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Abstract

Symmetry-protected topological (SPT) phases are many-body quantum states that are

topologically nontrivial as long as the relevant symmetries are unbroken. In this thesis

I show that SPT phases are also well defined for average symmetries, where quenched

disorders locally break the symmetries, but restore the symmetries upon disorder averaging.

An example would be crystalline SPT phases with imperfect lattices. Specifically, I define

the notion of average SPT for disordered ensembles of quantum states. We then classify and

characterize a large class of average SPT phases using a decorated domain wall approach,

in which domain walls (and more general defects) of the average symmetries are decorated

with lower dimensional topological states. We then show that if the decorated domain

walls have dimension higher than (0 + 1)d, then the boundary states of such average

SPT will almost certainly be long-range entangled, with probability approaching 1 as the

system size approaches infinity. This generalizes the notion of t’Hooft anomaly to average

symmetries, which we dub “average anomaly”. The average anomaly can also manifest as

constraints on lattice systems similar to the Lieb-Schultz-Mattis (LSM) theorems, but with

only average lattice symmetries. We also generalize our problem to “quantum disorders”,

which describe an environment that can form quantum entanglement with the system of

interest, ultimately leading to a mixed state upon tracing out the environment. We present

a theory of such generalized average SPTs for mixed states purely based on density matrices

and quantum channels. We further explore SPT phases that exist only in disordered

systems. Our results indicate that topological quantum phenomena associated with average

symmetries can be at least as rich as those with ordinary exact symmetries.

Then the focus of our investigation shifts towards the study of open quantum systems

governed by non-unitary dynamics. Specifically, I investigate the effects of measurements

and decoherence on long distance behaviors of quantum critical systems. We demonstrate

that measurements and decoherence can be viewed as dynamic generalizations of the two

aforementioned types of disorders in equilibrium. We classify different measurements and

decoherence based on their timescales and symmetry properties, and show that they can be

described by replicated Keldysh field theories with distinct physical and replica symmetries.

Low energy effective theories for various scenarios are then derived using the symmetry and
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fundamental consistency conditions of the Keldysh formalism. As an example, we apply

this framework to study the critical Ising model in both one and two spatial dimensions.

Our results demonstrate that non-unitary dynamics of open systems can be systematically

studied based on simple symmetry constraints.
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Chapter 1

Introduction

The classification of matter is intimately linked to the concept of symmetry, which holds a

central place in contemporary physics [119, 103]. Landau’s paradigm of phases of matter

has played a significant role in shaping this understanding. Specifically, this paradigm

posits that (1) phases of matter can be classified based on the symmetries of their corre-

sponding Hamiltonians at the microscopic level, as well as how these symmetries are broken

or preserved at macroscopic scales. Moreover, (2) transitions between distinct phases are

described by the fluctuations of a local order parameter that transforms non-trivially under

the symmetry being broken. The combination of this paradigm and the idea of renormal-

ization group (RG) has been successful in unifying a large range of phases, both in and

out of equilibrium.

Since the discovery of the Quantum Hall effect [97, 159], the focus has shifted to-

wards characterizing topological phenomena that extend beyond the well-established Lan-

dau paradigm. A prominent example is the fractional quantum Hall states that emerge in

two-dimensional electronic systems subjected to a magnetic field, characterized by a filling

fraction

ν = p/q, (1.1)

where p and q are integers with no common factors, and q is typically odd. These states ex-

hibit quasi-particle excitations that obey fractional statistics, rendering them non-creatable

by any local operators. Another striking aspect of a fractional quantum Hall state is that
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its ground state degeneracy is dependent on the spatial manifold’s topology. In general,

a quantum matter (with a finite energy gap in the thermodynamical limit) exhibiting

such non-local quasi-particle excitations and topology-dependent ground state degeneracy

is deemed to be in a topologically ordered phase. These phases are described by various

topological quantum field theories (TQFT) that govern their low-energy properties.

Physically, topological phases are characterized by quantized topological invariants,

such as the ground state degeneracy, which cannot vary continuously within the phase. As

a result, two states with distinct invariants must be separated by a phase transition. A

contemporary formulation of this notion is through the pattern of quantum entanglement

in the ground state wave function. In particular, topologically ordered phases exhibit

long-range quantum entanglement in their ground state wave function, and their ground

state cannot be produced from a trivial product state, such as an atomic insulator, using

a finite-depth local unitary circuit.

The presence of symmetry can numerously enrich the story of the classification of mat-

ters based on the entanglement pattern of the ground state. Symmetry quantum numbers

associated with quasi-particle excitations and properties of symmetry defects provide addi-

tional topological invariants to differentiate between different phases of matter. Again, the

fractional quantum Hall states offer a straightforward example of such an enriched topolog-

ical phase, where quasi-particle excitations carry fractional electric charge. For instance, a

quasi-particle excitation (anyon) at the filling fraction ν = 1/3 carries charge 1/3 in units

of electron charge, with the symmetry (U(1) charge conservation) acting projectively on

the quasi-particles. The topological orders with distinct projective symmetry realizations

on quasi-particles are referred to as symmetry-enriched topological (SET) phases.

In terms of the entanglement pattern in the ground state, the classification of phases are

enhanced by the symmetry properties of the quantum circuit. It is possible that some states

which belong to the same phase in the absence of symmetry, and hence can be connected

by a finite depth local circuit, will be placed into distinct phases if the gates in the circuit

necessarily break the symmetry. Thus, symmetry can even enrich the classification of short-

range entangled (SRE) phases, which are those that can be adiabatically connected to a

product state using a finite depth local circuit. These phases are referred to as Symmetry-

Protected Topological (SPT) phases. A well-known example is the Topological Insulator
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[100]. Since SPT phases are the primary focus of this thesis, we provide a more detailed

definition of this concept in the next subsection.

1.1 SPT phases and t ’Hooft anomalies

An SPT state is short range entangled, in the sense that it can be adiabatically connected

to a trivial un-entangled product state. However, in the case of a non-trivial SPT state,

the adiabatic paths are prohibited by the presence of a certain symmetry, known as the

“protecting symmetry”. In another word, a non-trivial SPT state can only be distinguished

from a product state when the protecting symmetry is preserved. An example of such

a protecting symmetry is the U(1) charge conservation and time-reversal symmetry in

band topological insulators (TIs) [72, 136], where these symmetries must be preserved to

distinguish topological and trivial atomic insulators. It should be noted that, in the bulk

or on a compact spatial manifold without a boundary, an SPT phase is almost trivial,

meaning that all excitations are gapped, with all correlation functions of local operators

decaying exponentially, and the ground state is unique.

However, interesting things happen when we go to the boundary. For instance, in the

case of a band TI, the gapless surface modes emerge as long as the U(1) charge conservation

and time reversal symmetry are preserved [136]. The Haldane-AKLT chain [2] in one spatial

dimension is an example of an interacting system that hosts an SPT state. On each lattice

site, we have a spin-1 degree of freedom, with a Hamiltonian

H =
∑
i

P2(Si + Si+1), (1.2)

where P2 is a projection operator onto the spin-2 subspace. In the ground state, the total

spin of each nearest neighbouring pair cannot be 2 due to the energetic reason. Although

in the bulk there is a unique gapped ground state with exponentially decaying correlation

functions, a dangling spin-1/2 moment emerges at the end of the chain, which gives a

two-fold degeneracy at each end. A physical understanding of these boundary excitations

is that, as the bulk of the system cannot be adiabatically dis-entangled while preserving

3



Figure 1.1: A pictorial demonstration of the ground state wave function of the Haldane-

AKLT chain. Each solid point represents a spin-1/2 degree of freedom. Two spin-1/2’s

connected by a line form a singlet. The ovals denote projection operators onto the spin-1

Hilbert space. Note that there is a dangling spin-1/2 moment at the end of the chain.

the symmetry, at the interface between the SPT and the vacuum, we are guaranteed to

encounter a singularity.

This idea is formulated in quantum field theory by the notion of ’t Hooft quantum

anomaly. The crucial point is that boundaries of SPT phases necessarily realize the pro-

tecting symmetries in an anomalous way: the boundary state of a d-dimensional SPT

cannot be realized as a (d− 1)-dimensional local lattice system with the same symmetry.

In the example of the Haldane-AKLT chain, the dangling spin-1/2 moment associated with

each end realizes the spin rotation symmetry projectively, which cannot be realized alone in

a strictly zero dimensional system (a point) with spin-1 degrees of freedom. In general, the

consequence of a ’t Hooft anomaly is that the boundary of an SPT must be non-trivial in

one of three ways: (1) breaking the protecting symmetry spontaneously, (2) being gapless,

or (3) developing topological order when the boundary is in a spatial dimension greater

than or equal to 2.

It is worth noting that the anomalies need not necessarily manifest only at the bound-

ary of a system, but it can also arise due to the specific structure of the Hilbert space.

Lattice systems constrained by the Lieb-Schultz-Mattis (LSM) condition provide a promi-

nent example of such systems [111, 124, 74]. The canonical illustration of such a system

is a translationally invariant lattice spin system possessing SO(3) spin rotation symme-

try and a spin-1/2 moment per unit cell. It is well-known that such a system exhibits a

mixed t’Hooft anomaly between the discrete lattice translation and spin rotation symme-

tries [37]. Consequently, a unique gapped ground state cannot be realized in the presence

of the t’Hooft anomaly.
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Thus far, in the discussion of SPT phases and quantum anomalies, it has been crucial

that the relevant protecting symmetry is preserved exactly.

1.2 Average SPT phases

A natural question is, how exact does the protecting symmetry has to be? Specifically,

if we have some quenched disorders that locally break the protecting symmetry, but on

average still respect the symmetry (such as magnetic impurities in TI), could the state still

be in some topologically nontrivial phase? In other words, could average symmetry protect

nontrivial topological phases?

Previous studies have shown that some features of SPT phases in clean systems survive

“statistically-symmetric” disorder present on the boundary, which lead to the concept of

“statistical topological insulator” [59, 120]. One example is the three dimensional (3D)

weak TI, made by stacking layers of a 2D TI. The surface state of the 3D weak TI is

protected against Anderson localization even with strong disorder, if the translation sym-

metry along the stacking direction is restored by disorder averaging[137, 121]. A similar

delocalization appears on the surface of a 3D strong TI subject to a random magnetic field

with zero mean[56], and an even richer set of phenomena were discussed in the presence of

interactions[92].

Key questions, however, remain unanswered. Previous studies focused on the effects

of disorders on the boundary. It is then natural to ask: are the bulk topological phases

sharply defined with average symmetries? If so, what are their signatures in the bulk, and

how could we classify such phases? This question is particularly relevant for SPT phases

protected by crystalline symmetries [55, 153, 156], since impurities and lattice defects are

ubiquitous in crystalline solids and the symmetry of an ideal lattice in reality is respected at

best only on average. Of course when the material sample is of high quality, one can treat

the ideal lattice as a good approximation. However, if the disorders become non-negligible,

does the entire notion of crystalline SPT lose its meaning?

Even for the boundary physics, the problems were tackled on a case-by-case basis in

existing literature. Given a symmetry group G that contains an average symmetry G,
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how do we systematically decide whether the boundary has to be nontrivial in some way?

For free fermion states this issue was discussed in Ref. [59], but for interacting systems

the question is largely open. In the standard theory of clean SPT, the non-triviality of

the boundary is ultimately guaranteed by the aforementioned t ’Hooft quantum anomaly,

which is decided by the bulk topological invariant. Familiar examples include the (3 + 1)d

TI surface protected by parity anomaly, and the integer quantum Hall edge protected by

chiral anomaly. So the question about boundary properties can be rephrases as: does the

notion of quantum anomaly exist for average symmetry? If anomaly can indeed be defined,

how does such “average anomaly” constrain the infrared (IR) dynamics of the boundary

theory?

As mentioned in the last subsection, t’Hooft anomaly also appear in lattice systems

with LSM constraints. As a consequence, the low energy dynamics of these lattice systems

cannot be completely trivial: either the symmetry will be spontaneously broken, or the

system will form some long-range entangled ground state that is either topologically ordered

or gapless. Besides a translation invariant lattice spin-1/2 system with SO(3) spin rotation

symmetry, similar t’Hooft anomalies also arise for other internal symmetries as long as

they admit projective representations, and for other lattice symmetries such as rotation

and reflection[129]. Recently, it was shown in Ref. [93] that, at least for (1 + 1)d spin

chains with SO(3) symmetry, the LSM constraint holds even if the translation symmetry

becomes only an average symmetry. Even though the argument in Ref. [93] does not make

explicit connection to anomaly, it does suggest that the LSM anomaly should exist for

arbitrary dimensions and for more general symmetries (such as time-reversal). Making

this connection more explicit, precise and general is an open direction of great importance.

In this thesis we will address all of the above issues in Chapter. 2. As an appetizer, the

key to these questions is to realize that

1. SPTs, whether in the bulk or on the boundary, are characterized by the properties

of symmetry defects. The symmetry defects, e.g. twisted boundary conditions and

gauge fluxes, may carry quantized invariants that can be used to define different

phases. A well-known example is that in the bulk of a 3D TI, a unit magnetic

monopole carries half-integral electric charge [135, 139, 176].
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2. For an average symmetry G in a disordered ensemble, even though the ground state in

each disorder realization is not a G-eigenstate, we can still define defects associated

with G for the entire ensemble – all we need is to modify the disorder potential

accordingly.

Therefore by characterizing the defects, or equivalently domain walls of the average sym-

metries, we obtain an understanding of average SPT phases. Essentially, lower-dimensional

states can be decorated onto the domain walls, similar to the case of clean SPTs. This

“decorated domain wall”[34] picture turns out to be powerful both in the bulk and on the

boundary.

1.3 Topological phases with average symmetries

In this thesis, I will also extend the discussion to a general framework for topological phases

with average symmetries. As discussed in preceding subsections, an SPT phase is described

by a series of topological invariants (“topological response”), characterizing the properties

of symmetry defects. The decorated domain wall construction provides a mathematical

framework for this idea. Specifically, starting from a phase in (d + 1)-dimensional space-

time in which the symmetry G is spontaneously broken, a symmetric state can be obtained

by condensing G-domain walls. Non-trivial SPT phases can be produced by decorating

codimension p topological defects of G with (d− p+1)-dimensional SPT phases protected

by unbroken symmetries in the system, before the domain wall proliferation. In order for

the condensation of G-domain walls to give rise to a unique gapped ground-state in the

bulk, certain consistency conditions for the defect decoration must be satisfied [172].

When we introduce quenched disorders that break the G-symmetry to the system, the

condensation of domain walls associated with the G symmetry is not allowed. Specifically,

the domain wall configurations can no longer form a coherent quantum superposition, in-

stead becoming classical objects whose positions are determined by the symmetry-violating

disorder. However, the entire ensemble of disorder still preserves the G symmetry upon

averaging, ensuring that configurations with domain walls of arbitrarily large sizes are
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present within the disorder ensemble. As a result, domain walls must proliferate through

classical probability to restore the G symmetry at the ensemble level.

As elaborated in Chapter 3, this proliferation of domain walls through “classical prob-

ability” has a profound impact on the consistency conditions imposed on the decorated

domain wall construction. Namely, the set of consistency conditions that a decoration

pattern must satisfy is reduced. This reduction in consistency conditions paves the way for

the possibility of intrinsically disordered average Symmetry-Protected Topological (ASPT)

phases. These phases have no counterparts in clean SPT phases. The study of intrinsi-

cally disordered ASPT phases is one of the focuses of this thesis. I will present a unified

mathematical framework for the classification of SPT phases with average symmetry – the

spectral sequence.

The notion of SET phases can also be extended to ensembles with quenched disorders.

In a system without symmetry-violating disorders, symmetry can enrich a topological order

in three ways: (1) A symmetry may permute anyon excitations while leaving the fusion and

braiding data invariant. (2) Symmetry can act projectively on anyons, leading to “symme-

try fractionalization”. (3) One has to specify the fusion and brading properties of symmetry

defects. These data must satisfy a set of consistency conditions known as Unitary Modular

Tensor Categories (UMTC), which has been extensively studied in the literature [12]. This

thesis will demonstrate that the proliferation of average symmetry defects through classi-

cal probability leads to modifications of the UMTC consistency conditions. In particular,

some SET phases in clean systems are trivialized, while the possibility of phases that only

exist in disordered ensembles is opened.

It is necessary to differentiate between two distinct concepts of a “disordered ensemble”.

Specifically, when we refer to “quenched disorder”, we consider an ensemble of disordered

Hamiltonians that correspond to specific disorder configurations. In this case, the disorder

can be viewed as a classical random potential, and our interest lies in the topological

properties of the ensemble of ground states, each of which is a pure state. SPT phases in

such disordered ensembles will be referred to as disordered SPT phases. Superficially, the

ensemble gives a density matrix ρ =
∑

I PI |ΨI⟩⟨ΨI |, with |ΨI⟩ the ground state for the

Ith disorder realization and PI the corresponding probability. However, a crucial point is

that the states {|ΨI⟩} form a fixed basis for the ensemble. Another scenario covered in
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this thesis is referred to as “decohered” or quantum disorder. Here, the system can form

quantum entanglement with its environment (the “quantum disorder”). Nonetheless, the

observables of interest are confined to the “dynamical” Hilbert space that does not include

the disorder degrees of freedom. In other words, the disorders are traced out, leaving a

mixed state. In this scenario, the ensemble representation of the density matrix is subject

to basis choice, due to the purification theorem [133]. SPT phases in mixed states will be

referred to as decohered SPT phases.

In the thesis, it will be demonstrated that the classification of ASPT phases differs

depending on whether we consider quenched disorders, or decohered or quantum disorders.

In fact, similar distinction also appears in the context of dynamics of open quantum sys-

tems, which include dynamics with measurements or decoherence. In this thesis I will also

present a theory that systematically studies the impact of measurements and decoherence

on the long-distance behaviors of quantum critical states from a symmetry perspective. As

will be explained shortly, a non-unitary dynamics with stochastic state update induced by

measurements is characterized by an ensemble of state trajectories, which are labeled by

the measurement outcomes. Decoherence, on the other hand, can be interpreted in terms

of the coupling to a bath. In this sense, non-unitary dynamics is inherently related to

“quenched” or “quantum” disorders.

1.4 Non-unitary dynamics: A symmetry perspective

The recent advancements in quantum devices [134, 7] have led to a renewed interest in

the study of open quantum systems, where the dynamics is not solely governed by the

Hamiltonian. Of particular interest is the class of monitored quantum systems, which

experience both a deterministic unitary time evolution and stochastic state updates from

measurements. The study of such systems has revealed the existence of a measurement-

induced phase transition [151, 110, 28, 67, 85, 9], which causes a qualitative change in

the entanglement properties of the system. More recently, the impact of decoherence has

become a focal point of research due to the unavoidable interaction of realistic quantum

devices with their surrounding environments, leading to noise-induced effects [11, 48, 106,
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184].

From a physical perspective, the three aforementioned types of dynamics, namely

Hamiltonian, measurement, and decoherence, have rather distinct effects on many-body

quantum states:

1. A Hamiltonian, or a general unitary time evolution, typically results in the genera-

tion of quantum entanglement among microscopic degrees of freedom in the system.

For instance, a local Hamiltonian usually produces entanglement in its ground-state

within a correlation length. This correlation length can be as large as the entire

system size near a quantum criticality.

2. Local measurements with post-selection, on the other hand, project the state onto an

eigenstate of a local observable, leading to a decrease in the entanglement between

the measured microscopic component and the rest of the system, as well as between

the system and its environment. It is important to note that, despite the stochastic

nature of the state update following measurement, an initial pure state of the system

remains pure throughout the time evolution. At the end of the evolution, we obtain

an ensemble of state trajectories that are each labeled by a particular sequence of

measurement outcomes.

3. Decoherence arises from the interaction between a quantum system and its surround-

ing environment, which generates quantum entanglement between the two. Because

all observables are associated with the system and not the environment, the lat-

ter is effectively traced out. Therefore, generic decoherence processes increase the

mixedness of a quantum system.

Previous investigations have revealed that the interplay between these dynamics can lead

to a diverse range of collective phenomena and phase transitions. However, the major-

ity of these studies have been focused on particular lattice models and specific types of

measurements or decoherence.

In Chapter. 4 of the thesis, I will provide a description of the universal features of an

open system characterized by a large correlation length, which can arise from any of the
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three aforementioned dynamics or their competition. For the sake of simplicity, we focus on

the impact of local measurements or decoherence (“perturbations”), on the ground-state

of a quantum Hamiltonian at criticality. Specifically, we examine two timescales of the

perturbations: a finite time perturbation that is independent of the system size, and a

perturbation over a period of time that is comparable to the system size. These two time

scales are motivated by the following two questions respectively: (1) What is the nature of

the quantum state resulting from measurements or decoherence on a critical ground-state?

(2) What properties of the critical ground-state survive in the stationary state, when a

critical Hamiltonian is in an environment with measurements or decoherence? In order

to approach the long wavelength physics, in particular the ensemble-averaged correlation

functions and entanglement entropy, we use a replicated Keldysh field theory [149, 86]

to describe the effect of measurements or decoherence. This part can be regarded as a

continuation of the previous study on quenched disorders and quantum disorders – in fact,

we will see that they share very similar mathematical structures, respectively.

1.5 Plan of the thesis

The rest of the thesis is structured as follows: Chapter 2 presents a theory of aver-

age symmetry-protected topological (ASPT) phases in disordered ensembles, where the

quenched disorders break part of the protecting symmetries while restoring the symmetry

upon disorder averaging. Section 2.6 provides a theory for symmetry-protected topological

(SPT) phases in mixed states, also known as decohered SPTs. Chapter 3 extends the

discussion to a general framework of topological phases with average symmetries, includ-

ing those intrinsically disordered/decohered ASPT phases and average symmetry-enriched

topological (SET) orders. Finally, Chapter 4 presents a study of the effects of measurements

and decoherence on long-distance behaviors of quantum critical states from a symmetry

perspective. There are many important open questions in the directions that I cover in

this thesis, which will be elaborated upon in the concluding sections of each chapter.
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Chapter 2

Average Symmetry-Protected

Topological Phases

2.1 Summary of results

This Chapter is largely based on Ref. [115]. We highlight the main results of this chapter

below. This part will also serve as a map for the rest of this chapter.

1. In Sec. 2.2, we carefully define some basic notions such as average symmetry and

average SPT phases in a disordered ensemble. In particular, even though we do not

assume the disorders to be weak, we do assume that the ground states in different

disorder realizations to be adiabatically connected to each other. This, together

with other physically intuitive assumptions, allow us to make controlled arguments

throughout this thesis.

2. In Sec. 2.3 we develop the picture of decorated domain walls (or defects in gen-

eral). In particular, we argue that topologically nontrivial phases arise when the

average-symmetry domain walls are decorated with nontrivial states protected by

exact symmetries. For example, if the total symmetry G = K × G, where K is an

exact symmetry and G is an average symmetry, then within the group-cohomology
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formalism, bosonic SPT phases are classified by (Theorem. 1)

d+1∑
p=1

Hd+1−p(G,Hp(K,U(1))). (2.1)

In particular, group-cohomology states protected solely byG (classified byHd+1(G,U(1)))

becomes trivial as G becomes an average symmetry. This result also applies when

G is the average lattice symmetry, appropriate for realistic crystalline systems, and

K is the exact internal symmetry. The result can also be extended to states beyond

group-cohomology. In Table 2.1 we list the classification of bosonic SPT phases for

several simple symmetry classes, in space dimensions 1, 2, 3, including those beyond

group-cohomology.

3. In Sec. 2.4 we show using a modified flux-insertion argument that, when nontrivial

states are decorated on domain walls with dimensions higher than (0+1)d (e.g. p > 1

in Eq. (2.1)), the boundary state is almost certainly long-range entangled (or long-

range correlated) – the probability for realizing such long-range entangled ground

state approaches 1 as the system size L → ∞ (Theorem 2). In contrast, if states

are decorated on (0 + 1)d domain walls (e.g. p = 1 in Eq. (2.1)), then the boundary

state for all disorder realizations can be short-range entangled – the only nontrivial

feature in this case is that different disorder realizations may not be adiabatically

connected in the presence of such mildly anomalous boundary. In Table 2.1 we list,

in parenthesis, those states that do (almost certainly) have long-range entangled

boundary states.

4. The above result on average anomaly is used in Sec. 2.4.3 to show a Lieb-Schultz-

Mattis (LSM) constraint for systems with average translation symmetry, where each

lattice unit cell contains a projective representation of the exact on-site symmetry

(such as spin-1/2 moment for SO(3) or Kramers’ doublet for time-reversal). We argue

that in such systems the ground state will almost certainly be long-range entangled

(or long-range correlated), with probability approaching 1 as the system size L→ ∞.

5. In Sec. 2.5 we consider (3 + 1)d fermion systems in two symmetry class: AII class

(U(1)⋊T with Kramers’ doublet fermions) and AIII class (U(1)×T ). In both cases
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we consider average time-reversal symmetries. The AII class is relevant for electronic

solids with spin-orbit interactions, with magnetic impurities that locally break time-

reversal; the AIII class is relevant for quantum Hall plateaux transitions with average

particle-hole symmetry. We show that for the AII case, the classification is reduced

from Z3
2 in the clean case to Z2

2; for the AIII case, the classification is reduced from

Z8 × Z2 to Z4 × Z2. All these nontrivial states have long-range entangled surface

states with probability one, except for the n = 2 state in the Z4 factor of AIII, in

which the surface state can be short-range correlated for each individual disorder

realization. The anomaly structure for the AIII case is consistent with numerical

simulations on multi-component quantum Hall plateau transitions.

6. In Sec. 2.6 we further generalize our problem to quantum disorders, where disorders

are described by quantum mechanical degrees of freedom that can form nontrivial

(but still invertible) many-body entanglement within themselves. This converts our

problem to the study of SPT phases in mixed states – a problem that has been

recently studied[42] in the context of open quantum systems. We find that

• States protected solely by the average symmetry, including invertible states that

do not need any symmetry, become trivial.

• Time-reversal symmetry always behave as an average symmetry.

• Bosonic SPTs described by elements in Eq. (2.1) are still nontrivial. For this

statement, we give a careful justification in (1+ 1)d in terms of the string order

parameters, and give a plausibility argument in the more general cases.

We end with some discussions in Sec. 2.7.

2.2 Generalities

Let us begin by introducing some useful concepts and physically defining our questions more

precisely. To start, we consider a fixed lattice Hilbert space with a local tensor product

structure H = ⊗iHi (i labeling lattice sites), and an ensemble of local Hamiltonians {HI}
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Symmetry (1 + 1)d (2 + 1)d (3 + 1)d

Z(ave)
2 0 0 0

(ZT
2 )

(ave) 0 0 Z2 (Z2)

Z2 × Z(ave)
2 Z2 (0) Z2

2 (Z2) Z2
2 (Z2)

Z2 × (ZT
2 )

(ave) Z2 (0) Z2
2 (Z2) Z3

2 (Z2
2)

ZT
2 × Z(ave)

2 Z2 (Z2) Z2 (Z2) Z3
2 (Z3

2)

Table 2.1: Classification of bosonic average SPT phases in some symmetry classes, in space

dimension d = 1, 2, 3. The classification in parenthesis are those with long-range entangled

boundary states.

and their ground states {|ΨI⟩}, with probability {PI}. For concreteness the Hamiltonian

takes the form

HI = H0 +
∑
i

(vIiOi + h.c.), (2.2)

where vIi is a quenched disorder potential (I labeling a particular realization and i labeling

a lattice site), O is a local operator, and H0 is the disorder-free part of the Hamiltonian.

We require the disorder to be at most short-range correlated, namely v∗i vj should decay

exponentially with |i− j|.

We now consider two types of global symmetries. The exact symmetry K commutes

with both the disorder-free part and the disordered part of the Hamiltonian, for any indi-

vidual realization of the disorder. The average symmetry (or statistical symmetry)[59,

56, 93, 92] G only commutes with H0 and is broken by each realization of the disorder

potential, so effectively the disorder potential v transforms non-trivially under G. We then

require that the probability distribution P [v] to be invariant under a G transform, so the

entire statistical ensemble stays invariant, hence the name average (or statistical) symme-

try. For simplicity we will often focus on cases where the full symmetry of the ensemble G
is given by K ×G. But we note that in general, G is given by the group extension,

1 K G G 1, (2.3)

where K ⊂ G is a normal subgroup. G may or may not contain an anti-unitary (time

reversal) element. We shall also assume that both K and G acts locally (namely their
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actions within each lattice unit cell are unentangled), so they do not suffer from any t’Hooft

anomaly – we shall come back to this issue later when discussing boundary properties.

We now proceed to define the analogue of symmetric short-range entangled (SRE)

states, but for the entire statistical ensemble {HI , |ΨI⟩, PI}. It is natural to consider cases

in which each individual |ΨI⟩ is SRE (and symmetric under K), namely each HI is gapped

with a unique symmetric ground state. However for our purpose this is not enough: we

would like to forbid the ensemble from containing states in different SRE phases (possibly

protected by K) separated by topological phase transitions1. We therefore have

Definition 1. A K-symmetric SRE ensemble is one that only contains K-symmetric

SRE ground states {HI , |ΨI⟩}, with any pair of states being adiabatically connected to each

other while preserving K.

Notice that we impose the symmetric SRE condition on all states in the ensemble,

including those rare states with vanishing probability in thermodynamic limit. This is to

avoid potential subtleties from Griffiths-like singularities. We expect this no-rare-region

restriction to be physically reasonable far away from quantum phase transitions. The

interplay between rare region effects and topological phase transitions is a fascinating

subject that we leave to future studies.

To study symmetric SRE states, we further demand that the ensemble of states {|ΨI⟩}
does not break the symmetries spontaneously. For exact symmetries this simply means

that each individual state |ΨI⟩ does not break the symmetries (i.e. is not a cat state), which

is anyway guaranteed by the symmetric SRE condition. The question is slightly subtler for

average symmetries. One could, for example, detect spontaneous breaking of an average

symmetry G by measuring the average magnitude of the integrated order parameter

M ≡ |
∑
i

⟨ϕi⟩|, (2.4)

where ϕi is some local order parameter (defined near site i) that transforms nontrivially

under G, ⟨...⟩ denotes the expectation value with respect to a particular quantum state,

1If the disorder potential v takes continuous values in a connected space, this would be automatically

forbidden by imposing symmetric SRE on each individual state. However in more general cases, the

condition has to be imposed separately.
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and the overline denotes the disorder (ensemble) averaging (we shall use this notation

throughout this Chapter). If the ensemble spontaneously breaks G, we expect M to be

proportional to the volume Ld. For symmetric ensembles we expect a smaller scaling – for

example, a trivial paramagnetic state will have M ∼ O(Ld/2).

