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Abstract
In the process industry, the economical operation of systems is of utmost importance for stakeholders to remain
competitive. Moreover, economic incentives can be used to drive the development of sustainable processes, which
must be deployed to ensure continued human and ecological welfare. In the process systems engineering paradigm,
model predictive control (MPC) and real-time optimization (RTO) are methods used to achieve operational optimality;
however, both methods are subject to uncertainty, which can adversely affect their performance. Along with the
challenges of uncertainty, formulations of economic optimization problems are largely problem-specific as process
utilities and products vary significantly by application; thus, many nascent processes have not received a tailored
economic optimization treatment.
In this thesis, the focus is on avenues of economic optimization under uncertainty, namely, the two-step RTO method,
which updates process models via parameters; and the modifier adaptation (MA) method, which updates process
models via error and gradient correction. In the case of parametric model uncertainty, the two-step RTO method is
used. The parameter estimation (PE) step that accompanies RTO requires plant measurements that are often noisy,
which can cause the propagation of noise to the parameter estimates and result in poor RTO performance. In the
present work, a noise-abatement scheme is proposed such that high-fidelity parameter estimates are used to update a
process model for economic optimization. This is achieved through parameter estimate bootstrapping to compute
bounds and determine the measurement-set that results in the lowest parameter variation; thus, the scheme is dubbed
low-variance parameter estimation (Iv-PE). This method is shown to result in improved process economics through
truer set points and reduced dynamic behaviour.
In the case of structural model mismatch (i.e., unmodelled phenomena), the MA approach is used, whereby gradient
modifier (i.e., correction) terms must be recursively estimated until convergence. These modifier terms require plant
perturbations to be performed, which incite time-consuming plant dynamics that delay operating point updates. In
cases with frequent disturbances, MA may have poor performance well as there is limited time to refine the modifiers.
Herein, a partial modifier adaptation (pMA) method is proposed, which selects a subset of modifications to be made,
thus reducing the number of necessary perturbations. Through this reduced experimental burden, the operating point
refinement process is accelerated resulting in quicker convergence to advantageous operating points. Additionally,
constraint satisfaction during this refinement process can also result in poor performance via wasted below-
specification products. Accordingly, the pMA method also includes an adjustment step that can drive the system to
constraint-satisfying regions at each iteration. The pMA method is shown to economically outperform both the
standard MA method as well as a related directional MA method in cases with frequent periodic disturbances.
The economic optimization methods described above are implemented in novel processes to improve their economics,
which can incite further technological uptake. Post-combustion carbon capture (PCC) is the most advanced carbon
capture technology as it has been investigated extensively. PCC takes industrial flue gases and separates the carbon
dioxide for later repurposing or storage. Most PCC operating schemes make decisions using simplified models since
a mechanistic PCC model is large and difficult to solve. To this end, this thesis provides the first robust MPC that can
address uncertainty in PCC with a mechanistic model. The advantage of the mechanistic model in robust optimal

control is that it allows for a precise treatment of uncertainties in phenomenological parameters. Using the multi-



scenario approach, discrete realizations of the uncertain parameters inside a given uncertainty region can be
incorporated into the controller to produce control actions that result in a robust operation in closed-loop. In the case
of jointly uncertainty activity coefficients and flue gas flowrates, the proposed robust MPC is shown to lead to
improved performance with respect to a nominal controller (i.e., one that does not hedge against uncertainty) under
various operational scenarios.

In addition to the PCC robust control problem, the mechanistic model is used for economic optimization and state
estimation via RTO and moving horizon estimation (MHE) layers respectively. While the former computes
economical set points, the latter uses few measurements to compute the full system state, which is necessary for the
controller that uses a mechanistic model. These layers are integrated to operate the system economically via a new
economic function that accounts for the most significant economic aspects of PCC, including the carbon economy,
energy, chemical, and utility costs. A new proposed MPC layer is novel in its ability to enable flexible control of the
plant by manipulating fresh material streams to impact COz capture and the MHE layer is the first to provide accurate
system estimates to the controller with realistically accessible measurements. A joint MPC-MHE-RTO scheme is
deployed for PCC, which is shown to lead to more economical steady-state operation compared to constant set point
counterfactuals under cofiring, diurnal operation, and price variation scenarios. The Iv-PE scheme is also deployed
for the PCC system where it is found to improve set point economics with respect to traditional PE methods. The
improvements are observed to occur through reduced emissions and more efficient energy used, thus having
environmental co-benefits. Moreover, the 1v-PE algorithm is used for uncertainty quantification to develop a robust
RTO that leads to more conservative set points (i.e., less economic improvement) but lower set point variation (i.e.,
less control burden).

The methodologies developed in this PhD thesis provide improvements in efficacy as well as applicability of online
economic optimization in engineering applications, where uncertainty is often present. These can be deployed by both

academic as well as industrial practitioners that wish to improve the economic performance on their processes.
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1. Introduction

As the chemical, manufacturing, and energy industries expand to meet growing demand, digitalization is being
increasingly embraced and computational techniques are becoming necessary to remain competitive. This growth also
incites further interconnectedness of processes and the markets, necessitating real-time decision-making regarding the
operation of processes. In this competitive environment, process economics are paramount and online model-based
optimization is emerging as an attractive option to update operating conditions subject to external factors (i.e.,
upstream processes changes, external disturbances, market prices). Additionally, economic mechanisms like carbon
and energy pricing can promote sustainability. Figure 1-1 depicts the interaction of an online economic optimizer and
a plant (e.g., manufacturing, process, energy). As depicted therein, the optimizer is subject to pricing dictated by the
market. The optimizer also contains a mathematical model that predicts process phenomena and behaviour which,
along with the pricing information, allow for an economic model of the plant to be formulated. The optimizer solves
for cost-optimal decisions to convey to the plant; moreover, different optimizers could contain additional sub-layers
that operate at different timescales. Nevertheless, the plant is operated using the optimizer-computed decisions subject
to disturbances. Finally, sensor measurements are taken from the plant, whereby they are used to by optimizer to
reconcile the process model with the plant. Among the most sophisticated model-based operational approaches being
used today are real-time optimization (RTO) (Darby et al., 2011), model predictive control (MPC) (Mayne, 2014),
and modifier adaptation (MA) (Marchetti et al., 2009). These methods are the common theme in the present thesis.

Prices

Optimizer

Decisions Feedback

Disturbances Plant

Figure 1-1: General flow of information for an online economic optimizer

RTO is commonly used in plants that deploy feedback control to regulate the system towards desired operating
conditions. The most common implementation of RTO is the “two-step” approach, which uses time-averaged steady-
state measurements to recursively estimate and update model parameters in the economic optimization layer. The
economic optimization layer uses the same model as the parameter estimation (PE) layer; thus, the PE layer continually
reconciles the optimization model with the latest plant data. The RTO economic optimization layer optimizes the plant
operating conditions subject to an economic objective (e.g., revenue, cost, energy, emissions) and generates set points
for the feedback controller to steer the plant towards.

