplj+APn8wcCQY/v</latexit><latexit sha1_base64="28NH/mpTLoJn1ZeidGBZCd7O26U=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKpi20oWy2k3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+nfntJ1SaJ/LBTFIMYjqUPOKMGit1eumI93Nv2q/W3Lo7B1klXkFqUKDZr371BgnLYpSGCap113NTE+RUGc4ETiu9TGNK2ZgOsWuppDHqIJ/fOyVnVhmQKFG2pCFz9fdETmOtJ3FoO2NqRnrZm4n/ed3MRNdBzmWaGZRssSjKBDEJmT1PBlwhM2JiCWWK21sJG1FFmbERVWwI3vLLq6R1Uffcund/WWvcFHGU4QRO4Rw8uIIG3EETfGAg4Ble4c15dF6cd+dj0Vpyiplj+APn8wcCQY/v</latexit><latexit sha1_base64="28NH/mpTLoJn1ZeidGBZCd7O26U=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKpi20oWy2k3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+nfntJ1SaJ/LBTFIMYjqUPOKMGit1eumI93Nv2q/W3Lo7B1klXkFqUKDZr371BgnLYpSGCap113NTE+RUGc4ETiu9TGNK2ZgOsWuppDHqIJ/fOyVnVhmQKFG2pCFz9fdETmOtJ3FoO2NqRnrZm4n/ed3MRNdBzmWaGZRssSjKBDEJmT1PBlwhM2JiCWWK21sJG1FFmbERVWwI3vLLq6R1Uffcund/WWvcFHGU4QRO4Rw8uIIG3EETfGAg4Ble4c15dF6cd+dj0Vpyiplj+APn8wcCQY/v</latexit><latexit sha1_base64="28NH/mpTLoJn1ZeidGBZCd7O26U=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKpi20oWy2k3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+nfntJ1SaJ/LBTFIMYjqUPOKMGit1eumI93Nv2q/W3Lo7B1klXkFqUKDZr371BgnLYpSGCap113NTE+RUGc4ETiu9TGNK2ZgOsWuppDHqIJ/fOyVnVhmQKFG2pCFz9fdETmOtJ3FoO2NqRnrZm4n/ed3MRNdBzmWaGZRssSjKBDEJmT1PBlwhM2JiCWWK21sJG1FFmbERVWwI3vLLq6R1Uffcund/WWvcFHGU4QRO4Rw8uIIG3EETfGAg4Ble4c15dF6cd+dj0Vpyiplj+APn8wcCQY/v</latexit>

S
<latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit><latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit><latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit><latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit>

SS
<latexit sha1_base64="ZWkeEkN/jSPmgixsH9bQPTDSpzo=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8dq7Qe0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Gj0yxW36s5BVomXkwrkqPfLX71BzNIIpWGCat313MT4GVWGM4HTUi/VmFA2pkPsWipphNrP5pdOyZlVBiSMlS1pyFz9PZHRSOtJFNjOiJqRXvZm4n9eNzXhtZ9xmaQGJVssClNBTExmb5MBV8iMmFhCmeL2VsJGVFFmbDglG4K3/PIqaV1UPbfq3V9Wajd5HEU4gVM4Bw+uoAZ3UIcmMAjhGV7hzRk7L86787FoLTj5zDH8gfP5A1E3jTQ=</latexit><latexit sha1_base64="ZWkeEkN/jSPmgixsH9bQPTDSpzo=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8dq7Qe0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Gj0yxW36s5BVomXkwrkqPfLX71BzNIIpWGCat313MT4GVWGM4HTUi/VmFA2pkPsWipphNrP5pdOyZlVBiSMlS1pyFz9PZHRSOtJFNjOiJqRXvZm4n9eNzXhtZ9xmaQGJVssClNBTExmb5MBV8iMmFhCmeL2VsJGVFFmbDglG4K3/PIqaV1UPbfq3V9Wajd5HEU4gVM4Bw+uoAZ3UIcmMAjhGV7hzRk7L86787FoLTj5zDH8gfP5A1E3jTQ=</latexit><latexit sha1_base64="ZWkeEkN/jSPmgixsH9bQPTDSpzo=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8dq7Qe0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Gj0yxW36s5BVomXkwrkqPfLX71BzNIIpWGCat313MT4GVWGM4HTUi/VmFA2pkPsWipphNrP5pdOyZlVBiSMlS1pyFz9PZHRSOtJFNjOiJqRXvZm4n9eNzXhtZ9xmaQGJVssClNBTExmb5MBV8iMmFhCmeL2VsJGVFFmbDglG4K3/PIqaV1UPbfq3V9Wajd5HEU4gVM4Bw+uoAZ3UIcmMAjhGV7hzRk7L86787FoLTj5zDH8gfP5A1E3jTQ=</latexit><latexit sha1_base64="ZWkeEkN/jSPmgixsH9bQPTDSpzo=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8dq7Qe0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Gj0yxW36s5BVomXkwrkqPfLX71BzNIIpWGCat313MT4GVWGM4HTUi/VmFA2pkPsWipphNrP5pdOyZlVBiSMlS1pyFz9PZHRSOtJFNjOiJqRXvZm4n9eNzXhtZ9xmaQGJVssClNBTExmb5MBV8iMmFhCmeL2VsJGVFFmbDglG4K3/PIqaV1UPbfq3V9Wajd5HEU4gVM4Bw+uoAZ3UIcmMAjhGV7hzRk7L86787FoLTj5zDH8gfP5A1E3jTQ=</latexit> S

<latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit><latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit><latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit><latexit sha1_base64="QFNaeUnKhL9nd6LB5oQADAVSHuA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8f6UVtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GTZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj69xvP6HSPJYPZpKgH9Gh5CFn1Fjp7r7Sr9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/m106JSdWGZAwVrakITP190RGI60nUWA7I2pGetHLxf+8bmrCSz/jMkkNSjZfFKaCmJjkb5MBV8iMmFhCmeL2VsJGVFFmbDh5CN7iy8vk8azuuXXv9rzWuCriKMMRHMMpeHABDbiBJrSAQQjP8Apvzth5cd6dj3lrySlmDuEPnM8f4oSM6w==</latexit>

SS
<latexit sha1_base64="ZWkeEkN/jSPmgixsH9bQPTDSpzo=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8dq7Qe0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Gj0yxW36s5BVomXkwrkqPfLX71BzNIIpWGCat313MT4GVWGM4HTUi/VmFA2pkPsWipphNrP5pdOyZlVBiSMlS1pyFz9PZHRSOtJFNjOiJqRXvZm4n9eNzXhtZ9xmaQGJVssClNBTExmb5MBV8iMmFhCmeL2VsJGVFFmbDglG4K3/PIqaV1UPbfq3V9Wajd5HEU4gVM4Bw+uoAZ3UIcmMAjhGV7hzRk7L86787FoLTj5zDH8gfP5A1E3jTQ=</latexit><latexit sha1_base64="ZWkeEkN/jSPmgixsH9bQPTDSpzo=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8dq7Qe0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Gj0yxW36s5BVomXkwrkqPfLX71BzNIIpWGCat313MT4GVWGM4HTUi/VmFA2pkPsWipphNrP5pdOyZlVBiSMlS1pyFz9PZHRSOtJFNjOiJqRXvZm4n9eNzXhtZ9xmaQGJVssClNBTExmb5MBV8iMmFhCmeL2VsJGVFFmbDglG4K3/PIqaV1UPbfq3V9Wajd5HEU4gVM4Bw+uoAZ3UIcmMAjhGV7hzRk7L86787FoLTj5zDH8gfP5A1E3jTQ=</latexit><latexit sha1_base64="ZWkeEkN/jSPmgixsH9bQPTDSpzo=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8dq7Qe0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Gj0yxW36s5BVomXkwrkqPfLX71BzNIIpWGCat313MT4GVWGM4HTUi/VmFA2pkPsWipphNrP5pdOyZlVBiSMlS1pyFz9PZHRSOtJFNjOiJqRXvZm4n9eNzXhtZ9xmaQGJVssClNBTExmb5MBV8iMmFhCmeL2VsJGVFFmbDglG4K3/PIqaV1UPbfq3V9Wajd5HEU4gVM4Bw+uoAZ3UIcmMAjhGV7hzRk7L86787FoLTj5zDH8gfP5A1E3jTQ=</latexit><latexit sha1_base64="ZWkeEkN/jSPmgixsH9bQPTDSpzo=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8dq7Qe0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Gj0yxW36s5BVomXkwrkqPfLX71BzNIIpWGCat313MT4GVWGM4HTUi/VmFA2pkPsWipphNrP5pdOyZlVBiSMlS1pyFz9PZHRSOtJFNjOiJqRXvZm4n9eNzXhtZ9xmaQGJVssClNBTExmb5MBV8iMmFhCmeL2VsJGVFFmbDglG4K3/PIqaV1UPbfq3V9Wajd5HEU4gVM4Bw+uoAZ3UIcmMAjhGV7hzRk7L86787FoLTj5zDH8gfP5A1E3jTQ=</latexit>

�2
<latexit sha1_base64="Nt3dbhURGps0a4/bv3m3OEP85RA=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Ae0oWy2m3bpZpPuToQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2M7+Z++4lrI2L1iNOE+xEdKhEKRtFKnV4yEv2sNuuXK27VXYCsEy8nFcjR6Je/eoOYpRFXyCQ1puu5CfoZ1SiY5LNSLzU8oWxMh7xrqaIRN362uHdGLqwyIGGsbSkkC/X3REYjY6ZRYDsjiiOz6s3F/7xuiuGNnwmVpMgVWy4KU0kwJvPnyUBozlBOLaFMC3srYSOqKUMbUcmG4K2+vE5atarnVr2Hq0r9No+jCGdwDpfgwTXU4R4a0AQGEp7hFd6cifPivDsfy9aCk8+cwh84nz8Dxo/w</latexit><latexit sha1_base64="Nt3dbhURGps0a4/bv3m3OEP85RA=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Ae0oWy2m3bpZpPuToQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2M7+Z++4lrI2L1iNOE+xEdKhEKRtFKnV4yEv2sNuuXK27VXYCsEy8nFcjR6Je/eoOYpRFXyCQ1puu5CfoZ1SiY5LNSLzU8oWxMh7xrqaIRN362uHdGLqwyIGGsbSkkC/X3REYjY6ZRYDsjiiOz6s3F/7xuiuGNnwmVpMgVWy4KU0kwJvPnyUBozlBOLaFMC3srYSOqKUMbUcmG4K2+vE5atarnVr2Hq0r9No+jCGdwDpfgwTXU4R4a0AQGEp7hFd6cifPivDsfy9aCk8+cwh84nz8Dxo/w</latexit><latexit sha1_base64="Nt3dbhURGps0a4/bv3m3OEP85RA=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Ae0oWy2m3bpZpPuToQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2M7+Z++4lrI2L1iNOE+xEdKhEKRtFKnV4yEv2sNuuXK27VXYCsEy8nFcjR6Je/eoOYpRFXyCQ1puu5CfoZ1SiY5LNSLzU8oWxMh7xrqaIRN362uHdGLqwyIGGsbSkkC/X3REYjY6ZRYDsjiiOz6s3F/7xuiuGNnwmVpMgVWy4KU0kwJvPnyUBozlBOLaFMC3srYSOqKUMbUcmG4K2+vE5atarnVr2Hq0r9No+jCGdwDpfgwTXU4R4a0AQGEp7hFd6cifPivDsfy9aCk8+cwh84nz8Dxo/w</latexit><latexit sha1_base64="Nt3dbhURGps0a4/bv3m3OEP85RA=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Ae0oWy2m3bpZpPuToQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2M7+Z++4lrI2L1iNOE+xEdKhEKRtFKnV4yEv2sNuuXK27VXYCsEy8nFcjR6Je/eoOYpRFXyCQ1puu5CfoZ1SiY5LNSLzU8oWxMh7xrqaIRN362uHdGLqwyIGGsbSkkC/X3REYjY6ZRYDsjiiOz6s3F/7xuiuGNnwmVpMgVWy4KU0kwJvPnyUBozlBOLaFMC3srYSOqKUMbUcmG4K2+vE5atarnVr2Hq0r9No+jCGdwDpfgwTXU4R4a0AQGEp7hFd6cifPivDsfy9aCk8+cwh84nz8Dxo/w</latexit>

�3
<latexit sha1_base64="R4xNP6wsvvsMyOM67/zprDUovkU=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cK9gPaUDbbTbt0s0l3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGdzO/9cS1EbF6xEnC/YgOlAgFo2ildjcZil52Oe2VK27VnYOsEi8nFchR75W/uv2YpRFXyCQ1puO5CfoZ1SiY5NNSNzU8oWxEB7xjqaIRN342v3dKzqzSJ2GsbSkkc/X3REYjYyZRYDsjikOz7M3E/7xOiuGNnwmVpMgVWywKU0kwJrPnSV9ozlBOLKFMC3srYUOqKUMbUcmG4C2/vEqaF1XPrXoPV5XabR5HEU7gFM7Bg2uowT3UoQEMJDzDK7w5Y+fFeXc+Fq0FJ585hj9wPn8ABUuP8Q==</latexit><latexit sha1_base64="R4xNP6wsvvsMyOM67/zprDUovkU=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cK9gPaUDbbTbt0s0l3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGdzO/9cS1EbF6xEnC/YgOlAgFo2ildjcZil52Oe2VK27VnYOsEi8nFchR75W/uv2YpRFXyCQ1puO5CfoZ1SiY5NNSNzU8oWxEB7xjqaIRN342v3dKzqzSJ2GsbSkkc/X3REYjYyZRYDsjikOz7M3E/7xOiuGNnwmVpMgVWywKU0kwJrPnSV9ozlBOLKFMC3srYUOqKUMbUcmG4C2/vEqaF1XPrXoPV5XabR5HEU7gFM7Bg2uowT3UoQEMJDzDK7w5Y+fFeXc+Fq0FJ585hj9wPn8ABUuP8Q==</latexit><latexit sha1_base64="R4xNP6wsvvsMyOM67/zprDUovkU=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cK9gPaUDbbTbt0s0l3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGdzO/9cS1EbF6xEnC/YgOlAgFo2ildjcZil52Oe2VK27VnYOsEi8nFchR75W/uv2YpRFXyCQ1puO5CfoZ1SiY5NNSNzU8oWxEB7xjqaIRN342v3dKzqzSJ2GsbSkkc/X3REYjYyZRYDsjikOz7M3E/7xOiuGNnwmVpMgVWywKU0kwJrPnSV9ozlBOLKFMC3srYUOqKUMbUcmG4C2/vEqaF1XPrXoPV5XabR5HEU7gFM7Bg2uowT3UoQEMJDzDK7w5Y+fFeXc+Fq0FJ585hj9wPn8ABUuP8Q==</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="wtZeAiRKl02NscXUZLNJ1uCclIA=">AAAB5HicbZBLSwMxFIXv+Ky1anXrJlgEV2VGF7oU3LisYB/QDiWT3mlDM5kxuSOUoX/CjQtF/E3u/Demj4W2Hgh8nJOQe0+UKWnJ97+9jc2t7Z3d0l55v3JweFQ9rrRsmhuBTZGq1HQiblFJjU2SpLCTGeRJpLAdje9mefsZjZWpfqRJhmHCh1rGUnByVqeXjWS/uJr2qzW/7s/F1iFYQg2WavSrX71BKvIENQnFre0GfkZhwQ1JoXBa7uUWMy7GfIhdh5onaMNiPu+UnTtnwOLUuKOJzd3fLwqeWDtJIncz4TSyq9nM/C/r5hTfhIXUWU6oxeKjOFeMUjZbng2kQUFq4oALI92sTIy44YJcRWVXQrC68jq0LuuBXw8efCjBKZzBBQRwDbdwDw1oggAFL/AG796T9+p9LOra8Ja9ncAfeZ8/0VGOlw==</latexit><latexit sha1_base64="wtZeAiRKl02NscXUZLNJ1uCclIA=">AAAB5HicbZBLSwMxFIXv+Ky1anXrJlgEV2VGF7oU3LisYB/QDiWT3mlDM5kxuSOUoX/CjQtF/E3u/Demj4W2Hgh8nJOQe0+UKWnJ97+9jc2t7Z3d0l55v3JweFQ9rrRsmhuBTZGq1HQiblFJjU2SpLCTGeRJpLAdje9mefsZjZWpfqRJhmHCh1rGUnByVqeXjWS/uJr2qzW/7s/F1iFYQg2WavSrX71BKvIENQnFre0GfkZhwQ1JoXBa7uUWMy7GfIhdh5onaMNiPu+UnTtnwOLUuKOJzd3fLwqeWDtJIncz4TSyq9nM/C/r5hTfhIXUWU6oxeKjOFeMUjZbng2kQUFq4oALI92sTIy44YJcRWVXQrC68jq0LuuBXw8efCjBKZzBBQRwDbdwDw1oggAFL/AG796T9+p9LOra8Ja9ncAfeZ8/0VGOlw==</latexit><latexit sha1_base64="wP8AmisC7cB930zgR6zczdrVjdQ=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0n0oMeiF48VTFtoQ9lsJ+3SzSbuboQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8MBVcG9f9dkpr6xubW+Xtys7u3v5B9fCopZNMMfRZIhLVCalGwSX6hhuBnVQhjUOB7XB8O/PbT6g0T+SDmaQYxHQoecQZNVbq9NIR7+eX03615tbdOcgq8QpSgwLNfvWrN0hYFqM0TFCtu56bmiCnynAmcFrpZRpTysZ0iF1LJY1RB/n83ik5s8qARImyJQ2Zq78nchprPYlD2xlTM9LL3kz8z+tmJroOci7TzKBki0VRJohJyOx5MuAKmRETSyhT3N5K2IgqyoyNqGJD8JZfXiWti7rn1r17t9a4KeIowwmcwjl4cAUNuIMm+MBAwDO8wpvz6Lw4787HorXkFDPH8AfO5w8EC4/t</latexit><latexit sha1_base64="R4xNP6wsvvsMyOM67/zprDUovkU=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cK9gPaUDbbTbt0s0l3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGdzO/9cS1EbF6xEnC/YgOlAgFo2ildjcZil52Oe2VK27VnYOsEi8nFchR75W/uv2YpRFXyCQ1puO5CfoZ1SiY5NNSNzU8oWxEB7xjqaIRN342v3dKzqzSJ2GsbSkkc/X3REYjYyZRYDsjikOz7M3E/7xOiuGNnwmVpMgVWywKU0kwJrPnSV9ozlBOLKFMC3srYUOqKUMbUcmG4C2/vEqaF1XPrXoPV5XabR5HEU7gFM7Bg2uowT3UoQEMJDzDK7w5Y+fFeXc+Fq0FJ585hj9wPn8ABUuP8Q==</latexit><latexit sha1_base64="R4xNP6wsvvsMyOM67/zprDUovkU=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cK9gPaUDbbTbt0s0l3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGdzO/9cS1EbF6xEnC/YgOlAgFo2ildjcZil52Oe2VK27VnYOsEi8nFchR75W/uv2YpRFXyCQ1puO5CfoZ1SiY5NNSNzU8oWxEB7xjqaIRN342v3dKzqzSJ2GsbSkkc/X3REYjYyZRYDsjikOz7M3E/7xOiuGNnwmVpMgVWywKU0kwJrPnSV9ozlBOLKFMC3srYUOqKUMbUcmG4C2/vEqaF1XPrXoPV5XabR5HEU7gFM7Bg2uowT3UoQEMJDzDK7w5Y+fFeXc+Fq0FJ585hj9wPn8ABUuP8Q==</latexit><latexit sha1_base64="R4xNP6wsvvsMyOM67/zprDUovkU=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cK9gPaUDbbTbt0s0l3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGdzO/9cS1EbF6xEnC/YgOlAgFo2ildjcZil52Oe2VK27VnYOsEi8nFchR75W/uv2YpRFXyCQ1puO5CfoZ1SiY5NNSNzU8oWxEB7xjqaIRN342v3dKzqzSJ2GsbSkkc/X3REYjYyZRYDsjikOz7M3E/7xOiuGNnwmVpMgVWywKU0kwJrPnSV9ozlBOLKFMC3srYUOqKUMbUcmG4C2/vEqaF1XPrXoPV5XabR5HEU7gFM7Bg2uowT3UoQEMJDzDK7w5Y+fFeXc+Fq0FJ585hj9wPn8ABUuP8Q==</latexit><latexit sha1_base64="R4xNP6wsvvsMyOM67/zprDUovkU=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cK9gPaUDbbTbt0s0l3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGdzO/9cS1EbF6xEnC/YgOlAgFo2ildjcZil52Oe2VK27VnYOsEi8nFchR75W/uv2YpRFXyCQ1puO5CfoZ1SiY5NNSNzU8oWxEB7xjqaIRN342v3dKzqzSJ2GsbSkkc/X3REYjYyZRYDsjikOz7M3E/7xOiuGNnwmVpMgVWywKU0kwJrPnSV9ozlBOLKFMC3srYUOqKUMbUcmG4C2/vEqaF1XPrXoPV5XabR5HEU7gFM7Bg2uowT3UoQEMJDzDK7w5Y+fFeXc+Fq0FJ585hj9wPn8ABUuP8Q==</latexit><latexit sha1_base64="R4xNP6wsvvsMyOM67/zprDUovkU=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cK9gPaUDbbTbt0s0l3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGdzO/9cS1EbF6xEnC/YgOlAgFo2ildjcZil52Oe2VK27VnYOsEi8nFchR75W/uv2YpRFXyCQ1puO5CfoZ1SiY5NNSNzU8oWxEB7xjqaIRN342v3dKzqzSJ2GsbSkkc/X3REYjYyZRYDsjikOz7M3E/7xOiuGNnwmVpMgVWywKU0kwJrPnSV9ozlBOLKFMC3srYUOqKUMbUcmG4C2/vEqaF1XPrXoPV5XabR5HEU7gFM7Bg2uowT3UoQEMJDzDK7w5Y+fFeXc+Fq0FJ585hj9wPn8ABUuP8Q==</latexit><latexit sha1_base64="R4xNP6wsvvsMyOM67/zprDUovkU=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cK9gPaUDbbTbt0s0l3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGdzO/9cS1EbF6xEnC/YgOlAgFo2ildjcZil52Oe2VK27VnYOsEi8nFchR75W/uv2YpRFXyCQ1puO5CfoZ1SiY5NNSNzU8oWxEB7xjqaIRN342v3dKzqzSJ2GsbSkkc/X3REYjYyZRYDsjikOz7M3E/7xOiuGNnwmVpMgVWywKU0kwJrPnSV9ozlBOLKFMC3srYUOqKUMbUcmG4C2/vEqaF1XPrXoPV5XabR5HEU7gFM7Bg2uowT3UoQEMJDzDK7w5Y+fFeXc+Fq0FJ585hj9wPn8ABUuP8Q==</latexit>

h0 h1 h2 h3 hN�1 hN hn�1 hn
<latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit><latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit><latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit><latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit>

h0 h1 h2 h3 hN�1 hN hn�1 hn
<latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit><latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit><latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit><latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit>

h0 h1 h2 h3 hN�1 hN hn�1 hn
<latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit><latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit><latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit><latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit>

h0 h1 h2 h3 hN�1 hN hn�1 hn
<latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit><latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg=">AAACuHicdZHfS8MwEMfT+mvOX1UffQkOwQcd7VQUn4a++DQmuE3oRk3TbAtL05Kkwij9GwXf/G9MtyLa2QshX+5zd7lc/JhRqWz7yzDX1jc2t2rb9Z3dvf0D6/CoL6NEYNLDEYvEq48kYZSTnqKKkddYEBT6jAz82WPOB+9ESBrxFzWPyShEE07HFCOlXZ71MfQjFsh5qI90mnmpncHhRb5gmThZAeAKav2gMrmqLNe5dCqzOhmEVYzrvKqaPPOsht20FwZXhVOIBiis61mfwyDCSUi4wgxJ6Tp2rEYpEopiRrL6MJEkRniGJsTVkqOQyFG6GHwGz7QngONI6M0VXHh/Z6QolHl7OjJEairLLHf+x9xEje9GKeVxogjHy4vGCYMqgvkvwoAKghWba4GwoLpXiKdIIKz0X9f1EJzyk1dFv9V07KbzfN1oPxTjqIETcArOgQNuQRs8gS7oAWzcGK4RGMS8N9/MiUmXoaZR5ByDP2aKb+YP1lw=</latexit><latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit><latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit>

h0 h1 h2 h3 hN�1 hN hn�1 hn
<latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg=">AAACuHicdZHfS8MwEMfT+mvOX1UffQkOwQcd7VQUn4a++DQmuE3oRk3TbAtL05Kkwij9GwXf/G9MtyLa2QshX+5zd7lc/JhRqWz7yzDX1jc2t2rb9Z3dvf0D6/CoL6NEYNLDEYvEq48kYZSTnqKKkddYEBT6jAz82WPOB+9ESBrxFzWPyShEE07HFCOlXZ71MfQjFsh5qI90mnmpncHhRb5gmThZAeAKav2gMrmqLNe5dCqzOhmEVYzrvKqaPPOsht20FwZXhVOIBiis61mfwyDCSUi4wgxJ6Tp2rEYpEopiRrL6MJEkRniGJsTVkqOQyFG6GHwGz7QngONI6M0VXHh/Z6QolHl7OjJEairLLHf+x9xEje9GKeVxogjHy4vGCYMqgvkvwoAKghWba4GwoLpXiKdIIKz0X9f1EJzyk1dFv9V07KbzfN1oPxTjqIETcArOgQNuQRs8gS7oAWzcGK4RGMS8N9/MiUmXoaZR5ByDP2aKb+YP1lw=</latexit><latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit><latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit><latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit>

h0 h1 h2 h3 hN�1 hN hn�1 hn
<latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit><latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit><latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit><latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit>

h0 h1 h2 h3 hN�1 hN hn�1 hn
<latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit><latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit><latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit><latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit>

h0 h1 h2 h3 hN�1 hN hn�1 hn
<latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg=">AAACuHicdZHfS8MwEMfT+mvOX1UffQkOwQcd7VQUn4a++DQmuE3oRk3TbAtL05Kkwij9GwXf/G9MtyLa2QshX+5zd7lc/JhRqWz7yzDX1jc2t2rb9Z3dvf0D6/CoL6NEYNLDEYvEq48kYZSTnqKKkddYEBT6jAz82WPOB+9ESBrxFzWPyShEE07HFCOlXZ71MfQjFsh5qI90mnmpncHhRb5gmThZAeAKav2gMrmqLNe5dCqzOhmEVYzrvKqaPPOsht20FwZXhVOIBiis61mfwyDCSUi4wgxJ6Tp2rEYpEopiRrL6MJEkRniGJsTVkqOQyFG6GHwGz7QngONI6M0VXHh/Z6QolHl7OjJEairLLHf+x9xEje9GKeVxogjHy4vGCYMqgvkvwoAKghWba4GwoLpXiKdIIKz0X9f1EJzyk1dFv9V07KbzfN1oPxTjqIETcArOgQNuQRs8gS7oAWzcGK4RGMS8N9/MiUmXoaZR5ByDP2aKb+YP1lw=</latexit><latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit><latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit><latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit>

h0 h1 h2 h3 hN�1 hN hn�1 hn
<latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit><latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit><latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit><latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit>

h0 h1 h2 h3 hN�1 hN hn�1 hn
<latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit><latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit><latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit><latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit>

h0 h1 h2 h3 hN�1 hN hn�1 hn
<latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg=">AAACuHicdZHfS8MwEMfT+mvOX1UffQkOwQcd7VQUn4a++DQmuE3oRk3TbAtL05Kkwij9GwXf/G9MtyLa2QshX+5zd7lc/JhRqWz7yzDX1jc2t2rb9Z3dvf0D6/CoL6NEYNLDEYvEq48kYZSTnqKKkddYEBT6jAz82WPOB+9ESBrxFzWPyShEE07HFCOlXZ71MfQjFsh5qI90mnmpncHhRb5gmThZAeAKav2gMrmqLNe5dCqzOhmEVYzrvKqaPPOsht20FwZXhVOIBiis61mfwyDCSUi4wgxJ6Tp2rEYpEopiRrL6MJEkRniGJsTVkqOQyFG6GHwGz7QngONI6M0VXHh/Z6QolHl7OjJEairLLHf+x9xEje9GKeVxogjHy4vGCYMqgvkvwoAKghWba4GwoLpXiKdIIKz0X9f1EJzyk1dFv9V07KbzfN1oPxTjqIETcArOgQNuQRs8gS7oAWzcGK4RGMS8N9/MiUmXoaZR5ByDP2aKb+YP1lw=</latexit><latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit><latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit><latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg=">AAACuHicdZHfS8MwEMfT+mvOX1UffQkOwQcd7VQUn4a++DQmuE3oRk3TbAtL05Kkwij9GwXf/G9MtyLa2QshX+5zd7lc/JhRqWz7yzDX1jc2t2rb9Z3dvf0D6/CoL6NEYNLDEYvEq48kYZSTnqKKkddYEBT6jAz82WPOB+9ESBrxFzWPyShEE07HFCOlXZ71MfQjFsh5qI90mnmpncHhRb5gmThZAeAKav2gMrmqLNe5dCqzOhmEVYzrvKqaPPOsht20FwZXhVOIBiis61mfwyDCSUi4wgxJ6Tp2rEYpEopiRrL6MJEkRniGJsTVkqOQyFG6GHwGz7QngONI6M0VXHh/Z6QolHl7OjJEairLLHf+x9xEje9GKeVxogjHy4vGCYMqgvkvwoAKghWba4GwoLpXiKdIIKz0X9f1EJzyk1dFv9V07KbzfN1oPxTjqIETcArOgQNuQRs8gS7oAWzcGK4RGMS8N9/MiUmXoaZR5ByDP2aKb+YP1lw=</latexit>

(a)
<latexit sha1_base64="n0kiYe3Vk54ukV3OShxrr+ilFZI=">AAAB8XicbVBNS8NAEN34WetX1aOXxSLUS0lE0GPRi8cK9gPbUDbbSbt0swm7E7GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVHBo8lrFuB8yAFAoaKFBCO9HAokBCKxjdTP3WI2gjYnWP4wT8iA2UCAVnaKWHLsITZhV2NumVym7VnYEuEy8nZZKj3it9dfsxTyNQyCUzpuO5CfoZ0yi4hEmxmxpIGB+xAXQsVSwC42eziyf01Cp9GsbalkI6U39PZCwyZhwFtjNiODSL3lT8z+ukGF75mVBJiqD4fFGYSooxnb5P+0IDRzm2hHEt7K2UD5lmHG1IRRuCt/jyMmmeVz236t1dlGvXeRwFckxOSIV45JLUyC2pkwbhRJFn8kreHOO8OO/Ox7x1xclnjsgfOJ8/TryQqQ==</latexit><latexit sha1_base64="n0kiYe3Vk54ukV3OShxrr+ilFZI=">AAAB8XicbVBNS8NAEN34WetX1aOXxSLUS0lE0GPRi8cK9gPbUDbbSbt0swm7E7GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVHBo8lrFuB8yAFAoaKFBCO9HAokBCKxjdTP3WI2gjYnWP4wT8iA2UCAVnaKWHLsITZhV2NumVym7VnYEuEy8nZZKj3it9dfsxTyNQyCUzpuO5CfoZ0yi4hEmxmxpIGB+xAXQsVSwC42eziyf01Cp9GsbalkI6U39PZCwyZhwFtjNiODSL3lT8z+ukGF75mVBJiqD4fFGYSooxnb5P+0IDRzm2hHEt7K2UD5lmHG1IRRuCt/jyMmmeVz236t1dlGvXeRwFckxOSIV45JLUyC2pkwbhRJFn8kreHOO8OO/Ox7x1xclnjsgfOJ8/TryQqQ==</latexit><latexit sha1_base64="n0kiYe3Vk54ukV3OShxrr+ilFZI=">AAAB8XicbVBNS8NAEN34WetX1aOXxSLUS0lE0GPRi8cK9gPbUDbbSbt0swm7E7GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVHBo8lrFuB8yAFAoaKFBCO9HAokBCKxjdTP3WI2gjYnWP4wT8iA2UCAVnaKWHLsITZhV2NumVym7VnYEuEy8nZZKj3it9dfsxTyNQyCUzpuO5CfoZ0yi4hEmxmxpIGB+xAXQsVSwC42eziyf01Cp9GsbalkI6U39PZCwyZhwFtjNiODSL3lT8z+ukGF75mVBJiqD4fFGYSooxnb5P+0IDRzm2hHEt7K2UD5lmHG1IRRuCt/jyMmmeVz236t1dlGvXeRwFckxOSIV45JLUyC2pkwbhRJFn8kreHOO8OO/Ox7x1xclnjsgfOJ8/TryQqQ==</latexit><latexit sha1_base64="n0kiYe3Vk54ukV3OShxrr+ilFZI=">AAAB8XicbVBNS8NAEN34WetX1aOXxSLUS0lE0GPRi8cK9gPbUDbbSbt0swm7E7GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVHBo8lrFuB8yAFAoaKFBCO9HAokBCKxjdTP3WI2gjYnWP4wT8iA2UCAVnaKWHLsITZhV2NumVym7VnYEuEy8nZZKj3it9dfsxTyNQyCUzpuO5CfoZ0yi4hEmxmxpIGB+xAXQsVSwC42eziyf01Cp9GsbalkI6U39PZCwyZhwFtjNiODSL3lT8z+ukGF75mVBJiqD4fFGYSooxnb5P+0IDRzm2hHEt7K2UD5lmHG1IRRuCt/jyMmmeVz236t1dlGvXeRwFckxOSIV45JLUyC2pkwbhRJFn8kreHOO8OO/Ox7x1xclnjsgfOJ8/TryQqQ==</latexit>

h0 h1 h2 h3 hN�1 hN hn�1 hn
<latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit><latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit><latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit><latexit sha1_base64="clDwaWGdaobaYRA3Hntmi2Eh1Eg="></latexit>

Figure 4.2: (a) pRNN wave function: A graphical representation of the computation of
positive amplitudes using one RNN cell along with a Softmax layer (magenta circles) to
compute the modulus |ψ(σ)|2 = P (σ). (b) cRNN wave function: A graphical representa-
tion of the computation of complex amplitudes using one RNN cell along with a Softmax
layer (magenta circles) and a Softsign (SS) layer (orange circles). The first computes the
modulus |ψ(σ)|2 = P (σ), the second to computes the phase ϕ(σ) of ψ(σ).
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Thus, we re-iterate this recursion relation to obtain

hn = αn−mhm + βαn−m−1σm + . . . ,

for m < n. The dots refer to the rest of the terms that are not relevant to our discussion.
From the last expression, we can see that the partial derivative

∂hn
∂hm

= αn−m.