The above way of detecting spontaneous breaking of average symmetries, however, is

not very convenient for our purpose. In this thesis, instead, we will guarantee the absence

of spontaneous G-breaking primarily through proliferation of domain walls (or other defects

such as vortices). Essentially, we demand that at sufficiently large length scale (larger than

the correlation length), domain walls (or other appropriate defects) will always appear to

restore the statistical G symmetry. At low enough dimensions (2d for discrete symmetries),

such domain wall proliferation is always guaranteed by the Imry-Ma theorem[81].

Next we shall define the notion of continuous symmetric deformation – the ana-

logue of symmetric adiabatic evolution – for our SRE ensembles. This task is relatively

straightforward: we continuously deform both the Hamiltonians (H0 and Oi in Eq. (3.11))

and the probability distribution of the disorder P [v], such that (1) both the Hamiltonians

and the disorder correlations remain short-ranged, and (2) the ensemble of states remains

symmetric and SRE throughout.

We are now ready to define the notion of average SPT phases:

Definition 2. Two SRE ensembles, with exact symmetry K and average symmetry G,

belong to the same average SPT phase iff there is a path of continuous symmetric

deformation connecting the two.

As in most other topology problems, it is impractical to check all continuous paths

between two states. Instead it is much more useful to construct topological invariants to

distinguish different phases. This will be the task of next Section.

2.3 Decorated domain wall approach

In this section we will generalize the decorated domain wall approach[34], a powerful con-

struction for standard SPT phases, to the study of average SPT phases. Let us first
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review the idea of constructing standard SPT phases by the decorated domain wall (more

generally, symmetry defect) construction in clean systems[34], where all symmetries are

exact. Starting from a phase in (d + 1)-dimensional space-time, in which G is broken

spontaneously, a symmetric state can be obtained from condensation of G-domain walls.

Non-trivial SPT phases are produced by decorating codimension p (with respect to the

space-time) topological defects of G with (d − p + 1)-dimensional SPT phases protected

by the unbroken symmetry K before the domain wall proliferation. In order for the con-

densation of G-domain walls to be gapped with a unique ground-state in the bulk, there

is a set of consistency conditions for the defect decoration [172], such that G-defect of

each codimension is free of K-anomaly. In this scheme the protected surface states appear

naturally: topological defects that end at the surface carry the non-trivial boundary modes

of the lower dimensional SPT phases protected by the symmetry K.

For simplicity let us tentatively assume G to be discrete and unitary – the more general

cases are similar in conclusions but more subtle in details. The decorated domain wall

approach can be equivalently formulated as follows: consider the SPT state |Ψ⟩, and act

on it with the symmetry element g ∈ G, but only in a (large enough) subregion A (say

with a disk geometry): UA
g ≡

∏
i∈A U

i
g (U i

g is the local g-generator). The symmetric SRE

nature of |Ψ⟩ implies that acting with UA
g has nontrivial effect only near the boundary

of A [132, 161, 49], namely UA
g |Ψ⟩ = V ∂A

g |Ψ⟩, where V ∂A
g is a unitary operator that is

nontrivial (non-identity) only near the boundary ∂A. In this case a decorated domain

wall simply means that V ∂A
g creates a nontrivial phase in one dimension lower. Similar

considerations can be carried out for defects with higher codimensions[172] and for anti-

unitary symmetries[146].

Now we add quenched disorder that breaks the G-symmetry to the system. One can

imagine that now the system consists of patches with different symmetry breaking patterns,

which are pinned by the symmetry-violating disorder. In two adjacent patches, the states

are related by an action of the broken symmetry. As a result, the interface between two

adjacent patches naturally realizes a G-domain wall. The idea is that, similar to the

case in clean systems, we can decorate the domain walls with nontrivial lower dimensional

invertible phases, such as SPT phases protected by the exact symmetry. When the disorder

has a random distribution so that the G-symmetry is restored on average, one again gets
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a G-defect network, extending over the entire system.

The above picture is very similar to the standard (exact symmetry) SPT, but with one

important difference: for standard SPT the domain walls proliferate as coherent quantum

superpositions, with well defined phase factor associated with each domain wall configu-

ration – for example, the bosonic Z2 Levin-Gu state[109] has a (−1) factor for each Ising

domain wall; for average SPT, however, the domain walls proliferate through classical

probability, with no analogue of quantum phase factors. Therefore SPT states that are

nontrivial due to such phase factors in the domain wall superpositions have no analogue

in average SPT.

Let us try to make the decorated domain wall picture for average SPT more precise.

Consider a particular realization, say, {vi} in Eq. (3.11), with the ground state |Ψ⟩. Now

consider a different realization, with ṽi = vi for i outside of a region A, and ṽi = gvig
−1

inside the region A (for example for Ising symmetry ṽi = −vi for i ∈ A), and denote

the corresponding ground state as |Ψ̃⟩. These two disorder realizations have essentially

identical probability. The absence of spontaneous G-breaking, together with the SRE

nature of the ensemble, implies that for large enough A, the two should look identical deep

inside Ā, and should differ only by a g-action deep inside A – the only potential nontrivial

difference can only happen near the boundary ∂A. Formally,

UA
g |Ψ⟩ = V ∂A

g |Ψ̃⟩, (2.5)

with V ∂A
g defined nontrivially only on ∂A. If we choose a different disorder realization,

say v′i with ground state |Ψ′⟩, we can similarly define ṽ′i and |Ψ̃′⟩. By assumption (Def. 1),

all these states are connected through some K-symmetric adiabatic evolutions (or K-

symmetric finite depth unitary circuit). Moreover, the evolution connecting |Ψ⟩ to |Ψ′⟩
(call it W ) and that connecting |Ψ̃⟩ to |Ψ̃′⟩ (call it W ′) must be identical deep inside Ā

and differ only by conjugating g deep inside A. These facts are enough to show that

UA
g |Ψ′⟩ = (V ∂A

g )′|Ψ̃′⟩, (2.6)

where (V ∂A
g )′ and V ∂A

g only differ by an adiabatic evolution on ∂A. In other words, the

topological nature of V ∂A
g does not depend on the choice of disorder realization, even

though non-universal properties of V ∂A
g certainly does depend on details of the disorder

19



potential. Similarly, one can show that the topological nature of V ∂A
g also does not depend

on the choice of the region A, as long as A is large enough – essentially, Def. 1 requires

different domain wall configurations to be adiabatically connected to each other, which in

turn requires the decorating phases on the domain walls to remain the same no matter

where the domain walls move to. The only way to change the topological property of V ∂A
g

is to go through a phase transition – at least for some of the states in the ensemble.

The above arguments establishes the (topological part of) V ∂A
g , the “decoration” on

the domain walls, as a robust property describing the corresponding average SPT phases.

2.3.1 Topological response from replica field theory

Similar to the standard SPT theory, the decorated domain wall construction can be

rephrased as a topological response theory for background gauge fields. For this pur-

pose, we work with the path integral and use the replica trick: we replicate the Lagrangian

Nr times to obtain the action

S =

∫
dtddx

Nr∑
α=1

L[ϕα(x, t), v(x)] +

∫
ddxV [v(x)], (2.7)

where ϕ represent all the dynamical degrees of freedom, α is the replica index, v is the

disorder potential. The first term represents the dynamics of ϕ’s and their interactions

with v, and the second term generates the classical probability of the disorder potential.

Note that while the dynamical fields ϕ(x, t) depend on both space and time, the disorder

potential v(x) only varies in space and is constant in time.

The replicated action Eq. (2.7) is, by definition, invariant under the full symmetry group

G. The disorder potential v is invariant under the exact symmetry K, but transforms non-

trivially under the average symmetry G. There is no obstruction in coupling the theory

in Eq. (2.7) to a background gauge field in G, call it AG. The only subtlety is that since

v is constant in time, any gauge transformation associated with G must be constant in

time. This then requires the G gauge field, denoted as AG, to be trivial along the time

direction. Since the time component of a gauge field couples to the symmetry charge, the

constraint on G gauge field is simply a reflection of the fact that G-charge is not conserved
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for our system, and one cannot use G-charges to distinguish different phases of matter.

The spacial components of AG, on the other hand, are not constrained. In fact, the average

symmetry defects, discussed in the decorated domain wall construction, can be precisely

described using the spacial components of AG following standard procedures. For example,

a nontrivial holonomy of AG along a spacial cycle represents a twisted boundary condition

for both the dynamical fields and the disorder potential.

We can now formally integrate out the dynamical fields ϕ, and obtain the partition

function that depends on the background gauge field AG and the spacetime (d+1)-manifold

X. For an invertible phase (such as SPT) in a clean setup, the global properties are included

in a topological quantum field theory (TQFT) as the imaginary phase of the Euclidean

partition function[90],

ln(Z[X, A]) ∼ iStop[X, A] + · · ·, (2.8)

in which the terms omitted are irrelevant below the bulk energy gap. In the presence

of quenched randomness, the disorder-averaged effective action can be obtained from the

replica limit [6]

S[X,AG] = lnZ[X,AG]

= lim
Nr→0

1

Nr

(Z[X,AG]Nr − 1),
(2.9)

where the overbar denotes the disorder average. Analogous to clean systems, the topo-

logical term that survives the replica limit Nr → 0 in Eq. (2.9) encodes the topological

properties of the disorder system.

Here we make a side remark. The maximal symmetry group (let us denote it by G̃)
of the actions in Eq. (2.7) is not the “full symmetry group” G that acts diagonally on all

replicas. For example, if G = K ×G, then G̃ = KNr ×G, since each replica can transform

underK independently while leaving the Lagrangian invariant. More generally, G̃ is defined

by the following morphism of short exact sequences:

1 KNr GNr GNr 1

1 KNr G̃ G 1

∼= f F (2.10)
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Here F is the diagonal map, and we ignore the (in general discrete) rotation symmetry

among the replicas. Coupling the overall G̃ symmetry to backgrounds enables us to calcu-

late quantities such as

lim
Nr→0

⟨Oα
1O

β
2 ⟩ − ⟨Oα

1 ⟩⟨O
β
2 ⟩, (2.11)

where α ̸= β and O1, O2 are arbitrary operators. Physically these quantities encode non-

trivial sample-to-sample fluctuations in the disordered ensemble. Since we have assumed

(Def. 1) that different disorder realizations are adiabatically connected, we do not expect

such sample-to-sample fluctuations to play an important role in our discussions. One can,

however, ask whether by relaxing our assumptions, we can discover nontrivial topological

properties associated with sample-to-sample fluctuations (such as a topological analogue

of the universal conductance fluctuation[108]), as may be captured by coupling to G̃ gauge

field. We leave this intriguing possibility for future study.

We are now ready to classify and characterize a large class of ASPT phases. For SRE

phases for which the ground-state is unique and gapped on any closed spatial manifold, this

problem is equivalent to the classification of associated invertible TQFTs (see Eq. (2.8) and

Eq. (2.9)), studied by the cobordism theory [91, 90, 89, 54]. The static disorder modifies

the classification by constraining the space-time configurations of the background fields of

average symmetries, i.e. it quenches the holonomy of AG along the time cycle. For example,

a clean topological phase remains nontrivial if and only if the corresponding TQFT remains

non-trivial given this constraint. Next, with some simple examples, we illustrate how the

topological response theory naturally leads to the decorated domain wall construction.

2.3.2 Simple examples:

group cohomology states with G = K ×G

Let us consider bosonic SPT phase described by group cohomology[31]. For simplicity we

also assume G = K × G, namely the group extension Eq. (2.3) is trivial. In this case the

group cohomology classification in (d+ 1)-dimensional space-time can be rewritten by the
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Künneth formula,

Hd+1(G, U(1)) =
d+1∑
p=0

Hd+1−p(G,Hp(K,U(1))), (2.12)

in which the corresponding coefficient group is twisted if G or K contains time reversal

[89]. This mathematical formula can be understood from the perspective of topological

effective actions. For a bosonic system, the topological action in Eq. (2.8) can be expressed

as an integral of a local Lagrangian L over space-time,

Stop = 2π

∫
X

L, (2.13)

where L is a (d + 1)-dimensional cocycle, built out of flat background gauge fields (and

w1(TX), the first Stiefel-Whitney class of the space-time, which can be viewed as the time

reversal gauge field). In particular, L may be written as a cup-product L = L1∪L2, where

L1 and L2 are two cocycles constructed from the background gauge fields in the theory,

whose degrees sum to (d + 1). As the effective action of an SRE phase, we require L
to be gauge invariant on any closed space-time. For a compact X, the Poincare duality

Hp(X) ∼= Hd+1−p(X) (with the coefficient in any ring) enables us to rewrite the action as

Stop = 2π

∫
L̂2

L1, (2.14)

where L̂2 is the Poincare dual (with respect to X) of the cocycle L2.

To make connections between current discussion and the decorated domain wall picture,

note that if the cocycle L2 is taken to be the background gauge field AG of a symmetry G,

the Poincare dual surface L̂2 is simply a G-domain wall. The action in Eq. (2.14) hence

describes an effective (d−1+1)-spacetime-dimensional topological phase, living on the wall.

This precisely corresponds to the SPT phase decorated on the codimension-1 G-domain

wall. Gauge invariance of L ensures the consistency between the decoration and the fusion

rules of the domain walls. The same argument also holds for defects of higher codimensions,

where L2 are cocycles of higher degrees built out of A
G. Therefore a physical interpretation

of an element of Hd+1−p(G,Hp(K,U(1))) in Eq. (2.12) is a consistent decoration of a p-

dimensional G-defect by a K-SPT phase in p-dimensional space-time.
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When static randomness turns G into an average symmetry, AG can have non-trivial

holonomies only around spatial cycles. Equivalently, this means the symmetry defect L̂2

extends along time, while its spatial position is pinned. A straightforward observation is

that the topological action of the p = 0 element (i.e. the group cohomology Hd+1[G,U(1)],

with twisted coefficient if G contains time reversal) in Eq. (2.12) becomes trivial if the

holonomy of AG around time cycle is quenched, i.e.
∫
τ
AG = 0. For example, the Levin-Gu

state[109] has partition function S = π
∫
a ∪ a ∪ a (a ∈ H1(X,Z2) being the background

Z2 gauge field), and is trivial if a along the time direction is set to zero. This confirms

our physical expectation based on the domain wall proliferation picture at the begining of

Sec. 2.3.

In contrast, the effective actions of elements in Eq. (2.12) with p > 0 remain non-trivial.

The physical picture is precisely the decorated domain walls discussed at the beginning of

Sec. (2.3). We therefore conclude

Theorem 1. Bosonic SPT phases with symmetry G = K ×G (K being exact and G being

average) described within group cohomology are classified by

d+1∑
p=1

Hd+1−p(G,Hp(K,U(1))). (2.15)

Namely, only mixed topological response between G and K (or pure response for K

alone) remain nontrivial as G becomes average symmetry.

Going beyond group-cohomology classification, at least for bosonic systems with G =

K × G, is not too complicated. The only new ingredient is that on the domain walls

we can also decorate nontrivial invertible topological phases, resulting in mixed “gauge-

gravity” topological response[169] – essentially the cocycles in Eq. (2.14) can also involve

characteristic classes of the spacetime itself. Such response will remain nontrivial as G

becomes average symmetry. For example, decorating the chiral E8 state[95] on the average

time-reversal domain walls results in the so-called efmf state[163, 166, 20] in (3 + 1)d

protected by the average time-reversal symmetry. So we conclude that as G becomes

average symmetry, a nontrivial K ×G boson SPT in the clean limit becomes trivial iff the

SPT is characterized by a pure G-gauge response (no K gauge field or gravity involved).
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In Table 2.1 we list the classification of bosonic SPT phases for some simple symmetry

classes, in space dimensions 1, 2, 3, including states beyond group-cohomology.

So far we have analyzed clean SPT phases and showed many of those remain nontrivial

as G becomes average symmetry. From a different perspective, however, in our analysis

we have exhausted all the possible ways to decorate the domains walls. Therefore what

we obtained is also a complete classification of average SPT phases, at least within the

decorated domain wall picture. We note that, once we go beyond the simple case of

G = K × G, the completeness of this classification is no longer guaranteed, and we shall

explore this extremely intriguing possibility in future study.

2.3.3 Application: crystalline SPT

For the purpose of classifying SPT phases, crystalline symmetries can be treated with

internal symmetries on the same footing. This fact, known as the “crystalline equivalence

principle”[156], allows us to apply results in this section to crystalline SPT phases in

realistic crystals, where the lattice symmetries are only preserved on average.

Many physically relevant examples can be described as G = K×G, where K is an exact

internal symmetry (e.g. time-reversal, spin SO(3) etc.), and G represents the lattice sym-

metries such as translation, rotation and reflection. For boson (or spin) systems, Eq. (2.15)

then gives the group-cohomology classifications. States beyond group-cohomology are clas-

sified similarly, with nontrivial invertible states decorated on domain walls.

We can also give a simple example of crystalline SPT phase that is nontrivial in the

clean limit, but becomes trivial once the crystal symmetry becomes average symmetry:

consider a (2 + 1)d SPT state with C2-rotation (inversion) symmetry. The only nontrivial

state, which is the crystalline counterpart of the Levin-Gu state[109], can be constructed by

putting a nontrivial C2 charge at the C2 rotation center. When the C2 symmetry becomes

average, the notion of “nontrivial C2 charge” no longer makes sense, therefore the state

becomes trivial.

It is illuminating to compare the decorated defect pictures in three differnt types of

SPTs:
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• In the standard internal symmetry SPTs, the defects condense into quantum super-

positions. In other words, the defects proliferate quantum mechanically.

• In crystalline SPTs, the crystalline defects, such as crystalline unit cells, rotation

axes and reflection planes, are static[153, 80, 154, 46, 183].

• In average SPTs, the average symmetry defects are static in each disorder realization,

but they proliferate probabilistically in the ensemble of states.

In this sense, the average SPTs are somewhat in between internal and crystalline SPTs.

As we have discussed in this Section, although subtle distinctions between average and

standard SPTs do exist, the overall pictures are quite similar in terms of decorated and

proliferated defects (domain walls).

2.3.4 Brief comments on general cases

If the exact and average symmetries form nontrivial group extensions Eq. (2.3), then we

do not have Künneth formula and the decorated domain wall construction will in general

become more complicated.

Let us first review the idea of decorated domain walls in clean systems in the general

cases (with possibly nontrivial group extensions). In D-spatial dimensions, the construction

starts with a phase in which the G symmetry is broken spontaneously. Such a phase admits

domain wall excitations, such that a domain wall labeled by an element g ∈ G interpolates

between two symmetry breaking patterns related by a g action. A G-symmetric state can

be obtained by quantum disordering the symmetry breaking phase, i.e. condensing G-

domain walls. It is known that the domain wall condensation may give rise to a non-trivial

G-SPT phase, if one decorates a G-defect in the symmetry breaking phase, i.e. a domain

wall or a (multi-)domain wall junction, of codimension p with a (D− p)-dimensional SPT

phase protected by the unbroken K symmetry [34]. Crucially, in order for the condensation

of G-defects to be SRE, the following consistency conditions must be satisfied:

1. G-defects of each codimension should be free of K-anomaly. Namely, the defects can

be gapped without breaking K;
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2. K is preserved during a continuous deformation of the G-defect network;

3. There is no Berry phase accumulated after a closed path of continuous deformation.

Physically, the third condition is required since the many-body wavefunction is single-

valued; the G-domain walls can be condensed without breaking K once the second consis-

tency condition is respected; and the first condition guarantees the resulting state to be

gapped with a unique ground-state. The wave-function of the gapped G SPT produced is

a superposition of all domain wall patterns. These consistency conditions may be formu-

lated mathematically by the Atiyah-Hirzebruch spectral sequence (AHSS). We refer the

reader to [172, 60] for details. In the decorated domain wall scheme the protected surface

states appear naturally: topological defects that end at the surface carry the non-trivial

boundary modes of the lower dimensional SPT phases protected by the symmetry K.

Now we make G an average symmetry and decorate nontrivial invertible states on G

domain walls. The first two conditions above should still be satisfied, since we are interested

in SRE ensembles (Def. 1). The third condition, however, does not seem to be necessary,

since the domain walls no longer form coherent superpositions. This leaves the possibility

of intrinsically disordered average SPTs that have no counter parts in clean systems. This

intriguing possibility will be reported in the next chapter.

2.4 Average anomalies and boundary properties

For ordinary SPT, it is well known that a nontrivial bulk leads to nontrivial boundaries.

Specifically, the boundary theory will have t’Hooft anomaly that matches the bulk topo-

logical response. The t’Hooft anomaly imposes powerful constraints on the IR boundary

dynamics. For example, the anomalous boundary cannot be symmetrically gapped with

a unique ground state. A natural question is: how does a nontrivial bulk average SPT

phase constrain its boundary dynamics? Or equivalently, what are the consequences of an

“average anomaly”?

As we will see below, the answer to the above question depend on the dimensions of

the decorated states on the proliferated domain walls. There are two different categories
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that we shall discuss separately.

2.4.1 The trivial case: (0 + 1)d decoration

Let us illustrate the physics with a simple example. We start from the (1 + 1)d cluster

model [155, 152]:

Hcluster = −
∑
n

Zn−1XnZn+1, (2.16)

in which X and Z are Pauli matrices. The cluster chain is in an SPT phase protected by

a Z2 × Z2 symmetry, which is generated by

K =
∏
n

X2n+1, G =
∏
n

X2n. (2.17)

We then add to the Hamiltonian in Eq. (2.16) disorder that violates one of the Z2 symme-

tries, say G, but restores it on average. For example, we add the following term

Hdis = −
∑
n

h2nZ2n, (2.18)

where h2n’s are onsite potentials distributed uniformly in [−δ, δ]. The disorder Hamiltonian

is symmetric under K, while respects G only on average.

The cluster chain Eq. (2.16) can be interpreted as decorating a nontrivial K charge

at each G domain wall, and then condense the domain walls to get a Z2 × Z2 symmetric

topological phase. Once the random field is turned on, the G domain walls no longer

condense as the G symmetry is explicitly broken for each disorder realization. However,

for each realization, there will in general be many G domain walls, and each domain wall

still traps a nontrivial K charge. The resulting state is therefore a nontrivial Z2 × Z(ave)
2

SPT.

We can in fact push our model to strong disorder regime, and obtain a much simpler

effective model:

H = −
∑
n

(Z2nX2n+1Z2n+2 + h2nZ2n) , (2.19)
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where h2n ∈ {±1} are independent binary random variables defined on each even-integer

site. The ground state of each individual Hamiltonian is simply an un-entangled product

state, with each even site in |Z2n = h2n⟩ and odd site in |X2n+1 = h2nh2n+2⟩. This

ensemble has the same domain wall decoration pattern as the previous model (as can be

checked explicitly using Eq. (2.5)), and is therefore an equally valide (but much simpler)

representation of the Z2 × Z(ave)
2 SPT.

The fact that each disorder realization simply gives an un-entangled product state is

true even when the system has boundaries. This immediately means that our “average

cluster chain” does not have nontrivial boundary state – unlike the clean cluster model

which has a robust ground state degeneracy once put on an open chain. This can also

be understood directly from the edge state: each end of the clean cluster chain forms a

two-dimensional projective representation of Z2 ×Z2, in which the generators of G and K

act as anti-commuting Pauli matrices σx and σz, respectively. Now adding, even only on

the boundary, a random G-breaking field hσz will lift the edge degeneracy completely.

We have demonstrated that the Z2 × Z(ave)
2 cluster chain does not have nontrivial

boundary dynamics. The boundary, however, does have a notable feature: the K-charge is

fixed by sgn(h) which fluctuates from sample to sample. This means that different samples

will not be symmetrically and adiabatically connected to each other, violating one of the

key assumptions of our SRE ensemble (Def. 1). So our SPT is similar to the standard

SPTs, in the sence that when the system has boundaries the state cannot stay SRE –

although in the above example it violates the SRE condition in a rather trivial way.

It is straightforward to generalize the above observations to all the average SPT states,

in any dimensions, in which only (0+1)d states are decorated on average-symmetry domain

walls. Such states can be continuously deformed to a limit where each disorder realizations

simply gives a product state, without any interesting boundary dynamics. This aspect

is in fact familiar in crystalline SPT phases[80, 58]: if we decorate (0 + 1)d states (for

example, some integer U(1) charges) on crystalline defects (such as in each unit cell of

translation symmetries), we obtain crystalline SPT phases without nontrivial boundary

dynamics – instead we obtain a variety of atomic-like insulators that are not symmetrically

and adiabatically connected to each other.
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Figure 2.1: The decorated domain wall picture in the presence of a physical edge.

2.4.2 Nontrivial cases: higher-dimensional decoration

We now move on to the much more interesting cases with higher dimensional domain wall

decorations. We shall employ a modified version of flux-insertion argument commonly used

in the study of topological phases. Let us again illustrate with a simple example.

Consider a (2 + 1)d boson SPT, with the exact symmetryK = SO(3), average sym-

metry G = Z2 and full symmetry G = SO(3) × Z2. The only non-trivial element in

H1[G,H2(K,U(1))] has a topological action

Stop = π

∫
X

a ∪ wSO(3)
2 , (2.20)

where a is the background Z2 field and w
SO(3)
2 is the Second Stiefel-Whitney class of the

SO(3) probe field. This state has a simple physical picture in terms of decorated domain

walls: on each Z2 domain wall there is a Haldane chain protected by the SO(3) symmetry.

Let us now put the system on a space manifold with boundary, and ask how likely it is

for the ground state |Ψ⟩, for one realization of the disorder potential v, to be short-range

entangled. We argue below that such “uninteresting” ground state must be very rare as

the system size becomes large. The trick is to use the partial symmetry transform to create

domain walls, similar to the argument used in Sec. 2.3, but now with a spacial boundary.

Let us start by assuming that |Ψ⟩ (under a particular Z2-breaking disorder realization

v) is short range entangled, with exponentially decaying connected correlation functions
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and a nonzero energy gap. Now take a large enough sub-region A that includes a segment

on the physical edge (Fig. 2.1), and flip all the random Z2-breaking fields v inside A, so

that we are now considering a different disorder realization with

ṽ(x ∈ A) = −v(x ∈ A), ṽ(x ∈ Ā) = v(x ∈ Ā). (2.21)

We denote the ground state under ṽ as |Ψ̃⟩. Similar to the bulk argument (Eq. (2.5)), we

expect that

UA
a |Ψ⟩ = V ∂A

a |Ψ̃⟩, (2.22)

with V ∂A
a creating an SO(3)-protected Haldane chain on domain wall ∂A (not including

the segment on the physical edge). But contrary to the bulk argument in Sec. 2.3, the

domain wall ∂A itself has boundaries – it terminates on the physical edge at two points.

If |Ψ̃⟩ is also short-range entangled (with correlation length much shorter than the edge

segment), then V ∂A
a will create a pair of half-integer spins at the two ends of ∂A. Since

we assume SO(3) to be exactly preserved, the two spins should be locked into a singlet,

which leads to a nontrivial correlation at large distance – the state effectively becomes

long-range entangled. But this should not happen, as the left hand side of Eq. (2.22) is

clearly short-range entangled: it is just a depth-1 unitary, UA
a , acting on a short-range

entangled state |Ψ⟩. Therefore the assumption that |Ψ̃⟩ is short-range entangled must be

wrong. To make Eq. (2.22) valid, |Ψ̃⟩ must already have a singlet pair distributed at the

two ends of ∂A, so that acting on it with the Haldane chain creation operator V ∂A
a removes

the singlet pair and recovers a short-range correlated state.

Once we understand the long-range correlated (or entangled) nature of |Ψ̃⟩, it is obvious
that such states can be created in many other ways: we can change the region A so that

∂A end at different point on the physical edge, we can also have multiple such regions

that lead to many long-range singlets on the edge. Crucially, all such states appear with

same probability as |Ψ⟩, since, by definition of the average Z2 symmetry, flipping the sign

of the random potential v in a region larger than correlation length should not change its

realization probability. Therefore as the system size goes to infinity, there are infinitely

many ways to create long-range entanglement out of a short-range entangled state, with

essentially equal probability. This in turn means that a short-range entangled state |Ψ⟩
can appear at most with a vanishing probability.
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The above argument generalizes to other average SPT phases, as long as the nontrivial

invertible states being decorated on the domain walls (defects) are higher than (0 + 1)d.

In other words,

Theorem 2. An average SPT with decoration dimension p > (0 + 1) will have long-range

entangled boundary state with probability approaching 1 in the thermodynamic limit.

In Table 2.1 we list, in parenthesis, those states that do have long-range entangled

boundary states (with probability approaching unity).

2.4.3 Application: Lieb-Schultz-Mattis constraints with average

lattice symmetries

Readers familiar with random spin chains will recognize the long-range entangled state

constructed in Sec. 2.4.2 as essentially the random singlet state[117, 41, 51]. Indeed, with-

out any change in the argument, we can replace the average Z2 symmetry in the example

of Sec. 2.4.2 with a Z symmetry. By the spirit of “crystalline equivalence principle”[156]

we can interpret this Z as lattice translation. The corresponding bulk system is a stack of

SO(3) Haldane chains with an average translation symmetry perpendicular to the chains.

On the boundary we obtain a disordered spin-1/2 chain with average translation symmetry.

The result of Sec. 2.4.2 then becomes a disordered version[93] of the Lieb-Schultz-Mattis

(LSM) theorem[111], which states that a disordered spin-1/2 chain with average transla-

tion symmetry must stay long-range entangled with probability one. The random singlet

state with arbitrarily long-ranged singlet pairs is a classic example of such states.

Using the crystalline equivalence principle[156], we can conclude that all the generalized

LSM anomalies for other lattice symmetries[129, 179] (rotation, reflection etc.) still imply

long-range entanglement (with probability 1) when the lattice symmetry becomes average.

Let us provide a more direct and detailed argument for the simple case of (1 + 1)d

systems with average lattice translation symmetry. Consider a spin chain with exact on-

site symmetry K, with the Hilbert space for each lattice unit cell forming a projective

representation ωuc ∈ H2(K,U(1)). For concreteness we can think of K = SO(3) and the

system being a spin-1/2 chain, although this will not be necessary.
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Now assume that for some disorder realization (with a local Hamiltonian H =
∑

iHi),

the ground state |Ψ⟩ is short-range entangled with a finite correlation length ξ. Let us

then consider a different Hamiltonian H̃ =
∑

i H̃i, defined with a large subregion (a long

segment) A, such that

1. for i far outside A, H̃i = Hi,

2. for i deep inside A, H̃i = Hi−1,

3. for i near the boundary ∂A, H̃i can take any value in the ensemble.

Essentially we have translated the Hamiltonian inside region A by one unit cell, which is

the translation analogue of the partial symmetry operation in Sec. 2.4.2. This disorder

realization will have a different probability with H, but crucially the two probabilities only

differ by a constant factor, depending on details at ∂A but independent of either the size

or location of region A (as long as A is large enough).

Since we have assumed the original state |Ψ⟩ to be short-range correlated with a clear

energy gap, the change in a local Hamiltonian term (say at i) should only affect properties

near i. So the new ground state |Ψ̃⟩ should be identical to |Ψ⟩ far out of A, and be identical

to the translated version Tx|Ψ⟩ deep inside A. However, these two conditions imply that

at each boundary ∂A there is an extra half-integer spin (or projective representation in

general). In order to form a symmetric state, these two half-integer spins have no choice

but to form a singlet with each other (since regions deep inside and far outside of A are

determined already). This creates a long-range correlation across the large region A.

