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Abstract

This thesis aims to highlight aspects of mathematics and physics that arise in topological
field theories. We will consider invertible and noninvertible topological theories. In the
former case, we compute the classification of these invertible theories which arise as the
trivial bulk of some anomalous theory one dimension lower. The computation tools used
here were conceived in algebraic topology and this work aims to develop these techniques for
applications to physical theories. In the latter case, to study such theories in low dimensions
we develop part of the theory of fusion 2-categories. Using techniques here allow us to
classify noninvertible phases up to equivalence.
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Chapter 1

Introduction and summary

Understanding the space of quantum field theories (QFT) includes answering questions
regarding the dynamics of theories, and the phases that theories can flow to upon adding
deformations. This thesis focuses on the subsector of QFT known as topological quantum
field theories (TQFT). These theories arise as the low energy description of QCD-like
theories and in condensed matter systems where the interactions are strong. The fact
that these theories are topological means that the local propagating degrees of freedom
have been gapped out, and only very coarse grained information about the theory remains.
The theory is not completely trivial in many cases, however, and the topological aspects
allow for mathematical tools to be used to give them classifications. TQFTs are therefore
naturally a bridge between physics and mathematics. In particular, they can be considered
as the “dual” to manifolds and nontrivial properties regarding the topology of manifolds is
revealed in studying TQFTs.

From the perspective of physics, since TQFTs commonly arise in the nonperturbative
regimes of field theories, extracting as much information as possible from the topological
side can greatly improve our understanding of strong coupling does to the dynamics. The
first type of topological theory that arises is the symmetry protected topological phase (SPT
phase), and is an invertible TQFT. These phases are also related to the ’t Hooft anomaly
of a global symmetry and computable via techniques in algebraic topology. The second
type of topological theory is the topological order, which are noninvertible theories. In this
setting, extended operators of different dimensions form the structure of a higher category,
and in some cases one can even classify these theories using categorical techniques. The
remainder of this thesis summarizes the advances in mathematics and physics inspired by
the ideas of invertible and noninvertible topological field theory.
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1.0.1 Chapter 2

In the first part of chapter 2 we discuss anomalies, specifically ’t Hooft anomalies. For a
d-dimensional theory on a manifold of tangential structure H and global symmetry G, the
anomaly is classified by a cobordism group in degree d+ 1 [158]. In low degree, this is well
approximated by group cohomology, and for fermionic theories which depend on a choice
of spin structure, by supercohomology. In [252] I looked at symmetries and anomalies
of (1+1)d theories. In this dimension, the only interesting higher form symmetry is the
one-form symmetry A[1], so we can completely understand the interaction between it and
the zero-form symmetry G. The result is a 2-group G such that

0 A[1] G G 0 ,i π

φ

where isomorphism classes of φ determine the Postnokov βG as a class in the cohomology
H3(G;A), or a “split” 2-group, which also goes by the name symmetry fractionalization
[14]. In the latter case, the splitting map φ gives the trivial class for βG, and we have an
extension A[1] ⋊G.

The main computational tool used was the Atiyah-Hirzebruch spectral sequence (AHSS),
which allowed for computations in the fermionic theories. This spectral sequence had
signature

Ep,q = Hp(X, SHq) ⇒ SHp+q(X), (1.0.1)

where X is a space and SH is supercohomology.

By using the AHSS in the bosonic case, I compute the anomalies for 2-groups and
split 2-groups in the case where the zero-form and one-form symmetry are discrete abelian
groups. The main theorems showed that for the 2-group, the cohomology H3(G; U(1))

consists of pairs (α, γ) where α : G→ Â is a homomorphism, with Â the Pontryagin dual
of the one-form group, and γ ∈ C3(G; U(1)), such that

dγ = α ∪ βG. (1.0.2)

A special feature about 2d theories is that the one form symmetry leads to a decomposition
structure, in which the theory breaks up into direct sums. When the one-form symmetry is
nonanomalous, one can also gauge this symmetry, which leads to a dual (−1)-form symmetry.
The operators associated to this are codimension zero, thus giving the interpretation of
spacefilling operator, which projects to direct sums.

The second part of the paper focuses on symmetry fractionalization. The data required
to define symmetry fractionalization starts with a class of maps [ρ] : G→ Aut(A[1]), that
describe how the symmetry acts on the set of one-form symmetries. To fractionalize the
global symmetry means specifying a local projective symmetry action that is compatible with

2



the action on the one-form symmetry. The projective symmetry action can be characterized
by a set of phases ηa(g, h) ∈ U(1) for each object a ∈ A[1], where g, h are elements of the
bosonic symmetry group G. This characterizes the difference in phase obtained when acting
on a separately by g and h, versus the composite gh. Modding out by gauge redundancies,
we can characterize the symmetry fractionalization classes which correspond to equivalence
classes of η. The different symmetry fractionalization classes depend on ρ and they moreover
form a torsor over H2(BG;A). For the case of the split two group, there is an isomorphism

H3(A[1] ⋊G ; U(1)) ∼= H3(G ; U(1))⊕ H1(G ; H2(A[1]; U(1))) . (1.0.3)

The second part of chapter 2 focuses on a question about detecting the value of an
anomaly. We introduce the notion of “genus-one data” for theories in (1+1)-dimensions
with an anomalous finite group global symmetry. We outline the groups for which genus-one
data is effective in detecting the anomaly, and also show that genus-one data is insufficient
to detect the anomaly for dicyclic groups. Detecting the values of the anomaly that a
specific theory realizes can be a tough problem in general, even though one may have a
classification of the anomaly through cohomology techniques. This task is especially difficult
in topological theories, but tractable in certain situations when the theory is free and the
matter content is known. This part of the thesis inspired work in progress on anomaly
indicators which evaluates a partition function for a topological theory in one dimension
higher.

1.0.2 Chapter 3

In chapter 3 we utilize the Adams spectral sequence and shearing arguments for twisted
spin structure to compute the anomalies of U-duality. The theory with the U-duality group
arises from reducing 10d string theory to 4d. The U-duality group E7(7) mixes with fermion
parity, and the resulting group has SU(8) as the maximal compact subgroup. The resulting

bordism group for the anomaly is Ω
Spin×{±1}SU(8)

5 = ΩSpin
5 (BSU(8)/{±1}). We compute the

first five bordism groups and show that

ΩSpin
5 (BSU(8)/{±1}) ∼= Z2 , (1.0.4)

and the generating manifold is the Wu manifoldW := SU(3)/SO(3). With the knowledge of
the anomaly group and the generating manifolds, we can compute the value of the anomaly
on this manifold to show that it vanishes.

Anomalies, otherwise known as SPTs, are special topological field theories. They
belong to a space of invertible reflection positivity extended field theories and classified
by the homotopy mapping groups [MTξ,Σn+1IZ]. ξ is a map ξ : BG→ BO denoted as a
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symmetry type, giving a manifold M has a BG-structure. This means we have a lift α:

BG

M BO ,

ξ

τM

α (1.0.5)

where τ classifies the tangent bundle for M . The symmetry types encoding the topological
information needed to define a field theory that can have particlar matter content. A
fermionic theory with spinors has to be formulated on manifolds with spin structure, or
perhaps a variant thereof. A theory with time-reversal symmetry can be put on unoriented
manifolds. Determining the symmetry type is an important first step in formulating a
mathematical question about field theory.

With the introduction of symmetry type, we will define an equivalence relation on the
set of closed, d-dimensional ξ-manifolds. We say that two manifolds M ∼ N if there is a
(d+ 1)-dimensional ξ-manifold X such that there is a diffeomorphism ∂X ∼= M ⊔N . The
manifold X is a bordism between the two manifolds M and N , and M and N fit into the
same equivalence class Ωξ

d, which has the structure of a group. Computing such groups is
done using techniques of homotopy theory; in order to implement homotopical techniques
we introduce Thom spectra.

We begin with the construction of a Thom space. Consider a vector bundle V → X, the
Thom space Th(X, V ) is defined as the quotient of the unit disc bundle by the unit sphere
bundle of V : D(V )/S(V ). One can also use virtual vector bundles, aka formal difference
of real vector bundles, to define Thom spaces. Recall that BO is the classifying space for
virtual stable vector bundles, so we can regard BO as the classifying space for rank-zero
virtual vector bundles. Now given V → X and ξ : BG→ BO the classifying map for V , we
can define BGn = BOn×BOBG. Furthermore we define Vn → BGn to be pulled back from
V along the map BGn → BG. The Thom spectrum of V is a space whose homotopy in
degree n is Th(BGn, Vn), and denoted as BGV . There are a special type of Thom spectra
called Madsen-Tillman spectra and are of the form ξ∗(−V ) → BG

This section uses the Adams spectral sequence for computing the homotopy groups
of Thom spectra. A theorem of Pontryagin Thom gives an isomorphism between these
homotopy groups and bordism groups. When applied to Madsen-Tillman spectra MTξ,
corresponding bordism groups are precisely Ωξ

d.

In many instances of physical interest, a symmetry type ξ can be recast as a twist of
a more familiar symmetry type. These include SO, Spin, Spinc, and String, and they are
relevant for many physical theories. In many of the known examples in the literature, these
twists were done via a virtual vector bundle. One important aspect of using vector bundles
twists is to turn a more exotic symmetry type ξ into a twisted version of one that we know,
i.e. a “twisted ξ’-structure” where ξ’ is one of the Spin, Spinc, or String. In other words,
an H-structure on a vector bundle E →M is equivalent data to a vector bundle V →M

4



and a H ′ structure on E ⊕ V . In this case, we can split the Thom spectrum as

MTH
≃−→MTH ′ ∧XV , (1.0.6)

for some Thom space XV .

We discover in [66] that the twist of spin bordism that we use does not arise from a
vector bundle, but we noticed that if we ignored this fact and pretend that there was a fake
vector bundle twist, we still arrive at the correct answer. This part of the thesis inspired
ongoing work to uncover the origin of this fact.

1.0.3 Chapter 4

In chapter 4 we aim to give a classification of topological orders in (4+1)d. Recent
developments in our understanding of symmetries have led to higher form symmetries
[113], which are implemented by topological invertible operators of lower codimension. In
general, a (d+1)-dimensional theory can also have noninvertible operators, that interact in
a complicated manner which is captured by a monoidal d-category. A full topological order
accommodates extra structure of Karoubi completeness, rigidity, and remote detectability
to the d-category [149]. In [153] we classified topological orders in (4+1)-dimensions. The
nontrivial surface operators have three ambient dimensions in which they can compose; the
2-category of surface operators is therefore three-monoidal, aka sylleptic. A crucial step
in the classification was a theorem proved in [152] that constrained the surface operators
to only have grouplike fusion rules, if we can remove all the line operators. That is, if the
endomorphism 1-category is trivial. Proving this theorem about 2-categories is the goal of
the first part of this section.

For the second part, we will show that:

{super (4+1)d topological orders with no lines} = {symplectic finite Abelian groups}
{bosonic (4+1)d topological orders}/Morita equivalence ∼= Z∞

2 .

A feature of the classification for topological orders is that it is given up toMorita equivalence.
Two theories are Morita equivalent if they can be separated by a gapped interface. In the
case of bosonic (4+1)d topological orders, this means that there are infinitely many phases,
which are not related by a gapped boundary. A way of establishing a Morita equivalence is
through a procedure of condensation, which will be discussed in more detail in chapter 5.

1.0.4 Chapter 5

In chapter 5 we use the ideas of condensation developed in [109] in (2+1)d topological
theories and for higher dimensions where theories are described by fusion 2-categories. We
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start in (2+1)d where the topological theory is described by a fusion 1-category; this is
a finite semisim- ple monoidal 1-category with duals and simple monoidal unit. What
we do from a physical point of view is to start with a parent theory and adiabatically
tune a set of parameters. This leads to a child phase, where the topological content of
the parent is nontrivially manipulated. With condensation, we can build new operators
from a network of lower dimensional operators, as well as gapped phases starting from the
vacuum. The particular condensation that I have focused on is in (2+1)d, which goes by
the name of anyon condensation [251], which is a manipulation on the line operators of a
theory. A further general form of condensation for higher dimensions has been proposed
in [109]. Mathematically, to perform condensation in (2+1)d one chooses to condense a
set of lines that gives a commutative Frobenius algebra. I worked to enlarge the notion of
what is “condensable”. By relaxing the commutative condition, I was able to define a way
of condensing anyons that are not just bosons, or abelian. This led to an understanding
of how to condense categorical symmetries, that are implemented by nonabelian anyons
and thus noninvertible. While the inspiring physical interpretation of condensation applies
to nonabelian anyons, I build upon this by giving a systematic procedure of computing
the new spectrum using the condensation algebra and the data of the lines. In particular
the method used to project out lines is a form of condensation that can be performed
due to the existence of a fiber functor, which maps the lines to the vacuum. The tool of
anyon condensation can be used to verify conformal embeddings, generalizations of modular
invariants, and the branching functions associated to the topological coset theories.

In the next part of this chapter I discuss condensations in fusion 2-categories and
generalizing the idea of anomalies for regular symmetries to noninvertible symmetries.
These are symmetries that are enacted by topological operators that do not have an inverse,
in particular, two such topological operators may fuse into a multitude of other operators.
This is the heart of the non-invertible part of the thesis. In recent years the proposal of
the cobordism hypothesis with regards to the Swampland program has allowed for many
nontrivial statements of quantum gravity theories. At the heart of this hypothesis is the
statement that there are no global symmetries in a theory of quantum gravity. Therefore all
global symmetries, invertible or not, that are not broken in the UV must be gauged. This
naturally raises the question of what settings do we have good control over the obstructions
to gauging noninvertible symmetries.

We introduce fusion 2-categories because they encapsulate the interactions of surface
and line operators, and are therefore useful in capturing the topological content of theories
in low dimensions. The success that fusion 1-categories found in many applications
to low dimensional topology and physics furthermore entices us to study the natural
extension to higher category number. Fusion 2-categories were introduced in [85] as a
result of categorifying the notion of a fusion 1-category over an algebraically closed field
of characteristic zero. Fusion 2-categories are by definition finite semisimple monoidal
2-categories with duals and simple monoidal unit. One of the main mathematical results of
[78] proves a theorem about fermionic symmetric fusion 2-categories. These are fusion 2-
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categories enriched over 2SVec with extra levels of monoidality on the objects. The theorem
generalizes a theorem of Deligne’s for 1-categories [79]. We also generalize the notion of an
anomaly for a symmetry to a noninvertible symmetry enacted by surface operators using
the framework of condensation in 2-categories. Given a multifusion 2-category, potentially
with some additional levels of monoidality, we prove theorems about the structure of the
2-category obtained by condensing a suitable algebra object. We give examples where the
resulting category displays grouplike fusion rules and through a cohomology computation,
find the obstruction to condensing further to the vacuum theory. As a consequence, we
show that every symmetric fusion 2-category admits a fibre 2-functor to 2SVec.
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Chapter 2

Symmetries in 1+1d and anomalies

Abstract. We investigate the interactions of discrete zero-form and one-form global
symmetries in (1+1)d theories. Focus is put on the interactions that the symmetries can
have on each other, which in this low dimension result in 2-group symmetries or symmetry
fractionalization. A large part of the discussion will be to understand a major feature
in (1+1)d: the multiple sectors into which a theory decomposes. We perform gauging
of the one-form symmetry, and remark on the effects this has on our theories, especially
in the case when there is a global 2-group symmetry. We also implement the spectral
sequence to calculate anomalies for the 2-group theories and symmetry fractionalized theory
in the bosonic and fermionic cases. Lastly, we discuss topological manipulations on the
operators which implement the symmetries, and draw insights on the (1+1)d effects of such
manipulations by coupling to a bulk (2+1)d theory.

2.1. Introduction

Understanding symmetries is key to revealing many nontrivial features of quantum field
theories. In different dimensions, various higher form symmetries may exist in a theory.
These symmetries can be encoded in the higher codimension operators, and in many cases
have the structure of a higher category. Global symmetries do not need to stay stagnant
either: one can promote the symmetry to a dynamical symmetry under the assumption
of the symmetry having no t’Hooft anomaly. This is done by coupling to a background
connection and gauging the symmetry. For finite symmetries, another modern point of view
of gauging is performing a categorical condensation [109]. Furthermore, the symmetries
can interact with each other in nontrivial ways to give higher n-groups. It has therefore
become increasingly necessary to implement techniques from category theory and topology
to consolidate information about symmetries. This includes, the possible ’t Hooft anomalies,
the algebraic structure of higher codimensional defects, and the groupoid of ways in which
theories are related to each other by gauging [114, 112, 137].
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The purpose of this paper is to study theories in (1+1)d that exhibit a discrete global
zero-form and one-form symmetry. We explore two possibilities: the first is when the zero-
form symmetry is nontrivially extended by the one-form symmetry leading to a 2-group, and
the other is when the extension is trivialized leading to symmetry fractionalization. Theories
in (1+1)d are interesting from this point of view because the higher form symmetries are
restricted only to one-forms, and it is possible to keep track of the interactions between
the line operators that implement the one-form symmetry and the point operators that
implement the zero-form symmetry. It is also possible to calculate the anomalies of theories
with 2-group symmetries and theories with symmetry fractionalization rigorously in this
low dimension. We present explicit calculations and give formulas for the cohomology that
classify the anomalies.

An aspect that we will emphasize is the notion of having multiple ground states, or
disjoint sectors, in a theory. In (1+1)d theories, the one-form symmetry gives information
about the number of local ground states. Not only is there information about the multiple
subsectors in a theory, but there is also information contained in moving between the sectors.
We address these two points by laying down some theoretical framework and also giving
examples. Furthermore, we discuss gauging one-form symmetries and explaining the dual
(−1)-form symmetry from a physical and mathematical viewpoint. We find that if we gauge
the one-form group in a 2-group, the extension in the 2-group becomes a mixed anomaly
that restricts to each subsector. It is also natural to apply this knowledge of subsectors
on the side of symmetry fractionalization, from which it is possible to make relations with
discrete torsion.

The layout of the paper is as follows: in §2.2 we begin by reviewing generalized
symmetries and give a precise mathematical definition of one-form symmetry and of 2-
groups. We then focus on gauging in a theory with 2-group symmetry, outlining properties
of one-form symmetries as also discussed in [218]. We also track the relationship between
mixed anomalies and extensions, given by the Serre spectral sequence, at the level of
partition functions. In §2.2.7 and §2.2.8 we employ spectral sequence techniques to calculate
anomalies for (1+1)d bosonic and fermionic theories, respectively. We discuss symmetry
fractionalization in §2.3 and relate it to discrete torsion for the zero-form symmetry, a special
feature that exists in (1+1)-dimensions. We then give the anomalies for (1+1)d theories
exhibiting symmetry fractionalization. Finally, we finish off by discussing manipulations
regarding the topological sectors of (1+1)d theories and how they can be recovered by
coupling to a bulk topological field theory (TFT) [159].

2.2. 2-group Global Symmetry in (1+1)d Theories

Given a d-dimensional quantum field theory with a p-form global symmetry, one is also
provided with a particular set of topological codimension p + 1 operators: the charged
operators for the p-form symmetry, which implement the group action of the p-form
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symmetry upon crossing these operators [113]. By virtue of their group-structure, these
symmetry defects form a subset of all invertible topological operators in the theory. Another
set which exists is the collection of non-invertible defects [40], which we will not consider
for our purposes. The fact that the group like property of higher form symmetries are
encoded in a collection of invertible defects of various codimensions implies that in (1+1)-
dimensions the only higher form symmetry that is possible is a one-form symmetry. While
zero-form symmetries of a theory are well understood to be described by ordinary groups, a
generalization is required to talk precisely about the group structure of one-form symmetries
and 2-groups; this will be the focus of the following subsections.

2.2.1. Defining a 2-group: 1-forms

We will build to the definition of a 2-group by introducing some formal definitions from
category theory and homotopy theory required to sharply define a 2-group. We will also
illustrate how 2-group symmetries are a group of one-form symmetries and zero-form
symmetries “interacting” with each other. Along the way we will have properly defined
the notion of one-form symmetry, and the analogue applies for higher form symmetries in
higher dimensions.

We start off with the notion of a group object, which is a generalization of the structure
of groups to categories other than Set, the category of sets. That is to say, the underlying
set of elements for the group, which is typically an object of Set, is replaced by another
object from some other category. More formally, if X is a group object in the category C,
then there are maps:

m : X ×X → X , e : 1 → X , inv : X → X, (2.2.1)

where m is an associative multiplication, e is a map from the terminal object 1 ∈ C which
is a two sided unit of m, and inv is the two sided inverse of m [182]. We see from the
above requirement that one recovers the traditional notion of a group if C = Set and X
is a group object in Set. In this case we define m such that it takes the form of group
multiplication for the underlying set, e such that it selects the identity of X, and inv such
that it assigns to all group elements its inverse. Hence, one could say the collection of
zero-form symmetries of a theory is described by a group object in the category Set.

We now turn to a generalization of groups: groupoids. A groupoid has the features of
a group in which any two elements may not be meaningfully composed. In particular, a
groupoid is a (small) category where every morphism is an isomorphism. The category of
all groupoids is Grpd. The objects in this category are groupoids, which are categories
themselves, and the morphisms between objects are actually functors of groupoids. We can
simplify this generalization to once again recover the traditional notion of a group, which is
given by the morphisms in a groupoid.
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Suppose that a groupoid only has one object, and consider a group G. We could
have a morphism from that one object to itself, with each morphism given by an element
g ∈ G. Any two morphisms given by g1, g2 ∈ G may be composed, just as in the group.
Associativity of morphisms holds because of the associativity of the group operation, and
the identity of G is the identity morphism for the object of the groupoid. Hence, the
morphisms of a groupoid with only one object form a group under composition. This is a
notion of delooping applied to a group, which categorifies it into a groupoid.

Returning to physics, we say a “group of 1-form symmetries”, denoted A[1], is a group
object in the category of groupoids with only one object. To reflect this, we introduce the
following notation:

π0A[1] := ob(A[1]) = {∗}
π1A[1] := Hom(∗, ∗) = A , (2.2.2)

where {∗} denotes the single object of the groupoid. Here the group of morphisms π1A[1]

is what is meant when a said theory possesses an “A group one-form symmetry”. The
composition of maps also endows A[1] with a unique group law. Notably, as a groupoid
with group law, A[1] contains a multiplication m : A[1] × A[1] → A[1], and an associator
β. The associator is a 3 cocycle such that for a1, a2, a3 ∈ ob(A[1]), β(a1, a2, a3) gives the
isomorphism m(m(a1, a2), a3) ≃ m(a1,m(a2, a3)) for the associativity of m. An important
point to make is that in order for this group law to be unique, we require A to be abelian.
Henceforth, when we mention the specific one-form symmetry group, what one should think
of is the underlying A. This is what is really meant when thinking of one-form symmetries
as groups in the regular sense, such as the center ZN one-form symmetry in 4d SU(N) pure
Yang-Mills theory.

For the purpose of this paper we will take A to be a finite group, and in later sections
we will consider more specific cases for this finite group. In the subsequent sections, we
could also refer to the one-form symmetry as BA. Analogously, BG where G is treated
as a (p− 1)-form group can be thought of as K(G, p), the p-th Eilenberg-Maclane space
of G. When computing group (super)cohomology in the later sections we are computing
(super)cohomology on the classifying space of the group, rather than cohomology of the
topological space of the group. In our case, the latter would be a finite set of points,
which does not have interesting cohomology. In order to conserve on notation we will write
H•(G) = H•

group(G) = H•(BG), to reflect this fact for G the zero-form symmetry. For the
one-form symmetry, we will denote the cohomology by H•(A[1]) or H

•(BA), to mean the
cohomology of the space BA. We follow the usual slight abuse of notation, taking the space
BA as the space that carries a unique group structure that is the underlying group for
a 1-form symmetry, and also taking BG to be the delooped space which gives the group
cohomology of G.
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2.2.2. Defining a 2-group: Including 0-form

In general, it is possible to have zero-form symmetries along with one-form symmetries;
we will take the zero-form symmetries to be the group G[0] = G which is a finite group.
Furthermore, there could be a nontrivial action of the zero-form on the one-form symmetry.
Our goal will be to study groupoids with group law, G, that fit in a sequence:

0 A[1] G G 0 ,i π

φ

where we arbitrarily choose a splitting φ at the level of groupoids. The complete data of φ
is that for all g ∈ G, φ(g) is an object in G and thus G ∼= A[1] ⋊φ G. Such G is a groupoid
with group law and (∗, g) ∈ ob(G); this is known as a 2-group. The associator βG in G is a
3-cocyle valued in the group A and gives the isomorphism

mG[mG[(∗, g1), (∗, g2)], (∗, g3))] ≃ mG[(∗, g1),mG[(∗, g2), (∗, g3)]] (2.2.3)

where mG is the multiplication of objects in the groupoid. A different choice φ′ of splitting
which is isomorphic to φ changes βG by an exact term. Therefore, isomorphism classes of φ
determine βG as a class in the cohomology H3(G;A). In the literature, this class is known
as the Postnikov class and is said to take values in the one-form symmetry, viewed in its
full form as a groupoid. This is convenient because it allows us to view the associator as a
topological defect that implements the one-form symmetry; in (1+1)d this is a codimension
two operator.

We will come back to how this one form symmetry defect can be related to the lack of
associativity of composing zero-form symmetry defects in a later subsection. We furthermore
point out that, as can be seen from the above short exact sequence, A[1] is a subgroupoid
of G, but G need not be. Therefore, one could always ask the question of gauging the
one-form symmetry in a 2-group, but not necessarily the zero-form.

A more topological viewpoint of 2-groups is from the point of view of its classifying
space. The classifying space of a two group is a homotopy 2-type 1 [64], meaning it only
has two nontrivial homotopy groups. Consider a connected space BG such that:

π1(BG) ∼= G, π2(BG) ∼= A. (2.2.4)

In order to have the two symmetries G and A mix, take BG as a fiber bundle over BG
with fiber K(A, 2). We can specify the bundle p : BG → BG by its homotopy cofiber i.e.,
a map k : BG → ΣK(A, 2) ∼= K(A, 3) known as the k-invariant of the space BG. The
associator βG was a class in the third cohomology, which can be represented by maps into

1This is only true for geometrically discrete 2-groups that we are considering, and not generally for
2-group analogues of Lie groups.
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Eilenberg-Maclane spaces. This is to say H3(G;A[1]) ∼= [K(G, 1), K(A, 3)], which sends
the associator of G to the k-invariant of BG. Moreover, every homotopy 2-type BG is the
classifying space of some 2-group G.

2.2.3. Symmetry Defects and 2-group Structure

We now study a physical system with 2-group symmetry at the level of its symmetry defects.
We choose a triangulation of the space with a defect network of lines corresponding to
coupling the zero-form symmetry to background connection [221]. The line defects in a
(1+1)d theory form a 1-monoidal 1-category where the trivalent junction of line defects is
codimension two and serve as morphisms between codimension one objects. In general,
a p-monoidal q-category contains objects of dimension q for which there are p ambient
dimensions to compose object. Another way to understand this type of category is to envision
it as a way of encapsulating the ways to “compose” (q − 1)-branes in (p+ q)-dimensions of
spacetime.

In an n-dimensional theory, the natural object to study is an“n-group” in which one
considers the topological operators that implement k-form symmetries for k ≤ (n− 1). In
analogy with the case in (1+1)d, the objects of codimension one have morphisms that are
codimension two, and the codimension two objects have morphisms that are codimension
three, etc. This results in the notion of a weak n-category, where the compositions are
only associative up to higher coherence relations. In physical systems of interest we must
also implement the condition that the n-category has trivial center in the sense that no
operator can “commute” in a higher categorical sense with all other operators in the theory.
If there is a nontrivial center in the category, then we deem that there is a gravitational
anomaly and therefore obstructs the consistent realization of the category as a physical
system purely in n-dimensions [171].

In (1+1)d the zero-form symmetry operators of g,h,k can be composed in two ways,
and going between the two is a matter of applying an F -move. As depicted in figure
5.2, a point operator βG(g,h,k) valued in the one-form symmetries can be created due
to this move, signifying a nontrivial interaction between the two types of symmetries and
therefore a two group structure. The F -move involving the zero-form symmetry defect
could furthermore generate a phase ω(g,h,k) ∈ C3(G,U(1)) that is purely attributed to the
fact that the Hilbert space is in a projective representation of the zero-form symmetry. We
will later explicity calculate anomalies of this type for full 2-group theories using techniques
in group cohomology.

Another feature in (1+1)-dimensions is that point operators, which are charged under
the zero-form global symmetry and pass through a symmetry line defect, are acted upon
by the line, see figure 2.2. Therefore, the point operator labeled by a becomes ag after
passing through a g-defect. If a was the only unique point operator that existed in a theory,
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Figure 2.1: F-move

then ag = a which implies that the nontrivial g-defect could not even be detected2. This
means that in order to consider nontrivial zero-form operators, we must have at least two
independent point operators. In theories living in (2+1)-dimensions, a single unique point
operator would suffice because lines can detect other lines through their braiding, and lines
can detect surfaces by puncturing at points, see figure 2.4.

a

g g

ag

Figure 2.2: The point operator labeled by a receives a g action upon passing through the
defect line.

The local point operators determine the ground states of our system, which means that
theories in (1+1)d are most interesting to study in the presence of multiple ground states,
or vacua. For the remainder of this note we will use the terms “ground state” and “vacua”
interchangeably. Going back again to (2+1)-dimensions, one could also consider multiple
ground states, and in general there will exist a modular tensor category (MTC) describing
the information and interactions of anyons in the theory around each ground states. The
theory with respect to a single ground state is what is usually referred to in the traditional

2The fact that all operators need to be detectable goes by the name remote detectability. In topological
orders such a condition is necessary in order to have a consistent anomaly free theory.
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discussion of topological order, in which case it is described by a fusion n-category. We see
that in order to give a more complete treatment of topological orders, and general theories
in (1+1)-dimensions, one needs to modify the definition to take into account the possibility
of multiple ground states and a decomposition into subsectors. A more complete definition
of topological orders in (n+ 1)-dimensions with multiple ground states is as a multifusion
n-category [149].

Suppose we are presented with a theory T in (1+1)-dimensions with some global zero-
form symmetry group G, and that T has multiple vacua when considered at some finite
energy. If the system is at any particular vacua, then at finite energy there could be
instantons that tunnel between different vacua. We therefore do not say that these vacua
can be regarded independently, but rather should be thought of as a family of vacua. By
flowing to the deep infrared (IR), all the massive instantons are integrated out, and it is
sensible to claim that the system indeed sits at a particular vacuum. Due to the potential
between the vacua becoming arbitrarily high in the IR, we regard each point operator
as also labeling a subsector of our theory where each subsector is decoupled and truly
independent of the others.

This vacuum at which our system sits is labeled by a point operator in the set of
S = {1̂, 2̂, . . . , M̂} where M is the cardinality of Â = hom(A,U(1)), the Pontrjagin dual
group of A. We see that the one form symmetry is an emergent symmetry of T in the
deep IR. The algebra of point operators is a finite dimensional commutative and separable
algebra and is isomorphic to a direct sum indexed by Spec(A[1])(C). Thus, we can write T
in the deep IR as a direct sum of its subsectors T = T1̂ ⊕ T2̂ ⊕ . . .⊕ TM̂ . The theories we
will be most interested in for this paper are those that exhibit the properties of T in the
far IR. We note in passing that in (0+1)-dimensions, a zero-form symmetry G alone will

split theory Q =
⊕

α̂∈ĜQα̂, where Ĝ is the Pontryagin dual to G.

In a local patch of the theory with two insertions of point operators, we could imagine
composing the two points and producing another point operator, therefore endowing this
set of operators with a multiplication structure. To better illustrate composing one-form
operators and the relation with degenerate ground states, we give an example again in
the (2+1)d world but consider one of the spatial dimensions compactified on a circle.
Along this compactified direction we may wrap a number of anyons of which some may
generate a one-form symmetry. Each wrapping of an anyon labels a ground state. We may
decide to bring two anyons labeled by a and b close together and fuse them using the rule
a× b =

∑
c N

c
ab c. For an abelian anyon a, this fusion gives just a single anyon; we see that

the multiple vacua give a representation of the fusion of anyons.

In a general (n+ 1)-dimensional theory, the n-dimensional operators do not only have
a fusion, or monoidal n-category structure, but it is also possible to produce composite
operators by taking direct sums. Therefore, it is also possible to consider the situation in
which a complex linear combination of multiple operators in the set S as solely operators
that do not interact with each other in the way of fusion, giving the addition structure.
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We denote C[A[1]]
× as the ring of invertible one form operators with the ring structure as

previously laid out.

Examples of multiple ground states

To get a better handle on how to understand multiple ground states and the subtleties
which arise from the decomposition into subsectors we consider some examples. Let us
consider a (2+1)d topological quantum field theory (TQFT) described by a MTC C, such
that the category C has as its boundary a rational conformal field theory (RCFT) that
consists of a pair of unitary vertex operator algebras (VOA) V,W and an equivalence of
categories Φ : Rep(V )

∼→ Rep(W )op. The (1+1)d operators that arise from a (2+1)d object
can be lines, obtained by running an operator of codimension 1 parallel to the top and
bottom of the slab, or local point operators by letting a line in bulk end on the sides of
the slab, as in figure 2.3. In particular, an object in C contains a vector space of ways
to end, which is in fact a module for the VOAs. For X ∈ C traversing between the left

T × [0, 1]

V W

Figure 2.3: Line traversing the bulk.

and right face, let V (X) be the corresponding V -module, and W (X) for the corresponding
W -module. The full algebra of local operators is:

A =
⊕
X∈I

V (X)⊗W (X) (2.2.5)

where I is a set of representatives of simple objects. Each V (X) ⊗W (X) has an action
of the left and right Virasoro algebra VirL⊗VirR, and so of L0, L̄0; the only state with
L0 = L̄0 = 0 is |0⟩ ⊗ |0⟩ which is the local ground state, in this case also the vacuum.

This axiomatization describes the local operators of the CFT, but we note that there
was no mention of a Hilbert space of states on the interval. Due to the lack of that extra
information, automorphisms of an RCFT (V,W,Φ) can have ’t Hooft anomalies, and one
must consider the possibility of other “anomaly” type data. If we have an RCFT with two
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local ground states we can take their direct sum, then we should have data (V1,W1,Φ1) for
the first ground state, and (V2,W2,Φ2) for the second. We need some extra information
which comes in the form of some anomaly trivializing information, consisting of a choice of
“category of walls” between the two ground states. Looking at the full operator content, the
two vacua turn the data into a 2× 2 block matrix:(

(V1,W1,Φ1) extra data
(extra data)T (V2,W2,Φ2)

)
(2.2.6)

where the “extra data” encodes the passage from one ground state to the other. Another
way to view this direct sum is to consider instead of working purely in 2d, working with a
pair consisting of

{(1+1)d boundary condition, (2+1)d theory}.
The operator content as well as the anomalous data of the 2d theory determines an absolute
2d-3d theory i.e. the data (V1,W1,Φ1) leads to data about a cobordism invariant of 3-
manifolds coming from the central charges of (V1,W1,Φ1) where the operators in 3d are
the center of the operators in 2d. We can take direct sums of absolute 2d-3d theories, by
summing in both 2d and 3d.

A concrete realization of the extra data that can appear between two ground states can be
observed in anyon condensation. This gives a way of interpolating between going between
two different (2+1)d topological orders by deforming adiabatically. In the categorical
language we start off with a MTC C and consider some condensible algebra α, built by
condensing an abelian line a ∈ C of integer spin that generates the one-form symmetry
with the vaccuum [138, 169]. Performing the condensation involves projecting out lines
that have nontrivial monodromy charge with a. We then land in a new MTC C ′ separated
from C by a gapped domain wall. The domain wall excitations are given by the category of
α-modules in C which can fuse but not braid with each other.

Let us furthermore consider the case in which a G-symmetry acts on the local ground
states. In special cases, the G-symmetry may protect a degeneracy in ground states, by
forbidding any small deformation in the form of local operators that can distinguish between
ground states. By turning off the symmetry we might expect a decomposition into a direct
sum of subtheories, but more information is necessary. Namely, the data regarding the
relative phases between the ground states. At a particular ground state, it is possible to
stack with a trivial, or invertible theory. Such theories are invertible from the point of
view of field theory, which says we have a map α : Bord3 → VecC from three dimensional
bordisms of two manifolds to specifically the subset of invertible vector spaces. Invertibility
of vector spaces is given by invertibility under the tensor product, and a vector space is
only invertible under tensor product if it is one dimensional. Hence, we require α(Y 2) ∈
VecC to be a line. Invertible field theories are conjectured to describe the low energy limits
of symmetry protect topological (SPT) phases, where a symmetry G protects the phase
from being gapless. We will associate the language of “stacking with SPT” in order to
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refer to the relative information that can exist between ground states. In (1+1)d, these
SPTs are classified by H2(G ; U(1)). If however, as in many cases, G has an action on the
coefficients, then this twisted cohomology may be nontrivial. More precisely, for any module
ρ : Z[G] → Aut(A) over G = CN = ⟨t⟩ cyclic, we have:

H•(G;A) =


AG fixed points, • = 0,

ker(ρ(N))/ im(ρ(t)− 1), • = odd,

ker(ρ(t)− 1)/ im(ρ(N)), • = even > 0.

(2.2.7)

Here N = 1 + t + t2 + . . . + tn−1. As an explicit example, take G = ZT2 and A = U(1),
where ZT2 acts by complex conjugation on U(1). Then H2(ZT2 ; U(1)) = Z2, which means
we have two choices of SPT that can manifest as information of a relative phases between
the ground states.

2.2.4. 2-group Background Gauge Fields

The decomposition structure of theories in (1+1)d implies that we must modify our 2-group
ingredients to take this into account. The Postnikov βG, which is a class in H3(G ;A[1]), must
now be modified to encompass the statement that the lack of associativity in G-symmetry
defects can manifest as a complex linear combination of invertible one-form operators at a
trivalent junction of G-defects. There exists a group homomorphism f : A[1] → C[A[1]]

×

that acts functorially on cohomology. Therefore, we can build [f(βG)] ∈ H3(G ; C[A[1]]
×).

We now use the fact that there is a ring isomorphism of

C[A[1]]
× =

⊕
Â

C× , (2.2.8)

to express [f(βG)] as a class

[f(βG)] ∈
⊕
Â

H3(G ;C×) =
⊕
Â

H3(G ; U(1)). (2.2.9)

We will denote a 2-group theory T with partition function ZT
A(1);B(2) , where A

(1) and B(2)

are the background gauge fields that couple to the zero-form symmetry, and one-form
symmetry respectively. The upper indices denote the fact that an n-form symmetry couples
to an (n+1)-form background gauge field. Under gauge transformations the fields transform
as [19, 211, 96]

A(1) → A(1) +
1

N
dλ(0), B(2) → B(2) +

1

M
dΛ(1) +

βG
NM

λ(0) ∪ dA(1) , (2.2.10)
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where λ(0) and Λ(1) are zero and one cochains for the background G and A[1] symmetries
respectively. The transformation in B(2) involving a mixture between the two symmetries is
characteristic of a 2-group theory, and is parametrized by the Postnikov. The cup product
is used in the way which is described in [95], for cup product Chern-Simons theories.

While the Postnikov was touted as a topological defect in §2.2.3 valued in groupoids,
here in the gauge transformations βG takes a numerical value as an integer modulo M
representing the class [βG] ∈ H3(G ;A)3. For convenience, from now on we normalize all
the background connections for discrete symmetry groups so that there is no need to divide
by the order of the group. Any integral over a gauge field is understood to be analogous to
a discrete Fourier transformation. The partition function ZT attains a term under gauge
transformation which takes the form

exp

(
i βG

∫
λ(0) ∪ dA(1)

)
. (2.2.11)

But, because the Postnikov class should now more precisely be thought of as the class
[f(βG)], the gauge field B(2) in principle could have different 2-group gauge transformation
on each sector of the original theory

A
(1)
α̂ → A

(1)
α̂ + dλ

(0)
α̂ , B

(2)
α̂ → B

(2)
α̂ + dΛ

(1)
α̂ + f(βG)α̂ λ

(0)
α̂ ∪ dA(1)

α̂ , (2.2.12)

and therefore the partition function also attains a term on each sector of the form⊕
α̂

ZT
A

(1)
α̂

;B
(2)
α̂

exp

(
i f(βG)α̂

∫
λ
(0)
α̂ ∪ dA(1)

α̂

)
. (2.2.13)

We remark that even if f(βG)α̂ does not vanish, this phase should not be considered an
anomaly in the usual sense of ’t Hooft anomalies. Since we are strictly speaking dealing
with a zero-form symmetries extended by one-form symmetries, the change in the partition
function under gauge transformation is controlled by the extension, which manifests as a
one form operator.

2.2.5. Gauging in a 2-group theory

Having established the formalism for the partition function and gauge transformations, in
this section we begin to manipulate the theory at the level of its partition function. For T in
which A[1] acts nonanomalously, we can ask to gauge this symmetry. After this we land on
a theory denoted T //A[1]. We will see that upon gauging the one-form symmetry, T //A[1]

will have a mixed anomaly between the zero-form symmetry and the “dual” symmetry,

3It is important to keep track of what category βG is valued in so we can distinguish between (mixed)
anomalies and 2-groups.
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which is a (−1)-form symmetry, Â[−1], controlled by the Postnikov, from the ungauged
2-group. To tell this story in a more familiar way, we outline the gauging procedure with
zero-form symmetries; the logic carries over to one-form symmetries upon shifting some
indices. Suppose we have a theory T ′ in d-dimensions with an action of G̃ = G[0] ⋊β A[0]

where β ∈ H2(G[0];A[0]), so that G̃ is an extension by two zero-form symmetries. In

gauging A[0] in d-dimensions we expect to get a dual group that is a Â[d−2] in T ′//A[0]

and there could be a purely mixed anomaly between G[0] × Â[d−2] = Ĝ which is a class in

Hd+1(Ĝ ; U(1)). This cohomology can be calculated by a spectral sequence, in which on the

E2 page we have Hp(G;Hq(Â[d−2] ; U(1))), that converges to H
p+q(Ĝ; U(1)). We have that

Hd−1(Â[d−2] ; U(1)) = Hom(Â[d−2] ,U(1)) = A[0], and H
2(G;Hd−1(Â[d−2] ; U(1))) converges

to Hd+1(Ĝ; U(1)). This is interpreted to mean that the mixed anomaly is given by the

extension β from the original T ′ theory, by cupping with a (d− 1)-cochain valued in Â[d−2].

One can also tell this story in reverse. Suppose that a theory T̃ ′ is acted upon by the
group G× Â[d−2] and there exists a purely mixed anomaly α ∈ H2(G ;Hd−1(Â[d−2] ; U(1))).

In gauging Â[d−2], we expect a A[0] symmetry in T̃ ′//Â[d−2]. The analogue of 2-groups
involving G and A[0] is controlled by an extension in H2(G ;A[0]) =

H2(G ;Hd−1(Â[d−2] ; U(1))), which is α. We see through this spectral sequence argument
that a theory with a mixed anomaly, when gauged, becomes a theory with 2-group symmetry,
where the class of the anomaly becomes the extension defining the 2-group.

When we focus specifically for our theory T in (1+1)-dimensions, then our extension
is valued in H3(G ;C[A[1]]

×). Due to the functorality of the spectral sequence, there is a
homomorphism from the spectral sequence of C[A[1]]

×. G to the spectral sequence of A[1].G,
here as X.Y denotes the extension of Y by X. The homomorphism is given on the E2 page
by

H•(G; f •) : H•(G;H•(C[A[1]]
×; U(1))) → H•(G;H•(A[1]; U(1))) , (2.2.14)

where
f • : H•(C[A[1]]

×; U(1)) → H•(A[1]; U(1)) (2.2.15)

is the pull back of the homomorphism f : A[1] → C[A[1]]
×. This means that upon gauging,

it makes sense to take the restriction of f(βG) to each element α̂ ∈ Â[1], and therefore there
is a notion by which the mixed anomaly can be restricted over any particular subsector
into which a theory decomposes.

We now perform the gauging explicitly at the level of partition function. In the following,
we use lower case letters to denote that the background gauge field is being integrated over
in the path integral. In order to gauge the one form symmetry in ZT we integrate over the
two-form gauge field [49]

ZT //A[1]

A(1);C(0) =

∫
Db(2) ZT

A(1); b(2) exp

(
−i
∫
C(0) ∪ b(2)

)
, (2.2.16)
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where C(0) is the background gauge field for the dual (−1)-form symmetry [50] in T //A[1].
One can furthermore gauge the (−1)-form symmetry by summing over the zero-form gauge
field. This takes us back to T :∫

Dc(0)ZT //A[1]

A(1); c(0)
exp

(
i

∫
B(2) ∪ c(0)

)
=

∫
Dc(0)Db(2)ZT

A(1); b(2) exp

(
−i
∫
c(0) ∪ b(2)

)
exp

(
i

∫
B(2) ∪ c(0)

)
= ZT

A(1);B(2) . (2.2.17)

We now move on to the case of a two group with βG, and again gauge the one form symmetry
in the manner of (2.2.16). If we implement the 2-group transformation in (2.2.10) we get

ZT //A[1]

A(1);C(0) =

∫
Db(2) ZT

A(1); b(2) exp

(
−i
∫
C(0) ∪ b(2)

)
× exp

(
−i
∫
C(0) ∪ dΛ(1)

)
exp

(
−i
∫
C(0) ∪

(
βG ∪ λ(0) ∪ dA(1)

))
,

(2.2.18)

where C(0) and λ(0) ∪ dA(1) take value in Â[−1] and G and the Postnikov we take to be
valued in A[1] instead of its c-number value as in (2.2.10). We claim that the (−1)-form
symmetry is best thought of as Spec(A[1])(C) = hom(A[1],C), and presently justify this
proposition. Inside the exponential, cupping C(0) with βG is this map and gives a c-number
contribution multiplying the curvature of the background G gauge field. If we consider
attaching a term in the above partition function of the form

exp

(
i
(
C(0) ∪ βG

) ∫
λ(0) ∪ dA(1)

)
, (2.2.19)

this will exactly cancel out the exponential on the right hand side in (2.2.18). This factor is
a mixed anomaly in the gauged theory, which is controlled by the extension βG we started
off with in the 2-group ungauged theory. Going in reverse, consider a mixed anomaly
classified by β̂G̃ ∈ H3(G , Â[−1]) in the theory T //A[1] and gauge the Â[−1] symmetry by
integrating over C(0). The partition function takes the form

ZT //A[1]

A(1);C(0) exp

(
iβ̂G̃

∫
λ(0) ∪ dA(1) ∪ C(0)

)
gauge−→

∫
Dc(0)Z(T //A[1])//Â[−1]

A(1); c(0)
exp

(
iβ̂G̃

∫
λ(0) ∪ dA(1) ∪ c(0)

)
× exp

(
i

∫
B(2) ∪ c(0)

)
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=

∫
Dc(0)Db(2)ZT

A(1); b(2) exp

(
iβ̂G̃

∫
λ(0) ∪ dA(1) ∪ c(0)

)
× exp

(
−i
∫
c(0) ∪ b(2)

)
exp

(
i

∫
B(2) ∪ c(0)

)
= ZT

A(1);B(2)+β̂G̃
∫
λ(0)∪dA(1)

= ZT
A(1);B(2) exp

(
iβ̂G̃

∫
λ(0) ∪ dA(1)

)
, (2.2.20)

which is exactly the transformation in a two group theory with Postnikov β̂G̃. Note here

that
(
iβ̂G̃

∫
λ(0) ∪ dA(1)

)
plays a different role than in (2.2.19), where the Postnikov was

cupped with C0 because β̂G̃ is strictly speaking valued in Â[−1], and there is no sense in
which it can be canceled in the same way a phase can be.

We return back to considering the Postnikov under the homomorphism f as in (2.2.9)
and apply this to the partition function of ZT . By conducting the gauging procedure of
(2.2.18) along with the functorial property of f we see that there are mixed anomalies in
each subsector labeled by α̂, and the partition function is given by

ZT //A[1]

A
(1)
α̂

;C
(0)
α̂

=

∫
Db

(2)
α̂ ZT

A
(1)
α̂

; b
(2)
α̂

exp

(
i
(
C

(0)
α̂ ∪ f(βG)α̂

) ∫
λ
(0)
α̂ ∪ dA(1)

α̂

)
,

(2.2.21)

where the subscript α̂ denotes the restriction of the gauge field to the subsector α̂ and the
full gauge field is written as C(0) =

⊕
α̂C

(0)
α̂ . Here, ⟨C(0)

α̂ ∪ −⟩ : hom(A[1] ,C)
∣∣
α̂
and the

term
(
i f(βG)α̂ ∪ C(0)

α̂

)
makes sense as a complex number. This makes(

i f(βG)α̂ ∪ C(0)
α̂

) ∫
λ
(0)
α̂ ∪ dA(1)

α̂ a mixed anomaly.

2.2.6. Space of (-1)-form symmetries

In order to fit in line with the definition of symmetry defects given in §2.2, a (−1)-form
symmetry for a d-dimensional theory must be implemented by codimension zero defects, or
“spacefilling defects”, which are theories themselves. This says that in gauging a one-form
symmetry, we have effectively projected ourselves onto a subtheory of the original T existing
in the direct sum. Furthermore, gauging this (−1)-form symmetry should give us back a

family of theories as can be seen in the following way. For an element α̂ of Â[−1] we can

build the term exp
(
i
∫
B(2) ∪ C(0)

α̂

)
to be inserted into the path integral along with the

partition function ZT //A[1] . We then take a direct sum over α̂ while integrating over gauge
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field corresponding to Â[−1] ,

ZT //A[1]//Â[−1] =
⊕
α̂

∫
Dc

(0)
α̂

∫
Db(2)ZT

A(1); b(2) exp

(
−i
∫
b(2) ∪ c(0)α̂

)
× exp

(
i

∫
B(2) ∪ c(0)α̂

)
= ZT

A(1);B(2) , (2.2.22)

which takes us back to the original family of theories with a one-form symmetry.

From the point of view of a defect that selects a particular subsector of a theory, we see
that there is no such p-form symmetry for p < (−1). As a brief note for completeness we
give a mathematical way to understand other negative form symmetries. We explained in
§2.2 that one-form symmetries are one-to-one with group objects in groupoids, such that
only π1 was nontrivial. We can define an n-groupoid as a category in which objects support
π0, π1, . . . , πn homotopies. Given G, a group object in n-groupoids, it is possible to form
what we will call BG, which is an n+ 1-groupoid. Here, the group law of the n-groupoid
becomes the composition law in the n+1-groupoid. Furthermore, πi−1G = πiBG, and thus
π−1G = π0BG, the right-hand-side of the equality being well defined. This gives a view
of (−1)-form symmetry in terms of homotopy if only π0BG is nontrivial for G is a group
object in (−1)-groupoids. Instead of n-groupoids being defined with only a single group law,
it is possible to include multiple group laws. In essence, this means that associativity can
be given multiple ways of being isomorphic. Starting with an n-groupoid and permitting
two group laws, it is possible to form an (n + 1)-groupoid with a single group law, and
subsequently an (n+ 2)-groupoid. This provides a mathematical way to define π−n and
therefore (−n)-form symmetries if one is willing to consider multiple group laws.

2.2.7. 2-group Anomalies

In (1+1)d a theory with 2-group global symmetry can itself have an anomaly that is a class
in H3(G ,U(1)). This amounts to asking whether the entire 2-group can be gauged, or if
there is an obstruction to doing so. As was pointed out in [19], the fact that this anomaly is
a class in the third cohomology is a facet of the dimension of the theory we are considering,
and should not be confounded with the Postnikov, which is strictly speaking valued in A[1]

and is not a bona fide anomaly. We will study this 2-group anomaly by using the Serre
spectral sequence and by using the convergence of H•(G;H•(A[1]; U(1))) ⇒ H•(G; U(1));
the group of one-form symmetry, in this case, we take to be cyclic of odd order. The
zero-form symmetry we still leave to be a general finite group. For this and other subsequent
calculations, we will only focus on the low degree cohomology.

The E2 page has d2 = 0, and the next differential d3 = ⟨βG,−⟩. If
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ω ∈ H•(G;H•(A[1]; U(1))), then

d3(ω) = βG ∪ ω ∈ H•+3(G;A⊗H•(A[1] ; U(1))). (2.2.23)

To see that this makes sense we note that since A[1] is a one-form symmetry, then for the
underlying group we have A = H2(A[1] ;Z) = H2(K(A, 2) ;Z). Thus this slant product is the
map H2 ⊗H• → H•−2. This shows that our claim for d3 is a map H•(G;H•(A[1]; U(1))) →
H•+3(G;H•−2(A[1]; U(1))), as it should be. The E2 page in degree ≤ 4 looks like

S2Â S2Â H1(G;S2Â) H2(G;S2Â) H3(G;S2Â) H4(G;S2Â)
0 0 0 0 0 0

Â Â H1(G; Â) H2(G; Â) H3(G; Â) H4(G; Â)
0 0 0 0 0 0

U(1) U(1) H1(G; U(1)) H2(G; U(1)) H3(G; U(1)) H4(G; U(1))
0 1 2 3 4 ,

(2.2.24)

where Â = H2(A[1]; U(1)), and S
2Â = Sym2 Â which are the quadratic forms on Â. In total

degree 3, we have
⊕3

i=0H
i(G ;H3−i(A[1] ,U(1)) and so we consider if any of these elements

can support, or receive a differential d3. By the property of differential

H i(G;H2−i(A[1] ; U(1)))
d3→ H i+3(G;H−i(A[1] ; U(1))) = 0, if i ̸= 0, (2.2.25)

and therefore the only d3 in this case is from H0(G;H2(A[1] ; U(1))) = Â, which lands in
H3(G;H0(A[1] ; U(1))) = H3(G; U(1)). Furthermore we have

H i(G;H3−i(A[1] ; U(1)))
d3→ H i+3(G;H1−i(A[1] ; U(1))) = 0, if i ̸= 0, 1 , (2.2.26)

but the coefficient H3(A[1] ; U(1)) = 0. Therefore the only d3 here is from
H1(G ,H2(A[1] ; U(1)) to H

4(G ; U(1)). The E∞ page in total degree 3 contains two entries,
which are

ker(d3 = ⟨− ∪ β⟩ : H1(G; Â) → H4(G; U(1))) and coker(d3 : Â→ H3(G; U(1))) . (2.2.27)

There is an extension problem to solve here, with H3(G ; U(1)) fitting in the short exact
sequence

coker(d3 : Â→ H3(G; U(1))) → H3(G ,U(1)) → ker(d3 = ⟨−∪βG⟩ : H1(G; Â) → H4(G; U(1))).
(2.2.28)

There is an image of ω ∈ H3(G; U(1)), which we call α, is such that dα = 0 and is in the
kernel of d3, i.e., is zero in cohomology. Since βG was chosen to be a cocycle, then α∪ βG is
a cocycle; we claim that it is dγ for some 3-cochain γ coming from the cokernal set, that
witnesses α being in the kernal of d3. This means that the cohomology H3(G; U(1)) consists

24



of pairs (α, γ) where α : G→ Â is a homomorphism, and γ ∈ C3(G; U(1)), such that

dγ = α ∪ βG. (2.2.29)

If we go to a specific case where G = Z2, then α = 0 since A was a finite group of odd
order, and then γ is in fact a cocycle. In this case the group the cohomology would just
be given by γ ∈ H3(G,U(1)) = G = Z2. This is also true in general whenever G is finite
cyclic, and gcd(|G|, |A|) = 1.

2.2.8. 2-groups and Supercohomology

We calculate the anomalies in (1+1)d fermionic theories with 2-group global symmetry;
these anomalies live in supercohomology. We will more specifically consider what is
known as extended supercohomology [239] in the following. Bosonic anomalies that are
1
2
(mod 1), when restricted to a one-form symmetry subgroup of G, become trivialized in

supercohomology.

We take fGP× to be the spectrum of fermionic phases. This is a sequence of of topological
spaces, namely fermionic invertible gapped systems . . . , fGP×

−1, fGP×
0 , fGP×

1 ,
fGP×

2 , . . . where the subscript denotes the spacetime dimension. This sequence comes
with homotopy equivalences fGP×

n−1
∼→ Ω fGP×

n , and since πnΩ fGP×
n = πn+1 fGP×

n , we
define the homotopy groups of fGP× by πn fGP× = π0 fGP×

−n and π−n fGP× = π0 fGP×
n .

Calculating these groups gives the n-dimensional fermionic phases with abelian group
structure π0 fGP×

−n, where the group composition is by stacking. In what follows we will
only focus on the low dimensional homotopy groups of this spectrum, the well established
ones are [110]:

π0 fGP× = U(1), π−1 fGP× = Z2, π−2 fGP× = Z2. (2.2.30)

The only nontrivial degree-2 stable cohomology operation from Z2 to U(1) is (−1)Sq
2
, as

Sq2 : H•(− ;Z2) → H•+2(− ;Z2) and (−1)x : H•(− ;Z2) → H•(− ; U(1)). The nontrivial
degree-2 stable cohomology operation connecting Z2 to Z2 is just Sq2.

An n-cocycle in supercohomology (SHn) consists of a triple (α, β, γ) where α is a degree-
n U(1)-cochain, β is a degree-(n − 1) Z2-cochain, and γ is a degree-(n − 2) cochain and
they solve:

dγ = 0, dβ = Sq2γ, dα = (−1)Sq
2β + f(γ). (2.2.31)

In the literature, γ is referred to as the “Majorana layer” when in degree one, and β is the
“Gu-Wen” layer when in degree two, and α is a ’t Hooft anomaly in the bosonic sense. We
want to calculate the supercohomology SH3(G) for G = A[1] ⋊βG G, but now G and A[1]

are the group Z2 and BZ2 respectively, for otherwise supercohomology reduces to standard
cohomology.
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For completeness we present this calculation in pieces, where we also calculate the
supercohomology of G = Z2 and G = BZ2. The supercohomology as a generalized
cohomology theory takes value in a spectrum. By using the Atiyah-Hirzebruch spectral
sequence we have SH•(Z2) ⇐ H•(Z2, SH

•(pt)) where SH•(pt) = π−•(pt). In the extended
cohomology case we need:

SH0(pt) = U(1) , SH1(pt) = Z2 , SH2(pt) = Z2 , (2.2.32)

and the homotopy in higher nonnegative cohomological degree vanishes. The ringH•(Z2;Z2) =
Z2[t] with t in degree one, and except in degree 0, the map (−1)x : Z2 → U(1) is a surjection
on H•(Z2;Z2) → H•(Z2; U(1)). This gives the E2 in low degree as

Z2 Z2 Z2t Z2t
2 Z2t

3 Z2t
4

Z2 Z2 Z2t Z2t
2 Z2t

3 Z2t
4

U(1) U(1) (−1)Z2t 0 (−1)Z2t3 0
0 1 2 3 4 .

(2.2.33)

In what follows we will strip off the Z2 for simplicity and only leave the generator. The d2
differential in the Atiyah-Hirzebruch spectral sequence is the k-invariants of the spectrum,
these are Sq2 : E•,2

2 → E•+2,1
2 and (−1)Sq

2
: E•,1

2 → E•+2,0
2 . On generators t, Sq2 acts as

a second order operator by differentiation. Namely, Sq2 = t4 1
2
∂2

∂2t
: ti 7→

(
i
2

)
ti+2. The d2

mapping out of generators in i ≡ 0, 1 mod 4 therefore vanish, and the d2 mapping out of
generators in i ≡ 2, 3 mod 4 are isomorphisms. The E3 page is

Z2 1 t 0 0 t4

Z2 1 t t2 0 0
U(1) U(1) t 0 t3 0

0 1 2 3 4 .

