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Abstract

In four dimensions, gravity can be seen as a constrained topological model. This provides
a natural way to construct quantum gravity models, since topological models are relatively
straightforward to quantize. Difficulty arises in the implementation of the constraints at
the quantum level. Different procedures have generated so-called spin foam models.

Following the dimensional/categorical ladder, the natural structure to quantize 4d topo-
logical models are 2-categories, augmenting the gauge group symmetries of the model into
2-group symmetries. One can study these models classically by examining their phase
space. At the quantum level, one attempts to construct a partition function. As there
are no local degrees of freedom in topological theories, it is convenient to characterize its
phase space in terms of a discretization, providing insights to the quantum theory. A key
question is understanding how these topological models defined in terms of 2-categories
can be related to gravity.

A first hint that 2-categories are relevant to describe quantum gravity models comes
when we introduce a cosmological constant in the theory. As we will recall, this can be done
at the classical (discrete) level in a consistent manner, only if we use 2-group symmetries.

This thesis focuses on understanding the symmetry aspects, the different possible dis-
cretizations and the quantization of four dimensional topological theories for some skeletal
2-group symmetries.When we discuss the quantum aspects using some field theory tech-
niques to generate the quantum amplitudes, we extend the construction to non-skeletal
2-groups.
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Chapter 1

Introduction

Spacetime: The final frontier.

The two most impressive and unassailable breakthroughs in physics of the 20th century
were the theory of relativity and quantum theory. Both these theories provide myriad
applications. Relativity has given us predictions for the existence of black holes, GPS
technology, the theory of gravitational waves with applications in astronomy, and more.
Quantum mechanics on the other hand has allowed for advances in such varied fields
as materials physics and condensed matter, computing, the standard model and particle
physics, to name just a few.

Aside from their many applications, these two theories have sparked the imaginations
of everyone from physicists to philosophers to science-fiction writers to quantum-snake-oil
salespeople. The reason for this ubiquity lies in the fact that once the technical aspects and
the unreasonably effective mathematical descriptions are removed, the theory of relativity
and the theory of quantum mechanics reveal to us a description of reality so far from
our experience. At the core, general relativity strives to define the nature of space and
time while quantum theory describes the building blocks of matter, while raising questions
about determinism. Perhaps more striking than all these esoteric questions of space and
time is the fact that both these theories have withstood generations of experimental tests.

There is some tension between the two theories, however. While each theory is robust
and falsifiable on their own and in their domain of applicability, the assumptions of one
appears to be in contradiction with the results of the other. What’s worse is that these
contradictions appear at scales for which there are no direct experiments available.

For example, the assumption that space and time are part of one continuous manifold
is central to general relativity. On that manifold, the dynamical field is the metric g, which
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determines lengths of trajectories, volumes of regions, as well as other geometrical features
of the manifold such as its curvature. The geometry of the manifold as described by g is
responsible for what one observes as gravitation. Quantum mechanics on the other hand
insists that all dynamical variables must be probabilistic. It might be that the metric g
ought to be replaced by some quantum operator which has some expectation value. Such
an operator would have fluctuations and physics at the order of these fluctuations would
necessarily depend on the quantum nature of gravity. It is presumed that these quantum

fluctuations become important at the order of the Planck length, ℓP =
√

Gℏ
c3

≈ 10−35m.

What’s certain is the quantum effects are not directly perceptible on scales which have
been measured [68, 103].

In a theory where the metric is replaced by some operator whose dynamics is governed
by probabilities, the question of what happens to the underlying manifold arises. What
replaces the mantra of “spacetime is a manifold and its geometry is what we call gravity”
when the thing that describes geometry is a quantum object?

General relativity predicts its own incompleteness in a way. The starting assumption is
that spacetime should be a smooth manifold but solutions to Einstein’s equations, which
govern the dynamics of the metric, might include geometries which are not consistent with
smooth manifolds. Examples include the singularity in the Schwartzchild black hole or the
singularity in expanding universe solutions in cosmology. These singularities are in a sense
point-like and therefore may be resolved by considering very small scales – which would
require quantum gravity.

Quantum theory also seems inconsistent with general relativity. There are several
problems with treating gravity as one would treat any other classical theory to be quantized.
In standard quantum theory (without gravity), the quantum fields are free to interact on
a fixed spacetime. One cannot treat a quantum gravity field in the same way, since that
field is the spacetime! Standard quantum theory also relies on things like time-ordering of
operators or a specified time coordinate in order to normalize quantum states. This poses
a problem since the choice of a time coordinate is already a spacetime dependent notion.
More generally, quantum fields are typically local in the sense that they are functions
of points in spacetime. General relativity is diffeomorphism invariant meaning that all
observables should be non local [99].

Finally, we cannot treat gravity as a perturbation of some flat background manifold
either because general relativity is nonrenormalizable [62]. The usual methods for managing
the divergences of a quantum theory do not hold for gravity when the energy scale is large,
equivalently when the spatial scale is small.

All these apparent contradictions tell us there is some work to do to before coming
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to a consistent theory of quantum gravity. Some of this work is conceptual and some is
technical. Work on quantum gravity started almost as soon as quantum theory and general
relativity were invented (see [91] for a timeline and historical references).

This work’s focus is not on quantum gravity, except motivationally. The focus is on
a family of theories which are called topological. As we will see soon, the reason for this
focus comes from the fact that general relativity is almost topological – but not quite (at
least not in our four dimensional spacetime). These theories have the property of being
diffeomorphism invariant while also having no local observables making the quantization
process more manageable.

As there are no local observables in these theories, the physically meaningful quan-
tities are so called topological invariants: Quantities defined by the spacetime manifold
that do not change under continuous transformations of the manifold. The construction
of invariants of three dimensional manifolds may be algebraically described in terms of the
category of group representations. For four dimensional manifolds, the invariants are sus-
pected to be given by 2-categories, according to the categorical/dimensional ladder [37, 71].
As such, the theories studied in this work will exhibit 2-group symmetries, which are a
higher categorification of the groups (which we describe in detail in chapter 2).

The topological theories with 2-group symmetries serve as a tool for constructing
discrete geometries. These geometries act as replacements for the smooth manifold of
space(time) and are given by graphs or 2-complexes which have algebraic data imposed on
each edge and faces.

Topological Models and Gravity

We started this chapter by discussing gravity, quantum theory, and why a quantum theory
of gravity may be necessary. But this thesis works with topological theories, which do not
include gravity. At this stage I should give some details and technical information about
why topological theories are worth studying and how they are used in quantum gravity
models.

Let’s start by writing the Lagrangian for general relativity as well as the equations of
motion in the vacuum without a cosmological constant

L =

∫ √
−g R ddx (1.1)

Rµν −
1

2
Rgµν = 0 (1.2)
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where Rµν is the Ricci curvature tensor and R is its trace (and the overall constants are
set to 1). g is the determinant of the metric. Taking the trace of Einstein’s equations tells
us that solutions to these equations are metrics which have Rµν = 0. Three dimensional
general relativity has a special property: the Riemann tensor is linear in Rµν , meaning that
when Rµν vanishes, the manifold is locally flat as well (the Riemann tensor also vanishes).
In the presence of a cosmological constant, the local curvature is constant. In either case,
there are no local degrees of freedom and two particles in the manifold would not feel
a gravitational attraction at all [38]. The lack of local degrees of freedom is the typical
feature of topological theories.

The quantization of this model is most naturally accomplished in the first order formal-
ism [104, 32, 7, 1]. Instead of taking the metric gµν as the dynamic variable of the theory,
we introduce new fields called triads which define local frames and satisfy

eIµe
J
νηIJ = gµν (1.3)

where I and J are indices which take values 0, 1, 2. The second ingredient is the spin
connection ω which is assumed to be independent of e for the sake of the variational
principle, and is a Lie valued differential form. The action for three dimensional gravity
becomes

L =

∫
eI ∧ FI (1.4)

where FI = dωI +
1
2
ϵI
JKωJ ∧ ωK is the curvature of the spin connection.

Theories with Lagrangians that look like (1.4) are called BF theories [64]. BF theories
and their generalizations are the focus of much of this work. One can write a BF theory
in any dimension by defining the action

S =

∫
M

⟨B ∧ F ⟩ (1.5)

where M is a d-dimensional manifold, B is a (d − 2)-form, and F is the curvature of a
connection A,

F = dA+
1

2
[A,A]. (1.6)

The basic fields A and B are forms which take value the Lie algebras g1 and g2 respectively
and the ⟨·, ·⟩ : g1⊗g2 → R is a bilinear form that is invariant under some Lie algebra action.
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In four dimensions (where we apparently live) gravity is not topological. This fact does
not render BF theories in four dimensions useless. There are several ways to obtain gravity
in four (or higher) dimensions by constraining or modifying topological BF-type actions
in order to recover gravity [33, 50]. In the tetrad (the four dimensional version of triads)
formulation, the action of four dimensional general relativity is

S =

∫
ϵIJKL(e

I ∧ eJ ∧ FKL + ΛeI ∧ eJ ∧ eK ∧ eL) (1.7)

where Λ is the cosmological constant. The action (1.7) would almost be a BF theory (when
Λ = 0) if only we could treat ϵIJKLe

I ∧ eJ as a single field BKL. One therefore recovers
gravity by starting with a BF theory and constraining B to be related to some 1-forms e
in this way.

For instance the Plebanski action [83] is a BF-type action based on the group SL(2,C)
which is equivalent to general relativity. It is given by the action, B is now a 2-form,∫

Bi ∧ F i − 1

2
(Ψij + Λδij)B

i ∧Bj − ρTrΨ (1.8)

where Λ is the cosmological constant, Ψ is a symmetric matrix and ρ is a 4-form. These
auxiliary fields act as Lagrange multipliers. Eliminating ρ via the equations of motion
implies that B can be written in terms of a set of 1-forms eI ,

Bi = ie0 ∧ ei − 1

2
ϵijke

j ∧ ek. (1.9)

If some additional reality conditions on B (in the Lorentzian case) are met, then one can
construct the so-called Urbantke metric [31, 101]√

|g|gµν ∝ ϵijkϵ
αβγδBi

µαB
j
βγB

k
δν . (1.10)

Putting (1.9) into the Urbantke metric gives that eI can be interpreted as tetrad fields (up
to a conformal factor), gµν = ηIJe

I
µe
J
ν . Eliminating the Lagrange multipliers in the action

recovers Einstein’s gravity.

This connection between BF theory and gravity offers a promising path towards quan-
tum gravity. Spin foam models, such as the Barrett-Crane model and the EPRL/FK
models are examples of quantum gravity theories where a BF theory is quantized and then
constrained [54, 49, 24]. In spin foams, the topological theory is quantized via the path
integral formulation [30], which may be regularized using familiar methods of lattice gauge
theory or controlled using effective field theory [6, 27]. The constraints are then imposed
on the quantum level.
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Higher Categories

As previously mentioned, the quantum picture of the topological theory with gauge group
G involves decorated discrete geometries described in terms of some simplicial complex
embedded in space(time). The spin foam can be interpreted as a sort of Feynman diagram
for a quantum geometry, where the boundaries of the triangulated manifold are seen as
the initial and final quantum states. This is a picture developed in the group field theory
approach [28, 80].

In four dimensions, classical discrete geometry of these boundary states, representing
a three dimensional slice is specified by holonomies on the 1-skeleton of the simplex and
their flux variables which are associated to two dimensional surfaces dual to the 1-skeleton.
The holonomy and flux variables act as the configuration and momentum variables of the
classical theory. The holonomy variables in G serve the purpose of defining a parallel
transport for objects which move along the links on which they are defined and are therefore
valued in the gauge group G. The fluxes on the other hand are elementsin the dual (as
a vector space) Lie algebra g∗ of G. The phase space is then the natural phase space
associated to T ∗G ∼= G⋉ g∗.

The quantum theory is constructed following the Dirac prescription for constrained
systems [39]. The constraints of the theory represent geometrical information about the
states. For example, the Gauss constraint imposes that the fluxes associated to surfaces
which form a closed polyhedron sum to zero. The resulting states of the quantum theory
are represented by graphs which are eigenvectors for some geometric operators such as
the area operator. This is the spin network basis. For example if G = SU(2), in three
dimensions the spin-network states can be drawn as graphs where edges are labelled by
positive half-integers je, encoding the discrete spectrum of possible areas of the (dual)
surfaces.

To get a full picture of the quantum amplitudes, one needs to sum over all the possible
labels in the spin foam. Doing so for a Lie group, such as G = SU(2) will generally lead
to a divergent sum and a regularisation process must be devised. In this specific example,
a natural regularization occurs when using the quantum group Uq(su(2)) where q is a root
of unity. Since such Uq(SU(2) has a finite number of representations, considering this
quantum group introduces a natural cutoff for the theory. This gauge quantum group typ-
ically appears in the presence of a nonzero positive cosmological constant in the Euclidean
signature [78, 47].

In order to construct quantum gravity spin foams for homogeneously curved spaces, ie
in the presence of a non-zero cosmological constant, one deforms the given spin foam model
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using a gauge quantum group [76, 63]. At the classical level, the introduction of a quantum
group means that we should no longer consider T ∗G as the phase space associated to the
discrete geometry. Instead we deal with a Heisenberg double [2].

When the cosmological constant is zero, the fluxes, associated to the surfaces, are
quantized as elements of U(su(2)), the enveloping algebra of su(2). Such enveloping algebra
can be seen as the quantization of the Poisson algebra of the functions over su∗(2) ∼= R3.
Indeed, in the classical discrete picture, we have elements of an abelian group R3, equipped
with a non-trivial Poisson bracket, decorating the surfaces.

The deformation U(su(2)) → Uq(su(2)) is equivalent to replacing the classical Poisson
algebra of functions on R3 by the Poisson algebra of functions on the non-abelian group
AN2 [73].This means that to have quantum fluxes in Uq(su(2)) we must also have classical
fluxes as group elements of AN2 decorating the surfaces.

This poses an immediate problem, as there is no way to naturally compose such non-
abelian surface decorations as clearly stated in the Eckmann-Hilton argument [48].

To explain the argument, consider what a holonomy does. If there is a path in the
manifold M parameterized as γ : [0, 1] → M , then the holonomy hγ acts on tensors by
transporting them from a tensor space at the point γ(0) to a tensor space at γ(1) in a
consistent way. If there are two paths γ1 and γ2 with γ1(1) = γ2(0) one can define a curve
γ1,2 which is the concatenation of the two, and one can define the holonomy hγ1,2 = hγ1hγ2
in a consistent way. The crucial ingredient here is the group structure of the holonomies
and the groupoid structure of the paths.

We can also compose variables on surfaces in a similar way if the corresponding surfaces
share part of their boundary, at least when the variables are part of a commutative group
(such as g∗ where the group operation is addition).Consider the situation in Fig. 1.1. The
different surface fusion combinations only lead to a consistent result when the decorations
are valued in an abelian group. If it is not the case, there is some arbitrariness in the way
surfaces are composed.

A solution to the issue of including nonabelian surface variables is the notion of a 2-
group. In essence, one must introduce additional holonomy variables on the boundary
of the surface (not necessarily belonging to the same group as the holonomies already
mentioned). To make things fully consistent, there must be some consistency relations
between the surface variables and the boundary holonomy. In chapter 2, we will give
details on the type of consistency relations are required.

The added decorations on the boundary of the faces allow for nonabelian flux variables,
which might therefore correspond to spin foams which include cosmological constant. They
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h1 h2

h3 h4

h1h2

h3h4

h1h3 h2h4
h1h3h2h4

=
h1h2h3h4

Figure 1.1: The Eckmann-Hilton argument shows that in order to compose faces so that
the above diagram commutes, the face decorations must commute. This can be avoided
by decorating both edges and faces by the considering 2-group elements.

are an extension (a vertical categorification) of gauge theory as well. In addition to the
usual lattice gauge theory defined by holonomies, we think of the surface variables as 2-
holonomies, which transport paths the same way the more familiar holonomies transport
tensors.

In the same way that spin foams coming from Lie groups or quantum groups can
be given as an expression involving the category of representations, it is suspected that
spin foams coming from 2-groups can be given in terms of the 2-category of their 2-
representations. 2-categories themselves have been proposed as tools for constructing topo-
logical invariants in four dimensions [15, 37, 71]. The higher categorification approach can
be extended a step further by introducing 3-gauge theories which could provide a way to
include matter coupled with gravity [85, 86].

In this spin foam picture, the fact that some of the fundamental variables decorate
surfaces hints that 2-groups structures may be used in their description. The introduc-
tion of a quantum group structure for such face decoration to encode (at the quantum
level) the presence of a non-zero cosmological constant indicates that 2-groups are actually
needed to have a proper description of a homogeneously curved discrete geometry with
face decorations, following the Eckmann-Hilton argument.

The goal in this thesis is to initiate an exploration of topological theories relying on
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2-group symmetries by on one hand exploring their discretization and on the other hand
by defining the associated quantum theory.

We will mostly focus on a specific class of 2-groups, namely the skeletal ones, where the
face decorations are actually independent of the edge decorations. While it is not directly
obvious that this class of 2-groups will be most relevant for quantum gravity, our work
aims at developing techniques that, may be used to define some improved quantum gravity
models.

Summary of Results and Outline

In chapter 2, we introduce a family of topological theories and study symmetries associated
with them. This will lead into the definition of 2-groups and their use in defining 2-gauge
theories. We will stress how these algebraic objects may be used to decorate 2-complexes.

Using the geometric interpretation of 2-groups as objects which decorate both surfaces
and their boundary, in chapter 3, we construct the phase space for a three dimensional tri-
angulation associated to a topological action. First we directly use the symplectic potential
coming from the Euclidean 2-group BFCG action– a particularly simple 2-gauge theory –
to define the discretized phase space. Then, by using the Heisenberg double of a group, a
generalisation of the cotangent phase space T ∗G, we are able to construct the phase space
of a three dimensional triangulation for a more general class of (Poisson) 2-group than
what we previously considered.

In chapter 4, we deal with the quantization of theories based on 2-groups. We use
the group field theory formalism, which allows us to use Feynman diagrams to build spin
foam transition amplitudes. These amplitudes act as projections which impose that the
holonomy around a closed loop is given in terms of the face decoration and the composition
of surfaces which make up a closed polyhedron is also trivial. Schematically the amplitude
looks like ∏

l: loop
f : face,∂f=l

δ(Hlt(Yf ))
∏

p: polyhedron

δ(
∏
f :face
f∈∂p

Yf ) (1.11)

where Hl are holonomies around loops, Yf are surface variables, and t is the boundary
function or t-map, a critical component of the definition of a 2-group. The first product of
deltas imposes that the holonomy Hl about the loop l is equal to t(Yf ), the surface variable
enclosed by the loop. The second product of delta functions are over the closed polyhedra.
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The product of Yf ’s have to be carefully considered: They must be arranged in such a way
that they share boundaries so they can be composed. We are once again only able to do
this consistently by using the properties of 2-groups.

Finally, a Hilbert space of states, up which these geometric constraints act, is con-
structed for the case of Euclidean 2-group BFCG. Upon these states which represent
boundaries of the spin foam, we impose some geometric constraints, including part of the
1-flatness constraint (the first set of deltas in (1.11)) which allows us to connect the BFCG
theory partition function with an existing topological invariant which uses 2-representations
of the Euclidean 2-group [22], despite the absence of a Plancherel formula/Peter-Weyl the-
orem for 2-groups.
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Chapter 2

Higher gauge and BF type theories

This chapter introduces two of the main tools used in this thesis: BF-type topological
theories and 2-groups.

As mentioned in the introduction, topological theories such as the BF theory have been
used to construct models of quantum gravity. They are also useful as tools for gaining
insight into diffeomorphism invariant theories in general. Since there are no local degrees
of freedom, the Noether charges of the theory, coming from the gauge transformations are
concentrated on codimension-2 boundaries. From these boundary charges we reconstruct
not only the diffeomorphism charges, but new independent “dual diffeomorphism charges”.
The construction of these charges hinges on a particular decomposition of the the gauge
group.

At the end of section 2.1, we introduce a particular member of the family of BF-type
theories, the BFCG model. This leads us to the definitions and tools used in 2-gauge theory
in 2.2. These 2-gauge theories are generalizations of gauge theories defined on a lattice, as
they involve holonomies along paths, and 2-holonomies on surfaces. The 2-holonomies act
as a transport operator for extended objects like paths themselves.

2.1 Boundary charges in BF type theories

2.1.1 Boundary charges in BF theory

One uses boundaries in general relativity as a way to define physical charges such as
energy and momenta. For example, the energy of an asymptotically flat spacetime may
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be defined as a boundary integral [66]. Asymptotic boundaries also allow one to consider
approximate symmetries which only become exact at infinity giving rise to the BMS group
in asymptotically flat spaces for example [94, 25]. The boundary charges in the classical
theory might also give insight into the quantization of the theory as is the case in AdS/CFT
or celestial holography [29]. Recently, there has been interest in studying charges which
have support on co-dimension 2 boundaries which are not located at asymptotic infinity.
Such local holographic theories may grant insight into quantizing diffeomorphism invariant
theories by considering the entanglement areas between subsystems [43, 44, 98].

The family of theories studied in this section is meant to be a(n incomplete) gen-
eralisation of the Mielke-Baekler action, which in three dimensions is the most general
diffeomorphism and Lorentz invariant theory in a triad and a connection variable [10, 77].
The analogous analysis for the Mielke-Baekler action has been done in [56].

The prototypical action is the four dimensional BF-theory with quadratic potential

S =

∫
M

⟨B ∧ F⟩ − κ⟨B ∧ B⟩ (2.1)

where here the pairing ⟨·, ·⟩ is taken to be the Killing form on the Lie algebra g of some
Lie group G, to which B and the connection A belong, κ ∈ R is a coupling parameter and
F = dA + 1

2
[A,A]. Our analysis follows that of [55]. The equations of motion for the

theory, obtained by varying A and B are

dAB ≡ dB + [A ∧ B] ≈ 0, F − 2κB ≈ 0, (2.2)

where ≈ will be used to indicate the equality holds on-shell. Furthermore, the variation in
the connection leads to a boundary term

δS ≈
∫
∂M

⟨B ∧ δA⟩. (2.3)

The boundary term θ = ⟨B∧ δA⟩ is called the symplectic potential. From θ the symplectic
form can be defined on a three dimensional submanifold M3,

Ω =

∫
M3

δθ =

∫
M3

⟨δB ∧ δA⟩. (2.4)

The action exhibits two types of symmetries: First is the gauge transformations which are
parameterized by g ∈ G:

A → g−1Ag + g−1dg, B → g−1Bg. (2.5)
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(written above in the adjoint representation). The second symmetry is the shift symmetry
parameterized by a g-valued 1-form ϕ:

A → A+ 2κϕ, B → B + dAϕ. (2.6)

These symmetries can be linearized to obtain the infinitesimal transformations:

δJα B = [B, α], δJαA = dAα

δTϕ B = dAϕ, δTϕA = 2κϕ
(2.7)

where the infiniesimal version of the gauge transformations are given by a g valued function
α. These symmetries form the following algebra[

δJα , δ
T
ϕ

]
= δT[α,ϕ],

[
δJα , δ

J
β

]
= δJ[α,β],

[
δTϕ , δ

T
χ

]
= 0. (2.8)

Note that since δTϕA contains neither A nor B, it is not a surprise that the shift sector of
the algebra commutes for any value of κ.

With these symmetries and the symplectic potential defined, we can compute the
charges corresponding to these symmetries or the corresponding Hamiltonian functions.
In general the charge Q corresponding to a symmetry is defined by δQ⌟Ω = −/δQ where
/δ indicates that in general, the right hand side is not a total variation, as will be the
case when we look at field dependent transformations. The corresponding charges of the
transformations in (2.7) are

/δJ (α) = −
∫
M3

⟨δJα B ∧ δA⟩ − ⟨δB ∧ δJαA⟩

= −
∫
M3

⟨α ∧ δdAB⟩+
∮
S

⟨δB ∧ α⟩

≈
∮
S

⟨δB ∧ α⟩

(2.9)

and similarly

/δT (ϕ) ≈ −
∮
S

⟨ϕ ∧ δA⟩, (2.10)

where S is the boundary of the 3-manifold M3. If α and ϕ are field independent (if
δα = δϕ = 0), then we can read off

J (α) =

∮
S

⟨B ∧ α⟩ T (ϕ) = −
∮
S

⟨ϕ ∧ A⟩. (2.11)
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The Poisson algebra of these charges again comes from the symplectic form and is defined
by {Q1, Q2} = −δQ1⌟δQ2⌟Ω. The algebra arising from the charges in (2.10) is then

{J (α), T (ϕ)} = T ([α, ϕ])−
∮
S

⟨α, dϕ⟩,

{J (α),J (β)} = J ([α, β]),

{T (ϕ), T (χ)} = 2κ

∮
S

⟨ϕ ∧ χ⟩.

(2.12)

These brackets are similar to those in (2.8), with central extensions.

This theory, being topological, is diffeomorphism invariant. In fact diffeomorphisms,
which at the infinitesimal level are given by Lie derivatives, can be expressed as a combi-
nation of the symmetries of (2.7), on shell. The slight complication is that the parameters
(α and ϕ in (2.7)) must be field dependant. The diffeomorphism generated by the vector
field ξ on the basic fields may be written as

δDξ A =δTξ⌟BA+ δJξ⌟AA = dA(ξ⌟A) + 2κξ⌟B
=LξA− ξ⌟(F − 2κB) ≈ LξA

δDξ B =δTξ⌟BB + δJxi⌟AB = [B, ξ⌟A] + dA(ξ⌟B)
=LξB − ξ⌟dAB ≈ LξB

(2.13)

where the identity LξX = ξ⌟dX + d(ξ⌟X) is used. If we take ξ to be tangential to M3,
the charge associated to the corresponding diffeomorphism symmetry is

D(ξ) = T (ξ⌟B) + J (ξ⌟A). (2.14)

If we are able to decompose the Lie algebra in a certain way, one may find a new set of
diffeomorphism charges which we call dual diffeomorphisms. As an example, consider the
Lie algebra with generators Pi and Ji with i ∈ {1, 2, 3} satisfying the brackets

[Ji, Pj] = ϵij
kPk, [Ji, Jj] = ϵij

kJk, [Pi, Pj] = Λϵij
kJk. (2.15)

The basic fields of the theory A and B could then be decomposed as

A = AiJi + CiPi B = BiJi + ΣiPi, (2.16)

where A,C,B, and Σ are the projection of A or B into the relevant subspace. For such
algebras, we consider two possible invariant forms

⟨Pi, Jj⟩1 = 0, ⟨Pi, Pj⟩1 = Λδij, ⟨Ji, Jj⟩1 = δij,
⟨Pi, Jj⟩2 = δij, ⟨Pi, Pj⟩2 = 0, ⟨Ji, Jj⟩2 = 0.

(2.17)
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Writing the Lagrangian (2.1) using the first pairing gives

L+ = Bi ∧ F [A]i +
1

2
Bi ∧ [C,C]i + ΛΣi ∧ dACi − κBi ∧Bi − κΛΣi ∧ Σi (2.18)

while using the second pairing gives

L− = Bi ∧ dACi + Σi ∧ F [A]i − 2κBi ∧ Σi +
1

2
Σi ∧ [C,C]i. (2.19)

One can also decompose the generators of charges in the same way. For example, if we
write α = αi1Ji + αi2Pi then in the first pairing, the charge J (α) may be decomposed as

J (α) =

∮
S

αi1Bi + Λαi2Σi ≡ J1(α1) + J2(α2). (2.20)

We can see the J and P components of α as associated with their own charges. The
transformations corresponding to these charges can be obtained by restricting the trans-
formations of (2.7) to either the J or P components only. There is also the possibility of
swapping the role of the J and P components. At the level of the pairings, this means
that regardless of which action we choose in the Lagrangian, using either ⟨·, ·⟩1 or ⟨·, ·⟩2 in
the definition of the charges will both be valid. The freedom to swap the roles of the J
and P components and to arrive at valid charges is what allows us to define a new type of
diffeomorphism-like charge as we see in the next section.

2.1.2 A more general Lagrangian

To study L+, L−, and combinations of the two we introduce a new Lagrangian which is
parametrized by nine parameters σi:

L =(σ1B
i + σ2Σ

i) ∧ Fi + (σ3B
i + σ4Σ

i) ∧ dACi +
σ5
2
Bi ∧Bi +

σ6
2
Σi ∧ Σi

+ σ7B
i ∧ Σi + (

σ8
2
Bi +

σ9
2
Σi) ∧ [C,C]i.

(2.21)

Setting σ1 = σ8 = 1, σ4 = Λ, σ5 = −2κ, and σ6 = −2κΛ (and all others to zero) recovers
L+ while setting σ2 = σ3 = σ9 = 1 and σ7 = −2κ (with the rest set to zero) recovers L−.

In order to save space, we introduce notation for common combinations of the σ’s,

[ijkl] =
σiσj − σkσl
σ1σ4 − σ2σ3

(2.22)
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and set1

p1 = [3745], p2 = [2517], p3 = [3428], p4 = [1833] r1 = [4839],
q1 = [3647], q2 = [2716], q3 = [4429], q4 = [1934] r2 = [1928].

(2.23)

In order for these to be well defined, we demand that σ1σ4 − σ2σ3 ̸= 0. With this in mind,
the equations of motion are

F i = p1B
i + q1Σ

i − r1
2
[C,C]i (2.24a)

dAC
i = p2B

i + q2Σ
i − r2

2
[C,C]i (2.24b)

dAB
i = p3[B,C]

i + q3[Σ, C]
i (2.24c)

dAΣ
i = p4[B,C]

i + q3[Σ, C]
i , (2.24d)

Once again, the symplectic potential comes from the boundary term of the variation,

θ = (σ1B
i + σ2Σ

i) ∧ δAi + (σ3B
i + σ4Σ

i) ∧ δCi . (2.25)

If we assume the additional constraint,

σ1[7968] + σ2[7859] + σ3[3647] + σ4[4537] = 0 , (2.26)

the Lagrangian (2.21) is also invariant under two additional symmetries, generated by a
Lie algebra value 0-form and 1-form. Denoting the Lie algebra value 0-forms in the J and
P decomposition by (α, χ) and 1-form by (ϕ, τ), the fields transform according to Table
2.1.