Let us make the above argument more explicit in terms of reduced density matrices.

We denote a sub-segment deep inside A as A−, the region far outside A as A+, and the

remaining two regions (the left and right boundaries) as ∂AL and ∂AR. We further denote

Ã− as A− translated to the right by one unit cell, ∂̃AL as ∂AL plus one unit cell right

to it, and ∂̃AR as ∂AR minus its leftmost unit cell. We now consider reduced density

matrices from the state |Ψ⟩ (denoted as ρ) and from the state |Ψ̃⟩ (denoted as ρ̃. For an

SRE state, at each of the four entanglement cuts (let us denote as a, b, c, d from left to

right) we can extract an element of ω ∈ H2(K,U(1)) from the entanglement spectrum[132]
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(for K = SO(3) this Z2 number is just measuring the parity of singlet bonds across each

cut). Since we have a nontrivial ωuc ∈ H2(K,SO(3)) per unit cell, we have the relations

ωa − ωb = ωuc × |∂AL| and ωc − ωd = ωuc × |∂AR|. Now the SRE nature of |Ψ⟩ and the

relation between H̃ and H imply that ρ(A+) = ρ̃(A+) and ρ(A−) = ρ̃(Ã−). Therefore

at each of the four entanglement cuts we should have ω = ω̃ (now b̃ and c̃ are translated

from b and c by one unit cell). However, this means that for the two boundary regions,

ω̃a − ω̃b = ωuc × (|∂̃AL| − 1) and ω̃c − ω̃d = ωuc × (|∂̃AR| + 1). Therefore the two regions

∂̃AL ∪ ∂̃AR cannot be short-range entangled – the only way to have a symmetric state is

for the two regions, separated by Ã−, to entangle with each other.

We can now make the above argument for any large region A, even multiple of them.

Since the probability to create such long-range correlation does not depend on the size and

location of A, we again conclude that for such systems, short-range entangled ground state

must be extremely rare, with at most vanishing probability as system size L→ ∞.

We note that for K = SO(3), a similar average LSM theorem have been shown in

Ref. [93]. Our argument here is more general, although the conclusion is not as strong –

for example, we make not direct statement about averaged correlation functions or energy

gaps.

2.5 Fermionic examples

In this section, we discuss two particularly interesting examples of fermionic ASPT phases.

They are 3D fermionic TIs in symmetry class AII and AIII. We study the former using

a systematic decorated domain wall construction similar to that in Ref. [153], and the

latter by examining the reduction of the clean classification. One will see the insight we

obtained in Sec. 2.3 works equally well for systems with fermions and/or beyond the group

cohomology classification.
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2.5.1 Class AII

Let us first consider 3D TIs protected by U(1) ⋊ T symmetry (class AII), in which U(1)

is the electron charge conservation and T is time reversal, with T 2 = −1 when acting

on fermionic operators. Importantly, T preserves the U(1) charge. We consider the case

where T becomes an average symmetry, while charge conservation remains exact. As

illustrated in Sec. 2.3, the ASPT phases in our symmetry setting can be constructed by

decorating a (3− p)D fermionic U(1) SPT on each codimension-p (with respect to the 3D

space) T -symmetry defect. The first two consistency conditions listed in Sec. 2.3.4 need

to be satisfied. In the disorder setting, the first condition ensures each state in the mixed

ensemble is U(1)-symmetric and SRE, while the second guarantees any pair of states can

be adiabatically connected without breaking U(1) – this is precisely our definition for a

U(1) symmetric SRE ensemble. Specifically, the construction follows the guideline below:

• One starts from the top codimension p = 0, and decorates T -defects of increasing p

successively;

• The quantum anomalies must cancel out on codimension p defects, given all previous

decorations with codimensions p′ < p;

• After the p = 3 decoration, the second consistency condition in Sec. 2.3, i.e. the

constraints on continuous deformations of domain walls, must be satisfied.

In this section we present the decorated defect construction in a physical way. A rigorous

AHSS calculation can be found in Appendix. A.1.

Let us start with codimension-0 defects, namely, the 3D patches in which T is broken

by the disorder. It is known that fermionic SPT phases protected by U(1) symmetry are

classified by the spinc cobordism group of a point, Ω•
spinc(pt) [91, 54, 68, 62]. In particular,

there is no 3D non-trivial phase protected by U(1) alone. Therefore, all 3D patches are in

the trivial U(1) symmetric SRE phase.

We then move on to codimension-1 T −domain walls between the patches. Since two

adjacent patches are both in the same (trivial) phase, the wall in between traps no anoma-

lous surface mode and can thus be gapped without breaking the U(1) symmetry. One now
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decorates the T -domain wall with 2D U(1) SPT phases. There are two non-trivial choices:

the integer quantum Hall (IQH) state and the Kitaev E8 state [96], each of which has a

Z classification. We label the two integers by nI and nE for the IQH state and the E8

state respectively. The elementary E8 state with nE = 1 has 8 chiral bosons at the edge,

which can be thought of as protected by a gravitational anomaly, whose “probe field” is

the background space-time geometry.

Naively, one may expect decorating 2D layers labeled by different integers leads to

different 3D SPT phases. However, this is not the case. The easiest way to see this is to

consider decorating an IQH state with nI = 2 on the T -domain wall. When a domain

wall is cut open at the surface of the system, a helical edge state with chiral central charge

c = 2 appears. We can deposit nI = ±1 IQH states on the surfaces of the domains, such

that at the surface T -domain wall boundary there arises chiral modes with c = −2. The

two counter-propagating modes can be trivialized by turning on a coupling, resulting in a

unique gapped ground-state both in the bulk and on the surface2. The same argument also

applies to the E8 decoration, which implies that the indices nI and nE are only defined

modulo 2. This argument resembles the operation of adjoining layers in Ref. [153]. In

summary, for p = 1 we have two possible decorations, each of which is labeled by Z2.
3

One more comment is hereafter we require any two defects that can be smoothly deformed

into each other to be decorated by the same lower dimensional phase. This is due to the

assumption that states in different disorder realizations should be adiabatically connected

(Def. 1).

Next we proceed to codimension-2 T -defects, i.e. the 1D intersections of T -domain

walls. We should first examine whether the possible decorations in lower codimensions

lead to any quantum anomaly. A 1D domain wall intersection is shown in Fig. ??, with

an IQH/E8 decorated on each domain wall. (Remember that the edge chirality is defined

only mod 2.) The intersection has no net chirality and can thus be gapped without U(1)

2As argued in Sec. 2.4, if the surface can be made SRE in the presence of a bulk decoration with

dimension p > (0 + 1), this decoration is guaranteed to be trivial.
3Mathematically, each of the two decorations is described by the cohomology H1(ZT

2 ,ZT ) = Z2, where

ZT denotes the twisted coefficient, reflecting the fact that time reversal acts non-trivially on the IQH and

E8 states.
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Figure 2.2: (a) Left: An intersection of two T -domain walls, which is decorated by an

IQH/E8 state, viewed from the top. Solid lines represent an IQH/E8 state on each half

plane, with chiralities of edge modes indicated by the arrows. (b) Right: To see there is

no gapless chiral mode at the intersection, note that it can be smoothly deformed into two

disjoint walls.

symmetry breaking.4 We then consider decorating a domain wall intersection with 1D

fermionic SPT phases protected by the exact U(1) symmetry. However, there is no non-

trivial 1D SPT protected by U(1) alone. Therefore we do not have any new decoration at

codimension 2.

One can repeat the same procedure for codimension-3 T -defects, namely, 0D points,

each of which is an intersection of three domain walls. It is straightforward to see that a

0D defect can always be gapped without breaking the exact U(1) symmetry, given all the

previous decorations. The reason is simply that there is no non-trivial U(1) SPT in 1D,

whose anomaly inflow can protect a zero mode in 0D as a boundary state. As a result, for

each quenched realization of disorder pattern, T -symmetry defects in all codimensions can

be trivially gapped out.

By assumption in Def. 1, we demand that the U(1) charge must be conserved when the

4An intersection of T -domain walls is trivial, in the sense that it can be deformed locally to the

configuration in Fig. ??. The two configurations differ at most by a 1D SRE state. This observation leads

to the same result that the domain wall intersection traps no 1D gapless mode.
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T domain walls are deformed continuously. The decorations by the IQH and the E8 state

are consistent with this constraint, as shown by an explicit spectral sequence calculation in

Appendix. A.1. On the other hand, one may decorate each 0D T -defect point using 0D U(1)

SPT states. These U(1) SPT states have a Z classification, whose physical meaning is the

U(1) charge quantum number carried by the 0D ground-state. For symmetry class AII, a T
transformation preserves the U(1) charge. The only decoration consistent with the fusion

rule of 0D T -defects is the trivial one (Note that 0D point-like T -defects can annihilate

in pairs, thus decorating charges on them is forbidden since it breaks the U(1) charge

conservation during the deformation of T defects.), which is described by the cohomology

H3(Z2,Z) = 0.5 As a result, there is no new possible decoration at 0D (codimension 3).

At this point, we have exhausted all possible decorations on T −defects of all codi-

mensions, and have also ensured the consistency, i.e. the domain wall condensation has

a unique gapped ground-state with the decorations described. We thus reach our final

result: when T is restored on average, 3D TIs in symmetry class AII are classified by Z2
2,

generated by placing an IQH state or an E8 state on the T domain wall, respectively.

Moreover, since both decorations are extended in space (2D), from Theorem 2 we conclude

that all the non-trivial ASPTs in this symmetry class have long range entanglement on the

surface with probability one in the thermodynamic limit.

The classification of clean 3D TIs in class AII is Z3
2[165, 167, 54]. In comparison, our

Z2
2 classification for the ASPT in this symmetry class misses one nontrivial state. The

missing state, known as eTmT state, can be obtained from the domain wall condensation

approach with some nontrivial phase factors in the domain wall condensate. As we ex-

plained in Sec. 2.3, such state is no longer nontrivial when the symmetry becomes average,

as coherent superpositions are replaced by classical probabilities, and the notion of super-

position phase factors is no longer well defined. From the topological response point of

view, the topological effective action of the eTmT state reads [89]

Stop = π

∫
X

w4
1, (2.23)

where w1 is the first Stiefel-Whitney class (“time reversal gauge field”) of the worldvolume

5Here the coefficient is untwisted, as T preserves the U(1) charge in class AII.
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of the (3 + 1)d bulk. The average nature of time-reversal gives the constraint∫
τ

w1 = 0, (2.24)

under which the TQFT in Eq. (2.23) vanishes identically.

2.5.2 Class AIII

We now study the disorder classification of 3D TIs with symmetry group U(1)× T (class

AIII), with T , sometimes also called “particle-hole symmetry” as in quantum Hall context,

being an average symmetry. Unlike the electric charge, now the U(1) charge is odd under

time reversal.

For simplicity, here we explicitly focus on the clean SPT phases, classified by Z8 × Z2

[167], and ask which of these phases remain nontrivial as T becomes an average symmetry.

The Z2 factor corresponds to the efmf state, which as we showed in Sec. 2.5.1 remains non-

trivial in the presence of disorder. Similarly, the n = 1 state in the Z8 can be understood

as decorating an IQHE on the T -domain walls, which remains nontrivial as argued also

in Sec. 2.5.1. The n = 4 state in the Z8 factor is known to be equivalent to the bosonic

eTmT state, so from our argument in Sec. 2.5.1 it should become trivial once T becomes

average. The only nontrivial question now is what happens to the n = 2 state.

In the clean setup, this state can be constructed by decorating a unit U(1) charge at

each 0D intersection of three T -domain walls6. This is a nontrivial decoration pattern,

as the U(1) charge decorated at each 0D T -defect can not be removed as long as U(1)

remains exact.7 So we conclude that the bulk state should remain nontrivial as T becomes

6This is only allowed by the defect fusion rule when T reverses the U(1) charge, which is the case for

class AIII.
7Mathematically, 3D TIs in class AIII is classified by the cobordism group Ω4

pinc(pt) = Z8 × Z2, which

is an iterated extension of

H1(ZT
2 ,ZT ⊕ ZT ) = Z2 × Z2 (2.25)

byH3(ZT
2 ,ZT ) = Z2 (2.26)

byH5(ZT
2 ,ZT ) = Z2. (2.27)
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average symmetry. However, since the U(1) SPT phase decorated on the T defect is in 0D

(a charge), there is no protected surface state for the n = 2 state based on the discussion

in Sec. 2.4.1.

To summarize, the final classification for 3D TIs in class AIII with average time reversal

symmetry is Z4×Z2, in which the n = 2 state in the Z4 factor has no symmetry protected

long range entanglement on the surface.

We make a comment in connection to the (disordered) integer quantum Hall plateau

transition. The average particle-hole symmetry, relating filled and empty Landau levels,

emerges naturally at the plateau transition. The resulting U(1) × T (ave) has the same

anomaly as the n = 1 state in the Z8 factor (in clean limit). Our result shows that

the plateau transition in two-layer systems (n = 2 in Z8), even though being technically

“anomalous”, is not protected to be long-range entangled. This is consistent, in a nontrivial

manner, with the numerical fact that such transition can indeed be Anderson localized.

2.6 Generalized quantum disorder: a quantum chan-

nel approach

So far we have treated disorder as purely classical degrees of freedom. However, real dis-

orders, such as impurities in solids, are quantum mechanical, and in principle can develop

interesting quantum entanglement within themselves (even though these may not be ener-

getically favorable in typical conditions). In this section, we generalize our considerations

to disorders that can develop invertible quantum many-body entanglements. This is a min-

imal quantum mechanical generalization of disorder, as the disorder potential still remain

short-range correlated. We dub such disorders invertible quantum disorders. The

observables of our interest, however, will still only live in the “dynamical” Hilbert space

that does not involve the disorder degrees of freedom. In other words, the disorders are

traced out, leaving behind a mixed state. This motivates us, in this section, to develop an

The physical meaning is that n = 2 mod 4 elements in the Z8 factor have a U(1) charge decorated on each

codimension 3 (0D) time reversal defect.
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SPT theory for such mixed state based purely on the density matrix ρ =
∑

I PI |ΨI⟩⟨ΨI |
(I labeling each “disorder realization” in the generalized sense), without referring to any

parent Hamiltonian. For this purpose, we will first need to modify some notions in Sec. 2.2,

including SRE ensembles, exact and average symmetries, so that these notions are defined

purely in terms of the density matrix ρ.

2.6.1 Symmetries and short-range entanglement

As mentioned in the Introduction, in clean systems an SPT has a symmetric SRE ground-

state, yet which can not be deformed to a trivial product state using a finite depth quantum

circuit if certain symmetries are imposed. To be clear on what states one should consider

in the presence of invertible disorder, we need a mixed state generalization of SRE state

and the symmetry conditions to which it is subject.

Let us consider a discrete lattice Λ in d dimensional space. The total Hilbert space H
is a tensor product of local Hilbert spaces placed at each lattice site, H = ⊗i∈ΛHi. One

can define the notion of SRE mixed state, purely based on the density matrix, following

Hastings [77]:

Definition 3. Let ρ be the density operator of a mixed state, acting on the Hilbert space

H. ρ is SRE if it has a SRE purification. Specifically, there exist the following:

• An enlarged Hilbert space H′ = H⊗D, constructed by tensoring in additional degrees

of freedom on each site;

• A SRE pure state |ψ⟩ defined in the Hilbert space H′, such that

||ρ− trD(|ψ⟩⟨ψ|)||1 < ϵ, (2.28)

with vanishing ϵ in the thermodynamic limit (the system size L→ ∞). Here the ||...||1
denotes the trace norm, which for a Hermitian operator is the sum of the absolute

values of its eigenvalues.

Physically, an SRE mixed state is one that can be obtained from an SRE pure state

by tracing out ancillas defined locally on each site. In disorder systems, it is instructive
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to think of the ancillary space D as describing the disorder and the partial trace of D as

encoding how the system of interest (in the Hilbert space H) is affected by the interaction

with disorder. For this Section, we will focus on disorder ensembles that are SRE in the

sense of Definition. 3. We should emphasize that such purification is in general not unique,

and we will not focus on properties that are sensitive to details of the SRE purification –

its mere existence is enough for our purpose.

Analogous to the clean case, the density operator ρ and quantum circuits implemented

on ρ are subject to some symmetry conditions. For a moment, let us focus on onsite unitary

symmetries. As before, we consider two distinct types of symmetries in this Chapter. The

first is the exact symmetry, intuitively, the symmetry respected by all possible realizations

of disorder. We denote the exact symmetry group by K. For each element k ∈ K, there

is a corresponding unitary operator U(k) acting on H, which forms a linear representation

of K:

U(k) = ⊗i∈Λui(k), (2.29)

where ui(k) is the (linear) representation of K on a single site i ∈ Λ. We generalize the

concept of symmetric quantum state to mixed ensembles as following.

Definition 4. An SRE mixed state ρ has an exact unitary symmetry K, if there exist

• an enlarged Hilbert space H′ with symmetry action

S̃(k) = U(k)⊗ 1D; (2.30)

• a SRE purification |ψ⟩ of ρ, defined in the enlarged space H′, such that |ψ⟩ is an

eigenstate of S(k) for each k ∈ K.

Note that the ancillary Hilbert space D is in a trivial representation of K. It is not

difficult to show that, if an SRE ρ has an exact symmetry K, it can be decomposed into an

incoherent sum of pure states, which are all eigenstates of U(k) with the same eigenvalue.

We now define average symmetry G for our mixed state. The hallmark of an aver-

age symmetry is that disorders also transform nontrivially. This motivates the following

definition:
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Definition 5. An SRE mixed state described by a density operator ρ has an average unitary

symmetry G if

• there exists a SRE purification |ψ⟩ of ρ, defined in an enlarged space H′ with symmetry

action

S̃(g) = U(g)⊗ U(g)D, (2.31)

such that |ψ⟩ is an eigenstate of S(g) for each element g in group G.

We emphasize that the ancillary space D is in a non-trivial representation of G. With

this definition, a density matrix ρ with average symmetry G commutes with the operator

U(g) (both viewed as operators acting on the Hilbert space of interest H):

U(g)ρ =trD[(U(g)
D)†U(g)⊗ U(g)D|ψ⟩⟨ψ|]

=trD[(U(g)
D)†|ψ⟩⟨ψ|U(g)⊗ U(g)D] = ρU(g),

(2.32)

which is consistent with our expectation for a “statistical symmetry” that is respected

on average. A key difference from an exact symmetry is that, when we simultaneously

diagonalize the density operator ρ and U(g), ρ is written as an incoherent sum of pure

states, with in general different charges under G.

We are now ready to discuss relations between SRE ensembles. In the standard theory

of SPT, quantum states are divided into equivalence classes, where two states are in the

same phase iff they can be connected by a symmetric finite-depth local unitary. Natu-

rally, for mixed ensembles, the state equivalence relation can be defined using “symmetric

finite-depth” quantum channels[42]. In general, a quantum channel, which is a completely

positive trace-preserving map between density operators, can be realized by a unitary act-

ing on an extended system [133]. We therefore define symmetric finite-depth local quantum

channels as following.

Definition 6. A quantum channel E on a system with Hilbert space H is a symmetric finite-

depth local quantum channel if it has a purification to a unitary W on a space H′′ = H⊗A,

such that for some ancilla state |a⟩ ∈ A,

E(ρ) = trA[W (ρ⊗ |a⟩⟨a|)W †]. (2.33)

Specifically, we have
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• The ancillary space A, which is a tensor product of local degrees of freedom at each

site, should not be confused with the space D that is used to purify the density operator

ρ. However, A carries the same symmetry representation as the disorder (and the

space D);

• W is a finite-depth local unitary on H′′;

• W is composed of gates that commute with S(k) = U(k) ⊗ 1A and S(g) = U(g) ⊗
U(g)A, but do not commute with U(g) that acts on H alone;

• The ancilla state |a⟩ is a product state symmetric under U(g)A.

One can easily check that a symmetric quantum channel preserves exact and average

unitary symmetries of an ensemble. Physically, this means that when we apply the quantum

channel, the mixed ensemble does not exchange K charge with the ancillas in A. On the

other hand, the total G charge of H and A is conserved, though there can be charge

exchange between them.

We now comment on time reversal symmetry T . As time reversal is anti-unitary,

there is no way for the ancillary Hilbert space D to transform trivially like Eq. (2.30).

Meanwhile, one cannot tell whether a mixed state is an exact or average eigenstate by the

T -“charges” when written as an incoherent sum, since time-reversal eigenvalue is anyway

a basis-dependent quantity. At best we can define a mixed state ρ to be time-reversal

invariant when

T ρT −1 = ρ. (2.34)

An equivalent statement is that ρ has a purification |ψ⟩ defined in an enlarged Hilbert space

H′, such that |ψ⟩ is an eigenstate of time reversal symmetry T . We therefore conclude that,

with quantum disorders, time-reversal symmetry always behaves as an average symmetry.

After introducing the mixed state generalization of SRE states and the definition of

symmetric quantum channels, we are now ready to define the concept of average SPT in

terms of the density operator ρ.
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2.6.2 Average symmetry-protected topological phases

We now propose the following channel definition of Average Symmetry-Protected Topo-

logical phases (ASPT) in the precense of invertible quantum disorders.

Definition 7. Consider two SRE ensembles ρ1 and ρ2, with exact symmetry K and average

symmetry G.

• ρ1 and ρ2 are in the same ASPT phase if there exist two symmetric finite-depth local

quantum channels E and E ′, such that both ||E(ρ1)− ρ2||1 and ||E ′(ρ2)− ρ1||1 vanish

in the thermodynamic limit;

• In particular, a symmetric SRE ρ is a trivial ASPT if it is two-way connectable to a

product state. Namely, there exist two symmetric finite-depth local quantum channels

E and E ′, such that

lim
L→∞

||ρ− E(ρcl)||1 → 0,

lim
L→∞

||ρcl − E ′(ρ)||1 → 0.
(2.35)

Here the density operator ρcl represents a pure symmetric product state in the Hilbert

space H and L is the linear size of the system.

Several comments follow. (1) An SPT phase in a clean setting is an eigenstate of

the protecting symmetry. As an analog, an ASPT is a mixed ensemble symmetric under

the pertinent exact (average) symmetries. This property is preserved by symmetry finite-

depth local quantum channels. (2) Quantum channels are generically not invertible, and

form a semigroup under composition. Consequently, the above definition for ASPT is an

equivalence relation, according to which states are divided into equivalence classes (phases).

The physical idea is that two SRE mixed states are in the same ASPT phase if we can

prepare each one from the other, using a symmetric finite-depth local channel (potentially

with ancillas). In particular, an SRE ensemble is trivial when it can be prepared in this way

starting from a trivial product state. (3) When constructing the symmetric finite-depth

local channel, the maximal width of the gates is bounded by some constant. The depth of

45



a channel is allowed to be PolyLog(L) to simulate an adiabatic evolution more accurately

[123, 40, 69]. However, crucially, we require it to be sub-linear in the system size L.

We also note that states nontrivial under our mixed state definition are also nontrivial

under the definition used in Sec. 2.2, since classical disorders form a subset of invertible

quantum disorders. However, states that are nontrivial in the sense of Sec. 2.2 may not be

nontrivial in our current context.

One consequence of the Def. 7 is that an SPT in clean system ρ = |Ψ⟩⟨Ψ|, which is

nontrivial under any symmetric finite-depth circuit, may become trivial under a symmetric

finite-depth channel. As defined in Def. 6, both H and the ancillary space A transform

faithfully under the average symmetry. For an arbitrary SPT state |ψg⟩ protected solely by

the average symmetry G, one can find a G-SPT |ψ−1
g ⟩A defined in A, such that the state

|ψg⟩ ⊗ |ψ−1
g ⟩A can be prepared from a trivial product state by a finite-depth local unitary

with gates that commute with S(g) = U(g) ⊗ U(g)A. This statement is known as the

invertibility of SPT states [99, 53]. On the other hand, starting from a G-SPT |ψg⟩, one
can always construct a symmetric finite-depth local unitary, which brings |ψg⟩⟨ψg| ⊗ |a⟩⟨a|
to ρcl ⊗ |ψg⟩A⟨ψg|A. After tracing out A, this implies |ψg⟩ becomes trivial in the mixed

state setting, according to the definition Eq. (2.35). This logic also applies to any nontrivial

invertible phase (such as the chiral E8 state in (2+1)d), as we can also bring the ancillary

degrees of freedom into the appropriate inverse state. In this sense, “gravitational response”

becomes a trivial concept in the mixed state setting.

2.6.3 A simple example

We now discuss an example of nontrivial average SPT phases under the definitions used

in this Section. The simplest example is in fact the one discussed in Sec. 2.4.1, where one

of the Z2 symmetries in the Z2 × Z2 cluster chain becomes an average symmetry due to a

random field perturbation.

One way to characterize the clean cluster model is the nonlocal string order parameter
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in the ground-state [130, 132]:

lim
|n−m|→∞

⟨Z2m−1

n∏
k=m

X2kZ2n+1⟩ ≠ 0. (2.36)

The string order is made out of the symmetry operator G in the middle (but acting in a

finite region), multiplied by two local endpoint operators8. One can construct a similar

string order for the symmetry K, i.e. Z2m

∏n−1
k=mX2k+1Z2n, which also has long range order

in the ground-state. For later convenience, we denote a string order associated with a

symmetry K by SK , which is constructed by the symmetry operator sK (acting in a finite

region) in the middle, multiplied by some local endpoint operators: SK = Ol
Ks

KOr
K .

The topological nature of the cluster SPT is encoded in the symmetry charge of the

endpoint operators: in order for the string order associated with symmetry K (G) to have

long ranged order, its endpoint operators must be odd under symmetry G (K). In contrast,

in a trivial SPT, e.g. a paramagnetic chain Htriv = −
∑

nXn, the endpoint operators of a

string order with a nonzero ground-state expectation cannot carry any non-trivial charges.

These distinct quantized charges indicate the two models must be separated by a phase

transition.

We now add the random field

Hdis = −
∑
n

h2nZ2n, (2.37)

where h2n’s are onsite potentials distributed uniformly in [−δ, δ]. The ensemble of ground

states now have exact symmetry K generated by Ising spins on the odd-sites, while the

Ising symmetry on the even-sites G is only an average symmetry.

One can study the behaviours of the string orders in the presence of this disorder.

Since the symmetry G is broken locally by randomness in each realization of disorder, one

expects the ensemble average of the string order associated with G to decay exponentially

8The easiest way of seeing Eq. (2.36) is by noting that it is equal to
∏n

k=m Z2k−1X2kZ2k+1, with

Z2k−1X2kZ2k+1 = 1 in the ground-state. Away from the exactly solvable point, the long range order is no

longer perfect, but the expectation value of the string order remains nonzero – it is a general feature of

1D SPT phases [131].
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Figure 2.3: The string order parameters associated with K and G respectively, in the pres-

ence of disorder with δ = 0.4. The overline denotes the ensemble average over 50 samples.

The underlying clean model is in the cluster phase, perturbed away from the exactly solv-

able point. The numerical study is performed using the density matrix renormalization

group (DMRG) technique[174, 143].

as a function of the length of the string. On the other hand, if the disorder does not close

the bulk energy gap (which can be checked given the specific Hamiltonians in Eq. (2.16)

and Eq. (2.18), as long as the disorder strength δ is small compared with the bulk gap),

by continuity, we expect that the string order of the unbroken K with non-trivial endpoint

operators remains long range ordered. These expectations are confirmed numerically, see

Fig. 2.3. One can also add the disorder in Eq. (2.18) to a trivial SPT, e.g. a trivial

paramagnet. In contrast, we find numerically that both string orders of K and G, with

endpoint operators odd under the other symmetry, have no nonzero ensemble average.

Analogous to the clean case, one may wonder if such a nonzero string order parameter

can serve as a characteristic fingerprint of a “non-trivial phase”. The answer is yes, as we

will show below. Specifically, we will show that if the ensemble average of the non-trivial

string order parameter Sk (associated with an element k ∈ K) remains long-range ordered,
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the mixed state ρ cannot be a trivial ASPT.

Theorem 3. Let ρ be a symmetric SRE ensemble in which the non-trivial string order Sk

has long-range order. The trace norm in Eq. (2.35) remains non-zero for any choice of

symmetric finite-depth local channel.

Proof : Consider a symmetric local channel E , constructed as that in Eq. (2.33). The

depth of the circuit W multiplied by the maximum range of each unitary in the circuit

is bounded by some range R, which is sub-linear in L. Suppose we have a string order

parameter of the exact symmetry Sk, with two endpoint operators Ol
k(x) and O

r
k(y) acting

in the Hilbert space H with non-trivial charge under U(g). The length of the string |x− y|
is taken to be much larger than R. Under the action of the unitary circuit, Sk is mapped

to another string operator W †SkW . In the region well separated from the endpoints (with

a distance larger than R), the string Sk remains unchanged, as the circuit W commutes

with the exact symmetry S(k) = U(k)⊗1A. The endpoint Ol
k(x) is mapped by the circuit

to a “local” operator Õl
k(x) = W †Ol

k(x)W , supported on a region within distance R of x.

(The discussion for the right endpoint Or
k is the same, hence omitted hereafter.) Therefore,

W †SkW is again a string order parameter associated with the group element k.

An important observation is that the new endpoint operator Õl
k has the same charge

under the average symmetry G as Ol
k, since the circuit W is symmetric:

S(g)†Õl
kS(g)

=W †(U(g)⊗ U(g)A)†Ol
k(U(g)⊗ U(g)A)W

=W †U(g)†Ol
kU(g)W.

(2.38)

Remember that Ol
k acts only on H, thus commutes with U(g)A. Therefore, when we

compute the expectation value of Sk in a trivial ensemble, we have

trH[SktrA(Wρ̃clW
†)] ∼ ⟨Õl

k(x)⟩⟨Õr
k(y)⟩ = 0, (2.39)

where ρ̃cl is a symmetric product state in the enlarge Hilbert spaceH′′, i.e. ρ̃cl = ρcl⊗|a⟩⟨a|,
and where ⟨...⟩ denotes the expectation value with respect to this state. To get Eq. (2.39),

notice that Sk = Ol
ks

kOr
k and the string sk between the endpoints acts trivially on ρ̃cl.
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We also used the cluster decomposition theorem for two well-separated endpoints. The

non-trivial S(g) charge of Õ
l/r
k then forces the above expectation value to be zero. As a

result, if the non-trivial string Sk is long range ordered in ρ, we have

||ρ− E(ρcl)||1
≥ |trHSk[ρ− trA(Wρ̃clW

†)]|/||Sk|| ∼ O(1).
(2.40)

This completes the proof of Theorem 3.

Theorem 3 indicates that an SPT whose protection involves the exact symmetry can

not be prepared from a trivial product state. This observation will be made precise below.