Feedback control makes use of measurements or estimates of plant quantities to regulate the system towards the set
points dictated by the RTO layer. Conventionally, classical control approaches like proportional-integral-derivative

(PID) controllers have been used and continue to be prevalent in industry. However, these traditional PID controllers



are unable to consider process constraints and have difficulty in dealing with complex systems (e.g., with time-delays,
nonlinearities, high-order dynamics). Resulting from these limitations, optimal control like MPC is increasingly being
investigated, with a particular focus on its nonlinear version NMPC (i.e., an MPC that uses a nonlinear process model)
to deal with troublesome dynamic behaviour. In principle, NMPCs (and MPCs more broadly) use a dynamic process
model to predict future process behaviour and determine optimal control action based on the predicted process
dynamics. The NMPC problems use feedback in the form of initial conditions to update its trajectory and execute its
optimization problem at every time interval. NMPC solutions generate an optimal manipulated variable trajectory,
and the first time-instance of this trajectory is provided to the plant. The plant is operated for another time interval and
the initial conditions of the NMPC are updated to reflect the new measurements/estimates resulting in closed-loop
operation. When integrated with RTO, an NMPC that uses a matching dynamic model to the RTOs steady-state model
can also be updated upon the execution of a PE problem.

The initial conditions necessary to solve the MPC problem are not always readily measurable; this immeasurability is
even more common in NMPC, where the process model is often detailed and requires information regarding many
(sometimes all) system states. When this situation occurs, state estimation is deployed to use the available
measurements to provide the necessary initial conditions to solve the NMPC problem. While many state estimation
techniques exist (e.g., Kalman filter, Kalman, 1960; extended Kalman filter, Haseltine and Rawlings, 2005), MHE is
of increasing interest for nonlinear systems to complement NMPC. MHE is effectively the inverse of MPC; instead
of predicting the future to produce control actions, it uses historical trajectories to estimate the current state of the
system. MHE achieves this by reconciling past measurements, estimates, and control actions to a dynamic model on
a horizon, thus finding the optimal current state to match its predicted past trajectory. In doing predicting this current
state, the MHE provides feedback to the NMPC, thus closing the loop. Like the RTO and NMPC, the MHE model
can also be updated with a PE problem if it uses a matching model.

A commonality of all three approaches mentioned above is the use of a process model to make their respective
decisions. All models make simplification and assumptions with respect to the actual system they represent; moreover,
they require external inputs that may be unknown, measured, or estimated. These potential imperfections in the model
can be lumped together as uncertainties. Uncertainties internal to the model are referred to as endogenous while those
from external sources are known as exogeneous. In the case of the RTO/NMPC/MHE hierarchy as presented above,
only parametric (endogenous and exogenous) uncertainty is generally addressed; this is sufficient if the model is of
high quality as to be accurate across many operating conditions and capture most process phenomena. Moreover, the
PE quality must be high, else erroneous predictions will be made by these models. If model quality is not high such
that the plant and model cannot be reconciled via parameters, then structural uncertainty is present as the model’s
mathematical structure is awry from that of the plant.

In cases of structural model uncertainty MA is used to adapt the imperfect model to perform steady-state economic
optimization. This is done through zeroth and first order “modifier” terms, which correct the optimization problem
with respect to its constraints and gradients. By performing these corrections, MA can eventually converge to the true
plan optimum upon refinement. A main difficulty in MA is the estimation of gradients for the first order correction.

While model gradients are easy to estimate as the model is known by the modeller, the plant gradients are significantly



more difficult as they are not directly measurable from the plant. A common approach to estimate these gradients is
to successively perturb plant inputs such that its local gradient with respect to each input can be estimated. However,
this is difficult to do in practice in systems with slow dynamics, frequent disturbances, or many inputs.

To the author’s knowledge, both two-layer RTO and MA algorithms contain points of weakness that can inhibit the
economic performance of the systems they operate. In the case of the hierarchical RTO/NMPC/MHE approach, all
three layers can be reliant on the fidelity of the parameter estimates generated by the PE problem. Poor parameter
estimates can create problems in the RTO-generated set points leading to set point offset, as well as the NMPC/MHE
control actions and state estimates leading to poor control performance and further offset. As the PE problem uses
noisy data to generate its estimates, it is subject to propagation of that noise to the estimates. Moreover, the PE
approach as commonly implemented does not verify the estimate quality before providing it to the other layers. In the
case of the MA approach, the weakness occurs in the perturbation step whereby the optimal decisions made by the
MA can be severely delayed. In a system where the disturbance dynamics are faster than the perturbation dynamics,
the MA may not converge to or even approach the true plant set point.

In addition to the algorithmic gaps mentioned above, the economically optimal operation of many sustainable
processes remains fully or partially unaddressed, especially as it pertains to addressing uncertainty. One such process
is post-combustion carbon capture (PCC). For PCC, only a handful of online economic optimization studies have been
published with significant limitations. PCC is a nascent process that has yet to reach widespread industrial update
owing to its operating cost. Accordingly, online economic of the PCC process can be a factor to further induce

operators to adopt this technology.

1.1. Research Objectives
This work attempts to address the issues regarding economic optimization under uncertainty listed above. New insights
on ways to improve economic performance over existing uncertainty techniques will be presented in the context of
RTO, NMPC, MHE, and MA. These will be applied to existing process benchmarks as well as budding processes that
have not yet received attention in the optimal operation literature. Specifically, the current PhD thesis aims to achieve
the following:
e Observe the propagation and effect of noise on the traditional two-layer RTO approach through its effect on
parameter estimation and develop an operating scheme that abates noise.
e Examine MA in the context of high-frequency disturbances and slow dynamics; design an approach to deal
with these circumstances and improve the economic performance of MA.
e Investigate the effects of uncertainty in the control, estimation, and economic optimization of post-

combustion carbon capture (PCC) and propose a tiered economical operational scheme for its operation.

1.2.  Contributions
To address the objectives listed above, this thesis will result in the following methodological contributions:
e A low-variance parameter estimation (lv-PE) approach integrated with RTO and NMPC to operate process
systems under parametric uncertainty without propagation of noise to the process set points and control

actions. A twofold algorithm will be presented, which chooses a favourable subset of measurements to reduce



noise propagation and ensures estimates are indeed accurate. Testing of the Iv-PE scheme under known
benchmark problems under the standard two-layer approach.

e A partial modifier adaptation approach to address structural model uncertainty in systems with slow dynamics
and/or frequent disturbances. An algorithm to choose partial modification strategies that will lead to the best
economic performance and evaluation of the algorithm in several systems with different structural
characteristics. An ancillary problem to account for constraint violation is also proposed so the algorithm
improves constraint adherence as well as economics.