As before we can compute the charges of the above transformations using the symplectic
form. These are

δJ1(α) =−
∫
M3

αi δEOMA
i +

∮
S

αi(σ1δBi + σ2δΣi) , (2.27a)

δJ2(χ) =−
∫
M3

χi δEOMC
i +

∮
S

χi(σ3δBi + σ4δΣi) , (2.27b)

δT1(ϕ) =−
∫
M3

ϕi ∧ δEOMB
i +

∮
S

(σ1δAi + σ3δCi) ∧ ϕi , (2.27c)

δT2(τ) =−
∫
M3

τi ∧ δEOMΣ
i +

∮
S

(σ2δAi + σ4δCi) ∧ τ i . (2.27d)

1For reference, to recover L+, we have p1 = q2 = 2κ, p4 = 1
q3

= Λ and r1 = 1. The parameters for L−

are the same except for p4 = 1
q3

= −1.
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0-form transformations in J : 0-form transformation in P :
δJ1α A = dAα δJ2χ A = r1[C, χ]
δJ1α C = [C, α] δJ2χ C = dAχ+ r2[C, χ]
δJ1α B = [B,α] δJ2χ B = p3[B,χ] + q3[Σ, χ]
δJ1α Σ = [Σ, α] δJ2χ Σ = p4[B,χ] + q4[Σ, χ]

1-form shift in J : 1-form shift in P :

δT1ϕ A = p1ϕ δT2τ A = q1τ

δT1ϕ C = p2ϕ δT2τ C = q2τ

δT1ϕ B = dAϕ+ p3[C, ϕ] δT2τ B = q3[C, τ ]

δT1ϕ Σ = p4[C, ϕ] δT2τ Σ = dAτ + q4[C, τ ]

Table 2.1: The infinitesimal symmetries of the Lagrangian (2.21) sorted by the gauge sym-
metry (top two blocks) and the shift symmetry (bottom two blocks), as well as generators’
projections into the J subspace (left two blocks) or the P subspace (right two blocks).

where EOMX refers to the equations of motion obtained by varying the field X, hence
EOMX ≈ 0. As expected for gauge symmetries, on-shell, the charges have support on the
boundary S. The Poisson algebra of these charges is

{J1(α),J1(α
′)} = J1([α, α

′]) , (2.28a)

{J1(α),J2(χ)} = J2([α, χ]) , (2.28b)

{J2(χ),J2(χ
′)} = r1J1([χ, χ

′]) + r2J2([χ, χ
′]) , (2.28c)

{J1(α), T1(ϕ)} = T1([α, ϕ])− σ1

∮
S

αdϕ , (2.28d)

{J1(α), T2(τ)} = T2([α, τ ])− σ2

∮
S

αdτ , (2.28e)

{J2(χ), T1(ϕ)} = p3T1([χ, ϕ]) + p4T2([χ, ϕ])− σ3

∮
S

χdϕ , (2.28f)

{J2(χ), T2(τ)} = q3T1([χ, τ ]) + q4T2([χ, τ ])− σ4

∮
S

χdτ , (2.28g)

{T1(ϕ), T1(ϕ
′)} = −σ5

∮
S

ϕ ∧ ϕ′, (2.28h)

{T2(τ), T2(τ
′)} = −σ6

∮
S

τ ∧ τ ′ , (2.28i)

{T1(ϕ), T2(τ)} = −σ7
∮
S

ϕ ∧ τ. (2.28j)
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The generators (T1, T2) span a centrally extended abelian current algebra while the gener-
ators (J1,J2) span a non-centrally extended so-like current algebra. Indeed, defining the
new generator J̃2 = J2 − r2

2
J1 leads to

{J1(α),J1(α
′)} = J1([α, α

′]) , (2.29a)

{J1(α), J̃2(χ)} = J̃2([α, χ]) , (2.29b)

{J̃2(χ), J̃2(χ
′)} = −λJ1([χ, χ

′]) , (2.29c)

with λ = −(r1 +
r22
4
).

Just as the BF action, (2.21) is diffeomorphism invariant. Defining the diffeomorphism
symmetry, generated by a parameter vector field ξ, as the action of the Lie derivative δdξ (·) =
Lξ(·), we find that the transformation can be expressed in terms of gauge transformations
with field dependent gauge transformation (up to the equations of motion)

δdξA =
(
δJ1ξ⌟A + δJ2ξ⌟C + δT1ξ⌟B + δT2ξ⌟Σ

)
A+ ξ⌟(F +

r1
2
[C,C]− p1B − q1Σ) , (2.30a)

δdξC =
(
δJ1ξ⌟A + δJ2ξ⌟C + δT1ξ⌟B + δT2ξ⌟Σ

)
C + ξ⌟(dAC +

r2
2
[C,C]− p2B − q2Σ) , (2.30b)

δdξB =
(
δJ1ξ⌟A + δJ2ξ⌟C + δT1ξ⌟B + δT2ξ⌟Σ

)
B + ξ⌟(dAB − p3[B,C]− q3[Σ, C]) , (2.30c)

δdξΣ =
(
δJ1ξ⌟A + δJ2ξ⌟C + δT1ξ⌟B + δT2ξ⌟Σ

)
Σ + ξ⌟(dAΣ− p1[B,C]− q1[Σ, C]) . (2.30d)

When taken on shell, the second half of the above expressions (the part that is contracted
with ξ) vanishes. There are at least two ways of determining the associated charges. We
can of course go back to the symplectic potential, and contract it with the δdξ or we can
use the fact that the diffeomorphism are just field dependent gauge transformation and so
the charges will be a linear combination of the other gauge transformations. Using this,
we obtain

/δD(ξ) = /δJ1(ξ⌟A) + /δJ2(ξ⌟C) + /δT1(ξ⌟B) + /δT2(ξ⌟Σ)

where again the notation /δ emphasizes the fact that the field-space form obtained is not
necessarily integrable since the gauge charges are only integrable for some field independent
gauge parameter

/δJ1(ξ⌟A) =
∮
S

ξ⌟A ∧ (σ1δB + σ2δΣ) /=⇒ J1(ξ⌟A) =
∮
S

ξ⌟A ∧ (σ1B + σ2Σ) . (2.31)

In order to actually obtain a charge associated to the diffeomorphism, we could either
impose boundary conditions to the field to render the field-space form integrable, or we
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could consider ξ to be tangent to both M3 and its boundary S. In that case, the non-
integrable part does not contribute, and we are left with the diffeomorphism charge

D(ξ) = J1(ξ⌟A) + J2(ξ⌟C) + T1(ξ⌟B) + T2(ξ⌟Σ) . (2.32)

Similarly to what was done in three dimensions in [56], it happens that the diffeomor-
phism is not the only combination of field dependent symmetries that is exact. There is
an additional quadratic charge that is integrable with tangent parameter ξ that forms a
stable algebra with the gauge charges, which we denote C(ξ)

C(ξ) =J1(ξ⌟(r1C − p3A)) + J2(ξ⌟(q4C + A)) + q3T1(ξ⌟Σ) + T2(ξ⌟(p4B + (q4 − p3)Σ)) .
(2.33)

We refer the reader to the Appendix A for the derivation of the charge.

For completeness, note that the symmetry associated to the charge C(ξ) can be written
as

δCξ = δJ1

ξ⌟(−p3A+r1C) + δJ2

ξ⌟(A+q4C) + q3δ
T1
ξ⌟Σ + δT2ξ⌟(p4B+(q4−p3)Σ) (2.34)

giving the infinitesimal transformations

δCξA
i =− p3LξAi + r1LξCi (2.35)

δCξC
i =LξAi + q4LξCi (2.36)

δCξB
i =q3LξΣi (2.37)

δCξΣ
i =p4LξBi + (q4 − p3)LξΣi (2.38)

With these transformations, we can determine the Poisson algebra of the charges. The
brackets are

{D(ξ),D(ζ)} =−D([ξ, ζ]) (2.39)

{D(ξ), C(ζ)} =− C([ξ, ζ]) (2.40)

{C(ξ), C(ζ)} =(p3 − q4)C([ξ, ζ])− p4q3D([ξ, ζ]). (2.41)

We do a change of variables to have a nice algebra, which also allows us to define the “dual
diffeomorphisms” as

D∗(ξ) = C(ξ) +
1

2
(p3 − q4)D(ξ). (2.42)
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The algebra now reads

{D∗(ξ),D∗(ζ)} =λD([ξ, ζ]) (2.43)

{D(ξ),D∗(ζ)} =−D∗([ξ, ζ]) (2.44)

{D(ξ),D(ζ)} =−D([ξ, ζ]). (2.45)

where again λ = −(r1 + 1
4
r22). This algebra is similar to the one met in the 3d case

[56]. In the special case where parameters are chosen so that (2.21) is L+, we have that
D∗(ξ) = C(ξ) = J1(ξ⌟C) + J2(ξ⌟A) + 1

λ
T1(ξ⌟Σ) + λT2(ξ⌟B). The diffeomorphism and

dual diffeomorphism charges are related by swapping the roles of A with C and B with
1
Λ
Σ.

2.1.3 Self-dual formulation

In the previous subsection, it was shown that there is a second set of diffeomorphism-
like charges which arise in the general Lagrangian (2.21). To get a grip on what these
two types of charges are, we take a specific algebra, so(4) and use the direct sum basis,
writing so(4) = su(2) ⊕ su(2) (a similar construction can be made for so(3, 1) where the
decomposition would then be su(2) ⊕ i su(2)). We denote the generators by σAi , where
A = 1, 2 denotes the term in the direct product and use the pairing ⟨σAi σBj ⟩ = 2δABδij.
Explicitly, the basis vectors are

σ1
i = Ji +

√
λPi σ2

i = Ji −
√
λPi [σai , σ

a
j ] = 2δabϵij

kσak . (2.46)

The fields can be decomposed as

A = Ai1σ
1
i + Ai2σ

2
i , (2.47a)

B = Bi
1σ

1
i +Bi

2σ
2
i . (2.47b)

The BF Lagrangian in the first pairing of (2.17) becomes

L+ = ⟨B ∧ F⟩1 − κ⟨B ∧ B⟩1 = 2(L1 + L2) (2.48)

LA ≡ ⟨BA ∧ FA⟩ − κ⟨BA ∧BA⟩, A = 1, 2, (2.49)

which is essentially a pair of uncoupled BF actions. If the other pairing is chosen we obtain

L− = ⟨B ∧ F⟩2 − κ⟨B ∧ B⟩2 = 2(L1 − L2). (2.50)
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τ ∈ so(4) τ1 ∈ su1(2) τ2 ∈ su2(2)

δJτ A = dAτ
δJ1
τ1
A1 = dA1τ1 δJ2

τ2
A2 = 0

δJ1
τ1
A2 = 0 δJ2

τ2
A2 = dA2τ2

δJτ B = [B, τ ]
δJ1
τ1
B1 = [B1, τ1] δJ2

τ2
B1 = 0

δJ1
τ1
B2 = 0 δJ2

τ2
B2 = [B2, τ2]

ψ ∈ so(4) ψ1 ∈ su1(2) ψ2 ∈ su2(2)

δTψA = 2αψ
δT1ψ1

A1 = 2αψ1 δT2ψ2
A1 = 0

δT1ψ1
A2 = 0 δT2ψ2

A2 = 2αψ2

δTψB = dAψ
δT1ψ1

B1 = dA1ψ1 δT2ψ2
B1 = 0

δT1ψ1
B2 = 0 δT2ψ2

B2 = dA2ψ2

Table 2.2: Symmetries in the self-dual basis. The Lie algebra function and 1-form τ and
ψ are broken into their components τ i and ϕi, each in their own subspace.

The symmetries for these Lagrangians parameterized by 1-form ψ and function τ are given
in Table 2.2 as well as the transformations arising by restricting the parameters to a single
term of the direct sum.

Together with the usual charges,

/δJ 1(τ1) = −δJ1
τ1
⌟Ω =

∫
S

⟨δB1 ∧ τ1⟩, /δJ 2(τ2) = −δJ2
τ2
⌟Ω =

∫
S

⟨δB2 ∧ τ2⟩

/δT 1(ψ1) = −δT1ψ1
⌟Ω =

∫
S

⟨δA1 ∧ ψ1⟩, /δT 2(ψ2) = −δT2ψ2
⌟Ω =

∫
S

⟨δA2 ∧ ψ2⟩,
(2.51)

when the generators are field independent, the charges form an algebra, obtained from the
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symplectic structure, as before. The algebra is

{J1(τ1),J1(τ
′
1)} =J1([τ1, τ

′
1]),

{J1(τ1), T1(ψ1)} =T1([τ1, ψ1])−
∮
S

⟨dτ1 ∧ ψ1⟩,

{J2(τ2),J2(τ
′
2)} =J2([τ2, τ

′
2]),

{J2(τ2), T2(ψ2)} =T1([τ2, ψ2])−
∮
S

⟨dτ2 ∧ ψ2⟩,

{T1(ψ1), T1(ψ
′
1)} =− α0

∮
S

2⟨ψ1 ∧ ψ′
1⟩

{T2(ψ2), T2(ψ
′
2)} =− α0

∮
S

2⟨ψ2 ∧ ψ′
2⟩

(2.52)

Each sector of the algebra comes with its own diffeomorphism symmetry,

/δDa(ξ) = −δDa
ξ ⌟Ω = /δJa(ξ⌟Aa) + /δTa(ξ⌟Ba). (2.53)

The two diffeomorphism charges give the algebra of two commuting diff(S2) algebras,

{D1(ξ),D1(ζ)} = −D1([ξ, ζ]), (2.54a)

{D2(ξ),D2(ζ)} = −D2([ξ, ζ]), (2.54b)

{D1(ξ),D2(ζ)} = 0. (2.54c)

Of course, the sum of the two diffeomorphism charges will be the charge which generates
diffeomorphisms on the total so(4) fields B and A. We can also consider the difference of
the two diffeomorphism charges, which we can identify as the dual diffeomorphism charges.
If we denote

D+(ξ) = D1(ξ) +D2(ξ), D−(ξ) = D1(ξ)−D2(ξ), (2.55)

the closed algebra is

{D+(ξ),D+(ζ)} = −D+([ξ, ζ]) , (2.56a)

{D−(ξ),D−(ζ)} = −D+([ξ, ζ]) , (2.56b)

{D+(ξ),D−(ζ)} = −D−([ξ, ζ]) . (2.56c)
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Looking at the corresponding transformations we have

δD
+

ξ A1 = LξA1, δD
+

ξ A2 = LξA2, (2.57)

δD
+

ξ B1 = LξB1, δD
+

ξ B2 = LξB2, (2.58)

δD
−

ξ A1 = LξA1, δD
−

ξ A2 = −LξA2 (2.59)

δD
−

ξ B1 = LξB1, δD
−

ξ B2 = −LξB2 (2.60)

That is, the charge D−(ξ) corresponds to a diffeomorphism in the first sector generated by
ξ and a diffeomorphism generated by −ξ in the second sector.

We can take this construction further by taking the algebra su(2) ⊕ su(2) ⊕ su(2) for
example. The decomposition of the connection and B field is similar to the su(2)⊕ su(2)
picture; A =

∑3
I=1A

I iσIi and B =
∑3

I=1B
I iσIi . We can consider three independent

pairings

⟨σ1
i , σ

1
j ⟩+,+ = ⟨σ2

i , σ
2
j ⟩+,+ = ⟨σ3

i , σ
3
j ⟩+,+ = δij , (2.61a)

⟨σ1
i , σ

1
j ⟩−,+ = ⟨σ2

i , σ
2
j ⟩−,+ = δij = −⟨σ3

i , σ
3
j ⟩−,+ , (2.61b)

⟨σ1
i , σ

1
j ⟩+,− = ⟨σ3

i , σ
3
j ⟩+,− = δij = −⟨σ2

i , σ
2
j ⟩+,− (2.61c)

and construct Lagrangians using linear combinations thereof.

If we denote diffeomorphism in the first, second, or third term in the direct sum by Da,
we can form linear combinations which once again make for a closed Poisson algebra:

D±,±(ξ) = D1(ξ)±D2(ξ)±D3(ξ). (2.62)

(The notation here is that the first (resp. second) superscript ± on the left hand side
corresponds to the first (resp. second) ± on the right hand side.) These charges once again
form a closed algebra,

{Dϵ1,ϵ2(ξ),Dϵ3,ϵ4(ζ)} = −Dϵ1ϵ3,ϵ2ϵ4([ξ, ζ]), ϵi = ±1. (2.63)

The associated transformations are

δD
ϵ1,ϵ2

ξ A1 = LξA1, δD
ϵ1,ϵ2

ξ A2 = Lϵ1ξAa, δD
ϵ1,ϵ2

ξ A3 = Lϵ2ξA3, (2.64)

δD
ϵ1,ϵ2

ξ B1 = LξB1, δD
ϵ1,ϵ2

ξ B2 = Lϵ1ξBa, δD
ϵ1,ϵ2

ξ B3 = ϵ2Lϵ2ξB3. (2.65)

Once again, the “dual” charges act as generators for transformations which act differently
in each sector of the algebra, either flowing in the direction of ξ or opposite ξ.
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0-form transformations
in J

0-form transformations
in P

1-form shifts
in J

1-form shifts
in P

δJ1α A = dAα δJ2χ A = 0 δT1ϕ A = 0 δT2τ A = 0

δJ1α C = [C, α] δJ2χ C = dAχ δT1ϕ C = 0 δT2τ C = 0

δJ1α B = [B,α] δJ2χ B = [Σ, χ] δT1ϕ B = dAϕ δT2τ B = [C, τ ]

δJ1α Σ = [Σ, α] δJ2χ Σ = 0 δT1ϕ Σ = 0 δT2τ Σ = dAτ

Table 2.3: The symmetries corresponding to the action of (2.66), obtained by setting
σ1 = σ4 = 1 and all others to zero in (2.21).

2.1.4 BFCG Theory

We now consider a specific type of action that arises in (2.21). With some choice of
parameters in that action, we can recover a so-called 2-gauge theory.

Before looking into what 2-gauge theories are in general, let’s consider an example.
Taking σ1 = σ4 = 1 and all others to be zero in (2.21) gives

L = B ∧ F + Σ ∧ dAC. (2.66)

For these specific values of σi, the symmetries are given in Table 2.3

In this example, we must assume that the subspaces containing C and Σ are subalgebras
(Λ = 0). For example, in a later example, the Lie algebra will be the Poincaré algebra and
C and Σ will be the translation subalgebra. It will be useful to rewrite the action (2.66)
using a integration by parts to emphasize some symmetry. We can write

L = B ∧ F + C ∧ dAΣ. (2.67)

The reason for this rewriting is that the quantity dAΣ will play a role similar to a curvature,
and so this writing is more symmetric. In addition, the integration by parts also introduces
a boundary term, which contributes to the symplectic potential and alters what we think
of as momentum and configuration variables. The fields B and C now appear as Lagrange
multipliers enforcing flatness F = 0 and the the constraint dAΣ = 0. The transformations
δJ1α appear as what is known as a 1-gauge transformation. In 2-gauge theory, Σ plays
the role of a so-called 2-connection. We will expand on this later on, but for now we
mean that as a connection transports an object from one point to another on a path, a
2-connection transports a path along a surface. The infinitesimal transformation δT2τ , is
then called a 2-gauge transformation as it plays the role of making the transport properly
gauge invariant.
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This alternate way of viewing the symmetries in this example show how A and Σ can be
made to relate to one another in a way that we will show is geometrically appealing. The 0-
and 1-form translations δJ2χ and δT1ϕ then play a similar role to the “shift” symmetry in BF
theory. We are also able to see C and B themselves as being 1- and 2-connections. The view
that what we have here is two related 2-gauge theories will be used in the discretization
process.

In order to make what is discussed in this section more precise, we will describe 2-
groups which will formalise the 2-holonomy picture in the next section. Then we will make
clear the 2-gauge theory which comes out of an infinitesimal view of 2-groups, just as a Lie
algebra can be derived from a Lie group.

2.2 2-Groups and 2-gauge theory

In this section, we will give the definition of a 2-group and describe the notion of a 2-gauge
theory. These structures give meaning to the notion of 2-holonomies which transport
extended objects just as the usual (1-)holonomies transport objects which are defined at a
point. 2-holonomies can be used to extend usual concepts from lattice gauge theory.

Of critical importance for us is an algebraic structure called a strict 2-group, also
known as a crossed module [16]. The rules which define the crossed module give us rules
for composing surfaces and paths alike. In the next section, we give the definition of the
infinitesimal version 2-groups, Lie 2-algebras which are used in the construction of 2-gauge
theory.

The notion of a 2-group comes from the higher categorification of a group. We will not
dwell for very long on the category theory point of view but will mention the basics for
some perspective on where these objects come from, motivated by [16, 14].

First, a category consists of a collection of of objects which are typically drawn as
dots, and a collection of morphisms or arrows between the objects. The morphisms are
composable: If f is a morphism from objects A and B and g is a morphism from B and
an object C, then there is a third morphism between A and C, the composition of f and
g, which we denote g ◦ f , or simply gf . The composition of morphisms should also be
associative. In addition we demand that for each object A there is an identity morphism
1A for which f1A = f for any morphism f from A.

An important example of a category is a groupoid, which occurs if each of the morphisms
have inverses. Another example would be a group, which is a groupoid where every pair
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of morphisms can be composed, therefore satisfying the axioms of group multiplication. A
group, seen as a category is thought of as having a single object.

In gauge theory, the important category is the groupoid of paths on a manifold, in
which each point is an object and the morphisms are paths between points. Concretely, one
assigns a group element to each morphism. We often call these assignments “decorations”.
These are the holonomies. The composition of paths relates to the multiplication of the
group elements decorating the paths.

The holonomy on a path gives information on how a tensor changes as it travels along
the path. The 2-holonomies we will define will give information about how an extended
object changes as it sweeps out some two dimensional area.

From the categorical point of view, 2-categories are categories (objects and arrows
between them) with arrows between arrows, which we call 2-morphisms. The rules for
composing these arrows in a consistent way will be given shortly. Just as Lie groups
allow us to decorate the paths in the category of paths on a manifold, 2-groups or crossed
modules will let us do the same for the 2-category of paths and surfaces between paths on
a manifold [18, 12, 13, 15].

2.2.1 Crossed modules

A crossed module consists of a pair of groups, G and H with a homomorphism t : H → G
and an action α : G ×H → H which we denote by α(g, h) = g ▷ h for g ∈ G and h ∈ H.
The action and homomorphism must be satisfy compatibility relations,

t(g ▷ h) = gt(h)g−1 (2.68)

t(h) ▷ h′ = hh′h−1 (2.69)

for all h, h′ ∈ H and g ∈ G. As we will see these compatibility conditions have geometric
applications as well.

We can represent an element of the crossed module (h, g1) by a bigon – a surface
decorated by h ∈ H having its boundary divided into two paths, both starting and ending
at the same point. One path is decorated by g1 ∈ G and the other by an element given by
g2 = t(h)g1 ∈ G. This element of the crossed module is shown diagrammatically in Fig.
2.1.

The crossed module can be equipped with two products which correspond to two ways
of composing surfaces. The first product is called vertical multiplication. If t(h1) = g2g

−1
1 ,
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g2

g1

h

Figure 2.1: Graphical representation of (h, g1) in the 2-group given by (G,H, t, ▷), with
t(h) = g2g

−1
1 .

g3

g1

g2
h1

h2

g3

g1

h2h1

Figure 2.2: The diagrammatic depiction of the vertical composition (h2, g2) ⋄ (h1, g1) =
(h2h1, g1). The condition t(h1) = g2g

−1
1 is expressed graphically by requiring that the two

surfaces being composed share an edge.

then we can define the vertical product as (h2, g2) ⋄ (h1, g1) = (h2h1, g1). Figure 2.2 gives
a graphical representation in terms of paths and surfaces. The condition t(h1) = g2g

−1
1

represents the condition that the two surfaces being composed share a boundary path. Now
is a good time to acknowledge the fact that in defining the two paths on the boundary,
we are specifying two points: a starting point for the paths, which we call the source, and
an ending point which we call the target. We are free to change these points by a process
called whiskering. This is where the the group action of G on H comes in. Let the original
source point be at s on the boundary, and say that we would like to move the source to a
new point s′ also on the boundary. If the path along the boundary from s to s′ is decorated
by g, then we have the relation (h, g1)s = (h′, g1g

′−1)s′ , where the subscripts indicate the
base point. The new surface variable, h′ satisfies t(h′) = t(h), as we can see from Fig. 2.3.

In a similar vein, we can change the target point, the point on the boundary where
the two paths g1 and g2 meet. Let the original target point be denoted by τ and the new
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g2

g1

h

s′

s

g′

g2g
′−1

g1g
′−1

h′ s′

Figure 2.3: Diagrammatic representation of changing the source point of a surface from s
to s′, where the two sources are separated by g′.

τ

g′

τ ′

h

g2

g1

τ ′
h′

g′g2

g′g1

Figure 2.4: Changing the target point by a path g′. We have that h′ = g′ ▷ h.

target point by τ ′, and say the path connecting τ to τ ′ is given by g′. Then the new crossed
module element is given by (h, g1) → (g′ ▷ h, g′g1). This is shown in Fig. 2.4. Since the
map t is calculated by taking the path around the loop starting at the target point, it is
no surprise that the new surface variable is given by the action of g′.

In fact, the new target or source point need not be on the boundary of the surface. We
can choose a new target or source which lies off the boundary altogether without changing
the calculation. The whiskering process is shown in Fig. 2.5.

The second of the two products we consider is horizontal multiplication. If the source
point on one surface is the target point of a second boundary, we may compose surfaces
according to Fig. 2.6. The product is given by (h1, g1) • (h2, g2) = (h1(g1 ▷h2), g1g2). From
this, we can see that whiskering is simply the horizontal product (1, g′) • (h, g).
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τ ′

g′
τ

h

g2

g1

τ ′

g′g2

g′g1

h′

Figure 2.5: Whiskering on the target of the surface. Once again we have that h′ = g′ ▷ h.

g′1

h1

g1

g′2

g2

h2

g′1g
′
2

g1g2

h̃

Figure 2.6: Horizontal product (h1, g1) • (h2, g2) = (h̃, g1g2), where h̃ = h1(g1 ▷ h2).
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2.2.2 Skeletal crossed modules

A simple case which comes up often is the case where t(h) = 1 for all h ∈ H. We call these
skeletal crossed modules. The compatibility equations for skeletal crossed modules imply
that H is abelian. The geometric picture then implies that t(h) = g1g

−1
2 = 1, meaning that

the holonomy around the boundary is trivial. Let’s now consider some simple examples to
illustrate skeletal crossed modules.

• Trivial crossed modules: Consider the crossed module where H = 1 is the trivial
group and G any group. In this case, both the action and map t are trivial. This
2-group is essentially a group. This is the usual framework for lattice gauge theory
with G decorating paths and no information on the faces (or trivial group elements
on faces).

Alternatively, we may consider G to be the trivial group. Once again, this 2-group is
simply a group H. Geometrically, in analogy with the lattice picture before, we have
H decorations on plaquettes, but not on paths. The properties of the action and the
map t in this case make it so that H has to be abelian in this case.

• Poincaré and Euclidean 2-group: The Poincaré (or Euclidean) group can be seen
as examples of 2-groups, with H the group of translations and G the Lorentz (or
rotation) group.

• Co-adjoint 2-group: Let G be a Lie group and H = g∗ be its dual Lie algebra, which
we see as an abelian group. Then, G acts on g∗ via the co-adjoint action. With the
t-map being trivial, g∗ ⋉G can be viewed as a skeletal crossed module.

2.2.3 Gauge theory

Gauge theories arise in several physical contexts. As a tool to do calculations them, one
can introduce a lattice. The fields of the theory are discretized – assigned value only
on the vertices of the lattice, while the gauge variables, the connection, are concentrated
on the paths between vertices. Regularizing the theory in this way allows for simplified
computational methods and elucidates some geometric features of the theory [90].

Just as gauge theories are built from connections, which are Lie algebra valued and
are used to define the holonomies which describe how fields are transported within the
lattice, a 2-gauge theory must involve a 2-connection. The gauge symmetries of the 1-
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and 2-connection are derived from geometrical considerations which we will review now
[60, 57].

We start by introducing Lie 2-algebras [11] which we think of as infinitesimal versions
of 2-groups.

A strict Lie 2-algebra is crossed module of Lie algebras, given in terms of a pair of Lie
algebras with a Lie algebra homomorphism τ : h → g and an action ▷ : g×h → h satisfying

[x1, x2] ▷ y = x1 ▷ (x2 ▷ y)− x2 ▷ (x1 ▷ y) x ▷ [y1, y2] = [x ▷ y1, y2] + [y1, x ▷ y2] (2.70)

for all xi ∈ g and yi ∈ h. The homomorphism and the action must be compatible in the
sense that

τ(x ▷ y) = [x, τ(y)] τ(y1) ▷ y2 = [y1, y2]. (2.71)

A skeletal strict Lie 2-algebra is an infinitesimal crossed module g⋉h with a trivial τ -map,
τ = 0, so that h is abelian.

If G and H are Lie groups which together can form a 2-group, then their algebras,
respectively g and h form a Lie 2-algebra. In that case, the Lie algebra homomorphism τ
is the derivative of the t-map of the 2-group, τ = dt. The action ▷ is also the infinitesimal
version of the 2-group action (which we also denoted ▷) in the sense that if the action
is given by α : G → Aut(H), with α(g)(h) = g ▷ h, then dα : g → Der(h) is given by
dα(x)(y) = x ▷ y [11].

An example of this follows from the Poincaré or Euclidean case we saw for 2-groups.
Seeing ISO(3) as a 2-group for example, (G = SO(3) and H = R3), the corresponding
Lie 2-algebra has g = so(3) and h = R3. The t-map was the constant t(g) = 1, so the
derivative is τ(x) = 0 for all x ∈ so(3). The action on R3 by so(3) is given by the Lie
bracket in iso(3).

We can now introduce connections and 2-connections in this context. We recall that
for non-abelian gauge theory on a lattice, when one performs a gauge transformation,
the generators of the transformation are assigned to nodes of the lattice. For example, if
parallel transport on a link between points x and y is given in a certain gauge by g ∈ G.
It can be expressed in another gauge by the transformation

g′ = η−1
y gηx (2.72)

where ηx and ηy are elements of the gauge group and are associated to x and y respectively.
The gauge transformation is depicted in the commuting diagram Fig. 2.7.
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gY Y

7 2x

y
g

t

gHy It

My Mx

Hhy x

ηy

y

y

x

x

ηx

g′

g

Figure 2.7: Commuting diagram showing the gauge transformations in a lattice gauge
theory. The vertical lines represent gauge transformations at points x and y in the lattice.

As emphasized already, in 2-gauge lattice theories, the two-dimensional plaquettes are
adorned with group elements as well. How do these plaquette decorations transform under
the gauge transformations generated by ηx and ηy? For simplicity, assume that there are
two paths between x and y in the lattice (x and y are corners of a bigon) which we denote
by g and g̃. We denote the plaquette variable by h ∈ H. The gauge-transformed g and g̃
are given by (2.72). The situation is drawn in the “tin can” diagram in Fig. 2.8 with h′

being the gauge transformed h variable.

