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Abstract

With the growing practice of mechanizing language metatheories, it has become ever more
pressing that interactive theorem provers make it easy to write reusable, extensible code and proofs.
This thesis presents a novel language design geared towards extensible metatheorymechanization in
a proof assistant. The new design achieves reuse and extensibility via a form of family polymorphism,
an object-oriented idea, that allows code and proofs to be polymorphic to their enclosing families.
Our development addresses technical challenges that arise from the underlying language of a proof
assistant being simultaneously functional, dependently typed, a logic, and an interactive tool. Our
results include (1) a prototypical implementation of the language design as a Coq plugin, (2) a
dependent type theory capturing the essence of the language mechanism and its consistency and
canonicity results, and (3) case studies showing how the new expressiveness naturally addresses
real programming challenges in metatheory mechanization.

iv



Acknowledgments

I am grateful for many useful comments and suggestions. I thank Benjamin Delaware, Anastasiya
Kravchuk-Kirilyuk, Yao Li, Andrew Myers, Zhixuan Yang, Prabhakar Ragde, Werner Dietl for
valuable discussions and feedback.

I also thank my advisors: Yizhou Zhang and Ondřej Lhoták for their patience and guidance.
This work was supported in part by an Amazon research award on automated reasoning. The

views and opinions expressed are those of the author and do not necessarily reflect the position of
any funding agency.

v



Table of Contents

Author’s Declaration ii
Statement of contributions iii
Abstract iv
Acknowledgments v
List of Figures vii
List of Abbreviations viii
1 Introduction 1
2 Design Requirements and Challenges 3
3 Language Design 5
3.1 Extensible Inductive Types and Exhaustive Recursion/Induction 5
3.2 Late Binding and Equalities 7
3.3 Overriding 8
3.4 Sound Logical Reasoning 8
3.5 Composing Families as Mixins 8
3.6 Injectivity and Disjointness of Constructors via Partial Recursors 9
4 Compiling Family Polymorphism to Parameterized Modules 14
4.1 Limitations 17
5 A Preview of FMLTT: A Core Dependent Type Theory 18
6 Syntax and Semantic Models of FMLTT 25
6.1 MLTT with Explicit Substitutions and Universe Levels 25
6.2 FMLTT 28
6.3 A Translation that Compiles Linkages Away 31
6.4 A Proof Relevant Logical-Relations Model for Canonicity 32
6.5 Using FMLTT’s Linkage Transformers to Model a Derived Family 38
7 Case Studies 39
8 Related Work 41
9 Conclusion 43
References 44

vi



List of Figures

1 STLC metatheories (left) and its extension with fixpoints (right). 3
2 Using fpop to mechanize STLC and the fixpoints extension, as envisioned in Figure 1. 6
3 Composing extensions of STLC. 9
4 Compilation of family STLC (Figure 2). 15
5 Compilation of family STLCFix and the final Check command (Figure 2). 16
6 Syntax and selected typing rules of MLTT, named variables and meta-level substitution 18
7 Syntax and selected typing rules of FMLTT, named variables and meta-level substitution 19
8 FMLTT encoding of the STLC family from Figure 2 21

vii



List of Abbreviations

EP Expression Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

OO object-oriented . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

STLC simply typed _-calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

FPOP Family POlymorphism for a Proof assistant . . . . . . . . . . . . . . . . . . . . . . . 5

FMLTT FaMiLy Type Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

QIIT Quotient Inductive-Inductive Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

DTC data types à la carte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

MTC meta-theory à la carte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

viii



1 INTRODUCTION
There is a growing trend among programming languages researchers to use proof assistants to
mechanize metatheories. However, the programmer runs into an old problem in the new setting of
proof engineering: the Expression Problem (EP) [Wadler et al. 1998].

The EP is a programming challenge that epitomizes the difficulty of writing type-safe, extensible
code. To define an expression language that can be reused for future extensions, the programmer
faces a fundamental tension [Reynolds 1975] between adding new constructors to a data type (e.g.,
new abstract syntax) and adding new functions over the data type (e.g., new compiler passes).

The EP is well studied in the setting of ordinary functional programming and object-oriented (OO)
programming. Modern languages, such as Scala [Odersky and Zenger 2005], have a good supply of
linguistic features that offer expressive power to solve the EP.

In contrast, proof assistants offer few linguistic solutions to the EP. But the challenge of writing
extensible, type-safe code is as real as in any other language. Metatheory mechanization epitomizes
the difficulty: the programmer faces a tension between adding new constructors to an inductive
type (e.g., new abstract syntax) and adding new functions and theorems over the inductive type
(e.g., new metatheoretical results).

In the Coq proof assistant, for instance, inductive types, as well as functions and theorems
over inductive types, are closed to extension. So to reuse mechanized metatheories, the common
practice is still to copy code and proofs and then modify them in each extension. But having to
maintain multiple copies is highly non-modular and antithetical to good software engineering. The
programmer could also turn to design patterns for structuring developments and tool support for
cutting down on boilerplate [Delaware et al. 2011, 2013a; Schwaab and Siek 2013; Keuchel and
Schrijvers 2013; Forster and Stark 2020]. But these solutions tend to require heavy lifting from the
programmer to make code extensible and often lead to non-idiomatic programming styles.

We thus set out to answer the following question: can extensible metatheory mechanization be
made easier by having a proof assistant support new linguistic features that address the EP?
At the core of many linguistic solutions to the EP is inheritance. Inheritance is sometimes

interpreted narrowly as a subclass’ inheriting methods and instance variables from its superclass.
But the language-theoretic essence of inheritance is more general: it is a linguistic approach to
incrementally modifying record-like definitions by allowing late binding [Cook et al. 1990].

Language mechanisms including virtual classes [Madsen and Moller-Pedersen 1989; Ernst et al.
2006], mixins [Bracha and Cook 1990], virtual types [Thorup 1997], and extensible cases [Blume
et al. 2006] are based on this essential idea of inheritance. In particular, when a language mech-
anism allows late binding of the meaning of nested types and terms, it is said to support family
polymorphism [Ernst 2001]: types and terms are polymorphic to a family they are nested within.

Contributions. We contribute a language design that integrates family polymorphism into a proof
assistant. Because code and proofs are polymorphic to a family they are nested within, they can
be inherited and reused by a derived family. Hence, family polymorphism allows for extensible
metatheory mechanization.

STLC

STLC +
product

STLC +
fixpoint

As an example, the diagram to the right depicts an extensible mechaniza-
tion of the simply typed _-calculus (STLC), using family polymorphism. An
extension of STLC with products and another with fixpoints can both in-
herit from the base STLC family: they reuse mechanized metatheories, from
abstract syntax all the way to the type-safety theorem, only adding new
constructors to inductive types and adding new cases to recursive functions
and induction proofs as needed by an extension.
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Integrating family polymorphism into a dependent type theory for logical reasoning, however,
poses significant technical challenges. As our analysis will show, pillars of dependent type theories—
including inductive types, definitional equality, and logical consistency—are all inimical to the
kind of extensibility and family polymorphism found in existing OO language designs. Thus, our
contributions include novel design recipes for dealing with these challenges and foundational meta-
theoretical guarantees on the underlying logic. Specifically, we make the following contributions.
• We present a language design that enables extensible metatheory mechanization in a higher-

order, dependent type theory with inductive types (Section 3). The language design reconciles
the expressiveness enabled by family polymorphism with the rigor of a proof assistant, while
largely retaining an idiomatic programming style.

• We contribute a prototypical implementation of our language mechanism as a Coq plugin
(Section 4), available at https://github.com/DKXXXL/FPOP.The plugin works by compiling
surface-language definitions into Coq modules parameterized by explicit extensibility hooks.

• We capture the essence of the new language mechanism formally by extending Martin-Löf
type theory with facilities to express family polymorphism (Section 5). We prove foundational
metatheoretical results including consistency and canonicity.

• We present case studies of using our Coq plugin to mechanize language metatheories (Section 7).
They show how our language design naturally solves the EP and enables a good amount of
reuse and extensibility for mechanizing proofs.

2
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2 DESIGN REQUIREMENTS AND CHALLENGES
Integrating family polymorphism into a proof assistant presents challenges far beyond those found
in an object-oriented setting, as the underlying programming language is simultaneously functional,
dependently typed, a logic, and an interactive tool.

C1. Extensible inductive types vs. exhaustive inductive reasoning. Inductive types, general-
izing algebraic data types found in functional languages, are a central feature of any proof assistant
in use for mechanizing language metatheories. They offer a means to define abstract syntax and
inference rules. But unfortunately, inductive types are closed to extension by design.

A family-polymorphism design could potentially support extensible inductive types, by allowing
a derived family to add new constructors to inductive types inherited from a base family. Such a
feature would be useful for extending mechanized languages. As an example, Figure 1 shows an
STLC extension, the mechanization of which would be made easier by extensible inductive types.
Code would be organized into two families, with the derived family inheriting constructors from
the base family (e.g., the ellipsis under “Typing rules”) and adding new constructors to model the
syntax and semantics of a fixpoint construct.

However, there is a tension between extensibility of inductive types and exhaustivity of inductive
reasoning.1 In Figure 1, all the lemmas and theorems, as well as the substitution function, require
induction (i.e., elimination of inductive types). A language design must enforce that induction
remains exhaustive in the face of the new constructors in the derived family. For modularity, the

1The tension reflects a duality between variants and records. With record-like language constructs (e.g., objects and
families), it is safe for an extension to add new fields: existing fields can still be projected. But variant-like constructs (e.g.,
inductive types) do not automatically enjoy safe, modular addition of constructors: existing pattern matches could become
non-exhaustive.

Terms 𝑡 F ( ) | 𝑥 | _𝑥. 𝑡 | 𝑡1 𝑡2

Substitution function

( ) {𝑡/𝑥 } def
== ( ) 𝑦{𝑡/𝑥 } def

==

{
𝑦, if 𝑥 ≠ 𝑦

𝑡, if 𝑥 = 𝑦

(_𝑦. 𝑡 ′ ) {𝑡/𝑥 } def
==

{
_𝑦. 𝑡 ′ {𝑡/𝑥 }, if 𝑥 ≠ 𝑦

_𝑦. 𝑡 ′, if 𝑥 = 𝑦

(𝑡1 𝑡2 ) {𝑡/𝑥 }
def
== 𝑡1{𝑡/𝑥 } 𝑡2{𝑡/𝑥 }

Types 𝑇 F 1 | 𝑇1 → 𝑇2

Typing rules

Γ ⊢ () : 1
Γ (𝑥 ) = 𝑇

Γ ⊢ 𝑥 : 𝑇
Γ, 𝑥 : 𝑇1 ⊢ 𝑡 : 𝑇2

Γ ⊢ _𝑥. 𝑡 : 𝑇1 → 𝑇2
Γ ⊢ 𝑡1 : 𝑇1 → 𝑇2 Γ ⊢ 𝑡2 : 𝑇1

Γ ⊢ 𝑡1 𝑡2 : 𝑇2
Value forms Val( ( ) ) Val(_𝑥. 𝑡 )
Reduction rules

𝑡1 −→ 𝑡 ′1
𝑡1 𝑡2 −→ 𝑡 ′1 𝑡2

Val(𝑡1 ) 𝑡2 −→ 𝑡 ′2
𝑡1 𝑡2 −→ 𝑡1 𝑡

′
2

Val(𝑡2 )
(_𝑥. 𝑡1 ) 𝑡2 −→ 𝑡2{𝑡1/𝑥 }

Weakening lemma Substitution lemma
Preservation theorem Progress theorem
Type-safety theorem

Terms 𝑡 F · · · | fix𝑥. 𝑡
Substitution function

· · ·

(fix 𝑦. 𝑡 ′ ) {𝑡/𝑥 } def
==

{
fix 𝑦. 𝑡 ′ {𝑡/𝑥 }, if 𝑥 ≠ 𝑦

fix 𝑦. 𝑡 ′, if 𝑥 = 𝑦

Types 𝑇 F · · · (no change)
Typing rules

· · ·
Γ, 𝑥 : 𝑇 ⊢ 𝑡 : 𝑇
Γ ⊢ fix𝑥. 𝑡 : 𝑇

Value forms · · · (no change)
Reduction rules

· · · fix𝑥. 𝑡 −→ 𝑡 {fix𝑥. 𝑡/𝑥 }
Weakening lemma (a new case required)
Substitution lemma (a new case required)
Preservation theorem (a new case required)
Progress theorem (a new case required)
Type-safety theorem (no change)

Mechanization of terms, types, typing rules, value forms,
and reduction rules is via inductive types.
Mechanization of the substitution function and all the lem-
mas and theorems is by induction over inductive types.

Figure 1. STLC metatheories (left) and its extension with fixpoints (right).

3



type system should do so without requiring redefinition or rechecking of those cases already
handled by the base family.

C2. Late binding vs. definitional equality. Family polymorphism enables modular reuse via
late binding: the code of a base family can be reused by a derived family, because fields referenced
by that code have meanings polymorphic to the enclosing family.
This flexibility, however, prevents definitional equality that one takes for granted when pro-

gramming in a proof assistant. In Figure 1, a proof assistant supporting family polymorphism
cannot unfold references to the substitution function into a pattern match against four cases, as a
derived family may modify the definition of the function by adding new cases. Without the ability
to unfold the substitution function, how can the programmer even prove the substitution lemma?
The problem is compounded by the occasional need in derived families to override fields, which is
potentially at odds with being able to use equalities over the fields.

C3. Self reference vs. logical consistency. The language-theoretic essence of late binding is
self reference; inheritance and family polymorphism are mechanisms for incrementally modifying
self-referential definitions [Cook et al. 1990]. However, self reference could easily lead to divergence.
Divergence is not a concern for the design of ordinary OO or functional languages, but it would
mean logical inconsistency—and hence unsoundness!—for a language aimed at logical reasoning. A
family-polymorphism design must tame self reference to guarantee consistency.

C4. User experience and system implementation. Interactive theorem proving and tactic
programming are central to a typical programming experience with a proof assistant. A language
design integrating family polymorphism should be compatible with these forms of programming.
In particular, it should be possible in our system to incrementally navigate through vernacular
commands and, moreover, construct proofs with common tactics while getting instant feedback on
the proof state, even in the middle of a family definition. Last but not least, in addition to proving
theorems, it should be possible for terms defined with families to possess computational content.

4



3 LANGUAGE DESIGN
We present the key ingredients of our design as an extension to the Coq proof assistant, though we
believe the design could be adapted to other proof assistants such as Lean. We call our design and
implementation Family POlymorphism for a Proof assistant (FPOP). In this section, we focus on
the language design of fpop. Section 4 describes its implementation as a Coq plugin.
Figure 2 shows how STLC and its extension with fixpoints can be mechanized using fpop, in a

style envisioned in Figure 1. The base family STLC hosts the STLCmetatheories, from abstract syntax
to the type-safety theorem. Family STLCFix, derived from STLC, makes adjustments as needed by a
fixpoints extension: it adds new constructors to the inductive types (FInductive) and adds new cases
to the recursive functions (FRecursion) and induction proofs (FInduction). Existing constructors
and cases, as well as those definitions and theorems that need no adjustments (ty, env, empty, steps,
and typesafe), are automatically inherited and reused. In particular, executing the last command,
Check STLCFix.typesafe, displays the type-safety theorem of the fixpoints extension.

3.1 Extensible Inductive Types and Exhaustive Recursion/Induction
Extending inductive types. In family STLCFix, the FInductive tm further binds the tm type in
family STLC. It has five constructors: four inherited from STLC and a fifth called tm_fix.
Crucially, the meanings of tm and its constructors are late bound, depending on the family

in which they are referenced. Consider tm_app. It is defined in family STLC and is thus unaware
of tm_fix. Yet in family STLCFix, we can use tm_app to construct applications of fixpoints, as in
tm_app (tm_fix "f" 𝑡1) 𝑡2. This use is justified by tm_app’s type, tm→ tm→ tm. It allows tm_app to
be applied to anything of type tm, which in family STLCFix include those constructed from tm_fix.

Ensuring exhaustivity of induction. Ordinarily, an inductive type is not extensible: it is exhaus-
tively generated by its constructors and has no more inhabitants beyond those they construct. This
idea is captured by the eliminator (aka recursor) associated with an inductive type. For example, if
tm were defined as an ordinary inductive type, then its eliminator would have the following type:

tm_rect : ∀ (P : tm → Type), P tm_unit → (∀ x, P (tm_var x)) →
(∀ x t, P t → P (tm_abs x t)) →
(∀ t1, P t1 → ∀ t2, P t2 → P (tm_app t1 t2)) → ∀ t, P t

The eliminator would enable function definitions by recursion and proofs by induction, over tm,
that exhaustively handle the four cases corresponding to each constructor. The (dependent) return
type P is called the motive of the recursion.

With inductive types made extensible, exhaustivity of induction is now in question, however. In
particular, the recursor tm_rect should no longer be allowed, because its type mentions tm, whose
meaning is late bound, yet tm_rect purports to claim ∀ t, P t given only four case handlers.

To reconcile the tension without requiring redefinition or rechecking of case handlers (C1), our
design introduces the FRecursion and FInduction commands. The key idea is to allow case handlers
to be added retroactively, should inductive types be extended, and to allow recursion and induction
(which are defined in terms of case handlers) to be late bound.

As an example, consider the substitution function subst, defined using FRecursion. The on clause
specifies that recursion is over tm. The motive clause suggests that the recursive function being
defined has type tm → id → tm → tm. The subst function in STLC is further bound by the subst

in STLCFix: the four cases from STLC are automatically inherited and reused, with STLCFix adding
a fifth case retroactively to form a new subst function. For exhaustivity, it is a static error if the
programmer fails to further bind subst and define this fifth case. The type system does this check
in family STLCFix by examining if the inductive type tm, over which subst is recursively defined, is
further bound in the same family.

5



Family STLC. (* The base STLC *)

FInductive tm : Set B (* Terms *)
| tm_unit : tm
| tm_var : id → tm
| tm_abs : id → tm → tm
| tm_app : tm → tm → tm.

FRecursion subst on tm (* Substitution function *)
motive _(_ : tm), id → tm → tm.

Case tm_unit B _ x t, tm_unit.
Case tm_var B _ y x t,

if (eqb x y) then t else (tm_var y).
Case tm_abs B _ y t' IHt' x t,

tm_abs y (if (eqb x y) then t' else IHt' x t).
Case tm_app B _ t1 IHt1 t2 IHt2 x t,
tm_app (IHt1 x t) (IHt2 x t).

End subst.

FInductive ty : Set B (* Types *)
| ty_unit : ty
| ty_arrow : ty → ty → ty.

FDefinition env : Type B id → option ty.
FDefinition empty : env B _ _, None.

FInductive hasty : env → tm → ty → Prop B
| ht_unit : ∀ G, hasty G tm_unit ty_unit
| ht_var : ... (* Typing rules *)
| ht_abs : ...
| ht_app : ....

FInductive value : tm → Prop B (* Value forms *)
| v_unit : value tm_unit
| v_abs : ∀ x t, value (tm_abs x t).

FInductive step : tm → tm → Prop B
| st_app1 : ... (* Reduction rules *)
| st_app2 : ...
| st_beta : ∀ x t v, value v →
step (tm_app (tm_abs x t) v) (subst t x v).

FDefinition steps B clos_refl_trans step.

FInduction weakenlem on hasty (* Weaken. lemma *)
motive _ G t T (_ : hasty G t T),
∀ G', includedin G G' → hasty G' t T.

Case ht_unit. ... Qed. Case ht_var. ... Qed.
Case ht_abs. ... Qed. Case ht_app. ... Qed.
End weakenlem.

FInduction substlem on hasty (* Subst. lemma *)
motive _ G' t T (_ : hasty G' t T),
∀ G x t' T', G' = extend G x T' →
hasty empty t' T' → hasty G (subst t x t') T.

Case ht_unit. ... Qed. Case ht_var. ... Qed.
Case ht_abs. ... Qed. Case ht_app. ... Qed.
End substlem.

FInduction preserve on hasty (* Preserv. theorem *)
motive _ G t T (_ : hasty G t T),
G = empty → ∀ t', step t t' →
hasty empty t' T.

Case ht_unit. ... Qed. Case ht_var. ... Qed.
Case ht_abs. ... Qed. Case ht_app. ... Qed.
End preserve.

FInduction progress on hasty (* Progress theorem *)
motive _ G t T (_ : hasty G t T),
G = empty → value t ∨ ∃ t', step t t'.

Case ht_unit. ... Qed. Case ht_var. ... Qed.
Case ht_abs. ... Qed. Case ht_app. ... Qed.
End progress.

FTheorem typesafe : (* Type-safety theorem *)
∀ t t' T, steps t t' → hasty empty t T →
value t' ∨ ∃ t'', step t' t''.

Proof. ... Qed.

End STLC.

Family STLCFix extends STLC.
(* STLC extended with fixpoints *)

FInductive tm : Set +=
| tm_fix : id → tm → tm.
FRecursion subst on tm

motive (_ _, id → tm → tm).
Case tm_fix B _ y t' IHt' x t, ....
End subst.

FInductive hasty : env → tm → ty → Prop +=
| ht_fix : ∀ G x t T, hasty (extend G x T) t T
→ hasty G (tm_fix x t) T.

FInductive step : tm → tm → Prop +=
| st_fix : ∀ x t,

step (tm_fix x t) (subst t x (tm_fix x t)).

FInduction weakenlem on hasty motive ....
Case ht_fix. ... Qed.
End weakenlem.

FInduction substlem on hasty motive ....
Case ht_fix. ... Qed.
End substlem.