(2.2.34)

In total degree ≤ 4, the above E3 page is the E∞ page, and so in total degree three
SH3(Z2) = Z2.Z2.Z2; now we are left with an extension problem to solve.

We first look at the extension Z2.Z2 between the top and middle row. The extension
gives information about the failure of Sq2 to act linearly on cocycles. For a, b ∈ E1,2

∞ ,
Sq2(a+ b) = (a+ b) ∪ (a+ b) = a2 + b2 only if a ∪ b = b ∪ a, i.e., that the cup product is
commutative. The lack of commutativity gives an element a ∪ b ∈ E2,1

∞ , so the extension is
nontrivial and we get a Z4 from the top and middle rows. To understand the extension
of Z4.Z2 we consider the image of (−1)Sq

2(t2) which as shown on the E3 page is zero in
cohomology, implying that it is a coboundary dλ for λ ∈ H3(Z2; U(1)) = E3,0

∞ . The extension
information is therefore embedded in λ, much like how the data for the first extension was
embedded in a ∪ b, and so the extension is nontrivial. We see that SH3(Z2) = Z8. It is
also possible to arrive at this conclusion on a more physical level; the spectral sequence
reveals that in total degree three, whatever group this is, must have order eight. The
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supercohomology SH•(K(Z2, 1)) classifies the superfusion categories with Z2 fusion rules.
The bosonic shadow must then have an object akin to a “fermion” with Z2 fusion rules, and
there are eight categories: four with Ising fusion rules, two with Z4 fusion rules, one with
Z2

2 fusion rules and nontrivial associator, and one with Z2
2 fusion rules and trivial associator,

which are part of the Spin(N)1 monoidal categories. Recognizing them as such allows us to
recognize the group structure as a Z8, and furthermore allows for the identification of the
Z8 in supercohomology with the Z8 of Bott periodicity.

We now compute SH•(BZ2) by converging from H•(BZ2 ; SH
•(pt)). The cohomology

ring of BZ2 with coefficients in Z2 is generated over the Steenrod algebra with a generator
T in degree two [133]:

H•(BZ2 ,Z2) = Z2[T , Sq
1(T ) , Sq2(T ) , Sq2Sq1(T ) , Sq4Sq2Sq1(T ) , . . .] . (2.2.35)

The E2 page is
Z2 1 0 T Sq1(T ) Sq2(T )
Z2 1 0 T Sq1(T ) Sq2(T )
U(1) U(1) 0 Z2 0 Z4

0 1 2 3 4 .

(2.2.36)

We want to determine if the d2 mapping out from T is nonzero. The Universal Coefficient
theorem gives the cohomology H•(A,U(1)) as an extension of a hom class and an Ext
class in homology with Z coefficients. This reveals that row zero of the E2 page consists
solely of hom classes, because Ext(A,U(1)) = 0 for any abelian group A. The first row
consists of hom and Ext classes; applying Sq2 to T in E2,1

2 gives Sq2(T ) but there is
no Ext class in that degree, which mean Sq2(T ) must be a hom class. Since the map
(−1)x : Z2 → U(1) is injective, the map on cohomology must be injective on hom classes.
Therefore (−1)Sq

2(T ) ̸= 0, and because this map is injective, we find that T is killed by this
differential. Thus, SH3(BZ2) = 0 as nothing survives in that degree.

At this point we can compute SH•(BZ2⋊βZ2), on the E2 page for the Atiyah-Hirzebruch
spectral sequence we will need H•(BZ2 ⋊β Z2 ; U(1)) and H

•(BZ2 ⋊β Z2 ;Z2). We build up
the E2 page for SH

•(BZ2⋊βZ2) in steps, first starting by obtainingH•(BZ2⋊βZ2 ; U(1)) and
H•(BZ2⋊βZ2 ;Z2) with the Serre spectral sequence. The E2 page ofH

•(Z2 ;H
•(BZ2 ; U(1)))

is
Z4 Z4 Z2 Z2 Z2 Z2

0 0 0 0 0 0
Z2 Z2 Z2 Z2 Z2 Z2

0 0 0 0 0 0
U(1) U(1) Z2 0 Z2 0

0 1 2 3 4 .

(2.2.37)

The d2 differential vanishes for degree reasons and the d3 differential is given by information
of the extension, β ∈ H3(Z2 ;BZ2). The row in degree two represents Ẑ2 = hom(BZ2,U(1))
by the Hurewicz theorem, which gives d3 = (−1)⟨−∪β⟩ : H•(Z2 ;Z2) → H•(Z2 ; U(1)). We
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now consider the d3 map in the row of degree four, where the Z4 denotes the space of
quadratic forms on Z2. We must therefore have a map {quadratic forms}⊗Z2 → Ẑ2, which
in this case is given by the mod 2 reduction, and we find

d3 : H
•(Z2 ;Z4) → H•(Z2 ;Z2)

x 7→ xt3 mod 2. (2.2.38)

The E4 page converges to the E∞ page in low degree and is

Z4 Z2 Z2 0 Z2 0
0 0 0 0 0 0
Z2 0 Z2 0 0 0
0 0 0 0 0 0

U(1) U(1) Z2 0 0 0
0 1 2 3 4

(2.2.39)

with H•(BZ2 ⋊β Z2 ; U(1)) = U(1) ,Z2 , 0 ,Z2 ,Z2 , . . .

For the calculation of H•(BZ2 ⋊β Z2 ;Z2), on the E2 page we drop the Z2 everywhere,
and only present the generators at that total degree. This gives

Sq2T Sq2T tSq2T t2Sq2T t3Sq2T t4Sq2T
Sq1T Sq1T tSq1T t2Sq1T t3Sq1T t4Sq1T
T T tT t2T t3T t4T
0 0 0 0 0 0
1 1 t t2 t3 t4

0 1 2 3 4 ,

(2.2.40)

with d3 = t3 d
dT
. In low degree we have H•(BZ2 ⋊β Z2 ;Z2) = Z2,Z2,Z2,Z2,Z2

2, . . . . This is
consistent with H•(BZ2 ⋊β Z2 ; U(1)) = U(1) ,Z2 , 0 ,Z2 ,Z2 , . . ., where by the Universal
Coefficient theorem, each Z2 is a class of the same degree, and a class in one degree lower. On
E∞, a basis for H•(BZ2 ⋊β Z2 ;Z2) is {1, t, t2, Sq1T, T 2, tSq1T, . . . }, and the ring structure
is Z2[t, Sq

1T, T 2, . . . ]/(t3 = 0, . . . ). We assemble now the E2 page for supercohomology

Z2 Z21 Z2t Z2t
2 Z2Sq

1T Z2.Z2 T
2

Z2 Z21 Z2t Z2t
2 Z2Sq

1T Z2.Z2 T
2

U(1) U(1) Z2 0 Z2 Z2

0 1 2 3 4 .

(2.2.41)

We notice that the bottom row on E∞ is the image of H•(Z2 ; U(1)) → H•(BZ2⋊βZ2 ; U(1)),
therefore nothing on that row survives beyond degree higher than three, and the d2
differential, Sq2 kills the t2 in degree E2,1

2 as Sq2(t2) = t4 = 0. Finally, t in E1,2
2 survives

because Sq2 vanishes there. Altogether, this suggest that the anomaly for a fermionic theory
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in (1+1)-dimensions with 2-group global symmetry is Z4.
4

2.3. Split 2-groups and Symmetry Fractionalization

2.3.1. Review of Symmetry Fractionalization

We now consider the case in which the functorial obstruction class βG to the extension of G
by A[1] is trivial in H

3(G;A[1]). Since this is a special case of a 2-group we will call this
case a “split 2-group”. With an action Ho : G→ Aut(A[1]) and trivial Postnikov, then the
extension E of G by A[1] inducing Ho is in bijection with classes ν(g,h) ∈ H2

Ho(G;A[1]). Our
split 2-group is known in the literature as a symmetry fractionalized phase, which is specified
by ν [139, 14, 41]. For (2+1)d phases, one can understand symmetry fractionalization
as the difference between an anyon a being acted upon by g and h defects separately,
versus being acted upon by the composite gh defect. The relationship between different
symmetry fractionalizations also becomes clear from a physical point of view when we
consider modifying the junction between three zero-form defects to include an anyon α.

g h

gh

α

a

g

h

gh

α

a

Figure 2.4: The line a is acted on by the zero-form symmetry as it punctures the surfaces,
and passing the line a by α results in a braiding.

A line operator implementing the one-form symmetry when passing from above α to
below in figure 2.4, picks up a braiding [15]. If we further choose the class of [0] ∈ H2(G;A[1])
then this means the symmetries of the phase is simply A[1] ×G, i.e, there is no action of
the zero-form symmetry on the one-form symmetry. The above information can also be

4It is also possible to calculate this supercohomology by converging to it with H•(G ,SH•(BZ2)).
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presented by considering the following exact sequence

0 A[1] E G 0 ,
φ

where the splitting map φ gives the trivial class βG, with E = A[1] ⋊ G. There are still
H2(G ;A[1]) choices of conjugacy classes in how we trivialize, for if φ1 and φ2 are two such
splittings, then there could exist m ∈ A[1] such that φ2(g) = (1,m) ◦ φ1(g) ◦ (1,m)−1

in E. In (1+1)d it makes sense to consider ν ∈ H2(G ;C[A[1]]
×), just as we did for the

case of the 2-group. By the same argument as we gave for the Postinikov, we can write
f(ν) ∈⊕Â H

2(G ; U(1)). The symmetry fractionalization thus appears as if we are choosing
to assign a (1+1)d zero-form discrete torsion [229] for the different disjoint theories.

2.3.2. Anomalies for the Split 2-group

Anomalies in symmetry fractionalized theories in (1+1)d are classified by a class in H3(A[1]⋊
G ; U(1)). We first remark that if ν = [0], then Ho : G → Aut(A[1]) is trivial and the
cohomology H3

Ho(A[1] ×G ; U(1)) is calculated with the Kunneth formula. That is to say
that all higher differentials in the spectral sequence vanish and E2 = E∞. If ν is not trivial,
then the d2 differential is given by cupping with ν, i.e. ⟨ν ∪ −⟩. The E2 page of the spectral
sequence we run in order to calculate the anomalies takes the form of (2.2.24), and has no
elements that can receive a d2 differential. The cohomology H3(A[1] ⋊G ; U(1)) fits in a
short exact sequence

H3(G ; U(1)) → H3(A[1] ⋊G ; U(1)) → H1(G ; Â). (2.3.1)

The first map is given by the pullback along the map E → G (given by projection). The
second map can be built in the following way: we begin by considering a function from G
to 2-cochains, δ, on A[1] that goes

∆(g) = δg − δ, for dδ ∈ H3(A[1] ; U(1)) . (2.3.2)

Next, we prove properties of ∆. We note that dδ can be thought of as the restriction
of a class ω ∈ H3(A[1] ⋊ G ; U(1)) to H3(A[1] ; U(1)) because away from the prime 2,
H3(A[1] ; U(1)) = 0. By taking the differential in A[1] of ∆ we see that

dA[1]
∆(g) = dδ g − dδ = 0 , (2.3.3)

and by taking the twisted differential in G we get

dG∆(g, h) = ∆(g)h−∆(gh) + ∆(h)

= (δg − δ)h− (δgh− δ) + δh− δ
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= 0 . (2.3.4)

This shows that ∆(g) is actually a 2 cocycle in A[1] and a one cocycle in G, i.e ∆ ∈
H1(G ;H2(A[1]; U(1))) = H1(G ; Â[−1]). A different choice of δ, differing by another cochain
χ ∈ H2(A[1] ; U(1)), changes ∆(g) to ∆(g) + χ g − χ. The difference χ g − χ = dGχ, is the

differential of a zero-cochain valued in H1(G; Â[1]). We see that the short exact sequence in
(2.3.1) does not depend on splitting of E → G and therefore for each splitting, there is an
isomorphism

H3(A[1] ⋊G ; U(1)) ∼= H3(G ; U(1))⊕H1(G ; Â[−1]) , (2.3.5)

where the direct sum on the right hand side can be evaluated simply in our case, yielding
the anomaly. Since two splittings differ by ν, a change in a splitting by ν changes the direct
sum side of the isomorphism by (

1 ⟨ν ∪ −⟩
0 1

)
, (2.3.6)

where explicitly ⟨ν ∪ −⟩ is a map from H1(G; Â[−1]) → H3(G ; U(1)).

2.3.3. Supercohomology for the Split 2-group

In the case of calculating supercohomology for the group E = A[1] ⋊ G, this semi-direct
product reduces to a product because there are no automorphism of Z2. As in the previous
section, away from the prime 2 this is just regular cohomology. The spectral sequence in
this case gives SH•(A[1] × G) ⇐ H•(G ; SH•(A[1])) ∼= H•(G ;Z) ⊗L SH•(A[1])

5, where L
denotes the left derived tensor product. The above isomorphism is given by the Universal
Coefficient theorem. This implies SH3(BZ2 × Z2) ⇐

⊕
i+j=3H

i(Z2 ;Z)⊗L SHj(BZ2). In

order to evaluate the Tor group up to this degree, we in principle need SH4(BZ2). One
could bypass this calculation due to the fact that H0(Z2 ;Z) = Z and Tor(A ,Z) = 0 for
any finite abelian group A. We nonetheless present this calculation because this allows us
to say some facts about braided fusion supercategories with Z2 fusion rules, since these are
parametrized by SH4(BZ2). We have the E2 page of SH•(BZ2) in low degrees as

Z2 1 0 0 Sq1(T ) Sq2(T )
Z2 1 0 0 Sq1(T ) Sq2(T )
U(1) U(1) 0 Z2 0 Z2

0 1 2 3 4 ,

(2.3.7)

5The reader is reminded that the notation⊕
i+j=n

Hi(G ;M)⊗L Hj(G′ ;M) =
⊕

i+j=n

Hi(G ;M)⊗Hj(G′ ;M)
⊕

i+j=n+1

Tor(Hi(G ;M) , Hj(G′ ;M))
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where we have killed the generator T in degree (2, 1) and (2, 2) as per the discussion after
(2.2.36). We must determine what happens to Sq1(T ) in (3, 1) under (−1)Sq

2
. This amounts

to identifying whether Sq2Sq1(T ) is in the kernel of (−1)x : H5(BZ2 ;Z2) → H5(BZ2 ; U(1)),
where the generators of H5(BZ2 ;Z2) are { Sq2Sq1(T ) , TSq1(T ) ,
Sq2Sq1(T ) + TSq1(T ) }. To discern this we consider the short exact sequence,

0 −→ Z2
(−1)x−→ U(1)

x2−→ U(1) −→ 0 . (2.3.8)

Let □ be the Bockstein of this sequence in cohomology such that □ : Hn(BZ2 ; U(1)) →
Hn+1(BZ2 ;Z2). Then □(−1)x = Sq1(x) and if Sq1(x) ̸= 0, that implies (−1)x ̸= 0.
Applying Sq1 to the generators above we have Sq1Sq2Sq1(T ) = Sq3Sq1(T ) by an Adem
relation, and Sq3Sq1(T ) = (Sq1(T ))2 ̸= 0 because Sq1(T ) is in degree three. Next,

Sq1(TSq1(T )) = Sq1(T )Sq1(T ) + Sq1Sq1(T ) = (Sq1(T ))2. (2.3.9)

Where we used the fact that Sq1 acts as a derivation, and Sq1Sq1(T ) = 0. Finally,
Sq1(Sq2Sq1(T ) + TSq1(T )) = 0. We see that Sq2Sq1(T ) is not in the kernel of (−1)x, so
that d2 differential is nontrivial. We find that the SH4(BZ2) = Z2.

We now remark that the Z4 = H4(BZ2 ; U(1)) were the four bosonic braided fusion
categories with Z2 fusion rules. We know them explicitly as VecZ2 , Semion, anti-Semion,
and SVec. The map to SH4(BZ2) takes a braided fusion category and tensors it with SVec
to produce a braided fusion supercategory. What we find is that, after this tensor product,
SVec becomes equivalent to VecZ2 , and the two Semions become equivalent. This is the
statement that d2 : H

3(BZ2 ;Z2) → H5(BZ2 ; U(1)) was nonzero. The above calculation
also says that we do not get any new braided fusion supercategories with Z2 fusion rules.

Another possible way to convince oneself of this is as follows: suppose that there were
a class in SH4(BZ2) with a nontrivial Majorana layer, which is the image of the class on
the top row, hom(Z2,Z2), by the universal coefficient theorem. This data would imply
that the supercategory had a Majorana object, meaning one with endomorphisms CliffC(1)
rather than C. The underlying category of our putative braided supercategory is a braided
non-super fusion category. Each ordinary object becomes two objects, each Majorana object
becomes one object, and the vacuum becomes a boson and a fermion. That fermion must
have fermionic statistics, and also needs to braid trivially with all other objects. Hence,
it is an invisible fermion. If there were a Majorana layer, then the underlying non-super
category would have Ising fusion rules. This is inconsistent with an invisible fermion and
so can not happen.

One could also ponder the existence of a nontrivial Gu-Wen layer. If the Gu-Wen
layer is nontrivial, then its value is Sq1t, where t is the generator of H•(BZ2 ;F2) of
degree two. Since Sq1 is a stable cohomology operator, it commutes with the loop map
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Hn(BZ2 ;F2) → Hn−1(ΩBZ2 ;F2). In our case, ΩBZ2 = Z2 with Ω taking a braided fusion
object to its underlying monoidal object. Let us take s = Ωt to be the generator of
H•(ΩBZ2 ;Z2), we see Sq

1(s) = s2 ̸= 0. Thus, if there is a Gu-Wen layer, then it is possible
to observe this already on the underlying non-braided category as an effect on the fusion
coefficients. In the presence of a Gu-Wen layer, the underlying non-super category would
have Z4 fusion rules. Like the case for the Majorana layer, this is inconsistent with an
invisible fermion, and as such can not exist.

2.3.4. Subtheories with SPT

We return to the last part of section §2.3.1 where the assignment of symmetry fractional-
ization appears as a choice of zero-form discrete torsion, which we will just call “discrete
torsion”, on each subsector of the theory T . The discrete group Zp that we took in §2.2.1
does not admit discrete torsion, so for this section we will work with the specific example
where G = Zp × Zp.

We denote the (1+1)d partition function of T with zero-form and one-form global
symmetry placed on a torus as ZAa,Ab,Ba,Bb;χ(2) . Here, we drop the superscripts on A and
B which are background gauge fields for the G symmetry with (Aa, Ba) ∈ Zp × Zp. The
subscripts indicate the cycle on the torus which the gauge field wraps.

The symmetry fractionalization is classified by a class in H2(G;C[A[1]]
×) and is part

of the information assigned to T . Due to the fact that T decomposes into subsectors, the
symmetry fractionalization on the full theory was equivalently seen as choices of discrete
torsion on the subsectors, as given by the homomorphism f at the end of §2.3.1. We want
to understand how the action of discrete torsion on the subsectors presents itself in the full
theory, thereby understanding the action of symmetry fractionalization on T . However, it is
expected that acting simply on the subtheories will re-mix in the full theory in a nontrivial
way. In order to understand how discrete torsion acts on the partition function for the full
theory, we consider writing the partition function in a basis as

ZT
Aa,X,Ba,Y ;χ(2) =

∫
DAaDBbDξ

(0)
κ̂ exp

(
i

∫
χ(2) ∪ ξ(0)κ̂

)
× exp

(
i

∫
(Ab ∪X +Bb ∪ Y )

)
ZT //A[1]

Aa,Ab,Ba,Bb; ξ
(0)
κ̂

,

(2.3.10)

where X and Y denote some other background gauge fields for the zero-form symmetry.
The action of discrete torsion by the operator Sκ̂ on the partition function of the full theory
is implemented in this basis to act on the subtheories. We have

Sκ̂ZT
Aa,X,Ba,Y ;χ(2) =

∫
DAaDBbDξ

(0)
κ̂ exp

(
i

∫
χ(2) ∪ ξ(0)κ̂

)
exp

(
i

∫
(Ab ∪X +Bb ∪ Y )

)
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× Sκ̂ZT //A[1]

Aa,Ab,Ba,Bb;ξ
(0)
κ̂

=

∫
DAaDBbDξ

(0)
κ̂ exp

(
i

∫
χ(2) ∪ ξ(0)κ̂

)
exp

(
i

∫
(Ab ∪X +Bb ∪ Y )

)
× exp

(
i ℓ
ξ
(0)
κ̂

∫
(Aa ∪Bb − Ab ∪Ba)

)
ZT //A[1]

Aa,Ab,Ba,Bb;ξ
(0)
κ̂

=

∫
DAaDBbDξ

(0)
κ̂ exp

(
i

∫
χ(2) ∪ ξ(0)κ̂

)
× exp

(
i

∫ (
Ab ∪

(
X − ℓ

ξ
(0)
κ̂

Ba

)
+Bb ∪

(
Y − ℓ

ξ
(0)
κ̂

Aa

)))
ZT //A[1]

Aa,Ab,Ba,Bb;ξ
(0)
κ̂

=

∫
DAaDBb exp

(
i

∫ (
Ab ∪

(
X − ℓ

χ
(2)
κ̂

Ba

)
+Bb ∪

(
Y − ℓ

χ
(2)
κ̂

Aa

)))
×ZT

Aa,Ab,Ba,Bb;χ(2)

= ZT
Aa,X−ℓχκ̂

Ba,Ba,Y−ℓχκ̂
Aa;χ(2) , (2.3.11)

where, ℓ
ξ
(0)
κ̂

is a natural number modulo the order of the one-form symmetry group.

We see that a choice of discrete torsion, when we write ZT in the basis of (2.3.10), acts
as a permutation matrix if we regard ZT was a vector labeled by its indices. More precisely,
Sκ̂ acts as a permutation matrix on the G background fields. This fact is nontrivial when
we solely view implementing discrete torsion as a manipulation in 2d; however, this becomes
clear after coupling to a bulk (2+1)d TFT and interpreting the topological manipulations
in 2d as permutation of the bulk topological defects [114]. By topological manipulations we
mean actions which leave any local dynamics the same, but can change the correlators in
systems with nontrivial topological sectors. Our discussion demonstrates that symmetry
fractionalization can equivalently be understood from this point of view, with different
choices of symmetry fractionalization acting as different permutations of the background
zero-form gauge fields.

2.3.5. Discrete Torsion and the One-Form Symmetry

In this subsection we comment on the manipulations within the topological sector of
our (1+1)d theory involving the one-form symmetry. In the spirit of the previous section,
manipulations such as applying “discrete one-form torsion”, gauging the one-form symmetry,
and permuting the local ground states can be understood by coupling to a bulk (2+1)d TFT
where the one-form symmetry is a dynamical gerbe [160]. In particular, the topological
boundary conditions of the defects in the the bulk will give the possible manipulations
regarding the topological sectors of the boundary theory.

As a way to interpret the one-form torsion, we can consider taking the subtheories
labeled by Spec(A[1])(C) of the discrete (−1)-form symmetry and fiber them over a circle

34



T1̂

T2̂

TM̂

Figure 2.5: Theories fibered over a circle.

so that at discrete points over the circle lives a (1+1)d theory, see figure 2.5. Arranging the
families of theories in this way moves us one dimension higher, where the extra dimension
involves making the parametrization of the circle into a physical spacetime. At an energy
scale much above the deep IR, operators can act on the spacetime of some subsector and
move us between the different sectors. If however we gauge the one-form symmetry in T
by choosing a projector κ̂ in Â[−1], then flowing to the far IR eliminates the possibility of
tunneling out of the subsector labeled by κ̂ and then the original theory T is decomposed
into a disjoint union. Suppose now we act by S̃ξ(0) , the one-form discrete torsion operator,
on the partition function of ZT , and then gauge the one-form symmetry with respect to the
projector κ̂. The operator S̃ξ(0) cups ξ

(0) to the connection of the one-form symmetry, and
multiplies the partition function by a “phase”. We give the action of the one-form discrete
torsion on the partition function where we suppress the zero-form gauge field indices from
(2.3.10), ∫

Dχ(2) exp

(
−i
∫
χ(2) ∪ δ(0)κ̂

)
S̃ξ(0)ZT

χ(2)

=

∫
Dχ(2) exp

(
−i
∫
χ(2) ∪ δ(0)κ̂

)
exp

(
i

∫
χ(2) ∪ ξ(0)

)
ZT
χ(2)

= ZT //A[1]

ξ(0)−δ(0)
κ̂

. (2.3.12)

By acting with S̃ξ(0) on ZT we have shifted the theory to be in the vacuum labeled by

ξ(0) − δ
(0)
κ̂ , instead of the vacuum labeled by δ

(0)
κ̂ . We see the one-form discrete torsion acts

analogously to the zero-form discrete torsion as a permutation of the (−1)-form index, to
switch between subsectors. The subtlety to note is that the permutation of subsectors is
not an effect that takes place in the IR, but rather by applying discrete one-form torsion
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we have modified the projector which gauges the one-form symmetry.

So far we have performed gauging as a topological manipulation done purely in (1+1)d,
we can however regard this action as being implemented by a defect in the bulk TFT which
filters the family of theories to a particular one. Imposing a Dirichlet boundary condition on
the bulk gerbe fields results in the boundary having subsectors, as the one-form symmetry
becomes a global symmetry on the boundary. We can denote the subsectors as states on
the boundary, which can be written as |Tî⟩.

We then place the filter defect such that passing this defect changes the gerbe fields in
the bulk to their dual fields, see figure 2.6. By composing this defect with the boundary

Tî

B(2) Gerbe
Theory

C
(0)

î
Gauge Theory

...

T1̂

T2̂

TM̂

B[T ] B[T //A[1]]

C
(0)

î
Gauge Theory

Compose Tî

Figure 2.6: The boundary of the bulk theory is denoted B[T ]. The resulting theories Tî
are separated by walls. When we compose the filter defect in with the boundary, the new
boundary becomes that of the bulk theory T //A[1].

theory, we obtain a composite boundary condition. Therefore, gauging a one-form symmetry
can be treated as implementing this composite boundary condition on the bulk fields of the
(2+1)d theory with C

(0)

î
connection.

Another obvious topological manipulation one can also perform is to permute the sectors
of the boundary theory, since they are labeled by the one-form symmetry. From the bulk
point of view, this can be seen as a permutation of topological codimension one defects,
which end as lines on the boundary. The boundary conditions of these defects can be seen

Tî

Tĵ

Figure 2.7: A single defect ending on the boundary separates two subsectors by a line.
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as what separates two subsectors of the (1+1)d theory, and thereby crossing a line amounts
to traversing between theory Tî and Tĵ , as displayed in figure 2.7. The set of ways for these
bulk defects to end, and therefore all the ways to traverse between theories, should therefore
account for all the ways to permute the boundary theories. An example of a theory that
exhibits the property of being able to move between subsectors as previously described,
is a (1+1)d U(1) gauge theory with a charge q massless Dirac fermion [168]. One can

build a topological local operator Vk = e
2πik
q

F01
e2 as the symmetry operator of the one-form

Zq symmetry. We can diagonalize this operator such that it acts on a ground state |a1⟩
with eigenvalue e

2πika1
q . If two states |a1⟩ and |a2⟩ are such that a1 ̸≡ −a2 mod q then the

following inner product for the overlap between the two states obeys the equality:

⟨a1|VkU(t)|a2⟩ = e
−2πika1

q ⟨a1|U(t)|a2⟩ = e
2πika2

q ⟨a1|U(t)|a2⟩ , (2.3.13)

which implies that ⟨a1|U(t)|a2⟩ = 0. Here, U(t) is a unitary operator which implements
time evolution. There is no mixing between the subsectors |a1⟩ and |a2⟩, which means the
domain walls separating the two sectors have infinite tension. Another object which we
consider is the Wilson line made by a massive probe particle of charge p ̸≡ 0 mod q which

is charged under the one-form symmetry; Wp = e2πip
∮
A with VkWp = e

2πikp
q WpVk. We may

therefore allow the Wilson line to surround a subsector specified by a local ground state
and calculate

VkWp|a1⟩ = e
2πikp

q WpVk|a1⟩
= e

2πik(p+a1)
q Wp|a1⟩ , (2.3.14)

which means that the Wilson line separates the different subsectors |a1⟩ and |p+a1⟩, because
Vk acting on sector |a1⟩ wrapped with a Wilson line takes us to a different sector |p+ a1⟩.
The Wilson line in this example takes exactly the interpretation as the ending of the bulk
defect at the boundary.

2.4. Genus-One Data and Anomaly detection

Theories in d spacetime dimensions with a global symmetry group G can have obstructions
to promoting the global symmetry to a gauge symmetry. In field theory, one way to work
with a global symmetry is to couple it to a background gauge field. Promoting the symmetry
to a gauge symmetry is the same as asking whether it is possible to integrate over these
background fields in the path integral, a process known as gauging or in other contexts
orbifolding [115]. When gauging is not possible for a certain symmetry, then we say that the
theory has an ’t Hooft anomaly, that is, an obstruction classified by a class in Hd+1(G ; U(1))
when the dimension is low. This means that anomalies are inherently topological in nature,
and are moreover robust to deformations by local operators. These deformations may flow
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the theory to be in a strongly coupled regime, which makes the dynamics hard to discern.
Information about the anomalies puts constraints on the dynamics, enough so that we are
able to make conjectures about the strongly coupled phases. The anomaly is always present
along the renormalization group flow, so whatever value the anomaly takes in, say, a weakly
coupled regime, must be matched in the strongly coupled regime.

If the symmetry has an anomaly, then detecting the anomaly, i.e. determining what
value the anomaly takes is often not a very systematic process and depends on the symmetry
at hand. One such way of detecting the anomaly is to study the Hilbert space of the theory
on some manifold, such as the torus [82]. However, there is no guarantee that one can detect
all such anomalies for any symmetry simply by applying one particular method. It was
shown in [189] how to detect anomalies of ZN global symmetry in (1+1)d unitary conformal
field theory, but not much attention has been given to anomalies of nonabelian global
symmetry. We will be interested in a method of detecting anomalies in (1+1)d theories by
constructing a stack MG. This stack will contain information of the theory when placed on
a torus with a G-bundle, for G a finite group. In the full construction of MG we will have
to quotient by automorphisms of the torus and trivializations of the G-bundle. We refer to
this stack and automorphism information as genus-one data. Over each point of this stack
is a torus bundle, and by integrating the anomaly α ∈ H3(BG ; U(1)) over the torus bundle,
we see that MG furnishes a line bundle. The kernel of this integration map is precisely the
failure to detect α.

We remark in passing an application of this line bundle. In problems involving Moonshine
there is a connection between “analytic” data involving modularity and growth rates of
certain functions, with representations of finite groups. The modularity is particularly
important because this combines with the finite groups into holomorphic sections of a line
bundle on MG [43]. This line bundle is the integral of α (in all computed examples), i.e.,
it is the image of an anomaly. If one is interested in the physical reason which unites the
two separated pieces of data given in the Moonshine, it is useful to search for this anomaly
itself for this information.

The goal of this paper is to show that

Proposition 2.4.1. The genus-one data applied to detect anomalies for the symmetry given
by the dicyclic group of order 4N , DicN , has an undetectable Z2 kernel.

The structure of the paper is as follows: in section 2.5 we spell out the conditions that
are specific to genus-one data, along with the construction of the stack MG. We also
explain how to break down the question from a general finite group to studying p-groups.
In section 2.6 we recast the method of detecting anomalies associated to a line bundle
over MG, to finding phases of 2d partition functions which are eigenvalues of acting with
modular transformations. We investigate how genus-one constraints affect our ability to
detect anomalies of dicyclic groups and show Proposition 2.4.1. Section 2.7 contains an
example where we apply the techniques of manipulating partition functions to see if we can
fully detect the anomaly for ŜU(2)k WZW model with quaternion symmetry.
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2.5. Genus-One Data

Consider a theory in (1+1)d which enjoys a global symmetry G. We start with a stackMG =
(E,P ) where E is oriented and there exists an isomorphism E ≃ T2. Furthermore, we equip
E with a G-bundle where P : E → BG. This stack has a standard presentation as follows:
for any choice of isomorphism f : T2 → E, the map P ◦ f is a G-bundle on the standard
torus that has holonomies along the two cycles. We also choose a trivialization, φ, of P ◦ f
at some basepoint that we will take to be the origin of T2. The stack MG is a quotient
under the automorphisms of these two choices extra choices. We can therefore write a stack
M̃G that is a covering stack of MG, more specifically, M̃G = {E,P, f, φ}. Once we have
chosen f then E is no more data, so we are now talking about the space of bundles of the
standard torus trivalized at the origin. This is the same as the set of maps

hom(π1T2|origin , G) = {(x, y) ∈ G×G | [x, y] = 1}, (2.5.1)

i.e. M̃G is the set of commuting pairs in G. The map from M̃G → MG presents MG as a
quotient groupoid of M̃G by forgetting the data of f and φ. We note that G-bundles at a
point are always trivalizable and there are |G| many trivialization, so in order to forget φ
we quotient hom(Z2 , G) by “changes of trivialization”. This gives hom(Z2 , G)//G, where
the G action is by conjugation on the holonomies. In other words, the action on g on (x, y)
is given by

(x, y) ◁ g := (g−1xg , g−1yg) . (2.5.2)

To forget the data of f , we use the fact that any two isomorphism differ by an automorphism
of the standard two-dimensional torus. We therefore also left-quotient hom(Z2, G) by the
group SL(2,Z). An element γ ∈ SL(2,Z) acts on (x, y)T, where T denotes the transpose of
the row vector, by (

a b
c d

)
︸ ︷︷ ︸

γ

▷ (x, y)T = (xayb, xcyd)T . (2.5.3)

Remark 2.5.4. We are using the fact that x and y commute so that the above formula gives
an action. The two actions by γ and g also commute with each other. We see that as a
groupoid

MG = SL(2,Z)\\ hom(Z2, G)//G. (2.5.5)

Over each point in MG lives a torus bundle EG = {E,P, z ∈ E}, where z is a point in
the torus E and the fibers of the map to MG are oriented 2-tori which are the “points” E
themselves in MG. The map P now takes EG → BG by mapping (E,P, z) 7→ P (z). If the
theory has an anomaly α ∈ H3(G; U(1)) which maps BG→ U(1)[3], then we can use the
composed maps P ∗α as a map from EG → U(1)[3]. Here, the brackets denote the degree of
suspension for the regular group U(1). Therefore, MG carries a line bundle which are the
maps (E,P ) 7→

∫
E
P ∗α; a line bundle over a groupoid is the same data as associating to
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x

y

γx γxg

γygγy

γ g

Figure 2.8: Each two-torus has, wrapped along its cycles, a commuting pair of elements
x, y ∈ G. In the third direction we draw the mapping cylinder first acting by γ and then
by g between two-tori, with the ends identified.

every automorphism in the groupoid a U(1) number. In particular, a typical object of MG

given by (x, y)T and a typical automorphism of this object is given by (γ, g) so that

γ ▷ (x, y)T = (x, y)T ◁ g . (2.5.6)

Thus, in order to give the information about the line bundle, we need to assign for each
point (x, y) a group homomorphism, which is

∫
E
P ∗α =

∫
α : (γ, g) → U(1). We do this in

the following way. We start with a standard two-torus and wrap along the a and b cycle
the elements x and y, which attaches a G-bundle to this torus. We now take the cylinder
on the G-bundle, but apply a twist γ to the two cycles. Then, we take g to change the
trivialization of the G-bundle to return to a configuration that matches what we started
with, and lastly identify the starting and ending tori. This procedure is depicted in Figure
5.4. This gives a closed 3-manifold with a G-bundle that we can integrate α over. A form
of this construction was given by [117] 6.

The overall question can now be phrased in terms of the line bundle as follows:
given

∫
α ∈ H1(MG; U(1)), with α an anomaly in H3(BG; U(1)), then is it possible

to determine the value of α? The kernel of the map H3(BG; U(1))
∫
→ H1(MG; U(1)) is

exactly our failure to be able to detect the anomaly. For any G, we can choose to restrict to
a p-Sylow subgroup, i.e. a maximal p-group where every element is a power of p, denoted
by S; we can do this prime by prime. It is therefore possible to restrict the cohomology
H3(BG; U(1)) along the S subgroup,

6While this reference constructs the analogue of MG with a line bundle, an action by any automorphism
of the G-bundle on the line bundle is given by multipication with the Chern-Simons invariant of the glued
mapping cylinder.
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H3(BG; U(1))(p) H1(MG; U(1))

H3(BS; U(1))(p) H1(MS; U(1)) ,

where the subscript p denotes p-local cohomology. The map from H3(BG; U(1))(p) to H
3(BS; U(1))(p)

is a p-local injection [39, §XII.8], but not an injection on the full cohomology, unless one
takes a product over all p. If there exists G so that integration is not an injection, then
there must be an S such that integration is not an injection. To study this question on all
groups we therefore focus on the p-groups.

Given that S is a p-group, we can use a fundamental fact of p-groups which states
that for any p-group there exists a central order-p element, thus we have S = Zp .S ′. To
break down the problem even further, we can temporarily restrict α to the Zp subgroup,
then by naturality we have

∫
α
∣∣
Zp

=
(∫

α
) ∣∣

MZp . We see that the central element does not

contribute to the kernel by using the fact that:

Lemma 2.5.1. [108, §3.3] The map
∫
α|Zp : H3(BZp; U(1)) → H1(MZp ; U(1)) is injective,

i.e., if
∫
α|Zp = 1 then α|Zp = 1.

Remark 2.5.7. The question can also be phrased in another form that is in terms of
extensions rather than anomalies. For concreteness, suppose that a theory has as its
symmetry group, G = Zp ×G′ where G′ is a finite p-group. The only anomaly is mixed,

living in H2(G′; H1(Zp; U(1))) = H2(G′; Ẑp). If we gauge the Zp symmetry as in [25] we get
a central extension Zp.G′ symmetry action for the gauged theory, where the extension data
is the mixed anomaly [222]. The question is therefore equivalent to asking: can one work
out which extension using only genus-one data?

From a categorical point of view “modular data” of a modular tensor category means look-
ing at its corresponding SL(2,Z) representation. The modular tensor category Z(Vecα[G])
has modular data, and it was shown in [195] that is is insufficient to determine α. However, it
was shown by Kirillov Jr. [165] that Z(Vecα[G]) along with the full data of the subcategory
Rep(G) was sufficient to determine α. Our current problem is an intermediate of these two
situations. On the one hand we have more than modular data because we also incorporate
data of the group that the modular tensor category came from, hence the fact that we can
conjugation elements of MG by group elements. On the other hand, we do not have the
full category Rep(G) to apply the Kirillov Jr. construction.

2.6. Partition Functions

Performing the integral over the mapping cylinder is in general hard to do and involves
knowledge of how to triangulate the manifold, however, there are instances when this
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can be done. We can consider the case in which the mapping cylinder in Figure 5.4 is
G-equivariantly cobordant to the Lens space L(N, 1), or when the twists applied in the
third direction is trivial, yielding a 3-torus T3. This is the case when we are only concerned
with ZkN groups and the anomaly α ∈ H3(ZkN ; U(1)). The third cohomology evaluates to

Z[(
k
1)+(

k
2)+(

k
3)]

N and the cocyles are of the following three forms:

αI(a, b, c) = exp

(
2πiqI

N2
aI(bI + cI − [bI + cI ])

)
, (2.6.1a)

αIJ(a, b, c) = exp

(
2πiqIJ

N2
aI(bJ + cJ − [bJ + cJ ])

)
, (2.6.1b)

αIJK(a, b, c) = exp

(
2πiqIJK

N
aIbJcK

)
, (2.6.1c)

where the superscript indices take values in {1, . . . , k}, and a, b, c ∈ ZkN [63]. We denote
[bI + cI ] := bI + cI mod N , and qI , qIJ , qIJK takes values mod N , meant as a representative
of the cocycle. To argue why there are

(
k
2

)
many cocycles of the form in (2.6.1b) we note

that the 3-cocycles αIJ and αJI are equivalent, since they differ by a coboundary. A similar
argument holds for cocycles of the third type in (2.6.1c), and therefore there are only

(
k
3

)
many, as permutations of the labels I, J,K give equivalent cocycles up to coboundary.
These three types of cocycles correspond to the generators of H3(ZkN ; U(1)), which at the
level of gauge fields corresponds to self coupling of the gauge fields, pairwise couplings
of the gauge fields, or coupling each of the three distinct fluxes together. Each of these
cocycles corresponds to a theory in (2+1)d and is the action of a G-SPT. By the anomaly
inflow mechanism, we can think of our (1+1)d theory with anomaly α as the boundary of
this bulk G-SPT. While the boundary theory is anomalous, the entire bulk boundary set
up is non-anomalous, thus the SPT exactly captures the anomaly data in its action. The
partition function for the G-SPT when placed on L(N, 1) is sufficient to detect the first
two types of cocycles, while the last is detectable when placed on T3 [227]. In particular,
the partition function for each of the SPTs is a U(1) valued topological invariant used to
distinguish the phase. The partition functions are built out of a response function, which
treats the symmetry G as a flat background connection; these functions can be shown to
match the expression for the group cocycles in (2.6.1). Evaluating the partition function,
i.e. integrating over L(N, 1), amounts to integrating the response function over a homology
1-cycle that generates H1(L(N, 1),Z). The set of invaraints for the three cycles in (2.6.1) is
given by{

exp

(
2πi qI
N

a2I

)
, exp

(
2πi qIJ
N

aIaJ

)
, exp

(
2πiqIJK
N

ϵijkaI,i bJ,j cK,k

)}
, (2.6.2)

were the indices i, j, k on the last factor indicate the cycles on T3. We can also consider
general discrete Abelian groups which are always isomorphic to

∏k
I=1 ZNI ; the SPTs can
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be detected on L(N I , 1), L(gcd(N I , NJ) , 1) and T3.

We can convert the problem involving integrating over the mapping cylinder into the
language of partition functions. In (1+1)d, these are objects which transform as a modular
form with respect to τ on the moduli space of flat 2-tori. If our theory enjoys a symmetry
G, then the torus base manifold of our theory is equipped with a G-bundle and the map
P : T2 → BG is a pair of commuting elements (up to conjugation) g, k ∈ G each wrapping
one of the cycles of the torus. We define the partition function, with q = exp 2πiτ and
q = exp−2πiτ , as

Zg,k(τ, τ) = TrHk

(
g qh−

c
24 qh̄−

c̄
24

)
,

g

k

(2.6.3)

which is a configuration that is twisted by g in the spatial direction, and twined by k in
the time direction. The trace is over the defect Hilbert space, this is from the k-defect
intersecting the spatial circle and implements a twisted periodic boundary condition [40].
These partition functions are precisely the sections of the line bundle defined by

∫
α over

the stack MG. An anomaly then has to do with an obstruction to this line bundle being
trivializable. For a special case where G = ZN we can consider the component (g, e), where
e is the identity, of MG. A modular S transformation on the partition function exchanges
the two cycles of the torus so the g defect now acts at a fixed time and the partition function
is

Ze,g(τ, τ) = TrHg

(
qh−

c
24 qh̄−

c̄
24

)
= Zg,e

(
− 1
τ
,− 1

τ

)
. (2.6.4)

Under the T transformation, which maps τ → τ + 1, we see that this partition function is
modular up to a multiplier of a phase which records the line bundle. To compute the phase
we note that the spins h− h of the states in the defect Hilbert space takes value in ℓ

N2 +
Z
N
,

where ℓ is an integer modulo N [189], where it is referred to as a spin selection rule. This
implies the following, which was also mentioned in [108]:

Proposition 2.6.1. If an anomaly of theG action is given by ℓ ∈ H3(ZN ; U(1)), TN =

(
1 N
0 1

)
acts on Ze,g with multiplier exp

(
2πiℓ
N

)
.

An immediate corollary is that knowledge of the partition function is sufficient to
determine the anomaly for ZN groups. Going back to our picture using genus-one data and
the mapping cylinder, this example for ZN groups would be what happens if we wrap e, g
along the cycles labeled by x, y in Figure 5.4 and apply γ = TN along the third direction
giving the entire mapping cylinder the structure of a Lens space L(N, 1). Since the manifold
used to detect the 3-cocycles for the case of a general discrete Abelian group is also a Lens
space, or a 3-torus, then genus-one data is sufficient to detect anomalies of Abelian groups.
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Furthermore, it is sufficient to detect the anomaly for S a p-group as in §2.5, which has a
restriction to an Abelian S ′.

Definition 2.6.2. A subgroup S ⊆ G is a categorical Schur detector (CSD) at p if the
restriction map H3(G; U(1)) → H3(S; U(1)) on the p parts is injective. More generally, a set
of subgroups S ⊆ G is a joint categorical Schur detector at p if the total restriction map
H3(G; U(1)) →∏

S H
3(S; U(1)) on the p parts is injective.

If the group G has an Abelian joint CSD, i.e. one where all S in the set are Abelian,
then we would be able to detect the anomaly by our ability to integrate over Lens spaces
for any Abelian group.

Example. The notion of CSD was also used in [151] for cohomology in degree four where it
was shown that for G = Co0, the linear isometry group of the Leech lattice, the restriction
map H4(Co0;Z) → H4(S;Z) is injective, where S is isomorphic to the product of the cyclic
group of order 3 and the binary dihedral or group of order 16. We see that a p-Sylow group
of G is also an example of a CSD at p but the case in which G is the extraspecial group
p1+2
+ does not have an individual CSD. The lack of a CSD comes simply from the fact
that H3(G; U(1)) has dimension 4 in p while H3(S; U(1)) only has dimension 3, so there
is no injection. Take the case of p = 3, it was shown in [198] that for G an extraspecial
p-group of order 27 with exponent 3 has no essential cohomology in any degree. Essential
cohomology is the Zp-cohomology that gives the common kernel of the restrictions to all
proper subgroups of G as in definition 2.6.2, i.e. the cohomology fits in the exact sequence

H•
Ess(G ;Zp) → H•(G ;Zp) →

∏
S⊂G

H•(S ;Zp) . (2.6.5)

When we restrict to degree three, specifically with U(1) coefficients by the standard long
exact sequence, this measures the failure for there to be a joint CSD, so vanishing essential
cohomology indicates there is a joint CSD in this case.

An important and natural question is how to classify p-groups with non-zero essential
cohomology. Let G be an elementary Abelian p-group with rank i > 0, the cohomology
ring of G is standard and given by

H•(G ;Zp) =

{
Zp[x1, x2 . . . , xi] p = 2, deg(xi) = 1

Zp[x1, x2 . . . , xi]⊗
∧
(y1, y2, . . . , yi) p > 2, 2 deg(yi) = deg(xi) = 2 .

(2.6.6)

For p = 2, H•(G ;Zp) ̸= 0, and for p > 0 the essential cohomology is the Steenrod Closure
of the product of y1 · · · yi [6]. It was conjectured in [35] that the essential cohomology of
an arbitrary p-group is free and finitely generated over a certain polynomial subalgebra in
H•(G ;Zp); this conjecture holds for elementary p-groups.

Let us move to the case in which the global symmetry is a group that has even order by
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considering the dicyclic, or binary dihedral, group DicN . A special case is Q8 which is also
an extraspecial group of order 8. We will show that:

Proposition 2.6.3. Let G be a subgroup of SU(2), then G has no joint CSD.

Recall that the dihedral group DihN , a group of order 2N is the group of symmetries
of a N -gon and lives as a subgroup of SO(3), where the reflection is implemented as a
180 degree rotation in 3d. A 180 degree rotation lifts with order four to the double cover
Spin(3) = SU(2). The restriction of Spin(3) along the map from O(2) → SO(3) leads to
the group Pin−(2), where reflections square to −1. The further restriction of Pin−(2) along
the map from DihN → O(2) leads to DicN ; the bindary dihedral groups are the “discrete”
versions of Pin−(2). This is summarized in the diagram below

DicN DihN

Pin−(2) O(2)

Spin(3) SO(3) .

⌜

⌜

(2.6.7)

Proof of Proposition 2.6.3. The bindary dihedral group G acts faithfully on Spin(3) which
has the topology of a three-sphere. There is a fibration

S3/G S3

BG

(2.6.8)

where S3/G is an oriented three-manifold, so has cohomology in degree three and below.
From the fibration one can compute the group cohomology of BG. It is known that for any
finite subgroup G of the three-sphere that (see for example, [89]):

Hi(BG; U(1)) =


U(1) i = 0 ,

Gab i ≡ 1 mod 4 ,

Z|G| i ≡ 3 mod 4 ,

0 i > 0 and even ,

(2.6.9)

where Gab denotes the abelianization of G and Z|G| denotes the group of complex |G|-th
roots of unity. If S is a subgroup of G then the restriction H3(G; U(1)) → H3(S; U(1)) is
a surjection and loses information about which subgroup of H3(G; U(1)) it is, as it only
dependents on the order of S.
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We now see if genus-one data can still detect the anomaly. Let G = DicN and consider
wrapping the commuting pair of an element g ∈ G and the identity e around the cycles
of the two-torus. As per Figure 5.4, we will let the group element which runs along the
third direction of the mapping cylinder be h. The elements g (and h) could be rotations or
reflections i.e. gN = c or g2 = c where c is the central element. By (2.5.6) it must be that

γ

(
e
g

)
=

(
e

h g h−1

)
, (2.6.10)

and furthermore this is the most complicated configuration for the binary dihedral group
that the constraints of genus-one will allow. Take g to be rotation, and h to be a reflection,
then hgh−1 is g−1. So what are the possible γ’s? The second component of the vector after
acting by γ is ecgd which must equal g−1, thus d = 2N − 1 and c is free to be anything.
The first component is eagb = 1. So a is free but gb = 1, so b = b′(2N). In this case

γ =

(
a b′(2N)
c 2N − 1

)
. (2.6.11)

We will take the matrix entries of γ modulo 2N since the rotations is a cyclic group of
order 2N , and use the fact that det γ = 1. But because b is zero mod 2N the two valid
matrices are (

−1 0
−c −1

)
,

(
−1 −2N
0 −1

)
, (2.6.12)

note that since c was free to take any value mod 2N , we write it as −c in the matrix. We
now take h to be a rotation, and g to be a reflection. Then, in order for hgh−1 = gd, it
must be that hg = gdh, which implies g−1hg = gd−1h and so h−1 = gd−1h. But h−2 = gd−1

has no solutions in general if h is a generator of rotations. For example, in the case of a
2-gon or 4-gon, it is possible to satisfy the equality. If h and g are both reflections then
on the one hand hgh−1 is given by taking g and reflecting about the h axis. The value of
hgh−1 is g or −g if h and g are the same reflection or off by 90 degrees, respectively. On the
other hand, when acting by γ we have ecgd = ±g depending on whether d is even or odd.
The case where g = h is uninteresting as (2.6.10) would only be satisfied for γ equal to the
identity matrix and adds nothing new in the third direction to help detect the anomaly.

Thus we see that the set of γ is spanned by

(
1 0
c 1

)
. If h and g were both rotations and

thus cyclic subgroups, we know that restriction to any subgroup is not injective, so that
will in general not be optimal for allowing us to detect the anomaly. We conclude that:

Proposition 2.6.4. For the dicyclic group DicN where the anomaly is a 4N -th root of unity,
genus-one data contains the most information is when the whole group can be generated,
i.e. when g is a generator of rotation, and h is a reflection.
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g

e

γ, h

This forces γ to be in the coset of the matrices(
−1 0
−c −1

)
,

(
−1 −2N
0 −1

)
. (2.6.13)

Recall that when G is just a cyclic group and h is trivial, the choice of acting on the

partition function by

(
1 |G|
0 1

)
extracted a nontrivial G-th root of unity eigenvalue. Acting

by the first matrix in (2.6.13) shifts the modulus from τ 7→ τ
τ+c

and amounts to applying

T c and then S transformations to the partition function TrH

(
g qh−

c
24 qh̄−

c̄
24

)
, where g is

wrapped in the spatial direction. By the spin selection rule, applying T c for c mod |G| will
not produce a |G|-th root of unity. We therefore expect that the second matrix in (2.6.13)
will detect the anomaly. We can test this on a theory which has as its symmetry a general
dicyclic group, and defer the computation of the anomaly for a specific partition function

and symmetry group to the next section. Let Tg = S
[
TrH

(
g qh−

c
24 qh̄−

c̄
24

) ]
, then acting

by

(
−1 −2N
0 −1

)
gives

Tg
−(T 2N )−−−−→ exp

(
πiℓ

N

)
Tg−1 , (2.6.14)

where we have used that fact that

(
−1 0
0 −1

)
Tg = Tg−1 . But Tg−1 = Thgh−1 , since g is a

rotation and h is a reflection, and Thgh−1 = Tg by cyclicity of the trace. At best we are able

to detect only a 2N -th root of unity. The map H3(BG; U(1))
∫
→ H1(MG; U(1)) therefore

has a kernel that is at least of order 2.

The restriction to the cyclic subgroup of rotations gives {0, 2N} mod 4N as the elements
of the Z2 kernel. One could hope to detect an anomaly α ∈ {0, 2N}. A common strategy
when faced with anomalies and extensions of a group is to gauge some symmetry subgroup.
The group DicN = C.Z2 as a nonsplit, noncentral extension with C ∼= Z2N a normal
subgroup. By the Serre spectral sequence we have H•(DicN ; U(1)) ⇐ H•(Z2 ; H

•(C ; U(1))),
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with the E2 page:

Eij
2 =

j

Sym2 Ĉ Sym2 Ĉ
0 0 0 . . .

Ĉ Z2 Z2 Z2 . . .
U(1) U(1) Z2 0 Z2 0

0 1 2 3 4 i .

(2.6.15)

Where Ĉ denotes the Pontryagin dual of C, and is the dual symmetry after gauging C.
The entry Sym2 Ĉ survives on the E∞ page because it is the image of the restriction map
H3(DicN ; U(1)) ↠ H3(C ; U(1)). The Z2 in bidegree (2, 1) survives on E∞ for degree reasons;

along with Sym2 Ĉ, these two contribute an order of already 4N , and so the d2 : E
1,1
2 → E3,0

2

must be an isomorphism. The data of α living purely over Z2 in (2, 1) now becomes the

extension of the groups Ĉ.Z2 for the gauged theory. In particular, this group is dihedral if
α = 0 and again dicyclic if α = 2N . Reflections lift with order 2 in former case, and order
4 in the latter. A reflection h in the ungauged theory squares to −1 in the group, and lives
on in Z2 part of the gauged theory. However, this is insufficient to tell if this h is −1 in the
Z2 action, and thus in conclusion we are unable to distinguish the elements in the kernel.

2.7. WZW Example

In this section we present an example of attempting to detect the anomaly in a WZW theory
with symmetry G = Q8, and failing to fully capture all possible values of the anomaly. The
quaternion group not only fits the bill for Proposition 2.6.3 but from the point of view of
essential cohomology, it was shown in [5] that a p-group has essential cohomology if all its
elements of order p are central. Q8 is the unique group in which every element of order 2
is central. We consider the WZW theory ŜU(2)k which has SU(2)L×SU(2)R

Z2
symmetry (see

[42] for a summary of symmetries for WZW CFTs), and anomaly (k,−k). We can consider
the SU(2)L symmetry, to which Q8 ⊂ SU(2)L. From computing H3(BQ8 ; U(1)), we know
that this group should admit an anomaly that is mod 8 and therefore we take k also mod 8.
We deem that the anomaly is detectable if we can extract the full Z8 group for the range
of k. The generator g of the Z4 group of rotation is placed on one cycle of the torus, and
the identity e is placed on the other due to the fact that the pair must commute. The
characters of ŜU(2)k are given by the Weyl-Kac character formula and take the form [26,
Section 11]:

χkℓ (τ, z) =
Θℓ+1,k+2(τ, z)−Θ−ℓ−1,k+2(τ, z)

Θ1,2(τ, z)−Θ−1,2(τ, z)
, (2.7.1)
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with 0 ≤ ℓ < k and the generalized SU(2) Θ-functions defined as

Θℓ,k(τ, z) =
∑

n∈Z+ ℓ
2k

qkn
2

e−2πinkz . (2.7.2)

The partition function is defined by Z(τ, τ , z, z) =
∑k

j=1 χ
k
j χ

k
j . When twisted in the spatial

direction by g, this gives

Zg,e = TrH

(
g qh−

c
24 qh̄−

c̄
24 e−2πizĵ3 e2πizĵ

3
)
, (2.7.3)

where z is the chemical potential for the U(1)-charge and ĵ3 plays the role of the operator
which has as its eigenvalue the Z

2
representation of SU(2) in the usual angular momentum

algebra. When g wraps in the time direction, after applying an S transformation to (2.7.3),
we see that by conjugation we can take g to ĵ3 and thus giving

TrHg

(
qh−

c
24 qh̄−

c̄
24 e−2πi(z+ 1

4
)ĵ3 e2πizĵ

3
)
. (2.7.4)

This is because any element κ ∈ Q8 can be written as iσi, for some Pauli matrix σi, in
the Lie algebra of SU(2) and all SU(2) elements are conjugate to each other. When g
is applied in the spatial direction, unless g is the central element, this breaks the global
symmetry to U(1) which is the centralizer of g. Any meaningful partition functions could
then only have U(1) elements wrapping the time direction, in particular, a U(1) group

spanned by exp
(
−2πizĵ3

)
. Applying the S transformation to (2.7.3) so that g is wrapped

in the time direction essentially amounts to shifting z 7→ z + 1
4
. Then applying −(T 2N),

for N = 2, on the partition function and using the spin selection rule gives a phase

exp
(
2πi (2N)

(
ℓ

(2N)2
+ Z

2N

))
= exp

(
πiℓ
N

)
, which is only a fourth-root of unity.

Remark 2.7.5. There is another analogous computation we can conduct with free fermions.
The fact that the dicyclic group is a subgroup of SU(2) means it acts on C2. It therefore
also acts on the vertex algebra of two complex fermions. The generators of rotations and
reflections in this case are respectively

g 7→
(
eπi/N 0
0 e−πi/N

)
, h 7→

(
0 1
−1 0

)
. (2.7.6)

We can compute twisted-twining genera for this vertex algebra, and just see how these
modular functions transform under SL(2,Z). One subtlety to note is that this method uses
a fermionic theory whose anomalies are classified differently than in the bosonic case. One
should then take the appropriate restriction to the bosonic part of the full anomaly.
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Chapter 3

U-duality Anomaly

Abstract. We perform a bordism computation to show that the E7(7)(R) U-duality

symmetry of 4d N = 8 supergravity could have an anomaly invisible to perturbative

methods; then we show that this anomaly is trivial. We compute the relevant bordism

group using the Adams and Atiyah-Hirzebruch spectral sequences, and we show the anomaly

vanishes by computing η-invariants on the Wu manifold, which generates the bordism group.

3.1. Introduction

One of the most surprising discoveries in the field of string theory is the existence of duality

symmetries. These symmetries show that the same theory can be described in superficially

different ways. In some cases, this can be seen via a transformation of the parameters of

the theory, or even the spacetime itself. One such symmetry is U-duality, given by the

group En(n)(Z). By starting with an 11-dimensional theory which encompasses the type

IIA string theory, and compactifying on an n-torus, we gain an SLn(Z) symmetry from the

mapping class group on the n-torus. We arrive at the same theory by compactifying 10d

type IIB on a n− 1-torus, and obtain an On−1,n−1(Z) symmetry related to T-duality. The

group En(n)(Z) is then generated by the two aforementioned groups.