If |α| < 1, then the contributions to the gradient of a loss function decay exponentially
with the distances n−m. In this case, we are dealing with a vanishing gradient problem.
Otherwise, for |α| > 1, we obtain very large gradients that can make the gradient descent
optimization very unstable. This issue is also known in the literature as the exploding
gradient problem. A more detailed discussion about this problem can be found in Ref. [124].
It is also interesting to see that the magnitude of the term connected to σm can either
grow or decrease exponentially in n −m which signals either the loss or the explosion of
correlations propagated from large distances.

Fortunately, to go around some of the limitations of the exploding gradient problem,
one can apply gradient clipping techniques [130]. Dealing with the vanishing gradient
problem is a much harder task since long-distance information can get lost in the presence
of noise in the gradients. One way to help mitigate this problem is through the use of
other variants of RNN cells as shown in the following section. Other ways to mitigate
these limitations are discussed in Ref. [130].

4.7 Gated RNNs

Extensions of the vanilla RNN have been proposed [57, 133] in order to go around
the limitations of the vanishing gradient problem. Two successful examples are the long
short-term memory (LSTM) unit [57], and the gated recurrent unit (GRU) [133]. In this
thesis, we focus on GRUs as extensions to vanilla RNNs. The use of LSTMs could be a
valuable improvement on top of GRUs.

Let us get started with the minimal version of GRUs which consist of replacing the
simple recursion relation of a vanilla RNN with the following recursion relations:

h̃n = tanh (W [hn−1;σn−1] + b) , (4.15)

un = sig (Wu [hn−1;σn−1] + bu) ,

hn = (1 − un) ⊙ hn−1 + un ⊙ h̃n,
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Figure 4.3: Graphical representation of the gated recurrent unit cell described in Eq. (4.16).
The magenta circles/ellipses represent point-wise operations such as vector addition or
multiplication. The blue rectangles represent neural network layers labeled by the non-
linearity we use. Merging lines denote vector concatenation and forking lines denote a copy
operation. The sigmoid activation function is represented by σ. Credit: Juan Carrasquilla.

where ‘sig’ and ‘tanh’ represent the sigmoid and hyperbolic tangent activation functions,
respectively. Thus, the hidden vector hn is updated through an interpolation between
the previous hidden state hn−1 and a candidate hidden state h̃n. The update gate un

decides to what extent the contents of the hidden state are modified, and depends on how
relevant the input σn−1 is to the prediction (Softmax layer). The symbol ⊙ denotes the
pointwise (Hadamard) product. It is important to note that the components of hn are
always between −1 and 1 as we are using ‘sig’ and ‘tanh’.

In addition to the minimal version of GRUs, one can define an advanced GRU cell, as
introduced in Ref. [133], which processes the spin configurations σ as

un = sig (Wu [hn−1;σn−1] + bu) , (4.16)

rn = sig (Wr [hn−1;σn−1] + br) ,

h̃n = tanh (Wc [rn ⊙ hn−1;σn−1] + bc) ,

hn = (1 − un) ⊙ hn−1 + un ⊙ h̃n.

The additional reset gate in this GRU implementation is modeled by the vector rn, such
that if the i-th component rn is close to zero, it cancels out the i-th component of the
hidden vector state hn−1, effectively making the GRU “forget” part of the sequence that
has already been encoded in the state vector hn−1. The weights matrices Wu,r,c and the bias
vectors bu,r,c parametrize the GRU and are optimized using variational energy minimization
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as described in Chap. 3. The GRU transformations in Eq. (4.15) are depicted graphically
in Fig. 4.3.

To take advantage of the GPU speed up, we use instead the cuDNN variant of GRUs
implemented in Tensorflow [134], with

un = sig (Wu [hn−1;σn−1] + bu) , (4.17)

rn = sig (Wr [hn−1;σn−1] + br) ,

h′
n = W (1)

c hn−1 + b(1)c ,

h̃n = tanh
(
W (2)

c σn−1 + rn ⊙ h′
n + b(2)c

)
,

hn = (1 − un) ⊙ hn−1 + un ⊙ h̃n,

which differs slightly from the above implementation of traditional GRU cells [135]. As a
final note, to distinguish between the different RNN cells, we denote an RNN ansatz based
on GRUs as a GRU wave function to distinguish it from RNN wave functions based on
vanilla RNN cells.

4.8 Multi-dimensional RNNs

Standard RNN architectures are typically one-dimensional. However, the most in-
teresting quantum many-body systems live in higher dimensions. By taking inspiration
from Refs. [58, 136, 137], we generalize one-dimensional RNNs to multi-dimensional RNN
wave functions. In particular, we generalize to two-dimensional vanilla RNNs (2D RNNs)
that are more suitable for simulating two-dimensional square lattices than one-dimensional
RNNs, which map two-dimensional lattice configurations to one-dimensional configurations
and do not necessarily encode spatial information about neighboring sites in a plausible
manner.

The main idea behind the implementation of 2D RNNs [58] is to replace the single
hidden state that is passed from one site to another with two hidden states, with each
one corresponding to the state of a neighboring site (vertical and horizontal) and hence
respecting the 2D geometry of the problem. To do so, we change the one-dimensional
recursion relation in (4.3) to the two-dimensional recursion relation

hi,j = f
(
W (h)[hi−1,j;σi−1,j] +W (v)[hi,j−1;σi,j−1] + b

)
, (4.18)

where hi,j is the hidden state at site (i, j), W (v,h) are weight matrices and b is a bias. Here
f is a non-linear activation function, which is typically taken in this study to be equal to
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Figure 4.4: (a) A graphical illustration of a 2D RNN. Each RNN cell receives two hidden
states hi,j−1 and hi−1,j, as well as two input vectors σi,j−1 and σi−1,j (not shown) as
illustrated by the black arrows. The red arrows correspond to the zigzag path we use for
2D autoregressive sampling. The initial memory state h0 of the RNN and the initial inputs
σ0 (not shown) are null vectors. (b) A 2D periodic RNN that takes periodic boundary
conditions into account. RNN cells at the boundary receive an additional hi,mod(j+1,L)

and hmod(i+1,L),j, as well as two input vectors σi,mod(j+1,L) and σmod(i+1,L),j (not shown) as
demonstrated by the green solid arrows.
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the Exponential Linear Unit “ELU” [138] defined as

ELU(x) =

{
x, if x ≥ 0 ,

exp(x) − 1, if x < 0 .

This activation has shown good results in this study. However, the optimal choice of an
activation function is still an open area of research. The cost of computing a new hidden
state hi,j is quadratic in the size of the hidden state (number of memory units dh), and
the cost of computing the gradients with respect to the variational parameters of the 2D
RNN remains unchanged. This property allows training 2D RNNs with a relatively large
dh. It is also very inexpensive compared to, e.g., the expensive variational optimization of
projected entangled pair states (PEPS) [139], which scales as χ2D̃6 (where D̃ the PEPS
bond dimension and χ is the bond dimension of the intermediate MPS) [140].

The scheme for computing positive or complex amplitudes from Sec. 4.5 remains the
same. We note that the coordinates (i − 1, j) and (i, j − 1) are path-dependent, and are
given by the zigzag path, illustrated by the black arrows in Fig. 4.4(a). Moreover, to
sample configurations from the 2D RNNs, we use the same zigzag path as illustrated by
the red dashed arrows in Fig. 4.4(a). Once hi,j is computed, we apply the same scheme as
in Sec. 4.4 to sample a spin σi,j.

It is important to note that the use of a zigzag path allows for circumventing the use
of non-local recurrent connections that are not expected to be efficient compared to local
recurrent connections. From the perspective of tensor networks, this intuition is inspired by
the efficiency of pair-entangled project states (PEPS) compared to matrix product states
(MPS) in terms of the bond dimension size, where non-local bonds tend to carry a large
amount of entanglement compared to other local bonds. Overall, a good rule of thumb is
to choose a sampling path that avoids non-local recurrent connections. An optimal choice
of a sampling path is an interesting research direction to be investigated in a future study.

We note that generalization to higher dimensions, to other lattices, as well as to other
types of RNN architectures can be done by taking inspiration from this scheme. For in-
stance, using LSTMs [57], GRUs [133] or Transformers [53] instead of vanilla RNNs in 2D
is expected to make a significant improvement. The use of multiplicative interactions [141]
is expected to increase the expressiveness of 2D RNNs as compared to the additive inter-
actions in (4.18). This point is illustrated further in the next section where we show how
to build a tensorized version of RNNs.

For the sake of concreteness, let us define an RNN in three spatial dimensions. In this
case, one can generalize the previous ideas to a 3D RNN, which in its vanilla form is based
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Figure 4.5: A graphical illustration of a 3D RNN. Here the hidden states’ indices and the
inputs’ indices are promoted to 3D. Each RNN cell receives three hidden states hi−1,j,k,
hi,j−1,k, and hi,j,k−1, as well as three input vectors σi−1,j,k, σi,j−1,k, and σi,j,k−1 (not shown)
as illustrated by the black arrows. At the output, we obtain a new hidden state hi,j,k as
indicated by the red arrows.

on the following recursion relation:

hi,j,k = f(W [σi−1,j,k;hi−1,j,k;σi,j−1,k;hi,j−1,k;σi,j,k−1;hi,j,k−1] + b).

Here, each new hidden state is computed based on the neighboring hidden states and the
neighboring inputs as illustrated in Fig. 4.5. An optimal sampling path can be taken as a
zigzag path in the 3D lattice in a similar fashion to 2D to avoid passing non-local recurrent
connections. Generalizations to a gated version of the 3D RNN can be devised in a similar
fashion to the gated RNN in Sec. 4.7.

4.9 Tensorized RNNs

In this section, we show how to build a tensorized version of RNNs, which is inspired by
the contraction operations in Tensor Networks [142, 143]. The latter involves multiplicative
interactions between spins as opposed to additive interaction in a vanilla RNN. A concrete
incentive for using multiplicative interactions is motivated in App. D.1, where we show more
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compact constructions of the traditional probability distributions when using multiplicative
interactions compared to additive interactions. Our version of tensorized RNNs consists of
replacing the concatenation operation in Eq. (4.3) with the operation [144]

hn = F
(
σ⊺

n−1Thn−1 + b
)
, (4.19)

where σ⊺ is the transpose of σ, and the variational parameters λ are T , U , b and cn.
This form of tensorized RNNs increases the expressiveness of our ansatz as we illustrate in
Chap. 5.

For two-dimensional systems, we extend our 1D tensorized RNN to a 2D version through
the following recursion relation:

hi,j = F ([σi−1,j;σi,j−1]T [hi−1,j;hi,j−1] + b) . (4.20)

The tuneable arrays T and b correspond to a tensor and biases, respectively. An interesting
combination that one can think about is the incorporation of the gating mechanism in our
2D tensorized RNN cell. We will show in the next chapter that this mechanism allows for
improving the accuracy of our variational calculations. A tensorized gated RNN cell can
be built through the following recursion relations:

h̃i,j = tanh([σi−1,j;σi,j−1]T [hi−1,j;hi,j−1] + b) , (4.21)

ui,j = sigmoid([σi−1,j;σi,j−1]Tg[hi−1,j;hi,j−1] + bg) , (4.22)

hi,j = ui,j ⊙ h̃i,j + (1 − ui,j) ⊙ (W [hi−1,j;hi,j−1]). (4.23)

Here we obtain the state hi,j through a combination of the neighbouring hidden states

hi−1,j,hi,j−1 and the candidate hidden state h̃i,j. The update gate ui,j decides how much

the candidate hidden state h̃i,j will be modified. The latter combination allows circum-
venting some of the limitations related to the vanishing gradient problem [132, 145]. Note
that the size of the hidden state hi,j that we denote as dh is a hyperparameter that we
choose before optimizing the parameters of our ansatz. Overall, one can generalize each
RNN cell in a specific spatial dimension to a tensorized version to improve its expressivity.

Hereafter, we denote an ansatz based on tensorized RNN as a ‘TRNN’ and an ansatz
made of tensorized gated RNN as ‘TGRU’. Finally, we would like to note that after the
publication of this work in Ref. [108], another approach to implement tensorized RNNs
has been suggested in Ref. [146]. This reference also shows that these architectures with a
specific design can encode the area law of entanglement in two spatial dimensions.
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4.10 Dilated RNNs

To account for the long-distance nature of the correlations induced in a physical sys-
tem, we use dilated RNNs [147], which are known to alleviate the vanishing gradient
problem [128]. Dilated RNNs are multi-layered RNNs that use dilated connections be-
tween spins to model long-term dependencies [148], as illustrated in Fig. 4.6. At each layer
1 ≤ l ≤ L, the hidden state is computed as

h(l)
n = F (W (l)

n [h
(l)

max(0,n−2l−1)
;h(l−1)

n ] + b(l)n ).

Here h
(0)
n = σn−1 and the conditional probability is given by

Pλ(σn|σ<n) = Softmax(Unh
(L)
n + cn) · σn.

In our work, we choose the size of the hidden states h
(l)
n , where l > 0, as constant and

equal to dh. We also use a number of layers L = ⌈log2(N)⌉, where N is the number of
spins and ⌈. . .⌉ is the ceiling function. This means that two spins are connected with a
path whose length is bounded by O(log2(N)), which follows the spirit of the multi-scale
renormalization ansatz (MERA) [149]. Hereafter, we denote this ansatz as ‘DRNN’.

4.11 Symmetric RNNs

4.11.1 Imposing discrete symmetries

Inspired by Refs. [105, 150], we propose to implement discrete symmetries in a similar
fashion for RNN wave functions without spoiling their autoregressive nature. Assuming
that a Hamiltonian Ĥ has a symmetry under discrete transformations T , its excited states

|Ψe⟩ =
∑

σ

Ψe(σ) |σ⟩

are eigenvectors of the symmetry transformation T . An excited state transforms as

Ψe(T σ) = ωT Ψe(σ), (4.24)

where ωT is an eigenvalue with module 1, which is independent of the choice of σ. This
phase verifies the multiplicative law ωT̃ ωT = ωT̃ T for any two symmetry transformations
T̃ and T . Additionally, the phases ωT can be obtained from each symmetry through the
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Figure 4.6: An illustration of a dilated RNN, where the distance between each couple of
RNN cells grows exponentially with depth to account for long-term dependencies. We
choose depth L = ⌈log2(N)⌉ where N is the number of spins.

symmetry group character [104]. The transformation law (4.24) implies that the transfor-
mation T changes an eigenstate state with only a global phase term that does not affect
the probability distribution. It is thus desirable that our RNN wave function satisfies this
symmetry transformation. This approach is very helpful for targeting excited states as
discussed in Sec. 3.9.

To enforce a discrete symmetry on an RNN wave function |Ψλ⟩, we implement the
following scheme:

• Generate a sample σ autoregressively from the RNN wave function.

• Sample with a probability 1/Card(G) a transformation T from the symmetry trans-
formation group G = {Id, T1, ...} that leaves the Hamiltonian Ĥ invariant, and apply
the transformation T to σ.

• Assign to the spin configuration σ̃ = T σ the amplitude Ψ′
λ(σ̃) =

√
P ′
λ(σ̃) exp(iϕ′

λ(σ̃)),
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such that

P ′
λ(σ̃) =

1

|G|


∑

T̃ ∈G

Pλ

(
T̃ σ
)

 , (4.25)

ϕ′
λ(σ̃) = Arg


∑

T̃ ∈G

ω−1

T̃ exp
(

iϕλ

(
T̃ σ
))

 , (4.26)

where Pλ(T̃ σ) is a probability generated by the Softmax layer and ϕλ(T̃ σ) is a phase
generated by the Softsign layer, as explained in Sec. 4.5. The multiplicative law of
the phase ωT allows showing that our symmetrized complex RNN wave functions
satisfy the property (4.24).

For a ground state, the phases ωT are typically equal to one for a symmetrical Hamil-
tonian [151]. In this case, we obtain a simpler scheme for targeting ground states. If the
ground state is positive as in stoquastic Hamiltonians [126], we use the same algorithm
but only symmetrize the probability Pλ, since there is no need to use the phases ϕλ(σ).

For concreteness, we illustrate the algorithm above with “Symmetric RNNs” that have a
built-in parity symmetry and are used in Sec. 5.1.1. Symmetric RNNs can be implemented
using the following procedure:

• Sample each configuration σ.

• Choose to apply or to not apply the parity transformation P̂ on σ with a probability
1/2.

• Assign to σ the probability:

P ′(σ)λ =

(
Pλ (σ) + Pλ

(
P̂σ
))

2
.

As a final note, the separation between the symmetrization of the probabilities and the
phases in Eqs. (4.25), (4.26) allows to conserve the autoregressive property of our RNN
wave function. We would like to point out that other symmetrization schemes for applying
point group symmetries have been investigated in the literature as shown in Ref. [152].
However, they are shown to spoil the autoregressive property of the RNN [152]. The
design of more efficient symmetrization schemes that preserves the autoregressive property
of RNNs is of great use for getting accurate variational calculations.
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4.11.2 Imposing U(1) symmetry and SU(2) symmetry

Since a large class of ground states has conserved magnetization, i.e., a U(1) symme-
try [153, 154], it is helpful to enforce this constraint on our RNN wave functions to get
accurate estimations of the ground state energy. An example is the ground state of the
quantum Heisenberg model. To do so, we propose an efficient way to generate samples
with zero magnetization while maintaining the autoregressive property of the RNN wave
function. The procedure effectively applies a projector PSz=0 to the original state, which
restricts the RNN wave function to the subspace of configurations with zero magnetization.
This procedure avoids generating a large number of samples and discarding the ones that
have non-zero magnetization.

The condition of zero magnetization implies that the number of up spins should be
equal to the number of down spins. To satisfy this constraint, we utilize the following
algorithm:

• Autogressively sample the first half of the spin configuration (σ1, σ2, ..., σN/2)

• At each step i > N/2:

– Generate the output of the RNN wave function: yi = (ψdown
i , ψup

i ) where ψdown
i ,

ψup
i are both non-zero and whose modules squared sum to 1.

– Define the following amplitudes:

ai = ψdown
i × Ξ

(
N

2
−Ndown(i)

)
,

bi = ψup
i × Ξ

(
N

2
−Nup(i)

)
,

where

Ξ(x) ≡
{

1, if x > 0 ,

0, if x ≤ 0 ,

and

Ndown(i) = Card ({j /σj = 0 and j < i}) ,

Nup(i) = Card ({j /σj = 1 and j < i}) .

In words, Nup(i)/Ndown(i) is the number of up/down spins generated before step
i.
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– Sample σi from |ỹi|2, where:

ỹi =
1√

a2i + b2i
(ai, bi)

which is normalized, i.e. ||ỹi||2 = 1.

Using this algorithm, it is clear that the RNN wave function will generate a spin configura-
tion that has the same number of up spins and down spins, and hence a zero magnetization.
In fact, at each step i > N/2, the function Ξ assigns a zero amplitude for the next spin σi
to be spin up if Nup(i) = N/2 or to be spin down if Ndown(i) = N/2.

Our scheme does not spoil the normalization of the RNN wave function as the new con-
ditional probabilities |ỹi|2 are also normalized. We also note that this algorithm preserves
the autoregressive property of the original RNN wave function and can also be parallelized.
Moreover, this scheme can be easily extended to the generation of samples with a non-zero
fixed magnetization, which is useful when considering the problem of finding excited states
that live in a non-zero fixed magnetization sector.

In order to apply SU(2) symmetry on the RNN, one can do a change of basis to the
j-basis [155] and apply the same trick provided in this section in order to project our model
to the total spin quantum number j section [156]. It is not clear up to date whether this
approach can improve the accuracy of a variational calculation targeting the ground state.
However, we believe that this trick can be beneficial when the goal is to target an excited
state with a specific quantum number j.

4.12 RNNs for special lattices

We have seen in Sec. 4.8 how to define an RNN wave function for regular lattices
such as the square and the cubic lattices. For other types of lattices, it is challenging
to define a customized RNN that can efficiently handle the particular structure of the
lattice. One approach is to add recurrent connections to physically mimic the interactions
between different degrees of freedom. This approach can be done through the use of graph
RNN [157]. Another simpler approach is through the use of an enlarged Hilbert space as
described below.

Let us take the example of the configurations of the 2D toric code model [158] that can
be mapped to a L×L× 2 array of spins where L is the number of plaquettes on each side.
To take that into account, we enlarge the local Hilbert space dimension in the RNN from
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Figure 4.7: Mapping of 2D toric code lattice and Kagome lattice to a square lattice that
can be handled by a 2D RNN wave function.

2 to 4 to be able to feed-in/sample two spins to/from the RNN at once. Using this idea,
we can use our 2D RNN with an enlarged local Hilbert space to study the 2D toric code,
as illustrated in Fig. 4.7(a).

Another example is the spin-1/2 Kagome lattice whose configurations can be mapped
to an L × L × 3 array of binary degrees of freedom where L is the size of each side of
the Kagome lattice. Taking this observation into account, we can enlarge the local Hilbert
space size from 2 to 8 to be able to feed in/sample 3 spins locally at once to/from the 2D
RNN, as illustrated in Fig. 4.7(b). The latter allows us to map our Kagome lattice with
a local Hilbert space of 2 to a square lattice with an enlarged Hilbert space of size 23 = 8
and which we can study using our 2D RNN wave function.

We would like to point out that these ideas are also applicable to adapting 1D RNNs
to the study of quasi-1D systems, as well as 2D RNNs to the study of quasi-2D systems in
a similar manner to how DMRG is used to study quasi-1D systems [159].

As a concluding note, a good rule of thumb is to identify a unit cell in a lattice of
interest. This step allows us to transform it into a regular lattice with an enlarged local
Hilbert space that can be well-studied with a D-dimensional RNN.

4.13 On weight sharing in RNNs

For physical systems with translation invariance, it is natural to use the same weights
for each RNN cell across all sites as illustrated in the recursion relation (4.3) and in the
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Softmax layer (4.4). This property promotes the use of trained RNNs on small system
sizes as initialization of RNNs targeting a many-body system with larger system sizes as
numerically demonstrated in Refs. [35, 108]. A numerical illustration of this idea is given
in Sec. 6.7.

For disordered systems such as spin glass models, it is intuitive to forgo the common
practice of weight sharing in RNNs [124]. In particular, for a vanilla RNN one can use an
extended set of site-dependent variational parameters λ comprised of {Wn}Nn=1, {Vn}Nn=1

and {Un}Nn=1 and biases {bn}Nn=1, {cn}Nn=1. The recursion relation (4.3) and the Softmax
layer (4.4) are modified to

hn = f(Wnhn−1 + Vnσn−1 + bn), (4.27)

and
Pλ(σn|σ<n) = Softmax(Unhn + cn) · σn, (4.28)

respectively. This scheme also applies to other RNNs cells in 1D or higher dimensions.
The advantage of using site-dependent parameters for disordered systems is numerically
demonstrated in Chap. 6.

4.14 RNNs for periodic boundary conditions

In the previous chapters, we have seen how to use recurrent neural networks as an
ansatz wave function for 1D, 2D, and multi-dimensional systems. We have also seen in
Sec. 4.6 that information from inputs at long distances can get lost due to the vanishing
gradient problem. In particular variables at the boundaries can be weakly correlated in a
conventional RNN. In this section, we show how to add extra recurrent connections to our
RNNs to go around this limitation thus obtaining a periodic version of RNNs.

Let us take the example of two-dimensional quantum systems with periodic bound-
ary conditions. To study these systems with 2D RNNs, we modify our two-dimensional
recursion in Eq. (4.18) as follows:

hi,j = f
(
W [σi−1,j;σi,j−1;σmod(i+1,L),j;σi,mod(j+1,L);

hi−1,j;hi,j−1;hmod(i+1,L),j;hi,mod(j+1,L)] + b
)
. (4.29)

hi,j is a hidden state with two indices for each spin in the 2D lattice. Furthermore, f is an
activation function. After obtaining hi,j, the conditional probabilities can be computed as
follows

pθ(σi,j|σ<i,j) = Softmax(Uhi,j + c) · σi,j. (4.30)
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The additional spin inputs σmod(i+1,L),j, σi,mod(j+1,L) and the hidden states hmod(i+1,L),j,
hi,mod(j+1,L) allow to take periodic boundary conditions into account and to introduce extra
correlations between variables at the boundaries. This approach has been also suggested
and implemented in Ref. [156]. We note that during the process of autoregressive sampling,
if one of these additional vectors is not defined, we initialize it to a null vector to preserve
the autoregressive nature of our scheme as illustrated in Fig. 4.4(b). Additionally, this
figure illustrates the autoregressive sampling path as well as how information is being
transferred from one RNN to another.

Furthermore, one can define an advanced version of 2D periodic RNN by incorporating
the gating mechanism as it was previously done in Secs. 4.7, 4.9 and Refs. [156, 160]. If
we define

h′
i,j = [hi−1,j;hi,j−1;hmod(i+1,L),j;hi,mod(j+1,L)],

σ′
i,j = [σi−1,j;σi,j−1;σmod(i+1,L),j;σi,mod(j+1,L)],

then our gated 2D RNN wave function ansatz is based on the following recursion relations:

h̃i,j = tanh
(
W [σ′

i,j;h
′
i,j] + b

)
,

ui,j = sigmoid
(
Wg[σ

′
i,j;h

′
i,j] + bg

)
,

hi,j = ui,j ⊙ h̃i,j + (1 − ui,j) ⊙ (Uh′
i,j).

A hidden state hi,j can be obtained by combining a candidate state h̃i,j and the neighbour-
ing hidden states hi−1,j,hi,j−1,hmod(i+1,L),j,hi,mod(j+1,L). The update gate ui,j determines

how much of the candidate hidden state h̃i,j will be taken into account and how much of
the neighboring states will be considered. With this combination, it is possible to circum-
vent some limitations of the vanishing gradient problems [132, 145]. The weight matrices
W,Wg, U and the biases b, bg are variational parameters of our RNN ansatz. Note that
we choose the size of the hidden state hi,j, which we denote as dh, before optimizing our
ansatz’s parameters.

4.15 Computational complexity of RNNs

In addition to their flexibility, RNNs are a very suitable class of ansätzes by virtue of
their cheaper computational cost compared to other autoregressive models such as con-
ventional transformers [53]. For RNNs defined in this chapter, the cost of computing a
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hidden state through any recursion relation that involves local neighbors scales as O(d2h).
Thus for a D-dimensional RNN, the cost of a forward pass of a configuration of N inputs
scales as O(Nd2h). For a dilated RNN with a logarithmic number of layers, this cost scales
as O(N log(N)d2h). It is also worth noting that the cost of sampling a configuration is the
same.

For an autoregressive feed-forward neural network [105], the cost of sampling and
forward-pass scales quadratically with the system size N . For a regular Transformer [53],
the cost of sampling scales as N3. Furthermore, the memory footprint of the two previous
models is quadratic in N as opposed to RNNs which have a lower memory cost1. These
crucial differences make RNNs more suitable to reach larger systems and more economical
for large-scale experiments with a modest GPU compute budget for each training iteration.
Note that there are also other variations of transformers with linear scaling in the system
size [161, 162]. There are also different versions for the transformer that rely on dividing
the system into multiple chunks to reduce the computational complexity [163]. It would be
interesting in future investigations to check how these alternatives compare to the different
variations of the RNN both in terms of runtime and accuracy. A recent study [164] is a
step forward in this direction that showed promising results in comparison to the 1D RNN.

4.16 Conclusion

In this chapter, we presented RNNs as efficient and flexible autoregressive models. We
have shown how they can be defined as efficient ansatz wave functions and trial probabil-
ity distributions to study physical systems in multiple spatial dimensions and with a wide
range of connectivities. We have also shown different ways to boost their performances,
namely through the use of symmetries, lattice structures, gating mechanisms, and dilated
recurrent connections. We also showed the advantage of RNNs compared to other au-
toregressive models in terms of computational cost. In Chap. 5, we show the potential of
these architectures in achieving accurate variational calculations on prototypical quantum
systems in 1D, 2D and 3D. In Chap. 6, we illustrate how to use these architectures for solv-
ing combinatorial optimization problems by taking advantage of the physical principle of
annealing. In Chap. 7, we show the potential of RNN wave functions in investigating topo-
logical properties of quantum many-body systems. Additionally, by virtue of the RNN’s
flexibility, we demonstrate their use in special lattices such as the Kagome lattice. Lastly in
Chap. 8, we show theoretical constructions of traditional distributions using RNNs. Note

1Linear memory footprint except for dilated RNNs which have an additional logarithmic factor.
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that Tab. 4.16 provides a summary of the desirable features of RNNs presented in this
chapter.
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RNN properties Details

Sampling Perfect autoregressive sampling (see Sec. 4.4)

Normalization
RNN probabilities and amplitudes are normalized to 1
(see Sec. 4.4)

Amplitudes Positive and complex RNN wave functions (see Sec. 4.5)

RNN spatial dimension Multiple spatial dimensions (see Sec. 4.8)

Types of RNN cells
Vanilla RNN (Sec. 4.4), Gated recurrent unit (Sec. 4.7),
tensorized RNN (Sec. 4.9), and dilated RNNs (Sec. 4.10)

Estimating observables See Sec. 3.7

Estimating entanglement
properties

See Sec. 3.8

Discrete symmetry Point group symmetries (see Sec. 4.11.1)

Continuous symmetry
U(1) symmetry and SU(2) symmetry (see Sec. 4.11.2)

Special lattices
See Sec. 4.12

Disorder / Translation in-
variance in the bulk

See Sec. 4.13

Boundary conditions Open and periodic boundary conditions (see Sec. 4.14)

Complexity of a forward
pass and a backward pass

O(Nd2h), except O(N log(N)d2h) for dilated RNNs (see
Sec. 4.15)

Table 4.1: A table summarizing the RNN properties that are discussed in this chapter.
Here N is the system size and dh is the hidden dimension (number of memory units).
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Chapter 5

Benchmarking RNNs on prototypical
many-body systems

This chapter contains results and material from Refs. [43, 106,
108], in addition to other material not published elsewhere.

In the previous chapter, we focused on the definition of RNN wave functions as an
efficient and flexible ansätze that can as a trial wave function for a wide range of quantum
many-body systems. We learned how to define a positive and a complex RNN wave func-
tion. Additionally, we provided different improvements that could be added to the RNN
cells to boost their performance such as symmetry, gating mechanism, RNN tensorization
procedure, and dilated recurrent connections. We also motivated their cheap computa-
tion budget compared to other autoregressive models. To investigate the efficiency of these
wave functions, we put them to the test by targeting the ground state of prototypical quan-
tum many-body systems. In Sec. 5.1.1, we demonstrate the potential of 1D positive RNN
wave functions in finding the ground state of the 1D transverse-field Ising model (TFIM).
In Sec. 5.1.2, we shift our attention to 1D J1-J2 model where we show the potential of
complex RNN wave functions. We then demonstrate the value of 2D RNNs in Chap. 5.2
toward finding the ground state of the 2D TFIM, and the 2D Heisenberg model on the
square lattice. We also target the excited state of the 2D J1-J2 model on a square lattice
to showcase the possibility of computing low-energy excitation gaps, which are helpful to
infer whether a ground state is gapless or not. Additionally, Sec. 5.4 shows the ability
of RNNs to extract the critical phase transition point and critical exponents through a
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finite-size scaling study of the 3D TFIM. Finally, in Sec. 5.5 we end this chapter with a
benchmark study of the effect of different RNN hyperparameters on the 1D and 2D TFIM.