FInduction preserve on hasty motive ....
Case ht_fix. ... Qed.
End preserve.

FInduction progress on hasty motive ....
Case ht_fix. ... Qed.
End progress.

End STLCFix.

Check STLCFix.typesafe.

Figure 2. Using fpop to mechanize STLC and the fixpoints extension, as envisioned in Figure 1.
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The FInduction command is similar to FRecursion but allows cases to be defined in proof mode.
Consider weakenlem as an example. It is proven by induction on the typing relation hasty. Its motive
clause shows that the lemma reads as ∀ G t T, hasty G t T → ∀ G', includedin G G' → hasty G' t T.
Upon entering case ht_abs, for instance, Coq enters proof mode with the goal

∀ G', includedin G G' → hasty G' (tm_abs x t) (ty_arrow T1 T2)

and with the induction hypothesis ∀ G', includedin (extend G x T1) G' → hasty G' t T2. The pro-
grammer can use tactic programming to discharge the goal. Because the lemma is by FInduction

on hasty and because STLCFix adds a constructor ht_fix to hasty, the programmer is required in
family STLCFix to extend the proof of weakenlem to handle this extra case.

3.2 Late Binding and Equalities
Late binding of nested names. OO inheritance allows the late binding of method names. Family
polymorphism generalizes the power of OO inheritance by allowing the late binding of all names
nested within families, including those referring to types. We have seen that late binding of tm
allows the tm constructors in STLC to be reused in STLCFix to construct terms containing tm_fix.

As another example, consider the type of st_beta in family STLC. It refers to subst, whose meaning
is late bound. When st_beta is inherited into family STLCFix, st_beta has a type that now refers to
the subst function in STLCFix, where subst is defined by handling all the five cases known to that
family. Thus, late binding of subst allows the derived family to reuse st_beta as the 𝛽-reduction
rule for applications possibly constructed from tm_fix.
Importantly, a name is late bound only within a family that defines or further binds it. Outside

such families, the name can be accessed only by explicitly specifying a family that contains it. For
example, the last line of Figure 2 accesses typesafe with a qualifier STLCFix. The command prints

STLCFix.typesafe: ∀ t t' T, STLCFix.steps t t' → STLCFix.hasty STLCFix.empty t T →
STLCFix.value t' ∨ ∃ t'', STLCFix.step t' t''.

In this type, all references to nested names are qualified by STLCFix, as desired.

Equality on late bound names. Consider proving the ht_unit case of the substitution lemma,
substlem. The goal is seemingly trivial: the programmer is asked to prove
∀ G' G x t' T', G' = extend G x T' → hasty empty t' T' → hasty G (subst tm_unit x t') ty_unit.

If subst were an ordinary Coq function, then the programmer could discharge the goal with
intros; simpl subst; apply ht_unit. The Ltac term simpl subst unfolds subst using its defini-
tion and simplifies subst tm_unit x t' to tm_unit.

But with subst being late bound, subst cannot and should not be unfolded (C2): the definition of
subst, as a recursive function, varies across families, yet a derived family should be able to reuse
the proof of the ht_unit case even when it has to modify the definition of subst. Without the ability
to unfold subst, how can the programmer make progress in this proof, then?
A key observation is that although late binding prevents definitional equality on subst, it does

not affect propositional equality. That is, ∀ x t, subst tm_unit x t = tm_unit, as a proposition
(Prop) about the computational behavior of subst, should still hold. After all, how subst is defined
on tm_unit does not vary from a base family to a derived family; what can vary is subst itself as a
recursive function combining the case handlers.

Based on this insight, fpop automatically generates a propositional equality for each case handler
defined within FRecursion, making the equalities and the recursive function available as axioms
for use by the rest of the current family. fpop also provides a tactic fsimpl that enables, for
instance, simplifying subst tm_unit x t' to tm_unit. fsimpl works by rewriting applications of the
axiomatized recursive function using the axiomatized equalities about its computational behaviors.
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Note that the definitional equality on subst is available outside those families that contain subst.
Within those families, the meaning of subst is late bound (i.e., polymorphic to the enclosing family),
so only propositional equality is available. In contrast, outside those families, subst is always
referenced by specifying a family that contains it, as in STLC.subst and STLCFix.subst. As far as the
type checker is concerned, tm_unit and STLCFix.subst tm_unit x t' are the same thing—the type
checker equates them definitionally by unfolding STLCFix.subst and performing normalization.

3.3 Overriding
In an OO language, a subclass can override methods of a superclass. Similar expressivity is useful
for mechanizing proofs, too. For example, in a derived family, rather than adding new cases to an
induction proof, the programmer may prefer overriding the proof entirely, as we observe in our
case studies (Section 7).
Overriding is potentially incompatible with having equalities on late bound names, however.

Coq distinguishes opaque definitions from transparent ones. fpop supports the overriding of opaque
definitions, which include most proofs. It is safe to override opaque definitions, because the type
checker will never attempt to unfold them. For transparent definitions, the common case is that
the programmer does not want to override them. In Figure 2, env, empty, subst, and steps are
transparent—that is, they are not defined with Qed. fpop treats transparent definitions as non-
overridable by default. Thus, the definitional equalities on env, empty, and steps, as well as the
propositional equality on subst, are available to the type checker for type-checking the families.
fpop does allow the overriding of transparent definitions explicitly marked as Overridable by

the programmer. Overriding is made safe by requiring that when an overridable field is overridden,
code whose type checking involves unfolding that field should be overridden too. We expect this
feature to be used occasionally.

3.4 Sound Logical Reasoning
In Figure 2, just because the typesafe theorem in STLC is inherited and reused by STLCFix, it does
not follow that in STLCFix the programmer can use typesafe to prove progress. If the programmer
did, then they would be committing the logical fallacy of circular reasoning: the proof of progress
would depend on typesafe, yet the proof of typesafe depends on progress. Such circularity would
easily lead to logical inconsistency. Consider the following two families, where B extends A:

Family A.
FLemma f : False. Proof. Admitted.
FLemma g : False. Proof. apply f. Qed.
End A.

Family B extends A.
FLemma f : False. Proof. apply g. Qed.
End B.

B overrides lemma f by proving it using g. Lemma g is in turn inherited from family A, where it is
proven using a late bound reference to lemma f. Circularity between f and g allows proving False!
To ensure the soundness of logical reasoning (C3), the type system requires that in a derived

family, the context in which a field is defined be preserved from the base family. In STLC, progress
is in the context of typesafe. Per the requirement, this relationship must be preserved into STLCFix,
which prevents the proof of progress from depending on typesafe in STLCFix.

Note that the requirement still allows a derived family to introduce new declarations into the
context of a field. For example, the left column of Figure 3 shows an extension of STLC with
iso-recursive types, where tysubst is introduced into the context of hasty. In the event that fpop
cannot infer where the programmer intends to place a new field, an annotation is required.

3.5 Composing Families as Mixins
Families can be readily reused to construct larger extensions thatmix in [Bracha and Cook 1990] the
functionalities of the individual families. A family like STLCFix can be viewed as a family-to-family
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Family STLCIsorec extends STLC.
(* STLC extended with iso-recursive types *)

FInductive tm : Set +=
| tm_fold : tm → tm | tm_unfold : tm → tm.

FRecursion subst on tm motive .... ... End subst.

FInductive ty : Set +=
| ty_var : id → ty | ty_rec : id → ty → ty.

FRecursion tysubst on ty (* Type-level substitution *)
motive _(_ : ty), id → ty → ty.

Case ty_unit B .... Case ty_arrow B ....
Case ty_var B .... Case ty_rec B ....
End tysubst.

FInductive hasty : env → tm → ty → Prop +=
| ht_fold : ∀ G t 𝛼 T,

hasty G t (tysubst T 𝛼 (ty_rec 𝛼 T)) →
hasty G (tm_fold t) (ty_rec 𝛼 T)

| ht_unfold : ....

... (* Other adjustments *)

End STLCIsorec.

Family STLCFixIsorec extends STLC
using STLCFix, STLCIsorec. (* STLC extended

with fixpoints and iso-recursive types *)
End STLCFixIsorec.

Family STLCProd extends STLC.
(* STLC extended with products *)

FInductive tm : Set +=
| tm_pair : tm → tm → tm
| tm_fst : tm → tm | tm_snd : tm → tm.

FRecursion subst on tm motive .... ... End subst.

FInductive ty : Set +=
| ty_prod : ty → ty → ty.

... (* Other adjustments *)

End STLCProd.

Family STLCProdIsorec extends STLC
using STLCProd, STLCIsorec. (* STLC extended

with products and iso-recursive types *)
FRecursion tysubst on ty

motive _(_ : ty), id → ty → ty.
Case ty_prod B .... (* Substitution on product types *)
End tysubst.

End STLCProdIsorec.

Family STLCFixProdIsorec extends STLC
using STLCFix, STLCProdIsorec. (* STLC extended

with fixpoints, products, and iso-recursive types *)
End STLCFixProdIsorec.

Figure 3. Composing extensions of STLC.

functor—and hence a mixin, in the sense of [Flatt et al. 1998]—that transforms any family providing
the base STLC functionalities (i.e., STLC or a derived family there of) into a new family additionally
supporting fixpoints.

In Figure 3, STLCFixIsorec is declared as an STLC extension that mixes in STLCFix and STLCIsorec.
The family is declared with minimal verbiage, yet STLCFixIsorec.typesafe is automatically a proof
of the type-safety theorem of an STLC equipped with fixpoints and iso-recursive types.

Mixin composition is a form of multiple inheritance, which may cause name conflicts in general.
fpop requires the programmer to resolve conflicts by overriding conflicted overridable fields.
In the presence of extensible inductive types, mixin composition may also create an obligation

to retrofit the mixins with new case handlers. In Figure 3, family STLCProdIsorec is composed of
two mixins: STLCProd, which extends the inductive type ty with a new constructor ty_prod, and
STLCIsorec, which introduces a function tysubst recursively defined on ty. Hence, for exhaustivity,
it is required that a composition of STLCProd and STLCIsorec should additionally handle the ty_prod
case in tysubst.
3.6 Injectivity and Disjointness of Constructors via Partial Recursors
Tactics support for constructors. Coq provides tactics for proving injectivity and disjointness of
constructors (i.e., injection and discriminate). The proof terms generated by the tactics involve
exhaustively matching on the constructors of an inductive type, so they do not work for extensible
inductive types (C1). In principle, the programmer could use FInduction to prove injectivity and
disjointness. But this workaround is unsatisfying: it is tedious, it forces the programmer to revisit
the induction proofs every time an inductive type is extended, and above all, why should a property
like ¬(tm_var "x" = tm_abs "y" t) have anything to do with tm_fix?
To provide a streamlined programming experience (C4), fpop offers two tactics, finjection

and fdiscriminate. For example, in a proof state that contains a manifestly false assumption
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H : tm_var "x" = tm_abs "y" t, the programmer can use fdiscriminate H to obtain False and
thus discharge the current goal, just as they would with discriminate H if tm were not extensible.

Partial recursors. We make the observation that injectivity and disjointness of existing construc-
tors ought to hold regardless of future addition of constructors. This insight motivates the design
of partial recursors, which power the finjection and fdiscriminate tactics. Partial recursors can
be automatically generated for inductive types defined with FInductive.

As analyzed earlier, ordinary recursors, such as tm_rect, are impossible within a family in which
the name of the inductive type is late bound. However, a key observation is that extensible inductive
types still admit a weakened elimination principle where the motive is an option type. For example,
within family STLC, the partial recursor for tm has the following type, with extra equations describing
its behavior on each constuctor:
tm_prect_STLC : ∀ (P : tm → Type), option (P tm_unit) → (∀ x, option (P (tm_var x))) →

(∀ x t, option (P t) → option (P (tm_abs x t))) →
(∀ t1, option (P t1) → ∀ t2, option (P t2) → option (P (tm_app t1 t2))) → ∀ t, option (P t)

(∗ For arbitrary 𝑃 𝑟1 𝑟2 𝑟3 𝑟4, and we denote tmPR B tm_prect_STLC 𝑃 𝑟1 𝑟2 𝑟3 𝑟4 ∗)
(∗ We will have the following equations ∗)
tm_unit_eq_STLC : tmPR tm_unit = 𝑟1
tm_var_eq_STLC : tmPR (tm_var x) = 𝑟2 x

tm_abs_eq_STLC : tmPR (tm_abs x b) = 𝑟3 a b (tmPR b)

tm_app_eq_STLC : tmPR (tm_app a b) = 𝑟4 a (tmPR a) b (tmPR b)

tm_prect_STLC cannot be a trivial function even though its return type has option. Because
these four equations uniquely describe the tm_prect_STLC on the four constructors and make
tm_prect_STLC behave similarly to the ordinary dependent eliminator of the non-extensible version
of tm.

Property about Partial Recursors. Apartial recursor is simply adding partiality into the signature
of the ordinary eliminator—by wrapping each motive with option—together with the equations
describing its computational behaviors inherited from the ordinary eliminators.

This partial recursor seems non-canonical compared to the (dependent) eliminator for inductive
types as the latter can be considered a universal property. This extensionality makes dependent
eliminator one of the most powerful reasoning tools around inductive type.
Even though we cannot prove partial recursors are the most powerful reasoning tool for exten-

sible inductive types, the fact that propositional partial recursors can derive injectivity already
demonstrates itself as a good extensional characterization of (non-indexed) extensible inductive type
(under certain constraints)—because we can “embed” vanilla inductive types into types supporting
a partial recursor: a bit more formally speaking, and restricting our focus to non-indexed inductive
types:

Theorem 3.1. Given a list of 𝑛 pairs of types {𝑥 : A𝑖 ⊢ B𝑖 (𝑥)}𝑖 s.t.

• (Detectable Partiality) for each pair 𝑥 : 𝐴𝑖 ⊢ 𝐵𝑖 (𝑥),
Axiom detectable:
forall {T} {a} (f: B𝑖 a → option T),
{forall x, f x <> None} + {exists x, f x = None}.

• Define C as the inductive type using this list, i.e.,
Inductive C : Set := ... | c𝑖 : forall (x : A𝑖), (B𝑖 x → C) → C | ...

• Assume an arbitrary type D : Set with
– 𝑛 functions d𝑖 : forall (x : A𝑖), (B𝑖 x → D) → D
– a partial recursor
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prec : forall (R : Set), ..,
(r𝑖 : (forall (x : A𝑖), (B𝑖 x → option R) → option R)), ..,

D → option R
– and 𝑛 (propositional) computational axioms: for all 𝑖 ,
prec {R} r1 r2 .. r𝑛 (d𝑖 a𝑖 b𝑖)

= r𝑖 a𝑖 (fun x ⇒ prec {R} r1 r2 .. r𝑛 (b𝑖 x))

Then there exists an embedding from C to D. More concretely, we can have inj : C → D and
linv : D → option C defined using the eliminator of C and prec of D (both acting like identity)
such that

forall c : C, linv (inj c) = some c

Proof. First, for a fixed x : A𝑖 , given f𝑖 : B𝑖 x → T,
we have lift f𝑖 : B𝑖 x → option T, simply wrapping option around the returning result.

Second, with (Detectable Partiality) we can construct
Definition unlift:

forall {a} {T : Set} (f: (forall c: B a, option T))
(h : forall x, f x <> None),

{g : (forall c: B a, T) | f = lift g}.

Theorem detect_lifted:
forall {a} {T : Set} (f: (forall c: B a, option T)),
{ g | f = lift g} + {exists x, f x = None}.

The idea of unlift is that if f never returns None, then it is always a result of a lift. detect_lifted
is just another way of saying (Detectable Partiality).

Then we can construct inj and linv as follows, using eliminator and partial recursor.
Definition inj : C → D :=

C_rect (fun (_ : C) ⇒ D)
...
(fun (x𝑖 : A𝑖) (_ : B𝑖 x → C𝑖) (X𝑖 : B𝑖 x → D) ⇒ d𝑖 x𝑖 X𝑖)
... .

Definition linv : D → option C :=
prec C
...
(fun (a𝑖 : A𝑖) (b𝑖' : B𝑖 a𝑖 → option C) ⇒

match (detectable b𝑖') with
| left h ⇒

let (b𝑖, _) := unlift b𝑖' h in Some (c𝑖 a𝑖 b𝑖)
| right _ ⇒ None
end)

... .

Since each “constructor” in C and D are well-corresponded, when invoking C_rect and prec, each
case is handled similarly, and they only vary along the {A𝑖 ⊢ B𝑖 }𝑖 types.

The definition of inj and linv is well-formed but their behavior is still buried in this complicated
formulation. The following two equations can clarify them.
(* inj_compute can be proved thanks to

the computational behaviour about C_rect built-in Coq *)
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Lemma inj_compute : forall a b,
inj (c𝑖 a b) = d𝑖 a (fun x ⇒ inj (b x)).

(* linv_compute can be proved thanks to
the n (propositional) computational axioms about prec *)

Lemma linv_compute : forall a b,
linv (d𝑖 a b) =
let b' := fun x ⇒ linv (b x) in
match detect_lifted b' with
| inleft (exist _ x _) ⇒ Some (c𝑖 a x)
| inright _ ⇒ None
end.

Finally, these two equations are enough to prove that linv is really a left inverse, via induction
linv (inj (c𝑖 a b))
= linv (d𝑖 a (fun x ⇒ inj (b x))) (* by inj_compute *)
= Some (c𝑖 a (fun x ⇒ linv (inj (b x)))) (* by linv_compute *)
= Some (c𝑖 a (fun x ⇒ b x)) (* by I.H. *)
= Some (c𝑖 a b) (* by eta rule *)

□

(Detectable Partiality) is derivable for all the finitary branching inductive type2—that includes all
of the examples shown in this paper.

(Detectable Partiality) is not generally supported when using a function (infinitary branching) in
the constructors, for example, the case of using higher order abstract syntax to represent functions
in tm. However, in those cases, we still have the partial recursor provable and useful—we just cannot
see the partial recursor as a strong toolkit anymore.
We emphasize that in Theorem 3.1, each function d𝑖 can actually be considered a constructor

because they can be reflected to real constructors of C using the left inverse linv. Thus, Theorem 3.1
implies that (1) every future extension of the inductive type can support this partial recursion
(trivially); (2) every type supporting this partial recursor with its computational axioms at least
supports these constructors because of the embedding. In other words, a type (at least) supports these
constructors if and only if this type supports the corresponding partial recursor (with the computational
axioms). Thus, we can argue that the partial recursor gives a sound and complete extensional
characterization of all the extensions of a given (non-indexed) inductive type.

We can support a partial dependent eliminator as well. Though the partial dependent eliminator
can deduce prec, our prec is enough to construct this left inverse for (non-indexed) inductive type.

pdelim : ∀ (P : D → Set), ..,
(r𝑖 : (∀ (x : A𝑖) (w : B𝑖 x → D), (∀ (b : B𝑖 x), option (P (w b)))
→ option (P (d𝑖 x w)))), .., ∀ (d : D) → option (P d)

To generalize to indexed inductive type, we need to base on indexed W type [Martin-Löf 1982;
Morris and Altenkirch 2009; Hugunin 2017]. We have mechanized the argument for indexed W type
and dependent eliminator, but for the case with only one constructor in C and D. This mechanization3
is a direct generalization of the proof for Theorem 3.1.

2By simply enumerating through the finite domain B𝑖 a.
3https://gist.github.com/DKXXXL/9b4e48350b966fa3739cfb71f1a9a852
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As mentioned earlier, tm_prect_STLC is axiomatized along with four equalities describing its
computational behaviors, one for each constructor. After unfolding the definition of tmPR, the
equality for constructor tm_abs is as follows:
tm_abs_eq_STLC: ∀ x t P H1 H2 H3 H4,

tm_prect_STLC P H1 H2 H3 H4 (tm_abs x t) = H3 x t (tm_prect_STLC P H1 H2 H3 H4 t)

Importantly, unlike the standard tm_rect recursor, the partial recursor tm_prect_STLC is compati-
ble with the late binding of tm in its type. When tm_prect_STLC is inherited into family STLCFix, all
the previous four equalities still hold, and a trivial, fifth equality is made available:

tm_fix_eq_STLC : ∀ x t P H1 H2 H3 H4, tm_prect_STLC P H1 H2 H3 H4 (tm_fix x t) = None

Partial recursors appear weaker than ordinary recursors, but there is power in restraint. In partic-
ular, they offer a principled, uniformway to derive injectivity and disjointness of constructors, while
supporting future extension: they enable injective mappings from a late bound inductive type, like
tm, to an ordinary inductive type, like N, the injectivity and disjointness of whose constructors are
readily available. For example, in a proof state with the assumption H : tm_var "x" = tm_abs "y" t,
running fdiscriminate H first applies an injective mapping to both sides of H, obtaining
tm_prect_STLC (_ _, N) (_ _, Some 1) (Some 2) (_ _ _ _, Some 3) (_ _ _ _ _, Some 4) (tm_var "x") =
tm_prect_STLC (_ _, N) (_ _, Some 1) (Some 2) (_ _ _ _, Some 3) (_ _ _ _ _, Some 4) (tm_abs "y" t)

and then rewrites the above equality using the axiomatized computational behaviors of tm_prect_STLC,
obtaining Some 1 = Some 3, from which False easily follows. Note that the proof term generated
by fdiscriminate H in STLC is reusable by family STLCFix, because the partial recursor and its
computational behaviors are compatible with the late binding of tm.
Within family STLCFix, a second partial recursor (called tm_prect_STLCFix) and its compu-

tational behaviors are automatically axiomatized, which allows properties of tm_fix, such as
tm_fix x t1 = tm_fix x t2 → t1 = t2, to be proved.
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4 COMPILING FAMILY POLYMORPHISM TO PARAMETERIZED MODULES
We implement our language design as a Coq plugin. It works by translating programs in fpop
syntax into programs that can be checked and evaluated by Coq. The translation is compatible with
interactive theorem proving (C4), in that a family is translated piece by piece, allowing each field to
be defined and checked separately. The translation is modular and efficient, in that code compiled
for fields of a base family can be shared with derived families without having to be rechecked.

