Changes in Lake Phosphorus Loading and Cycling Accompanying the Transition from Agricultural to Urban Land Use in a Watershed of the Greater Toronto Area

Stephanie Slowinski^{1†}, Jovana Radosavljevic^{1†}, Alyssa Graham¹, Isabella Ippolito³, Kathryn Thomas^{4,5}, Fereidoun Rezanezhad^{1,2}, Mahyar Shafii¹, Chris T. Parsons^{1,6}, Nandita B. Basu^{1,2,7}, Johan Wiklund³, Roland Hall^{2,3}, Philippe Van Cappellen^{1,2}

¹Ecohydrology Research Group, Department of Earth and Environmental Sciences, University of Waterloo, Canada; ²Water Institute, University of Waterloo, Canada;

⁵Department of Biology, University of Waterloo, 200 University Avenue W, Waterloo, ON, N2L 3G1, Canada; ⁴Faculty of Science, Ontario Tech University, 2000 Simcoe St N, Oshawa, ON, L1H 7K4, Canada; ⁵Stillwater Environmental, Paris, ON, N3L2K6, Canada; ⁶ Environment and Climate Change Canada, Canada Centre for Inland Waters, 867 Lakeshore Road, Burlington, Ontario, Canada; ⁷Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue W, Waterloo, ON, N2L 3G1, Canada.

Background & Motivation

- Phosphorus (P) = important (co-)limiting nutrient whose excess loading can cause eutrophication and associated water quality deterioration
- Land use land cover (LULC) = important control on P loading to lakes
- P loading from agricultural LULC is well-studied whereas impact of urban LULC on receiving lakes is less well-studied

Research objective: Analyze impact of historical LULC changes in Lake Wilcox watershed on in-lake biogeochemical P cycle, trophic state, and bottom water oxygenation by reconstructing lake P budgets for 4 identified watershed development phases using dated sediment core chemical profiles

Study site & Methods

Lake Wilcox

- Natural kettle lake in Richmond Hill, near Toronto
- Water residence time = 2 years
- Sediment core (76 cm) collected in 2019, analyzed to reconstruct time series of in-lake chemistry, with focus on P cycle

Phase I

Phase 3 Phase 4

and TOC:TP molar ratios (f)