We can view of Fig. 2.8 as a bunch of 2-group elements which may be simplified accord-
ing to the whiskering and composition rules outlined in Section 2.2. To determine h′ we
demand that this simplification 2-commutes. In other words, we compose all the surfaces
on the tin can and the result should be the identity.

Before proceeding with the simplification of the diagram, we note that so far there are
two unlabelled faces on the tin can. This suggests a generalization to Fig. 2.7 and (2.72).
Instead of demanding that the diagram commute, we can place ρ ∈ H inside the plaquette
instead, and impose that the bigon encodes a 2-group element in the sense of Section 2.2:

g′ = ηyt(ρ)gη
−1
x . (2.73)

The adjusted diagram for this generalized transformation is given in Fig. 2.9. We also add
surface variables ρ and ρ̃ to the two faces on the tin can, where ρ is defined as having its
source g and target ηyg

′η−1
x (and similarly for ρ̃) as shown in Fig. 2.10. These labels ρ and

ρ̃ will parameterize what we call 2-gauge transformations.

Now that all surfaces of the tin can are properly labelled, we proceed to use the compo-
sition rules and whiskering to simplify the diagram. Explicitly the four bigons are written
as (g, h), (g, ρ), (g′, h′), and (g̃, ρ̃). To compose the first two bigons listed vertically, we
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gY Y

7 2x

y
g

t

gHy It

My Mx

Hhy x

y

y

x

x

ηy ηx

g′

g̃′

g

g̃

h′

h

Figure 2.8: Tin can diagram showing how the 1-holonomies g and g̃ transform under gauge
transformations and how the 2-holonomy h transforms under a gauge transformation.

 

gY Y

7 2x

y
g

t

gHy It
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Figure 2.9: Adjusted diagram for gauge transformations including a 2-gauge variable ρ.
The 2-gauge transformed variable is determined by setting the path around the loop equal
to t(ρ).
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Figure 2.10: The tin can diagram showing both 1- and 2- gauge transformations. The top
and bottom surfaces are decorated with h and h′ respectively and the front and back with
ρ and ρ̃. The primed variables are determined by ensuring that travelling along any loop
gives t applied to the surface bounded by the loop and by demanding that composing all
the surfaces gives the identity.
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invert (g, ρ) to obtain (η−1
y g′ηx, ρ

−1), which has g as the target and can therefore be com-
bined with (g, h). The composed bigon has g̃ as the target, which fits with the source of
(g̃, ρ̃) allowing another vertical composition. Finally, the (g′, h′) bigon must be whiskered
and inverted before composing, giving (η−1

y g̃′ηx, ηy ▷ h
′−1). Putting all this together and

demanding that the resulting surface variable be the identity we find

ρ−1hρ̃(ηy ▷
−1 h′−1) = 1 (2.74)

or

h′ = ηy ▷ (ρ
−1hρ̃). (2.75)

Together, (2.73) and (2.75) provide the combined 1- and 2-gauge transformations in the
lattice theory.

As we have discussed in the previous section, the action for gauge theories is given
in terms of connections and their curvature, not in terms of holonomies. The same is
true for 2-gauge theory. Let’s now proceed to understand how the gauge and 2-gauge
transformations look at the level of the connection and 2-connection.

The connection is an element of the Lie algebra of G defined by its properties under a
gauge transformation. A holonomy along a path is given by the path ordered exponential
P exp

(
−
∫
A
)
where the integral is over the path and A is the connection. In order for

the holonomy to transform according to (2.72) one requires that A transform according to

A′ = η−1Aη + η−1dη. (2.76)

It will be worth explaining how one gets this result, as the corresponding transformations
of the 2-gauge theory are obtained in the same way. We proceed by assuming that the
holonomy is over a path of length a, which is small. The holonomy can therefore be written
as P exp

(
e−aA

)
= 1− aA+O(a2). The gauge transformation (2.72) becomes then

η(0)P exp

(
−
∫
A

)
η(a)−1 = P exp

(
−
∫
A′
)

= η(0)η(a)−1 + aη(0)Aη(a)−1. (2.77)

Here instead of writing the lattice site as a subscript, we denote by η(0) the gauge
transformation at the starting point of the path, and by η(a) the ending point of the
path. We assume that the function η itself is continuous. In particular, we may write
η(a) = η(0) + adη(0), omitting the higher powers of a. So we arrive at the expression we
wanted to show,

P exp

(∫
A′
)

= 1− aA′ = 1− a(ηdη−1 + ηAη−1). (2.78)
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Figure 2.11: A square loop with holonomies in the µ̂ and ν̂ directions. An infinitesimal
loop like this is used to derive the curvature in 2-gauge theory.

We can go further to look at infinitesimal transformations, generated at the Lie algebra
level, instead of by η. We note that as an element of a Lie group which we assume to be
simply connected, it may be written as η = exp (−sX) with X in the Lie algebra and s
some parameter. If s is small, as we assume now, it is reasonable to use the approximation
η = 1 − sX and omit higher order terms. This gives the infinitesimal transformations
familiar from the analysis of BF type theories:

A′ = A+ δXA = A+ dX + [A,X]. (2.79)

The same procedure applies when finding the infinitesimal version of (2.73). Once again,
we can write ρ = exp (−s′Y ) for some Y ∈ h where s′ is again a small parameter. The ho-
momorphism t and the Lie algebra homomorphism τ are related by a derivative. Explicitly,
this means that t(ρ) = exp (−s′τ(Y )). Expanding (2.73) to leading order gives

η(a)−1t(ρ) exp (−aA) η(a) = exp (−aA′) = 1− aA′ = 1− a(dAX + τ(Y )) (2.80)

=⇒ A′ =A+ dAX + τ(Y ). (2.81)

Before looking at the transformations of the 2-holonomies, let’s consider the curvature
of the 1-connection A. Consider a rectangular loop in the lattice with holonomies gµ(0),
gµ(ν), gν(µ), and gν(0) where µ and ν indicate the direction of the holonomy as is shown in
Fig. 2.11. In the limit where the loop becomes vanishingly small, the curvature is defined as
the Lie algebra element F such that e−

∫
□ F = gν(0)

−1gµ(ν)
−1gν(0)gµ(0) where the integral

is over the interior of the plaquette. Approximating the left hand side by 1− a2F and the
right hand side up to O(a2) recovers the familiar expression we have already used several
times F = dA+ 1

2
[A,A].
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We can now include the surface into this calculation. We define the curvature of the
connection in 2-gauge theory as the leading order of

exp

(
−
∫
F

)
= gν(0)

−1gµ(ν)
−1t(hµν(0))gν(µ)gµ(0),

where hµν is the surface variable. Just as for the holonomies g, we can write the 2-holonomy
h = exp

(
−
∫
Σ
)
, where Σ is a 2-form which we call the 2-holonomy. Thus we find the

curvature to be

F = dA+
1

2
[A,A] + τ(Σ) = F̃ + τ(Σ) (2.82)

with F̃ being the usual curvature in the 1-gauge theory. We note that in order for the loop
in Fig. 2.11 to really be represent 2-group element, we need the holonomy on the boundary
to equal t(hµν). This is equivalent the condition

gν(0)
−1gµ(ν)

−1t(hµν(0))gν(µ)gµ(0) = 1

or equivalently, exp
(
−
∫
F
)
= 1. This implies that F = 0 in any 2-gauge theory. In other

words, the curvature of the 1-connection must be related to the 2-connection.

We have seen how the 2-gaugedness of the theory puts a constraint on the curvature
F . The 2-connection also comes with its own notion of curvature. Consider a cube in the
lattice. Similarly to how the curvature was defined in terms of the composition of boundary
holonomies, we define the 2-curvature G in terms of the composition of the faces of this
cube. The decorated cube is shown in Fig. 2.12. The 2-curvature is defined by

exp
(
−a3Gµνσ

)
= (gσ(0) ▷ hµν(σ))hµν(0) (gµ(0) ▷ hνσ(µ))hσµ(0) (gν(0) ▷ hσµ(ν))hσν(0)

(2.83)

where the right hand side is the result of composing surfaces of the cube, which we expand
to third order in the lattice spacing. To do the expansion, we should remind ourselves that
the action of the Lie groups corresponds to the derivative in the Lie algebra. That means
that if gµ(0) = exp (−aA) and hνσ(µ) = exp (−a2Σνσ(µ)) = exp (−a2Σνσ(0)− a3∂µΣνσ(0))
(always assuming that a is small), the action of g on h, up to third order in a, is given by

gµ(0) ▷ hνσ(µ) = exp
(
−a2Σνσ(0)− a3∂µΣνσ(0) + a3dα(Aµ)(Σνσ(0))

)
, (2.84)

where again α : G → Aut(H) is the action of G on H. Expanding each of the terms then
gives

Gµνσ =(dΣ)µνσ + dα(Aν)(Σσµ) + dα(Aσ)(Σµν) + dα(Aµ)(Σνσ)

=(dΣ + A ▷ Σ)µνσ. (2.85)
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Figure 2.12: A cube used to define the 2-curvature by linearizing the 1- and 2-holonomies
g and h.
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Finally we turn to the transformation properties of Σ the 2-connection. We proceed by
looking at the infinitesimal version of (2.75). The method we have taken in deriving the
1-gauge transformations and the 1- and 2-curvatures made use of a cubic lattice in order
to assign local coordinates and indices to the expressions. This made it simpler to express
things like Aµ(ν) and Aν(0) at the same point by linearizing. For this reason, we choose
to rewrite (2.75) using a cube instead of the tin can. The result is

h′µν = exp
(
−a2Σ′) = ησ(0)

−1 ▷
(
ρνσ(0)(gν(0) ▷ ρµσ(0))hµν(0)(gµ(0) ▷ ρ

−1
νσ (µ))ρ

−1
µσ (0)

)
.

(2.86)

Expanding this to second order in a, and first order in the vertical distance, one obtains

δY,XΣ = −dΣ− A ▷ Σ−X ▷ Σ. (2.87)

BFCG Redux We can now be precise in describing how the example brought up at
the end of Sec. 2.1.4 is indeed a 2-gauge theory. Consider the Euclidean 2-group and the
Lagrangian

L = ⟨B ∧ F ⟩+ ⟨Σ ∧ dAC⟩. (2.88)

Since the Euclidean 2-group is skeletal, at the algebra level we have τ = 0. In addition the
action of the rotation subalgebra on the translation subalgebra is given by X ▷Y = [X, Y ].

Now recall the transformation rules derived in Chapter 2, and in particular in Section
2.1.4. The connection A does indeed transform as a connection, A → A+ dAX + τ(Y ) =
A+ dAX, where in the lingo of Section 2.1.4, X is the generator of 0-form Lorentz trans-
formations and Y is the generator of 1-form Lorentz transformations. In the language
developed in this chapter, X is the generator of 1-gauge transformations and Y the gen-
erator of 2-gauge transformations. The 2-form Σ, is not surprisingly the 2-connection. It
transforms according to Σ → Σ + dAY + [Σ, X], as it should.

This example is important for what comes in the following chapters. The lattice version,
which is necessary for the discretization, and eventual quantization of the theory will be
familiar based on what we have already seen in this section.
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Chapter 3

Discretization

Now that we have defined 2-groups and 2-gauge theory, we can begin to analyse some
examples. The goal in this chapter is to study classical topological theories with 2-gauge
symmetries primarily by looking at or constructing phase spaces. The topological nature
of the theories are used to concentrate all information onto a triangulation/dual complex
of the spacetime manifold.

We start with Euclidean 2-group BFCG theory and introduce a triangulation on the
underlying manifold. Doing so allows us to write the theory in terms of discrete variables
which are concentrated on the edges and faces of the triangulation. The theory in these
new variables can be seen as a truncation of the continuous theory.

Then in section 3.4, we apply a method of constructing phase spaces to include more
general types of skeletal 2-gauge theories, instead of solely BFCG in the Euclidean 2-group.
There, we will construct a phase space for a 2-complex by utilising a pair of 2-Lie algebras
which are dual to one another. A phase space for an “atom” of the triangulation: a
pair of one dimensional segments and a pair of surfaces which are their dual. Once the
phase space for these atoms are established we will be able to glue them together in a
way which preserves the phase space structure order to create a triangulation of the three
dimensional manifold appropriately decorated as a lattice 2-gauge theory. The method
used is developped in [59].
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3.1 Naive discretization of BFCG

We start by considering the BF action defined in terms of the Euclidean group1.

SBF =

∫
M

⟨B ∧ F [A]⟩SO(4) + ⟨Σ ∧ dAC⟩R4 (3.1)

=

∫
M

1

2
BIJ ∧ F [A]IJ + ΣI ∧ (dAC)I . (3.2)

where dAC = dC + [A,C]. In light of the discussion of 2-groups, we will expect Σ to play
the role of a 2-connection. For this reason, perform integration by parts in the R4 sector
and add a term to offset the extra boundary term that arises.

SBFCG =

∫
M

⟨B ∧ F [A]⟩SO(4) + ⟨C ∧G⟩R4 (3.3)

where G = dAΣ is the 2-curvature. The equations of motion for the BFCG action are

dAC = 0 F [A] = 0

dAΣ = 0 dAB = C ∧ Σ,
(3.4)

where C ∧ Σ ∈ SO(4) has components (C ∧ Σ)IJ = C [I ∧ ΣJ ].

The equations of motions give rise to constraints which generate the different types of
(2-)gauge transformations

1-Gauss: 1G := dAB − C ∧ Σ ≈ 0 1-Lorentz (3.5a)

2-Gauss: 2G := T [C,A] ≡ dAC ≈ 0 2-Lorentz (3.5b)

1-flatness: 1F := F [A] ≡ dA+ A ∧ A ≈ 0 1-shift (3.5c)

2-flatness: 2F := G[Σ, A] ≡ dΣ + A ▷ Σ ≈ 0 2-shift (3.5d)

To avoid having operator valued fields in the Poisson theory, one smears the constraints
over a three dimensional surface. We set

1G[ξ] =
∫
⟨1G ∧ ξ⟩ 2G[η] =

∫
⟨2G ∧ η⟩

1F [λ] =

∫
⟨1F ∧ λ⟩ 1G[ξ] =

∫
⟨2F ∧ µ⟩

(3.6)

1A similar construction would apply for the Poincaré group.
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where λ and ξ are 0- and 1-forms respectively with value in so(4), and µ and η are 0- and
1-forms with value in R4. The corresponding constraint algebra can be computed:

{1G[ξ], 1G[ξ′]} = 1G[[ξ, ξ′]], {1G[ξ], 2F [µ]} = 2F [ξ ▷ µ],

{1G[ξ], 2G[η]} = 2G[ξ ▷ η], {1F [λ], 1G[ξ]} = 1F [[λ, ξ]],

{2F [µ], 2G[η]} = 1F [µ ∧ η], (3.7)

In the traditional BF theory, to recover the action of general relativity, one needs to
impose that B is a function of some tetrad fields for which the connection is compatible.
The BFCG action defined in terms of the (four dimensional) Euclidian group already has
a 1-form which which plays the role of the tetrad. In particular, the torsion free condition
for the tetrad is precisely the equation of motion/constraint dAC = 0.

Smearing variables The truncation step of the discretization procedure is to smear the
variables. To do this we introduce a triangulation of the manifold M . The triangulation is
seen as a simplicial complex consisting of 4-simplices σi whose union is M . Two adjacent
4-simplices will meet at a shared tetrahedron, τi. Intersections of tetrahedra are triangles ti
which are 2-simplices shared. Finally the 1-simplices are called edges ei and the 0-simplices
are vertices.

As we are interested in performing a discretization on a spacial slice of the manifold in
order to study the Poisson structure, we introduce a similar three dimensional triangulation
△ and a corresponding dual complex△∗. The relation between△ and△∗ is as follows: The
0-simplices of △∗, called nodes, are situated in the center of each 3-simplex (tetrahedron)
of △. The 1-simplices of △∗, which we call links, are dual to triangles in △. A link
between two nodes is dual to the triangle shared by the tetrahedra dual to each node. The
2-dimensional objects of △∗, are dual to the edges of △. As a matter of notation, the
simplices dual to one another are indicated by a ∗. For example, if e ∈ △ is an edge then
e∗ ∈ △∗ is the two dimensional object dual to e.

In addition, we will sometimes specify particular links and edges by their endpoints.
For example, a link l oriented from nodes c to c′ may be written as (cc′).

With this notation in mind, we define the smeared 1- and 2-connections over a link
l ∈ △∗ and wedge f ∈ △∗

Hl = P exp

(
−
∫
l

A

)
Xf (n) = exp

(∫
f

Σ

)
, (3.8)
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where n is the node at which the face f is rooted (recall that the root of the face variable
can be changed by whiskering).

The 1-form C is smeared over the edges of the triangulation

Le =

∫
e

C. (3.9)

The constraints (3.5) will also have a discretized version in terms of H, L, and X. As
we have seen the constraint F = 0 corresponds to the closure of loops in a lattice on which
the holonomies are defined, in this case the loops in the dual complex △∗. This translates
to

Hf ≡
∏
l∈∂f

Hl = 1 (3.10)

where the product is over links on the boundary of some face f and the product is taken in
a proper order. The 2-flatness constraint also is related to the 2-holonomies as the closure
of the 3-simplices in △∗: ∑

f∈∂e∗
Xf (n) = 0 (3.11)

where e∗ is a 3-simplex bounded by faces f and n is a node.

As a consequence of the constraint dAC = 0 the edge variables which bound a triangle
in △ will sum to zero. To see this consider integrating the constraint over a triangle,∫

t

dAC =
∑
e∈∂t

∫
e

C =
∑
e∈∂t

Le. (3.12)

Beside these constraints we see that 0 = dAdAC = [F,C]. This allows for a weaker
constraint on F than imposing flatness. The discrete version of this is

Hf ▷ Le = Le (3.13)

which can be verified by going to the differential picture. This weaker-than-flatness con-
straint is called edge simplicity [40, 41, 42] and will allow for us to transport edge variables
unambiguously.

The discretization presented here does not provide directly a phase space structure.
In order to recover Poisson brackets we will instead consider the discretization of the
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symplectic potential. Recall that the symplectic form is determined by integrating the
potential over a three dimensional surface. The three dimensional surface we integrate over
will be made into a cellular decomposition. Within each cell, we will determine solutions
to the equations of motion. Finally, imposing that the fields are continuous between cells,
we introduce new discrete variables representing the change of frames between adjacent
cells. The symplectic potential can be written entirely in terms of these discrete variables.

The discrete variables will be supported on 1- and 2-simplicies of the cellular decom-
position, as well as the one and two dimensional objects in the dual complex. The links
and edges of the complex and its dual are taken as holonomies and are elements of some
group. The two dimensional surfaces dual to the links and edges will be decorated with
elements of the “dual group” which we define below.

3.2 Algebraic structures for BFCG

3.2.1 Lie bialgebras and classical doubles

This subsection deals with formulating the BFCG action in terms of a Lie algebra g and
its dual g∗. As a vector space, g∗ is nothing more than the dual space of g, the space of
linear functions on g. In order to endow g∗ with a Lie algebra structure, one introduces a
bialgebra structure on g.

A Lie bialgebra is a Lie algebra g with an antisymmetric bilinear map δ : g → g ⊗ g
called the cocommutator or cobracket [73, 74]. We sometimes use the shorthand notation
δx =

∑
i x1i ⊗ x2i = x1 ⊗ x2, omitting the summation altogether. The cobracket must

satisfy the co-Jacobi identity, meaning the cyclic permutations of (id⊗ δ)⊗ δ sum to zero.
It must also satisfy consistency conditions with the Lie bracket:

δ([x, y]) = adx(δy)− ady(δx). (3.14)

The dual space of a Lie bialgebra is also a Lie bialgebra. If ei is a basis of g, we define
the dual basis e∗i by

e∗i(ej) := ⟨e∗i, ej⟩ = δij (3.15)

where we introduced the dual pairing ⟨·, ·⟩. The duality pairing allows us to define a Lie
bracket [·, ·]∗ and cobracket δ∗ on g∗ by:

⟨[ϕ, ψ]∗, x⟩ = ⟨ϕ⊗ ψ, δx⟩ ⟨δ∗ϕ, x⊗ y⟩ = ⟨ϕ, [x, y]⟩ ϕ, ψ ∈ g∗, x, y ∈ g. (3.16)
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Given a dual pair of bialgebras g and g∗, we introduce the double d(g) which, as a
vector space, is defined by d(g) = g⊕ g∗. This space can iteself be made into a bialgebra
by constructing the Lie (co)bracket defined on g and g∗:

[x, y]d = [x, y], [ϕ, ψ]d = −[ϕ, ψ]∗

[x, ϕ]d = ϕ1⟨ϕ2, x⟩+ x1⟨ϕ, x2⟩
δdx = δx, δdϕ = δ∗ϕ

(3.17)

for x, y ∈ g and ϕ, ψ ∈ g∗.

If ei and e
∗
i are dual bases of g and g∗ then we can define r =

∑
i ei ⊗ e∗i which gives

δdξ = adξr for all ξ ∈ d. In this case one would call d(g) a coboundary Lie bialgebra.)

Upon exponentiation, the bi-algebra structure can give rise a notion of phase space,
called the Heisenberg double, which generalizes the usual notion of cotangent bundle of a
Lie group. At the same time, it gives rise to the notion of Drinfeld double which is the
natural symmetry structure for the Heisenberg double. We will discuss how the notion of
Heisenberg double is the natural tool to construct the phase space for a 2d triangulation
in Section 3.4.1. In fact, such phase space can also be used in the context of skeletal
2-bialgebras.

3.2.2 2-Bialgebras

Just as one can introduce a cobracket on a Lie algebra to make it a Lie bialgebra, one
can dualize the τ -map and the action ▷ of a Lie 2-algebra given by (g

τ−→ h, ▷) [20, 35]. In
particular we assume that the cocycle δ is a map with components

δ : h → h⊗ h δ : g → (h⊗ g)⊕ (g⊗ h). (3.18)

By duality, the cobracket δ defines a Lie bracket on h and an action ▷∗ : h∗ × g∗ → g∗:

⟨δY, f1 ⊗ f2⟩ = ⟨Y, [f1, f2]⟩ Y ∈ h f1, f2 ∈ h∗

⟨δX, f ⊗ ϕ⟩ = ⟨X, f ▷∗ ϕ⟩ X ∈ g, f ∈ h∗, ϕ ∈ g∗.
(3.19)

Because of the identity for all xi ∈ g and yi ∈ h,

τ(x ▷ y) = [x, τ(y)] τ(y1) ▷ y2 = [y1, y2], (3.20)

the Lie bracket on h can be uniquely determined by the map τ and the action ▷. Similarly,
the bracket on g∗ will can be uniquely determined by the dual homomorphism τ ∗ : h∗ → g∗

defined by

⟨τ ∗ϕ,X⟩ = ⟨ϕ, τX⟩, X ∈ g ϕ ∈ h∗. (3.21)
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The τ -map for the Lie 2-algebra (h∗ −→ g∗, ▷∗), which we call τ̃ = −τ ∗ uniquely deter-
mines the Lie bracket on g∗ by

τ̃(ψ) ▷∗ ϕ = [ψ, ϕ] (3.22)

or equivalently,

⟨[ψ, ϕ], X⟩ = −⟨ϕ⊗ ψ, δτX⟩ (3.23)

for all ϕ, ψ ∈ g∗ andX ∈ g. Lie-bialgebras appear as the infinitesimal version of Poisson-Lie
groups [73], while the 2-bialgebras defined here may be thought of as being the infinitesimal
version of Poisson 2-groups [20, 35].

3.2.3 Matched pairs and semi-dualization

A final algebraic construction we will consider is that of a matched pair [73]. Consider two
Lie algebras g1 and g2 with actions ◁ : g2 ⊗ g1 → g2 and ▷ : g2 ⊗ g1 → g1 satisfying

ϕ ▷ [ξ, η] = [ϕ ▷ ξ, η] + (ϕ ◁ ξ) ▷ η − (ξ ↔ η)

[ϕ, ψ] ◁ ξ = [ϕ ◁ ξ, ψ] + ϕ ◁ (ψ ▷ ξ)− (ϕ↔ ψ)
(3.24)

for all ϕ, ψ ∈ g2 and ξ, η ∈ g1. Such Lie algebras are called a matched pair.

If (g1, g2) form a matched pair, we can define a double crossed sum Lie algebra denoted
by g1 ▷◁ g2. The underlying vector space is g1 ⊕ g2 with the Lie bracket

[ξ ⊕ ϕ, η ⊕ ψ] = ([ξ, η] + ϕ ▷ η − ψ ▷ ξ)⊕ ([ϕ, ψ] + ϕ ◁ η − ψ ◁ ξ). (3.25)

The mutual actions between g1 and g2 give rise to coactions α̃ : g∗2 → g∗2 ⊗ g∗1 and
β̃ : g∗1 → g∗2 ⊗ g∗1 in the dual coalgebra by

⟨ψ ◁ ξ, f⟩ = ⟨ψ ⊗ ξ, α̃(f)⟩ (3.26)

⟨ψ ▷ ξ, g⟩ = ⟨ψ ⊗ ξ, β̃(g)⟩ (3.27)

for all f ∈ g∗2 and g ∈ g∗1. The dual coalgebra in this case will be denoted g∗1 ▶◀ g∗2 (the
black triangles are used for coactions).

We now have the main ingredients to construct a bicross sum Lie bialgebra. These will
be used to create a “self-dual” cross module which will be used in creating the phase space
associated to the three dimensional triangulation (and its dual complex). In essence, the
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bicross sum is halfway between g1 ▷◁ g2 and g∗1 ▶◀ g∗2: Let g1 and g2 be a matched pair. A
bialgebra structure is added to the vector space g∗2 ⊕ g1 by defining

[f ⊕ ξ, h⊕ η] = (ξ ▷ h− η ▷ f)⊕ [ξ, η] (3.28)

where ▷ here denotes to adjoint of the action g2 ⊗ g1 → g2 explicitly given by ⟨ϕ ◁ ξ, f⟩ =
⟨ϕ, ξ ▷ f⟩. The cocommutator on g∗2 is obtained by dualisation of g2. If f

i form a basis of
g2 and f ∗

i the dual basis of g∗2 then the cocommutator on g1 is defined to be

δξ =
∑
i

f i ▷ ξ ⊗ f ∗
i − f ∗

i ⊗ f i ▷ ξ. (3.29)

The bialgebra structure is called the semidualisation of g1 ▷◁ g2 and is denoted by g∗2 ▶◁ g1.
A similar construction applies to the bialgebra g2 ▷◀ g∗1. In fact, the bialgebras g∗2 ▶◁ g1 and
g2 ▷◀ g∗1 are dual to one another and so we can construct the classical double d = (g∗2 ▶◁

g1) ▷◁ (g2 ▷◀ g∗1).

The formalism described can now be applied to Lie 2-algebras. In particular if g2 ⋊ g∗1
exponentiates to a skeletal crossed module, so too does its dual.

By many aspects, when the τ -map is trivial, the 2-bialgebra essentially behaves as a
bialgebra. We are going to discuss in the next section how the change of polarization in the
Euclidean group BF theory can be seen as a semi-dualization giving rise to a 2-bialgebra
with trivial τ map. In section 3.4.2, we will discuss how the associated Heisenberg double
can be used to construct the phase space for a 3d triangulation for a general class of
skeletal (Poisson) 2-group. This phase space will coincide in particular with the one derived
explicitly from the action Euclidean group BFCG action.

3.2.4 Euclidean BFCG theory

We can now revisit the change from a the Poincaré/Euclidean BF model to a 2-Poincaré
BFCG model in terms of bialgebras and doubles. Let g = iso(4) ∼= so(4) ⋉ R4. The
subalgebra R4 is generated by P µ and the rotation algebra so(4) is generated by Jµν with
Jµν = −Jνµ. Greek indices range from 0 to 3. The Lie brackets are

[Jµν , Jσρ] = ηµρJνσ + ηνσJµρ − ηµσJνρ − ηνρJµσ (3.30)

[P µ, P ν ] = 0, [Jµν , P σ] = ηµσP ν − ηνσP µ, (3.31)
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where η is the Euclidean metric. We will sometimes write [Jµν , Jσρ] = fµνσραβJ
αβ where f

is the structure constant of so(4). The dual space, denoted iso(4)∗ has generators J∗ and
P ∗ defined by the bilinear pairing

⟨P ∗
ν , P

µ⟩ =δµν , ⟨J∗
µν , J

σρ⟩ = δσµδ
ρ
ν − δσν δ

ρ
µ. (3.32)

The dual space is made into a Lie algebra by imposing the trivial brackets, or equivalently,
iso(4) is seen as a bialgebra with a trivial cocycle δ = 0:

[P ∗
µ , P

∗
ν ] = [J∗

µν , J
∗
σρ] = [J∗

µν , P
∗
σ ] = [J∗

µν , P
ρ] = 0. (3.33)

Finally, the algebra on which the theory is defined is defined on the double d(iso(4)) where
the cross brackets are

[P µ, P ∗
ν ] =η

µσJ∗
σν

[Jσρ, P ∗
ν ] =(ηραδσν − ησαδρν)P

∗
α

[Jµν , J∗
σρ] =(ηανδµρ − ηαµδνρ)J

∗
ασ + (ηαµδνσ − ηανδµσ)J

∗
αρ

(3.34)

are defined so that the pairing, extended to d, is invariant.

The brackets between the iso(4) and iso(4)∗ sectors define an action as well:

[P µ, P ∗
ν ] :=P

µ ▷ P ∗
ν

[Jσρ, P ∗
ν ] :=J

σρ ▷ P ∗
ν

[Jµν , J∗
σρ] :=J

µν ▷ J∗
σρ.

(3.35)

We can now introduce the iso(4) BF action.

SISO(4) =

∫
M
⟨B ∧ F⟩ (3.36)

The B-field is taken to be in iso(4)∗, while the connection and its curvature are in iso(4)
The fields may be decomposed according to

B = B + Σ, B ∈ so(4)∗ Σ ∈ R4∗

A = A+ C, A ∈ so(4) C ∈ R4 (3.37)

The BF action then becomes

SISO(4) =

∫
M
⟨B ∧ F ⟩+

∫
M
⟨Σ ∧ dAC⟩ =

∫
M
⟨B ∧ F ⟩ −

∫
M
⟨dAΣ ∧ C⟩+

∫
M

d⟨Σ ∧ C⟩.

(3.38)
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We define the 2-curvature of Σ by G = dAΣ. Adding a term to counter the boundary
contribution in (3.38) allows us to define the BFCG action,

SBFCG =

∫
M

⟨B ∧ F ⟩+
∫
M

⟨C ∧G⟩ = SISO(4) −
∫
M

d⟨Σ ∧ C⟩. (3.39)

The equations of motion and symmetries follow according to chapter 2, but we include
them here as well for completeness. The equations of motion are

F = 0 dAC = 0

G = 0 dAB = −[C ∧ Σ].