5.1 One-dimensional systems

5.1.1 1D transverse-field Ising model

In this section, we focus our attention on the ground state properties of the 1D trans-
verse field Ising model (TFIM), with open boundary conditions (OBC), and that has the
following Hamiltonian:

ĤTFIM = −
∑

⟨i,j⟩
σ̂z
i σ̂

z
j − h

∑

i

σ̂x
i , (5.1)

where σ̂
(x,y,z)
i are Pauli matrices acting on site i. To demonstrate the power of our proposed

method, we use it to target the ground state of a TFIM in 1D with N = 1000 spins at
the critical point h = 1 using a pGRU wave function that has a single-layer GRU with 50
memory units (see Eqs. 4.17 in Sec. 4.7). In Fig. 5.1, we show the evolution of the relative
error

ϵ ≡ |ERNN − EDMRG|
|EDMRG|

, (5.2)

and the energy variance per spin (see Eq. (3.12)) as a function of the training step. EDMRG is
the ground state energy as obtained from a density matrix renormalization group (DMRG)
calculation [165, 166], and can be considered exact in 1D. We obtain very accurate results
with a modest number of parameters ∼ 8000. For comparison, the number of parameters
of a restricted Boltzmann machine (RBM) [37] with one layer scales as MN with M the
number of hidden units and N the number of physical spins. This scaling implies that the
pRNN wave function here has the same number of variational parameters as an RBM with
only 8 hidden units.

While energies and variances give a quantitative indication of the quality of a varia-
tional wave function, correlation functions provide a more comprehensive characterization.
Indeed, correlation functions are at the heart of condensed matter theory since many exper-
imental probes in condensed matter physics directly relate to measurements of correlation
functions. Examples include inelastic scattering, which probes density-density correlation
functions, and Green’s functions, out of which important thermodynamic properties of a
quantum system can be computed [167]. In Fig. 5.2 we compare the RNN results for the
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two-point correlation functions ⟨Ŝx
nŜ

x
m⟩ and ⟨Ŝz

nŜ
z
m⟩ with DMRG. Here, we see consistency

between the RNN and the DMRG results.

Extracting entanglement entropy (EE) from many-body quantum systems is a central
theme in condensed matter physics, with EE providing an additional window into the struc-
ture of complex quantum states of matter beyond what is seen from correlation functions.
Here, we use the replica trick [68] to calculate the α = 2 Rényi entropy S2(ρ) for RNN
wave functions as described in Sec. 3.8. In Fig. 5.3, we show results for the Rényi entropy
S2(ρℓ) for two different system sizes N = 20, 80 of 1D TFIM. ρℓ here is the reduced density
matrix on the first ℓ sites of the spin chain, obtained by tracing out all sites n ∈ [ℓ+ 1, L]
such that

ρℓ = Trn∈[ℓ+1,L] (|Ψ⟩ ⟨Ψ|) . (5.3)

Indeed for both system sizes, 5.3 shows excellent agreement between the pRNN wave
function estimation and the DMRG result. To improve the overall quality of the quantum
state, we have enforced the parity symmetry on our pRNN wave function (see Sec. 4.11.1),
denoted by “Symmetric RNN” in Fig. 5.3. We observe that the symmetric pRNN wave
function leads to a more accurate estimate of S2(ρℓ) for N = 80 sites.

For reproducibility purposes, we are providing the hyperparameters used to produce
the results of this section are given in App. A.1.

Figure 5.1: The relative error ϵ and the energy variance per spin σ2 for N = 1000 spins.
We use only 200 samples per gradient step, which are enough to achieve convergence.
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Figure 5.2: The two point correlation function ⟨Ŝ40Ŝn⟩ along the x-axis and z-axis of the
optimized pRNN wave function for sites n > 40 using 106 samples. DMRG results are also
shown for comparison. The error bars are smaller than the data points.

Figure 5.3: The Rényi entropy S2 against the relative size of subregion A for system sizes
N = 20 and N = 80. The error bars are smaller than the data points.
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5.1.2 1D J1 − J2 model

Moving beyond stoquastic Hamiltonians, we now investigate the performance of RNN
wave functions for a Hamiltonian whose ground state has a sign structure in the compu-
tational basis, specifically the J1-J2 model in one dimension given by

ĤJ1J2 = J1
∑

⟨i,j⟩
Ŝi · Ŝj + J2

∑

⟨⟨i,j⟩⟩
Ŝi · Ŝj. (5.4)

where Si is a spin-1/2 operator. Here, ⟨i, j⟩ and ⟨⟨i, j⟩⟩ denote nearest and next-to-nearest
neighbor pairs, respectively. Energies for the J1-J2 model are measured in units of J1 = 1
in the results that follow.

We use a variationally optimized deep cRNN wave function with three GRU layers,
each with 100 memory units, to approximate the ground state of the J1-J2 model. The
phase diagram of this model has been studied with DMRG [168], where it was found that
the model exhibits a quantum phase transition at J c

2 = 0.241167±0.000005 [169, 170] from
a critical Luttinger liquid phase for J2 ≤ J c

2 to a spontaneously dimerized gapped valence
bond state phase for J2 ≥ J c

2 .

We impose U(1) spin symmetry in the cRNN wave function (see Sec. 4.11.2), and
target the ground state at four different points J2 = 0.0, 0.2, 0.5, 0.8. Note that at J2 = 0,
the Hamiltonian Eq. (5.4) can be made stoquastic by a local unitary transformation that
rotates every other spin by π around the z-axis. The ground state can in this case be
decomposed as [153]

ψ(σ) = (−1)MA(σ)ψ̃(σ), (5.5)

where MA(σ) is given by MA(σ) =
∑

i∈A σi with σi ∈ {0, 1} [153] and ψ̃(σ) is the positive
amplitude of the wave function. The set A comprises the sites belonging to the sublattice of
all even (or all odd) sites in the lattice. The prefactor (−1)MA(σ) is known as the Marshall
sign of the wave function [153]. For J2 ̸= 0, this decomposition is no longer exact, and
ψ̃(σ) acquires a non-trivial sign structure. For finite J2 the decomposition in Eq. (5.5) can
still be applied with the hope that the sign structure of ψ(σ) remains close to the Marshall
sign [171].

In Fig. 5.4, we compare ground state energies of the cRNN wave function trained on the
1D J1-J2 model with N = 100 spins with and without applying a Marshall sign. For small
values of J2, we find a considerable improvement of the energies when applying the Marshall
sign on top of the cRNN wave function. This observation highlights the importance of
considering a prior “sign ansatz” to achieve better results. In the absence of a prior sign,
the cRNN wave function can still achieve accurate estimations of the ground state energies,
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Figure 5.4: The relative error (compared to DMRG) of the cRNN wave function trained
on the 1D J1 − J2 model with N = 100 spins for different values J2, both without a prior
sign (represented by “No Sign”) and with a prior Marshall sign as in Eq. (5.5) (represented
by “Marshall Sign”). We observe that applying a Marshall sign improves accuracy.

showing that cRNN wave functions can recover some of the unknown sign structure of the
ground state. For J2 = 0.8, however, the improvement is less pronounced, which is expected
due to the emergence of a second sign structure in the limit J2 → ∞ (when the system
decouples into two independent unfrustrated Heisenberg chains) [127, 172], that is widely
different from the Marshall sign in Eq. (5.5). We omit from Fig. 5.4 our results at the point
J2 = 0.5. In this case, the 1D J1-J2 model reduces to the Majumdar-Ghosh model, where
the ground state is a product-state of spin singlets, and we find agreement with the exact
ground state energy within numerical precision when we apply an initial Marshall sign
structure. The hyperparameters used to obtain our results are summarized in App. A.1.
We also provide a summary of the cRNN wave function’s obtained values in App. A.2.

5.2 Two-dimensional systems

5.2.1 2D transverse-field Ising model

Understanding strongly correlated quantum many-body systems in D > 1 spatial di-
mensions is one of the central problems in condensed matter physics. During the last
decade, numerical approaches such as tensor networks [139, 173, 174], quantum Monte
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Figure 5.5: (a): Autoregressive sampling path of 2D spin configurations using 1D RNN
wave functions. The 2D configurations are generated using a snake path such that in order
to generate spin σi one has to condition on the spins that are previously generated. (b):
Autoregressive sampling path of 2D spin configurations using 2D RNN wave functions
through a zigzag path, where each site receives two hidden states from the horizontal
and the vertical neighbors that were previously generated. For both Figs. (a) and (b),
the digits and the green dashed arrows indicate the sampling path, while the red arrows
indicate how the hidden states are passed from one site to another. (c): A comparison of
the variational energy per spin between a 2D pRNN wave function (labeled as 2DRNN),
1D pRNN wave function (labeled as 1DRNN), PixelCNN wave function [150], and DMRG
with bond dimension χ for the 2D TFIM on a system with Lx × Ly = 12 × 12 spins. The
shaded regions represent the error bars of each method. Note the broken y-axis on the
plots for h = 3 and h = 4, denoting a change in scale between the upper and lower portions
of the plots. These results show that 2D pRNN wave functions can achieve a performance
comparable to PixelCNN wave functions and DMRG with a large bond dimension. Note
that the lower the variational energy, the more the estimation of the ground state energy
is accurate.
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Carlo [2, 175], and neural networks [37] have moved to the forefront of research in this
area. Despite tremendous progress, however, solving correlated quantum many-body sys-
tems even in 2D remains a challenging problem. We now turn our attention to the ap-
plication of our RNN wave function approach to the 2D quantum Ising model shown in
Eq. (5.1) on a square lattice, a paradigmatic example of a strongly correlated quantum
many-body system. This model has a quantum phase transition at a critical magnetic field
hc ≈ 3.044 that separates a magnetically ordered phase from a paramagnet [176].

The simplest strategy for extending our approach to 2D geometries is to simply treat
them as folded 1D chains, similar to the “snaking” approach used in 2D DMRG calculations
(see Fig. 5.5(a)). While this approach works quite well, it has the fundamental drawback
that neighboring sites on the lattice can become separated in the 1D geometry. As a
consequence, local correlations in the 2D lattice are mapped into non-local correlations
in the 1D geometry, which can increase the complexity of the problem considerably. For
example, 2D DMRG calculations are typically restricted to 2D lattices with small width
Ly. This problem has led to the development of more powerful tensor network algorithms
for 2D quantum systems such as projected entangled pair states (PEPS) [139].

An advantage of RNN wave functions is their flexibility in how hidden vectors are
passed between units. To obtain an RNN wave function more suited to a 2D geometry, we
modify the simple 1D approach outlined above by allowing hidden vectors to also be passed
vertically, instead of only horizontally. This modification is illustrated by the red arrows
in Fig. 5.5(b). We refer to this geometry in the following discussions as a 2D RNN. We
optimize the 2D pRNN wave function with a single-layer 2D vanilla RNN cell that has 100
memory units (i.e. with ∼ 21000 variational parameters) to approximate the ground state
of the 2D quantum Ising model at h = 2, 3, 4. The training complexity of the 2D pRNN
wave function is only quadratic in the number of memory units dh (see Sec. 4.8), which is
very inexpensive compared to, e.g., the expensive variational optimization of PEPS, which
scales as χ2D̃6 (where D̃ the PEPS bond dimension and χ is the bond dimension of the
intermediate MPS) [140].

For comparison, we also optimize a deep 1D pRNN wave function architecture with
three layers of stacked GRU cells (see Eqs. 4.17), each with 100 memory units (i.e., with
∼152000 variational parameters) for the same values of the magnetic field h. In Fig. 5.5(c)
we compare the obtained ground state energies with results from 2D DMRG calculations
(run on the same 1D geometry as for the 1D pRNN wave function) and the PixelCNN ar-
chitecture [177] (with ∼800000 variational parameters and results are taken from Ref. [150].
For the magnetic fields shown above and for large bond dimensions, we obtain excellent
agreement between all four methods. This agreement is particularly remarkable given that
the 2D pRNN wave function uses only about 0.03% of the variational parameters of the
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DMRG calculation with bond dimension χ = 512, about 2.6% of the variational parame-
ters of the PixelCNN wave function used in Ref. [150], and about 14% of the parameters
used in the 1D pRNN architecture. The hyperparameters used in this section are provided
in Appendix A.1. A summary of our results in tabular form can be found in App. A.2.

5.2.2 2D Heisenberg model on the square lattice

We shift our attention to the task of finding the ground state of the two-dimensional
anti-ferromagnetic Heisenberg model on the square lattice with open boundary conditions
(OBC). The Hamiltonian is given as follows:

Ĥ =
1

4

∑

⟨i,j⟩
(σ̂x

i σ̂
x
j + σ̂y

i σ̂
y
j + σ̂z

i σ̂
z
j ), (5.6)

where the sum is over nearest neighbours and σ̂x,y,z
i are Pauli matrices. In the square

lattice case, Ĥ has a C4v symmetry1. We also remark that the ground state has zero
magnetization [154], due to the U(1) symmetry of the Hamiltonian Ĥ. We show that
enforcing these symmetries in our ansatz allows for obtaining better accuracy without
adding more parameters. More details about how to apply symmetries to the 2D cRNN
ansatz can be found in Sec. 4.11.

Additionally, the Hamiltonian Ĥ for this model can be made stoquastic on the square
lattice after applying a Marshall sign transformation [153, 178]. In this case, a 2D pRNN
wave function is enough to approximate the ground state. In the following experiments,
we use a 2D cRNN wave function to demonstrate the generality of the cRNN ansatz in
recovering a constant sign structure. We also use the 2D tensorized RNN version with
a gating mechanism as described in Sec. 4.9 and we denote our ansatz as a 2D complex
Tensorized GRU (cTGRU) wave function.

First, we train our 2D cTGRU wave function to find the ground state of the 6 × 6
square lattice with and without applying the symmetries of the Hamiltonian Ĥ. We find
in Fig. 5.6(a) that increasing the number of symmetries encoded in the cRNN leads to a
more accurate estimation of the ground state energy.

We also use our 2D cTGRU wave function to estimate the ground state of the 10 × 10
square lattice after applying U(1) and C4v symmetries. The results are shown in Fig. 5.6(b),
where we compare our estimates with projected-pair entangled states (PEPS) [179], Pixel
CNN wave functions [150], DMRG [146], as well as Quantum Monte Carlo (QMC) [179].

1A point group with four rotations and four mirror reflections (vertical, horizontal, and diagonal).
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Figure 5.6: (a) A plot of the relative error ϵ after applying different symmetries of the
Heisenberg model on the square lattice with size 6×6. The relative error is computed with
respect to the DMRG energy [35]. C4 is the point group of four rotations. (b) A comparison
of the energy per site obtained with our 2DRNN ansatz and PEPS [179], PixelCNN [150],
DMRG [146] and QMC [179] on the Heisenberg model on the square lattice with size
10 × 10.

These results show that our ansatz is competitive with PEPS, PixelCNN, and DMRG.
We also find that QMC is the best compared to the other variational methods. The
hyperparameters used to obtain our results can be found in App. A.1. Furthermore, a
comparison with Ref. [146] along with the energy values can be found in App. A.2. In
Sec. 6.7, we demonstrate how our 2D RNN ansatz performs on this model embedded on a
triangular lattice, after adding the annealing ingredient which turns out to be very useful
in overcoming local minima in the VMC optimization landscape (see Chap. 6).

5.3 2D J1-J2 model on square lattice

We now focus our attention on the 2D J1-J2 model in Eq. (5.4) on the square lattice
where open boundary conditions are assumed. Here, we set J1 = 1 for numerical conve-
nience. We note that for J2 = 0, this model corresponds to the Heisenberg model on the
square lattice that we studied in the previous section. Since this model is frustrated, this
model cannot be made stoquastic with a simple Marshal sign rule [153]. This observation
justifies the use of a complex RNN wave function to study this model.

The focus of this section is to estimate the spectral gap of this model at J2 = 0.5 at
different system sizes L×L. As outlined in Sec. 3.9, the gap can be computed by running
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two different variational calculations. The goal of the first calculation is to estimate the
ground state energy and the second one is to target the low-energy excited states of interest.

By virtue of the U(1) of this model, the energy eigenstates have a well-defined mag-
netization, i.e., a well-defined total spin Sz along the z axis. It is also important to note
that the eigenstates are irreducible representations of the symmetry point groups of this
model on the square lattice. Thus we can make use of group characters to target specific
low-energy excited states [104]. The ground state is known to lie in the singlet sector
S = 0 [154]. This implies that the ground state has zero magnetization Sz = 0. Using the
U(1) symmetry construction of the RNN wave function in Sec. 4.11.2, we take advantage
of this property and we generalize the construction of Sz = 0 to different non-zero Sz to
target excited states as motivated in Sec. 3.9. This idea is helpful to construct an RNN
wave function ansatz that is orthogonal by construction to the ground state or to other
excited state sectors without access to these states, as opposed to the traditional Lagrange
multiplier approach highlighted in Sec. 3.9.

Regarding the architecture used in this study, we use a 2D cTGRU with dh = 100
memory units to target the ground state and low-energy excited states2. Additionally, we
apply the C4 point group symmetry of the square lattice on our RNN wave function as
described in Sec. 4.11.1. This point group has two different group characters A and B. In
this study, we target excited states with the A group character.

In Fig. 5.7, we plot two gap excitations versus the inverse length 1/L for three different
lengths L = 6, 8, 10. The first gap corresponds to the difference between the ground
state energy and the lowest-excited state energy with Sz = 1, and the second gap is the
difference between the Sz = 2 sector energy and the estimated ground state energy. It is
clear from the plot that both gaps follow a power law ∝ 1/L, where the extrapolation at
the thermodynamic limits corresponds to gapless excitations.

A natural future direction is to explore the scaling of the gap for different values of
J2 and to compare the RNN findings with other numerical methods. Another interesting
future research direction is to target also singlet excited states which lie in the B group
character representation. Importantly, targeting the B group character turns out to be
more challenging numerically, as it results in training instabilities, likely because of the
interference effects in the symmetrization of the phase provided in Eq. (4.26), which do
not exist when targeting group character A states. We empirically found that training
instabilities are due to the gradients explosion during the training, and we mitigate their

2Here we make use of the principle of annealing by targeting what we expect to be slightly easier point
J2 = 0.4, and then gradually increasing the coupling J2, until we obtain an estimate of the targeted state
energy at J2 = 0.5 (see Chap. 6 for more details about annealing).
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Figure 5.7: A plot of the excitation gaps of the 2D J1-J2 model at J2 = 0.5 (in units of J1)
for different system sizes L = 6, 8, 10. By extrapolating to the infinite system size limit,
we infer that the two gaps are vanishing in the thermodynamic limit.

effects using gradient clipping techniques [130, 180].

5.4 Three-dimensional systems

In this section, we shift our focus to the study of 3D quantum many-body systems
using 3D RNNs (see Sec. 4.8). Instead of estimating ground/excited state energies, in this
section, we aim to showcase the ability of RNNs in handling phase transitions using a finite
size study as motivated in Sec. 2.2.4. The system we target is the 3D TFIM (see Eq. 5.1)
with open boundary conditions. Similarly to the 1D and the 2D cases, this model has
a second-order phase transition from the ferromagnetic phase to the paramagnetic phase
at the estimated critical transverse field hc ≈ 5.2 (in units of J), predicted by quantum
Monte Carlo (QMC) techniques [181]. By virtue of the quantum-classical correspondence,
the critical exponents correspond to the finite temperature transition of the 4D Ising model,
which are the mean-field exponents predicted by the phenomenological Landau theory [65].

Here we aim to estimate the critical transverse-field hc and some of the critical exponents
using a 3D pGRU wave function with dh = 40 memory units through a finite-size scaling
study with L = 6, 8, 10, 12. Here it is important to that note that we reach an order of
N = L3 ∼ 1000 spins with our 3D RNN ansatz. The extraction of the transition data
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can be done by running different variational ground state optimizations at different values
of the transverse-field hc, and then by estimating relevant observables. In particular, we
focus on the Binder cumulant B (see Eq. (2.11)) and the expected absolute magnetization
per site ⟨|m|⟩ ≡ ⟨|σ̂z|⟩.

In Fig. 5.8(a), we plot the Binder cumulant for different magnetic fields h, where B
tends to zero for large h, whereas for small h we observe a saturation to 2/3 as expected in
the paramagnetic/ferromagnetic phases respectively. The intersection point of the different
Binder cumulants allows locating the transition close hc ≈ 5.1 by eye inspection. For a
more accurate and quantitative estimate, we make use of the property (2.12), where the
correct values of the critical field and the critical exponent ν collapse the different finite-
size Binder curves. To extract these values, we use Bayesian inference [182], where we
apply a feed-forward neural network to extract hc and ν [183] using the open-source code
in Ref. [184] to find the best possible collapse. We run this Bayesian optimization for 500
independent runs to extract error bars. We find that hc ≈ 5.0708 ± 0.0001 which is close
to the value predicted by QMC, we also obtain ν = 0.5598 ± 0.0001 that is also close
to the mean-field exponent ν = 0.5. The finite-size curve collapse can be seen clearly in
Fig. 5.8(b).

We do a similar Bayesian optimization study on the absolute magnetization ⟨|m|⟩ shown
in Fig. 5.8(c), where the decay of the magnetization towards close-to-zero values with
increasing h is consistent with a transition from a ferromagnetic phase to a paramagnetic
phase. With the expected finite-size scaling of ⟨|m|⟩ provided in Eq. (2.7), we can extract
the critical exponents ν, β as well as the critical magnetic field hc using the same Bayesian
approach highlighted earlier. The optimization resulted in the following estimates hc ≈
5.060 ± 0.001, β ≈ 0.557 ± 0.002, and ν ≈ 0.479 ± 0.001 which are consistent with the
expected values of hc and the mean-field critical exponents. These estimates allow for
obtaining a very good collapse as shown in Fig. 5.8(d). Deviations from the exact values
could be either related to the finite size effects due to open boundary conditions or instead
to variational inaccuracies in our calculations.

Note that we can plot ⟨|m|⟩Lβ/ν versus h to remove the finite size dependence on ⟨|m|⟩.
With this plot, we can make a similar conclusion to Fig. 5.8(a), where the intersection
point of the different curves is a good indicator of the critical point.

Finally, we would like to highlight that in order to extract the critical exponent δ, we
need a reliable measure of the quantum magnetic susceptibility χ = ∂⟨|m|⟩

∂hz
with respect to a

magnetic field hz in the z-direction. Possible solutions include a finite difference method to
compute derivation which is expected to be noisy. The second possible approach consists
of using implicit differentiation as illustrated in Ref. [185]. Another future direction is to
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account for the expected logarithmic corrections in 3+1 dimensions, which are very hard
to extract within the system sizes explored in our study [186–189].

5.5 Benchmarking RNN hyperparameters

The optimization results of our RNN wave function approach depend on several hy-
perparameters, including the number of memory units, the number of recurrent layers in
deep architectures, and the number of samples used to obtain the gradient during an opti-
mization step (see Chap. 3). Here, we investigate how the energy variance per spin σ2 (see
Eq. (3.12)) depends on these parameters. As shown in Sec. 3.4, the energy variance per
spin is an indicator of the quality of the optimized wave function, with exact eigenstates
corresponding to σ2 = 0.

Since the number of variational parameters is directly related to the number of memory
units of the pGRU wave function (see Eq. (4.17) in Chap. 4.7), we study here the scaling
of σ2 with the number of memory units. In Fig. 5.9, we present the dependence of σ2 on
the number of memory units for the 1D and 2D critical TFIMs. Fig. 5.9(a) shows results
of σ2 for a 1D critical TFIM on three system sizes N = 20, 40 and 80, and Fig. 5.9(b) for
the 2D TFIM on 4 × 4, 5 × 5 and 6 × 6 square lattices. In all cases, we used a single-layer
1D pGRU wave function and 500 samples during optimization to compute estimates of the
gradients. For each system size, we observe a systematic decrease of σ2 (i.e., an increase
in the quality of the wave function) as we increase the number of memory units.

In App. A.3.1, we study the dependence of σ2 on both the number of samples and the
number of layers in the pGRU wave function for a critical 1D TFIM. We observe only a weak
dependence on both parameters. The weak dependence on the number of samples suggests
that optimizing the RNN wave functions with noisy gradients does not significantly impact
the results of the optimization procedure, and yields accurate estimations of the ground
state and its energy. From the weak dependence on the number of layers, we conclude that
deep architectures do not seem to be beneficial from an accuracy point of view. However,
deeper networks could have potential ramifications regarding memory usage and training
speed when it comes to training a large number of variational parameters, as shallow
RNNs with a large number of memory units are equivalent in terms of the number of
parameters to deep RNNs with a smaller number of memory units. We also note that
adding residual connections between layers [190] and dilated connections between RNN
cells (see Sec. 4.10) to deep RNNs changes our previous conclusions and make deep RNNs
more beneficial compared to shallow RNNs. This point is further motivated when we use
dilated RNN to study fully-connected spin-glass models in Chap. 6.
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Figure 5.8: Plots of the Binder cumulant B and the absolute magnetization per site ⟨|m|⟩
for different values of the magnetic field h. We plot scaled variants of these quantities in
order to extract the critical point and the critical exponents. The finite-size scaling study
is conducted for different lengths L = 6, 8, 10, 12 of the 3D lattice.

79



Figure 5.9: The energy variance per spin against the number of memory units of a 1D
pRNN wave function trained at the critical point of (a) the 1D TFIM and (b) the 2D
TFIM. Both scalings show that we can systematically reduce the bias in the estimation of
the ground-state energy.

In App. A.3.2, we study the effect of using RNN cell designs on the accuracy of a vari-
ational calculation. In particular, we find that tensorized RNNs are more advantageous
compared to vanilla RNNs on the task of finding the ground of the 1D TFIM. We also
find that adding a gating mechanism to RNNs allows for a faster and more accurate con-
vergence to the ground state of the 2D Heisenberg model. Furthermore, we found that
for disordered systems we obtain better accuracy by abandoning the common practice of
using weight sharing (see Sec. 4.13). Finally, we observed that dilated RNNs (see Sec. 4.10)
are more accurate compared to a one-layered RNN for a many-body system with all-to-all
connectivity.

5.6 Conclusion and Outlooks

In this chapter, we benchmarked RNN wave functions on the task of approximating
ground state energies, correlation functions, and entanglement entropies of many-body
Hamiltonians of interest to condensed matter physics. We find that RNN wave functions
are competitive with state-of-the-art methods such as DMRG and PixelCNN wave func-
tions [150], performing particularly well on the task of finding the ground state of the
transverse-field Ising model and the Heisenberg model on square lattices. We have shown
furthermore that we can accurately model ground states endowed with a sign structure
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using a complex Recurrent Neural Network (cRNN) wave function ansatz. Here, accuracy
can be improved by introducing an ansatz sign structure and by enforcing symmetries such
as U(1) symmetry and point group symmetries. By increasing the number of memory of
units in the RNN, the error in our results can be systematically reduced. The autore-
gressive nature of RNN wave functions makes it possible to directly generate uncorrelated
samples, in contrast to methods based on Markov chain sampling, which are often plagued
by long autocorrelation times that affect the optimization and the accurate estimation
of correlation functions in a variational ansatz. Thanks to weight sharing among lattice
sites, RNN wave functions provide very compact yet expressive representations of quantum
states, while retaining the ability to easily train with millions of variational parameters, as
opposed to, e.g., restricted Boltzmann machines [37].

In the next chapter, we extend the use of RNNs to the task of finding the ground state of
combinatorial optimization problems by harnessing the concept of annealing. We show that
we can obtain competitive results compared to traditional optimization algorithms. We
further demonstrate that RNNs supplemented with annealing are more equipped compared
to traditional RNNs for the study of frustrated systems. In Chap. 7, we also demonstrate
the potential of RNNs in detecting topological phases of matter of prototypical models,
and in investigating the existence of these phases in real-world quantum systems.

Reproducibility Code

The code we use to produce our results can be found in Ref. [191].
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Chapter 6

Variational Neural Annealing

This chapter contains results and material from Refs. [106, 108,
192] and results not published elsewhere.

Combinatorial optimization is widely used in many areas of science such as physics,
computer science, and biology. It also has a wide range of applications in the industry
including without limitation to supply chain, energy, and transportation. Providing an
efficient solution to combinatorial optimization problems can boost scientific progress and
provide optimal solutions to a plethora of industry problems. Unfortunately, typical opti-
mization problems are NP-Hard and are challenging to solve with deterministic algorithms
in a polynomial time [193].

Various heuristics have been used over the years to find approximate solutions to these
NP-hard problems. A notable example is simulated annealing (SA) [194], which mirrors the
analogous annealing process in materials science and metallurgy where a solid is heated
and then slowly cooled down to its lowest energy and most structurally stable crystal
arrangement. In addition to providing a fundamental connection between the thermody-
namic behavior of real physical systems and complex optimization problems, simulated
annealing has enabled scientific and technological advances with far-reaching implications
in areas as diverse as operations research [195], artificial intelligence [196], biology [197],
graph theory [198], power systems [199], quantum control [200], circuit design [201] among
many others [196]. The paradigm of annealing has been so successful that it has inspired
intense research into its quantum extension, which requires quantum hardware to anneal
the tunneling amplitude, and can be simulated in an analogous way to SA [202, 203].
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The SA algorithm explores an optimization problem’s energy landscape via a gradual
decrease in thermal fluctuations generated by the Metropolis-Hastings algorithm. The
procedure stops when all thermal kinetics are removed from the system, at which point
the solution to the optimization problem is expected to be found. While an exact solution
to the optimization problem is always attained if the decrease in temperature is arbi-
trarily slow, a practical implementation of the algorithm must necessarily run on a finite
time scale [204]. As a consequence, the annealing algorithm samples a series of effective,
quasi-equilibrium distributions close but not exactly equal to the stationary Boltzmann
distributions targeted during the annealing [205]. This naturally leads to approximate so-
lutions to the optimization problem, whose quality depends on the interplay between the
problem complexity and the rate at which the temperature is decreased.

In this chapter, we offer a promising route to solving optimization problems, called
variational neural annealing. Here the conventional simulated annealing formulation is
substituted with the annealing of a parameterized model. Namely, instead of annealing
and approximately sampling the exact Boltzmann distribution, this approach anneals a
quasi-equilibrium model, which must be sufficiently expressive and capable of tractable
sampling. Fortunately, suitable models have recently been developed [53, 206, 207]. In
particular, autoregressive models combined with variational principles have been shown to
accurately describe the equilibrium properties of classical and quantum systems [35, 43,
105, 150]. Here, we implement variational neural annealing using RNNs and show that
they offer a powerful alternative to conventional SA and its analogous quantum extension,
i.e., simulated quantum annealing (SQA) [202].

This chapter is organized as follows: in Sec. 6.1, we talk about a variational emulation of
classical annealing, and in Sec. 6.2, we present a quantum version of the variational anneal-
ing scheme. We also illustrate the promise of our approach for random Ising chains (6.3),
non-stoquastic driving Hamiltonians (6.4), spin-glass models (6.5), real-world combinato-
rial optimization problems (6.6), as well as for frustrated quantum systems (6.7).

6.1 Variational Classical Annealing

A wide array of complex combinatorial optimization problems can be reformulated as
finding the lowest energy configuration of an Ising Hamiltonian of the form [208]:

Htarget = −
∑

i<j

Jijσiσj −
N∑

i=1

hiσi, (6.1)
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where σi = ±1 are spin variables defined on the N nodes of a graph. The topology of
the graph together with the couplings Jij and fields hi uniquely encode the optimization
problem, and the solution to the problem corresponds to the spin configurations σi that
minimize Htarget.

We first consider the variational approach to statistical mechanics [105, 209], where a
distribution Pλ(σ) defined by a set of variational parameters λ is optimized to reproduce
the equilibrium properties of a system with a Hamiltonian Htarget at temperature T . We
dub our first variational neural annealing algorithm variational classical annealing (VCA).

The VCA algorithm searches for the ground state of an optimization problem, encoded
in a target Hamiltonian Htarget, by slowly annealing the model’s variational free energy

Fλ(t) = ⟨Htarget⟩λ − T (t)Sclassical(Pλ), (6.2)

from a high temperature to a low temperature. The quantity Fλ(t) provides an upper
bound to the true instantaneous free energy and can be used at each annealing stage
to update λ through gradient-descent techniques. The brackets ⟨...⟩λ denote ensemble
averages over Pλ(σ). The Shannon entropy is given by

Sclassical(Pλ) = −
∑

σ

Pλ(σ) log (Pλ(σ)) , (6.3)

where the sum runs over all possible configurations {σ}. In our setting, the temperature
is decreased linearly from T0 to 0, i.e., T (t) = T0(1 − t), where t ∈ [0, 1], which follows the
traditional implementation of SA.