2.6.4 Domain walls in an ASPT

We now show that for quantum disorders, the decorated domain wall picture again emerges

naturally within the density matrix description. For simplicity, we use the cluster chain

studied above as an example. In this subsection hereafter, we take g = k = Z2.

For symmetric SRE states, applying the symmetry in a finite but large region (much

larger than the correlation length) is equivalent to applying a unitary operator just near

the boundary of that region. In (1 + 1)d, the open string sk effectively only acts near the

ends,

skρ(sk)† = trDU
l
kU

r
k |ψ⟩⟨ψ|(U l

k)
†(U r

k )
†, (2.41)

where sk is fractionalized on the symmetric SRE state |ψ⟩, and U l
k (U r

k ) acts non-trivially

only near the left (right) edge. Notice that though the string sk acts as an identity on the

ancillary space D, the operator U
l/r
k might acts non-trivially on D. The long range order

of Sk = Ol
ks

kOr
k implies the expectation value

⟨ψ|Ol
kU

l
kO

l
kU

r
k |ψ⟩ ≠ 0, (2.42)

for large separations of the two ends. By cluster decomposition theorem, one has

⟨ψ|Ol
kU

l
k|ψ⟩ ≠ 0, (2.43)
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and similarly for the right endpoint. As |ψ⟩ is symmetric, when Ol
k is charged under S̃(g)

(like in the case of the cluster chain), the non-vanishing expectation value requires the

operator U l
k also carries a non-trivial S̃(g) charge.

Next, instead of the string of the exact symmetry (sk), let us conjugate the density

operator ρ by sg (acts on the Hilbert space H only), a finite but long string of an average

symmetry. Again due to the SRE nature of the purifying state, we have

sgρ(sg)† = trDs
g|ψ⟩⟨ψ|(sg)†

= trDs
g ⊗ sgD|ψ⟩⟨ψ|(sg)† ⊗ (sgD)†

= trDU
l
gU

r
g |ψ⟩⟨ψ|(U l

g)
†(U r

g )
†,

(2.44)

in which we have to include a corresponding string (sg)D acting on D, due to the non-

trivial G transformation of the ancillary space (see Eq. (2.31)). A nontrivial result of the

cohomology group H2(Z2 × Z2, U(1)) [147] states that the k charge of the operator U
l/r
g

should be identical to the g charge of U
l/r
k , and is therefore nontrivial. Since the string sg

creates a g domain wall at each endpoint, we thus see that a domain wall of the average

symmetry is decorated by a non-trivial charge (i.e. a 0D SPT) of the exact symmetry. This

conclusion is a property of the symmetric SRE mixed ensemble ρ, which is independent of

the specific choice of the purification |ψ⟩.

The above discussion can be generalized to higher dimensions. For example, in (2+1)d,

instead of string operators, we can consider membrane operators. The details, however,

will be more involved and we do not attempt to provide a full exploration. Instead, we shall

make the plausible conjecture that, similar to the (1+1)d examples, the group-cohomology

result Eq. (2.15) for decorated average domain walls captures the classification of bosonic

mixed-state SPT phases (with invertible quantum disorders).

We close this section by pointing out a connection between our discussion and Ref. [42],

which studied mixed state SPT in the context of open quantum systems. The definition

of exact and average symmetries in this thesis mimics the definition of the strong and

weak symmetry conditions for quantum channels in Ref. [42]. The two types of channels

(or Lindbladians) there can thus be understood as adiabatically turning on disorder that

exactly or averagely preserves the protecting symmetry of an SPT. It was observed in
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Ref. [42] that a weakly symmetric channel is insufficient to preserve SPT phases. This,

in our language, is the statement that an SPT protected by average symmetry alone is

trivialized by disorder, presented in Sec. 2.6.2.

2.7 Discussions

Let me end this Chapter with some open directions, several of which were also mentioned

in previous Sections.

1. I have focused on disordered ensembles in which any two states (with different dis-

order realizations) are adiabatically connected to each other (Def 1). This assump-

tion allows us to make controlled arguments, even without assuming weak disorder

strength. However, it does leave open the possibility of interesting topological phe-

nomena in disordered ensembles not satisfying this adiabatic assumption. For exam-

ple, in Sec. 2.3.1 we discussed the possibility of sample-to-sample fluctuations that

are topological in nature – such phenomena will certainly require us to go beyond the

adiabatic assumption. If such “topological sample fluctuation” can indeed happen,

it would represent a novel topological phenomenon that intrinsically requires strong

disorder.

2. It may also be possible to have “intrinsically disordered average SPT” even if the

adiabatic assumption in Def. 1 is kept. For example, as we discussed in Sec. 2.3.4,

among the set of consistency rules required in the standard decorated domain wall

approach, there is one that is not required in the context of average SPT: the domain

walls do not need to have consistent Berry phase when moved around, simply because

the domain walls are anyway pinned by local disorders and do not move. This leaves

open the possibility of average SPT phases not allowed in the clean limit. I will

develop the theory of such phases in more detail in the next Chapter.

3. In Sec. 2.4 we showed that if the decoration dimension is greater than (0+ 1)d, then

the boundary of average SPT state should almost certainly be long-range entangled,

with probability approaching 1 in the thermodynamic limit. It will be desirable,
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however, to obtain a more direct statement on (averaged) measurable quantities

such as correlation functions or inverse energy gap. This is a natural direction for

next step.

4. t’Hooft anomaly has been an extremely powerful non-perturbative tool in the study of

strongly coupled gapless states of matter, including various conformal field theories

that arise in exotic quantum criticality and even compressible states (some recent

examples include Refs. [179, 47]). It is natural to ask whether the disordered version

of these states can also be fruitfully studied using the average anomalies.

5. Since we have established the notion of average symmetry-protected topological

phase, an immediate question is whether the notion of average symmetry-enriched

topological (SET) phases can be similarly defined. In particular, are various concepts[12]

in SET well defined for average symmetry? If so, what are their consequences? A

theory on this topic will be presented in the next Chapter.

6. There are some other scenarios in which mixed states necessarily appear. One is in

open quantum systems, where finite depth quantum channels are naturally realized

by fast local Lindbladian evolutions [40, 42]. We therefore expect the results in this

thesis shed light on classification and characterization of SPT phases in open systems.

There are several questions remain unclear. For instance, can mixed SPT states arise

as steady states of Lindbladian evolutions? Can we formulate a similar field theory,

when the Hamiltonian (Lindbladian) is time-dependent? These open questions are

left to future study.
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Chapter 3

Topological phases with average

symmetries

In this Chapter, I generalize the discussion in last Chapter to a general framework of

topological phases with average symmetries. This Chapter is based on an upcoming work

[116].

3.1 Average SPT: Generalities

In this section, we first give an overview of the basic notions of ASPT in two different

physical scenarios, with decoherence (Sec. 3.1.1) and disorders (Sec. 3.1.2), in the simplest

cases where the total symmetry G̃ is the direct product of the average symmetry G and

the exact symmetries A. In Sec. 3.1.3 we show that for more general symmetry structures,

the classification of ASPT can be described using the Atiyah-Hirzebruch spectral sequence,

for both the decohered and disordered scenarios (with different input data and consistency

conditions). The goal of this Section is to not only review, but significantly systematize

and clarify earlier discussions in Chapter. 2.
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3.1.1 Decohered ASPT

We now review the notion of a decohered ASPT state, which is relevant for open quantum

systems.

Consider a mixed state ρ on a lattice system. We define ρ to be short-range entangled

(SRE) [77, 115] if it can be prepared from a pure product state |0⟩ via a finite-depth local

quantum channel E :
ρ = E(|0⟩⟨0|). (3.1)

Since the finite-depth channel can be viewed as a finite-depth local unitary U acting on

the system together with a bath (ancilla), the short-range entangled mixed state ρ can be

equivalently defined as one that can be purified to a short-range entangled state |Ψ0⟩ =

U |0⟩. Another defining feature of an SRE mixed state is that all physical operators (local

or extended) have only short-ranged correlation functions.

We can now enrich the structure of SRE mixed states by considering global symmetries.

Let us first consider on-site unitary symmetries. A symmetry A is called exact if for any

a ∈ A, aρ = eiθρ. In other words, each individual state in the mixed ensemble is an

eigenstate of A with the same eigenvalue. In contrast, a symmetry G is called average if

for any g ∈ G, gρg† = ρ. This means that the density matrix ρ can be diagonalized in

a G-symmetric basis, but possibly with different eigenvalues. Below we will consider the

simplest situation in which the total symmetry G̃ = G × A, and defer the more general

discussion to Sec. 3.1.3.

Recall that SPT phases of pure states are classified as equivalence classes under sym-

metric adiabatic evolutions or symmetric finite-depth local unitaries. For mixed states,

the natural analogues of finite-depth unitaries are finite-depth quantum channels. We can

always view the finite-depth local channel as a finite-depth local unitary acting on an

enlarged Hilbert space (system H ⊕ bath HB):

E(ρ) = trB
[
U(ρ⊗ |0B⟩⟨0B|)U †] , (3.2)

where |0B⟩ is a trivial symmetric product state in the ancillary (bath) Hilbert space. The

exact and average symmetries manifest in different manners in the quantum channels
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[43, 115]: for average symmetries, we demand U to be composed of symmetric local gates;

for exact symmetries, we further demand that states in the bath Hilbert space HB to

transform trivially under the symmetries – in other words, the system and the bath do not

exchange exact symmetry charges. In earlier literature on mixed states, the average and

exact symmetries are also called “weak” and “strong” symmetries, respectively [4, 21, 5,

112, 43].

We then define different decohered ASPT phases as equivalence classes of mixed states

under symmetric finite-depth local channels. Notice that the ancillary Hilbert space HB

will always transform nontrivially under time-reversal (because of the complex conjuga-

tion) and space symmetries. Therefore for the purpose of SPT classification, anti-unitary

symmetries, and lattice symmetries should always be considered as average symmetries.

For bosonic systems, the decohered ASPT phases inD space dimensions with symmetry

G̃ = A×G (A being exact and G being average) are classified [115] by1

D⊕
p=0

Hp(G,HD+1−p(A,U(1))). (3.3)

The above formula has a decorated domain wall interpretation [34] as follows. The G-

symmetric state can be obtained from a trivial spontaneous G-breaking state by prolif-

erating domain walls (or more general defects) associated with G. On each proliferated

codimension-p defect we can decorate an SPT of the exact symmetry A in D − p space

dimensions, labeled by an element in the group cohomology [30] HD+1−p(A,U(1)). The

decoration pattern is labeled by an element in Hp(G,HD+1−p(A,U(1))).

Recall that for pure states, with both A and G being exact symmetries, the group-

cohomology classification of SPT is given by the Künneth formula

HD+1(A×G,U(1)) =
D+1⊕
p=0

Hp(G,HD+1−p(A,U(1))). (3.4)

The last term in the sum HD+1(G,U(1)) is absent in the mixed state classification in

Eq. (3.3). This is because the term HD+1(G,U(1)), classifying SPT protected purely by the

1There are phases beyond group-cohomology if D ≥ 4, but we will not discuss those.
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average symmetry G, describes the nontrivial phase factors in the quantum superposition

of different domain-wall configurations. In the mixed state context, the domain walls

proliferate in terms of classical probability, and superposition phase factors are not well

defined (equivalently, the phase factors from the bra and ket in ρ cancel out). To be more

concrete, a representative wavefunction of a clean SPT phase has the following form

|Ψ⟩ =
∑
D

√
pDe

iθD |ΨD⟩|aD⟩ (3.5)

where |aD⟩ in the “ancilla” space describing the quantum state of defect network of G, |ΨD⟩
is the decorated A-symmetric invertible phase, and eiθD is the phase factor that encodes

the information in the HD+1(G,U(1)) term. The clean SPT wavefunction is basically

composed of the quantum superposition of different defect networks with decorated A-

symmetric invertible phases. Once the G degrees of freedom are decohered, the relative

phases of different quantum states with different configurations of defect networks are

no longer relevant, and a mixed ensemble describes the decohered ASPT phase with the

following density matrix

ρ =
∑
D

pD|ΨD⟩⟨ΨD|. (3.6)

Example: cluster chain and edge state

As an illustrative example, let us consider [115] a one-dimensional qubit chain with Z2×Zave
2

symmetry, where the exact Z2 acts on even-sites as
∏

i=2nXi (i labeling the lattice sites),

and the average Zave
2 acts on odd-sites as

∏
i=2n+1Xi. ASPT phases with this symmetry

are classified by H1(Z2, H
1(Z2, U(1))) = Z2, with one nontrvial phase. A representative

density matrix of the nontrivial phase, on a closed chain with 2N sites, is

ρcluster =
1

2N

∑
z2n+1=±1

|Ψ{z2n+1}⟩⟨Ψ{z2n+1}|,

|Ψ{z2n+1}⟩ =
⊗

i=2n+1

|Zi = zi⟩
⊗
j=2n

|Xj = zj−1zj+1⟩. (3.7)

Essentially, we have a classical mixture of Zave
2 domain-wall configurations, and at each

domain wall, a nontrivial exact Z2 charge is decorated. Alternatively, we can characterize
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the nontrivial cluster chain using a string order parameter

⟨Z2n−1X2nX2n+2...X2mZ2m+1⟩
|m−n|≫1−−−−−→ O(1). (3.8)

It was shown in Ref. [115] that this string order parameter is robust against symmetric

finite-depth channels. A similarly robust order parameter is the strange correlator defined

in Refs. [182, 107].

We now show that the string order parameter Eq. (3.8) implies nontrivial edge correla-

tions, similar to the clean SPT. Consider an open chain, say from i = 1 to i = L. Far away

from the two boundaries the system should be indistinguishable from the closed cluster

chain. This means that the string order parameter Eq. (3.8) should be ∼ O(1) as long as

the two ends are not too close to the boundary. But if the system has the exact (strong) Z2

symmetry,
∏

i=2kXiρ = ±ρ. So the string order parameter can be equivalently expressed

as

⟨X2...X2n−2Z2n−1 · Z2m+1X2m+2...X2⌊L
2
⌋⟩

|m−n|≫1−−−−−→ O(1). (3.9)

Furthermore, average symmetry requires that

⟨X2...X2n−2Z2n−1⟩ = ⟨Z2m+1X2m+2...X2⌊L
2
⌋⟩ = 0. (3.10)

Therefore a nontrivial edge correlation is enforced by the Z2×Zave
2 and the bulk topology.2

3.1.2 Disordered ASPT

We now review the notion of disordered ASPT, which is relevant for zero-temperature

systems with disordered Hamiltonians.

We consider an ensemble of disordered Hamiltonians. For concreteness, the Hamiltonian

takes the form

HI = H0 +
∑
i

(vIiOi + h.c.), (3.11)

2In Ref. [115] the same state was analyzed, and it was concluded that there was no nontrivial edge

correlation, and the only feature from open boundary was that the exact Z2 charge would fluctuate within

the ensemble. What was not appreciated in Ref. [115] was that the fluctuating Z2 charge breaks the Z2

from exact to average symmetry, and since Zave
2 × Zave

2 does not have a nontrivial topological phase, the

edge correlation disappears once the symmetry is lowered.
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where vIi is a quenched disorder potential drawn from a classical probability distribution

P [vI ] (I labeling a particular realization and i labeling a lattice site), O is a local operator,

and H0 is the non-random part of the Hamiltonian. We require the disorder to be at most

short-range correlated, namely v∗i vj (averaged over the classical probability P [vI ]) should

decay exponentially with |i− j|.

We now consider the ensemble of ground states {|ΩI⟩} of the Hamiltonians {HI}. We

call the ensemble short-range entangled (SRE) if each |ΩI⟩ is short-range entangled with

a finite correlation length ξI that is upper-bounded in the entire ensemble3. Superficially,

the ensemble gives a density matrix ρ =
∑

I PI |ΨI⟩⟨ΨI | and the situation appears similar

to the decohered open system. However, a crucial different for the disordered Hamiltonian

system is that the states {|ΨI⟩} form a preferred basis for the ensemble. For example, two

states |ΨI⟩ and |ΨI′⟩ may have equal probability of realization, which means |ΨI⟩ + |ΨI′⟩
is an equally good eigenstate of the density matrix ρ. But in the disordered setting the

latter state has no physical meaning. This makes the disordered systems physically very

different from the decohered systems. However, as we will see later in Sec. 3.1.3, there is a

unified mathematical framework for the classification of SPT phases for the two different

settings.

Following the decohered case, we can now define exact and average symmetries. A

symmetry A is exact if it commutes with HI for any disorder realization I. An important

difference with the decohered systems is that in disordered systems, time-reversal symmetry

can be exact. A symmetry G is average if any element g ∈ G takes a realization HI to

a different realization HI′ = gHIg
−1 with P [vI

′
] = P [vI ]. In other words, the disorder

potential v may transform nontrivially under G, but the probability P [v] is symmetric

under G transforms. We call the ensemble of states {|ΨI⟩} symmetric if both the exact

and average symmetries are not spontaneously broken. To align with the discussion for

decohered systems, we also demand that the entire ensemble of states {|ΨI⟩} to transform

identically under the exact symmetry A. This can be viewed as a “canonical ensemble” for

a disordered system – the condition is imposed for convenience and is not strictly required

3It may be possible to impose only a soft bound on ξI to allow rare-region effects. For simplicity, we

will not study such rare-region effects in this thesis.
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4.

We define two SRE ensembles (call them {HI , |ΩI⟩} and {H ′
I , |Ω′⟩}) to be in the same

ASPT phase if {HI} can be continuously deformed to {H ′
I} while keeping all the conditions

listed above throughout the deformation: (a) the disorder potentials remain short-range

correlated; (b) the symmetries (both exact and average) are not broken explicitly or spon-

taneously; and (c) the ground states remain short-range entangled. We note that the

conditions imposed here are slightly simpler than those originally discussed in Ref. [115]

and Chapter. 2, and in Appendix B.1 we show that they are ultimately equivalent.

The disordered bosonic ASPT, as defined above, with symmetry G̃ = A×G (A being

exact and G being average) are classified (see Ref. [115] and Appendix B.2) by

D−1⊕
p=0

Hp(G, hD+1−p
I (A)), (3.12)

where hqI(A) is the classification of invertible phases in q spacetime dimension with sym-

metry A (for bosonic systems at D < 3 it is simply the group-cohomology Hq(A,U(1))).

Similar to Eq. (3.3), the classification from Eq. (3.12) also has a decorated domain wall

interpretation: on each G-domain wall we can decorate an invertible state with symmetry

A. Compared to the clean case (with exact G̃), the p = D and p = D+1 terms are missing.

Similar to the decohered case, the p = D + 1 term is absent because the G-domain walls

proliferate classically (probabilistically) without a superposition phase factor.

The absence of the p = D term in Eq. (3.12), which describes decorating a zero-

dimensional defect with an A charge, is more interesting. In the definition of SRE ensem-

bles, we only demanded each ground state wavefunction |ΩI⟩ to be short-range entangled,

and made no requirement on the energy spectrum – we do not demand HI to be gapped.

This is appropriate for disordered systems – for example, even a fully localized Ander-

son insulator, with un-entangled product-state wavefunction, can be gapless. Once we

4This condition of fixed total charge under A is necessary for decohered mixed states, otherwise there

is no difference between exact and average symmetries, since one can always simultaneously diagonalize

the density matrix and the average symmetry operator. For disordered systems, however, the fixed-charge

condition is optional, since there is the preferred basis given by the Hamiltonians and we are not allowed

to freely re-diagonalize the density matrix.
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forgo the requirement on the energy gap, zero-dimensional states with different symmetry

charges can now be deformed to each other by continuously tuning the Hamiltonian (a

zero-dimensional state is always SRE by definition). This means that decorating zero-

dimensional defects will not produce nontrivial phases. Nevertheless, certain patterns of

zero-dimensional decoration will come with nontrivial consequences, with an intriguing

connection to the physics of localization – we discuss this aspect in detail in Sec. 3.1.2.

The notion of t’Hooft anomaly can also be generalized naturally to the boundary of

disordered ASPT states [115]. Specifically, if the t’Hooft anomaly (labeled by the bulk

ASPT phase) is nontrivial, then a symmetric boundary must be long-range entangled

with probability 1 in the thermodynamic limit. More precisely, for any finite ξ0 > 0, the

probability of a boundary state with correlation length ξ ≤ ξ0 vanishes as the system size

L→ ∞.

Interplay with localization physics

We now return to zero-dimensional decorations in the context of disordered ASPT. As

discussed in Sec. 3.1.2, decorating with (0+1)d SPT (namely charges of the exact symme-

try) does not lead to nontrivial phases. This is because a (0+1)d SPT is nontrivial only

if we demand an energy gap, but in disordered systems, we do not require each individual

disorder realization to be gapped – we only demand the ground state to be short-range en-

tangled (SRE). In disordered systems, Anderson localization provides a natural mechanism

to have a gapless but SRE ground state.

Let us illustrate with a familiar example. Consider a lattice-free fermion system with

U(1) charge conservation and lattice translation Zd symmetries, with the simplest tight-

binding Hamiltonian

H = −t
∑
⟨i,j⟩

(c†jci + h.c.) + µ
∑
i

c†ici. (3.13)

For µ > 2|t| or µ < −2|t|, the system is an atomic insulator with U(1) charge per

site q = 0 or q = 1, respectively. The system is metallic for intermediate µ, with a

long-range entangled ground state. In fact, any symmetric state interpolating between
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the two different atomic insulators must be long-range entangled, as guaranteed by the

Lieb-Schultz-Mattis theorem.

Now we add disorders that break the exact translation symmetry to an average sym-

metry:

Hdisorder = −
∑
j

ϵjc
†
jcj. (3.14)

As is well known, for sufficiently strong disorder the metallic states (with an intermediate

chemical potential µ) become Anderson localized insulators. The ground states of the

Anderson insulators are SRE – they are essentially product states of fermions sitting at

random locations. The probability Pi for a site i to be occupied can smoothly change from

0 to 1. This gives a smooth interpolation between the two atomic insulators with charge

filling q = 0 and q = 1.

Another feature of the above localized intermediate state is that it is generally gapless,

with localized excitations at arbitrarily small excitation energy in the thermodynamic

limit. In order to be more precise, let us fix the total U(1) charge of the system for the

entire disordered ensemble – for example at density ν we can fix Q = ⌊νL⌋ where L is the

system size and ⌊...⌋ is the integer part. Then the system must be gapless as long as the

Hamiltonians are bounded, i.e. the distribution of ϵj is bounded (possibly with some rare

tails). This is because for a large enough system, we can always find an excitation, e.g.

moving a particle from an occupied site to an unoccupied site, that costs arbitrarily small

energy. This forced gaplessness can be viewed as the remnant of the Lieb-Schultz-Mattis

constraint for fractional charge filling.

In the above example, the lattice sites should be viewed as defects of the translation

symmetries. To generalize the above observations to general ASPT with (0+1)d decora-

tions, all we have to do is to replace the lattice sites with the average G-defects, and to

replace U(1) charge with general Abelian representations of the exact symmetries. The

only subtlety is that we need Anderson localization for generic interacting systems – in

other words, we need many-body localization (MBL). Crucially, we only need MBL for

low-energy states, with vanishing energy density. Although not rigorously proven for the

most general setting, it seems reasonable to assume that such low-energy MBL can be

achieved in any dimension without fine-tuning [45]. With the localization assumption in
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Figure 3.1: An Anderson-like insulator, when viewed as a density matrix with fixed total

charge, features nontrivial long-range correlations between different subregions. This cor-

relation forbids the density matrix to be purified to a short-range entangled state.

mind, we conclude that

Two disordered ASPT states, with different exact symmetry charge decorations on

(0+1)d average symmetry defects, can be smoothly deformed to each other. If the

disorder strength is bounded, the intermediate states must have localized excitations

with excitation energy vanishing in the thermodynamic limit.

We emphasize that the story of localized states is only relevant for disordered systems,

and does not affect the discussion on decohered topological phases. The reason is that even

though each individual state in the ensemble of an Anderson insulator is a trivial product

state, qualifying the Anderson insulator as a short-range entangled disordered ensemble,

when viewed as a density matrix ρ =
∑

I PI |ΨI⟩⟨ΨI | it is in fact not short-range entangled,

in the sense that ρ does not have a short-range entangled purification. This can be seen

as follows. Suppose ρ can be purified to an SRE state with correlation length ξ, then we

consider partitioning the system as Fig. 3.1 with |AC|, |BD| ≫ ξ. If we then project the

segments AC,BD to a fixed localized product state, then the remaining two segments,

AB and CD, should have no correlation. However, the exact nature of A means that

the system has a fixed total A-charge Q. Since the A-charges are localized, the charge
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in each segment is well defined for each eigenstate and denoted as QAB, QAC , QBD, QCD,

respectively. Each individual charge may fluctuate within the mixed ensemble, but their

sum is fixed QAB+QAC+QBD+QCD = Q. When we fix the charges in AC,BD, the charges

in AB and CD are correlated by having a fixed sum. To make this correlation trivial, as

required by the SRE assumption, QAB and QCD should not fluctuate at all if the states

on AC,BD are fixed. However this is manifestly not true for an Anderson insulator – for

example, starting from one localized product state, we can obtain another state by removing

a charge deep inside CD (region F ) and adding the charge back deep inside AB (region

E), without changing anything on AC,BD. Therefore the SRE assumption must be false

and Anderson insulators, when viewed as a density matrix with a fixed exact symmetry

charge, should be viewed as long-range entangled. Notice that the average cluster chain in

Sec. 3.1.1 avoids this contradiction, even though the exact Z2 charge fluctuates randomly

in each segment. This is because the charge in each segment is completely determined by

the product of Z operators on the segment boundary, thanks to the string order parameter

Eq. (3.8). So if we fix the segment boundaries (AC and BD), the exact Z2 charges in

AB and CD will no longer fluctuate, which makes the state compatible with the SRE

condition.

There is an equivalent description: Suppose |ψ⟩ is the gapped ground state with a

well-defined overall charge, i.e. |ψ⟩ is an eigenstate of Q. Consider an interval AB and let

QAB denote the total charge in AB. One can show that

QAB |ψ⟩ ≈ (KB −KA) |ψ⟩ , (3.15)

whereKA/B is an observable localized near A/B. All≈mean up to corrections exponentially

small in L. By locality, KA and KB (almost) commute. Therefore, by measuring the two

local observables KA and KB, we can completely fix the charge QAB. This is manifestly

not true for an Anderson insulator.

Heuristically, what this means is that charge fluctuations of a subregion in an SRE (or

gapped) state with a well-defined overall charge must come from entanglement between

the subregion and the rest (i.e. they are very “local”), thus measured by the boundary

operators. However, in an Anderson insulator, the charge of a subregion (e.g. AB) can

fluctuate completely independent of the states of the other regions, so it can not be purified
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into an SRE (or any gapped ground state) with a well-defined overall charge.

3.1.3 Mathematical framework: Spectral sequence

In general, for given average symmetry G and exact symmetry A, the total symmetry G̃

does not have to be the direct product A×G. Instead, we only require A to be a normal

subgroup of the full symmetry group. In the fermionic case, A contains the fermion parity

Zf
2 as a subgroup. G and A fit into the following short exact sequence:

1 → A→ G̃→ G→ 1. (3.16)

For a D+1 dimensional SPT, the classification via generalized cohomology theory can

be understood by decorations on G domain walls/defects. Mathematically the consistency

conditions for domain wall decorations are organized into an (Atiyah-Hirzebruch) spectral

sequence [172] (see Appendix B.2 for a brief review), whose E2 page is given by⊕
p+q=D+1

Ep,q
2 =

⊕
p+q=D+1

Hp(G, hq(A)). (3.17)

Here hq(A) is the classification of invertible phases in q spacetime dimension with symmetry

A that can be decorated on G-defects. The exact form of hq(A) will depend on the physical

context. In particular:

• For the standard (pure state, clean) SPT, hq(A) is the classification of all invertible

phases in q spacetime dimension with symmetry A.

• For decohered ASPT, hq(A) is almost the classification of invertible phases in q

spacetime dimension with symmetry A, except (1) h0(A) = 0 for reasons explained

in Sec. 3.1.1, and (2) hq(A) does not contain invertible phases that do not require

the A symmetry at all (for example the chiral E8 state in (2+1)d) – this is because

such invertible states can be easily trivialized or prepared by a finite-depth quantum

channel [115]. Hence the classification of decohered ASPT phases in bosonic systems

will be reduced to the Lyndon-Hochschild-Serre (LHS) spectral sequence that replaces

hq(A) by Hq[A,U(1)] for q ≥ 1.
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• For disordered ASPT, hq(A) is almost the classification of invertible phases in q

spacetime dimension with symmetry A, except h0(A) = 0 and h1(A) = 0 for reasons

explained in Sec. 3.1.2.

For each decoration, we need to check the obstructions, given by the differentials:

dr : E
p,q
2 → Ep+r,q−r+1

2 . (3.18)

dr maps to a decorated domain wall configuration in (D + 2) dimension. For bosonic

systems with G̃ = A × G these differentials automatically vanish, so we obtain Eq. (3.3)

and (3.12) as the classifications. For fermion systems or boson systems with nontrivial

group extension, the differentials may not vanish and represent obstructions for certain

decoration patterns. The physical meanings of these differentials correspond to the three

consistency conditions of constructing an SPT, as

1. r ≤ D − p: The decorated G-defects can be gapped without breaking A-symmetry.

2. r = D−p+1: A-charge is preserved during a continuous deformation of the G-defect

network. Since h1(A) = 0 for disordered ASPT phases, this obstruction automatically

vanishes for disordered ASPT.

Physically, for clean SPTs, a nontrivial dD−p+1 obstruction implies that A charge will

change (i.e. not be conserved) when we change the G-defect configurations through

some local operation. In the disordered setting, however, we change the G-defect

configurations by drawing a different disorder realization from the ensemble. Then

the change of A-charge no longer require actual charge nonconservation – all we need

is a localized mode, or more precisely a local conserved charge operator Qlocal
A that

changes its ground state eigenvalue as the disorder realization (which determines

the G-defect configurations) changes locally. The sample-to-sample fluctuation of

the local charge makes the situation similar to the localized states that interpolate

between different (0+1)d decorations discussed earlier in Sec. 3.1.2. Following the

logic in Sec. 3.1.2, we also conclude that the localization-enabled ASPT with (0+1)d

decorations has to be gapless in the thermodynamic limit, as long as the disorder

strength is bounded.
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3. r = D−p+2: There is no Berry phase accumulated after a closed path of continuous

F -move deformations due to the single-valued property of the SPT wavefunction.

Since h0(A) = 0 for both decohered and disordered ASPT, this obstruction auto-

matically vanishes in these two contexts. Physically, the G-defects only proliferate

probabilistically to form ASPT phases, so there is no need to assign consistent Berry

phases.