We can establish a pair of dual 2-Lie algebras here. First we have the skeletal 2-Lie
algebra (so(4) → R4∗, ▷) where the action is the commutator. Second is the skeletal 2-Lie
algebra (R4 → so(4)∗, ▷) where the action is trivial ([P, J∗] = 0).

Hence, the change of polarization we considered moving from the BF theory to the
BFCG theory can be interpreted as the semi-dualization procedure we described in the
previous section.

The symmetries, generated by functions and 1-forms in iso(4) and iso(4)∗ respectively
are the gauge transformations

Gauge :

{
δχA = dAχ
δχB = [B, χ] → χ = α +X

α ∈ so(4), X ∈ R4 (3.40)

(3.41)

which give the two sets of transformations:

1-gauge transformation


δαA = dAα
δαB = [B,α]
δαC = [C, α]
δαΣ = [Σ, α]

2-shift


δXA = 0
δXC = dAX
δXB = [Σ, X]
δXΣ = 0

(3.42)

and the shift transformations

Shift :

{
δβA = 0
δβB = dAβ

→ β = ζ + Y,
ζ ∈ R4∗, Y ∈ so(4)∗

(3.43)
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which generate the transformations

2-gauge transformation


δζA = 0
δζC = 0
δζB = [C ∧ ζ]
δζΣ = dAζ

1-shift


δYA = 0
δYC = 0
δYB = dAY
δYΣ = 0

(3.44)

These are the familiar 2-gauge symmetries as mentioned in chapter 2.

3.3 Discretization of the symplectic potentials

3.3.1 The BF symplectic potential

Let us now go into detail on the procedure for obtaining a discretized theory from the
continuum action. The method used in this section appear in [61] using methods from
[52, 97].

First we recall the notation. We divide the spatial slice M into subregions forming a
cellular decomposition. The three dimensional cells will be tetrahedra for simplicity, but
more general decompositions could be considered. Within each tetrahedron we identify a
center point c, which we refer to as a node. The tetrahedron dual to c is denoted c∗. We
use the ordered pair (cc′) to denote a link which starts at c and ends at c′. The vertices v
of tetrahedra are denoted with an overline to distinguish them from the nodes. The edges
between two vertices, v and v′ is then denoted [vv′] with square brackets to distinguish them
from the links. For each vertex v, there is a set of tetrahedra which share v. The nodes
at the centers of these tetrahedra form the vertices of a polyhedron in the dual cellular
complex. This polyhedron will be denoted v∗. The faces of these polyhedron, called dual
faces or wedges are labelled by the edge it intersects, [vv′]∗ or by the set of nodes forming
its corners. Similarly, the triangles making up the surface of the tetrahedra are either
labelled by the three vertices they contain such as [v1v2v3] or by the link intersecting it,
(cc′)∗. Some of the structures are shown in figure 3.1.

Before tackling the BFCG theory directly we illustrate the method which has been
used already in [47, 46, 51]. The symplectic potential can be expressed as a sum over the
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Figure 3.1: A small piece of the cellular decomposition, showing how we label structures.
The centers of the tetrahedron are labelled by c and c′ with the connecting link labelled
(cc′). The triangle which the link passes through is labelled (cc′)∗. The vertices shown are
labelled by v and v′ and the connecting edge by [vv′]. There are arrows on the links and
edges indicating the orientation.

individual cells,

ΘBF =

∫
M3

⟨B ∧ δA⟩ =
∑
c

∫
c∗
⟨Bc ∧ δAc⟩. (3.45)

The subscript on the fields indicate that they are defined within the interior of the cell c∗.

The equations of motion (3.40) imply that A is a flat connection and therefore pure
gauge. For an ISO(4) group element Hc(x), interpreted as an ISO(4) holonomy connecting
c to a point x in the cell,

Ac = H−1
c dHc (3.46)

is a solution for F = 0. Then, for a iso(4)∗ valued 1-form χ,

Bc = H−1
c dχcHc, (3.47)

is a solution to dAB = 0. Hence both Ac and Bc are pure gauge.

As mentioned above, the fields inside each cell c may be considered separately so long
as we impose continuity between cells. This gives some conditions which H and χ must
satisfy on the cell boundary.

The continuity relations for A and B on the (interior of the) triangle shared by c∗ and
c′∗ are expressed as

Ac(x) = Ac′(x), =⇒ Hc′(x) = Gc′cHc(x)

Bc(x) = Bc′(x) =⇒ dχc′(x) = Gc′cdχc(x)Gcc′ ,
(3.48)
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where Gcc′ ∈ ISO(4) does not depend on x and is strictly a function of the triangle. We
denote the inverse G−1

cc′ = Gc′c. The above continuity equations are valid on the interior of
the triangle. If there is no curvature concentrated on the edges (we will assume this later
on), the equations would be valid there as well.

We can also use continuity between several cells by using the identity [F ,B] = 0. In
the truncated picture this is realized by

dχc =
( ∏
(cici+1)∈∂e∗

Gcici+1

)−1
dχc
( ∏
(cici+1)∈∂e∗

Gcici+1

)
, (3.49)

where the product of holonomies are around the edge e.

In order to write the potential in terms of H and χ, we should express the variation
δA in terms of H:

δAc = H−1
c (d∆Hc)Hc (3.50)

where ∆Hc = δHcH−1
c . The potential evaluated on-shell in the cells reads

ΘBF ≈
∑
c

∫
c∗
⟨dχc ∧ d∆Hc⟩, (3.51)

where again, ≈ means we in on-shell in the interior of c∗. We can then use the continuity
equations (3.48) to simplify its expression and recover the well-known results.

We note that the integrand in (3.51) is a total derivative so we can use Stokes theorem
to recast it as an integral over triangles bounding each tetrahedron. However, there is a
choice to be made as to which variable keeps the derivative when dealing with the integral
on the boundary. A similar choice arises when dealing with (3d) gravity, and we have the
LQG or dual LQG picture [47]. For now we will deal with the case where the derivative
is kept on the 1-form χ, writing dχc ∧ d∆Hc = d(dχc ∧∆Hc). Note that this relies on the
assumption that the cells are topologically balls since we use d2 = 0.

The standard discretization of the 4d BF theory is summarized in the following propo-
sition.

Proposition 1. The symplectic potential is given as a sum of symplectic potentials asso-
ciated to the phase space T ∗ISO(4).

ΘBF =

∫
M

⟨B ∧ δA⟩ ≈
∑
(cc′)

⟨β(cc′)∗ ,∆Gc′c ⟩, (3.52)
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which is constructed the continuity equations (3.48),

χc′ = Gc′c(χc + dZc′

c )Gcc′ , Hc′ = Gc′cHc, (3.53)

and

β(cc′)∗ =

∫
(cc′)∗

dχc ∆Gc′c = δGcc′Gc′c (3.54)

Table 3.1 provides the geometric structure which the discretized fields are attached to.

Link (cc′) Dual face e∗ Edges e Triangles (cc′)∗

Gcc′ ∈ ISO(4) – – β(cc′)∗ ∈ iso∗(4)

Table 3.1: Localization of the discrete variables.

These discrete variables satisfy by definition the Gauss constraint:∑
(cc)∗∈∂c∗

β(cc)∗ = 0 (3.55)

Furthermore, if we assume there is no curvature, then we have the flatness constraint
and the discretized Bianchi identity.

Ge =
∏

(cici+1)∈∂e∗
Gcici+1

= 1,
∏

e∗∈∂v∗
Ge = 1. (3.56)

We note that the flatness constraint implies the face simplicity as well as the discretized
Bianchi identity (as it should).

β(cc)∗ =
( ∏
(cici+1)∈∂e∗

Gcici+1

)−1
β(cc)∗

( ∏
(cici+1)∈∂e∗

Gcici+1

)
. (3.57)

Proof. Let us evaluate the symplectic potential with the given choice of application of
Stokes theorem.

ΘBF ≈ −
∑
c

∫
∂c∗

⟨dχc , ∆Hc⟩ (3.58)
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The boundary of the tetrahedra c∗ is made up of four triangles. Since each triangle is
shared by two tetrahedra, the contribution to the potential from each triangle contains
two terms with a relative minus sign to account for the opposite orientation:

Θ =
∑
(cc′)

∫
(cc′)∗

Θ(cc′) (3.59)

Θ(cc′) := ⟨dχc , ∆Hc⟩ − ⟨dχc′ , ∆Hc′⟩
= ⟨∆Gc′c , dχc⟩ (3.60)

The last equality is obtained by using the continuity equations and defining ∆Gc′c =
δGcc′Gc′c. We can identify the factors with structures of the cellular decomposition and
its dual graph. We define discrete variables G(cc′) = Gcc′ to be associated with the link (cc′)
and β(cc′)∗ =

∫
(cc′)∗

dχc is the discrete variable associated with the triangle (cc′)∗. Thus, as

a function of discrete variables, the potential is therefore

ΘBF ≈
∑
(cc′)

⟨β(cc′)∗ ,∆Gc′c ⟩. (3.61)

From this potential, we can determine the Poisson brackets, which are the canonical
ones associated with the cotangent bundle T ∗ISO(4). We will review this in the following
section.

Gauss constraint. By construction the phase space variables satisfy some con-
straints. For a given tetrahedron, if we perform the sum over the triangles∑

(cci)∗∈∂c∗
β(cci)∗ =

∑
(cci)∗∈∂c∗

∫
(cci)∗

dχc = 0, (3.62)

by Stokes theorem while again assuming that the topology of the interior of c∗ is a ball.
This constraint is the discretization of the (pull-back of the) continuum constraint dAB = 0.

In order to accommodate the different possible orientations of the links connecting c∗ to
its neighbours, we point out that the base point of the variable β can be changed according
to

β(c′c)∗ =

∫
(c′c)∗

dχc′ = −
∫
(cc′)∗

Gc′cdχcGcc′ = −Gc′cβ(cc′)∗Gcc′ . (3.63)
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Additional constraints not implied by the definitions of the discrete variables are the
flatness constraint, the Bianchi identity, and the “face simplicity” constraint.

Flatness constraint. The definition of the discretized fields does not imply that the
holonomies Gcici+1

should be flat, so we implement it by hand.∏
(cici+1)∈∂e∗

Gcici+1
= 1 (3.64)

This constraint is the discretization of the (pull-back of the) continuum constraint F = 0.
One can check that they generate the discretized version of the BF symmetries. We note
that this is a non-abelian group valued momentum map [3]. Momentum maps in general
will be reviewed in a later section of this chapter.

Face simplicity. This constraint is weaker than the flatness constraint.

dχc =
( ∏
(cici+1)∈∂e∗

Gcici+1

)−1
dχc
( ∏
(cici+1)∈∂e∗

Gcici+1

)
, (3.65)

where the product of links begins and ends on the node c, we can just perform the inte-
gration over (cc′)∗ and get the face simplicity constraint.

β(cc)∗ =

∫
(cc)∗

dχc =
( ∏
(cici+1)∈∂e∗

Gcici+1

)−1
(∫

(cc)∗
dχc

) ( ∏
(cici+1)∈∂e∗

Gcici+1

)
. (3.66)

The form of this constraint will be necessary for consistency when we introduce edge
variables to the picture. This constraint is the discrete form of dAdAB = [cF, dAB] = 0
which follows from the equations of motion.

Bianchi identity. This condition is naturally discretized by demanding that concate-
nating all the holonomies on the dual faces of a (dual) polyhedron v∗ (as dual to a vertex
v) gives the identity. This is automatically satisfied if each face is flat. The constraint then
reads for every dual polyhedron ve with faces e∗,∏

e∗∈∂v∗
Ge∗ = 1. (3.67)

3.3.2 The BFCG symplectic potential

Now we can go through the procedure once more starting from the BFCG action. We
decompose the potential by breaking up the integral into a sum over cells,

ΘBFCG =
∑
c

∫
c∗
⟨Bc ∧ δAc⟩ −

∑
c

∫
c∗
⟨Cc ∧ δΣc⟩. (3.68)
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Continuity eqs Solutions to continuity eqs Fields

g−1
c dgc = g−1

c′ dgc′ gc = hcc′gc′
gc function in SO(4),

hcc′ a constant in SO(4)

dcc′ = hc′cdcchcc′ cc′ = hc′c(cc + xc
′
c )hcc′

cc function in R4,
xc

′
c constant in R4

dσc′ = hc′cdσchcc′ σc′ = hc′c(σc + dςc
′
c )hcc′

σc 1-form in R4∗,
ςc

′
c function in R4∗

dbc′ = hc′c(dbc − [dσc, x
c′
c ])hcc′ bc′ = hc′c(bc − [σc, x

c′
c ] + dyc

′
c )hcc′

bc 1-form in so(4)∗,
yc

′
c function in so(4)∗

Table 3.2: Continuity equations and their solution.

We then decompose the solutions

Ac = H−1
c dHc, Bc = H−1

c dχcHc. (3.69)

according into subalgebra components. We write H = ecg, where g is a rotation and ec

is a translation. χ is decomposed into χ = b + σ for b ∈ so(4)∗ and σ ∈ R4∗. Thus, (still
using the convenient representation ec = 1 + c)

Ac = Ac + Cc = g−1
c dgc + g−1

c dccgc Bc = Bc + Σc = g−1
c (dbc + [dσc, cc] + dσc)gc (3.70)

giving

Ac =g
−1
c dgc Cc =g

−1
c dccgc (3.71)

Σc =g
−1
c dσcgc Bc =g

−1
c (dbc + [dσc, cc])gc, (3.72)

where the different fields are defined in Table 3.2. If we apply the continuity equations
consecutively around a loop ∂e∗, we also get the equations

dcc = h−1
e dcche, (3.73)

dbc = h−1
e dbche, dσc = h−1

e dσche, he ≡
∏

cici+1∈∂e∗
hcici+1

, (3.74)

where again, the product along the loop of links begins and ends at node c. The condition
(3.73) can be seen as the discretization of [F,C] = 0, while the second line (3.74) come from
dAB = 0. The solutions of the continuity equations are given in the Table 3.2. Anticipating
a bit, we will see that in the BFCG discretization, even if we allow for some curvature on
the edges, we will still need to assume that on the edges of the triangulation

σc = h−1
e σche. (3.75)
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This extra condition will ensure that we can integrate the symplectic potential. In order
to express the potential in terms of the fields g, σ, b, and c we need to express the variation
of the fields A and Σ in these variables. We define

∆gc := δgcg
−1
c (3.76)

then,

δAc = g−1
c d∆gcgc δΣc = g−1(δdσc + [dσc,∆gc])gc (3.77)

Using these expressions, the potential in a cell is

Θc ≈ ⟨dbc ∧ d∆gc⟩+ d⟨[dσc, cc],∆gc⟩ − ⟨dcc ∧ dδσc⟩, (3.78)

We see that Θc is a total derivative and can be written as an integral over the boundary
∂c∗ by Stokes theorem. As in the previous section, there is a choice to make regarding
which variable keeps the derivative when we perform Stokes’ theorem.

Recovering BF discretization

The first choice will recover the picture we had in the previous section. We write

ΘBFCG ≈
∑
c

∫
∂c∗

(⟨dbc , ∆gc⟩+ ⟨[dσc, cc] , ∆gc⟩ − ⟨cc , dδσc⟩), (3.79)

or

ΘBFCG ≈
∑
(cc′)∗

∫
(cc′)∗

Θ(cc′)∗ (3.80)

Θ(cc′)∗ = ⟨dbc , ∆gc⟩ − ⟨dbc′ , ∆gc′⟩+ ⟨[dσc, cc] , ∆gc⟩ − ⟨[dσc′ , cc′ ] , ∆gc′⟩
− ⟨cc , dδσc⟩+ ⟨cc′ , dδσc′⟩. (3.81)

Utilizing the continuity equations gives

ΘBFCG ≈
∑
(cc′)∗

〈
∆hc

′

c ,

∫
(cc′)∗

dbc

〉
+

〈
[∆hc

′

c , x
c′

c ] ,

∫
(cc′)∗

dσc

〉
+

〈
xc

′

c , δ

∫
(cc′)∗

dσc

〉
(3.82)

≈
∑
(cc′)

⟨∆h(cc′) , b(cc′)∗⟩+ ⟨[∆h(cc′), x(cc′)] , V(cc′)∗⟩+ ⟨x(cc′) , δV(cc′)∗⟩. (3.83)

The factors in ΘBFCG can be associated to structures in the cellular decomposition. We
already saw that hcc′ is related to the the links in the dual cellular decomposition. Sim-
ilarly xc

′
c is also associated to the links. The factors involving integrals over triangles are

associated to the triangles in the cellular decomposition, which are dual to the links.
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Figure 3.2: An example of the type of edge used for illustrative calculations. The edge is
shown in red labelled by e with surrounding nodes forming a triangle.

Alternate polarization

We can make an alternative choice in how we apply Stoke’s theorem in (3.78) by writing
⟨dcc∧dδσc⟩ = −d⟨dcc∧δσc⟩. Once again this leaves us with integrals over shared boundaries
of cells. Writing contributions for each cell on the boundary using the continuity equations
gives∫
(cc′)∗

Θ(cc′)∗ =

∫
(cc′)∗

⟨d(bc + [cc, σc]) , ∆h
c′

c ⟩ −
∫
(cc′)∗

d⟨(dcc , [∆hc
′

c , ς
c′

c ])⟩+
∫
(cc′)∗

d⟨dcc , δςc
′

c ⟩.

(3.84)

The last term is a problematic one. In contrast to the previous section, neither dcc nor
δςc

′
c are constant and so we must do some work to perform this integration. We shall once

again use Stokes’ theorem on each triangle and deal with integrals over edges bounding
triangles instead. ∑

(cc′)∗

∫
(cc′)∗

d⟨dcc , δςc
′

c ⟩ =
∑
(cc′)

∫
∂(cc′)∗

⟨dcc , δςc
′

c ⟩ (3.85)

=
∑
e

∫
e

∑
(cc′)∈e∗

ϵe(cc′)⟨dcc , δςc
′

c ⟩ (3.86)

The first sum and the integral are over edges e. The second sum is over the links (cc′)
which make up the polygon e∗ dual to the e. The factor ϵe(cc′) is either 1 or −1, depending

on whether the orientation of (cc′)∗ is aligned with e or not.

To illustrate we take the example edge we have in Fig. 3.2 which is dual to a triangle
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(three links). The contribution of this edge to the potential is∫
e

∑
(cc′)∗∈e∗

⟨dcc , δςc
′

c ⟩ =
∫
e

⟨dc1 , δς21 ⟩+
∫
e

⟨dc2 , δς32 ⟩+
∫
e

⟨dc3 , δς13 ⟩ (3.87)

=

∫
e

⟨dc1 , (δς21 + h12δς
3
2h21 + h13δς

1
3h31)⟩ (3.88)

=

∫
e

⟨dc1 , δ(ς21 + h12ς
3
2h21 + h13ς

1
3h31)⟩+

∫
e

⟨[dc1, h12ς32h21] , ∆h21⟩

+

∫
e

⟨[dc1, h13ς13h31] , ∆h31⟩ (3.89)

In the second line, we were able to use the continuity equation in the variable c to base each
term at the center 1 (an arbitrary choice). The second and third term involve something
proportional to ∆h21 and ∆h31 (the value of the superscript and subscript are a result of the
arbitrary choice made to base everything at 1) and can therefore be absorbed in the first
term of (3.84) (since the total potential involves summing over the links). This will be the
source of a non-trivial closure constraint for the tetrahedron.

The first term involves a combination of the continuity variables ς. We now show that
this combination turns out to be a constant. Consider the three continuity equations for
σ which are satisfied on e = (12)∗ ∩ (23)∗ ∩ (31)∗:

σ2 = h21(σ1 + dς21 )h21 σ3 = h32(σ2 + dς32 )h23 σ1 = h13(σ3 + dς13 )h31. (3.90)

Putting these together we have

σ3 =h32h21h13σ3h31h12h23 + h32h21h13dς
1
3h31h12h23

+ h32h21dς
2
1h21h23 + h32dς

3
2h23. (3.91)

Assuming2 that

σ3 =h32h21h13σ3h31h12h23. (3.92)

and putting together (3.91) and (3.92), we get

dς21 + h13dς
1
3h31 + h12dς

3
2h21 = 0. (3.93)

2If we enforce the fact there is no curvature on the edges, this assumption is obviously true. If, we do
not impose flatness right away, we have to make this assumption to get to the relevant result. Hence we
can get our result, even though there is no flatness, but such that our assumption is satisfied.
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And so we have that

ς21 + h13ς
1
3h31 + h12ς

3
2h21 = V e∗

1 , (3.94)

for some constant V e∗
1 , which then decorates the dual face e∗. This is exactly the expression

which appears in the first term of (3.89). Since V e∗ is a constant, we are able to consider∫
e
dc1 as our discrete variable associated to e and V e∗

1 as the discrete variable associated
to the polygon e∗. The potential due to edge e is then∫
e

∑
(cc′)∗∈e∗

⟨dcc , δςc
′

c ⟩ =⟨δV e∗

1 ,

∫
e

dc1⟩+
∫
e

⟨[dc1, h12ς32h21] , ∆h21⟩+
∫
e

⟨[dc1, h13ς13h31] , ∆h31⟩.

(3.95)

Summarizing, the symplectic potential takes now the shape

ΘBFCG ≈
∑
(cc′)

〈∫
(cc′)∗

b̃c
′

c , ∆h
c′

c

〉
+
∑
e

〈∫
e

dcce , δV
e∗

ce

〉
(3.96)

A lot has been concealed in writing equation (3.96). The label ce is the choice of base
point in the polygon dual to e (in the example edge we took ce to be the node 1). We also
introduced b̃c

′
c . Simply put, this is shorthand notation for everything which appears in Θ

next to ∆hc
′
c . The explicit form of such a term depends on the choices of ce and so we

won’t write it out in general. We will define b̃c
′
c for an explicit example shortly.

We can now determine the discrete variables. The discrete variables are b(cc′)∗ =∫
(cc′)∗

b̃c
′
c ∈ so(4)∗ on triangles, hcc′ ∈ SO(4) on links dual to triangles, ℓe =

∫
e
dcce ∈ R4 on

edges, and Ve∗ = V e∗
ce on polygons dual to an edge. The variables are summarized in table

3.3.

The Poisson brackets coming from the symplectic potential are

{ℓα, V β} = −δβα
{hαβ, bσρ} = (Jσρh)αβ

{bσρ, bαβ} = ησαbρβ + ηρβbσα − ησβbρα − ηραbσβ.

(3.97)

To determine the kinematic constraints, it is helpful to have an explicit expression of
b̃c

′
c . To this end, we consider the specific triangulation of a 4-simplex. The space is divided
into 5 tetrahedra the centers of which will be labelled by integers {1, 2, . . . , 5}. The vertices
of the tetrahedra will be labelled by overlined integers {1, 2, . . . , 5}. The tetrahedron i∗
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Discrete variable Definition in terms of Home in cellular complex
continuous variables

Vce linear combination of ς’s Polygon e∗, a face in
around an edge the dual complex

ℓce
∫
e
dcce Edge e of tetrahedron

h(cc′) hcc′ Links

b(cc′)∗
∫
(cc′)∗

b̃c
′
c Triangles

Table 3.3: Summary of discretization of BFCG theory. The key result is that b(cc′)∗ depends
on many variables, namely c, ς and b, as illustrated in (3.99). In particular, we have
integrations both on the triangle and some of the edges forming its boundary.

will have vertices {1, . . . , 5}\i. A diagram indicating the orientation of the links and edges
is shown in Fig. 3.3.

The calculation on the edges goes just like in the example we did to obtain (3.94). The
resulting dual face variables are

V
[12]∗

3 = ς43 + h34ς
5
4 + h35ς

3
5 V

[31]∗

2 = −h24ς24 + h24ς
5
4 − ς52

V
[14]∗

2 = ς32 − ς52 − h25ς
3
5 V

[51]∗

2 = h24ς
2
4 + h23ς

4
3 + ς32

V
[23]∗

1 = h14ς
5
4 + h15ς

1
5 + ς41 V

[42]∗

3 = −h35ς35 − ς13 + h35ς
1
5

V
[25]∗

1 = h13ς
4
3 − h13ς

1
3 − ς41 V

[34]∗

1 = ς21 + h15ς
1
5 + h12ς

5
2

V
[53]∗

1 = −h14ς24 − ς41 + ς21 V
[45]∗

1 = ς21 + h12ς
3
2 + h13ς

1
3 (3.98)

In the above, we have always based the variables at the lowest node in numerical order.
This is a choice made arbitrarily, any node which is a vertex of [ij]∗ would be equally valid.
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Figure 3.3: The edges of the complex are shown with solid black lines and the dual complex
is shown with dotted red lines. The arrows indicate the orientation chosen.

The resulting expressions for the so(4)∗ variables are:

b(12)∗ =

∫
[345]

(db1 − d[c1, σ1]− [dc1, dς
2
1 ]) +

∫
[45]

[dc1, h12ς
3
2h21] +

∫
[34]

[dc1, h12ς
5
2h21]

b(23)∗ =

∫
[145]

(db2 − d[c2, σ2]− [dc2, dς
3
2 ]) +

∫
[51]

[dc2, h23ς
4
3h32]

b(34)∗ =

∫
[125]

(db3 − d[c3, σ3]− [dc3, dς
4
3 ]) +

∫
[12]

[dc3, h34ς
5
4h43]

b(45)∗ =

∫
[123]

(db4 − d[c4, σ4]− [dc4, dς
5
4 ])

b(51)∗ =

∫
[234]

(db5 − d[c4, σ4]− [dc5, dς
1
5 ])−

∫
[34]

[dc5, ς
1
5 ]−

∫
[23]

[dc5, ς
1
5 ]

b(14)∗ =

∫
[235]

(db1 − d[c1, σ1]− [dc1, dς
4
1 ]) +

∫
[23]

[dc1, h14ς
5
4h41]−

∫
[53]

[dc1, h14ς
2
4h41]

b(25)∗ =

∫
[134]

(db2 − d[c2, σ2]− [dc2, dς
5
2 ])−

∫
[14]

[dc2, h25ς
3
5h52]

b(31)∗ =

∫
[245]

(db3 − d[c3, σ3]− [dc3, dς
1
3 ]) +

∫
[25]

[dc3, ς
1
3 ]−

∫
[25]

[dc3, ς
4
3 ]−

∫
[45]

[dc3, ς
1
3 ]

b(42)∗ =

∫
[135]

(db4 − d[c4, σ4]− [dc4, dς
2
4 ])−

∫
[51]

[dc4, ς
2
4 ]−

∫
[31]

[dc4, ς
5
4 ] +

∫
[31]

[dc4, ς
2
4 ]

b(53)∗ =

∫
[124]

(db5 − d[c5, σ5]− [dc5, dς
3
5 ])−

∫
[42]

[dc5, ς
1
5 ] +

∫
[42]

[dc5, ς
3
5 ]−

∫
[12]

[dc5, ς
3
5 ]

(3.99)
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Clearly there is a lack of symmetry due to the orientation choices for the links.

Compared to the BF case, there are two sets of new constraints, the 2-Gauss constraints
encoding the triangles are closed and the 2-flatness encoding that the dual polyhedra close.
We then have the more usual set of constraints, the 1-Gauss constraints and the 1-flatness
constraints. The latter encodes that the holonomies along the links forming a closed loop
should be trivial. The former encodes that the triangle decoration should be equal to a
specific quantity. Finally, there is also the edge simplicity constraints. This constraint is
actually implied if we have flatness, but can hold without having flatness.

The 2-Gauss constraint states that the triangles in the complex is closed. In the example
considered this amounts the statement that the following are zero:

G [123]
4 =h43ℓ

[12]
3 + h41ℓ

[23]
1 + h42ℓ

[31]
2

G [124]
5 =h53ℓ

[12]
3 + h51ℓ

[25]
1 + h52ℓ

[51]
2

G [125]
3 =ℓ

[12]
3 − ℓ

[42]
3 − h32ℓ

[14]
2

G [134]
2 =− ℓ

[31]
2 − ℓ

[14]
2 + h21ℓ

[34]
1

G [135]
4 =− h42ℓ

[31]
2 − h41ℓ

[53]
1 + h42ℓ

[51]
2

G [145]
2 =ℓ

[14]
2 + h21ℓ

[45]
1 + ℓ

[51]
2

G [234]
5 =h51ℓ

[23]
1 + h53ℓ

[42]
3 + h51ℓ

[34]
1

G [235]
1 =ℓ

[23]
1 − ℓ

[53]
1 + ℓ

[25]
1

G [245]
3 =− h31ℓ

[25]
1 − ℓ

[42]
3 + h31ℓ

[45]
1

G [345]
1 =ℓ

[34]
1 + ℓ

[45]
1 + ℓ

[53]
1 . (3.100)

These amount to a discretized version of dAC = 0.

The 2-flatness constraints indicate the closure of the dual polyhedra, which are tetra-
hedra in our example. Geometrically this is can be interpreted as the area vectors of a
polyhedron sum to zero,

P1 =h23V
[12]∗

3 h32 + V
[14]∗

2 − V
[31]∗

2 − V
[51]∗

2

P2 =V
[23]∗

1 + V
[25]∗

1 − h13V
[12]∗

3 h31 − h13V
[24]∗

3 h31

P3 =h13V
[31]∗

3 h31 + V
[34]∗

1 − V
[53]∗

2 − V
[23]∗

2

P4 =V
[45]∗

1 + V
[42]∗

1 − h12V
[14]∗

2 h21 − V
[34]∗

1

P5 =V [53]∗ + h12V
[51]∗

2 h21 − V
[45]∗

1 − V
[25]∗

1 . (3.101)
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The 1-Gauss constraints are the closure of the so(4) variables,

T 5 =b(51)∗ + b(53)∗ − h54b(45)∗h45 − h52b(35)∗h25

T 4 =b(45)∗ + b(42)∗ − h41b(14)∗h41 − h43b(34)∗h34

T 3 =b(34)∗ + b(31)∗ − h32b(23)∗h32 − h35b(53)∗h53 − [ℓ
[12]
3 , V

[12]∗

3 ]− [ℓ
[42]
3 , V

[42]∗

3 ]

T 2 =b(23)∗ + b(25)∗ − h24b(42)∗h42 − h21b(12)∗h21 − [ℓ
[14]
2 , V

[14]∗

2 ]− [ℓ
[31]
2 , V

[31]∗

2 ]− [ℓ
[51]
2 , V

[51]∗

2 ]

T 1 =b(12)∗ + b(14)∗ − h13b(31)∗h31 − h15b(51)∗h51 − [ℓ
[45]
1 , V

[45]∗

1 ]− [ℓ
[23]
1 , V

[23]∗

1 ]

− [ℓ
[53]
1 , V

[53]∗

1 ]− [ℓ
[34]
1 , V

[34]∗

1 ]− [ℓ
[25]
1 , V

[25]∗

1 ] (3.102)

The extra terms involving the brackets come up because of the choice of nodes which we
at which we base our variables.