Moreover, the following applied contributions are also described, which pertain to the PCC process:

e A robust NMPC that uses a mechanistic model for the PCC process and can address endogenous and
exogenous uncertainty through the deployment of a scenario-based approach. Comparison of the proposed
robust controller with a deterministic nominal controller under variations in the amount of uncertainty and
variations the number of uncertain scenarios. Testing of the robust control scheme under step and a realistic
power plant diurnal load variation scenario.

e A novel economic objective function that considers all significant operational cost in PCC for use in an RTO
scheme integrated MHE and NMPC to operate the system under realistic measurability assumptions and
relatively low cost. Use of a mechanistic PCC model in the three operating layers and testing of the scheme
under realistic scenarios including: cofiring of fuels, diurnal load variations, and price fluctuations. The
NMPC will allow for flexible operation of the PCC process while the MHE allows for a realistic subset of
measurements to be required by the controller.

e  Application of the Iv-PE scheme to the PCC system and evaluation of its effect on process economics, energy
consumption, emissions, and raw material usage over time. Additional evaluation of the effect of estimations
fidelity on control performance as effected by NMPC and MHE layers. Study of PCC under time-of-use
pricing scenarios across a wide set of possible disturbances. A robust RTO muti-scenario scheme to jointly

address uncertain parameters and fluctuating prices will also be studied.

1.3.  Structure of Thesis

The thesis presented herein is structured as follows:

Chapter 2 provides a literature in the pertinent research areas in economic optimization under model uncertainty
including two-step approach and modifier adaptation. Moreover, methods to address uncertainty in MPC will also be
outlined. Noise abatement methods for PE integrated with control and RTO will be examined. Lastly, online economic
optimization methods for the novel PCC and RAS processes will be reviewed.

Chapter 3 presents the design of a robust NMPC for PCC under parametric uncertainty. The controller uses a dynamic
mechanistic model, thereby enabling a precise treatment of uncertain model parameters and upstream disturbances.
This controller is tested against a its nominal counterpart under step disturbances and diurnal load variation scenarios.
The effect of number of scenarios and size of uncertainty region is also studied therein. This study was published in
Fuel (Patron and Ricardez-Sandoval, 2020a).

Chapter 4 introduces an RTO scheme for PCC by proposing a comprehensive cost function that included, energy,

carbon tax, carbon sales, and utility costs. Moreover, a MHE is deployed along with a multi-variable NMPC to achieve



the set points dictated by the RTO with a realistic set of measurements. The proposed RTO is deployed in cofiring,
diurnal variation, and price change scenarios with corresponding counterfactuals without RTO. This work was
published in Applied Energy (Patron and Ricardez-Sandoval, 2022a).

Chapter 5 proposes a scheme to abate the effect of measurement noise in the PE problem associated with RTO. The
proposed algorithm chooses the lowest-variance subset of measurements prior to estimation and produces error bounds
of the resulting estimates. This is motivated through a demonstration of the effect of parameter variation on the
economic optimum and tested in two test cases. The scheme is designed to result in improved economics and reduced
constraint violation through its effect of set point generation and NMPC parameter updates. This study was published
in Industrial & Engineering Chemistry Research (Patron and Ricardez-Sandoval, 2022b).

Chapter 6 applies the PE scheme presented in Chapter 5 to the PCC plant studied in Chapter 5. Two sets of uncertain
parameters are considered: the flue gas CO:z content and the activity coefficients. The PE scheme aims to make the
PCC RTO more realistic by considering uncertainties. Moreover, fluctuating carbon and energy prices are also
considered and addressed with a robust formulation. The effect of the pricing on the rate of carbon capture and process
cost is studied and paired with varying disturbances.

Chapter 7 proposes a MA scheme, entitled partial MA (pMA), which is designed to abate the effect of uncertainty in
cases of structural (i.e., not parametric) plant-model mismatch. This scheme aims to improve on the performance of
the standard MA by selecting a subset of inputs for modification, instead of using all inputs, thus allowing for faster
action. An algorithm for selecting the number of inputs as well as an ancillary problem to ensure constraint adherence
are presented.

Chapter 8 presents concluding remarks as well as potential avenues for future works within the remit of the methods

presented herein.



2. Background and Literature Review
The optimal process operations literature is vast and quickly evolving. This chapter reviews the variety of different
methods used for optimal operation, how they have been applied to the sustainable processes of interest in the present
thesis, and any gaps that may exist. The economic optimization under uncertainty literature is first reviewed in Section
2.1 with the context of RTO and MA. Moreover, the model predictive control literature is reviewed in Section 2.2
with a focus on uncertainty and economic control. Finally, the applications of these methods to the PCC are outlined

in Section 2.3.

2.1. Online Economic Optimization of Process Systems

The economic operation of systems is of paramount importance in the chemical and process industries, which are
becoming increasingly market-driven and competitive. To this end, model-based economic optimization has been an

active field within the process systems engineering community in recent years.

2.1.1. Two-step Real-time Optimization

Chiefly among these methods is Real-Time Optimization (RTO: Darby et al., 2011), which has been deployed in a
variety of applications: e.g., a laboratory-scale flotation column (Navia et al., 2016), hydrogen production network
(Galan et al., 2019). RTO uses a process model as well as an economic model to determine the optimal operating point
for the plant while addressing model uncertainty. These operating points are passed as set points to a control layer,
which dynamically steers the plant towards the economic optimum.

RTO can either use steady-state or dynamic models to generate constant set points or set point trajectories,
respectively. Dynamic RTO (DRTO) is used when systems can exhibit expensive dynamics, instability, or otherwise
undesirable steady-state operation (Ramesh et al., 2021). Several variant of DRTO have been proposed, which include
the use of stabilizing constraints (MacKinnon et al., 2022; Ramesh et al., 2021) and embedded closed-loop predictions
(Dering and Swartz, 2022). While DRTO is beneficial in some cases, the typical steady-state RTO is often sufficient
to achieve good performance and is the focus of this review.

Steady-state RTO typically employs detailed models that are a suitable reflection of the plant behaviour, often those
models are subject to uncertainty, which can cause erroneous operating points that lead to economic suboptimality
and constraint violations when implemented in the plant. Differences between the model and plant result in suboptimal
plant economics as the model being optimized may not be fully equivalent with the plant it represents. The
uncertainties present in RTO problems that cause these suboptimalities can be either structural (i.e., the model does
not fully account for the phenomena occurring in the plant) or parametric (i.e., the model contains parameters that are
not known precisely and/or may change over time) (Krastawski, 1989). While structural model uncertainty in RTO is
also an active research area (Marchetti et al., 2009; Roberts and Williams, 1981), parametric uncertainty is of interest
in the present study.