Explicit self parameterization. The spirit of the translation is to take “family polymorphism”
literally: every field is translated into a Coq definition that is polymorphic to (i.e., universally
quantified over) a representation of its enclosing family. While this universal quantification has
been implicit with the fpop syntax, it has to be made explicit in the translated Coq code.

Figures 4 and 5 illustrate the translation of the STLC and STLCFix families from Figure 2. Fields of
a family are translated into parameterized Coq modules (or parameterized module types).
As an example, consider field env in family STLC. It is translated into a top-level module named

STLC◦env. This module has a parameter called self representing the enclosing family: fields of the
current family in the context of env can be referenced through self. In particular, env is defined as
id→ option ty, where ty is a late-bound reference to the ty field of the enclosing family. Hence,
this reference to ty is translated to self.ty, which is manifestly polymorphic to the enclosing
family. This translation of the env field can be shared with a derived family even if it extends ty
(e.g., STLCProd)—no recompilation is needed because self.ty is not tied to any concrete definition
of ty.

The type of STLC◦env’s self parameter is STLC◦env◦Ctx, a module type constructed from STLC◦ty
(i.e., the translation of the field before env) and its context STLC◦ty◦Ctx. In turn, STLC◦ty◦Ctx (not
shown in Figure 4) is constructed from STLC◦subst, the translation of the field before ty, and its
context STLC◦subst◦Ctx. Thus, the self parameter can be used to reference those and only those
fields in the current field’s typing context, which echoes the discussion in Section 3.4.

Translating extensible inductive types. An FInductive definition is translated to a parameter-
ized module type. Consider the inductive type tm. In Figure 4, it is translated to a top-level module
type STLC◦tm that declares a tm type, four functions standing for the constructors, a partial recursor
(tm_prect_STLC), and the computational behaviors of the partial recursor (e.g., tm_abs_eq_STLC).

Importantly, STLC◦tm merely declares the existence of these names and their types; it does
not specify their definitions. Having these names and their types available through the context
parameters (self) suffices for the translations of the subsequent fields to be type-checked by Coq.
Leaving the definitions unspecified enables STLC and STLCFix to instantiate tm differently upon
End STLC and upon End STLCFix. In particular, non-exhaustive pattern matching is prevented because
an ordinary recursor like tm_rect is not available.
The command FInductive tm : Set += tm_fix : ... in family STLCFix is again translated to a

module type STLCFix◦tm (Figure 5). It includes all the names declared by STLC◦tm via command
Include STLC◦tm(self), and additionally declares tm_fix, a partial recursor, and related equalities.

Translating recursion and induction. An FRecursion definition is translated in two parts: first a
module containing the definitions of all the case handlers, and then a module type declaring the
existence of the recursive function as well as its computational behaviors.
Consider the translation of subst in family STLC. First, a module named STLC◦subst◦Cases is

generated on the fly. Importantly, programming remains interactive, as the programmer need not
wait until the entire FRecursion definition is completed to have a Case command type-checked.

Upon End subst, a module type named STLC◦subst is generated. As discussed in Section 3.2, subst
can be further bound, so its definition is not exposed to the fields that come after it. Accordingly, the
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(* Code emitted upon definition of tm in family STLC *)
Module Type STLC◦tm◦Ctx.
End STLC◦tm◦Ctx.

Module Type STLC◦tm (self : STLC◦tm◦Ctx).
Axiom tm : Set.
Axiom tm_unit : tm. Axiom tm_var : id → tm.
Axiom tm_abs : id → tm → tm.
Axiom tm_app : tm → tm → tm.
Axiom tm_prect_STLC : ....
Axiom tm_unit_eq_STLC : .... Axiom tm_abs_eq_STLC : ....
Axiom tm_abs_eq_STLC : .... Axiom tm_app_eq_STLC : ....

End STLC◦tm.

(* Code emitted for definition of subst in family STLC *)
Module Type STLC◦subst◦Cases◦Ctx.
Include STLC◦tm◦Ctx. Include STLC◦tm.

End STLC◦subst◦Cases◦Ctx.

Module STLC◦subst◦Cases (self : STLC◦subst◦Cases◦Ctx).
Def subst◦tm_unit B(* emitted upon definition of case *)
_ (x : id) (t : self.tm), self.tm_unit.

Def subst◦tm_var B ....
Def subst◦tm_abs B .... Def subst◦tm_app B ....

End STLC◦subst◦Cases.

Module Type STLC◦subst◦Ctx.
Include STLC◦subst◦Cases◦Ctx.
Include STLC◦subst◦Cases.

End STLC◦subst◦Ctx.

Module Type STLC◦subst (self : STLC◦subst◦Ctx).
Axiom subst : self.tm→ id→ self.tm→ self.tm.
Axiom subst_tm_unit_eq :

∀ x t, self.subst (self.tm_unit) x t =
self.subst◦tm_unit x t.

Axiom subst_tm_var_eq : ....
Axiom ...

End STLC◦subst.

(* Code emitted upon definition of ty in family STLC *)
...

(* Code emitted upon definition of env in family STLC *)
Module Type STLC◦env◦Ctx.
Include STLC◦ty◦Ctx. Include STLC◦ty.

End STLC◦env◦Ctx.

Module STLC◦env (self : STLC◦env◦Ctx).
Def env : Type B id → option self.ty.
End STLC◦env.

(* Code emitted for other fields defined in family STLC *)
...

(* Code emitted upon conclusion of family STLC *)
Module STLC.

(* Instantiate tm & its constructors *)
Inductive tm : Set B
| tm_unit | tm_var (v : id) ...
(* Inst. partial recursor & computational behaviors *)
Def tm_prect_STLC P B

tm_rect (_ t, option (P t)).
Fact tm_unit_eq_STLC : .... reflexivity. Qed.
Fact ...

Include STLC◦subst◦Cases.
(* Instantiate subst & its computational behaviors *)
Def subst B tm_rect _ subst◦tm_unit
subst◦tm_var subst◦tm_abs subst◦tm_app.

Fact subst_tm_unit_eq : .... reflexivity. Qed.
Fact ...

(* Instantiate ty, its constructors, partial recusor, etc. *) ...

Include STLC◦env. (* Include env *)

(* Include/Instantiate other fields of family STLC *) ...

End STLC.

Figure 4. Compilation of family STLC (Figure 2).

translation STLC◦substmerely declares the types of subst and the equalities about its computational
behaviors, leaving subst undefined and the equalities unproven. The equalities are stated in terms of
the case handlers, whose definitions are available through the self parameter. So Coq can simplify,
for example, the type of subst_tm_unit_eq to ∀ x t, self.subst self.tm_unit x t = self.tm_unit.
These equalities about the computational behaviors of subst will be included and available for use
in the translations of the subsequent fields through their self parameters.

Importantly, code generated for the case handlers is shared with derived families. In Figure 5, mod-
ule STLCFix◦subst◦Cases reuses—without rechecking—all the case handlers in STLC◦subst◦Cases
via command Include STLC◦subst◦Cases(self).

The translation of FInduction is similar, except that there is no need to register computational
behaviors, as FInduction proofs are considered opaque.

Translation of further-bindables vs. non-further-bindables. In family STLC, field env and the
case handlers for subst are not further-bindable by derived families. In contrast, tm, subst, and
the related equalities can be further bound. The distinction is reflected in the translations. The
further-bindable fields are translated to module types that export only types of the fields. The
non-further-bindable fields are translated to modules that export definitional equalities on the
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(* Code emitted upon definition of tm in STLCFix *)
Module Type STLCFix◦tm◦Ctx.
End STLCFix◦tm◦Ctx.

Module Type STLCFix◦tm (self : STLCFix◦tm◦Ctx).
Include STLC◦tm(self).
Axiom tm_fix : id → tm → tm.
Axiom tm_fix_eq_STLC : ∀ ..., tm_prect_STLC ... = None.
Axiom tm_prect_STLCFix : ....
Axiom tm_fix_eq_STLCFix : ....

End STLCFix◦tm.

(* Code emitted upon definition of subst in STLCFix *)
Module Type STLCFix◦subst◦Cases◦Ctx.
Include STLCFix◦tm◦Ctx. Include STLCFix◦tm.

End STLCFix◦subst◦Cases◦Ctx.

Module STLCFix◦subst◦Cases
(self : STLCFix◦subst◦Cases◦Ctx).
Include STLC◦subst◦Cases(self). (* reuse *)
Def subst◦tm_fix B .... (* translation of new case *)

End STLCFix◦subst◦Cases.

Module Type STLCFix◦subst◦Ctx.
Include STLCFix◦subst◦Cases◦Ctx.
Include STLCFix◦subst◦Cases.

End STLCFix◦subst◦Ctx.

Module Type STLCFix◦subst (self : STLCFix◦subst◦Ctx).
Include STLC◦subst(self).
Axiom subst_tm_fix_eq : ....

End STLCFix◦subst.

(* Code emitted for other fields defined in STLCFix *) ...

(* Code emitted upon conclusion of STLCFix *)
Module STLCFix.

(* Instantiate tm & its constructors *)
Inductive tm : Set B
| tm_unit | tm_var (v : id)
| tm_abs (v : id) (b : tm) | tm_app (a b : tm)
| tm_fix (v : id) (b : tm).
(* Inst. tm partial recursors & their comp. behaviors *) ...

Include STLCFix◦subst◦Cases.
(* Instantiate subst & its computational behaviors *)
Def subst B tm_rect _ subst◦tm_unit
subst◦tm_var subst◦tm_abs subst◦tm_app (* reuse *)
subst◦tm_fix.
Fact subst_tm_unit_eq : .... reflexivity. Qed.
Fact ...

(* Include ty, its constructors, partial recursor, etc. *) ...

Include STLC◦env. (* reuse *)

(* Include/Instantiate other fields of STLCFix *) ...

Include STLC◦typesafe. (* reuse *)

End STLCFix.

(* Code emitted upon command Check STLCFix.typesafe *)
Check STLCFix.typesafe.

Figure 5. Compilation of family STLCFix and the final Check command (Figure 2).

fields. Opaque fields in fpop can be further bound (Section 3.3); they are translated to Coq modules
that export opaque fields.

Eliminating self by aggregation. Upon the conclusion of a family definition, a representation
of the family is created. For example, module STLC in Figure 4 is generated upon End STLC. This
module can be viewed as the “fixed point” of the self-parameterized translations. The “fixed point”
is taken step by step, by adding the translation of each field to this module in the same order as
they appear in the family definition.

For the non-further-bindables, the translatedmodules are directly included (e.g., Include STLC◦env
and Include STLC◦subst◦Cases in Figure 4). The instantiation of selfs for these modules is im-
plicit, thanks to a Coq nicety: when including a higher-order module, Coq automatically instan-
tiates its parameter with the current interactive module environment. For instance, command
Include STLC◦subst◦Cases is successfully executed, because Coq automatically instantiates the
self parameter using the current module environment, which by construction contains all the
fields required by STLC◦subst◦Cases◦Ctx.

For the further-bindables, Axioms declared in the module types must be instantiated.
• In Figure 4, an inductive type tm is generated, instantiating the axiomatized tm type and its con-
structors. The partial recursor tm_prect_STLC is defined with the help of tm_rect, the recursor Coq
generates for tm. The computational behaviors of tm_prect_STLC are immediate, by reflexivity.

• Similarly, subst is instantiated by applying the recursor tm_rect to the (already included) case
handlers. The computational behaviors of subst are then immediate, by reflexivity.
Module STLCFix in Figure 5 is emitted upon End STLCFix, in the same way as described above

for STLC. The translation makes sharing evident. In particular, case handlers compiled for STLC are
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reused to instantiate subst, substlem, and alike. STLC◦env and STLC◦typesafe are also reused in the
construction of module STLCFix. One may argue that since the first four constructors of tm are
repeated in STLCFix, the translation does not satisfy the modular compilation requirement. We
could address this concern by using wrapper types, but we consider restating constructors a small
price to pay in return for the clarity and concision of implementation. We emphasize that compiled
case handlers, such as subst◦tm_abs, are entirely reusable without rechecking, even with restated
constructors. Finally, the reference STLCFix.typesafe (where STLCFix is a family) can simply be
translated to STLCFix.typesafe (where STLCFix is a Coq module), as the last line of Figure 5 shows.

Trusted base. Rather than modifying the Coq kernel to extend its core theory, a translation to
Coq conveniently reduces the trusted base of any development using fpop to Coq. In particular,
once a family is closed, Print Assumptions can be used to verify that there are no lingering Axioms
introduced by the translation. The ramifications of possible bugs in the fpop implementation are
limited to the usability of the plugin.
4.1 Limitations
The fpop implementation currently does not yet bring extensibility to Coq’s full facility for inductive
types. Mutually inductive types and parameterized inductive types are not yet extensible, though
indexed inductive types are supported and can be used to encode parameterized ones. Partial
recursors are automatically generated only for non-indexed inductive types. These features are
not exercised by our case studies (Section 7) but may be useful for modeling other languages. We
believe that they do not pose conceptual challenges and can be addressed with more engineering
effort on the same level as the current fpop implementation.

What seems to require more thought from a language-design perspective is the restriction that
recursion and induction (on extensible types) cannot be nested. A possible solution is to make the
plugin generate proof obligations for nested pattern matches when the inductive types acquire
new constructors. Also interesting for future research is the support for automatically converting
terms to propositionally equally typed forms using generated propositional equalities. The lack of
this automation currently may cause inconveniences for developments using intrinsically typed
syntax. Finally, work on nested inheritance [Nystrom et al. 2004; Zhang and Myers 2017] points to
a direction to further increase the expressive power of our language design.
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5 A PREVIEW OF FMLTT: A CORE DEPENDENT TYPE THEORY
We contribute FaMiLy Type Theory (FMLTT), a core type theory that extendsMartin-Löf dependent
type theory (MLTT) with facilities to express family polymorphism while maintaining consistency
and canonicity.

For accessibility of the main text, Section 5 presents FMLTT using named variables andmeta-level
substitution. For clarity of proof details, Section 6 supplementing Section 5 instead uses de Bruijn
indices and explicit substitution [Abadi et al. 1989]. We acknowledge that the presentation is dense
for an audience without intimate knowledge of MLTT, so we summarize the salient points first.

Summary. FMLTT is intended as a foundational model. So unlike our programmer-facing plugin,
fields automatically axiomatized by the plugin require explicit definitions in FMLTT. FMLTT
provides MLTT-style constructs that can be used to express families and family polymorphism.
Most notably, it extendsMLTTwithwhat we call linkages. Linkages are a namesake of the theoretical
device through which Zhang and Myers [2017] model family polymorphism in an OO setting, but
the technical details differ significantly from the prior work.
• Linkages model families, so they are like tuples composed of fields (with field names represented

by variable bindings). But there is a twist: linkages support late binding. Unlike dependent tuples
where a later component is existentially quantified over the earlier ones, a linkage component is
universally quantified over—and thus polymorphic to—the components preceding it.

• FMLTT features linkage transformers, which model how a family can be inductively constructed
by inheriting fields from another family, adding new fields, and overriding existing fields.

• Inductive types are modeled as W-types [Martin-Löf 1984] and their extension as overriding.
• Consistency and canonicity of FMLTT are proved by giving semantic interpretations to the

syntactic typing judgments.

Contexts Γ,Δ F · | Γ, 𝐴
Types 𝐴, 𝐵,𝑇 F U | B | ⊥ | ⊤ | Π(𝑥 : 𝐴) .𝐵 | Σ(𝑥 : 𝐴) .𝐵 | Eq(𝑡1, 𝑡2) | S(𝑡) | El(𝑡)
Terms 𝑡 F 𝑥 | c(𝑇 ) | () | tt | ff | if(𝑡1, 𝑡2, 𝑡3) | _𝑥 .𝑡 | app(𝑡1, 𝑡2) |

(𝑡1, 𝑡2) | fst 𝑡 | snd 𝑡 | refl(𝑡) | J(𝑡1, 𝑡2)

Γ ⊢ Γ ⊢ 𝑇 Γ ⊢ 𝑇1 ≡ 𝑇2 Γ ⊢ 𝑡 : 𝑇 Γ ⊢ 𝑡1 ≡ 𝑡2 : 𝑇

(tm/lam)
Γ ⊢ 𝐴 Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐵
Γ ⊢ _𝑥.𝑡 : Π(𝑥 : 𝐴).𝐵

(tm/app)
Γ ⊢ 𝑡 : Π(𝑥 : 𝐴).𝐵 Γ ⊢ 𝑡 ′ : 𝐴

Γ ⊢ app(𝑡, 𝑡 ′) : 𝐵
[
𝑡 ′/𝑥

] (tm/pair)
Γ, 𝑥 : 𝐴 ⊢ 𝐵 Γ ⊢ 𝑡1 : 𝐴 Γ ⊢ 𝑡2 : 𝐵 [𝑡1/𝑥]

Γ ⊢ (𝑡1, 𝑡2) : Σ(𝑥 : 𝐴) .𝐵
(tm/fst)
Γ ⊢ 𝑡 : Σ(𝑥 : 𝐴) .𝐵
Γ ⊢ fst 𝑡 : 𝐴

(tm/snd)
Γ ⊢ 𝑡 : Σ(𝑥 : 𝐴) .𝐵

Γ ⊢ snd 𝑡 : 𝐵 [fst 𝑡/𝑥]

(ty/el)
Γ ⊢ 𝑡 : U

Γ ⊢ El(𝑡)

(tm/c)
Γ ⊢ 𝑇

Γ ⊢ c(𝑇 ) : U

(tmeq/c)
Γ ⊢ 𝑡 : U

Γ ⊢ c(El(𝑡)) ≡ 𝑡 : U

(tyeq/el)
Γ ⊢ 𝑇

Γ ⊢ El(c(𝑇 )) ≡ 𝑇

(ty/s)
Γ ⊢ 𝑡 : 𝑇
Γ ⊢ S(𝑡)

(tm/s)
Γ ⊢ 𝑡 : 𝑇

Γ ⊢ 𝑡 : S(𝑡)

(tmeq/s/eta)
Γ ⊢ 𝑡1 : 𝑇 Γ ⊢ 𝑡2 : S(𝑡1)

Γ ⊢ 𝑡1 ≡ 𝑡2 : 𝑇

Figure 6. Syntax and selected typing rules of MLTT, named variables and meta-level substitution

Brief review of MLTT. Figure 6 presents the syntax and selected typing rules of MLTT (and
Figure 7 FMLTT). Dependent function types Π(𝑥 : 𝐴).𝐵, dependent pair types Σ(𝑥 : 𝐴).𝐵, and
identity types Eq(𝑡1, 𝑡2) are standard. So are their introduction and elimination forms. We use
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Types 𝐴, 𝐵,𝑇 F ... | w𝜋𝑖1 (𝜏) | w𝜋
𝑖
2 (𝜏) | L(𝜎) | P(𝜎) | a𝜋2 (𝜎) | CaseTy(𝐴, 𝐵,𝑇 )

Terms 𝑡, 𝑠, ℓ F ... | W(𝜏) | Wsup𝑖 (𝜏, 𝑡1, 𝑥 .𝑡2) | `• | `+ (ℓ, 𝑥 .𝑡) | inh(ℎ, ℓ) | Wrec(𝜏, ℓ, 𝑡) |
`𝜋1 (ℓ) | `𝜋2 (ℓ) | a𝜋s (𝜎) | P(ℓ) | R𝜋𝑖 (ℓ)

W-type signatures 𝜏 F w• | w+ (𝜏,𝐴, 𝐵) | w− (𝜏)
Linkage signatures 𝜎 F a• | a+ (𝜎, 𝑥 .𝑠, self .𝑇 ) | a𝜋1 (𝜎) | RecSig(𝜏,𝑇 )

Linkage transformers ℎ F Identity | Extend(ℎ, self .𝑡) | Override(ℎ, self .𝑡) | Inherit(ℎ)
| Nest(ℎ,ℎ′)

Γ ⊢ 𝑇1 ≡ 𝑇2 Γ ⊢ 𝑡 : 𝑇 Γ ⊢ 𝑡1 ≡ 𝑡2 : 𝑇 Γ ⊢ 𝜏 WSig𝑛 Γ ⊢ 𝜎 LSig𝑛 Γ ⊢ ℎ : 𝜎1 ↠ 𝜎2

(tm/w)
Γ ⊢ 𝜏 WSig𝑛

Γ ⊢ W(𝜏) : U

(wsig/empty)

Γ ⊢ w• WSig0

(wsig/add)
Γ ⊢ 𝜏 WSig𝑛

Γ ⊢ 𝐴 Γ ⊢ 𝐵 : 𝐴 → U

Γ ⊢ w+ (𝜏,𝐴, 𝐵) WSig𝑛+1

(tm/wsup)
Γ ⊢ 𝜏 WSig𝑛 Γ ⊢ 𝑡1 : w𝜋𝑖1 (𝜏)

Γ, 𝑥 : El(app(w𝜋𝑖2 (𝜏), 𝑡1)) ⊢ 𝑡2 : El(W(𝜏))
Γ ⊢ Wsup𝑖 (𝜏, 𝑡1, 𝑥 .𝑡2) : El(W(𝜏))