3.4 Phase space structure for triangulations

In the previous section, we started with a potential current, for a specific topological
2-gauge theory (based on the Euclidean (skeletal) 2-group), which is integrated over a 3-
manifold. The integration is carried out by introducing a specific simplicial complex and
solving the equations of motion within the interior of each cell.The result is a symplectic
potential in terms of discrete variables which were introduced by demanding the fields of
the theory are continuous across cell boundaries. These discrete variables belong to a pair
of (skeletal) 2-groups, the Euclidean 2-group and its dual, and decorate the triangulation
and its dual complex.

The configuration variable in the BF theory was the 1-form A = A + C with value in
(g1 ⋉ g2) and the momentum variable was the 2-form B = B + Σ with value in g∗1 × g∗2,
where both g∗1 and g∗2, as well as g2 are abelian Lie algebras. The change of polarization
leads to consider a BFCG theory with configuration variables a 1-form A with value in
g1 and a 2-form Σ with value in g∗2, while the momentum variables are a 1-form C with
value in g2 and a 2-form B with value in g∗1. This is an example of the semi-dualization we
considered in section 3.2.3, which is particularly simple since g2 is abelian. This enabled
us to perform explicitly the discretization of the symplectic form.

One could try to derive the discrete picture when g2 is non-abelian. The key example
would then be the so(3, 1) BF theory where we can write so(3, 1) = su(2) ▷◁ an2 ≡ g1 ▷◁ g2.
Due to the back action of g2 = an2 on g1 = su(2), the explicit discretization in the style of
the previous section is much harder to do. Nevertheless, we know that at the continuum
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level, there is a BFCG formulation defined in terms of a pair of skeletal Lie 2-algebra g1⋉g∗2
and g2⋉ g∗1, where still both g∗1 and g∗2 are abelian Lie algebras (and where we omitted the
coactions) [34]. As we will discuss in section 3.4.2, such semi-dualization for the so(3, 1)
case gives rise naturally to a κ-Poincaré structure [106].

Since the explicit discretization is hard we will build the phase space for a three di-
mensional triangulation by hand based on the building blocks g1 ⋉ g∗2 and g2 ⋉ g∗1, which
exponentiation will provide us an Heisenberg double.

We begin directly with a symplectic space (a Heisenberg double) for small pieces of
a complex: A dual pair of links and faces and a dual pair of edges and wedges, which
are decorated by a pair of dual skeletal groups. We then construct a larger complex by
gluing these small atomic pieces together in such a way that the complex also has a Poisson
structure defined on it. This construction will be useful to understand the generalization
of the group field theory to a 2-group which we will discuss in a later chapter.

As a warm up, let’s review the phase space construction as it is done for polygons,
which will allow us to introduce the notion of Heisenberg double in a simpler context,
before moving onto the case where we construct three dimensional complexes.

3.4.1 Phase space for two dimensional triangulations

Let’s begin by introducing a Poisson structure on the space of triangles. Considering
triangles embedded in three dimensional Euclidean space, one may describe any point by
the three vectors ℓi which are the edges of the triangle. Three edges is more than necessary:
we reduce the degrees of freedom by imposing that C :=

∑
i ℓi = 0. There is a natural

non-trivial Poisson structure on this space [65].

We let ℓai be the a-component of ℓi and set the Poisson brackets to

{ℓai , ℓbj} =
∑
c

δijϵ
abcℓci , (3.103)

so that the constraint C generates rotations of the vectors,

{Ca, ℓbi} = ϵabcℓci . (3.104)

This Poisson structure on R3 arises naturally if one views it as the dual of su(2).

In general, if fabc are the structure constants of a Lie algebra g with generators {ea},
then one can define a Poisson bracket on g∗ by

{e∗a, e∗b} = fabc e
∗c (3.105)
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where here e∗a is thought of as the function g∗ → R which gives the ath. If one restricts to
the coadjoint orbits of the group, this Poisson structure is symplectic.

We can go further by considering a Poisson bracket on (T ∗SU(2))3 ∼= (SU(2)⋉su(2)∗)3:

{ℓai , ℓbj} = δijϵ
ab
cℓ
c
i , {hiab, hjcd} = 0 , {ℓai , hjbc} = δij(hiσ

a)bc, (3.106)

where σ are the Pauli matrices. The functions hi
a
b, with i going from 1 to 3 representing

which edge of the triangle we are considering, are the matrix entries of hi in the fundamental
representation. The holonomy h are again interpreted as being perpendicular to the edges.
This is a special case of a Heisenberg double [2, 96, 45].

The phase space T ∗SU(2) is not yet the phase space we associate with a triangle. We
also demand that the rotational invariance is imposed. To obtain the physical variables
which are invariant under rotations, we should reduce the phase space by a process known
as symplectic reduction [75].

The idea of having the phase space invariant under rotations is realized as an action of
SU(2) on (T ∗SU(2))3, given explicitly by g▷(hi, ℓi) = (ghi, g ▷ℓi). The action of g ∈ SU(2)
on ℓi ∈ R3 is a by the coadjoint action (specifically, one may see ℓi as a function on R3

with an action induced by the coadjoint action of SU(2) on su(2)∗ ∼= R3). The action itself
commutes with the Poisson brackets (3.106), so we call it a Poisson action.

The action of SU(2) on functions of (T ∗SU(2))3 induces an action of su(2) on the same
space. This is defined by

X ▷ f(x) =
d

dx
f(exp(tX) ▷ x)|t=0 (3.107)

for any X in su(2). In particular this tells us

X ▷ ℓa = X iℓjϵaij

X ▷ hij = −Xa(hσa)
i
j.

(3.108)

The action is diagonal, meaning that X acts on all three factors of T ∗SU(2) in the same
way.

This action is generated by HX(ℓI) := −
∑

I⟨ℓI , X⟩ = −
∑

I ℓ
a
IXa where ⟨·, ·⟩ is the

canonical pairing between su(2) and su(2)∗. The map (Φ : T ∗SU(2))3 → (su(2)∗)3 given
by (ℓI) → H·(ℓ) is called the moment map associated to the action of SU(2) [9].

The phase space we consider is

Ptriangle = Φ−1(0)/SU(2). (3.109)

66



This general approach of determining moment maps and defining the phase space from
that will be used in the following sections. The closure constraint of the triangles appears
in Φ−1(0) = {ℓI ∈ R3 : Φ(ℓI) =

∑
I ℓI = 0}. A general feature which we will mention again

later is the interplay between a constraint in g∗ corresponding to an action of G.

In more general cases we will consider later, the phase spaces we will reduce will not
be cotangent bundles and the Hamiltonians HX will have to be defined differently.

To explain how one goes from this phase space for a triangle to the phase space of other
polygons, we will introduce Heisenberg and Drinfeld doubles.

Heisenberg and Drinfeld Doubles Let G and G∗ are Lie groups of same dimension
with g and g∗ as Lie algebras, which form a matched pair. The group with lie algebra
g ▷◁ g∗ is denoted D. Locally, one can factor the group as D ∼= G ▷◁ G∗ ∼= G∗ ▷◁ G. For
simplicity we will always assume that this decomposition is global or that we are working
in a set neighbourhood where such a decomposition is possible. The a group element d ∈ D
can be factored in two ways:

d = ℓh = h̃ℓ̃, h, h̃ ∈ G, ℓ, ℓ̃ ∈ G∗. (3.110)

The two factorizations are related via the actions

ℓ = h̃ ▷ ℓ̃ h = h̃ ◁ ℓ̃

ℓ̃ = ℓ ◁ h h̃ = ℓ ▷ h.
(3.111)

We will assume that the cobracket of g ▷◁ g∗ is given by an r-matrix: δξ = adξr.
Concretely, we may write

r := r12 = ei ⊗ e∗i r21 = e∗i ⊗ ei (3.112)

where e and e∗ are generators of g and g∗. On D, one may define a Poisson bivector π+.

π+(d) = −[d⊗ d, r−]+ = −(d⊗ d)r− − r−(d⊗ d) (3.113)

where 2r− = r12−r21 is the antisymmetrization of r and [·, ·]+ stands for the anticommuta-
tor. The Poisson bivector in (3.113) turns out to be invertible and so it defines a symplectic
space. The symplectic space defined by π+ and the group D is called the Heisenberg double
(of G) [2, 96, 45]. The Poisson brackets between matrix entries can be determined by

{dij, dkl}+ = −diadkbr−ajbl − r−
i
a
k
bd
a
jd
b
l. (3.114)
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Starting from (3.113), one can determine the Poisson brackets between the factors h, ℓ,
h̃, and ℓ̃. We will use the convenient notation u1 = u⊗ 1 and u2 = 1⊗ u, for u = ℓ, ℓ̃, h, h̃,

{h̃1, h̃2} = −[r−, h̃⊗ h̃] {h̃1, ℓ̃2} = −(1⊗ h̃)r12(1⊗ ℓ̃)

{ℓ̃1, ℓ̃2} = −[ℓ̃⊗ ℓ̃, r−] {ℓ̃1, h̃2} = (1⊗ h̃)r21(ℓ̃⊗ 1)

{ℓ1, ℓ2} = −[r−, ℓ1 ⊗ ℓ2] {h1, h2} = [r−, h⊗ h]

{h1, ℓ2} = −(1⊗ ℓ)r12(h⊗ 1) {ℓ1, h2} = (ℓ⊗ 1)r21(1⊗ h)

{h̃1, ℓ2} = −r12h̃⊗ ℓ {ℓ̃1, h2} = ℓ̃⊗ hr21.

(3.115)

The Poisson bivector is invertible and so the phase space is symplectic. The symplectic
form at d, written in terms of factors of d, is

Ω(d) =
1

2

(
⟨∆ℓ ∧∆h̃⟩+ ⟨∆ℓ̃ ∧∆h⟩

)
(3.116)

where ∆u = δuu−1 and ∆u = u−1δu are respectively the right and left Maurer Cartan
forms.

There is an additional Poisson structure which can be added onto D which is not
symplectic. The group D together with the Poisson bivector

π−(d) = [d⊗ d, r−] (3.117)

is the Drinfeld double [2, 96, 45]. Unlike the Heisenberg double, the Drinfel’d double is a
Poisson-Lie group meaning that the group multiplication is a Poisson map. In particular
the Poisson brackets are degenerate at the origin. Furthermore, the Poisson bivector is
related to the cobracket of the Lie bialgebra, δX = d

dt
π−(e

tX)t=0.

The phase space of the polygon in the previous section is a Heisenberg double with
g = su(2) with a trivial cobracket δ = 0. The dual algebra in this case is isomorphic to
R3. One may choose as a basis of su(2) in the adjoint representation

J1 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 J2 =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 J3 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 (3.118)

and the basis of so(3)∗ ∼= R3 as

e1 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 e2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 e3 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 . (3.119)
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Explicitly computing the r-matrix and then using (3.113), we recover the brackets (3.106).

Now we can consider the action of the group D (seen as the Poisson Lie Group with π−)
on D (seen as a symplectic manifold with π+). This is the action we will reduce by when
we wish to glue triangles together. To do this we should point out some generalizations to
when the group which acts on a symplectic manifold has a Poisson structure itself.

If H is a Poisson Lie group which acts on a symplectic manifold M then the action is
a Poisson-Lie action if [95]

{f(h ▷ x), g(h ▷ x)}H×M = {f(h ▷ ·), g(h ▷ ·)}M(x) + {f(· ▷ x), g(· ▷ x)}H(h)
= {f, g}M(h ▷ x) (3.120)

The first equality is simply the definition of the cartesian product of Poisson manifolds,
while the second is that the action is covariant. For our purposes M = D+ and H = D−
and the action is multiplication from the left or from the right.

Once again, the moment map will be the generator of the infinitesimal transformation
coming from the group multiplication, which we find by restricting our attention to multi-
plication by the subgroups G and G∗ separately. Using the factorisation for d = ℓh = h̃ℓ̃,
the multiplication on the left by an element h′ ∈ G can be written as

d→ h′d =h′ℓh = (h′ ▷ ℓ)(h′ ◁ ℓ)h (3.121)

and
d→ h′d =h′h̃ℓ̃. (3.122)

The infinitesimal version of the left multiplication can be inferred by writing h′ ≈ 1 + α
where α ∈ g. The resulting infinitesimal transformations, denoted by δLα are

δLαh = (α ◁ ℓ)h

δLαℓ = αℓ− ℓ(ℓ−1 ▷ α)
(3.123)

and
δLα h̃ = αh̃

δLα ℓ̃ = 0
(3.124)

The relations hℓ = (h ▷ ℓ)(h ◁ ℓ) are used to derive these expressions, as well as the
compatibility relations of a matched pair of groups [73]

ℓ ▷ (h1h2) = (ℓ ▷ h1)((ℓ ◁ h1) ▷ h2),

(ℓ1ℓ2) ◁ h = (ℓ1 ◁ (ℓ2 ▷ h))(ℓ2 ◁ h)

(ℓ ▷ h)−1 = h−1 ◁ ℓ−1.

(3.125)
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Similarly the multiplication by ℓ′ ∈ G∗ with ℓ′ ≈ 1 + ϕ, ϕ ∈ g∗ gives

d→ ℓ′d = ℓ′ℓh

=⇒ δLϕ ℓ = ϕℓ

δLϕh = 0

(3.126)

and
d→ ℓ′d = ℓ′h̃ℓ̃

=⇒ δLϕ h̃ = ϕh̃− h̃(h̃−1 ▷ ϕ)

δLϕ ℓ̃ = (ϕ ◁ h̃)ℓ̃.

(3.127)

The infinitesimal multiplication from the right can be found similarly.

We can now try to determine the generalization of the Hamiltonian which generates
these infinitesimal transformations to the Heisenberg double [8]. We can then determine
the moment maps and hence perform the necessary reduction.

One can check that {ℓ1, ·}(ℓ−1 ⊗ 1) generates left multiplications by G:

⟨{ℓ1, h2}(ℓ−1 ⊗ 1), α⊗ 1⟩1 = ⟨(ℓ⊗ 1)r21(1⊗ h)(ℓ−1 ⊗ 1), α⊗ 1⟩
= ⟨ℓe∗Iℓ−1, α⟩eIh
= ⟨e∗I , ℓ−1αℓ⟩eIh
= (ℓ−1αℓ)gh = δLαh

(3.128)

where the subscript 1 on the angle brackets indicates the pairing is between the first factor
in the tensor problem. In the last line the subscript g indicates the projection onto the g
algebra. This is equivalent to the action α ◁ ℓ.

Similarly we can check that {ℓ1, ·}(ℓ−1 ⊗ 1) generates the multiplication on the other
functions, ℓ, ℓ̃ and h̃ in the same way. For this reason we define the map ΦL

G : D → G∗

given by ΦL
G(d = ℓh) = ℓ. This is the generalization of the moment map in the non abelian

case.

Similarly the moment map for multiplication by G∗ (parametrized by ϕ) is the projec-
tion onto h̃: δLϕ · = ⟨{h̃1, ·}(h̃−1 ⊗ 1), ϕ⊗ 1⟩1.

The right transformations are given by δRϕ · = ⟨(1 ⊗ h−1){·, h2}, ϕ⟩2 and δRα = ⟨(1 ⊗
ℓ−1){·, ℓ̃2}, α⟩2.

Thus we have that the moment maps for multiplication by G is the projection map
onto G∗ and vice versa.
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ℓ

h̃

h

ℓ̃

Figure 3.4: The two decompositions of an element in the Heisenberg double are depicted
by a ribbon diagram

To glue two phase spaces D1 and D2 along an edge (which we label with an element of
G∗), we consider a group action which is generated by ℓ1ℓ2, where the subscripts indicate
which phase space they belong to. One can check that this is the generator of G acting
diagonally on D1 and D2.

Graphically one can express the idea of identifying the edges of two phase spaces by
ribbon diagrams. To account for the two possible factorisations d = ℓh = h̃ℓ̃, we can
replace the link/edge pairs by rectangular commuting diagrams as in Fig. 3.4. The gluing
procedure is evidently results in a new larger ribbon. To see the G portion of the new
ribbon one can consider the sum of symplectic potentials,

2Ω1,2 := Ω1 + Ω2 (3.129)

= ⟨∆ℓ1 ∧∆h̃1⟩+ ⟨∆ℓ̃1 ∧∆h1⟩+ ⟨∆ℓ2 ∧∆h̃2⟩+ ⟨∆ℓ̃2 ∧∆h2⟩. (3.130)

Defining the variables

h12 = h1h̃
−1
2 h̃12 = h̃1h

−1
2 (3.131)

implies

∆h̃1 = ∆h̃12 + h̃12∆h2h̃
−1
12 ∆h2 = h̃−1

1 ∆h̃12h̃1 +∆h̃1. (3.132)

These relations can be used to eliminate ∆h̃1 and ∆h̃2 in the first and third term in (3.130).
Furthermore, using ℓh = h̃ℓ̃, we can write for i = 1, 2

∆ℓi = ∆h̃i + h̃i∆ℓ̃ih̃
−1
i − h̃iℓ̃i∆hiℓ̃

−1
i h̃−1

2 (3.133)

Doing so gives

2Ω1,2 =⟨∆ℓ1 ∧∆h̃12⟩+ ⟨∆ℓ−1
2 ∧∆h12⟩

+ ⟨(h̃−1
1 ∆ℓ1h̃1 +∆ℓ̃2) ∧∆h2⟩+ ⟨(h̃−1

2 ∆ℓ2h̃2 +∆ℓ̃1) ∧∆h1⟩. (3.134)
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ℓ1 ℓ̃1

h1

h̃1

ℓ̃2

h̃2

h2

ℓ2 ℓ1

h12 = h1h̃
−1
2

h̃12 = h̃1h
−1
2

ℓ−1
2

Figure 3.5: Each phase space is represented by a ribbon diagram. Two ribbons are glued
along an edge to create a single ribbon. The geometric gluing is the same as demanding
the constrain ℓ̃1ℓ̃2 = 1.

Finally we can impose the constraint which comes from the moment map: ℓ̃1 = ℓ̃−1
2 which

implies ∆ℓ̃2 = −∆ℓ1, giving

Ω1,2 =
1

2

(
⟨∆ℓ1 ∧∆h̃12⟩+ ⟨∆ℓ−1

2 ∧∆h12⟩
)

(3.135)

Thus the imposition of the constraint in G∗ naturally gives rise to new fields in G, here h12
and h̃12. The gluing of phase spaces can be seen by gluing two ribbons as shown in Fig.
3.5.

Heisenberg doubles and two dimensional triangulation. We can construct the
phase space of a triangle (or of any polygon) using several copies of a Heisenberg double
D+ = G ▷◁ G∗ and by extension the phase space of a triangulation. Without loss of
generality, we will assume that the G∗ decorations are associated with the triangle edges,
while the G decorations will be associated to the dual complex.

The phase space of a triangle is obtained by considering three copies of the Heisenberg
double. We impose then that the product of elements in G∗ is the identity, see Fig. 3.6.
This is the closure constraint C encoding that the triangle closes. It is easy to see that it is
a momentum map implementing a global G transformation on each copy of the Heisenberg
double. The triangle phase space is therefore obtained as the symplectic reduction of
the three Heisenberg doubles through the momentum map implementing a diagonal G
transformation.

Ptriangle =
(
D+

)×3
//G. (3.136)

Note that this constraint is geometrically equivalent to gluing three ribbons in terms of
a triangle. This can be seen as the fattening of the dual complex to the triangle - making
the links dual to the edges into ribbons.
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v2

h1

h̃1
ℓ1

ℓ̃1

h̃2

ℓ̃2 h2

ℓ2 h12

h̃12
ℓ1

ℓ2

v1

v′2

v′1

Figure 3.6: The phase space of a triangle is given by a set of three ribbons subject to the
constraint some of their G∗ decorated sides form a triangle as illustrated on the left hand
side. The phase space of two triangles (and by extension of a triangulation) is obtained by
gluing ribbons associated to the shared edge.

The extension to a triangulation follows directly. If the triangulation is made by n
triangles, we consider n copies of the triangle phase space Ptriangle and identify the G∗

decorations of the ribbon appropriately, see Fig. 3.6. In terms of the ribbon picture,
this corresponds to gluing the ribbons as discussed above by symplectic reduction. This
provides a well defined phase space construction for a two dimensional triangulation. This
construction extends to an arbitrary cellular decomposition, using polygons of any kind.

3.4.2 Phase spaces for three dimensional triangulations

The above describes the procedure for creating phase spaces that we can identify with
polygons and, by gluing, phase spaces identified with triangulations of 2-manifolds. This
is useful for constructing states in (2+1) - dimensional theories [26]. For theories in (3+1)-
dimensions we will introduce phase spaces with data on the links, faces subtended by links,
and their respective 2- and 1-dimensional duals. In order to make the 1- and 2-dimensional
pieces appear in a consistent way, we will work with skeletal 2-Lie algebras and their double.
To illustrate this generalisation we can consider an example:

Example: κ-Poincaré Consider the Lorentz algebra once again, with generators Jµν
satisfying the Lie brackets relation

[Jµν , Jρσ] = ηµρJνσ + ηνσJµρ − ηµσJνρ − ηνρJµσ. (3.137)
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This can be made into a Lie bialgebra trivially by introducing the cobracket

δso(J
µν) = 0. (3.138)

In addition, one considers the an algebra with the four generators P µ satisfying

[P µ, P ν ] = κ−1(ηµ0P ν − ην0P µ) , (3.139)

which can also be made into a bialgebra by setting

δan(P
µ) = 0. (3.140)

The parameter κ is a real number not equal to zero. These two algebras form a matched
pair if we define the actions according to

Jµν ◁ P ρ = κ−1(ην0Jµρ − ηµ0Jνρ) Jµν ▷ P ρ = ηµρP ν − ηνρP µ. (3.141)

We note that in the limit when κ→ 0, the matched pair is simply the traditional Poincaré
algebra where P µ are the commuting translation generators. According to (3.2.3) these
actions imply the crossed bracket

[P ρ, Jµν ] = κ−1(ην0Jµρ − ηµ0Jνρ) + ηµρP ν − ηνρP µ. (3.142)

The dual Lie bialgebra su∗ ▶◀ an∗ is defined as being generated by J∗
µν and P ∗

µ and the
pairing

⟨P µ, P ∗
ν ⟩ = δµν , ⟨Jµν , J∗

ρσ⟩ = δµρ δ
ν
σ − δνρδ

µ
σ . (3.143)

The subspaces so∗ and an∗ each have a bialgebra structure determined by dualising both
the Lie brackets and the (trivial) cocommutator.

The semidualisations of so ▷◁ an and its dual are therefore Lie 2-bialgebras. The phase
space corresponding to the bialgebra b = (so ▷◀ an∗) ▷◁ (so∗ ▶◁ an) will be used as the main
example in the following.

The classical double b is a coboundary Lie bialgebra and so we can define the classical
r-matrix

r = P µ ⊗ P ∗
µ +

1

2
Jµν ⊗ J∗

µν . (3.144)
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The brackets for b are, according to (3.28) and (3.29)

[Jµν , P ∗
σ ] = δνση

µαP ∗
α − δµση

ναP ∗
α

δP ∗
ρ = κ−1ησ0(P ∗

σ ⊗ P ∗
ρ − P ∗

ρ ⊗ P ∗
σ )

δJµν = κ−1(ην0Jµρ − ηµ0Jνρ)⊗ P ∗
ρ − κ−1P ∗

ρ ⊗ (ην0Jµρ − ηµ0Jνρ)

[P σ, J∗
µν ] = κ−1ηβ0(δαµδ

σ
ν − δσµδ

α
ν )J

∗
αβ

δJ∗
µν = ηρσJ∗

µρ ⊗ J∗
νσ − ηρσJ∗

νσ ⊗ J∗
µρ

δP µ = ησµ(P ρ ⊗ J∗
σρ − J∗

σρ ⊗ P ρ)

(3.145)

as well as the Lie brackets in (3.138) and (3.139). The cross brackets can be determined
by using (3.17),

[Jµν , J∗
σρ] =(ηανδµρ − ηαµδνρ)J

∗
σα − κ−1(δµση

ν0 − ηµ0δνσ)P
∗
ρ − (σ ↔ ρ)

[P µ, P ∗
ν ] =κ

−1ησ0(δµνP
∗
σ − δµσP

∗
ν )− ησµJ∗

σν

[P ρ, Jµν ] =κ−1(ην0Jµρ − ηµ0Jνρ) + ηµρP ν − ηνρP µ.

(3.146)

This example gives a non trivial Poisson structure to AN ⋉ SO∗ ∼= AN ⋉ Rn which,
upon quantization, is the κ-Poincaré algebra, a deformation of the Poincaré Lie algebra
[69, 70, 106].

We can interpret SO⋉Rm and AN ⋉Rn, where n and m are the respective dimensions
of the groups SO and AN , as a pair of skeletal Poisson 2-groups. This pair then forms a
Heisenberg double which we can associate to a basic building geometric block to generate
the triangulation.

This κ-Poincaré structure is therefore an example of the type of phase space we will
consider in our discretization.

General skeletal Poisson 2-group In more general terms we let G = G1 ⋉ G∗
2 be a

skeletal 2-group. The Heisenberg double is then B = G ▷◁ G∗.

The analogue of the link-edge pair in this higher dimensional piece is given by the
“atomic phase space” defined by

• a link

• a two dimensional surface perpendicular to the link
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Figure 3.7: The building block we will glue to reconstruct a full 3d triangulation. The
(half) link and wedge will be decorated by G elements, while the edge and face will be
decorated by elements in G∗.

• an edge on the boundary of that surface

• a two dimensional surface perpendicular to the edge which includes the link as part
of its boundary.

The situation is drawn in Fig. 3.7.

We will now detail the gluing procedure for this slightly more complicated set up. There
are now more ways to factor an element of B leading to more factors to identify in the
gluing procedure.

For any d ∈ B, we have the factorization d = ℓh = h̃ℓ̃. In addition since G and G∗ are
crossed modules, we can write h ∈ G as h = uy = yu with u ∈ G1 and y, y ∈ G∗

2 where y
and y are related by the action of the crossed module. We can also write ℓ = βλ = λβ for
λ ∈ G∗

1 and β, β̃ ∈ G∗
2. There are similar factorizations for h̃ and ℓ̃ as well.

There are several ways that such atomic pieces can be glued together.

• G1 gluing: Links are decorated by G1 holonomies. To glue two links together, the
dual variables on the triangles valued in G∗

1 should be identified.

• G∗
1 gluing: Triangles decorated with G∗

1 variables can be composed by identifying the
dual G1 variables.

• G2 gluing: Edges decorated with G2 variables can be glued together by identifying
the surfaces dual to the edges which are decorated by G∗

2 variables.
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Figure 3.8: The ribbon diagram representing the division of G and G∗ into subgroups.

• G∗
2 gluing: Identifying edges gives the composition of their respective dual two di-

mensional surfaces which are decorated in G∗
2.

To guide the somewhat cumbersome notation we introduce a analogue to the rib-
bon diagrams in Fig. 3.4 and Fig. 3.5. In the polyhedron picture there are four factors,
G1, G

∗
1, G2, G

∗
2 which means that instead of rectangular ribbons, we can consider octogonal

ribbons as in Fig. 3.8. Note that the order in which factors appear in the figure can be
changed by utilizing the action between subgroups. As in the rectangular ribbon diagrams,
identifying geometric structures implies gluing sides of the ribbon.

We can now consider the gluing of the various subgroups of the phase space. We will
show in some detail how to glue together a pair of links in some detail.

G1 gluing: Using Fig. 3.9 gluing the links together implies that the triangle decorations
are to be identified. From the figure, we set ct = c′t and v2 = v′2. The first edge-link
pair is given an element d1 = h̃1ℓ̃1 ∈ (G∗

2 ⋉ G1) ▷◁ (G2 ⋊ G∗
1). The ℓ̃1 variable is further

factored into ℓ̃1 = λ̃1β̃1, where now β̃1 decorates the face and λ̃ decorates the edge. The

identification of the faces is therefore accomplished by imposing β̃1 = −β̃2. The ribbon
diagram for this gluing is shown in Fig. 3.10.

We begin by isolating the G∗
1 elements of two phase spaces

ℓihi = h̃iℓ̃i = h̃i(λ̃i
˜̄βi) =⇒ ˜̄βi = λ̃−1

i h̃−1
i ℓihi (3.147)
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c1

ct

v2

ct′

c2

v′2

c1

c2

v2 = v′2

e′e
ct = ct′

Figure 3.9: We fuse two links by identifying the dual faces te and te′ . We require that the
points ct and ct′ in the respective face to match. As we discussed before, face decorations
are rooted at a point. Matching the face decorations imposes that they have the same
root. Picking v2 and v′2 as respectively root of te and te′ , we therefore must have v2 = v′2.

Figure 3.10: We glue two octagons. We then re-arrange the sides belonging to the same
groups. This rearranging, involving either actions, back actions and conjugations can
induce non-trivial contributions, especially from the conjugations. The choice of ordering
is a priori arbitrary and for our concerns, will depend on the choice of frame we intend to
express our variables in.
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and then imposing that β̃1 = −β̃2,

λ̃−1
1 (ũ1ỹ1)

−1(λ1β̄1)(ȳ1u1) = (ȳ2u2)
−1(λ2β̄2)

−1(ũ2ỹ2)λ̃2. (3.148)

The factors can be commuted with one another by using the mutual action defined by the
Heisenberg double or the action defining the crossed module. Additionally, the brackets in
the Heisenberg double imply that the conjugation of a G∗

2 (resp. G
∗
1) element by a G1 (resp.

G2) element will have a component in G∗
1 and G

∗
2. Explicitly, we write (u1▷ λ̃

−1
2 )−1 ȳ1 (u1▷

λ̃−1
2 ) = y′β′ and (λ̃1 ◁ u−1

2 ) ȳ2 (λ̃1 ◁ u−1
2 )−1 = y′′β′′ for some β′, β′′ ∈ G∗

2 and y′, y′′ ∈ G∗
1.

Reorganizing (3.148) yields(
λ1(u1 ▷ λ̃−1

2 )
)(
β̄1 ◁ (u1 ▷ λ̃−1

2 )β′)(y′((u1 ◁ λ̃−1
2 )▷ ỹ−1

2 )
)(
(u1 ◁ λ̃−1

2 )ũ−1
2

)
=
(
ũ1(λ̃1 ▷ u−1

2 )
)(
(ỹ1 ◁ (λ̃1 ▷ u−1

2 ))y′′
)(
β′′(λ̃1 ◁ u−1

2 )▷ β̄−1
2

)(
(λ̃1 ◁ u−1

2 )λ−1
2

)
.