In order for VCA to succeed, we require parameterized models without a slowdown
of their sampling via Markov chain Monte Carlo. Such a slowdown is likely to occur in
spin-glass models with a rugged landscape and very small transition probabilities between
different modes. These issues preclude un-normalized models such as restricted Boltzmann
machines, where sampling relies on Markov chains [206]1. Instead, we implement VCA
using recurrent neural networks (RNNs) [35, 43] as a model for Pλ(σ), whose autoregres-
sive nature enables statistical averages over exact samples σ drawn from the RNN. Since
RNNs are normalized by construction, these samples allow the estimation of the entropy
in Eq. (6.3). On a technical note, it is sufficient to use the module squared of a pRNN
wave function to construct the probability distribution Pλ(σ). We provide a detailed de-
scription of the RNN in Chap. 4 and illustrate the advantage of autoregressive sampling
at recovering different modes in App. B.5.

1Ref. [107] shows that for an un-normalized model, the estimation of the gradients of the entropy is
possible without complete knowledge of the partition function. However, these models might still suffer
from the Markov chain Monte Carlo sampling limitations.
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The VCA algorithm, summarized in Fig. 6.1(a), performs a warm-up step which brings
a randomly initialized distribution Pλ(σ) to an approximate equilibrium state with free
energy Fλ(t = 0) via Nwarmup gradient descent steps. At each step t, we reduce the
temperature of the system from T (t) to T (t + δt), while keeping the model’s parameters
fixed, and apply Ntrain gradient descent steps to re-equilibrate the model at T (t + δt). A
critical ingredient to the success of VCA is that the variational parameters optimized at
temperature T (t) are reused at temperature T (t+δt) to ensure that the model’s distribution
is near its instantaneous equilibrium state. Repeating the last two steps Nannealing times, we
reach temperature T (1) = 0, which is the end of the protocol. Here the distribution Pλ(σ)
is expected to assign a high probability to configurations σ that solve the optimization
problem. Likewise, the residual entropy Eq. (6.3) at T (1) = 0 provides an approach to
count the number of solutions to the problem Hamiltonian [105]. Further details about
our optimization scheme are provided in Sec. 3.10.

6.2 Variational Quantum Annealing

In quantum annealing [210–213], the search for the ground state of an optimization
problem is generally done by promoting the target Hamiltonian, in Eq. (6.1), to a quantum
Hamiltonian

Ĥ(t) = Ĥtarget + f(t)ĤD, (6.4)

where quantum fluctuations are introduced via a driving term ĤD that does not commute
with the target Hamiltonian Ĥtarget. The factor f(t) is a user-defined time-dependent
schedule function chosen such that f(0) = 1 and f(1) = 0. Quantum annealing starts with
a dominant driving term ĤD ≫ Ĥtarget chosen so that the ground state of Ĥ(t = 0) is
easy to prepare. The strength of the driving term is then subsequently reduced –typically
adiabatically– using the schedule function f so that at the end of annealing, the system
is in the lowest state of the target Hamiltonian. We choose a linear schedule function
f(t) = 1 − t with t ∈ [0, 1].

Here, we leverage the variational principle of quantum mechanics and devise a strategy
to simulate quantum annealing that we dub variational quantum annealing (VQA). Our
framework is based on variational Monte Carlo (VMC), a quantum Monte Carlo method
that simulates equilibrium properties of quantum many-body systems at zero-temperature
(see Chap. 3). In VMC, the ground-state wave function of a Hamiltonian Ĥ is modeled
via an ansatz |Ψλ⟩ where λ are the variational parameters. The variational principle
guarantees that the expectation value of the energy over the variational state ⟨Ψλ|Ĥ|Ψλ⟩
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Figure 6.1: An illustration of the variational classical annealing protocol. (a) Initially,
we take a warm-up step to bring the initialized variational state (green dot) close to the
minimum of the free energy (blue dot) at a given value of the order parameter M of our
system of interest. (b) Next, we perform an annealing step by changing the time t by an
amount of δt, which, as a consequence, changes the free energy landscape. (c) Here, we
perform a training step to bring the variational state back to the new free energy minima.
(d) Finally, by repeating the last two steps, we arrive at t = 1, where we expect to obtain the
minima of the target Hamiltonian Htarget if the protocol is conducted slowly enough. This
figure also represents the corresponding probability distribution that minimizes the free
energy, as illustrated by the dashed curves. This illustration corresponds to a continuous
phase transition and can also be generalized to first-order transitions.
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is an upper bound to the ground state energy of Ĥ. Thus, we use it as a cost function to
optimize the parameters λ. In a similar spirit to VCA, we define a time-dependent cost
function as E(λ, t) ≡ ⟨Ĥ(t)⟩λ = ⟨Ψλ|Ĥ(t)|Ψλ⟩.

Our VQA setup is implemented via the protocol described in Fig. 6.2. We start by
randomly initializing the parameters λ. Then, we perform a warm-up step to prepare our
ansatz close to the ground state of the Hamiltonian Ĥ(0), as illustrated in Fig. 6.2(a). To
do so, we apply Nwarmup gradient descent steps to minimize the expectation value E(λ, t)
at a fixed time t = 0. The variational energy after this step is E(λ0, t = 0). Next, we
set t = δt, while keeping the parameters λ0 of the variational wave function fixed. The
variational energy is E(λ0, t = δt) as shown in Fig. 6.2(b) (green dot). Next, we take
Ntrain gradient descent steps to bring the ansatz closer to the new instantaneous ground
state. At the end of the training step, we obtain the energy E(λ1, t = δt) as illustrated
in Fig. 6.2(c) (cyan dot). Like in VCA, the variational parameters optimized at time step
t are used as input at time t + δt, which ensures that the parameterized wave function is
near the instantaneous ground state of Ĥ(t). This step promotes the adiabaticity of the
dynamics induced by the algorithm (see App. B.1). Finally, we repeat the annealing and
training steps Nannealing times until t = 1, where the system is expected to converge to the
ground state of the optimization problem (red dot in Fig. 6.2(d)). Analogously to VCA,
we choose RNN wave functions [35, 43] as ansätze to implement the VQA protocol. For
the sake of clarity, we provide a flowchart in Fig. 6.3 that illustrates the VCA and the
VQA frameworks.

The success of the algorithm, whose ultimate goal is to set the variational wave function
as close as possible to the ground state of the target Hamiltonian Ĥ(1) = Ĥtarget, relies
on several key elements. First, the variational annealing evolution should be adiabatic,
which is achieved by requiring the annealing time update δt to be small. Additionally,
we require an expressive variational wave function capable of accurately capturing all
the instantaneous ground states of Ĥ(t). Assuming that the variational state can be
optimized via gradient descent, we also require that the Ntrain number of optimization
steps be sufficiently large. To have a theoretical insight on these principles for VQA, we
derive a variational version of the adiabatic theorem [211, 214, 215]. We start from a set
of assumptions, such as the convexity of the energy landscape of E(λ, t) in the warm-up
phase and close to convergence during annealing, and the absence of noise in the gradients.
This enables us to provide a bound on the total number of gradient descent steps Nsteps,
that is sufficient for the VQA algorithm to remain adiabatic with a success probability
of obtaining the ground state Psuccess > 1 − ϵ. Here, ϵ is an upper bound on the overlap
between the variational wave function and the excited states of the Hamiltonian Ĥ(t), i.e.
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Figure 6.2: Illustration of the variational quantum annealing (VQA). (a) A warm-up step
involves taking Nwarmup gradient descent step to bring the variational wave function (green
dot) close to the initial ground state and obtain an estimate E(λ0, t = 0) (cyan dot) of
the ground state energy at t = 0. (b) Next, we perform an annealing step by changing
the time t by an amount of δt while keeping the ansatz’s parameters fixed. (c) Next, we
perform Ntrain gradient descent steps to bring the variational wave function (green dot)
closer to the new ground state energy (cyan dot). (d) We loop over the previous two steps
until reaching the target ground state of Ĥtarget if annealing is performed slowly enough.
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Training step:
Perform a user-defined number 

of gradient descent steps,
 while keeping temperature

(VCA) or driving coupling (VQA)
fixed.

Annealing step:
Decrease temperature (VCA), 
or the driving coupling (VQA),
 while keeping the parameters

 of the model fixed.

Warm-up step:
Perform a user-defined 

number of gradient 
descent steps.

Prepara�on step:
Prepare an instance of 

the problem Hamiltonian.
Ini�alize the model parameters. 

Ini�alize temperature (VCA),
 or coupling to the driving 

Hamiltonian (VQA).

Yes
Is temperature 

or coupling
 to the driving term 

non-zero?

End of 
annealing

No

Figure 6.3: A flowchart describing our VCA and VQA implementations.
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|⟨Ψ⊥(t)|Ψλ⟩|2 < ϵ. We show in App. B.2 that Nsteps can be bounded as:

O


 poly(N)

ϵmin
{tn}

(g(tn))


 ≤ Nsteps ≤ O


 poly(N)

ϵ2 min
{tn}

(g(tn))2


 . (6.5)

Here, g(t) is the energy gap between the first excited state and the ground state of the
instantaneous Hamiltonian Ĥ(t) at time t, N is the system size, and the set of times {tn} is
defined in App. B.2. Typically, for hard optimization problems, the minimum gap decreases
exponentially with system size N , which dominates the computational complexity of the
VQA simulations. In the case of a minimum gap that scales as the inverse of a polynomial
in N , then the number of steps Nsteps is bounded by a polynomial in N .

6.3 Application to random Ising chains

As a first benchmark, we consider the one-dimensional Ising model with random cou-
plings Ji,i+1, whose Hamiltonian is defined as:

Ĥtarget = −
N−1∑

i=1

Ji,i+1σ̂
z
i σ̂

z
i+1, (6.6)

where σx,y,z
i are Pauli matrices acting on site i. First, we examine Ji,i+1 sampled from a

uniform distribution in the interval [0, 1). Here, the ground state configuration is given
either by all spins up or all spins down, which implies that the ground state energy is
EG = −∑N−1

i=1 Ji,i+1 [216].

To account for the randomness of the model, we use a tensorized RNN without weight
sharing for both VCA and VQA (see Secs. 4.13 and 4.9). We consider system sizes N =
32, 64, 128 and train the RNNs for Ntrain = 5 per annealing step, which we found to be
sufficient to achieve accurate solutions. To quantify the performance of the algorithms, we
use the residual energy [202, 217–220],

ϵres =
[
⟨Ĥtarget⟩stat − EG

]
dis
, (6.7)

where EG is the exact ground state energy of each instance of Ĥtarget. While we use the
arithmetic mean for statistical averages ⟨...⟩stat, we consider the typical (geometric) mean

for averaging over instances of the target Hamiltonian such that,
[
...
]typ
dis

= exp(
[

ln(...)
]
dis

).
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(a)

VQA (N = 32) ∝ 1/t0.99±0.01

VQA (N = 64) ∝ 1/t1.02±0.02

VQA (N = 128) ∝ 1/t1.08±0.06

VCA (N = 32) ∝ 1/t1.53±0.01

VCA (N = 64) ∝ 1/t1.66±0.02

VCA (N = 128) ∝ 1/t1.85±0.04
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(b)

VQA (N = 32) ∝ 1/t0.96±0.03

VQA (N = 64) ∝ 1/t1.01±0.05

VQA (N = 128) ∝ 1/t1.05±0.04

VCA (N = 32) ∝ 1/t1.32±0.05

VCA (N = 64) ∝ 1/t1.28±0.05

VCA (N = 128) ∝ 1/t1.51±0.06

Figure 6.4: The residual energy per site ϵres/N vs the number of annealing steps Nannealing

for both VQA and VCA on the one-dimensional (1D) Ising chain. The system sizes are
N = 32, 64, 128. (a) random positive couplings Ji,i+1 ∈ [0, 1) and (b) random discrete

couplings Ji,i+1 ∈ {−1, 1}. For VQA, we use a stoquastic one-body driving term ĤD =

−Γ0

∑N
i=1 σ̂

x
i . The error bars represent the one s.d. statistical uncertainty calculated over

different disorder realizations [221].

We take advantage of the autoregressive nature of the RNN and sample 106 configurations
at the end of the annealing, which allows us to accurately estimate the arithmetic means
and post-select low-energy solutions to the optimization problem. The typical mean is
taken over 25 instances of Ĥtarget.

In Fig. 6.4(a) we report the residual energies per site against the number of annealing
steps Nannealing. As expected for both VQA and VCA, the residual energy is a decreasing
function of Nannealing. The latter observation underlines the importance of adiabaticity in
our variational setups. In Fig. 6.4(b) we report similar observations for Ji,i+1 uniformly
sampled from the discrete set {−1,+1}, where the ground state configuration is disordered
and the ground state energy is given by EG = −∑N−1

i=1 |Ji,i+1| = −(N − 1). To further
illustrate the adiabaticity of VCA and VQA, we provide additional benchmarks on small
system sizes in App. B.1.

In all of our examples and system sizes, we observe that for sufficiently large annealing
steps the decrease of the residual energy of VCA and VQA is consistent with a power law at
large annealing steps. The exponent of VCA varies in the interval 1.3−1.9, whereas VQA’s
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exponent is about 0.9−1.1. Both exponent ranges suggest a speed-up compared to SA and
coherent quantum annealing, where the residual energies follow a logarithmic law [222–225].
We highlight that contrary to results obtained in Ref. [225] where QA was found superior
to SA, our variational emulation of classical annealing outperforms its zero-temperature
quantum analog. At long annealing times, VCA finds solutions an order of magnitude
more accurate than VQA on average. For VCA and VQA, we note that the variational
protocol powered by a stochastic gradient descent appears to surpass the conjecture of
thermal annealing dynamics which is expected to follow the Huse-Fisher logarithm scaling
law [222, 226], as well as quantum annealing dynamics, which is expected to be hampered
by the wide distribution of exponentially closing gap close to criticality [223, 224].

As a final note, the exponents provided above are not expected to be universal and are
a priori sensitive to the hyperparameters of the algorithms (e.g., learning rate, number of
memory units dh, number of training steps Ntrain, gradient descent optimizer, number of
samples, etc), which may open up avenues to boost the performance of our algorithms.
For reproducibility purposes, App. B.7 provides a summary of the hyperparameters used
to produce the results shown here.

6.4 Non-stoquastic drivers

Non-stoquastic drivers are efficient at removing problematic first-order quantum phase
transitions on certain types of problem Hamiltonians [227]. However, their implementation
using typical quantum Monte Carlo methods is hampered by the sign problem. Here, we
take advantage of the intrinsic sign-problem-free nature of VMC to set up a VQA scheme
that accommodates non-stoquastic driving terms.

As proof of principle, we use a tensorized complex RNN wave function (see Chap. 4) to
approximate the anticipated sign structure of the ground states induced by non-stoquastic
Hamiltonians. Here, we investigate the random Ising chain with a discrete disorder in the
presence of a two-body non-stoquastic driving term as follows

Ĥ(t) = −
N−1∑

i=1

Ji,i+1σ̂
z
i σ̂

z
i+1

± λ0(1 − t)
N−1∑

i=1

σ̂a
i σ̂

a
i+1, (6.8)

where a = x or y. Here, the plus sign corresponds to the non-stoquastic case (for details
about the preparation of the initial ground state during the warm-up phase, see App. B.4).
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For comparison, we also consider a stoquastic driving term that corresponds to a minus sign
in the previous equation. For both cases, the initial value of the driving’s coupling strength
is λ0 = 2. We consider 25 instances of Ĥtarget. The results in Fig. 6.5 confirm that the
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Figure 6.5: The residual energy per site ϵres/N vs. the number of VQA annealing steps
Nannealing on a 1D Ising chain with N = 64 spins and random couplings Ji,i+1 ∈ {−1, 1}.
Here, we consider four different driving terms. The first two are stoquastic single- and two-
body driving terms, which we can simulate using a tensorized positive RNN wave function,
and the third and the fourth ones are non-stoquastic two-body driving terms we emulate
using a tensorized complex RNN wave function.

residual energy can be systematically reduced by taking more annealing steps. We observe
that all the driving terms result in the same asymptotic behavior of the residual energy for
a large number of annealing steps. Overall, the single-body driving term performs better
than the ones encoding multispin flip dynamics. We note that the stoquastic XX driver
performs better than its non-stoquastic version, corroborating the recent finding [228] that
de-signing Hamiltonians could be more efficient for quantum annealing. We equally report
here the very first simulations of non-stoquastic YY drivers for a system size that is far
above exact diagonalization capabilities. This is a very important milestone given that such
drivers are currently in experimentation on the newest DWave architectures [229], albeit
on very few qubits. Note that here, the XX and YY non-stoquastic drivers give similar
results because of the rotational symmetry of the Hamiltonian used. In the absence of
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such symmetry, spin reversal transformations are capable of providing some advantage
for the YY term, as recently pointed out in Ref. [230]. Most importantly, these results
show that VQA setup is capable of emulating a non-stoquastic term despite the presence
of a sign structure, and though for this case study it does not show an advantage for
non-stoquasticiy, it does provide a platform where it could be studied at moderately large
system sizes. We note that in our example, the sign structure corresponds to the Marshall
sign [153, 172, 178]. To further demonstrate the possibility of simulating VQA for other
Hamiltonians and sign structures, we use a driving term with frustration and show that a
tensorized RNN can emulate a non-stoquastic driving term with an unknown sign structure
as described in App. B.4.

6.5 Application to spin-glass models

6.5.1 Edwards-Anderson model

The two-dimensional Edwards-Anderson (EA) model is a prototypical spin-glass model
where a set of spins are arranged on a square lattice with only nearest neighbor random
interactions. The problem of finding ground states of the model has been studied experi-
mentally [203] and numerically [202, 218, 231] from the annealing perspective, as well as
theoretically [193] from the computational complexity perspective. In this section, we use
the EA model as a benchmark to probe VCA and VQA and compare them against stan-
dard heuristics, namely, SA and SQA implemented via discrete-time path-integral Monte
Carlo [202, 218]. The EA model is given by

ĤEA = −
∑

⟨i,j⟩
Jijσ̂

z
i σ̂

z
j , (6.9)

where the sum runs over nearest neighbors, and the couplings Jij are drawn independently
from a uniform distribution in the range [−1, 1]. In the absence of a longitudinal field
for which solving the EA model is NP-hard, the ground state can be found in polyno-
mial time [193]. For each random realization of the couplings Jij, we use the spin-glass
server [232] to obtain the exact ground state energy. This feature makes the EA model a
good benchmark for our method, particularly for large system sizes.

To simulate our variational neural annealing protocols, we use a 2D tensorized RNN
(see Sec. 4.9) as an ansatz without weight sharing. We implement the methods described
in Sec. 6.1 and 6.2 with VQA implemented using a one-body driving term. Fig. 6.6(a)
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shows the annealing results obtained on a system size N = 10 × 10 spins. Similarly
to the results obtained for the random Ising chains in Sec. 6.3, VCA outperforms VQA
and in the adiabatic, long-time annealing regime, VCA produces solutions three orders
of magnitude more accurate than VQA. In addition, we investigate the performance of
VQA supplemented with a fictitious Shannon information entropy term that induces a
thermal-like exploration of the energy landscape during the quantum annealing emulation.
The entropy-enhanced protocol, here termed regularized variational quantum annealing
(RVQA), is described by a free energy cost function:

F̃λ(t) = ⟨Ĥ(t)⟩λ − T (t)Sclassical(|Ψλ(t)|2). (6.10)

We emphasize that Sclassical corresponds to a pseudo-entropy [35] computed in the computa-
tional basis, which is different from the von Neumann entropy of a quantum state at finite
temperature. The latter means that T (t) does not act as a physical temperature, but rather
as a pseudo-temperature that induces thermal-like fluctuations whose aim is to mimic ther-
mal relaxation effects observed in quantum annealing hardware [233]. Results in Fig. 6.6(a)
do show an amelioration of VQA performance, from saturating dynamics at long annealing
time to a power-law-like behavior. However, though introducing a pseudo-temperature to
avoid subsequent local minima in VQA seems to provide an added advantage, it appears
to be insufficient to compete with the VCA scaling. This suggests the superiority of a
thermally driven variational emulation of annealing over a pure quantum emulation.

To further scrutinize the relevance of the annealing effects in our variational methods,
we now consider a variational method devoid of it. We do this by optimizing the variational
parameters through direct minimization of the target Hamiltonian expectation value over
the variational ansatz. This idea is known as classical-quantum optimization (CQO) [234–
236], and for our setup, it corresponds to implementing VCA with zero thermal fluctuations,
i.e., setting T0 = 0. Fig. 6.6(a) shows that CQO takes about 103 training steps starting from
random parameters initialization to reach close to 1% accuracy. However, the accuracy does
not further improve when trained up to 105 gradient steps, showing that CQO is prone to
get stuck in local minima. In comparison, VCA and VQA offer solutions with orders of
magnitude more accurate at long annealing times, thus suggesting the importance of the
annealing effect in tackling challenging optimization problems.

Since VCA displays the best performance in the previous benchmarks, we use it to
demonstrate its capabilities on a relatively large system with 40×40 spins. For comparison,
we use SA as well as SQA with P = 20 trotter slices, and take the average energy across all
trotter slices, for each realization of randomness (see App. B.3). In addition, we average
the energy obtained after 25 annealing runs on every instance of randomness for SA and
SQA. To average over Hamiltonian instances, we use the typical mean over 25 different
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Figure 6.6: (a) A comparison between VCA, VQA, RVQA, and CQO for Edwards-Anderson
(EA) on a 10 × 10 lattice. The residual energy per site vs. Nannealing for VCA, VQA and
RVQA. For CQO, we report the residual energy per site vs. the number of optimization
steps Nsteps. (b) Comparison between Simulated Annealing (SA), Path-Integral Quantum
Monte Carlo (SQA) with P = 20 trotter slices, and VCA using a 2D tensorized pRNN
state for the EA model on a 40 × 40 lattice. We report the residual energy per site as a
function of the number of annealing steps Nannealing for SA, VCA, and SQA.

realizations for the three annealing methods. The results are shown in Fig. 6.6(b), where
we present the residual energies per site against the number of annealing steps Nannealing,
which is set so that the speed of annealing is the same for SA, SQA, and VCA. We first
note that our results confirm the qualitative behavior of SA and SQA in Refs. [202, 218].
While at short annealing times, SA and SQA produce lower residual energy solutions
than VCA, we observe that VCA achieves residual energies for a large annealing time
about three orders of magnitude smaller than SQA and SA. Notably, the rate at which
the residual energy improves with increasing the annealing time is significantly higher in
VCA than SQA and SA even at relatively short annealing. These observations highlight
the advantages of solving hard optimization problems in a variational space compared to
SA and SQA paradigms. Additional simulations on a system size of 60 × 60 spins (see
App. B.5) corroborate this result.
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6.5.2 Sherrington-Kirkpatrick model

We now focus our attention on fully-connected spin glasses [193, 237]. We first consider
the Sherrington-Kirkpatrick (SK) model [238], which provides a conceptual framework for
the understanding of the role of disorder and frustration in systems ranging from materials
to combinatorial optimization and machine learning. The SK Hamiltonian is given by

Htarget = −1

2

∑

i ̸=j

Jij√
N
σiσj, (6.11)

where {Jij} is a symmetric matrix whose elements Jij are sampled from the standard
normal distribution.

Since VCA performed best in our previous examples, we use it to find ground states
of the SK model for N = 100 spins. Here, exact ground states energies of the SK model
are calculated using the spin-glass server [232] on a total of 25 instances of disorder. To
account for long-distance dependencies between spins in the SK model, we use a dilated
RNN ansatz of depth L = ⌈log2(N)⌉ structured so that spins are connected to each other
with a distance of at most O(log2(N)) (see Sec. 4.10). The initial temperature is set to
T0 = 2. We compare our results with SQA and SA initialized with Γ0 = 2 and T0 = 2,
respectively.

For an effective comparison, we first plot the residual energy per site as a function of
Nannealing for VCA, SA, and SQA (P = 100). Here, the SA and SQA residual energies
are obtained by averaging the outcome of 50 independent annealing runs, while for VCA
we average the outcome of 106 samples from the annealed RNN. For all methods, we
consider typical averages over 25 disorder instances. The results are shown in Fig. 6.7(a).
As observed in the EA model, we note that SA and SQA produce lower residual energy
solutions than VCA for small Nannealing, but we emphasize that VCA delivers a lower ϵres
when Nannealing ⪆ 103. Likewise, we observe that the rate at which the residual energy
improves with increasing Nannealing is significantly higher for VCA than SQA and SA.

A closer look at the statistical behavior of the methods at largeNannealing can be obtained
from the residual energy histograms produced by each method, as shown in Fig. 6.7(d).
The histograms contain 1000 residual energies for each of the same 25 disorder realizations.
For each instance, we plot results for 1000 SA runs, 1000 samples obtained from the RNN
at the end of annealing for VCA, and 10 SQA runs including contribution from each of
the P = 100 Trotter slices. We observe that VCA is superior to SA and SQA, as it
produces a higher density of low-energy configurations. This indicates that, even though
VCA typically takes more annealing steps, it results in a higher chance of getting accurate
solutions to optimization problems than SA and SQA.
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6.5.3 Wishart-Planted Ensemble

We now focus on the Wishart planted ensemble (WPE), which is a class of zero-field
Ising models with a first-order phase transition and tunable algorithmic hardness [239].
These problems belong to a special class of hard problem ensembles whose solutions are
known a priori, which, together with the tunability of the hardness, makes the WPE
model an ideal tool to benchmark heuristic algorithms for optimization problems. The
Hamiltonian of the WPE model is given by

Htarget = −1

2

∑

i ̸=j

Jα
ijσiσj. (6.12)

Here Jα
ij is a symmetric matrix satisfying

Jα = J̃α − diag(J̃)

and

J̃α = − 1

N
WαW

T
α .

The term Wα is an N × ⌊αN⌋ random matrix satisfying Wαtferro = 0 where tferro =
(+1,+1, ...,+1) (see Ref. [239] for details about the generation of Wα). The ground state
of the WPE model is known (i.e., it is planted) and corresponds to the states ±tferro. α is a
tunable parameter of hardness, where for α < 1 this model displays a first-order transition,
such that near zero temperature the paramagnetic states are meta-stable solutions [239].
This feature makes this model hard to solve with any annealing method, as the param-
agnetic states are numerous compared to the two ferromagnetic states and hence act as
a trap for a typical annealing method. We benchmark the three methods (SA, SQA, and
VCA) for N = 32 and α ∈ {0.25, 0.5}.

We consider 25 instances of the couplings {Jα
ij} and attempt to solve the model with

VCA implemented using a dilated RNN ansatz with ⌈log2(N)⌉ = 5 layers and T0 = 1. For
SQA, we use an initial magnetic field Γ0 = 1 and P = 100, while for SA we start with
T0 = 1.

We first plot the residual energies per site (Figs. 6.7(b)- (c)). Here we note that VCA is
superior to SA and SQA for α = 0.5 as demonstrated in Fig. 6.7(b). More specifically, VCA
is about three orders of magnitude more accurate than SQA and SA for a large Nannealing.
For α = 0.25 (Fig. 6.7(c)), VCA is competitive and performs comparably with SA and SQA
on average for a large Nannealing. We also represent the residual energies in a histogram form.
We observe that for α = 0.5 in Fig. 6.7(e), VCA achieves a higher density of configurations
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Figure 6.7: Benchmarking SA, SQA (P = 100 trotter slices) and VCA on the Sherrington-
Kirkpatrick (SK) model and the Wishart planted ensemble (WPE). Panels (a),(b), and
(c) display the residual energy per site as a function of Nannealing. (a) The SK model with
N = 100 spins. (b) WPE with N = 32 spins and α = 0.5. (c) WPE with N = 32 spins
and α = 0.25. Panels (d), (e) and (f) display the residual energy histogram for each of the
different techniques and models in panels (a),(b), and (c), respectively. The histograms
use 25000 data points for each method. Note that we choose a minimum threshold of 10−10

for ϵres/N , which is within our numerical accuracy.

with ϵres/N ∼ 10−9-10−10 compared to SA and SQA. For α = 0.25 in Fig. 6.7(f), VCA
leads to a non-negligible density at very low residual energies as opposed to SA and SQA,
whose solutions display orders of magnitude higher residual energies. Finally, our WPE
simulations support the observation that VCA tends to improve the quality of solutions
faster than SQA and SA for a large Nannealing. For additional discussion about the WPE
and SK results, see App. B.5. The running time estimations for SA, SQA, and VCA are
provided in App. B.6.
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6.6 Application to real-world optimization problems

This section contains material and results from Ref. [192].

After showing that VCA is superior on average compared to traditional Monte Carlo
methods for spin-glass models, we explore VCA’s performance in comparison with SA at
solving three popular optimization problems: the maximum cut problem (Max-Cut), the
nurse scheduling problem (NSP), and the traveling salesman problem (TSP). For all three
problems, we find that VCA outperforms SA on average in the asymptotic limit by one or
more orders of magnitude in terms of relative error. We reach large system sizes of up to
256 cities for the TSP. We also conclude that in the best-case scenario, VCA can serve as
a great alternative when SA fails to find the optimal solution.

6.6.1 The Maximum Cut Problem (Max-Cut)

The first problem we target with VCA is the Max-Cut problem that has been known
to be at least NP-hard [240]. The Max-Cut problem is defined as follows: Given an
undirected graph G(V,E), we make a cut along the edges of G to get two complementary
sets of vertices such that the number of edges between the two sets is maximized. In other
words, if Ecut ⊂ E is the set of edges bridging the two complementary sets of vertices, we
wish to maximize its size |Ecut|. In the context of our study, we work with unweighted
graphs.

To model the partition across the graph, we can set a value of either 1 or 0 to the vertices
to denote which side of the partition the vertex belongs to. Therefore, any solution to a
graph of N vertices is given by X = (x1, . . . , xN) where xi ∈ {0, 1}. This mapping allows
us to use an energy function H(X) that computes the negative of the sum of the number
of edges belonging in Ecut. This step is done by summing the following expression over all
the edges in set E:

H(X) = −
∑

(i,j)∈E
(xi + xj − 2xixj). (6.13)

Taking the negative converts Max-Cut into a minimization problem. An edge connecting xi
and xj exists in Ecut when xi ̸= xj. The latter provides a contribution of −1 to H(X). For
simplicity, we note that the expression of H(X) is equivalent to the following Kronecker
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Delta expression

H(X) = −
∑

(i,j)∈E
1 − δxixj

.

Note that H(X) in Eq. (6.13) is quadratic due to the binary nature of variables xi.
Therefore, H(X) can be cast into a QUBO form as follows

H(X) = XTQX, (6.14)

where Q ∈ RN×N is the QUBO square matrix with matrix elements derived from Eq.
(6.13). The flexibility of the RNN ansatz allows it to handle binary variables in addi-
tion to spins in the Ising formulation (6.1). This advantage makes the scaling make our
VCA method more favorable in terms of embedding optimization problems compared to
Quantum annealers based on Ising formulations such as in D-Wave.

For the numerical implementation, we use unweighted Max-Cut instances of N = 128
vertices and edge densities ρ = 0.12, 0.25, 0.5 generated by the Rudy graph generator
by G. Rinaldi [241]. These graphs were originally generated to benchmark the classical-
quantum optimization (CQO) technique [234]. The choice of increasing densities was used
to investigate the effects of adding more complexity to the Max-Cut problem while keeping
the number of vertices constant. We approximate the ground state of these graphs using
the ConicBundle package by C. Helmberg from the Biq Mac Solver server [242].

We use the Vanilla RNN and Dilated RNN with site-dependent parameters for both
to run VCA on this problem. As illustrated in Fig. 6.8, the general trend we see for both
VCA and SA is that ϵres decreases with the number of annealing steps. VCA with Dilated
RNNs (VCA-Dilated) outperforms SA on average starting from annealing steps 211, 28, 214

respectively for the densities 0.12, 0.25, 0.5. Although SA has better energies on average in
the fast regime, VCA provides a better convergence at a larger number of annealing steps.
This observation suggests that VCA requires a threshold number of annealing steps before
it consistently converges to the ground state.

If we consider the best solutions obtained by SA and VCA (see Tab. 6.1), we observe
that for all three densities, SA finds the ground state at Nannealing = 24. For both VCA
variants, it is required to have a longer annealing time to find the ground states. The latter
means that SA can find the optimal solution of our Max-Cut instances in fewer annealing
steps compared to VCA.
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Figure 6.8: Plot of the residual energy per site ϵres/N against the number of
annealing steps Nannealing. For all the RNN variations of VCA, we compare with SA on
a Max-Cut problem with system size N = 128 with edge density (a) ρ = 0.12, (b) ρ = 0.25,
and (c) ρ = 0.5. We observe that VCA outperforms SA in the limit of large Nannealing.

6.6.2 The Nurse Scheduling Problem (NSP)

The second combinatorial optimization problem we explore is the NSP which belongs
to the class of scheduling problems in the field of operations research, and it is known to
be NP-hard [243]. NSP aims to assign nurses to specific shifts in a hospital under a set of
imposed constraints. The imposed constraints make it hard to find satisfactory solutions
to the problem. In this work, we apply VCA to the formulation of NSP introduced in
Ref. [244].

