Cost-effectiveness of wetlands as a nature-based solution to buffer phosphorous in Canadian

landscapes

UNIVERSITY OF

University of Waterloo, Waterloo, Canada
WATERLOO
*prajsic@uwaterloo.ca

INTRODUCTION

* Wetland loss over the past decades is well documented.
* Wetlands provide many environmental benefits including phosphorous removal from surface water.
* There are trade-offs between wetlands' environmental services and
\checkmark alternative land uses
\checkmark investing in other resources
\checkmark other impacts of wetlands (i.e., nuisance).
* There are also tradeoffs between using wetlands versus other means of reducing phosphorous emissions.
* Objectives:
\& Synthesize the available Canadian literature on the phosphorous removal potential of wetlands and costs of wetland preservation and/or restoration;
* Produce quantitative estimate of the per kg of P removal costs of wetlands;
* Asses the factors affecting the costs of P removal by wetlands.

DATABASE STRUCTURE

Types of Costs Reported

NATURAL ACCOUNTS FOR THE
MAJORITY OF 'TYPE OF
WETLAND (CONSTRUCTED OR NATURAL)'.

■ natural - constructed

- Restoration

■ Protection

- Protection, Restoration ■ Design
'METHOD': SIMULATION AND OPTIMIZATION APPEAR MOST OFTEN.

'WETLAND PURPOSE': RESTORATION ACCOUNTS FOR THE MAJORITY OF STUDIES.
'SOURCE OF POLLUTION': AGRICULTURAL ACCOUNTS FOR THE MAJORITY OF

SUMMARY \& NEXT STEPS

* Still a very small number of studies that assess both phosphorous removal and costs for wetlands.
* Among those, there is a wide range of methods for cost calculation and reporting, making comparisons challenging.
* Developing a standard for reporting costs of wetland preservation and restoration may be beneficial for future economic evaluation of wetlands.
* P removal cost: median \$120/kg, average \$362

Next steps:
\checkmark Estimate multivariate regression
\checkmark Assess the impact of major factors on the cost of Phosphorous removal and compare with other