(3.149)
This gives a similar ribbon condition to the original phase space. The factors in the final
equation gives the “fused” variables, similar to the h12 variable in the rectangular ribbon.
This new ribbon structure can then be used to define the symplectic form for the new
phase space.

The other gluings are done in a similar fashion.

Examples

Knowing how to glue together atomic phase spaces now lets us construct more general
stuctures.

For example, to construct a triangle, we start with three phase spaces Bi. Since the
triangle is dual to a link, the moment map should have the effect of gluing the links of
each of the atoms, l1 = l2 = l3. As such, the holonomy decorations u must all be identified
u1 = ũ2, u2 = ũ3. Applying this gives a ribbon constraint. In addition one needs to impose
the constraint that the edge variables close, λ1λ2λ3 = 1.

The identification of the G1 variables (the u’s) defines a new triangle variable,

β̄t = β̄1 ◁ (λ2λ3) + β̄2 ◁ λ3 + β̄3 +
(
λ−1
3 ȳ2λ3

)∣∣
G∗

1
+
(
(λ2λ3)

−1 ȳ1 (λ2λ3)
)∣∣
G∗

1
. (3.150)

The phase space would then be written as

Pt = (Bl1,e1 × Bl2,e2 × Bl3,e3)//
(
(G∗

1 ×G∗
1)×G∗

2

)
, (3.151)
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As another example, one can consider combining atomic phase spaces in such a way
that we have a tetrahedron. One can do so by taking twelve copies of the Heisenberg
double, Bla;i,ea;i for a = 1, 2, 3, 4 and i = 1, 2, 3, associated to full links la;i = (ca;ic

′
a;i) and

edges ea;i = (va;iv
′
a;i). Later on, the nodes ca;1, ca;2, ca;3 will be identified as the source of

the link dual to triangle labelled by a on the boundary of the tetrahedron and denoted ca;
then, the sources of the four links c1, c2, c3, c4 will be further identified as the center of the
tetrahedron and be denoted as c.

To construct the tetrahedron phase space, we first construct four tetrahedra as previ-
ously described. The edges of each triangle is then glued to the other three triangles eg
by

λ1;1 = λ−1
3;3 , λ1;2 = λ−1

4;3 , λ1;3 = λ−1
2;1 , λ2;2 = λ−1

4;2 , λ2;3 = λ−1
3;1 , λ3;2 = λ−1

4;1.
(3.152)

Gluing the phase spaces along a link to get the triangle introduces new variables akin to
(3.150):

β̄t1 = β1;1 + β̄1;2 ◁ λ1;3 + β̄1;3 +
(
λ−1
1;3ȳ1;2λ1;3

)∣∣
G∗

1
+
(
(λ1;2λ1;3)

−1 ȳ1;1 (λ1;2λ1;3)
)∣∣
G∗

1
,

β̄t2 = β2;1 + β̄2;2 ◁ λ2;3 + β̄2;3 +
(
λ−1
2;3ȳ2;2λ2;3

)∣∣
G∗

1
+
(
(λ2;2λ2;3)

−1 ȳ2;1 (λ2;2λ2;3)
)∣∣
G∗

1
,

β̄t3 = β3;1 + β̄3;2 ◁ λ3;3 + β̄3;3 +
(
λ−1
3;3ȳ3;2λ3;3

)∣∣
G∗

1
+
(
(λ3;2λ3;3)

−1 ȳ3;1 (λ3;2λ3;3)
)∣∣
G∗

1
,

β̄t4 = β4;1 + β̄4;2 ◁ λ4;3 + β̄4;3 +
(
λ−1
4;3ȳ4;2λ4;3

)∣∣
G∗

1
+
(
(λ4;2λ4;3)

−1 ȳ4;1 (λ4;2λ4;3)
)∣∣
G∗

1
.

(3.153)

Furthermore gluing edges pairwise will result in new wedge variables:

ȳ12 = −ȳ2;1 + (λ1;3 ȳ1;3 λ
−1
1;3)|G∗

2
,

ȳ13 = ȳ1;1 − (λ3;3 ȳ3;3 λ
−1
3;3)|G∗

2
,

ȳ14 = ȳ1;2 − (λ4;3 ȳ4;3 λ
−1
4;3)|G∗

2
,

ȳ23 = −ȳ3;1 + (λ2;3 ȳ2;3 λ
−1
2;3)|G∗

2
,

ȳ24 = ȳ2;2 − (λ4;2 ȳ4;2 λ
−1
4;2)|G∗

2
,

ȳ34 = ȳ3;2 − (λ4;1 ȳ4;1 λ
−1
4;1)|G∗

2

(3.154)

where we denoted ȳab the fused wedge decoration shared by triangles a and b.

Finally, the closure of the tetrahedron is imposed. This is the constraint which comes
by demanding that the composition of the face variables (using the 2-group technology
developed) gives the identity. After whiskering one obtains

β̄t1 + β̄t2 + β̄t3 + λ1;1 ▷ β̄t4 + (λ1;1 ȳt4 λ
−1
1;1)|G∗

1
= 0, (3.155)

where
ȳt4 = ȳ4:3 + (λ−1

4;3 ȳ4;2 λ4;3)|G∗
2
+
(
(λ4;2λ4;3)

−1 ȳ4;1 (λ4;2λ4;3)
)∣∣
G∗

2
. (3.156)
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Finally, we can look to create the phase space corresponding to the three dimensional
boundary. This is achieved through gluing five tetrahedra phase spaces together along the
triangles. The triangle gluing is done via

β̄12 ≡β̄t1;1 = −(u12 β̄t2;4 u
−1
12 )|G∗

1
, β̄31 ≡ β̄t3;3 = −(u−1

13 β̄t1;2 u13)|G∗
1
,

β̄14 ≡β̄t1;3 = −(u14 β̄t4;2 u
−1
14 )|G∗

1
, β̄51 ≡ β̄t5;1 = −(u−1

15 β̄t1;4 u15)|G∗
1
,

β̄23 ≡β̄t2;1 = −(u23 β̄t3;4 u
−1
23 )|G∗

1
, β̄42 ≡ β̄t4;3 = −(u−1

24 β̄t2;2 u24)|G∗
1
,

β̄25 ≡β̄t2;3 = −(u25 β̄t5;2 u
−1
25 )|G∗

1
, β̄34 ≡ β̄t3;1 = −(u34 β̄t4;4 u

−1
34 )|G∗

1
,

β̄53 ≡β̄t5;3 = −(u−1
35 β̄t3;2 u35)|G∗

1
, β̄45 ≡ β̄t4;1 = −(u45 β̄t5;4 u

−1
45 )|G∗

1
,

(3.157)

where the first index specifies to which tetrahedron β̄ belongs and the second indicates on
which triangle of the tetrahedron the variables is defined.

As always, gluing triangles introduces new variables on the dual structures, the links,

u12 = u1;1u
−1
2;4 , u13 = u1;2u

−1
3;3 , u14 = u1;3u

−1
4;2 , u15 = u1;4u

−1
5;1 , u23 = u2;1u

−1
3;4 ,

u24 = u2;2u
−1
4;3 , u25 = u2;3u

−1
5;2 , u34 = u3;1u

−1
4;4 , u35 = u3;2u

−1
5;3 , u45 = u4;1u

−1
5;4 ,
(3.158)

There is also the gluing of edges, which we rename λabcd where the subscripts indicate the
three tetrahedra sharing the edge and the superscript indicates where the variable is rooted
(which we need to consider when we are whiskering):

λ1123 ≡ λ1;12 = u12 ▷ λ2;14 = u13 ▷ λ3;34 , λ1124 ≡ λ1;13 = u12 ▷ λ2;24 = u14 ▷ λ4;23 ,

λ1125 ≡ λ1;14 = u12 ▷ λ2;34 = u15 ▷ λ5;12 , λ1134 ≡ λ1;23 = u13 ▷ λ3;13 = u14 ▷ λ4;24 ,

λ1135 ≡ λ1;24 = u13 ▷ λ3;23 = u15 ▷ λ5;13 , λ1145 ≡ λ1;34 = u14 ▷ λ4;12 = u15 ▷ λ5;14 ,

λ2234 ≡ λ2;12 = u23 ▷ λ3;14 = u24 ▷ λ4;34 , λ2235 ≡ λ2;13 = u23 ▷ λ3;24 = u25 ▷ λ5;23 ,

λ2245 ≡ λ2;23 = u24 ▷ λ4;13 = u25 ▷ λ5;24 , λ3345 ≡ λ3;12 = u34 ▷ λ4;14 = u35 ▷ λ5;34 .
(3.159)

Finally, these identifications imply a new set of wedge variables dual to the edges. These
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are

ȳ1123 = ȳ1;12 + u12 ▷ ȳ2;14 + u13 ▷ ȳ3;34 + (u12 β̄23 u
−1
12 )|G∗

2
+ (u13 β̄31 u

−1
13 )|G∗

2
,

ȳ1124 = ȳ1;13 + u12 ▷ ȳ2;24 + u14 ▷ ȳ4;23 + (u14 β̄42 u
−1
14 )|G∗

2
,

ȳ1125 = ȳ1;14 + u12 ▷ ȳ2;34 + u15 ▷ ȳ5;12 + (u12 β̄25 u
−1
12 )|G∗

2
+ (u15 β̄51 u

−1
15 )|G∗

2
,

ȳ1134 = ȳ1;23 + u13 ▷ ȳ3;14 + u14 ▷ ȳ4;24 + (u13 β̄34 u
−1
13 )|G∗

2
+ (u13 β̄31 u

−1
13 )|G∗

2
,

ȳ3135 = ȳ1;24 + u13 ▷ ȳ3;23 + u15 ▷ ȳ5;13 + (u35 β̄51 u
−1
35 )|G∗

2
+ (u35 β̄53 u

−1
35 )|G∗

2
,

ȳ1145 = ȳ1;34 + u14 ▷ ȳ4;12 + u15 ▷ ȳ5;14 + (u14 β̄45 u
−1
14 )|G∗

2
+ (u15 β̄51 u

−1
15 )|G∗

2
,

ȳ2235 = ȳ2;13 + u23 ▷ ȳ3;24 + u25 ▷ ȳ5;23 + (u25 β̄53 u
−1
25 )|G∗

2
,

ȳ2245 = ȳ2;23 + u24 ▷ ȳ4;13 + u25 ▷ ȳ5;24 + (u24 β̄45 u
−1
24 )|G∗

2
+ (u24 β̄42 u

−1
24 )|G∗

2
,

ȳ2234 = ȳ2;12 + u23 ▷ ȳ3;14 + u24 ▷ ȳ4;34 + (u23 β̄34 u
−1
23 )|G∗

2
+ (u24 β̄42 u

−1
24 )|G∗

2
,

ȳ3345 = ȳ3;12 + u34 ▷ ȳ4;14 + u35 ▷ ȳ5;34 + (u34 β̄45 u
−1
34 )|G∗

2
+ (u35 β̄53 u

−1
35 )|G∗

2
,

(3.160)
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The 1-Gauss constraints, the closure of each boundary tetrahedron, are given by

τ1 : b12 − (u13 b31 u
−1
13 )|G∗

1
+ λ1135 ▷ b14 − (u15 b51 u

−1
15 )|G∗

1

+ (λ1123 ȳ1;12 (λ
1
123)

−1)|G∗
1
+ λ1125 ▷ (λ1124 ȳ1;13 (λ

1
124)

−1)|G∗
1
+ (λ1125 ȳ1;14 (λ

1
125)

−1)|G∗
1

+ λ1135 ▷ (λ1134 ȳ1;23 (λ
1
234)

−1)|G∗
1
+ (λ1135 ȳ1;24 (λ

1
135)

−1)|G∗
1

+ λ1135 ▷ (λ1145 ȳ1;34 (λ
1
145)

−1)|G∗
1
= 0, (3.161)

τ2 : b23 − λ2125 ▷ (u24 b42 u
−1
24 )|G∗

1
+ b25 − (u−1

12 b12 u12)|G∗
1

+ λ2235 ▷ (λ2234 ȳ2;12 (λ
2
234)

−1)|G∗
1
+ (λ2235 ȳ2;13 (λ

2
235)

−1)|G∗
1
+ (λ2123 ȳ2;14 (λ

2
123)

−1)|G∗
1

+ λ2125 ▷ (λ2245 ȳ2;23 (λ
2
245)

−1)|G∗
1
+ λ2125 ▷ (λ2124 ȳ2;24 (λ

2
124)

−1)|G∗
1

+ (λ2125 ȳ2;34 (λ
2
125)

−1)|G∗
1
= 0, (3.162)

τ3 : λ3135 ▷ b34 − (u35 b53 u
−1
35 )|G∗

1
+ b31 − (u−1

23 b23 u23)|G∗
1

+ λ3135 ▷ (λ3345 ȳ3;12 (λ
3
345)

−1)|G∗
1
+ λ3135 ▷ (λ3134 ȳ3;13 (λ

3
134)

−1)|G∗
1

+ λ3235 ▷ (λ3234 ȳ3;14 (λ
3
234)

−1)|G∗
1

+ (λ3135 ȳ3;23 (λ
3
135)

−1)|G∗
1

+ (λ3235 ȳ3;24 (λ
3
235)

−1)|G∗
1
+ (λ3123 ȳ3;34 (λ

3
123)

−1)|G∗
1
= 0, (3.163)

τ4 : λ4135 ▷
(
b45 − (u−1

14 b14 u14)|G∗
1
+ λ4145 ▷ b42 − (u−1

34 b34 u34)|G∗
1

)
+ λ4135 ▷ (λ4145 ȳ4;12 (λ

4
145)

−1)|G∗
1
+ λ4125 ▷ (λ4245 ȳ4;13 (λ

4
245)

−1)|G∗
1

+ λ4135 ▷ (λ4345 ȳ4;14 (λ
4
345)

−1)|G∗
1

+ λ4125 ▷ (λ4124 ȳ4;23 (λ
4
124)

−1)|G∗
1

+ λ4135 ▷ (λ4134 ȳ4;24 (λ
4
134)

−1)|G∗
1
+ λ4235 ▷ (λ4234 ȳ4;34 (λ

4
234)

−1)|G∗
1
= 0, (3.164)

τ5 : b51 − (u−1
25 b25 u25)|G∗

1
+ b53 − λ5135 ▷ (u−1

45 b45 u45)|G∗
1
+ (λ5125 ȳ5;12 (λ

5
125)

−1)|G∗
1

+ (λ5135 ȳ5;13 (λ
5
135)

−1)|G∗
1
+ λ5135 ▷ (λ5145 ȳ5;14 (λ

5
145)

−1)|G∗
1

+ (λ5235 ȳ5;23 (λ
5
235)

−1)|G∗
1
+ λ5125 ▷ (λ5245 ȳ5;24 (λ

5
245)

−1)|G∗
1

+ λ5135 ▷ (λ5345 ȳ5;34 (λ
5
345)

−1)|G∗
1
= 0. (3.165)

This has been a lot of variable definitions that is hard to parse. Let’s now argue that
the variables at least make sense in a familiar setting.

Let G = ISO(4) ∼= SO(4) ⋉ R4 ∼= R4 ⋊ SO(4) and G∗ = ISO(4)∗ ∼= SO∗(4) × R4 ∼=
R4 × SO∗(4). Let T be a triangulation with edges and faces decorated by elements of
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R4 and SO∗(4) respectively. The dual 2-complex T ∗ has links and wedges decorated by
holonomies of SO(4) and R4∗ ∼= R4 respectively. Specifically, we have

G1 = SO(4) ∋ u , G∗
2 = R4 ∋ y, ȳ , G2 = R4 ∋ λ, λ̃ , G∗

1 = SO∗(4) ∼= R6 ∋ β, β̃.
(3.166)

Note that there is no action of R4 on SO(4) nor on SO∗(4) and the conjugations/projections
take a simple shape

uβu−1 = β′y′ ⇔

{
β′ = (uβu−1)|SO∗(4)

y′ = (uβu−1)|R4 = 1

λyλ−1 = y′′β′′ ⇔

{
β′ = (λyλ−1)|SO∗(4) ≡ [λ, y]

y′ = (λyλ−1)|R4 = y,

(3.167)

where for the second conjugation we used a convenient representation3 of R4.

First, to construct the triangle phase space we impose the momentum maps u1 = ũ2
and u2 = ũ3, plus the closure constraint that here takes the form λ1 + λ2 + λ3 = 0. The
fused face decoration (3.150) is thus

βt = β1 + β2 + β3 + β4 − [λ2 , ȳ1]− [λ3 , ȳ1]− [λ3 , ȳ2]. (3.168)

Similarly, to construct the tetrahedron phase space we first consider four triangle phase
spaces and fuse them imposing the six momentum maps (3.152),

λ1;1 = −λ3;3 , λ1;2 = −λ4;3 , λ1;3 = −λ2;1 , λ2;2 = −λ4;2 , λ2;3 = −λ3;1 , λ3;2 = −λ4;1.
(3.169)

From these momentum maps we then derive the six fused wedge decorations (3.154) rep-
resented at the center of the tetrahedron:

ȳ12 = −ȳ2;1 + ȳ1;3 , ȳ13 = ȳ1;1 − ȳ3;3 , ȳ14 = ȳ1;2 − ȳ4;3 ,

ȳ23 = −ȳ3;1 + ȳ2;3 , ȳ24 = ȳ2;2 − ȳ4;2 , ȳ34 = ȳ3;2 − ȳ4;1.
(3.170)

The last momentum map that we impose for the construction of the tetrahedron is the
1-Gauss constraint (3.168), that now reduces to

b1 + b2 + b3 + b4 + [λ12 , ȳ12] + [λ13 , ȳ13] + [λ14 , ȳ14] + [λ23 , ȳ23] + [λ24 , ȳ24] + [λ34 , ȳ34] = 0,
(3.171)

3If Xµ is a Lie algebra generator of R4, we use a representation such that XµXν = 0. This implements
that eX = 1 +X. If Yν are the generators of another R4, then eY eXe−Y = 1 +X + [Y,X].
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where

b1 = β1;1 + β1;2 + β1;3 − [λ21 , ȳ1;3] + [λ13 , ȳ1;2],

b2 = −β2;1 + β2;2 + β2;3 − [λ32 , ȳ2;3] + [λ12 , ȳ2;2],

b3 = −β3;1 + β3;2 − β3;3 − [λ13 , ȳ3;3] + [λ23 , ȳ3;2],

b4 = −β4;1 − β4;2 − β4;3 − [(λ13 − λ14) , ȳ4;3]− [(λ12 − λ24) , ȳ4;2]− [(λ23 − λ34) , ȳ4;1].
(3.172)

Once we derived the tetrahedron phase space, we can use it to build the 4-simplex boundary
phase space.

Performing a change of variables,

b′12 = b12 − u12 [λ
2
123 , ȳ2;14]u

−1
12 − u12 [λ

2
124 , ȳ2;24]u

−1
12 − u12 [λ

2
125 , ȳ2;34]u

−1
12 ,

b′31 = b31 + [λ3134 , ȳ3;13] + [λ3123 , ȳ3;34]− u−1
13 [λ1135 , ȳ1;24]u13 ,

b′14 = b14 − u14 [λ
4
145 , ȳ4;12]u

−1
14 − u14 [λ

4
124 , ȳ4;23]u

−1
14 − u14 [λ

4
134 , ȳ4;24]u

−1
14 ,

b′51 = b51 + [λ5125 , ȳ5;12] + [λ5145 , ȳ5;14] ,

b′23 = b23 − u23 [λ
3
234 , ȳ3;14]u

−1
23 − u23 [λ

3
235 , ȳ3;24]u

−1
23 ,

b′42 = b42 + [λ4245 , ȳ4;13] + [λ4234 , ȳ4;34] ,

b′25 = b25 − u25 [λ
5
235 , ȳ5;23]u

−1
25 − u25 [λ

5
245 , ȳ5;24 u

−1
25 ,

b′34 = b34 − u34 [λ
4
345 , ȳ4;14]u

−1
34 ,

b′53 = b53 + [λ5135 , ȳ5;13] + [λ5345 , ȳ5;34]

(3.173)

in the five 1-Gauss constraints (3.161)-(3.165), in order to express the closure constraints
in terms of the closed faces (wedges) variables (3.160).

τ1 : b′12 − (u13 b
′
31 u

−1
13 ) + b′14 − (u15 b

′
51 u

−1
15 ) + [λ1123 , ȳ

1
123] + [λ1124 , ȳ

1
124] + [λ1125 , ȳ

1
125]

+ [λ1134 , ȳ
1
134] + [λ1145 , ȳ

1
145] = 0, (3.174)

τ2 : b′23 − (u24 b
′
42 u

−1
24 ) + b′25 − (u−1

12 b
′
12 u12) + [λ2235 , ȳ

2
235] + [λ2245 , ȳ

2
245] + [λ2234 , ȳ

2
234] = 0,
(3.175)

τ3 : b′34 − (u35 b
′
53 u

−1
35 ) + b′31 − (u−1

23 b
′
23 u23) + [λ3135 , ȳ

3
135] + [λ3345 , ȳ

3
345] = 0, (3.176)

τ4 : b45 − (u−1
14 b

′
14 u14) + b′42 − (u−1

34 b
′
34 u34) = 0, (3.177)

τ5 : b′51 − (u−1
25 b

′
25 u25) + b′53 − (u−1

45 b45 u45) = 0. (3.178)

These are precisely the constraints derived when we were considering the BFCG model
and its symplectic potential. The glued variables are thus the same as those introduced by
smearing the continuous fields over the simplicies.
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We can then extend this phase space construction to a full three dimensional triangula-
tion. If the triangulation is made of n tetrahedra, we consider n copies of the tetrahedron
phase space and implement a symplectic reduction induced by the appropriate identifica-
tion of the edge decorations, which induce a gluing of the dual variables.

The highlight of this construction is that we are able to use non-trivial Poisson 2-
groups to construct a triangulation phase space. In particular, the κ-Poincaré deformation
appears as a natural example of deformation of the Poincaré 2-group. Furthermore it
provides a candidate new discretization of the so(3, 1) BF theory. To prove it is actually
the case, one would either discretize explicitly the so(3, 1) BF theory as a su(2) ⋉ an∗2
2-gauge BFCG theory, or compare the quantum amplitude for the so(3, 1) BF theory to
the quantum amplitude for the su(2) ⋉ an∗2 BFCG theory, which would amount to know
the (2-)representations theory of the quantum 2-group given by the κ-Poincaré 2-group.
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Chapter 4

Quantization

In the previous chapters, we studied classical topological theories, the BF and 2-BF
(BFCG) models and their phase spaces. In particular, emphasis was put on obtaining
discrete variables which satisfy particular Poisson brackets. The present section deals with
expanding on the discrete geometries introduced, and attempting to infer a quantum theory
for these geometries.

Discrete geometries have long been used in theories of quantum gravity. In the 1970s,
Penrose introduced spin-networks as trivalent graphs with edges labelled by j = 0, 1/2, 1, . . .
[82]. Three edges meeting at a vertex were required to have their half-integer labels sat-
isfying the triangle inequalities for the addition of angular momentum: If j1, j2, j3 are the
labels of edges meeting at a vertex, then they must satisfy |j1 − j2| ≤ j3 ≤ j1 + j2. That
is to say, the labels of the edges are really the dimensions of irreducible representations of
SU(2) and edges only meet if the collision of three particles with spin ji can combine to
create a j = 0 state. From each admissible graph using the angular momentum addition,
Penrose was able to interpret the spin networks as a reconstruction of space.

More recently, spin networks are used to construct a basis of states in a Hilbert space
upon which geometrical operators such as volume and area operators act diagonally. The
area and volumes are quantized since their operators have a discrete spectrum [92, 93].

A few years prior to the introduction of spin networks, another connection between
geometry and representations of the angular momentum group was observed. The first
state-sum model – a systematic method of (formally) assigning a value to a graph based
on local data – was found by Ponzano and Regge [84]. Through generalizing the 6j-symbol
(to be explained later) they recovered what could be interpreted as a sum over three dimen-
sional Euclidean discrete geometries weighted by an approximation to the Einstein-Hilbert
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action [87]. This suggests a path integral type interpretation, where each term in the sum
is given by the value of a state sum associated to a graph embedded in some topological
3-manifold. Since the sum includes all possible labelling of the edges by positive half in-
tegers, there are infinitely many terms and the sum may diverge. Various regularization
schemes have been introduced ensure that the sums remain finite, for example by using
representations of the quantum group Uq(su(2)), with q root of unity, which has a natural
cutoff in the dimension of the representations allowed [100].

These state sum models are topological invariants of three dimensional manifolds and
can be generalized to four dimensional manifolds [100, 36]. In particular we can show that
they are invariant under an appropriate set of transformations on the 2-complex.

In this chapter, then we are interested in 1) spin-network-like states corresponding to
graphs which are 2-complexes decorated with 2-group elements or representations and 2)
topological invariants defined in terms of those 2-group decorated complexes.

For each triangulation and dual 2-complex in a manifold, the set of decorations on the
links, edges, faces, and triangles, there needs to be a set of constraints which describe
the closure of polygons and polyhedra as we saw in chapter 3. Upon quantization, these
constraints act as projectors on the space of states in order to define a physical inner
product. As a tool for generating such constraints, we introduce a 2-group field theoretic
model (2-GFT). This field theory has as variables functions defined on 2-groups. The
Feynman diagrams associated to these field theories are dual to a 2-complex, and the
amplitudes are the set of constraints that define the closure of polygons and polyhedra.

4.1 1-GFT

4.1.1 Group field theory in 3 dimensions

Let’s start by reviewing how state sums are assignments of numbers to graphs. One starts
by considering a manifold M with an associated triangulation △, where for each edge e,
one assigns a colouring ϕ(e). Every value in the image of ϕ is given a weight, so that the
weight associated to edge e is given by wϕ(e) ∈ C (the weight function will be different
depending on whether the coloured edge is on the boundary of M or not). Then for each
coloring, one assigns the number

A(M,△)ϕ =
∏

v=vertices

wv
∏

e=edges

wϕ(e)
∏

t=3-cells

Tt. (4.1)
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The product on the vertices wv, at least in the Ponzano-Regge model, which we base this
review on, gives an overall factor of (−1)V , where V is a number depending on the quantity
of vertices in the triangulation. The number associated to the tetrahedron, Tt is a function
of the six colourings of its edges. The state sum ofM is defined as the sum over all possible
colourings,

Z(M,△) =
∑
ϕ

A(M)ϕ (4.2)

The weight of the colouring and the function associated to the 3-cells must be chosen in
a consistent way. For the state sum to be topologically invariant, any two triangulations
which coincide on the boundary of M , must yield the same value for (4.2).

The simplest state sum model considered is the Ponzano-Regge model where the colour-
ing ϕ is a function from edges to positive half integers j = 0, 1

2
, 1, . . . . The weight of the

edges are chosen to be the dimension of the spin ϕ(e) representation, wj = 2j + 1. The
weight of the teterahedron are the 6j-symbols: Suppose the six edges of the tetrahedron are
labelled by ji with i = 1, . . . , 6, where the four boundary triangles are given by (j1, j2, j3),
(j1, j5, j6), (j2, j4, j5) and (j3, j4, j6). The 6j-symbol is written as{

j1 j2 j3
j4 j5 j6

}
.

The value of the 6j symbol is obtained by representing a system of three particles with
spins j1, j2, and j4 in two ways: First, by considering the tensor product of the j1 and
j2 particles obtaining a spin j3 particle to obtain a final j6 particle, and then adding the
j4 spin to that. Second, the j2 and j4 states can be added to obtain a j5 state, to which
one adds j1 to once again obtain the j6 state. The matrix elements of the isomorphism
between the two j6 representations are the 6j-symbols.

It was shown that the state sum with the above weights is topologically invariant, and
when the spins ji are large, the weight of a manifold (4.1) will approach eiSRegge , where
SRegge is an approximation to the three dimensional Einstein-Hilbert action [84, 87]. The
state sum is then thought of as a sum over such exponentials, which is interpreted as a
path integral.

The path integral for three dimensional gravity can be formally integrated as well. We
write the partition function as Z =

∫
DeDA exp

(
−i
∫
e ∧ F

)
. The integration over the

triad field gives Z =
∫
DAδ(F ). As usual, one can introduce a lattice with which to

regulate this integral as we have described before schematically giving

Z(△∗) =

∫
dh
∏
e

δ(he). (4.3)
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where he are the holonomies around the face dual to edge e, he =
∏

l= link ∈∂e∗ hl

The expression (4.3) can be seen as a product of constraints. Roughly, the delta’s are
interpreted as projectors which constrain the loops of the dual triangulation to be trivial
reflecting local flatness.

The path integral invites us to consider a diagramatic way of evaluating. This is what
group field theories provide.

Group field theories (GFTs) are field theories where the fields are functions over a
group G. These theories will be non-local: The action of the theories will involve the
field evaluated at different group variables. Through studying the interaction terms of
the theory, we will interpret the Feynman rules as being the projectors akin to those that
appear in (4.3). As such, every Feynman diagram corresponds to a triangulation, and its
amplitude is related to a transition amplitude.

The goal then is to devise an action whose propagator and interaction kernel gener-
ate the amplitudes (4.3) as Feynman diagrams. In the next subsections, we outline the
procedure in three dimensions (in order to be able to draw pictures). Then, we detail
the reasoning for the construction of an action which assigns to each Feynman diagram, a
2-complex decorated by 2-group elements.

4.1.2 Construction of the action

Let’s now go into more detail about the construction of the Boulatov GFT action [28] as a
preview of what will come. Similar constructions have been done in four dimensions, but
we will stick to three for now [79].

Our guiding principle for constructing the action of the GFT will be geometrical. The
fields themselves will be given the interpretation of three-valent nodes in the dual complex
and the variables of the fields will be interpreted as holonomy which share that node. We
therefore take the fields to be functions on SU(2)×3. In order to enforce that the links
share a node, we impose a symmetry on the field:

ϕ(g1, g2, g3) = ϕ(g1h, g2h, g3h) (4.4)

for all h ∈ SU(2). This can be enforced by defining ϕ(g1, g2, g3) =
∫
dhϕ̃(g1h, g2h, g3h),

where ϕ̃ has no symmetry imposed. (One should also consider permutations of the gi’s and
do an average over those as well. Expressions get muddied, so we will keep that averaging
implicit.)
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The action will consist of two terms: the kinetic term which will give the propagator and
a potential interaction term. Geometrically, the propagator glues two triangles together.
We write the kinetmatic term of the action as

SK =

∫ 3∏
i=1

dgiϕ(g1, g2, g3)ϕ(g3, g2, g1)

=

∫ 6∏
i=1

dgiϕ(g1, g2, g3)K(g1, g2, g3; g4, g5, g6)ϕ(g4, g5, g6).