In the low energy regime of the 11d theory, which is 11d supergravity, we have an

embedding of En(n)(Z) ↪→ En(n) upon applying the torus compactification procedure. The

latter group is the U-duality of supergravity. One finds a maximally noncompact form of En
after the compactification, and this is denoted En(n)(R). The maximally noncompact form

of a Lie group of rank n contains n more noncompact generators than compact generators.

For the purpose of this paper, we reduce 11-dimensional supergravity on a 7-dimensional
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torus. This gives a maximal supergravity theory, i.e. 4d N = 8 supergravity, with an E7

symmetry.1 The noncompact form is E7(7) which is 133-dimensional and is diffeomorphic,

but not isomorphic, to SU8/{±1} × R70.

Because this is a symmetry of the theory, one can ask if it is anomalous, and in particular

if there are any global anomalies. Since 4d N = 8 supergravity arises as the low energy

effective theory of string theory, then a strong theorem of quantum gravity saying that there

are no global symmetries implies that the U-duality symmetry must be gaugeable. Therefore,

the existence of any global anomaly would require a mechanism for its cancellation. It

would therefore be an interesting question to consider if additional topological terms need

to be added to cancel the nonperturbative anomaly as in [67], but we show that with the

matter content of 4d maximal supergravity is sufficient to cancel the anomaly on the nose.

The purpose of this paper is to answer:

Question 3.1.1. Can 4d N = 8 supergravity with an E7(7) symmetry have a nontrivial

anomaly topological field theory (TFT)? If it can, how do we show that the anomaly

vanishes?

We find that theories with this symmetry type can have a nontrivial anomaly, so we

have to check whether 4d N = 8 supergravity carries this nontrivial anomaly.

Theorem 3.1.2. The group of deformation classes of 5d reflection-positive, invertible TFTs

on spin-SU8 manifolds is isomorphic to Z/2. In this group, the anomaly field theory of 4d

N = 8 supergravity is trivial.

The order of the global anomaly is equal to the order of a bordism group in degree 5

that can be computed from the Adams spectral sequence. We find that the global anomaly

is Z/2 valued, but nonetheless is trivial when we take into account the matter content of

4d N = 8 supergravity. In order to see the cancellation we first find the manifold generator

of the bordism group, which happens to be the Wu manifold, and compute η-invariants on

it. Even if an anomaly is trivial, trivializing it is extra data, but our computation gives us

a unique trivialization for free; see Remark 3.3.6 for more. This bordism computation is

also mathematically intriguing because we find ourselves working over the entire Steenrod

algebra, however the specific properties of the problem we are interested in make this

tractable.

This work only focuses on U-duality as the group E7(7) rather than E7(7)(Z), because
the cohomology of the discrete group that arises in string theory is not known, and a

1Dimensional reduction of IIB supergravity on an 6-dimensional torus also yields the same symmetry.
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strategy we employ of taking the maximal compact subgroup will not work. But one could

imagine running a similar Adams computation for the group E7(Z) and checking that the

anomaly vanishes. There are also a plethora of dualities that arise from compactifying 11d

supergravity that one can also compute anomalies of, among them are the U-dualities that

arise from compactifying on lower dimensional tori. In upcoming work [70] we study the

anomalies of T-duality in a setup where the group is small enough to be computable, but

big enough to yield interesting anomalies.

The structure of the paper is as follows: in §3.2 we present the symmetries and tangential

structure for the maximal 4d supergravity theory with U-duality symmetry and turn it into

a bordism computation. We also give details on the field content of the theory and how it is

compatible with the type of manifold we are considering. In §3.3 we review the possibility

of global anomalies, and invertible field theories. In §3.4 we perform the spectral sequence

computation and give the manifold generator for the bordism group in question. In §3.5 we

show that the anomaly vanishes by considering the field content on the manifold generator.

3.2. Placing the U-duality symmetry on manifolds

In this section, we review how the E7(7) U-duality symmetry acts on the fields of 4d N = 8

supergravity; then we discuss what kinds of manifolds are valid backgrounds in the presence

of this symmetry. We assume that we have already Wick-rotated into Euclidean signature.

We determine a Lie group H4 with a map ρ4 : H4 → O4 such that 4d N = 8 supergravity can

be formulated on 4-manifolds M equipped with a metric and an H4-connection P,Θ →M ,

such that ρ4(Θ) is the Levi-Civita connection. As we review in §3.3, anomalies are classified

in terms of bordism; once we know H4 and ρ4, Freed-Hopkins’ work [100] tells us what

bordism groups to compute.

The field content of 4d N = 8 supergravity coincides with the spectrum of type IIB

closed string theory compactified on T 6 and consists of the following fields:

• 70 scalar fields,

• 56 gauginos (spin 1/2),

• 28 vector bosons (spin 1),

• 8 gravitinos (spin 3/2), and

• 1 graviton (spin 2).
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Cremmer-Julia [47] exhibited an e7(7) symmetry of this theory, meaning an action on the

fields for which the Lagrangian is invariant. Here, e7(7) is the Lie algebra of the real,

noncompact Lie group E7(7), which is the split form of the complex Lie group E7(C).
Cartan [38, §VIII] constructed E7(7) explicitly as follows: the 56-dimensional vector space

V := Λ2(R8)⊕ Λ2((R8)∗) (3.2.1)

has a canonical symplectic form coming from the duality pairing. E7(7) is defined to be the

subgroup of Sp(V ) preserving the quartic form

q(xab, ycd) = xadybcx
cdyda −

1

4
xabyabx

cdycd +
1

96

(
ϵabc···hx

abxcdxefxgh + ϵabc···hyabycdyefygh
)
.

(3.2.2)

Thus, by construction, E7(7) comes with a 56-dimensional representation, which we denote

56.

E7(7) is noncompact; its maximal compact is SU8/{±1}, giving us an embedding

su8 ⊂ e7(7). Thus π1(E7(7)) ∼= Z/2; let Ẽ7(7) denote the universal cover, which is a double

cover.

There is an action of e7(7) on the fields of 4d N = 8 supergravity, but in this work we

only need to know how su8 ⊂ e7(7) acts: we will see in §3.3.2 that the anomaly calculation

factors through the maximal compact subgroup of E7(7). For the full e7(7) story, see [93, §2];
the e7(7)-action exponentiates to an Ẽ7(7)-action on the fields. The su8-action is:

1. The 70 scalar fields can be repackaged into a single field valued in E7(7)/(SU8/{±1})
with trivial su8-action.

2. The gauginos transform in the representation 56 := Λ3(C8).

3. The vector bosons transform in the 28-dimensional representation Λ2(C8), which we

call 28.

4. The gravitinos transform in the defining representation of su8, which we denote 8.

5. The graviton transforms in the trivial representation.

The presence of fermions (the gauginos and gravitinos) means that we must have data of

a spin structure, or something like it, to formulate this theory. In quantum physics, a strong

form of G-symmetry is to couple to a G-connection, suggesting that we should formulate

4d N = 8 supergravity on Riemannian spin 4-manifolds M together with an Ẽ7(7)-bundle
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P →M and a connection on P . The spin of each field tells us which representation of Spin4

it transforms as, and we just learned how the fields transform under the Ẽ7(7)-symmetry,

so we can place this theory on manifolds M with a geometric Spin4×Ẽ7(7)-structure, i.e.

a metric and a principal Spin4×Ẽ7(7)-bundle P → M with connection whose induced

O4-connection is the Levi-Civita connection. The fields are sections of associated bundles

to P and the representations they transform in. The Lagrangian is invariant under the

Spin4×Ẽ7(7)-symmetry, so defines a functional on the space of fields, and we can study this

field theory as usual.

However, we can do better! We will see that the representations above factor through a

quotient H4 of Spin4×Ẽ7(7), which we define below in (3.2.4), so the same procedure above

works with H4 in place of Spin4×Ẽ7(7). A lift of the structure group to H4 is less data than

a lift all the way to Spin4×Ẽ7(7), so we expect to be able to define 4d N = 8 supergravity

on more manifolds. This is similar to the way that the SL2(Z) duality symmetry in type IIB

string theory can be placed not just on manifolds with a Spin10×Mp2(Z)-structure,2 but on
the larger class of manifolds with a Spin10×{±1}Mp2(Z)-structure [207, §5], or how certain

SU2 gauge theories can be defined on manifolds with a Spinn×{±1}SU2 structure [238].

Let −1 ∈ Spin4 be the nonidentity element of the kernel of Spin4 → SO4 and let x be

the nonidentity element of the kernel of Ẽ7(7) → E7(7). The key fact allowing us to descend

to a quotient is that −1 acts nontrivially on the representations of Spin4×Ẽ7(7) above, and

x acts nontrivially, but on a given representation, these two elements both act by 1 or they

both act by −1. We can check this even though we have not specified the entire e7(7)-action

on the fields, because −1 ∈ Ẽ7(7) is contained in the copy of SU8 in Ẽ7(7), and we have

specified the su8-action. Therefore the Z/2 subgroup of Spin4×Ẽ7(7) generated by (−1, x)

acts trivially, and we can form the quotient

H4 := Spin4×{±1}Ẽ7(7) = (Spin4×Ẽ7(7))/⟨(−1, x)⟩. (3.2.4)

The representations that the fields transform in all descend to representations of H4, so

following the procedure above, we can define 4d N = 8 supergravity on manifolds M with a

geometric H4-structure, i.e. a metric, an H4-bundle P →M , and a connection on P whose

induced O4-connection is the Levi-Civita connection.

Remark 3.2.5. As a check to determine that we have the correct symmetry group, we can

compare with other string dualities. The U-duality group contains the S-duality group for

2Here Mp2(Z) is the metaplectic group, a central extension of SL2(Z) of the form

1 {±1} Mp2(Z) SL2(Z) 1. (3.2.3)
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type IIB string theory, which comes geometrically from the fact that 4d N = 8 supergravity

can be constructed by compactifying type IIB string theory on T 6. Therefore the ways in

which the duality groups mix with the spin structure must be compatible. As explained by

Pantev-Sharpe [207, §5], the SL2(Z) duality symmetry of type IIB string theory mixes with

the spin structure to form the group Spin10×{±1}Mp2(Z), where Mp2(Z) is the metaplectic

group from Footnote 2.

Therefore the way in which the U-duality group mixes with {±1} ⊂ Spin4 must also

be nontrivial. Extensions of a group G by {±1} are classified by H2(BG; {±1}). If G is

connected, BG is simply connected and the Hurewicz and universal coefficient theorems

together provide a natural identification

H2(BG; {±1}) ∼=−→ Hom(π2(BG), {±1}) = Hom(π1(G), {±1}). (3.2.6)

As π1(E7(7)) ∼= Z/2, there is only one nontrivial extension of E7(7) by {±1}, namely the

universal cover Ẽ7(7) → E7(7). That is, by comparing with S-duality, we again obtain the

group H4, providing a useful double-check on our calculation above.

3.3. Anomalies, invertible field theories, and bordism

3.3.1. Generalities on anomalies and invertible field theories

It is sometimes said that in mathematical physics, if you ask four people what an anomaly

is, you will get five answers. The goal of this section is to explain our perspective on

anomalies, due to Freed-Teleman [105], and how to reduce the determination of the anomaly

to a question in algebraic topology, an approach due to Freed-Hopkins-Teleman [101] and

Freed-Hopkins [100].

Whatever an anomaly is, it signals a mild inconsistency in the definition of a quantum

field theory. For example, if a quantum field theory Z is n-dimensional, one ought to

be able to evaluate it on a closed n-manifold M , possibly equipped with some geometric

structure, to obtain a complex number Z(M), called the partition function of M . If Z has

an anomaly, Z(M) might only be defined after some additional choices, and in the absence

of those choices Z(M) is merely an element of a one-dimensional complex vector space

α(M).

The theory Z is local in M , so α(M) should also be local in M . One way to express

this locality is to ask that α(M) is the state space of M for some (n + 1)-dimensional
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quantum field theory α, called the anomaly field theory α of Z. The condition that the

state spaces of α are one-dimensional follows from the fact that α is an invertible field

theory [102, Definition 5.7], meaning that there is some other field theory α−1 such that

α⊗ α−1 is isomorphic to the trivial field theory 1.3,4 This approach to anomalies is due to

Freed-Teleman [105]; see also Freed [97, 98].

We can therefore understand the possible anomalies associated to a given n-dimensional

quantum field theory Z by classifying the (n+ 1)-dimensional invertible field theories with

the same symmetry type as Z. The classification of invertible topological field theories is

due to Freed-Hopkins-Teleman [101], who lift the question into stable homotopy theory; see

Grady-Pavlov [122, §5] for a recent generalization to the nontopological setting.

Supergravity with its U-duality symmetry is a unitary quantum field theory, and

therefore its anomaly theory satisfies the Wick-rotated analogue of unitarity: reflection

positivity. Freed-Hopkins [100] classify reflection-positive invertible field theories, again

using stable homotopy theory. Let O := limn→∞On be the infinite orthogonal group.

Theorem 3.3.1 (Freed-Hopkins [100, Theorem 2.19]). Let n ≥ 3, Hn be a compact Lie

group, and ρn : Hn → On be a homomorphism whose image contains SOn. Then there is

canonical data of a topological group H and a continuous homomorphism ρ : H → O such

that the pullback of ρ along On ↪→ O is ρn.

In other words, when the hypotheses of this theorem hold, we have more than just

Hn-structures on n-manifolds; we can define H-structures on manifolds of any dimension,

by asking for a lift of the classifying map of the stable tangent bundle M → BO to BH; a

manifold equipped with such a lift is called an H-manifold. Following Lashof [183], this

allows us to define bordism groups ΩH
k and a homotopy-theoretic object called the Thom

spectrum MTH , whose homotopy groups are the H-bordism groups. See [18, §2] for more

on the definition of MTH and its context in stable homotopy theory.

Theorem 3.3.2 (Freed-Hopkins [100]). With Hn as in Theorem 3.3.1, the abelian group of

deformation classes of n-dimensional reflection-positive invertible topological field theories

on Hn-manifolds is naturally isomorphic to the torsion subgroup of [MTH ,Σn+1IZ].

Freed-Hopkins then conjecture (ibid., Conjecture 8.37) that the whole group [MTH ,Σn+1IZ]

classifies all reflection-positive invertible field theories, topological or not.

3The relationship between invertibility and one-dimensional state spaces is that α⊗α−1 ≃ 1 means that
on any closed, n-manifoldM , there is an isomorphism of complex vector spaces α(M)⊗α−1(M) ∼= 1(M) = C.
This forces α(M) and α−1(M) to be one-dimensional. Often the converse is also true: see Schommer-
Pries [214].

4In some cases, we do not want to assume α extends to closed n-manifolds; see Freed-Teleman [105] for
more information. But the U-duality anomaly we investigate in this work does extend.
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The notation [MTH ,Σn+1IZ] means the abelian group of homotopy classes of maps

between MTH and an object Σn+1IZ belonging to stable homotopy theory; see [100, §6.1]
for a brief introduction in a mathematical physics context. We mentioned MTH above;

IZ is the Anderson dual of the sphere spectrum [8, 250], characterized up to homotopy

equivalence by its universal property, which says that there is a natural short exact sequence

0 Ext(πn−1(E),Z) [E,ΣnIZ] Hom(πn(E),Z) 0. (3.3.3)

Applying this when E = MTH , we obtain a short exact sequence

0 Ext(ΩH
n+1,Z) [MTH ,Σn+2IZ] Hom(ΩH

n+2,Z) 0
ϕ ψ

(3.3.4)

decomposing the group of possible anomalies of unitary QFTs on Hn-manifolds. These two

factors admit interpretations in terms of anomalies.

1. The quotient Hom(ΩH
n+2,Z) is a free abelian group of degree-(n + 2) characteristic

classes of H-manifolds. The map ψ sends an anomaly field theory to its anomaly

polynomial. This is the part of the anomaly visible to perturbative methods, and

sometimes is called the local anomaly.

2. The subgroup Ext(ΩH
n+1,Z) is isomorphic to the abelian group of torsion bordism

invariants f : ΩH
n+1 → C×. These classify the reflection-positive invertible topological

field theories αf : the correspondence is that the bordism invariant f is the parti-

tion function of αf . This part of an anomaly field theory is generally invisible to

perturbative methods and is called the global anomaly.

Work of Yamashita-Yonekura [248] and Yamashita [247] relates this short exact sequence

to a differential generalized cohomology theory extending Map(MTH ,Σn+1IZ).

3.3.2. Specializing to the U-duality symmetry type

For us, n = 4 and the symmetry type is H4 = Spin×{±1}Ẽ7(7). This group is not compact,

so Theorems 3.3.1 and 3.3.2 above do not apply. However, we can work around this obstacle:

Marcus [193] proved that the anomaly polynomial of the E7(7) symmetry vanishes,5 meaning

5Marcus’ analysis does not discuss the question of H4 versus Spin4 ×Ẽ7(7), but this does not matter:
in many cases including the one we study, the anomaly polynomial for a d-dimensional field theory on
G-manifolds is an element of Hd+2(BG;Q), and rational cohomology is insensitive to finite covers such as

Spin4 ×Ẽ7(7) → H4. Thus Marcus’ computation applies in our case too.
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that the anomaly field theory is a topological field theory. Thinking of topological field

theories as symmetric monoidal functors BordHn
n → C, we can freely adjust the structure

we put on manifolds in these theories as long as the induced map on bordism categories is

an equivalence. We make two adjustments.

1. First, forget the metric and connection in the definition of a geometric H4-structure.

The space of such data is contractible and therefore can be ignored for topological

field theories.

2. We can then replace H4 with its maximal compact subgroup: for any Lie group

G with π0(G) finite, inclusion of the maximal compact subgroup K ↪→ G is a

homotopy equivalence [191, 142] and defines a natural equivalence of groupoids

BunK(X)
≃→ BunG(X) on spaces X, hence a symmetric monoidal equivalence of

bordism categories of manifolds with these kinds of bundles.

Spin4 is compact, and the maximal compact of Ẽ7(7) is SU8, so the maximal compact of

H4 is the group Spin4×{±1}SU8. Now Theorems 3.3.1 and 3.3.2 apply: the stabilization of

Spin4×{±1}SU8 is Spin -SU8 := Spin×{±1}SU8, and the anomaly field theory is classified

by the torsion subgroup of [MT (Spin -SU8),Σ
6IZ], which is determined by ΩSpin -SU8

5 .

In Theorem 3.4.26, we prove ΩSpin -SU8

5
∼= Z/2, so there is potential for the anomaly field

theory to be nontrivial.

Concretely, a manifold with a spin-SU8 structure is an oriented manifold M with a

principal SU8/{±1}-bundle P →M and a trivialization of w2(M) + a(P ), where a is the

unique nonzero element of H2(B(SU8/{±1});Z/2).
Remark 3.3.5. Computing bordism groups to determine whether an anomaly is trivial is a

well-established technique in the mathematical physics literature: other papers taking this

approach include [244, 164, 199, 32, 200, 127, 135, 215, 51, 119, 201, 225, 233, 232, 236,

246, 23, 55, 53, 54, 126, 132, 136, 146, 157, 226, 235, 234, 237, 99, 100, 67, 80, 124, 123,

167, 185, 184, 186, 224, 252, 240, 52, 66, 187, 223, 249].

Remark 3.3.6. Once we know an invertible field theory is trivializable, there is the question of

what additional data is needed to trivialize it, and anomaly cancellation includes supplying

this data for the anomaly field theory. In general there is more than one way to do

so: a standard obstruction-theoretic argument in algebraic topology implies the set of

trivializations of an n-dimensional reflection-positive invertible field theory on H-manifolds

is a torsor over [MTH ,ΣnIZ], i.e. the corresponding group of invertible field theories in

one dimension lower. This has the physics implication that any two trivializations of an

anomaly differ by a θ-angle.
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For the U-duality symmetry, we do not need to worry about this, which we get essen-

tially for free from our computation in §3.4: ΩSpin -SU8

4 is free and ΩSpin -SU8

5 is torsion, so

[MT (Spin -SU8),Σ
5IZ] = 0, so there is a unique way to trivialize the U-duality anomaly

field theory.

This point about the additional data of a trivialization was first raised by Freed-

Moore [102], and includes what they refer to as “setting the quantum integrand;” see also

Freed [98, §11.4].

3.4. Spectral sequence computation

The E2 page for U-duality in the Adams spectral sequence is [3, Theorem 2.1, 2.2]

Exts,tA (H∗(MT (Spin -SU8);Z/2),Z/2) ⇒ πs−t(MT (Spin -SU8))
∧
2
∼= (ΩSpin -SU8

s−t )∧2 , (3.4.1)

which converges to the 2-completion of the desired bordism group via the Pontrjagin-Thom

construction.

Let G8 := SU8/{±1}. The standard way to tackle Adams spectral sequence questions

such as (3.4.1) would be to re-express a spin-SU8 structure on a vector bundle E →M as

data of a principal G8-bundle P → M and a spin structure on E ⊕ ρP , where ρP is the

associated bundle to P and some representation ρ of G8. Once this is done, one invokes

a change-of-rings theorem that makes calculating the E2-page of (3.4.1) much easier. For

several great examples of this technique, see [32, 18].

Unfortunately, this strategy is not available for spin-SU8 bordism. The reason is that ρ,

thought of as a map ρ : G8 → On for some n, cannot lift to a map G8 → Spinn; if it does,

a spin structure on E ⊕ ρP is equivalent to a spin structure on E by the two-out-of-three

property. However, G8 does not have any non-spin representations.

Theorem 3.4.2. All representations ρ : G8 → On lift to Spinn.

The proof is given in [219].6 Thus we cannot proceed via the usual change-of-rings

simplification, and we must run the Adams spectral sequence over the entire mod 2 Steenrod

6Here is another proof using H∗(BG8;Z/2), which we calculate in Theorem 3.4.4 in low degrees.
Suppose a non-spin representation ρ of G8 exists, and let V → BG8 be the associated vector bundle. Since
H1(BG8;Z/2) = 0 and H2(BG8;Z/2) = Z/2 · a, w1(V ) = 0 and w2(V ) = a. Using the Thom isomorphism
and how it affects the A-module structure on cohomology (see, e.g., [18, §3.3, §3.4]), we can compute that
if U is the Thom class in the cohomology of the Thom spectrum (BG8)

V , then Sq2Sq1Sq2U = U(ab+ d),
Sq4Sq1U = 0, and there is no class x with Sq1(Ux) = U(ab + d). This is a contradiction because
Sq2Sq1Sq2 = Sq4Sq1 + Sq1Sq4.
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algebra A, which is harder. Similar problems occur in a few other places in the mathematical

physics literature, including [99, 66]. It would be interesting to find more problems where

similar complications occur when trying to work with twisted spin bordism.

In order to set up the Adams computation, a necessary step is to establish the two

theorems in §3.4.2 with the goal to give the Steenrod actions on H∗(B(Spin -SU8);Z/2).
Applying the Thom isomorphism takes care of the rest. We also detail the simplifications

that make working over the entire Steenrod algebra accessible. We refer the reader to [18]

which highlights many of the computational details of the Adams spectral sequence, but

mainly employs a change of rings to work over A(1). We start by showing that computing

the 2-completion is sufficient for the tangential structure we are considering.

3.4.1. Nothing interesting at odd primes

We will show that the Adams spectral sequence computation that we run which only gives

the two torsion part of the anomaly is sufficient for our purposes.

Proposition 3.4.3. ΩSpin -SU8
∗ has no p-torsion when p is an odd prime.

Proof. The quotient Spin×SU8 → Spin -SU8 is a double cover, hence on classifying spaces

is a fiber bundle with fiber BZ/2. H∗(BZ/2;Z/p) = Z/p concentrated in degree 0, so

B(Spin×SU8) → B(Spin -SU8) is an isomorphism on Z/p cohomology (e.g. look at the

Serre spectral sequence for this fiber bundle). The Thom isomorphism lifts this to an

isomorphism of cohomology of the relevant Thom spectra, and then the stable Whitehead

theorem implies that the forgetful map ΩSpin
∗ (BSU8) → ΩSpin -SU8

∗ is an isomorphism on

p-torsion.

The same argument applies to the double cover Spin×SU8 → SO×SU8, so the p-torsion

in ΩSpin -SU8
∗ is isomorphic to the p-torsion in ΩSO

∗ (BSU8). Now apply the Atiyah-Hirzebruch

spectral sequence. Averbuh [10] and Milnor [197, Theorem 5] prove there is no p-torsion

in ΩSO
∗ , and Borel [27, Proposition 29.2] shows there is no p-torsion in H∗(BSU8;Z) and

H∗(BSU8;Z/2). Therefore the only way to obtain p-torsion in ΩSO
∗ (BSU8) would be from

a differential between free summands, but all free summands in ΩSO
∗ and H∗(BSU8;Z)

are contained in even degrees, so there are no differentials between free summands, and

therefore no p-torsion.
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3.4.2. Computing the cohomology of B(Spin -SU8)

We first prove Theorem 3.4.4, where we compute H∗(BG8;Z/2) and its A-module structure

in low degrees. We then use this to compute H∗(B(Spin -SU8);Z/2) as an A-module in low

degrees in Theorem 3.4.22, allowing us to run the Adams spectral sequence in §3.4.3. Our

computations make heavy use of the Serre spectral sequence; for more on the Serre spectral

sequence and its application to physical problems see [119, 252, 187, 186, 55, 52]. See also

Manjunath-Calvera-Barkeshli [192, §D.6], who perform a related Serre spectral sequence

computation to determine some integral cohomology groups of BG8.

Theorem 3.4.4. H∗(BG8;Z/2) ∼= Z/2[a, b, c, d, e, . . . ]/(. . . ) with |a| = 2, |b| = 3, |c| = 4,

|d| = 5, and |e| = 6, and there are no other generators or relations below degree 7. The

Steenrod squares are
Sq(a) = a+ b+ a2

Sq(b) = b+ d+ b2

Sq(c) = c+ e+ Sq3(c) + c2

Sq(d) = d+ b2 + Sq3(d) + Sq4(d) + d2.

(3.4.5)

Proof. We first give the cohomology of BG8 by using the Serre spectral sequence for the

fibration G8 → pt → BG8. The cohomology H∗(G8;Z/2) is given in [17, Theorem 7.2]

which we reproduce here:

H∗G8;Z/2) ∼= Z/2[z1]/z81 ⊗
∧

(z2, . . . , z7) , deg zi = 2i− 1 . (3.4.6)

The E2-page

Ep,q
2 = Hp(BG8;H

q(G8;Z/2)) =⇒ Hp+q(pt;Z/2) (3.4.7)

begins as follows:

8 z81 , z
5
1z2, z

4
1z2, z

5
1z3, z1z4, z2z3 0

7 z71 , z
4
1z2, z

2
1z3, z4 0

6 z61 , z
3
1z2, z1z3 0

5 z51 , z
2
1z2, z3 0

4 z41 , z1z2 0

3 z31 , z2 0

2 y = z21 0

1 z1 0

0 1 0 a b (a2, c) (ab, d) (a3, b2, e)

0 1 2 3 4 5 6 .

(3.4.8)
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Since this spectral sequence converges to H∗(pt), there must be a d2 differential from z1 to a,

and a d3 differential from y = z21 to b. The new elements in the zeroth column that are not

killed by lower differentials must all transgress, because there are no other elements in the

spectral sequence that could kill them, so we infer the existence of the classes c, d, and e, such

that d4 maps z2 to c, d5 maps z41 to d, and d6 maps z3 to e. With the generators in low degree

at our disposal, we now give the Steenrod action on these generators. For this we consider

the fibration BSU8 → BG8 → B2Z/2; this allows us to determine the Steenrod squares of

everything in the image of the pullback map H∗(B2Z/2;Z/2) → H∗(BG8;Z/2). Serre [216,
Théorème 2] showed that H∗(B2Z/2;Z/2) = Z/2[T, y := Sq1T, z := Sq2Sq1T, . . .], so in

the Serre spectral sequence

Ep,q
2 = Hp(B2Z/2;Hq(BSU8;Z/2)) =⇒ Hp+q(BG8;Z/2) (3.4.9)

the E2-page is given in low degrees by

10 c2c3
9 0

8 c22, c4
7 0 0 0 0

6 c3 0 c3T c3y

5 0 0 0 0

4 c2 0 c2T c2y c2T
2 (c2z, c2Ty)

3 0 0 0 0 0 0

2 0 0 0 0 0 0

1 0 0 0 0 0 0

0 1 0 T y T 2 (z, Ty) (T 3, y2) (T 2y, Tz) (T 4, T y2, yz)

0 1 2 3 4 5 6 7 8 ,

(3.4.10)

where the ci are the mod 2 reductions of the corresponding Chern classes in the cohomology

of BSU8. We immediately see that the classes a and b are pulled back from T and y = Sq1T

respectively, since there are no differentials that hit these two generators. Furthermore c

pulls back to c2 in the cohomology of BSU8, and d is the pullback of z ∈ H5(B2Z/2;Z/2).
Thus

Sq1a = b, Sq2a = a2,

Sq1b = 0, Sq2b = d,

Sq1d = b2, Sq2d = 0 .

(3.4.11)

Lastly, we need to determine the action of the Steenrod operators on c and e.
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Lemma 3.4.12. The classes c and e are in the image of the mod 2 reduction map

r : H∗(BG8;Z) → H∗(BG8;Z/2).

Corollary 3.4.13. Sq1(c) = 0 and Sq1(e) = 0.

Proof. Sq1 is the Bockstein for the short exact sequence 0 → Z/2 → Z/4 → Z/2 → 0.

Therefore if x is in the image of r4 : H
∗(–;Z/4) → H∗(–;Z/2), then Sq1(x) = 0. And the

mod 2 reduction map Z → Z/2 factors through Z/4.

Proof of Lemma 3.4.12. The map r induces a map of Serre spectral sequences for the

fibration BZ/2 → BSU8 → BG8; we run the Serre spectral sequence with Z coefficients,

which has signature

E∗,∗
2 = H∗(BG8;H

∗(BZ/2;Z)) =⇒ H∗(BSU8;Z). (3.4.14)

Since BG8 is simply connected, we do not need to worry about local coefficients. We know

that H∗(BZ/2;Z) ∼= Z[z]/2z, where |z| = 2, and Borel [28, §29] computed H∗(BSU8;Z) ∼=
Z[c2, . . . , c8], with |ci| = 2i, so we may run the spectral sequence in reverse. The E2-page

for (3.4.14) is:

6 z3 0 0 αz3 c2z
3 βz3 (c3z

3, αz3)

5 0 0 0 0 0 0 0

4 z2 0 0 αz2 c2z
2 βz2 (c3z

2, α2z2)

3 0 0 0 0 0 0 0

2 z 0 0 αz c2z βz (c3z, α
2z)

1 0 0 0 0 0 0 0

0 1 0 0 α c2 β (c3, α
2)

0 1 2 3 4 5 6 .

(3.4.15)

As H2(BSU8;Z) = 0, z ∈ E0,2
2 = H2(BZ/2;Z) admits a differential. The only option is a

transgressing d3; let α := d3(z). Since 2z = 0, 2α = 0. The Leibniz rule (now with signs)

tells us

d2(z
2) = zd2(z) + d2(z)z = 2αz = 0. (3.4.16)

Therefore if z2 admits a differential, the differential must be the transgressing d5 : E
0,4
4 →

E5,0
4 , see (3.4.15). But z2 does admit a differential. One way to see this is to compute

the pullback H4(BSU8;Z) → H4(BZ/2;Z). Since H4(BSU8;Z) is generated by c2 of the

defining representation C8, we can restrict that representation to Z/2 and compute its
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second Chern class to compute the pullback map. As a representation of Z/2, C8 is a

direct sum of 8 copies of the sign representation, so its total Chern class is c(8σ) = (1 + z)8

by the Whitney sum rule, and the z2 term is
(
8
2

)
z2, which is even. Since 2z2 = 0, this

implies c2 pulls back to 0. If z2 did not support a differential, then it would be in the

image of this pullback map, so we have discovered that z2 admits a differential, specifically

d5. Let β := d5(z
2). From the spectral sequence we see that H4(BG8;Z) is isomorphic to

H4(BSU8;Z), and c2 is an element in this cohomology. By using the mod 2 reduction map

from H4(BSU8;Z) → H4(BSU8;Z/2), and the pullback map induced from SU8
f→ G8 we

see that c is the mod 2 reduction of c2 in H4(BG8;Z). This is summarized in the following

diagram:

c2 ∈ H4(BG8;Z) H4(BG8;Z/2)

H4(BSU8;Z) H4(BSU8;Z/2) .

mod 2

∼= f∗ (3.4.17)

We define e := Sq2(c). This is not parallel to the definition of c: we defined c as the

mod 2 reduction of c2, but we have not addressed whether e = c3 mod 2. This choice of

definition presents ambiguities in the action of the Steenrod squares on e and the relations

in the cohomology ring, but these ambiguities are in too high of a degree to affect the

computation at hand.

Remark 3.4.18. Toda [228] uses another approach to compute H∗(BG;Z/2) when G is

compact, simple, and not simply connected: the Eilenberg-Moore spectral sequence

Ep,q
2 = coTorp,qH∗(Bπ1(G);Z/2)(H

∗(BG̃;Z/2),Z/2) =⇒ Hp+q(BG;Z/2), (3.4.19)

where G̃ → G is the universal cover, the coalgebra structure on H∗(Bπ1(G);Z/2) comes

from multiplication on π1(G), and the comodule structure on H∗(BG̃;Z/2) comes from the

inclusion π1(G) ↪→ G̃ and multiplication in G̃. If you apply this to G = G8, however, the

E2-page of the Eilenberg-Moore spectral sequence is identical to the E2-page of the Serre

spectral sequence (3.4.9) in the range relevant to us.

We now compute H∗(B(Spin -SU8;Z/2), which is what we actually need for U-duality.

There is a central extension

0 Z/2 Spin -SU8 SO×G8 0, (3.4.20)

which we think of physically as “quotienting by fermion parity.” Such extensions are

classified by a class in H2(B(SO × G8);Z/2). (3.4.20) is classified by w2 + a, which one
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can prove by pulling back along SO → SO × G8 and G8 → SO × G8 and observing that

both pulled-back extensions are non-split.

Taking classifying spaces, we obtain a fibration

BZ/2 −→ B(Spin -SU8) −→ B(SO×G8) , (3.4.21)

and we apply the Serre spectral sequence to this fibration using knowledge of the cohomology

of BG8.

Theorem 3.4.22. H∗(B(Spin -SU8);Z/2) ∼= Z/2[a, b, c, w4, d, e, . . .] with |a| = 2, |b| = 3,

|c| = 4, |w4| = 4 ,|d| = 5, and |e| = 6. The map Spin -SU8 → SO×G8 induces a quotient

map on cohomology, and the Steenrod squares of a, b, c, d, and e are given in (3.4.5) along

with
Sq1w4 = ab+ d ,

Sq2w4 = aw4 + . . . .
(3.4.23)

Proof. We run the Serre spectral sequence with signature

E∗,∗
2 = H∗(B(SO×G8);H

∗(BZ/2;Z/2)) =⇒ H∗(B(Spin -SU8);Z/2) , (3.4.24)

where the E2-page is given by:

5 t5 0

4 t4 0

3 t3 0

2 t2 0 (t2a, t2a+ t2w2) . . .

1 t 0 (ta, ta+tw2) (tb, tb+tw3) . . .

0 1 0 (a, a+w2) (b, b+w3)

(
a2, c, w4, a

2+w2
2,

a(a+ w2)

) (
ab+d+w5, (a+w2)(b+w3)

a(b+ w3), b(a+ w2)

)
0 1 2 3 4 5 .

(3.4.25)

The wi are the Stiefel-Whitney classes of BSO, and t is the generator of the cohomology

H∗(BZ/2;Z/2). The differential d2 : E
0,1
2 → E2,0

2 hits the class for the extension (3.4.21)

that gives Spin -SU8, which is a + w2, and identifies a = w2. Applying the Leibniz rule

shows d2(t
2n+1) = t2na, and that d2(t

2n) = 0: something else must kill the even powers

of t. We then use Kudo’s transgression theorem [176], which says that Steenrod squares

commute with transgression in the Serre spectral sequence. Therefore d3 : E0,2
3 → E3,0

3

sends t2 7→ b+w3, since the transgressing d2 sends Sq
1t = t2 to Sq1(a+w1). In total degree
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4, there is a likewise d4 differential that takes t4 to ab+ d+ w5, i.e. this differential takes

Sq2t2 to Sq2(b+ w3).
7 We see that there is a new class w4 which pulled back from BSO.

Applying the Wu formula then establishes (3.4.23).

3.4.3. The Adams Computation

In this section, we run the Adams spectral sequence for Spin-SU8 bordism.

Theorem 3.4.26. Up to degree 5, the first few groups of Spin -SU8 bordism are

ΩSpin -SU8

0
∼= Z

ΩSpin -SU8

1
∼= 0

ΩSpin -SU8

2
∼= 0

ΩSpin -SU8

3
∼= 0

ΩSpin -SU8

4
∼= Z2

ΩSpin -SU8

5
∼= Z/2.

(3.4.27)

Treating d ∈ H5(BG8;Z/2) as a characteristic class, the bordism invariant (M,P ) 7→∫
M
d(P ) ∈ Z/2 realizes the isomorphism ΩSpin -SU8

5 → Z/2.

Proof. The first simplification to working with the entire Steenrod algebra is that the

only higher Steenrod operator beyond Sq2 in A that we must incorporate for the pur-

pose of working up to degree 5 is Sq4. As input, we need the A-module structure on

H∗(MT (Spin -SU8);Z/2), which by the Thom isomorphism is given by Z/2[a, b, c, w4, d, e, . . .]{U},
where U ∈ H0(MTSO ;Z/2) is the Thom class coming from the tautological bundle over

BSO. For any cohomology class x coming from BSO, we can get the Steenrod squares

of Ux from the A-module structure on MTSO . We have also previously determined the

action of Steenrod squares on elements of the cohomology of BG8, and therefore we know

the Steenrod action on all elements in H∗(MT (Spin -SU8);Z/2). We thus have [18, Remark

3.3.5]

Sqk(Ux) =
k∑
i=0

Sqi(U)Sqk−i(x) =
k∑
i=0

Uwi Sq
k−i(x), (3.4.28)

7We slightly change the basis for the degree 5 generators here so that the d4 differential identifies w5

with ab+ d and therefore Sq1(w4U) = w5U = (ab+ d)U agrees with Sq2(bU). This is necessary in order
to have a valid A module. We point to [4] as a reference for the fact that Mn does not lift from an A(1)
module to an A module for any finite n. This means in the degree we are considering, there must be a
node in degree 4 that is joined with (ab+ d)U upon acting by Sq1.
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where w1 = 0 when pulled back from MTSO and w2 = a, w3 = b, w5 = ab+ d by the proof

of Theorem 3.4.22. After localizing at p = 2, MTSO is a direct sum of Eilenberg-MacLane

spectra, which in low degree is

H∗(MTSO ;Z/2) ∼= H∗(HZ)⊕ Σ4H∗(HZ)⊕ Σ5H∗(HZ/2)⊕ . . . . (3.4.29)

Under the quotient map in cohomology

H∗(MTSO ∧ (BG8)+;Z/2) → H∗(MT (Spin -SU8); Z/2);Z/2), (3.4.30)

the three summands in (3.4.29) survive, and in addition we pick up a new summand M in

H∗(B(Spin -SU8;Z/2) containing Uc which came from the cohomology of BG8. We have

not fully determined the A-module structure of M , but if we quotient M by the submodule

of all elements of degrees seven and above, we obtain the A-module Σ4Cη, where Cη

consists of two Z/2 summands in degrees 0 and 2 joined by a Sq2, and ΣkCη denotes the

shift of Cη in which the grading of every element is increased by k. Thus, if we quotient by

all elements in degrees 7 and above, there is an isomorphism of A-modules

H∗(MT (Spin -SU8);Z/2) ∼= A⊗A(0) Z/2⊕ Σ4(A⊗A(0) Z/2)⊕ Σ4Cη ⊕ Σ5A⊕ P, (3.4.31)

where P contains no nonzero elements in degrees 5 and below, and we use the fact that

H∗(HZ) = A⊗A(0)Z/2 and H∗(HZ/2) = A, which follows from computations of Serre [216].

The red summand A⊗A(0) Z/2 is generated by U , and is worked out in Figure 3.1 by using

(3.4.28). The green summand is generated by Ua2, and the purple summand is generated

by Ud. Quotienting by high-degree elements does not affect the Ext groups in the degrees

we need for the theorem.

To compute the E2-page of the Adams spectral sequence we need to know Ext of each

summand in (3.4.31) (Ext(–) means Ext∗,∗A (–;Z/2).) By using the change of rings theorem

[18, Section 4.5], we get ExtA(A⊗A(0) Z/2,Z/2) = ExtA(0)(Z/2,Z/2), and since A(0) only

includes Sq1, this just gives Z/2[h0] [18, Remark 4.5.4], where h0 ∈ Ext1,1. The same logic

applies for the Ext of the green summand, and the Ext of the purple summand contributes

a Z/2 in degree 5.

The last ingredient we need is ExtA(Cη), at least in low degrees.

Lemma 3.4.32. ExtA(Cη) is isomorphic to Z/2[h0] in topological degree 0 and vanishes

in topological degree 1.
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5

6

7

8

U

Uw4

α

Figure 3.1: The only relevant higher Steenrod operation in this degree is Sq4, which acts
on U to give Uw4. This is connected to α = (ab+ d)U by Sq1.

Proof. We use a standard technique: Cη is part of a short exact sequence of A-modules

0 Σ2Z/2 Cη Z/2 0, (3.4.33)

and a short exact sequence of A-modules induces a long exact sequence of Ext groups. It

is conventional to draw this as if on the E1-page of an Adams-graded spectral sequence;

see [18, §4.6] for more information and some additional examples. We draw the short exact

sequence (3.4.33) in Figure 3.2, left, and we draw the induced long exact sequence in Ext

in Figure 3.2, right. Looking at this long exact sequence, there are three boundary maps

that could be nonzero in the range displayed; because boundary maps commute with the

ExtA(Z/2)-action, these boundary maps are all determined by

∂ : Ext0,2A (Σ2Z/2) → Ext1,2A (Z/2). (3.4.34)

This boundary map is either 0 or an isomorphism, and it must be an isomorphism, because

Ext0,2A (Cη) = HomA(Cη,Σ
2Z/2) = 0, (3.4.35)

and if the boundary map vanished, we would obtain Z/2 for this Ext group. Thus we know

ExtA(Cη) in the range we need.

Compiling the information of Ext on (3.4.31) we draw the E2-page of the Adams spectral

sequence through topological degree 5 in Figure 3.3.8

In this range, the only differentials that could be nonzero go from the 5-line to the

8The modules in red, blue, and purple are pulled back from MTSO .
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Σ2Z/2 Cη Z/2
s ↑

t− s→ 0 1 2 3 4 5

0

1

2

3

Figure 3.2: Left: the short exact sequence (3.4.33). Right: the induced long exact sequence
in Ext groups. These diagrams are part of the proof of Lemma 3.4.32.

s ↑
t− s→ 0 1 2 3 4 5

0

1

2

3

4

Figure 3.3: The E2-page of the Adams spectral sequence computing ΩSpin -SU8
∗ .

4-line. Usually we would need to know the 6-line in order to determine if there are any

differentials from the 6-line to the 5-line, so that we could evaluate ΩSpin -SU8

5 , but the 5-line

is concentrated in filtration zero, and all Adams differentials land in filtration 2 or higher,

so what we have computed is good enough.

Returning to the differentials from the 5-line to the 4-line: Adams differentials must

commute with the action of h0 on the Er-page, and h0 acts by 0 on the 5-line but injectively

on the 4-line, so these differentials must also vanish. Thus the spectral sequence collapses

giving the bordism groups in the theorem statement. The fact that ΩSpin -SU8

5
∼= Z/2 is

detected by
∫
d follows from the fact that its image in the E∞-page is in Adams filtration

zero, corresponding to Ext of the free Σ5A summand generated by Ud; see [99, §8.4].9

9While we do not draw the A(1) modules up to degree 6, there is a way to access information in this
degree. We know that if we replace the spin bordism of BG8 with the oriented bordism of BSU8, then the
Atiyah-Hirzebruch spectral sequence for oriented bordism tensored with Q tells us in degree 6, there should
be one Q summand that is detected by c3 of the SU8-bundle.
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3.4.4. Determining the Manifold Generator

We now determine the generator of ΩSpin -SU8

5
∼= Z/2. We start by considering a map

Φ̃ : SU2 → SU8 sending a matrix A to its fourfold block sum A⊕ A⊕ A⊕ A. This sends

−1 7→ −1, so Φ̃ descends to a map

Φ: SO3 = SU2/{±1} −→ SU8/{±1} = G8. (3.4.36)

Recall that H∗(BSO3;Z/2) ∼= Z/2[w2, w3] and that there are three classes a, b, and d in

H∗(B(SU8/{±1});Z/2).
Lemma 3.4.37. Φ∗(a) = w2, Φ

∗(b) = w3, and Φ∗(d) = w2w3.

This will imply that to find a generator, all we have to do is find a closed, oriented 5-

manifold M with a principal SO3-bundle P →M with w2(M) = w2(P ) and w2(P )w3(P ) ̸=
0. This is easier than directly working with G8!

Proof of Lemma 3.4.37. Once we show Φ∗(a) = w2, we’re done:

Φ∗(b) = Φ∗(Sq1(a)) = Sq1(Φ∗(a)) = Sq1(w2) = w3, (3.4.38a)

where the last equal sign follows by the Wu formula. In a similar way

Φ∗(d) = Φ∗(Sq2(b)) = Sq2(Φ∗(b)) = Sq2(w3) = w2w3, (3.4.38b)

again using the Wu formula. So all we have to do is pull back a.

Consider the commutative diagram of short exact sequences

1 Z/2 SU2 SO3 1

1 Z/2 SU8 G8 1.

Φ̃ Φ (3.4.39)

Taking classifying spaces, this shows that the pullback of the fiber bundle BZ/2 → BSU8 →
BG8 along the map Φ: BSO3 → BG8 is the fiber bundle BZ/2 → BSU2 → BSO3.

We therefore obtain a map between the Serre spectral sequences computing the mod

2 cohomology rings of BSU2 and BSU8, and it is an isomorphism on E0,∗
2 , i.e. on the

cohomology of the fiber.

Both BSU2 and BSU8 are simply connected, so H1(–;Z/2) vanishes for both spaces.

Therefore in both of these Serre spectral sequences, the generator x of E0,1
2 = H1(BZ/2;Z/2)
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must admit a differential. The only differential that can be nonzero is the transgressing

d2 : E
0,1
2 → E2,0

2 ; in E2(SU8), we saw in (3.4.8) that d2(x) = a, and in E2(SU2), d2(x) = w2,

because w2 is the only nonzero element of E2,0
2 = H2(BSO3;Z/2). Since the pullback map

of spectral sequences commutes with differentials, this means Φ∗(a) = w2 as desired.

Now let W := SU3/SO3, which is a closed, oriented 5-manifold called the Wu manifold,

and let P → W be the quotient SU3 → SU3/SO3, which is a principal SO3-bundle. For

completeness we prove the following proposition about the cohomology of the Wu manifold.

Proposition 3.4.40. H∗(W ;Z/2) ∼= Z/2[z2, z3]/(z22 , z23) with |z2| = 2 and |z3| = 3. The

Steenrod squares are
Sq(z2) = z2 + z3

Sq(z3) = z3 + z2z3,
(3.4.41)

and the Stiefel-Whitney class is w(W ) = 1 + z2 + z3. Moreover, w(P ) = 1 + z2 + z3. Thus

w2(M) = w2(P ), so W with G8-bundle induced from P has a spin-SU8 structure, and

w2(P )w3(P ) ̸= 0, meaning (W,P ) is our sought-after generator of ΩSpin -SU8

5 .

Proof. Once we know the cohomology ring and the Steenrod squares are as claimed, the

total Stiefel-Whitney class of W follows from Wu’s theorem as follows. The second Wu

class v2 is defined to be the Poincaré dual of the map

x 7→
∫
W

Sq2(x) : H3(W ;Z/2) → H5(W ;Z/2) → Z/2 (3.4.42)

via the Poincaré duality identification H2(W ;Z/2) ∼= (H3(W ;Z/2))∨. Wu’s theorem shows

that v2 = w2 + w2
1, so since H1(W ;Z/2) = 0, w1 = 0 and w2 = v2. Since Sq2(z3) = z2z3,

w2 ̸= 0, so it must be z2. Then w3 = Sq1(w2) = z3; w4 is trivial for degree reasons; and

w5 = 0 follows from the Wu formula calculating Sq1(w4).

So we need to compute the cohomology ring. Consider the Serre spectral sequence for

the fiber bundle
SO3 SU3

W,

(3.4.43)

which has signature

E∗,∗
2 = H∗(W ;H∗(SO3;Z/2)) =⇒ H∗(SU3;Z/2). (3.4.44)
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A priori we must account for the action of π1(W ) on H∗(SO3;Z/2), but using the long

exact sequence in homotopy groups associated to a fiber bundle one deduces that W is

simply connected because SU3 is; therefore we do not have to worry about this. Moreover,

because W is simply connected, the universal coefficient theorem tells us H1(W ;Z/2) = 0.

As manifolds, SO3
∼= RP3, so H∗(SO3;Z/2) ∼= Z/2[x]/(x4). Also, H∗(SU3;Z/2) ∼=

Z/2[c2, c3]/(c22, c23), with |c2| = 3 and |c3| = 5 [29, §8].

Lemma 3.4.45. H2(W ;Z/2) ∼= Z/2.

Proof. The class x ∈ E0,1
2 = H1(SO3;Z/2) supports a differential because H1(SU3;Z/2) = 0.

Since the Serre spectral sequence is first-quadrant, the only option is a transgressing

d2 : E
0,1
2 → E2,0

2 . Therefore dimH2(W ;Z/2) ≥ 1. One can also see that this is an upper

bound. Since H2(SU3;Z/2) = 0 as well, any additional classes in E2,0
2 = H2(W ;Z/2) have

to be killed by a differential. But the only differential that could kill those classes is the

transgressing d2 we just mentioned, and x is the only nonzero element of H1(SO3;Z/2), so
there cannot be anything else in H2(W ;Z/2).

This is enough to get the cohomology ring: we already know H0, H1, and H2 for the

Wu manifold; Poincaré duality tells us H3(W ;Z/2) ∼= Z/2, H4 vanishes, and H5 ∼= Z/2.
Therefore there must be generators z2 and z3 for the cohomology ring in degrees 2 and 3,

respectively, and their squares vanish for degree reasons. And by Poincare duality z2z3 ̸= 0,

so it is the generator of H5. Therefore the cohomology ring is as we claimed.

Next we must determine the Steenrod squares. The fibration (3.4.43) pulls back from

the universal SO3-bundle SO3 → ESO3 → BSO3 via the classifying map fP for P , inducing

a map of Serre spectral sequences that commutes with the differentials. We draw this map

in Figure 3.4. This map is an isomorphism on the line E0,∗
2 , so x ∈ E0,1

2 (SU3) pulls back

from the generator x ∈ E0,1
2 (ESO3) — and therefore d2(x) = z2 pulls back from a class in

E2,0
2 = H2(BSO3;Z/2). The only nonzero class in that degree is w2, so f

∗
P (w2) = z2, i.e.

w2(P ) = z2.

The Leibniz rule that in the Serre spectral sequence for SU3, d2(x
2) = 2xd2(x) = 0. But

because H2(SU2;Z/2) = 0, some differential must kill x2. Apart from d2, the only option

is the transgressing d3 : E
0,2
3 → E3,0

3 , forcing d3(x
2) = z3. A similar argument in the Serre

spectral sequence for ESO3 shows that in that spectral sequence, d3(x
2) = w3; therefore

f ∗
P (w3) = z3 and w3(P ) = z3. Pullback commutes with Steenrod squares and Sq1(w2) = w3,

so Sq1(z2) = z3. Finally, f
∗
P (w2w3) = z2z3, and the Wu formula implies Sq2(w3) = w2w3, so

Sq2(z3) = z2z3. We have computed all the Steenrod squares that could be nonzero for degree
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reasons, and along the way shown w(P ) = 1 + z2 + z3: the higher-degree Stiefel-Whitney

classes of a principal SO3-bundle vanish.

Figure 3.4: The fiber bundle SO3 → SU3 → W pulls back from the universal SO3-bundle
SO3 → ESO3 → BSO3, inducing a map of Serre spectral sequences. This map commutes
with differentials and is the identity on E0,•

2 = H∗(SO3;Z/2), allowing us to conclude that
w2 pulls back to z2, w3 pulls back to z3, and w2w3 pulls back to z2z3. This is a picture
proof of part of Proposition 3.4.40.

3.5. Evaluating on the Anomaly

With the knowledge of the generating manifold for the Z/2 in degree 5 as the Wu manifold,

we can consider evaluating the anomaly of the theory with the field content given in §3.2.
Since G8 acts trivially on the scalars and the graviton only the remaining three fields could

have anomalies.

Definition 3.5.1. The global anomaly for a fermion on a Riemannian manifold M in a a

representation R coupled to background G gauge field is given by an invertible field theory

with partition function the exponential of an η-invariant of the Dirac operator, ηM,R(D)[246,

Section 4.3].

• For gauginos it is given by A1/2 = exp(πiηM,R(D)/2) [245, 99].

• For gravitinos it is given by A3/2 = exp(πiηgravitino/2) where

ηgravitino = ηM,R(DDirac×TW )− 2ηM,R(D) , (3.5.2)
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and ηM,R(DDirac×TW ) is the Dirac operator acting on the spinor bundle tensored with

the tangent bundle [136].

For the remainder of the paper we will drop the M subscript label.

Lemma 3.5.3. If R =
∑

iRi then ηM,
∑

i Ri
(D) =

∑
i ηM,Ri

(D).

The anomaly for the vector boson is not given in terms of an η-invariant, but we assume

that it is also an invertible theory, and we show that it also vanishes. The next section is

dedicated to showing:

Theorem 3.5.4. The total anomaly (global and perturbative) of 4d N = 8 supergravity

arising from the gaugino, vector boson, and gravitino, vanishes on the Wu manifold.

3.5.1. Evaluating on the Wu manifold

The full anomaly denoted by A can be written schematically as

“A = Apert
1/2 ⊗Apert

1 ⊗Apert
3/2 ⊗Anp

1/2 ⊗Anp
1 ⊗Anp

3/2 ” (3.5.5)

where we have split up each part of the perturbative and nonperturbative anomaly coming

from the gaugino, vector boson, and gravitino. Technically speaking, separating the anomaly

in this way is not something that can be done canonically. By (3.3.4) the nontopological

part arises as a quotient of the invertible theory by the topological theories. We write

the anomaly in such a way in order to make it organizationally more clear. The Adams

computation shows that the free part of ΩSpin -SU8

6 is nontrivial but it was shown in [193, 30]

that in fact the entire perturbative component of the anomaly vanishes.

The vector bosons can be defined without choosing a spin structure, and therefore the

partition function of their anomaly field theory factors through the quotient by fermion

parity. That is, the tangential structure is

SO×G8 = (Spin -SU8)/{±1} . (3.5.6)

We will proceed in understanding the perturbative anomalies by isolating Apert
1 .

Lemma 3.5.7. The perturbative anomaly for the vector bosons independently vanishes.

Proof. With the knowledge that the manifold generator for the anomaly is the Wu manifold,

we will further restrict to the SO3 inside of G8; we are left to computing ΩSO
6 (BSO3)⊗Q ,
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which isolates the free summand. For the degree we are after, we can compute the bordism

group via the AHSS. We take the E2 page of

E2
p,q = Hp(BSO3,Ω

SO
q (pt)) =⇒ ΩSO

6 (BSO3) , (3.5.8)

where

ΩSO
∗ (pt) = {Z , 0 , 0 , 0 ,Z , Z/2 , 0 , . . . } , (3.5.9)

and tensor with Q. This is equivalent to the E∞ page, as all differentials vanish, and is

given by

6 0

5 0 0

4 Q 0 0 0 Q 0

3 0 0 0 0 0 0

2 0 0 0 0 0 0

1 0 0 0 0 0 0

0 Q 0 0 0 Q 0 0

0 1 2 3 4 5 6

(3.5.10)

We see that the perturbative anomaly of the vector boson vanishes.

Corollary 3.5.11. The perturbative anomalies from the fractional spin particles vanish on

their own.

Having established this corollary, we may now pullback the anomaly in (3.5.5) to the

nonperturbative part, and the equation becomes literally true.

The η-invariant for the contributions in Anp
1/2 ⊗Anp

3/2 is therefore a bordism invariant,

and in particular the η-invariant is computed as two times some other representation and is

twice another bordism invariant. In order to see this, we consider how 56, 28, and 8 split

via our fourfold embedding of SU2 into G8 for the Wu manifold. We see that 56 gives the

dimension of the alternating three forms in 8-dimensions, 28 the dimension of alternating

two forms, and 8 is the defining representation. The branchings are given by

56 → 2(10× 2+ 2× 4), (3.5.12)

28 → 2(3× 3+ 5× 1), (3.5.13)

8 → 4× 2 , (3.5.14)

where the right hand side is in terms of su2 representations. In increasing numerical order,
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they are the trivial, defining, adjoint, and Sym4 representation. To show this, notice that

8 splits as V ⊕4 when we pull back to SU2, where V = 2. We then consider the ways of

splitting the alternating three forms. This can be done as

∧2V ⊗ ∧1V ⊗ ∧0V ⊗ ∧0V = C⊗ V ⊗ C⊗ C (3.5.15)

in 12 ways, essentially partitioning 3 into a sum of length 2. The C for both ∧2V and ∧0V

show that they are isomorphic as representations. It can also split into

∧1V ⊗ ∧1V ⊗ ∧1V ⊗ ∧0V = V ⊗ V ⊗ V ⊗ C (3.5.16)

in 4 ways. The fact that the third tensor product of the defining representation decomposes

as 2⊗ 2⊗ 2 = 2+ 2+ 4, gives us (3.5.12). Similarly, the two forms can be split into

∧2V ⊗ ∧0V ⊗ ∧0V ⊗ ∧0V and ∧1 V ⊗ ∧1V ⊗ ∧0V ⊗ ∧0V (3.5.17)

in 4 ways and 6 ways, respectively. The fact that 2⊗ 2 = 1+ 3, establishes (3.5.13).

To argue that the anomaly vanishes, we also want to show that ηR(DDirac) is an integer.

But since the local anomaly for the fermion vanished, the η-invariant is a bordism invariant.

This can be seen from the Atiyah-Patodi-Singer (APS) index theorem, and the index for a

Dirac operator makes sense on a 6-manifold. Due to the special features of the Wu-manifold,

we can instead just work with representations when evaluating the anomaly. The gaugino

was in the representation 56, and via the branching in (3.5.12), this is 4 times the η-invariant

of some other representation; this implies Anp
1/2 is zero.