(tm/wrec)
Γ ⊢ ℓ : L(RecSig(𝜏,𝑇 )) Γ ⊢ 𝑡 : El(W(𝜏))

Γ ⊢ Wrec(𝜏, ℓ, 𝑡) : 𝑇

(tyeq/casety)
Γ ⊢ 𝐴 Γ ⊢ 𝐵 : 𝐴 → U Γ ⊢ 𝑇

Γ ⊢ CaseTy(𝐴, 𝐵,𝑇 ) ≡ Π(𝑥 : 𝐴) .(El(app(𝐵, 𝑥)) → 𝑇 ) → 𝑇

(lsig/empty)

Γ ⊢ a• LSig0

(lsig/add)
Γ ⊢ 𝜎 LSig𝑛 Γ, self : 𝐴 ⊢ 𝑇

Γ, 𝑥 : P(𝜎) ⊢ 𝑠 : 𝐴
Γ ⊢ a+ (𝜎, 𝑥 .𝑠, self .𝑇 ) LSig𝑛+1

(l/empty)

Γ ⊢ `• : L(a•)

(l/add)
Γ ⊢ ℓ : L(𝜎) Γ, self : 𝐴 ⊢ 𝑡 : 𝑇

Γ, 𝑥 : P(𝜎) ⊢ 𝑠 : 𝐴
Γ ⊢ `+ (ℓ, self .𝑡) : L(a+ (𝜎, 𝑥 .𝑠, self .𝑇 ))

(tyeq/pk/add)
Γ ⊢ 𝜎 LSig𝑛 Γ, self : 𝐴 ⊢ 𝑇 Γ, 𝑥 : P(𝜎) ⊢ 𝑠 : 𝐴
Γ ⊢ P(a+ (𝜎, 𝑥 .𝑠, self .𝑇 )) ≡ Σ(𝑥 : P(𝜎)) .𝑇 [𝑠/self ]

(tmeq/pk/add)
Γ ⊢ ℓ : L(𝜎) Γ, self : 𝐴 ⊢ 𝑡 : 𝑇 Γ, 𝑥 : P(𝜎) ⊢ 𝑠 : 𝐴

Γ ⊢ P(`+ (ℓ, self .𝑡)) ≡ (P(ℓ), 𝑡 [𝑠 [P(ℓ)/𝑥]/self ]) : P(a+ (𝜎, 𝑠,𝑇 ))

(tm/inh)
Γ ⊢ ℎ : 𝜎1 ↠ 𝜎2 Γ ⊢ ℓ : L(𝜎1)

Γ ⊢ inh(ℎ, ℓ) : L(𝜎2)
(tmeq/ov/beta)

Γ ⊢ ℎ : 𝜎1 ↠ 𝜎2 Γ ⊢ ℓ : L(𝜎1)
Γ, self 1 : 𝐴1 ⊢ 𝑡1 : 𝑇1 Γ, 𝑥1 : P(𝜎1) ⊢ 𝑠1 : 𝐴1 Γ, self 2 : 𝐴2 ⊢ 𝑡2 : 𝑇2 Γ, 𝑥2 : P(𝜎2) ⊢ 𝑠2 : 𝐴2

Γ ⊢ inh(Override(ℎ, self 2 .𝑡2), `+ (ℓ, self 1 .𝑡1)) ≡ `+ (inh(ℎ, ℓ), self 2 .𝑡2) : L(a+ (𝜎2, 𝑥2 .𝑠2, self 2 .𝑇2))

Figure 7. Syntax and selected typing rules of FMLTT, named variables and meta-level substitution

based path induction J(·, 𝑡) as the elimination principle for a term 𝑡 of an identity type [UFP 2013].
Capture-avoiding substitution is notated •[•/𝑥]. We use 𝑥 and self to denote variables. A singleton
type S(𝑡) helps expose the definition of a term 𝑡 in its type (rule tm/s) [Aspinall 1995; Stone
2000]. Definitional equalities have the forms Γ1 ≡ Γ2 ⊢, Γ ⊢ 𝑇1 ≡ 𝑇2, Γ ⊢ 𝑡1 ≡ 𝑡2 : 𝑇 , etc. Following
Altenkirch and Kaposi [2016], we regard our (intrinsically typed) syntax as being quotiented by
these equalities. Quotienting facilitates coercion along equalities—given Γ1 ≡ Γ2 ⊢ and Γ1 ⊢ 𝑇1 ≡ 𝑇2,
the derivation of Γ1 ⊢ 𝑡 : 𝑇1 is considered definitionally equal to a derivation of Γ2 ⊢ 𝑡 : 𝑇2.

We use universes à la Coquand [2013], following Kaposi et al. [2019]. Unlike Russell-style ones,
these universes are not inhabited by types directly, but rather by the codes of types, and arguably
behave better due to its closeness to Tarski-style universes [Luo 2012]. The term c(𝑇 ) encodes
type 𝑇 (tm/c) and thus inhabits universe U. The type El(𝑡) decodes term 𝑡 (ty/el). There is an
infinite hierarchy of universes; we omit universe levels in the presentation to avoid clutter.
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For concision, typing rules omit obvious premises required for well-formedness. For example,
tm/lam implicitly requires Γ ⊢ (i.e., that the context be well-typed).

Introducing and eliminating inductive types. W-types [Martin-Löf 1984] are a succinct way
to model inductive types in MLTT. Together with the identity type, they can express a whole host
of inductive types [Hugunin 2020], including those with multiple constructors.
Our formulation of W-types differs from previous ones in that it is straightforward to identify

constructors from what we call W-type signatures. A signature Γ ⊢ 𝜏 WSig𝑛 is composed of 𝑛 pairs
of types (wsig/empty and wsig/add), each modeling a constructor of the inductive type. The 𝑖-th
pair, projected from the signature 𝜏 using the forms Γ ⊢ w𝜋 𝑖

1 (𝜏) and Γ ⊢ w𝜋 𝑖
2 (𝜏) : w𝜋 𝑖

1 (𝜏) → U,
defines the 𝑖-th constructor. That is, given two arguments Γ ⊢ 𝑡1 : w𝜋 𝑖

1 (𝜏) and Γ, 𝑥 : El(w𝜋 𝑖
2 (𝜏) (𝑡1)) ⊢

𝑡2 : El(W(𝜏)), one can construct a term Wsup𝑖 (𝜏, 𝑡1, 𝑥 .𝑡2) of the W-type El(W(𝜏)) (tm/wsup). W(𝜏)
gives the code of the W-type (tm/w).

For each pair of types identifying a constructor, the first type models the non-inductive arguments
of the constructor, and the second type models the arity of the inductive arguments. For example,
the signature 𝜏tm of the W-type modeling the inductive type tm (Figure 2) is constructed as follows,
where 0 is the bottom type ⊥, 1 the unit type ⊤, 2 the boolean type, and 𝑇id a type encoding id:

unit : tm var : id → tm abs : id → tm → tm app : tm → tm → tm

𝜏0tm ≔ w+ (w•, 1, __.0) 𝜏1tm ≔ w+ (𝜏0tm,𝑇id, __.0) 𝜏2tm ≔ w+ (𝜏1tm,𝑇id, __.1) 𝜏tm ≔ w+ (𝜏2tm, 1, __.2)

While tm_unit and tm_var have no inductive arguments, tm_abs has one and tm_app has two. The
encoding of tm_abs has type 𝑇id → (1 → El(W(𝜏tm))) → El(W(𝜏tm)), and that of tm_app has type
1 → (2 → El(W(𝜏tm))) → El(W(𝜏tm)). These types are strictly positive by construction.
W-types are eliminated with the form Wrec(𝜏, ℓ, 𝑡), where 𝑡 is of a W-type El(W(𝜏)), and ℓ is

essentially an 𝑛-tuple of case handlers for the 𝑛 constructors in 𝜏 (tm/wrec). Each case handler
has a type of the form CaseTy(𝐴, 𝐵,𝑇 ), where 𝑇 is the motive of the recursion (tyeq/casety); for
simplicity, we model only non-dependent motives. The collection of case handlers ℓ encodes those
defined and inherited by an FRecursion command in our plugin. We choose to type it with a linkage
type L(RecSig(𝜏,𝑇 )) to avoid introducing non-dependent 𝑛-tuples, which linkages generalize.
The rules tm/wsup and tm/wrec require access to 𝜏 : the W-type is exhaustively generated by

its constructors, and its elimination must exhaustively handle all the constructors in its signature.
In contrast, 𝜏 should be hidden from the typing context of any term that does not invoke

Wsup (𝜏, •, •) or Wrec(𝜏, •, •), so that the term can be reused—without being rechecked—for a different
W-type signature 𝜏 ′ that extends 𝜏 with additional constructors. Moreover, the typing of the term
should be made parametric to the definitions of those fields that invoke Wsup or Wrec, so that the
term can be reused—without being rechecked—when those fields are overridden to support the
extended signature 𝜏 ′. Such abstraction required by family polymorphism is supported via linkages,
which we discuss next.

Family polymorphism via linkages. Family polymorphism requires late binding. In FMLTT,
families are expressed through linkages, and late binding of field references is achieved by requiring
that typing be polymorphic to the definition of that field.

Linkage signatures have the judgment form Γ ⊢ 𝜎 LSig𝑛 . A linkage signature is a list of 𝑛 types
(lsig/empty and lsig/add). Linkages have the judgment form Γ ⊢ ℓ : L(𝜎), where L(𝜎) is a type
formed by 𝜎 . A linkage is a list of 𝑛 terms, each representing a field of the family modeled by the
linkage (l/empty and l/add).
In the rules l/add and lsig/add, the second premise Γ, self : 𝐴 ⊢ 𝑡 : 𝑇 is responsible for late

binding. Here, 𝐴 abstracts the context of the current field 𝑡 , controlling how the types of the fields
prior to 𝑡 are exposed to the typing of 𝑡 . As discussed later, the third premise Γ, 𝑥 : P(𝜎) ⊢ 𝑠 : 𝐴
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𝑥 : P(𝜎𝑖−1) ⊢ 𝑠𝑖 : 𝐴𝑖

self : 𝐴𝑖 ⊢ 𝑡𝑖 : 𝑇𝑖
shown below for 𝑖 ∈ {1, 2, 6, 10}

𝜎𝑖 ≔ a+ (𝜎𝑖−1, 𝑥 .𝑠𝑖 , self .𝑇𝑖 )

ℓ𝑖 ≔ `+ (ℓ𝑖−1, self . 𝑡𝑖 )

· ⊢ ℓ𝑖 : L(𝜎𝑖 )

P(𝜎𝑖 ) ≡ Σ(𝑥 : P(𝜎𝑖−1)).𝑇𝑖 [𝑠𝑖/self ]

P(ℓ𝑖 ) ≡
(
P(ℓ𝑖−1), 𝑡𝑖 [𝑠𝑖 [P(ℓ𝑖−1)/𝑥]/self ]

)
· ⊢ P(ℓ𝑖 ) : P(𝜎𝑖 )

Family STLC. 𝜎0 B a• ℓ0 B `•

x :
[]

⊢ 𝑠1 :
[]

self :
[]

⊢ W(𝜏tm) : S(W(𝜏tm))FInductive tm B

𝜎1 B a+ (𝜎0, 𝑥 .𝑠1, self .𝑇1) ℓ1 B `+ (ℓ0, self . 𝑡1)

x :
[
tm : S(W(𝜏tm))

]
⊢ 𝑠2 :

[
tm : S(W(𝜏tm))

]
self :

[
tm : S(W(𝜏tm))

]
⊢ Wsup (𝜏tm,⊤, 𝑥 .⊥) : El(self ▷tm)| tm_unit : tm

𝜎2 B a+ (𝜎1, 𝑥 .𝑠2, self .𝑇2) ℓ2 B `+ (ℓ1, self . 𝑡2)
| ... | ... | .... ...

FRecursion subst .... W(𝜏tm) is abstracted into U in the typing context (i.e., 𝐴6) of the case handler below:
x :

[
tm : S(W(𝜏tm)), tm_unit : El(tm), ...

]
⊢ 𝑠6 :

[
tm : U, tm_unit : El(tm), ...

]
self :

[
tm : U, tm_unit : El(tm), ...

]
⊢ ... : CaseTy

(
⊤,⊥, El(self ▷tm) →

id → El(self ▷tm)

)
Case tm_unit B ....

𝜎6 B a+ (𝜎5, 𝑥 .𝑠6, self .𝑇6) ℓ6 B `+ (ℓ5, self . 𝑡6)
Case ... Case ... Case ... ...

x :
[
tm : S(W(𝜏tm ) ), tm_unit : El(tm), ...,
subst_tm_unit : CaseTy(⊤,⊥, ...), ...

]
⊢ 𝑠10 :

[
tm : S(W(𝜏tm ) ), tm_unit : El(tm), ...,
subst_tm_unit : CaseTy(⊤,⊥, ...), ...

]
self :

[
tm : S(W(𝜏tm ) ), tm_unit : El(tm), ...,
subst_tm_unit : CaseTy(⊤,⊥, ...), ...

]
⊢ _𝑥 . Wrec(𝜏tm, ..., 𝑥) :

El(self ▷tm) →
El(self ▷tm) →
id → El(self ▷tm)

End subst.

𝜎10 B a+ (𝜎9, 𝑥 .𝑠10, self .𝑇10) ℓ10 B `+ (ℓ9, self . 𝑡10)
... ...
End STLC. · ⊢ P(ℓ53) : P(𝜎53)

Figure 8. FMLTT encoding of the STLC family from Figure 2. Each row self :𝐴𝑖 ⊢ 𝑡𝑖 : 𝑇𝑖 types a field. The type
𝐴𝑖 controls how the typing of field 𝑡𝑖 sees the types of the fields prior to 𝑡𝑖 .

is responsible for creating the context type 𝐴 that possibly hides W-type signatures in 𝜎 , which
records the types of the prior fields.
Crucially, the premise Γ, self : 𝐴 ⊢ 𝑡 : 𝑇 makes clear that the typing of 𝑡 in l/add is universally

quantified—rather than existentially quantified as is in tm/pair—over how the fields in 𝑡 ’s context
are defined. Late binding enables reuse. A different linkage ℓ ′ that overrides fields in 𝑡 ’s context
(and thus models a derived family) can reuse 𝑡—without retyping it—by first projecting 𝑡 from
`+ (ℓ, self .𝑡) and then appending it to ℓ ′.
The type 𝐴 in l/add and lsig/add, abstracting the types of the prior fields, does not necessarily

contain the same types as those recorded by L(𝜎), because a field defined as the code W(𝜏) of a
W-type has to expose different types to different fields that come after it. Later fields that invoke
Wsup (𝜏, •, •) or Wrec(𝜏, •, •) should see the concrete signature 𝜏 , as the rules tm/wsup and tm/wrec
stipulate. By contrast, 𝜏 should be hidden from all other fields, so that they can be reused in a
different context where the W-type signature 𝜏 is replaced by an extended one 𝜏 ′.

21



We use Figure 8 to illustrate. On the left is code excerpted from Figure 2, and on the right is
how the corresponding fields are modeled and typed in FMLTT. ℓ𝑖 is the linkage that adds the 𝑖-th
field 𝑡𝑖 with the typing self : 𝐴𝑖 ⊢ 𝑡𝑖 : 𝑇𝑖 . The context types 𝐴𝑖 are a dependent tuple type, but for
readability, we write them as dependent record types that give labels to the fields. Field accesses
are notated, for example, as self ▷tm.
• The first field 𝑡1 is defined as W(𝜏tm) and given the singleton type S(W(𝜏tm)), where 𝜏tm is the

W-type signature constructed earlier for the extensible inductive type tm. This typing is recorded
by 𝜎1 and is thus available in all 𝜎𝑖 ’s.

• The next four fields model the four constructors of tm. Constructor tm_unit is modeled as
Wsup (𝜏tm,⊤, 𝑥 .⊥) and has type El(self ▷tm), where self stands for the typing context containing
the first field tm. The W-type signature 𝜏tm is exposed in this typing context; that is, self ▷tm has
type S(W(𝜏tm)). So El(self ▷tm) and El(W(𝜏tm)) can be equated, as required by rule tm/wsup.

• Likewise, 𝜏tm is exposed in the typing context of 𝑡10, which models the recursive function subst

by invoking the recursor Wrec(𝜏tm, •, •). Like subst, partial recursors in fpop are axiomatized by
the plugin (Sections 3.2 and 3.6), and they can similarly be defined in FMLTT using Wrec.

• By contrast, 𝜏tm is hidden from the typing of all other fields. Their typing should depend on the
knowledge that tm has type U, rather than S(W(𝜏tm)), so that they can be reused in a context
where tm is defined as W(𝜏 ′tm), where 𝜏 ′tm extends 𝜏tm with additional constructors. For example, in
Figure 8, the typing of the case handlers of subst (e.g., 𝑡6) is oblivious to the definition of tm—it
sees only tm : U—so the case handlers can be reused by a linkage modeling STLCFix.
In l/add and lsig/add, the third premise Γ, 𝑥 : P(𝜎) ⊢ 𝑠 : 𝐴 is responsible for hiding W-type

signatures. Here, P(𝜎) packages 𝜎—recall that 𝜎 contains the (self-parameterized) types of all the
fields preceding the current field 𝑡—into a dependent tuple type (tyeq/pk/add). The term 𝑠 turns a
tuple of type P(𝜎) into a new tuple of type 𝐴 that hides W-type signatures behind U, if necessary.4

It is straightforward to find the 𝑠 that fits the bill, though this process is not automated in FMLTT.
In particular, when no hiding is needed (that is, when the field being checked invokes a W-type
constructor or eliminator), 𝑠 is simply 𝑥 , and 𝐴 is P(𝜎). In Figure 8, 𝑠2 and 𝑠10 are 𝑥 . Otherwise, it
is needed to hide W-type signatures. In Figure 8, 𝑠6 hides tm : S(W(𝜏tm)) as tm : U in 𝐴6, so that 𝑡6,
typed under self : 𝐴6, is oblivious to the concrete signature 𝜏tm and therefore can be reused.

When a family is concluded (e.g., End STLC), a linkage ℓ containing all the fields is available (e.g.,
ℓ53 in Figure 8). Fields of the family can then be accessed by projecting them out of the tuple P(ℓ).
As tmeq/pk/add indicates, P(ℓ) ties the recursive knot: it packages the linkage ℓ into a dependent
tuple of type P(𝜎), by instantiating the self parameters.

Linkage transformers. Inheritance and code reuse can already be expressed through the projec-
tion of fields out of linkages and their inclusion into new linkages. To make common patterns of
linkage manipulations more convenient, FMLTT provides a “library” of linkage transformers, whose
well-formedness judgments have form Γ ⊢ ℎ : 𝜎1 ↠ 𝜎2. The idea is that applying ℎ to a linkage of
type L(𝜎1) yields a linkage of type L(𝜎2) (tm/inh).
Derived families can be modeled as linkage transformers inductively constructed from the

introduction forms Identity, Extend(ℎ, self .𝑡), Override(ℎ, self .𝑡), etc. Figure 7 shows the 𝛽-rule of
an example transformer, tmeq/ov/beta. It states that applying the transformer Override(ℎ, self2 .𝑡2)
to a linkage of form `+ (ℓ, self1.𝑡1) overrides the linkage’s last field 𝑡1 with 𝑡2. For instance, the
construction below shows that Override(Identity, self ′.W(𝜏 ′tm)) is used as the first step in creating
a linkage transformer modeling a derived family that overrides 𝜏tm with an extended signature 𝜏 ′tm:
4In the presence of hiding, it is important that the context type 𝐴 be a dependent tuple type rather than a linkage type; we
expand on this point in Section 6.
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Family STLCFix extends STLC. ℎ0 B Identity · ⊢ ℎ0 : a• ↠ a•

FInductive tm += ... ℎ1 B Override(ℎ0, self. W(𝜏 ′tm)) · ⊢ ℎ1 :
a+ (a•, 𝑥 .𝑠1, self .S(W(𝜏tm))) ↠
a+ (a•, 𝑥 ′.𝑠′1, self

′.S(W(𝜏 ′tm)))

Section 6.5 sketches how the other introduction forms of linkage transformers can be used to model
the construction of a derived family as a linkage transformer.

Why P(𝜎)? P(𝜎) is needed in rules lsig/add and l/add: these rules have a premise Γ, 𝑥 : P(𝜎) ⊢
𝑠 : 𝐴 responsible for possibly hiding W-type signatures (in P(𝜎)) behind U (in 𝐴); see 𝑠6 in Figure 8
for an example. Here, both P(𝜎) and 𝐴 are dependent tuple types rather than linkage types.

An alternative toP(𝜎)would be to use linkage typesL(·) in this premise. However, this alternative
is infeasible. We illustrate using a simple example. Consider the linkage signature 𝜎 below (it is
written using the record syntax for illustration but should not be confused with records, as a later
field is universally quantified over a self variable). The job is to hide the W-types S(W(𝜏1)) and
S(W(𝜏2)) in 𝜎 behind U in 𝜎𝐴:

𝜎 ≔ {𝑇𝐴 : S(W(𝜏1)); 𝑇𝐵 : S(W(𝜏2)); 𝑓 : El(self ▷𝑇𝐴) → El(self ▷𝑇𝐵)}
𝜎𝐴 ≔ {𝑇𝐴 : U; 𝑇𝐵 : U; 𝑓 : El(self ▷𝑇𝐴) → El(self ▷𝑇𝐵)}

𝑥 : L(𝜎) ⊢ 𝑠 : L(𝜎𝐴)

The problem lies in that the type L(𝜎𝐴) above cannot be inhabited. Suppose there is some ℓ𝐴 such
that · ⊢ ℓ𝐴 : L(𝜎𝐴). Then it follows from the self-parameterization that projecting out the last field 𝑓

from ℓ𝐴 (notated as ℓ𝐴 .𝑓 for illustration) has the typing 𝑇𝐴 : U,𝑇𝐵 : U ⊢ ℓ𝐴 .𝑓 : El(𝑇𝐴) → El(𝑇𝐵).
This typing means that there is a function of type Π(𝑇𝐴 : U) .Π(𝑇𝐵 : U).El(𝑇𝐴) → El(𝑇𝐵), i.e., a
function from an arbitrary type to another arbitrary type. We can easily derive inconsistency from
this function: applying it to ⊤ and ⊥ yields a function of type ⊤ → ⊥.