To mitigate the effects of parametric uncertainty and arrive near the “true” economic optimum (i.e., the optimum that
corresponds to the plant), a Parameter Estimation (PE) step is typically implemented alongside the economic
optimization step in RTO via the so-called two-step approach. The PE step uses steady-state process information (i.e.,

historical data on the steady-state measurements and manipulated variables) to perform a least squares optimization



problem, whereby the difference between measurements and the steady-state process model predictions are minimized
with the uncertain parameters as the decision variables (Cox, 1964). These updated parameters are subsequently
supplied to the RTO problem and can be also supplied to the controller (e.g., in a model-based control scheme that
uses a dynamic version of the RTO model). Once a new set point is achieved, the PE step is repeated as new steady-
state data becomes available. Thus, the procedure of executing PE and RTO is performed periodically such that the
plant and the model are constantly being reconciled through the model parameters. This overall scheme is closed loop
since the RTO set points are passed to a regulatory controller, which acts on the plant, whereby plant measurements
are supplied to the PE problem and the controller. Note that the associated problem of identifying whether steady state
has been reached (known as steady state identification (SSI: Cao and Rhinehart, 1995) is also a part of many RTO
schemes. While SSI can be used to indicate when it is appropriate to begin collecting steady-state measurements, it
does not otherwise interact with the PE and RTO in parameter estimation or set point generation, respectively; thus,
its deployment is often omitted in the context of RTO for simplicity.

Issues arising from the use of experimental measurements often arise in practice, which could lead to performance
loss in downstream operating layers. For instance, systematic measurement errors caused by instrumentation
miscalibration, or faults can occur and lead to poor estimation, monitoring, and control performance. To address this,
gross error detection (GED) methods have been proposed in the literature, e.g., hypothesis testing (Ozyurt and Pike,
2004), error bounds (Bhat and Saraf, 2004), mixed integer programming (Arora and Biegler, 2001), and maximum «a
posteriori estimation (Yuan et al., 2015). In the presence of faults, the deployment of GED in the context of PE/RTO
will ensure that estimated parameters and set points are consistent with the plant thereby preventing erroneous
operating points.

In addition to gross error, random error is also present and difficult to eliminate from industrial systems. This type of
error occurs as measurements are subject to fluctuations obeying an underlying statistical distribution that causes
imprecision (Albuquerque and Biegler, 1996). In the context of RTO, variations in the set point produced by the RTO
owed to noisy parameter estimates can occur (Quelhas et al., 2013); these are caused by noisy plant measurements
that lead to ill-conditioning in the PE problem and propagation of noise into the estimates. This set point imprecision
is detrimental to the process economics as the effect of deviating from the true optimum may accrue substantially
many RTO iterations. Moreover, fluctuating set points also impose undue burden on the process control layer, which
is preferably avoided. To address the accuracy/precisions of RTO set points, a variety of approaches have been
proposed in the literature.

A probability constrained approach has been proposed (Zhang et al., 2002) to incorporate uncertain economics and
constraints into a robust RTO formulation. Moreover, a Bayesian approaches for parameter estimation paired with
uncertainty propagation (e.g., via polynomial chaos expansions; Mandur and Budman, 2014) have also been suggested
to formulate robust economic objectives for optimization. However, robust approaches such as this sacrifice
performance to find a solution that works well regardiess of the true parameter realization. Other authors (e.g., Miletic
and Marlin, 1998), have developed statistical approaches to decide when set point should be changed to avoid
transients caused by insignificant parameter/disturbance changes. These use hypothesis testing and only perform

model and set point updates upon the occurrence of significant changes in operating point; however, this does not



address the root issue of noisy measurements and only avoids frequent unnecessary unwarranted set point fluctuations.
Data reconciliation (DR), which makes experimental data consistent with the process model (Albuquerque and
Biegler, 1996; Arora and Biegler, 2001; Bhat and Saraf, 2004; Ozyurt and Pike, 2004; Yuan et al., 2015), can also be
employed to improve two-step RTO performance such that the measurement and parameter estimates are consistent
with the RTO model and constraints; this may have some noise-filtering effects, thus reducing variability. However,
the main issue being addressed in DR is measurement/model consistency, not random error, and any effect that it has
on random error may be an ancillary benefit. Increasingly, joint parameter and state estimation has been investigated
along with the use of dynamic data to improve RTO performance by increasing execution frequency. A recent work
(Liu et al., 2021) performed dynamic estimation whereby the set of estimated variables changed depending on the
operating conditions; other contributions (Krishnamoorthy et al., 2018; Matias and Le Roux, 2018; Valluru and
Patwardhan, 2019) have coupled dynamic parameter estimation with steady-state economic optimization to achieve
increased RTO frequency. Nevertheless, the issue of noise propagation can persist in joint parameter and state
estimation if not addressed. Lastly, robust estimators (Albuquerque and Biegler, 1996; Arora and Biegler, 2001;
Ozyurt and Pike, 2004) have been proposed for GED, DR, and PE in chemical systems. These broadly aim to reduce
the effects of outliers on parameter estimates by reformulation of the respective optimization problems (e.g., log-
likelihood objectives); however, their effect on RTO has not been previously studied.

In general, the methods listed above require the implementation of new process layers (Bhat and Saraf, 2004; Liu et
al., 2021; Matias and Le Roux, 2018) (e.g., Kalman filter or MHE) to generate outputs to the existing PE and RTO,
thus further complicating an already stratified and intensive two-step approach. Other methods require sensitivity
information (Liu et al., 2021; Miletic and Marlin, 1998), which is difficult to estimate in practice as it requires system
perturbations; this is particularly difficult in the presence of significant noise. The additional complexity proposed by
these methods may be undesirable in an industrial setting as operators are reticent to implement convoluted operating
schemes. Moreover, no method in the literature aims to abate the effect of random error explicitly in the context of
RTO. This leaves a gap for a scheme that directly targets the effect of random error owed process noise in the two-
layer RTO scheme.

Two-step RTO can also be used in cases where structural plant-model mismatch is present (i.e., when parameter
adaptation alone does not lead to convergence to true plant optima). For instance, Mandur and Budman (2015) propose
a parameter gradient correction on the output model with simultaneous parameter estimation. This allows for

convergence to the true process optimum and compares favourably to other structural mismatch adaptation schemes.

2.1.2. Modifier Adaptation

Increasingly, modifier adaptation (MA) (Gao and Engell, 2005; Marchetti et al., 2009) and its many variants (e.g.,
Marchetti et al.,, 2010; del Rio Chanona et al., 2021) are being investigated for situations of structural model
uncertainty where robust and two-step approaches are not suitable. A comprehensive review of MA can be found in
Marchetti et al (2016).