In this formulation, we have the following constraints: the hard nurse constraint, the
hard shift constraint, and the soft nurse constraint. The hardness determines the impor-
tance of respecting the constraint. The hard nurse constraint requires that no nurse works
for two consecutive shifts as they require sufficient rest after a shift. The hard shift con-
straint emphasizes the need to deploy enough nurses to handle a given shift. Finally, the
soft nurse constraint aims for solutions to come up with an even distribution of nurses
assigned to shifts. In this study, the terms ‘shift’ and ‘day’ are synonymous.

To better understand NSP, let us take the example of a hospital, where we have N
individual nurses given by n ∈ {1, . . . , N} and D working days given by d ∈ {1, . . . , D}.
A solution to the NSP problem could be represented by a matrix

XM =



x1,1 . . . x1,D

...
. . .

...
xN,1 . . . xN,D


 ,

where XM ∈ {0, 1}N×D. If nurse n has been assigned to day d, then xn,d = 1, otherwise
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xn,d = 0. We use the flattened vector representation of XM to represent our solution,
denoted by X ∈ {0, 1}ND. With index manipulation, the matrix elements of XM map to
the elements in X = [xm(1,1), . . . , xm(N,D)] using m(n, d) = D(n− 1) + d.

The three constraints are formulated individually into separate quadratic penalty func-
tions [244]. The hard nurse constraint, which is quantified by

H1(X) = α
N∑

n=1

D∑

d=1

xm(n,d)xm(n,d+1), (6.15)

penalizes a solution that has instances of a nurse n working two days in a row. Every time
this violation occurs, a penalty of α is added.

The hard shift constraint has been formulated using the workforce required on a par-
ticular day W (d). The constraint function

H2(X) =
D∑

d=1

(
N∑

n=1

xm(n,d) −W (d)

)2

, (6.16)

aims to equalize the accumulated contribution of the nurses assigned to a working day and
the actual amount of workforce required on that day. A penalty is incurred when there are
not enough nurses assigned to a day, or conversely, when there is a surplus of nurses.

Lastly, we have the soft nurse constraint which promotes equal distribution of all nurses
across the working days. The latter is as follows:

H3(X) =
N∑

n=1

(
D∑

d=1

xm(n,d) − F (n)

)2

. (6.17)

The soft constraint term H3(X) has been formulated using F (n) that gives us the number
of days a nurse n wishes to work. If equal distribution of nurses is to be achieved, then
setting at least F (n) = ⌊D/N⌋ for all nurses ensures a fair workload when D is a multiple
of N .

Now we can sum the three Hamiltonian terms shown in Eq. (6.15), (6.16), (6.17) to
get the resultant energy function

H(X) = H1(X) + λH2(X) + γH3(X), (6.18)

where λ and γ are real coefficients that scale the penalty functions H2(X) and H3(X)
respectively. H(X) is minimized when, for the given NSP configuration, the least num-
ber of constraints are broken. If all the constraints are obeyed then the optimal energy
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H(X∗) = 0. However, it should be noted that for certain combinations of N and D, it
is not always possible for the ground state X∗ to respect all the constraints, resulting in
H(X∗) > 0.

Given the quadratic form of H(X) the binary nature of X, H(X) can be represented
as a quadratic unconstrained binary optimization (QUBO) model [244, 245],

H(X) =
ND∑

i=1

ND∑

j=i

qijxixj + c,

where coefficient qi,j and constant c are derived from Eq. (6.18). This expression can be
made more compact to get

H(X) = XTQX + c,

such that Q ∈ RND×ND is a square matrix with matrix elements given by qij.

We use a configuration of 15 days and 7 nurses, giving us a system size of 15×7 = 105.
Taking inspiration from Ref. [244], we use the following NSP parameters described in
Sec. 6.6.2: W (d) = 1, F (n) = ⌊D/N⌋, α = 3.5, λ = 1.3, γ = 0.3. Based on the chosen
parameters, the ground state energy is H(X∗) = γ, which corresponds to a configuration
with one soft constraint violation.

We use vanilla and dilated RNNs with site-dependent parameters to solve this opti-
mization problem. The results are presented in Fig. 6.9(a). Again, we see that increasing
the number of annealing steps allows VCA to reduce the average error ϵres/N . Both VCA-
Dilated and VCA-Vanilla reach lower error margins compared to SA at large Nannealing. For
a small number of annealing steps, SA outperforms VCA on the average case. Between
annealing steps 29 and 213, VCA-Dilated maintains the lowest average error among all the
models. For the slowest annealing schedule, Nannealing = 214, VCA-Vanilla reaches the over-
all lowest average error, whereas VCA-Dilated has a sudden increase in ϵres/N . A possible
reason for this sudden increase can be related to the choice of our hyperparameters, which
can be further tuned.

Lastly, by considering the best solutions, SA finds the ground state at Nannealing = 24

whereas VCA lands at the optimal solution around Nannealing = 26 as illustrated in Tab. 6.1.
The latter means that SA, similarly to Max-Cut, needs fewer Nannealing steps compared to
VCA to find optimal solutions.
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Figure 6.9: Plots of the residual energy per site ϵres vs Nannealing. (a) For NSP with
15 days and 7 nurses, both the Vanilla and Dilated RNN variants of VCA are plotted
alongside SA. (b) For TSP with system sizes N = 64, 128, 256, VCA with Dilated RNNs
and with shared parameters is plotted alongside SA. For panels (a) and (b), we see that
VCA has a lower ϵres compared to SA for large Nannealing.

6.6.3 The Traveling Salesman Problem (TSP)

TSP is another famous combinatorial optimization problem that we attempt to solve
with VCA. The aim of TSP is to visit a set of cities exactly once and return to the starting
city in the tour with a specific order that minimizes the total cost of travel. In our study,
the cost is the total distance traveled. We are particularly interested in the 2D Euclidean
TSP which is known to be NP-complete [246].

Given N cities on a 2D Cartesian plane, a solution tour looks as X = (π(1), . . . , π(N))
where π is a permutation of N cities. Each city π(i) has a tuple of x and y coordinates
(xπ(i), yπ(i)). An important property of a valid solution that should be noted is that every
city on the tour should be unique. We also remark that the permutation order of cities is
translation invariant. The latter property is exploited in the construction of our parame-
terized model. The energy function of the 2D Euclidean TSP is given by the sum of the
Euclidean distances between consecutive cities, including the trip from the last city back
to the first as follows

H(X) =
N∑

i=1

√
(xπ(i) − xπ((i+1)%N))2 + (yπ(i) − yπ((i+1)%N))2, (6.19)

where % denotes the modulo operator.
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Numerically, we use three instances of TSP with varying system sizes N = 64, 128, 256.
Each component of the coordinates (x, y) of the cities has been uniformly sampled from
the range (0, 1). The approximation of the ground state tours of these TSP configurations
is provided by the Concorde algorithm [247] through the NEOS Server [248].

Unlike the previous problems, we use VCA with dilated RNNs that have shared param-
eters owing to the translation invariance property of TSP. The focus on dilated RNNs for
this problem is motivated by the presence of long-range interactions in TSP that can be
captured by this architecture as well by the overall advantage of this architecture compared
to vanilla RNNs in Max-Cut and TSP. Additionally, the Softmax output probability (see
Sec. 4.10) has a size equal to the number of cities N as opposed to Max-Cut and NSP with
output size equal to 2 for binary variables.

To avoid revisiting the same cities during the process of autoregressive sampling in
VCA, we take inspiration from the U(1) symmetry implementation in Sec. 4.11.2, and
in Ref. [249] in the context of TSP. Here, we apply a mask on the visited cities when
computing the conditional probabilities Pθ(ci|ci−1, . . . , c2, c1) at the level of the Softmax
layer (see Eq. (4.4)), where ci ∈ {1, 2, . . . , N} corresponds to the city to be visited at step
i and θ are the parameters of our model. The masking at step i is done as follows:

• If cities (c1, c2, . . . ci−1) were visited, where cj ∈ {1, 2, . . . , N}, then Pθ(cj|ci−1, . . . , c2, c1)
is set to zero for 1 ≤ j ≤ i− 1.

• After the previous step, the conditional probability Pθ(.|ci−1, . . . , c2, c1) is renormal-
ized to 1.

After implementing these steps, our autoregressive model provides us with a permutation
π of the cities. We note that this masking trick can be implemented in parallel across the
batch size.

The results from our experiments are presented in Fig. 6.9(b). For N = 64, 128, VCA
reaches a residual energy per site ϵres/N < 10−4 whereas for N = 256, we reach an average
error ϵres/N ∼ 10−3. We also observe that SA reaches ϵres/N ∼ 10−2 in the slow annealing
regime. Overall, in the range of medium to slow annealing (Nannealing ≥ 27), VCA demon-
strates a better average performance compared to SA. Furthermore, for the largest system
size, VCA requires a relatively larger Nannealing to noticeably improve over SA highlighting
the increase in complexity that arises with larger system sizes.

By considering the best-case scenario, VCA finds the best tours for all three problem
sizes. It also finds the exact ground state for N = 64, as illustrated in Tab. 6.1. In contrast,
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SA VCA
Parameter ϵmin

res N∗
annealing Time ϵmin

res N∗
annealing Time

NSP 15D, 7N 0.0 24 3 s D: 0.0 26 4 min 5 s
V: 0.0 27 1 min 25 s

ρ = 0.12 0.0 24 6 s D: 0.0 211 45 min 32 s
V: 0.0 213 1 hr 23 min

Max-Cut ρ = 0.25 0.0 24 6 s D: 0.0 28 9 min 14 s
V: 0.0 212 42 min 14 s

ρ = 0.50 0.0 24 6 s D: 0.0 214 5 hrs 35 min
V: 0.0 214 2 hrs 43 min

N = 64 3.13× 10−3 214 1 min 30 s D: 0.0 213 49 min 15 s
TSP N = 128 9.24× 10−3 214 6 min 19 s D: 3.84× 10−5 213 1 hr 24 min

N = 256 1.75× 10−2 214 25 min 42 s D: 8.60× 10−4 214 6 hrs 51 min

Table 6.1: A summary table of the best performances of VCA and SA on NSP,
Max-Cut, and TSP. Here we define the minimal residual energy per site ϵmin

res /N ≡
(Hmin −H(X∗))/N where Hmin is the lowest energy obtained by either SA or VCA across
the different samples. ‘D’ stands for the Dilated RNN results and ‘V’ stands for the Vanilla
RNN results. Values in bold font correspond to the lowest N∗

annealing to find the exact or
the lowest approximation to the ground state after comparing SA and VCA. Furthermore,
bold values highlight the lowest ϵmin

res , as well as the lowest estimated time to find the exact
or the best solution.

SA finds tours with a higher cost and gets stuck in local minima. This result is different
from what we observed for the Max-Cut and the NSP. Thus, we conclude that if a user
is interested in finding the best solutions to a particular optimization problem, VCA is a
valuable alternative when SA fails to find an optimal solution.

More details about the VCA hyperparameters and the SA implementation can be found
in Appendix B.7.

6.7 Application to frustrated systems

After revealing the potential of variational annealing for solving combinatorial opti-
mization problems, we now move to another use case of annealing. Here we investigate the
value of annealing in finding the ground state of frustrated systems. As a test bed, we take
the 2D Heisenberg model on the triangular lattice. Due to the frustrated, non-bipartite
nature of the triangular lattice, the Hamiltonian Ĥ can no longer be made stoquastic with
a simple unitary transformation. Such a Hamiltonian can make the VMC optimization
landscape rough and filled with local minima [250]. Here, we use annealing to overcome
local minima and to obtain accurate estimates of ground state energies using a fictitious
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pseudo-temperature (see Eq. 3.31).

To demonstrate the idea of annealing, we target the ground state of the 4×4 triangular
lattice at different numbers of annealing steps Nannealing. The results in Fig. 6.10(a) show
that starting from a non-zero pseudo-temperature T0 allows obtaining a lower value of the
relative error as opposed to traditional VMC where the initial pseudo-temperature T0 = 0.
We also remark that higher accuracy is achieved by increasing the number of annealing
steps, which underlines the importance of adiabaticity in our scheme.

We now focus our attention on larger system sizes. Here we train our 2D cTGRU
wave function (see Sec. 5.2.2) using annealing for a system size 6 × 6, while applying a
Marshall sign to minimize the sign effect. We then optimize our ansatz at larger system
sizes after increasing the lattice side length by 2 until we arrive at size 16 × 16. This step
is done at zero pseudo-temperature and without reinitializing the parameters of the RNN.
This idea was already proposed in the literature in Ref. [35]. The latter takes advantage
of the translation invariance property encoded in the weight-sharing of the parameters of
the RNN. The results in Fig. 6.10(b) show that for system sizes larger than 14 × 14, the
variational energy obtained by our RNN ansatz is more accurate compared to the energy
obtained by DMRG. It is important to note that our RNN ansatz uses less than 0.1% of
the parameters of DMRG for system sizes larger than 14× 14. The hyperparameters used
to produce our results can be found in App. A.1. Additionally, we note that a comparison
of our approach with Ref. [146] is provided in App. A.2.

Conclusion

In conclusion, we have introduced a strategy to combat the slow sampling dynamics
encountered by simulated annealing when an optimization landscape is rough or glassy.
Based on annealing the variational parameters of a generalized target distribution, our
scheme — which we dub variational neural annealing — takes advantage of the power
of modern autoregressive models, which can be exactly sampled without slow dynamics
even when a rough landscape is encountered. We implement variational neural annealing
parameterized by a recurrent neural network, and compare its performance to conventional
simulated annealing on prototypical spin glass Hamiltonians and real-world optimization
problems known to have landscapes of varying roughness. We find that variational neural
annealing produces accurate solutions to all of the optimization problems considered, where
our techniques typically reach solutions orders of magnitude more accurately on average
than conventional simulated annealing in the limit of a large number of annealing steps.
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Figure 6.10: (a) A scaling of the relative error ϵ against the number of annealing steps
Nannealing for the triangular Heisenberg model with size 4 × 4, ‘VMC’ corresponds to an
initial pseudo-temperature T0 = 0 whereas for ‘VMC with annealing’, we start with T0 = 1.
(b) A plot of the energy difference per site between the 2DRNN and the DMRG. Negative
values show that our ansatz is superior compared to DMRG for system sizes larger than
14 × 14.

We also find that our framework is applicable to frustrated quantum systems with a rugged
optimization landscape.

We emphasize that several hyperparameters, models, hardware, and objective function
choices can be explored and may improve our methodologies. We have utilized a simple
annealing schedule and we highlight that reinforcement learning can be used to improve
our cooling schedules [251]. A critical insight gleaned from our experiments is that certain
neural network architectures were more efficient on specific Hamiltonians. Thus, a natural
direction is to study the intimate relationship between the model architecture and the
problem Hamiltonian, where we envision that symmetries and domain knowledge would
guide the design of models and algorithms.

As we witness the unfolding of a new age for optimization powered by deep learn-
ing [252], we anticipate rapid adoption of machine learning techniques in the space of com-
binatorial optimization, as well as anticipate domain-specific applications of our ideas in
technological and scientific areas related to physics, biology, health care, economy, trans-
portation, manufacturing, supply chain, hardware design, computing, and information
technology, among others.
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Reproducibility Code

The code we use to produce our results can be found in Refs. [253, 254].
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Chapter 7

Investigating Topological Phases of
Matter with RNNs

This chapter contains results and material from Ref. [255], in
addition to other material not published elsewhere.

Landau symmetry breaking theory provides a fundamental description of a wide range of
phases of matter and their phase transitions through the use of local order parameters [70].
Despite the fact that a great deal of our theoretical and experimental investigations of
interacting quantum many-body systems have been developed with the aim of studying
local order parameters, it is well-known that the most intriguing strongly correlated phases
of matter may not be easily characterized through these observables. Instead, several
states of matter seen in modern theoretical and experimental studies are characterized
using non-local order parameters that rely on the phases’ topological properties [256–258].
Topological order, in particular, refers to a type of order characterized by the emergence
of quasi-particle anyonic excitations, topological invariants, and long-range entanglement,
which typically do not appear in traditional forms of order. As a result of these properties,
topologically ordered phases have been suggested as an important building block for the
development of a protected qubit resistant to perturbations and errors [158, 259, 260].
Such qubits have been devised recently at the experimental level [261].

While most manifestations of topological order are dynamical in nature—e.g. anyon
statistics, ground state degeneracy, and edge excitations [100]–topological order can also be
characterized directly in terms of the ground state wave function and its entanglement. In
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particular, a probe for topological order is the topological entanglement entropy (TEE) [99,
100], which offers a characterization of the global entanglement pattern of topological
ground states not present in conventionally ordered systems. Notably, the TEE is readily
accessible for large classes of topological orders [100, 262], in numerical simulations based
on quantum Monte Carlo (QMC) [263–265] and density matrix renormalization group
(DMRG) [266, 267], as well as in experimental realizations of topological order based on
gate-based quantum computers [258].

In the previous chapter, we have shown the ability of RNNs supplemented with the
principle to solve combinatorial optimization problems. In this chapter, we focus our
attention on the ability of RNNs to investigate topological order in quantum matter. In
particular, we use 2D RNNs with a gating mechanism to investigate topological order in
2D through the estimation of the TEE. We focus on two model Hamiltonians exhibiting
topological order, namely Kitaev’s toric code [158, 260] and a Bose-Hubbard model on the
kagome lattice previously shown to host a gapped quantum spin liquid with non-trivial
emergent Z2 gauge symmetry [263, 265, 268]. We also target Rydberg atom arrays on
Kagome lattice where the existence of a spin-liquid is still not clearly known. In our
study, we use Kitaev-Preskill constructions [99], Levin-Wen constructions [100], and finite
size-scaling analysis of the entanglement entropy to extract the TEE. We find convincing
evidence that RNNs are capable of expressing ground states of Hamiltonians displaying
topological order. We also find evidence that the RNN wave function is naturally biased
toward finding superpositions of minimally entangled states, as reflected in the calculations
of entanglement entropy and Wilson loop operators for the toric code. Our RNN ansatz
also signals no evidence for the existence of a topological order on the Rydberg atom arrays
on the Kagome lattice. Overall, our results indicate that RNNs can represent phases of
matter beyond the conventional Landau symmetry-breaking paradigm.

The plan of this chapter is as follows: in Sec. 7.1, we define the concept of the TEE
and the different constructions used to extract this quantity. In Secs. 7.2, 7.3 and 7.4, we
present our results respectively for the 2D toric code, as well as on hard-core Bose-Hubbard
model and the Rydberg atom arrays on Kagome lattices.

7.1 Topological entanglement entropy

A powerful tool to probe topologically ordered states of matter is through the so-called
topological entanglement entropy (TEE) [99–101, 262–264, 269–271]. The TEE can be
extracted by computing the entanglement entropy of a spatial bipartition of the system
into A and B, which together comprise the full system. For many phases of 2D matter,
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Figure 7.1: In panel (a), we illustrate how we cut the torus geometry of the toric code
lattice into two equal cylinders. Additionally, we show a sketch of the parts A, B, and C
that we use for Kitaev-Preskill construction to compute the TEE in panel (b), as well as the
Levin-Wen construction for a square lattice with size L = 8 in panel (c). For the Rydberg
atoms Hamiltonian on a Kagome lattice, each dot on the square lattice corresponds to a
block of three spins, as shown in Fig. 4.7(b).

the Renyi-n entropy satisfies the area law Sn(A) = aL − γ + O(L−1). Here L is the size
of boundary between A and B, Sn(A) ≡ 1

1−n
ln(Tr(ρnA)), ρA = TrB|Ψ⟩⟨Ψ| is the reduced

density matrix of subsystem A, |Ψ⟩ is the state of the system, and γ is the TEE. The
TEE detects non-local correlations in the ground state wave function and plays the role of
an order parameter for topological phases similar to the notion of a local order parameter
in phases displaying long-range order. Since the TEE is shown to be independent of the
choice of Renyi index n [101], we can use the swap trick with our RNN wave function
ansatz to calculate the second Renyi entropy S2 as shown in Sec. 3.8 and extract the TEE
γ.

To access γ, we can approximate the ground state of the system using an RNN wave
function ansatz, i.e. |Ψθ⟩ ≈ |Ψ⟩ for different system sizes followed by a finite-size scaling
analysis of the second Renyi entropy. We can also make use of a TEE construction, e.g.,
the Kitaev-Preskill construction [99] and the Levin-Wen construction [100] as illustrated
in Fig. 7.1.

The Kitaev-Preskill construction prescribes dividing the system into four subregions A,
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B, C, and D as illustrated in Fig. 7.1(b). The TEE can be then obtained by computing

γ = −S2(A) − S2(B) − S2(C) + S2(AB)

+ S2(AC) + S2(BC) − S2(ABC),

where S2(A) is the second Renyi entropy of the subsystem A, and AB is the union of
A and B and similarly for the other terms. Finite-size effects on γ can be alleviated by
increasing the size of the subregions A,B and C [99, 272]. Finally, we highlight the ability
of the RNN wave function to study systems with fully periodic boundary conditions as a
strategy to mitigate boundary effects, as opposed to cylinders used in DMRG [273, 274],
which may potentially introduce edge effects that can affect the values of the TEE [275].

The Levin-Wen construction allows to extract the TEE γ by constructing four different
subsystems A1 = A ∪ B ∪ C ∪D,A2 = A ∪ C ∪D,A3 = A ∪ B ∪D and A4 = A ∪D as
illustrated in Fig. 7.1(c) such that [263]:

γ =
−S2(A1) + S2(A2) + S2(A3) − S2(A4)

2
.

Note that finite size effects on γ can be eliminated by extrapolating the width and the
thickness of A1, A2, A3 and A4 [263, 272].

Finally, it is important to note that our ability to study quantum systems with fully
periodic boundary conditions helps to mitigate boundary effects, as opposed to cylinders
used in DMRG [273, 274] that introduces a bias in the value of the TEE [275].

7.2 2D toric code

We now focus our attention on the toric code Hamiltonian which is the simplest model
that hosts a Z2 topological order [158, 269] and has a non-zero TEE equal to γ = ln(2).
The Hamiltonian is defined in terms of spin-1/2 degrees of freedom located on the edges
of a square lattice (see Fig. 4.7(a)) and is given by

Ĥ = −
∑

p

∏

i∈p
σ̂z
i −

∑

v

∏

i∈v
σ̂x
i ,

where the first summation is on the plaquettes and the second summation is on the ver-
tices [269] of the lattice. Note that the lattice in Fig. 4.7(a) can be seen as a square lattice
with a unit cell containing two spins. In our simulations, we use an L × L × 2 array of
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spins where L is the number of plaquettes on each side of the underlying square lattice.
It is possible to study the toric code with a two-dimensional RNN defined on a primitive
square lattice by merging the two spin degrees of freedom of the unit cell of the toric code
into a single “patch” followed by an enlargement of the local Hilbert space dimension in
the RNN from 2 to 4. This idea is illustrated in Sec. 4.12. We provide additional details
about the mapping in App. C.1.

To extract the TEE from our ansatz, we variationally optimize the 2D RNN wave
function targetting the ground state of this model for multiple system sizes on a square
lattice with periodic boundary conditions. After the optimization, we compute the TEE
using system size extrapolation and using the Kitaev-Preskill scheme provided in Sec. 7.1.
More details about the regions chosen for this construction are provided in App. C.2. To
avoid local minima during the variational optimization, we perform an initial annealing
phase through the use of a fictitious temperature (see Sec. 3.10 and Sec. 6.7). Additional
details are provided in App. C.1.

The results shown in Fig. 7.2(a) suggest that our 2D RNN wave function can describe
states with an area law scaling in two dimensions. Linearized versions of the RNN wave
function have been recently shown to display an entanglement area law [146]. For L = 10
(not included in the extrapolations in Fig. 7.2(a)), it is challenging to evaluate S2 accurately
as the expectation value of the swap operator is proportional to exp (−S2), which becomes
very small and thus hard to resolve accurately via sampling the RNN wave function.
The improved ratio trick is an interesting alternative for enhancing the accuracy of our
estimates [32, 68]. The use of conditional sampling is also another possibility for enhancing
the accuracy of our measurements [102].

The extrapolation also confirms the existence of a non-zero TEE whose value is close to
γ′ = ln(2) within error bars. Note that the sub-region we have used to compute the TEE
is half of the torus, namely a cylinder with two disconnected boundaries1 (see Fig. 7.1(a)).
As shown in Ref. [270], the use of this geometry means that the expected TEE becomes
state-dependent and given by

γ′ = 2γ + ln

(∑

i

p2i
d2i

)
(7.1)

for the second Renyi entropy. Here di ≥ 1 is the quantum dimension of a i-th quasi-
particle. For the toric code, we have abelian anyons with di = 1. Additionally pi = |αi|2

1Note that this choice allows minimizing the boundary size as opposed to a square region in the bulk.
This feature is desirable since the swap operator used to estimate the second Renyi entropy [43] becomes
very small, and thus more sensitive to statistical errors when the boundary increases for a quantum system
satisfying the area law.
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is the overlap of the computed ground state |Ψ⟩ with the i-th minimally entangled state
(MES) |Ξi⟩ where

|Ψ⟩ =
∑

i

αi |Ξi⟩ .

The observations above and the numerical result γRNN ≈ ln(2) suggest that the RNN wave
functions optimized via gradient descent and annealing find a superposition of MES as
opposed to DMRG, which typically collapses to a single MES [264, 266]. The analysis
provided in App. C.3 demonstrates that our optimized RNN ansatz finds a uniform super-
position of two MES which increases the entanglement in the state with respect to a single
MES. Thus using Eq. (7.1), we expect γ′ = 2 ln(2) + ln

(
1
4

+ 1
4

)
= ln(2), which is consistent

with our numerical observations.

We note that the exact autoregressive sampling procedure plays a key role in the abil-
ity of our RNN ansatz to sample a superposition of different topological sectors when this
superposition is encoded in our ansatz. For wave functions representing the ground state
of the toric code used in combination with Markov-chain Monte Carlo methods, the prob-
ability of sampling different topological sectors of the state is exponentially suppressed
even if the exact wave function ansatz encodes different topological sectors. This obser-
vation can be illustrated using an exact convolutional neural network construction of the
toric code ground state which contains an equal superposition of different topological sec-
tors [28]. Although in principle such representation contains all topological sectors, its
form is not amenable to exact sampling and uses Markov chains so that upon sampling
with local moves the system chooses a fixed topological sector. The ability of RNNs to
recover different modes has been also highlighted for spin-glass models in App. B.5.

To further verify that our 2D RNN wave function can extract the correct TEE of the
2D toric code, we compute the TEE using the Preskill-Kitaev construction, which has
contractible surfaces, and for which the TEE does not depend on the topological sector
superposition [264, 270] (see App. C.2 for details about the construction). The results
reported in Fig. 7.2(b) demonstrate an excellent agreement between the TEE extracted by
our RNN and the expected theoretical value for the toric code.

7.3 Bose-Hubbard model

We now turn our attention to a hard-core Bose-Hubbard model on the Kagome lattice,
which has been shown to host topological order [263, 265, 268]. The Hamiltonian of this
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Figure 7.2: Entanglement properties of the 2D toric code. (a) Second Renyi entropy
scaling computed using our RNN wave function on the 2D toric code. (b) TEE computed
with the Kitaev-Preskill construction (see App. C.2) for different system sizes L× L× 2.
The values found by the RNN are very close to ln(2). Error bars correspond to one standard
deviation and are smaller than the symbol size.

model is given by

Ĥ = −t
∑

⟨i,j⟩

(
b†ibj + bib

†
j

)
+ V

∑

7
n2
7, (7.2)

where bi (b†i ) is the annilihation (creation) operator. Furthermore, t is the kinetic strength,
V is a tunable interaction strength and n7 =

∑
i∈7(ni − 1/2). The first term corresponds

to a kinetic term that favors hopping between nearest neighbors, whereas the second term
promotes an occupation of three hard-core bosons in each hexagon in the Kagome lattice.
In our setup, we choose V in units of the kinetic term strength t.

The atom configurations of this model correspond to an L × L × 3 array of binary
degrees of freedom where L is the size of each side of the Kagome lattice. Following an
analogous approach to the toric code, we enlarge the local Hilbert space size from 2 to 8
and gather the 3 spins of the unit cell of the kagome lattice as input to the 2D RNN cell,
as illustrated in Sec. 4.12. This allows us to map our Kagome lattice with a local Hilbert
space of 2 to a square lattice with an enlarged Hilbert space of size 23 = 8.

The model is known to host a Z2 spin-liquid phase for V ≳ 7 [263, 265, 276]. To confirm
this finding, we estimate γ for the system sizes 6× 6× 3 and 8× 8× 3. We use the Kitaev-
Preskill construction [99]. The details of the construction of the regions A,B, and C are
provided in App. C.2. As the Hamiltonian in Eq. 7.3 has a U(1) symmetry associated with
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the conservation of bosons in the system, we impose such symmetry on our RNN wave
function [43]. We also supplement the VMC optimization with annealing to overcome
local minima as previously done for the 2D toric code (see Sec. 3.10 and Sec. 6.7). For
the system size 8× 8× 3, the RNN ansatz parameters were initialized using the optimized
parameters for the 6 × 6 × 3 (see details about the hyperparameters in App. C.1).

The results are provided in Fig. 7.3. The computed TEEs for L = 6, 8 show a saturation
of γRNN for large values of the interaction strength V . We observe that the saturation values
of γRNN are in good agreement with the expected TEE γ = ln(2) of a Z2 spin-liquid [263].
Additionally, the negative values of γRNN observed for V ≤ 6 in the superfluid phase [263]
may be related to the presence of Goldstone modes that manifest themselves as corrections
to the area law in the entanglement entropy and can be seen as a negative contribution to
the TEE [277]. We note that the QMC methods are capable of obtaining a consistent value
with the exact TEE for this model at V = 8 for very large system sizes [265] using finite-size
extrapolation. This observation suggests that our RNN ansatz is still limited by finite-size
effects at V = 8 (see Fig. 7.3) for which the TEE is not yet saturated to ln 2. Other sources
of error in our calculation may be due to inaccuracies in the variational calculations and
statistical errors due to the sampling. However, we note that our variational calculation is
performed at zero temperature, which makes our calculations insensitive to temperature
effects. As a result, the RNN’s TEE saturates to the anticipated value of ln 2 using Kitaev-
Preskill construction, as opposed to TEE results based on QMC on a similar geometry,
which are harder to converge at low temperature and plateau to half of the expected
TEE [263].

7.4 Rydberg atom arrays

We now focus our attention on the Rydberg atoms array Hamiltonian on the Kagome
lattice. The latter has been extensively studied in the literature and was shown to be
experimentally realizable in the lab [278]. This system is also believed to provide a conve-
nient framework to experimentally prepare spin liquids [257, 275, 279]. The Hamiltonian
of this model is given by [275, 278]:

Ĥ =
N∑

i=1

Ω

2

(
|g⟩i ⟨r| + |r⟩i ⟨g|

)
− δ

N∑

i=1

|r⟩i ⟨r|

+
1

2

∑

(i,j)

V (||xi − xj||) |r⟩i ⟨r| ⊗ |r⟩j ⟨r| .
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Figure 7.3: A plot of the topological entanglement entropy against the interaction strength
V (in units of t) of Hard-core Bose-Hubbard model on Kagome Lattice for system sizes
N = L×L× 3 where L = 6, 8. The calculations were performed using the Kitaev-Preskill
construction (see App. C.2). The continuous black horizontal line corresponds to a zero
TEE, and a dashed blue horizontal line for a ln(2) TEE.

Here |g⟩i , |r⟩i are respectively the ground and the excited states of the Rydberg atom
i. Ω is the Rabi frequency and δ is the laser detuning. V (R) = C/R6 is the repulsive
potential due to the dipole-dipole interaction between Rydberg atoms, which is responsible
for the Blockade mechanism [278]. In practice, we define a blockade radius Rb such that
V (Rb/a) = Ω, where a is the distance between two neighboring Rydberg atoms. Finally, we
note that the sum over all possible pairs is truncated to a sum over the neighbors separated
by a distance cutoff Rc = 2 or Rc = 4. The choice Rc = 2 is taken mainly to compare
with the DMRG [142, 165] results reported in Ref. [275]. For numerical convenience, we
set a = 1 = Ω without loss of generality.

Due to the frustrated nature of this model which induces local minima in our opti-
mization landscape, we supplement our 2D RNN wave function with annealing with an
initial pseudo-temperature T0 and Nannealing. Further details about the hyperparameters
are provided in App. C.1.