At the level of E2 page, ASPT contains less nontrivial phases than standard clean

SPT (absence of Ep,1
2 for disordered ASPT and absence of Ep,0

2 for both disordered and

decohered ASPT). However, this also means that there are fewer potential obstructions

for ASPT phases since each obstruction corresponds to some nontrivial topological phase

in one dimension higher. This opens the possibility of ASPT phases that are intrinsically

disordered or decohered, in the sense that they cannot be viewed as a clean SPT perturbed

by disorder or decoherence. Such “intrinsic ASPT” will be one of the main focuses of this

Chapter. We dub the disordered ASPT phases enabled by vanishing dD−p+1 obstructions

localization-enabled ASPT, and ASPT phases (both disordered and decohered) enabled by

vanishing dD−p+2 obstructions Berry-free ASPT.

The differential (3.18) is also called the trivialization map for SPT phases labeled by

elements in Ep+r,q−r+1
2 with decorated domain wall configurations in one higher dimen-

sion. The images of the dr map give trivial SPT phases. The physical meaning of the

trivialization map is that the images of dr are the states with anomalous SPT states [?]

on the boundary which is SRE, and the corresponding bulk states should be topologically

trivial. We emphasize that the decoherence/disorder does not affect the trivialization of

the ASPT phases: the anomalous SPT states on the boundary in the clean systems might

be trivial product states with the presence of decoherence or disorder, which are also SRE

and manifest the topologically trivial bulk states.

3.2 Intrinsic ASPT: examples

In this Section, we discuss the “Berry-free” and “compressible” intrinsic ASPT phases in

more detail. The Berry-free intrinsic ASPT phases are enabled by the vanishing of the
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Berry phase obstruction dD−p+2 and the compressible intrinsic ASPT phases are enabled

by the vanishing of the charge-decoration obstruction dD−p+1, as we discussed in Sec. 3.1.3.

The Berry-free ASPT can appear in both decohered and disordered settings – the only dif-

ference is that if a phase comes from a (0+1)d decoration it will be trivial in the disordered

setting. For Berry-free ASPT states we will mostly not distinguish the two settings in this

Section. The compressible ASPT can only appear in disordered settings.

3.2.1 Fixed-point model for bosonic ASPT

We will describe a class of “fixed-point” lattice models for Berry-free ASPT phases. The

model is a generalization of the group-cohomology model for bosonic SPT phases [33].

Again we denote by G the average symmetry, A the exact symmetry, and the group

extension G̃ as defined in Eq. (3.16). We denote elements of G̃ by x = (g, a), where g ∈ G

and a ∈ A. In (D+1)-dimension, the input to the model is a (homogeneous) (D+1)-cochain

ν(x0, . . . , xD+1), that satisfies the obstructed cocycle condition:

(dν)(x0, · · · , xD+2) = OD+2(g0, · · · , gD+2). (3.19)

Here d is the coboundary operator, gi is the G-grading of xi. OD+2 is a (D+ 2)-cocycle in

HD+2[G,U(1)]. To construct a clean SPT state, we will need OD+2 = 1. For the ASPT

construction, this is not necessary.

We will illustrate the construction in (2+1)d in the following, but the same construction

works in any dimension. We will work with a triangular lattice. The system consists of a

G̃ spin on each site, with an orthonormal basis labeled by group elements, i.e. {|x⟩}x∈G̃.
A natural G̃ symmetry action is given by the left multiplication:

Uy |x⟩ = |yx⟩ , y ∈ G̃. (3.20)

In addition, the lattice has to be equipped with a branching structure, which is essentially

an ordering of all sites. For each triangle face ∆ of the lattice, denote by i, j, k the three

vertices whose ordering satisfies i < j < k. We also denote by s(∆) = ±1 the orientation,

i.e. whether i, j, k is clockwise or counter-clockwise.
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Firstly, we review the standard group cohomology construction when O4 = 1. Define

the G̃-invariant state on the site j:

|0G̃j ⟩ =
1√
|G̃|

∑
x∈G̃

|xj⟩ , (3.21)

and then the trivial paramagnetic state for the whole system:

|ΨG̃
0 ⟩ =

⊗
j

|0G̃j ⟩ . (3.22)

|ΨG̃
0 ⟩ is the ground state of the following local Hamiltonian:

Htrivial = −
∑
j

|0G̃j ⟩ ⟨0G̃j | . (3.23)

Let us now define the following finite-depth local unitary circuit

V =
∑
{x}

∏
∆ijk

νs(∆ijk)(1, xi, xj, xk) |{x}⟩ ⟨{x}| . (3.24)

V can be viewed as a composition of unitary gates each acting on a triangle. Since all the

gates are diagonal in the |{x}⟩ basis, they commute with each other and as a circuit V has

depth 1. When O4 = 1, one can show that the local gates do not preserve G̃ individually,

but the unitary V as a whole does.

The SPT state is given by

|ΨSPT⟩ = V |ΨG̃
0 ⟩ . (3.25)

The commuting-projector parent Hamiltonian for this state is

H = V HtrivialV
† = −

∑
j

Bj,

Bj = V |0G̃j ⟩ ⟨0G̃j |V †.

(3.26)

Here Bj is an operator that acts on the hexagon centered at j.

Now we consider what goes wrong if the cocycle ν is obstructed by a nontrivial [O4]. We

find that the state |ΨSPT⟩ is no longer symmetric under G̃. More precisely, it is no longer
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ρ0

V ({g}) V ({g}) V ({g}) V ({g})

V ({g}) V ({g}) V ({g})

· · · · · · · · · · · · · · · · · ·· · ·

ρASPT

O(1)

V ({g}) V ({g}) V ({g}) V ({g})

Figure 3.2: Quantum circuit as the entangler of the ASPT density matrix ρASPT, from a

trivial density matrix ρ0. O(1) depicts the finite-depth nature of V ({g}).

invariant under the symmetry transformations Ux when x ∈ G̃ has a nontrivial G-grading:

Ux |ΨSPT⟩ ≠ eiφ |ΨSPT⟩. However, for a ∈ A, the state is still invariant: Ua |ΨSPT⟩ = |ΨSPT⟩.

Based on this observation, we now show how to construct the intrinsic ASPT phase. It

is now more convenient to think of the G̃ spin as a G spin and an A spin, and treat the G

spins as quenched disorder configurations. The configuration of G spins will be collectively

denoted as {g}. In addition, for h ∈ G under Uh the classical G spin configuration {g}
transformsd d to {hg}.

Instead of |0G̃⟩, we define a trivial paramagnet for the A spins:

|0A⟩ =
⊗
j

( 1√
|A|

∑
a∈A

|aj⟩
)
, (3.27)

and then a trivial G spin ensemble:

ρ0 =
1

|G|Nv

∑
{g}

|0A⟩⟨⊗||{g}⟩⟨, | (3.28)

where Nv is the number of vertices of the lattice. This state can be prepared by measuring

G spins in the |0G̃⟩ state (but no post selection). It is easy to verify that the density matrix

ρ0 does not have an exact G symmetry, but still invariant under the average G symmetry.

The follow-up finite-depth unitary circuit V ({g}) can still be defined in the same way,

but now it is viewed as an operator that acts on the A spins conditioned on the G spins.

70



More explicitly:

V ({g}) =
∑
{a}

∏
∆ijk

νs(∆ijk)(1, xi, xj, xk) |{a}⟩ ⟨{a}| . (3.29)

We denote it as V ({g}) to emphasize the G spin dependence. Importantly, even though ν

is not a 3-cocycle of the group G̃, by definition it is a 3-cocycle of A and therefore V ({g}) is
a (globally) A-symmetric finite-depth circuit. On the other hand, under h ∈ G the unitary

transforms as

UhV ({g})U †
h = eiϕ(h;{g})V ({hg}). (3.30)

Fixing {g}, now we can define an A-SPT state:

|ΨASPT({g})⟩ = V ({g}) |0A⟩ . (3.31)

It then follows that

Uh |ΨASPT({g})⟩ = eiϕ(h;{g}) |ΨASPT({hg})⟩ . (3.32)

Here eiϕ(h;{g}) is a phase factor that can be expressed as a product over O4, but the exact

expression is not important to us – the factors from the bra and ket will cancel out in the

density matrix. The parent Hamiltonian of a state |Ψ({g})⟩ in the ensemble is given by

H({g}) = −V ({g})
(∑

j

|0Aj ⟩ ⟨0Aj |
)
V †({g}). (3.33)

The collection of states |Ψ({g})⟩ for all the G spins forms a statistical ensemble. More

formally, we can write it as the following density matrix:

ρASPT =
∑
{g}

p({g}) |ΨASPT({g})⟩ ⟨ΨASPT({g})| . (3.34)

Here p({g}) is a probability distribution of G spins. In the simplest case, we can simply

set p to be a constant independent of {g}. The density matrix evidently has G average

symmetry, but the A symmetry remains exact. The finite-depth quantum circuit as the

entangler of an ASPT density matrix is illustrated in Fig. 3.2.

Lastly, we discuss two concrete examples. The first example is in (1+1)d, with G =

Z2, A = Z2 and G̃ = Z4. We will go through the construction of this example in Sec. 3.2.2.
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The next example is in (2+1)d, with G = SO(5), A = Z2 and G̃ = Spin(5). Each state

in the ensemble is a Levin-Gu SPT state [109] protected by the exact Z2 symmetry. To

see why G must be an average symmetry, note that otherwise, we can gauge A to find a

double semion topological order with four anyons {1, s, s′, b}. It is enriched by the SO(5)

symmetry, where b transforms as the spinor representation of SO(5) (required by the group

extension). Because b = s×s′, one of s or s′ must also transform as a spinor representation,

and we will assume it is s. Then s′ transforms linearly under SO(5). In other words, we

have effectively a semion topological order {1, s} with s being a SO(5) spinor. This SET

is known to have a nontrivial SO(5) ’t Hooft anomaly [164]. Therefore, the original SPT

state can not exist with G being an exact symmetry. However, since the only obstruction

is the ’t Hooft anomaly of G, once G becomes an average symmetry the obstruction no

longer matters.

3.2.2 Berry-free ASPT and gapless SPT

We now discuss the relationship between the “Berry-free” intrinsic ASPT phases and the

recently discussed intrinsically gapless SPT (igSPT) phases [?, ?, ?]. Firstly, let us review

the physics of igSPTs in (1 + 1)d [?]. They can be constructed using a “slab”, where the

top boundary is an “anomalous” gapped G̃ SPT state, obstructed only by a differential

mapped into [ω] ∈ H3(G,U(1)). The bottom boundary instead has a gapless theory ,

e.g. a conformal field theory (CFT), where the G symmetry acts faithfully in the low-

energy theory with a ’t Hooft anomaly given by [ω−1], and the A symmetry does not act.

Together the whole slab is free of any anomaly and can be realized with a non-anomalous

G̃ symmetry.

Starting from an igSPT state, we consider turning on a random G symmetry-breaking

perturbation. Without loss of generality, we assume that the random perturbation is rele-

vant, so it drives the gapless theory into a disordered SRE ensemble. The result is expected

to be an intrinsically ASPT state. In the other direction, any symmetry-preserving clean

limit of a Berry-free intrinsic ASPT state must be an igSPT state.

Let us consider an example, with A = Z2, G = Z2 and the extension is G̃ = Z4. For

the clean system, there is no nontrivial gapped SPT phase because H2(Z4,U(1)) = Z1.
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If we look closer, there is a nontrivial E1,1
2 term in the LHS spectral sequence, which is

however obstructed by a nontrivial d2 differential into H3(Z2,U(1)). The same anomaly is

realized by a (1+1)d free boson CFT, and together we can construct an igSPT state. We

now describe a solvable lattice model for this state. A similar model was studied in [?].

The Hilbert space of the model consists of Ising spins σ on the sites and τ on links.

The symmetries are defined as

Ug =
∏
j

σx
j e

iπ
4

∑
j(1−τx

j+1/2
), Ua =

∏
j

τxj+1/2. (3.35)

Here g/a is the generator of G/A. The unitaries are on-site, and satisfy U2
a = 1, U2

g = Ua.

So this is a non-anomalous Z4 symmetry.

We define a projector:

P =
∏
j

Pj, Pj =
1 + σz

j τ
x
j+1/2σ

z
j+1

2
. (3.36)

Physically, in the subspace P = 1 an Ising domain wall σz
jσ

z
j+1 = −1 is decorated by

a charge τxj+1/2 = −1. So P = 1 enforces domain wall decoration corresponding to the

nontrivial element in H1(G,H1(A,U(1))). In this subspace, Ug takes the following form:

Ug =
∏
j

σx
j e

iπ
4

∑
j(1−σz

j σ
z
j+1), (3.37)

which takes the form of the anomalous Z2 symmetry of the Levin-Gu edge model [?, ?].

It is also easy to see that Ua becomes the identity in this low-energy subspace, at least in

the bulk of the spin chain. Define

σ̃x
j = τ zj−1/2σ

x
j τ

z
j+1/2, σ̃

z
j = σz

j . (3.38)

σ̃x
j and σ̃z

j generate the entire algebra of operators that commute with P . They satisfy the

usual commutation relations of Pauli operators.

Now we consider the following Hamiltonian:

HLG =−
∑
j

σ̃x
j (1− σ̃z

j−1σ̃
z
j+1)P. (3.39)
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Notice that since the Hamiltonian is written in terms of the σ̃x,z operator it commutes with

P . In the low-energy space, Eq. (3.39) is identical to the edge Hamiltonian of the Levin-Gu

model [?]. In addition, the Hamiltonian conserves the number of Ising domain walls, and

thus also conserves the Z4 charge. The low-energy effective theory of this model is a c = 1

free boson, or a Luttinger liquid, with an anomalous Ug symmetry transformation. Thus

the model realizes an igSPT phase.

To obtain an ASPT phase, we can proceed in two ways. First, we add some random

Ising disorder −
∑

j hjσ
z
j with hj = ±1 to break G = Z2 symmetry. It can be shown

that this disorder is a relevant perturbation to the Luttinger liquid. In the strong disorder

limit, we can ignore HLG because it does not commute with the random disorder we have

added. The Hamiltonian HD and ground-state wavefunction |ΨD⟩ for a specific disorder

realization {hj} is

HD =
∑
j

Pj + hjσ
z
j

|ΨD⟩ =
⊗
j

|σz
j = hj⟩ ⊗ |τxj+1/2 = hjhj+1⟩

. (3.40)

Thus we obtain a disorder ensemble {|ΨD⟩}.

Alternatively, we construct the following mixed state:

ρ =
∑
D

pD|ΨD⟩⟨ΨD|, (3.41)

where pD is the classical probability distribution of the disorder realizations. We now show

explicitly that starting from the igSPT (pure) state, one can apply a finite-depth quantum

channel to obtain ρ. Denote the density matrix of the igSPT state by ρigSPT. First we

apply the following quantum channel Ez:

Ez = Ez
1 ◦ Ez

2 ◦ · · · , Ez
j [ρ] =

ρ+ σz
jρσ

z
j

2
. (3.42)

Notice that this quantum channel only preserves Ug on average, but preserves Ua exactly.

After this step Ez[ρigSPT] already takes the form given in Eq. (3.41), but the probability

distribution pD is long-ranged. In fact, the correlation function of σz is the same as that

in the pure state.
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Then we apply another quantum channel Ex:

Ex = Ex
1 ◦ Ex

2 ◦ · · · , Ex
j [ρ] =

ρ+ σ̃x
j ρσ̃

x
j

2
. (3.43)

This channel preserves both Ug and Ua exactly. It is straightforward to check that (Ez ◦
Ex)[ρigSPT] gives a decohered SPT state with pD ∝ 1. Notice that this does not imply that

the igSPT and the decohered ASPT are in the same phase, as there is no finite-depth local

quantum channel that takes ρ (which has only short-ranged correlation functions) to the

igSPT (which has power-law correlation functions).

3.2.3 Fermionic intrinsic ASPT

We now turn to the fermionic case. For simplicity, we will assume that the “bosonic”

symmetry group G becomes average, while the fermion parity conservation Zf
2 remains an

exact symmetry. In the decohered case, it means that the bath is bosonic, so the coupling

between the system and the environment preserves fermion parity of the system. The total

symmetry group G̃ is a central extension of G by Zf
2 . We further assume that G is a finite

group to simplify the discussion.

The relevant groups of fermionic invertible phases that can be decorated on G-defects,

up to (3+1)d, are

h0 = U(1), h1 = Z2, h
2 = Z2, h

3 = Z, h4 = 0, (3.44)

where h1 = Z2 is generated by a complex fermion, h2 = Z2 is generated by the Majorana

chain, and h3 = Z is generated by the p+ ip superconductor.

Following the prescription in Sec. 3.1.3, for disordered phases we set h0 = h1 = 0. Thus

for disordered ASPT states, the relevant groups are

h0 = 0, h1 = 0, h2 = Z2, h
3 = Z, h4 = 0. (3.45)

For decohered ASPT, the groups become

h0 = 0, h1 = Z2, h
2 = Z2, h

3 = Z16, h
4 = 0. (3.46)
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Z4 domain wall

Z2 domain wall

Majorana
chain

Figure 3.3: (3+1)d intrinsically decohered fermionic ASPT state from decorating a Majo-

rana chain on the junction of Z4 (red) and Z2 (blue) domain walls.

The change of h3 is because 16 copies of p+ip superconductors are adiabatically equivalent

to a E8 state, which becomes trivialized for decohered phases (assuming the bath to be

bosonic).

We now study the classifications in more details. Suppose the spatial dimension is D ≤
3. Let us consider the following two terms on the E2 page: HD−1(G, h2) and HD(G, h1),

corresponding to decorations of 1-dimensional G defect junctions by Majorana chains, and

0-dimensional G junctions by complex fermions. The potential differentials are

d2 : HD−1(G,Z2) → HD+1(G, h1), (3.47)

d2 : HD(G,Z2) → HD+2(G, h0), (3.48)

and

d3 : HD−1(G,Z2) → HD+2(G, h0). (3.49)

Explicit expressions for the differentials can be found in [170, 171].

First consider disordered ASPT phases, where h0 = h1 = 0 and h2 = Z2. For the

HD−1(G,Z2) part, both d2 and d3 automatically vanish. Thus we conclude that any element

of HD−1(G,Z2) gives a disordered ASPT phase. Let us list a few examples of intrinsically

disordered ASPT phases:

1. D = 1, G = Z2, G̃ = Zf
4 . This example is a Majorana chain with Zf

4 symmetry (i.e. a

charge-4e superconductor in the clean limit), which has a d2 obstruction in the clean
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case. Below we will describe a concrete model realization of this state in a 1D Kitaev

chain with random pairing.

2. D = 2, G = ZT
2 , G̃ = ZT

2 ×Zf
2 . Here ZT

2 is the time-reversal symmetry. The Majorana

decoration is classified by H1(ZT
2 ,Z2) = Z2, and the nontrivial class is obstructed by

d2 in the clean case. Note that if G̃ = ZTf
4 , then the d2 obstruction vanishes and the

result is the well-known class DIII topological superconductor in 2D (see Appendix

?? for more details).

3. D = 3, G = Z2, G̃ = Z2 ×Zf
2 . The Majorana decoration is classified by H2(Z2,Z2) =

Z2. The nontrivial class is obstructed by d2 in the clean case.

4. D = 3, G = Z2 × Z4, G̃ = Z2 × Z4 × Zf
2 . The Majorana decoration is classified by

H2(Z2×Z4,Z2) = Z3
2. Interestingly, one of them is only obstructed by d3 in the clean

case. More explicitly, denote group elements of Z2 × Z4 by (a1, a2), where a1 = 0, 1

and a2 = 0, 1, 2, 3. The nontrivial cocycle inH2(G,Z2) that describes Majorana chain

decoration on the junction of the Z4 and Z2 domain walls (see Fig. 3.3) is given by

n2(a, b) = a1b2 (mod 2). (3.50)

We explicitly check that the d2 obstruction vanishes and d3 is nontrivial.

More examples of obstructed fermionic phases can be found in Ref. [118].

For decohered ASPTs, the differentials of the cases with Majorana-chain decoration

have been analyzed in the disordered case, and the only difference is that h1 = Z2 for

decohered ASPTs, so the d2 differential needs to vanish to ensure the fermion parity con-

servation. An example of such intrinsically decohered fermionic ASPT is given by Eq. (3.50)

for G = Z4 × Z2.

For the HD part (complex fermion decoration), the d2 differential always vanishes.

An example of a “Berry-free” ASPT phase with complex fermion decoration is G = Z2,

G̃ = Z2 × Zf
2 in D = 3. The fermionic SPT phase corresponding to the nontrivial element

in H3(G,Z2) = Z2 is obstructed by d2 in the clean case, and can now be realized an

intrinsically decohered ASPT phase.
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Exactly solvable lattice models of fermionic ASPT phases (without p+ ip decorations)

can be constructed following [171]. We outline the construction in Appendix B.2 for D =

2. Below we describe a simple model realization of Majorana chain with an average Zf
4

symmetry, an example of localization-enabled compressible ASPT phase.

First let us consider a chain of spinless fermions, with the following Hamiltonian:

H = −
∑
j

(c†jcj+1 + h.c.) +
∑
j

∆j(cjcj+1 + h.c.). (3.51)

The Zf
4 symmetry is generated by g : cj → icj. The pairing ∆j → −∆j under the g

symmetry. When ∆j is uniform and nonzero, this is the well-known Hamiltonian of a

Kitaev chain, explicitly breaking the Zf
4 symmetry. When Zf

4 is exact, we must have

∆ = 0 and the ground state is a gapless metal5. When Zf
4 is an average symmetry, we

can turn on a random pairing term with symmetric probability: P [∆j] = P [−∆j]. This

random pairing term will localize the metallic ground state, resulting in a random Kitaev

chain.

In the Hamiltonian Eq. (3.51), if the configuration ∆j contains one sign-changing

domain wall, we find it harbors a localized complex fermion zero mode. Thus when the

sign of the pairing potential is disordered, we expect that there are low-energy states

filling the superconducting gap, which we confirm numerically. However, this zero mode

is protected by the time reversal symmetry (i.e. the complex conjugation).6 In order to

obtain a localized state, we lift the local degeneracy from the zero modes by having complex

hopping or the pairing terms that break the time-reversal symmetry.

To better appreciate the nature of the the random Kitaev chain with average Zf
4 sym-

metry, it is more illuminating to consider the following “fixed point” model. On each lattice

5There are other terms that can gap out the metal without breaking Zf
4 , such as a translation-breaking

potential. However, to keep the system in a nontrivial Kitaev chain, we need the amplitude of such

potential µ to be smaller than ∆. As we recover the exact Zf
4 symmetry by taking ∆ → 0, we need to

take µ→ 0 first.
6In fact, ∆ > 0 and ∆ < 0 belong to distinct topological phases labeled by ν = ±1 where ν ∈ Z8 is the

topological invariant for topological superconductors with T 2 = 1 time-reversal symmetry (the BDI class),

so there must be a protected zero mode at the interface.
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γB

(a)

γA

γB

(b)

γA

γB
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j = 1 j = 2 j = 3

Figure 3.4: Illustration of a random Kitaev chain with average Zf
4 symmetry. (a) A typical

Majorana bond configuration. (b) A uniform bond configuration. (c) Two nearby domain

walls on top of the uniform configuration. The total fermion parity of (b) and (c) differ by

(−1).

site j we have a complex fermion, which we write as two Majoranas cj =
1
2
(γA,j − iγB,j).

The random Hamiltonian takes the form

H = −
∑
j

∑
rj=A,B

ig
rj ,rj+1

j γrj ,jγrj+1,j+1, (3.52)

where g is a random coupling constant taking value in {0,±1} such that every lattice link

(j, j+1) is covered by exactly one Majorana bond, which makes each state in the ensemble

a nontrivial Kitaev chain. For example, if gAB
j = 1, then we must have gAA

j = gBB
j =

gBA
j = 0, and gBA

j+1 = gBB
j+1 = gAA

j−1 = gBA
j−1 = 0. An example of such random Majorana

bond configuration is shown in Fig. 3.4 (a). Besides this nearest-neighbor constraints, the

random coupling g should be uncorrelated in long distance, generated by a probability

functional P [gj].

Now we examine the condition on P [gj] imposed by the average Zf
4 symmetry, which
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is generated by U = exp (π
4

∑
j γj,Aγj,B). Some simple algebra shows that

U(iγAj γ
B
j+1)U

† = −iγBj γAj+1

U(iγAj γ
A
j+1)U

† = iγBj γ
B
j+1

. (3.53)

The minus sign above will be important. Now for P [g], we should have

P (gAB) = P (−gBA), P (gAA) = P (gBB). (3.54)

We can now further simplify the model by having gAB, gAA, gBB ∈ {0, 1} and gBA ∈
{0,−1}, generated by a Zf

4 -symmetric probability functional P [g].

Now what do all these mean for the total fermion parity iL
∏L

j=1 γj,Aγj,B? If we have

only AB bonds or BA bonds, the total fermion parity on a ring is fixed (−1 for periodic

boundary condition). But when we have domain walls between the two bonding patterns,

as required by the average Zf
4 symmetry, the fermion parity starts to change locally. The

most illuminating case is when two domain walls are right next to each other, as shown

in Fig. 3.4 (c) . In this configuration all links (j, j + 1) with j < 1 and j > 3 are AB

bonds, while the intermediate bonds are given by gAA
1 = 1, gBA

2 = −1 and gBB
3 = 1. A

simple calculation shows that, compared with the configuration with no domain wall at all

(gAB
j = 1 for all j, as in Fig. 3.4 (b)), this configuration has an additional (−1) fermion

parity. This means that even though the domain wall behave like an Z2 object (the bonding

configurations return to the original ones after passing through two domain walls), “fusing”

two nearby domain walls together will change the fermion parity. As a result, in the clean

limit the domain walls cannot condense to recover the exact Zf
4 symmetry. This is nothing

but the manifestation of the d2 obstruction. In general, the fermion parity of the state

depends on the configurations of the g’s and fluctuate randomly within the ensemble. In

a disordered system the nontrivial domain-wall fusion does not lead to any obstruction for

short-range entanglement, since the domain walls are pinned by the disorders. The above

discussion eventually leads to a long-distance picture, which contains localized fermions

(that carry nontrivial fermion parity) randomly located at the Zf
4 -domain walls. If we take

the absolute ground state of each Hamiltonian realization, different states in the ensemble

will have different total fermion parity. If we take a “canonical ensemble” and fix the total

fermion parity for the entire ensemble, then half of the ensemble will be put in excited
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states (to match the fermion parity), and the excitation spectral above such states will in

general be gapless (assuming a bounded distribution of gj).

3.3 Average symmetry-enriched topological orders

3.3.1 General structures

We will focus on SET phases in (2+1)d, and comment on generalizations to higher dimen-

sions.

In general, a (2+1)d bosonic topological order is described by a mathematical structure

called unitary modular tensor category, denoted by C. Physically, C consists of a set of

topological charges (i.e. anyon types), as well as consistent data specifying their fusion and

braiding. When the system has a global symmetry G̃, C gets enriched in three ways [12]:

1. There is a group homomorphism from G̃ to the group of auto-equivalence maps

Aut(C) of C,
ρ : G̃→ Aut(C), (3.55)

Here Aut(C) consists of all the permutations of anyon types which keep the fusion

and braiding properties invariant 7. Basically, ρ tells us how G̃ permutes anyons.

2. The anyons may carry fractional quantum numbers under G̃. In particular, given ρ,

there is a possible obstruction to symmetry fractionalization, which is an element in

H3
ρ(G̃,A). When the H3 class vanishes, distinct symmetry fractionalization classes

form a torsor over H2
ρ(G̃,A), where A is the group of Abelian anyons.

3. Once ρ and the symmetry fractionalization of anyons are known, we then need to

specify the fusion and braiding properties of G̃ symmetry defects. In particular, given

ρ and the symmetry fractionalization of anyons, the global symmetry may have a ’t

7Note that more precisely, Aut(C) is the group of braided tensor auto-equivalences of C and there can

be nontrivial elements which do not permute any anyons. However, such examples are only known to occur

for very complicated C, and for simplicity, we do not consider them.
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Hooft anomaly valued in H4(G,U(1)). When the H4 anomaly class vanishes, distinct

equivalence classes form a torsor overH3(G̃,U(1)), up to further identifications [1, 36].

It is again useful to think of the SET phases in terms of fluctuating symmetry defect

lines. Each defect line is associated with an anyon permutation action given by ρ. The H3

obstruction means that defect fusion may fail to be associative: an F move of defect lines

may nucleate an extra Abelian anyon, violating the locality requirement. When the H3

class vanishes, the extra Abelian anyon can be “absorbed” into decorations of tri-junctions

of defects by Abelian anyons. In-equivalent patterns of decorations are classified by a torsor

over H2
ρ(G̃,A). Lastly, once we have well-defined defect fusions, including decorations on

tri-junctions, there may be a Berry phase in the space of states with defects, which gives

the H4 anomaly. From this interpretation, it is clear that with a non-trivial H3
ρ(G̃,A) class

the map ρ does not make sense in a pure 2+1d system. The H4 anomaly means that the

G̃ symmetry has a ’t Hooft anomaly. Examples include the surface of a 3+1d bosonic SPT

state or 2+1d lattice models that satisfy Lieb-Schultz-Mattis-type theorems.

We now generalize the classification to disorder ensembles with topological order. First

let us define what we mean by LRE ensembles, which is a natural extension of the notion

of SRE ensembles. To formulate the definition it is convenient to choose a “reference

state”, which can be the ground state of a gapped Hamiltonian in the clean system, and

identify its topological order described by the anyon theory C. We require that all states

in the ensemble are smoothly connected to the reference state, thus described by the same

topological order C. Such an ensemble is said to be LRE with topological order C.

Let us now assume that G̃ fits into the group extension (3.16), with exact symmetry

A and average symmetry G, and see how the classification above is modified. We again

expect G̃ to be mapped to Aut(C) through a group homomorphism ρ, which is an invariant

of the disorder ensemble. The only way to change ρ is to go through a phase transition,

which violates the adiabatic connectability within a single disorder ensemble. It is then

useful to think of each state in the disorder ensembles as a topological order with exact A

symmetry (i.e. fluctuating A symmetry defects) and a static G defect network.

Generalizing the discussions in Sec. 3.1.2, in the presence of disorder it is possible to

localize Abelian anyons (as long they do not carry any zero modes protected by the exact
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symmetry, see below). As a result, there is no longer any energetic requirement to have

fixed Abelian anyons decorated on G defect junctions. This is in parallel with dropping

the 0D charge decoration in the classification of disordered ASPT phases. In fact, one can

gauge the exact symmetry A in a disordered ASPT state to get a disordered ASET state.

We first consider a simpler problem, where the entire symmetry group G̃ becomes

average (i.e. A is trivial). In this case, all Abelian anyons can be localized and both the

[O3] obstruction class and the symmetry fractionalization class (i.e. decorations of defect

junctions by Abelian anyons) lose their meaning. The same is true for the H4(G̃,U(1))

anomaly and H3(G̃,U(1)) torsor since the disordered SET is an ensemble of defects. We

thus conclude that with a trivial A, disordered ASET phases are completely classified

by the maps ρ, including those with nontrivial H3 obstructions. An example of such an

intrinsically disordered ASET is given below in Sec. 3.3.3.