Instead of adapting model parameters, MA adapts the economic optimization problem via its objective function and
inequality constraints. By introducing 0™ order bias terms and 1% order gradient modifications with respect to the

decision variables, MA has been proven to match plant and model KKT conditions (Marchetti et al., 2009). Assuming



full state accessibility, the bias terms are straightforward to compute; however, the gradient estimation is more
intensive as it requires system perturbations. Imposing perturbations on the system requires small changes to be made
on the input variables such that they produce a correspondingly small changes in the output variables in the
neighbourhood of the current operating point. Note that perturbations can also refer to disturbances; henceforth we
only use perturbations only to refer to small user-defined input changes. The gradient near the current operating point
can then be estimated as the ratio of output to input perturbations, which allows for gradient modifiers to be computed
and the process operating point to be updated. The gradient modifiers are then recomputed at the newly defined
operating point as the local gradient changes with new operating points. This refinement process of updating operating
points and gradients is repeated until the true (i.e., plant) operating point is reached by the model. If a disturbance
occurs, the gradient computation and modifier refinement process can detect this mismatch such that the new plant
optimal operating point is found again. Each input perturbation requires the system to undergo dynamic operation
until the perturbed state is reached, thus delaying the operating point update. This can become detrimental if: i) there
are many inputs such that many perturbations must occur; ii) the process dynamics are slow such that the gradient
estimation is time consuming; and iii) the process disturbances occur at a high frequency. These conditions affect the
amount of time it takes to converge to plant optimality. For instance, if disturbances are occurring frequently, the
modifier refinement process may be interrupted before convergence to the optimum. Typically, layered RTO
approaches are generally deployed for high-frequency disturbance scenarios (Bottari et al., 2020), whereby different
timescales have individuated control schemes. More broadly, if the dynamics are slow, there are numerous inputs, or
the disturbances occur at a high frequency, the system will not converge to an optimal solution in time to accrue the
benefits of the true optimum. These represent the main weakness of the existing MA algorithms as constructed and
deployed in the literature (Marchetti et al., 2016). A few MA variants have been proposed to circumvent the
perturbation delay. Dual MA (Marchetti et al., 2010) has been proposed to estimate gradients using past operating
points whereby new successive operating points are placed such that they contain sufficient information for gradient
estimation. Gao et al., (2016) proposed the use of local approximations of the cost and constraint functions, which
could be differentiated to produce gradient approximations. Some studies have taken the approach of using transient
measurements to speed up the MA procedure (e.g., de Avila Ferreira et al., 2017; Marchetti et al., 2020). These
generally use neighboring extremals, which assume that the uncertainty is parametric (Frangois and Bonvin, 2014).

Most notably, directional MA (dMA; Costello et al., 2016), which updates the cost and constraint gradients according
to “privileged” input directions chosen through sensitivity analysis of the Lagrangian function, has been proposed.
dMA does not ensure KKT matching but ensures that the cost cannot be improved further in the privileged directions
upon its convergence. dMA requires the knowledge of which parameters are uncertain, their distributions, and the
sensitivity of the optima to these parameters. The main difficulty that arises when using dMA is the requirement of
model Lagrangian cross derivatives with respect to inputs and uncertain parameters. Model derivatives are acquired
through a perturbation process or analytically; however, these are only computed once and generate local sensitivities.
Costello et al. (2016) compute their privileged directions based on local model sensitivities with respect to inputs and
uncertain parameters. In reality, structurally mismatched problems may not contain uncertain parameters. Even for

cases with uncertain parameters, their distributions are unlikely to be known a priori and their sensitivities are unlikely



to be the same across all potential operational points. Singhal et al. (2018) and Rodriguez et al. (2022) present a method
to compute global (instead of local) parameter sensitivities; this allows for changing privileged directions at different
operating points, which yields more flexibility to the dMA method. These global sensitivity methods also require
parameter probability densities to be known a priori, which enable parameter Monte Carlo sampling. In addition to
the assumptions regarding a priori knowledge of the uncertain parameters, these dMA methods compute directions
based on the proposed predictive model, (i.e., not plant quantities), hence the directions that are privileged for the
model may not necessarily be suitable for the actual plant. Despite this progress on gradient estimation and many-
input systems, no prior MA scheme is aimed at frequent periodic disturbances.

Another issue in MA is that of constraint satisfaction during modifier refinement. MA only guarantees satisfaction
upon convergence; however, satisfaction is not guaranteed in the modifier refinement iterations. Bunin et al. (2011)
presented a method to determine upper bounds on filter gains such that satisfaction is guaranteed. However, limiting
the filter gain may slow convergence speeds. Previous studies have also proposed schemes to ensure feasible-side
convergence, whereby each iterate is guaranteed to be constraint-satisfying (Marchetti et al., 2017a). These require
the constraint and objective function be made strictly convex upper-bounding functions via additional quadratic terms;
to do so, the estimation of Hessian matrices is needed, which may be impractical. Furthermore, Marchetti et al. (2017b)
also deployed robust constraint upper bounds, which result in backoff from the true constraint but ensure iteration
feasibility in the presence of gradient uncertainty; this scheme also requires process Hessians. A gap exists in the
literature for an MA constraint-satisfaction scheme that enables the use of little filtering and does not require Hessian

information, which is difficult to acquire in practice.

2.2. Model Predictive Control

Process controllers aim to regulate controlled variables (CVs) to their desired set points by actuating the process
manipulated variables (MVs). Model predictive control (MPC) is a well-established method to achieve the optimal
control whereby a dynamic process model is used to predict future system behaviour while also receiving constant
feedback from the plant by way of initial conditions. MPC poses a dynamic optimization problem given the feedback
from the plant, which minimizes the sum of squared errors with respect to the set points across a prediction horizon
(i.e., the fixed future time window in which the MPC model predicts plant behaviour). Accordingly, the MVs across
a control horizon (which could be the same or shorter than the prediction horizon) are the decision variables for the
MPC optimization problem. The first time-instance of these M Vs is given to the plant such that it is controlled until
the MPC is executed at the next sampling time. At every sampling time, feedback from the plant is acquired, thus
making the scheme closed-loop by updating the process model on the current system state. Importantly, MPC can also
include process constraints in their formulation; thus, ensuring the safety and viability of its decisions.

The set points provided to the MPC can be based on process knowledge/heuristics or determined by an RTO (as
discussed in Section 2.1.1.). Control systems with various CVs require tuning of the various control objectives to
ensure the desired dynamic behaviour occurs and the controller is effective for all CVs; tuning approaches (e.g., Shah
and Engell, 2011) have also been studied. The feedback provided to the MPC is acquired by way of measurement or
state estimation. Measurement simply relies on process instrumentation while state estimation is a very active field of

research, which provides some of tools used in the present work. As state estimation is not the core topic of study
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herein, the reader is referred to Afshari et al. (2017), Allgower et al. (1999), and Valipour and Ricardez-Sandoval
(2021) for an in-depth discussion. The prediction horizon serves as a tuning parameter for MPC whereby better
tracking performance is achieved by using longer horizons; however, this comes with increased computational effort
as the dynamic optimization problem grows with longer predictions. Another way to improve control performance is
the use of a nonlinear model for MPC (denoted NMPC); this can improve control performance in nonlinear systems
whereby a linear model may be inaccurate. NMPCs are primarily of interest in the present work, which considers

various variants on the traditional NMPC framework.