To confirm the correctness of our method, we optimize our ansatz to find the ground
state at Rb = 1.7 and δ = 3.3 and with Rc = 2, which has a nematic order according to
the DMRG results [275]. In Fig. 7.4(a), we plot the two point correlations ⟨n0nr⟩. The
use of the two-point correlations allows us to obtain a clearer picture of the symmetry-
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Figure 7.4: Plots of the two-point correlations ⟨n0nr⟩ for L = 8 at δ = 3.3 with three
different values of blockade radius Rb. The color bars illustrate the value of ⟨n0nr⟩ for each
Rydberg atom in the lattice at position r. (a) Nematic order: Rb = 1.7 and Rc = 2. (b)
Staggered order: Rb = 2.1 and Rc = 2. Disordered state: Rb = 2.1 and Rc = 4 in panel
(c), and Rb = 1.95 and Rc = 2 in panel (d).
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breaking phases, as opposed to the density which can show the wrong picture when the
RNN finds a superposition of different sectors as observed in some of our experiments
for the nematic phase. Our results for the two-point correlation corroborate the DMRG
finding. We also find that this state retains a nematic order when using a cutoff radius
Rc = 4. Furthermore, we optimize our ansatz at the ground state of the point Rb = 2.1
and δ = 3.3 with two different values of the cutoff radius Rc = 2, 4. For Rc = 2, the ground
state is known to have a staggered order according to DMRG results. With our ansatz for
Rc = 2, we find a broken symmetry state with a staggered order as shown in Fig. 7.4(b),
such excitations are separated by a minimal distance

√
7 on the bulk. For Rc = 4, the

ground state becomes disordered with a short-range order as illustrated in Fig. 7.4(c). The
latter shows the importance of choosing a large cutoff radius to obtain realistic results, as
demonstrated previously with QMC results applied to the Rydberg Hamiltonian on the
square lattice [280].

In Ref. [275], the DMRG results suggest the potential existence of a spin liquid phase for
this model. Our results suggest that the ground state at Rb = 1.95 and δ = 3.5, which is in
the expected spin liquid region according to Ref. [275], is rather a disordered state with no
topological order. We first plot the correlations ⟨n0nr⟩ in Fig. 7.4(d). The results provide
a hint that the extracted state has short-range order with a small correlation length.

To investigate the existence of a spin-liquid in this regime, we calculate the TEE γ
using the Levin-Wen construction for a system size L = 8 (see Fig. 7.1, and for different
values of δ ∈ [2.0, 3.7] at Rb = 1.95. We also do the same using the Kitaev-Preskill
construction [99] in Fig. 7.1 (see App. C.2 for details about the construction). Our results,
reported in Fig. 7.5(a), suggest that the TEE extracted by the RNN is consistent with
zero and different from ln(2) within error bars. In a recent QMC study [281], it was
suggested that the region, around Rb = 1.95 and the values of δ used in our study, contains
an emergent spin-glass phase instead of a paramagnetic state. To check this claim, we
compute the Edwards-Anderson (EA) order parameters [282, 283], defined as:

qEA =

∑N
i=1⟨ni − ρ⟩2
Nρ(1 − ρ)

, (7.3)

where N is the system size, ni is the occupation number of site i and ρ = (
∑N

i=1 ni)/N .
Deviations of this order parameter from zero values are signals for the existence of a spin-
glass phase. In Fig. 7.5(b), we plot this order parameter as a function of δ with Rc = 2, 4
and Rb = 1.95. We find that the order parameter values are consistent with zero as
opposed to the results of QMC in Ref. [281]. This discrepancy in our results could be
related to long auto-correlations times affecting the QMC results. Ref. [281] also uses
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Figure 7.5: Investigation of the liquid phase in the Rydberg atoms arrays on
Kagome lattice. A plot of the TEE γRNN and the Edwards-Anderson order parameter
qEA versus δ for two different values of the cutoff radius Rc (in the inset of panel (b), we
zoom-in close to zero on the y-axis). For the TEE, we use Levin-Wen (LW) construction
and the Kitaev-Preskill (KP) construction. For panels (a) and (b), we fix the blockade
radius as Rb = 1.95. In panels (c) and (d), we report the second Renyi entropies S2 for
different values of Rb, Rc, and δ.
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parallel tempering simulations, which are more suitable for spin-glass systems, in addition
to traditional QMC. With these simulations, it was found that EA order parameters tend
to be zero which corroborates our RNN findings.

All in all, these results suggest the non-existence of a spin liquid within our settings.
Instead, our numerical findings corroborate the existence of a disordered state which can
be highly entangled with increasing values of δ as illustrated by the second Renyi entropies
in Fig. 7.5(c). We highlight that the second Renyi entropy can be used as an efficient
measure to detect phase boundaries as suggested in Fig. 7.5(d) with a transition from a
highly entangled paramagnetic phase to a nematic phase with lower entanglement at a
transition point δ ≈ 2.4, which in close agreement with the phase diagram provided by
DMRG [275]. We would like also to add that in our experiments, we observe signatures
where our RNN finds a superposition of the three nematic sectors with an EE close to
ln(3) at other values of Rb and δ in the nematic phase. This is in contrast to the behavior
of DMRG and QMC with local updates which typically collapse to a specific nematic
sector [275, 281].

Finally, we note that DMRG’s conclusion of a liquid phase for this system in Ref. [275]
could be an artifact of using open boundary conditions along the x-direction as opposed
to fully periodic boundary conditions, as it was already anticipated in the same Ref. [275].
Future numerical investigations are vital for checking such hypotheses.

Conclusion

In this chapter, we demonstrated a successful application of neural network wave func-
tions to the task of detecting topological order in quantum systems. We revealed their ca-
pability of estimating second Renyi entropies using the swap trick, with which we computed
TEEs using finite-size scaling, Kitaev-Preskill constructions, and Levin-Wen constructions.
Furthermore, the structural flexibility of the RNN offers the possibility to handle a wide va-
riety of geometries including periodic boundary conditions in any spatial dimension which
alleviate boundary effects on the TEE.

We have empirically demonstrated that 2D RNN wave functions support the 2D area
law and can find a non-zero TEE for the toric code and for the hard-core Bose-Hubbard
model on the Kagome lattice. We also find that RNNs favor coherent superpositions of
minimally-entangled states over minimally-entangled states themselves. Additionally, we
found a negative signal for a Z2 topological order on the Rydberg atoms array in the
Kagome lattice.
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The success of our numerical experiments hinges on the combination of the exact sam-
pling strategy used to compute observables, the structural properties of the RNN wave
function, and the use of annealing as a strategy to overcome local minima during the
optimization procedure.

The accuracy improvement of our findings can be achieved through the use of more
advanced versions of RNNs and autoregressive models in general [108, 146], or even a
hybrid approach that combines QMC and RNNs [284, 285]. Similarly, the incorporation
of lattice symmetries provides a strategy to enhance the accuracy of our calculations [43,
104, 108]. Although our results match the anticipated behavior of the toric code and Bose-
Hubbard spin liquid models, we highlight that the RNN wave function may be susceptible
to spurious contributions to the TEE [271] and we have not addressed this issue in our
work.

Finally, it is worth noting that our methods can be applied to study other systems
displaying topological order, such as the Rydberg atom arrays on other lattices [257, 279,
286], either through variational methods or in combination with experimental data. To
experimentally study topological order, it is possible to use quantum state tomography
with RNNs [33]. This involves using experimental data to reconstruct the state seen in
the experiment followed by an estimation of the TEE using the methods outlined in our
work. Overall, our findings suggest that RNN wave functions have promising potential for
discovering new phases of matter with topological order.
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Chapter 8

RNN exact constructions: a
comparison with other generative
models

In the previous chapters, we numerically confirmed the ability of RNNs to approximate
the ground state of prototypical many-body systems with different physical properties.
With these promising empirical results, one might ask the question of whether an RNN
is capable of providing an exact construction of probability distributions. In particular,
those obtained from traditional quantum states through the Born rule. It would be also
interesting to know whether RNN constructions can be done with a polynomial or expo-
nential number of resources in terms of the number of degrees of freedom. In this chapter,
we address one aspect of this question. More specifically, we aim to compare the RNN ex-
act constructions of prototypical probability distributions with other different paradigms
of generative modeling in machine learning. For classical generative modeling, we focus
on RNNs and restricted Boltzmann machines (RBMs) [122, 287]. For quantum-inspired
generative modeling, we use tensor networks (TNs) [288]. Finally, for quantum genera-
tive modeling, we provide the exact constructions using quantum circuit Born machines
(QCBMs) [289–291]. These architectures are summarized in Fig. 8.1. This comparative
study between different generative models is helpful to highlight the strengths and the
weaknesses of each generative model. This chapter also sheds light on the different per-
spectives a probability distribution can be constructed using different generative models.

As an outline for this chapter, we briefly introduce each generative model in Sec. 8.1
in addition to RNNs that were introduced in Chap. 4. In Sec. 8.2, we present the different
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constructions of the bimodal distribution, parity distribution, and cardinality distribution
as well as the toric code distribution. We further demonstrate the ability of RNNs to
encode the cardinality distribution with a lower number of compute resources compared
to RBMs, TNs, and QCBMs.

8.1 Introduction to generative models

In recent years, classical generative modeling has known a stunning success with the
development of deep learning models that are making state-of-the-art results in applications
ranging from creating images from text [292], generating chat conversation that looks
almost realistic [293] to molecular design [294, 295]. In the quantum world, generative
modeling has also arisen as an interesting research direction that can showcase a quantum
advantage compared to classical generative modeling [296]. In this section, we provide a
brief overview of the quantum, quantum-inspired, and classical generative models used in
our comparison on top of RNNs introduced in Chap. 4, before presenting our results in
Sec. 8.2.

8.1.1 Quantum Circuit Born Machine

Quantum circuit Born machines (QCBMs) are one of the most well-known genera-
tive models that are based on quantum circuits. They are known for their expressive
power [297], and for their ability to provide uncorrelated and independent samples, as op-
posed to energy-based models such as RBMs and traditional feed-forward neural networks.
A QCBM can be built using a parametrized unitary U(θ) applied on an initial state |0⟩⊗N

followed by a set of projective measurements as illustrated in Fig. 8.1(a). The QCBM
probability distribution is given by the Born rule as:

Pθ(σ) = |⟨σ|U(θ)|0⟩|2. (8.1)

The unitary U(θ) is traditionally built with one-gate and two-gate layers using different
topologies, namely line (see Fig. 8.1(b)), star, and all-to-all topologies [289]. The unique-
ness of QCBMs compared to other classical models stems from their ability to describe
arbitrary quantum states provided a sufficient number of gates.
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Figure 8.1: Summary of the generative models used in this chapter to represent
a data distribution P . (a) QCBM illustration. (b) A special case of a QCBM with a
line topology and two layers. (c) A diagram of a matrix product state (MPS) that can be
used to compute the amplitude of a configuration (σ1, σ2, . . . , σn). (d) An illustration of the
pair-projected entangled state (PEPS) that can naturally model 2D physical correlations as
opposed to MPS. (e) An illustration of the RBM architecture, that has a visible layer with
binary variables σn that are fully connected to a hidden layer made of binary variables hi.
(f) An illustration of one-dimensional RNN (1DRNN) that is made of a series of recurrent
green blocks (RNN). Each block receives an input σn−1 and a hidden state hn−1 and outputs
a new hidden state hn−1, that is used as an input to the Softmax layer S. The latter allows
computing the conditional probability of getting the next input σn. (g) A scheme of the
two-dimensional RNN (2DRNN). Here each 2DRNN cell receives two hidden states and
two spins from the horizontal and vertical neighboring 2DRNN cells. The autoregressive
sampling path is a zigzag path as indicated by the horizontal arrows.
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8.1.2 Tensor Networks

Tensor networks (TNs) are a class of models that have been originally developed in
the context of condensed matter physics and that are transferred for use cases in Machine
Learning. The main idea is to glue different tensors with contraction operations in order to
encode a specific quantum state or a probability distribution through the Born rule [298–
300]. In recent years, these architectures have been actively used in the context of machine
learning as generative models [288].

In one dimension, one can define the so-called Matrix Product States (MPS) that are
illustrated in Fig. 8.1(c), where each tensor takes an input σi that can be a one-hot encoding
a spin degree of freedom. In this case, the MPS probability distribution is given by:

PMPS(σ) =

∣∣∣∣∣
A

[σ1]
1 A

[σ2]
2 . . . A

[σN ]
N

N

∣∣∣∣∣

2

, (8.2)

where N is the normalization factor that can be computed exactly with an efficient con-
traction. Each link in Fig. 8.1(c) corresponds to a tensor Ai index. The bulk tensors Ai can
have a shape 2 × χ× χ where χ is the so-called bond dimension. The larger this quantity
the more entanglement our MPS can store [299, 301].

Since an MPS requires a bond dimension that scales with the system width in two
dimensions to efficiently encode the area law of entanglement, a two-dimensional version
of TNs has been devised to efficiently encode 2D correlations in a physical system of
interest [302]. This class of TNs is called pair-entangled projected states (PEPS) and is
illustrated in Fig. 8.1(d). Here the tensors are arranged on a 2D grid and can have up to
four external indices in addition to the physical indices index by the red triangles. The
challenge that is associated with this architecture is the expensive cost of contracting a
PEPS, which makes MPS more frequently used in the literature [299].

8.1.3 Restricted Boltzmann Machines

A restricted Boltzmann machine (RBM) [26] is a stochastic neural network that can be
built using an energy function in a similar fashion to Boltzmann distributions in statistical
physics. RBMs have been used as variational states to target the ground state of quantum
many-body systems [37] and they are known for their ability to model quantum states such
as topological states [303].
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The RBM is built with two connected layers: a visible layer and a hidden layer as
illustrated in Fig. 8.1(e). The RBM distribution is given by:

PRBM(σ) =
∑

h

P (σ,h), (8.3)

where

P (σ,h) =
e−E(σ,h)

Z
. (8.4)

Here, σ = (σ1, . . . , σN) where σi ∈ {+1,−1} denotes the visible variables and h =
(h1, . . . , hNh

), with hj ∈ {+1,−1}, for all j = 1, Nh, denotes the hidden variables. Fur-
thermore

E(σ,h) = −
N∑

i=1

Nh∑

j=1

Wijσihj −
N∑

i=1

aiσi −
Nh∑

j=1

bjhj, (8.5)

denotes the energy function, where Wij are the couplings between the hidden and visible
variables. Additionally, ai and bj are the visible and the hidden biases respectively. Finally

Z =
∑

σ,h

e−E(σ,h), (8.6)

is the normalization constant, also known as the partition function.

8.2 Results

We now focus our attention on the comparison between RBMs, RNNs, TNs, and
QCBMs in terms of representing different classical probability distributions. To be able
to compare the different constructions of the generative models, we use the number of
resources as a metric. For an RBM, RNN, and a TN, this metric corresponds to the
computational complexity to do a forward pass of a bitstring configuration σ to obtain
its associated probability. For a parametrized quantum circuit, the number of resources
corresponds to the number of local gates used in the quantum circuit.

Bimodal distribution. Let us get started with the bimodal distribution, which can
be obtained from the GHZ state through the Born rule. It is defined as follows:

Pbimodal(σ) =
1

2

(
N∏

i=1

δσi, 0 +
N∏

i=1

δσi, 1

)
. (8.7)
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We report the scaling of resources of the different constructions in Tab. 8.2, with more
details about each construction in App. D. For this distribution, all of the generative models
need O(N) resources for an exact construction. In particular, the RBM is able to represent
the bimodal distribution with one hidden neuron. Additionally, the TN construction is done
with an MPS that has a bond dimension χ = 2, whereas the RNN construction corresponds
to a hidden dimension dh = 2. Finally, the QCBM is able to build this distribution using
a linear topology of Hadamard and CNOT gates.

Parity (Evens) distribution. We now shift our focus to the parity distribution which
is defined as:

Peven(σ) =

{
1

2N−1 if
∑N

i=1 σi is even ,

0, otherwise .
(8.8)

This distribution is related to the parity function which is known for its theoretical role in
investigating circuit complexity of Boolean functions [304].

As shown in Tab. 8.2. This construction can be achievable with RBMs, RNNs, TNs,
and PQC models with linear scaling in the required resources. For the RBM, complex
numbers with one hidden variable h are needed to obtain an optimal construction. It is
conjectured that for a real-valued RBM, an exponential number of hidden units is needed
to construct this state. See App. D for details. With respect to the MPS and the RNN,
they can both construct this distribution using a bond dimension/hidden dimension equal
to 2. Finally, our QCBM exact construction of this distribution uses a linear number of
XX gates. More details about the constructions can be found in App. D.

Cardinality distribution. This distribution for a hamming weight k is given by the
following:

Pcard(σ) =

{
1/
(
N
k

)
if
∑N

i=1 σi = k ,

0 otherwise ,
(8.9)

where k < N and N is the total number of bits in σ. The cardinality distribution can
be constructed from Dicke’s state through the Born rule [305]. We can typically find this
distribution in combinatorial portfolio optimization or in quantum many-body systems
with a fixed magnetization sector.

The models’ constructions of this distribution are provided in App. D. The exact con-
struction can be achieved in a linear scaling of resources by the RNN. For TNs and QCBMs,
it can be obtained with linear scaling in kN . If k is at the order of the system size N ,
then the previous scaling becomes quadratic in terms of system size which make it less
favorable compared to RNNs. For the RBM, we provide construction with a quadratic
number of resources in terms of the number of bits. We note that the RBM, TN, and
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QCBM construction correspond to our best attempts and might not be optimal, so they
are subject to further possible improvements. More details can be found in App. D.

The advantage in scaling for the RNN can be related to the flexibility in choosing a
non-linearity and to the ability of RNNs to encode information about the hamming weight
k in the biases of the RNN cell in contrast to TNs.

Toric code distribution. As discussed in Sec. 7.2, the toric code state is a type
of stabilizer code that allows encoding information about a logical qubit using a two-
dimensional array of physical qubits. This state allows for fault-tolerant quantum comput-
ing [261, 306]. This state corresponds to the ground state of the 2D Kitaev’s toric code
with periodic boundary conditions, such that:

Ĥ = −
∑

p

B̂p −
∑

v

Âv.

Here the first summation is on the plaquettes B̂p and the second summation is on the

vertices Âv. This ground state is an eigenvector of the plaquettes B̂p = Πi∈pσ̂z
i and the

vertices Âv = Πi∈vσ̂x
i with eigenvalues equal to 1. Thus, the toric code ground state can

be written using projectors as

|ΨTC⟩ = ΠpΠv

(
1 + B̂p

2

)(
1 + Âv

2

)
|0⟩⊗N (8.10)

= Πp

(
1 + B̂p

2

)
|0⟩⊗N , (8.11)

= Πv

(
1 + Âv

2

)
|0⟩⊗N . (8.12)

The second equality shows that it is enough to project each plaquette configuration to
+1 to construct the ground state. The third equality also shows that it is sufficient to
project each vertex configuration to +1 to obtain our toric code ground state. In this
work, we consider the toric code distribution PTC(σ) = |⟨σ |ΨTC⟩ |2 that is obtained from
the toric code state using the Born rule. As shown in Tab. 8.2, the toric code distribution
can be built using a 2DRNN and PEPS with the same bond dimension χ = 2/hidden
dimension dh = 2. For a PEPS, an exact contraction of the tensors provided in App. D is
needed to obtain the probability of a certain bitstring configuration. However, the task of
contracting a PEPS is known to be #P [307] as indicated in Tab. 8.2. For a 2DRNN, the
computation of the probability of a configuration is still efficient and can be done with a
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RBM RNN TN QCBM
Bimodal O (N) O (N) O (N) O (N)
Parity O (N) O (N) O (N) O (N)

Cardinality O (N2) O (N) O (kN) O (kN) [308]
Toric code O (N) [303] O (N) #P contraction [307] O (N) [258]

Table 8.1: A table representing the number of resources needed for each architecture to
exactly represent the bimodal, parity, cardinality, and toric code distributions. We note
that in our definition of the number of resources, we do not take into account the possibility
of parameter repetition since this observation does not necessarily reduce the computational
complexity. The citations in the table correspond to the constructions that were found in
the literature. The RNN is found to have the best construction (in bold) for the cardinality
dataset. For the TN construction of the toric code distribution, we use a PEPS which is
known in the literature for the expensive cost of an exact contraction. The latter is known
to be an #P problem [307].

linear complexity with the system size N . The ability of RNNs to construct the 2D toric
distribution in App. D reinforces our findings in Chap. 7, where we numerically show that
RNNs can encode the topological order of the 2D toric code.

Additionally, we also provide an RBM construction with a linear number of hidden vari-
ables and local connectivity [303]. The QCBM construction is built using Hadamard and
CNOT gates on a 2D quantum circuit [258]. All in all, RNNs, RBMs, and QCBMs achieve
linear scaling in terms of the number of required resources to construct this distribution
as shown in App. D.

8.3 Conclusion

In this chapter, we provided a survey of the exact constructions of different synthetic
probability distributions using four generative models (QCBMs, TNs, RBMs, and RNNs).
We observe a similarity in the scaling of resources for two distributions out of four. The
latter outlines the potential of QCBMs to compete with quantum-inspired and classical
generative models. Additionally, the advantage of RNNs compared to the other generative
models on the cardinality distribution outlines the importance of a flexible choice of non-
linear activation functions in a generative model. This observation motivates the use of
non-linear in quantum circuits as shown in Ref. [309]. Furthermore, we highlight the
advantage of RNNs, RBMs, and QCBMs compared to PEPS when shifting our attention
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to the toric code distribution. In particular, we demonstrate that 2DRNNs can provide an
exact construction for the toric code distribution, with an efficient cost of a forward pass
in comparison to the PEPS architecture. We would like also to mention that there is a
possible space for optimizing the TN, QCBM, and RBM construction of the cardinality
distribution where we see a scaling advantage of RNNs.

Furthermore, we note that the exact constructions provide a valuable tool for the physics
community to have different perspectives on constructing a probability distribution. These
constructions are also potentially helpful to pre-train a generative model, especially when
the target distribution is related to a prototypical distribution that we can exactly construct
using our generative model. Additionally, by comparing RNNs and TNs constructions,
we note that for three distributions the models require the same bond dimension/hidden
dimension. This observation could be a consequence of possible mapping from TNs to
RNNs [146, 310, 311]. Furthermore, we would like to outline the possibility to map a TN
to a QCBM [312], as well as the mapping between TNs and RBMs [313]. These mappings
are very helpful to map a model’s construction to another model if it is difficult to construct
the distribution directly. This idea is also helpful to pre-train a generative model using
a construction from another generative model. Finally, we note that in this work, we do
not explore the use of complex RNN wave functions 4.5 and we believe there is still space
for exploration in order to find exact constructions of traditional quantum states with sign
structure.
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Chapter 9

Conclusions and Outlooks

9.1 Conclusions

In this thesis, we have introduced a class of wave functions based on RNNs that were
originally developed in the natural language processing community of machine learning.
RNNs belong to the class of autoregressive generative models that have the autoregres-
sive property, and which can allow sampling perfect and uncorrelated configurations from
complex multi-modal distributions. Importantly, we have demonstrated RNN ansatzes are
highly flexible and very efficient for performing variational calculations through the VMC
scheme. More precisely, they can be easily extended to multiple spatial dimensions with
an efficient cost that is cheaper compared to PEPS in the 2D case. We also used dilated
RNNs when the spatial dimension is not well-defined such as in the case of fully-connected
spin-glass models. We further generalized traditional RNNs to complex RNN wave func-
tions to target non-stoquastic Hamiltonian with a non-trivial sign structure. Additionally,
we showed that we can apply discrete symmetries as well as the U(1) symmetry to improve
ground state estimates, as well as to target specific excited state sectors for the purpose of
computing low-energy excitation gaps. Note that the weight-sharing feature of RNNs is a
good bias for targeting many-body systems with translation invariance in the bulk more
efficiently. By abandoning the common practice of using weight-sharing, we can extend the
use of RNNs to the study of disordered systems such as spin-glass models. Furthermore,
we illustrated the possibility of using RNNs to target exotic lattices such as the Kagome
lattice.

While DMRG is the gold standard numerical method in 1D, we have demonstrated that
our 2D RNN wave function is very competitive with DMRG and can lead to state-of-the-

134



art results in 2D. In particular, we demonstrated the ability of 2D RNNs to outperform
DMRG on the 2D TFIM on the square lattice as well as on the 2D triangular Heisenberg
model, while using orders of magnitude fewer variational parameters compared to DMRG.
We also showed that accuracy can be systematically improved by increasing the number of
hidden/memory units in the RNN ansatz. We further showcase the possibility to estimate
correlation functions and entanglement entropies.

In this work, we also developed a variational scheme to emulate classical and quantum
annealing for the purpose of solving classical combinatorial optimization problems as an-
other use case of RNNs. We first develop the variational classical annealing (VCA) scheme
for simulating a variational version of classical annealing by adding an entropy term to
the energy cost function. We also demonstrate the quantum counterpart that we denote
as variational quantum annealing (VQA) for which, we derived a convergence bound of
this algorithm with similar properties to the adiabatic theorem of quantum mechanics.
We found that our VCA scheme is more advantageous compared to the VQA scheme
on the random Ising chain instances as well as on the 2D Edwards-Anderson spin-glass
model. While our results suggest a potential VCA advantage, we refer to the possibility
of finding a VQA advantage in other instances. By comparing to traditional Monte Carlo
implementations of simulating annealing and simulated quantum annealing, we show that
our VCA is more advantageous on average. This observation is likely to be related to
the autoregressive property of RNNs that allows sampling different modes, as opposed
to Markov-chain Monte Carlo methods, which can be stuck in a specific configuration at
low temperatures, especially in a spin-glass model. We further extend the use of VCA
with RNNs to real-world combinatorial optimization problems namely the maximum-cut
problem, nurse scheduling problem, and the traveling salesman problem where we find an
advantage of VCA compared to the traditional Monte Carlo implementation of simulated
annealing in the average case.

The developed annealing scheme turns out to be also helpful in targeting frustrated
systems in order to mitigate the effect of local minima in a VMC calculation, such as in
the triangular Heisenberg model. We also make use of the annealing technique to help in
the investigation of the topological properties of quantum many-body systems through the
estimation of topological entanglement entropies. We demonstrated that RNNs are capable
of encoding different topological sectors as well as sampling those sectors by virtue of the
autoregressive property. Additionally, we illustrated that RNNs are capable of making
predictions about the topological properties of a real-world quantum many-body system
with potential topological order, namely the Rydberg atoms arrays. In particular, we have
shown that Rydberg atoms array on the Kagome lattice do not establish a topological
order within the regime explored by DMRG in a previous study. We highlight that this
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investigation is an important step toward the use of RNNs in practical settings where the
physics of a certain many-body system is not well-understood.

To further show the potential of RNNs, we have established different exact construc-
tions of traditional probability distributions using specific RNN parameters as a first step
toward understanding why RNNs have worked so well at the various tasks described in
this thesis. We compared these constructions to other generative models’ constructions,
and we highlighted the advantage of RNN in terms of compute resources, thanks to the
flexible choice of non-linear activation functions in RNN cells.

9.2 Outlooks

An interesting future research direction is to explore the feasibility of using RNNs to
study fermionic quantum systems in order to use these tools for helping to solve open ques-
tions in the physics of strongly correlated electrons. We further highlight the importance of
conducting more RNN benchmarks in order to learn more about the advantages and lim-
itations of RNNs. Additionally, similar to the thermodynamic limit algorithm in DMRG,
it would be valuable to search for possibilities where RNNs can generalize to the thermo-
dynamic limit. We would like to highlight that although RNNs have provided promising
results in this study, more work is to be done in order to better understand the physics that
links the hyperparameters and the design choice of RNNs with the accuracy of a certain
variational calculation. We believe that a more comprehensive understanding would be
very helpful in developing better RNN cells and in improving the variational results pre-
sented in this work. It would be also interesting to incorporate automated hyperparameter
search tools [314, 315] into our framework to make it more user-friendly and to speed up
the pace of progress in this area of research.

We also envision the promise of using RNNs in studying real-world quantum systems
through a hybrid approach, where RNNs can be trained using experimental data, as well
as through the VMC scheme as highlighted in Ref. [285]. Additionally, with the recent
progress in large language models (LLMs) such as Chat-GPT and GPT-4, there is a strong
research potential for using novel NLP tools to explore the unknown corners of many-body
physics. We expect that going from the scale of millions of parameters explored in this
thesis to billions of parameters, just like LLMs, could lead to major improvements to the
results presented in this study. We also envision that these new advances could lead to
new discoveries about the unknown physics of strongly correlated systems, that are hard to
simulate using state-of-the-art algorithms, especially in two and three spatial dimensions.
This development has to be in alignment with ethical considerations of the training cost
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of these architectures and its consequences on the environment. We also hope that the
RNN-based tools developed in this thesis to be a valuable toolbox to physicists in the
numerical condensed matter community and also to other relevant areas of science.
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Appendix A

Supplementary material of chapter 5

A.1 Hyperparameters

In this appendix, we present the hyperparameters used to train the RNN wave func-
tions in this study. We anticipate that further improvements such as the use of Stochastic
Reconfiguration [2] or a computationally cheaper variant such as K-FAC [316] for the opti-
mization could potentially lead to more accurate estimations of the ground state energies
as compared to the Adam optimizer [80]. Seeds are listed in the table for reproducibility
purposes.

For the transverse-field Ising model results, Tab. A.1 provides the hyperparameters
used to produce the results of Secs. 5.1.1 and 5.2.1. Additionally, tab. A.2 summarizes the
hyperparameters of Sec. 5.1.2 for the 1D J1-J2 model results.

For the Heisenberg model results, provided in Sec. 5.2.2, we summarize the hyperpa-
rameters in Tab. A.4. We note that the training of our ansatz was performed using P100
GPUs.

In order to produce the results of Fig. 6.10(b), we use dh = 300 and M = 100 samples for
training. We have first performed annealing on the system size 6× 6 with Nwarmup = 1000
and Nannealing = 10000 and an initial pseudo-temperature T0 = 0.25 while using a fixed
learning rate η = 5 × 10−4. The number of training steps during each annealing step is
taken as Ntrain = 5. In this initial phase, we only apply the U(1) symmetry. In the next
phase, we perform an additional 25000 gradient steps at zero pseudo-temperature and add
an additional 25000 gradient steps after applying C2d symmetry. During this convergence
phase, the learning rate is decayed as η = 5 × 10−5/(1 + t/2000), where t corresponds
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to the current number of convergence steps. We then increase the system size to 8 × 8,
while keeping our ansatz parameters fixed, applying C2d symmetry and while using zero
pseudo-temperature. In this phase, the learning rate is fixed to η = 10−5. After this step,
we train our RNN ansatz until convergence. We repeat the same procedure for system sizes
10×10, 12×12, 14×14, and 16×16. We note that for 8×8, we add 40000 gradient steps.
For 10×10, we continue training with 20000 gradient steps. For 12×12, we converge using
10000 training steps. For 14 × 14, we continue training with 5000 gradient steps. Finally,
for 16 × 16, we add 2000 convergence steps.

To produce the DMRG results in Fig. 6.10(b), we used a bond dimension D = 4000 for
sizes 6 × 6, 8 × 8 and 10 × 10. For 12 × 12, we used D = 3000 and for the sizes 14 × 14
and 16 × 16, we used D = 2000 since we were not able to obtain the DMRG energy at
D = 4000 with a limit of 100 GB memory allocation. The DMRG calculations were run
using ITensor [317].

We finally note that the Marshall sign [153, 178] is applied on top of our cRNN wave
function on the square lattice and on the triangular lattice during all our numerical exper-
iments to speed up convergence. For DMRG, we observed that applying the Marshall sign
does not affect the accuracy.

A.2 Table of results

In Tab. A.5, we state the variational energies of the cRNN wave function for the 1D J1-
J2 model and compare them with results from DMRG. We examine two different methods
of training. First, we do not impose an initial sign structure while, secondly, we introduce
a background Marshall sign. The results suggest that using a Marshall sign improves the
results significantly for J2 = 0.0, 0.2 and 0.5 (with J1 = 1 for all cases). We note that our
cRNN wave function recovers the sign structure of the ground state if we train it without
an initial Marshall sign.

In Tab. A.6, we compare the variational energies per site of the 2D TFIM with a lattice
size of 12 × 12 for different values of the transverse magnetic field h, for a 1D pRNN wave
function, a 2D pRNN wave function, a PixelCNN wave function [150] and DMRG.

In Tab. A.7, we provide a comparison between the different methods for the 10 × 10
square Heisenberg model in Sec. 5.2.2. For Tab. A.8, we provide the energy values of
2DRNN and DMRG on the triangular Heisenberg model in Sec. 6.7. Finally in Tab. A.9,
we compare our values with the results of Ref. [146].
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Figure A.1: The energy variance per spin against the number of samples, which suggests
that the energy variance saturates and does not improve further by using a larger number
of samples for training.

A.3 RNN numerical benchmarks

A.3.1 Benchmarking RNN hyperparameters (continued)

Fig. A.1 shows the dependence of σ2 on the number of samples used to estimate the
gradients of the variational energy (see Chap. 3). We investigate this effect for the case of
the 1D TFIM, using 50 memory units in the pRNN wave function. Even though a large
number of samples yields higher statistical accuracy of the gradient estimates used in our
optimizations, we observe only a weak dependence of σ2 on the number of samples for all
studied system sizes.