(4.5)

The kernel K acts as a operation which sets g4 = g1 and so on. However, since ϕ is invariant
as in (4.4), so too is K. So the integration kernel can be written explicitly as

K(g1, g2, g3; g4, g5, g6) =

∫
dhδ(g1hg

−1
6 )δ(g2hg

−1
5 )δ(g3hg

−1
4 ). (4.6)

Note that one can obtain this by taking a naive approach. You can imagine a product
of deltas K̃(g1, g2, g3; g4, g5, g6) = δ(g1g

−1
6 )δ(g2g

−1
5 )δ(g3g

−1
4 ) as gluing holonomies g1, g2, g3

emanating from one vertex to holonomies g4, g5, g6 emanating from a second vertex. To
get K, one then averages over gauge transformations by setting gi → gih1 for i = 1, 2, 3
and gj → gjh2 for j = 4, 5, 6. (Note that in (4.6) one of h1 and h2 has been eliminated
using the invariance of the Haar measure.)

The Feynman diagrams themselves are dual to triangulations, which means that the
vertex terms should be quartic in ϕ since the vertex term is to be dual to a tetrahedron.
The interaction term in the action is then

SV =

∫ 6∏
i=1

dgiϕ(g1,2,3)ϕ(g3,4,5)ϕ(g4,2,6)ϕ(g5,6,1)

=

∫ 12∏
i=1

dgiV(g1,2,3; g4,5,6; g7,8,9; g10,11,12)ϕ(g1,2,3)ϕ(g4,5,6)ϕ(g7,8,9)ϕ(g10,11,12)
(4.7)

Where the notation ga,b,c = ga, gb, gc is introduced for brevity. The interaction kernel V
serves the purpose of gluing four triangles such that they form a tetrahedron. Once again,
we also insist that V is invariant under the transformation gi → gih. In particular, each gi
belonging to the same triangle is multiplied by the same h. Explicitly,

V(g1,2,3; g4,5,6; g7,8,9; g10,11,12) =
∫ 4∏

i=1

dhiδ(g1h1h
−1
4 g−1

12 )δ(g2h1h
−1
3 g−1

8 )δ(g3h1h
−1
2 g−1

4 )

δ(g5h2h
−1
3 g−1

7 )δ(ggh2h
−1
4 g−1

10 )δ(g9h3h
−1
4 g−1

11 ).

(4.8)

91



Figure 4.1: The 1-4 Pachner move which takes a tetrahedron (shown in black) and replaces
it with four tetrahedra which meet at a vertex in the center of the old tetrahedron

An important feature of this action is that it will generate topologically invariant Feynman
amplitudes. Showing the invariance means showing that the amplitude of the Feynman
diagram dual to a triangulation, △1, is equal to the amplitude of the Feynman diagram
dual to another triangulation △2 if △1 and △2 differ by a series of local transformations
called Pachner moves [4, 81].

In three dimensions, there are two such Pachner moves. First, there is the 1-4 move
which replaces a single tetrahedron by four tetrahedra sharing a vertex. This is done by
adding a vertex the the centre of the tetrahedron and then adding edges from the vertices
of the tetrahedron to the new point at the centre as shown in Fig. 4.1. The amplitude
associated with the single tetrahedron and the four tetrahedra should be the same, up to
some regularization.

In terms of Feynman diagrams representing the triangulations shown in Fig. 4.1, we
consider each tetrahedron as a vertex and the triangles as edges. Boundary triangles
appear as external legs of the diagram while internal, or bulk triangles are edges connecting
vertices. The amplitude of the diagram is calculated according to the Feynman rules in
terms with the propagator and interaction term given. The two diagrams associated to the
triangulations are shown in Fig. 4.2.

The second Pachner move is the 2-3 move which transforms two tetrahedra sharing a
triangle into three tetrahedra sharing an edge.
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Figure 4.2: The two diagrams corresponding to a 1-4 Pachner move. These two diagrams
must have equal amplitudes. Each of the external lines indicate boundary triangles/fields
ϕ and will therefore have external variables gi on them. The vertices are tetrahedra.

4.2 2-GFT in 3 dimensions

Now we will attempt to generalize the previous construction to include fields which have
as variables elements of 2-groups. More precisely the fields will be functions of the group
elements of (G, H) with the action and t-map that make the pair a 2-group. We wish to
introduce 2-groups in the GFT setting in order to make contact with work by Yetter and
Mackaay who have used 2-categories to create topological invariants for four dimensional
manifolds [72, 71]. Higher category theory also has applications to topological quantum
field theories in four dimensions, which share some similarities to gravity [15, 7]. For
simplicity we focus on three dimensions here and address the four dimensional case in the
next subsection.

In the preceding section, the idea was to write an action from which the Feynman
diagrams can be interpreted as amplitudes for triangulations.

For each diagram we wanted to identify a triangulation, and for each link in the dual
of the triangulation, we wanted to have a SU(2) holonomy, as well as the constraint that
the closed paths are trivial. Now, we want to include decorations on the surfaces between
links as well. Surfaces and their boundaries are decorated consistently using 2-groups, and
so the fields of the theory will be functions of two groups which form a 2-group.
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h1 h2Gi

gi gj

Figure 4.3: The graphical interpretation of one of the delta’s appearing in the kinematic
term of the 1-GFT in (4.9).

4.2.1 Definition of the action

Our basic fields will maintain the same interpretation they had for standard GFT (1-GFT).
Each field will depend on three group variables gi ∈ G. Additionally, it will also depend
on variables Yi,j in a group H where (G, H) form a 2-group, ϕ(g1, g2, g3;Y1,2, Y2,3, Y3,1).
The Yi,j will be interpreted (after deducing the symmetries and defining the appropriate
interaction term in the action) as the surface variable on the surface subtended by gi and
gj.

To guide the formulation of the action of the GFT based on 2-groups, let’s interpret
the previous section’s action geometrically.

The kinetic term of the action (4.6) may be written as

K(g1, g2, g3; g4, g5, g6) =

∫
dh1dh2dG1dG2dG3

δ(g1h1G
−1
1 )δ(G1h

−1
2 g−1

6 )δ(g2h1G
−1
2 )

δ(G2h
−1
2 g−1

5 )δ(g3h1G
−1
3 )δ(G3h

−1
2 g−1

4 ),

(4.9)

Where Gi have been introduced and may be integrated out trivially to recover (4.6). Writ-
ing in this way allows for an interpretation that is more easily generalisable. We can think
of each of the delta’s above as loops in a graph as shown in Fig. 4.3. Writing it in this way
let’s us view K as gluing the Gi’s of different loops in order to create a larger loop which
has a boundary curve of the form gig

−1
j .

In the 2-GFT, we will augment this picture by includingXi ∈ H on the surfaces enclosed
by gi, h, and Gi, which we can imagine as having its source at h−1g−1

i . We demand that
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G1

X1

X2
h1

g1
Y1,2

g2

G2

Figure 4.4: The closed polyhedron which is encoded in the delta’s of the 2-group GFT
kinematic term.

the holonomy around the surface is equal to t(Xi), as is necessary for a bigon representing
an element of a 2-group. Just as h plays the role of enforcing gauge invariance, we will see
that X will play a role in enforcing 2-gauge invariance of the kinematic propagator.

Introducing the surface variable X in the delta functions is the first generalisation
needed for 2-GFT. Next, one should consider how to incorporate the new Yi,j variables.
We impose, via delta functions that Xi, Xj, and Yi,j are all sides of a tetrahedron. The
fourth side we label βi,j, and is only used as an intermediate step like the Gi’s were: They
are the faces on which we glue different tetrahedra. The kinematic term in the action
should then be a product of delta functions imposing the closure of the polyhedra with
boundary tetrahedra Xi, Xj, Yij and βij. The picture is shown in 4.4. By “closure”, we
mean the composition of the surface variables should be trivial.
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This, together with the constraint on the bigons gives:

K(g1,2,3;Y1,2,3; g4,5,6;Y4,5,6) =

∫
dh1dh2

6∏
a=1

dXa

∏
dβ

3∏
i=1

dGiδ(Gigih1t(X
−1
i ))

6∏
j=4

dGjδ(Gjgjh2t(X
−1
j ))

δ(X1X
−1
2 (G−1

2 ▷ Y2,1)(G
−1
2 ▷ β2,1))δ(X2X

−1
3 (G−1

3 ▷ Y3,2)(G
−1
3 ▷ β3,2))

δ(X3X
−1
1 (G−1

1 ▷ Y1,3)(G
−1
1 ▷ β1,3))δ(X4X

−1
5 (G−1

5 ▷ Y5,4)(G
−1
5 ▷ β5,4))

δ(X5X
−1
6 (G−1

6 ▷ Y6,5)(G
−1
6 ▷ β6,5))δ(X6X

−1
4 (G−1

4 ▷ Y4,6)(G
−1
4 ▷ β4,6))

δ(G1G
−1
4 )δ(G2G

−1
5 )δ(G3G

−1
6 )δ(β1,2β

−1
4,5)δ(β2,3β

−1
4,6)δ(β3,1β

−1
6,4)

(4.10)

Geometrically, this long expression provides the following information: The first line of
delta functions imposes that the X’s are surface variables with the correct combination of
g, G, and h on its boundary. The next six deltas impose that, say, X1, X2, Y1,2 and βij
form a closed polyhedron. The G′s that appear in these six deltas are to ensure that the
variables are sourced at the correct place (this is not strictly needed, but will turn out to
give a cleaner interpretation). The final six deltas are the identification of different edges
G and surfaces β which results in the interpretation of K being the object which acts as
glue between two fields.

As the Gi’s and βi,j’s were introduced strictly for illustrative purposes, we can eliminate
them altogether to get a slightly nicer expression. Some of the X’s can also be eliminated
as well giving:

K(g1,2,3;Y1,2,3; g4,5,6;Y4,5,6) =

∫
dh

3∏
i=1

dXi

δ(g1t(X
−1
1 )h−1g−1

4 )δ(g2t(X
−1
2 )h−1g−1

5 )δ(g3t(X
−1
3 )h−1g−1

6 )

δ(X2(g
−1
2 ▷ (Y5,4Y1,2))X

−1
1 )δ(X3(g

−1
3 ▷ (Y6,5Y2,3))X

−1
2 )

δ(X1(g
−1
1 ▷ (Y4,5Y3,1))X

−1
3 )

(4.11)
where the notation Yi,j,k = Yi,j, Yj,k, Yk,j is introduced and Y −1

i,j = Yj,i.

For the interaction term, one can consider twelve tetrahedra as described before with
deltas combining them appropriately. Instead of going through the procedure as before,
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we skip to the interaction kernel immediately:

V(g1,2,3;Y1,2,3; g4,5,6;Y4,5,6; g7,8,9;Y7,8,; g10,11,12;Y10,11,12) =
∫ 12∏

i=1

dXi

4∏
j=1

dhj

δ(g1h1t(X
−1
1 X12)h

−1
4 g−1

12 ) δ(g2h1t(X
−1
2 X8)h

−1
3 g−1

8 )

δ(g3h1t(X
−1
3 X4)h

−1
2 g−1

4 ) δ(g5h2t(X
−1
5 X7)h

−1
3 g−1

7 )

δ(g6h2t(X
−1
6 X10)h

−1
4 g−1

10 ) δ(g9h3t(X
−1
9 X11)h

−1
4 g−1

11 )

δ(X1(h
−1
1 g−1

2 ▷ Y2,1)X
−1
2 X8(h

−1
3 g−1

9 ▷ Y9,8)X
−1
9 X11(h

−1
4 g−1

12 ▷ Y12,11)X
−1
12 )

δ(X2(h
−1
1 g−1

3 ▷ Y3,2)X
−1
3 X4(h

−1
2 g−1

5 ▷ Y5,4)X
−1
5 X7(h

−1
3 g−1

8 ▷ Y8,7)X
−1
8 )

δ(X3(h
−1
1 g−1

1 ▷ Y1,3)X
−1
1 X12(h

−1
4 g−1

10 ▷ Y10,12)X
−1
10 X6(h

−1
2 g−1

4 ▷ Y4,6)X
−1
4 )

δ(X5(h
−1
2 g−1

6 ▷ Y6,5)X
−1
6 X10(h

−1
4 g−1

11 ▷ Y11,10)X
−1
11 X9(h

−1
3 g−1

7 ▷ Y7,9)X
−1
7 )

(4.12)

As a short cut to arriving at (4.12) we can take the approach of writing the “non-
gauge invariant” constraints and performing a group averaging. For example, starting
with δ(g1g

−1
12 ) and then averaging over 2-gauge transformations on g1 given by parameters

(h1, X1) and transformations on g12 given by (h4, X12), we arrive at the result. The same
logic holds for the last four deltas. The h’s and X’s appear as gauge parameters for 2-gauge
transformations of g−1

i ▷ Yji.

4.2.2 Topological invariance and consistency checks

We have now defined a 2-GFT. The action is given by

S =

∫
dgi dYijK(g1,2,3;Y1,2,3; g4,5,6;Y4,5,6)ϕ(g1,2,3;Y1,2,3)ϕ(g4,5,6, Y4,5,6)+

V(g1,2,3;Y1,2,3; g4,5,6;Y4,5,6; g7,8,9;Y7,8,; g10,11,12;Y10,11,12)
ϕ(g1,2,3;Y1,2,3)ϕ(g4,5,6;Y4,5,6)ϕ(g7,8,9;Y7,8,9)ϕ(g10,11,12;Y10,11,12)

(4.13)

We now need to verify that this action provides Feynman graphs which are dual to tri-
angulations of 3-manifolds and the amplitude of those graphs are projectors (products of
delta functions) which impose the correct closure of loops and two-dimensional surfaces.
We shall also check that the action is topologically invariant.

In the following calculations, we assume that the Haar measures dgi and dYij are
invariant under multiplication by the left and the right (the measures are unimodular).
We also assume that dYij is invariant under the action of the group G. These assumptions
make everything much simpler.
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The first thing to check is that K defines a meaningful propagator. So we check∫
dui dZijK(g1,2,3;Y1,2,3;u1,2,3;Z1,2,3)K(u1,2,3;Z1,2,3; g4,5,6;Y4,5,6) =

K(g1,2,3;Y1,2,3 ; g4,5,6;Y4,5,6). (4.14)

We begin writing the left hand side∫
dui dZijK(g1,2,3;Y1,2,3;u1,2,3;Z1,2,3)K(u1,2,3;Z1,2,3; g4,5,6;Y4,5,6)

=

∫ 4∏
i=1

dhi

12∏
i=1

dXi dui dZijδ(g1h1t(X
−1
1 X4)h

−1
2 u−1

1 ) δ(g2h1t(X
−1
2 X5)h

−1
2 u−1

2 )

δ(g3h1t(X
−1
3 X6)h

−1
2 u−1

3 )δ(X1(h
−1
1 ▷ Y2,1)X

−1
2 X4(h2 ▷ Z2,1)X

−1
5 )

δ(X2(h
−1
1 ▷ Y3,2)X

−1
3 X5(h2 ▷ Z3,2)X

−1
6 )δ(X3(h

−1
1 ▷ Y3,2)X

−1
1 X6(h2 ▷ Z1,3)X

−1
6 )

δ(u1h3t(X
−1
1 X4)h

−1
4 g−1

4 ) δ(u2h3t(X
−1
2 X5)h

−1
4 g−1

5 ) δ(u3h3t(X
−1
3 X6)h

−1
4 g−1

6 )

δ(X7(h
−1
3 ▷ Z2,1)X

−1
8 X10(h4 ▷ Y5,4)X

−1
11 )

δ(X8(h
−1
3 ▷ Z3,2)X

−1
9 X11(h4 ▷ Y6,5)X

−1
12 )

δ(X9(h
−1
3 ▷ Z3,2)X

−1
7 X12(h4 ▷ Y4,6)X

−1
12 )

(4.15)

One can use the first three deltas to eliminate the ui’s (this uses the invariance of the Haar
measure on G). The Z’s may be integrated out as well, taking with them six superfluous
X dummy variables. All this yields the right hand side of (4.14).

As a consistency check, we might as well integrate out the gauge variables (h’s and
X’s) in K(g123;Y123; g456;Y456) as a way to illustrate why the Feynman diagrams and the
amplitudes are related. A Feynman diagram with amplitude K is one with no interaction
vertices. We will consider external lines in a Feynman diagram to be triangles on the
boundary of the 3-manifold. In this case, we have two external legs, hence our geometric
picture is that of a triangulation of a 2-sphere with two triangles.

After integrating h and X’s in the propagator (4.11) we find

K(g123;Y123; g456;Y456) = δ(t(g−1
2 ▷ (Y5,4Y1,2))g

−1
1 g4g

−1
5 g2)

δ(t(g−1
3 ▷ (Y6,5Y2,3))g

−1
2 g5g

−1
6 g3) (4.16)

δ((g−1
3 ▷ (Y5,4Y1,2))(g

−1
2 ▷ (Y5,4Y1,2))(g

−1
1 ▷ (Y4,6Y3,1)))

Reading this as a series of constraints, the first tells us that the surface decorated with
g−1
2 ▷ (Y5,4Y1,2) is enclosed by holonomy g−1

1 g4g
−1
5 g2. The second constraint is similarly
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telling us that the boundary of the surface g−1
3 ▷ (Y6,5Y2,3) is given by g−1

2 g5g
−1
6 g3. The

final piece of the puzzle is that the three surfaces mentioned combine to make a closed two
dimensional surface (g−1

3 ▷ (Y5,4Y1,2))(g
−1
2 ▷ (Y5,4Y1,2))(g

−1
1 ▷ (Y4,6Y3,1)) = 1. This is precisely

the triangulation on the sphere as expected. One can consider the gi’s as half links, and
combinations like g−1

1 g4, g
−1
2 g5 and g−1

3 g6 are therefore the links dual to edges. The Yi,j’s
are then interpreted as half surfaces. The role of the gauge variables h and X is then to
glue these half-links and half-surfaces together.

In a similar fashion we can integrate the gauge variables out of the interaction term.
Since this is a four-valent vertex, the corresponding triangulated manifold is simply a
tetrahedron. The four external legs indicate the four faces.

Finally, we need to consider what makes such a theory topologically invariant. That the
theory be topologically invariant means that the amplitude associated to any particular
triangulation is the same as the amplitude of another triangulation of a homeomorphic
manifold which has the same boundary triangulation.

Triangulations of homeomorphic manifolds are related by a series of Pachner moves.
In three dimensions, there are two such moves: the 1-4 move and the 2-3 move, as well as
their inverses as described previously.

At the level of the Feynman diagrams, the 1-4 move relates to taking a single vertex
and replacing it with four vertices as is shown in Fig. 4.2.

The action we defined with (4.12) and (4.11) satisfy the following property, up to some
divergent factor:

V (g1,2,3;Y1,2,3; g4,5,6;Y4,5,6; g7,8,9;Y7,8,9; g10,11,12;Y10,11,12) =∫
(
∏

du)(
∏

dw)(
∏

dz)(
∏

dy)(
∏

dZ)(
∏

dC)(
∏

dB)(
∏

dA)

V (g1,2,3;Y1,2,3;u1,2,3;Z1,2,3;u4,5,6;Z4,5,6;u7,8,9;Z7,8,9)

V (g4,5,6;Y4,5,6;w1,2,3;A1,2,3;w4,5,6;A4,5,6;w7,8,9;A7,8,9)

V (g7,8,9;Y7,8,9; z1,2,3;B1,2,3; z4,5,6;B4,5,6; z7,8,9;B7,8,9)

V (g10,11,12;Y10,11,12; y1,2,3;C1,2,3; y4,5,6;C4,5,6; y7,8,9;C7,8,9)

K(u1,2,3;Z1,2,3;w1,2,3;A1,2,3)K(w4,5,6;A4,5,6; z1,2,3;B1,2,3)

K(z7,8,9;B7,8,9; y7,8,9;C7,8,9)K(y4,5,6;C4,5,6;w4,5,6;A4,5,6)

K(u7,8,9;Z7,8,9; y1,2,3;C1,2,3)K(u4,5,6;Z4,5,6; z4,5,6;B4,5,6),

(4.17)

The divergent factor that appears is due to the internal loop of (4.2) corresponding to the
internal vertex. The same occurs in the Ponzano-Regge model as well and one needs to
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introduce some regularization. Showing that (4.17) is true requires the use of properties
such as

∫
dudZK(ua,b,c, Za,b,c;wa,b,c, Aa,b,c)V(ua,b,c;Za,b,c; . . . ) = V(wa,b,c;Aa,b,c; . . . ) which

can be derived after a calculation. The details are left out as a mercy to the reader.

The property (4.17) tells us that the model described is invariant under the 1-4 move.
One can check the other move in a similar way to conclude that the theory is indeed
topologically invariant.

4.3 2-GFT in 4 dimensions

The previous construction works similarly in four dimensions. In three dimensions, the
arguments of the field were interpreted as encoding a triangle, more specifically its dual
picture: Three links gi emanating from a shared node and the three surfaces Yi,j subtended
by pairs of links. In four dimensions then, the arguments of the field should be four group
elements of G and six decorations in H each living on the surface between any two pairs
of links. Since each vertex should be dual to a 4-simplex (which has five tetrahedra on its
boundary) they should be 5-valent and the interaction term should be quintic in ϕ.

Using the same rational as in the three dimensional case, the kinematic term in the
action is

K(g1,2,3,4;Y1,2,3,4; g5,6,7,8;Y5,6,7,8) =

∫ 8∏
i=1

dXi

2∏
j=1

dhjδ(g
′
1g

′
8
−1)δ(g′2g

′
7
−1)δ(g′3g

′
6
−1)δ(g′4g

′
5
−1)

δ(Y ′
1,2Y

′
8,7

−1)δ(Y ′
2,3Y

′
7,6

−1)δ(Y ′
3,4Y

′
6,5

−1)δ(Y ′
4,1Y

′
5,8

−1)δ(Y ′
1,3Y

′
8,6

−1)δ(Y ′
2,4Y

′
7,5

−1)
(4.18)

where the primes indicate the same 2-gauge transformations as in the previous section under
corresponding X and h parameters, for example g′1 = g1h1t(X1)

−1 and Y ′
ij = Xj(h

−1g−1
j ▷

Yij)X
−1
i . The interaction term is

V(g1,2,3,4;Y1,2,3,4; g5,6,7,8;Y5,6,7,8; g9,10,11,12;Y9,10,11,12; g13,14,15,16;Y13,14,15,16; g17,18,19,20;Y17,18,19,20) =∫
dhidXjδ(g

′
1g

′
20

−1) δ(g′2g
′
14

−1) δ(g′3g
′
10

−1) δ(g′4g
′
5
−1) δ(g′6g

′
19

−1)

δ(g′7g
′
15

−1) δ(g′8g
′
9
−1) δ(g′11g

′
18

−1) δ(g′12g
′
13

−1) δ(g′16g
′
17

−1)

δ(Y ′
1,2Y

′
17,20Y

′
14,16) δ(Y

′
2,3Y

′
13,14Y

′
10,12) δ(Y

′
3,4Y

′
9,10Y

′
5,8) δ(Y

′
4,1Y

′
6,5Y

′
20,19) δ(Y

′
1,3Y

′
18,20Y

′
10,11)

δ(Y ′
2,4Y

′
15,14Y

′
5,7) δ(Y

′
6,7Y

′
17,19Y

′
15,16) δ(Y

′
7,8Y

′
13,15Y

′
9,12) δ(Y

′
8,6Y

′
11,9Y

′
19,18) δ(Y

′
11,12Y

′
17,18Y

′
13,16)

(4.19)
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Once again this action is invariant under the Pachner moves in four dimensions. This
was proven in [58].

The general shape of the amplitude of the 2-GFT which can be seen as the dual of a
4d triangulation T (with no boundary) is given by

ZT =

∫
dXdh

∏
t

δG(htt(Xt))
∏
e

δH(Xe), (4.20)

where Xt ∈ H decorates the face dual to the triangle t ∈ T , while ht ∈ G decorates the
boundary of this face. Xe ∈ G decorates the closed surface dual to an edge e ∈ T .

4.4 Quantization of BFCG

Finally, we make contact with an existing state sum model, the KBF model [23, 21] and try
to connect it to the BFCG model introduced previously. The follows the procedure for the
derivation of the Ponzano-Regge state sum, at least formally. We consider the partition
function of the Euclidean 2-group (G = SO(4), H = R) in four dimensions and formally
integrate out the B field (as before) and the C field to get,

ZBFCG =

∫
DBDADCDΣexp

(
i

∫
M4

⟨B ∧ F ⟩+ ⟨C ∧G⟩
)

=

∫
DADΣ δ(F )δ(G), (4.21)

from which we see that the 2-gauge theory is flat (F = 0) and 2-flat (G = 0).

To regularize the integral, we introduce a triangulation △ of the manifold and its
corresponding Poincaré dual △∗ as usual. On the cells of the complex △∗ we recall the
smeared 1- and 2-connections

Hl = P exp

∫
l

A Xf (n) = exp

∫
f

Σ (4.22)

where l, f ∈ △∗ are links and faces of the dual complex. The node n ∈ △∗ is where the
surface variable is rooted as an element of the Euclidean 2-group. As such, in the integral,
Σ must be rooted at n as well. The regularized partition becomes (in accordance with
(4.20))

Z =

∫
DHlDXf

∏
f∈△∗

δSO(4)

(∏
l∈∂f

H
ϵ(l|f)
l

) ∏
b∈△∗

δR4

(∑
f∈∂b

ϵ(f |b)X ′
f (n)

)
(4.23)
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where b are the bubbles (three dimensional cells in △∗) and ϵ(f |b) is ±1 depending on the
orientation. The prime on the Xf ’s indicates that appropriate whiskering has been done
in order to compose the face variables. Such a 2-group state sum model in the finite case
is the Yetter-model [105]. The connection between the Euclidean 2-group BFCG theory
and the Yetter-type model came up in [57].

Another state sum similar to the Ponzano-Regge model is the KBF model [67, 23,
21], which arises from the representation theory of the Euclidean 2-group. In general
representations of 2-groups appear as objects in 2-categories [14]. The KBF model uses
concrete representation of the Euclidean 2-group to construct state sums.

The KBF model is defined on a triangulated 4-manifold. The edges e are labelled with
positive real numbers le and the triangles t are labelled with integers st. The partition
function is

ZKBF =

∫
dle dst

∏
t∈△

2At({le})
∏
τ∈△

(−1)
∑

t∈τ st
∏
σ∈△

cos (SKBF )

4!Volσ ({le})
(4.24)

where σ are the 4-simplicies of the triangulation, At is the area of triangle t as a function
of the lengths, and the KBF action is SKBF =

∑
ℓ∈σ stΘt({le}) with Θ being the dihedral

angle at which two tetrahedra meet at t. The functional measure st here is simply the
counting measure st =

∑
st∈Z. The quantity Volσ{le} is the volume of the 4-simplex σ

which has edges labelled by ℓe. Note the similarity between the KBF action and the
action of the Regge calculus approximation of the Einstein action in three dimensions -
SR =

∑
jeθe, where je is the spin number on edge e and θ is the angle between the two

triangles meeting at e [87].

The goal is to connect the two pictures in (4.24) and (4.23). This is a non-trivial step
as there is no analogue of the Peter-Weyl theorem for any 2-groups. Nevertheless, guided
by (discrete) geometrical insights and due to the nature of the 2-group being skeletal, we
can recover by hand a (2-)representation picture (ie (4.24)) of the partition function (4.23).

To do so we once again take inspiration from the Ponzano-Regge model in three dimen-
sions, seeing the partition function as a projection operator acting on a boundary state ψ
[88]

ZBF (ψ) =

∫
dhe ZBF (△)ψ(he)

=

∫
dhe

∏
f∈faces

δ

(∏
l∈∂f

hl

)
ψ(he)

(4.25)

One then has to give details regarding these boundary states. They must belong to a
Hilbert space of spin-network states, meaning that ψ is a function of the holonomies,
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ψ ∈ C(SU(2)V ), where V is the number of vertices of the boundary graph. Furthermore, the
space of states also must be invariant under gauge transformations, ψ(he) = ψ(ht(e)hehs(e)),
where hs(e) and ht(e) are gauge transformations occurring at the source and edge of the edge
e. To impose this invariance, the Gauss constraint, which generates the transformation, is
promoted to an operator and we demand that ψ is in its kernel. The Ponzano-Regge state
sum can then be recovered by writing ψ in its Fourier components, using the Peter-Weyl
theorem.

In order to do a similar thing here, we need to define the Hilbert space on which the
projector (4.23) acts. To do that, we need to impose some kinematic constraints: The 1-
and 2-Gauss constraints, as well as the edge simplicity constraints, which we recall as a
weaker condition than flatness.

As a first step, we consider functions of the boundary holonomies and 2-holonomies
which we denote by hl and xf . Since we are aiming for something akin to the KBF model,
we would prefer to work in terms of edge variables. For this reason we perform a Fourier
transform in the R4 sector:

ψΓ(hl, xf ) =:

∫
dℓf e

i
∑

f ℓf ·xf ψ̃Γ(hl, ℓf ), (4.26)

where Γ is the boundary complex of △∗, the dual triangulation of the manifold. Here we
introduce the R4 variables ℓf . Similarly in the partition function (4.23), we can write the
delta function on the R4 sector as

δR4

( ∑
f :f∈∂b

ϵ(f |b)X ′
f (n)

)
=

1

(2π)4

∫
R4

d4Lb exp

(
i Lb ·

∑
f :f∈∂b

ϵ(f |b)X ′
f

)
. (4.27)

Integrating out Xf will yield the partition function in terms of the new L variables only,

Z =

∫
DHlDLb

∏
f∈△∗

δSO(4)

(∏
l∈∂f

H
ϵ(l|f)
l

) ∏
f∈△∗

δR4

(∑
b:f∈∂b

ϵ(f |b)L′
b.