Thus, it is critical that the hiding of W-type signatures operate on dependent tuple types rather
than linkage types. To this end, we introduce the syntax P(𝜎) and its computation rules (e.g.,
tyeq/pk/add) to make it convenient to package linkage signatures into dependent tuple types.

The complete formalization. The definitive version containing all the rules in FMLTT is stated
in Section 6. This definitive version uses de Bruijn indices and explicit substitution. An effort to
mechanize the formalization is underway. It follows Altenkirch and Kaposi [2016] in using Quotient
Inductive-Inductive Type (QIIT) as the logical framework to state intrinsically typed syntax (and
also in using Agda’s REWRITE pragma to replace the limited uses of equality reflection, as Agda does
not support QIITs natively).

Consistency and canonicity. One of the most fundamental properties of a dependent type theory
is consistency.

Theorem 5.1 (Consistency). The typing judgment · ⊢ 𝑡 : ⊥ is not derivable for any term 𝑡 .

Consistency says that the type ⊥ is not inhabited. Thus, it is safe to use the type theory for logical
reasoning, as not every proposition is trivially provable.

A second property we prove is canonicity.

Theorem 5.2 (Canonicity). If · ⊢ 𝑡 : B, then either · ⊢ 𝑡 ≡ tt : B or · ⊢ 𝑡 ≡ ff : B.

This canonicity theorem says that every closed term of the ground type B is convertible to one of
the canonical forms tt and ff. When the canonicity theorem is proved in a constructive metalogic,
its proof amounts to a normalization function for closed terms of the ground type. So canonicity
serves to justify the computational nature of the type theory.
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We prove Theorems 5.1 and 5.2 by constructing a logical-relations model for the well-formedness
rules, following prior approaches [Coquand 2019; Kaposi et al. 2019; Sterling 2019]. The model
interprets a linkage `+ (ℓ, 𝑡) as a pair where the second component is a function (modeling late
binding), as rule l/add indicates. The model interprets the bottom type ⊥ as an empty set, from
which Theorem 5.1 follows. A closed, well-formed type · ⊢ 𝑇 is interpreted as a logical predicate on
closed terms: the predicate includes all closed, “reducible” terms of type 𝑇 . Theorem 5.2 follows
from this interpretation. The detailed construction of the logical-relations model is available in
Section 6.4.
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6 SYNTAX AND SEMANTIC MODELS OF FMLTT
This section supplements Section 5 with the details of the syntax and the proofs of the main results.

Unlike in Section 5, which uses named binders, here we use de Bruijn indices and explicit
substitutions [Abadi et al. 1989; Martin-Löf 1992]: substitutions 𝛾 and their applications (e.g., 𝑇 [𝛾],
which applies 𝛾 to the type 𝑇 ) are part of the syntax rather than meta-operations. We work in an
intrinsically typed setting: terms are well typed by construction. Consequently, we omit without
ambiguity some obvious premises needed for well-formedness. This style of syntax formulation
follows a recent trend [Altenkirch and Kaposi 2016; Coquand 2019; Gratzer et al. 2019] known as
the “algebraic presentation” of MLTT. Moreover, universe levels are explicit here. Other aspects of
the syntax remain the same as in Section 5.
We still use based path induction as the elimination principle for identity types [Univalent

Foundations Program 2013].
6.1 MLTT with Explicit Substitutions and Universe Levels
We review the base MLTT fragment of FMLTT first. The following rules are the fully expanded
version of Figure 6, where each type (except universes) has four kinds of rules: introduction,
elimination, computation and uniqueness rules. Computation rules (𝛽-equalities) indicate the
judgemental equality for expressing reduction when elimination rules apply to the introduction
form. Uniqueness rules ([-equalities) indicate how some terms are possibly uniquely constructed
by introduction rules. The substitution rule is in the form of de Bruijn indices.
The first four rules are following the style of Univalent Foundations Program [2013]; Pfenning

[2009], while the substitution rules are naturally required for any language with first-class functions.

Contexts Γ,Δ,Θ F · | Γ, 𝐴
Substitutions 𝛾 F p𝑛 | 𝛾, 𝑡 | 𝛾1 ◦ 𝛾2 | 𝜋1𝛾 | id

Types 𝐴, 𝐵,𝑇 F 𝑇 [𝛾] | U | B | ⊥ | ⊤ | Π(𝐴, 𝐵) | Σ(𝐴, 𝐵) | Eq(𝑡1, 𝑡2) | S(𝑡) | El(𝑡)
Terms 𝑡, 𝑠 F 𝑡 [𝛾] | var𝑛 | 𝜋2𝛾 | c(𝑇 ) | () | tt | ff | if(𝑡1, 𝑡2, 𝑡3) | _(𝑡) | app(𝑡) |

(𝑡1, 𝑡2) | fst 𝑡 | snd 𝑡 | refl(𝑡) | J(𝑡1, 𝑡2)

Γ ⊢𝑘 Γ ⊢ 𝛾 : Δ Γ ⊢𝑗 𝑇 Γ ⊢ 𝑡 : 𝑇

· ⊢0
Γ ⊢𝑘 Γ ⊢𝑗 𝐴

Γ, 𝐴 ⊢𝑘⊔𝑗

Γ ⊢𝑗+1 U𝑗 Γ ⊢0 B Γ ⊢0 ⊥ Γ ⊢0 ⊤
Γ ⊢𝑗 𝐴 Γ, 𝐴 ⊢𝑖 𝐵
Γ ⊢𝑗⊔𝑖 Π(𝐴, 𝐵)

Γ ⊢𝑗 𝐴 Γ, 𝐴 ⊢𝑖 𝐵
Γ ⊢𝑗⊔𝑖 Σ(𝐴, 𝐵)

Γ ⊢𝑗 𝐴 Γ ⊢ 𝑥 : 𝐴 Γ ⊢ 𝑦 : 𝐴
Γ ⊢𝑗 Eq(𝑥,𝑦)

Γ ⊢𝑗 𝐴 Γ ⊢ 𝑎 : 𝐴
Γ ⊢𝑗 S(𝑎)

(ty/sub)
Δ ⊢𝑗 𝑇 Γ ⊢ 𝛾 : Δ

Γ ⊢𝑗 𝑇 [𝛾]

Γ ⊢ 𝐴
[
p0

]
≡ 𝐴 Γ ⊢ 𝐴[𝛾1 ◦ 𝛾2] ≡ 𝐴[𝛾1] [𝛾2]

Γ ⊢ 𝛾 : Δ

Γ ⊢ U[𝛾] ≡ U Γ ⊢ B[𝛾] ≡ B Γ ⊢ ⊥[𝛾] ≡ ⊥ Γ ⊢ (Π(𝐴, 𝐵)) [𝛾] ≡ Π(𝐴[𝛾], 𝐵
[
𝛾↑

]
)

Γ ⊢ (Σ(𝐴, 𝐵)) [𝛾] ≡ Σ(𝐴[𝛾], 𝐵
[
𝛾↑

]
) Γ ⊢ (Eq(𝑎, 𝑏)) [𝛾] ≡ Eq(𝑎[𝛾], 𝑏 [𝛾])

Γ ⊢ S(𝑎) [𝛾] ≡ S(𝑎[𝛾])
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Γ ⊢𝑗 𝑇
Γ ⊢ c(𝑇 ) : U𝑗

Γ ⊢ 𝑇 : U𝑗

Γ ⊢𝑗 El(𝑇 ) Γ ⊢ El(c(𝑇 )) ≡ 𝑇 Γ ⊢ c(El(𝑇 )) ≡ 𝑇 : U Γ ⊢ () : ⊤

Γ ⊢ 𝑡 : ⊤
Γ ⊢ 𝑡 ≡ () : ⊤

(tm/sub)
Δ ⊢ 𝑡 : 𝑇 Γ ⊢ 𝛾 : Δ

Γ ⊢ 𝑡 [𝛾] : 𝑇 [𝛾]
Γ ⊢ 𝑡

[
p0

]
≡ 𝑡 : 𝑇

Γ, 𝐴 ⊢ 𝑡 : 𝐵
Γ ⊢ _(𝑡) : Π(𝐴, 𝐵)

Γ ⊢ 𝑡 : Π(𝐴, 𝐵)
Γ, 𝐴 ⊢ app(𝑡) : 𝐵 Γ, 𝐴 ⊢ app(_(𝑡)) ≡ 𝑡 : 𝐵 Γ ⊢ _(app(𝑡)) ≡ 𝑡 : Π(𝐴, 𝐵)

Γ ⊢ 𝑢 : 𝐴 Γ ⊢ 𝑣 : 𝐵 [(p0, 𝑢)]
Γ ⊢ (𝑢, 𝑣) : Σ(𝐴, 𝐵)

Γ ⊢ 𝑡 : Σ(𝐴, 𝐵)
Γ ⊢ fst 𝑡 : 𝐴 Γ ⊢ snd 𝑡 : 𝐵 [(p0, fst 𝑡)]

Γ ⊢ fst (𝑢, 𝑣) ≡ 𝑢 : 𝐴 Γ ⊢ snd (𝑢, 𝑣) ≡ 𝑣 : 𝐵 [(p0, 𝑢)] Γ ⊢ (fst 𝑡, snd 𝑡) ≡ 𝑡 : Σ(𝐴, 𝐵)

Γ ⊢ tt, ff : B

Γ ⊢ 𝑐 : B Γ ⊢ 𝑎 : 𝑇 Γ ⊢ 𝑏 : 𝑇
Γ ⊢ if(𝑐, 𝑎, 𝑏) : 𝑇

Γ ⊢ 𝑎 : 𝐴
Γ ⊢ refl(𝑎) : Eq(𝑎, 𝑎)

Γ ⊢ 𝑢 : 𝐴 Γ, 𝐴, Eq(𝑢 [𝜋1], 𝜋2) ⊢ 𝐶 Γ ⊢ 𝑤 : 𝐶
[
p0, 𝑢, refl(𝑢)

]
Γ ⊢ 𝑣 : 𝐴 Γ ⊢ 𝑡 : Eq(𝑢, 𝑣)

Γ ⊢ J(𝑤, 𝑡) : 𝐶
[
p0, 𝑣, 𝑡

]
Γ ⊢ if(tt, 𝑎, 𝑏) ≡ 𝑎 : 𝑇 Γ ⊢ if(ff, 𝑎, 𝑏) ≡ 𝑏 : 𝑇 Γ ⊢ J(𝑤, refl(𝑢)) ≡ 𝑤 : 𝐶

[
p0, 𝑢, refl(𝑢)

]
Γ ⊢ 𝑎 : 𝐴

Γ ⊢ 𝑎 : S(𝑎)
Γ ⊢𝐴 𝑎 Γ ⊢ 𝑥 : S(𝑎)

Γ ⊢ 𝑥 ≡ 𝑎 : 𝐴

Γ ⊢ (_(𝑡)) [𝛾] ≡ _(𝑡
[
𝛾↑

]
) : Π(𝐴, 𝐵) Γ ⊢ (𝑢, 𝑣) [𝛾] ≡ (𝑢 [𝛾] , 𝑣 [𝛾]) : Σ(𝐴, 𝐵)

Γ ⊢ El(𝑇 [𝛾]) ≡ (El(𝑇 )) [𝛾] Γ ⊢ tt[𝛾] ≡ tt : B Γ ⊢ ff[𝛾] ≡ ff : B
Γ ⊢ (if(𝑐, 𝑎, 𝑏)) [𝛾] ≡ if(𝑐 [𝛾], 𝑎[𝛾], 𝑏 [𝛾]) : 𝑇 Γ ⊢ (J(𝑤, 𝑡)) [𝛾] ≡ J(𝑤 [𝛾], 𝑡 [𝛾]) :

Γ ⊢ 𝜖 : ·
Γ ⊢ 𝛾 : ·

Γ ⊢ 𝛾 ≡ 𝜖 : ·
Δ ⊢ 𝛿 : Θ Γ ⊢ 𝛾 : Δ

Γ ⊢ 𝛿 ◦ 𝛾 : Θ Γ ⊢ id ≡ p0 : Γ

(sub/id)

Γ ⊢ p0 : Γ

(sub/ext)
Γ ⊢ 𝛾 : Δ Γ ⊢ 𝑡 : 𝐴[𝛾]

Γ ⊢ 𝛾, 𝑡 : (Δ, 𝐴)

(sub/wk)
Γ ⊢ p𝑛 : Δ Γ ⊢ 𝐴

Γ, 𝐴 ⊢ p𝑛+1 : Δ
(tm/var)

Γ, 𝐴𝑛, ..., 𝐴1, 𝐴0 ⊢
Γ, 𝐴𝑛, ..., 𝐴1, 𝐴0 ⊢ var𝑛 : 𝐴𝑛

[
p𝑛+1

] (sub/dbj/shift)
Γ ⊢ 𝛾 : Δ Δ ⊢ 𝐴

Γ, 𝐴[𝛾] ⊢ 𝛾↑𝐴 ≡ (𝛾 ◦ p1, var0) : Δ, 𝐴
Γ ⊢ 𝛾 : (Δ, 𝐴)
Γ ⊢ 𝜋1𝛾 : Δ

Γ ⊢ 𝛾 : (Δ, 𝐴)
Γ ⊢ 𝜋2𝛾 : 𝐴[𝜋1𝛾] Γ ⊢ (𝜋1𝛾, 𝜋2𝛾) ≡ 𝛾 : Δ

Γ ⊢ 𝛾1 ◦ (𝛾2 ◦ 𝛾3) ≡ (𝛾1 ◦ 𝛾2) ◦ 𝛾3 : Θ Γ ⊢ p0 ◦ 𝛾 ≡ 𝛾 ◦ p0 ≡ 𝛾 : Θ

MLTT as a programming language. Conventionally, the operational semantics sketches the
interpreter of a given formalization of a programming language. However, compared to this tradi-
tional setup, a careful reader will notice the absence of operational semantics in our MLTT. It is
no doubt that MLTT is a logical system where we can write proofs, but it is unclear if MLTT can
really be considered as a programming language.
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Indeed, for MLTT, we only have syntactic term and their judgemental equality (conversion rules)
among them. However, we still can have an interpreter about our MLTT in our ambient meta-logic.
For a programmer, this is like writting a Haskell meta-circular interpreter [Abelson and Sussman
1996] that interprets an abstract syntax tree into Haskell’s data structure. For a logician, this is
interpreting the syntactic · ⊢ 𝑡 : B to an element J𝑡K ∈ {tt, ff}. For a formal semanticist, this can
be considered as a naive form of denotational semantic.
This interpreter is in the form of our canonicity theorem Theorem 5.2 in the light of Curry-

Howard Correspondence, as any closed program of type B is evaluated to either tt or ff under this
theorem. What’s more, our canonicity theorem also reflects this computational traces into MLTT
as a proof term of the derivation 𝑡 ≡ tt or 𝑡 ≡ ff. From this perspective, we can see the similarity
between the unidirectional small-step relation and the bidirectional conversion rules.

Quotient upon the syntax. As we mentioned in Section 5, the syntax is considered as being
quotiented by the judgmental equalities, and quotienting facilitates type coercion along equalities.

By looking at our syntax as some sorts of abstract syntax tree (data), after quotient, each syntax
piece is actually an equivalent class of unquotiented syntax, where the equivalence is exactly the
judgemental equalities. A proper introduction of this quotient concept can be found in Altenkirch
and Kaposi [2016]; Kaposi [2017], where a type-theoretic quotient formulation of MLTT is given.
Once it is clear that the syntax of our MLTT as a logic system is a quotiented data, then it

is natural to consider model of this logic system as a function mapping from those quotiented
data (syntax). The (semantic) model introduced below will follow this idea. More specifically, the
semantic model as a function will have to respect judgemental equalities to be a well-defined
function from quotiented data. In other words, for two judgementally equal syntax pieces, the
model needs to map them into the same data.

De Bruijn Indices and Explicit Substitution. De Bruijn indices and explicit substitutions make
details about binders and substitutions explicit. Using explicit substitutions obviates the need
for special treatment of substitutions in the proofs, as substitutions are part of the syntax. The
form var𝑛 represents a variable bound by the 𝑛-th closest enclosing binder. For example, _𝑥. _𝑦. 𝑥
is _(_(var1)). Substitutions are typed with the form Γ ⊢ 𝛾 : Δ. The idea is that applying 𝛾 to
terms valid in the context Δ yields terms valid in Γ (tm/sub and ty/sub). The two main forms of
substitutions are weakening (sub/wk) and extension (sub/ext): 𝑡 [p𝑛] introduces 𝑛 free variables
into the context of 𝑡 , and 𝑡 [𝛾, 𝑡 ′] substitutes 𝑡 ′ for var0 in 𝑡 and then applies 𝛾 . For example, rule
tm/snd states that if 𝑡 is a dependent pair that has type Σ(𝐴, 𝐵), then snd 𝑡 has type 𝐵

[
p0, fst 𝑡

]
,

where p0 is the identity substitution (sub/id). We occasionally use the notation id for p0.
To simplify, p𝑛 is a short hand for 𝜋𝑛

1 id and var𝑛 is a short hand for 𝜋2 𝜋𝑛
1 . Thus during meta-

theoretic reasoning, we will only deal with 𝜋1 and 𝜋2.
Consequently, function application changes to an equivalent formulation, and becomes a “direct

inverse” of typing rule for function abstraction. For example, the named notation app(𝑓 , 𝑡) can be
equivalently represented by app(𝑓 )

[
p0, 𝑡

]
.

Finally, we have sub/dbj/shift defined using sub/wk and tm/var. This rule applying substitution
𝛾 to the earlier portion of the context. We usually omit 𝐴 in the 𝛾↑𝐴 because it can be inferred from
the context.

Universe levels. Universe levels address the size issue—it is unsound to have a set of all sets (or a
universe of all types) [Hurkens 1995]. The level of a universe specifies “how large” that universe is.

The judgment form Γ ⊢𝑖 𝑇 indicates that (the code of) the type 𝑇 inhabits universe U𝑖 . Similarly,
Γ ⊢𝑖 indicates that (the codes of) the types in Γ inhabit universe U𝑖 . The notation 𝑖 ⊔ 𝑗 denotes
max(𝑖, 𝑗).
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6.2 FMLTT
FMLTT extends the MLTT in Section 6.1 with W-type signatures and W-types, linkage signatures
and linkages, and linkage transformers. The following rules are the fully expanded version of
Figure 7, where each type has five kinds of rules: introduction, elimination, computation, uniqueness
rules and substitution lemma. Computation rules (𝛽-equalities) indicate the judgemental equality
for expressing reduction when elimination rules apply to the introduction form. Uniqueness rules
([-equalities) indicate how some terms are possibly uniquely constructed by introduction rules.
The substitution rule is in the form of de Bruijn indices.

The first four rules are following the style of Univalent Foundations Program [2013]; Pfenning
[2009], while the substitution rules are naturally required for any language with first-class functions.
Apart from types, we also lay out the complete version of judgements for signatures and link-

age transformers. The signature judgements are also following these five parts—introduction,
elimination, computation, uniqueness and substitution rules.