Next we consider ASETs with a nontrivial A, with a given ρ : G̃ → Aut(C). The map

ρ is associated with an obstruction class [O3] ∈ H3
ρ(G̃,A). The group H3

ρ(G̃,A) can also

be decomposed using the Leray-Serre spectral sequence, whose E2 page consists of

Ep,3−p
2 =

3⊕
p=0

Hp(G,H3−p(A,A)). (3.56)

Here we suppress the group action subscripts for clarity. It should be understood that A

acts on A through ρ, and G acts on the coefficient group H3−p via both ρ and the G action

on A.

Let us start with the component that only involves G, i.e. E3,0 = H3
ρ(G,A). Since now

we only have an ensemble of G defects, if the additional Abelian anyon from a F move of

G defects can be localized then this component of the obstruction class no longer makes

sense. However, given the exact A symmetry, localization requires that the Abelian anyons

involved in the F move do not transform under A symmetry action, and carry no projective

multi-dimensional representations of A (a projective one-dimensional representation, i.e. a

fractional charge, is allowed).

The other components in the decomposition with p < 3 all involve A defects, and hence

even when G becomes an average symmetry they still represent nontrivial obstructions.
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Having dealt with the H3 obstruction, we move to the H2
ρ(G̃,A) torsor. Again we can

decompose it using the LHS spectral sequence:

Ep,2−p
2 = H2

ρ(G,A)⊕H1(G,H1(A,A))⊕H2
ρ(A,A). (3.57)

Here we also supress the group action subscripts in the middle term. Via the same rea-

soning, with localization of Abelian anyons, H2
ρ(G,A) may become trivialized, provided

that the Abelian anyons involved in this decoration transform trivially (at most as 1D

projective reps) under A. The next two terms are still meaningful for disordered ASETs.

Perhaps the most interesting part is the H1(G,H1(A,A)) torsor. When ρ is the identity,

in a clean SET this term means that G and A symmetries do not commute when acting

on certain anyons. When the G symmetry becomes average, one can interpret this term

as the A charge carried by the anyon changes when it passes through certain G defects.

We can similarly discuss what changes need to be made for the H3 torsor and H4

anomaly, however, this is identical to the ASPT classification and we will not repeat it.

3.3.2 Example: Z2 × Z2 toric code with ZA
2 symmetry

We consider a fascinating example from a (2+1)d ASPT phase with A = Z2 × Z2 and

G = Z2 while the extension is trivial. The type-III SPT can be constructed from decorating

a 1d cluster state protected by A on the domain wall of G.

If we gauge the exact symmetry A to obtain a double toric code topological order, with

anyons labeled as {e1,m1, e2,m2} and their combinations, then the average symmetry G

will permute the anyons according to

ρ :

{
e1 ↔ e1

e2 ↔ e2
,

{
m1 ↔ m1e2

m2 ↔ m2e1
(3.58)

See Fig. 3.5. This anyon permutation can be seen by firstly considering moving an m1

anyon across a ZA
2 domain wall which should be decorated with a 1d cluster state in the

ungauged system. We can relabel the anyons as ẽ1 = e1m2, ẽ2 = e2m1, m̃1 = m1, and

m̃2 = m2, and the theory is rephrased as two copies of Z2 gauge theories, with ZA
2 simply

exchanges the two copies.
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Figure 3.5: Anyon permutation of double toric code model with average symmetry ZA
2 . D

is the symmetry domain wall of ZA
2 separating the red and blue regimes (with Ising spin-↑

and spin-↓), and the green curve depicts the string operator of a Z2 gauge group connecting

two anyons m1/m2 and e2m1/e1m2.

3.3.3 Intrinsically disordered ASET with ZA2 symmetry

It is instructive to study a lattice model for an intrinsically disordered ZA
2 ASET phase.

The model realizes a D16 = Z8 ⋊Z2 gauge theory, denoted by D(D16). The group has two

generators a and r that satisfy a8 = r2 = 1, rar = a−1.

For a topological gauge theory with a finite gauge group H, a large class of anyonic

symmetries can be understood as outer automorphisms Out(H) of the gauge group. Here

Out(H) is the quotient Aut(H)/Inn(H), where Aut is the group of automorphisms and

Inn is the group of inner automorphisms (i.e. conjugation by a group element). Physically,

the inner automorphisms are gauge transformations, so they do not correspond to faithful

symmetry actions. Hence each element in Out(H) corresponds uniquely to an element in

Aut(D(H)) that does not mix electric and magnetic charges of the gauge theory. Adopting

the general framework, different ASETs with an average symmetry group G are classified

by homomorphisms ρ : G→ Out(H). Mathematically, ρ is associated with a H3(G,Z(H))

obstruction class, where Z(H) is the center of the group H. It can be shown that this is

the same H3 obstruction.

We now specialize to the D16 gauge theory. Write G = Z2 = {1, g}. We assume that
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the image of g under ρ is the following automorphism:

ρg : a→ a5, r → ra. (3.59)

The permutation action on anyons is order 2 because ρ2g is the conjugation by a−3. It is

shown in Ref. [50] that this ρ has a nontrivial H3(Z2,Z2) class: O3(g, g, g) = [a4]. Here [a4]

should be understood as the a4 gauge flux in the D16 gauge theory, which is a Z2 Abelian

boson. Intuitively, inserting a g defect loop introduces an additional [a4] anyon.

Ref. [50] introduced a generalization of Kitaev’s quantum double model [94] for this

anomalous SET state. Schematically, the model is defined on a quasi-2D lattice. Each link

has a 16-dimensional Hilbert space, with an orthonormal basis labeled by elements of D16.

They can be viewed as lattice gauge fields. The Hamiltonian takes the following form:

Hclean = −
∑
v

Av −
∑
p

(δFp,1 + δFp,a4). (3.60)

Here Av implements the Gauss’s law at each vertex, and Fp is the gauge flux through a

plaquette p. Note that the second term imposes the condition that through each plaquette

the gauge flux is either 1 or a4 (note Z(D16) = {1, a4}). This is distinct from the standard

quantum double construction where the plaquette term enforces Fp to be 1. Hclean has an

extensive ground state degeneracy since we can have 1 or a4 flux through each plaquette.

However, if the fluxes are fixed, the ground state is indeed a D16 gauge theory (with

background fluxes).

The Z2 symmetry transformation can be defined so that it implements the ρ symmetry

in the D16 gauge theory. However, under this Z2 symmetry transformation we have Fp →
Fpa

4, which explains the form of the plaquette term.

Now we turn this extensive number of ground states into a disorder ensemble:

H[σp] = Hclean −
∑
p

εp(δFp,1 − δFp,a4). (3.61)

Here εp are independent random variables drawn symmetrically from the [−W,W ] with

W < 1. Under ZA
2 they transform as εp → −εp.

In accordance with the general principle, the model supports gapless modes for the flux

anyon [a4] localized at certain plaquettes, in order to accommodate the H3 obstruction.

We can think of the ground state as a localized state of the [a4] flux anyons.
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3.3.4 ASET with ’t Hooft anomaly: an example with Z2 × ZA2

We consider the surface of a (3+1)d ASPT with Z2 × ZA
2 symmetry. The generator of the

Z2 (ZA
2 ) will be denoted by g (gA). In the bulk ASPT state, on each (2+1)d domain wall

of the average ZA
2 symmetry we decorate a Levin-Gu state [109] of the exact Z2 (see Fig.

3.6), with the following topological action on a 4-manifold X4:

S =

∫
X4

a3 ∪ b (3.62)

where a and b are background gauge fields of Z2 and ZA
2 , respectively. Notice that when

both symmetries are exact, there are two other nontrivial topological terms. One of them

is given by

S ′ =

∫
X4

a ∪ b3. (3.63)

It corresponds to decoration of exact Z2 charges on junctions of the ZA
2 symmetry. As

explained in Sec. 3.1.2, this action S ′ is trivialized when ZA
2 becomes average in a disordered

ensemble. The other action is S + S ′, which is now identified with S.

On the (2+1)d surface of this state, we have a random network of ZA
2 domain walls, each

decorated with a Levin-Gu edge theory described by a Luttinger liquid [φT = (φ1, φ2)],

L =
KIJ

4π

(
∂xφ

I
)
(∂tφ

J) +
VIJ
8π

(
∂xφ

I
)
(∂xφ

J) (3.64)

where the K-matrix K = σx. The nontrivial Z2 symmetry action is defined as

φ1,2 7→ φ1,2 + π. (3.65)

We now want to gap out these domain wall modes in a Z2 symmetric way, which can

be achieved by placing a semion topological order/chiral spin liquid (CSL) on the surface.

Then on each domain wall, we have not only the Levin-Gu edge state but also two counter-

propagating chiral Luttinger liquids as the edge modes of the semion topological orders on

both sides of the domain wall. The total (1+1)d domain wall theory is

L =
K ′

IJ

4π

(
∂xφ

I
)
(∂tφ

J) +
V ′
IJ

8π

(
∂xφ

I
)
(∂xφ

J) (3.66)
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Levin-Gu

CSL1

CSL2

Figure 3.6: Surface topological order of (3+1)d ASPT with Z2×ZA
2 symmetry. The indigo

surface depicts the ZA
2 domain wall decorated by a Levin-Gu state, and the violet surface

depicts the surface chiral spin liquid enriched by Z2 × ZA
2 symmetry.

where φT = (φ1, φ2, φ3, φ4), and the K-matrix K ′ = σx ⊕ 2σz. A semion is created by

the operator eiφ
3
on one side of the domain wall, or eiφ

4
on the other side. Originally,

without Levin-Gu edge modes, the domain wall can be gapped by adding a Higgs term

cos(2φ3 − 2φ4), which induces coherent tunneling of the semions across the domain walls.

Alternatively, with the Levin-Gu edge modes, we can gap out the theory in a Z2 symmetric

way by the following Higgs terms,

cos(φ1 + φ2 − 2φ4) + cos(φ1 − φ2 − 2φ3). (3.67)

In order for this term to preserve the Z2 symmetry, e2iφ
4
and e2iφ

3
should be invariant

under Z2.

We now analyze the symmetry fractionalization between Z2 and ZA
2 in the semion

surface theory. It is instructive to start with the clean case, when both symmetries are

exact (we will continue denote the symmetry group as Z2 × ZA
2 ). Denote the local h

symmetry action on a semion by Uh for every h ∈ Z2×ZA
2 . The group relations in Z2×ZA

2

lead to the following invariants:

λh = U2
h , h ∈ Z2 × ZA

2

η = UgUgAU
−1
g U−1

gA
.

(3.68)
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η λg λgA Sanomaly

1 ±1 ±1 0

−1 1 1 a ∪ b3 + a3 ∪ b

−1 1 −1 a3 ∪ b

−1 −1 1 a ∪ b3

−1 −1 −1 0

Table 3.1: ’t Hooft anomalies for the projective Z2×ZA
2 symmetry actions in clean semion

topological order.

All of them take ±1 value. They are related by the algebraic identity: λgλgAλggA = η. So

there are three independent Z2 invariants for the projective symmetry action, consistent

with the H2(Z2 × Z2,Z2) = Z3
2 classification. The four η = 1 classes can all be realized by

one-dimensional representations, while the η = −1 classes must be realized by at least two-

dimensional representations. In particular, the one with λg = λgA = λggA = −1 is realized

in the semion chiral spin liquid, where Z2 ×ZA
2 is a subgroup of the SO(3) symmetry. The

other three classes with η = −1 are all anomalous with respect to the (exact) Z2 × ZA
2

symmetry. Their ’t Hooft anomalies were computed in [29] and we recall the results in

Table 3.1.

When ZA
2 becomes average, as discussed in Sec. 3.3.1, the invariants λgA and λggA

are ambiguous due to the localization of semions. However, λg and η should remain well-

defined. The former should be fairly clear since Z2 is an exact symmetry, so we now explain

how to define η. Since UgUgA = ηUgAUg, under the gA action the Z2 charge, measured by

the eigenvalue of Ug, changes by η. Therefore, η can be measured as the change of the Z2

charge when when adiabatically moving a semion across a gA defect (which implements

the gA symmetry on the semion).

First we determine λg. In the Luttinger liquid formulation (3.64), λg = −1 means that

under the Z2 symmetry, φ3 and φ4 must shift by an odd multiples of π/2, and therefore

e2iφ
3/4

should be odd under Z2. However, we have seen that for the Higgs term to preserve

symmetry e2iφ
3/4

have to be Z2 even. Thus we must have λg = 1.
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η λg Sanomaly

1 ±1 0

−1 1 a ∪ b3

−1 −1 0

Table 3.2: Average ’t Hooft anomalies in disordered semion topological order.

From Eq. (3.65) and (3.67), we find that at the domain wall φ4 is identified with

φ3 + φ2, therefore under the Z2 symmetry, eiφ
4
has opposite Z2 charge to that of eiφ

3
. In

other words, adiabatically moving a semion across a domain wall changes its global Z2

charge by −1. This is the manifestation of the non-commutativity between Z2 and ZA
2

acting on the semion in the ensemble.

Let us now discuss how the anomaly inflow works in the average SET. We have shown

that λg and η remain good invariants, and λgA and λggA are not well-defined individually,

but their ratio is fixed by λgη. Interestingly, with η = −1 fixed, the anomalies in Table

3.1 separate into two groups corresponding to λg = ±1. The two classes inside each

group differs just by the a ∪ b3 term, which describes decorations of Z2 charges on ZA
2

defect junctions, and becomes trivial due to the localization. This ties nicely with the

observation that λgA is now ambiguous. The new bulk-boundary correspondence for the

semion theory with average Z2 × ZA
2 symmetry is now summarized in Table 3.2.

This example illustrates that for a mixed group of exact and average symmetry, “sym-

metry fractionalization” can be well-defined on anyons. We have also derived the complete

average ’t Hooft anomaly matching for Z2×ZA
2 symmetry in the semion topological order.

3.3.5 An example with Lieb-Schultz-Mattis anomaly

We consider a 2d lattice system with average Z×Z translation symmetry, exact spin SO(3)

rotation symmetry and a spin-1/2 moment per lattice unit cell. This system has a t’Hooft

anomaly from Lieb-Schultz-Mattis (LSM) constraints

S =

∫
X4

x ∪ y ∪ wSO(3)
2 , (3.69)
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where x, y are background gauge fields of the x, y translation symmetries, and w
SO(3)
2 is the

second Stiefel-Whitney class of the background SO(3) gauge field. This anomaly remains

nontrivial as the Z× Z translation symmetry becomes average.

In the clean limit, one of the most well-known topological orders that match with the

LSM anomaly is a Z2 topological order. In this Z2 topological order, the e particle carries

a nontrivial H2(SO(3),Z2) symmetry fractionalization (in common term, it carries spin-

1/2); the m particle carries a nontrivial H2(Z× Z,Z2) symmetry fractionalization, in the

sense that TxTy = −TyTx when acting on m, where Tx,y are the generators of the x, y

translations. These symmetry fractionalizations are required for the Z2 topological order

to match the anomaly. While the spin-1/2 moment on the e particle is not affected by

disorder, we do need to explain the meaning of “TxTy = −TyTx” on the m particle. As

discussed in Sec. 3.3.1, the expression TxTy = −TyTx on m can be interpreted as having

an e particle localized at each unit cell (the intersection of a Tx domain wall and a Ty

domain wall). If e particle does not carry any degeneracy, then we can deform the state by

randomly distributing localized e particles among all unit cells, and states with different

e particle distributions will be smoothly connected. However, since e particle carries spin-

1/2 moment, the additional localized e particles must find their way to form an SO(3)

invariant (singlet) state. We do not expect the singlet state to be achievable without

developing further long-range entanglement. Therefore the notion of “one e particle per

unit cell” is robust. Equivalently, TxTy = −TyTx on m particle and the Z2 topological

order indeed matches the LSM anomaly.

3.4 Dicussions

In this Chapter I systematically classified and characterized topological phases, both SPT

and SET, with average and exact symmetries. This allowed us to clarify many subtle

issues from previous literature, and discover new physics that are intrinsically associated

with mixed states.

First, I discussed the general framework to classify ASPT, in both decohered and dis-

ordered systems. Even though the physical states in both scenarios can be described by
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density matrices of the form ρ =
∑

I PI |ΨI⟩⟨ΨI |, in a disordered system the state is also

further endowed with an ensemble of Hamiltonians {HI} with probability {PI}. This

makes the physics of the two scenarios quite different. In particular the classification of

ASPT phases will be different in the two scenarios. Pleasantly, despite of the physical

difference between decohered and disordered systems, the ASPT phases in both scenarios

can be characterized and classified under the unified mathematical framework of spectral

sequence. The physics behind the spectral sequence framework is the decoration of sym-

metry defects [34, 60, 172], which is familiar from the classification of pure state SPT

phases.

As an appealing consequence of our classification, we discovered a family of ASPT

phases that are intrinsically mixed. These are SPT phases that can only exist with average

symmetries, in decohered or disordered system, and by definition cannot exist as pure state

SPT. In fact if we try to deform an intrinsically mixed ASPT to a pure state, for example

by reducing the disorder strength, the state reduces to the so-called “intrinsically gapless

SPT” [157].

I then moved on to nontrivial intrinsic topological orders in (2+1)d in the presence of

quenched disorders, and discuss how average (and exact) symmetries enrich the structure

of topological orders. I showed that average symmetries can permute anyons, as ordinary

exact symmetries. Furthermore an average symmetry and an exact symmetry can jointly

fractionalize on anyons. However, the fractionalization of average symmetry alone becomes

ill-defined on the anyons – unless the fractionalization pattern involves certain ’t Hooft

anomalies. Another interesting feature of disordered systems is that certain obstructions

of symmetry enrichment, known as H3 obstruction, are lifted once the symmetries involved

become average. Such intrinsically disordered ASET comes with additional features. For

instance, the system will have localized anyons that lead to a gapless spectrum, yet the

system still hosts short-range correlated ground states.

In this Chapter I only studied bosonic ASETs in (2+1)d disordered systems. A natural

open question is to extend the theory to fermionic systems. In the clean limit, classifications

of fermionic SET phases have been developed recently in [17, 18]. While certain basic

elements of the theory are parallel to the bosonic case, there are important new ingredients

and subtleties, especially when ’t Hooft anomalies are concerned. A systematic study on
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fermionic ASET in disordered ensembles is left to future study.
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Chapter 4

Critical Systems under

Measurements and Decoherence

This Chapter is based on a recent work [114]. In this Chapter I will provide a description

of the universal features of an open critical system under measurements and decoherence,

via a replicated Keldysh field theory. The use of the Keldysh effective theory provides a

valuable quantum field theory toolbox, which offers two key advantages: (1) It makes the

microscopic and replica symmetries and fundamental consistency conditions of a density

matrix manifest. (2) It enables the identification of the physically relevant degrees of

freedom at low energies (IR). In general, our approach is to identify the internal symmetries

of the system at microscopic scales (UV) and then construct the most general low energy

effective theory that satisfies the symmetry, using IR degrees of freedom. The IR behaviors

can then be deduced from this IR effective theory.

As an example, we apply this approach to critical Ising model with a Z2 global sym-

metry in both one and two spatial dimensions. Specifically, we consider measurements

and decoherence in either a Z2 even or odd basis. Our results show that, in one spatial

dimension, after averaging over the entire ensemble of measurement outcomes: (1) mea-

surements in a Z2 even basis over a finite period of time do not alter the scaling behaviors

of correlation functions and entanglement entropy compared to the initial critical state; (2)

measurements in a Z2 odd basis cause the entanglement entropy to saturate to a constant
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for large subsystems. Furthermore, we find that different decoherence noises over a finite

time can be mapped to distinct boundary conditions of a critical Ashkin-Teller model, and

entanglement characteristics of the resulting mixed state, such as the g-function and the

subsystem entropy, can be calculated accordingly. As an illustration, the mixed state aris-

ing from decoherence in the longitudinal direction is characterized by a value of g = 1/2,

and a subdominant logarithmic term in the second Renyi entropy, with a coefficient equal

to 1/8. On the other hand, when measured or decohered in a Z2 even basis, in the station-

ary state the von Neumann entanglement entropy can still exhibit a logarithmic scaling for

large subsystems. Conversely, when measured or decohered in a Z2 odd basis, the station-

ary state exhibits an area law entanglement for arbitrarily small measurement/decoherence

rate. These results are organized by their symmetry breaking patterns and are summarized

in the boxes in Sec. 4.2. The discussion of the IR behaviours in two spatial dimensions

follows a similar approach. Several physical setups that are analyzed in this study have

been previously investigated in the literature [173, 113, 63, 177].

This Chapter is structured as follows. In Section 4.1, we present the general frame-

work of the replicated Keldysh effective theory. Specifically, in Section 4.1.1, we introduce

the Keldysh path integral for an open system undergoing a Markovian quantum dynam-

ics, which describes decoherence. We also discuss two different microscopic symmetry

conditions. Furthermore, in Section 4.1.2, we elaborate on the fundamental consistency

conditions of the Keldysh formalism, which are due to consistency conditions of a density

matrix. The effect of measurements is discussed in Section 4.1.3, where we re-write it as a

Keldysh path integral using the quantum state diffusion framework [83]. In Section 4.1.4,

we provide a detailed discussion of the replica symmetries of various cases, in the entire

space-time and on its boundary (the time slice where the measurements/decoherence are

performed), serving as a guideline for our n-replica IR theory. We then apply this formal-

ism to the critical Ising model in one and two spatial dimensions in Section 4.2. Finally, in

Section 4.3, we present a summary of the study in this Chapter and discuss several open

questions for future study.
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4.1 Generalities

In this section, I present an analysis of the effects of measurement and decoherence on

an open quantum system through a replicated Keldysh field theory. For this purpose, it

is assumed that the system is nearly critical, where the correlation length is much larger

than the lattice spacing, to allow for a valid coarse-grained continuum description. Mea-

surement and decoherence give rise to certain interactions in the effective field theory, and

the universal long wave-length physics is studied in Section 4.2 using standard techniques.

To define the question more precisely, let us denote the linear size of our system by L.

In this thesis I will focus on two possible physical settings, distinguished by the time scales

of the system being measured or experiencing decoherence:

1. One can consider a critical quantum system initially in a pure state that undergoes

measurement and decoherence for a finite time interval. It is essential to note that

this interval is of the order of unity [∼ O(1)] and does not depend on the size of the

system. In the thermodynamic limit, interactions resulting from the perturbations are

confined to a single time slice in the field theory description. Physical characteristics

of the modified quantum state can be determined by studying correlation functions

at this time slice.

2. In the second scenario, measurement or decoherence persists over an extensive dura-

tion of time, typically of O(L) in the thermodynamic limit. This setup enables an

exploration of the properties of stationary states and response functions. Accordingly,

interactions resulting from measurement or decoherence are included throughout the

time evolution in the Keldysh field theory.

Examples for both scenarios will be provided in Sec. 4.2. The connection between

the effect of measurement/decoherence and the boundary or defect properties has been

pointed out in recent literature [63, 106]. As typical discussions about low energy physics,

we constrain the form of the IR effective field theory based on (1) symmetry of the time

evolution; (2) intrinsic consistency conditions of the Keldysh formalism, which emerge

from the fundamental properties of a density matrix. To illustrate these constraints, we
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examine the Lindblad quantum master equation that describes decoherence in the next two

subsections. For the case of measurement, a formalism for trajectory-averaged properties

has been proposed in Ref. [16, 102] for measurement-induced phase transitions of Dirac

fermions, which will be reviewed in Sec. 4.1.3 and applied to more general cases in Sec. 4.1.4.

4.1.1 The Keldysh action and symmetries

The Keldysh functional integral formulates the time evolution of a density matrix. As

an example, we start with a Lindblad quantum master equation that describes an open

quantum system under decoherence,

d

dt
ρ = Lρ = −i[H, ρ] +

∑
α

γα[2LαρL
†
α − {L†

αLα, ρ}], (4.1)

where the Liouvillian L acts on the density operator ρ from both the ket and the bra sides.

The quantum jump operators Lα encode the dissipative couplings of the system with its

environment. The (single replica) Keldysh partition function is defined as Z1 = tr[ρ(tf )],

in which we take the trace of the density matrix at a time tf . Upon the introduction of

external source fields, the partition function plays the role of the generating functional for

correlation functions. In terms of coherent state path integral, the non-trivial action of L
on both sides of ρ leads to a doubling of degrees of freedom, characteristic of the Keldysh

formalism [87, 149],

Z1 =

∫
Dϕ+Dϕ−exp(iS[ϕ+, ϕ−]),

S[ϕ+, ϕ−] =

∫ tf

t,x

ϕ̄+i∂tϕ+ − ϕ̄−i∂tϕ− − L[ϕ+, ϕ−],

L[ϕ+, ϕ−] =H+ −H− + i
∑
α

γα[2Lα,+L
†
α,−

− L†
α,+Lα,+ − L†

α,−Lα,−],

(4.2)

where H+ = H[ϕ+] etc., ϕ+ and ϕ− represent the dynamical fields on the forward and

backward branches of the Keldysh contour, respectively. We shall employ the notation

SD to represent the decoherence action, which corresponds to the contribution from the

quantum jump operator L in the Keldysh action in Eq. (4.2).
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Upon doubling the degrees of freedom in the Keldysh functional integral approach, it

becomes evident that the Keldysh action may possess a doubled symmetry. Consider a

Hamiltonian that is symmetric under a group G, as well as an initial pure state that shares

this symmetry. In the absence of dissipative couplings or when all Lα are G invariant, the

Keldysh action would exhibit a symmetry ofG+×G−, which act on ϕ+ and ϕ−, respectively.

In terms of the density matrix, they separately operate on the ket and bra sides of ρ. When

the system-environment interaction Lα transforms in a non-trivial representation under G,

the presence of dissipative coupling reduces the symmetry of the Keldysh action to G.

This corresponds to the diagonal subgroup of G+ × G− that operates on the two sides of

ρ adjointly.

In Sec. 4.2 we explore both symmetry conditions of the Keldysh action. In Ref. [22, 43],

the doubled symmetry is referred to as the strong symmetry and the diagonal subgroup as

the weak symmetry. We adopt this nomenclature throughout this Chapter.

4.1.2 Consistency conditions

The definition of the partition function leads to a series of consistency conditions that the

Keldysh action must satisfy, which, together with the symmetries discussed in Sec. 4.1.1

and their n-replica generalizations in Sec. 4.1.4, will serve as the guiding principles for our

low energy effective theory. To facilitate our analysis, we introduce a new set of variables,:

ϕc = ϕ+ + ϕ−, ϕq = ϕ+ − ϕ−. (4.3)

The two new fields are usually called the classical and quantum component in literature

[86]. Importantly, the Keldysh formalism imposes three consistency conditions.

(1) Conservation of probability: When ϕq = 0, the Keldysh action vanishes identically:

S[ϕc, ϕq = 0] = 0. (4.4)

Intuitively, in the case of ϕ+ = ϕ− the action on the forward branch exactly cancels that on

the backward part. More precisely, this requirement is due to the trace-preserving property

of the Lindblad master equation Eq. (4.1) and ensures the normalization of the partition

function, Z1 = tr[ρ(tf )] = 1.
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(2) Hermiticity: The density operator ρ should always be Hermitian during the time

evolution. In this regard, we consider the path integral representation of matrix elements:

⟨ϕ1|ρ(t)|ϕ2⟩ =
∫ ϕ+(t)=ϕ1

ϕ−(t)=ϕ2

Dϕ± exp(iS[ϕ+, ϕ−])

=⟨ϕ2|ρ(t)|ϕ1⟩∗ =
∫ ϕ+(t)=ϕ2

ϕ−(t)=ϕ1

Dϕ± exp(−iS∗[ϕ+, ϕ−])

=

∫ ϕ+(t)=ϕ1

ϕ−(t)=ϕ2

Dϕ± exp(−iS∗[ϕ−, ϕ+]),

(4.5)

in which the last line is merely a change of integration variables. The two matrix elements

calculated above should be equal at any time t, indicating that

S[ϕc, ϕq] = −S∗[ϕc,−ϕq]. (4.6)

Given the involvement of complex conjugation, one may consider the Hermiticity condition

as an effective time-reversal symmetry. Hereafter, we refer to this constraint as the ZT
2

symmetry. It is worth noting that in order for this constraint to be fulfilled, the presence

of an anti-unitary symmetry at the microscopic level is not a requirement for the system.

(3) Non-negativity: The preservation of non-negativity of ρ during the time evolution is

a crucial consideration, particularly in the case of decoherence where the density operator

becomes mixed. In the framework of Lindblad dynamics which describes the decoherence

process, the non-negativity condition necessitates that all dissipation rates γα appearing in

the master equation Eq. (4.1) are non-negative [66]. This condition on the other hand also

ensures the convergence of the Keldysh path integral. Additionally, this requirement is

equivalent to the criterion that the decoherence must be completely positive when viewed

as a quantum channel. For γα > 0, one can see that decoherence pushes the density matrix

towards its diagonal, which agrees with our physical expectations.

4.1.3 Measurements

In Ref.[16, 102], a formalism for many body systems under continuous measurements was

proposed, and used to study monitored fermion dynamics. In this subsection, we will
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summarize the results in a manner appropriate for our purposes. A brief derivation of the

results can be found in Appendix. C.1.

To achieve a continuum description, we investigate the scenario of weak measurement,

where information on a local degree of freedom is acquired at a finite rate, causing contin-

uous changes to the state [83, 15]. On the other hand, local measurements are extensively

performed on the entire system. We stress that after a measurement, a pure state still

remains pure. The system’s collective behavior is captured through various correlation

functions that are averaged over the ensemble of post-measurement states. This approach

is akin to the calculation of observables in disordered systems, where one averages over the

realizations of disorder.

In the first scenario, where measurements are performed at one time slice t = tf , the

ensemble of final state is labeled by their outcomes at different measurement locations.

The post-measurement density matrix of a specific outcome is represented as

ρ(tf ) = V ρΩV
†,

V =exp[−Γ

∫
x

M(x)2 +
√
Γ

∫
x

Wtf (x)M(x)],
(4.7)

where Γ > 0 is a (small) effective measurement strength, and ρΩ denotes the state before

measurements. M(x) is the normal-ordered measurement operator – the observable O(x)

being measured, subtracted by its expectation value in the initial state ρΩ. Wtf (x) is

a Gaussian random variable that reflects the stochastic nature of the post-measurement

state update. It has zero mean and Wtf (x)Wtf (y) = δ(x − y), where the overline denotes

averaging over the ensemble of measurement outcomes.

We also consider continuous measurements that extend over a long period of time.

Through time evolution, we generate an ensemble of pure state trajectories, each of which

corresponds to a distinct sequence of measurement outcomes. To describe the stochastic

evolution of the density operator, we adopt the quantum state diffusion framework [65, 175].
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Conditioned on a particular trajectory, the state-update can be expressed as follows:

ρ(t+ dt) =Vdtρ(t)V
†
dt,

Vdt =exp[−
∫
x

(iH + γMt(x)
2)dt

+
√
γ

∫
x

Wt(x)Mt(x)].

