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• Mercury	(Hg)	is	a	highly	neurotoxic	
metal	with	bioaccumulative
potential.

• Hg	is	a	global	pollutant	in	water,	soil	
&	air,	severely	threatening	water	
quality	&	human	health.

• Hg	legacies	remain	a	great	threat	in	
Canada	(e.g.,	Grassy	Narrows)	and	
abroad.	

• Routine	monitoring	of	Hg	in	
waters,	particularly	as	oxidized	
Hg(II),	can	enhance	water	and	food	
security	around	the	world.

• Existing	Hg	assays	are		laboratory-
based,	time-consuming,	expensive,	
and	lack	flexibility	for	routine	in-
field	use.
• Conventional	methods	offer	
limited	outlook	for	high-resolution	
monitoring	and	early	warning.

• However,	new	sensor	ideas	often	
don’t	make	it	beyond	the	
laboratory	proof-of-concept.

Test:	1	μM	of	
various	
metal	ions

• Only	Hg2+ produces	green	fluorescence
→  high selectivity for Hg2+

• Strong affinity of Hg2+ complexation by two thymine 
groups in the customized DNA

Sensor	test	with	(green)/	without	
(orange)	1	μM	Hg2+ in	pH	8	buffer

Calibration	curve	for	
DNA-DGT	sensor

• Integration	with	DGT	device	enables	
very	low	detection	limits,	e.g.,	0.55	
μg/L after	8	h	deployment.

• Good	linear	calibration	curve	for	
Hg2+ up	to	1400	ng Hg	in	the	
binding	layer,	enabling	wide	range	of	
applications.

• 97%Hg(II)	in	water,	
irrespective	of	
speciation,	is	captured		
in	the	sensor’s	binding	
layer.
• The	remaining	3%	
Hg(II)	is	handled	by	
equilibrium	speciation	
calculations

• DNA/RNA-based	nanosensors	can	be	tailored	to	detect	almost	any	
metal/metalloid	in	natural	waters	with	high	selectivity	and	sensitivity.
• Combined	with	speciation	models,	remote	data	transfer,	and	field-proofing,		
the	sensors	perform	reliably	even	under	harsh	field	conditions	(e.g.,	winter).
• A	9%	mean	annual	growth	rate	is	expected	for	global	market	of	water	quality	
sensors	and	even	higher	rates	for	field-deployable	sensors.
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“Conventional”	water	
quality	monitoring

Needed:	
validation	of	
in-situ	sensors

User-oriented	value	chain:	
from	lab	concept	to	real-world	application

2RNC5H4O2NH	+	Hg2+
=	Hg(RNC5H4O2N)2 +	2H+

logK =	19.8	(25	◦C)
ΔHm =	-81.27	kJ/mol

Smart	Water	Quality	Sensor	Systems