Types 𝐴, 𝐵,𝑇 F ... | w𝜋 𝑖
1 (𝜏) | w𝜋 𝑖

2 (𝜏) | L(𝜎) | P(𝜎) | a𝜋2 (𝜎) | CaseTy(𝐴, 𝐵,𝑇 )
Terms 𝑡, 𝑠, ℓ F ... | W(𝜏) | Wsup𝑖 (𝜏, 𝑡1, 𝑡2) | `• | `+ (ℓ, 𝑡) | inh(ℎ, ℓ)

| Wrec(𝜏, ℓ, 𝑡) | `𝜋1 (ℓ) | `𝜋2 (ℓ) | a𝜋s (𝜎) | P(ℓ) | R𝜋 𝑖 (ℓ)
W-type signatures 𝜏 F w• | w+ (𝜏,𝐴, 𝐵) | 𝜏 [𝛾] | w− (𝜏)
Linkage signatures 𝜎 F a• | a+ (𝜎, 𝑠,𝑇 ) | a𝜋1 (𝜎) | RecSig(𝜏,𝑇 ) | 𝜎 [𝛾]

Linkage transformers ℎ F Identity | Extend(ℎ, 𝑡) | Override(ℎ, 𝑡) | Inherit(ℎ) |
Nest(ℎ,ℎ′) | ℎ[𝛾]

Γ ⊢𝑚 𝜏 WSig𝑛 Γ ⊢𝑙 𝜎 LSig𝑛 Γ ⊢ ℎ : 𝜎1 ↠ 𝜎2

Γ ⊢𝑚 w• WSig0
Γ ⊢𝑚 𝜏 WSig0

Γ ⊢𝑚 𝜏 ≡ w• WSig0
Γ ⊢𝑚 𝜏 WSig𝑛 Γ ⊢𝑚 𝐴 Γ, 𝐴 ⊢𝑚 𝐵

Γ ⊢𝑚 w+ (𝜏,𝐴, 𝐵) WSig𝑛+1

Γ ⊢𝑚 𝜏 WSig𝑛 𝑗 < 𝑛

Γ ⊢𝑚 w𝜋 𝑗

1 (𝜏) Γ, w𝜋 𝑗

1 (𝜏) ⊢𝑚 w𝜋 𝑗

2 (𝜏)
Γ ⊢ 𝛾 : Θ

Γ ⊢ w𝜋 𝑗+1
1 (w+ (𝜏,𝐴, 𝐵)) ≡ w𝜋 𝑗

1 (𝜏) Γ, w𝜋 𝑗+1
1 (w+ (𝜏,𝐴, 𝐵)) ⊢ w𝜋 𝑗+1

2 (w+ (𝜏,𝐴, 𝐵)) ≡ w𝜋 𝑗

2 (𝜏)
Γ ⊢ w𝜋0

1 (w+ (𝜏,𝐴, 𝐵)) ≡ 𝐴 Γ, w𝜋0
1 (w+ (𝜏,𝐴, 𝐵)) ⊢ w𝜋 𝑗

2 (w
+ (𝜏,𝐴, 𝐵)) ≡ 𝐵

Γ ⊢𝑚 𝜏 WSig𝑛+1

Γ ⊢𝑚 w− (𝜏) WSig𝑛

Γ ⊢ 𝛾 : Θ

Γ ⊢ w• [𝛾] ≡ w• WSig0 Γ ⊢ w+ (𝜏,𝐴, 𝐵) [𝛾] ≡ w+ (𝜏 [𝛾], 𝐴[𝛾], 𝐵
[
𝛾↑

]
) WSig𝑛+1

Γ ⊢ w𝜋 𝑗

1 (𝜏) [𝛾] ≡ w𝜋 𝑗

1 (𝜏 [𝛾]) Γ, w𝜋 𝑗

1 (𝜏 [𝛾]) ⊢𝑖 w𝜋
𝑗

2 (𝜏)
[
𝛾↑

]
≡ w𝜋 𝑗

2 (𝜏 [𝛾])

Γ ⊢𝑚 𝜏 WSig𝑛

Γ ⊢ W(𝜏) : U𝑚+1

Γ ⊢𝑚 𝜏 WSig𝑛 Γ ⊢ 𝑡1 : w𝜋 𝑖
1 (𝜏)

Γ, w𝜋 𝑖
2 (𝜏)

[
p0, 𝑡1

]
⊢ 𝑡2 : El(W(𝜏))

Γ ⊢ Wsup𝑖 (𝜏, 𝑡1, 𝑡2) : El(W(𝜏))
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Γ ⊢ 𝛾 : Θ

Γ ⊢ (Wsup (𝑇, 𝑎, 𝑏)) [𝛾] ≡ Wsup (𝑇 [𝛾], 𝑎[𝛾], 𝑏
[
𝛾↑

]
) : El((W(𝜏 [𝛾])))

Γ ⊢𝑚 𝜏 WSig𝑛 Γ ⊢𝑚 𝐴 Γ, 𝐴 ⊢𝑚 𝐵

Γ ⊢ w− (w+ (𝜏,𝐴, 𝐵)) ≡ 𝜏 WSig𝑛
Γ ⊢ 𝛾 : Θ

Γ ⊢ w− (𝜏) [𝛾] ≡ w− (𝜏 [𝛾]) WSig𝑛

Γ ⊢𝑙 𝜎 LSig𝑛

Γ ⊢𝑙 L(𝜎) Γ ⊢𝑙 P(𝜎)
Δ ⊢𝑙 𝜎 LSig𝑛 Γ ⊢ 𝛾 : Δ

Γ ⊢𝑙 𝜎 [𝛾] LSig𝑛 Γ ⊢ L(𝜎 [𝛾]) ≡ (L(𝜎)) [𝛾] Γ ⊢ P(𝜎 [𝛾]) ≡ (P(𝜎)) [𝛾]

Γ ⊢𝑙 a• LSig0
Γ ⊢𝑙 𝜎 LSig0

Γ ⊢𝑙 𝜎 ≡ a• LSig0

Γ ⊢𝑙 𝜎 LSig𝑛 Γ, 𝐴 ⊢𝑙 𝑇
Γ,P(𝜎) ⊢ 𝑠 : 𝐴

[
p1

]
Γ ⊢𝑙 a+ (𝜎, 𝑠,𝑇 ) LSig𝑛+1

Θ ⊢𝑙 𝜎 LSig𝑛+1 Γ ⊢ 𝛾 : Θ
Γ ⊢𝑙 a𝜋1 (𝜎) LSig𝑛 Γ ⊢𝑙 a𝜋 ′

1 (𝜎) Γ,P(a𝜋1 (𝜎)) ⊢ a𝜋s (𝜎) : a𝜋 ′
1 (𝜎) [𝜋1] Γ, a𝜋 ′

1 (𝜎) ⊢𝑙 a𝜋2 (𝜎)
Γ ⊢ a+ (a𝜋1 (𝜎), a𝜋s (𝜎), a𝜋2 (𝜎)) ≡ 𝜎 LSig𝑛+1

Γ ⊢ 𝜎 LSig𝑛 Γ ⊢ 𝐴 Γ,P(𝜎) ⊢ 𝑠 : 𝐴[𝜋1] Γ, 𝐴 ⊢𝑖 𝑇
Γ ⊢ a𝜋1 (a+ (𝜎, 𝑠,𝑇 )) ≡ 𝜎 LSig𝑛 Γ ⊢ a𝜋 ′

1 (a+ (𝜎, 𝑠,𝑇 )) ≡ 𝐴

Γ,P(𝜎) ⊢ a𝜋s (a+ (𝜎, 𝑠,𝑇 )) ≡ 𝑠 : 𝐴[𝜋1] Γ, 𝐴 ⊢ a𝜋2 (a+ (𝜎, 𝑠,𝑇 )) ≡ 𝑇

Γ ⊢ 𝛾 LSigΘ

Γ ⊢ a• [𝛾] ≡ a• LSig𝑛 Γ ⊢ (a+ (𝜎, 𝑠,𝑇 )) [𝛾] ≡ a+ (𝜎 [𝛾], 𝑠
[
𝛾↑

]
,𝑇

[
𝛾↑

]
) LSig𝑛+1

Γ ⊢ (a𝜋1 (𝜎)) [𝛾] ≡ a𝜋1 (𝜎 [𝛾]) LSig𝑛 Γ ⊢ (a𝜋 ′
1 (𝜎)) [𝛾] ≡ a𝜋 ′

1 (𝜎 [𝛾])
Γ,P(𝜎) ⊢ a𝜋s (𝜎) [𝛾] ≡ a𝜋s (𝜎 [𝛾]) : 𝐴[𝜋1] Γ, a𝜋 ′

1 (𝜎 [𝛾]) ⊢ (a𝜋2 (𝜎))
[
𝛾↑

]
≡ a𝜋2 (𝜎 [𝛾])

Γ ⊢ `• : L(a•)
Γ ⊢ ℓ : L(a•)

Γ ⊢ ℓ ≡ `• : L(a•)
Γ ⊢ ℓ : L(𝜎)

Γ ⊢ P(ℓ) : P(𝜎)
Γ ⊢ 𝛾 : Θ

Γ ⊢ (P(ℓ)) [𝛾] ≡ P(ℓ [𝛾]) : P(𝜎)

Γ ⊢ ℓ : L(𝜎) Γ, 𝐴 ⊢ 𝑡 : 𝑇
Γ,P(𝜎) ⊢ 𝑠 : 𝐴

[
p1

]
Γ ⊢ `+ (ℓ, 𝑡) : L(a+ (𝜎, 𝑠,𝑇 ))

Γ ⊢ ℓ : L(𝜎)
Γ ⊢ `+ (`𝜋1 (ℓ), `𝜋2 (ℓ)) ≡ ℓ : L(𝜎)

Γ ⊢ ℓ : L(𝜎)
Γ ⊢ `𝜋1 (ℓ) : L(a𝜋1 (𝜎)) Γ, a𝜋 ′

1 (𝜎) ⊢ `𝜋2 (ℓ) : a𝜋2 (𝜎)

Γ ⊢ ℓ : L(𝜎) Γ ⊢ 𝐴 Γ,P(𝜎) ⊢ 𝑠 : 𝐴[𝜋1] Γ, 𝐴 ⊢ 𝑡 : 𝑇
Γ ⊢ `𝜋1 (`+ (ℓ, 𝑡)) ≡ ℓ : L(𝜎) Γ, 𝐴 ⊢ `𝜋2 (`+ (ℓ, 𝑡)) ≡ 𝑡 : 𝑇
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Γ ⊢ 𝛾 : Θ

Γ ⊢ `• [𝛾] ≡ `• : L(a•) Γ ⊢ (`+ (ℓ, 𝑡)) [𝛾] ≡ `+ (ℓ [𝛾], 𝑡
[
𝛾↑

]
) : L(a+ (𝜎, 𝑠,𝑇 )) [𝛾]

Γ ⊢ (`𝜋1 (ℓ)) [𝛾] ≡ `𝜋1 (ℓ [𝛾]) : L(a𝜋1 (𝜎)) [𝛾]
Γ, a𝜋 ′

1 (𝜎 [𝛾]) ⊢ (`𝜋2 (ℓ))
[
𝛾↑

]
≡ `𝜋2 (ℓ [𝛾]) : a𝜋2 (𝜎)

Γ ⊢ P(a•) ≡ ⊤ Γ ⊢ P(a+ (𝜎, 𝑠,𝑇 )) ≡ Σ(P(𝜎),𝑇 [𝜋1, 𝑠])
Γ ⊢ P(`•) ≡ () : P(a•) Γ ⊢ P(`+ (ℓ, 𝑡)) ≡ (P(ℓ), 𝑡 [𝜋1, 𝑠] [(p0,P(ℓ))]) :

Γ ⊢𝑖 𝐴 Γ, 𝐴 ⊢𝑖 𝐵 Γ ⊢𝑗 𝑇
Γ ⊢𝑖⊔𝑗 CaseTy(𝐴, 𝐵, 𝑅) ≡ Π(𝐴,Π(Π(𝐵, 𝑅

[
p2

]
), 𝑅

[
p2

]
))

Γ ⊢𝑚 𝜏 WSig𝑛+1 Γ ⊢𝑗 𝑅
Γ ⊢𝑚∪𝑗 RecSig(𝜏, 𝑅) ≡ a+ (RecSig(w− (𝜏), 𝑅), 𝜋2, CaseTy(w𝜋0

1 (𝜏), w𝜋0
2 (𝜏), 𝑅)) LSig𝑛+1

Γ ⊢𝑚 𝜏 WSig0 Γ ⊢𝑗 𝑅
Γ ⊢𝑚∪𝑗 RecSig(𝜏, 𝑅) ≡ a• LSig0

Γ ⊢ 𝜏 WSig𝑁 Γ ⊢ ℓ : L(RecSig(𝜏, 𝑅)) 𝑗 < 𝑁

Γ ⊢ R𝜋 𝑗 (ℓ) : (CaseTy(w𝜋 𝑗

1 (𝜏), w𝜋
𝑗

2 (𝜏), 𝑅)) [𝜋1]

Γ ⊢ ℓ : L(RecSig(𝜏,𝑇 )) Γ ⊢ 𝑡 : El(W(𝜏))
Γ ⊢ Wrec(𝜏, ℓ, 𝑡) : 𝑇

Γ ⊢ 𝜏 WSig𝑁 𝑗 < 𝑁 Γ ⊢ ℓ : L(RecSig(𝜏, 𝑅))
Γ ⊢ R𝜋 𝑗 (ℓ) : CaseTy(w𝜋 𝑗

1 (𝜏), w𝜋
𝑗

2 (𝜏), 𝑅)

Γ ⊢ R𝜋𝑛+1 (ℓ) ≡ R𝜋𝑛 (`𝜋1 (ℓ)) : (CaseTy(w𝜋𝑛+1
1 (𝜏), w𝜋𝑛+1

2 (𝜏), 𝑅)) [𝜋1]

Γ ⊢ R𝜋0 (ℓ) ≡ `𝜋2 (ℓ)
[
(p0,P(`𝜋1 (ℓ)))

]
: (CaseTy(w𝜋0

1 (𝜏), w𝜋0
2 (𝜏), 𝑅)) [𝜋1]

Γ ⊢ ℎ : L(RecSig(𝜏, 𝑅))
Γ ⊢ Wrec(𝜏, ℎ, Wsup𝑗 (𝜏, 𝑎, 𝑏)) ≡ app(app(R𝜋 𝑗 (ℎ)) [(p0, 𝑎)]) [(p0, _(Wrec(𝜏, ℎ[𝜋1], 𝑏)))] : 𝑅

Γ ⊢ Identity : 𝜎 ↠ 𝜎

Γ ⊢ ℎ : 𝜎1 ↠ 𝜎2 Γ, 𝐴1 ⊢ 𝑇1 Γ, 𝐴2 ⊢ 𝑇2 Γ, 𝐴2 ⊢ 𝑡 : 𝑇2
Γ ⊢ Override(ℎ, 𝑡) : (a+ (𝜎1, 𝑠1,𝑇1)) ↠ (a+ (𝜎2, 𝑠2,𝑇2))

Γ ⊢ ℎ : 𝜎1 ↠ 𝜎2 Γ, 𝐴2 ⊢ 𝑡 : 𝑇
Γ ⊢ Extend(ℎ, 𝑡) : 𝜎1 ↠ (a+ (𝜎2, 𝑠2,𝑇 ))

Γ ⊢ ℎ : 𝜎1 ↠ 𝜎2 Γ, 𝐴1 ⊢ 𝑇 Γ, 𝐴2 ⊢ ↑𝑠 : 𝐴1 [𝜋1]
Γ ⊢ Inherit(ℎ) : a+ (𝜎1, 𝑠1,𝑇 ) ↠ a+ (𝜎2, 𝑠2,𝑇 [(𝜋1, ↑𝑠 )])

Γ ⊢ ℎ : 𝜎1 ↠ 𝜎2 Γ ⊢ ℓ : L(𝜎1)
Γ ⊢ inh(ℎ, ℓ) : L(𝜎2)

Γ ⊢ ℎ : 𝜎1 ↠ 𝜎2 Γ, 𝐴2 ⊢ ↑𝑠 : 𝐴1 [𝜋1]
Γ, 𝐴2 ⊢ ℎinner : 𝜏1 [(𝜋1, ↑𝑠 )] ↠ 𝜏2

Γ ⊢ Nest(ℎ,ℎinner ) : a+ (𝜎1, 𝑠1,L(𝜏1)) ↠ a+ (𝜎2, 𝑠2,L(𝜏2))

Γ ⊢ Identity[𝛾] ≡ Identity Γ ⊢ Override(ℎ, 𝑡) [𝛾] ≡ Override(ℎ[𝛾], 𝑡
[
𝛾↑

]
)

Γ ⊢ Extend(ℎ, 𝑡) [𝛾] ≡ Extend(ℎ[𝛾], 𝑡
[
𝛾↑

]
) Γ ⊢ Inherit(ℎ) [𝛾] ≡ Inherit(ℎ[𝛾])

Γ ⊢ inh(ℎ, ℓ) [𝛾] ≡ inh(ℎ[𝛾], ℓ [𝛾]) : L(𝜎2) [𝛾] Γ ⊢ Nest(ℎ,ℎinner ) [𝛾] ≡ Nest(ℎ[𝛾], ℎinner
[
𝛾↑

]
)
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Γ ⊢ ℓ : L(𝜎)
Γ ⊢ inh(Identity, ℓ) ≡ ℓ : L(𝜎)

Γ ⊢ ℎ : 𝜎1 ↠ 𝜎2 Γ,P(𝜎2) ⊢ 𝑠2 : 𝐴2 [𝜋1] Γ, 𝐴2 ⊢ 𝑡 : 𝑇 Γ ⊢ ℓ : L(𝜎1)
Γ ⊢ inh(Extend(ℎ, 𝑡), ℓ) ≡ `+ (inh(ℎ, ℓ), 𝑡) : L(a+ (𝜎1, 𝑠2,𝑇 ))

Γ ⊢ ℎ : 𝜎1 ↠ 𝜎2 Γ ⊢𝑚 : L(𝜎1) Γ, 𝐴1 ⊢ 𝑡 : 𝑇 Γ,P(𝜎2) ⊢ 𝑠2 : 𝐴2 [𝜋1] Γ, 𝐴2 ⊢ ↑𝑠 : 𝐴1 [𝜋1]
Γ ⊢ inh(Inherit(ℎ), `+ (𝑚, 𝑡)) ≡ `+ (inh(ℎ,𝑚), 𝑡 [(𝜋1, ↑𝑠 )]) : L(a+ (𝜎2, 𝑠2,𝑇 [𝜋1, ↑𝑠 ]))

Γ ⊢ ℎ : 𝜎1 ↠ 𝜎2 Γ ⊢ ℓ : L(𝜎1)
Γ, 𝐴1 ⊢ 𝑡1 : 𝑇1 Γ,P(𝜎1) ⊢ 𝑠1 : 𝐴1

[
p1

]
Γ, 𝐴2 ⊢ 𝑡2 : 𝑇2 Γ,P(𝜎2) ⊢ 𝑠2 : 𝐴2

[
p1

]
Γ ⊢ inh(Override(ℎ, 𝑡2), `+ (ℓ, 𝑡1)) ≡ `+ (inh(ℎ, ℓ), 𝑡2) : L(a+ (𝜎2, 𝑠2,𝑇2))

Γ ⊢ ℎ : 𝜎1 ↠ 𝜎2 Γ, 𝐴2 ⊢ ↑𝑠 : 𝐴1 [𝜋1] Γ, 𝐴2 ⊢ ℎinner : 𝜏1 [(𝜋1, ↑𝑠 )] ↠ 𝜏2

Γ ⊢ inh(Nest(ℎ,ℎinner ), `+ (ℓ, 𝑡)) ≡ `+ (inh(ℎ, ℓ), inh(ℎinner , 𝑡 [𝜋1, ↑𝑠 ])) : L(a+ (𝜎1, 𝑠2,L(𝜏2)))

Linkage transformers as syntactic sugar. As mentioned in Section 5, the five forms of linkage
transformers can be thought of as a library of functions that are used to construct linkages from
other linkages. In particular, their typing rules are defined in terms of the rest of the typing rules
in FMLTT. Thus, linkage transformers Γ ⊢ ℎ : 𝜎1 ↠ 𝜎2 can be defined as syntactic sugar via an
inductive type (in the metalogic) with four constructors Extend(, ), Override(, ), Inherit(), and
Nest(, ). Moreover, inh(ℎ, ℓ) and ℎ[𝛾] can be defined as recursive functions (in the metalogic)
by induction on this inductive type. We will treat linkage transformers as syntactic sugar in the
metatheoretic development in the rest of Section 6.
6.3 A Translation that Compiles Linkages Away
We present a translation from the FMLTT syntax to the fragment of FMLTT without linkage
signatures or linkages. The translation echoes how the fpop plugin is implemented (Section 4) as a
translation to Coq without facilities for family polymorphism. The translation is type-preserving
by construction, as we work in an intrinsically typed setting.

We define the translation JK𝑇 below; the fragment of the syntax irrelevant to linkages is translated
using the identity function and is thus elided. When the context Γ is clear, we use J𝑇 K𝑇 to mean
JΓ ⊢ 𝑇 K𝑇 .

We will first define two helpers
• A type Γ ⊢ Sig𝑟𝑗 Γ 𝑛 where Γ ⊢ and 𝑛 ∈ N. The idea is that Γ ⊢ JΓ ⊢𝑗 𝜎 LSig𝑛K

𝑇
: Sig𝑟𝑗 Γ 𝑛

• A function 𝒫 :
{
𝜎 ′ �� Γ ⊢ 𝜎 ′ : Sig𝑟𝑗 Γ 𝑛

}
→

{
𝑇

�� Γ ⊢ 𝑇
}
mapping a term of type Sig𝑟𝑗 Γ 𝑛 to

a type.
They are defined mutually inductively on 𝑛, the signature length.