2.2.1. Model Predictive Control Under Model Uncertainty

As noted by Mesbah (2018), model uncertainty in MPC has been addressed with two techniques: robust MPC (RMPC)
and stochastic MPC (SMPC). RMPC works on the principle that the uncertainties are bounded, and process constraints
must be satisfied for all uncertainties within the bounds (Mayne, 2014). The uncertainties are assumed to be the set of
all possible uncertainties in a finite bounded region, which is discretized into a finite number of realization. The
simplest of these scenario-based approaches is the min-max MPC (Scokaert and Mayne, 1998), which assumes the
worst-case uncertainty occurs and solves the MPC optimization subject to this pessimistic uncertainty realization. The
min-max formulation results in significant conservativeness. To alleviate some the drawback of min-max, the multi-
scenario approach (e.g., Huang et al., 2009; MacKinnon et al., 2021) builds a finite set of model realizations for which
a single control trajectory is computed. The multi-scenario approach approximates an uncertain probability
distribution through discretization of a probability density function and assigns each realization a probability a priori
based on process knowledge. The multi-scenario approach results in less conservatism being built into the problem
than min-max but still retains some performance sacrifices for constraint adherence as it prioritizes average
performance across potential scenarios. However, the computational effort scales with the number of scenarios as the
uncertainty is approximated with a higher resolutions. Most sophisticated among scenario-based approaches is the
multi-stage approach (Lucia et al., 2013), which allows for uncertainty evolution and recourse actions occurring over
time. The multi-stage formulation features a “robust horizon” that accommodates for changing uncertainties in the
future whereby recourse may be taken. As with the multi-scenario approach, the multi-stage computational effort
scales with the number of scenarios; however, it also scales with the length of the robust horizon, thus increasing the
computational expense further.

In contrast to the scenario-based approaches SMPCs solve the dynamic optimization problem subject to constraint
and parameter expectations that are not necessarily bounded (Saltik, 2018). In this way, the conservatism present in
the scenario-based approaches is reduced with the trade-off that the hard constraints are softened through
reformulation as chance constraints. In this case, a continuous probability density function is required for each
uncertainty, which is not easy to acquire in practice (i.e., it may require process knowledge or Monte Carlo

simulations; Mayne, 2016).
2.2.2. Economic Model Predictive Control

Economic MPC (EMPC) retains certain key characteristic of a traditional MPC such as the use of feedback, MVs,

horizons, and constraints. The important difference lies in the use of an economic objective whereby a profit is
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maximized, or a cost minimized over the prediction horizon. This control structure aims to bypass the need for set
points and essentially merges the RTO and MPC layers into one. EMPC has been used for a variety of industrial
applications, e.g., PCC (Decardi-Nelson et al., 2018), HVAC (Mendoza-Serrano and Chmielewski, 2012), and an air
separation unit (Huang et al., 2012). However, this approach has some implications as it pertains to stability, which
have spurred significant research on EMPC. As the set point regulation objective is no longer present, EMPC scheme
can suffer from instability and capricious control actions. Under the standard formulation as presented in Ellis et al.
(2014), stability cannot be guaranteed for EMPC-operated systems. Accordingly, several methods have been proposed
to ensure stability including the use of infinite horizon approximations, terminal constraints, terminal cost, and
Lyapunov-based EMPC. These methods are briefly reviewed herein; however, the reader is asked to refer to Ellis et
al. (2014) for an extensive tutorial.

A general assumption that occurs in most MPC formulations is that of a finite horizon length. This assumption is made
to make the dynamic optimization problem tractable when discretized; this is necessary as an infinite horizon would
results in an infinite-dimensional problem. However, the truncation of the horizon results in the inability to guarantee
stability as the full economic trajectory is unknown by the controller. Wiirth et al. (2007) propose the that a discount
factor be used to account for the time value of money in EMPC. As a result of the long period of time needed to
account for discounted economics, a long (i.e., effectively infinite) horizon is necessary. Accordingly, Wiirth et al.
(2007) propose that time domain is made finite through a transformation of the time bounds. This poses the
optimization problem to finite but introduces a singularity at one of the boundaries, which is handled using terminal
constraints. Alternatively, Mendoza-Serrano and Chmielewski (2012) segmented the infinite horizon into a finite
initial portion and a tail that is quantified by a quadratic regulator of the terminal state. By doing this, the EMPC
problem is made independent on the finite horizon size and shown to be equivalent to the infinite horizon formulation.
Lastly, Huang et al. (2012) showed that sufficiently long finite horizons could be used for EMPC in some cases to
achieve the stability properties of infinite horizon.

Terminal constraints and costs are related methods to ensure EMPC stability in that they both impose system behaviour
at the end of a finite time horizon. In the case of terminal constraints, this is done by imposing an end-point constraint
on the horizon such that the system will always try to converge to a stable point (Diehl et al., 2011) or neighbourhood
(e.g., Amrit et al., 2011). Choosing the terminal point is important as it must be stable; these are generally chosen
based on off-line static process optimization (Angeli et al., 2012). The use of a terminal fixed point, however, can lead
to small feasibility sets and inflexibility in the controller. Authors like Fagiano and Teel (2013) have suggested the
used of terminal sets (regions) to abate this issue. In contrast, for terminal cost/penalty approaches, the objective
function is formulated with a term to penalize the distance from a pre-specified terminal point. In general, the terminal
cost takes the form of a quadratic Lyapunov function for which the weighing matrix satisfies the Lyapunov equations
(Amrit et al., 2011). For this approach to work, the objective function must sometimes be regularized using quadratic
regulator terms to satisfy dissipativity (Amrit et al., 2011) requirements.

Lastly, the Lyapunov-based EMPC (LEMPC; Heidarinejad et al., 2012) has also received significant attention as a
means of stabilizing EMPC operation. LEMPC proposes the use of two distinct operational modes using an EMPC

and an auxiliary controller, respectively. In the EMPC mode, the system uses a Lyapunov function to keep the state
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trajectory within a pre-specific bounded set. This bounded set is chosen to guarantee stability is retained for any
possible disturbance. If a disturbance drives the system outside of this bounded set, the system remains in a region of
stability but the LEMPC switches to an auxiliary mode. In the auxiliary mode, a Lyapunov function is forced to
decrease over time thereby steering the system back to the stability region or an equilibrium point. Using these two
modes, stability is always guaranteed. As with the terminal cost approach, this requires the formulation of a Lyapunov
function and regularization terms as previously mentioned. Moreover, Lyapunov functions can also be used to ensure
robust stability (i.e., in the presence of model mismatch). For instance, Santander et al. (2016) propose the use of a
polytopic model to characterize the model error across different operating conditions; this allows for the formulation
of Lyapunov constraints with consideration of potential mismatches. They also perform online parameter updating as
part of their EMPC procedure.

An application of EMPC in recirculating aquaculture systems, which was performed for this thesis but is not part of

the main results, can be found in Appendix E.