As a spin 3/2 particle, the gravitino contains a spinor index as well as a Lorentz index,

therefore in order to use (3.5.2) for the anomaly, we need to use the fact that the tangent

bundle of the Wu manifold is an associated bundle.

Lemma 3.5.18. The tangent bundle of the Wu manifold W is given by

TW = SU(3)×SO(3)
su3

so3
.

Proof. The fact that the Wu manifold is a homogeneous space allows us to use the following

general procedure to construct its tangent bundle. For H ⊂ G is a closed subgroup of a Lie

group G, we have the following exact sequence of adjoint representations of H:

1 h g g/h 1. (3.5.19)
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The canonical principal H-bundle H → G/H gives an exact functor from representations

of H to vector bundles over G/H. This gives a corresponding sequence of vector bundles:

1 G×H h G×H g G×H g/h 1. (3.5.20)

There is an isomorphism G×H g/h → T (G/H) shown in [33]. Let p : G→ G/H and LX be

the left invariant vector field generated byX ∈ h. Then the mapping of (g,X+h) ∈ G×(g/h)

to Tgp · LX(g) ∈ TgH(G/H) gives the isomorphism. Specifically for our problem, we have

the SO3-bundle SU3 → W , which by the present construction gives the desired result.

Remark 3.5.21. This is an example of the “mixing construction”: for a principal G-bundle

P →M and a G-representation V , the space P ×G V is a vector bundle over M with rank

equal to the dimension of V .

We are now left to understand su3
so3

as a representation of SO3. The Lie algebra su3 is an

SU3-representation, and restricting, it is also an SO3 representation of dimension 8. But

the 8 of su3 branches as 8 → 1+ 1+ 3+ 3 in so3, so quotienting by so3 then eliminates one

of the 3 summands. Then η(DDirac×TW ) = (1+ 1+ 3) η(DDirac), which means the gravitino

contributes 3η(DDirac). By the branching in (3.5.14), η(DDirac) of 8 in su8 is determined

by 2 of su2, and using Lemma 3.5.3, we have a multiple of 4 worth of η2(DDirac) and that

determines ηgravitino. Then the anomaly Anp
3/2 associated to ηgravitino vanishes per the above

discussion for the gauginos.

We now move onto the nonperturbative anomaly from the vector bosons, which is

accessible from ΩSO
5 (BSO3). By applying (3.5.9) to the AHSS, we only need to consider

H5(BSO3,Z) as well as the Z/2 element in bidegree (0, 5). One can evaluate the torsion part

of H5(BSO3;Z) by the universal coefficient theorem, and looking at H6(BSO3;Z). We find

that this is given by w2w3 of the SO3 bundle and is nontrivial on the Wu manifold. Then the

AHSS says ΩSO
5 (BSO3) = Z/2×Z/2 detected by the bordism invariants

∫
w2(TM)w3(TM)

and
∫
w2(P )w3(P ); these are generated by W with trivial bundle, and W with the principal

SO3-bundle. We see that while the bosonic anomaly is in principle Z/2× Z/2 valued, and

coupling to spin structure eliminates one of the Z/2. Using (3.5.13), for the representation

of the vector boson, the anomaly is also twice of something as a bordism invariant. This is

reasonable since the anomaly of multiple particles is the tensor product of their anomalies
10. The anomaly for the vector bosons is 2 times something as a bordism invariant, since

the perturbative part vanished, and considering that we have argued that everything else

10For the gaugino and gravitino we could employ the decomposition of representations directly to the
η-invariant. In the case of the vector boson, we use the fact that direct sums of representations goes to
tensor products of anomalies.
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in (3.5.5) vanishes aside from Anp
1 , we have that A = Anp

1 . But A is Z/2 valued, and with

Anp
1 equating to 0 mod 2, the full anomaly vanishes, thus establishing proposition 3.5.4.
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Chapter 4

Classification of 5d Topological Orders

The first part of this chapter is based off [147] proves a theorem about a special type of

4.1. Introduction

Just as multifusion 1-categories describe the fusion of quasiparticle excitations — 1-

spacetime-dimensional objects, aka line operators — in topological phases of matter, multi-

fusion 2-categories (first introduced in [85]) describe the fusion of 2-spacetime-dimensional

“quasistring” excitations, aka surface operators. Except in very low dimensions, a typi-

cal topological phase can have quasistring excitations which are not determined by the

quasiparticle excitations, and multifusion 2-categories are vital for the construction and

classification of topological phases in medium dimension [179, 178, 149].

Recall that a multifusion 1-category C is fusion if the endomorphism algebra ΩC =

EndC(1C) is trivial, i.e. isomorphic to C, where 1C ∈ C denotes the monoidal unit [90]. There

are two reasonable categorifications of this notion when C is a multifusion 2-category. The

stronger generalization, which we will call strongly fusion 1, is to ask that the endomorphism

1-category ΩC = EndC(1C) be trivial, i.e. equivalent to VecC. The weaker notion, which we

will call merely fusion, is to ask only that Ω2C = EndΩC(11C) be trivial, where 11C ∈ ΩC is

the identity object. A fusion 2-category is a finite semisimple monoidal 2-category that

has left and right duals for objects and a simple monoidal unit. Physically, if C describes

the surface operators in a topological phase, then ΩC describes the line operators and Ω2C
describes the vertex (0-spacetime-dimensional) operators.

1In [85] the notion of strongly fusion is referred to as endotrivial
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The classification of fusion 1-categories is extremely rich [91, 154, 205]. The simplest

examples are the grouplike, aka pointed, fusion 1-categories, whose isomorphism classes of

simple objects form a group G under the fusion product. These are famously classified

by ordinary group cohomology H3
gp(G; U(1)). But there are many nongrouplike examples.

The classification of (merely) fusion 2-categories is similarly rich, since it includes the

classification of braided fusion 1-categories [85, Construction 2.1.19]. The main result of

this note shows a dramatic difference with the strongly fusion case:

Theorem A. If C is a strongly fusion 2-category, then the equivalence classes of indecompos-

able objects of C form a finite group under the fusion product.

We also address the “fermionic” case where ΩC ∼= SVec:

Theorem B. If C is a fusion 2-category with ΩC ∼= SVec, then the equivalence classes of

indecomposable objects of C form a finite group, which is a central double cover of the

group π0C of components of C (see Definition 4.2.11).

In particular, Theorem B asserts that the components of C do form a group.

Remark 4.1.1. Just as grouplike fusion 1-categories in which the simple objects form a group

G are classified by H3
gp(G; U(1)), the strongly fusion 2-categories with simple objects G are

classified by H4
gp(G; U(1)) [85, Remark 2.1.17]. In the fermionic case, if one additionally

assumes that the actions of End(1C) ∼= SVec on End(X) given by tensoring on the left

and on the right agree, then one can show that the options with π0C = G are classified

by “extended group supercohomology” SH4
gp(G) defined in [239]. There is a canonical map

SH4
gp(G) → H2

gp(G;Z2) which takes an extended supercohomology class to its Majorana

layer ; the group of simple objects in C is the corresponding central extension Z2.G. Although

in general Majorana layers of supercohomology classes have no reason to be trivial, we were

unable to find an example where the extension Z2.G did not split.

The outline of our paper is as follows. Section 4.2 reviews the definition of multifusion

2-category from [85]. In particular, we recall their notion of “component” of a semisimple

2-category in §4.2. The proofs of Theorems A and B occupy §4.3 and §4.4, respectively.

In future work, we will use these theorems to give a complete classification of 5-spacetime-

dimensional topological orders.

4.2. Semisimple and multifusion 2-categories

The definition and basic theory of semisimple and multifusion 2-categories were first

introduced in [85]. Since this theory is new, we take this section to review the main features.
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Recall that a 2-category C is C-linear if all hom-sets of 2-morphisms are vector spaces

over C, and both 1- and 2-categorical compositions of 2-morphisms are bilinear.

Definition 4.2.1. An object in a linear 2-category is decomposible if it is equivalent to a

direct sum of nonzero objects, and indecomposable if it is nonzero and not decomposable.

Remark 4.2.1. We will slightly abuse the language and use the terms “simple” and “in-

decomposable” interchangeably. A simple object X in a 2-category is one such that any

faithful 1-morphism A ↪→ X is either 0 or an equivalence. In finite semisimple 2-categories

all indecomposable objects are simple [85].

In particular the objects which we consider in the 2-category will only be sums of finitely

many simple objects, and decompositions are unique up to permutations. In our goal

to define a semisimple 2-category, we present some definitions for the higher categorical

generalization of the notion of idempotent splitting and idempotent completeness for

1-categories, also discussed in [109].

Definition 4.2.2. A 2-category C is locally idempotent complete if for all objects A,B ∈ C, the
1-category homC(A,B) is idempotent complete. It is locally finite semisimple if homC(A,B)

is furthermore a finite semisimple C-linear category (i.e. an abelian C-linear category with

finitely many isomorphism classes of simple object and in which every object decomposes

as a finite direct sum of simple objects).

In what follows, we will assume C is a locally idempotent complete 2-category.

Definition 4.2.3. A separable monad is a unital algebra object p ∈ homC(A,A), for an object

A, whose multiplication m : p ◦ p→ p admits a section as a p-p bimodule.

Definition 4.2.4. A (unital) condensation in a 2-category C is an adjunction f ⊣ g ≡ (f :

A⇆ B : g, η : 1A → g ◦ f, ϵ : f ◦ g → 1B) which is separable in the sense that its counit ϵ

admits a section, i.e. if there exists a 2-morphsism ϕ : 1B → f ◦ g which is the right inverse

of ϵ. When there is such a separable adjuction, we will write “A ↩→ B,” and say that A

condenses onto B.

Definition 4.2.5. A separable monad p is separably split if there exists a separable adjunction

f ⊣ g and g ◦ f ∼= p. A separable splitting is a choice of this isomorphism.

Proposition 4.2.6 ([85, Proposition 1.3.4]). A separable monad in C which admits a separable

splitting, admits a unique up-to-equivalence separable splitting.

Admitting a separable splitting implies that the adjunction f ⊣ g admits A as an

Eilenberg-Moore object. In 1-categories, this is can be seen as module decomposition by

forming a projector from an idempotent. The subtlety in 2-categories is that now there is

no “orthogonal complement” to the projector, as in 1-categories.
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Definition 4.2.7. A 2-category C is 2-idempotent complete if it is locally idempotent complete

and every separable monad splits.

Remark 4.2.2. Requiring the unitality of p and the existence of a unit for adjunction in the

2-category case differs slightly from the situation in 1-categories. In 1-categories there is an

equality of p2 = p but there is no equality of 1 and p. [109] developed a nonunital version of

separable monad for 2-categories and showed that if C has adjoints for 1-morphisms, then

the notion of 2-idempotent completion in Definition 4.2.7 and in [109] agree.

Definition 4.2.8. A C-linear 2-category C is finite semisimple if: it has finitely many

isomorphism classes of simple objects; it is locally finite semisimple; has adjoints for

1-morphisms; has direct sums of objects; and is 2-idempotent complete.

Definition 4.2.9. A multifusion 2-category is a monoidal finite semisimple 2-category in

which all objects have duals.

Remark 4.2.3. As noted in [85, Definition 2.1.6], in a fusion 2-category, left and right duals

are the same.

The 1-categorical Schur’s Lemma says that in a semisimple 1-category, if two indecom-

posable objects are related by a nonzero morphism, then they are isomorphic. This result

fails in 2-categories, but [85, Proposition 1.2.19] provides the following replacement.

Proposition 4.2.10 (Categorical Schur’s Lemma). If f : X → Y and g : Y → Z are

nonzero 1-morphisms between indecomposable objects in a semisimple 2-category C, then
gf : X → Z is nonzero.

Proof. This follows from Proposition 4.2.12 below, since the composition of condensations

is a condensation and since condensations with nonzero target are nonzero.

In particular, “related by a nonzero morphism” defines an equivalence relation on the

indecomposable objects of C. (Note that, since every 1-morphism is required to have an

adjoint, if there is a nonzero morphism f : X → Y , then there is a nonzero morphism

f ∗ : Y → X.)

Definition 4.2.11. The set of components of C, denoted π0C, is the set of equivalence classes

of indecomposable objects for the equivalence relation “related by a nonzero morphism.”

The structure of each component is fully determined by (the endomorphism category

of) any representative object. Indeed:

Proposition 4.2.12. SupposeX, Y ∈ C are simple objects connected by a nonzero 1-morphism

f : X → Y . Then there is a condensation X ↩→ Y . In particular, Y is the image of a simple

algebra object in the fusion 1-category EndC(X).
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Proof. Choose g to be the right adjoint to f ; it exists because all morphisms in a semisimple

2-category are required to have adjoints. The counit ϵ : f ◦ g → 1Y is a nonzero 1-morphism

in the semisimple 1-category EndC(Y ) with simple target, and so has a section.

4.3. Proof of Theorem A

We begin this section by developing the necessary graphical calculus in order to prove

the main results. One important feature we will discuss is the state-operator map for

fusion 2-categories and its interplay with duality. For an object X ∈ C, we denote
∫
S1
b
X as

the wrapping of X around a boundary-framed S1, see Figure 4.1. This integral is a map∫
S1
b
: C → ΩC. This integral is an example of the general calculus of dualizability as in [106],

and also arising from the cobordism hypothesis [11]. The boundary framing of the cylinder

in Figure 4.1 is attained from the framing of the annulus, where the annulus framing is

given by the restriction of the two-dimensional blackboard framing, see Figure 4.2. One

could then take the framed annulus and pull the annulus into a cylinder. This results in a

cylinder appropriately framed to be compatible with the state-operator map.

We now describe this operation
∫
S1
b
algebraically. Because we are working with a fusion

2-category each object has a dual and we have a unit ηX : 1C → X ⊗X∗. It corresponds

to the half-circle with framing as in Figure 4.3 part (a). Also, since all 1-morphisms have

adjoints, there is a right adjoint η∗X : X ⊗X∗ → 1C, corresponding to the framed half-circle

in Figure 4.3 part (b). These two half-circles compose to an annulus whose framing can

be continuously deformed to framing in Figure 4.2. All together, we find the algebraic

definition: ∫
S1
b

X := η∗X ◦ ηX .

The vertex operators of X are by definition the 2-morphisms 1X ⇒ 1X . They are

precisely the operators that can be inserted in the interior hole in Figure 4.2; the blackboard

framing is arranged so that this can happen. Such an insertion may be pulled down and

thought of as a map 11C →
∫
Sb
1
X as in Figure 4.4. In other words, hom(11C ,

∫
S1
b
X) is the

vector space of ways for the vacuum line to end on
∫
S1
b
X. This is the physical/geometric

proof of the state-operator correspondence. Algebraically, we have:

Lemma 4.3.1 (State-Operator Correspondence). In a multifusion 2-category there is an

isomorphism EndEndC(X)(1X) ∼= homΩC(11C ,
∫
S1
b
X).

Proof. The duality of X with X∗ provides an equivalence of EndC(X) ∼= hom(1C, X ⊗X∗).
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X

∫
S1
b

X

Figure 4.1: Wrapping the operator around a circle.

This equivalence identifies 1X with ηX , and so in particular End(1X) ∼= End(ηX), where the

left-hand side is computed in EndC(X) and the right-hand side is computed in hom(1C, X⊗
X∗). For any adjunctible 1-morphism f : A → B in a 2-category, Endhom(A,B)(f) ∼=
homEndA(11A , f

∗ ◦ f). Taking f = ηX , with A = 1C and B = X ⊗ X∗, completes the

proof.

In particular, X is simple if and only if homΩC(11C ,
∫
S1
b
X) is one-dimensional. In the

strongly fusion case lemma 4.3.1 implies:

Proposition 4.3.2. Suppose C is strongly fusion. Then X ∈ C is indecomposable if and only

if
∫
S1
b
X = C.

We now consider the tensor product of two indecomposable objects X ⊗ Y mapped by

the integral
∫
S1
b
. This represents a cylinder within a cylinder as on the left of Figure 4.5.

In general, we see that
∫
S1
b
is not monoidal: a cylinder within a cylinder is not the same

as two adjacent cylinders. However, in the strongly fusion case, if X and Y are simple then

we may collapse down the inner cylinder via the state operator map into the vacuum line.

We may then collapse the outer cylinder. All together we find:

Figure 4.2: The framing on the annulus.
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ηX

(a)

η∗X

(b)

Figure 4.3: η∗X is by definition the universal map such that the composition with ηX can
be filled. The resulting framing of η∗X ◦ ηX is homotopic to the blackboard framing of
Figure 4.2.

Corollary 4.3.3. In a strongly fusion 2-category, the tensor product of indecomposable

objects is indecomposable.

This allows us to complete the proof of Theorem A:

X

11C

Figure 4.4: State operator map.

11C

Figure 4.5: Removing the inner operator by collapsing it down to the vacuum.
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Proof of Theorem A. If X ∈ C is a simple object, then X∗ is as well (since End(X) ∼=
End(X∗)), and hence so is X⊗X∗ (by Corollary 4.3.3). Since ηX : 1C → X⊗X∗ is nonzero,

the simple objects 1C and X ⊗ X∗ are in the same component. However, the fact that

there are no lines in the strongly fusion case means that 1C is the only simple object in its

component.

Remark 4.3.1. We can consider working over the real numbers, which is the same as having

an anti-linear involution (time-reversal). In this case, an indecomposable object is not

absolutely simple, and Theorem A is no longer true. We can see this already at the level

of fusion 1-categories. Consider a Z3 fusion 1-category with three objects {1, x, x−1} over

C. Over the real numbers, we can exchange x and x−1 by the involution. There will be

two objects 1 and X over the real numbers, where X ∼= x + x−1, so that it is invariant

under the involution. Schur’s lemma states that over the complex numbers, indecomposable

means that the endomorphisms of the object is just C. But over the real numbers, the

endomorphisms are a division ring, and we have the fusion X2 = X + 2.

4.4. Proof of Theorem B

If we try to repeat the proof from §4.3 when ΩC = End(1C) ∼= SVec, the first snag

arises in Proposition 4.3.2. Indecomposability of X implies that the ordinary vector space

hom(11C ,
∫
S1
b
X) is one-dimensional. This measures the even part of the super vector space∫

S1
b
X, but says nothing about the odd part. On the other hand, the super vector space∫

S1
b
X is the superalgebra of vertex operators on X, and so it is supercommutative because

we have the freedom to move operators around each other on the surface of the cylinder.

Furthermore, since we are working in a semisimple 2-category, this supercommutative

algebra is finite dimensional and semisimple.

Lemma 4.4.1. The only finite-dimensional semisimple supercommutative superalgebra A

with one-dimensional bosonic part is C.

Proof. If x ∈ A is a nonzero odd element, then it is nilpotent (since x2 = xx = −xx and so

x2 = 0). Thus the principle ideal generated by x is proper. On the other hand, it is not a

direct summand of A as an A-module because projection operators are bosonic, and so the

only projection operators in A are 0 and 1. This contradicts the semisimplicty of A.

This implies the fermionic versions of Proposition 4.3.2 and Corollary 4.3.3.
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To complete the proof of Theorem B, it suffices to observe that if X ∈ C is indecompos-

able, then, since the unit map ηX : 1C → X ⊗X∗ is nonzero, X ⊗X∗ is an indecomposable

object in the identity component of C, and so invertible, and thus X is invertible. Indeed,

since ΩC ∼= SVec, by Proposition 4.2.12 there are precisely two simple objects in the

identity component of C, corresponding to the two simple superalgebras C and Cliff(1),

and Cliff(1) is famously Morita-invertible.

Remark 4.4.1. In fact, X ⊗ X∗ is always trivial, and never the nontrivial simple object

Cliff(1). Indeed, it is a general fact of monoidal higher categories that if an object is

invertible, then its inverse is its dual. One can also see this directly by running the proof

of Proposition 4.2.12 for the nonzero 1-morphism f = ηX . Then g = η∗X , and the simple

algebra in question is the composition p = gf = η∗X ◦ ηX =
∫
S1
b
X = C.

4.5. Introduction

A physical system described by a Hamiltonian is gapped when the spectrum of eigenvalues

for the Hamiltonian has a gap between the lowest energy state and the vacuum. Such

systems prevent the existence of particles that are arbitrarily light. A gapped phase is

an equivalence class of gapped systems. Systems that can be continuously deformed into

each other without closing the energy gap are considered to be in the same phase. The

low-energy limit of gapped phases may exhibit topological behaviour. Such is true for

some quantum field theories, which flow in the infrared to topological theories [121]. All

of the dynamical degrees of freedom can be integrated out, leaving only the topological

excitations. The study of gapped phases in various dimensions has led to interest regarding

the topological nature of extended objects, or operators, in these phases. In nontrivial

cases, the content of operators and defects, as well as the algebraic structure of how they

interact, compile into a topological order [241].

The classification of topological orders has been an interesting problem that combines the

mathematics of higher category theory with the physics of gapped topological phases. By now

the classification in lower dimensions is understood. In (1+1)-dimensions, topological orders

are classified by their spectrum of point operators together with anomaly information that

manifests as a class in ordinary or supercohomology. Some other well studied situation are

in (2+1)d where topological orders with nondegenerate local ground states are classified by

modular tensor categories [242], and in (3+1)d where topological order with nondegenerate

local ground states are (modulo a few subtleties) always described by finite group gauge

theories [179, 181, 149, 145].

87



This paper addresses the classification in (4+1)d. We focus on the case of super

topological orders, i.e. topological orders defined over the category SVec of super vector

spaces, because the existence of super fibre functors makes this case technically easier.

Following the strategy of [179, 181], the first step is to condense out all of the line operators

in the topological order. The resulting topological order has no line operators, and our first

result is a classification of these:

{super (4+1)d topological orders with no lines} = {symplectic finite Abelian groups2}.
(4.5.1)

By reducing along a Lagrangian subgroup, we furthermore show that every super (4+1)d

topological order can be condensed all the way to the vacuum via a gapped topological

boundary:

{super (4+1)d topological orders}/Morita equivalence3 = {1}. (4.5.2)

This is to be expected, as it agrees with the cobordism classification proposed by [158]:

a Morita-nontrivial super (4+1)d topological order should have a nontrivial gravitational

anomaly detectable on (5+1)d spin manifolds, but every (5+1)d spin manifold is spin-

nullcobordant.

By studying a spectral sequence introduced in [149, 145], the classification (4.5.2) allows

us to compute the analogous group for bosonic topological orders. We find that there is an

isomorphism:

{bosonic (4+1)d topological orders}/Morita equivalence ∼= Z∞
2 . (4.5.3)

In other words, there are infinitely many pairwise-Morita-inequivalent bosonic (4+1)d

topological orders (and each has a gapped boundary to its time-reversal). This disagrees

with the cobordism prediction: the cobordism group of (5+1)d oriented manifolds is trivial.

The origin of the disagreement, and indeed of the answer (4.5.3), is in (2+1)d: the Witt

groups W and SW of Morita equivalence classes of bosonic and super modular tensor

categories, studied in [61], are very large, whereas the cobordism classification would have

predicted a classification in terms of the central charge alone.

The outline of our paper is as follows. Section 4.6 starts off by explaining how to reduce

the set of operators in a (4+1)d topological order to only the surface operators, and how to

see that their monoidality is given by a finite Abelian group. In principle this procedure

2We give the definition of symplectic finite Abelian group at the start of section 4.7.
3By definition, two topological orders are Morita equivalent if they be separated by a gapped topological

interface.
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works for the bosonic and fermionic case, up to a small caveat that is remarked upon. In

that section though, we give the explanation specifically for super topological orders. We

then review some aspects of fusion and sylleptic 2-categories to understand the nature of

how surface operators pair up given three ambient dimensions. The build up is to see by

way of a cohomology calculation that (4+1)d topological orders are parametrized by a

symplectic form carried by the finite group of surface operators, establishing (4.5.1).

Section 4.7 outlines the method of symplectic reduction and its relation to Morita

equivalence. This allows us to prove (4.5.2) that (4+1)d super topological orders all admit

a gapped boundary. We furthermore give relationships between the bulk and boundary

theories, where we interpret the bulk (4+1)d theory to be a higher form of “centre” for

the boundary theory. To juxtapose with Section 4.6, we present a bosonic example of how

the centre construction goes through. Lastly, we address the question of lifting boundary

theories into the bulk, and obstructions in doing so.

Section 4.8 explains how we recover a bosonic theory from a fermionic theory plus extra

information in “descent data”, and computes the group of Morita equivalence of (4+1)d

bosonic topological orders.

In many parts of the paper we will also draw analogies to lower dimensional theories

when instructive.

4.6. 5-dimensional Super Topological Orders

4.6.1. Condensing out the lines

An (n+1)-dimensional super topological order is defined in [171, 172, 173, 149] to be a mul-

tifusion n-supercategory A with trivial centre.4 Triviality of the center is an axiomatization

of the principle of remote detectability. For our purposes we will be considering only the

fusion case. By this, we mean that there are no nontrivial 0-dimensional operators. This is

to say that the ground state of our topological order is nondegenerate [253]. The principle

of remote detectability, along with the fusion condition, implies that all codimension-1 op-

erators arise as condensation descendants [149, Theorem 4]. In an arbitrary 5d5 topological

order given by the fusion 4-category A, we therefore only need to consider operators of

4All of our “n-categories” are “weak.” For example, a “2-category” is a bicategory. Multifusion
2-categories were first introduced by [85], and the n-category generalization was developed in [149, 174].

5For the remainder of this paper whenever the dimension of an extended object or phase is given without
the time component specified, we will take that dimension to represent the full spacetime dimension.
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codimension-2 and higher. We will focus on the super case in which A is enriched over

SVec.

We will deem two 5d topological orders as being Morita equivalent if they can be

separated by a gapped 4d topological interface; this is also known as Witt equivalence. One

way to produce a Morita equivalence is to perform a categorical condensation [109], where

the condensation wall that separates the two phases is gapped and described by its own

higher category of operators.

The first main step in our classification of 5d topological orders is to use the method

outlined in [181, 179] to condense out all the lines in any super 5d topological order. Here

is a streamlined version of their construction, written in the language of [109, 149]:

Within the super fusion 4-category A describing the topological order, there is a

symmetric super fusion 1-category Ω3A of line operators. Suppose that we choose a functor

F : Ω3A → SVec of symmetric super fusion 1-categories. Such F is called a fibre functor,

and in the super case always exists [79]; since A is assumed to be fusion, F is unique up to

isomorphism, although not up to unique isomorphism.

This F can be “suspended” to a functor Σ3F : Σ3Ω3A → Σ3SVec, where Σ3Ω3A ⊂ A is

the sub 4-category of operators which arise as condensation descendants from line operators,

and Σ3SVec is the 4-category of operators in the vacuum 5d super topological order. This

Σ3F makes the 4-category Σ3SVec into a module for the fusion 4-category Σ3Ω3A. We

may induce (aka base change) this module along the inclusion Σ3Ω3A ⊂ A to produce an

A-module

M := A⊗Σ3Ω3A Σ3SVec.

We set B := EndA(M) to be the super fusion 4-category of A-linear endomorphisms of

M; then M is a Morita equivalence A ≃ B6. Because we started with a fibre functor on

the full category of line operators in A, there are no nontrivial line operators in B, i.e.
Ω3B = SVec.

Remark 4.6.1. In the case of bosonic topological orders, to condense all the lines would

require choosing a bosonic fibre functor Ω3A → Vec. Such a functor exists if and only if

there are no emergent fermions [79].

Since Ω3B = SVec, the result of [149, Theorem 5] implies that B = Σ2C, where C := Ω2B
is the (sylleptic) fusion 2-category of surface operators (and junctions between them); the

statement B = Σ2Ω2B means that all three- and four-dimensional “membrane” objects can

be built as condensation descendants of surface operators. But ΩC = Ω3B = SVec, i.e. it

is strongly super fusion:

6This construction presently outlined also goes by the name deequivariantization.
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Definition 4.6.1 ([152]). A super fusion 2-category C is strongly super fusion if ΩC :=

EndC(1) ∼= SVec.

An object in a (super) fusion 2-category is indecomposable if it is nonzero and cannot

be written as a direct sum of nonzero objects; recall from [85] that in a (super) fusion

2-category, an object is indecomposible iff it is simple. Two indecomposable objects are in

the same component if they are related by a nonzero morphism; the set of components of a

(super) fusion 2-category C is denoted π0C. The second main step in our classification of 5d

topological orders is a classification of strongly fusion 2-categories that we established in

[152]:

Theorem 4.6.2 ([152, Theorem B]). If C is a (super) fusion 2-category with ΩC ∼= SVec, then

every indecomposable object of C is invertible. The equivalence classes of indecomposable

objects in C form a finite group, which is a central double cover of the group π0C of

components of C (in particular, π0C is a group).

Since an invertible object always has the same endomorphisms as the identity, Theorem

4.6.2 implies in particular that the endomorphisms of any indecomposable object in C is

equivalent to SVec, a super version of the condition called “endotriviality” in [85].

4.6.2. Sylleptic and symplectic groups: bosonic case

In any 5d topological order, the surface operators have three ambient dimensions in which

they can compose. Thus the fusion 2-category C is 3-monoidal, aka sylleptic. The definition

of sylleptic monoidal 2-category, which can be found in full in the appendix of [213],

simplifies dramatically in the strongly fusion case.

To warm up, in this section we discuss the case of bosonic strongly fusion 2-categories,

where sylleptic structures are classified by the Eilenberg–MacLane cohomology introduced

in [87]. Indeed, suppose that C is bosonic strongly fusion, meaning that it is a fusion

2-category with ΩC = Vec. The bosonic case of Theorem 4.6.2 is [152, Theorem A], which

says that the indecomposable objects in C form a finite group M , equal to the group of

components since C is forced to be endotrivial.

The full data of the monoidal structure on C consists of: a tensor functor ⊗, given by

the group law on M ; an associator αx,y,z : (x⊗ y)⊗ z
∼→ x⊗ (y ⊗ z); and a pentagonator
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πx,y,z,w

(w ⊗ x)⊗ (y ⊗ z)

((w ⊗ x)⊗ y)⊗ z ⇑ π w ⊗ (x⊗ (y ⊗ z))

(w ⊗ (x⊗ y))⊗ z w ⊗ ((x⊗ y)⊗ z)

αα

α⊗I

α

I⊗α

(4.6.2)

which must satisfy a certain equation that we will not reproduce in full. But by endotriviality,

α is no data: there is up to isomorphism a unique equivalence (x⊗ y)⊗ z
∼→ x⊗ (y ⊗ z)

for every triple of indecomposable object (x, y, z). After trivializing α, the equation for π

says simply that it is a 4-cocycle in ordinary group cohomology with coefficients in C×. We

will henceforth adopt the following notation. Given a group M (Abelian if n ≥ 2), we will

write M [n] for the Eilenberg–Mac Lane space more typically written K(M,n), and Hk(−)

without coefficients always means ordinary cohomology with C× coefficients Hk(−;C×). To

summarize the above discussion, we find that bosonic strongly fusion 2-categories with C
with π0C =M are classified by

[π] ∈ H4
gp(M) := H4(M [1];C×). (4.6.3)

Suppose C is a monoidal 2-category with tensor bifunctor ⊗, associator α, and pen-

tagonator π. A braiding on C consists of a natural (in both variables) equivalence

bx|y : x ⊗ y → y ⊗ x,7 together with hexagonators R(x|−,−) and S(−,−|x) that provide

the monoidality of b:

(y ⊗ x)⊗ z y ⊗ (x⊗ z)

(x⊗ y)⊗ z ⇓ R(x|y,z) y ⊗ (z ⊗ x)

x⊗ (y ⊗ z) (y ⊗ z)⊗ x

α

bx|z

α

bx|y

bx|yz

α

,

(z ⊗ y)⊗ x x⊗ (z ⊗ y)

z ⊗ (y ⊗ x) ⇓ S(z,y|x) (x⊗ z)⊗ y

z ⊗ (x⊗ y) (z ⊗ x)⊗ y .

bzy|x

α

by|x

α

α

bz|x

(4.6.4)

R and S must solve various equations. When α and π are trivial, these equations say first

7We write the braiding as bx|y rather than bx,y to be consistent with later notation for Eilenberg–Mac
Lane cocycles. Higher Eilenberg–Mac Lane cocycles are like AT&T sales pitch: “More bars in more places.”
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that for each x, R(x|−,−) and S(−,−|x) are 2-cocycles8, and they furthermore assert:

z ⊗ y ⊗ x

y ⊗ z ⊗ x R(x|z,y)⇐ z ⊗ x⊗ y

y ⊗ x⊗ z R−1
(x|y,z)⇒ x⊗ z ⊗ y

x⊗ y ⊗ z ,

(bx|y)
−1by|z

bx|z

(bx|y)
−1

bx|zbx|zy
bx|yz ∼=

by|z

=

z ⊗ y ⊗ x

y ⊗ z ⊗ x S−1
(y,x|z)⇐ z ⊗ x⊗ y

y ⊗ x⊗ z S(x,y|z)⇒ x⊗ z ⊗ y

x⊗ y ⊗ z ,

(bx|y)
−1by|z

bx|z

by|x

byx|z
bx|z

∼= bxy|z

by|z

(4.6.5)
w ⊗ y ⊗ z ⊗ x

⇑ S

w ⊗ x⊗ y ⊗ z y ⊗ z ⊗ w ⊗ x

R−1 ⇑

y ⊗ w ⊗ x⊗ z

bw|yzbx|yz

bwx|yz

bwx|y bwx|z

=

w ⊗ y ⊗ z ⊗ x

⇐ R−1 ⇒ R−1

w ⊗ x⊗ y ⊗ z w ⊗ y ⊗ x⊗ z

∼=

y ⊗ w ⊗ z ⊗ x y ⊗ z ⊗ w ⊗ x

⇒ S ⇐ S

y ⊗ w ⊗ x⊗ z .

by|w

bw|yz

bx|y

bx|yz

bwx|y

by|x

bw|y

bw|z

bx|z

bwx|z

(4.6.6)

The unlabeled isomorphisms are the naturality of b. If b is also trivial, then (4.6.5) and

(4.6.6) simply say:

R−1
(x|y,z)R(x|z,y) = S−1

(y,x|z) S(x,y|z), (4.6.7)

R−1
(wx|y,z) S(w,z|yz) = R−1

(x|y,z)R
−1
(w|y,z) S(w,x|y) S(w,x|z) . (4.6.8)

Suppose that we are in the bosonic strongly fusion case. Then α and b are automatically

trivial, but π may not be. In this case, the equivalent equations (4.6.6) and (4.6.8), as well

as the requirements that Rx|−,− and S−,−|x be 2-cocycles, receive corrections by π. (The

equivalent equations (4.6.5) and (4.6.7) do not require corrections, because π only appears

when we need to coherently tensor four or more objects.) The full result is that (π,R, S)

are together the data of what is sometimes called an “Abelian cocycle,” and what we will

call a braided cocycle: they define a class in the Eilenberg–Mac Lane cohomology

[π,R, S] ∈ H4
br(M ;C×) := H5(M [2];C×). (4.6.9)

Finally, suppose that C is a braided monoidal 2-category. A syllepsis v for C is an

8These are 3-cochains if we include the x variable, but not ordinary 3-cocycles.
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isomorphism vx||y : bx|y
∼⇒ b−1

y|x for each x, y such that the diagram

bℓ|xy bℓ|x bℓ|y

b−1
xy|ℓ b−1

x|ℓ b
−1
y|ℓ .

vℓ,xy

R(ℓ|x,y)

vℓ||x vℓ||y

S(x,y|ℓ)

(4.6.10)

commutes. In the bosonic strongly fusion case where α and b are trivial, v enhances (π,R, S)

to a sylleptic cocycle, defining a class

[π,R, S, v] ∈ H4
syl(M ;C×) := H6(M [3];C×). (4.6.11)

In general, a theory with (only) grouplike p-spacetime dimensional objects with q-ambient

dimensions (hence p+q total spacetime dimensions) should be classified by degree (p+q+1)

cohomology of M [q]9. The original paper [87] calculates the values of Hp(A[q];B) for small

values of p, q and arbitrary Abelian groups A,B. In particular, writing Â := hom(A,C×)

and M2 := hom(Z2,M), sylleptic strongly fusion 2-categories C with π0C =M are classified

by

H6(M [3]; U(1)) ∼= M̂2 ⊕
∧̂2M ,

where
∧2M := M⊗M

(m⊗m)
denotes the alternating 2-forms on M . We will now explain the

meaning of these two summands M̂2 and
∧̂2M . Further discussion can be found in [60,

§2.1].

The summand M̂2 measures the following [150]: given an invertible surface operator

m ∈ M , consider wrapping the surface operator around a Klein bottle. This requires

choosing an equivalence m ∼= m−1, since the Klein bottle is not orientable. We have such

an equivalence exactly when m ∈M2, in which case, by endotriviality, the equivalence is

unique up to isomorphism. It also requires choosing a Pin structure on the Klein bottle;

let’s choose the nonbounding Pin structure. Then this Klein bottle wrapped with m ∈M2

will evaluate to some element of C×. This gives the map M2 → C×, or in other words the

element of M̂2. Since the Klein bottle embeds into R4 ⊂ R5, this class in M̂2 depends only

9When p is large, the required cohomology theory is not ordinary cohomology. Indeed, any theory will
have k-dimensional operators built by inserting decoupled k-dimensional topological theories, and for large
enough k there are nontrivial invertible k-dimensional topological field theories. For most purposes the
presence of these decoupled operators does not affect the physics. However, these operators can arise as
“higher fusion coefficients” for fusion of lower-dimensional operators. The result of this is that classifications
by ordinary cohomology must be corrected in high dimensions.
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Y

X

••v−1
y||x vx||ybx|y

b−1
y|x

Figure 4.6: The two domed cylinders in red and blue represent two objects X, Y ∈ C
respectively, living in four dimensions. The purple coloured regions show the domes of
the objects. Initially, we can think of one object being above the other. The dashed lines
indicate places where the two sheets pass over each other in the fourth dimension, with the
colour indicating which is above. The two marked points show where one of the surfaces
crosses over the other in the fifth dimension, changing the order of which surface is above
and below. The change in color of the dotted circle represents the fact that after the
syllepsis, the object which was initially on top, is now on the bottom.

on the braiding data and not the sylleptic form.

The summand
∧̂2M measures the following. Given surfaces with three ambient dimen-

sions, then to “braid” them means passing them around each other in a two-parameter

family, topologically a two-sphere. This procedure results in a phase factor that depends

antisymmetrically on the inputs. In terms of the data of a sylleptic 2-category, this anti-

symmetric pairing is given by ω(x, y) = vx||y − vy||x, where v is a 2-cocycle and represents

the sylleptic data. This is because v tells how the surfaces go from above to below one

another in the four dimension when we consider the double braiding of two surfaces. At

two locations, the surfaces switch places by going into the fifth dimension. This process is

depicted in Figure 4.6.

4.6.3. Sylleptic and symplectic groups: fermionic case

We turn now to the fermionic case, which is the main focus of this paper. As explained

in §2.1, we are specifically interested in sylleptic strongly fusion super 2-categories C. By
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definition, the line operators in such a 2-category are ΩC = SVec. The simple lines consist

of the identity line 1 and a fermion line f , corresponding to the super vector spaces C1|0

and C0|1 respectively. By Theorem 4.6.2, the components π0C form a group M . The

identity component, and hence every component, contains two simple objects. This identity

component is a copy of ΣSVec, equivalent to the 2-category of superalgebras and their

super bimodules. The identity object 1 corresponds to the superalgebra C, and the other

simple object, which following [88] we will call the Cheshire object c, corresponds to the

superalgebra Cliff(1). It is a fun exercise that the self-braiding c⊗ c→ c⊗ c is given by the

fermion f [110]. The invertible operators in the identity component form the symmetric

monoidal higher group (ΣSVec)× = C×[2].{1, f}[1].{1, c}[0] where the Postnikov extension

data are given by Sq2 : {1, c} → {1, f} and (−1)Sq
2
: {1, f} → C×.

The collection of invertible operators in C is an extension of shape (ΣSVec)×.π0C. As
in §4.6.2, we will encode that C is sylleptic by placing the (invertible) objects {1, c}.π0C in

degree 3. In other words, setting M := π0C, we are interested in extensions of shape:

(ΣSVec)×[3].M [3]. (4.6.12)

The classification of arbitrary extensions of this shape is somewhat complicated. But we

know one thing more: the fermion f , and hence also its condensate c, are invisible. This is

sometimes referred to as a local fermion, and any theory with this feature couples to spin

structure and is equipped with a Z2 fermion parity symmetry that induces a grading on

the Hilbert space. In the language of group theory, one can think of this as saying that the

extension (4.6.12) is a “central extension,” and so classified by untwisted cohomology (of

M [3]) with coefficients in (ΣSVec)×.

Cohomology with coefficients in (ΣSVec)× is called (extended) supercohomology SH•.

The name is due to [239] given in the context of condensed matter and lattice constructions,

but had appeared in the mathematics literature beforehand as a generalized cohomology

theory. See [110] for a more topological treatment. By the Atiyah-Hirzebruch spectral

sequence, SH• is built out of three “layers” corresponding to the three homotopy groups

of (ΣSVec)×. The bottom (Majorana) layer records whether the group of simple objects

{1, c}.M is or is not a split extension. The second (Gu-Wen) layer records whether the

isomorphism given by the braiding on two objects is even or odd; the fermion in particular

braids with itself up to a sign rather than braiding trivially. The top layer records the

associator data, i.e. a bosonic anomaly, of a suitable bosonic shadow to the fermionic theory

[22]. There is a map H•(M [3]; C×) → SH•(M [3]) corresponding to viewing a bosonic theory

as a fermionic one.10

10It was predicted in [161] that the classification of fermionic theories with symmetries in d dimensions
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Proposition 4.6.3. ForM any arbitrary Abelian group, SH6(M [3]) ∼=
∧̂2M = hom

(∧2M ,C×),
the space of alternating 2-forms.

Proof. We converge to the supercohomology by way of the Atiyah-Hirzebruch spectral

sequence SH6(M [3]) ⇐ H•(M [3]; SH•(pt)). The entries on the E2 page can be filled in from

the formulas in [60, 87]. This data assembles as:

Ei,j
2 =

j

Z2 hom(M,Z2) Ext(M,Z2) hom(M,Z2) . . .

Z2 hom(M,Z2) Ext(M,Z2) hom(M,Z2) M̂2 ⊕ hom
(∧2M ,Z2

)
C× M̂ 0 hom(M,Z2) M̂2 ⊕

∧̂2M

3 4 5 6 i .

(4.6.13)

The entries which include hom and Ext in degree three through five are all isomorphic

to M̂2, where M2 denotes the 2-torsion of M , and the hat denotes Pontryagin duality.

Specifically, hom(M,Z2) = (M̂)2, and Ext(M,Z2) = M̂2, which can be seen from the short

exact sequence Z2
(−1)x−→ C× x2−→ C×. The d2 differential are given by:

d2 : E
i,2
2 = Hi(M [3] ;Z2) → Ei+2,1

2 = Hi+2(M [3] ;Z2) X 7→ Sq2X (4.6.14)

d2 : E
i,1
2 = Hi(M [3] ;Z2) → Ei+2,0

2 = Hi+2(M [3] ;C×) X 7→ (−1)Sq
2X . (4.6.15)

Notice that because we are really looking at Eilenberg-MacLane spaces in degree three,

we do not need to consider the entries in degree lower than three due to the Hurewicz’s

theorem:

H•(M [3] ;A) = 0 for • < 3 . (4.6.16)

We claim that Sq2 : H3(M [3]; Z2) → H5(M [3]; Z2) is an isomorphism. To see this, note

first that H3(M [3]; Z2) ∼= hom(M ;Z2) by Hurewicz. Now given µ ∈ H3(M [3]; Z2), we can

construct the pullback µ∗ : H•(Z2[3]; Z2) → H•(M [3]; Z2). The ring H•(Z2[3]; Z2) is a

polynomial ring in the generators T, Sq1T, Sq2T, . . . where T has degree 3. In particular,

is given by (twisted) spin cobordism Ωd+1
Spin(M). The Atiyah-Hirzebruch spectral sequence then allows us

to compile the information in the first three layers to compute an approximation of spin cobordism, this
recovers supercohomology. In low dimensions supercohomology well approximates spin cobordism, but
as the dimensions get higher, the approximation is more crude and more information coming from the
deeper layers may be necessary. In our case however, the supercohomology approximation is exact: while
spin cobordism has layers below the Majorana layer, these layers do not contribute to cohomology of M [3]
because of the Hurewicz theorem.
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H3(Z2[3]; Z2) = {0, T}, with µ∗(T ) = µ, and H5(Z2[3]; Z2) = {0, Sq2T}. Since Sq2 is

natural, we have Sq2(µ∗T ) = µ∗(Sq2T ), confirming the claim. Thus the d2 differentials

E3,1
2 → E5,0

2 and E3,2
2 → E5,1

2 are isomorphisms. The d2 differentials supported in bidegrees

(4, 1) and (4, 2) are injections by essentially the same argument. Namely, for each m ∈
M2 = hom(Z2,M),we can restrict M̂2 = H4(M [3];Z2) along the map m∗ : H4(Z2[3];Z2) →
H4(M [3];Z2). The only element in H4(Z2[3];Z2) is Sq

1T , which is not annihilated by Sq2.

Again by naturality, the d2 from E4,1
2 → E6,0

2 and E4,2
2 → E6,1

2 are injections.

All together, the E3 page reads:

Ei,j
3 =

j

Z2 0 0 ∗ ∗
Z2 0 0 0 ∗
C× M̂ 0 0

∧̂2M

3 4 5 6 i .

(4.6.17)

In particular in total degree 6 the spectral sequence stabilizes on page 3, with the only

nonzero entry being
∧̂2M in bidegree (6, 0).

Remark 4.6.18. We note that H6(M [3];C×) ≃ M̂2 ⊕
∧̂2M classifies 5d bosonic topological

phases, but the M̂2 is killed by a differential in the spectral sequence for supercohomology.

Thus a bosonic sylleptic form contains more information than its superization.

Thus we find:

Theorem 4.6.4. The set of fermionic (4+1)d topological orders with no lines is equal to the

set of symplectic Abelian groups.

For the definition of symplectic Abelian group we refer the reader to §4.7.1.

Proof. The principle of remote detectability for topological orders ensures that there are no

invisible operators (trivial centre). In detail, the “trivial centre” requirement for a sylleptic

fusion 2-category is that its symmetric centre — its full subcategory on those objects x for

which vx||− = v−1
−||x — should be trivial. As explained at the end of §2.2, the class in

∧̂2M

precisely records the antisymmetric pairing ⟨x, y⟩ = vx||yvy||x. When applied to the group

of surfaces, it means that the symplectic pairing is nondegenerate.

Remark 4.6.19. To make contact with lower dimensions, consider the familiar case of bosonic

3d topological orders. These are given by modular tensor categories (MTC). In the Abelian
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case, with M a group, the braiding data of the MTC data is determined by a class in

H4(M [2]). This is isomorphic to the group of quadratic functions on M . The full braiding

of lines is given by the symmetric pairing

M ⊗M → C× (4.6.20)

a⊗ b 7→ q(a+ b)

q(a) q(b)
,

where q is a quadratic function. In 3d this is a one-parameter family in which the lines

pass around each other in a circle and we get a phase factor because it is a one-dimensional

motion, and one dimension lower than line operator is a phase. Furthermore, this phase

depends symmetrically on the two inputs, and here “nondegenerate” means that the

symmetric pairing is nondegenerate.

If M2 is trivial, then H4(M [2]; U(1)) ∼= Sym2M̂ by completing the square. In general,

the map H4(M [2]) → Sym2M̂ has kernel. This is analogous to the kernel M̂2 of the map

H6(M [2]; U(1)) → SH6(M [3]) =
∧̂2M . And indeed a similar analysis as in Proposition

4.6.3 shows that this kernel dies when going to fermionic theories and SH4(M [2]) ∼= Sym2M̂ .

4.7. 5d Topological order from the boundary

4.7.1. Symplectic Reduction to Isotropic Subspaces

The symplectic form ω on M gives M the structure of a symplectic Abelian group.

Definition 4.7.1. A symplectic Abelian group is an Abelian group G together with an

isomorphism ω :M → M̂ , with M̂ = hom(M,C×) such that ω(g, g) = 1 for every g ∈M .

This definition implies an alternating feature, ω = ω̂−1. Recall that by definition∧2M = M⊗M
m⊗m , so a map ω :M → M̂ is the same data as a map ω :M ⊗M → U(1). This

map solves ω(g, g) = 1 for all g iff it factors through
∧2M .

Example. An example of a symplectic Abelian group is when M is a product of groups

B × B̂ with ω((b1, f1), (b2, f2)) = f1(b2) · f2(b1)−1.

If M is a cyclic group then M does not admit a symplectic form. Call the generator for

the cyclic group t, then ω(t, t) = 1 but ω(ta, tb) = 1ab = 1, and ω is not an isomorphism.

Suppose M is a symplectic Abelian group and N ⊂M is a subgroup. The symplectic

orthogonal N⊥ is the subgroup {m ∈M s.t. ω(m,n) = 1 for all n ∈ N}. It is the subgroup
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corresponding to M̂/N ⊂ M̂ under the isomorphism ω :M ∼= M̂ . From this description, we

see that |M | = |N |× |N |⊥. A subgroup L ⊂M is Lagrangian if L = L⊥ as subgroups of M .

Thus L is Lagrangian exactly when ω|L is trivial and |L| =
√
|M |. A Lagrangian splitting

of M is a direct sum decomposition M = L⊕L′ where both L and L′ are Lagrangian. The

symplectic form on M then identifies L′ ∼= L̂.

Proposition 4.7.2 (Darboux theorem for finite groups). Every symplectic finite Abelian

group admits a Lagrangian splitting.11

The following proof is essentially given in [57, Lemma 5.2].

Proof. Every finite Abelian group canonically factors as a direct sum of subgroups for

different p, and the symplectic form cannot mix different primes. We thus reduce to the

case where the group in consideration M has order pk for some prime p. We give the

p = 2 case for clarity, and the proof generalizes for other primes. Pick an element x ∈M

of maximal order, say 2a. Then x2
a−1

is nontrivial and we choose an element y such

that the pair ω(x2
a−1
, y) ̸= 1. We use the fact that x2

a−1
is order 2 and so by inspecting

ω(x2
a−1
, y) = ω(x, y)2

a−1
, which is itself also order 2, we see that y has order at least 2a.

But a was maximal, so we have found two subgroups, generated by x and y, both of order

2a. We note that these two groups are transverse because an alternating form vanishes on

a cyclic subgroup. Let N denote the subgroup generated by x and y. It is a product of

cyclic groups Z2a × Z2a , which are themselves each Lagrangians in N . The restriction of

ω to N is the canonical split pairing ω(x, y), of x pairing with y. By construction, ω|N
is nondegenerate. Thus N and N⊥ are transverse (N ∩ N⊥ = 0), so M = N ⊕ N⊥. By

induction of the previous procedure, N⊥ can be further split into something Lagrangian,

therefore M has a Lagrangian splitting.

4.7.2. Lagrangian subgroups as boundary theories

We now turn to investigate the boundary (3+1)d theory of a 5d theory which also has

only surfaces, and make some relations with the bulk. The boundary is a braided strongly

fusion 2-supercategory L with objects being surfaces that have an L group fusion rule. The

braiding β is a class in SH5(L[2]), which in this case, antisymmetrically pairs objects.12

11While it is true that all such M admit a Lagrangian subgroup, it is not the case that any Lagrangian
at all fits into the sequence L̂ ↪→ M → L, see [57, Example 5.4]

12The analogue of this class for a (1+1)d boundary to a (2+1)d bulk would be a class α ∈ SH3(L[1])
that provides associator information regarding the lines in the (1+1)d theory.
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We can think of the bulk (4+1)d theory as the sylleptic centre of L denoted by Z(2)(L),
where the objects have fusion rule M with a sylleptic structure ω. Since all 1-morphisms

are trivial in the strongly fusion case, all the data is encoded in R, S and of particular

importance is the class in SH5(L[2]) encoding the braiding.

Definition 4.7.3. Let L be a braided monoidal 2-category. An object in the sylleptic centre

Z(2)(L) is a pair (x, vx||−). A 1-morphism from (x, vx||−) to (x′, vx′||−) is a one morphism

f : x→ x′ in L such that the following diagram commutes for all y ∈ L:

x⊗ y x⊗ y

⇓ vx||y

⇒ bf |y y ⊗ x ⇒ by|f

x′ ⊗ y x′ ⊗ y

⇓ vx′||y

y ⊗ x′

bx|y by|x

bx′|y by|x′

where the 2-morphism on the back face is the identity. The two morphisms are defined in

the same manner as in L.
Lemma 4.7.4. If L is a strongly fusion braided fusion 2-category, then Z(2)(L) contains no
lines.

Proof. Consider the identity object (1, v1||−) of Z(2)(L), where v1||x is the following isomor-

phism:

1⊗ x ⇓ v1||x x⊗ 1

b1|x

b−1
x|1

.

A priori, v could be any x-dependent C× number satisfying a 1-cocycle relation i.e. v ∈ L̂.

But since 1 is the identity object, b1|x and bx|1 are both trivialized, and the identity object

101



of the centre is the one such that v is also trivialized, so we take v1||− = 1. Now consider

morphisms of the identity object, which is a morphism from ⊮ → 1, or id1. Then, we have

the following 3-cell filling:

1⊗ x ⇓ v1||x x⊗ 1

1⊗ x ⇓ v1||x x⊗ 1 ,

b−1
x|1

b1|x

b−1
x|1

b1|x

where the vertical maps are just identity maps. But, because we are in the 2-category, the

only 3-cell is the identity.

Remark 4.7.1. More generally, if B is any braided monoidal 2-category, then ΩZ(2)(B) is a
full sub-1-category of ΩB. However, the analogous statements for Z(1) and for 3-categories

fail. For definiteness, Lemma 4.7.4 is to spell out the details of the case we care about.

Proposition 4.7.5. The sylleptic center of a trivially braided fusion 2-category L is L̂ × L
and the sylleptic form is the canonical one.

Proof. The trivial braiding indicates that [π,R, S] in (4.6.9) are trivial. As a consequence,

the diagram in (4.6.10) reduces down so that v satisfies the equation vℓ||xy = vℓ||xvℓ||y, thus

vℓ||− is a homomorphism L → C×. The object (x , vx||−) in the sylleptic centre is therefore

an element of (L , L̂).

Example. For clarity let us work bosonically in this example instead of using supercategories.

Suppose M admits L as a lagrangian, and take L = Z3. A particularly simple class of

braided fusion 2-category is L = 2Vecβ[Z3], where β ∈ H5(Z3[2]). A computation shows

that H5(Z3[2]) =
∧̂2 Z3 = 0, which means the only category is 2Vec[Z3] with the sylleptic

centre

Z(2)(2Vec[Z3]) = ̂2Vec[Z3]× 2Vec[Z3]. (4.7.2)
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In general, if L was a group such that β ̸= 0, then Z(2)(L) = L̂ .L , a nontrivial extension

of the boundary category. In terms of the groups, (4.7.2) implies that M = L̂× L, where

L̂ =M/L⊥ =M/L. Therefore, M fits into the short exact sequence L̂ ↪→M ↠ L.

Remark 4.7.3. The centre gives the corresponding Djikgraaf-Witten (DW) theory for the

boundary, with anomaly given by a class in SH6(M [3]). The act of going from the sylleptic

centre to the boundary can be done by first “forgetting” the sylleptic structure, and then

applying a Dirichlet boundary condition aka a braided map from a braided monoidal centre

to the boundary. The objects in the kernel of this map are precisely the “Wilson lines” of the

DW theory. The boundary condition contains not only a condensation L̂ but furthermore a

trivialization of ω|L̂, which is given by a class in SH5(L̂[3]).

We can also ask which boundary theories can be lifted to the bulk; this is the equivalent

of finding a splitting of the bulk to boundary map. The objects in the image of the splitting

map are the “ ’t Hooft lines” of the DW theory. A priori there can be an obstruction to

the lifting [60], which means that the lines in the bulk do not split neatly as a direct sum

of “electric” and “magnetic” lines. There exists an obstruction for a braided 4-cocycle

{π(−,−,−,−), R(−|−,−), S(−,−|−)} to have sylleptic structure given by

θ : H5(L[2]) → Ext(L, L̂) , (4.7.4)

with the kernal of this map precisely given by L̂2. The map H6(L[3]) → H5(L[2]) maps

between the two L̂2 subgroups, with H6(L[3]) attained from H6(M [3]) via a restriction map.

The subgroup of L̂2 in H5(L[2]) contains information regarding the data of π,R, S. The

remainder of the group is braiding information that cannot be lifted to being sylleptic.

There is furthermore a map from H6(L[3]) → SH6(L[3]) that surjects onto
∧̂2 L. This is

summarized in the following diagram:

H6(L[3]) ≃ L̂2︸︷︷︸⊕∧̂2 L SH6(L[3]) ≃ ∧̂2 L

H5(L[2]) SH5(L[2]).

The map from SH6(L[3]) → SH5(L[2]) is therefore the zero map as composition of the left

vertical map and the horizontal map gives zero; we then have:

Proposition 4.7.6. Only the fermionic boundary theories with trivial braiding can be

extended, in a way such that multiplication data is consistent with the lift to the bulk, to a

sylleptic form.
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Remark 4.7.5. It is possible that all surfaces on the boundary can be lifted, but not

necessarily canonically. In the case of a 3d Z3 DW theory with nontrivial anomaly, this has

a Dirichlet boundary condition where the lines obey Z3 fusion rule. The bulk however has

lines that obey Z9 fusion rule. Any line on the boundary can be lifted, but there is no way

to do this in a way that is compatible with the tensor product. The lines on the boundary

cube to the trivial line, but lifting it to the bulk means that the cube is nontrivial.

4.7.3. Morita trivial 5d phases

If M admits L as a Lagrangian subspace then the corresponding 5d topological order upon

symplectic reduction is Morita equivalent to the trivial theory. More succinctly this is know

as being Morita trivial. This reduction procedure is depicted physically in Figure 4.7.

L
M M � L := L⊥/L

Figure 4.7: The wall is braided fusion 2-category with objects in L⊥, separating the original
theory A from the vacuum. Similar to the case of quantum Hamiltonian reductions, the
wall is a bimodule for the two categories on either side.

Example. Consider in (1+1)d the category I given by Vecα=0[Z2], where α ∈ H3(Z2[1]) is

the trivial associator. Then the (2+1)d bulk theory is T = Z(Vec[Z2]) = Vec[Z2]×Vec[Z2].

Condensing out a Z2 subgroup from T amounts to the reduction (Z2 × Z2)�Z2 = Z⊥
2 /Z2 =

{∗}. Physically, this is equivalent to taking the (2+1)d Toric code and condensing out the

m or e particle. The lines left “unscreened” are in Z⊥
2 , and another identification by Z2

gives the trivial theory.

Theorem 4.6.4 relates 5d theories to symplectic Abelian groups and by Proposition 4.7.2,

we see that:

Proposition 4.7.7. All 5d super topological orders are Morita trivial.

A 5d phase which is not Morita trivial has boundary conditions that are necessarily

gapless, an immediate consequence is:
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Corollary 4.7.8. All 4d fermionic boundaries can be gapped.