Sig𝑟𝑗 Γ (𝑛 + 1) = Σ (Sig𝑟𝑗 Γ 𝑛) (Σ U𝑗

(Σ (Π(𝒫(var0
[
p1

]
), El(var0

[
p1

]
)))

Π(El(var0
[
p1

]
),U𝑗 )))

Sig𝑟𝑗 Γ 0 = ⊤
𝒫(𝜎 ′) = Σ (fst 𝜎 ′) (El(app(snd3 𝜎 ′) [(p1, app(fst (snd2 𝜎 ′)))]))

when Γ ⊢ 𝜎 ′ : Sig𝑟𝑗 Γ 𝑛 + 1
𝒫(𝜎 ′) = ⊤ when Γ ⊢ 𝜎 ′ : Sig𝑟𝑗 Γ 0
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With the above two helpers, we can define denotation JK𝑇 :

JΓ ⊢𝑗 𝜎 LSig𝑛K
𝑇
∈

{
𝑡
�� Γ ⊢ 𝑡 : Sig𝑟𝑗 Γ 𝑛

}
Γ ⊢ P(𝜎) = 𝒫(J𝜎K𝑇 )

JΓ ⊢ L(𝜎)K𝑇 is defined upon J𝜎K𝑇 and inductively on the signature length

JΓ ⊢ L(𝜎)K𝑇 = JL(a𝜋1 (𝜎))K𝑇 × Π(El(fst (snd J𝜎K𝑇 ))) (El(app(snd3 J𝜎K𝑇 )))
given JΓ ⊢ 𝜎 LSig𝑛+1K𝑇

JΓ ⊢ L(𝜎)K𝑇 = ⊤ given JΓ ⊢ 𝜎 LSig0K𝑇
JΓ ⊢𝑗 a• LSig0K

𝑇
= ()

JΓ ⊢𝑗 a+ (𝜎, 𝑓 ,𝑇 ) LSig𝑛+1K
𝑇
= (J𝜎K𝑇 , c(𝐴), _(𝑓 ), _(c(𝑇 )))

JΓ ⊢ `• : L(a•)K𝑇 = ()
JΓ ⊢ `+ 𝑚 𝑡 : L(a+ (𝜎, 𝑠,𝑇 ))K𝑇 = (J𝑚K𝑇 , _(𝑡))

JΓ ⊢ P(𝑚) : P(𝜎)K𝑇 is defined upon J𝑚K𝑇 and inductively on the signature length

JΓ ⊢ P(𝑚) : P(𝜎)K𝑇 = () given JΓ ⊢ 𝜎 LSig0K𝑇
JΓ ⊢ P(𝑚) : P(𝜎)K𝑇 = (JP(𝑜)K𝑇 , 𝑡 [(𝑝1, 𝑓 )] [(id, JP(𝑜)K𝑇 )])

given JΓ ⊢ 𝜎 LSig𝑛+1K𝑇 ,
where 𝑜 = a𝜋1 (𝑚), 𝑡 = app(snd J𝑚K𝑇 ), 𝑓 = a𝜋s (𝜎)

The main idea is that a linkage Γ ⊢ `+_ LSig𝑛+1 is translated to a non-dependent tuple while
introducing explicit universal quantification to the second component of the tuple; the universal
quantification achieves late binding. The translation for P is given by the relevant 𝛽-rules.
We omit validating the equational rules (𝛽 , [, and substitution) here. Note that, when we

mutually recursively define the type Sig𝑟 Γ 𝑛 (of signatures JΓ ⊢ 𝑡 LSig𝑛K𝑇 ), and the function
JPK𝑇 = 𝒫 above, we actually have to prove the two substitution laws (P(𝜎)) [𝛾] ≡ P(𝜎 [𝛾]) and
(Sig𝑟 Δ 𝑛) [𝛾] ≡ Sig𝑟 Γ 𝑛 together.
We have constructed a model for the FMLTT syntax using only the linkage-irrelevant fragment

of the syntax. We would have consistency and canonicity for FMLTT immediately, if we could
assume the consistency and canonicity of the linkage-irrelevant fragment. However, because our
formulation of W-types is unconventional, we choose not to take such an assumption for granted
and choose to directly prove consistency and canonicity for FMLTT.
6.4 A Proof Relevant Logical-Relations Model for Canonicity
Now we prove canonicity (and consistency) for FMLTT using a logical-relations model. We follow
the reducibility argument of Kaposi et al. [2019], Coquand [2019], and Sterling [2019] to construct
our model. The metalanguages of these prior models are based on QIITs, categories with families
[Dybjer 1995], and the generalized algebraic theory [Cartmell 1986], respectively. Without exposing
the reader to too many technical details, our metalanguage should be understood as an instance of
any of the above logical frameworks—the difference is that quotienting is manual in our formulation,
whereas it is automatic with the logical frameworks.

We state the canonicity theorem first:

Theorem 6.1 (Canonicity). If · ⊢ 𝑡 : B, then either · ⊢ 𝑡 ≡ tt : B or · ⊢ 𝑡 ≡ ff : B.

Canonicity is a key criterion for a dependent type theory to be considered as a programming
language or as a computational foundation for mathematics.

First, we need the mathematical setup to interpret universe levels, following Sterling [2019]:
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Assumption 6.1 (Set-theoretic Universe Assumption). We assume an infinite hierarchy of
Grothendieck universes Set𝑖 for 𝑖 ∈ N in our ambient metalogic.

We can roughly consider each Grothendieck universe Set𝑖 as the Set𝑖 in Agda:
• Each Set𝑖 is closed under dependent function types and dependent pair types. For example,
later, for our interpretation of dependent function types, when we have J𝐴K𝐶 , J𝐵K𝐶 ∈ Set𝑖 ,
we will have JΠ(𝐴, 𝐵)K𝐶 ∈ Set𝑖 .

• The universe hierarchy is cumulative, as Set𝑖 ∈ Set𝑖+1 and Set𝑖 ⊆ Set𝑖+1.
• Thus, if J𝐴K𝐶 ∈ Set𝑖 , J𝐵K𝐶 ∈ Set𝑗 , we will have JΠ(𝐴, 𝐵)K𝐶 ∈ Set𝑖 ∪ Set𝑗 = Set𝑖⊔𝑗 .

Like most logical-relations proofs, we interpret each judgment and inductively interpret each
syntax piece. We are working in an intrinsic setting; thus, even if we omit contexts for brevity, the
syntax piece is still well-typed. However, unlike most logical-relations proofs, our logical-relations
model is proof-relevant, which is essential for modeling universes properly [Coquand 2019]. Our
canonicity model for the base MLTT fragment follows the constructions in Coquand [2019] and
Sterling [2019] in that it utilizes the facilitates of the ambient metalogic; for example, we use
dependent functions and dependent tuples in the ambient metalogic to model dependent functions
and tuples in FMLTT.

JΓ ⊢𝑘K𝐶 is a function :
{
𝛾

�� · ⊢ 𝛾 : Γ
}
→ Set𝑘

(i.e., sets indexed by closed substitution)

JΓ ⊢𝑗 𝑇 K
𝐶
is a dependent function :

∏
·⊢𝛾 :Γ

∏
𝛾 ′∈JΓ⊢K𝐶 (𝛾 )

{
𝑡
�� · ⊢ 𝑡 : 𝑇 [𝛾] } → Set𝑗

JΓ ⊢ 𝛿 : ΔK𝐶 is a dependent function :
∏
·⊢𝛾 :Γ

∏
𝛾 ′∈JΓ⊢K𝐶 (𝛾 )

JΔ ⊢K𝐶 (𝛿 ◦ 𝛾)

JΓ ⊢ 𝑡 : 𝑇 K𝐶 is a dependent function :
∏
·⊢𝛾 :Γ

∏
𝛾 ′∈JΓ⊢K𝐶 (𝛾 )

JΓ ⊢ 𝑇 K𝐶 (𝛾) (𝛾 ′) (𝑡 [𝛾])

JΓ ⊢ 𝑇 [𝜎]K𝐶 (𝛾) (𝛾 ′) (𝑡) = J𝑇 K𝐶 (𝜎 ◦ 𝛾) (J𝜎K(𝛾) (𝛾 ′)) (𝑡)
JΓ ⊢ ⊤K𝐶 (𝛾) (𝛾 ′) (𝑡) = {★} a singleton set
JΓ ⊢ ⊥K𝐶 (𝛾) (𝛾 ′) (𝑡) = ∅

JΓ ⊢ BK𝐶 (𝛾) (𝛾 ′) (𝑡) =


{★1} if 𝑡 ≡ tt

{★2} if 𝑡 ≡ ff

∅ otherwise

JΓ ⊢ Eq(𝑎, 𝑏)K𝐶 (𝛾) (𝛾 ′) (𝑡) =
{
{★} if 𝑡 ≡ refl(𝑎[𝛾]) and 𝑎[𝛾] ≡ 𝑏 [𝛾]
∅ otherwise

JΓ ⊢ Π(𝐴, 𝐵)K𝐶 (𝛾) (𝛾 ′) (𝑡) =
∏

·⊢𝑢:𝐴[𝛾 ]

∏
𝑢′∈J𝐴K𝐶 (𝛾 ) (𝛾 ′ ) (𝑢 )

J𝐵K𝐶 (𝛾,𝑢) ((𝛾 ′, 𝑢′)) (app(𝑡) [id, 𝑢])

JΓ ⊢ Σ(𝐴, 𝐵)K𝐶 (𝛾) (𝛾 ′) (𝑡) =
∑︁

𝑢′∈J𝐴K𝐶 (𝛾 ) (𝛾 ′ ) (fst 𝑡 )
J𝐵K𝐶 (𝛾, fst 𝑡) ((𝛾 ′, 𝑢′)) (snd 𝑡)

J· ⊢K𝐶 (𝛾) = {★}
JΓ,𝑇 ⊢K𝐶 (𝛾𝑡 ) =

{
(𝛾 ′, 𝑡 ′)

�� 𝛾 ′ ∈ JΓK𝐶 (𝜋1𝛾𝑡 ), 𝑡 ′ ∈ J𝑇 [𝛾]K𝐶 (𝜋1𝛾𝑡 ) (𝛾 ′) (𝜋2𝛾𝑡 )
}

JΓ ⊢ 𝜋1𝛿 : ΔK𝐶 (𝛾) (𝛾 ′) = J𝛿K𝐶 (𝛾) (𝛾 ′) [0] get the first element of the tuple
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JΓ ⊢ 𝜋2𝛿 : ΔK𝐶 (𝛾) (𝛾 ′) = J𝛿K𝐶 (𝛾) (𝛾 ′) [1] get the second element of the tuple
JΓ ⊢ 𝛿, 𝑡 : ΔK𝐶 (𝛾) (𝛾 ′) = (J𝛿K𝐶 (𝛾) (𝛾 ′), J𝑡K𝐶 (𝛾) (𝛾 ′))
JΓ ⊢ id : ΓK𝐶 (𝛾) (𝛾 ′) = 𝛾 ′

JΓ ⊢ 𝜖 : ·K𝐶 (𝛾) (𝛾 ′) = ★

JΓ ⊢ 𝛿1 ◦ 𝛿2 : ΔK𝐶 (𝛾) (𝛾 ′) = J𝛿1K𝐶 (𝛿2 ◦ 𝛾) (J𝛿2K𝐶 (𝛾) (𝛾 ′))
JΓ ⊢ 𝑡 [𝜎] : 𝑇 [𝜎]K𝐶 (𝛾) (𝛾 ′) = J𝑡K𝐶 (𝜎 ◦ 𝛾) (J𝜎K𝐶 (𝛾) (𝛾 ′))

JΓ ⊢ () : ⊤K𝐶 (𝛾) (𝛾 ′) = ★

JΓ ⊢ tt : BK𝐶 (𝛾) (𝛾 ′) = ★1

JΓ ⊢ ff : BK𝐶 (𝛾) (𝛾 ′) = ★2

JΓ ⊢ if(𝑐, 𝑎, 𝑏) : 𝑇 K𝐶 (𝛾) (𝛾 ′) =
{
J𝑎K𝐶 (𝛾) (𝛾 ′) if J𝑐K(𝛾) (𝛾 ′) = ★1

J𝑏K𝐶 (𝛾) (𝛾 ′) if J𝑐K(𝛾) (𝛾 ′) = ★2

JΓ ⊢ refl(𝑡) : Eq(𝑡, 𝑡)K𝐶 (𝛾) (𝛾 ′) = ★

JΓ ⊢ J(𝑤, 𝑡) : 𝐶 [𝑖𝑑, 𝑣, 𝑡]K𝐶 (𝛾) (𝛾 ′) = J𝑤K𝐶 (𝛾) (𝛾 ′) given Γ ⊢ 𝑡 : Eq(𝑢, 𝑣)
Since J𝑡K𝐶 (𝛾) (𝛾 ′) witnesses 𝑡 [𝛾] ≡ refl(𝑢 [𝛾]) and 𝑢 [𝛾] ≡ 𝑣 [𝛾]
JΓ ⊢ _(𝑡) : Π(𝐴, 𝐵)K𝐶 (𝛾) (𝛾 ′) = _𝑢_𝑢′ .J𝑡K𝐶 (𝛾,𝑢) (𝛾 ′, 𝑢′)

JΓ ⊢ app(𝑡) : 𝐵K𝐶 (𝛾) (𝛾 ′) = J𝑡K𝐶 (𝜋1𝛾) (𝛾 ′ [0]) (𝜋2𝛾) (𝛾 ′ [1])
JΓ ⊢ (𝑎, 𝑏) : Σ(𝐴, 𝐵)K𝐶 (𝛾) (𝛾 ′) = (J𝑎K𝐶 (𝛾) (𝛾 ′), J𝑏K𝐶 (𝛾) (𝛾 ′))

JΓ ⊢ fst 𝑡 : 𝑇 K𝐶 (𝛾) (𝛾 ′) = J𝑡K𝐶 (𝛾) (𝛾 ′) [0] extract the first element in the tuple
JΓ ⊢ snd 𝑡 : 𝑇 K𝐶 (𝛾) (𝛾 ′) = J𝑡K𝐶 (𝛾) (𝛾 ′) [1]
JΓ ⊢𝑗+1 U𝑗K𝐶 (𝛾) (𝛾

′) (𝑇 ) =
{
𝑡
�� · ⊢ 𝑡 : El(𝑇 ) } → Set𝑗

JΓ ⊢ c(𝑇 ) : U𝑗K𝐶 (𝛾) (𝛾
′) = J𝑇 K𝐶 (𝛾) (𝛾 ′)

JΓ ⊢𝑗 El(𝑇 )K𝐶 (𝛾) (𝛾
′) (𝑡) = J𝑇 K𝐶 (𝛾) (𝛾 ′) (𝑡)

Here, ★, ★1, ★2 are just some arbitrary fixed elements.
Given the above model for MLTT, there should be a function Π𝑐 such that Π𝑐 (J𝐴K𝐶 , J𝐵K𝐶 ) =

JΠ(𝐴, 𝐵)K𝐶 . Type-theoretically speaking, this Π𝑐 uses the internal dependent function type of the
above model. We hope to use this function when defining the logical-relations model for the rest of
FMLTT. However, such a function Π𝑐 is not yet possible because the definition JΠ(𝐴, 𝐵)K𝐶 is not
based solely on J𝐴K𝐶 and J𝐵K𝐶 , but also on the syntax Γ ⊢ 𝐴 and Γ, 𝐴 ⊢ 𝐵.
Thus, we define a new denotation J𝑆K•𝐶 ≔ (𝑆, J𝑆K𝐶 ) that also returns the syntax piece 𝑆 .5 Then,

we can have a function Π• such that Π• (J𝐴K•𝐶 , J𝐵K•𝐶 ) = JΠ(𝐴, 𝐵)K•𝐶 now that the syntax is available.
Similarly, there are functions Σ•, (𝑎,• 𝑏), and 𝛾,• 𝑡 for dependent pair types, dependent pairs, and
substitution extension (and more for other constructions). Furthermore, given 𝑆• (i.e., the syntax
and its semantic interpretation), we use (𝑆•)𝑐 to mean the latter of the two.

We need more internal type-theoretic constructions:
We define Con•

𝑘
≔

∑
Γ⊢𝑘 {𝛾 : · ⊢ 𝛾 : Γ} → Set𝑘

and Ty•𝑗 Γ
• ≔

∑
Γ⊢𝑗𝑇

∏
·⊢𝛾 :Γ

∏
𝛾 ′∈ (Γ• )𝑐 (𝛾 ) {𝑡 : · ⊢ 𝑡 : 𝑇 [𝛾]} → Set𝑗 for Γ• ∈ Con•

𝑘

and Tm• Γ• 𝑇 • ≔
∑

Γ⊢𝑡 :𝑇
∏

·⊢𝛾 :Γ
∏

𝛾 ′∈ (Γ• )𝑐 (𝑇 •)𝑐 (𝛾) (𝛾 ′) (𝑡 [𝛾])
and Sub• Γ• Δ• ≔

∑
Γ⊢𝛿 :Δ

∏
·⊢𝛾 :Γ

∏
𝛾 ′∈ (Γ• )𝑐 (𝛾 ) (Δ•)𝑐 (𝛿 ◦ 𝛾)

5This is also called glued interpretation in Sterling [2019].
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These four sets are collecting the glued interpretation. For each well-formed type Γ ⊢𝑗 𝑇 , we
have its denotation J𝑇 K•𝐶 ∈ Ty•𝑗 JΓK•𝐶 ; for each well-typed term Γ ⊢ 𝑡 : 𝑇 , we have its denotation
J𝑡K•𝐶 ∈ Tm• JΓK•𝐶 J𝑇 K•𝐶 ; etc. These structures should remind the reader of the ones appearing at the
beginning of the MLTT canonicity model.

Notice that
∏

·⊢𝛾 :Γ
∏

𝛾 ′∈ (Γ• )𝑐 (𝛾 ) is part of Ty• , Tm• , and Sub• . A useful fact about them is : given a
pair of arbitrary · ⊢ 𝛾 : Γ and 𝛾 ′ ∈ (Γ•)𝑐 (𝛾), we can consider (𝛾,𝛾 ′) as an element of Sub• ·• Γ•, and
vice versa. Thus, we consider the pair (𝛾,𝛾 ′) the equivalent form of an element 𝛾• ∈ Sub• ·• Γ•.

Then we define WSig𝐶𝑛

𝑗 Γ
• ≔ Vector𝑛

∑
𝐴•∈Ty•

𝑗
Γ• Ty

•
𝑗 (Γ•,•𝐴•) for Γ• ∈ Con•

𝑘
, a length-𝑛 list of

pairs of types. As before, we can define glued interpretation WSig•𝑛𝑗 Γ• ≔
{
𝜏

�� · ⊢ 𝜏 WSig𝑛
}
×

WSig𝐶
𝑛

𝑗 Γ
•. This will be useful when we interpret judgments for W-type signatures.

Now we can extend the model above to include FMLTT constructs. The key idea of this extension
is similar to that of the syntactic translation: we interpret linkage types using the canonicity model
of Σ-types (developed in the prior work). We use the inductive facility of the ambient metalogic to
justify our W-types.

JΓ ⊢ 𝜎 LSig𝑛K𝐶 is a list of 3-tuple of length 𝑛

JΓ ⊢𝑗 𝜏 WSig𝑛K
𝐶
: WSig𝐶𝑛

𝑗 JΓK•𝐶
i.e., a list of 2-tuple of length 𝑛

we interpret L(),P() by induction on the input linkage signature, via L and P•

L(nil) = J⊤K𝐶
L((𝐴, 𝑠,𝑇 ) :: 𝑡𝑙) (𝛾) (𝛾 ′) (𝑡) = L(𝑡𝑙) (𝛾) (𝛾 ′) (`𝜋1 (𝑡)) × (Π• (𝐴,𝑇 ))𝑐 (𝛾) (𝛾 ′) (_(`𝜋2 (𝑡)))

P• (nil) = (P(a•), J⊤K𝐶 )
P• ((𝐴, 𝑠,𝑇 ) :: 𝑡𝑙) = Σ• (P• (𝑡𝑙),𝑇

[
(p1)•,• 𝑠

]•) (doing substitution on 𝑇 )
JΓ ⊢ L(𝜎)K𝐶 = L(J𝜎K𝐶 )
JΓ ⊢ P(𝜎)K𝐶 = (P• (J𝜎K𝐶 ))

𝑐 discard syntax info

JΓ ⊢ a• LSig0K𝐶 = nil

JΓ ⊢ a+ (𝜎, 𝑠,𝑇 ) LSig𝑛+1K𝐶 = (J𝐴K•𝐶 , J𝑠K
•
𝐶 , J𝑇 K•𝐶 ) :: J𝜎K𝐶 given Γ,P(𝜎) ⊢ 𝑠 : 𝐴

JΓ ⊢ 𝜎 [𝛾] LSig𝑛K𝐶 is done by point-wise/component-wise substitution
JΓ ⊢ a𝜋1 (𝜎) LSig𝑛K𝐶 = tl J𝜎K𝐶

JΓ ⊢ a𝜋 ′
1 (𝜎)K𝐶 = ((hd J𝜎K𝐶 ) [0])

𝑐 take the first element in the tuple,...
JΓ,P(a𝜋1 (𝜎)) ⊢ a𝜋s (𝜎) : a𝜋 ′

1 (𝜎)K𝐶 = ((hd J𝜎K𝐶 ) [1])
𝑐 ... and discard syntax

JΓ, a𝜋 ′
1 (𝜎) ⊢ a𝜋2 (𝜎)K𝐶 = ((hd J𝜎K𝐶 ) [2])

𝑐

JΓ ⊢ `• : L(a•)K𝐶 = J()K𝐶
JΓ ⊢ `+ (ℓ, 𝑡) : L(a+ (𝜎, 𝑠,𝑇 ))K𝐶 (𝛾) (𝛾 ′) = (JℓK𝐶 (𝛾) (𝛾 ′), (_• (J𝑡K

•
𝐶 ))

𝑐 (𝛾) (𝛾 ′))
JΓ ⊢ P(ℓ) : P(𝜎)K𝐶 = J()K𝐶 when Γ ⊢ 𝜎 LSig0

JΓ ⊢ P(ℓ) : P(𝜎)K𝐶 = ((ℓ ′•,• J`𝜋2 (ℓ)K•𝐶
[
(p1)•,• 𝑠

]• [(id)•,• ℓ ′•]• ))
𝑐

where ℓ ′• = JP(`𝜋1 (ℓ))K•𝐶
when JΓ ⊢ 𝜎 LSig𝑛+1K𝐶 = (𝐴, 𝑠,𝑇 ) :: _
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In this definition, (_,• _) notates the glued interpretation of
dependent tuple construction, [_,• _] notates the glued inter-
pretation of substitution extension, and _[_]• notates the glued
interpretation of applying a substitution.
The colored boxes indicate the scopes of the two instances of
_[_]•. We use colored boxes here and below to help the reader
parse nested glued interpretations.