2.3.  Online Economic Optimization and Control of Post-combustion Carbon Capture

As global warming is increasingly in the forefront of public discourse, the drive to develop “green” technologies has
never been greater. Chiefly among the causes of global warming is the large quantity of carbon dioxide (CO2) produced
in industrial combustion and emitted in flue gases. To this end, the development of mitigation strategies for CO2
emissions is essential to restricting further global warming. An ever-increasing industrial demand bolsters worldwide
greenhouse gas (GHG) emissions. COz is the most abundant of the GHGs, totaling 73% of all emissions in 2017,
mainly because of its production in the power generation and transportation sectors (Olivier and Peters, 2018). In
particular, combustion sources make up 89% of the total CO2 emissions subdivided by fuel type into coal (40%), oil
(21%), and natural gas (18%) (Olivier and Peters, 2018). After a brief plateau in 2015 and 2016, CO2 emissions
continued their upward trend in 2017 owing to the increasing reliance of developing countries on coal as a convenient
energy source (BP, 2019). Despite recent trends of waning coal use in in the developed world, worldwide reliance on
other COz emitters has been steadily increasing (Le Quéré et al., 2018); likely because of their abundance and low
price. This is particularly essential for developing economies that must provide inexpensive and reliable energy to
their populations. In 2019, combustibles accounted for ~79% of the world’s energy supply (IEA, 2020), comprising
mainly oil, natural gas, and coal. While it would be ideal to eliminate these emissions, this is not a realistic option
because of the worldwide dependency on CO: emitting products, thereby necessitating the development of

technologies to mitigate global COz emissions.

Carbon capture and storage (CCS) is one of the technologies on the forefront of CO> emission mitigation. This
technology aims to sequester CO: to avoid its release into the atmosphere, subsequently using it elsewhere or storing
it in repositories. In particular, pre-combustion removal (Babu et al., 2013; Linga et al., 2007), post-combustion
removal (Valencia-Marquez et al., 2015), chemical looping combustion (CLC) (Lucio and Ricardez-Sandoval, 2020;
You et al., 2018) and oxy-combustion (Chansomwong et al., 2014a; 2014b) have received much attention.

Post-combustion CSS (PCC) is the most mature CCS technology that is ready for deployment. A major benefit of the

technology is that it can be used to retrofit existing CO2 emission sources for immediate removal. For PCC, several
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methods of removing CO:z from combustion products in industrial flue gases have been investigated, these include
adsorption, physical absorption, chemical absorption, cryogenic separation, and membrane-based separation (Wang
et al., 2017). Of these, chemical absorption by way of amine solvents has seen experimental contributions by way of
pilot-scale (Dugas, 2006; Idem et al., 2006) and industrial-scale (Faramarzi et al., 2017; Huang et al., 2010) plants.
Moreover, there have also been computational contributions in modelling, simulation and process design (Bahakim
and Ricardez-Sandoval, 2014; 2015; Gaspar el al., 2016; 2017; Lawal et al., 2009; Mac Dowell et al., 2013; Nittaya
etal., 2014). Despite the construction of these few plants, widespread uptake of PCC systems has been slow. The main
factor hindering adoption of this technology remains the economic detriment it poses to the fuel-fired power plants to
which it is connected; as the PCC process is expensive, it reduces the profit of the power plant. To this end, techno-
economic analysis (e.g., Danaci et al., 2021; Li et al., 2016) and economic operation of the PCC process (e.g., Luu et
al., 2015; Mechleri et al., 2017; Panahi and Skogestad, 2012) have been studied. These economical operation analyses
and schemes will be critical in inducing emitters to consider PCC plants as viable.

Of the solvents possible for chemical absorption PCC, monoethanolamine (MEA) based solvents have received
particular attention among the solvent alternatives because of their abundance, performance, and low price relative to
other solvents (Hossein Sahraei and Ricardez-Sandoval, 2014). Consequently, MEA-based chemical absorption for
CO2 removal is very developed as a potential emerging technology since its chemistry and process have been
extensively studied (Haimour and Sandall, 1984; Hikita et al., 1977; Hoff et al., 2004; Kvamsdal et al., 2009; Onda,
et al., 1968). Importantly, these studies have allowed the development of transient mechanistic process models (Harun
et al., 2012; Jayarathna et al., 2013; Schneider et al., 1999).

For real-life deployment of the MEA-based PCC, the process operation must be well understood to achieve safety and
productivity. A crucial part of the operation is the implementation of a process control system to ensure set-point
regulation and tracking. In an MEA-based PCC plant, the control system is conventionally used to ensure that CO2
removal targets and energy consumption requirements are met in the presence of upstream disturbances, e.g. changes
in the energy load. The successful fulfillment of these operational goals is especially pertinent in the PCC system as
the CO2 removal generally detracts from the profitability of the upstream plant. In addition to the control studies that
consider conventional decentralized feedback controllers such as PI and PID (Luu et al., 2015; Mechleri et al., 2017),
the development of the aforementioned PCC plant models has enabled the use of model-based control strategies.
Previous studies have implemented model-based control featuring various levels of model sophistication and control
envelopes. For the MEA-based PCC plant, Bedelbayev et al. (2008) implemented an MPC based on a linearized model
of the absorber unit whereas Sahraei and Ricardez-Sandoval (2014) developed an MPC involving multiple inputs and
outputs and compared their performance to a decentralized feedback PI-based control strategy. He et al. (2016)
implemented another linearized MPC model integrated with scheduling for the full MEA-based PCC plant. Moreover,
Panahi and Skogestad (2012) evaluated different control structures for the PCC plant and implemented a multivariable
linear MPC. For increasingly complex models, Akesson et al. (2012) considered a low-order nonlinear model and
implemented a nonlinear MPC (NMPC) for the absorber unit in the PCC plant. Decardi-Nelson et al. (2018) also
implemented an NMPC scheme for the complete post-combustion MEA-based CCS pilot-scale plant. Additionally,
they also developed an economic MPC (EMPC) for the plant. Similarly, Chan and Chen (2018) also implemented an
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EMPC scheme based on an Aspen Plus model of an entire MEA-based CSS plant whereby the process economics can
be optimized and controlled with respect to changing feed qualities and utility prices. These are only selected few of
the control studies for the MEA-based PCC plant, a review on this subject can be found elsewhere (Salvinder et al.,
2019).

Recently, machine learning techniques (Altan et al., 2021; Karasu et al., 2020; Rangel-Martinez et al., 2021) applied
to the prediction of systems with complex dynamics (Wang and Ricardez-Sandoval, 2020) such as PCC (Helei et al.,
2021; Rahimi et al., 2021), this offers a balance between modelling accuracy and computational tractability. Literature
on PCC control is vast; a recent review on this subject can be found in (Salvinder et al., 2019). A commonly proposed
approach to achieve control flexibility in this system is through the manipulation of heating duty (Akesson et al., 2012;
He et al., 2016; Jung et al., 2020; Jung et al., 2021; Luu et al., 2015), which can enrich or dilute the PCC solvent as
required but requires steam to be taken from the power plant. An aspect that has not been considered for control is the
use of makeup streams to achieve the same flexibility while abating the use of steam that could otherwise be used for
power generation.