While there are 4d fermionic gapless theories, by introducing the appropriate interactions

we can introduce a gap and hence there is no robust gapless phase. 13 We now present the

reverse story and the way of reconstructing a theory from the vacuum. We will show that

every fermionic 5d topological order can be built non-canonically by gauging a one-form

symmetry L̂[1], and a zero-form symmetry G, both acting on the vacuum. If the set of

lines, Ω3A, is super Tannakian, then G = Aut (F ) and Ω3A ∼= SRep(G). The first step

of condensing out the lines can be “undone” by gauging the group G which acts on the

group M of surfaces. The symplectic form associated with M is now a G-equivariant class

ω̃ ∈ H6(M [3]/G).

After condensing the lines, there is a similar map C : Ω2A → 2SVec which tells how

to condense surfaces by choosing Lagrangian subspaces. Gauging by the dual group L̂

which acts on the vacuum then undoes this procedure. For Abelian group, gauging by a

group or the dual group is always possible by the notion of “electromagnetic-duality”. The

important point to stress is that the choice of Lagrangian subgroup L from M was not

canonical, and so doing the gauging by L̂ is also not canonical. In contrast, the zero-form

group G is canonically determinded based on the lines of A.

Remark 4.7.6. This two step procedure can not necessarily be combined to a one step

condensation by a “2-group” symmetry L̂[1].G. We take for example the 5d toric code,

with a G = Z3 action that permutes the three strings. A nontrivial extension of L̂[1] by G

will spoil the duality between switching the electic and magnetic lines.

Example. We give an analogous story by considering the (2+1)d Toric code. This is

only analogous because the theory is not a symplectic Abelian group, rather the pairing is

symmetric. We choose the set R = {1, e} to be Tannakian from the set {1, e,m, f} of all

the lines. As an R module, the Toric code is R⊕mR. The map F takes R and condenses

it to the vacuum. This forms a gapped (1+1)d boundary where, as an R module, the

lines {1,m} live. The group G is the group generated by {1,m}, as can be seen when we

consider the fact that a zero-form symmetry in (1+1)d is sourced by lines.

Remark 4.7.7. Since M is a group of surface operators which are codimension-3 it defines a

two-form symmetry. This group has an anomaly that is precisely the symplectic form. For

a general isotropic N ⊂M we can consider gauging the N -symmetry. The importance of

13Our definition of topological order is such that an invertible phase is considered as the trivial topological
order. In concluding Corollary 4.7.8 we are using the fact that “topological order” means “topological
phase up to invertible phases”, and thus for a topological order to have a gapped boundary, this means
that the corresponding phase has a gapped interface to an invertible phase.
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being isotropic is to ensure that that the symmetry is non-anomalous and can be gauged.

By gauging the symmetry we build a gapped domain wall between the original theory

M and a new theory given by M � N . In the gauging procedure, N screens out those

operators in M which do not commute with N , and so the unscreened operators are N⊥.

But also the gauging procedure identifies the operators in N . The result is that the new

procedure is described by the symplectic reduction N⊥/N .14 We note that M �N itself is

naturally symplectic by defining ω([a], [a′]) = ω(a, a′) where [a], [a′] are classes in N⊥/N ,

i.e. a, a′ ∈ N⊥, and they are defined up to shifting by b, b′ ∈ N . If N = L is Lagrangian,

L⊥/L = {∗}, and so we do not have to assume that L participated in a Lagrangian splitting

to show Morita triviality in proposition 4.7.7.

4.8. Bosonic 5-dimensional Topological Orders

The passage from bosonic to super topological orders is much like going from R and

extending to C, its algebraic closure. Consider a time reversal symmetry ZT2 that acts

C-antilinearly and squares to the identity. Working with an algebra A of operators over

the complex numbers with a ZT2 symmetry is the same as working over the real numbers.

The ZT2 descends A into AR, an R algebra, so that A = AR ⊗ C. In the same spirit as the

0-categorical case, there is a way to 1-categorically extend Vec to SVec, where the latter

is “algebraically closed”[144].

A bosonic topological order A is equipped with an action of the categorified Galois group

Gal(SVec/Vec) = ZF2 [1], and Galois descent says that the algebra of a bosonic higher

category can be considered as the algebra of a ZF2 [1]-equivariant higher supercategory. As
remarked in Section 4.6, the fibre functor F may not allow for complete condensation of

the lines if we are working bosonically. If the lines are Tannakian i.e. Rep(G) then we can

condense out all the lines, the problem then reduces to the analogous problem discussed

in the previous sections, with the symplectic form a class in H6(M [3]). If the lines are

Rep(G, z), where z is a central element of order two, then it is always possible to condense

to only {1, f}, i.e. SVec. Furthermore, in a 5d bosonic theory not only are there surface

operators, but there are nontrivial 3d “membrane” operators. The surfaces operators still

form a group under fusion by [152, Theorem A]; in this dimension the surfaces and lines

can always unlink. But now either of the lines {1, f} can wrap membranes, each detecting

the other. This data compiles into a bosonic 3-category A, with π0A = ZF2 . The “magnetic

membrane” is the unique invertible object in the nontrivial component that enacts the ZF2
14For an associative algebra A, gauging by the action of a connected and simply connected Lie group G

is also called quantum Hamiltonian reduction.
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one-form symmetry and will square to something in the identity component. The whole

3-category is describable by an extension

C×[5]. Z2︸︷︷︸
{1,f}

[4].(Z2.M)︸ ︷︷ ︸[3]
surfaces

.ZF2 [2] ; (4.8.1)

C×[5] means “four-form C× symmetry” the Z2 in surfaces is given by {1, c}, which are the

two simple objects in ΣSVec as stated before in §4.6.3, with the caveat that now c2 ∼= c⊕ c.

The fibre

C×[5].Z2[4].(Z2.M)[3] = (C×[5].Z2[4].Z2[3]).M [3] (4.8.2)

is the 2-category of surfaces, and the base ZF2 [2] are the two components of the 3-category.

We can make a simplification of the fibre as follows. Any surface in s ∈ M actually

corresponds to two surfaces s1 or s2, being off from each other by the c. But because we

have the magnetic brane, M, we can act with this brane on either of the surfaces. The

intersection of M with s1 or s2 is either the line 1 or f , however we know that M acting on

c gives f . Therefore, it is possible to identify which s1,2 is the one that is also “charged”

with c. This gives us the freedom to always choose the “neutral” line, and so the term Z2[3]

can be ignored. Left with only the surfaces in M , we may condense them all out via the

procedure in §4.7.1. We are left with only having to understand the ZF2 [2] objects.

The fermionic Witt group inherits an action by ZF2 [1] due to the fact that the spectrum
15

SW• = (Σn−1SVec)
×
. W• is then the fixed-point spectrum of ZF2 [1] via categorified Galois

descent [149]. Therefore the cohomology of W•(pt) is given by the twisted SW•-cohomology,

SW•(ZF2 [2]), of the space ZF2 [2] = B(ZF2 [2]) . We compute this twisted cohomology by the

following Atiyah-Hirzebruch spectral sequence:

Hi(ZF2 [2]; SWj(pt)) ⇒ SW i+j(ZF2 [2]) = W i+j(pt) . (4.8.3)

The homotopy groups of SW•(pt) in low degrees are given by

SW0(pt) = C× , SW1(pt) = Z2 , SW2(pt) = Z2 (4.8.4)

SW3(pt) = 0 , SW4(pt) = SW , SW5(pt) = 0 , SW6(pt) = 0 .

In degree four, SW known as the fermionic Witt group gives the set of (2+1)d super

topological orders modulo gapped interfaces. Another way to think about this group is that

15Spectrum can be substituted interchangeably with the term “generalized cohomology theory”, which
was used in the introduction.
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it gives the anomalies for 3d super MTCs 16, and two theories related by a gapped interface

have the same anomaly.

The E2 page is therefore:

Eij
2 =

j

0 0 0 . . .

0 0 0 . . .

SW SW 0 hom(Z2, SW) . . .

0 0 0 0 0 0 0

Z2 Z2 0 Z2 Z2 Z2 Z2
2 Z2

2 . . .

Z2 Z2 0 Z2 Z2 Z2 Z2
2 Z2

2 . . .

C× C× 0 Z2 0 Z4 Z2 Z2 Z2 Z2

0 1 2 3 4 5 6 7 8 i .

(4.8.5)

The twisted d2 differentials are:

d2 :E
i,2
2 = Hi(ZF2 [2] ;Z2) → Ei+2,1

2 = Hi+2(ZF2 [2] ;Z2) X 7→ Sq2X + TX (4.8.6)

d2 :E
i,1
2 = Hi(ZF2 [2] ;Z2) → Ei+2,0

2 = Hi+2(ZF2 [2] ;C×) X 7→ (−1)Sq
2X+TX ,

where T is the generator of H•(ZF2 [2] ;Z2) in degree two. The E3 page is

Eij
3 =

j

0 0 0 . . .

0 0 0 . . .

SW SW 0 hom(Z2, SW) . . .

0 0 0 0 0 0 0

Z2 0 0 Z2 0 0 Z2 . . .

Z2 0 0 0 Z2 0 0 0 0 . . .

C× C× 0 0 0 Z4 Z2 0 0 0

0 1 2 3 4 5 6 7 8 i .

(4.8.7)

Remark 4.8.8. The generators of H5(ZF2 [2] ;Z2) are Sq
2Sq1T and TSq1T . The d2 differential

16This is a braided fusion category with trivial centre which is equipped with a “ribbon structure,” which
allows the corresponding (2+1)-dimensional TQFT to be placed on any oriented manifold. The TQFT is
said to be isotropic.
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annihilates
(
Sq2Sq1T + TSq1T

)
leaving a Z2 in bidegree (5,2). The Z2’s and Z4 in total

degree four survive on E∞ [149, Remark V.2]. The main result in [150] implies that the Z2

in bidegree (5, 0) survives on E∞.

There is potentially a d3 differential that maps hom(Z2, SW) → E5,2
3 = Z2, after which

the spectral sequence stabilizes in total degree 6. Thus W6(pt) is the kernel of this d3. By

[61, Proposition 5.18] we have

SW = SWpt ⊕ SW2 ⊕ SW∞ , (4.8.9)

where SWpt is generated by the Witt classes of Abelian super MTC, SW2 is an elementary

Abelian 2-group, and SW∞ is a free group of countable rank. It was proved in [206, Theorem,

7.2] that SW2 is a group of infinite rank 17, which means that on E∞ the entry in (2,4) will

also have infinite rank even after the d3 differential. As a result, W6(pt) is also a group

of infinite rank. By construction, W6(pt) is the group of Morita equivalence classes of 5d

topological orders, and so we have verified equation (4.5.3):

Theorem 4.8.1. There are infinitely many 5d bosonic topological orders which are “chiral”

in the sense that they only admit gapless boundary.

This starkly contrasts our conclusion in section 4.7.1 for the fermionic case, where

SW6(pt) was trivial. The source of the difference lies in the fact that the magnetic

membrane lives in the bosonic world. If we were to “fermionize” all of the bosonic theories,

i.e. couple to spin structure, then the infinite rank group would trivialize.

To gain a more physical intuition for these ungappable and chiral bosonic objects we

comment on their construction in a manner similar to [94], used for SPTs. The main

takeaway for SPTs is that when constructing an SPT, we can place lower-dimensional

invertible phases along homology cycle representatives dual to Stiefel-Whitney classes. This

is what was done for the dual of the generalized double semion model in 5d to show that

it is equivalent to a twisted Dijkgraaf-Witten dual stacked with lower dimensional SPT

phases.

This takeaway leads to a construction of the chiral 5d phases gauranteed by Theorem 4.8.1.

Pick a spin-MTC C representing an order-2 class in SW2 that is in the kernel of the d3
differential. We place the 3d topological order built from C along a representative of w2, by

this we mean we place C along the homology cycle that is dual to w2 (and away from w2 we

can just flood the phase with the vacuum). The choice of representative for w2 should not

change the theory, the reason for this culminates from the fact that C2 is super-Witt trivial

17In particular the spin MTC SO(2n+ 1)2n+1, n ≥ 1, are pairwise Morita inequivalent.
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and furthermore C is in the kernel of d3. The fact C is order 2 has to do with protecting

our theory under changes of representatives by a ZF2 [1]-symmetry. Being in the kernel of d3
is telling us that changes of triangulation that might lead to higher order anomalies do not

show up.

To see why any 4d boundary theory can not be gapped, note that a representative of

w2 in the bulk will end along a representative of w2 on the boundary. But C is nontrivial,

so that representative of w2 on the 4d boundary will necessarily carry a 2d chiral theory,

namely a chiral edge mode for C. For instance, suppose C is SO(2n + 1)2n+1, or some

product thereof that is within the kernel of d3. Then the 4d boundary condition will see

chiral WZW modes supported on a representative of w2.
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Chapter 5

Noninvertible Symmetries and Fusion

2-Categories

The first part of this chapter is based off [251], which works with noninvertible symmetries

at the level of 1-categories, in (2+1)d.

The second part of this chapter is based off [78] which works with noninvertible symme-

tries in 2-categories.

5.1. Introduction

The study of topological operators in quantum field theories has given many insights into

the nature of what a full quantum field theory consists of. The topological operators provide

a vast simplification from the space of all possible operators that a theory may possess, and

the formalism to understand them is through topological quantum field theories (TQFTs).

A particularly useful feature of TQFTs is their ability to describe, and in some cases

classify, the infrared phases of gauge theories and gapped phases of matter. Among the

classification of topological phases are those phases which are nontrivially ordered, also

known as “long range entangled” phases or topological orders. The topological properties of

the phase are independent of spacetime or internal symmetries, and only depend on the

global structure of the manifold that the phase lives on. In such long range entangled phases

in (n+1)-dimensions there exists extended topological operators, with the structure of an

n-category, the classifications for low values of n have been given in [242, 179, 181, 177, 149].

In this work we restrict to topological theories in three spacetime dimensions, with a

focus on the line operators that are the anyons. The classification of topological orders
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in three spacetime dimensions is given by modular tensor categories (MTCs) 1; for the

purposes of this paper, we will represent these MTCs by 3d Chern-Simons theories, where

the details about the framing of our underlying three-manifold is unimportant. Given

the spectrum of line operators, one can perform anyon condensation, which is an action

in three dimensions that also goes by the name of “gauging a one-form symmetry”, or

more generally “gauging a categorical symmetry”. When an anyon generates a one-form

symmetry, it has abelian fusion rules, as higher-form symmetries are always abelian groups

[113]. The anyon is deemed an abelian anyon and the action of condensing abelian anyons

is well studied in the literature [138, 13, 31, 179, 190].

When the anyon has nonabelian fusion rules, i.e. a nonabelian anyon, we must shift

to a categorical point of view to understand condensation [109, 48]. In the categorical

framework we see the anyon, or set of anyons that condense, as being part of an algebra

object. More specifically, a special Frobenius algebra in the category C. From here on out,

C denotes the uncondensed theory we start with, or in condensed matter parlance the

“parent theory”. Condensing the algebra leads to the “child” theory D, where some of the

lines in the parent have been projected out, or confined on an interface that arises in the

process of going from parent to child. In the case where the child theory is the vacuum,

the interface that separates C and the vacuum is deemed to be a gapped boundary of C. In
order to go from C to the vacuum one condenses a Lagrangian algebra object Aℓ, where

(dimAℓ)
2 = dim C =

∑
λ∈C(dimλ)

2, where the sum ranges over all lines in C and we use

dimension to mean quantum dimension. In the literature, the use of the phrase “anyon

condensation” is at times used to apply solely to those integer spin, i.e. bosonic anyons,

which give a Lagrangian algebra, and condense C to the vacuum [169]. For Lagrangian

algebras, it is a theorem that

Theorem 5.1.1. [61] For F a fusion category and C = Z(F). There is a bijection between

the sets of Lagrangian algebras in C and indecomposable F -module categories.

The role of the fusion category in the above theorem is played by the lines on the interface,

that we denote as F , separating C and D. While the procedure for determining the lines of

the child theory when gauging a one-form symmetry is clear, there are few examples in the

literature that perform nonabelian condensation at the level of the spectrum of lines for

an MTC. We set out to outline an algorithm for performing nonabelian condensation, i.e.

determining the modules of the condensation algebra in an efficient way, and perform many

nontrivial examples of determining not only the spectrum of lines in the child theory but

also their quantum dimensions.

1Modular tensor categories technically only classify topological orders up to an invertible phase
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For our purposes, we will weaken the notion of condensation only being applicable

for Lagrangian algebras and apply the condensation procedure, which involves finding

modules of algebra objects, to a variety of algebras. The reason for doing this is because

the condensation procedure has uses that go beyond just looking for gapped boundaries,

and one of our goals is to provide examples that emphasize the other merits. It is natural

to expect that not all anyons in C can be condensed because some do not correspond to

an algebra. Using our algorithm we will give examples of how to decide if an algebra is

condensable. With the tools for nonabelian condensation developed, we can apply them

to verify conformal embeddings given in [61], and also to other cases where one might ask

if two MTCs are Morita equivalent. This gives us a way to construct the interface, i.e.

bimodules, between the two theories. Moreover we can use nonabelian condensation to

understand the decomposition of characters in 2d topological cosets, which have been useful

in describing the IR phases in [82].

In many instances taking all the bosons anyons and condensing them out may cause

lines to split, but in such a way that preserves the quantum dimension. As a first step

in generalizing beyond bosonic condensation, we look at fermion condensation where by

fermion we mean a line with half integer spin. On the other hand, we will use the term

local fermion to describe the condensed line. As we will see, a nonabelian fermion may be

split into one that is abelian, and we can furthermore sequentially condense out the abelian

part. We will investigate how this relates to the (super)modular invariants of the parent

theory, and see what further insights the condensation algebra can give regarding modular

invariants.

Along the way we will enlarge the notion of which anyons can be condensed, beyond

bosons and fermions to a general spin 1/n object, if we also couple to an appropriate

background n-structure [37]. We also observe that not all modular invariants correspond

to gapped interfaces, like those that arise from Lagrangian algebras, as noted in [163, 58].

One way this fails to be true is that there are “charge conjugation” modular invariants

that reflect some symmetry of the parent theory. Furthermore, an algebra that is at

least symmetric Frobenius will result in a modular invariant, however, these need not

be Lagrangian and therefore the modular invariant is not a truly gapped interface. We

further supplement the analysis given in the references with more explicit examples of

exotic idempotent modular invariants, and relationships between the modular invariants

and condensation algebras. In the same manner as for supermodular invariants, we look to

the higher modular invariants corresponding to condensing a 1/n line to support our claim

that these lines can be condensed.

With a comprehensive understanding of gauging, we next aim to understand how
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to construct the center of the fusion category on the wall that separates C and D, i.e.

reconstructing C to some degree by ungauging the algebra used to reach the child theory.

In particular we want to start off with information about the “wall category”, this consists

of the lines that can be confined on the wall. These are the lines that are projected out

in going from C → D, as well as the lines of the child theory D. We will slightly abuse

notation and call this fusion category F (this is a surface defect, but contains two kinds of

lines); note that the lines which are totally confined cannot lift to the child D, so there is no

braided structure on the 2d surface that separates the two phases. The lines in D however

can be moved to the surface F via a functor, and is the reason for our abuse of notation. We

use the consistency relations mentioned in [107], and others which we elaborate on, to show

in some nontrivial cases that the data of the S-matrix elements of C can be constructed.

The data we start out with involves the S-matrix elements of the lines in D, as well as

fusion information of the wall category. Constructing C is not a very methodical process

and there is no known procedure that exists in general. We gain an intuition from the

examples in this work on how much information we can reasonably extract, given our initial

data.

The layout of the paper is as follows, in §5.2 we give a mathematical formalism associated

to gauging a categorical symmetry in terms of condensation algebras. We follow up by

giving explicit examples of how to compute using this formalism by applying it to 3d

Chern-Simons theories, and finding the lines of the child theory. More nontrivial examples

of gauging are given in appendix A.2. In §5.3 we look at modular invariants and see how

in some cases we can identify which algebra objects of the parent theory can lead to a

modular invariant. We also introduce supermodular invariants and remark on their feature,

as well as discuss generalizations to higher modular invariants that are motivated by the

spin of the anyon one can condense. In §5.4 we give the consistency relations involving

the lines on the wall category and see how to determine S-matrix elements of the parent

theory. We also explain the information that we will provide regarding the fusion category,

to be able to determine its center. We will put the consistency relations to use in a couple

of examples namely in reconstructing the Toric code from the vacuum and SU(3)3 from

Spin(8)1. In appendix A.3 we do a nontrivial example with reconstructing the S-matrix of

SU(2)10 from Spin(5)1.

5.2. Overview of Gauging

We will perform condensation via a method of introducing idempotents. The formalism

developed using idempotents and condensation monads in precisely what is needed to do
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nonabelian condensation, and it furthermore generalizes to higher categories [109] 2. With

this rigorous framework in place, the well known notions of anyon condensation in 3d, or

simple current extensions in 2d VOAs, can be encapsulated in a common language that

generalizes to higher dimensions. To better interpret the mathematical formalism we restrict

out attention from general n-categories to modular tensor categories, and in particular

3d Chern-Simons. Already here, many of the properties that generalize to n-categories

are manifest, and computationally tractable. We will give some examples of performing a

familiar task of condensing abelian anyons by this method, while also shedding light on

some of the subtleties that traditional methods miss. Having some familiarity with the

steps involved in the procedure will be crucial when we generalize to the nonabelian story.

We first review the properties of idempotents, working just with a linear monoidal

1-category C. For an object X ∈ C (we will later use C as our parent MTC, and X as our

anyons) an idempotent is an endomorphism φ : X → X such that φ ◦ φ = φ. For the

purpose of this paper, the categories we will consider are all idempotent complete. This

means that we can write φ using a pair of morphisms f : X → Y and g : Y → X as

φ = g ◦ f so that Y is a direct summand of X and is the image of φ. We will also work in

a finite setting, so that any decomposition into direct sums, is a finite decomposition into

simple objects. Such finiteness conditions are a key feature associated with “topological

settings” and generalize to higher categories where the finiteness properties are captured by

the axioms of a multifusion category 3.

The idempotent φ will also be referred to as a condensation algebra in C, and to perform

a condensation, we first must select a finite set of lines to build this semisimple object. The

condensation algebra consists of the data φ ∈ C as well as a multiplication map φ× φ→ φ

and a co-multiplication map φ→ φ× φ, and a set of axioms given in figure 5.1 and figure

5.2 where the line with an arrow denotes φ.

It is known that these axioms for φ make it into a nonunital special Frobenius algebra.

Condensing this algebra means to flood spacetime with a fine network of lines corresponding

to the algebra, and satisfying the axioms of associative (co)multiplication, and composition

of comultiplication and multiplication. The importance of the axioms is to insure that the

choice of which network to flood spacetime with is immaterial, i.e. works for any cellulation

of spacetime. With this we can assemble a topological interface, which is two-dimensional

interface that is populated by the one dimensional algebra. Since we were able to build this

higher dimensional object from the lower dimensional lines in C, this interface will be called
2For a discussion specified to 2-categories see [85], where the notion of condensation is referred to as

“separable adjunction”.
3As an example in lower categories, if one is working in representation theory, the finiteness conditions

we consider boil down to the axioms when working with a semisimple finite dimensional algebra.
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=

,

= =

Figure 5.1: The diagram on the left is the axiom that multiplication and comultiplication
can be composed into φ, i.e. all bubbles can be closed. The diagram on the right
shows that the composition of comultiplcation and multiplication can be decomposed as a
composition of (idφ×multiplcation) and (comultiplcation×idφ) or (multiplication×idφ) and
(idφ×comultiplication)

=

,

=

Figure 5.2: The left diagram shows that multiplication is associatve. The right diagram
shows that comultiplication is coassociative
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a condensation descendant to reflect its fundamental structure, and this notion can be used

to classify topological orders as in [149, 145]. It is a fact that in 3d Chern-Simons theory,

all the surfaces are built out of lines and thus are descendants of the condensation algebra

[36]. Two interfaces are isomorphic if the two condensation algebras are Morita equivalent.

This fact about interfaces will play a role later in our discussion of modular invariants for C.
The term anyon condensation is sometimes used in the literature to refer to the case when

we condense an φ with the lines that comprise φ actually forming a Lagrangian algebra in

C [169, 141].

Physically speaking, condensing out a Lagrangian algebra creates a gapped boundary

for C [155, 180]. We will refer to anyon condensation in a looser manner that can be done

for any “reasonable” condensation object, and not necessarily a Lagrangian algebra. In

addition, we will consider condensing out anyons that are not only bosons, but have spin

1/n for n ≥ 2. By enlarging the definition we will be able to employ our algorithm for anyon

condensation to C that do not have Lagrangian algebras and gain insight into modular

invariants that do not correspond to gapped boundaries, as well as constructing the lines of

the child theory. It will also highlight how our computational methods naturally generalize.

While the physical interpretation of condensation corresponding to filling a submanifold

with a network of lines is inspiring, we still have yet to fill in the technical details of

computing the new spectrum using the condensation algebra and the data of the lines in C.
Let us explain by considering the spectrum of a Gk Chern-Simons theory which is given by

all the integral representations at level k. Such representations are labeled by their highest

weight λ. which can be expanded in a basis of fundamental weights as

λ =
r∑
i=0

λi ωi , (5.2.1)

where [λ0, λ1, . . . , λr] are the Dynkin labels of λ, and r ≡ rank g. The spectrum of Gk

consists of all non-negative integer solutions to the equation

λ0 + (λ, θ) ≡ k , (5.2.2)

where (·, ·) is the scalar product of g, and θ is the highest root vector. A line given by a

representation λ has topological spin and quantum dimension given by

hλ =
(λ, λ+ 2ρ)

2(k + h∨)
, q-dimλ =

∏
α∈∆+

sin
(
π(λ+ρ,α)
k+h∨

)
sin
(
π(ρ,α)
k+h∨

) , (5.2.3)
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where ∆+ denotes the positive roots of g, ρ is the Weyl vector, and h∨ is the dual Coxeter

number. We will first focus on the case where the lines in the algebra have a grouplike

fusion structure. This is known as gauging a one-form symmetry group. A well known

method of gauging a one-form symmetry is to select the anyon generator a for the cyclic

group, and compute the monodromy charge (induced by a) defined by

Q(λ) = hλ + ha − hλ×a (5.2.4)

for all the other anyons λ. When the charge between the generator and a line is nontrivial

mod 1, then that line is projected out of the spectrum and does not survive the gauging. Of

the lines that remain, we break them up into orbits of the symmetry. While this procedure

works for C with one-form symmetries, it does not generalize well to nonabelian anyons.

Our understanding of why lines split is also obscured by computing monodromy charges,

and in certain cases that we will see later on, projecting out lines based on their monodromy

charge hides some of the subtleties of finding orbits when gauging a one-form symmetry,

especially if the generator of the one-form symmetry is not bosonic. Furthermore, if we

wanted to condense a general set of abelian anyons, this method becomes inefficient.

In order to formalize gauging one-form symmetries we consider a group homomorphism

µ : G→ C× from a finite group G to the set of invertible topological lines, denoted C×, one

can produce the norm element

N =
⊕
g∈G

µ(g) ∈ C×, (5.2.5)

which has the structure of a categorified idempotent. To see this structure, we first introduce

the notion of a fiber functor F : Vec[G] → Vec. The objects in the domain of F are

G-graded vector spaces, and written as formal sums
⊕
g∈G

Vg · g where Vg ∈ Vec. The

homomorphism F from the group algebra to the one-dimensional vector space is a choice of

one dimensional representation for the group. There is also an adjoint of the fiber functor

F ∗ : Vec → Vec[G], with F ∗(⊮) =
⊕
g∈G

g , (5.2.6)

which is sensible since the one-dimensional vector in Vec is an algebra, the map F ∗ takes

it to another algebra. The element
⊕
g∈G

g ∈ Vec[G] is an idempotent whose image is Vec,

and the homomorphism µ is equivalent to giving a monoidal functor from Vec[G] to C and

preserves idempotents, therefore µ

(⊕
g∈G

g

)
is also idempotent.
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What this fiber functor does at the level of lines is that it takes the algebra built out

of lines and sends it to the vacuum. This makes manifesting the idempotent nature of

the condensation algebra as products of the vacuum with itself again gives the vacuum.

Furthermore, a physical way to view F ∗ in the realm of topological phases described by 3d

Chern-Simons is that it builds a phase by starting from the vacuum ⊮ and inserting the

algebra of lines, similar in spirit to the construction of phases via the methods in [188].

As an example, take the object φ = 0 + 1 where 1 is a Z2 object, and we know an

isomorphism 1× 1
F≃ 0. In an attempt to make φ into an algebra, we need a map from

(0 + 1)× (0 + 1)
m−→ (0 + 1) (5.2.7)

the only interesting data is the map from 1 × 1 → (0 + 1), as the other values from

distribution take a canonical value. One can use some multiple of the isomorphism for

1× 1 ≃ 0 to write

1× 1
(λF, 0)−→ (0 + 1) , λ ∈ C , (5.2.8)

for each of the components of φ. It appears that there are infinitely many unital multiplica-

tive maps m one can use, but up to isomorphism there is only a single map.

The result of condensing the norm in (5.2.5), as per the prescription of flooding spacetime

by the algebra, is the familiar notion of summing over G-bundles on spacetime, or the ways

to insert G-flux to each wall of the cellulation of spacetime. After the condensation, we get

a new phase which we denote as the child theory D. In a 3d theory, the surface operators

serve as interfaces between the vacuum ⊮ and itself, and thus given by EndC(⊮). Applying
this same intuition to the line operators that are the actual objects of the 1-category C
tells us that they also exist as endomorphisms. To take into account also the G-group

action, we note that by the map µ, the lines of C are a G-module by right multiplication.

We can form C ⊗
Vec[G]

⊮ i.e. by tensoring with the one-dimensional module, which identifies

operators that have the same image under the fiber functor; the result is still a C module

by left multiplication. We therefore see that the objects of D are given by

EndC

(
C ⊗

Vec[G]
⊮
)
, (5.2.9)

where we are taking C-linear endomorphisms. Formula (5.2.9) is equivalent to(
C ⊗

Vec[G]
⊮
)G

, (5.2.10)
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which are the G-invariant operators in C ⊗
Vec[G]

⊮. The G-invariant operators are reasonable

to consider because C ⊗
Vec[G]

⊮ itself still had a residual G-action.

We now tell an analogous story for condensing nonabelian anyons, which is sometimes

known as gauging a categorical symmetry, as the fusion rules of nonabelian anyons do not

exhibit a grouplike structure. We therefore replace G by a fusion category G, which has

an action by the topological lines of C, and a monoidal fiber functor F : G → Vec. An

idempotent in G takes the form of a sum of nonabelian anyons, and the fiber functor again

identifies it with the vacuum. The operators after the condensation is formally given by(
C ⊗

G
Vec

)G

. (5.2.11)

Suppose we had another fusion category G ′, with a map G ′ → Vec, that is Morita equivalent

to G given by the G-linear endomorphisms of Vec, i.e. G ′ = EndG(Vec). We can then

consider C//G//G ′ = C, this gives the notion of “ungauging” the categorical symmetry and

reconstructing C. Ungauging is in practice difficult to do at the level of MTCs, and amounts

to being as difficult as constructing the Drinfeld center of another fusion category 4. We

will study ungauging in more depth in a later section when we attempt to reconstruct the

S-matrix of a parent theory, starting with a collection of data from the child theory.

5.2.1. Condensing Abelian Anyons

We now put the formalism into practice by consider some examples of condensating an

abelian anyon, or equivalently gauging a one-form symmetry. We start with two elementary

examples SU(3)3 and SU(4)4, where the generator of the one-form symmetry in the former

is a boson, and the latter is a fermion [231, 1]. In the latter case, the child theory will

contain a local fermion and we must couple to spin structure. The data of the spectrum for

4Note that in the case of gauging a regular symmetry, ungauging amounts to gauging the “dual
symmetry”. Since the notion of a dual symmetry does not exist for categorical symmetries, then the
analogue of ungauging becomes a hard problem of reconstructing the parent theory in the bulk.
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SU(3)3 is given by the integer solutions to λ0 + λ1 + λ2 ≡ 3. Thus we have the lines

SU(3)3 λ h q-dim

0 [0, 0, 3] 0 1

1 [0, 3, 0] 1 1

2 [3, 0, 0] 1 1

3 [0, 1, 2] 2/9 2

4 [1, 2, 0] 8/9 2

5 [2, 0, 1] 5/9 2

6 [0, 2, 1] 5/9 2

7 [2, 1, 0] 8/9 2

8 [1, 0, 2] 2/9 2

9 [1, 1, 1] 1/2 3 ,

where the first column assigns a number to label each of the Dynkin labels, the third column

gives the spins, and the final column gives the quantum dimension. The notation we adopt

for naming the lines is the same as that used in the KAC program [20]. As directed by

(5.2.5) we form the idempotent φ = 0+ 1+ 2; by applying the fiber functor we identify this

as the new vacuum. Now we use (5.2.10) to compute the operator content of the gauged

theory. There is a monoidal functor that moves a line ℓ ∈ C to the surface formed out of a

network φ by multiplying ℓ with the newly condensed vacuum, i.e. φ× ℓ. Physically, what

this functor does is to take a line in the bulk and zoom out so that the line is very close to

the surface. Everything in this setting is topological except for the distance from the line

to the surface. This is the same as finding the modules of φ, given by:

φ× 0 = φ ,

φ× 1 = 1 + 2 + 0 ,

φ× 2 = 2 + 0 + 1 ,

φ× 3 = 3 + 4 + 5 ,

φ× 4 = 4 + 5 + 3 ,

φ× 5 = 5 + 3 + 4 ,

φ× 6 = 6 + 7 + 8 ,

φ× 7 = 7 + 8 + 6 ,

φ× 8 = 8 + 6 + 7 ,

φ× 9 = 91 + 92 + 93 , (5.2.12)
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where we have used the fusion rules for the lines in SU(3)3. Since we do not write down

all the elements m ∈ C such that there is a map φ×m→ m, what we mean here and for

the rest of the paper by the “modules of φ” is actually the free modules m = φ × ℓ for

some ℓ ∈ C. By “free”, we mean that the map φ ×m → m is multiplication in φ. The

free modules generate the category of all modules, in particular if φ is separable, then the

category of φ-modules is semisimple, and every module is a direct sum of simple summands

of free modules. Therefore, writing down (5.2.12) is sufficient information to be able to tell

what are all the simple summands of φ× ℓ.

Not all of the lines define a different representation of SU(3)3/Z3. When we mod out by

the group Z3, two lines in SU(3) may be indistinguishable in the child theory because any

set of lines which differ by a gauge transformation, should be identified. For this example

where the lines that condense are bosons, lines which differ by a gauge transformation, but

have different spins (mod 1) should not be identified because one could still tell them apart

via the individual spins. Said more precisely, the lines are grouped into orbits, and all the

lines in a given orbit have the same spin and quantum dimension, as is expected from lines

that are indistinguishable. Note that the fusion of φ× 9 involves three copies of 9. In this

case 9 is said to fit into a short orbit because it is fixed by some elements of φ. We therefore

“split” the line 9 giving a degeneracy index, up to the order of the stabilizer of 9 in φ, with

the constraint that the sum of the quantum dimensions or the split lines is conserved.

In terms of the free modules, the set of module maps

homφ(φ× ℓ, φ× k) = hom(ℓ, φ× k) , k ∈ C. (5.2.13)

This allows us to answer the question of which simple summands of ℓ in φ× ℓ match which

simple summands of φ× k. In the case of ℓ = 9 and k = 9, then we have

homφ(φ× 9, φ× 9) = hom(9, φ× 9) , (5.2.14)

where the copies of 9 in φ× 9 index the simple summands of φ× 9.

We have that the semisimple objects (or orbits) are

{φ, (3 + 4 + 5), (6 + 7 + 8), 91, 92, 93} , (5.2.15)

but there is still the task to take the G-invariant operators. Thus, (3+4+5) and (6+7+8)

are projected out, and lines that are degenerate are never grouped into the same semisimple
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object. Thus lines of the gauged theory are

{φ, 91, 92, 93} , (5.2.16)

and they correspond to the lines of Spin(8)1.

We end this example by noting that there exists a conformal embedding SU(3)3 ⊂
Spin(8)1 at the level of affine Lie algebras. At the level of 3d Chern Simons, the subalgebra

plays the role of the parent theory, and the lines of the child Spin(8)1 are direct sums of

parent theory lines. The natural way to see this is to treat the 3d MTC as Rep(V ) and

Rep(W ), for W ⊂ V as 2d VOAs and V a W -module. One might also want to make an

analogy to the 2d GKO coset picture for Spin(8)1
SU(3)3

, where the characters of Spin(8)1 decompose

as sums of characters of SU(3)3 by the formula

χλ(q) =
∑
Λ

bΛλ (q)χΛ(q) , λ = s, v, c ∈ Spin(8)1, Λ ∈ SU(3)3 . (5.2.17)

Since the coset is topological, the q-expansion of the branching function bΛλ (q) is finite, and

in particular

χs = χv = χc = χ[1,1,1] , (5.2.18)

which gives us a check that the three characters χs, χv, χc corresponding to the three spinors

of Spin(8) correspond to the line 9 which split into three copies. The triality symmetry

also shows up in the fact that anyon condensation cannot tell apart which of the 9i should

be the two spinors or the vector.

We now move onto SU(4)4 with the main goal to point out some of the subtleties when

the generator is a fermion. We also use this opportunity to introduce the notion of sequential

condensation, which will be important when we move onto nonabelian condensation. The

data of the spectrum for SU(4)4 is given by the integer solutions to λ0 + λ1 + λ2 + λ3 ≡ 4.
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Thus we have 35 lines 5:

SU(4)4 λ h q-dim

0 [0, 0, 0, 4] 0 1

1 [0, 0, 4, 0] 3/2 1

2 [0, 4, 0, 0] 2 1

3 [4, 0, 0, 0] 3/2 1

4 [0, 0, 1, 3] 15/64 2.613125929753

5 [0, 1, 3, 0] 95/64 2.613125929753

6 [1, 3, 0, 0] 111/64 2.613125929753
...

34 [1, 1, 1, 1] 15/16 9.656854249492 .

To gauge the one-form Z4 symmetry generated by line 3, we proceed with a two step process.

We first condense out the abelian boson which is line 2 by forming φ = 0+2 and performing

the procedure in (5.2.12). The unconfined lines in the following table are listed in the first

column, with their constituent SU(4)4 lines in the second column:

SU(4)4
φ→ SU(4)4 h q-dim

0 0 0 1

1 1 + 3 3/2 1

2 8 + 10 9/16 3.414213562373

3 9 + 11 9/16 3.414213562373

4 16 + 18 5/16 3.414213562373

5 17 + 19 21/16 3.414213562373

6 24 + 26 1 5.828427124746

7 25 + 27 1/2 5.828427124746

8 281 3/4 2.414213562373

9 282 3/4 2.414213562373

10 291 5/4 2.414213562373

11 292 5/4 2.414213562373

12 341 15/16 4.828427124746

13 342 15/16 4.828427124746 .

We are left with an abelian spin 1/2 line, which is also condensible. The caveat to the use

of the fiber functor F , is that now F passes onto a super fiber functor F : Vec[G] → SVec

5See KAC for the full spectrum. The program also has the ability to produce the spectrum after
condensing an abelian boson.
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[79]. Physically, this makes the line into a local fermion and also requires the child theory

to couple to spin structure. By forming the condensation algebra φ̃ = 0 + 1 in the table for

SU(4)4
φ→ we find that

φ̃× 0 = φ̃ , φ̃× 7 = 7 + 6 ,

φ̃× 1 = φ̃ , φ̃× 8 = 8 + 10 ,

φ̃× 2 = 2 + 3 , φ̃× 9 = 9 + 11 ,

φ̃× 3 = 3 + 2 , φ̃× 10 = 10 + 8 ,

φ̃× 4 = 4 + 5 , φ̃× 11 = 11 + 9 ,

φ̃× 5 = 5 + 4 , φ̃× 12 = 121 + 122 ,

φ̃× 6 = 6 + 7 , φ̃× 13 = 131 + 132 , (5.2.19)

with the lines that are unconfined

ℓ q-dim

φ 1

(6 + 7) 5.828427124746

(8 + 10) 2.414213562373

(9 + 11) 2.414213562373 .

(5.2.20)

In terms of the Dynkin indices of SU(4)4 the lines above read

ℓ h

φ 1

6 = ([1, 0, 1, 2] + [1, 2, 1, 0]) 1

7 = ([0, 1, 2, 1] + [2, 1, 0, 1]) 1/2

8 = 9 = [0, 2, 0, 2] 3/4

10 = 11 = [2, 0, 2, 0] 1/4 .

(5.2.21)

After condensing the fermion, the algebra gives a natural grouping where lines with spins

that differ by 1/2 are identified. The semisimple objects now have simple components which

differ by 1/2, i.e. equivalence up to a fermion.

When we were only focused on bosonic condensation, then the lines of any child theory

must have constituent objects that are all of equivalent spin mod 1 in the parent, in order

to be in the unconfined sector. A subtlety to mention here is that in doing identifications

up to spin 1/2 lines, the lines now do not have a definite spin. One way to understand this

is that the algebra which includes a fermion is only associative and not commutative, and
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thus loses the braided structure that condensation algebras with bosons would have. This

forces the algebra to only be able to fill in two-dimensions as shown in figure 5.3.

•••

•••

Figure 5.3: The physical picture of condensation looks like inserting a fine mesh of the
algebra that takes the form of a surface when zoomed out. The dark line at the boundary
represents a module for the algebra.

More precisely, an associative multiplication that takes place in one space dimension,

when given to a one dimensional particle worldline in the time direction, grants a way

for the line to fill in two-dimensions. Taking φ with its associative multiplication is a

two-dimensional surface and the modules for the algebra look like a boundary condition

whereas a bimodule is an interface on the surface. It is therefore also natural to view

gauging an associative algebra as gauging a 2d surface operator that implements a zero-form

global symmetry. We elaborate more explicitly on this point in §5.3.2. If in addition the

algebra also had a braiding, then there are two directions for multiplication, and the algebra

can fill in three-dimensions. In the new phase given by flooding with the commutative

algebra, one can reasonably ask about the spins of the lines. But without the knowledge of

how to flood 3d space, then it is not sensible to talk about spins of modules or bimodules.

One could also perform the two step condensation in one step, by choosing the algebra

φ = 0+ 1+ 2+ 3 in SU(4)4, which generates the full Z4 symmetry. This algebra consists of

two lines that are spin 0 and two that are spin 1
2
mod 1, so this is regarded as a fermion

condensation. One can check that the unconfined lines for this algebra are

ℓ q-dim

φ = 0 + 1 + 2 + 3 1

(24 + 25 + 26 + 27) 5.828427124746

(281 + 291) 2.414213562373

(282 + 292) 2.414213562373

(5.2.22)
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which matches the data in equation (5.2.20), upon matching the labels for lines. It is

important to note that while fusing φ with line 28 (and 29) technically gives four lines

(281 + 291 + 282 + 292), the largest grouping we could have is (281 + 291) and (282 + 292)

because the same line can not be grouped with itself. We end this example by noting

that there are nonabelian bosons in the spectrum. By condensing those boson out, using

the details in the next section, we find the embedding SU(4)4 ⊂ Spin(15)1. The lines of

Spin(15)1 in terms of the dynkin labels of SU(4)4 are given by

0 = [0, 0, 0, 4] + [0, 4, 0, 0] + [0, 1, 2, 1] + [2, 1, 0, 1] ,

1 = [0, 0, 4, 0] + [4, 0, 0, 0] + [1, 2, 1, 0] + [1, 0, 1, 2] ,

2 = 2[1, 1, 1, 1] . (5.2.23)

Since the spectrum is large, another way to arrive at the same result is from the coset

perspective. This is by considering Spin(15)1
SU(4)4

, which is topological in the sense that the

central charge of the numerator matches that of the denominator. The three characters

of Spin(15)1 exactly decompose into the characters of SU(4)4 with the labels on the right

hand side of the equality in the above equations.

The one-form generators need not be bosonic nor fermionic, as was the case in the last

two examples. The one-form generator could have a more general rational value for its

spin. Just like how we moved from integer spin lines to half integer spin lines we introduced

a Z2 grading by enlarging the fiber functor to map to supervector spaces, a general 1
n

anyon when condensed would lead to a Zn graded vector space. This might be at odds

physically with what is natural, due to the fact that one demands a Hilbert pairing in a

physical Hilbert space. This is a pairing with no null vectors i.e. ⟨x|x⟩ > 0 for x ̸= 0 in

the Hilbert space. Applying the Hilbert pairing to a vector purely in the i-th graded piece

of the Hilbert space pairs it with another vector in the i-th graded piece and returns a

real number. However, tensoring two purely i-th graded vectors should give a vector in

the 2i-th graded piece. Therefore, introducing a Hilbert pairing would be an unnatural

morphism in our category of Zn-graded vector spaces. Nevertheless, one can still make use

of (5.2.10) for a condensation algebra that includes the one-form generator, and perform

condensation as purely an algebraic manipulation. Sequential condensation can also be

generalized this way, to include a boson and a spin 1/n anyon with the resulting object

having simple components with spins that differ by 1/n. We will show an example with
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SU(2)4 here; the spectrum for this theory consists of 5 lines given by

SU(2)4 λ h q-dim

0 [0, 4] 0 1

1 [4, 0] 1 1

2 [1, 3] 1/8 1.732050807569

3 [3, 1] 5/8 1.732050807569

4 [2, 2] 1/3 2 .

Condensing the abelian boson splits the spin 1/3 line into two copies. Similar to how we can

pass to a super fiber functor, we now let F : Vec[G] → r-Vec which sends φ = 0 + 41 + 42
to the new vacuum, while coupling to a r-spin structure. Two other examples where a

similar effect takes place is Sp(8)1 and Spin(7)2.

5.2.2. Condensing Nonabelian Anyons

The formalism for finding the operators after gauging a categorical symmetry “generated”

by a nonabelian anyon bears resemblance to the case of a regular symmetry, however due

to the potentially complicated fusion structure of the MTCs, the nonabelian condensation

can have complicated modules to work out. We will present an algorithm that is useful in

practice to find the lines of the child theory. While this algorithm in principle works for any

number of lines, the process quickly becomes complicated when the number of lines is large,

the condensation algebra involves multiple lines, or when the fusion of nonabelian lines

decomposes into many simple objects. The difficulty in performing the computation comes

from assigning the proper quantum dimensions to each of the child lines, and grouping the

lines from the parent that are equivalent under the fiber functor as in (5.2.11). We believe

the best way to proceed is through examples. We begin with a well known and considerably

elementary example of condensing the nonabelian boson in SU(2)10. In Appendix A.2

we give more nontrivial examples of performing nonabelian condensation by using this

algorithm.

We align with the notation commonly used in the anyon condensation literature for this

example instead of using KAC’s notation. The data of the spectrum of SU(2)10 consists of
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11 lines given by

SU(2)10 λ h q-dim

0 [0, 10] 0 1

1 [1, 9] 1/16 1.931851652578

2 [2, 8] 1/6 2.732050807569

3 [3, 7] 5/16 3.346065214951

4 [4, 6] 1/2 3.732050807569

5 [5, 5] 35/48 3.863703305156

6 [6, 4] 1 3.732050807569

7 [7, 3] 21/16 3.346065214951

8 [8, 2] 5/3 2.732050807569

9 [9, 1] 33/16 1.931851652578

10 [10, 0] 5/2 1 .

the condensation algebra we take is φ = 0 + 6. Interestingly, the lowest-energy eigenspace

of this anyon is the 7-dimensional representation of SU(2). There is a well known “cross

product” map 7⊗ 7 → 7, and correspondingly we get a multiplication map 6× 6 → 6. The

condensation algebra above is therefore a version of the octonions. The modules are

φ× 0 = φ φ× 6 = 6 + (0 + 2 + 4 + 6 + 8)

φ× 1 = 1 + (5 + 7) , φ× 7 = 7 + (1 + 3 + 5 + 7)

φ× 2 = 2 + (4 + 6 + 8) , φ× 8 = 8 + (2 + 4 + 6)

φ× 3 = 3 + (3 + 5 + 7 + 9) , φ× 9 = 9 + (3 + 5)

φ× 4 = 4 + (2 + 4 + 6 + 8 + 10) , φ× 10 = 10 + (4) .

φ× 5 = 5 + (1 + 3 + 5 + 7 + 9) , (5.2.24)

We use parenthesis to denote the lines which came from fusing with 6 in φ. The lines that

split in SU(2)10 are the lines that appear multiple times when fused with the vacuum φ.

The multiplicity dictates the number of copies the line splits up into, just as in the abelian

case. Therefore we have

3 → 31 + 32 , 6 → 61 + 62

4 → 41 + 42 , 7 → 71 + 72 .

5 → 51 + 52 . (5.2.25)

By using our knowledge that the quantum dimension should be conserved in the condensed
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phase, we work our way down the list of lines assigning a subscript label to the lines which

split. Without loss of generality, we are free to assign the subscript so that the larger

subscript values appear first in the list of lines, when reading right to left, in (5.2.24). As

an example, we write the subscripts in (5.2.24) as

φ× 0 = φ φ× 6 = 61 + (0 + 2 + 42 + 62 + 82)

φ× 1 = 1 + (52 + 72) , φ× 7 = 71 + (1 + 32 + 52 + 72)

φ× 2 = 2 + (42 + 62 + 8) , φ× 8 = 8 + (2 + 42 + 62)

φ× 3 = 31 + (32 + 52 + 72 + 9) , φ× 9 = 9 + (32 + 52)

φ× 4 = 41 + (2 + 42 + 62 + 8 + 10) , φ× 10 = 10 + (42) .

φ× 5 = 51 + (1 + 32 + 52 + 72 + 9) , (5.2.26)

Notice that while lines 5 and 7 both split, in our convention we only take 52 and 72 to be

group, which is indicated by the parenthesis. A similar story goes for 4 and 6. Now we

need to assign quantum dimensions to the lines the split and group together the lines that

have the same quantum dimension. Since the line 1 does not split and itself has quantum

dimension 1.93. . ., let us greedily assign this value to 52 and 72 because 1 appears with

52 and 72 frequently when we find the modules of φ. Then we form a grouping of lines

(1 + 52 + 72). Next, suppose we greedily assign the quantum dimension 2.73. . . , which is

that of line 2 and 8, to both 42 and 62. Then we form the group (2 + 42 + 62 + 8) of lines.

We now consider φ× 3, where we have the group (52 + 72) from earlier, and we can form

the group (32 + 9) by assigning quantum dimension 1.93. . . to 32, which is the quantum

dimension of 9. This leaves 1.41 . . . for the quantum dimension of 31, by conservation. From

φ× 1 we learned that (1 + 52 + 72) are condensed to the same line in the child theory, and

we just learned that line 9 and 32 should also be condensed to the same group. We will keep

these two lines separate, even though they share the same quantum dimension. We will

subsequently see why we do not join them when we look at φ× 5. For now, consider φ× 4

which again contains (2 + 42 + 62 + 8), something we already determined from φ× 2 should

be grouped, due to quantum dimension. This leaves 41 with q-dim 1, which is exactly the

same quantum dimension as 10, so we condense them into the same line and have (41 + 10).

From φ× 5 we see that since 52 was assigned q-dim 1.93. . . then 51 also has q-dim 1.93. . .

by the conservation of quantum dimension. However, since lines that spit should not be

condensed into the same line, 51 gets condensed into (32 + 51 + 9) while 52 gets condensed

into (1 + 52 + 72). Because 51 and 52 have the same quantum dimension, we can exchange

the two lines, so it is irrelevant whether we take 51 or 52 to be grouped with the former

or the latter. We proceed to φ× 6 and φ× 7 and from here we learn that 61 should have
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q-dim 1, and 71 should have q-dim 1.41 . . . . We will slightly abuse notation and denote the

actual vacuum of the child theory as φ = 0 + 61, which makes sense as an abelian object

coming from grouping 0 and 61, and can be given the properties of an idempotent. After

the condensation we have the lines

ℓ q-dim

φ = 0 + 61 1

(41 + 10) 1

(31 + 71) 1.41421356237

(1 + 52 + 72) 1.931851652578

(32 + 51 + 9) 1.931851652578

(2 + 42 + 62 + 8) 2.732050807569 .

(5.2.27)

The final step is to project out the lines in which the spins from the parent theory do not

agree. Therefore we only have

{(0 + 61), (41 + 10), (31 + 71)}

at the end of bosonic condensation, which correspond to the three lines in Spin(5)1. The

nonabelian spin 1/2 line labeled 4 in SU(2)10 is now abelian after condensing the nonabelian

boson, so we can further sequentially condense out (41 + 10) and only be left with the

vacuum line. It can be checked that the full algebra Aℓ = (0 + 6 + 4 + 10) in C = SU(2)10
is a Lagrangian algebra object, and therefore condensing the algebra leads to a gapped

interface [140]. Furthermore, since a fermion was condensed out the last step, the resulting

theory couples in spin structure.

We will run through another example of using the algorithm with (G2)3. The spectrum

consists of 6 lines given by

(G2)3 λ h q-dim

0 [0, 0, 3] 0 1

1 [0, 1, 2] 2/7 3.791287847478

2 [0, 2, 1] 2/3 5.791287847478

3 [0, 3, 0] 8/7 3.791287847478

4 [1, 0, 1] 4/7 3.791287847478

5 [1, 1, 0] 1 4.791287847478

We condense the algebra φ = 0 + 5 and see that in the modules the lines that repeat are 2
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and 5, and splits into

2 → 21 + 22 + 23 , 5 → 51 + 52 .

The lines with subscripts written using our previous prescription is listed on the right:

φ× 0 = φ , φ× 0 = φ ,

φ× 1 = 1 + (2 + 3 + 4 + 5) , φ× 1 = 1 + (23 + 3 + 4 + 52) ,

φ× 2 = 2 + (1 + 2 + 2 + 3 + 4 + 5) , φ× 2 = 21 + (1 + 22 + 23 + 3 + 4 + 52) ,

φ× 3 = 3 + (1 + 2 + 4 + 5) , φ× 3 = 3 + (1 + 23 + 4 + 52) ,

φ× 4 = 4 + (1 + 2 + 3 + 5) , φ× 4 = 4 + (1 + 23 + 3 + 52) ,

φ× 5 = 5 + (0 + 1 + 2 + 3 + 4 + 5) , φ× 5 = 51 + (0 + 1 + 23 + 3 + 4 + 52) . (5.2.28)

We start with φ × 1 and greedily assigning the quantum dimension of lines 1, 3, and 4

to 23 and 52; this gives us the group (1 + 23 + 3 + 4 + 52). When we look at φ × 2 we

notice that some of the lines in parenthesis already appeared in φ× 1, where we decided

to group them together. We leave 21 and 22 separated and not grouped, due to the fact

stated earlier that we do not group lines together which split from the same parent line.

When we consider φ× 5 there is 51 which we group with 0, since the q-dim is 1, and again

we have (1 + 23 + 3+ 4+ 52) reappearing. At the end of the condensation we have the lines

ℓ q-dim

φ = 0 + 51 1

(41 + 10) 1

21 1

22 1

(1 + 23 + 3 + 4 + 52) 3.791287847478 ,

(5.2.29)

but we project out (1 + 23 + 3 + 4 + 52) because the lines do not all have the same spin.

We see that condensing the line 5 in the parent theory results in 51 being identified with

the vacuum. Furthermore, the lines 21, 22 have the right q-dim to both be abelian lines,

which they must be or else one of them will have a quantum dimension that is less than 1.

One may wonder how to determine if our choice of condensation algebra is valid, in the

sense that it will lead to a consistent child phase? In order for the child phase to be consistent,

it must be true that the lines within the modules can be consistently assigned quantum

dimension, while obeying the conservation requirement. In the process of constructing the

modules of an algebra, if the quantum dimension for a line that has been split is reduced

to a value that is smaller than the smallest number on the list of q-dim from the original
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spectrum, yet still not abelian, then our algorithm can rule out the condensation algebra.

We stress that to generalize the notion of “condensability”, a canonical way of being able

to assign quantum dimensions is key.

As a tractable example consider (G2)2 which has a simple spectrum given by

(G2)2 λ h q-dim

0 [0, 0, 2] 0 1

1 [0, 1, 1] 1/3 2.879385241572

2 [0, 2, 0] 7/9 2.532088886238

3 [1, 0, 0] 2/3 1.879385241572

We can consider three algebras φ1 = 0 + 1, φ2 = 0 + 2, and φ3 = 0 + 3. The three modules

are given by

φ1 × 0 = φ1 φ2 × 0 = φ2 φ3 × 0 = φ3

φ1 × 1 = 11 + (0 + 12 + 22 + 3) φ2 × 1 = 11 + (12 + 22 + 32) φ3 × 1 = 11 + (12 + 2)

φ1 × 2 = 21 + (12 + 22 + 3) φ2 × 2 = 21 + (0 + 12 + 22) φ3 × 2 = 2 + (12 + 3)

φ1 × 3 = 3 + (11 + 22) φ2 × 3 = 31 + (12 + 32) φ3 × 3 = 3 + (0 + 2) ,

each one having issues that we now point out. In the module for φ1, the grouping (12+22+3)

that we give the q-dim 1.87 . . . means that the quantum dimension of 21 is less than 1. In

the module for φ2 the grouping (12 + 22 + 32) that we assign q-dim 1.53 . . . means that the

quantum dimension of 31 is less than 1. The module for φ3 does not make 3 into an abelian

line to join with the vacuum 0.

Another useful application of this notion of condensibility based on quantum dimenions

is that we can see that the proper way to condense out nonabelian spin 1
n
lines is to do so

sequentially. In some cases, trying to pick an algebra that only includes a fermion, alike

how we did for a nonabelian boson, will lead to quantum dimensions not being able to split

properly. However if we condense the boson first resulting in an abelian fermion, then the

quantum dimensions will be able to split properly6 As an example consider (F4)3, the data

of which is presented in appendix A.2. If we wanted to just naively condense the nonabelian

fermion, the condensation algebra one can choose is φ = 0 + 1, which leads to the modules

φ× 0 = φ , φ× 5 = 51 + (22 + 32 + 42 + 52

φ× 1 = 11 + (0 + 12 + 22 + 42 + 7) , + 53 + 62 + 82) ,

6There are examples where condensing out a nonabelian fractional spin anyon is possible, namely in
Sp(16)1.
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φ× 2 = 21 + (12 + 22 + 32 + 42 + 53 + 82) , φ× 6 = 61 + (42 + 53 + 62) ,

φ× 3 = 31 + (22 + 32 + 53) , φ× 7 = 7 + (12 + 42 + 82) ,

φ× 4 = 41 + (12 + 22 + 42 + 53 + 62 + 7 + 82) , φ× 8 = 81 + (22 + 42 + 53 + 62

+ 7 + 82) . (5.2.30)

Greedily assigning the q-dim 4.49 . . . of 7 to the group (12 + 22 + 32 + 42 + 53 + 62 + 7+ 82)

leaves 31 with zero quantum dimension which contradicts the fact that the line 3 splits. To

distribute 4.49 . . . among 31 and 32 would result in both of the lines being simple objects in

the gauged theory, yet at least one would be nonabelian carrying q-dim less than 4.49 . . ..

In appendix A.2 we will show that by condensing the nonabelian boson first, that the spin

1/2 line becomes abelian, and we can seqentially condense it.