In Fig. A.2 we present results for the dependence of σ2 on the depth of the pRNN wave
function architecture for a critical TFIM with N = 40 sites. We investigate architectures
up to a depth of four layers. The number of memory units is adapted such that we have a
similar number of variational parameters (∼31000) for each of the four architectures. We
find that σ2 depends only weakly on the number of layers.
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Figure A.2: Scaling study of the energy variance per spin versus the number of layers of a
pRNN wave function such that all pRNN wave functions with different layers have the same
number of variational parameters. The results show that fixing the number of parameters
while changing the number of layers does not affect the energy variance obtained by the
pRNN wave function.

A.3.2 Benchmarking RNN cells

To show the advantage of tensorized RNNs over vanilla RNNs, we benchmark these
architectures on the task of finding the ground state of the uniform ferromagnetic Ising
chain (i.e., Ji,i+1 = 1) with N = 100 spins at the critical point (i.e., no annealing is em-
ployed). Since the couplings in this model are site-independent, we choose the parameters
of the model to be also site-independent. In Fig. A.3, we plot the energy variance per
site σ2 (3.12) against the number of gradient descent steps. The results show that the
tensorized RNN wave function can achieve both a lower estimate of the energy variance
and a faster convergence.

For the disordered systems studied in this study, we set the RNN parameters to be
site-dependent. To demonstrate the benefit of using site-dependent over site-independent
parameters when dealing with disordered systems, we benchmark both architectures on
the task of finding the ground state of the disordered Ising chain with random discrete
couplings Ji,i+1 = ±1 at the critical point, i.e., with a transverse field Γ = 1. We show the
results in Fig. A.4 and find that site-dependent parameters lead to a better performance
in terms of the energy variance per spin σ2.
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Figure A.3: Energy variance per spin σ2 vs the number of training steps. Here we compare
tensorized and vanilla RNN ansatzes both with weight sharing across sites on the uniform
ferromagnetic Ising chain at the critical point with N = 100 spins.

Figure A.4: Comparison between a tensorized RNN with and without weight sharing,
trained to find the ground state of the random Ising chain with a discrete disorder (Ji,i+1 =
±1) at criticality with N = 20 spins.
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Figure A.5: A plot of the energy variance per spin σ2 against the number of gradient
descent steps, for both a 2D non-gated RNN and a 2D gated RNN. Here we choose the
Heisenberg model on a square lattice with size 6 × 6 as a test bed.

To show the advantage of a 2D TGRU (gated RNN) over the 2D TRNN (non-gated
RNN), we train them using the VMC scheme to find the ground state of the Heisenberg
model on the square lattice with size 6×6. We find that the gated TRNN allows obtaining
more accurate energy as illustrated in Fig. A.5. We observe that the gated RNN can get
about an order of magnitude lower σ2 compared to the non-gated RNN. The latter results
demonstrate the advantage of adding the gating mechanism to our wave function ansatz.

Furthermore, we equally show the advantage of a dilated RNN ansatz compared to a
tensorized RNN ansatz. We train both of them for the task of finding the minimum of the
free energy of the Sherrington-Kirkpatrick model with N = 20 spins and at temperature
T = 1 (see Eq. (6.11)). Both RNNs have a comparable number of parameters (66400
parameters for the tensorized RNN and 59240 parameters for the dilated RNN). In Fig. A.6,
we find that the dilated RNN supersedes the tensorized RNN with almost an order of
magnitude difference in terms of the free energy variance per spin defined in Eq. (3.30).
Indeed, this result suggests that the mechanism of skip connections allows dilated RNNs
to capture long-term dependencies more efficiently compared to tensorized RNNs with a
single layer.
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Figure A.6: Free energy variance per spin σ2 vs the number of training steps. Here we
compare a tensorized RNN with one-layer and dilated RNN ansatzes, both with no weight
sharing, trained to find the Sherrington-Kirkpatrick model’s equilibrium distribution with
N = 20 spins at temperature T = 1.
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Figures Hyperparameter Value

Figs. 5.1,5.2, 5.3

Architecture One-layer 1D pRNN wave function with 50 memory units
Number of samples M = 1000 (N = 20), M = 500 (N = 80), M = 200 (N = 1000)
Training iterations 20000

Learning rate 5× 10−3

Seed 111

Fig. 5.5(c): 1DRNN

Architecture Three-layer 1D pRNN wave function with 100 memory units
Number of samples 500
Training iterations 150000

Learning rate (η−1 + 0.1t)−1 with η = 10−3

Seed 333

Fig. 5.5(c): 2DRNN

Architecture One-layer 2D pRNN wave function with 100 memory units
Number of samples 500
Training iterations 150000

Learning rate η(1 + t/5000)−1 with η = 5× 10−3

Seed 111

Fig. 5.9(a)

Architecture One-layer 1D pRNN wave function
Number of samples 500
Training iterations 10000

Learning rate 10−3

Seeds 111, 222, 333, 444, 555

Fig. 5.9(b)

Architecture One-layer 1D pRNN wave function
Number of samples 500
Training iterations 10000

Learning rate (η−1 + 0.1t)−1 with η = 10−3

Seeds 111, 222, 333, 444, 555, 666, 777, 888, 999, 1111

Fig. A.1

Architecture One-layer 1D pRNN wave function with 50 memory units
Training iterations 10000

Learning rate 10−3

Seeds 111, 222, 333, 444, 555

Fig. A.2

Architecture 1D pRNN wave function
Number of samples 500
Training iterations 10000

Learning rate 5× 10−3

Seeds 111, 222, 333, 444, 555

Table A.1: Hyperparameters used to obtain the results reported for the 1D TFIM and the
2D TFIM, as well as to benchmark the RNN cells in App. A.3.2. Note that the number
of samples stands for the batch size used to train the RNN wave function. Multiple seeds
are used for the scaling of resources study to provide error bars on our results.

Figures Hyperparameter Value

Fig. 5.4

Architecture Three-layer 1D cRNN wave function with 100 memory units
Number of samples 500
Training iterations 100000

Learning rate (η−1 + 0.1t)−1 with η = 2.5× 10−4

Seed 111

Table A.2: Hyperparameters used to obtain the results of the 1D J1-J2 model reported in
Sec. 5.1.2.
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Figures Hyperparameter Value

Figs. A.3 and A.4

Architecture RNN wave function
Number of memory units dh = 50

Number of samples M = 50
Learning rate η = 10−3 for Fig. A.3 and η = 5× 10−4 for Fig. A.4

Fig. A.5

Architecture RNN wave function with no-weight sharing
Number of memory units of dilated RNN dh = 20

Number of memory units of tensorized RNN dh = 40
Number of samples M = 100

Learning rate η = 10−4

Table A.3: Hyperparameters used to benchmark the RNN cells in App. A.3.2.

Figures Hyperparameter Value

Fig. 5.6(a)

Architecture 2D Tensorized Gated cRNN wave function
Number of memory units dh = 300

Number of samples M = 100
Learning rate η = 5× 10−4 × (1 + (t/5000))−1

Number of training steps 100000

Fig. 5.6(b)

Architecture 2D Tensorized Gated cRNN wave function
Number of memory units dh = 200

Number of samples M = 100
Learning rate η = 5× 10−4 × (1 + (t/5000))−1

Number of training steps 150000
Applied symmetries U(1) and C4v

Figs. 6.10(a)

Architecture 2D Tensorized Gated cRNN wave function
Number of memory units dh = 100

Number of samples M = 100
Learning rate η = 10−4

Number of warmup steps Nwarmup = 1000
Applied symmetries U(1), C2d and spin parity

Fig. A.5(a)

Number of memory units dh = 300
Number of samples M = 100

Learning rate η = 5× 10−4 × (1 + (t/5000))−1

Applied symmetries U(1) and C4v

Table A.4: Hyperparameters used to obtain the results reported for the Heisenberg model.
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J2
E/N

No Sign Marshall Sign DMRG

0.0 -0.4412292(2) -0.4412765(1) -0.4412773

0.2 -0.4073672(2) -0.4073873(1) -0.4073881

0.5 -0.3749996(1) -0.375 -0.375

0.8 -0.4205425(4) -0.4205627(5) -0.4207006

Table A.5: Energy per spin values for the 1D J1-J2 model. We consider a cRNN wave
function with two different methods of training (with no initial sign structure and with a
background Marshall sign) and compare it with results from DMRG. All results correspond
to 100 spins and have J1 = 1. We use three GRU layers, where each layer has 100 units.
Note that J2 = 0.5 corresponds to the Majumdar-Ghosh model where the ground state is
a product state of spin singlets.

h
E/N

1DRNN 2DRNN PixelCNN DMRG

2 -2.4096018(2) -2.40960262(9) -2.4096022(2) -2.40960263

3 -3.1738969(5) -3.1739018(2) -3.1739005(5) -3.17389966

4 -4.1217969(3) -4.12179808(6) -4.1217979(2) -4.12179793

Table A.6: Variational energies per site for a 1D pRNN wave function (3 layers of GRUs
with 100 memory units), 2D pRNN wave function (single layer of 2D Vanilla RNN with 100
memory units), PixelCNN wave functions with results taken from Ref. [150] and DMRG
(with bond dimension χ = 512 for h = 2 and χ = 1024 for both h = 3, 4). As a benchmark,
we use the 2D TFIM with a lattice size of 12×12 for different values of h where the critical
point is at h ≈ 3. Values in bold font correspond to the lowest variational energies and
hence to the most accurate estimations of the ground state energy across all four methods.
For the estimation of the variational energy of the trained 1D and 2D pRNN wave functions,
we use 2 × 106 samples.

PEPS PixelCNN DMRG 2DRNN QMC
-0.628601(2) -0.628627(1) -0.6286335 -0.628638(1) -0.628656(2)

Table A.7: A between the energies per site for the Heisenberg model on the square lattice
10×10. Here we compare PEPS [179], PixelCNN [150], DMRG [146] and QMC [179]. The
trend is illustrated in Fig. 5.6(b).
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Method/Size 6× 6 8× 8 10× 10 12× 12 14× 14 16× 16
DMRG -0.499048 -0.508561 -0.514136 -0.514419 -0.508397 -0.505129
2DRNN -0.4968(1) -0.5049(1) -0.5093(1) -0.5120(1) -0.5138(1) -0.5167(1)

Table A.8: A table representing the comparison between the energies per site for the
Heisenberg model on the triangular lattice for different system sizes. For the estimation
of the 2DRNN energies, we used 20000 samples. Values in bold correspond to the lowest
variational energies.

Model/Method 2DRNN (ours) 1D MPS-RNN 2D MPS-RNN Tensor RNN
Square (10× 10) -0.628638(1) -0.62587(1) -0.627697(5) -0.628528(4)

Triangular (10× 10) -0.5093(1) -0.48964(2) -0.50803(1) -0.513863(9)

Table A.9: A comparison between our 2D tensorized RNNs with the tensorial RNN archi-
tectures in Ref. [146]. Values in bold correspond to the lowest variational energies.
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Appendix B

Supplementary material of chapter 6

B.1 Numerical proof of principle of adiabaticity

As demonstrated in Sec. 6.3, we have shown that both VQA and VCA are effective at
finding the classical ground state of disordered spin chains. Here, we provide an intuitive
illustration of the adiabaticity of both VQA and VCA. First, we perform VQA on the
uniform ferromagnetic Ising chain (i.e. Ji,i+1 = 1) with N = 20 spins and open boundary
conditions with an initial driving magnetic field Γ0 = 2. Here, we use a tensorized pRNN
wave function with weight sharing across sites of the chain. We also choose Nannealing =
1024. In Fig. B.1(a), we show that the RNN wave function energy matches the exact ground
energy throughout the annealing process with high accuracy. Optimizing an RNN wave
function from scratch at each new value of the transverse magnetic field is not optimal.
This observation underlines the importance of transferring the parameters of our wave
function ansatz after each annealing step. Furthermore, we illustrate in Fig. B.1(b) that
the RNN wave function’s residual energy is much lower compared to the gap throughout
the annealing process. Indeed, this shows that VQA can be adiabatic for an annealing
time that is long enough.

Similarly, in Fig. B.1(c), we perform VCA with an initial temperature T0 = 2 on the
same model, the same system size, the same ansatz, and the same number of annealing
steps. We see an excellent agreement between the RNN wave function free energy and
the exact free energy, highlighting once again the adiabaticity of our emulation of classical
annealing, as well as the importance of transferring the parameters of our ansatz after each
annealing step.
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Figure B.1: Proofs of adiabaticity on the uniform Ising chain with N = 20 spins for VQA
in panels (a) and (b) and VCA in panel (c). (a) A plot of the variational energy of the
RNN wave function against the transverse magnetic, without parameter initialization at
each annealing step for the green curve and with parameter initialization for the purple
curve. We compare both plots with the exact energy obtained from exact diagonalization.
(b) we plot the residual energy of the RNN wave function against the transverse magnetic
field Γ. We show that throughout annealing with VQA, the residual energy is always much
smaller than the gap within the error bars. (c) Similarly to panel (a), we do the same
experiment with VCA while plotting the free energy against temperature. All these results
support the conclusion that VQA and VCA evolutions can be adiabatic.

177



B.2 The variational adiabatic theorem

In this section, we derive a sufficient condition for the number of gradient descent
steps needed to maintain the variational ansatz close to the instantaneous ground state
throughout the VQA simulation. First, consider a variational wave function |Ψλ⟩ and the
following the time-dependent Hamiltonian:

Ĥ(t) = Ĥtarget + f(t)ĤD,

The goal is to find the ground state of the target Hamiltonian Ĥtarget by introducing

quantum fluctuations through a driving Hamiltonian ĤD, where ĤD ≫ Ĥtarget. Here f(t)
is a decreasing schedule function such that f(0) = 1, f(1) = 0 and t ∈ [0, 1].

Let E(λ, t) = ⟨Ψλ| Ĥ(t) |Ψλ⟩, and EG(t), EE(t) the instantaneous ground/excited state
energy of the Hamiltonian Ĥ(t), respectively. The instantaneous energy gap is defined as
g(t) ≡ EE(t) − EG(t).

To simplify our discussion, we consider the case of a target Hamiltonian that has a
non-degenerate ground state. Here, we decompose the variational wave function as:

|Ψλ⟩ = (1 − a(t))
1
2 |ΨG(t)⟩ + a(t)

1
2 |Ψ⊥(t)⟩ , (B.1)

where |ΨG(t)⟩ is the instantaneous ground state and |Ψ⊥(t)⟩ is a superposition of all the
instantaneous excited states. From the results of Sec. 3.6, one can show that:

a(t) ≤ E(λ, t) − EG(t)

g(t)
. (B.2)

As a consequence, in order to satisfy adiabaticity, i.e., | ⟨Ψ⊥(t)|Ψλ⟩ |2 ≪ 1 for all times
t, then one should have a(t) < ϵ ≪ 1 where ϵ is a small upper bound on the overlap
between the variational wave function and the excited states. This means that the success
probability Psuccess of obtaining the ground state at t = 1 is bounded from below by 1 − ϵ.
From Eq. (B.2), to satisfy a(t) < ϵ, it is sufficient to have:

ϵres(λ, t) ≡ E(λ, t) − EG(t) < ϵg(t). (B.3)

To satisfy the latter condition, we require a slightly stronger condition as follows:

ϵres(λ, t) <
ϵg(t)

2
. (B.4)

In our derivation of a sufficient condition on the number of gradient descent steps to satisfy
the previous requirement, we use the following set of assumptions:
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• (A1) |∂kt EG(t)|, |∂kt g(t)|, |∂kt f(t)| ≤ O(poly(N)), for all 0 ≤ t ≤ 1 and for k ∈ {1, 2}.

• (A2) |⟨Ψλ|ĤD|Ψλ⟩| ≤ O(poly(N)) for all possible parameters λ of the variational
wave function.

• (A3) No anti-crossing during annealing, i.e., g(t) ̸= 0, for all 0 ≤ t ≤ 1.

• (A4) The gradients ∂λE(λ, t) can be calculated exactly, are L(t)-Lipschitz with
respect to λ and L(t) ≤ O(poly(N)) for all 0 ≤ t ≤ 1.

• (A5) Local convexity, i.e., close to convergence when ϵres(λ, t) < ϵg(t), the energy
landscape of E(λ, t) is convex with respect to λ, for all 0 < t ≤ 1.

Note that this assumption is ϵ-dependent.

• (A6) The parameters vector λ is bounded by a polynomial in N . i.e., ||λ|| ≤
O(poly(N)), where we define “||.||” as the euclidean L2 norm.

• (A7) The variational wave function |Ψλ⟩ is expressive enough, i.e.,

min
λ
ϵres(λ, t) <

ϵg(t)

4
, ∀t ∈ [0, 1].

Note that this assumption is also ϵ-dependent.

• (A8) At t = 0, the energy landscape of E(λ, t = 0) is globally convex with respect
to λ.

Theorem Given the assumptions (A1) to (A8), a sufficient (but not necessary) num-
ber of gradient descent steps Nsteps to satisfy the condition (B.4) during the VQA protocol,
is bounded as:

O


 poly(N)

ϵmin
{tn}

(g(tn))


 ≤ Nsteps ≤ O


 poly(N)

ϵ2 min
{tn}

(g(tn))2


 ,

where (t1, t2, t3, . . .) is an increasing finite sequence of time steps, satisfying t1 = 0 and
tn+1 = tn + δtn, where

δtn = O
(

ϵg(tn)

poly(N)

)
.

Proof: In order to satisfy the condition Eq. (B.4) during the VQA protocol, we follow
these steps:
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• Step 1 (warm-up step): we prepare our variational wave function at the ground state
at t = 0 such that Eq. (B.4) is verified at time t = 0.

• Step 2 (annealing step): we change time t by an infinitesimal amount δt so that the
condition (B.3) is verified at time t+ δt.

• Step 3 (training step): we tune the parameters of the variational wave function, using
gradient descent, so that the condition (B.4) is satisfied at time t+ δt.

• Step 4: we loop over steps 2 and 3 until we arrive at t = 1, where we expect to obtain
the ground state energy of the target Hamiltonian.

Let us first start with step 2 assuming that step 1 is verified. In order to satisfy the
requirement of this step at time t, then δt has to be chosen small enough so that

ϵres(λt, t+ δt) < ϵg(t+ δt) (B.5)

is verified given that the condition (B.4) is satisfied at time t. Here, λt are the parameters
of the variational wave function that satisfies the condition (B.4) at time t. To get a sense
of how small δt should be, we do a Taylor expansion, while fixing the parameters λt, to
get:

ϵres(λt, t+ δt)

= ϵres(λt, t) + ∂tϵres(λt, t)δt+ O((δt)2),

<
ϵg(t)

2
+ ∂tϵres(λt, t)δt+ O((δt)2),

where we used the condition (B.4) to go from the second line to the third line. Here,
∂tϵres(λt, t) = ∂tf(t)⟨ĤD⟩ − ∂tEG(t). To satisfy the condition (B.3) at time t + δt, it is
enough to have the right-hand side of the previous inequality to be much smaller than the
gap at t+ δt, i.e.,

ϵg(t)

2
+ ∂tϵres(λt, t)δt+ O((δt)2) < ϵg(t+ δt).

By Taylor expanding the gap, we get:

∂tϵres(λt, t)δt+ O((δt)2) <
ϵg(t)

2
+ ϵ∂tg(t)δt+ O((δt)2),

hence, it is enough to satisfy the following condition:

(∂tϵres(λt, t) − ϵ∂tg(t))δt+ O((δt)2) <
ϵg(t)

2
. (B.6)
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Using the Taylor-Laplace formula, one can express the Taylor remainder term O((δt)2) as
follows:

O((δt)2) =

∫ t+δt

t

(τ − t)A(τ)dτ,

where A(τ) = ∂2τ ϵres(λt, τ)− ϵ∂2τg(τ) = ∂2τf(τ)⟨ĤD⟩ − ∂2τEG(τ)− ϵ∂2τg(τ) and τ is between
t and t+ δt. The last expression can be bounded as follows:

O((δt)2) ≤
∫ t+δt

t

(τ − t)|A(τ)|dτ ≤ (δt)2

2
sup(|A|).

where “sup(|A|)” is the supremum of |A| over the interval [0, 1]. Given assumptions (A1)
and (A2), then sup(|A|) is bounded from above by a polynomial in N , hence:

O((δt)2) ≤ O(poly(N))(δt)2 ≤ O(poly(N))δt,

where the last inequality holds since δt ≤ 1 as t ∈ [0, 1], while we note that it is not
necessarily tight. Furthermore, since (∂tϵres(λt, t)− ϵ∂tg(t)) is also bounded from above by
a polynomial in N (according to assumptions (A1) and (A2)), then in order to satisfy
Eq. (B.6), it is sufficient to require the following condition:

O(poly(N))δt <
ϵg(t)

2
.

Thus, it is sufficient to take:

δt = O
(

ϵg(t)

poly(N)

)
. (B.7)

By taking account of assumption (A3), δt can be taken non-zero for all time steps t. As a
consequence, assuming the condition (B.7) is verified for a non-zero δt and a suitable O(1)
prefactor, then the condition (B.5) is also verified.

We can now move to step 3. Here, we apply a number of gradient descent steps Ntrain(t)
to find a new set of parameters λt+δt such that:

ϵres(λt+δt, t+ δt) = E(λt+δt, t+ δt) − EG(t+ δt) <
ϵg(t+ δt)

2
, (B.8)

To estimate the scaling of the number of gradient descent steps Ntrain(t) needed to sat-
isfy (B.8), we make use of assumptions (A4) and (A5). The assumption (A5) is reasonable
provided that the variational energy E(λt, t+ δt) is very close to the ground state energy
EG(t + δt), as given by Eq. (B.5). Using the above assumptions and assuming that the
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learning rate η(t) = 1/L(t), we can use a well-known result in convex optimization [318](see
Sec. 2.1.5), which states the following inequality:

E(λ̃t, t+ δt) − min
λ
E(λ, t+ δt) ≤ 2L(t)||λt − λ∗

t+δt||2
Ntrain(t) + 4

.

Here, λ̃t are the new variational parameters obtained after applying Ntrain(t+ δt) gradient
descent steps starting from λt. Furthermore, λ∗

t+δt are the optimal parameters such that:

E(λ∗
t+δt, t+ δt) = min

λ
E(λ, t+ δt).

Since the Lipschitz constant L(t) ≤ O(poly(N)) (assumption (A4)) and ||λt − λ∗
t+δt||2 ≤

O(poly(N)) (assumption (A6)), one can take

Ntrain(t+ δt) = O
(

poly(N)

ϵg(t+ δt)

)
, (B.9)

with a suitable O(1) prefactor, so that:

E(λ̃t, t+ δt) − min
λ
E(λ, t+ δt) <

ϵg(t+ δt)

4
.

Moreover, by assuming that the variational wave function is expressive enough (assumption
(A7)), i.e.,

min
λ
E(λ, t+ δt) − EG(t+ δt) <

ϵg(t+ δt)

4
,

we can then deduce, by taking λt+δt ≡ λ̃t and summing the two previous inequalities, that:

E(λt+δt, t+ δt) − EG(t+ δt) <
ϵg(t+ δt)

2
.

Let us recall that in step 1, we have to initially prepare the variational ansatz to satisfy
condition (B.4) at t = 0. In fact, we can take advantage of the assumption (A4), where
the gradients are L(0)-Lipschitz with L(0) ≤ O(poly(N)). We can also use the convexity
assumption (A8), and we can show that a sufficient number of gradient descent steps to
satisfy condition (B.4) at t = 0 is estimated as:

Nwarmup ≡ Ntrain(0) = O
(

poly(N)

ϵg(0)

)
.

182



The latter can be obtained in a similar way as in Eq. (B.9).

In conclusion, the total number of gradient steps Nsteps to evolve the Hamiltonian Ĥ(0)

to the target Hamiltonian Ĥ(1), while verifying the condition (B.4) is given by:

Nsteps =

Nannealing+1∑

n=1

Ntrain(tn),

where each Ntrain(tn) satisfies the requirement (B.9). The annealing times {tn}Nannealing+1
n=1

are defined such that t1 ≡ 0 and tn+1 ≡ tn + δtn. Here, δtn satisfies

δtn = O
(

ϵg(tn)

poly(N)

)
. (B.10)

We also consider Nannealing the smallest integer such that tNannealing
+ δtNannealing

≥ 1, in this
case, we define tNannealing+1 ≡ 1, indicating the end of annealing. Thus, Nannealing is the total
number of annealing steps. Taking this definition into account, then one can show that

Nannealing ≤
1

min
{tn}

(δtn)
+ 1.

Using Eqs. (B.7) and (B.9) and the previous inequality, Nsteps can be bounded from above
as:

Nsteps ≤ (Nannealing + 1) max
{tn}

(Ntrain(tn))

≤


 1

min
{tn}

(δtn)
+ 2


max

{tn}
(Ntrain(tn))

≤ O


 poly(N)

ϵ2 min
{tn}

(g(tn))2


 ,

where the transition from line 2 to line 3 is valid for a sufficiently small ϵ and min{tn}(g(tn)).
Furthermore, Nsteps can also be bounded from below as:

Nsteps ≥ max
{tn}

(Ntrain(tn)) = O


 poly(N)

ϵmin
{tn}

(g(tn))


 . (B.11)
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Note that the minimum in the previous two bounds is taken over all the annealing times
tn where 1 ≤ n ≤ Nannealing + 1.

In this derivation of the bound on Nsteps, we have assumed that the ground state of

Ĥtarget is non-degenerate so that the gap does not vanish at the end of annealing (i.e.,
t = 1). In the case of the degeneracy of the target ground state, we can define the gap g(t)
by considering the lowest energy level that does not lead to the degenerate ground state.

It is also worth noting that the assumptions of this derivation can be further expanded
and improved. In particular, the gradients of E(λ, t) are computed stochastically (see
Chap. 3), as opposed to our assumption (A4) where the gradients are assumed to be
known exactly. To account for noisy gradients, it is possible to use convergence bounds of
stochastic gradient descent [80, 319] to estimate a bound on the number of gradient de-
scent steps. Second-order optimization methods such as stochastic reconfiguration/natural
gradient [2, 81] can potentially show a significant advantage over first-order optimization
methods, in terms of scaling with the minimum gap of the time-dependent Hamiltonian
Ĥ(t).

B.3 Simulated Quantum Annealing and Simulated An-

nealing

Simulated Quantum Annealing is a standard quantum-inspired classical technique that
has traditionally been used to benchmark the behavior of quantum annealers [320]. It
is usually implemented via the path-integral Monte Carlo method [202], a QMC method
that simulates the equilibrium properties of quantum systems at finite temperatures. To
illustrate this method, consider a D-dimensional time-dependent quantum Hamiltonian

Ĥ(t) = −
∑

i,j

Jijσ̂
z
i σ̂

z
j − Γ(t)

N∑

i=1

σ̂x
i ,

where Γ(t) = Γ0(1− t) controls the strength of the quantum annealing dynamics at a time
t ∈ [0, 1]. By applying the Suzuki-Trotter formula to the partition function of the quantum
system,

Z = Tr exp{−βĤ(t)}, (B.12)

with the inverse temperature β = 1
T

, we can map the D-dimensional quantum Hamiltonian
onto a (D+1) classical system consisting of P coupled replicas (Trotter slices) of the original
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system:

HD+1(t) = −
P∑

k=1

(∑

i,j

Jijσ
k
i σ

k
j + J⊥(t)

N∑

i=1

σk
i σ

k+1
i

)
, (B.13)

where σk
i is the classical spin at site i and replica k. The term J⊥(t) corresponds to uniform

coupling between σk
i and σk+1

i for each site i, such that

J⊥(t) = −PT
2

ln

(
tanh

(
Γ(t)

PT

))
.

We note that periodic boundary conditions σP+1 ≡ σ1 arise because of the trace in
Eq. (B.12).

Interestingly, we can approximate Z with an effective partition function Zp at temper-
ature PT given by [218]:

Zp ∝ Tr exp

{
−HD+1(t)

PT

}
,

which can now be simulated with a standard Metropolis-Hastings Monte Carlo algorithm.
A key element to this algorithm is the energy difference induced by a single spin flip at
site σk

i , which is equal to

∆iElocal = 2
∑

j

Jijσ
k
i σ

k
j + 2J⊥(t)

(
σk−1
i σk

i + σk
i σ

k+1
i

)
.

Here, the second term encodes the quantum dynamics. In our simulations, we consider
single spin-flip (local) moves applied to all sites in all slices. We can also perform a global
move [218], which means flipping a spin at location i in every slice k. Clearly, this has
no impact on the term dependent on J⊥, because it contains only terms quadratic in the
flipped spin, so that

∆iEglobal = 2
P∑

k=1

∑

j

Jijσ
k
i σ

k
j .

In summary, a single Monte Carlo step (MCS) consists of first performing a single local
move on all sites in each k-th slice and on all slices, followed by a global move for all
sites. For the SK model and the WPE model studied in Sec. 6.3, we use P = 100,
whereas for the EA model, we use P = 20 similarly to Ref. [202]. Before starting the
quantum annealing schedule, we first thermalize the system by performing SA [218] from
a temperature T0 = 3 to a final temperature 1/P (so that PT = 1). This is done in 60
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steps, where at each temperature we perform 100 Metropolis moves on each site. We then
perform SQA using a linear schedule that decreases the field from Γ0 to a final value close
to zero Γ(t = 1) = 10−8, where five local and global moves are performed for each value of
the magnetic field Γ(t) so that it is consistent with the choice of Ntrain = 5 for VCA (see
Sec. 6.1 and 6.3). Thus, the number of MCS is equal to five times the number of annealing
steps.

For the standalone SA, we decrease the temperature from T0 to T (t = 1) = 10−8. Here,
a single MCS consists of a Monte Carlo sweep, i.e., attempting a spin-flip for all sites.
For each thermal annealing step, we perform five MCS, and hence similar to SQA, the
number of MCS is equal to five times the number of annealing steps. Furthermore, we do
a warm-up step for SA, by performing Nwarmup MCS to equilibrate the Markov Chain at
the initial temperature T0 and to provide a consistent choice with VCA (see Sec. 6.1).

B.4 Non-stoquastic Hamiltonians

In Sec. 6.4, we have demonstrated the possibility of variationally emulating the dynam-
ics of a non-stoquastic Hamiltonian using a tensorized complex RNN wave function. In
this Appendix, we demonstrate the adiabaticity of VQA with a non-stoquastic term for
the uniform Ising chain with N = 20 spins, as shown in Figs. B.2(a) and (b), where we see
a very good agreement between the complex RNN ansatz energies and the exact ground
state energies throughout the annealing process. To further illustrate the feasibility of
this approach in the presence of a non-trivial sign structure that is different from the first
and the second Marshall sign rules [153], we repeat the same experiment for a disordered
Ising chain with discrete couplings Ji,i+1 ∈ {−1, 1}. Here, we use a frustrated driving

term ĤD = +λ0
∑N−4

i=1

∑4
k=1 σ̂

x
i σ̂

x
i+k for a system size N = 64 spins. The result shown in

Fig. B.2(c) clearly illustrates that more annealing steps help achieve lower residual errors
despite the presence of a non-trivial sign structure.

In our simulation of VQA with a non-stoquastic driving term, we start with an initial
value of the coupling λ0 = 2 of the non-stoquastic driving term. In the warm-up phase,
we use a pseudo-entropy term (see Sec. 6.5) so that the total cost function is given by a
pseudo variational free energy as in Eq. (3.31):

F̃λ(t, t′) = ⟨Ĥtarget⟩λ + λ0(1 − t)⟨ĤD⟩λ (B.14)

− T0 (1 − t′)Sclassical(|Ψλ|2).
We found that adding such a term helps to avoid local minima, potentially due to the sign
of the ground state. Initially, while t = t′ = 0, we take an initial temperature T0 = 4 and
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Figure B.2: In panels (a) and (b): we perform VQA with Nannealing = 1024 and using a
tensorized cRNN wave function on the uniform Ising chain (Ji,i+1 = 1) with N = 20 spins
for both +σ̂x

i σ̂
x
i+1 and +σ̂y

i σ̂
y
i+1 non-stoquastic driving terms. Here, we see a very good

agreement with the exact ground state energy. In panel (c): we perform VQA using a
tensorized cRNN wave function on the disordered Ising chain (Ji,i+1 = ±1) with N = 64
spins and a non-stoquastic driving term, shown in the legend, that has a non-trivial sign
structure. Here, we plot the residual energy per site against the number of annealing steps
and we see that the complex ansatz allows for systematic improvement upon increasing
the number of annealing steps Nannealing.
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we optimize for 1000 gradient steps, we then use a linear schedule and vary the time t′

from 0 to 1 over 3000 annealing steps and one gradient step for each annealing step. Once
t′ = 1, we then optimize the tensorized cRNN wave function for another 1000 gradient
steps while t = 0. Finally, we choose a different number of annealing steps to perform
VQA, by varying t = 0 → 1 using the non-stoquastic driving terms considered in Sec. 6.4.
We note this idea could also be applied to find ground states of quantum Hamiltonians
where local minima are serious limitations, as suggested in Sec. 6.7.