(4.8)

Here the local measurement operator is defined asMt(x) = O(x)−tr[ρ(t)O(x)], where O(x)

is the Hermitian local operator being measured, subtracted by its expectation value before

the measurement. The explicit dependence of Mt(x) on the expectation value reflects

the measurement feedback to the time evolution. The parameter γ > 0 represents the

measurement strength. Wt(x) is again a Gaussian random variable with zero mean and

Wt(x)Wt′(y) = dtδ(x− y)δ(t− t′), where the overline denotes averaging over the ensemble

of trajectories. The proposed time evolution in Eq. (4.8) can be rationalized by taking

the limit of γ → ∞, corresponding to a projective measurement where the quantum state

rapidly collapses onto an eigenstate of the measured operator O.

The time evolution with measurement can be expressed as a Keldysh path integral

straightforwardly. For example, after the Keldysh doubling, the evolution operator V in

Eq. (4.8) gives rise to an additional term in Eq. (4.2), given by:

SM [ϕ±] = i[

∫
x,t

dtγM2
t,+ −√

γWtMt,+ + (+ → −)]. (4.9)

An observation is that averaging over the ensemble of state trajectories in a single replica

formalism yields the Lindblad form described by Eq.(4.2) with Lα = O. This observation

can be interpreted as the averaging of the measurement outcome with the corresponding

measurement probability, leading to the erasure of the outcome information and resulting

in an equivalent decoherence process with a corresponding quantum jump operator.

4.1.4 Replica field theory

This subsection extends the previous discussions in the preceding sections to an n-replica

theory. As previously stated in the Introduction, the Keldysh formalism of measurement
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and decoherence opens a powerful toolbox of modern quantum field theory. Specifically,

symmetries at high energy scales must be preserved under RG flow to long distances. Thus,

in a strongly interacting theory, one can examine the long-wavelength physics by writing

a generic IR effective action that preserves the symmetry, disregarding the details of the

RG flow. In any local quantum field theory, it is essential to differentiate between two

notions of symmetry: the symmetry of the effective action in space-time (bulk), and the

symmetry of the boundary condition, which, in this case, is the time slice t = tf
1. In our

forthcoming discussion of n-replica theory, this distinction becomes crucial.

(1) Consider first the measurement scenario, where we are interested in the n-replica

partition function Zn = tr[ρ(tf )⊗n], where the trace is taken over a tensor product of n

Hilbert spaces and the overline denotes ensemble average. As an example, when measure-

ments are performed throughout the time evolution, the measurement action in Eq. (4.9)

becomes

SM [ϕ±] = i[

∫
x,t

dtγ
∑
α

(M
(α)
t,+ )

2

−√
γWt

∑
α

M
(α)
t,+ + (+ → −)],

(4.10)

where α denotes the replica index. Crucially, the stochastic variable Wt couples to all

replicas and both branches for each replica in an identical fashion, analogous to the case

in disordered systems where the disorder potential couples to all replicas identically. This

reflects the fact that all replicas of a single trajectory undergo the same stochastic state

update, and the label of this trajectory, i.e., the sequence of measurement outcomes, carries

physical significance, as previously stated in the Introduction. The correspondence between

the dynamics with measurements and the effects of static disorders was also noted in a

previous study [84].

In the absence of measurement, the discussion in Sec. 4.1.1 can be straightforwardly

generalized to the n-replica case, revealing that the Keldysh-doubled effective action ex-

hibits a global symmetry (G⊗n
+ ⋊ Sn)× (G⊗n

− ⋊ Sn) [10]. Here, the two Sn’s represent the

permutation group of the + and − branches, respectively. Upon introducing the measure-

1In this Chapter, we use the terms “boundary” and “t = tf” interchangeably.
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ment action SM at UV energy scales, the most important information we can extract is

about the UV internal symmetry of the theory. Of particular interest are two possibilities:

• We first consider the case where the measurement action SM preserves the strong

G+ ×G− symmetry discussed in Sec. 4.1.1. This implies that the stochastic variable

W transforms trivially under G, i.e. the measurement is in a local symmetric basis.

The bulk of the theory preserves the (G⊗n
+ ⋊ Sn)× (G⊗n

− ⋊ Sn) symmetry. However,

the boundary condition at t = tf has only a reduced symmetry of G⊗n ⋊ Sn. This

can be understood by noting that, upon taking the trace in the partition function

(gluing the boundaries), we make the identification:

ϕ
(α)
+ (tf ) = ϕ

(α)
− (tf ) = ϕ(α). (4.11)

Thus the boundary condition preserves only the simultaneous action on the identified

boundaries, along with an Sn permutation of replicas.

• In situations where measurements are conducted in a basis that transforms non-

trivially under G, the stochastic variable W is associated with a non-trivial G repre-

sentation. The measurements action breaks the strong G+×G− symmetry described

in Sec. 4.1.1 down to the weak subgroup. The bulk theory exhibits either the full

(G⊗n
+ ⋊Sn)× (G⊗n

− ⋊Sn) symmetry when the measurement is conducted over a short

timescale (O(1)), or a reduced G× (Sn × Sn) symmetry for an O(L) time measure-

ment. The reason behind this symmetry reduction is the fact that the stochastic

variable W couples identically to all the 2n Keldysh branches. On the other hand,

for our specific interest, the measurement action SM is always present on time slice

t = tf . Upon making the identification Eq. (4.11) at time slice t = tf , the boundary

condition has a symmetry G× Sn.

The examples discussed in Sec. 4.2 will be organized based on their patterns of sym-

metry breaking.

(2) We now shift our attention to the scenario of decoherence. In this case, the n-replica

partition function is defined as Zn = tr[ρ(tf )
n]. 2 Its path integral representation is given

2In the presence of both measurements and decoherence, a unified partition function can be defined as
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by the Keldysh effective action in the Lindblad form in Eq. (4.2), with an additional sum-

mation over the contributions of the n replicas. The Lindblad action, which describes the

system at high energy scales, features an intra-replica coupling between the two branches.

The underlying interpretation, as explained in the Introduction, is that decoherence erases

the measurement outcomes (integrates out the environment) in the first place, and the

ensemble representation of a mixed state does not have a preferred basis.

Similarly, we focus on two distinct symmetry conditions:

• First, we examine cases where the strong G+ × G− symmetry is preserved by the

decoherence. Depending on the decoherence timescale, the bulk theory may possess

either the full (G⊗n
+ ⋊ Sn) × (G⊗n

− ⋊ Sn) symmetry for O(1) time decoherence, or a

reduced (G+×G−)
⊗n⋊Sn symmetry for O(L) time decoherence. Notably, the intra-

replica branch coupling prohibits independent permutation of the two branches. In

contrast, the decoherence action SD is always present at the final time slice, t = tf .

To compute the partition function in the case of decoherence, we need to specify the

boundary condition

ϕ
(α)
+ (tf ) = ϕ

(α+1)
− (tf ) = ϕ(α),

ϕ
(α)
− (tf ) = ϕ

(α−1)
+ (tf ) = ϕ(α−1).

(4.12)

The boundary condition exhibits a reducedG⊗n×Zn symmetry, where Zn corresponds

to the cyclic permutation of replicas.

• In cases where the decoherence preserves only the weak G symmetry, depending on

the time scale of the decoherence, the bulk theory has either the full (G⊗n
+ ⋊ Sn) ×

(G⊗n
− ⋊ Sn) symmetry, or a reduced G⊗n ⋊ Sn symmetry for O(L) time decoherence.

At the boundary t = tf , the symmetry is reduced toG×Zn by the boundary condition

in Eq. (4.12).

All the symmetry conditions enumerated in this subsection are considered as internal

symmetries of the system under measurement or decoherence at UV energy scales, which

Zn = tr[ρ(tf )n]. In this thesis, we consider the effects of measurements and decoherence separately for the

sake of simplicity.
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must be preserved along the RG flow. Besides the symmetries discussed above, an extra

time reversal symmetry ZT
2 arising from the Hermiticity of the density matrix is imposed

for both the measurement and the decoherence scenarios.

After presenting the general formalism and fundamental constraints in this section,

we are now prepared to investigate the impact of measurement and decoherence on the

long wave-length behavior of specific critical systems. Our strategy is to construct the

most general IR effective theory that are allowed by the UV internal symmetries. The IR

counterparts of the local measurement operator M and the quantum jump operator L can

also be identified, guided by symmetry considerations. Moreover, the Keldysh action must

satisfy the consistency conditions outlined in Section 4.1.2.

4.2 Examples: the Ising model

Our analysis focuses on a transverse field Ising model with a Z2 global symmetry, in one

(1d) or two (2d) spatial dimensions, and is tuned to the vicinity of the Ising critical point.

The Z2 charged operators include the spin Z operator acting on each lattice site. The

product of spin X on each site serves as the symmetry generator.

4.2.1 Finite time perturbations: one dimension

To begin, we examine the scenario where the system is subjected to a perturbation, i.e.

measurements or decoherence, for a duration of O(1) time. We categorize the possible

perturbations based on their symmetry properties. The Ising Hamiltonian exhibits a Z2

spin flip symmetry, which after the Keldysh doubling, gives rise to a Z+
2 ×Z−

2 symmetry in

the long wavelength field theory. Specifically, the Z+
2 (Z−

2 ) symmetry acts on the bra (ket)

side of the density matrix.

We first consider the effects of measurements. Using the Keldysh formalism, we prepare

the density matrix before measurement by allowing a purely Hamiltonian dynamics to

evolve for an infinitely long time, resulting in the projection of the system to the pure

ground state. In this setting, the action induced by the measurement described in Eq. (4.7)
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is solely present at the final time slice tf . The partition function can then be calculated by

closing the time contour. In a single replica formalism, performing the trajectory-average

leads to

SM = i
Γ

2

∫
x

(M+ −M−)
2, (4.13)

which vanishes identically when the time contour is closed and the ket side is identified

with the bra side. This observation implies that weak measurements do not affect the

scaling behaviors of correlation functions of local operators that are linear in the density

matrix. Specifically, the correlation function ⟨O(0)O(x)⟩ = tr[ρ̄(tf )O(0)O(x)] retains the

same scaling form as it had in the pre-measurement state, where O denotes a local operator.

However, the situation becomes different when we consider quantities non-linear in

density matrix, e.g. the famous von Neumann entropy. We primarily construct a theory

with two copies of the density matrix, for the sake of simplicity. We begin by considering

the following quantity (at time slice tf , after measurements):

ρ2 = ρ⊗ ρ, (4.14)

which is a tensor product of two identical density matrices (conditioned on the same mea-

surement outcome trajectories), and then averaged over the trajectory ensemble. This

quantity can be constructed using a two-replica Keldysh effective theory, and the measurement-

induced coupling can be expressed, at UV energy scales, as follows:

SM = iΓ

∫
x

{
∑
σ=±

2∑
α=1

[M (α)
σ ]2 − 1

2
[
∑
σ,α

M (α)
σ ]2}, (4.15)

where α = 1, 2 is the replica index.

In order to compute the two-replica partition function Z2 = tr[ρ(tf )⊗2], it is necessary

to glue the time slice tf with the boundary condition in Eq. (4.11). It should be noted that

the bulk far from the time slice tf is always described by an Ising conformal field theory

(CFT). Depending on the basis in which the system is being measured, we consider two

scenarios, distinguished by symmetry of the measurement operator.

(1) When measuring a system in a symmetric basis, such as along the X basis, the

measurement operator conserves the spin flip symmetry. In the case of two replicas, the
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internal symmetry of the UV theory described by Eq. (4.15) reduces to Z2
2 × Z(p)

2 at the

boundary t = tf . Here Z(p)
2 denotes the replica permutation symmetry. To capture the

effects of measurement at low energies, we must enumerate all local interactions in the IR

effective theory that are consistent with this symmetry. The dominant contribution to the

IR effective theory can be expressed as

SIR
M = −iΓϵ(1) · ϵ(2) + ..., (4.16)

where terms with higher scaling dimensions have been omitted. Meanwhile, the dominant

contribution to the measurement operator M at low energies can be identified as M ∼ ϵ.

Several comments follow:

1. The derivation of the IR effective action SIR
M from the UV theory in Eq. (4.15) is

generally not feasible due to the strongly-interacting nature of the underlying system.

The only information we have is that SIR
M retains the global symmetry of the UV

theory.

2. An additional term proportional to ϵ(1) + ϵ(2) in Eq.(4.16) could also preserve the

symmetry of the boundary condition. However, the (1 + 1)d Ising model has an

emergent symmetry – the Kramers-Wannier duality which flips the sign ofM(1) ∼ ϵ(1)

andM(2) ∼ ϵ(2) simultaneously in Eq. (4.15). As a consequence, this symmetry forbids

the inclusion of the aforementioned coupling. It should be noted that this is a specific

feature of the (1 + 1)d Ising model3.

3. It is worth noting that the interaction given in Eq. (4.16) preserves the ZT
2 time

reversal symmetry, which acts on the t = tf slice as a complex conjugation. Note

that according to our convention in Eq.(4.6), a minus sign obtained by SIR
M under ZT

2

implies time reversal invariance.

3Strictly speaking, here the unperturbed UV fixed point is considered as an Ising CFT with an enlarged

symmetry. In terms of a lattice model perspective, this corresponds to a scenario in which the measurement

operator M transforms nicely (with only a −1 factor) under the Kramers-Wannier duality even at high

energy scales.
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As the scaling dimension of ϵ in the (1 + 1)d Ising CFT is ∆ϵ = 1, SIR
M is irrelevant on

the 1D time slice tf . The full symmetry of the original UV theory will remain preserved in

the IR, and the scaling of correlation functions and the Renyi entropy remains unchanged.

Before proceeding, let me briefly comment on the scenario where the operator M

severely breaks the Kramers-Wannier duality at UV energy scales. It is then necessary

to include the perturbation SIR
M = −iΓ′[ϵ(1) + ϵ(2)] which is exactly marginal at the defect

t = tf . Consequently, the scaling of the Renyi entropy and correlation functions exhibits

continuous variation depending on the measurement strength [44, 128, 14]. However, if one

performs an analytical continuation of the number of replicas to n → 1+, the coefficient

Γ′ must vanish due to the reasoning around Eq. (4.13) – the single replica measurement

action (for O(1) time measurements) vanishes identically. Therefore, in the n → 1+ limit

these scalings, such as the von Neumann entanglement entropy, would remain unaffected

by this exactly marginal ϵ linear term, see Eq. (4.18). As a result,

Measurements performed in a symmetric basis over a finite period of time, in (1+1)d

Ising CFT do not affect the scaling properties of trajectory-averaged correlation func-

tions linear or non-linear in the density operator, as well as that of the von Neumann

entanglement entropy.

(2) In the case of measurements performed in a Z2 odd basis, such as the local Z basis,

for the two-replica case the symmetry at t = tf becomes Z2 × Z(p)
2 . At long distances

the operator M should be identified with the most relevant local operator with the same

symmetry property, namely M ∼ σ, the spin field. A similar enumeration yields the

measurement-induced coupling for measurements performed in a Z2 odd basis

SIR
M = −iΓσ(1) · σ(2), (4.17)

where the most relevant contribution is retained. Unlike the symmetric measurement, here

we have a relevant perturbation on the time slice given ∆σ = 1
8
. In effect, we have two

copies of Ising CFT coupled to each other on a line defect (the time slice t = tf ). Each

copy acts as a symmetry-breaking field for the other – therefore both copies would be
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cut open at the 1d defect t = tf , and in total we have four decoupled halves. Given the

measurement rate Γ > 0 4, this coupling favors configurations in which spins at the edge

of the four halves are parallel.

How to characterize the trajectory ensemble under Z2 odd measurements? Cardy es-

tablished [26, 27] that there are only three universality classes of boundary conditions for

an Ising CFT on a semi-infinite plane: fixed-up (↑), fixed-down (↓), and free (f). As dis-

cussed earlier, the two copies of Ising CFT are cut open at the line defect, and the spins

on the edge of the four halves have a parallel orientation. Despite the naive expectation of

spontaneous breaking of the Z2 spin flip subgroup of the boundary symmetry, we do not

anticipate any genuine symmetry breaking in the (1 + 0)d time slice at t = tf . Therefore,

each of the four halves has a fixed boundary condition, and the boundary state can be

written symbolically as | ↑↑↑↑⟩+ | ↓↓↓↓⟩.

This finding has significant implications on the entanglement entropy of the system

subject to measurements. Consider a subsystem A of length l, and let us compute the

trajectory-averaged 2nd Renyi entropy defined as S
(2)
A = −ln(trρ2A), where ρA is the reduced

density matrix of A. It has been demonstrated in Ref. [24, 23] that the Renyi entropy can be

computed on a space-time manifold with a boundary condition at the time slice t = tf , such

that (1) Inside A, the n replicas are sewn together cyclically, leading to the identification

in Eq. (4.12); (2) Outside A, each replica is sewn with itself, as that in Eq. (4.11). In

the specific case of the Ising model, it can be checked that the boundary state inside and

outside the subsystem A remains the same, see Fig. 4.1.5

4In principle, the functional dependence of the IR coupling constant on the microscopic measurement

rate Γ can be complicated. Nonetheless, we anticipate that it will remain non-negative due to the physical

expectation that measurements tend to project the density matrix onto its diagonal elements, as outlined

in the Introduction. Moreover, this term has a clear UV correspondence in the measurement action at high

energies if one substitutes M ∼ σ into Eq. (4.15), where the coefficient is indeed the (positive) microscopic

measurement rate. As a relevant coupling, we expect it to increase monotonically along the RG flow.

Hence, we use the notation Γ for both the microscopic measurement rate and the IR coupling constant.
5Upon examination of the boundary condition at t = tf , the measurement action SM within subsystem

A is found to exhibit either a G⊗n × Zn symmetry (for measurements in a symmetric basis) or a G× Zn

symmetry (for measurements in a G non-trivial basis) at high energies. For n = 2, the symmetries inside

and outside of subsystem A coincide.
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Figure 4.1: Illustration of the boundary condition at t = tf . Time evolution of the density

matrix is captured by two Keldysh branches running horizontally, while the vertical line

denotes the spatial dimension. The orange line marks the region where SM is non-vanishing,

and the wavy line represents subsystemA (the branch cut), where the entanglement entropy

is calculated.

In the case of measurements performed in a symmetric basis, the measurement induced

coupling Eq. (4.16) on the defect is irrelevant (provided that the Kramers-Wannier duality

is present). Thus the Renyi entropy remains the same as the case without the defect.

Ref. [24] demonstrated that the Renyi entropy can then be related to scaling dimension of

the twist field in Ising CFT (located at endpoints of the subsystem A), given by S
(2)
A =

1
8
lnl + O(1). In the limit n → 1+, the scaling of the ensemble-averaged von Neumann

entanglement entropy SA = −tr(ρAlnρA), for any generic Z2 symmetric measurements

(with or without the Kramers-Wannier duality) , behaves as

SA =
1

6
lnl +O(1). (4.18)

In the scenario where measurements in a Z2 odd basis are carried out, the induced

coupling by the measurement is relevant, thereby causing the system to be cut open at

the 1d defect. The Renyi entropy is then calculated by the scaling dimension of certain

boundary condition changing operator of the Ising boundary CFT. It is observed that, no

matter inside or outside the subsystem A, the defect will always flow to the fixed boundary
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condition with the aforementioned boundary state. Consequently, the boundary condition

changing operator at endpoints of A is trivial. It is then deduced that the 2nd Renyi

entropy saturates for large l, S
(2)
A = O(1). In the limit of n→ 1+, the validity of this area

law remains for the von Neumann entanglement entropy.

In a (1 + 1)d Ising CFT, when measurements are performed in a Z2 odd basis over

a finite time, the trajectory-averaged entanglement entropy of a subsystem saturates

to a constant for sufficiently large subsystems.

The effect of decoherence, which is described by a Keldysh effective action in the Lind-

blad form, can be studied similarly. The fundamental quantity of interest is the n-replica

Keldysh partition function, Zn = tr[ρ(tf )
n]. It is instructive to note a basic observation

before examining specific decoherence. Let us denote the decoherence action by SD, which

is non-zero only at the time slice tf . Consider the effect of decoherence over a finite time

in a single replica formalism. When taking the trace in the partition function, ϕ+(tf ) and

ϕ−(tf ) are identified. Conservation of probability, as given by Eq. (4.4), leads to the van-

ishing of the decoherence action SD. This, combined with our previous statement, yields

the following results:

Weak measurement and decoherence over a finite period of time have no impact

on the scaling behaviors of local operator correlation functions that are linear in the

density operator.

This is a general statement that extends to higher-dimensional systems as well. In

the following discussion, we will concentrate on quantities that are non-linear in the den-

sity operator. Depending on the symmetry of the Lindbladian, we consider two possible

scenarios.

(1) Let us first consider decoherence which preserves the strong Z+
2 ×Z−

2 symmetry, for

example, a dephasing in the X basis. Based on this symmetry, the low energy incarnation

of the quantum jump operator should be identified as L ∼ ϵ. As previously mentioned, the
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boundary condition at t = tf preserves a Z2
2×Z(p)

2 symmetry, as well as a ZT
2 time reversal

invariance.

Now the aim is to enumerate all possible local interactions that maintain the Z2
2 ×Z(p)

2

symmetry of the UV theory. The leading contribution is

SIR
D = −iγD

∫
x

ϵ(1) · ϵ(2). (4.19)

It is easy to see that this decoherence induced interaction is irrelevant on the 1d defect. As a

result, the scaling behavior of the decohered state is identical to that without decoherence.6

For instance, the subsystem Renyi entropy scales as

S
(2)
A = κl +

1

8
lnl +O(1), (4.20)

where κ is a scheme-dependent non-universal factor which can not be determined in the

low energy field theory. It should be noted that we are currently dealing with a mixed

state ρ in the presence of decoherence, thus such a non-universal contribution from the

configurational entropy is expected to appear.

(2) In the scenario of decoherence in a Z2 odd basis, such as a dephasing in the Z

direction, the Keldysh effective action preserves only a weak Z2 symmetry. At t = tf , the

UV symmetries of the boundary for two replicas are Z2 × Z(p)
2 and the time reversal ZT

2 .

To construct an IR effective action, it is necessary to identify all local interactions that are

consistent with this symmetry. The dominant contribution arises from

SIR
D = −iγD

∫
x

σ(1) · σ(2), (4.21)

where the notation stems from the identification of fields at the boundary, σ
(1)
+ (tf ) =

σ
(2)
− (tf ) := σ(1) and σ

(1)
− (tf ) = σ

(2)
+ (tf ) := σ(2). Meanwhile, at IR the quantum jump

6 Again, by assuming the emergence of the Kramers-Wannier duality as an approximate symmetry, an

exactly marginal contribution to the decoherence action given by SIR
D ∼ −iγ′D[ϵ(1) + ϵ(2)] is not included.

However, if the quantum jump operator L significantly breaks the Kramers-Wannier duality, this term

should be taken into account. Incorporating this term induces a continuous variation in the scaling

behavior of correlation functions and the Renyi entropy as the decoherence rate γ′D varies. However, it

has no impact on these quantities in the n→ 1+ limit where γ′D vanishes. As a result, the von Neumann

entanglement entropy remains as SA = κ1l +
1
6 lnl +O(1) where l is the subsystem size.
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operator should be identified with the most relevant local operator that is Z2 odd, L ∼ σ.

As in the measurement scenario in Eq. (4.17), this interaction is relevant and flows to

strong coupling at long distances. The non-negativity constraint in Eq. (4.2) at high-

energy scales7, as well as the physical expectation that decoherence pushes the density

matrix towards its diagonal elements, suggest that the strength of decoherence γD should

be positive and increase monotonically as we flow towards lower energy scales.

Notably, despite the similarity between the expression for decoherence in Eq. (4.21)

and that for measurement, the Renyi entropy displays rather different features in the two

scenarios. As illustrated in Fig. 4.2, while measurement induces the same boundary state

inside and outside the subsystem A, the decoherence action SD leads to distinct boundary

states in these regions. Here, A refers to the subsystem for which the entropy is being

computed.

Let us elucidate this point for the 2nd Renyi entropy. Inside the subsystem A, upon

closing the time contour we have the boundary condition in Eq. (4.12), which yields the

interaction term in Eq. (4.21) at low energies, identical to the one derived in the measure-

ment scenario in Eq. (4.17). Consequently, inside A, the four halves of the two copies of

Ising CFT are cut open at the line defect, with spins on the edge being parallel to each

other. In contrast, when closing the time contour outside the subsystem A, the resulting

SIR
D vanishes. This is due to the fact that closing the time contour within each replica

itself leads to σ
(α)
+ (tf ) = σ

(α)
+ (tf ) at the line defect for both replicas, and the conservation

of probability causes SIR
D to vanish identically. Therefore, outside A, the defect flows to a

boundary state as if no defect were present.

What is the consequence of this observation on the subsystem entropy? Consider an

Ising CFT on a complex plane with a line defect. Upon folding the system at the defect

line, the defect of the Ising CFT maps to the boundary of a critical Ashkin-Teller model

[64] on a semi-infinite plane. The decoherence induced interaction inside the subsystem

A leads to a fixed boundary condition where the spins on either side of the defect are

locked into a ferromagnetically aligned state, while outside A, the boundary state of the

Ashkin-Teller model corresponds to a trivial defect in the Ising CFT. The corresponding

7The UV correspondence of the interaction in Eq.(4.21) becomes clear upon substitution of L ∼ σ into

Eq.(4.2), with the coefficient γD relating to the non-negative microscopic dissipation rate.

113



Figure 4.2: Illustration of the boundary condition at t = tf for the case of decoher-

ence. The orange line indicates the region where SD is present (inter-replica gluing), while

the dashed line denotes a trivial defect (intra-replica gluing). It is noteworthy that the

boundary conditions are different inside and outside subsystem A, where the entanglement

entropy is evaluated.
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boundary condition changing operator at endpoints of A in the Ashkin-Teller boundary

CFT has a dimension of ∆ = 1/32 [126, 125]. Therefore, the 2nd Renyi entropy of the

decohered state is expressed as

S
(2)
A = κ′l +

1

8
lnl +O(1), (4.22)

where the 1/8 factor corresponds to 2 × 2∆ as we calculate the 2nd Renyi entropy using

two copies of Ashkin-Teller boundary CFT. Upon taking the limit n → 1+, we find that

the scaling of the von Neumann entanglement entropy follows an expression SA = κ′1l +
1
16
lnl +O(1).

The defect g-function, as defined in previous works [26, 27, 3] by ln g = (1−d/d lnL) lnZ2(L)

with L being the linear system size, can be calculated accordingly. Physically, g represents

the overlap between the ground state of the Hamiltonian with periodic boundary condi-

tion and the boundary state. With symmet- ric decoherence, the irrelevance of the defect

coupling leads to two decoupled trivial line defects in the Ising CFT, resulting in g = 1.8

Conversely, in the case of decoherence in an Z2 odd basis, as previously described, the

boundary state | ↑↑↑↑⟩ + | ↓↓↓↓⟩ has four copies of ferromagnetically aligned Ising fixed

boundary conditions. The g-function is obtained by taking the product of g for the four

Ising layers, with an additional factor of 2 accounting for the multiplicity of ↑ and ↓. Thus,
we have g = 2 × (1/

√
2)4 = 1/2. Further breaking of the weak Z2 symmetry, such as

decoherence in a direction slightly deviating from the Z axis, would result in the removal

of this degeneracy, resulting in g = 1/4. Our results are consistent with those observed in

a recent study [184]. Therefore, we have

A (1+1)d Ising CFT under decoherence over a finite period of time can be mapped

to the boundary CFT of the critical Ashkin-Teller model, enabling us to analyze the

entanglement characteristics in a precise manner.

This concludes our discussion on a finite time perturbation in 1d.

8Even in cases where the Kramers-Wannier duality does not emerge and the contribution specified in

Footnote. 6 is included, the exact marginality of this term ensures that g retains its original value, i.e.,

g = 1.
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4.2.2 Finite time perturbations: two dimensions

Now we investigate the impact of an O(1) time perturbation on a (2 + 1)d system, specif-

ically by considering the (2 + 1)d Ising critical point as a case study. Throughout this

subsection we focus on the two-replica formalism.

We begin with local measurements performed in a symmetric basis, where the associated

local measurement operator is Z2 even, and the action SM induced by the measurement

preserves a Z2
2 × Z(p)

2 symmetry and the time reversal invariance due to Hermiticity. Note

that in the case of (2 + 1)d Ising model, the Kramers-Wannier duality is absent, resulting

in the leading contribution to SIR
M being given by

SIR
M = −iγM(ϵ(1) + ϵ(2)). (4.23)

where now the coupling is present on a (2 + 0)d defect in the (2 + 1)d space-time. Uti-

lizing ∆ϵ = 1.41 in (2 + 1)d Ising CFT [150], we establish that this coupling is relevant9.

Depending on the sign of the coupling constant γM , without further fine tuning, there can

be two possible scenarios:

1. In the scenario where γM > 0, space-time of the system is cut open at the time slice

t = tf . the boundary at the cut is pushed to the ordinary boundary condition of a

(2 + 1)d critical Ising model, while the full symmetry of the UV theory is preserved

in the IR. This scenario is expected to occur when the measurement is conducted,

for example, in the local X basis.

2. For γM < 0, the coupling term again cuts the system at t = tf , resulting in four

open boundaries labeled as (1,+), (1,−); (2,+), (2,−), corresponding to the replica

indices and the branch labels, respectively. The first and last two boundaries flow sep-

arately towards the extraordinary boundary universality class, leading to the spon-

taneous breaking of the Z2
2 symmetry of the original UV boundary condition. A

breaking of the Z(p)
2 replica permutation takes place when the spin orientations of

the two pairs are not the same. This scenario is expected to occur when the mea-

surement is performed in the local ZiZj basis.

9Since this term is relevant as opposed to marginal, its impact cannot be disregarded even in the n→ 1+

limit.
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When the measurement is in a Z2 odd basis, SM at high energies preserves a Z2 ×Z(p)
2

symmetry. Recall that the Z2 arises from the weak spin flip symmetry that acts adjointly

on both sides of the density matrix. At low energies, the dominant contribution to SIR
M is

again given by Eq. (4.17), with the local measurement operator identified with the Ising

spin σ at long distances. Since ∆σ = 0.52 in (2 + 1)d, SIR
D is relevant on the plane defect.

As each replica can be viewed as a symmetry breaking field for the other, this coupling

is expected to cut each replica into two halves. The four open boundaries at the plane

defect are at the normal fixed point [19, 13, 25], with ferromagnetic alignment of spins on

these boundaries, as Γ > 0. This causes the Z2 spin flip symmetry to be spontaneously

broken at the plane defect. The trajectory-averaged correlation functions can be calculated

accordingly. For example, we expect the connected correlation function

⟨Z(0)Z(x)⟩ − ⟨Z(0)⟩⟨Z(x)⟩ ∼ O(1) const, (4.24)

where Z is the spin Z operator (or a generic Z2 odd operator). This long range order reveals

the spontaneous Z2 symmetry breaking in the trajectory ensemble after measurement.