5.3. Modular Invariants and Condensation

Having done a couple of examples where we find the lines of the child theory in the

previous section, we now present some of the modular invariants of those theories, and

others. It is well known that the modular invariants should correspond to the Frobenius

algebra objects up to Morita equivalence. So in particular, there are modular invariants

that correspond to nonabelian bosonic condensation; we will refer to them as “extension”

modular invariants. This is not the end of the story as there also exists “permutation”

modular invariants that pair up the lines with the same spin and in certain cases displays

some symmetry of the theory. This is also referred to in the literature as the “charge

conjugation” modular invariant. One might expect that these modular invariants arise

from an algebra that includes a boson, but we can also find these permutation invariants

in theories with no bosons at all! In this case, finding the condensation algebra for these

invariants can be complicated. When the fusion rules are grouplike, it is more likely that we

are able to determine what is the algebra that gives the permutation invariant. For abelian

Chern-Simons theories, their unitary symmetries, documented in [81], is reflected by the

modular invariants. Furthermore for SU(2)k theories where there is an ADE classification

of modular invariants [34, 166], it can be checked that the modular data as well as the

F - and R-symbols reflect the symmetries given by the permutation modular invariants.

Motivated by this, one could study the modular invariants that are not of the extension

type, to reveal a subset of the symmetries of the nonabelian Chern-Simons, even though we

are unable to check these symmetries entirely since we do not have knowledge of the F -

and R-symbols for a general theory.

As an example of an algebra associated to a permutation, consider the toric code (=
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Spin(16)1). There are two bosons and a fermion and there is a global Z2 symmetry which is

usually called “electromagnetic duality” but which might as well be called charge conjugation.

It is implemented by (the Morita equivalence class of) an algebra whose underlying object

is 1 + fermion. As another example one can consider is Spin(4)1 = SU(2)21 = semion2. Its

particles are the vacuum, a fermion, and two semions, and again 1+fermion is an algebra

who implements a Z2 global symmetry. In this case that global symmetry switches the

two semions. We will give more nontrivial examples such as SU(N)1, (E6)1, where we can

explicitly see the association of a permutation modular invariant to an algebra.

While the modular invariants for the Lagrangian algebra correspond to gapped bound-

aries, the permutation types do not give gapped boundaries. This fact is manifest when

we consider the embedding SU(3)1 × (E6)1 ⊂ (E8)1. The product theory is abelian and

contains 9 lines given by the following table, where spins of the SU(3)1 lines are on the

horizontal axis, and the spins of the (E6)1 lines are on the vertical axis:

SU(3)1 × (E6)1 0 1/3 1/3

0 0 1/3 1/3

2/3 2/3 1 1

2/3 2/3 1 1 .

(5.3.1)

The two Lagrangian algebras are given by the three lines on the diagonal, and the line 0

with the two off diagonal bosons. The nondiagonal modular invariants however are

1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0


,



1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0


, (5.3.2)
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1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0


, (5.3.3)

with the rows labeled by {{0,0}, {0,1},{0,2},{1,0},{1,1},{1,2},{2,0},{2,1},{2,2}} with the

first entry a line in SU(3)1 and the second entry a line in (E6)1. Each matrix squares to

the identity, and none corresponds to either of the Lagrangian algebras. In particular, the

last two modular invariants correspond to the algebra (0 + 2/3 + 2/3) and (0 + 1/3 + 1/3)

from the two separate theories. Therefore, they do not give gapped boundaries. In cases

when the Lagrangian algebra contains a fermion we have to couple to spin structure in

order to get the gapped boundary; this is because Lagrangian algebras require not only

associativity but also commutativity. Therefore the gapped boundary will have to be seen

through the super modular invariant. It is a natural generalization that coupling to higher

spin structures can also make an algebra composed of 1/n-spin anyons commutative.

5.3.1. Modular invariants for spin 1/n anyons

The first of these new modular invariants arising when n = 2 is recognized as supermodular

invariants. These are matrices M such that
[M,S] = [M,T 2] = 0 ,

T MT −1 is integral,

(ST )M(ST )−1 has positive integral values.

(5.3.4)

These exist when there are extension modular invariants coming from condensing a fermion.

There are also supermodular invariants which are permutation matrices, but permute the

lines with spins differing by 1/2.

Given the fact that some super modular invariants correspond to condensing out a

fermion, let us consider (E7)1, which has an abelian line but is spin 3/4. When we tensor

this theory with itself we get a fermion which generates a center Z2 one-form symmetry in
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the overall Z2 × Z2 symmetry, and also an extension type super modular invariant
1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

 . (5.3.5)

This indicates that the fermion composed of the two 3/4 lines should be condensable. But

then to allow the constituent lines of the fermion to also be condensable, we should allow the

original abelian 3/4 lines to be “condensable”, at least when we couple to proper background

r-structure. Thus, the super modular invariant motivates us to naturally enlarge the notion

of the fiber functor beyond SVec, as was discussed at the end of §5.2.1.

We can generalize the conditions for a supermodular invariant further to matrices M,

which pair up lines that differ by spin 1/n, such that

[M, T n ] = [M, T n] = 0. (5.3.6)

Such nontrivial M of extension type would fit in conjointly with the discussion in §5.2.1
about the possibility to condense a spin 1/n anyon. We denote T = T.S.T as the operation

what replaces S in the search for (super)modular invariants. This is motivated by the fact

that we can take our three dimensional theory and compactify the two spatial dimensions

on a torus. The Hilbert space for the 3d theory restricted to the torus, has a basis given by

conformal blocks i.e. the spectrum of lines, and comes with an action of a mapping class

group of the torus.

We insert a defect along the time direction, as in figure 5.4, which intertwines the

representation of the modular group Γ = SL2(Z) acting on the torus on each side of the

defect. In particular, the matrices

T :

(
a

b

)
→
(

a

a+ b

)
, T :

(
a

b

)
→
(
a+ b

b

)
(5.3.7)

give the Dehn twists on the torus. The matrices T n and T n also belong to the group

Γ(n) =

{(
a b

c d

)
∈ SL2(Z)

∣∣∣ a ≡ d ≡ 1 mod n, b ≡ c ≡ 0 mod n

}
, (5.3.8)

which is a congruence subgroup of Γ. In the set of matrices M that satisfy (5.3.6), some

might not correspond to interfaces that are built via true commutative algebra objects and
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Γ M Γ

Figure 5.4: Each of the black tori represents the spatial dimensions of the 3d theory, with
time running horizontally. The blue torus indicates a defect that can be placed in this
quantum mechanics model at an instant in time. The black tori are both acted on by the
modular group, so the defect M intertwines the two actions. The 2d theory on the black
tori can in particular be the chiral or anti-chiral half of a WZW model.

thus do not contain the same physical interpretation as a modular invariant that came from

condensing a Lagrangian algebra. These M only take the interpretation of intertwiners for

Γ(n) representations, in the same spirit as how there can exist modular invariants M that

are intertwiners for Γ, i.e. matrices that commute with the modular actions, but do not

come from Lagrangian algebras.

Nevertheless, to put these M into context, let us change perspectives from asking the

categorical questions one can pose regarding the data of MTCs. If we look solely from

a representation theory point of view, it is surprising that matrices in the representation

of Γ(n) can appear when we study MTCs. Given a representation of Γ, there can be

endomorphisms of this representation as well as endomorphisms when we restrict to a

subgroup Γ(n). A reasonable question to ask is how one can construct the endomorphisms

of Γ(n), and where did they come from. It appears the condensation procedure we use can

be useful to answering this question. Moreover, even the motivation for restricting to Γ(n)

representations is also clear as it came from observing the spins in the spectrum of anyons.

To make the discussion of using anyon condensation to find Γ(n) representations more

concrete, we give the explicit form of M in the examples SU(4)2/Z2, (E6)1 × (E7)1 with

the boson condensed out, and Spin(5)1. The spectrum of SU(4)2 is given by the following
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table on the left, and we can condense the boson:

SU(4)2 λ h q-dim

0 [0, 0, 0, 2] 0 1

1 [0, 0, 2, 0] 3/4 1

2 [0, 2, 0, 0] 1 1

3 [2, 0, 0, 0] 3/4 1

4 [0, 0, 1, 1] 5/16 1.732050807569

5 [0, 1, 1, 0] 13/16 1.732050807569

6 [1, 1, 0, 0] 13/16 1.732050807569

7 [1, 0, 0, 1] 5/16 1.732050807569

8 [1, 0, 1, 0] 2/3 2

9 [0, 1, 0, 1] 5/12 2

φ=(0+2)−→

SU(4)2/Z2 ℓ q-dim

0 φ = (0 + 2) 1

1 (1 + 3) 1

2 81 1

3 82 1

4 91 1

5 92 1 .

We notice that 81,2 and 91,2 differ by 3/4 ≡ −1/4 mod 1, so we consider the following

matrices for M that pair up lines with spins that differ by −1/4

1 1 0 0 0 0

1 1 0 0 0 0

0 0 1 0 0 1

0 0 0 1 1 0

0 0 0 1 1 0

0 0 1 0 0 1


,



1 1 0 0 0 0

1 1 0 0 0 0

0 0 1 0 1 0

0 0 0 1 0 1

0 0 1 0 1 0

0 0 0 1 0 1


, (5.3.9)

and one can check that both commute with T 4 = (T−1.S.T−1)4 and (T−1)4. Here, T and S

are those of the theory after condensing the boson i.e. SU(4)2/Z2. If we proceed in our

usual manner of finding modules for an algebra object, we can consider the modules of

φ = 0 + 1 in the table for SU(4)2/Z2 and we get

φ× 0 = φ φ× 3 = 3 + 4

φ× 1 = φ φ× 4 = 4 + 3

φ× 2 = 2 + 5 φ× 5 = 2 + 5 . (5.3.10)

Therefore, the first of the two matrices in (5.3.9) corresponds to this φ.
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The spectrum of (E6)1 × (E7)1 contains 6 lines given by

(E6)1 × (E7)1 ℓ h q-dim

0 {0, 0} 0 1

1 {1, 1} 17/12 1

2 {2, 0} 2/3 1

3 {0, 1} 3/4 1

4 {1, 0} 2/3 1

5 {2, 1} 17/12 1

and we see that by condensing φ = 0 + 3 the other lines are grouped as (1 + 4) and (2 + 5).

The explicit matrix that corresponds to this condensation is

M =



1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1


, (5.3.11)

which can be checked commutes with T 4 and (T−1)4. Just as with SU(4)2/Z2, we can

construct another M by grouping the lines by (1 + 2) and (4 + 5), but this is not what φ

produces, so is unphysical.

The spectrum of Spin(5)2 is given by the following table on the left, where the boson

can be condensed

Spin(5)2 λ h q-dim

0 [0, 0, 2] 0 1

1 [2, 0, 0] 1 1

2 [0, 1, 1] 1/4 2.236067977500

3 [1, 1, 0] 3/4 2.236067977500

4 [0, 2, 0] 3/5 2

5 [1, 0, 1] 2/5 2

φ=(0+1)−→

ℓ q-dim

φ = (0 + 1) 1

41 1

42 1

51 1

52 1 .

In this case, the spins of the child theory are all fifth roots of unity, and thus T 5 = id.

We also find that T 5 is proportional to the identity, and thus all matrices satisfy (5.3.6),

indicating there is a plethora of possible condensable algebras if we couple to background
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r-structure 7.

We end the discussion on generalizing modular invariants with the case of (G2)2, which

does not have such an M as in (5.3.6). Even though the spectrum contains two lines that

differ by 1/3, the spin 1/3 line here is nonabelian. It was shown earlier that this spin 1
3
was

also not condensable, by the criterion we gave for a condensation in §5.2.2. If one were to

consider the matrices that paired up the lines differing by spin 1/3 such as

M =


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 , (5.3.12)

one would find that none commute with T 3. This further supports our claim that there are

no condensations possible, and that if one were to condense a spin 1/n line, then it must

be abelian.

5.3.2. Modular invariants of tensored theories

We now consider in more depth what modular invariants one finds when we tensor theories.

In this case, some of the lines may become bosons when combined with other lines, but are

still not condensable algebras. This reinforces the fact that it is not the anyon necessarily

that is crucial, but the algebra object. Just because some anyons might be nonabelian

bosons, does not mean they belong to a condensation algebra, e.g. the Fibonacci category

has no gapped boundary for any tensor product of the theory with itself [59]. When

one considers a tensored theory such as (Gk)
n, there is an inherent symmetry group with

order n! that permutes the theories among themselves and is also reflected in the modular

invariants of the tensored theory. From a physical point of view, recall that automorphisms

of the theory are zero-form symmetries and therefore enacted by surface operators for our

purposes. We will illustrate this explicitly in the example (E7)
3
1. In a Reshetikhin- Turaev

type theory, all of the surfaces arise as condensation descendants of lines by means described

in §5.2. In this way we can think of the permutation modular invariants as being built from

algebras.

To make contact with the previous section, we first look at the nondiagonal modular

7In addition to the matrices that correspond to algebras, we also get matrices that do not correspond to
algebras since any general 6× 6 matrix satisfies (5.3.6).
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invariants of SU(3)3 given by

1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1


,



1 1 1 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 3


,

(5.3.13)

which is a permutation invariant and the extension invariant, from gauging the one-form

symmetry. There is a new nondiagonal super modular invariant given by

1 1 1 0 0 0 0 0 0 1

1 1 1 0 0 0 0 0 0 1

1 1 1 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 1


, (5.3.14)

which is the result of sequentially condensing out either of the three fermions in (5.2.16).
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Moving onto SU(2)10, the nondiagonal modular invariants are

1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1



,



1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1 0



.

(5.3.15)

There also exist super modular invariants for this theory, given by

1 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 1



,



1 0 0 0 1 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 1 0 0 0 1



,

(5.3.16)

the first is the permutation type that corresponds to condensing out the algebra φ = 0+ 10.

By computing the modules of φ one can see that indeed the lines are paired as given by

the left matrix:

φ× 0 = φ φ× 6 = 6 + 4

φ× 1 = 1 + 9 , φ× 7 = 7 + 3

φ× 2 = 2 + 8 , φ× 8 = 8 + 2

φ× 3 = 3 + 7 , φ× 9 = 9 + 1

φ× 4 = 4 + 6 , φ× 10 = φ .
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φ× 5 = 51 + 52 , (5.3.17)

The latter modular invariant corresponds to condensing out the Lagrangian algebra, which

included a fermion.

We give another example of finding the algebra that gives a permutation invariant by

considering SU(N)1 with N = 2n+ 1. This is an abelian theory with Z2n+1 fusion rules,

and associator κ ∈ H3(Z2n+1; U(1)) that is trivial. The algebras up to Morita equivalence

i.e. the modules of the fusion category with fusion rules G and associator κ, are in bijection

with subgroups H ⊂ G and β ∈ C2(H; U(1)) with dβ = κ|H . There is always the trivial

subgroup, and the whole group itself. These give the diagonal modular invariant, and the

permutation modular invariant – with the condensation algebra built by all of the lines

φ = 0 + 1 + . . .+ 2n. For SU(N)1 with N = 2n, the associator is nontrivial and given by n

mod 2n. This is an obstruction to creating an algebra out of all the anyons, but we can

form an associative algebra from the even anyons φ = 0+2+ . . .+2n−2 which corresponds

to the charge conjugation modular invariant.

We now present a theory that is formed as a tensor product of three copies of (E7)1.

The spectrum is given by

(E7)
3
1 {ℓ1, ℓ2, ℓ3} h q-dim

0 {0, 0, 0} 0 1

1 {0, 0, 1} 3/4 1

2 {0, 1, 0} 3/4 1

3 {0, 1, 1} 3/2 1

4 {1, 0, 0} 3/4 1

5 {1, 0, 1} 3/2 1

6 {1, 1, 0} 3/2 1

7 {1, 1, 1} 9/4 1 .

There are indeed five nondiagonal modular invariants of (E7)
3
1, three of which give Z2
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symmetries

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1


,



1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 1 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1


, (5.3.18)



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


, (5.3.19)

and two which give a Z3 symmetry

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1


,



1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1


. (5.3.20)

The three Z2’s are interfaces between any two of the three (E7)1 theories, and the Z3

symmetry allows us to cyclically go between the three (E7)1’s. For more discussion on these

surface defects see [36, 175]. As for the super modular invariants of this product theory, we

find 15 in total: 6 that were already mentioned and 9 new ones. Of the new matrices are
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idempotents:

1 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 0

0 1 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1


,



1 0 0 1 0 0 0 0

0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0

0 0 0 0 1 0 0 1


, (5.3.21)

formed from (0 + 3)(0 + 6) + (4 + 7)(1 + 7) and its transpose,

1 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 1


,



1 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 1


, (5.3.22)

formed from (0 + 3)(0 + 5) + (4 + 7)(2 + 7) and its conjugate, and

1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 1


,



1 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1


, (5.3.23)

formed from (0 + 5)(0 + 6) + (2 + 7)(1 + 7) and its conjugate. There are furthermore

matrices that are not idempotent, but whose elements grow as 2n−1 where n is the power
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in which the matrix is raised

1 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 1


,



1 0 0 0 0 0 1 0

0 1 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 0

0 1 0 0 0 0 0 1


, (5.3.24)



1 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0

0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 1


. (5.3.25)

The three total matrices in (5.3.24) and (5.3.25) are formed from

|0 + 6|2 + |1 + 7|2 , (5.3.26a)

|0 + 5|2 + |2 + 7|2 , (5.3.26b)

|0 + 3|2 + |4 + 7|2 . (5.3.26c)

It is natural to expect that the lines in the super modular invariant are grouped such that

they differ by 1
2
in spin. One can check that by condensing out (0+ 3), (0+ 5), (0+ 6), that

the lines which remain are (4 + 7), (2 + 7), and (4 + 7) respectively. Thus the equations

in (5.3.21) (5.3.22) (5.3.23) are the ones that “mix” two choices of condensation, and the

expressions in (5.3.26) take each condensate individually.

5.4. Ungauging Anyons

We now consider starting off with some child theory D which is obtained from condensing

some algebra in a parent C, and present a method for studying the S-matrix elements of C.
The two MTCs C and D separated by an interface F , and both acting on F by a braided
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monoidal map C ⊠D → Z(F). Here, D means the category with opposite braiding, and

Z means Drinfeld center. This has the structure of a braided monoidal category [162, 92]

with braiding given by

Z(F) := {(w, βx) |w, x ∈ F and βx : w ⊗ x→ x ⊗ w

is natural in x, such that βx⊗y = βy ⊗ βx}. (5.4.1)

Thus there are two actions C → Z(F) and D → Z(F), which commute 8. This implies that

C and D are each other’s commutants in Z(F) i.e. if we know D and F and D → Z(F),

then we can compute C. It is precisely the subcategory of Z(F) of all objects that braid

trivially with everything in D, and similarly in the other order. In this way it is possible

to reconstruct C from its “boundary” F 9. The composition C → Z(F) → D is dominant,

in that every object is a direct summand of objects in the image. On the other hand

D → Z(F) → C is not dominant, as we have already learned from gauging condensation

algebras.

We now review the details of the consistency relations that we will be using to reconstruct

S of the parent. Consider a boundary line ℓ that is confined to the interface F , and another

line α on the wall brought in by moving it from the bulk D. There is strictly speaking

more information that α carries in the bulk, which might have been forgotten by moving

to the boundary, but we can still uplift α from the wall back in to the bulk D. Since α

exists as a child line, it can be restricted back to the parent, where it can pass around ℓ. In

particular, if on the wall we have the configuration α then ℓ, we can commute the two lines

by lifting α into either of the bulks, which gives it a dimension to move around ℓ. So we

have a configuration of ℓ then α, as summarized in figure 5.5. On the D side, α is passing

an invisible line since ℓ does not lift off the wall. On the parent side, both α and ℓ can be

restricted to their respective lines belonging to the theory C. In general, both α and ℓ are

semisimple with respect to the lines of C, thus there can be multiple choices for restrictions.

Since the two ways of α passing ℓ are equivalent, then Sα,ℓ = 0 in the parent, where the 0

denotes the fact that the braiding in the child theory is trivial among these two lines.

This is just stressing that the functor from D → F is also central. The compatibility

for the lines in C with the lifting procedure is if

C = {relative center ofZ(F ;D)} . (5.4.2)

8Actually, the map C ⊠D → Z(F) is an equivalence.
9The term boundary is used a bit loosely because I don’t mean a true boundary condition, but an

interface to some other TFT. A boundary condition is a special case where it is an interface to the vacuum.
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×
•

C D C D

×
•α

ℓ

α

ℓ

Figure 5.5: We give a top down view of the interface, which is represented by the solid
line, that separates theories C and D. Suppose that α is a line that exists in the parent
theory, but lifts off to the child theory. Then it can pass by the totally confined object in
two equivalent ways.

By definition, an object X ∈ Z(F ;D) is an underlying object X ∈ F together with

half-braidings X ⊗ Y ∼ Y ⊗X for all Y ∈ F , monoidality, and commutativity with D ⊂ F .

Furthermore, as can be seen in figure 5.6 given a, b lines on the wall where a ∈ C and b ∈ D
originally, if we move a around b, then we move b around a, the two actions commute. In

this case the S-matrix of the child can directly give the S-matrix elements of the parent,

and we just need to “pull-back” the data.

Already in the case where D is the child theory as a result of condensing an abelian line

from C, it is nontrivial to use the consistency relations explained above to construct the

S-matrix of C. One could ask the obvious question which is “what is the minimum data of

F and D that needs to be given to determind C uniquely?” This question goes beyond the

scope and this paper, and perhaps does not even have a general answer for any MTC C.
For our purposes we will provide the content of the line spectrum and fusion rules on the

interface F , as well as the S-matrix of the child theory which can be calculated as in [83],

all in terms of the simple objects of C.
We consider an example where the fusion information of the category F is not enough

to construct the exact parent theory (even though we might be able to attain the S-matrix),

and we also need to give extra data in form of the associator. Let us suppose that D is

trivial, and let F = Vecω[Zp] for p an odd prime. The fusion rules are independent of the

cocycle ω ∈ H3(Zp; U(1)) known as the associator. By the Bockstein homomorphism for

the short exact sequence

0 → Z → R → U(1) → 0 , (5.4.3)

ω is mapped to H4(Zp;Z), so β(ω) ∈ H4(Zp;Z). There also exists a “squaring” map that

goes from

H2(Zp;Z) → H4(Zp;Z) . (5.4.4)
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•

•

C D C D

•

•

a

a

b

b

Figure 5.6: Since either a or b may lift off the wall, the configuration obtained from passing
either one around the other by going into the respective bulk is equivalent.

Furthermore, the automorphisms of Zp permute the entries in H2(Zp;Z) and so permute

the ω such that β(ω) = Square. The three possibilities that ω can take are,

ω = 0, β(ω) = Square, β(ω) = non-Square. (5.4.5)

The parent is just the Drinfeld center of F , so when ω = 0, we denote C0 = Zp × Zp, and
for both of the other values of ω, the parent is C1 = Zp2 . At the level of groups, the map

C0 → F takes (a, b) → [b], where a and b are valued mod p. In other words, the line labeled

[j] ∈ F is

[j] = {(0, j), (1, j), . . . , (p− 1, j)} , (5.4.6)

i.e. comes from p many lines in the parent. In the case of C1 the map takes (ap+ b) → [b].

Given this, one could not tell the case of C0 and C1 apart because in either of the ways that

we label lines in the two parents, the label shows up as [b] when you move to the wall 10.

Thus without giving the associator for the wall category F , the fusion of the lines on F is

not sufficient to give a unique parent in this example.

5.4.1. Analysis of Ising ⊠ Ising

Before we explicitly reconstruct S-matrix elements, it is useful to use the consistency

relations and apply them to evaluate B elements where by B(a, b) we mean the result
Sab

S1b
, where Sab is the trace of the full braiding of lines a, b. Let C be Ising⊠ Ising, and by

condensing φ = ⊮⊮+ ϵϵ, the child theory is the Toric code with

(⊮⊮+ ϵϵ) = 1 , (⊮ϵ+ ϵ⊮) = f,

σσ1 + σσ2 = e+m. (5.4.7)

10If we are also given some fusion information about the parent, then we could at least distinguish C0
from C1.
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Toric Code

(⊮⊮+ εε) = 1
(⊮ε+ ε⊮) = f

(σσ)1 = e
(σσ)2 = m

c1 = ⊮σ + ϵσ
c2 = σ⊮+ σϵ

Ising⊠ Ising

Figure 5.7: All lines of the fusion category on the wall are written in terms of the data of
the parent theory. The lines that can not lift off the wall are c1 and c2. The data of the
Toric Code is drawn in the bulk but can be brought to the wall.

The lines that are totally confined are given by

c1 = ⊮σ + ϵσ , c2 = σ⊮+ σϵ . (5.4.8)

The picture one should have in mind is given by figure 5.7.

• Braiding of lines that exist in the child theory

Suppose we wanted to determine Sσσ,σσ in the parent. There is a relationship between

the S-matrix of Toric code and Ising⊠ Ising. This is like a “restriction” map onto the

parent theory from the child theory, and is a less expensive way of recovering the some

of the S-matrix elements of the parent, without needing the full machinery of the fusion

category on the wall. This says that if we can build a line in the parent theory, as some data

that comes from the child theory, then we can restrict the S-matrix from the child MTC to

get the S-matrix of the parent. We know that the line e+m in the child restricts to σσ in

the parent. Since we know Se+m,e+m = 0, the restriction of this across the boundary is zero.

Indeed with knowledge of C we find 11

Sσσ,σσ = (Rσσ,σσ

⊮⊮ )2 d⊮⊮ + (Rσσ,σσ
ϵϵ )2 dϵϵ + (Rσσ,σσ

⊮ϵ )2 d⊮ϵ + (Rσσ,σσ

ϵ⊮ )2 dϵ⊮ = 0 . (5.4.9)

While some elements can be restricted, in general we will need to have more knowledge

of the fusion rules of the totally confined lines to understand the braiding in the parent

11The S-matrix elements Sa,b are given by Ra,b
i Rb,a

i .

151



theory. Thus we need to know c1 × c2 = e+m. From the values of B(1, f), B(e+m, 1)

and B(e+m, f) in the Toric code, by restriction we get B(1, f) restricts to

B(⊮⊮,⊮ϵ) = 1 , B(ϵϵ,⊮ϵ) = 1

B(⊮⊮, ϵ⊮) = 1 , B(ϵϵ, ϵ⊮) = 1 . (5.4.10)

Furthermore B(e+m, 1) and B(e+m, f) restrict to

B(σσ,⊮ϵ) = −2 , B(σσ, ϵ⊮)− 2 ,

and

B(σσ,⊮⊮) = 2 , B(σσ, ϵϵ) = 2 .

• Braiding of totally confined lines in the parent

The next task to understand is how the confined lines on the wall, ⊮σ+ ϵσ and σ⊮+σϵ,

braid in the parent theory. These two lines do not lift to the Toric code side, so we can

not simply restrict the S-matrix from the Toric code to get the braiding. To answer this,

suppose the line ⊮ϵ + ϵ⊮ is brought in from the child theory to the wall. On the wall,

(⊮ϵ+ ϵ⊮)× (⊮σ+ ϵσ)
∼=→ (⊮σ+ ϵσ)× (⊮ϵ+ ϵ⊮) because (⊮ϵ+ ϵ⊮) lifts off to the Toric code

side as f , and so we can bring it around ⊮σ + ϵσ. Furthermore ⊮σ + ϵσ restricted to the

parent becomes ⊮σ or ϵσ and similarly ⊮ϵ+ ϵ⊮ becomes ⊮ϵ or ϵ⊮. Thus, we consider the

braidings B(⊮σ,⊮ϵ), B(ϵσ,⊮ϵ). An important fact to notice is that the lines {1, f, c1}, as
a subcategory of the wall fusion category, have the same fusion rules as the Ising category.

Here, c1 has the fusion rules as the σ line. Therefore, B(⊮σ, 1ϵ) = −
√
2 in the parent

theory to reflect the fact that B(σ, f) = −
√
2 in Ising. We notice that the spin of ϵ⊮ is the

negative of the spin of ⊮ϵ in the parent, so the braiding should have a relative negative i.e.

B(⊮σ, ϵ⊮) =
√
2. Due to the restriction of ⊮σ + σϵ from the wall to the parent, then

B(ϵσ,⊮ϵ) = −
√
2, B(ϵσ, ϵ⊮) =

√
2 . (5.4.11)

The next object to consider is B(σ⊮,⊮ϵ), which is natural to consider after lifting c2 to

the parent. Similar to before, we notice that {1, f, c2} also can be used to create a Ising

subcategory. Therefore

B(σ⊮, ϵ⊮) = B(σ, f) = −
√
2 , B(σ⊮,⊮ϵ) =

√
2 ,

B(σϵ, ϵ⊮) = −
√
2 , B(σϵ,⊮ϵ) =

√
2 .
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We now consider the braiding of ⊮σ and σ⊮, or in general the braiding of two lines both

comprising of σ in the parent theory. The braiding of B(σ⊮, σϵ) in the parent is the

restriction of c1 and c2 from the wall. This is analogous to asking about the braiding

of two particles that behave like σ in the Ising category, but we know B(σ, σ) = 0, so

B(σ⊮, σϵ) = 0. The next braidings to consider is B(σσ, σ⊮) and B(σσ, σϵ). First examine

the fusion of σσ with c1 and c2 on the wall fusion category, and notice that c1 × c2 = e+m

and so can be moved off the wall to the Toric code side. If we consider on the wall

B(σσ, c1 × c2), which after moving to the Toric code is B(e+m, e+m) = 0, this implies

that one of B(σσ, c1), B(σσ, c2) is equal to zero. But c1 and c2 should be symmetric as

particles because they play the same role in the subIsing category, and so both braidings in

the parent theory should be zero. Thus we have

B(σσ,⊮σ) = B(σσ, ϵσ) = 0 , (5.4.12)

B(σσ, σ⊮) = B(σσ, σϵ) = 0 . (5.4.13)

5.4.2. Reconstructing the Toric Code

We will now apply the consistency relations to a simple example of the Toric code to solve

for actual S-matrix elements. This MTC consists of four simple objects {1, e,m, f}. It has
following fusion and braiding rules

e× e = 1, m×m = 1, e×m = f ,

B(e, e) = B(m,m) = 1, B(e,m) = −1 .

To help with computing the matrix elements, we give some S-matrix identities involving

products and linearity; for a, b, c, d simple lines we have

Sa,b×c =
∑
ℓ

Sa,ℓN
ℓ
b,c =

Sa,bSa,c
Sa,0

, (5.4.14a)

Sa,b+c = Sa,b + Sb,c , Sa+b,c = Sa,c + Sb,c . (5.4.14b)

The Toric code has two kinds of bosonic anyon condensation given by φ = 1+e or φ = 1+m.

If we condense with φ = 1 +m, the remaining aynons {e, f} will be confined on the wall,

unable to lift to the child theory. Hence the child phase D is just the vacuum φ. On the

other hand, the wall category which is just a fusion category consists of wall vacuum 1 +m

(which in this case is identical to the condensed vacuum) and the remaining confining

anyons are grouped into a single module, e+f . Now let us try to reconstruct the Toric code
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from the above condensed phase D and the wall category; the confined lines on the wall

have a natural embedding in the Toric code. We assume the fusion rules of the confined

line with φ are known:

m× f = e, m× e = f . (5.4.15)

From the lifting property of 1 +m to be able to go to the D side of the wall, we start

off with the fact that
S1+m,e+f

S1,e+f

= 1 +
Sm,e + Sm,f
S1,e + S1,f

= 0 . (5.4.16)

using (5.4.14a) we see that

Sm,e×f =
Sm,eSm,f
Sm,1

= Sm,m , (5.4.17a)

Sm,e = Sm,m×f =
Sm,mSm,f
S1,m

, Sm,f = Sm,m×e =
Sm,mSm,e
S1,m

. (5.4.17b)

From (5.4.17b) we have the two equations

Sm,fS1,m = Sm,mSm,e , (5.4.18)

Sm,eS1,m = Sm,mSm,f , (5.4.19)

and combining the two equations we have

Sm,m − S1,m = 0, or Sm,e, + Sm,f = 0 .

But by (5.4.16), the latter can not be zero, thus we have Sm,m = S1,m. Another important

relationship is

S1,e×m =
S1,eS1,m

S1,f

→ S2
1,f = S1,eS1,m.

but S1,e and S1,m are equivalent, and S1,e ̸= −S1,f by (5.4.16), so the only consistent choice

is

S1,f = S1,e = S1,m. (5.4.20)

We now use a fact from the S-matrix of the child theory, which is the value of

S1+m,1+m = S1,1 + 2S1,m + Sm,m = 1 . (5.4.21)
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To get the value of S1,1 we use

S1,m×m =
S2
1,m

S1,1

→ S2
1,1 = S2

1,m . (5.4.22)

But there are two choices to be made for the value in (5.4.22). Suppose we take

S1,1 = S1,m. (5.4.23)

We see immediately from (5.4.21) that S11 =
1
2
. Then by using (5.4.16) and (5.4.17b) we

see

Sm,e + Sm,f = −1 ,

Sm,e = Sm,f ,

thus Sm,e = Sm,f = −1
2
. Finally, to get Sf,f notice that

Sf,f = Sf,e×m =
Sf,eSf,m
S1,f

,

so Sf,f = 1
2
. With this and the other equations relating different S-matrix elements, as

well as the symmetry between e and m, we can fully determine S of the Toric code parent

theory. One could wonder what happens if we had made the other choice in (5.4.23) by

taking S1,1 = −S1,m. If we consider

S1,m = S1,e×f =
S1,eS1,f

S1,1

(5.4.24)

we get that S1,1 = S1,f , coupled with the earlier fact that S1,f = S1,m, leads to a contradic-

tion.

It is important to remark that in our reconstruction of the parent S-matrix we assumed

the associator with respect to the fusion ring of (1 +m) and (e+m) was trivial. However,

because the lines are the group ring for the group Z2 and H3(Z2; U(1)) = Z2, there also

exists a nontrivial associator. Had we chosen the nontrivial associator, the parent theory

would be SU(2)1 ⊠ SU(2)1 aka the semion anti-semion theory. Let x denote the nontrivial

element confined on the wall such that (xx) = 1. Giving x a central structure amounts to

defining βx,− : x×− → −×x, in which the only data is βx,x ∈ C. We require that braiding
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with the trivial element is trivial

x̃(xx) (xx)x̃ ,
βx,1=1

and also the hexagon identity applies

x̃(xx) (x̃x)x

(xx)x̃ (xx̃)x

x(xx̃) x(x̃x) .

α=−1

βx,x̃βx̃,1

α=−1

βx,x̃

α=−1

This implies that β2
x,x = −1 so βx,x = ±

√
−1. If the associator was trivial, then βx,x = ±

√
1

and that’s why x would have lifted to either a boson or a fermion in the toric code. This

implies that when we choose different associators that the S-matrix in the parent theory

will be different.

If the fusion rules on the wall are not a group, then there is a set of associators, which

are solutions to some polynomial equation. In general none of the solutions have to be

trivial. In contrast, for grouplike fusion rules, one of the solutions is just a constant and

deserves to be called trivial. In the examples that we will consider the fusion category of

the wall as well as the child theory will be bosonic, and Hk the parent theory conformally

embeds into G1 of the child. Therefore, the natural algebra object of the parent is a sum of

bosonic anyons. We will use this fact to reconstruct the S-matrix elements of the parent,

without the need to solve for the possible associators of the wall fusion category; it is

surprising that it suffices to only utilize facts about relative centers and the fusion rules

on the wall. In general, given a theory with finitely many anyons, there can be infinitely

many fusion rings, but there are only a finite number of categorifications. The fact that

in our examples we are reconstructing a parent that comes from a conformal embedding

may contribute to the fact that we did not have to give the associator, yet still landed on

equations that consistently produced an S-matrix.

5.4.3. Reconstructing SU(3)3

For the case of reconstructing SU(3)3 from Spin(8)1 we will use the consistency relations to

show the relationships among S-matrix elements, we will then comment on how to obtain
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the explicit values. As we did for the Toric code, we will split up finding the S-matrix into

different cases.

• S-matrix element with only the vacuum line

From §5.2.1 the lines φ = 0 + 1 + 2 was the condensation algebra, so it can lift off the

wall to the parent or child theory. On the wall, there are three ways for the line (0 + 1 + 2)

to lift into the parent side, and go around the (0 + 1 + 2) on the wall. This is like saying

we have three equations from restricting Sφ,φ to the parent (restricting (0 + 1 + 2) back to

parent), namely

S0,(0+1+2) =
1
2
, S1,(0+1+2) =

1
2
, S2,(0+1+2) =

1
2
. (5.4.25)

In more colloquial terms, for each one of the lift to the parent side {0, 1, 2}, we could have

taken that “lift element”, moved it to the child where it becomes φ, and then gone around

φ in the child theory where Sφ,φ = 1
2
. Since each element of {0, 1, 2} is treated on “equal

footing” in terms of being in φ, then each element Sij in (5.4.25) should be equal to 1
6
, by

distribution.

• S-matrix elements containing the line 9

From the wall to the child side, 9 has three lifts as (91 + 92 + 93), resulting in the other

three nontrivial lines of Spin(8)1. Each of the lifts has an S-matrix element Sφ,9j =
1
2
in the

child, thus Sφ,91 +Sφ,92 +Sφ,93 =
3
2
. When we restrict back to the parent side (91 + 92 + 93)

restricts to 9, and (0 + 1 + 2) has three ways to restrict to the parent; figure 5.8 therefore

gives the equations

Sφ,91 + Sφ,92 + Sφ,93 = Sφ,(91+92+93)
parent−→ Sφ,9 = S0,9 + S1,9 + S2,9 =

3
2
, (5.4.26)

and so

S0,9 = S1,9 = S2,9 =
1
2
.

The confined lines are (3 + 4 + 5) and (6 + 7 + 8), since neither of these two lines lift to the

child theory, the line 9 can be braided around them by going to the child side. Restricting

this to the parent means

Sk,9 = 0 , k ∈ {3, 4, 5, 6, 7, 8}.

To determine S9,9 in the parent consider taking both of the 9’s and bringing them to the

wall, then we get (91 + 92 + 93) next to each other. We can lift them to the child side in

157



•
•

C D

(91 + 92 + 93)

φ

•
•

C D

(91 + 92 + 93)

φ•
•

C D

(91 + 92 + 93)

φ

Sφ,9 = S0,9 + S1,9 + S2,9 Sφ,91 + Sφ,92 + Sφ,93 =
3
2

=

Figure 5.8: The two ways of passing φ around the totally confined line on the wall are
equivalent, and this relates the S-matrix elements.

three ways, and go around each other. The sum
∑

i,j S9i,9j = −1
2
in the child, and therefore

in the parent we have

S9,9 = S(91+92+93),(91+92+93) = −1

2
.

• S-matrix of totally confined lines and the vacuum

We now determine the braiding of the totally confined lines with φ, and with themselves

in the parent. This is the most complicated case. We first recognize that since φ can go

around either (3 + 4 + 5) or (6 + 7 + 8) by moving to the child side, then as per figure 5.5

we get the equations

S3,0 + S3,1 + S3,2 = 0 ,

S4,0 + S4,1 + S4,2 = 0 ,

S5,0 + S5,1 + S5,2 = 0 , (5.4.27)

as well as

S6,0 + S6,1 + S6,2 = 0 ,

S7,0 + S7,1 + S7,2 = 0 ,

S8,0 + S8,1 + S8,2 = 0 . (5.4.28)

Our method of using the relative center properties is not quite enough to solve for the

matrix elements. We now employ our knowledge of the fusion of the lines on the wall, which
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we assume were given to us in the beginning. For simplicity of writing, let a = S3,0, b =

S3,1, c = S3,2. Motivated by taking 3 and encircling it around (3 + 4 + 5) we consider the

following fusions:

S3,3 = S3,4×2 =
S3,4S3,2

S3,0

, (5.4.29a)

S3,4 = S3,3×1 =
S3,3S3,1

S3,0

, (5.4.29b)

S3,5 = S3,3×2 =
S3,3S3,2

S3,0

. (5.4.29c)

Furthermore by inspecting other fusion relations we have

S3,4 = S3,5×2 =
S3,5S3,2

S3,0

, (5.4.30a)

S3,5 = S3,4×1 =
S3,4S3,1

S3,0

. (5.4.30b)

We can plug (5.4.29b) into (5.4.29a) to get a2 = bc. Also, by setting (5.4.29b) equal to

(5.4.30a) and (5.4.29c) equal to (5.4.30b) we get c2 = ab and b2 = ac. All together we have

the system

a+ b+ c = 0, a2 = bc, b2 = ac, c2 = ab, (5.4.31)

which has the solution {a, b, c} = {a, aω, aω2} and {a, aω2, aω}, where ω is a cube root of

unity. We notice that if a is real, which it is because a = S3,0 is just the quantum dimension

of 3, divided by D =
√∑

i q-dim
2
i , then the two solutions are complex conjugates. The

next piece of information which we can draw from the fusion rules on the wall is from using

the Verlinde formula. Consider the fact that 3× 3 = 6 + 8, then we have

1 = N8
3,3 =

∑
a

S3,aS3,aS
∗
8,a

S0,a

. (5.4.32)

But S∗
8,a = S3,a because 3× 3 = 0 + 9, so we can write the above formula as

1 =
∑
a

S3
3,a

S0,a

. (5.4.33)

We know that given S3,0, then S3,1 = S3,0 ω and S3,2 = S3,0 ω
2. Note that this also satisfies

the first equation in (5.4.27). The same holds true for S3,3 and S3,6 and can be easily seen
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from the fusion rules, i.e.

S3,4 = S3,3 ω , S3,5 = S3,3 ω
2 , (5.4.34a)

S3,7 = S3,6 ω , S3,8 = S3,6 ω
2 . (5.4.34b)

To use (5.4.33), we need to relate both S3,3 and S3,6 to S3,0, so then the sum can be written

with only a single unknown variable. In order to make the relations manifest we use the

following fusion rules

S3,3×3 → S3,0(S3,6 + S3,8) = S2
3,3 , (5.4.35a)

S3,3×4 → S3,0(S3,6 + S3,7) = S3,3S3,4 , (5.4.35b)

S3,3×5 → S3,0(S3,7 + S3,8) = S3,3S3,5 , (5.4.35c)

S3,3×6 → S3,0(S3,1 + S3,9) = S3,3S3,6 , (5.4.35d)

S3,3×7 → S3,0(S3,2 + S3,9) = S3,3S3,7 , (5.4.35e)

S3,3×8 → S3,0(S3,0 + S3,9) = S3,3S3,8 , (5.4.35f)

S3,3×9 → S3,0(S3,1 + S3,4 + S3,5) = S3,3S3,9 . (5.4.35g)

By using the relations in (5.4.34) and the fact that S3,9 = 0 we can simplify the equations

in (5.4.35) into

S3,0S3,6(1 + ω2) = S2
3,3 , (5.4.36a)

S3,0S3,6(1 + ω) = S2
3,3 ω , (5.4.36b)

S3,0S3,6(ω + ω2) = S2
3,3 ω

2 , (5.4.36c)

S2
3,0 ω = S3,3S3,6 , (5.4.36d)

S2
3,0 ω

2 = S3,3S3,6 ω , (5.4.36e)

S2
3,0 = S3,3S3,6 ω

2 . (5.4.36f)

The sum of equations (5.4.36a) and (5.4.36c) along with (5.4.36f) gives

S3
3,0 (1 + ω2)−1 = S3

3,3 ; (5.4.37)

by cubing (5.4.36f) and using (5.4.37) we find

S3
3,0(1 + ω2) = S3

3,6 . (5.4.38)

By the fact that (3+4+5) are grouped together, then S3,0 = S4,0 = S5,0 and S0,6 = S0,7 = S0,8
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by duality of {6, 7, 8} with {5, 4, 3}. The fusion S0,3×6 = S0,0(S0,1 + S0,9) = S0,3S0,6 gives

(S3,0 − S0,0)(S3,0 + S0,0) =
1

2
S0,0 , (5.4.39)

where all the quantities are positive. Assuming that the two factors on the left of the

equality correspond to either 1
2
or S0,0 on the right, it must therefore be that S3,0 +S0,0 =

1
2

and S3,0 − S0,0 = S0,0. We can therefore boil down (5.4.33) to

1 =
3S3

3,0

1
2
S3,0

+
3S3

3,3

S3,0

+
3S3

3,6

S3,0

=
3S3

3,0

1
2
S3,0

+
3S3

3,0 (1 + ω2)−1

S3,0

+
3S3

3,0(1 + ω2)

S3,0

(5.4.40)

which gives S3,0 =
1
3
. We summarize the relationships as follows,

S3,3 S3,4 S3,5 S3,6 S3,7 S3,8

S3,0

S0,0 = S1,0 = S2,0

ω ω ∗ ω ω

1
2

where the arrow from S3,5 to S3,6 reflects the fact that the S-matrix elements are conjugates

of each other. The arrows from S3,0 to S3,3 and S3,6 reflect equations (5.4.37) and (5.4.38).

We can construct the analogues of (5.4.29) and (5.4.30), by encircling 4 and 5 around

(3 + 4 + 5). We have

S4,3 = S4,4×2 =
S4,4S4,2

S4,0

, S5,3 = S5,4×2 =
S5,4S5,2

S5,0

, (5.4.41a)

S4,4 = S4,3×1 =
S4,3S4,1

S4,0

, S5,4 = S5,3×1 =
S5,3S5,1

S5,0

, (5.4.41b)

S4,5 = S4,3×2 =
S4,3S4,2

S4,0

. S5,5 = S5,3×2 =
S5,3S5,2

S5,0

, (5.4.41c)

as well as

S4,4 = S4,5×2 =
S4,5S4,2

S4,0

, S5,4 = S5,5×2 =
S5,5S5,2

S5,0

, (5.4.42a)
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S4,5 = S4,4×1 =
S4,4S4,1

S3,0

. S5,5 = S5,4×1 =
S5,4S5,1

S5,0

. (5.4.42b)

Just like the case with S3,0 we find

S4,1 = S4,0 ω , S4,2 = S4,0 ω
2 , (5.4.42c)

S5,1 = S5,0 ω , S5,2 = S5,0 ω
2 , (5.4.42d)

where S4,0 = S5,0 = S3,0 due to their quantum dimensions. The relations among S4,− and

S5,− are summarized by:

S4,3 S4,4 S4,5 S4,6 S4,7 S4,8 ,
ω ω ∗ ω ω

S5,3 S5,4 S5,5 S5,6 S5,7 S5,8 .
ω ω ∗ ω ω

Lastly, recall that S4,3 and S4,5 can be related to S3,0 by our previous analysis, so all the

nontrivial S-matrix elements that we could not obtain from restricting the child theory, we

can relate to S3,0.

We now make a concluding remark about reconstructing the parent S-matrix. When we

were considering the totally confined lines, as well as the child theory, all of the lines were

direct sums of simple lines in the parent theory. In this sense, we already knew about the

spectrum and fusion of the parent theory, though still, it can be nontrivial to construct the

S-matrix elements as we have seen. But one tool we gain is the Verlinde formula, which is

fundamentally important and also will be used in appendix A.3. One can wonder if it is

possible to completely construct the parent lines through only the fusion information of the

wall category.

5.5. Gauging Noninvertible symmetries: from a 2-category

perspective

One of the most exciting prospects of generalized symmetries is the study of noninvertible

symmetry operators. These are topological but instead of having a grouplike composition,

their interactions are described by a general higher category. For grouplike global symmetries,

the anomaly determines whether or not the symmetry can be gauged. The classification

of such anomalies is well known to be captured by an invertible theory one dimension

higher. Further, they can be classified using spectral sequences for group cohomology,
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and, more generally, for cobordisms as formalized in [100, 158]. Provided the anomaly

vanishes, the gauging procedure will in general reshuffle the topological content, and in

some cases add new richness into the theory in form of noninvertible operators [156, 45].

When gauging discrete abelian groups, what manifests is a dual group, which upon gauging

takes us back to the original theory. The notion of condensation was introduced in [109] as

a generalization of gauging, which applies to noninvertible symmetries. One particularly

useful perspective of condensing a symmetry involves starting from the vacuum theory

and proliferating in space (or perhaps in some subspace) a network of operators for that

symmetry which fill out a new phase [209, 44]. Since this procedure is fully topological one

can imagine running this procedure backwards and constructing a topological boundary

between some phase and the vacuum. If one can go back and forth with no obstruction,

then the symmetry is nonanomalous.

The purpose of this article is to generalize the notion of an anomaly for a symmetry, to

an anomaly for a noninvertible symmetry. We will focus on noninvertible surface operators,

for which the natural mathematical setting is a 2-category. For other applications of

2-categories in the physics literature, we refer the reader to [21, 16, 24, 203]. In general,

the 2-category C can have more structure such as a braiding, where the braiding takes

place along the morphisms of C, or a syllepsis, and we will consider both cases. If one is

in a setting were the surfaces are fully symmetric, we will show that a higher analogue of

Deligne’s theorem in [79] holds. More precisely, it was first announced in [148], that for

any symmetric fusion 2-category S, there exists a fibre 2-functor Fib : S → 2SVec to the

2-category of super-2-vector spaces. In this sense, in the fully symmetric case, there is no

obstruction to condensing all the operators, if we allow for emergent fermions. In this work

we will consider both the cases of condensing to 2Vec, the 2-category of 2-vector spaces,

and to 2SVec, where the latter involves working fermionically by condensing a fermionic

algebra. This is the noninvertible analogue of being able to gauge a symmetry. In this

article, we are mainly concerned with theories that have surface operators belonging to a

fusion 2-category C that can at least braid with each other, but are not fully symmetric.

Since C is not fully symmetric, there is no universal target that all the operators can

condense to. We instead consider a related question which involves finding a subcategory of

surface operators that enjoy more levels of monoidality than the general surface operators

in the ambient category. One such example is given by the extra data of the aforementioned

syllepsis, which can be thought of as anomaly cancellation data associated to the braiding
12. It is then a meaningful question to ask what happens to the ambient category upon

12The additional level of monoidality means that the surface can secretly ascend to a higher dimension.
For example, surfaces can braid in four total dimensions, but the data of being sylleptic means that some
set of surfaces can lift to five dimensions.
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condensing the subcategory. While working in a 2-category, if it so happens that there

exists a procedure to go to the vacuum theory, then there will be no anomalies for any

noninvertible symmetry, as all of them will have been “gauged”. This idea will be useful in

theories of gravity where it is expected that, not only there are no global symmetries, but

also no noninvertible symmetries. For more on global symmetries arising in gravitational

settings see [9, 134, 118, 7, 230].

Building on the work of the first author [77, 74], the main results of this article are

proven in §5.7. More precisely, we present the result of condensing noninvertible surfaces in

an ambient 2-category, with subsequent corollaries involving changing the properties of the

condensation monad, also called separable algebra.

Theorem C. For B a braided multifusion 2-category, condensing a braided separable algebra

B in B results in a multifusion 2-category.

Theorem D. For S a sylleptic multifusion 2-category, condensing a symmetric separable

algebra B in S, results in a braided multifusion 2-category.

Theorem E. For S a sylleptic multifusion 2-category, condensing a symmetric separable

algebra B in the symmetric center of S, results in a sylleptic multifusion 2-category. Further,

if S is symmetric, then condensing B yields a symmetric multifusion 2-category.

The auxiliary results of this article build off the main theorems by exploring particularly

nice cases where the resulting category after condensation is “grouplike”, in addition to

being braided, or sylleptic. We call these categories strongly fusion, and the operator content

is essentially captured by the surfaces [152]. The reader interested in applications of the

main theorems can go to §5.8 for explicit examples of condensations within 2-categories,

which in the right setting, yield strongly fusion categories. In particular, we show that every

symmetric fusion 2-category can be condensed to a symmetric strongly fusion 2-category.

For theories described by strongly fusion 2-categories, the obstruction to condensing to

the vacuum is given by a cohomology class, which we compute when the 2-category is

braided. In addition, we show that the obstruction to condense a symmetric strongly fusion

2-category to the 2-category of super-2-vector spaces vanishes. Thereby establishing the

following result:

Theorem F. Every symmetric fusion 2-category admits a fibre 2-functor to 2SVec.

The above theorem categorifies [79].

We now outline the contents of this article: In §5.6 we explain the graphical calculus used

for braided, sylleptic, and symmetric monoidal 2-categories. We also discuss algebras, and

the relationship between modules and condensation. In §5.7 we prove the main theorems
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about braided or sylleptic monoidal 2-category, and the result of condensing separable

algebras that are respectively braided or symmetric. We examine specific examples of

condensing separable algebras in connected and disconnected 2-categories that are interesting

for physical applications in §5.8; we find that in some cases, the 2-category becomes strongly

fusion. In §5.9 we perform cohomology computations for theories described by the braided

and symmetric strongly fusion 2-categories, and report on the obstruction to condensing

the theory to the vacuum.

5.6. Preliminaries on 2-Categories

5.6.1. Graphical Calculus

We begin by setting up the fundamental definitions and explaining the computational

language of string diagrams. We work within a monoidal 2-category C with monoidal unit

I and monoidal product □ in the sense of definition 2.3 of [212]. Thanks to the coherence

theorem of [129], we may assume without loss of generality that C is strict cubical (in

the sense that it satifiesthe conditions of definition 2.26 of [212]). In this setting, we use

the graphical calculus of [120], as described in [77] (see also [73]). In particular, we will

often omit the monoidal product □ from our notation. In addition, identity 1-morphisms

are denoted using the symbol 1. Further, the interchanger is depicted using by the string

diagram below on the left, and its inverse by that on the right:

, .

The lines represent 1-morphisms and their composition is read from top to bottom. The

string diagrams are then read from left to right, and the coupons represent 2-morphisms.

The regions between the lines represent objects of the 2-category, which are specified

uniquely by the 1-morphisms.

We also need to recall the graphical conventions related to 2-natural transformations

from [120]. In the present article, these will exclusively be used for the braiding, which will

be introduced below. Let F,G : A → B be two (weak) 2-functors, and let τ : F ⇒ G be

2-natural transformation. This means that, for every object A in A, we have a 1-morphism
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τA : F (A) → G(A), and for every 1-morphism f : A→ B in A, we have a 2-isomorphism

F (A) G(A)

F (B) G(B),

F (f)

τA

G(f)

τB

τf

The collection of these 2-isomorphisms has to satisfy the obvious coherence relations. In

our graphical language, we will depict the 2-isomorphism τf using the following diagram on

the left, and its inverse using the diagram on the right:

, .

Braided Monoidal 2-Categories

Let B a braided monoidal 2-category in the sense of definition 2.3 of [212]. In particular, C

is a monoidal 2-category, so that we use I to denote its monoidal unit, and □ to denote

its monoidal product. The coherence theorem of [128] allows us to assume that B is a

semi-strict braided monoidal 2-category. In particular, the underlying monoidal 2-category

is strict cubical. Further, B comes equipped with a braiding b, which is an adjoint 2-natural

equivalence given on objects A,B in B by

bA,B : A□B → B□A.

Further, there are two invertible modifications R and S, which are given on the objects

A,B,C of B by

ABC BCA,

BAC

b

b1
R

1b

ABC CAB

ACB

b2

1b
S

b1

where the subscript in b2 records that the braiding occurs between the first two objects on

the left and the next ones. On the other hand, b means that the braiding occurs between

the first object on the left and the next ones. These two modifications are subject to the

following relations:

a. For all objects A,B,C,D in B, we have
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= (5.6.1)

in HomB(ABCD,BCDA).

b. For all objects A,B,C,D in B, we have

= (5.6.2)

in HomB(ABCD,DABC),

c. For all objects A,B,C,D in B, we have

= (5.6.3)

in HomB(ABCD,CDAB),

d. For all objects A,B,C in B, we have

= (5.6.4)

in HomB(ABC,CBA),
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e. For all objects A in B, the adjoint 2-natural equivalences

bA,I : A□I → I□A and bI,A : I□A→ A□I

are the identity adjoint 2-natural equivalences,

f. For all objects A,B,C in B, the 2-isomorphisms RA,B,C and SA,B,C are equal to the

identity 2-isomorphism whenever either A, B, or C is equal to I.

In each of the HomB above, the first set of objects is given by the top most region bound

by 1-morphism, and the second set of objects is given by the bottom most region.

Sylleptic and Symmetric Monoidal 2-Categories

Our work will also involve sylleptic monoidal 2-categories (see definition 2.3 of [212]), these

are braided monoidal 2-categories equipped with an additional structure called a syllepsis.

Without loss of generality, we may assume that every sylleptic monoidal 2-category S

semi-strict. (This follows from a slight generalization of [131].) This means that S is a

semi-strict braided monoidal 2-category equipped with an invertible modification σ given

on the objects A,B of S by

AB AB.

BA
b

σ

b

Furthermore, the invertible modification σ satisfies the following relations:

a. For all objects A,B,C of S, we have

= (5.6.5)

in HomB(ABC,ABC),

b. For all objects A,B,C of S, we have
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= (5.6.6)

in HomB(ABC,ABC),

c. For all objects A,B ofS, the 2-isomorphisms σA,B is the identity 2-morphism whenever

either A or B is equal to I.

We give a physical interpretation of syllepsis for surfaces. Namely, two surfaces existing in

5d braid by passing one around around each other in a 2 parameter family. The surfaces

can exchange the order of which one is on top by going into the fifth dimension and using

the syllepsis.

Finally, we will also consider symmetric monoidal 2-categories. Thanks to the main

result of [131], every symmetric monoidal 2-category is equivalent to a semi-strict symmetric

monoidal 2-category that is to a semi-strict sylleptic monoidal 2-category S as defined

above, whose syllepsis satisfies

σB,A ◦ bA,B = bA,B ◦ σA,B , (5.6.7)

for every object A,B in S. Physically speaking, if the surface operators have enough

freedom to move around each other, such as in six ambient spacetime dimensions, then this

is automatic.

5.6.2. Algebras and Modules

Let C be a strict cubical monoidal 2-category. We recall the definition of an algebra in

C expressed using our graphical calculus from [77]. These objects were introduced under

the name pseudo-monoidal in [62]. The definition of an algebra in an arbitrary monoidal

2-category using our graphical conventions may be found in [73].

Definition 5.6.1. An algebra in C consists of:

1. An object A of C;

2. Two 1-morphisms m : A□A→ A and i : I → A;
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3. Three 2-isomorphisms

A A

AA,

i1

λ
m

AAA AA

AA A,

1m

m1

m

m

µ

AA

A A,

m
ρ

1i

satisfying:

a.

=

,

(5.6.8)

b.

=

.

(5.6.9)

Let us now recall the definition of a right A-module in C from [77]. Once, again the

definition in a general monoidal 2-category may be found in [73].

Definition 5.6.2. A right A-module in C consists of:

1. An object M of C;

2. A 1-morphism nM :M□A→M ;

3. Two 2-isomorphisms

MAA MA

MA M,

1m

nM1

nM

nM

νM
MA

M M,

nM

ρM
1i
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satisfying:

a.

=

,

(5.6.10)

b.

=

.

(5.6.11)

The definitions of a right A-module 1-morphism and that of a right A-module 2-morphism

in C may be found in [77]. These objects assemble into a 2-category as was proven in lemma

3.2.10 of [73].

Lemma 5.6.3. Let A be an algebra in a monoidal 2-category C. Right A-modules, right

A-module 1-morphisms, and right A-module 2-morphisms form a 2-category, which we

denote by ModC(A).