B.5 Additional results

In this section, we provide additional results connected with the Edwards-Anderson
and the fully connected models in Sec. 6.5.

In Fig. B.3(a), we provide additional evidence that VCA is superior to SA and SQA on
a larger system size compared to Fig. 6.6(b) for the EA model. Here, we do the comparison
for a system size 60×60. We use a single disorder realization to avoid extra computational
resources. In this case, the residual energy ϵres is defined

ϵres = ⟨Ĥ⟩ − EG, (B.15)

where ⟨. . .⟩ is the arithmetic mean over the different runs for SA and SQA and over the
samples obtained at the end of annealing from the RNN in the VCA protocol. Our results
in Fig. B.3(a) illustrate that VCA is still superior, in terms of the average residual energy,
to SA and SQA for the range of Nannealing shown in our plot.

In Fig. B.3(b), we show a comparison between SA, SQA, and VCA on the SK model
with N = 100 spins. Similarly to Fig. 6.7(a), we do the same comparison, but for an order
of magnitude larger Nannealing. Here, We use a single instance to avoid using excessive
computing resources. We use the same definition of ϵres in Eq. (B.15). Similarly to the
conclusion of Fig. 6.7(a), we still see that VCA provides more accurate solutions on average
compared to SA and SQA.

To show the advantage of autoregressive sampling of RNNs, we perform principal com-
ponent analysis (PCA) on the samples obtained from the RNN at the end of annealing
after Nannealing = 105 steps. We obtain the results in Fig. B.3(c). We observe that the
RNN recovers the two ground state configurations ±σ∗ as demonstrated by the two violet
clusters. Here, we define the distance of a configuration σ from the two ground states ±σ∗

as
Dres =

√
||σ − σ∗||1||σ + σ∗||1, (B.16)
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that we represent in the color bar of Fig. B.3(c), where ||.||1 is the L1 norm. These
observations show that RNNs are indeed capable of capturing and sampling multiple modes,
as opposed to Markov-chain Monte Carlo methods where sampling multiple modes at very
low temperatures is often a challenging task when studying spin-glass models.

We finally demonstrate a detailed analysis of the results of Figs. 6.7(d), (e) and (f).
Here, we provide the probabilities of success for each instance configuration that we attempt
to solve using SA, SQA, and VCA. We note that the probability of success is computed
as the ratio of the obtained ground states over the total number of configurations that are
obtained for each method.

The results for SK (N = 100 spins) are shown in Fig. B.3(d), where it is clear that
the RNN provides a very high probability of success compared to SA and SQA on the
majority of instances. We observe the same behavior for WPE (α = 0.5 and N = 32 spins)
in Fig. B.3(e). It is worth noting that VCA is not successful at solving a few instances,
which could be related to the need to increase Nannealing or to the need to improve the
training scheme or representational power of dilated RNNs. Finally, in Fig. B.3(f), we see
that WPE (α = 0.25 and N = 32 spins) is indeed a challenging system for all the methods
considered in our work. We also observe that VCA manages to get a very high probability
of success on one instance while failing at solving the other instances. Furthermore, we
note that SQA was not successful for all the instances, while SA succeeds at finding the
ground state for 5 instances with a low probability of success ∼ 10−3.

B.6 Running time

In this section, we present a summary of the running time estimations for VCA, SA,
and SQA, which are shown in Tab. B.1.

B.7 Hyperparameters

In this appendix, we summarize the architectures and the hyperparameters of the simu-
lations performed in Sec. 6.3 to Sec. 6.5 as shown in Tab. B.2. The VCA hyperparameters,
used in Sec. 6.6, are detailed in Tab. B.3. Additionally, the hyperparameters in SA of
Sec. 6.6 (see Tab. B.4) are chosen to be consistent with VCA hyperparameters.
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Figure B.3: (a) Comparison between SA, SQA, and VCA on a single instance of the EA
model with system size (60 × 60). 1000 independent runs are performed for SA and, 50
annealing runs for SQA to estimate error bars. For VCA, we estimate error bars using 106

configurations obtained from the RNN at the end of annealing. (b) Similar comparison as
in Panel (a) on a single realization of the SK model with N = 100 spins. (c) A plot of the
two principal components after performing PCA on 50000 configurations obtained from
the RNN, at the end of VCA protocol when applied to the SK model with N = 100 spins
as in Panel (b) for Nannealing = 105. The color bar represents the distance Dres, defined in
Eq. (B.16), from the two ground state configurations. Panels (d), (e), and (f) display the
probability of success on the 25 instances of the SK and WPE models used respectively in
Figs. 6.7(d), (e) and (f). Each probability of success Psuccess is computed using 1000 data
points.
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Model Method Number of iterations per second

Edwards-Anderson (N = 40× 40) (cf. Fig. 6.6(b))
SA (25 annealing runs) ∼ 120
SQA (25 annealing runs) ∼ 2.4

VCA (25 samples) ∼ 1.1

SK (N = 100) (cf. Fig. 6.7(a))
SA (50 annealing runs) ∼ 290
SQA (50 annealing runs) ∼ 1.4

VCA (50 samples) ∼ 5

Wishart (N = 32, α = 0.5) (cf. Fig. 6.7(b))
SA (50 annealing runs) ∼ 1160
SQA (50 annealing runs) ∼ 4.6

VCA (50 samples) ∼ 18.5

Table B.1: A summary of the running times of SA, SQA, and VCA performed in Sec. 6.5.
The iteration time for VCA is estimated as the time it takes to estimate the free energy
and to compute and apply its gradients to the RNN parameters. For SA and SQA, it is
estimated as the time it takes to complete one Monte Carlo step multiplied by the number
of annealing runs. The values reported in this table are highly dependent on our numerical
implementations, hyperparameters, and the devices we used in our simulations.
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Figures Parameter Value

Figs. 6.4(a) and 6.4(b)

Architecture Tensorized RNN wave function with no-weight sharing
Number of memory units dh = 40

Number of samples M = 50
Initial magnetic field for VQA Γ0 = 2
Initial temperature for VCA T0 = 1

Learning rate η = 5 × 10−4

Warmup steps Nwarmup = 1000
Number of random instances Ninstances = 25

Fig. 6.5

Architecture Tensorized RNN wave function with no weight-sharing
Type of RNN wave function pRNN (stoquastic) and cRNN (non-stoquastic)
Number of memory units dh = 40

Number of samples Ns = 50
Initial driving term coupling λ0 = 2 and Γ0 = 2

Learning rate η = 5 × 10−4

Number of warmup steps Nwarmup = 5000
Number of random instances Ninstances = 25

Fig. 6.6(a), Fig. B.3(a)

Architecture 2D tensorized RNN wave function with no weight-sharing
Number of memory units dh = 40

Number of samples M = 25
Initial magnetic field Γ0 = 1 (for SQA, VQA and RVQA)
Initial temperature T0 = 1 (for SA, VCA and RVQA)

Learning rate η = 10−4

Number of warmup steps
Nwarmup = 1000 for 10 × 10
Nwarmup = 2000 for 40 × 40
Nwarmup = 5000 for 60 × 60

Number of random instances Ninstances = 25 for Fig. 6.6(a), Ninstances = 1 for Fig. B.3(a)

Figs. 6.7(a), (d)

and Fig. B.3(b)

Architecture Dilated RNN wave function with no weight-sharing
Number of memory units dh = 40

Number of samples M = 50
Initial temperature T0 = 2 (for SA and VCA)
Initial magnetic field Γ0 = 2 (for SQA)

Learning rate η = 10−4

Number of warmup steps Nwarmup = 2000
Number of random instances Ninstances = 25 for Figs. 6.7(a), (d), Ninstances = 1 for Fig. B.3(b)

Figs. 6.7(b),

(c), (e), (f)

Architecture Dilated RNN wave function with no weight-sharing
Number of memory units dh = 20

Number of samples M = 50
Initial temperature T0 = 1 (for SA and VCA)
Initial magnetic field Γ0 = 1 (for SQA)

Learning rate η = 10−4

Number of warmup steps Nwarmup = 1000
Number of random instances Ninstances = 25

Fig. B.1

Architecture Tensorized RNN wave function with weight sharing
Number of memory units dh = 20

Number of samples M = 50
Initial temperature T0 = 2
Initial magnetic field Γ0 = 2

Learning rate η = 10−3

Number of warmup steps Nwarmup = 1000

Fig. B.2

Architecture Tensorized cRNN wave function with no weight sharing
Number of memory units dh = 40

Number of samples Ns = 50
Initial driving term coupling λ0 = 2

Learning rate η = 5 × 10−4

Number of warmup steps Nwarmup = 5000

Table B.2: Hyperparameters used to obtain the results reported in Sec. 6.3 to Sec. 6.5.
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Hyperparameter Max-Cut (Fig. 6.8) NSP (Fig. 6.9(a)) TSP (Fig. 6.9(b))

Architecture
Dilated and Vanilla
RNN

Dilated and Vanilla
RNN

Dilated RNN with
weight sharing

M
50 (5×105 after an-
nealing)

50 (5×105 after an-
nealing)

50 (106 after an-
nealing)

Ntrain 5 5 5

Nwarmup 1000 1000 2000

Nannealing [24, 25, ...., 214] [24, 25, ...., 214] [24, 25, ...., 214]

Learning rate 1× 10−4 5× 10−4 1× 10−3

T0 2.0 2.0 2.0

Number of memory
units

40 40 40

Seed 111 111 111

Table B.3: A table of the hyperparameters used for the VCA experiments in Sec. 6.6.
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Hyperparameter Max-Cut (Fig. 6.8) NSP (Fig. 6.9(a)) TSP (Fig. 6.9(b))

Metropolis move Bit flips Bit flips Permutations (2-Opt) [321]

M 50 50 50

Neq 5 5 5

Nwarmup 1000 1000 2000

Nannealing [24, 25, ...., 214] [24, 25, ...., 214] [24, 25, ...., 214]

T0 2.0 2.0 2.0

Seed 111 111 111

Table B.4: A table of the hyperparameters used for the SA experiments in Sec. 6.6. M
corresponds to the number of configurations we use during SA similar to the batch size in
VCA.
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Appendix C

Supplementary material of chapter 7

C.1 Hyperparameters

For all models studied in Chap. 7, we note that for each annealing step, we perform
Ntrain = 5 gradient steps. Concerning the learning rate η, we choose η = 10−3 during
the warmup phase and the annealing phase and we switch to a learning rate η = 10−4 in
the convergence phase. We finally note that we set the number of convergence steps as
Nconvergence = 10000. In Tab. C.1, we provide further details about the hyperparameters we
choose in our study for the different models. The meaning of each hyperparameter related
to annealing is discussed in detail in Refs. [106, 108].

We use M = 2 × 106 samples for the estimation of the entanglement entropy along
with their error bars for the toric code. For the Bose-Hubbard model, we use M = 107

samples to reduce the error bars on the TEE in Fig. 7.3. To estimate the TEE using
Kitaev-Preskill, we use the expression of the standard deviation of the sum of independent
random variables to estimate the one standard deviation on γRNN.

Finally, we note that to avoid fine-tuning the learning rate for each value of V (between
4 and 13) in the Bose-Hubbard model, we target the normalized Hamiltonian

Ĥ = − 1

V

∑

⟨i,j⟩

(
b†ibj + bib

†
j

)
+
∑

7
n2
7 (C.1)

in our experiments.
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Figures Parameter Value

2D toric code

Number of memory units dh = 60
Number of samples M = 100

Initial pseudo-temperature T0 = 2
Number of annealing steps Nannealing = 4000

Bose-Hubbard model (L = 6)

Number of memory units dh = 100
Number of samples M = 500

Initial pseudo-temperature T0 = 1
Number of annealing steps Nannealing = 10000

Bose-Hubbard model (L = 8)

Number of memory units dh = 100
Number of samples M = 500
Pseudo-temperature T0 = 0
Number of steps 10000

Rydberg atom arrays (L = 8, Rb = 1.7, 2.1 and δ = 3.3)

Number of memory units dh = 60
Number of samples M = 500

Initial pseudo-temperature T0 = 2
Number of annealing steps Nannealing = 4000

Rydberg atom arrays (L = 6, Rb = 1.95)

Number of memory units dh = 100
Number of samples M = 500

Initial pseudo-temperature T0 = 2
Number of annealing steps Nannealing = 10000

Rydberg atom arrays (L = 8, Rb = 1.95, pre-trained from L = 6)

Number of memory units dh = 100
Number of samples M = 500

Initial pseudo-temperature T0 = 0
Number of steps 10000

Table C.1: A summary of the hyperparameters used to obtain the results reported in
Chap. 7. Note that the number of samples M corresponds to the batch size used during
the training phase.
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Figure C.1: An illustration of the sub-regions A,B,C chosen for the Kitaev-Preskill con-
struction. (a) For the 2D toric code, each sub-region has 3 spins. For the hard-core
Bose-Hubbard model on the Kagome lattice, we have targeted two different system sizes.
Panel (b) shows the construction for L = 6. Panel (c) provides the construction for L = 8.
In panels (b) and (c), each site corresponds to a block of three bosons.

C.2 Kitaev-Preskill constructions

In this appendix, we provide details about the subregions used to calculate the TEE
using the Kitaev-Preskill construction (see Sec. 7.1). For the 2D toric code, we use three
spins for each subregion, and for the Bose-Hubbard model in the Kagome lattice we increase
the subregions sizes to mitigate finite size effects [99] as opposed to the 2D toric code that
does not suffer from this limitation. The illustrations of these subregions are provided in
Fig. C.1.

C.3 RNNs and MES

The results in Sec. 7.2 indicate that the RNN wave function encodes a superposition of
minimally entangled states (MES). Here we further investigate this statement by analyzing
the expectation values of the average Wilson loop operators and the average ’t Hooft loop
operators.

We define the average Wilson loop operators as

Ŵ z
d =

1

L


∑

Cd

∏

σj∈Cd
σ̂z
j


 . (C.2)
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Figure C.2: An illustration of the vertical and the horizontal loops used to compute the
Wilson loop operators (see Eq. C.2) and the ’t Hooft loop operators (see Eq. C.3).

Here d = h, v and Cv, Ch are closed non-contractible loops illustrated in Fig. C.2. A set
of degenerate ground states of the toric code are eigenstates of the operators Ŵ z

h , Ŵ z
v

with eigenvalues ±1. Additionally, the two eigenvalues uniquely determine the topological
sector of the ground state. In this case, the topological ground states can be labeled as
|ξab⟩ with a, b = 0, 1 [270, 322].

We can also define the average ’t Hooft loop operators on non-contractible closed
loops [322], such that

Ŵ x
d =

1

L


∑

Cd

∏

σj∈C̃d

σ̂x
j


 , (C.3)

where d = h, v and C̃h and C̃v correspond to horizontal and vertical loops as illustrated
in Fig. C.2. These operators satisfy the anti-commutation relations {Ŵ z

h , Ŵ
x
v } = 0 and

{Ŵ z
v , Ŵ

x
h } = 0.

From the optimized RNN wave function (L = 8), we find ⟨Ŵ z
h ⟩ = 0.0009(2) and

⟨Ŵ z
v ⟩ = −0.0039(2) which are consistent with vanishing expectation values. We also

obtain ⟨Ŵ x
h ⟩ = 0.999846(5) and ⟨Ŵ x

v ⟩ = 0.999785(5) for the ’t Hooft loop operators, which
are consistent with +1 expectation values. These results are in part due to the use of a
positive RNN wave function which forces the expectation values ⟨Ŵ x

h ⟩ and ⟨Ŵ x
v ⟩ to strictly

positive values and rules out the possibility to obtain, e.g., ⟨Ŵ x
h ⟩ = −1.

By expanding the optimized RNN wave function in the |ξab⟩ basis, where a, b are binary
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variables, we obtain

|ΨRNN⟩ ≈
∑

ab

cab |ξab⟩ .

Here |ξab⟩ correspond to the four topological sectors and they are mutually orthogonal, and
cab are also real numbers. The basis states |ξab⟩ satisfy

Ŵ z
h |ξab⟩ = (−1)a |ξab⟩ ,

Ŵ z
v |ξab⟩ = (−1)b |ξab⟩ .

From the anti-commutation relations, we can also show that:

Ŵ x
h |ξab⟩ = |ξab̄⟩ ,

Ŵ x
v |ξab⟩ = |ξāb⟩ ,

where ā = 1− a and b̄ = 1 − b. By plugging the last two equations in the Ŵ x
h and the Ŵ x

v

expectation values of our optimized RNN wave function, we obtain:

2c00c01 + 2c10c11 ≈ 1,

2c00c10 + 2c01c11 ≈ 1.

From the normalization constraint 1 =
∑

ab c
2
ab, we deduce that:

(c00 − c01)
2 + (c10 − c11)

2 ≈ 0,

(c00 − c10)
2 + (c01 − c11)

2 ≈ 0.

As a consequence, we conclude that c00 ≈ c01 ≈ c10 ≈ c11, which means that the optimized
RNN wave function is approximately a uniform superposition of the four topological ground
states |ξab⟩. This observation is also consistent with vanishing expectation values of the
operators Ŵ z

h , Ŵ z
v .

Additionally, from Ref. [270] the MES of the toric code are given as follows:

|Ξ1⟩ =
1√
2

(|ξ00⟩ + |ξ01⟩) ,

|Ξ2⟩ =
1√
2

(|ξ00⟩ − |ξ01⟩) ,

|Ξ3⟩ =
1√
2

(|ξ10⟩ + |ξ11⟩) ,

|Ξ4⟩ =
1√
2

(|ξ10⟩ − |ξ11⟩) .
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Thus, our RNN wave function can be written approximately as a uniform superposition of
the MES |Ξ1⟩ and |Ξ3⟩, i.e.

|ΨRNN⟩ ≈
1√
2

(|Ξ1⟩ + |Ξ3⟩) .
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Appendix D

Supplementary material of chapter 8

In this appendix, we provide a detailed description of the different exact constructions
using RNNs, TNs, RBMs, and QCBMs for the distributions outlined in Chap. 8.

D.1 RNN constructions

Construction of bimodal distribution

To construct this distribution using a vanilla RNN, it is sufficient to take dh = 2. Here
we define Wn = 0, Vn = I2, bn = 0 and f = Id in the recursion relation (4.27). For the
Softmax layer in Eq. (4.28), one can set Un = αI2 and cn = 0. When tending α to +∞,
we converge to the bimodal distribution. We note that the choice of Wn = 0 reflects the
Markovian nature of this distribution.

Construction of parity distribution

To exactly parameterize this distribution, we can use the following construction: Wn =

I2, Vn =

(
0 0
0 1

)
, bn = 0 and the activation x → f(x) = cos2

(
π
2
(x+ 1)

)
in Eq. (4.27).

The construction is made such that the second component of hn keeps track of the parity
of the sum of the previous set of bits (σ1, σ2, . . . σn−1). The memory state size dh = 2 is
similar to the MPS construction with bond dimension χ = 2. For the Softmax layer in
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Eq. (4.28), we set Un = 02 and cn = 0 for n < N . For the last site, we use UN = α

(
0 0
0 1

)

and cN = α
2

(
1
0

)
. In the limit of α → +∞, we obtain the parity distribution.

One could also think about using a vanilla RNN with multiplicative interactions, with
the following recursion relation:

hn = f(Anhn−1 ⊙Bnσn−1 + an),

where ⊙ is the Hadamard product and An, Bn, an are weights and biases. In this case,

we take An = I2, Bn =

(
1 1
1 −1

)
and an = 0. The activation function f is taken as the

identity. For the Softmax, we use Un = 02 for n < N and UN = α

(
1 1
1 −1

)
, while cn = 0

for all n. By sending α to +∞, we obtain the parity distribution. We note that the initial
hidden state for the multiplicative vanilla RNN is set as h0 = (1, 1)t instead of h0 = (0, 0)t

for the ordinary vanilla RNN.

The simplicity of the RNN construction with a multiplicative operation compared to
the first one with additive interaction highlights the importance of considering the use of
multiplicative interactions in the RNN recursion relation in a generic task of interest.

Construction of cardinality distribution

For the cardinality distribution with hamming weight k, we devise the following con-

struction Wn =

(
1 0
1 1

)
, Vn =

(
0 1
0 1

)
, bn =

(
0

−(k − 1)

)
, and the activation function

as f = ReLU (Rectified Linear Unit). Similarly to the previous construction, we use a
hidden dimension dh = 2. We also use a site-independent Softmax layer in Eq. (4.28) with

Un = α

(
0 1
0 0

)
and cn =

(
0
0

)
, for all 1 ≤ n ≤ N . By tending α → ∞, the RNN collapse

to the cardinality distribution with weight k.

Construction of toric code distribution

For our RNN construction, we pursue the same spirit of projecting each plaquette to
the +1 state as in the construction of the toric code ground state. Let us assume that
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we work on the z-basis so that the plaquette operators Bp are diagonal. Here we use a
2DRNN as shown in Fig. D.1 where the RNN cells are placed on the vertices. Each RNN
is labeled with the tuple of indices (i, j). It has two built-in recursion relations to generate
the spins σi,j,1, σi,j,2 respectively labeled as 1 and 2 in Fig. D.1.

The first two-dimensional recursion relation is given by:

hi,j,1 = cos2
(π

2
(σi,j−1,1 + σi,j−1,2 + σi+1,j−1,2)

)
. (D.1)

where periodic boundary conditions on the indices are assumed. If a spin σi,j,k is not
sampled yet during the raster scan path of the chain rule, it is initialized to (0, 0)t. The
sub-indices k = 1, 2 of the spins are clarified in Fig. D.1. The use of the cos2 activation
allows us to compute the parity of the number of down spins and the number of up spins
in each plaquette. If there is an odd number of spin-up, then hi,j,1 = (0, 1)t, and if there
is an even number of spins ‘up’ then hi,j,1 = (1, 0)t. In the case where the spins are not
reached yet by the autoregressive raster scan path, we obtain hi,j,1 = (0, 0)t. Using these
values of the hidden state, we can compute the conditional probability using a Softmax
layer as follows:

Pθ(σi,j,1|σ<i,j,k) = Softmax (αi,j,1hi,j,1) · σi,j,1. (D.2)

This means that if there is an odd number of spin ‘up’, we need to have a 100% probability
of having σi,j,1 as a spin ‘up’, and 0% in the opposite scenario. This construction can be
achieved by taking αi,j,1 → ∞. If less than three spins are generated in the plaquette Bi,j−1

(Fig. D.1), then we set αi,j,1 = 0, such that we have an equal chance to get either a spin
‘up’ or a spin ‘down’. We then compute

hi,j,2 = cos2
(π

2
(σi−1,j,1 + σi−1,j,2 + σi−1,j+1,1)

)
, (D.3)

to obtain the conditional probability

Pθ(σi,j,2|σi,j,1, σ<i,j,k) = Softmax (αi,j,2hi,j,2) · σi,j,2. (D.4)

Note also that if there are less than three spins generated in the plaquette Bi−1,j (see
Fig. D.1), then we set αi,j,2 = 0 to obtain a uniform conditional probability. Otherwise,
αi,j,2 → +∞. Through the use of the two previous recursion relations, we impose L2 − 1
plaquette constraint. The constraint on the plaquette BL,L follows from the product of all
plaquettes being equal to 1.

After going through the raster-scan path and by taking the product of the conditionals,
we obtain the toric code distribution construction. We note that we use a hidden dimension
dh = 2 in a similar fashion to the PEPS construction with bond dimension χ = 2.
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As a final note, we would like to point out that it is possible to build another RNN
construction by focusing on the star operators while working on the x-basis in a similar
fashion to the PEPS construction illustrated in Fig. D.2(c).

Figure D.1: Toric code construction with the 2D RNN. The red arrows indicate the
raster-scan sampling path. The green blocks stand for the RNN cells and the yellow dots
correspond to the spins of the toric code. The red dots correspond to spins replicated from
the opposite sides to impose periodic boundary conditions. The plaquettes Bi,j are labeled
with the indices (i, j).

D.2 Tensor Network constructions

Construction of bimodal distribution

The bimodal distribution can be built using an MPS with bond dimension χ = 2, as
illustrated in Fig. D.2(a). The left tensor L and the right tensor R can be both defined as

the identity matrix. Let us denote A
[s]
mn an element of the tensor A where s is the physical

index and m,n are the bond indices. For the bimodal distribution, it can be defined as

A
[s]
mn = δsnδsm. Thus A

[s=0]
mn =

(
1 0
0 0

)
and A

[s=1]
mn =

(
0 0
0 1

)
. The Kronecker symbol in

the tensor elements of A imposes the condition s = m = n so that all the physical binary
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variables across the MPS are the same. From this construction, we obtain the GHZ state
and consequently the bimodal distribution through the Born rule.

Construction of parity distribution

For the evens/parity distribution, we also use a bond dimension χ = 2 as shown in
Fig. D.2(a). Similarly to the bimodal distribution’s construction, L and R are defined as
the identity. The tensor elements are defined as

A[s]
mn =

{
1; if mod(m+ n+ s, 2) = 0,

0; otherwise.

These assignments allow imposing that the sum of the physical variables is an even number.

Construction of cardinality distribution.

The cardinality distribution with Hamming weight k can be constructed using a bond
dimension χ = k+1 as illustrated in Fig. D.2(b). Note that we can assume k ≤ N

2
, since for

k > N −k, we can flip each bit and apply the same construction described here. The bond
dimension χ = k+ 1 is optimal, since the half-size entanglement entropy of the cardinality
state (or Dicke’s state) is log(k + 1), while the largest entanglement entropy that can be
encoded with an MPS is log(χ).

In our construction, we have boundary vectors. In particular, the left vector L =
(0, . . . 0, 1)t and the right vector R = (1, . . . 0, 0)t have a size k + 1. Additionally, the bulk
tensors A are given by

A
[σ]
αβ =

{
1, if α = σ + β,

0, otherwise,

such that α is the left bond index, β is the right bond index, and σ is the physical index.
The main idea of this construction is to move ‘1’ in the vector L upward each time a
physical bit σ = 1. If there are exactly k ones in a bitstring (σ1, σ2, . . . , σN) then we
will get an overlap = 1 with the right vector R. Otherwise, the MPS will output a zero
amplitude and thus a zero probability.
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Figure D.2: Tensor Network constructions. The circles correspond to tensors with
two, three, or four indices. The triangles correspond to a vector that matches the one-
hot encoding of the local spins. Additionally, dashed lines correspond to multiple similar
contraction operations that depend on the indices of the two tensors connected with a
dashed line. Panel (a) shows the MPS construction of the bimodal/evens distribution. In
panel (b) we illustrate the MPS construction for the cardinality distribution. Finally, in
panel (c) we show the PEPS construction of the toric code. The tensors at the boundary
(in black and white) are replicated from the other boundary to encode periodic boundary
conditions.

Construction of toric code distribution.

To construct the toric code distribution using tensor networks, we use the PEPS archi-
tecture as shown in Ref. [323]. This construction is illustrated in Fig. D.2(c), where we use
the x-basis as a computational (diagonal) basis. The yellow dots correspond to a tensor C

with dimension 2 × 2 × 2, such that C
[σ]
αβ = δασδβσ where σ, α, δ = ±1. This construction

allows setting auxiliary indices α and β to the physical index σ. The green tensors D
enforce the star operator constraints using the following construction:

Dαβγδ =

{
1, if αβγδ = 1

0, otherwise,

where α, β, γ, δ = ±1. Since it is sufficient to satisfy the star operator constraints, then
our construction allows obtaining the toric code distribution through the Born rule.
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Figure D.3: RBM exact construction for (a) the bimodal and the evens distributions
using one hidden node and without visible/hidden biases, and for (b) the cardinality dis-
tribution using N hidden nodes and with hidden biases.

D.3 RBM constructions

Construction of bimodal distribution

This distribution can be represented with an RBM with a single hidden variable and
infinite couplings and with zero biases as shown in Fig. D.3(a). In this case, the probability
distribution PRBM(σ) is given by:

PRBM(σ) =
2 cosh

(∑N
i=1Wiσi

)

Z
, (D.5)

where here σi = ±1. In the limit when Wi = α goes to infinity, p(σ) goes to 1/2 when all
σi are equal. Another way of looking at this result is from the energy perspective, where
E(σ, h) corresponds to the lowest possible energy when all σi = h for all 1 ≤ i ≤ N given
a positive α. Thus our RBM probability distribution after taking the α limit is given by:

PRBM(σ) =
1

2

(
N∏

i=1

δσi,+1 +
N∏

i=1

δσi,−1

)
, (D.6)

which is equivalent to Eq. (8.7) after mapping the ± variables into the 0-1 variables.
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Construction of parity distribution

Similarly to the bimodal distribution, the parity distribution can be also constructed
using one hidden as illustrated in Fig. D.3(a), but this time using complex-valued param-
eters. Here, we use the amplitude interpretation:

Ψ(σ) =
2 cosh

(∑N
i=1Wiσi

)

√
Z

, (D.7)

instead of the probability interpretation in Eq. (D.5). We also assume that σi = 0, 1 and
assumed that hi = −1, 1 to obtain the cosh in Eq. (D.7). Here we take Wi = iπ

2
. The use

of an imaginary number allows obtaining the cos function as follows:

Ψ(σ) =
2 cos

(
π
2

∑N
i=1 σi

)

√
Z

.

If
∑N

i=1 σi is an even number then cos(π
2

∑N
i=1 σi) = ±1, otherwise cos(π

2

∑N
i=1 σi) = 0.

Thus by taking the RBM distribution as the module squared of Ψ(σ), we obtain the exact
construction of the parity distribution.

Using real-valued parameters, it is not known up to date whether RBMs need an expo-
nential number of resources in order to exactly parametrize the parity/evens distribution.
It is conjectured to be the case. What is known to the best of our knowledge is that an
RBM with 2N−1 hidden units is a universal approximator, i.e., it can exactly parameterize
all possible probability distributions including the parity distribution [324, 325].

Construction of the cardinality distribution

The cardinality distribution with system size N and with weight k can be constructed
with an RBM that has N hidden units as illustrated in Fig. D.3(b).

In our construction, we take the diagonal weights as α where α is a large number. We
also set the off diagonal weights to −β, the hidden biases bi to 0, and the visible biases aj
to 2β(2k − N). By tending α to infinity, we are enforcing the constraint σi = hi. In this
case, we get the following RBM energy:

E(σ) = −Nα + β
∑

i ̸=j

σiσj − 2β(2k −N)
N∑

i=1

σi.
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If there are k′ ones in σ, then we obtain:

E(σ) = −Nα + β
[
k′(k′ − 1) + (N − k′)(N − k′ − 1)

− 2k′(N − k′)
]
− 2β(2k −N)(2k′ −N),

= −N(α + β) + β
[
(2k′ −N)2 − 2(2k −N)(2k′ −N)

]
.

The latter energy has a minimum at k′ = k. Thus, by sending β to infinity while β/α → 0,
PRBM(σ) becomes uniformly peaked around the configurations with minimal energy E(σ).
In this case, PRBM(σ) is the desired cardinality distribution with weight k.

Construction of the toric code distribution

For the 2D toric code, RBMs are capable of constructing this state in addition to other
topological states [303]. To prove the latter, let us take the RBM energy as:

E(σ,h) = −iπ
2

∑

B

∑

σi∈B
σihB,

where in the second sum, we go over all the plaquettes B in our system. We also assume
that hB and σi are binary variables. It is clear from this energy that we are using a linear
number of hidden neurons with local connectivity. Starting from the energy, we compute
the RBM amplitude as:

Ψ(σ) =
ΠB

(
2 cos(π

2

∑
σi∈B σi)

)
√
Z

.

If the product of the spins in the plaquette B is +1, we can verify that cos(π
2

∑
σi∈B σi) =

±1. In the other case, where the product of spins in the plaquette is −1, the cosine outputs
0. In the final step, the Born rule P (σ) = |Ψ(σ)|2 can be used to map the ±1 amplitudes
to +1 to obtain the toric code distribution.

D.4 QCBM constructions

The GHZ state [69] can be built with a QCBM using a Hardamard gate and CNOT
gates as illustrated in Fig. D.4(a). For the parity distribution, we use a line topology with
a series of XX gates that have an angle parameter π

2
as shown in Fig. D.4(b).

Furthermore, there have been multiple attempts in the literature to construct the k-
Dicke’s state using quantum circuits. Prominent examples include Refs. [308, 326, 327],
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Figure D.4: Exact QCBM constructions. (a) An illustration of the construction of
the bimodal distribution (GHZ state) using a Hadamart gate and CNOT gates. (b) An
illustration of the QCBM construction of the parity distribution using XX gates with a
uniform parameter π/2.

which showed that this state can be constructed with O(kN) gates. Additionally, the
construction of the toric code on a surface instead of a torus has been shown in Ref. [258]
using Hadamard and CNOT gates, with O(N) gates, as illustrated in Ref. [258]. In this
reference, the authors showed that a quantum circuit is capable of hosting topological
features such as the topological entanglement entropy.
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