JΓ ⊢ `𝜋1 (ℓ) : L(𝜎)K𝐶 (𝛾) (𝛾 ′) = JℓK𝐶 (𝛾) (𝛾 ′) [0] take the first element in the tuple
JΓ, a𝜋 ′

1 (𝜎) ⊢ `𝜋2 (ℓ) : 𝑇 K𝐶 (𝛾+) (𝛾 ′+) = ((JℓK𝐶 (𝜋1𝛾+) (𝛾 ′+ [0])) [1]) (𝜋2𝛾+) (𝛾 ′+ [1])
JΓ ⊢ w• WSig0K𝐶 = nil

JΓ ⊢ w+ (𝜏,𝐴, 𝐵) WSig𝑛+1K𝐶 = (J𝐴K•𝐶 , J𝐵K•𝐶 ) :: J𝜏K𝐶
JΓ ⊢ 𝜏 [𝛾] WSig𝑛K𝐶 is done by point-wise/component-wise substitution

JΓ ⊢ w𝜋 𝑗

1 (𝜏)K𝐶 = (( 𝑗-th element of J𝜏K𝐶 ) [0])
𝑐

JΓ, w𝜋 𝑗

1 (𝜏) ⊢ w𝜋 𝑗

2 (𝜏)K𝐶 = (( 𝑗-th element of J𝜏K𝐶 ) [1])
𝑐

JΓ ⊢ w− (𝜏) WSig𝑛K𝐶 = tl J𝜏K𝐶
JΓ ⊢ W(𝜏) : UK𝐶 (𝛾) (𝛾 ′) (𝑡) = W𝐶 (J𝜏K•𝐶 [𝛾•]

•) 𝑡

JΓ ⊢ Wsup𝑖 (𝜏, 𝑎, 𝑏) : El(W(𝜏))K𝐶 (𝛾) (𝛾 ′) = W Csup 𝑖 (J𝑎K•𝐶 [𝛾•]
•) (J𝑏K•𝐶

[
𝛾↑

•]•)
JΓ ⊢ CaseTy(A, B, R)K𝐶 = (Π• (JAK•𝐶 ,Π• (Π• (JBK•𝐶 , JRK

•
𝐶

[
(p2)•

]•), JRK•𝐶 [
(p2)•

]•)))𝑐
The interpretation of Wsup𝑖 (𝜏, 𝑎, 𝑏) is defined via W Csup, which is in turn defined below. This
construction takes three arguments as input: 𝑖 , a glued (J𝑎K•𝐶 [𝛾•]

•) and a glued (J𝑏K•𝐶
[
𝛾↑

•]•). As
mentioned earlier, 𝛾• is an equivalent form of (𝛾,𝛾 ′).

we define RecSig(, ) by induction on the signature, via 𝑅𝑆
𝑅𝑆 nil 𝑅 = Ja•K•𝐶

𝑅𝑆 ((𝐴, 𝐵) :: 𝑡𝑙) 𝑅 = a+• (𝑅𝑆 𝑡𝑙 𝑅, 𝜋2•, CaseTy• (𝐴, 𝐵, 𝑅))
JΓ ⊢ RecSig(𝜏, R)K𝐶 = (𝑅𝑆 J𝜏K𝐶 JRK𝐶 )

𝑐

JR𝜋 𝑗 (ℓ)K𝐶 = take the 𝑗-th field from ℓ

JΓ ⊢ Wrec(𝜏, ℓ, 𝑡) : 𝑇 K𝐶 (𝛾) (𝛾 ′) = W Crec J𝜏K•𝐶 [𝛾•]
•

(_𝑤.JRK𝐶 (𝛾) (𝛾 ′) (Wrec(𝜏 [𝛾], ℓ [𝛾],𝑤)))
𝑓 𝑟

𝑡 [𝛾]
(J𝑡K𝐶 (𝛾) (𝛾 ′))

where 𝑓 𝑟 𝑗 𝑎• 𝑏 𝑏𝑐 = let 𝜌• ∈ Tm• (·• ,• 𝐵• [id•,• 𝑎•]• ) (𝑅• [𝛾•]•
[
(p1)•

]•)
s.t. 𝜌• ≔ (Wrec(𝜏, ℓ

[
𝛾 ◦ p1

]
, 𝑏), 𝑏𝑐 ) in
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( app• ( app• ( R𝜋 𝑗 • (JℓK•𝐶 [𝛾•]
•) ) [id•,• 𝑎•]• )

[
id•,• _• (𝜌•)

]•
)

𝑐

(𝜖) (★)

given Γ ⊢ ℓ : RecSig(𝜏, R)

where 𝑅• = JRK•𝐶 , 𝐵
• = w𝜋 𝑗

2

• (J𝜏K•𝐶 )

The semantic interpretations above are defined together with the following inductively defined
indexed setW𝐶 (with only one constructorW Csup)
(Note: we also use (𝑎 ∈ 𝐴 → 𝐵(𝑎)) as another notation for dependent function

∏
𝑎∈𝐴 𝐵(𝑎)).

Inductive W𝐶 : (𝜏• ∈ WSig•𝑁𝑖 J·K•𝐶 ) →
{
𝑡
�� · ⊢ 𝑡 : El(W(𝜏)) } → Set𝑖+1 where

W Csup : 𝑗 < 𝑁 → 𝑎• ∈ Tm• ·• w𝜋 𝑗

1

• (𝜏•)

→ 𝑏• ∈ (Tm• (·• ,• w𝜋 𝑗

2

• (𝜏•) [id•, 𝑎•]• ) El• (W• (𝜏•))
[
(p1)•

]• )
→ W𝐶 𝜏• Wsup𝑗 (𝜏, 𝑎, 𝑏)

and its eliminator W Crec

W Crec : (𝜏• ∈ WSig•𝑁𝑖 J·K•𝐶 ) → (𝑃 :
{
𝑡
�� · ⊢ 𝑡 : El(W(𝜏)) } → Set𝑘 )

→
(
𝑗 < 𝑁 → 𝑎• ∈ Tm• ·• w𝜋 𝑗

1

• (𝜏•)

→
{
𝑏

��� (·, w𝜋 𝑗

2 (𝜏) [id, 𝑎] ) ⊢ 𝑏 : El(W(𝜏))
[
p1

] }
→

(
𝛾• ∈ Sub• ·• (·• ,• w𝜋 𝑗

2

• (𝜏•) [id•,• 𝑎•] ) → 𝑃 (𝑏 [𝛾])
)

→ 𝑃 (Wsup𝑗 (𝜏, 𝑎, 𝑏))
)

→ · ⊢ 𝑡 : El(W(𝜏)) → W𝐶 𝜏• 𝑡 → 𝑃 𝑡

W Crec 𝜏• 𝑃 𝑓 𝑡 (W Csup 𝑎• 𝑏•) = 𝑓 𝑎• 𝑏 (_𝛾• .W Crec 𝜏• 𝑃 𝑓 (𝑏 [𝛾]) ((𝑏•)𝑐 𝛾•))

Note that in W Csup, the 𝑏• uses the definition of JW(𝜏)K𝐶 , which after unfolding, recursively
referencesW𝐶 in a strictly positive position. We do not distinguish (𝑏,𝑏𝑐 ) and 𝑏• for simplicity.

The idea of the proof of W-type is, as mentioned, mirroring the facility of the inductive type in
the ambient logic into FMLTT. The main difference betweenW𝐶 in the ambient logic and W(·) in
the FMLTT, is thatW𝐶 is only witnessing those reducible closed terms. Thus when usingW𝐶 to
model W(·), we need to do closed substitution properly.

Again, we omit validating the equational rules (𝛽 , [, and substitution) here.
We state the fundamental property of the logical-relations model.

Theorem 6.2 (Fundamental Property). If Γ ⊢ 𝑡 : 𝑇 , then its semantic interpretation is a
dependent function such that J𝑡K𝐶 :

∏
·⊢𝛾 :Γ

∏
𝛾 ′∈JΓ⊢K𝐶 (𝛾 ) JΓ ⊢ 𝑇 K𝐶 (𝛾) (𝛾 ′) (𝑡 [𝛾]).

The first consequence of this model is the consistency of FMLTT—we cannot derive · ⊢ 𝑡 : ⊥.
Otherwise, we would have an element in the empty set, J· ⊢ 𝑡 : ⊥K𝐶 (𝜖) (★) ∈ J⊥K𝐶 (𝜖) (★) (𝑡 [𝛾]) = ∅,
a contradiction.

Theorem 6.3 (Consistency). The typing judgment · ⊢ 𝑡 : ⊥ is not derivable for any term 𝑡 .
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Next, with the logical-relations model, we can map an arbitrary closed boolean term · ⊢ 𝑡 : B
to get the result J· ⊢ 𝑡 : BK𝐶 (𝜖) (★) = ★1 or ★2, witnessing the proof of 𝑡 ≡ tt or 𝑡 ≡ ff by the
definition of our model, arriving at Theorem 6.1.

Further, with the help of eta rules, we have the following canonical forms.

Theorem 6.4 (Canonical Forms).
• If · ⊢ 𝑡 : El(W(𝜏)) and · ⊢ 𝜏 WSig𝑛 , then · ⊢ 𝑡 ≡ Wsup𝑗 (𝜏, 𝑎, 𝑏) : El(W(𝜏)) for some · ⊢ 𝑎 : 𝐴,
𝐵 [(id, 𝑎)] ⊢ 𝑏 : El(W(𝜏)), and 𝑗 < 𝑛

• If · ⊢ 𝑡 : B then · ⊢ 𝑡 ≡ tt : B or · ⊢ 𝑡 ≡ ff : B
• If · ⊢ 𝑡 : L(𝜎) with · ⊢ 𝜎 LSig𝑛 , then · ⊢ 𝑡 ≡ `+ (𝑜, 𝑡) : L(𝜎) for some · ⊢ 𝑜 : L(`𝜋1 (𝜎)) and
a𝜋2 (𝜎) ⊢ 𝑡 : `𝜋2 (𝜎)

• If · ⊢ 𝑡 : Σ(𝐴, 𝐵) then · ⊢ 𝑡 ≡ (𝑎, 𝑏) : Σ(𝐴, 𝐵) with · ⊢ 𝑎 : 𝐴 and · ⊢ 𝑏 : 𝐵 [(id, 𝑎)] 6

6.5 Using FMLTT’s Linkage Transformers to Model a Derived Family
Here, we sketch how to use the “library” of linkage transformers in FMLTT to inductively construct
a linkage transformer that models a derived family of STLC.
We use STLCBool as an example. STLCBool extends STLC with boolean values (tm_true and

tm_false) and if-then-else expressions. The left column of the table below shows initial code
excerpted from this family. Each cell in the last column defines a linkage transformer ℎ𝑖 inductively
constructed from the linkage transformers ℎ0, ..., ℎ𝑖−1 using one of the introduction forms. The goal
is to eventually construct a linkage transformer ℎ𝑛 representing the entire family STLCBool.

Most steps are self-explanatory. Of note are the two grayed rows. They are constructing a linkage
transformer ℎ𝛽 containing the case handlers for subst. This ℎ𝛽 is then appended to ℎ3 as a nested
linkage transformer.

surface-syntax program 𝑖 · ⊢ ℎ𝑖 : 𝜎𝑖 ↠ 𝜎′
𝑖

Family STLCBool extends STLC. 0 Identity

FInductive tm += 1 Override(ℎ0, W(𝜏 ′tm))
(* existing constructors *) 2 Override(ℎ1, Wsup (𝜏 ′tm,⊤,⊥))
| tm_true | ... 3 Extend(ℎ2, Wsup (𝜏 ′tm,⊤,⊥))
FRecursion subst ... += 𝛼 Identity

Case tm_true B .... Case ... 𝛽 Extend(ℎ𝛼 , ...)
End subst. 4 Nest(ℎ3, ℎ𝛽 )

5 Override(ℎ4, _𝑡 .Wrec(𝜏 ′tm, 𝑡, substCases))
FInductive ty += .... 6 ...
(* Inherit env *) 7 Inherit(ℎ6)
(* Inherit empty *) 8 Inherit(ℎ7)
... ... ...

6We emphasize the last one because P(ℓ ) is a dependent pair
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7 CASE STUDIES
Type safety of STLCs. The first case study is the mechanization of the type safety theorem of
STLC and those of its extensions, which has been occurring in the examples in this paper. The code
base is ported from Software Foundations [Pierce et al. 2022]. The linguistic nature of our approach
allows us to retain a programming style similar to the original proofs in Software Foundations.

The base STLC family consists of ~360 LOC, about the same as an STLC development not using
fpop. Lines of code in each of the four derived families (Y, ×, +, and ` in the Venn diagram) vary
from 100 to 250, largely depending on how many constructors they add to the inductive types.
Without fpop, the same STLC code would have to be duplicated for each feature.

Y ×
+ `

Y
+ ×

`

Y ×

+ `

Y

+

×

`

Y×`

×+`Y+`

+Y×

fixpoint product

recursive typesum

Using individual families to organize the mechanization of individ-
ual language features leads to a modular design that also facilitates
code reuse. Individually developed features can be easily composed
(as mixins) to form new STLC variants (e.g., Y+`). Such a feature
composition often requires only a few lines of code.
Composing features can lead to feature interactions [Batory et al.

2011]: features working correctly in isolation may require coordi-
nation when composed. For example, composing × and ` (Figure 3)
creates an obligation to extend tysubst to handle ty_prod, which
the type-checker enforces. Composing contradictory features (e.g., a
fixpoints construct and a strong normalization theorem) would lead to unprovable proof obligations.

Elimination of inductive types defined via FInductive is mostly via the FRecursion and FInduction
commands. An exception is a handful of trivial “inversion lemmas”. For example, consider the lemma
∀ t, ¬ step tm_true t stating that tm_true is irreducible. If step were an ordinary inductive type,
then it could be proved in Coq simply by intros t H; inversion H. But step is extensible. So
one way to prove the lemma is by FInduction on step and verifying that a derived family does
not accidentally make tm_true reducible. We observe that it is lighter-weight to use overriding
(Section 3.3) instead: the programmer can specify that the proof of the lemma should be overridden
in any derived family that further binds step, and in return, they are permitted to treat step
as an ordinary inductive type in the proof and thus use inversion to prove it. The plugin then
automatically tries the same proof script in a derived family to override the proof. Although proof
scripts rather than proof terms are reused, this practice seems justified by the triviality of the
lemmas and the terseness of the proof scripts.

ImpGAI
AI framework

ImpTI
type inference

ImpCP
const. propagation

Imp
Abstract interpreters for imperative languages. Our second case study is a
mechanization of abstract interpreters for simple imperative languages. In addition
to a soundness proof, this case study produces abstract interpreters that are directly
ready for program extraction.
The code is organized into four families. A base family Imp (~200 LOC) defines

via FInductive the abstract syntax of a while-language with pure expressions and
impure statements. The semantics is given by an interpreter defined as a CEK-style
abstract machine [Felleisen and Friedman 1986] and parameterized by a fuel value.
Family Imp defines the interpreter via FRecursion.
A second family ImpGAI (~550 LOC) extends Imp. It exports a generic framework

for deriving abstract interpreters with partial-correctness guarantees. Soundness
of the abstract interpreter, analyze, is stated with respect to the interpreter, eval,
inherited from Imp. The theorem says that the concretization relation RState over a
concrete state S and an abstract state absS is preserved by the analysis:
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∀ stmt fuel S absS, RState S absS → RState (eval fuel stmt S) (analyze fuel stmt absS)

analyze is defined via FRecursion, and the soundness theorem is proved via FInduction. This family
leaves fields representing the abstract domain, the concretization relation, monotonicity of transfer
functions, etc. largely unspecified or unproven—a derived family can further bind these “parameters”
by overriding appropriate fields (and also possibly extend the abstract syntax), to create a sound,
runnable abstract interpreter for a (possibly extended) while-language.
The next two families both extend ImpGAI. Family ImpTI (~200 LOC) is an abstract interpreter

doing type inference [Cousot 1997]. Family ImpCP (~300 LOC) extends the abstract syntax with
natural-number arithmetic, and further binds the generic abstract interpreter to perform constant
propagation.
Our implementation of family polymorphism is compatible with Coq’s program extraction

feature. We extract the two verified abstract interpreters to OCaml. Testing the extracted program
over simple queries returns expected results.
In addition to the two case studies above, we also use extensible inductive types for modeling

extensible context-free grammars and derive decision procedures for language membership.
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8 RELATEDWORK
Approaches to modular mechanization or proof reuse exist, with different focuses and trade-offs.

Encodings based on product lines or DTC. Delaware et al. [2011] engineer product lines of
theorems and proofs built from feature modules. Feature composition is manual, which seems to
have motivated later approaches based on data types à la carte (DTC) [Swierstra 2008].
The original DTC encoding requires type-level general recursion that fails the strict positivity

check imposed by proof assistants including Coq and Agda. Delaware et al. [2013a] introduce meta-
theory à la carte (MTC): it overcomes the problem by using Church encodings for data types and
usingMendler-style folds for evaluation, though it requires Set impredicativity. Feature composition
is automated through heavy use of type classes. The framework is implemented as a Coq library.
Schwaab and Siek [2013] adapt DTC to Agda by considering a restricted class of functors that admit
least fixed points. Keuchel and Schrijvers [2013] use datatype-generic programming techniques for
the underlying representation of type-level fixed points and avoid Set impredicativity.
All of these approaches are largely extralinguistic, in that they work within the confine of the

language offered by a proof assistant, which comes with trade-offs. On the one hand, they can be
conveniently distributed as libraries, and the encoding can be more easily adapted for new purposes.
For example, MTC has been applied to implementing composable program adverbs [Li and Weirich
2022] and been adapted to allow feature extensions, such as reference cells and exceptions, that
require type changes [Delaware et al. 2013b; van der Rest et al. 2022].
On the other hand, the extralinguistic nature of the approaches tends to lead to non-idiomatic

code and offset their user-friendliness. In particular, because data types have to be encoded (rather
than expressed through natively supported inductive types), the resulting code can be obtuse at first
blush, making the programming style inaccessible to non-experts. In addition, extra programmer
effort may be required, such as having to manually prove additional well-formedness conditions.

Forster and Stark [2020] introduce Coq à la carte. It still follows DTC, but rather than embracing
DTC’s use of generic fixed points, it considers specific instantiations instead. The resulting mecha-
nism appears more streamlined than prior à la carte approaches particularly for its extensive tool
support for generating boilerplate code. But even with the tool support, components (e.g., substlem)
of individually developed feature extensions have to be composed separately by invoking the tool.

Our approach addresses the expression problem by extending the linguistic facilities offered by
a proof assistant. Families, in particular, offer an organizational advantage. They allow grouping
and coevolving related types, functions, and proofs without explicit parameterization; all further-
bindable fields are automatically extensibility hooks. Because family polymorphism does not require
explicit parameterization or complex encodings, the resulting programming experience and code
are accessible to the working Coq programmer. The more OO aspects of family polymorphism, such
as the ability to use families as mixins and the ability to grow a series of mechanized languages in
integral increments, also facilitate extensibility and reuse with minimal programmer effort.

Proof reuse and proof repair. Boite [2004] addresses proof reuse specifically in response to
inductive types extended with new constructors. Proof reuse is via a tactic that adapts the original
proof to the extended inductive type while generating proof obligations, so rechecking of proof
terms is entailed. The design requires distinct names for a base inductive type and its extensions
(including distinct names for constructors), while fpop allows names to be late bound.

Mulhern [2006] introduces a heuristic approach that allows proofs for multiple small languages
to be combined to yield proofs for composite languages, as long as the proof structure follows
the same pattern. Johnsen and Lüth [2004] enable proof reuse in Isabelle by adapting theorems
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from one setting for reuse in another: proof terms are transformed by first explicitly stating all
assumptions, and then abstracting over function symbols and type constants.
Pumpkin Pi [Ringer et al. 2021] is a Coq plugin that helps repair proofs broken by changes in

type definitions. Its decompiler from proof terms to proof scripts prioritizes suggesting useful
tactics over soundness. While Pumpkin Pi focuses on refactoring existing proofs in response to
changed definitions, our solution can be viewed as an effort to preempt refactoring by enabling the
programmer to write code that has built-in hooks for future extensions.

The expression problem. Solutions abound. Almost all involve some form of either explicit
or implicit parameterization as extensibility hooks. Our approach is the first that applies family
polymorphism [Ernst 2001], mostly seen in OO languages, to the context of mechanized proofs.
Blume et al. [2006] address the expression problem for a core subset of Standard ML by com-

bining explicitly coded open recursion with a design that allows pattern-matching cases to be
defined separately and combined later. Our FRecursion and FInduction commands achieve a similar
functionality, with families making open recursion implicit and bestowing organizational power.

ML-style modules, like families, are a modularity mechanism, but with a focus on abstraction
rather than extensibility. Both FMLTT and the module system of Stone and Harper [2000] use
singletons to model and control the propagation of definitions. MixML [Rossberg and Dreyer 2013]
integrates mixins into ML and handles the idiosyncrasies of ML modules, while our work supports
mixins in the presence of extensible inductive types.
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9 CONCLUSION
It is hard to write modular, extensible code and proofs. We have presented a solution that equips
a proof assistant with linguistic facilities for family polymorphism. The language design ensures
that the expressive power brought by family polymorphism is in harmony with the strictness of a
proof assistant, while incurring low cognitive overhead and allowing an idiomatic programming
experience.We implement the design via a translation to Coq and demonstrate its applicability using
case studies. A novel dependent type theory formalizes the essence of the language mechanism and
is shown to enjoy consistency and canonicity. Future work can explore ways to further improve
the practicality and expressivity of the language mechanism.
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