5.6.3. Higher Condensations and Separable Algebras

We now briefly review the notions of 2-condensations and 2-condensation monads. These

notions were introduced in [109] as the categorifications of the notions of split surjection

and idempotent.

Definition 5.6.4. A 2-condensation in a 2-category C consists of two objects A and B,

together with two 1-morphisms f : A⇆ B : g, and two 2-morphisms ϕ : f ◦ g ⇒ IdB and

γ : IdB ⇒ f ◦ g , such that ϕ · γ = IdIdB .

The data of 2-condensation as in the above definition induces a 2-condensation monad on

the object A.

171



Definition 5.6.5. A 2-condensation monad in C is an object A together with a 1-morphism

e : A→ A and 2-morphisms µ : e ◦ e→ e and δ : e→ e ◦ e, such that µ is associative, δ is

coassociative, the Frobenius relations holds, and µ · δ = Ide.

We say that a 2-condensation monad can be split, if it can be extended to a 2-condensation.

There is also a categorification of the concept of idempotent complete 1-category. Before

we review this definition, let us recall that a 2-category C is locally idempotent complete if

for all objects A,B ∈ C, the 1-category homC(A,B) is idempotent complete.

Definition 5.6.6. We say that a 2-category is Karoubi complete if it is locally idempotent

complete, and every 2-condensation monad can be split.

Physically, this means that any surface that arises as a condensation defect, i.e. a network

of lower dimensional objects, is included in the 2-category.

The 2-category C is locally finite semisimple if homC(A,B) is a finite semisimple C-linear
1-category (i.e. an abelian C-linear 1-category with finitely many isomorphism classes of

simple object and in which every object decomposes as a finite direct sum of simple objects).

We say that an object A of C is simple if the identity 1-morphism IdA is a simple object of

the 1-category EndC(A).

Definition 5.6.7. A finite semisimple 2-category is a locally finite semisimple 2-category,

that has adjoints for 1-morphisms, is Karoubi complete, has direct sums for objects, and

has finitely many equivalence classes of objects.

Finite semisimple 2-categories were introduced in [86]. We have recalled an equivalent

version of their definition (see theorem 3.1.7 [109]). Through proposition 1.4.5 of [86], any

object in a finite semisimple 2-category is the direct sum of finitely many simple objects,

i.e. surfaces.

Let us recall the following definition from [76]. Thanks to section 2.2 of [76], this is

equivalent to the original definition given in [86].

Definition 5.6.8. A multifusion 2-category is a finite semisimple rigid monoidal 2-category.

A fusion 2-category is a multifusion 2-category whose monoidal unit is a simple object.

Further, in a finite semisimple 2-category, two simple objects that have a nonzero 1-

morphism between them are organized into the same component of C, denoted by π0(C),

due to the categorical Schur’s lemma (see proposition 1.2.19 of [86]). In other words, π0(C)

only remembers objects up to condensation. We review the following definition from [149],

due to its prevalence in section 5.8:
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Definition 5.6.9. A multifusion 2-category C is bosonic strongly fusion if the braided

fusion 1-category ΩC = EndC(⊮C) is equivalent to Vec. It is fermionic strongly fusion if

ΩC ≃ SVec.

In such a 2-category C, the main result of [152] shows that π0(C) has grouplike fusion rules.

Definition 5.6.5 has been categorified further in [109] where the authors define an n-

condensation monad for any n. Examples of 3-condensation monads are given by separable

algebras in a monoidal 2-category as defined below. It is also convenient to introduce the

notion of a rigid algebra, which can be traced back to [116]. Rigid algebras are a weakening

of separable algebras, and were first considered in the setting of fusion 2-categories in [150].

We also point out that both of these definitions are thoroughly unpacked in section 2.1 of

[77].

Definition 5.6.10. An algebra A in a monoidal 2-category C is called rigid if the multiplication

map m : A□A → A has a right adjoint m∗ as an A-A-bimodule 1-morphism. A rigid

algebra A in C is called separable if the counit ϵm : m ◦ m∗ ⇒ IdA witnessing that m∗

is right adjoint to m as an A-A-bimodule 1-morphism has a section as an A-A-bimodule

2-morphism.

We will see the separability property appear in the theorems in section 5.7. In fact,

these results holds more generally for any 3-condensation monad. For later use, we also

record the following result, which is given by combining together proposition 3.1.2 of [77]

and corollary 2.2.3 of [72].

Proposition 5.6.11. Let A be a separable algebra in a fusion 2-category C. Then, the

2-category ModC(A) is a finite semisimple 2-category.

The physical picture for condensing surfaces in a 2-category involves finding some gapped

boundary of the initial 2-category C, and then possibly triggering another condensation in

order to map to 2SVec, see figure 5.9. This bulk boundary point of view has been given

the name of a “quiche”, in [104]. The tensor unit of the boundary can be identified with

a separable algebra A in C, and we denote it as ModC(A), the 2-category of A-modules

in C. From this point of view, condensation along a specific direction of spacetime builds

modules which usually causes the resulting 2-category to lose a level of monoidality, this is

reflected in Theorems C and D. Theorem E, however, maintains the sylleptic property due

to the extra condition of being in the symmetric center. For a description of condensation

in 1-categories where modules are explicitly built, see [169, 251].
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Category C. . . Condense A

ModC
(A) 2SVec

Figure 5.9: This gives a three dimensional view of condensing the algebra A, taking place
in a 2-category C. The resulting boundary is the category ModC(A), and 2SVec represents
the “fermionic vacuum”.

5.6.4. Relative Tensor Product

We now recall the definition of the relative tensor product over an algebra in a monoidal

2-category given in section 3 of [74]. These definitions will be important for the proofs of

the main theorems in §5.7.2 and §5.7.3. We also give sufficient criterion for the 2-category

of bimodules over an algebra to carry a monoidal structure.

Let us now fix an algebra A in a fusion 2-category C, together with M a right A-module

in C, and N a left A-module in C (for which we use the notations of appendix A of [77]).

We begin by defining A-balanced 1-morphisms and 2-morphisms out of the pair (M,N).

Definition 5.6.12. Let C be an object of C. An A-balanced 1-morphism (M,N) → C

consists of:

1. A 1-morphism f :M□N → C in C;

2. A 2-isomorphism

MAN MN

MN C,

1lN

nM1

f

f

τf

satisfying:

a.
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=

,

(5.6.12)

b.

=

.

(5.6.13)

Definition 5.6.13. Let C be an object of C, and f, g : (M,N) → C be two A-balanced

1-morphisms. An A-balanced 2-morphism f ⇒ g is a 2-morphism γ : f ⇒ g in C such that

=

.
(5.6.14)

Definition 5.6.14. The relative tensor product of M and N over A, if it exists, is an object

M□AN of C together with an A-balanced 1-morphism tA : (M,N) → M□AN satisfying

the following 2-universal property:

1. For every A-balanced 1-morphism f : (M,N) → C, there exists a 1-morphism

f̃ :M□AN → C in C and an A-balanced 2-isomorphism ξ : f̃ ◦ tA ∼= f .

2. For any 1-morphisms g, h : M□AN → C in C, and any A-balanced 2-morphism

γ : g ◦ tA ⇒ h ◦ tA, there exists a unique 2-morphism ζ : g ⇒ h such that ζ ◦ tA = γ.

The following result was established in theorem 3.1.6 of [74].

Theorem 5.6.15. Let A be a separable algebra in a Karoubi complete monoidal 2-category

C. Then, the relative tensor product of any right A-module M and any left A-module N

exists.

Using this result, it was shown in theorem 3.2.8 of [74] that the relative tensor product

over A endows the 2-category BimodC(A) of A-A-bimodules in the Karoubi complete

2-category C with a weak monoidal structure. In particular, all the relevant structures

were exhibited using the 2-universal property of the relative tensor product over multiple

separable algebras.
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5.7. Braided and Symmetric Algebras

5.7.1. Definitions

Let B be a semi-strict braided monoidal 2-category. The definition of a braided algebra in

a braided monoidal 2-category, also called braided pseudo-monoid, can be traced back to

[62]. Below we review this definition using the graphical calculus that we have previously

introduced. We refer the reader to [194] for a version of this definition, resp. the next one,

in a completely general braided, resp. sylleptic, monoidal 2-category.

Definition 5.7.1. A braided algebra in B consists of:

1. An algebra (B,m, i, λ, µ, ρ) in B;

2. A 2-isomorphisms

AA

AA A,

m
β

b

m

satisfying:

a.

=

,

(5.7.1)

b.

=

.

(5.7.2)
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c.

=

.

(5.7.3)

Let S be a semi-strict sylleptic monoidal 2-category. The definition of a symmetric

algebra in S, also called symmetric pseudo-monoid, first appeared in [62]. We review this

definition using our graphical calculus.

Definition 5.7.2. A symmetric algebra in S is a braided algebra (B,m, i, λ, µ, ρ, β) such

that

= Idm. (5.7.4)

Example. Braided algebras in the symmetric fusion 2-category 2Vec are exactly braided

monoidal finite semisimple 1-categories. Symmetric algebras in the symmetric fusion

2-category 2Vec are exactly symmetric monoidal finite semisimple 1-categories.

5.7.2. The 2-Category of Modules over a Braided Algebra.

As before, we take B to be a semi-strict braided monoidal 2-category. Furthermore, we will

assume throughout that B is a Karoubi complete 2-category.

Lemma 5.7.3. Let B a braided algebra in B. There is a 2-functor

Ind+ : ModB(B) → BimodB(B),

which is fully faithful on 2-morphisms.

Proof. Let M be a right B-module. The underlying right B-module of Ind+(B) is given

by B. In the notations of [77], the left B-module structure on Ind+(B) is given by the

1-morphism

lM : B□M
b−→M□B

nM

−−→M
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together with the 2-isomorphisms

λM :=

,

κM :=

.

Further, the compatibility between the left and the right actions is given by the 2-

isomorphism

βM :=

.

Given a right B-module 1-morphism f : M → N , the underlying right B-module

1-morphism of the B-B-module 1-morphism Ind+(f) is f . Its left B-module structure is

given by

χf :=

.

Given a right B-module 2-morphism γ : f ⇒ g, it is easy to check that γ is a B-B-bimodule

2-morphism Ind+(f) ⇒ Ind+(g), so that we can set Ind+(γ) = γ. It follows readily from

the definitions that Ind+ defines a strict 2-functor. Moreover, note that Ind+ is fully

faithful on 2-morphisms by construction.

Remark 5.7.5. When constructing the 2-functor Ind+, we have used the braiding b of B.

Instead, we could have used its adjoint equivalence b•, and so doing obtained a 2-functor

Ind− : ModB(B) → BimodB(B).

Proposition 5.7.4. Let B a braided separable algebra in B. Then, ModB(B) is a monoidal

2-category with monoidal unit B.

Proof. Thanks to lemma 5.7.3, we can view ModB(B) as a sub-2-category of BimodB(B).

For convenience, we will assume that this sub-2-category is replete. Now, as was recalled in

section 5.6.4 above, the monoidal structure of BimodB(B) is given by the relative tensor

product □B, which is defined using the 2-universal property reviewed in definition 5.6.14.
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GivenM andN two right B-modules, we want to show that the B-B-bimoduleM□BN is

actually an object of the sub-2-category ModB(B). In order to prove this, we need to unfold

the definition of the left B-module structure on M□BN . Let us write t :M□N →M□BN ,

together with τ t : t ◦ (M□lN) ∼= t ◦ (nM□N), for the 2-universal B-balanced 1-morphism

as in definition 5.6.14. Furthermore, note that for any C in B, C□t equipped with

C□τ t is a 2-universal B-balanced 1-morphism. By remark 3.2.3 of [74], the 1-morphism

lM□BN : B□(M□BN) →M□BN is induced by the 2-universal property of B□t applied to

the solid arrow diagram

B□M□N B□(M□BN)

M□N M□BN,

(nM◦b)1

1t

lM□BN

t

υl

where the left bottom composite 1-morphism is equipped with the obvious B-balanced

structure. The 1-morphism nN□BM : (M□BN)□B →M□BN is defined similarly. But, the

2-isomorphism

(t ◦ 1nN ◦R−1) · (τ t−1 ◦ b1) : t ◦ (nM□N) ◦ (b□N) ∼= t ◦ (M□nN) ◦ b

is B-balanced. Thanks to the 2-universal property of the relative tensor product, this means

that there exists a 2-isomorphism θ : lM□BN ∼= nM□BN ◦ b. Furthermore, it also follows

from the 2-universal property that θ promotes the identity right B-module 1-morphism

on M□BN to a B-B-bimodule 1-equivalence from M□BN to Ind+(M□BN). This proves

that the objects of ModB(B) are closed under □B. A similar argument shows that the

1-morphisms of ModB(B) are closed under □B, which concludes the proof.

Remark 5.7.6. We emphasize that ModB(B) is not a braided 2-category in general, as can

be seen from example 5.7.2 below. Further, we also note that our proof of proposition 5.7.4

only used the existence of the relative tensor product over B for any B-B-bimodules in B.

We refer the reader to remark 3.2.11 of [74] for a more thorough discussion. An analogous

comment can be made with regards to lemma and 5.7.3 above and lemma 5.7.5 below.

In order to prove our next theorem, we need the following technical lemma.

Lemma 5.7.5. The 2-functor F : B → ModB(B) given by sending the object C in B to

C□B with its canonical right B-module structure is monoidal.

Proof. Let C and D be two objects of B. Firstly, note that C□D□B satisfies the 2-

universal property of (C□B)□B(D□B) in BimodB(B). More precisely, the B-B-bimodule
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1-morphism

uC,D : C□B□D□B
1b1−−→ C□D□B□B

11m−−→ C□D□B

admits a canonical B-balanced structure given by

τuC,D :=

and satisfies the conditions of definition 5.6.14. In particular, this yields B-B-bimodule

1-equivalences eC,D : (C□B)□B(D□B) ≃ (C□D)□B for every C and D in B together

with a B-balanced B-B-bimodule 2-ismorphism ζC,D as in the following diagram:

C□B□D□B C□D□B

(C□B)□B(D□B).

uC,D

tCB,DB

ζC,D eC,D

Secondly, observe that for any two 1-morphisms f : C → E and g : D → F in B, the

B-B-bimodule 2-isomorphism

υf,g :=

is B-balanced. Thus, thanks to the 2-universal property of the relative tensor product, we can

use the 2-isomorphisms υf,g to promote the collection of the B-B-bimodule 1-equivalences

eC,D for varying C and D to a 2-natural equivalence e.

Using the 2-universal property of the relative tensor product repeatedly (together with

the variants over multiple algebras considered in section 3.2 of [74]), one constructs the

remaining data necessary to endow F with a monoidal structure, and prove that they satisfy

the relevant axioms from definition 2.5 of [212].

Theorem 5.7.6. Let B be a braided multifusion 2-category, and B a braided separable

algebra in B. Then, ModB(B) is a multifusion 2-category.
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Proof. The 2-category ModB(B) is finite semisimple thanks to proposition 5.6.11. Further,

we have shown in proposition 5.7.4 that it admits a monoidal structure. It therefore only

remains to prove that it has duals. But, as B is a multifusion 2-category, it has right and

left duals. In particular, every object in the image of F : B → ModB(B) has a right and a

left dual. But, it was shown in lemma 3.1.1 of [77] that every right B-module M is the

splitting of a 2-condensation monad (in ModB(B)) supported on M□B = F (M). Thence,

it follows from lemma 5.5 of [71] that M has a right and a left dual, and thereby concludes

the proof.

Following section 5.2 of [74], we say that a separable algebra B is connected if its unit

1-morphism i : I → B is simple. Under the equivalence

HomB(B,B) ≃ HomB(I, B)

of lemma 3.2.13 of [73], we have IdB 7→ i. Thus, B is a simple right B-module if and only

if B is a connected algebra. Combined with the above theorem, this yields the following

corollary.

Corollary 5.7.7. Let B be a braided multifusion 2-category, and B a connected braided

separable algebra in B. Then, ModB(B) is a fusion 2-category.

Example. Let B be a braided multifusion 1-category, that is a braided separable algebra

in 2Vec. Then, Mod2Vec(B) = Mod(B) is the multifusion 2-category of finite semisimple

right B-module 1-categories with monoidal structure given by ⊠B the relative Deligne tensor

over B. The braided separable algebra B is braided if and only if B is a fusion 1-category,

in which case Mod(B) is a fusion 2-category. Finally, we note that it follows from a slight

variant of proposition 2.4.7 of [76] that Mod(B) is braided if and only if B is symmetric.

5.7.3. The 2-Category of Modules over a Symmetric Algebra

In this section we give sufficient conditions for the 2-category of modules over a braided

algebra to be itself braided. We also explain when the 2-category of modules is sylleptic or

symmetric.

Theorem 5.7.8. Let S be a Karoubi complete sylleptic monoidal 2-category, and B a

symmetric separable algebra in S. Then, ModS(B) is a braided monoidal 2-category.

Proof. Without loss of generality, we may assume that S is semi-strict. Our first task is to

endow the monoidal 2-category ModS(B) with a braiding b̃. To this end, let M and N be
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two right B-modules, and write

tM,N :M□N →M□BN and tN,M : N□M → N□BM

for the 2-universal B-balanced right B-module 1-morphisms with structure 2-isomorphisms

τ t. We claim that the 1-morphism tN,M ◦ bM,N :M□N → N□BM in S can be upgraded

to a B-balanced right B-module 1-morphism. Namely, the B-balanced structure is given

by the 2-isomorphism

τ t◦b :=

.

In order to check that τ t◦b satisfies axiom a of definition 5.6.14, we use the diagrams depicted

in appendix A.4.1. Figure A.1 depicts the right hand-side of equation (5.6.12). By moving

the indicated coupons to the top along the blue arrows, we arrive at figure A.2. Then,

using equation (5.6.12) for τ t on the blue coupons brings us to figure A.3. At this point, we

use the definition of κM given in the proof of lemma 5.7.3 on the blue coupon, which leads

us to contemplate figure A.4. Moving the coupon labeled 11β−1 to the left along the blue

arrow, and then using equation (5.6.4) on the green coupons brings us to figure A.5. We

arrive at figure A.6 by moving the blue coupons to the left along the blue arrows. Moving

the coupon labeled 1R−1 to the right along the blue arrow and then applying equation

(5.6.6) on the green coupons bring us to figure A.7. By moving the coupon labeled 1S to

the right along the blue arrow and then make use of equation (5.6.5) on the green coupons

bring us to figure A.8. Using equation (5.6.3) on the blue coupons, we arrive at figure A.9.

We obtain figure A.10 by applying equation (5.6.1) on the blue coupons, using equation

(5.6.2) on the green coupons, and moving the coupon labeled 1β−11 to the right along the

red arrow. Then, using equation (5.6.4) on the blue coupons and equation (5.7.4) on the

green coupons, we arrive at figure A.11. Finally, we get to figure A.12, which depicts the

left hand-side of equation (5.6.12), by moving the coupon labeled R to the right along the

blue arrow and the coupon labeled β−111 to the left along the green arrow. Furthermore,

equation (5.6.13) for τ t◦b follows from equation (5.6.13) for τ t together with the fact that R,

S, σ are modifications, combined with axiom f of definition 5.6.1 and axiom c of definition

5.6.1.
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Moreover, the right B-module structure on tN,M ◦ bM,N is given by the 2-isomorphism

ψt◦b :=

.

Thus, by the 2-universal property of tM,N , the solid arrow diagram below can be filled by a

B-balanced right B-module 2-isomorphism ξM,N :

M□N M□BN

N□M N□BM.

bM,N

tM,N

b̃M,N

tN,M

ξM,N

Furthermore, as bM,N is a 1-equivalence, the 2-universal property implies that the 1-

morphism b̃M,N is also an equivalence. Using the 2-universal property of the relative tensor

product over B again, we find that the collection of the 1-equivalences b̃M,N assembles

to form a 2-natural equivalence b̃. We upgrade b̃ to an adjoint 2-natural equivalence by

appealing to the 2-universal property.

We also have to construct invertible modifications R̃ and S̃ witnessing the coherence

of the braiding b̃ on ModS(B). As the monoidal structure on ModS(B) is not strict

cubical, we need to use the fully weak definition of these modifications given in figure

2.3 of [212]. Let M , N , and P be three right B-modules, in order to construct the right

B-module 2-isomorphism R̃M,N,P we use the 2-universal property of the relative tensor

product over two algebras following definition 3.2.6 of [74]. More precisely, let us consider

the 3-dimensional commutative diagram whose back and front are depicted below:

N□M□P N□M□P

M□N□P N□P□M

(N□BM)□BP N□B(M□BP )

(M□BN)□BP N□B(P□BM),

M□B(N□BP ) (N□BP )□BM

1bb1

α

∃!R̃
1b̃b̃1

α

b̃

α
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N□M□P N□M□P

M□N□P N□P□M

M□N□P N□P□M

(M□BN)□BP N□B(P□BM).

M□B(N□BP ) (N□BP )□BM

R

1bb1

b

α

b̃

α

All the vertical 1-morphisms are 2-universal (B,B)-balanced right B-module 1-morphisms,

and all the square faces are filled by (B,B)-balanced right B-module 2-isomorphisms

thanks to either the proof of lemma 3.2.7 of [74] or the construction of b̃ given above. Thus,

thanks to the 2-universal property of the relative tensor product, there exists a unique

right B-module 2-isomorphism R̃ such that the whole 3-dimensional prism is commutative.

Furthermore, the collection of these assignments assemble into an invertible modification

as can been seen using the 2-universal property of the relative tensor product over two

algebras. The invertible modification S̃ is constructed similarly.

Finally, one has to check that R̃ and S̃ together with the modifications supplied by the

monoidal structure of ModS(B) satisfy the equations given in figures C.7 through C.14 of

[212] hold. This follows from the 2-universal property of the relative tensor product over

three and four algebras explained in the proof of theorem 3.2.8 of [74].

Proposition 5.7.9. Let S be a Karoubi complete sylleptic monoidal 2-category, and B a

symmetric separable algebra in S. Then, the monoidal 2-functor F : S → ModS(B) of

lemma 5.7.5 is braided.

Proof. Let C and D be any objects of S. Using the notations of lemma 5.7.5 and theorem
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5.7.8, we can consider the following diagram:

CBDB (CB)□B(DB) CDB

DBCB (DB)□B(CB) DCB.

ζ

b2

t

u

b̃

e

b1

t

u

ξ

e

ζ−1

∃!ϵ (5.7.7)

Further, the outer square can be filled using the B-balanced right B-module 2-isomorphism

ς given by:

ς :=

.

Thus, thanks to the 2-universal property of the relative tensor product over B, the right

hand-side square of the commutative diagram (5.7.7) can be filled by a right B-module

2-isomorphism ϵ such that its full composite is equal to ς. Further, it follows from the

same 2-universal property that the collection of these 2-isomorphism defines an invertible

modification. Finally, one checks that the axioms of definition 2.5 of [212] hold for ϵ using

the 2-universal property of the relative tensor product over one and two algebras.

Note that ModS(B) is not sylleptic in general. Nonetheless, under favourable circum-

stances, this is in fact the case. We begin by recalling the following definition from section

5.3 of [46].

Definition 5.7.10. Let S be a sylleptic fusion 2-category. The symmetric center of S,

denoted by Z(3)(S) is the full sub-2-category of S on those objects C such that

σD,C ◦ bC,D = bC,D ◦ σC,D

for every D in S.

Remark 5.7.8. It follows immediately from the definitions that Z(3)(S) is a (semi-strict)

symmetric monoidal 2-category (see also theorem 5.2 of [46]).

Proposition 5.7.11. Let S be a Karoubi complete sylleptic monoidal 2-category, and B a

symmetric separable algebra in Z(3)(S). Then, ModS(B) is a sylleptic monoidal 2-category.
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Proof. Without loss of generality, we may assume that S is semi-strict. We have already

endowed the 2-category ModS(B) with a braided monoidal structure. Moreover, using the

notation of the proof of theorem 5.7.8, for every right B-modules M and N in S, we can

consider the following right B-module 2-isomorphism

M□N M□BN

N□M N□BM

M□N M□BN.

b

t

b̃

σ

b

t

ξ

b̃

t

ξ

The above right B-module 2-isomorphism is B-balanced. In order to see this, we use the

diagrams depicted in appendix A.4.2. Figure A.13 depicts the left hand-side of equation

(5.6.14) of definition 5.6.13 for the above 2-isomorphism. Applying equation (5.6.14) for

ξ on the blue coupons brings us to figure A.14. By inserting the definition of τ t◦b given

in the proof of theorem 5.7.8, we arrive at figure A.15. Then, using equation (5.6.14) for

ξ on the blue coupons leads us to figure A.16. Inserting the definition of τ t◦b once again,

we get to figure A.17. In order to get to figure A.18, we first use the equation given in

definition 5.7.10 on the blue coupons and the strand immediately on top of it, and then

move the left most coupon labeled σ along the green arrow. Then, applying equation (5.6.5)

on the blue coupons brings to figure A.19. Using equation (5.6.6) on the blue coupons,

followed by moving the freshly created coupon labeled σ down along the green arrow, and

cancelling the pair of red coupons brings us to figure A.20. But, figure A.20 depicts the

right hand-side of equation (5.6.14), so the proof of the claim is finished.

Then, thanks to the 2-universal property of the relative tensor product, this yields a

2-isomorphism σ̃M,N as in the diagram below

M□BN M□BN.

N□BM
b̃

σ̃

b̃

Further, it follows from the 2-universal property of the realtive tensor product that the

collection of the 2-isomorphisms σ̃M,N for varyingM andN defines an invertible modification.

Finally, one has to check that σ̃ defines a syllepsis on the braided monoidal 2-category

ModS(B), i.e. that the equations given in figure C.15 and C.16 of [212] hold. This follows

from the 2-universal property of the relative tensor product over one and two algebras
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explained in section 3 of [74].

We now consider the case when S is symmetric monoidal.

Corollary 5.7.12. Let S be a Karoubi complete symmetric monoidal 2-category, and B a

symmetric separable algebra in S. Then, ModS(B) is a symmetric monoidal 2-category.

Proof. If S is symmetric, then Z(3)(S) = S, which implies that ModS(B) is sylleptic.

Further, it follows from the definition of the syllepsis, that ModS(B) is in fact symmetric

if S is symmetric.

Lemma 5.7.13. Let S be a Karoubi complete sylleptic monoidal 2-category, and B a

symmetric separable algebra in Z(3)(S). Then, the braided monoidal functor F : S →
ModS(B) of proposition 5.7.5 is sylleptic. In particular, if S is symmetric, then F is

symmetric.

Proof. The first part follows from the construction and the 2-universal property of the

relative tensor product over B. The last part is immediate as a symmetric monoidal 2-functor

is nothing but a sylleptic monodial 2-functor between symmetric monoidal 2-categories (see

definition 2.5 of [212]).

Remark 5.7.9. Analogously to what was noted in remark 5.7.6, the proofs of all the above

results in this section only used the existence of the relative tensor product over B for any

B-modules in S.

Finally, if S is a sylleptic multifusion 2-category, proposition 5.7.11 can be strengthened.

We begin by the following lemma.

Lemma 5.7.14. Let S be a sylleptic fusion 2-category. Then, its symmetric center Z(3)(S)

is generated under direct sums by the union of some of the connected components of S. In

particular, it is a symmetric fusion 2-category, and it contains the connected components of

the identity of S.

Proof. Observe that, by definition, Z(3)(S) is a full sub-2-category of S. Further, note

that Z(3)(S) is closed under taking direct sums. Now, let S be an object of Z(3)(S). We

wish to prove that if T is a simple object of S given by the splitting of a 2-condensation

monad on S, then T is in Z(3)(S). Given an arbitrary object C in S, it follows from

the 2-universal property of the splitting of a 2-condensation monad that the syllepsis

σT,C and σC,T are completely determined by σS,C and σC,S. But, by hypothesis, we have

σC,S ◦ bS,C = bS,C ◦ σC,S, so that σC,T ◦ bT,C = bT,C ◦ σC,T , which proves the claim. The
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second part follows from the observation that a connected component of a finite semisimple

2-category is necessarily a finite semisimple 2-category.

Proposition 5.7.15. Let S be a sylleptic multifusion 2-category, and B a symmetric separable

algebra in Z(3)(S). Then, we have

Z(3)(ModS(B)) ≃ ModZ(3)(S)(B).

Proof. It follows from the construction that the syllepsis on ModS(B) is constructed from

the syllepsis on S. In particular there is a symmetric monoidal inclusion ModZ(3)(S)(B) ⊆
Z(3)(ModS(B)). On the other hand, the free 2-functor F : S → ModS(B) is sylleptic

monoidal. In particular, for any object C of S, F (C) is in Z(3)(ModS(B)) if and only if C

is in Z(3)(S). But, every object of ModS(B) is the splitting of a 2-condensation monad

supported on an object of the form F (C) for some C in S by lemma 3.1.1 of [77]. Further,

Z(3)(ModS(B)) is a union of connected components of ModS(B) by lemma5.7.14 above,

so that Z(3)(ModS(B)) ≃ ModZ(3)(S)(B) as desired.

5.8. Specific 2-Category of Modules

In this section, we will examine the 2-categories of right modules associated to specific

algebras. This can be thought of as condensing a 3-condensation monad. In order to be

applicable to physical theories, we will consider the cases when the ambient 2-category

is either totally disconnected or connected. In both cases, we will work bosonically and

fermionically, where the later means that we work with super 2-categories. A subset of

surface operators can be assembled to form a separable algebra as in the previous section;

we may thus apply the theorems above to understand the effect of the condensation.

Throughout, we work over the complex numbers (or any algebraically closed field of

characteristic zero), we use G to denote a finite group, and E to denote a finite abelian

group.

5.8.1. Totally Disconnected 2-Category

Bosonic case

Starting with the simplest case, suppose that the fusion 2-category of surface operators

and their interactions is given by 2Vec[G], the 2-category of G-graded 2-vector spaces. In

particular, the (equivalence classes of) simple objects are given by Vecg with g ∈ G. We
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can consider the algebra Vec[G] in 2Vec[G] given by ⊞g∈GVecg, the sum of the equivalence

classes of simple objects.

Lemma 5.8.1. The left 2Vec[G]-module 2-category 2Vec is equivalent toMod2Vec[G](Vec[G]),

where Vec[G] is the fusion 1-category of G-graded vector spaces viewed as an algebra in

2Vec[G] with the canonical grading. Further, Vec[G] is a separable algebra.

Proof. It is easy to check directly that Mod2Vec[G](Vec[G]) ≃ 2Vec as left 2Vec[G]-module

2-categories. Further, one can check directly that Vec[G] is a separable algebra in 2Vec[G].

Alternatively, this follows from theorem 3.2.4 and corollary 3.3.7 of [77].

Before moving on to the general case, we establish the following technical result. Recall

from [73] that a left 2Vec[G]-module 2-category is 2-category equipped with a left action

by 2Vec[G]. Note that this is equivalent to the data of an action of the group G. In

particular, given a left 2Vec[G]-module 2-category M, we can consider the 2-category

LModM(Vec[G]) of left Vec[G]-modules in M, given by gauging the G-action on M. If M

is a finite semisimple 2-category, the G-action permutes the set of connected components of

M.

Proposition 5.8.2. Let M be a finite semisimple left 2Vec[G]-module 2-category. Then, we

have

π0(LModM(Vec[G])) ∼= π0(M)/G.

Proof. We claim that it suffices to prove this result for M an indecomposable finite semisim-

ple left 2Vec[G]-module 2-category. Namely, it follows from lemma 5.2.3 of [74] that every

finite semisimple left 2Vec[G]-module 2-category M can be decomposed into a finite direct

sum M ≃ ⊞n
i=1Mi of indecomposable ones. From this, it follows that there is a bijection

π0(M) ∼=
∐n

i=1 π0(Mi) of sets compatible with the G-actions. This establishes the claim of

sufficiency.

Now, note that it follows from the definition that a finite semisimple left 2Vec[G]-module

2-category is indecomposable if and only if the action of G on π0(M) is transitive. Thus, it

only remains to prove that if M is an indecomposable finite semisimple left 2Vec[G]-module

2-category, then π0(ModM(Vec[G])) = ∗.
To see this, note that thanks to theorem 5.1.2 of [73], there exists an algebra A in 2Vec[G]

such that M ≃ Mod2Vec[G](A). Furthermore, by theorem 5.4.7 of [73], the algebra A is in

fact rigid. But rigid algebras in 2Vec[G] are precisely G-graded multifusion 1-categories,

so that A is an G-graded multifusion 1-category. Moreover, as M is indecomposable, A is

indecomposable as a G-graded multifusion 1-category (see corollary 5.2.7 of [74]).
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By inspection, there are equivalences of 2-categories

LModM(Vec[G]) ≃ Bimod2Vec[G](Vec[G], A) ≃ Mod2Vec(A),

where, on the right hand-side, we view A as a multifusion 1-category. Thus, by proposition

2.3.5 of [75], it is enough to prove that A is indecomposable as a multifusion 1-category. (A

multifusion 1-category is “connected” in the sense of definition 2.3.1 of [75] if and only if it

is indecomposable.) Finally, observe that a decomposition of A into a direct sum of two

non-zero multifusion 1-categories would automatically be compatible with the G-grading.

This is impossible by construction so we are done.

If G = E is a finite abelian group, then 2Vec[E] is braided fusion 2-category. Further,

the algebra Vec[E] is actually braided. It is therefore sensible to consider the case when

the 2-category of all surfaces is a braided fusion 2-category B, equipped with a braided

monoidal inclusion 2Vec[E] ⊆ B. This allows us to view the separable algebra Vec[E] in

2Vec[E] as living in B, and we can investigate the properties of 2-category obtained by the

condensation of Vec[E] in B. The following result follows from theorem 5.7.6, the above

proposition, and lemma 5.7.5.

Corollary 5.8.3. Given B a braided fusion 2-category and 2Vec[E] ⊆ B a braided monoidal

inclusion, the 2-category ModB(Vec[E]) obtained by condensing Vec[E] is a fusion 2-

category with π0(ModB(Vec[E])) ∼= π0(B)/E. Moreover, the canonical 2-functor B →
ModB(Vec[E]) is monoidal.

In particular, the condensation reorganizes the 2-category B by identifying the connected

components of surfaces which are related by the action of E. This is effectively gauging the

E action on the components. The resulting fusion 2-category is in general not braided.

Example. Consider 2Vec[Z4], with simple objects labeled by {Vec0,Vec1,Vec2,Vec3}
and fusion given by addition mod 4. Suppose we condense the algebra Vec0 ⊞Vec2, which

is Vec[Z2], the simple modules are then given by Vec0 ⊞Vec2, and Vec1 ⊞Vec3. As there

is no 1-morphism between them, Mod2Vec[Z4](Vec[Z2]) has two connected components. On

the other hand, one sees that π0(2Vec[Z4])/Z2 has the same two connected components.

Remark 5.8.1. We give an example for which the 2-functor in corollary 5.8.3 is not necessarily

braided, take B = Z(2Vec[Z2]), the Drinfeld center of 2Vec[Z2], equipped with the

canonical inclusion 2Vec[Z2] ⊆ Z(2Rep(Z2)). We can then condense the algebra Vec[Z2],

and get

ModZ(2Vec[Z2])(Vec[Z2]) ≃ 2Rep(Z2).
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Further, the monoidal 2-functor Z(2Vec[Z2]) → ModZ(2Rep(Z2))(Vec[Z2]) of lemma 5.7.5

is identified with the monoidal forgetful 2-functor Z(2Rep(Z2)) → 2Rep(Z2), which is not

braided.

The next result follows from proposition 5.7.11, lemma 5.7.13, and proposition 5.8.2.

Corollary 5.8.4. Let S be a sylleptic fusion 2-category, with an inclusion 2Vec[E] ⊆ Z(3)(S),

then ModS(Vec[E]) is a sylleptic fusion 2-category such that π0(ModS(Vec[E])) ∼=
π0(S)/E. Furthermore, the canonical monoidal 2-functor S → ModS(Vec[E]) is sylleptic.

Fermionic Case

We mirror the bosonic case and first consider the fusion 2-category 2SVec[G] of G-graded

super 2-vector spaces. In order to condense 2SVec[G] to 2SVec, it is enough to consider

the bosonic algebra Vec[G] given by the canonical monoidal inclusion 2Vec[G] ⊆ 2SVec[G].

By direct inspection, we find that Mod2SVec[G](Vec[G]) ≃ 2SVec.

Let us now comment on the braided case. Namely, if G = E is a finite abelian group,

then 2SVec[E] is a braided fusion 2-category. We can therefore consider B a braided fusion

2-category containing 2SVec[E]. But, the inclusion 2Vec[E] ⊆ 2SVec[E] is braided, so

this is exactly in the setup of corollary 5.8.3. Similar remarks holds for the sylleptic and

symmetric cases.

5.8.2. Connected Category

Let B be a braided fusion 2-category, then EndB(⊮), the endomorphisms of the identity

surface, is a symmetric fusion 1-category, so that B0 = Mod(EndB(⊮)) is a symmetric

fusion 2-category (see [76]). Here, B0 denotes the identity component and is a prime

candidate for a condensation.

Bosonic Case

Suppose that B0 = 2Rep(G), i.e. the surfaces in the identity component of B form

the fusion 2-category 2Rep(G). Here we think of 2Rep(G) as the 2-category of finite

semisimple 1-categories equipped with a G-action. One such object is given by Vec[G] with

the canonical G-action. In this description, the monoidal product of two finite semisimple

1-categories C and D equipped with G-actions is given by their Deligne tensor product

C ⊠D equipped with the diagonal G-action. The fusion 2-category 2Rep(G) is connected,
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which means that all the surfaces arise as networks of lines. We write φ for the symmetric

algebra Fun(G,Vec) in 2Rep(G). We note that the underlying object of φ is Vec[G]. In

the setting of fusion 1-categories, this corresponds to considering the symmetric algebra

C[G]∗ inside Rep(G). A module for φ is thus a way for the lines to end at the boundary.

We also point out that there is another model for 2Rep(G), given byMod(Rep(G)) (see

lemma 1.3.8 of [74]). In the fermionic case, only this second model is available. It is therefore

necessary to give an alternative description of φ in this model. The symmetric fusion

1-category Vec equipped with the canonical symmetric monoidal functor Rep(G) → Vec

defines a symmetric algebra in Mod(Rep(G)). This algebra is separable thanks to theorem

3.2.4 and proposition 3.3.3 of [77] and theorem 2.3 of [92]. Moreover, under the equivalence

of lemma 1.3.8 of [74], the algebra Vec in Mod(Rep(G)) corresponds to the algebra φ in

the first model. It follows that Mod2Rep(G)(φ) ≃ ModMod(Rep(G))(Vec) ≃ 2Vec.

Proposition 5.8.5. Let B be a braided fusion 2-category with 2Rep(G) ≃ B0 as braided

fusion 2-categories. Then, condensing the braided separable algebra φ in B yields a strongly

fusion 2-category ModB(φ) equipped with a monoidal 2-functor B → ModB(φ).

Proof. All but the strongly fusion part follow from theorem 5.7.6. We claim thatModB(φ)
0 =

2Vec, so that ModB(φ) is strongly fusion. Note that φ is an algebra in 2Rep(G) ≃ B0.

By corollary 2.3.6 of [76], this implies that the underlying object in B of any simple

right φ-module is supported in a single connected component of B. This shows that

ModB(φ)
0 ≃ Mod2Rep(G)(φ)

0 ≃ 2Vec. This finishes the proof of the claim.

Remark 5.8.2. In the fusion 2-category 2Rep(G) the algebra φ is actually symmetric, but

we can not view φ as a symmetric algebra in B; this requires extra data in the ambient

braided fusion 2-category B. Therefore φ is treated as a braided algebra when considered

in B.

We give a physical explanation as to why condensing in the identity component in

proposition 5.8.5 was sufficient to make B strongly fusion: the objects in the identity

component of B are related to the identity surface by 2-condensations but if the identity

component was condensed to just 2Vec via φ, then all the 1-morphisms are trivial, hence

the 2-category is strongly fusion.

Remark 5.8.3. Categorifying the main result of [?] and [204], we expect that if B is braided

fusion 2-category with 2Rep(G) ≃ B0, then the fusion 2-category ModB(φ) admits a

G-crossed braided structure.

Let S be a sylleptic multifusion 2-cateogry. As a consequence of lemma 5.7.14, we find

that any inclusion 2Rep(G) ⊆ S of sylleptic fusion 2-categories automatically includes in
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the symmetric center of S. Namely, 2Rep(G) is necessarily contained in the component

of the identity of S. Combing this observation with proposition 5.7.11 and lemma 5.7.13

yields the following result.

Corollary 5.8.6. Let S be a sylleptic fusion 2-category. Suppose that there is an inclusion

S ≃ 2Rep(G), then ModS(φ) is a sylleptic strongly fusion 2-category. Furthermore, the

canonical monoidal 2-functor S → ModS(φ) is sylleptic.

Remark 5.8.4. We make a small physical point regarding the above corollary. Consider

a setting in (3+1)d but not limited to considering only topological theories. The surface

operators can be nontrivial even if the line operators have been condensed, as in the

situation of corollary 5.8.6. If we are in a purely topological (3+1)d setting, then the there

are actually no surface operators either because surfaces detect lines in this dimension. This

means we are just in a situation of bosonic Dijkgraaf-Witten theory.

Fermionic Case

We consider the fusion 2-category 2Rep(G, z) := Mod(Rep(G, z)), where z is an emergent

fermion in G, that is a central element of order 2. We are viewing 2Rep(G, z) as so because

there is no fermionic analogue of the model for 2Rep(G) that was used in §5.8.2. We define

the symmetric separable algebra φ := SVec in 2Rep(G, z). More precisely, φ denotes SVec

equipped with the canonical forgetful symmetric monoidal functor Rep(G, z) → SVec. Let

us examine the result of condensing φ. In this case, there is no obstruction to condensing

to the vacuum.

Lemma 5.8.7. As left 2Rep(G, z)-module 2-categories, we have 2SVec ≃ Mod2Rep(G,z)(φ),

where SVec is viewed as an algebra in 2Rep(G, z) via Rep(G, z) → SVec.

Proof. This follows from example 3.2.5 of [73].

Physically, we find that condensing φ gives a local fermion. The next proposition follows

using a variant of the proof of proposition 5.8.5, with a slight change to φ.

Proposition 5.8.8. Let B be a braided fusion 2-category, and assume B0 ≃ 2Rep(G, z) as

braided fusion 2-categories. Then, condensing the algebra φ = SVec in B yields a fermionic

strongly fusion 2-category ModB(φ) equipped with a monoidal 2-functor B → ModB(φ).
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5.9. Strongly Fusion Computations

5.9.1. Braided Strongly Fusion 2-Categories

In the previous section, we have seen examples of strongly fusion 2-categories arising from

condensations. It was shown in [152] that such 2-categories have grouplike fusion rules.

Said differently, a strongly fusion 2-category is a “grouplike” extension of operators in

different dimensions [147, 153]. In particular, their classification essentially boils down to a

cohomology computation problem. We now consider the case where our fusion 2-category

is strongly fusion and only braided. For instance, this is what happens to a sylleptic fusion

2-category when we condense the algebra φ in the subcategory B0 = 2Rep(G). Fermionic

braided strongly fusion 2-categories are classified by supercohomology [239] and we expect

that the cases we discuss here cover all the examples of braided strongly fusion 2-categories,

but we do not prove this fact. Namely, in general, one ought to consider supercohomology

with twisted coefficients, but we expect that this is not necessary for braided fermionic

strongly fusion 2-categories. On the other hand, braided bosonic strongly fusion 2-categories

with finite abelian group of surfaces given by E are completely classified by H5(E[2];C×).

This holds because this cohomology theory has no twisted variant.

The classification of the physical theories described by braided strongly fusion 2-

categories proceeds by identifying those fusion 2-categories that are related by a topological

boundary. More precisely, fixing a finite abelian group of surfaces E, the associated physi-

cal theories are classified by generalized cohomology. In the fermionic case, the relevant

spectrum of coefficients is SW•(pt), the super–Witt spectrum [149]. Its homotopy groups

in low degrees are recalled below in (5.9.4). In the bosonic case, the classification requires

twisted equivariant cohomology. We now discuss these computations in more detail.

Fermionic Case

Let B be a braided fermionic strongly fusion 2-category, and write E for the finite abelian

group of connected components. Physically, E is the group of “fundamental” surfaces

in B that do not arise as condensations. Further, such braided fusion 2-categories can

be constructed by deforming the coherence structure of 2SVec[E] using a class in the

super-cohomology group SH5(E[2]). Here and in what follows, E[2] denotes the second

Eilenberg-MacLane space of E, and we note that the number in brackets denotes the

codimension associated to the objects with fusion rules given by the group E. In fact, all

braided fermionic strongly fusion 2-categories arise via this construction, but we do not

prove this fact. On the other hand, the (3+1)d theory associated to B has no codimension
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one operators that do not arise through a condensation. By remote detectability [149],

which says that every object must link topologically with another object of the appropriate

dimension, this is the same as assuming that there are no nontrivial point operators in the

theory. Then, the obstruction to condensing the theory associated to B to the vacuum is

given by a class in SW•(E[2]). Now, if the group SW•(E[2]) vanishes the theory associated

to B is automatically Morita equivalent to the vacuum. Our goal is to understand for

which abelian groups E the cohomology group SW5(E[2]) does not vanish. More precisely,

there is a canonical map SH5(E[2]) → SW•(E[2]), which corresponds to taking the theory

associated to a braided fermionic strongly fusion 2-category. We argue that the image of

this map is non-trivial in general.

Since the fusion 2-category B is strongly fusion, there are no nontrivial lines, but we

still have {1, f} in SVec from the fermionic nature of the 2-category. We denote the

condensation surface arising from f as c which has fusion rule c2 = ⊮. The content of the

fusion 2-category forms a higher group extension

(C×[4]. Z2︸︷︷︸
{1,f}

[3]. Z2︸︷︷︸
{⊮,c}

[2]).E[2] , (5.9.1)

where the component C×[4] means “three form C× symmetry”. Such extensions are classified

by SH5(E[2]), which can be computed with the knowledge that the supercohomology of a

point is built out of three layers:

SH0(pt) = C× , SH1(pt) = Z2 , SH2(pt) = Z2 , (5.9.2)

We note in passing that these groups agree with the first three layers of spin cobordism.

Then, there is a canonical map SH• → SW•. Assuming that B is classified by a class in

SH5(E[2]), the associated fermionic theory can be condensed to the vacuum exactly if the

image of this class in SW•(E[2]) is trivial. In order to understand for which groups E this

can happen, we use the following Atiyah-Hirzebruch spectral sequence

Hi(E[2]; SWj(pt)) ⇒ SW i+j(E[2]) . (5.9.3)

The homotopy groups of SW•(pt) in low degrees are given by

SW0(pt) = C× , SW1(pt) = Z2 , SW2(pt) = Z2 , (5.9.4)

SW3(pt) = 0 , SW4(pt) = SW , SW5(pt) = 0 , SW6(pt) = 0 .

In degree 4, SW gives the Witt group of slightly degenerate braided fusion 1-categories.

195



If E has no 2-torsion, then we find that SW5(E[2]) = SH5(E[2]) = H5(E[2];C×). But, it

follows from [87] that the right most group is trivial, so that there are non-trivial theories

in this case. On the other hand, we can assume that E is 2-torsion. Then, we see that in

total degree 5, there are interesting non-zero contributions to the E2-page of the spectral

sequence. We first consider E = Z2k . The E2 page for (5.9.3) is then given by

Eij
2 =

j

0 0 0 . . .

0 0 0 . . .

SW SW 0 hom(SW ,Z2) . . .

0 0 0 0 0 . . .

Z2 Z2 0 hom(E,Z2) Ext(E,Z2) Quad(E,Z2) . . .

Z2 Z2 0 hom(E,Z2) Ext(E,Z2) Quad(E,Z2) Ext(E, hom(E,Z2))

C× C× 0 Ê 0 Quad(E,C×) Ext(E, hom(E,C×))

0 1 2 3 4 5 i ,
(5.9.5)

where Quad denotes the group of quadratic forms. In addition, the d2 differentials are given

by

d2 :E
i,2
2 = Hi(Z2[2] ;Z2) → Ei+2,1

2 = Hi+2(Z2[2] ;Z2) X 7→ Sq2X (5.9.6)

d2 :E
i,1
2 = Hi(Z2[2] ;Z2) → Ei+2,0

2 = Hi+2(Z2[2] ;C×) X 7→ (−1)Sq
2X .

This implies that the E3 page is given by

Eij
3 =

j

0 0 0 . . .

0 0 0 . . .

SW SW 0 SW2 . . .

0 0 0 0 0 . . .

Z2 Z2 0 0 0 . . .

Z2 Z2 0 0 0 0 . . .

C× C× 0 Z2 0 Z2 0 Z2

0 1 2 3 4 5 6 i .

(5.9.7)

Therefore, SW5(Z2k [2]) = 0, so that the theory associated to B with E = Z2k can be

condensed to the vacuum.
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If E is a product of groups, we use the fact that for any generalized cohomology theory

h• computed on pointed spaces X and Y , we have

h•(X × Y ) = h•(pt)⊕ h̃•(X)⊕ h̃•(Y )⊕ h̃•(X ∧ Y ) , (5.9.8)

where h̃ represents reduced cohomology. We can see that the contribution of S̃W5
(Z2k [2] ∧

Z2k [2]) to SW5(Z2k [2]× Z2k [2]), is nontrivial by comparing it with Ω̃5
Spin(Z2k [2] ∧ Z2k [2]).

Spin cobordism gives the group of maps from the spin bordism groups into C×, and when

evaluated on a point gives Ω•
Spin(pt) = {C×, Z2, Z2, 0, C×, 0, 0, 0, . . .} in low degrees. We

claim that it is sufficient to show that Ω̃5
Spin(Z2k [2] ∧ Z2k [2]) does not vanish. Namely, the

bottom three layers of Ω•
Spin(pt) agree with those of SW•(pt), and a fortiori with those of

SH•(pt), as was shown in [149, 110]. Furthermore, these layers are the only ones that we

need to consider in order to compute S̃W5
(Z2k [2] ∧ Z2k [2]) = SH5(Z2k [2] ∧ Z2k [2]). Here,

it is crucial that we are using reduced cohomology. We have a quick-and-dirty way to

check that Ω̃5
Spin(Z2k [2] ∧ Z2k [2]) is nonzero, via the Adams spectral sequence. There are

two classes in degree 5, each giving free A(1)-summands in H•(B(Z2k [2]× Z2k [2]);Z2), so

by Margolis’ theorem, the corresponding two Z2 summands on the E2-page of the Adams

spectral sequence do not admit or receive any differentials. Thus Ω̃5
Spin(Z2k [2] ∧ Z2k [2]) is

nontrivial. More generally, this also implies that if E is any group which contains a product

of two 2-torsion groups, then the map SH5(E[2]) → S̃W5
(E[2]) has non-zero image.

Bosonic Case

In order to classify the bosonic theories associated to braided bosonic strongly fusion 2-

categories, it is convenient to work with the associated fermionic theories. This is analogous

to how working with an algebra over the real numbers is equivalent to working with the

complexified algebra together with the Galois action of ZT2 , given by complex conjugation.

In this sense, the action of ZT2 provides the necessary data to descend a complex algebra

into a real one. The categorification of this classical setup was introduced in [144]. Namely,

for symmetric fusion 1-categories, the algebraic closure of Vec is given by SVec and the

Galois higher group Gal(SVec/Vec) is given by ZF2 [1]. This higher group agrees with

the physical phenomenon of spin statistics, which says that fermions reverse sign under

360 degree rotation. Then, Galois descent asserts that the theory associated to a braided

bosonic strongly fusion 2-category B is completely described by the ZF2 [1]-equivariant theory
associated to B⊠ 2SVec. We can study the later using the equivariant Atiyah-Hirzebruch

spectral sequence.

In general, the group of surfaces of B is given by a finite abelian group E. We begin
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by showing that W5(pt) does not vanish. That is, we wish to understand the twisted

SW•-cohomology with E2 page given by:

Hi(ZF2 [2];SWj(pt)) ⇒ SW i+j(ZF2 [2]) = W i+j(pt). (5.9.9)

To arrive at the last equality, we use the fact that W• is the fixed point spectrum of SW•

under the action of ZF2 [1]. The E2 page is then given by:

Eij
2 =

j

0 0 0 . . .

SW SW 0 SW2 . . .

0 0 0 0 0 0 0

Z2 Z2 0 Z2 Z2 Z2 Z2
2 Z2

2 . . .

Z2 Z2 0 Z2 Z2 Z2 Z2
2 Z2

2 . . .

C× C× 0 Z2 0 Z4 Z2 Z2 Z2 Z2

0 1 2 3 4 5 6 7 8 i .

(5.9.10)

The d2 differentials are the twisted analogue of (5.9.16)

d2 :E
i,2
2 = Hi(Z2[2] ;Z2) → Ei+2,1

2 = Hi+2(Z2[2] ;Z2) X 7→ Sq2X + ι2X (5.9.11)

d2 :E
i,1
2 = Hi(Z2[2] ;Z2) → Ei+2,0

2 = Hi+2(Z2[2] ;C×) X 7→ (−1)Sq
2X+ι2X ,

and we find the E3 page is given by

Eij
3 =

j

0 0 0 . . .

SW SW 0 SW2 . . .

0 0 0 0 0 0 0

Z2 0 0 Z2 0 0 Z2 . . .

Z2 0 0 0 Z2 0 0 . . .

C× C× 0 0 0 Z4 Z2 0 0 0

0 1 2 3 4 5 6 7 8 i .

(5.9.12)

The d5 differential from (0, 4) records the obstruction to minimal modular extensions. It

sends a class in SW to 0 if the minimal modular extension exists, and to 1 if it does not

exist [149]. The main result of [150] shows that the possible d5 vanishes. We therefore find
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that W5(pt) ∼= Z2.

Now, let us consider any finite abelian group E. It follows from (5.9.8), that

W5(E[2]) ∼= W5(pt)⊕ S̃W5
(E[2])⊕ S̃W5(ZF2 [2] ∧ E[2]).

It follows from what we have argued above in the fermionic case that the canonical

map H5(E[2];C×) → S̃W5
(E[2]) is non-zero for a general finite abelian group E. As a

consequence, the theory associated to a braided bosonic strongly fusion 2-category can not

be condensed to the vacuum in general.

Before moving on the case of symmetric strongly fusion 2-categories, let us briefly

remark that, in section 5.8, we have also considered examples when the condensation yields

a sylleptic strongly fusion 2-category. The computations for the theories associated to these

2-categories were performed in [153], where the object of study was topological (4+1)d

theories.

5.9.2. Symmetric Strongly Fusion 2-Categories

We now analyze the structure of symmetric strongly fusion 2-categories. More precisely, we

will show below that every symmetric strongly fusion 2-category admits a fibre 2-functor

to 2SVec. In the process, we will also show that every symmetric fermionic strongly

fusion 2-category is completely determined by its groups of connected components. These

computations establish the 2-Deligne theorem for symmetric fusion 2-categories. Namely,

it follows from corollary 5.8.6 together with the obvious fermionic analogue, that every

symmetric fusion 2-category admits a fibre 2-functor to a strongly fusion 2-category. Putting

the above discussion together, we obtain the following theorem, which is a categorification

of [79].

Theorem 5.9.1. Every symmetric fusion 2-category admits a fibre 2-functor to 2SVec.

We point out that this result was first announced in [148]. In addition, we expect that the

above theorem can be used to classify symmetric fusion 2-categories. More precisely, every

symmetric fusion 2-category should be equivalent to the symmetric monoidal 2-category of

finite semisimple 2-representation of a “super 2-group”.

Fermionic Case

Let S be a symmetric fermionic strongly fusion 2-category, and let us denote by E its

abelian group of connected components. We now wish to understand what additional data
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besides E, if any, needs to be supplied to recover S. We begin by describing S× the Picard

sub-2-category of S, that is the maximal sub-2-category on the invertible objects and

morphisms.

It has been established in [130] that the homotopy theory of symmetric monoidal

2-categories for which all objects and morphisms are invertible is equivalent to that of

spectra with homotopy groups concentrated in degrees 0, 1, and 2. In particular, the Picard

2-category S× fits into the following fibre sequence of spectra

2SVec× → S× → HE → Σ2SVec×,

where HE denotes the Eilenberg-MacLane spectrum associated to E. In particular, S×

is completely determined by the map of spectra HE → Σ2SVec×. Up to homotopy, such

maps are classified by the group SH7(E[4]).

In order to compute the group SH7(E[4]), we invoke the Atiyah-Hirzebruch spectral

sequence with the E2-page:

Hi(E[4]; SHj(pt)) =⇒ SHi+j(E[4]) . (5.9.13)

We will show that the degree seven supercohomology group SH7(E[4]) vanishes for any

finite abelian group E. Firstly, it follows from [87] that H7(E[4];C×) = 0 if E has no

2-torsion. In addition, the Hurewicz theorem shows that SH7(E[4]) can only be non-trivial

if E has 2-torsion. We start with the case E = Z2k , as explained in [217], the cohomology

H•(Z2k [n],Z2) is a polynomial ring Z2[Sq
I(ιn)] where the generator ιn ∈ Hn(Z2k [n];Z2) is

in degree n, and I = (i1, i2, . . . , im) runs over all sequences such that ij ≥ 2ij+1 of excess

e(I) < n. This quantity is defined as e(I) = i2 −
∑

j≥3 ij and SqIx = Sqi1Sqi2 . . . Sqimx. If

im = 1 then SqIx = Sqi1Sqi2 . . . Sqim−1βkx where βk denotes the k-th power Bockstein for

the short exact sequence

0 → Z2 → Z2k+1 → Z2k → 0 . (5.9.14)

The E2 page for (5.9.13) in terms of the generators then takes the form

Eij
2 =

j

Z2 Z2 0 0 0 ι4 βkι4 Sq2ι4 . . .

Z2 Z2 0 0 0 ι4 βkι4 Sq2ι4 (Sq3ι4, Sq
2βkι4)

C× C× 0 0 0 (−1)ι4 0 (−1)Sq
2ι4 (−1)Sq

2βkι4

0 1 2 3 4 5 6 7 8 i .

(5.9.15)
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The d2 differentials are given by:

d2 :E
i,2
2 = Hi(Z2k [4] ;Z2) → Ei+2,1

2 = Hi+2(Z2k [4] ;Z2) X 7→ Sq2X (5.9.16)

d2 :E
i,1
2 = Hi(Z2k [4] ;Z2) → Ei+2,0

2 = Hi+2(Z2k [4] ;C×) X 7→ (−1)Sq
2X ,

and there are d2’s leaving the entries in bidegrees (4, 2) and (4, 1) that carry the generator

ι4 to Sq2ι4 and are isomorphisms. Additionally, there are d2 differentials leaving the entries

in bidegrees (5, 1) and (5, 2) which are isomorphisms. In total degree seven, the E3 page

converges to the E∞ page and we see that SH7(Z2k [4]) = 0. If E is a product of groups, we

can use (5.9.8), where the spaces are fourth Eilenberg-MacLane spaces of groups that are

2-torsion. Then the term corresponding to h̃•(X ∧ Y ) for supercohomology will only begin

to contribute in degree 8, and everything else vanishes. In summary, we have shown that

SH7(E[4]) = 0 for any group E.