)
(4.28)

As the new L variable are dual to the 2-holonomies, we can gather from the discussion in
section 3.3.2 that these discrete variables my be defined by

Lb := Le =

∫
e

C

where we make explicit the connection between the 3-cell b in △∗ and the edge e = b∗

in △. The second delta function in (4.28) therefore is the closure of the triangle edges,
corresponding to the constraint dAC = 0.
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For concreteness going forward, we stick to the case where the manifold in question is
triangulated by a single 4-simplex, which we call σ and the simplicies are labelled according
to the conventions described in section 3.3.2. The boundary amplitude is formally given
by

Z(σ|ψ̃Γ) =

∫
dhldℓe

∏
f∈Γ

δSO(4)

( ∏
l:l∈∂f

h
ϵ(l|f)
l

) ∏
t:t∈∂σ

δR4

(∑
e:e∈t

ϵ(e|t)ℓ′e
)
ψ̃Γ(hl, ℓe). (4.29)

As mentioned, we will need to impose edge simplicity in a similar way we did in section
3.3.2. Each vector ℓe, is defined implicitly with respect to a reference frame and each
reference frame is defined by one of the five tetrahedra making up σ. The holonomies hl
act on the ℓe’s by changing their reference frame. In order to refer to the edge variables ℓe
in an unambiguous way, we impose

he∗ ▷ ℓe = ℓe (4.30)

where he∗ =
∏

l∈∂e∗ hl. This is the same edge simplicity constraint that was introduced
when we discretized the symplectic potential for BFCG theory. It is necessary since one
edge is shared by multiple triangles, in order to write the closure of triangles consistently we
need to be able to express the edges in multiple frames. This constraint is the minimum
necessary for the closure of the triangles to be independent of the frame we choose to
express the constraint in [41, 102].

The edge simplicity constraint actually implies that he∗ has only one free parameter for
each link. To see this we note that if τ and τ ′ are two tetrahedra sharing triangle t, then
edge simplicity implies

ℓe[τ
′] = ht∗ ▷ ℓe[τ ] (4.31)

where the square brackets indicate the frame in which the variable is represented. Taking
any two edges on the boundary of t, say e1 and e2, we can factor ht∗ into one piece which
fixes the e1-e2 plane, and one which does not,

ht∗ = Bt∗Rt∗ (4.32)

The SO(4) element Rt∗ is defined uniquely by the requirements

ℓei [τ
′] = Rt∗ ▷ ℓei [τ ] n′

τ [τ
′] = Rt∗ ▷ nτ (τ) (4.33)

where nτ is the unique, up to a sign, normal vector to the tetrahedron τ ie it is normal to
the hyperplane containing τ . Bt∗ stabilizes the t:

ℓe1 [τ
′] = Bt∗ ▷ ℓe2 [τ ′] and ℓe2 [τ

′] = Bt∗ ▷ ℓe2 [τ ′]. (4.34)
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Any rotation leaving the e1-e2 unrotated can be parameterized by a single angle θt. In a
specific representation, where J are the generators of so(4), we can write

Bt∗ = exp

(
θt
⋆(ℓe1 [τ

′] ∧ ℓe2 [τ ′]) · J
2At

)
, (4.35)

where the ⋆ operator is given by ⋆(ℓ ∧ ℓ′)ab := 1
2
ϵabcdℓc ℓ

′
d and again, At is the area of the

triangle t.

4.4.1 4-simplex phase space: fixing notations

In this section we will reiterate some of the features of section 3.3.2, where we did a similar
construction. The goal of this section is to fix the labels/decorations of the 4-simplex and
its dual to prepare for the quantization procedure. This will allow us in particular to get
the explicit shape of the relevant constraints to consider.

Again, we only consider a triangulation given by a 4-simplex, which has five tetrahedra
on its boundary labelled by 1, 2, 3, 4, 5. We define the discrete variables by smearing the
continuous fields over the simplicies of the triangulation and its dual.

hji = exp

∫
(ji)

A xkji = exp

∫
(kji)

Σ

b(ij)∗ =

∫
(ij)∗

B ℓkji =

∫
(kji)∗

C (4.36)

The constraints in these variables are the following. First there is the 1-Gauss constraint

1Gabi =
∑
j:j ̸=i

babji − 2
∑

k,j:k>j>i

ℓ
[a
kjix

b]
kji (4.37)

which generates the action of SO(4) on so(4), R4 and R4∗. Then there is the 2-Gauss
constraint

2Gkji =


−ℓki + ℓkj + ℓji if ī, j̄, k̄ ̸= 1̄

−ℓk1 + h21 ▷ ℓkj + ℓj1 if ī = 1̄; j̄, k̄ ̸= 2̄

−h32 ▷ ℓk1 + h31 ▷ ℓk2 + ℓ21 if (̄i, j̄) = (1̄, 2̄); k̄ ̸= 3̄

−h42 ▷ ℓ31 + h41 ▷ ℓ32 + h43 ▷ ℓ21 if (̄i, j̄, k̄) = (1̄, 2̄, 3̄)

(4.38)

Recall that the overline refers to the vertices of the triangulation and not the nodes in
the dual triangulation. In (4.38) we have chosen a particular frame in which to base these
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constraints. The requirement that the constraints are consistent with closed triangles in a
tetrahedron is satisfied by the edge simplicity which we will mention again shortly. These
constraints generate one sector of the shift symmetry of the BFCG action.

The other sector of the shift symmetry is given by the 1-flatness constraint

1Fkji = hikhkjhji − ISO(4) (i < k < j). (4.39)

This constraint evidently tells us that the holonomy around a closed loop is the identity,
hence the usual notion of flatness in a gauge theory.

Finally, the 2-flatness comes as the closure of the face variables

2Fmkji = xkji + xmki − xmji − h−1
ji ▷ xmkj (i < j < k < m). (4.40)

Again there was a choice made in writing (4.40) as to which frame things are expressed.
Again, the edge simplicity constraint ensures consistency no matter which choice we make.

Speaking of edge simplicity, we would like to impose those constraints on our kinematic
Hilbert space which ensure the boundary data is geometric. By this we mean, if we are
saying the ℓ variables are edges of a triangle, then the sum of the ℓ’s belonging to the
edges of the triangle had better be zero. This is given to us by the 2-Gauss constraint. We
would also like that these triangles are part of tetrahedra. In particular, looking at the
tetrahedron labelled by (2) the four boundary triangle constraints are obtained by reading
those entries in (4.38) which don’t contain the index 2. They are

h21 ▷ ℓ45 + h21 ▷ ℓ53 + h21 ▷ ℓ34 = 0; h21 ▷ ℓ34 + ℓ41 + ℓ13 = 0;

h21 ▷ ℓ53 + ℓ15 + ℓ31 = 0; h21 ▷ ℓ45 + ℓ51 + ℓ14 = 0.
(4.41)

From these, one can construct a tetrahedron which has side lengths {h21 ▷ℓ45, h21 ▷ℓ53, h21 ▷
ℓ34, ℓ51, ℓ41, ℓ31}, which is consistent with the geometric picture we are describing.

On the other hand, if we consider the tetrahedron labelled by (5), we get the following
triangle constraints

h43 ▷ ℓ12 + h41 ▷ ℓ23 + h42 ▷ ℓ31 = 0; h31 ▷ ℓ42 + h32 ▷ ℓ14 + ℓ21 = 0;

h21 ▷ ℓ34 + ℓ41 + ℓ13 = 0; ℓ43 + ℓ24 + ℓ32 = 0.
(4.42)

From here it is not possible to identify six edges which make up a tetraherdon, or equiv-
alently, we cannot say that these four constraints describe the boundary triangles of a
shared tetrahedron. To do so, we need to identify some connection between something like
ℓ32 and h41 ▷ ℓ32 which appear. This is precisely what edge simplicity does:

(Ekji)b := (ℓkji)a(
1Fkji)

a
b = (ℓkji)a(hikhkjhji)

a
b − (ℓkji)b , (i < k < j). (4.43)
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4.4.2 Quantization: G-networks

The quantization method formalized in the Dirac method [39]. The classical variables
are promoted to operators, the Poisson brackets are replaced by commutators, and the
constraints are lifted to operators which annihilate the physical states, which are vectors
in a representation of the operator algebra.

The Hilbert space chosen here are square integral functions,

H = L2

(⊗
i<j

SO(4) ⊗
⊗
i<j<k

R4

)
(4.44)

with states ψ̃(hji, ℓkji) ∈ H. The operator ĥjiab acts multiplicatively on ψ̃

ĥjiabψ̃((hji, ℓkji) = hjiabψ̃((hji, ℓkji) (4.45)

picking out the ab component of hij. The states are similarly diagonal for the ℓ operators.
The dual variables, the b’s and the x’s will be defined by derivatives,

xakji → −i ∂

∂ℓakji
(4.46)

and bji is represented by iLji, the left invariant derivative defined by

Labji ψ̃(hji, ℓkji) :=
d

dt |t=0
ψ̃(hjie

tJab

, hj′i′ , ℓkji). (4.47)

(On the right hand side, only the variable hji whose indices match those of Lji is multiplied

by etJ
ab
.)

The constraints are written in terms of these operators as well. For example

2Fa
mkji ψ̃ = −i

(
∂

∂ℓakji
+

∂

∂ℓamki
− ∂

∂ℓamji
− (hij)ab

∂

∂ℓbmkj

)
ψ̃. (4.48)

The boundary data, the variables (hl, ℓe) are given geometric meaning by the 1- and
2-Gauss constraints, and by the edge simplicity constraint. We therefore will impose that
these constraints annihilate ψ̃:

1Giψ̃ = 0, 2Gjiψ̃ = 0 Ekjiψ̃ = 0 (4.49)
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Recall that we started by wanting to recover the KBF model, which requires positive
numbers on the edges and integers on faces. The imposition of the 1-Gauss constraint
reduces the degrees of freedom of the ℓ variables so that only their lengths, le :=

√
ℓe · ℓe > 0

are left. These will be the positive numbers decorating the edges.

To introduce the integer variable on faces, we recall that the edge simplicity reduces
each holonomy ht to a single angle θt and we can write ψ̃(ht, ℓe) = ψ̃(θt(ℓe, ht), le(ℓe)). The
states ψ̃ are therefore periodic functions and we can perform a Fourier transform,

ψ̃(θt, le) =
∑
zt∈Z

∏
t∈σ

exp(istθt)Ψ̃(st, le). (4.50)

We now see that the integers st of the KBF model arise since Z is dual to U(1), the gauge
group post-edge simplicity.

The partition function

Z(σ|ψ̃Γ) =

∫
hlℓe

∏
f∈Γ

δSO(4)

( ∏
l:l∈∂f

h
ϵ(l|f)
l

) ∏
t:t∈∂σ

δR4

(∑
e:e∈t

ϵ(e|t)ℓ′e
)
ψ̃(hl, ℓe). (4.51)

can now be simplified dramatically. The delta in the R4 sector is now redundant since
we already assume that ψ̃ satisfies the constraint. The SO(4) delta function imposes the
1-flatness constraint. Since we have already imposed the edge simplicity constraint, this
delta can be simplified. From (4.35), we see that theta is the angle relating the normal
nτ viewed from two different tetrahedra. In the case where the tetrahedra are embedded
in a flat manifold (as in the case where the 1-flatnesss constraint holds) it is the dihedral
angle between the two tetrahedra sharing t, up to an overall sign. We denote the dihedral
angle Θ(l) to remind us that it is in fact determined by the edge lengths. Therefore, the
only remaining constraint on the SO(4) sector must impose that the variables θt are the
dihedral angles,∑

ϵ=±1

δ(exp(iθt − iϵΘt(l)) =
∑
ϵ=±1

∑
st∈Z

exp(−ist(θt − ϵΘt(l))). (4.52)

The sum over ±1 will bring about the cos(SKBF ) appearing in (4.24). All together the
partition function can be written as

Z(σ|Ψ̃) =

∫
dlest

∏
t

√
2At

cos(SKBF )

4!Volσ
Ψ̃(st, le) (4.53)

The
√
2At factor arise by normalization of the states in the Hilbert space.
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We emphasize the importance of imposing some part of the flatness constraint in order
to achieve this reformulation. We have therefore related the partition function (2.66) to
the KBF partition function (4.24) which was shown to be a state sum model in terms of
the 2-representations of the Poincaré 2-group [23].

The highlight of this construction is that we were able to connect the Euclidean 2-group
BFCG partition function to the KBF model defined in terms of the 2-representations of
the Euclidian 2-group, without knowledge of a Plancherel formula or a Peter-Weyl theorem
for the 2-representations of the Euclidian 2-group.

109



Chapter 5

Conclusion

We have analysed a family of topological theories which generalise BF theory. Through
analysis of boundary charges we found to independent diffeomorphism charges which are
dual to one another. These charges are obtained from considering the gauge transforma-
tions and their respective charges on codimension-2 surfaces. To recover these charges it
is necessary to choose a particular decomposition for the underlying gauge group.

A useful example is the SO(4)⋉R4 BF theory, where the connection field belongs to the
Euclidean group and the B-field is in the commutative dual Lie algebra. One can discretize
this theory and obtain the standard cotangent bundle phase space T ∗(SO(4)⋉R4). On the
other hand, by introducing a boundary term, one can write the BF theory as a BFCG theory
instead, which is better seen as a 2-gauge theory with Euclidean 2-group symmetries. This
change of polarisation lends itself to a different discretization which is better described by a
pair of 2-gauge theories with 2-groups SO(4)⋉R4 and so∗(4)×R4 ∼= R6×R4. Through this
semi-dualisation we can discretize the BFCG action not only on triangles in a triangulation
△ and links in the dual complex △∗, but also on edges in △ and two dimensional faces in
△∗.

These extra decorations on edges in the triangulation and faces in the dual complex
are precisely the type of construction necessary to accommodate non abelian flux variables
in spin foam models. A first step in this direction is to replace the 2-group R4 × R6 by
the nonabelian AN(3) ⋉ R6, so that the triangulation edges are decorated by nonabelian
elements. The face decorations are still abelian, as this is still a skeletal 2-group. In
terms of phase space, the Heisenberg double is a more appropriate structure than the
cotangent bundle when the momentum space is not an abelian group. Geometrically,
discrete geometries decorated by skeletal Poisson 2-group elements are constructed by
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identifying elements of the Heisenberg double with an edge, a surface, and their respective
duals. The gluing of these atomic pieces together in the geometric picture provides a phase
space structure for the full triangulation of the considered manifold. Algebraically the
gluings correspond to a symplectic reduction.

The quantization of the theory is considered by applying a group field theoretic ap-
proach wherein the desired transition amplitudes, coming from Feynman graphs, reflect
the geometric constraints necessary in a topological 2-gauge theory. This is done by con-
sidering appropriately 2-gauge invariant fields. The resulting partition function for such
a GFT may be seen as a projection operator in order to construct transition amplitudes
between two boundary states ψ1, ψ2, by ⟨ψ1|Z(△)ψ2⟩.

Applying these constraints to the relevant states, which we called G-networks, we re-
cover the KBF state sum model for the Euclidean 2-group. To define these G-networks one
has to impose, on a kinematical level, the Gauss constraints as is done for spin networks,
as well as 2-Gauss constraints which impose the closure of edges of the triangulation. For
consistency, we need to ensure that the 2-Gauss constraints defining triangles are consis-
tent as triangles making up the 1-skeleton of a tetrahedron. To ensure this consistency,
the additional edge simplicity constraint is imposed.

Outlook

Let us highlight some future directions of research.

Regarding the dual diffeomorphism charges we found, it would be interesting to un-
derstand the algebraic structure which dictates when such dual diffeomorphisms can be
constructed.

Our construction in 3 is based on the fact that skeletal Poisson 2-groups share many
similarities with Poisson Lie groups. It would be worth considering what new structures
need to be considered in order to work with more general 2-groups. This would allow us
to have non-abelian decorations on faces as well.

During our discussion, we did not consider excitations of any kind. We could have
decorated the vertices with 2-curvature excitation or the edges with 1-curvature excita-
tion,which would be string like topological excitations [17, 19]. It would be interesting
to see how these are expressed when using the non-trivial 2-gauge picture, ie the BFCG
formulation.

The simplicity constraints which project the topological theory into a gravitational one
are implemented by imposing that the face variables are related to the tetrads, B = ⋆e∧ e.
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In the BFCG model the tetrads are naturally associated to C, which lives on the edges.
In order to impose the simplicity then, one needs to relate the edge variables to the face
variables perhaps by considering non-trivial t-maps. It would be interesting to see how the
implementation of the simplicity constraints in the 2-gauge theory relates to a discretized
theory of gravity. It might be that the skeletal 2-group is not the appropriate structure,
and one might look instead at the identity 2-group, where H = G. We leave this for further
investigations.

In the 2-GFT picture, some assumptions about the measures involved in the definition
of the 2-GFT action were made. It would be interesting to see where these assumptions
could be relaxed. There was also the issue of divergences in the 2-GFT model. Similar
issues appear in three dimensional GFT as well [53, 89]. It is not clear whether similar
discussions can be had for the 2-GFT theory.

Starting from G-networks, it was shown how we could recover the KBF amplitude/state
sum model defined in terms of the Euclidean 2-group 2-representations. Interestingly, there
was no need to use a 2-representation version of the Peter-Weyl theorem to arrive at the
KBF model. This is key since in general the 2-category of 2-representations is not well
understood outside of the skeletal case [14]. It would be interesting to see whether we
can avoid relying on such theorems and focus on a geometric point of view in order to
determine the deformed version of the KBF model.

The benefit of using skeletal 2-groups is how they can be manipulated similarly to
groups. This makes for ripe analogies between gauge theories and 2-gauge theories. For
example, some BF action might only differ from a BFCG action by a boundary term. It
would be worth investigating in what way the respective discretizations and quantizations
as spin networks are related. In particular one should expect some interesting relations
between the nj-symbol for the usual representations of the gauge group and some other
nj-symbols for 2-representations [21] of the 2-gauge group, which would be a skeletal
(quantum) 2-group. The main example to consider would be the standard so(3, 1) BF
theory which could be discretized and quantized as a 2-gauge theory based on the κ-
Poincaré deformation. We leave this interesting question for later investigations.
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Appendix A

Derivation of the dual
diffeomorphism charge

In this appendix we give the detailed derivation of the set of quadratic charges built from
field-dependent generators of the current algebra. This contents of this appendix are also
shown in [55]. We require these quadratic charges to be integrable for tangential vector
fields and to form a closed algebra with themselves and with the charges of the current
algebra.

In order to perform this construction, let us consider the most general quadratic field-
dependent combination of the charges (J1,J2, T1, T2). This is given by

/δG(ξ) = /δJ1

(
ξ⌟(aA+ cC)

)
+ /δJ2

(
ξ⌟(bC + dA)

)
+ /δT1

(
ξ⌟(eB + gΣ)

)
+ /δT2

(
ξ⌟(fΣ + hB)

)
,

(A.1)

where the parameters (a, b, c, d, e, f, g, h) are to be determined and the vector field ξ is
field-independent. We now impose the following two requirements on this general quadratic
charge:

1) The charges must be integrable when the vector fields ξ are tangent to the codimension-
2 surface S.

2) The charges must form a closed algebra (up to possible central extensions) with the
gauge charges (2.27) of the initial current algebra.
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Let us start with the condition of integrability. Using the explicit form of the gauge
charges, we find that /δG(ξ) takes the form

/δG(ξ) = ξ⌟(aA+ cC)(σ1δB + σ2δΣ) + ξ⌟(bC + dA)(σ3δB + σ4δΣ)

+ (σ1δA+ σ3δC) ∧ ξ⌟(eB + gΣ) + (σ2δA+ σ4δC) ∧ ξ⌟(fΣ + hB) (A.2a)

= δ
(
ξ⌟(aA+ cC) ∧ (σ1B + σ2Σ) + ξ⌟(bC + dA) ∧ (σ3B + σ4Σ)

)
− ξ⌟

(
(aδA+ cδC) ∧ (σ1B + σ2Σ) + (bδC + dδA) ∧ (σ3B + σ4Σ)

)
− (σ1a+ σ3d− σ2h− σ1e)δA ∧ ξ⌟B − (σ2a+ σ4d− σ1g − σ2f)δA ∧ ξ⌟Σ
− (σ1c+ σ3b− σ3e− σ4h)δC ∧ ξ⌟B − (σ2c+ σ4b− σ3g − σ4f)δC ∧ ξ⌟Σ.(A.2b)

Equation (A.2a) is the explicit expression for /δG(ξ) in terms of the gauge charges (2.27)
of the current algebra. Equation (A.2b) is then a rewriting of /δG(ξ) which isolates the
integrable part and the part which vanishes when ξ is tangent to S. The last two lines
are four independent and generically non-integrable contributions to /δG(ξ). To obtain
(A.2b), we performed a δ integration by part over the first line of (A.2a), followed by an
“integration by parts” on ξ⌟ in the non-exact term arising from the δ integration by part.
Note that this procedure is of course not unique. Instead of using the first line of (A.2a),
we could have used the second one. While this choice does affect the intermediate results,
the final result of this appendix is of course independent of it.

Without additional conditions on the fields and/or on the vector field ξ to render the
last two lines of (A.2b) integrable, we need to enforce the following four conditions on the
parameters in order for /δG(ξ) to be integrable:

σ1a+ σ3d− σ2h− σ1e = 0, (A.3a)

σ2a+ σ4d− σ1g − σ2f = 0, (A.3b)

σ1c+ σ3b− σ4h− σ3e = 0, (A.3c)

σ2c+ σ4b− σ3g − σ4f = 0. (A.3d)

We now assume that (a, b, c, d, e, f, g) are such that the constraints (A.3) hold, and we
therefore consider the 4-dimensional space (spanned by (a, b, c, d, e, f, g) respecting (A.3))
of integrable charges of the form

G(ξ) = J1

(
ξ⌟(aA+ cC)

)
+ J2

(
ξ⌟(bC + dA)

)
+ T1

(
ξ⌟(eB + gΣ)

)
+ T2

(
ξ⌟(fΣ + hB)

)
.

(A.4)
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We now look at the Poisson brackets of these charges with the charges (J1,J2, T1, T2)
of the initial current algebra. We first consider the bracket with T1(ϕ), which reads

{G(ξ), T1(ϕ)} = T1

(
[ξ⌟(aA+ cC), ϕ]

)
− σ1

∮
S

ξ⌟(aA+ cC) ∧ dϕ

+ p3T1

(
[ξ⌟(dA+ bC), ϕ]

)
+ p4T2

(
[ξ⌟(dA+ bC), ϕ]

)
− σ3

∮
S

ξ⌟(dA+ bC) ∧ dϕ− σ5

∮
S

ξ⌟(eB + hΣ) ∧ ϕ

− σ7

∮
S

ξ⌟(gB + fΣ) ∧ ϕ. (A.5)

Here the first line corresponds to the Poisson bracket between J1

(
ξ⌟(aA+ cC)

)
and T1(ϕ),

the second between J2

(
ξ⌟(bC + dA)

)
and T1(ϕ), the third between T1

(
ξ⌟(eB + gΣ)

)
and

T1(ϕ) and the fourth line between T2

(
ξ⌟(fΣ+ hB)

)
and T1(ϕ). To go further, we now use

the explicit expressions for the charges T1 and T2 to write

{G(ξ), T1(ϕ)} =∮
S

(
σ1a+ (p3σ1 + p4σ2)d

)
[A, ξ⌟A] ∧ ϕ+

(
σ3c+ (p3σ3 + p4σ4)b

)
[C, ξ⌟C] ∧ ϕ

+

∮
S

(
σ1c+ (p3σ1 + p4σ2)b

)
[A, ξ⌟C] ∧ ϕ+

(
σ3a+ (p3σ3 + p4σ4)d)

)
[C, ξ⌟A] ∧ ϕ

− σ1

∮
S

(
ξ⌟(adA+ cdC)

)
∧ ϕ− σ3

∮
S

(
ξ⌟(ddA+ bdC)

)
∧ ϕ

− σ5

∮
S

(
ξ⌟(eB + hΣ)

)
∧ ϕ− σ7

∮
S

(
ξ⌟(gB + fΣ)

)
∧ ϕ, (A.6)

where we have integrated by parts on dϕ and used the relation [P ∧Q]∧R = (−1)(p+q)r[R∧
P ] ∧Q in order to isolate ϕ. Now, noting that the couplings satisfy the relations

p3σ1 + p4σ2 = σ3, p3σ3 + p4σ4 = σ8, (A.7)

one can rewrite the bracket as

{G(ξ), T1(ϕ)} =

∮
S

(
σ1a+ σ3d

)
[A, ξ⌟A] ∧ ϕ+

(
σ3c+ σ8b

)
[C, ξ⌟C] ∧ ϕ

+

∮
S

(
σ1c+ σ3b

)
[A, ξ⌟C] ∧ ϕ+

(
σ3a+ σ8d)

)
[C, ξ⌟A] ∧ ϕ

− σ1

∮
S

(
ξ⌟(adA+ cdC)

)
∧ ϕ− σ3

∮
S

(
ξ⌟(ddA+ bdC)

)
∧ ϕ

− σ5

∮
S

(
ξ⌟(eB + hΣ)

)
∧ ϕ− σ7

∮
S

(
ξ⌟(gB + fΣ)

)
∧ ϕ. (A.8)
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Finally, using Cartan’s magic formula, the fact that the vector field ξ is tangential, and
massaging the various terms, the bracket becomes

{G(ξ), T1(ϕ)} = b1T1(Lξϕ) + b2T2(Lξϕ)

−
∮
S

ξ⌟
(
(σ1a+ σ3d)F +

1

2
(σ3c+ σ8b)[C ∧ C] + (σ1c+ σ3b)dAC

+ (σ5e+ σ7g)B + (σ5h+ σ7f)Σ
)
∧ ϕ

−
∮
S

(σ1c+ σ3b− σ3a− σ8d)[ξ⌟A,C] ∧ ϕ, (A.9)

where

b1 =
σ1σ2c+ σ2σ3b− σ1σ4a− σ3σ4d

σ1σ4 − σ2σ3
, b2 =

σ1σ3a+ σ2
3d− σ2

1c− σ1σ3b

σ1σ4 − σ2σ3
. (A.10a)

One can see in (A.9) that the Poisson bracket of G with T1 has two types of contributions.
The terms on the first line are once again charges of the current algebra. The last three
lines however are neither expressible in terms of gauge charges nor central extensions.
Therefore, the only possibility for the algebra to close is that somehow these terms cancel
or vanish on-shell. More precisely, we would like to find a condition on the parameters
such that the bracket takes the form

{G(ξ), T1(ϕ)}
?
= b1T1(Lξϕ) + b2T2(Lξϕ)−

∮
S

ξ⌟
(
αEOMB + βp4EOMΣ

)
∧ ϕ, (A.11)

where (α, β) are arbitrary parameters and where the rescaling by p4 has been introduced
for later convenience. The reason for which only the equations of motion enforced by B
and Σ appear here is because the terms which need to be cancelled in the bracket (A.9)
only involve contributions from these equations of motion. It is clear that the last line in
(A.9) never appears in the equations of motion. We therefore need to impose that this
term is vanishing, which amounts to the condition

σ1c+ σ3b = σ3a+ σ8d. (A.12)

Then a comparison with the equations of motion (2.24) tells us that the remaining terms
in (A.9) can be written in the form appearing in (A.11) provided we have the following
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relations:

ασ1 + βp4σ2 =σ1a+ σ3d, (A.13a)

ασ8 + βp4σ9 =σ3c+ σ8b, (A.13b)

ασ3 + βp4σ4 =σ1c+ σ3b, (A.13c)

ασ5 + βp4σ7 =σ5e+ σ7g, (A.13d)

ασ7 + βp4σ6 =σ5h+ σ7f. (A.13e)

In summary, the coupling therefore have to satisfy the 10 equations (A.3), (A.12), and
(A.13). This system is overdetermined, but luckily some of these equations are redundant.
The system can be solved and the space of solutions is in fact 2-dimensional. It can be
easily parametrized by two parameters (x, y), in terms of which we get

a = x− yp3, (A.14a)

b = x+ yq4, (A.14b)

c = yr1, (A.14c)

d = y, (A.14d)

e = x, (A.14e)

f = x+ y(q4 − p3), (A.14f)

g = yq3, (A.14g)

h = yp4, (A.14h)

provided that the σ’s satisfy

σ5q3 + σ7q4 − σ7p3 − σ6p4 = 0, (A.15)

which is in fact equivalent to the condition (2.26) which needs to hold in order for the
theory to be topological.

We have therefore found a 2-dimensional space of parameters within (a, b, c, d, e, f, g, h)
which gives integrable charges G(ξ) satisfying a closed algebra with T1(ϕ). Remarkably, the
conditions on the parameters also guarantee that the other Poisson brackets are closed. If
we denote a quadratic charge which solve the above conditions by Gx,y(ξ), then the Poisson
brackets with the gauge charges are

{Gx,y(ξ), T1(ϕ)} = −xT1(Lξϕ)− yp4T2(Lξϕ), (A.16a)

{Gx,y(ξ), T2(τ)} = −yq3T1(Lξτ)−
(
x+ y(q4 − p3)

)
T2(Lξτ), (A.16b)

{Gx,y(ξ),J1(α)} = − (x− yp3)J1(Lξα)− yJ2(Lξα), (A.16c)

{Gx,y(ξ),J2(χ)} = −yr1J1(Lξχ)− (x+ yq4)J2(Lξχ). (A.16d)
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We note that the brackets with J1 and J2 are closed regardless of the constraint on the
parameters.

We can now pick two convenient representatives in the 2-parameter family Gx,y of
quadratic charges. The usual diffeomorphism corresponds to taking (x, y) = (1, 0), for
which we find

G1,0(ξ) = D(ξ) = J1(ξ⌟A) + J2(ξ⌟C) + T1(ξ⌟B) + T2(ξ⌟Σ). (A.17)

An obvious other independent quadratic charge is found by taking (x, y) = (0, 1). In this
case we obtain the charge (2.34) mentioned in the main text, i.e.

G0,1(ξ) = C(ξ)
= J1

(
ξ⌟(r1C − p3A)

)
+ J2

(
ξ⌟(A+ q4C)

)
+ q3T1(ξ⌟Σ) + T2

(
ξ⌟(p4B + q4Σ− p3Σ)

)
.

(A.18)

These two charges (D, C) form a basis of the integrable quadratic charges for tangent vector
fields, and we have

Gx,y(ξ) = xD(ξ) + yC(ξ). (A.19)

Finally, we want to compute the bracket between these quadratic charges themselves.
To do so, we can either use the definition of the quadratic charges and the elementary
brackets of the current algebra, or alternatively use the action of the quadratic generators
on the fields. By construction, the diffeomorphism acts by the Lie derivative. On the other
hand, C acts as

δCξA = Lξ
(
r1C − p3A

)
, (A.20a)

δCξC = Lξ
(
A+ q4C

)
, (A.20b)

δCξB = q3LξΣ, (A.20c)

δCξΣ = Lξ
(
p4B + q4Σ− p3Σ

)
. (A.20d)

Using these expressions in the covariant phase space formula for the Poisson brackets, it
can be shown that the algebra between (D, C) is closed and takes the form

{D(ξ), C(ζ)} = −C([ξ, ζ]), (A.21a)

{D(ξ),D(ζ)} = −D([ξ, ζ]), (A.21b)

{C(ξ), C(ζ)} = (p3 − q4)C([ξ, ζ])− p4q3D([ξ, ζ]), (A.21c)
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which can further be rewritten as (2.43) upon redefining the new generator (2.42).
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