In the presence of decoherence, the effect on critical systems can be analyzed in a

similar manner. In the case of decoherence occurring in a symmetric basis, the resultant

SIR
D is characterized by a Z2

2 ×Z(p)
2 symmetry of the UV boundary condition. The leading

contribution to SIR
D is given by SIR

D = −iγD(ϵ(1) + ϵ(2)), which is relevant on a (2 + 0)d

defect in (2+1)d spacetime. Long-wavelength behaviours are analyzed in the same manner

as those below Eq. (4.23).

In the case of decoherence occurring in a local Z2 odd basis, the boundary condition at

t = tf has a Z2×Z(p)
2 symmetry at UV. In a two-replica scheme, the leading contribution of

the decoherence action is again given by Eq. (4.21), which drives the defect plane t = tf to

a normal fixed point for both replicas. The Z2 spin flip symmetry is broken spontaneously,

which is manifested by a non-zero long-range order:

tr[ρ(tf )Z(0)ρ(tf )Z(x)]/tr[ρ(tf )
2] ∼ const. (4.25)

Additionally, given the expectation that decoherence tends to suppress the off-diagonal

elements of the density matrix, and the correspondence between the coupling γD and the

microscopic dissipation rate at high energies, it is reasonable to assume that γD remains
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positive in the IR, and consequently the Z(p)
2 symmetry is preserved. Intriguingly, akin

to the 1d case, when calculating subsystem Renyi entropy, distinct time contour closings

at the plane defect lead to distinct boundary states inside and outside the subsystem A.

Consequently, we have a boundary condition changing line defect at the edge of A. A

comprehensive study of this line defect remains an interesting unresolved issue for future

investigations.

4.2.3 The stationary state: one dimension

In this subsection, we investigate an alternative physical scenario, specifically a critical

Hamiltonian subjected to a perturbation (measurement or decoherence) for a duration of

O(L) time comparable to the system size, resulting in the system achieving a stationary

state. To exemplify this scenario, we utilize the critical Ising model in (1+1)d and examine

the entanglement characteristics of the stationary state.

We begin with a continuous weak measurement in a local Z2 symmetric basis, for

example, in the X direction. The n-replica measurement action at the UV energy scales

in Eq. (4.10) preserves a (Z⊗n
2 ⋊ Sn)× (Z⊗n

2 ⋊ Sn) symmetry in the bulk space-time. The

most general IR effective action allowed by the UV internal symmetry can be expressed as

SIR
M =− i

∫
x,t

∑
α ̸=β

[γ1ϵ
(α)
+ · ϵ(β)+ + γ∗1ϵ

(α)
− · ϵ(β)− ]

− i

∫
x,t

γ2
∑
α,β

ϵ
(α)
+ · ϵ(β)− ,

(4.26)

where γ2 is real due to the ZT
2 symmetry10. Notably, this is a marginal interaction in

(1+1)d Ising CFT. Here, we determine the long-distance behavior through a perturbative

RG.

Using Jordan-Wigner transformation [141], we map the Ising model to a free Majorana

10In this subsection we ignore the term linear in ϵ by assuming the preservation of the Kramers-Wannier

duality. If this assumption is relaxed, a term SIR
M = −i

∫
x,t

∑
α[γ1ϵ

(α)
+ + γ∗1ϵ

(α)
− ] needs to be taken into

account, which is relevant and results in an area law entangled phase.
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fermion and obtain the full low energy effective theory,

SIR =

∫
x,t

∑
α

χ̄αi∂χα − ψ̄αi∂ψα + SIR
M ,

SIR
M =− i

∫
x,t

∑
α ̸=β

(γ1χ̄αχαχ̄βχβ + γ∗1 ψ̄αψαψ̄βψβ)

− i

∫
x,t

γ2
∑
α,β

χ̄αχαψ̄βψβ,

(4.27)

in which χ and ψ correspond to Majorana fermions on the forward and backward branches,

respectively. The energy field ϵ is mapped to the Majorana mass [145]. The beta function

at the one-loop level is given by11

dγ1
dlnµ

= −4(n− 2)i

2π
γ21 +

ni

2π
γ22 ,

dγ2
dlnµ

=
4(n− 1)i

2π
γ∗1γ2 −

4(n− 1)i

2π
γ1γ2,

(4.28)

where µ denotes a cutoff scale.

Our primary focus is on the n → 1 regime, where we can gain insight into the scaling

behavior of the von Neumann entanglement entropy. We assume that γ1 and γ2 are real and

positive at high energies, as they can be identified with the microscopic measurement rate

at the UV scale. In the n→ 1 limit, γ1 rapidly flows to its fixed point value γfp1 ∼ −iγ2/2,
as depicted in Fig. 4.3. On the other hand, the value of γ2 drifts slowly according to

dγ2
dlnµ

|γ1=γfp
1
= −4(n− 1)

2π
γ22 . (4.29)

Therefore, γ2 is a marginally relevant perturbation. Physically, we anticipate that the

system flows to an Ising disordered/ordered phase (depending on the basis of the measure-

ments) at the longest wavelength, with a vanishing drifting velocity in the replica limit

n→ 1+.12

11The propagator of χ on the forward branch has an iη prescription opposite to that of ψ in Keldysh

field theory. This is crucial when performing the Wick rotation.
12We can physically understand this by noting that when n = 1, the γ1 term disappears, and the γ2

term reduces to an exactly marginal deformation ∼ ϵ1ϵ2 of the Ashkin-Teller model.
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Figure 4.3: RG flow of the parameter γ1 in the complex plane. In the limit of n → 1+,

the flow of γ2 is much slower than that of γ1. Hence, when discussing the flow of γ1, we

can treat γ2 as a constant. The plot shows the RG flow for n = 1.05 and γ2 = 2.
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This observation suggests intriguing scaling behaviors of the trajectory-averaged entan-

glement entropy. Specifically, the RG flow in Eq.(4.29) implies that, for n sufficiently close

to 1, a correlation length much larger than any subsystem size l can always be generated.

Therefore, if a critical Ising Hamiltonian is placed in an environment with Z2 symmetric

measurements at a small measurement rate, after an extensive period of time the von Neu-

mann entanglement entropy of a subsystem should still exhibit a logarithmic scaling with

respect to l for very large subsystems. Alternatively, if a product state with zero entangle-

ment is initially prepared and the system is subsequently evolved according to the combined

dynamics described in Eq. (4.27), the entanglement entropy of a subsystem is expected to

show a logarithmic growth over time, eventually reaching a size-dependent value for suffi-

ciently large time. The effective central charge, which governs the logarithmic growth of

entanglement, may vary continuously with the measurement rate γ2 at microscopic scales.

Indeed, this phenomenon was recently observed in a numerical study [160].

In the case of measurements conducted in a Z2 odd basis, for instance, the local Z basis,

at high energies the n-replica measurement action in Eq. (4.10) preserves a Z2 × Sn × Sn

symmetry and a ZT
2 time reversal. The leading contribution at the low energies is

SIR
M =− i

∫
x,t

∑
α ̸=β

{[γ1σ(α)
+ · σ(β)

+ + γ∗1σ
(α)
− · σ(β)

− ]

+
∑
α,β

γ2σ
(α)
+ · σ(β)

− }.
(4.30)

This is a relevant perturbation that would drive the state to an area law entangled phase

where the Z2 spin flip symmetry is spontaneously broken in a ferromagnetic manner13.

For a critical Ising chain subject to weak measurements in a local Z2 symmetric

basis, it is anticipated that the logarithmic scaling of the von Neumann entanglement

13In light of the tendency for measurement to project the density matrix onto its diagonal and the corre-

spondence at high energies between the coupling γ2 and the microscopic measurement rate, it is reasonable

to hypothesize that γ2 retains its positivity along the RG flow. This, in turn, implies that the magne-

tizations of different replicas are ferromagnetically aligned, preserving the Sn × Sn replica permutation

symmetry at low energies.
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entropy can still be observed for large subsystems in the stationary state (provided

that the Kramers-Wannier duality is present). On the other hand, when measurements

are conducted in a Z2 odd basis, the stationary state is in a phase characterized by

spontaneous breaking of the Z2 spin flip symmetry and an area law entanglement

entropy.

Consideration can also be given to the characteristics of a quantum system with a

critical Hamiltonian that undergoes decoherence over an extensive period of time. When

the decoherence preserves the strong Z+
2 × Z+

2 symmetry, the n-replica Lindblad action

exhibits a (Z2 × Z2)
⊗n ⋊ Sn symmetry and is time reversal invariant. The IR effective

action may include all local interactions that are allowed by this symmetry. Among these

couplings, the dominant contribution is given by

SIR
D = −i

∫
x,t

∑
α ̸=β

[γ1ϵ
(α)
+ · ϵ(β)+ + γ∗1ϵ

(α)
− · ϵ(β)− ]

− i

∫
x,t

[γ2
∑
α ̸=β

ϵ
(α)
+ · ϵ(β)− + γ3

∑
α

ϵ
(α)
+ · ϵ(α)− ],

(4.31)

where γ2 and γ3 are real and positive parameters at high energies. By applying a Jordan-

Wigner duality, it can be demonstrated that the one-loop beta function for the coupling

constants is as follows:

dγ1
dlnµ

=− 4(n− 2)i

2π
γ21 +

(n− 2)i

2π
γ22 +

2i

2π
γ2γ3,

dγ2
dlnµ

=
4(n− 2)i

2π
γ∗1γ2 −

4(n− 2)i

2π
γ1γ2

+
4i

2π
γ∗1γ3 −

4i

2π
γ1γ3,

dγ3
dlnµ

=
4(n− 1)i

2π
γ∗1γ2 −

4(n− 1)i

2π
γ1γ2.

(4.32)

In the replica limit, the values of γ1 and γ2 quickly approach their fixed point values, with

γfp1 ∼ −iγ3/2 and γfp2 ∼ γ3, while the slow parameter γ3 flows according to

dγ3
dlnµ

|γ2=γfp
2

γ1=γfp
1

= −4(n− 1)

2π
γ23 . (4.33)
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The analysis of the scaling behaviour of the von Neumann entanglement entropy is therefore

the same as in the measurement scenario discussed below Eq. (4.29).

When considering decoherence that only preserves the weak Z2 symmetry, such as

dephasing in the Z direction, the n-replica Lindblad action in Eq. (4.2) exhibits a Z⊗n
2 ⋊Sn

symmetry at high energies. The leading contribution to the quantum jump operator L at

low energies is L ∝ σ. Based on this symmetry, the dominant contribution to the IR

effective theory can be expressed as

SD = −iγD
∫
x,t

∑
α

σ
(α)
+ · σ(α)

− . (4.34)

At the UV scale, the coupling constant γD can be identified as the dissipation rate, and thus

it should be positive due to non-negativity. The decoherence action is relevant and leads

to the spontaneous breaking of the Z⊗n
2 symmetry, resulting in an area law entanglement

after subtracting the volume law piece. Additionally, the Sn replica permutation symmetry

may also be broken if the magnetizations in different replicas have opposite signs.

For a critical Ising chain subject to local decoherence in a Z2 symmetric basis, it is

anticipated that the subleading logarithmic scaling of the von Neumann entanglement

entropy will persist for large subsystems in the stationary state, as long as the Kramers-

Wannier duality is present. On the other hand, with decoherence in a Z2 odd basis,

the stationary state is in a phase characterized by spontaneous breaking of the spin

flip and replica permutation symmetries, as well as an area law entanglement (after

subtracting the leading volume law piece arising from the mixedness of the state).

4.3 Discussions

In this Chapter, we utilized a replicated Keldysh effective field theory to investigate the

effects of measurements and decoherence on critical systems. Specifically, we examined

both finite-time measurements/decoherence and the possible stationary state properties.

Our results suggest that scalings of correlation functions of local operators that are linear in
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the density matrix remain unaffected by measurement and decoherence over a finite period

of time. To analyze higher moments in the density matrix, we carefully distinguished

the symmetry of an n-replica theory in various situations, both in the bulk and on the

boundary. The low energy effective theory can be derived based on this symmetry, and

the fundamental consistency conditions of the Keldysh path integral. We then applied

this framework to the critical Ising model in one and two spatial dimensions, and low-

energy behaviors under different perturbations, such as IR symmetry breaking patterns

and correlation functions, were discussed. In one spatial dimension, we also explicitly

calculated certain entanglement characteristics and discussed their connection to recent

numerical studies.

We end with some open directions:

1. One relevant issue is to define and classify topological phases in open quantum sys-

tems, such as the Symmetry-Protected Topological (SPT) phases [?], using a Keldysh

effective field theory, and to investigate the implications of this non-trivial topology

on various observables. A concrete example of driven-dissipative Chern insulator has

been discussed in a remarkable study [158]. A natural conjecture is, when a unique

pure stationary state with a non-zero dissipative gap is present in the open quantum

dynamics, one can define an SPT phase for this stationary state. Furthermore, it

is expected that the classification of these phases will match that of the recently

proposed Average Symmetry-Protected Topological phases [115]. I will develop the

theory of such phases in more detail in the next step of my research.

2. Another open question is how to define and characterize topological orders for en-

sembles and mixed states [11, 48], or in non-unitary dynamics. This raises two

fundamental questions: (1) how to define and determine the stability of conventional

ground-state topological orders under local measurements and decoherence, and (2)

can there exist topologically ordered states in the stationary state of non-equilibrium

dynamics? Is it possible for there to be open system/non-unitary topological orders

that lack a ground-state counterpart? These questions pertain to the two distinct

timescales addressed in this Chapter, and a comprehensive investigation of this mat-

ter is reserved for future work.
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Chapter 5

Conclusion and Future Directions

In this thesis I studied the interplay between symmetry and topology in mixed ensembles.

In the first part of this thesis, including Chapter. 2 and 3, I introduced the concept of

average symmetry-protected topological (ASPT) phases in disordered ensembles with av-

erage symmetries and investigate their physical implications. We developed a systematic

framework, based on the physical picture of defect decoration and the mathematical tool

of spectral sequence, to classify and characterize ASPT phases, in both decohered and

disordered systems. We have also studied average symmetry-enriched topological (ASET)

phases in disordered systems. Our main results are:

• We emphasized the subtle differences between ASPT phases in decohered and disor-

dered systems, which leads to different classifications of ASPT in the two scenarios.

Nevertheless, they can both be classified and characterized under the same framework

of spectral sequence (decorated defects).

• We discovered a plethora of ASPT phases that are intrinsically mixed, in the sense

that they can only appear in mixed state systems (decohered or disordered) with

part of the symmetry being average. In other words, these states cannot be viewed

as clean SPT states deformed by decoherence or disorder. Some of these states can,

however, be viewed as intrinsically gapless pure SPT deformed by decoherence or

disorder. We discussed many examples, in both bosonic and fermionic systems.
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• We established that if the bulk is in a non-trivial ASPT phase, the boundary state

is highly likely to exhibit long-range quantum entanglement, with a probability ap-

proaching 1 as the system size increases (in the thermodynamical limit). This gen-

eralization extends the concept of t’ Hooft anomaly to average symmetries, resulting

in powerful constraints on the infrared dynamics of specific lattice systems.

• We developed a systematic theory of ASET phases in disordered (2 + 1)d bosonic

systems. Compared to clean SET phases, disordered ASET with average (and exact)

symmetries have some distinct features: (1) While an average symmetry can still per-

mute different anyons, its fractional representation on the anyons cannot be robustly

defined, unless the fractionalization pattern involves some ’t Hooft anomaly. (2) An

average symmetry and an exact symmetry can jointly have fractional representation

on the anyons. (3)The H3 obstructions of symmetry-enrichment patterns are lifted

when the relevant symmetries become average. This leads to intrinsically disordered

ASET phases without clean limits. The ground states of such ASET phases contain

localized anyons, which leads to gapless (yet still localized) excitation spectral.

In the second part of the thesis (Chapter. 4), a replicated Keldysh effective field theory

has been developed to investigate the effects of measurements and decoherence on critical

systems. Specifically, we examined both finite-time measurements/decoherence and the

possible stationary state properties. The long distance properties of both scenarios are

described by an effective field theory, which can be derived solely based on symmetry con-

siderations and the fundamental consistency conditions of the Keldysh path integral. We

then applied this framework to the critical Ising model in one and two spatial dimensions,

and discussed the connection between our results and recent numerical studies.

Many possible future directions have been mentioned in previous chapters. Let me end

with some further open questions:

• Boundary physics : In this thesis I mostly focused on the systematic bulk classifica-

tion and characterization of ASPT phases, with a few examples of bulk-boundary

correspondence, including (1+1)d Z2 ×Zave
2 ASPT phase and the surface ASET of a

(3+1)d ASPT phase. In [115] and Chapter. 2, it was shown that the boundary of an
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ASPT state has average ’t Hooft anomaly, which leads to long range quantum entan-

glement. It will be useful to understand more systematically how average ’t Hooft

anomalies constrain the behavior of the boundary states (for example, the form of

correlation functions), especially for the intrinsically mixed/disordered ASPTs which

have no clean limit to begin with.

• Topological order in mixed states : I have limited myself to topological order in disor-

der ensemble, where the notion of SRE ensembles can be naturally extended to LRE

ensembles. Defining the notion of topological order for general mixed state is an im-

portant question. In fact, a large family of examples can be obtained by “classically”

gauging average symmetry and “quantum-mechanically” gauging exact symmetry in

ASPT phases. This is an open problem I’m working on.

• Phase transitions : Quantum phase transitions of intrinsically mixed ASPT or ASET

will necessarily involve decoherence or disorders in important manners. This makes

the study of such (necessarily non-unitary) quantum phase transitions both challeng-

ing and exciting.

• Physical realizations : an important task is to realize some ASPT or ASET phases,

especially the intrinsically mixed ones, in experimental platforms such as NISQ sim-

ulators or disordered solid-state systems. On this front, simple preparation protocols

such as those outlined in Sec. 3.2 are particularly promising.
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Appendix A

Appendices for Chapter. 2

A.1 Atiyah-Hirzebruch spectral sequence for Class AII

In order to define a fermionic theory in symmetry class AII, one should equip the space-

time manifold with a pinc̃
+ structure. In (d+ 1)-dimension, the structure group fits in the

short exact sequence:

1 U(1) pinc̃
+ O(d+ 1) 1, (A.1)

with the reflection element in O(d + 1) squares to 1 in Euclidean signature and acts on

U(1) by complex conjugation. For our purpose, we calculate the cobordism Ω•
pinc̃+

using

an AHSS with E2 page given by Ep,q
2 = Hp(BZ2; Ω

q
spinc(pt)), with the coefficient group

twisted appropriately by Z2. For example, the IQH root state and the E8 root state are

both time reversal odd, so Z2 acts on their corresponding elements in Ω•
spinc non-trivially.

On the other hand, Z2 acts on the U(1) charge trivially. The E2 page in low degree is
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given by

2U(1)T 2(−1)Z2 2(−1)Z2t2 2(−1)Z2t4

0

U(1) U(1) (−1)Z2t (−1)Z2t3 (−1)Z2t5

0

U(1)T (−1)Z2 (−1)Z2t2 (−1)Z2t4

0 1 2 3 4 5 ,

(A.2)

in which U(1)T indicates the coefficient twisted by time reversal. t is the generator of the

cohomology ring H•(BZ2;Z2) = Z2[t] with t in degree one. In this spectral sequence only

the d3 differential can possibly be non-trivial. Given[60, 180]

d3 = (−1)(Sq
2+t·Sq1+t2) ◦ β, (A.3)

for T 2 = −1 when acting on fermions, one can see that the d3 differential vanishes for

elements with total degrees up to 4. Here β is the Bockstein of the following sequence in

cohomology:

1 Z2 U(1) U(1) 1
(−1)x x2

(A.4)

such that β : Hn(BZ2;U(1)) → Hn+1(BZ2;Z2). Physically, the vanishing of differential

means the decorations we discussed in Sec. 2.5 are consistent. The calculation also agrees

with the Z3
2 classification of class AII TIs in three spatial dimensions [165].
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Appendix B

Appendices for Chapter. 3

B.1 On the definition of disordered ASPT

The definition of disordered average SPT has originally given in Ref. [115] is slightly more

complicated than that given in Sec. 3.1.2. In particular, in Ref. [115] a short-range entan-

gled ensemble requires any two ground states to be adiabatically connected, namely for

any disorder realization I, I ′, it is required that |ΨI⟩ = UII′|ΨI⟩ for some finite-depth local

unitary UII′ . Instead, in Sec. 3.1.2 we only demand that any ground state in the ensemble

|ΨI⟩ to be short-range entangled with correlation length ξI < ξm for some finite maximal

correlation length in the ensemble ξm. We now discuss to what extend our new definition

is equivalent to the old one.

Consider a ground state in the ensemble |ΨI⟩ in a large but finite system without

boundary. As a short-range entangled state, it belongs to an invertible phase labeled by

ωD+1
I ∈ hD+1(A), where hD+1(A) classifies invertible phases with exact symmetry A in D

space dimensions. On a finite system, we could effectively compactify the space by viewing

certain dimensions as points – for example, the entire system can be viewed as a point if we

zoom out far enough. When the system is compactified this way to a (D− p) dimensional

space, it should be labeled as a (D− p) invertible state labeled by ωD+p−1
I ∈ hD−p+1(A) (it

should also depend on the compactification cycle but we will omit this information in the
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notation). In general ωD+p−1
I is not directly decided by the bulk state ωD+1

I . In particular,

when p = D the system reduces to a point and the only nontrivial information left is the

charge under A symmetry.

Now the condition in Ref. [115] is the statement that ωD−p+1
I is identical for any disorder

realization I, for all 0 ≤ p ≤ D. We now show that the new condition in Sec. 3.1.2

automatically implies the old condition for 0 ≤ p ≤ D − 1: if for some 0 ≤ p ≤ D − 1,

ωI ̸= ω′
I for two disorder realizations HI and HI′ , then we can choose a third disorder

realization in the ensemble I ′′, which has HI′′ = HI in some region R, and HI′′ = HI′

in the complement R̄. Notice that the spatial independence of the disorder potential is

crucial for this construction. The difference in ω in R and R̄, for suitably chosen R, implies

a long-range entangled boundary state on ∂R, which leads to a correlation length ∼ |∂R|.
This leads to unbounded correlation length, and therefore violates the new condition in

Sec. 3.1.2.

The above argument does not apply for p = D, since two regions with different A

charges do not need to have nontrivial boundary state. However, our definition of exact

symmetry in Sec. 3.1.2 requires that the exact charge to be identical for each disorder

realization, so the p = D condition is automatically satisfied.

B.2 A brief review of spectral sequence

This section provides a brief overview of the LHS spectral sequence of group cohomology,

which is crucial for classifying the decohered ASPT phases. Furthermore, we extend our

discussion to the Atiyah-Hirzebruch (AH) spectral sequence, which is particularly relevant

for classifying the disordered ASPT phases.

A spectral sequence consists of an assembly of Abelian groups Ep,q
r (0 ≤ r, p, q ∈ Z).

For a fixed r, the collection of all Ep,q
r are called Er page. The differentials are defined as

the endomorphism of the Er page as:

dr : E
p,q
r → Ep+r,q−r+1

r , (B.1)
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Figure B.1: LHS spectral sequence and differentials in E0, E1, and E2 pages.

which should satisfy d2
r = 0. Therefore, the Er pages and the differentials dr form a cochain

complex, with the following isomorphism:

Ep,q
r+1 ≃

Ker(dp,q
r )

Im(dp−r,q+r−1
r )

= H∗(Er, dr), (B.2)

where H∗(Er, dr) is the homology group of the cochain complex {Er, dr}.

For the LHS spectral sequence with the symmetry group given by Eq. (3.16), we denote

the set of n-cochains, n-cocycles, and n-coboundaries of a group G0 with coefficients in M

by Cn[G0,M ], Zn[G0,M ], and Bn[G0,M ], respectively.

The E0 page of the LHS spectral sequence is defined as a group of cochains Ep,q
0 =

Cp (G, Cq[A,M ]), and the d0 differential maps a cochain in Ep,q
0 to a cochain Ep,q+1

0 (see

Fig. B.1(a) for illustration). The kernel of dp,q
0 is Cp (G,Zq[A,M ]), while the image of

dp,q−1
0 is just Cp (G,Bq[A,M ]). Hence the E1 page is given according to Eq. (B.2) by

Ep,q
1 =

Ker(dp,q
0 )

Im(dp,q−1
0 )

=
Cp (G,Zq[A,M ])

Cp (G,Bq[A,M ])

= Cp (G,Hq[A,M ]) . (B.3)

We recognize that E1 page is a subgroup of E0 page: E1 ⊂ E0. More precisely, if we label
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the elements of Ep,q
0 by wp,q

0 , the elements of Ep,q
1 are the equivalence classes of elements in

Ep,q
0 that satisfy the condition dp,q

0 wp,q
0 = 0.

Subsequently, for the E1 page E1 = Cp (G,Hq[A,M ]), the differential d1 maps a cochain

in Cp (G,Hq[A,M ]) to a cochain in Cp+1 (G,Hq[A,M ]) [see Fig. B.1(b)]. The kernel of dp,q
1

is cocycles in Zp (G,Hq[A,M ]), and the image of dp−1,q
1 is coboundries in Bp (G,Hq[A,M ]).

Then according to Eq. (B.2), the E2 page is given by

Ep,q
2 =

Ker(dp,q
1 )

Im(dp−1,q
1 )

=
Zp (G,Hq[A,M ])

Bp (G,Hq[A,M ])

= Hp (G,Hq[A,M ]) . (B.4)

And E2 page is a subset of E1 page,

E2 ⊂ E1 ⊂ E0. (B.5)

More precisely, elements of E2 page are those elements in E0 page that satisfy the conditions

d0w0 = 0, d1w0 = 0. (B.6)

Following the above paradigm, we can further define the arbitrary Er page, satisfying the

following condition:

Er ⊂ Er−1 ⊂ · · · ⊂ E2 ⊂ E1 ⊂ E0. (B.7)

The elements in Er page should satisfy the following r conditions,

dqw0 = 0, 0 ≤ q ≤ r − 1. (B.8)

In particular, if there is a large enough integer r such that the condition drw0 = 0 is

satisfied over the entire Er page, then the Er+1 page is essentially identical to the Er page:

Er+1 = Er, and all higher pages are the same. It is then said that the spectral sequence

stabilizes at the Er page. For the LHS spectral sequence, the E∞ page is isomorphic

to the group cohomology Hp+q[G̃,M ] as a set. In this thesis, we set M = U(1) for the

classification of ASPT phases.

The generalization to the AH spectral sequence is straightforward: We can construct the

Er pages of the AH spectral sequence from LHS spectral sequence by substituting the term
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Hq[A,U(1)] characterizing the classification of A-symmetric SPT phases in q-dimensional

spacetime by the generalized cohomology group hq(A) characterizing the classification of

A-symmetric invertible topological phases. For example, the E2 page is defined as

Ep,q
2 = Hp[G, hq(A)], p+ q = d+ 1. (B.9)

Likewise, we can also define the differentials as Eq. (B.1), and the AH spectral sequence will

converge to the generalized cohomology group hd+1(G̃), i.e., E∞ is isomorphic to hd+1(G̃).

Physically, the difference between AH and LHS spectral sequences is that Hq[A,M ]

classifies the A-symmetric SPT phases in q-dimensional spacetime in the LHS spectral se-

quence, while hq(A) classifies theA-symmetric invertible topological phases in q-dimensional

spacetime in the AH spectral sequence.
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Appendix C

Appendices for Chapter. 4

C.1 Weak Measurements

This Appendix presents a derivation of the state evolution under weak measurements. For

simplicity, I focus on a two-level system as a toy model. A generalization to the many body

cases, Eq. (4.7) and Eq. (4.8), is straightforward. The derivation follows a methodology

similar to that outlined in Ref. [15].

Consider a two dimensional Hilbert space, with basis states |0⟩ and |1⟩. The two basis

states are eigenstates of a Hermitian operator O, which has eigenvalues of 0 and 1. A

generalized measurement is a partition of unity by non-negative Hermitian operators:∑
a

A†
aAa = 1. (C.1)

The probability of obtaining the outcome a in a generic state |Ψ⟩ is given by ⟨Ψ|A†
aAa|Ψ⟩.

In the two level system, projective measurements in the eigenbasis of O are implemented

by

P0 = 1−O, P1 = O, (C.2)

which project the state onto either |0⟩ or |1⟩ depending on the measurement outcome. If we

want a measurement that only alters the state |Ψ⟩ slightly, i.e. a continuous measurement,
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we can choose

A± =

√
1± Γ

2
P0 +

√
1∓ Γ

2
P1, (C.3)

with Γ ∈ [0, 1] being the measurement strength. The expression is simply an interpolation

between no measurement (Γ = 0) and projective measurement (Γ = 1). When Γ ≪ 1, the

post-measurement state |Ψ′⟩ is only weakly altered:

|Ψ′⟩ =

A+|Ψ⟩/√p+, if + measured,

A−|Ψ⟩/√p−, if − measured,
(C.4)

with the probabilities p± = 1
2
[1 ± Γ(1 − 2⟨O⟩)]. Here ⟨O⟩ = ⟨Ψ|O|Ψ⟩ is the expectation

value of O in the pre-measurement state. The change in the state density matrix, up to

first order in Γ is given by

δρ ≈ −Γ

2
[M, [M,ρ]] +

√
ΓW{M,ρ}, (C.5)

where the measurement operator M is defined as M =: O − ⟨O⟩. W = ±1 for outcome +

and −, respectively. This equation immediately implies Eq. (4.7) and Eq. (4.8).

In the scenario where measurements are performed over an O(L) time, it is important

to handle the averaging over the trajectory ensemble with care, particularly when n > 1

replicas are involved. This is because the measurement action SM explicitly depends on

the expectation value of O within a specific outcome trajectory, i.e., ⟨O⟩(t) = tr[Oρ(t)],

which arises from the definition of the measurement operator Mt = O−⟨O⟩(t). Therefore,
to solve the time evolution of ρn = ρ⊗n for n > 1 (in this Chapter, we focused mostly on

ρ2), it is necessary to determine the evolution of ρn+1 simultaneously [16]. To handle this,

we employ a mean-field approximation to account for the measurement feedback on the

time evolution. Specifically, the trajectory-averaged product is approximated as

tr(ρO) · ρ⊗ ρ ≈ tr(ρ2O) · ρ2, (C.6)

which becomes more accurate as the measurement strength Γ decreases. This approxi-

mation is valid for the purpose of our study, which is to investigate the stability of the

critical system against infinitesimal measurement. Accordingly, the trajectory-averaged
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expectation value tr(ρ2O) is then replaced by the expectation value of O in the unper-

turbed ground state, which is absorbed by normal ordering of the CFT operators. As a

result, all one-point functions in the CFT are set to 0.
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