This implies that S× ∼= 2SVec× ×E as symmetric monoidal 2-categories. In particular,

BSVec×E is a full symmetric monoidal sub-2-category of S. But BSVec×E contains an

object in every connected component of S, so that its Cauchy completion Cau(BSVec×
E) ≃ 2SVec[E] is equivalent to S as a symmetric monoidal 2-category. Thus, we obtain

the following result.

Proposition 5.9.2. Every symmetric fermionic strongly fusion 2-category is of the form

2SVec[E] for some finite abelian group E.

In particular, every symmetric strongly fusion 2-category admits a fibre 2-functor to 2SVec.

Bosonic Case

For a symmetric bosonic strongly fusion 2-category, the obstruction to condensing to

the symmetric fusion 2-category to 2Vec is given by a class in H7(E[4];C×). The group

Hn+m+1(E[n];C×) may be thought of as parameterizing the ways for m spacetime dimen-

sional objects to fuse in n ambient dimensions with fusion rule E. A computation of this

cohomology group can be found in [87] where the authors obtained H7(E[4];C×) = (̂E2) ,

with E2 the 2-torsion subgroup of E, and for a group A we denote Â = hom(A,C×). Even

though this cohomology group is not necessarily trivial, the computation in 5.9.2 shows

that if we work in a fermionic setting, then there is no obstruction to the existence of a

fibre 2-functor to 2SVec. In particular, any symmetric bosonic strongly fusion 2-category

admits a fibre 2-functor to 2SVec, which concludes the proof of theorem 5.9.1.
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[50] Clay Córdova, Daniel S. Freed, Ho Tat Lam, and Nathan Seiberg. Anomalies in the

Space of Coupling Constants and Their Dynamical Applications I. SciPost Phys.,

8(1):001, 2020. 21

205



[51] Joe Davighi, Ben Gripaios, and Nakarin Lohitsiri. Global anomalies in the standard

model(s) and beyond. J. High Energy Phys., (7):232, 50, 2020. https://arxiv.org/

abs/1910.11277. 58

[52] Joe Davighi, Ben Gripaios, and Nakarin Lohitsiri. Anomalies of non-Abelian finite

groups via cobordism. J. High Energy Phys., (9):Paper No. 147, 2022. https:

//arxiv.org/abs/2207.10700. 58, 61

[53] Joe Davighi and Nakarin Lohitsiri. Anomaly interplay in U(2) gauge theories. J.

High Energy Phys., (5):098, 20, 2020. https://arxiv.org/abs/2001.07731. 58

[54] Joe Davighi and Nakarin Lohitsiri. Omega vs. pi, and 6d anomaly cancellation. Journal

of High Energy Physics, 2021(267), 2021. https://arxiv.org/abs/2012.11693. 58

[55] Joe Davighi and Nakarin Lohitsiri. The algebra of anomaly interplay. SciPost Phys.,

10(3):074, 2021. https://arxiv.org/abs/2011.10102. 58, 61

[56] Donald M. Davis, Sam Gitler, and Mark Mahowald. The stable geometric dimension

of vector bundles over real projective spaces. Trans. Amer. Math. Soc., 268(1):39–61,

1981.

[57] Alexei Davydov. Twisted automorphisms of group algebras, 2007. 100

[58] Alexei Davydov. Unphysical diagonal modular invariants. Journal of Algebra, 446:1–18,

2016. 113

[59] Alexei Davydov and Tom Booker. Commutative Algebras in Fibonacci Categories. 3

2011. 141

[60] Alexei Davydov and Dmitri Nikshych. Braided picard groups and graded extensions

of braided tensor categories. Selecta Mathematica, 27(4):1–87, 2021. 94, 97, 103

[61] Alexei Davydov, Dmitri Nikshych, and Victor Ostrik. On the structure of the witt

group of braided fusion categories, 2011. 88, 109, 112, 113

[62] Brian Day and Ross Street. Monoidal bicategories and hopf algebroids. Advances in

Mathematics, 129(AI971649):99–157, 1997. 169, 176, 177

[63] Mark Dirk Frederik de Wild Propitius. Topological interactions in broken gauge

theories. PhD thesis, Amsterdam U., 1995. 42

[64] Arun Debray. Geometry and String Theory Seminar: Spring 2018. 2018. 12

206

https://arxiv.org/abs/1910.11277
https://arxiv.org/abs/1910.11277
https://arxiv.org/abs/2207.10700
https://arxiv.org/abs/2207.10700
https://arxiv.org/abs/2001.07731
https://arxiv.org/abs/2012.11693
https://arxiv.org/abs/2011.10102


[65] Arun Debray. Invertible phases for mixed spatial symmetries and the fermionic

crystalline equivalence principle. 2021. https://arxiv.org/abs/2102.02941.

[66] Arun Debray. The 2-group symmetries of the heterotic and CHL strings. 2022. To

appear. iv, 5, 58, 60

[67] Arun Debray, Markus Dierigl, Jonathan J. Heckman, and Miguel Montero. The

anomaly that was not meant IIB. Fortschr. Phys., 70(1):Paper No. 2100168, 31, 2022.

https://arxiv.org/abs/2107.14227. 51, 58

[68] Arun Debray, Markus Dierigl, Jonathan J. Heckman, and Miguel Montero. IIB

determined: bordisms, dualities, and the Swampland. 2022. To appear.

[69] Arun Debray and Matthew Yu. What bordism-theoretic anomaly cancellation can do

for U. 10 2022.

[70] Arun Debray and Matthew Yu. T-Duality Bordism. To Appear, 2023. 52
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[78] Thibault D. Décoppet and Matthew Yu. Gauging noninvertible defects: a 2-categorical

perspective. Lett. Math. Phys., 113(2):36, 2023. iv, 6, 111

207

https://arxiv.org/abs/2102.02941
https://arxiv.org/abs/2107.14227


[79] Pierre Deligne. Catégories tensorielles. Mosc. Math. J., 2(2):227–248, 2002. 7, 90,

125, 163, 164, 199

[80] Diego Delmastro, Davide Gaiotto, and Jaume Gomis. Global anomalies on the Hilbert

space. Journal of High Energy Physics, 2021(142), 2021. https://arxiv.org/abs/

2101.02218. 58

[81] Diego Delmastro and Jaume Gomis. Symmetries of Abelian Chern-Simons Theories

and Arithmetic. JHEP, 03:006, 2021. 134

[82] Diego Delmastro, Jaume Gomis, and Matthew Yu. Infrared phases of 2d QCD. 8

2021. 38, 113

[83] P. Di Francesco, P. Mathieu, and D. Senechal. Conformal Field Theory. Graduate

Texts in Contemporary Physics. Springer-Verlag, New York, 1997. 149

[84] Albrecht Dold. Erzeugende der thomschen algebra {N}. Mathematische Zeitschrift,

65:25–35, 1956.

[85] Christopher L. Douglas and David J. Reutter. Fusion 2-categories and a state-sum

invariant for 4-manifolds. 2018. 6, 79, 80, 81, 82, 89, 91, 115

[86] Christopher L. Douglas and David J. Reutter. Fusion 2-categories and a state-sum

invariant for 4-manifolds, 2018. arXiv: 1812.11933. 172

[87] Samuel Eilenberg and Saunders MacLane. On the groups h(π, n), ii: Methods of

computation. Annals of Mathematics, 60(1):49–139, 1954. 91, 94, 97, 196, 200, 201

[88] Dominic V. Else and Chetan Nayak. Cheshire charge in (3+1)-dimensional topological

phases. Physical Review B, 96(4), Jul 2017. 96

[89] Narthana Epa and Nora Ganter. Platonic and alternatinc 2-groups. arXiv preprint

arXiv:1605.09192, 2016. 45

[90] P. Etingof, S. Gelaki, D. Nikshych, and V. Ostrik. Tensor Categories. Mathematical

Surveys and Monographs. American Mathematical Society, 2015. 79

[91] Pavel Etingof, Shlomo Gelaki, and Viktor Ostrik. Classification of fusion categories

of dimension pq. International Mathematics Research Notices, 2004(57):3041–3056,

2004. 80

[92] Pavel Etingof, Dmitri Nikshych, and Viktor Ostrik. On fusion categories. Ann. Math.,

162:581–642, 2005. arXiv: math/0203060. 148, 192

208

https://arxiv.org/abs/2101.02218
https://arxiv.org/abs/2101.02218


[93] Sergio Ferrara and Alessio Marrani. Quantum gravity needs supersymmetry. In

Antonino Zichichi, editor, Searching for the Unexpected at LHC and the Status of

Our Knowledge, volume 49 of The Subnuclear Series, pages 53–67, 2013. https:

//arxiv.org/abs/1201.4328. 53

[94] Lukasz Fidkowski, Jeongwan Haah, Matthew B. Hastings, and Nathanan Tanti-

vasadakarn. Disentangling the Generalized Double Semion Model. Commun. Math.

Phys., 380(3):1151–1171, 2020. 109

[95] Domenico Fiorenza, Hisham Sati, and Urs Schreiber. Extended higher cup-product

chern–simons theories. Journal of Geometry and Physics, 74:130–163, Dec 2013. 19

[96] Domenico Fiorenza, Urs Schreiber, and Jim Stasheff. Cech cocycles for differential

characteristic classes -an infinity-lie theoretic construction, 2011. 18

[97] Daniel S. Freed. Anomalies and Invertible Field Theories. Proc. Symp. Pure Math.,

88:25–46, 2014. https://arxiv.org/abs/1404.7224. 56

[98] Daniel S. Freed. Lectures on field theory and topology, volume 133 of CBMS Regional

Conference Series in Mathematics. American Mathematical Society, Providence, RI,

2019. Published for the Conference Board of the Mathematical Sciences. 56, 59

[99] Daniel S. Freed and Michael J. Hopkins. Consistency of M-theory on non-orientable

manifolds. Q. J. Math., 72(1-2):603–671, 2021. https://arxiv.org/abs/1908.

09916. 58, 60, 69, 73

[100] Daniel S. Freed and Michael J. Hopkins. Reflection positivity and invertible topological

phases. Geom. Topol., 25(3):1165–1330, 2021. https://arxiv.org/abs/1604.06527.

52, 55, 56, 57, 58, 163

[101] Daniel S. Freed, Michael J. Hopkins, and Constantin Teleman. Consistent orientation

of moduli spaces. In The many facets of geometry, pages 395–419. Oxford Univ. Press,

Oxford, 2010. 55, 56

[102] Daniel S. Freed and Gregory W. Moore. Setting the quantum integrand of M-

theory. Comm. Math. Phys., 263(1):89–132, 2006. https://arxiv.org/abs/hep-th/

0409135. 56, 59

[103] Daniel S. Freed and Gregory W. Moore. Twisted equivariant matter. Annales Henri

Poincare, 14:1927–2023, 2013.

209

https://arxiv.org/abs/1201.4328
https://arxiv.org/abs/1201.4328
https://arxiv.org/abs/1404.7224
https://arxiv.org/abs/1908.09916
https://arxiv.org/abs/1908.09916
https://arxiv.org/abs/1604.06527
https://arxiv.org/abs/hep-th/0409135
https://arxiv.org/abs/hep-th/0409135


[104] Daniel S. Freed, Gregory W. Moore, and Constantin Teleman. Topological symmetry

in quantum field theory. 9 2022. 173

[105] Daniel S. Freed and Constantin Teleman. Relative quantum field theory. Comm.

Math. Phys., 326(2):459–476, 2014. https://arxiv.org/abs/1212.1692. 55, 56

[106] Daniel S. Freed and Constantin Teleman. Gapped boundary theories in three dimen-

sions, 2020. 83

[107] Jurgen Fuchs, Christoph Schweigert, and Alessandro Valentino. Bicategories for

boundary conditions and for surface defects in 3-d TFT. Commun. Math. Phys.,

321:543–575, 2013. 114

[108] Matthias R. Gaberdiel, Daniel Persson, Henrik Ronellenfitsch, and Roberto Volpato.

Generalized Mathieu Moonshine. Commun. Num. Theor Phys., 07:145–223, 2013. 41,

43

[109] Davide Gaiotto and Theo Johnson-Freyd. Condensations in higher categories. 5 2019.

5, 6, 8, 81, 82, 90, 112, 115, 163, 171, 172, 173

[110] Davide Gaiotto and Theo Johnson-Freyd. Symmetry protected topological phases

and generalized cohomology. Journal of High Energy Physics, 2019(5), May 2019. 25,

96, 197

[111] Davide Gaiotto and Anton Kapustin. Spin TQFTs and fermionic phases of matter.

Int. J. Mod. Phys. A, 31(28n29):1645044, 2016.

[112] Davide Gaiotto, Anton Kapustin, Zohar Komargodski, and Nathan Seiberg. Theta,

Time Reversal, and Temperature. JHEP, 05:091, 2017. 8

[113] Davide Gaiotto, Anton Kapustin, Nathan Seiberg, and Brian Willett. Generalized

global symmetries. Journal of High Energy Physics, 2015(2), Feb 2015. 5, 10, 112

[114] Davide Gaiotto and Justin Kulp. Orbifold groupoids. 8 2020. 8, 34

[115] Davide Gaiotto and Justin Kulp. Orbifold groupoids. arXiv preprint arXiv:2008.05960,

2020. 37

[116] Dennis Gaitsgory. Sheaves of categories and the notion of 1-affineness. In Stacks

and Categories in Geometry, Topology, and Algebra, volume 643 of Contemporary

Mathematics, pages 127–226. AMS, 2012. arXiv:1306.4304. 173

210

https://arxiv.org/abs/1212.1692


[117] Nora Ganter. Hecke operators in equivariant elliptic cohomology and generalized

moonshine. Groups and symmetries, 47:173–209, 2009. 40
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[183] R. Lashof. Poincaré duality and cobordism. Trans. Amer. Math. Soc., 109:257–277,

1963. 56

[184] Yasunori Lee, Kantaro Ohmori, and Yuji Tachikawa. Matching higher symmetries

across Intriligator-Seiberg duality. Journal of High Energy Physics, 2021(114), 2021.

https://arxiv.org/abs/2108.05369. 58

[185] Yasunori Lee, Kantaro Ohmori, and Yuji Tachikawa. Revisiting Wess-Zumino-Witten

terms. SciPost Phys., 10:61, 2021. https://arxiv.org/abs/2009.00033. 58

[186] Yasunori Lee and Yuji Tachikawa. Some comments on 6D global gauge anomalies.

PTEP, 2021(8):08B103, 2021. https://arxiv.org/abs/2012.11622. 58, 61

[187] Yasunori Lee and Kazuya Yonekura. Global anomalies in 8d supergravity. J. High

Energy Phys., (7):Paper No. 125, 2022. https://arxiv.org/abs/2203.12631. 58,

61

[188] Michael A. Levin and Xiao-Gang Wen. String net condensation: A Physical mechanism

for topological phases. Phys. Rev. B, 71:045110, 2005. 119

[189] Ying-Hsuan Lin and Shu-Heng Shao. ZN Symmetries, Anomalies, and the Modular

Bootstrap. 1 2021. 38, 43

[190] Jiaqi Lou, Ce Shen, Chaoyi Chen, and Ling-Yan Hung. A (dummy’s) guide to working

with gapped boundaries via (fermion) condensation. JHEP, 02:171, 2021. 112

[191] A. Malcev. On the theory of the Lie groups in the large. Rec. Math. [Mat. Sbornik]

N. S., 16(58):163–190, 1945. 58

[192] Naren Manjunath, Vladimir Calvera, and Maissam Barkeshli. Non-perturbative

constraints from symmetry and chirality on Majorana zero modes and defect quantum

numbers in (2+1)D. 2022. https://arxiv.org/abs/2210.02452. 61

[193] Neil Marcus. Composite anomalies in supergravity. Phys. Lett. B, 157(5-6):383–388,

1985. 57, 74

216

https://arxiv.org/abs/2108.05369
https://arxiv.org/abs/2009.00033
https://arxiv.org/abs/2012.11622
https://arxiv.org/abs/2203.12631
https://arxiv.org/abs/2210.02452


[194] Paddy McCrudden. Balanced coalgebroids. Theory and Application of Categories,

7(6):71–147, 2000. 176
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Appendix A

Topological Details

A.1. Spectrum of a Ring

Let us start off with a commutative K-algebra denoted S, the simplest being the algebra

over C. Define Spec(S) : R → hom(S,R). Where R is some set of test objects. If we let

R = C then Spec(S)(C) = hom(S,C) taking values in sets, and hom is as C-linear algebras.
As an example let S = C[x]/ (p(x) = 0) for some arbitrary polynomial p(x) with complex

roots. Then Spec(S) = {λ ∈ C | (x− λ)−1 /∈ S} i.e. the noninvertible (x− λ). Therefore,

given x there exists a homomorphism ρ : S → C with x 7→ λ. Conversely, given a map

ρ, then the point ρ(x) ∈ Spec(S). In general, the map from S to the R -valued functions

on Spec(S)(R) is neither injective nor surjective. However, if S has finite dimension, is

separable, and R = C then this map is an isomorphism. This says that Spec(S)(C) in sets

determines S, which makes Spec(S) into a sheaf as a space.

A.2. Further Examples of Nonabelian Condensation

SU(3)2 × (G2)1: We continue with an example of a product theory; we review this

example because this type of theory arises frequently when one considers using the folding
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trick. We first give the two constituent spectra

SU(3)2 λ h q-dim

0 [0, 0, 2] 0 1

1 [0, 2, 0] 2/3 1

2 [2, 0, 0] 2/3 1

3 [1, 1, 0] 3/5 1.618033988750

4 [1, 0, 1] 4/15 1.618033988750

5 [0, 1, 1] 4/15 1.618033988750

(G2)1 λ h q-dim

0 [0, 0, 1] 0 1

1 [0, 1, 0] 2/5 1.618033988750 .

The spectrum of the product theory consists of 12 lines given by

SU(3)2 × (G2)1 {ℓ1, ℓ2} h q-dim

0 {0, 0} 0 1

1 {1, 0} 2/3 1

2 {2, 0} 2/3 1

3 {0, 1} 2/5 1.618033988750

4 {1, 1} 16/15 1.618033988750

5 {2, 1} 16/15 1.618033988750

6 {3, 0} 3/5 1.618033988750

7 {4, 0} 4/15 1.618033988750

8 {5, 0} 4/15 1.618033988750

9 {3, 1} 1 2.618033988750

10 {4, 1} 2/3 2.618033988750

11 {5, 1} 2/3 2.618033988750 ,

from which we can form the algebra φ = 0 + 9. The modules constructed from this algebra

are given by

φ× 0 = φ , φ× 6 = 6 + (3 + 92) ,

φ× 1 = φ , φ× 7 = 7 + (4 + 102) ,

φ× 2 = 2 + 111 , φ× 8 = 8 + (5 + 112) ,

φ× 3 = 3 + (6 + 92) , φ× 9 = 91 + (0 + 92 + 3 + 6) ,

φ× 4 = 4 + (7 + 102) , φ× 10 = 101 + (1 + 4 + 7 + 102) ,

φ× 5 = 5 + (8 + 112) , φ× 11 = 111 + (2 + 5 + 8 + 112) . (A.2.1)
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The quantum dimension of the last three lines on the table, are exactly off from the quantum

dimensions of lines 3 through 8 by 1, hinting at the fact that those three lines will split.

Indeed, if we greedily assign the quantum dimension of line 3 and 6 to 92, then the vacuum

0 + 91 has quantum dimension 1. We similarly assign the quantum dimension for 102 and

112. By grouping based on quantum dimensions we get the lines

ℓ q-dim

φ = (0 + 91) 1

(1 + 101) 1

(2 + 111) 1

(3 + 6 + 92) 1.618033988750

(4 + 7 + 102) 1.618033988750

(5 + 8 + 112) 1.618033988750 ,

(A.2.2)

the last three are projected out because of the simple objects have different spins. The

three remaining lines

{φ = (0 + 91), (1 + 101), (2 + 111)} (A.2.3)

are the ones in (E6)1.

(F4)3: The spectrum for this theory consists of 9 lines given by

(F4)3 λ h q-dim

0 [0, 0, 0, 0, 3] 0 1

1 [0, 0, 0, 1, 2] 1/2 5.449489742783

2 [0, 0, 0, 2, 1] 13/12 8.898979485566

3 [0, 0, 0, 3, 0] 7/4 4.449489742783

4 [0, 0, 1, 0, 1] 1 9.898979485566

5 [0, 0, 1, 1, 0] 13/8 10.898979485566

6 [0, 1, 0, 0, 0] 3/2 5.449489742783

7 [1, 0, 0, 0, 1] 3/4 4.449489742783

8 [1, 0, 0, 1, 0] 4/3 8.898979485566

from which we form the algebra φ = 0 + 4. By inspecting the quantum dimension, we see

that 4.449 . . . is the lowest that is not 1, and the other higher quantum dimensions can be

partitioned into 4.449 . . . and 1. The modules constructed from this algebra are given by

φ× 0 = φ ,
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φ× 1 = 11 + (12 + 22 + 43 + 54 + 62 + 7 + 82) ,

φ× 2 = 2 + (12 + 22 + 3 + 43 + 43 + 53 + 54 + 62 + 7 + 81 + 82) ,

φ× 3 = 3 + (22 + 43 + 54 + 62 + 82) ,

φ× 4 = 41 + (0 + 1 + 21 + 22 + 3 + 42 + 43 + 53 + 54 + 6 + 7 + 81 + 82) ,

φ× 5 = 51 + (1 + 21 + 22 + 3 + 42 + 43 + 52 + 53 + 54 + 6 + 7 + 81 + 82) ,

φ× 6 = 61 + (12 + 22 + 3 + 43 + 54 + 62 + 82) ,

φ× 7 = 7 + (12 + 22 + 43 + 54 + 82) ,

φ× 8 = 81 + (12 + 21 + 22 + 3 + 42 + 43 + 53 + 54 + 62 + 7 + 82) . (A.2.4)

While the fusion structure is more complicated, one does notice the following grouping of

lines to appear

(12 + 42 + 53 + 7 + 81) , (22 + 3 + 43 + 54 + 62 + 82),

both of which we greedy assign q-dim 4.49. . ., which is that of line 3 and 7. Together with

the remaining lines we form the groupings given by

ℓ q-dim

φ = (0 + 41) 1

(11 + 61) 1

51 1

52 1

(12 + 42 + 53 + 7 + 81) 4.449489742783

(22 + 3 + 43 + 54 + 62 + 82) 4.449489742783 ,

(A.2.5)

the first four

{φ = (0 + 41), (11 + 61), 51, 52} (A.2.6)

are the lines of Spin(26)1, while the last two are projected out.
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(G2)4: The spectrum for this theory consists of 9 lines given by

(G2)4 λ h q-dim

0 [0, 0, 4] 0 1

1 [0, 1, 3] 1/4 4.449489742783

2 [0, 2, 2] 7/12 8.898979485566

3 [0, 3, 1] 1 9.898979485566

4 [0, 4, 0] 3/2 5.449489742783

5 [1, 0, 2] 1/2 5.449489742783

6 [1, 1, 1] 7/8 10.898979485566

7 [1, 2, 0] 4/3 8.898979485566

8 [2, 0, 0] 5/4 4.449489742783

from which we form the algebra φ = 0 + 3. The modules constructed from this algebra are

given by

φ× 0 = φ

φ× 1 = 1 + (22 + 33 + 42 + 64 + 72)

φ× 2 = 21 + (1 + 22 + 32 + 33 + 42 + 5 + 63 + 64 + 71 + 72 + 8)

φ× 3 = 31 + (0 + 1 + 21 + 22 + 32 + 33 + 42 + 5 + 63 + 64 + 71 + 72 + 8)

φ× 4 = 41 + (1 + 22 + 33 + 42 + 52 + 64 + 72)

φ× 5 = 51 + (22 + 33 + 42 + 52 + 64 + 72 + 8)

φ× 6 = 61 + (1 + 21 + 22 + 31 + 32 + 4 + 5 + 62 + 63 + 64)

φ× 7 = 7 + (1 + 21 + 22 + 31 + 32 + 4 + 5 + 63 + 64 + 72 + 8)

φ× 8 = 81 + (22 + 33 + 5 + 64 + 72) . (A.2.7)

By grouping based on quantum dimensions we greedily assign the dimension of line 8 and

line 1, which is the lowest quantum dimension that is not 1, to the lines

(1 + 22 + 33 + 64 + 72) , (21 + 63 + 71 + 8) (A.2.8)
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which appear repeatedly in the equations above. In summary the groupings are

ℓ q-dim

φ = (0 + 31) 1

(41 + 51) 1

61 1

62 1

(1 + 22 + 33 + 64 + 72) 4.4494897427830

(21 + 63 + 71 + 8) 4.4494897427830

(32 + 52) 5.4494897427830 .

(A.2.9)

The last three lines are projected out due to the fact that the simple objects have different

spins. The first four lines give those of Spin(14)1.

SU(3)5: It will be clear after this example that as the number of lines becomes even

larger, finding the modules for a condensation algebra becomes a tedious task. The spectrum

of this theory contains 21 lines given by

SU(3)5 λ h q-dim

0 [0, 0, 5] 0 1

1 [0, 5, 0] 5/3 1

2 [5, 0, 0] 5/3 1

3 [1, 4, 0] 3/2 2.414213562373

4 [4, 0, 1] 7/6 2.414213562373

5 [0, 1, 4] 1/6 2.414213562373

6 [3, 0, 2] 3/4 3.414213562373

7 [0, 2, 3] 5/12 3.414213562373

8 [2, 3, 0] 17/12 3.414213562373

9 [0, 3, 2] 3/4 3.414213562373

10 [3, 2, 0] 17/12 3.414213562373

SU(3)5 λ h q-dim

11 [2, 0, 3] 5/12 3.414213562373

12 [4, 1, 0] 3/2 2.414213562373

13 [1, 0, 4] 1/6 2.414213562373

14 [0, 4, 1] 7/6 2.414213562373

15 [1, 1, 3] 3/8 4.828427124746

16 [1, 3, 1] 25/24 4.828427124746

17 [3, 1, 1] 25/24 4.828427124746

18 [2, 2, 1] 1 5.828427124746

19 [2, 1, 2] 2/3 5.828427124746

20 [1, 2, 2] 2/3 5.828427124746

The modules for the algebra φ = 0 + 18, created by the nonabelian boson is

φ× 0 = φ , φ× 11 = 111 + (82 + 112 + 14 + 172 + 203) ,

φ× 1 = 1 + 191 , φ× 12 = 12 + (92 + 152 + 183) ,

φ× 2 = 2 + 201 , φ× 13 = 13 + (102 + 162 + 193) ,
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φ× 3 = 3 + (62 + 152 + 183) , φ× 14 = 14 + (112 + 172 + 203) ,

φ× 4 = 4 + (72 + 162 + 193) , φ× 15 = 151 + (3 + 62 + 92 + 12

φ× 5 = 5 + (82 + 172 + 203) , + 152 + 182 + 183) ,

φ× 6 = 61 + (3 + 62 + 92 + 152 + 183) , φ× 16 = 161 + (4 + 72 + 102 + 13

φ× 7 = 71 + (4 + 72 + 102 + 162 + 193) , + 162 + 192 + 193) ,

φ× 8 = 81 + (5 + 82 + 112 + 172 + 203) , φ× 17 = 171 + (5 + 82 + 112 + 14

φ× 9 = 91 + (62 + 92 + 12 + 152 + 183) , + 172 + 202 + 203) ,

φ× 10 = 101 + (72 + 102 + 13 + 162 + 193) . φ× 18 = 181 + (0 + 3 + 62 + 92 + 12

+ 151 + 152 + 182 + 183) ,

φ× 19 = 191 + (1 + 4 + 72 + 102 + 13

+ 161 + 162 + 192 + 193) ,

(A.2.10)

φ× 20 = 201 + (2 + 5 + 82 + 112 + 14 + 171 + 172 + 202 + 203) , (A.2.11)

By closely examining the repeating structures within the modules, we can see the following

grouping of lines

ℓ q-dim

φ = (0 + 181) 1

(1 + 191) 1

(2 + 201) 1

(61 + 91) 1

(71 + 81) 1

(101 + 111) 1

ℓ q-dim

(3 + 62 + 92 + 152 + 183) 2.414213562373

(151 + 182) 2.414213562373

(4 + 72 + 102 + 13 + 162 + 193) 2.414213562373

(161 + 192) 2.414213562373

(5 + 82 + 112 + 14 + 172 + 203) 2.414213562373

(171 + 202) 2.414213562373 .

(A.2.12)

Sp(16)1: We present this theory to give a nontrivial example of when nonabelian

condensation for a line with non-integer spin can be performed after abelian condensation,

in a consistent way. In the bulk of the paper, it was shown that for (G2)2 that there was

no canonical way to group lines and assign quantum dimensions in any consistent way. But

we will see in this simple example that the grouping of lines is canonical. The spectrum
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consists of 9 lines given by

Sp(16)1 λ h q-dim

0 [0, 0, 0, 0, 0, 0, 0, 0, 1] 0 1

1 [0, 0, 0, 0, 0, 0, 0, 1, 0] 2 1

2 [0, 0, 0, 0, 0, 0, 1, 0, 0] 77/40 1.902113032590

3 [1, 0, 0, 0, 0, 0, 0, 0, 0] 17/40 1.902113032590

4 [0, 0, 0, 0, 0, 1, 0, 0, 0] 9/5 2.618033988750

5 [0, 1, 0, 0, 0, 0, 0, 0, 0] 4/5 2.618033988750

6 [0, 0, 0, 0, 1, 0, 0, 0, 0] 13/8 3.077683537175

7 [0, 0, 1, 0, 0, 0, 0, 0, 0] 9/8 3.077683537175

8 [0, 0, 0, 1, 0, 0, 0, 0, 0] 7/5 3.236067977500 .

Upon condensing out the abelian boson we are left with the lines

Sp(16)1/Z2 ℓ h q-dim

0 φ = (0 + 1) 0 1

1 (4 + 5) 4/5 2.618033988750

2 81 7/5 1.618033988750

3 82 7/5 1.618033988750 ,

from which we sequentially condense φ̃ = 0 + 1, noticing that this is a nonabelian spin 4
5

line that usually would have been abelian after the boson condensation. Nevertheless, the

modules are

φ̃× 0 = φ̃ ,

φ̃× 1 = 11 + (0 + 12 + 2 + 3) ,

φ̃× 2 = 2 + (12 + 3) ,

φ̃× 3 = 3 + (12 + 2) , (A.2.13)

from which we can see that the remaining lines are φ̃ and (12 + 2 + 3) with quantum

dimension equal to the golden ratio. As a remark, the modular invariants of Sp(16)1 only

captures the abelian condensation, and not the second step. The spectrum of lines in

Sp(16)1/Z2 have spins that are all of a common denominator, so the set of M contain more

than just those which can be built from algebras.
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SU(4)4/Z4: We consider an example of a nonsimply connected group to prime ourselves

for the next example in this appendix. We will condense out an abelian line in SU(4)4, and

follow up with a nonabelian condensation. After the abelian condensation the spectrum

consists of 14 lines already given in §5.2.1. The algebra formed by the nonabelian boson,

φ = 0 + 6 has as its modules

φ× 0 = φ , φ× 8 = 8 + (63 + 72 + 11) ,

φ× 1 = 1 + 73 , φ× 9 = 9 + (63 + 72 + 10) ,

φ× 2 = 2 + (3 + 4 + 5 + 122 + 132) , φ× 10 = 10 + (63 + 72 + 9) ,

φ× 3 = 3 + (2 + 4 + 5 + 122 + 132) , φ× 11 = 11 + (63 + 72 + 8) ,

φ× 4 = 4 + (2 + 3 + 5 + 122 + 132) , φ× 12 = 121 + (2 + 3 + 4 + 5 + 122 + 131 + 132) ,

φ× 5 = 5 + (2 + 3 + 4 + 122 + 132) , φ× 13 = 131 + (2 + 3 + 4 + 5 + 121 + 122 + 132) .

φ× 6 = 61 + (0 + 62 + 63 + 71 + 72 + 8 + 9 + 10 + 11) ,

φ× 7 = 71 + (1 + 62 + 63 + 72 + 73 + 8 + 9 + 10 + 11) , (A.2.14)

The natural grouping of the lines from the modules is

ℓ q-dim

φ = (0 + 61) 1

(1 + 73) 1

(121 + 131) 1.414213562373

(62 + 71) 2.414213562373

(63 + 72 + 8 + 9 + 10 + 11) 2.414213562373

(2 + 3 + 4 + 5 + 122 + 132) 3.414213562373 ,

(A.2.15)

The last two lines are confined due to the differing spins, so we find the remaining lines are

{φ = (0 + 61), (1 + 73), (121 + 131)} .

SU(2)o34 : In this example we construct a theory where we show how anyon condensation

can give insights into the symmetries of the theory that we may not have expected at first

sight. Consider SU(2)34, its abelian anyons form a (Z2)
3 group. All of these are condensable,

but we choose only to condense the (Z2)
2 subgroup given by the lines {000, 110, 101, 011}.
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Here, the numbers denote the lines coming from each of the SU(2)4 factors, the spectrum

was given in §5.2.1 The result we will call SU(2)o34 where the ‘o’ stands for “central product”.

The data of the spectrum consists of 17 lines and is given by

SU(2)o34 {ℓ1, ℓ2, ℓ3} h q-dim

0 {0, 0, 0} 0 1

1 {0, 0, 1} 1 1

2 {0, 0, 4} 1/3 2

3 {0, 4, 0} 1/3 2

4 {0, 4, 4} 2/3 2

5 {0, 4, 4} 2/3 2

6 {2, 2, 2} 3/8 5.196152422706

7 {2, 2, 3} 7/8 5.196152422706

8 {4, 0, 0} 1/3 2

SU(2)o34 {ℓ1, ℓ2, ℓ3} h q-dim

9 {4, 0, 4} 2/3 2

10 {4, 0, 4} 2/3 2

11 {4, 4, 0} 2/3 2

12 {4, 4, 0} 2/3 2

13 {4, 4, 4} 1 2

14 {4, 4, 4} 1 2

15 {4, 4, 4} 1 2

16 {4, 4, 4} 1 2 .

The 8-dimensional representation 2⊗ 2⊗ 2 of SU(2)3 gives a map SU(2)o34 → Sp(8)1 which

is conformal. The condensable anyons are any one of {13, 14, 15, 16}, and one could wonder

which algebra gives the conformal embedding. We will see that all four anyons can condense

to give Sp(8)1. The problem inherently has a triality due to the three SU(2) factors, but

given the spectrum data and the fact actually four lines can condense prompts us to believe

that as an MTC, SU(2)o34 has an extra symmetry that is S4. Since the theory has 17 lines,

there are 17! permutations that are potentially a symmetry of the theory. A permutation

will be a symmetry if it preserves the full modular data. One can see that there are 3! · 4! · 6!
permutations that preserve the spins and quantum dimensions. Out of these, a brute force

check shows that there are exactly 24 permutations that also preserve the fusion rules.

Finally, by looking at how these permutations compose, it is straightforward to show that

they correspond to the group S4
1.

Instead of doing the complete analysis given above, we can see hints of an enlarged

symmetry when we consider the theory after condensing each of the four nonabelian bosons.

We present only the modules of φ1 = 0 + 13, as the same procedure works for the other

choices of condensate:

φ× 0 = φ , φ× 9 = 9 + (3 + 14) ,

φ× 1 = 1 + 132 , φ× 10 = 10 + (5 + 12) ,

φ× 2 = 2 + (11 + 15) , φ× 11 = 11 + (2 + 15) ,

1The S4 preserves the S and T matrices of SU(2)o34 , but in principle one should also check the F- and
R-symbols. We believe it should be possible to compute these symbols in terms of those of SU(2)4
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φ× 3 = 3 + (9 + 14) , φ× 12 = 12 + (5 + 10) ,

φ× 4 = 4 + (8 + 16) , φ× 13 = 131 + (0 + 1 + 132) ,

φ× 5 = 5 + (10 + 12) , φ× 14 = 14 + (3 + 9) ,

φ× 6 = 61 + (62 + 72) , φ× 15 = 15 + (2 + 11) ,

φ× 7 = 71 + (62 + 72) , φ× 16 = 16 + (4 + 8) .

φ× 8 = 8 + (4 + 16) , (A.2.16)

In total, the modules for φ1 = 0 + 13, φ2 = 0 + 14, φ3 = 0 + 15, and φ4 = 0 + 16 give the

organization of lines as follows 2:

φ1 ℓ q-dim

0 (0 + 131) 1

1 (1 + 132) 1

2 (2 + 11 + 15) 1

3 (3 + 9 + 14) 2

4 (4 + 8 + 16) 2

5 (5 + 10 + 12) 2

6 61 1.732050807568

7 71 1.732050807568

8 62 + 72 3.464101615137

φ2 ℓ q-dim

0 (0 + 141) 1

1 (1 + 142) 1

2 (2 + 12 + 16) 1

3 (3 + 9 + 13) 2

4 (4 + 10 + 11) 2

5 (5 + 8 + 15) 2

6 61 1.732050807568

7 71 1.732050807568

8 62 + 72 3.464101615137

φ3 ℓ q-dim

0 (0 + 151) 1

1 (1 + 152) 1

2 (2 + 11 + 13) 1

3 (3 + 10 + 16) 2

4 (4 + 9 + 12) 2

5 (5 + 8 + 14) 2

6 61 1.732050807568

7 71 1.732050807568

8 62 + 72 3.464101615137

φ4 ℓ q-dim

0 (0 + 161) 1

1 (1 + 162) 1

2 (2 + 12 + 14) 1

3 (3 + 10 + 15) 2

4 (4 + 8 + 13) 2

5 (5 + 9 + 11) 2

6 61 1.732050807568

7 71 1.732050807568

8 62 + 72 3.464101615137 .

2A priori there is an ambiguity in splitting the quantum dimension of 6 and 7 into its constituents. The
way the dimensions were assigned is guided by the fact that there exists a conformal embedding.
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From the tables above the unconfined lines are

ℓ q-dim

φ1 = (0 + 131) 1

(1 + 132) 1

61 1.732050807568

71 1.732050807568

(5 + 10 + 12) 2

ℓ q-dim

φ1 = (0 + 141) 1

(1 + 142) 1

61 1.732050807568

71 1.732050807568

(4 + 10 + 11) 2

(A.2.17)

ℓ q-dim

φ1 = (0 + 151) 1

(1 + 152) 1

61 1.732050807568

71 1.732050807568

(4 + 9 + 12) 2

ℓ q-dim

φ1 = (0 + 161) 1

(1 + 162) 1

61 1.732050807568

71 1.732050807568

(5 + 9 + 11) 2

(A.2.18)

where each choice of condensation gives a copy of Sp(4)1, hence the triality symmetry we

were expecting should be enlarged to a group that can permute four objects.

A.3. Reconstruction of SU(2)10

One of the new features of this example is that when a line splits such that one part is

confined and one part moves to the child, we have some different condition on the S-matrix

element. To see this explicitly, consider from the following table

ℓ confined/unconfined

φ = 0 + 61 unconfined

(41 + 10) unconfined

(31 + 71) unconfined

(1 + 52 + 72) confined

(32 + 51 + 9) confined

(2 + 42 + 62 + 8) confined

(A.3.1)

the element S(1+52+72),φ. Since φ can move past a totally confined line by going to the child

theory, we would expect that

S1,φ = S5,φ = S7,φ = 0 (A.3.2)
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in the parent theory. However, the last equality does not hold due to the fact that there

is an unconfined line with 71 as a constituent object. When it is not the case that Sa,b is

between lines where a single line splits on the wall and into the child, then the consistency

relations in §5.4 still hold. We will now run through the cases for the S-matrix.

• Sconfined,unconfined

More explicitly, from φ, (41 + 10), (31 + 71) going around (1 + 52 + 72) we see that

S1,0 + S1,6 = S5,0 + S5,6 = 0 , (A.3.3a)

S1,4 + S1,10 = S5,4 + S5,10 = 0 , (A.3.3b)

S1,3 + S1,7 = S5,3 + S5,7 = 0 . (A.3.3c)

From the unconfined lines brought around (32 + 51 + 9) we have

S5,0 + S5,6 = S9,0 + S9,6 = 0 , (A.3.4)

S5,4 + S5,10 = S9,4 + S9,10 = 0 , (A.3.5)

S5,3 + S5,7 = S9,3 + S9,7 = 0 . (A.3.6)

Next consider the unconfined lines brought around (2 + 42 + 62 + 8)

S2,0 + S2,6 = S8,0 + S8,6 = 0 , (A.3.7)

S2,4 + S2,10 = S8,4 + S8,10 = 0 , (A.3.8)

S2,3 + S2,7 = S8,3 + S8,7 = 0 . (A.3.9)

• Sconfined,confined

Here we apply the same logic as above for the S-matrix between two confined lines, using the

intuition that one of confined line can be lifted to the parent theory making trivial braiding

with other confined line in the wall. We list all of the relations for one confined line encircling

another, in which the “moving” line does not involve a simple object that splits into a

component on the wall and a component in the child. First consider S(1+52+72),(1+52+72), we

expect three relations

S1,1 + S1,5 + S1,7 = 0 , (A.3.10)

S5,1 + S5,5 + S5,7 = 0. (A.3.11)
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The next term S(32+51+9),(32+51+9) gives equations

S5,3 + S5,5 + S5,9 = 0 , (A.3.12a)

S9,3 + S9,5 + S9,9 = 0. (A.3.12b)

The last diagonal term is S(2+42+62+8),(2+42+62+8) and gives equations

S2,2 + S2,4 + S2,6 + S2,8 = 0 , (A.3.13a)

S8,2 + S8,4 + S8,6 + S8,8 = 0. (A.3.13b)

We now look at the off diagonal terms of the S-matrix, starting off with S(1+52+72),(32+51+9),

which gives the equations

S1,3 + S1,5 + S1,9 = 0 , (A.3.14a)

S5,3 + S5,5 + S5,9 = 0 , (A.3.14b)

S1,5 + S5,5 + S7,5 = 0 , (A.3.14c)

S1,9 + S5,9 + S7,9 = 0 , (A.3.14d)

where the first two equations arise from (1+52+72) encircling (32+51+9) by moving into the

parent, and the last two equations arise from (32+51+9) encircling (1+52+72) by moving

into the parent. For the next off diagonal component we consider S(32+51+9),(2+42+62+8),

which gives equations

S5,2 + S5,4 + S5,6 + S5,8 = 0 , (A.3.15a)

S9,2 + S9,4 + S9,6 + S9,8 = 0 , (A.3.15b)

S3,2 + S5,2 + S9,2 = 0 , (A.3.15c)

S3,8 + S5,8 + S9,8 = 0 . (A.3.15d)

The final off-diagonal element S(2+42+62+8),(1+52+72) gives the equations

S1,2 + S1,4 + S1,6 + S1,8 = 0 , (A.3.16a)

S5,2 + S5,4 + S5,6 + S5,8 = 0 , (A.3.16b)

S2,1 + S2,5 + S2,7 = 0 , (A.3.16c)

S8,1 + S8,5 + S8,7 = 0 . (A.3.16d)

• Sunconfined,unconfined

We first consider using Sφ,φ = 1
2
from the child an obtaining relations for the parent
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theory. The equations we get are

S0,0 + S0,9 =
1

2
, (A.3.17a)

S0,9 + S9,9 =
1

2
. (A.3.17b)

We next consider

{Sφ,(41+10) =
1

2
, Sφ,(31+71) =

1√
2
, S(41+10),(31+71) = − 1√

2
,

S(41+10),(41+10) =
1

2
, S(31+71),(31+71) = 0} , (A.3.18)

which give the following relationships in the parent theory:

S0,4 + S0,10 =
1

2
, S6,4 + S6,10 =

1

2
, S0,4 + S6,4 =

1

2
, S0,10 + S6,10 =

1

2
, (A.3.19a)

S0,3 + S0,7 =
1√
2
, S6,3 + S6,7 =

1√
2
, S0,3 + S6,3 =

1√
2
, S0,7 + S6,7 =

1√
2
,

(A.3.19b)

S4,3 + S4,7 = − 1√
2
, S10,3 + S10,7 = − 1√

2
, S4,3 + S10,3 = − 1√

2
,

S4,7 + S10,7 = − 1√
2
, (A.3.19c)

S4,4 + S4,10 =
1

2
, S10,4 + S10,10 =

1

2
, (A.3.19d)

S3,3 + S3,7 = 0 , S7,3 + S7,7 = 0. (A.3.19e)

A.3.1. Implementing the fusion rules

• Matrix elements of the form S1,−

Having used found all the relations we can by utilizing the relative center, we now employ

the fusion rules of the wall category. We first determining the S-matrix elements of form

S1,−. Since 1× 1 = 0 + 2 we can use the Verlinde formula for N0
1,1 = 1 =

∑
d

S2
1,dS

∗
0,d

S0,d
; we

also have N2
1,1 but for now we will set that aside. By using the fact that S∗

0,d is real, then

the Verlinde formula gives

S2
1,0 + S2

1,1 + . . .+ S2
1,10 = 1 . (A.3.20)
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Another relation we will have to use frequently is (5.4.14a), in particular we need

S1,10×2 =
S1,10S1,2

S1,0

= S1,8 , (A.3.21)

S1,10×8 =
S10,1S1,8

S1,0

= S1,2 ,

these two equations imply that S2
1,2 = S2

1,8 so S1,2 = ±S1,8. We use this, along with the

relations in (A.3.3a), (A.3.3b), and (A.3.3c) to simplify (A.3.20) to

2
(
S2
1,0 + S2

1,2 + S2
1,3 + S2

1,4

)
+ S2

1,1 + S2
1,9 + S2

1,5 = 1 . (A.3.22)

To proceed we first solve for S1,5, From fusion we have the two equations

S1,0S1,1×5 = S1,1S1,5 = (S1,4 + S1,6)S1,0 , (A.3.23)

S1,0S1,9×5 = S1,9S1,5 = (S1,4 + S1,6)S1,0 , (A.3.24)

which can be combined to give

S1,5(S1,9 − S1,1) = 0 , (A.3.25)

so either S1,5 = 0 or S1,1 = S1,9. If S1,9 = S1,1, and we assume that S1,1 ̸= 0, then from

(A.3.3c), (A.3.10), and (A.3.14a) we find S1,1 = −S1,9 − 2S1,5 so S1,1 = −S1,5. But then by

(A.3.10) we get S1,7 = 0, so S1,3 = 0. Furthermore, from

S1,1×2 =
S1,1S1,2

S1,0

(A.3.26)

then S1,2 = 0 = S1,8, and it is then easy to derive that S1,1 = S1,9 = 0, which contradicts

our initial assumption. Therefore we take S1,5 = 0, so that S1,1 = −S1,9. With this (A.3.22)

can be simplified to

2
(
S2
1,0 + S2

1,1 + S2
1,2 + S2

1,3 + S2
1,4

)
= 1 . (A.3.27)

A natural next step to consider is replacing the different squares with as many of the same

quantities as possible. To do this consider the fusion having to do with S1,−:

S1,1×1 = S1,0 + S1,2 =
S2
1,1

S1,0

, (A.3.28)

S1,9×9 = S1,0 + S1,2 =
S2
1,9

S1,0

,
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S1,2×2 = S1,0 + S1,2 + S1,4 =
S2
1,2

S1,0

,

S1,10×10 = S1,0 + S1,2 + S1,4 =
S2
1,10

S1,0

,

S1,3×3 = S1,0 + S1,2 + S1,4 + S1,6 =
S2
1,3

S1,0

,

S1,7×7 = S1,0 + S1,2 + S1,4 + S1,6 =
S2
1,7

S1,0

,

S1,4×4 = S1,0 + S1,2 + S1,8 + S1,4 + S1,6 =
S2
1,4

S1,0

,

S1,6×6 = S1,0 + S1,2 + S1,8 + S1,4 + S1,6 =
S2
1,6

S1,0

,

S1,5×5 = S1,0 + S1,10 + S1,2 + S1,8 + S1,4 + S1,6 =
S2
1,5

S1,0

,

and recall that S1,2 + S1,4 + S1,6 + S1,8 = 0 by (A.3.16a). Then we can write, S2
1,3 =

S2
1,0 − S1,0S1,8. We may simplify (A.3.22) even further to be

2
[
S2
1,0 +

(
S2
1,0 + S1,0S1,2

)
+
(
S2
1,0 + S1,0S1,2 + S1,0S1,4

)
+
(
S2
1,0 − S1,0S1,8

)
+ S2

1,0

]
= 1 ,

(A.3.29)

10S2
1,0 + S1,0 (4S1,2 − 2S1,8 + 2S1,4) = 1 .

(A.3.30)

We desire some relations between S1,0, S1,4, S1,8, we can consider

S1,0S1,2×4 = −S1,0S1,8 = −S1,10S1,2 , (A.3.31a)

S1,0S1,8×4 = −S1,0S1,2 = −S1,10S1,8 , (A.3.31b)

S1,0S1,2×8 = S1,0S1,10 + S1,10S1,2 − S1,10S1,4 . (A.3.31c)

By adding the first two equations we get

(S1,0 − S1,10) (S1,2 + S1,8) = 0 , (A.3.32)

from which we have either S1,0 = S1,10 or S1,2 = −S1,8. but the last of (A.3.28) would cause

the former choice to run into a contradiction. We have thus determined S1,2 = −S1,8 and
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so S1,4 = −S1,6 = S1,0. We now try to relate S1,2 with S1,0, to do this consider the fact that

S2
1,2 = S2

1,0 + S1,0S1,2 + S1,0S1,4 (A.3.33)

and can be simplified to

S1,2(S1,2 − S1,0) = 2S2
1,0 (A.3.34)

which is satisfied if S1,2 = 2S1,0. We summarize how all of S1,− is related to S1,0 by the

following equations

S2
1,1 = 3S2

1,0 , S2
1,2 = 4S2

1,0 , S2
1,3 = 3S2

1,0 , S2
1,4 = S2

1,0 ,

S2
1,5 = 0 , S2

1,6 = S2
1,0 , S2

1,7 = 3S2
1,0 , S2

1,8 = 4S2
1,0 ,

S2
1,9 = 3S2

1,0 , S2
1,10 = S2

1,0 , (A.3.35)

and therefore (A.3.27) becomes 24S2
1,0 = 1, and thus S1,0 =

1√
24
.

We now repeat a similar process to find the elements of S2,−. We start off systematically

by giving the fusion rules:

S2,0 S2,2×10 = S2,0(S2,8) , (A.3.36a)

S2,0 S2,2×1 = S2,0(S2,1 + S2,3) , (A.3.36b)

S2,0 S2,2×9 = S2,0(S2,9 + S2,7) , (A.3.36c)

S2,0 S2,2×2 = S2,0(S2,0 + S2,2 + S2,4) , (A.3.36d)

S2,0 S2,2×8 = S2,0(S2,10 + S2,8 + S2,6) , (A.3.36e)

S2,0 S2,2×3 = S2,0(S2,1 + S2,3 + S2,5) , (A.3.36f)

S2,0 S2,2×7 = S2,0(S2,9 + S2,7 + S2,5) , (A.3.36g)

S2,0 S2,2×4 = S2,0(S2,2 + S2,4 + S2,6) , (A.3.36h)

S2,0 S2,2×6 = S2,0(S2,8 + S2,4 + S2,6) , (A.3.36i)

S2,0 S2,2×5 = S2,0(S2,3 + S2,7 + S2,5) . (A.3.36j)

From (A.3.9) applied to (A.3.36j) then S2,2S2,5 = S2,0S2,5 which gives us two conditions:

either S2,5 = 0 or S2,2 − S2,0 = 0, or both. Let us consider first S2,5 = 0 without putting

conditions on S2,2 − S2,0 just yet. A remarkable fact is that we can show that this leads to

a contradiction down the line, and thus was the incorrect choice. We go to (A.3.36) and
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massage the equations based off the assumption S2,5 = 0.

(A.3.36a) → S2,2S2,10 = S2,0S2,8 , (A.3.37)

(A.3.36b) + (A.3.36c) → (S2,2 − S2,0)(S2,1 + S2,9) = 0 , (A.3.38)

(A.3.36d) + (A.3.36e) → S2,2(S2,2 + S2,8) = S2,0(S2,0 + S2,10) , (A.3.39)

(A.3.36f) → S2,2S2,3 = (S2,1 + S2,3)S2,0 , (A.3.40)

(A.3.36g) → S2,2S2,7 = (S2,9 + S2,7)S2,0 , (A.3.41)

(A.3.36h)− (A.3.36i) → S2,2(S2,4 − S2,6) = (S2,2 − S2,8)S2,0 , (A.3.42)

(A.3.36j) → 0 . (A.3.43)

Equations (A.3.36h) and (A.3.36i) can be added to get S2,2(S2,4 + S2,6) = S2,0(S2,4 + S2,6),

and therefore

(S2,2 − S2,0)(S2,4 + S2,6) = 0 . (A.3.44)

There are multiple possibilities to consider, either

1. S2,2 − S2,0 = 0 , S2,4 + S2,6 = 0 ,

2. S2,2 − S2,0 = 0 , S2,4 + S2,6 ̸= 0 ,

3. S2,4 + S2,6 = 0 , S2,2 − S2,0 ̸= 0 .

Suppose we consider the first of the above cases. But then (A.3.40) would imply that

S2,1 = 0, but it was solved already in (A.3.35) that S2,1 ̸= 0, so we have a contradiction.

The second case also leads to a contradiction by the same reason as the first condition. One

can also check that the third case is invalid as well. Thus our assumption that S2,5 = 0

was incorrect. We amend this choice and instead let S2,5 ̸= 0 but let S2,2 − S2,0 = 0. This

does not run into the problem of earlier because if S2,5 ̸= 0, then (A.3.36f) is not simply

S2,3 = S2,1 + S2,3, but rather S2,3 = S2,1 + S2,3 + S2,5. We use this to simplify the equations

in (A.3.36)

(A.3.36a) → S2,2S2,10 = S2,0S2,8 , (A.3.45)

(A.3.36b) → S2,3 = 0 ,

(A.3.36c) → S2,7 = 0 ,

(A.3.36d) → S2,0 + S2,4 = 0 ,

(A.3.36e) → S2,10 + S2,6 = 0 ,

(A.3.36f) → S2,1 + S2,5 = 0 ,
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(A.3.36g) → S2,9 + S2,5 = 0 ,

(A.3.36h) → S2,2 + S2,6 = 0 ,

(A.3.36i) → S2,8 + S2,4 = 0 ,

(A.3.36j) → S2,3 + S2,7 = 0 .

The important part now is to relate everything back to S2,0 and S2,1, the latter which we

already obtained. In total we have

S2,0 = S2,2 = −S2,4 = −S2,6 = S2,8 = S2,10

S2,1 = −S2,5 = S2,9. (A.3.46)

Now using the Verlinde formula in the form N0
2,2 = 1 =

∑
d

S2
2,dS

∗
0,d

S0,d
we have

1 = 6S2
2,0 + 3S2

2,1

1 =
1

2
+ 6S2

2,0 , (A.3.47)

thus S2,0 =
1√
12
.

We now skip to finding the matrix elements of S5,−, this is because 5 behaves differently

from the other lines. The fusion rules give

S5,0 S5,5×10 = S5,0S5,5 , (A.3.48a)

S5,0 S5,5×1 = S5,0(S5,4 + S5,6) , (A.3.48b)

S5,0 S5,5×9 = S5,0(S5,4 + S5,6) , (A.3.48c)

S5,0 S5,5×2 = S5,0(S5,3 + S5,7 + S5,5) , (A.3.48d)

S5,0 S5,5×8 = S5,0(S5,3 + S5,7 + S5,5) , (A.3.48e)

S5,0 S5,5×3 = S5,0(S5,2 + S5,8 + S5,4 + S5,6) , (A.3.48f)

S5,0 S5,5×7 = S5,0(S5,2 + S5,8 + S5,4 + S5,6) , (A.3.48g)

S5,0 S5,5×4 = S5,0(S5,1 + S5,9 + S5,3 + S5,7 + S5,5) , (A.3.48h)

S5,0 S5,5×6 = S5,0(S5,1 + S5,9 + S5,3 + S5,7 + S5,5) , (A.3.48i)

S5,0 S5,5×5 = S5,0(S5,0 + S5,10 + S5,2 + S5,8 + S5,4 + S5,6) . (A.3.48j)
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manipulating the equations gives

(A.3.48a) → S5,5(S5,10 − S5,0) = 0 , (A.3.49)

(A.3.48b)− (A.3.48c) → S5,5(S5,1 − S5,9) = 0 ,

(A.3.48d) → S5,5(S5,0 − S5,2) = 0 ,

(A.3.48e) → S5,5(S5,0 − S5,8) = 0 ,

(A.3.48f) → S5,0S5,3 = 0 ,

(A.3.48g) → S5,0S5,7 = 0 ,

(A.3.48h) → S5,5S5,4 = −S5,0S5,5 ,

(A.3.48i) → S5,5S5,6 = −S5,0S5,5 ,

(A.3.48j) → S2
5,5 = S5,0(S5,0 + S5,10) ,

We have some choices, from the first of the equations we could have S5,5 = 0 and also

S10,1−S10,0 = 0. But then that contradicts the last equation of the above. Now suppose that

S5,10 = S5,0 with S5,5 ̸= 0. Then we get S1,5 + S5,5 = 0 from one of our previous equations.

However, we said before that S1,5 around equation (A.3.27) this was already zero, so then

S5,5 would also have to be zero which is a contradiction. So we need to have S5,10 ̸= S5,0 and

S5,5 = 0. Because from earlier S3,5+S5,9 = 0, then S5,9 = 0, and furthermore from (A.3.13a)

and (A.3.3b) we have S5,4 = −S5,10 with S5,10 = −S5,0 in (A.3.48j). The relationships are

summarized as

S5,1 = 0 , S5,2 = −S2,1 = − 2√
24
, S5,3 = 0 , S5,4 = S5,0 , (A.3.50)

S5,5 = 0 , S5,6 = −S5,0 , S5,7 = 0 , S5,8 = S2,1 , (A.3.51)

S5,9 = 0 , S5,10 = S5,0 . (A.3.52)

Then by the Verlinde formula we have

1 =
∑
a

S2
5,a = 1/3 + 4S2

5,0 (A.3.53)

so S5,0 =
1√
6
.
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A.4. Diagrams

A.4.1. Proof of Theorem 5.7.8

Figure A.1: Axiom a (Part 1)

Figure A.2: Axiom a (Part 2)

Figure A.3: Axiom a (Part 3)
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Figure A.4: Axiom a (Part 4)

Figure A.5: Axiom a (Part 5)

Figure A.6: Axiom a (Part 6)

245



Figure A.7: Axiom a (Part 7)

Figure A.8: Axiom a (Part 8)

Figure A.9: Axiom a (Part 9)
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Figure A.10: Axiom a (Part 10)

Figure A.11: Axiom a (Part 11)

Figure A.12: Axiom a (Part 12)
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A.4.2. Proof of Proposition 5.7.11

Figure A.13: Balanced structure (Part 1) Figure A.14: Balanced structure (Part 2)

Figure A.15: Balanced structure (Part 3) Figure A.16: Balanced structure (Part 4)

Figure A.17: Balanced structure (Part 5)

Figure A.18: Balanced structure (Part 6)

248



Figure A.19: Balanced structure (Part 7)

Figure A.20: Balanced struc-
ture (Part 8)
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