For feedback control to be practically implementable, the plant states must be fully measurable or observable.
Accordingly, state estimation is used as many system states required by the controller cannot be measured online; this
is particularly important in complex systems that include several states. In comparison to the control literature for
PCC, the available state estimation literature is sparse. Notably, Jung et al. (2020) paired a KF with linear and nonlinear
MPC:s for control of the PCC, respectively. The latter used a mechanistic control model and required the measurement
of 74/110 system states and very low process noise for successful state estimation. Moreover, Yin, Decardi-Nelson
and Liu (2019) used moving horizon estimation (MHE) to perform fault diagnosis, whereby the PCC absorber was
decomposed into spatial subsystems (i.e., it was decomposed into five stages, each with its own estimator) and only
gas temperatures were measured. MHE is an advanced estimation scheme well-suited to deal with nonlinearities and
constraints. Its use in PCC, which is nonlinear and often constrained, could allow for more accurate and reliable state
estimates than KF, leading to a more effective control layer. Despite these recent advances in the state estimation
literature for the PCC process, only a single full MHE implementation, which requires a realistically achievable
number of measurements without model decomposition, has yet to be implemented and engaged within a broader
operational scheme (i.e., with MPC and RTO) for PCC plants. The only existing example of MHE for PCC was
proposed by Yin et al. (2020); however, this was only used for monitoring purposes and not engaged with other
operational layers. More broadly, there is also a gap for an integrated operating scheme that addresses the economic,
control, and estimation problems simultaneously.

The ability to estimate plant states, which can subsequently be fed to a controller to steer the system towards desirable
operating points, enables the implementation of optimal operation approaches. These can be put into two categories,
both of which could use mechanistic process models: economic MPC (EMPC), in which an optimal control problem
is formulated with an economic objective, thus providing economically-driven control actions directly to the plant;
and real-time optimization (RTO), in which a steady-state problem is formulated with an economic objective, hence
providing steady state set points that are passed to a control layer and are updated when significant disturbances occur.

While RTO is a steady-state method, EMPC is inherently dynamical; as such, it often requires stabilization (e.g.,
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terminal constraints/cost) and intensive computational effort per sampling interval (Ellis et al., 2014), making it

difficult to implement online. The economically optimal operational approaches for PCC are summarized in Table

2-1:

Table 2-1: Summary of literature pertaining to the economically optimal operation of PCC processes.

Ref. Approach | Findings Drawbacks

Chan and Chen | EMPC Approach for MEA-based plant provided | Full state access was assumed

(2018) ~10% cost reduction over a constant | (no estimation). Only solvent
operating point. Disturbances in flue gas | and utility costs considered.
quality and utility costs were considered. MEA makeup manipulated.

Decardi-Nelson et | EMPC/ Approach for MEA-based plant provided | Full state access was assumed

al. (2018) RTO ~6% cost savings over a constant operating | (no estimation). Only carbon
point. EMPC and RTO were compared. RTO | tax ~ and  thermal costs
performance was found to approach EMPC | considered. Reboiler duty
performance if executed frequently. | manipulated.

Disturbances in flue gas flowrate and steam
price were considered.

Akulaetal. (2021) | RTO Approach for MEA-based plant provided an | Dynamics were not considered
analysis of the optimal steady-state operating | (i.e., no control/estimation).
point in part-load, full-load, and varying flue | Only pumping, heating, and
gas composition scenarios. cooling costs  considered.

Reboiler duty manipulated.

The following conclusions can be made from this review of the economically optimal operation literature: 1) the
existing studies are tailored specifically to MEA-based plants, 2) the respective economic functions considered in the
previous studies ignored key aspects of the process economics in their cost function (e.g., Decardi-Nelson, Liu and
Liu (2018) included thermal and carbon tax costs but ignored solvent costs), 3) none of the previous studies have
manipulated both MEA and water makeup streams to achieve solvent enrichment/dilution (e.g., Chan and Chen (2018)
only manipulated the MEA makeup). This elucidates the following gaps in the literature: 1) the need for a generic
operating scheme that can be applied to a general class of PCC plants to achieve economically optimal operation while
promoting CO2 removal, 2) the need for an economic function that is comprehensive through its inclusion of all
significant economic aspects of PCC, 3) an advanced model-based control scheme that can manipulate PCC plants
flexibly without solely relying on the energy-intensive reboiler, 4) an advanced model-based state estimation scheme
that is accurate and reliable in terms of the measurements required.

A complicating factor embedded in the models that are used in model-based control approaches, including those using
highly detailed nonlinear mechanistic models, is that the models will be subject to various types of uncertainty. These
are caused by assumptions made in developing the model (structural), and error associated with estimating
experimental parameters (parametric) (Krastawski, 1989). This uncertainty, which leads to mismatch between the

plant and the model, can be either exogenous or endogenous. Exogenous uncertainty occurs due to factors not
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embedded in the model, e.g., variations in inlet compositions, flowrates, changes in products demands; while
endogenous uncertainties occur within the model’s parameters or equations leading to plant-model mismatch, e.g.
activity coefficients, heat transfer coefficients, rate constants. For model-based control, taking these uncertainties into
account is crucial as neglecting them will lead to poor controller performance, which would translate into off-
specification products, failure to meet commercial and regulatory process demands, and lost profits. To take these
uncertainties into account, the closed-loop operation must be made insensitive to uncertainty, which can be achieved
through stochastic or robust methods control, the latter of which will the focus of this study. A review of stochastic
MPC methods can be found elsewhere (Mesbah, 2016). In this context, control actions must be determined such that
the process will exhibit good performance in closed loop despite these uncertainties. The robust operation of the MEA-
based PCC has been addressed using optimal control by a few authors. For instance, Panahi and Skogestad (2012)
employed a robust linear MPC on the entire plant; while Zhang et al., (2018) implemented a H,, robust controller with
anonlinear NAARX model on the entire plant. Decardi-Nelson et al. (2018) evaluated the performance of their NMPC
and EMPC schemes under upstream uncertainties; however, they did not make their controllers robust to those
uncertainties. In a follow-up work, Decardi-Nelson and Liu (2022) used a zone tracking approach to design a robust
PCC EMPC.

Uncertainty is particularly salient in PCC where a nonlinear carbon capture plant interacts with a nonlinear power
plant. Accordingly, this topic has been investigated for several applications. The design of PCC under uncertainty has
been addressed through ranking-based (Bahakim and Ricardez-Sandoval, 2015) and multi-scenario (Cerrillo-Briones
and Ricardez-Sandoval, 2019) approaches. In the control layer, several robust controllers (Jung et al., 2020; Rua et
al., 2021a; Zhang et al., 2018) have been proposed and paired with state estimators (Yin et al., 2020); these often
consider uncertain model structures, parameters, and unmeasurable/unmeasured variables. On longer timescales,
scheduling (Zantye et al., 2019) and planning (Wu et al., 2015; Xuan et al., 2022; Zhang et al., 2019) schemes have
been proposed for PCC, which generally address price and demand uncertainties. As per the literature, uncertainty has
only been considered for online economic optimization of PCC in the context of EMPC (Decardi-Nelson and Liu,
2022); however, no study has considered uncertainty in an RTO-operated PCC process. The effect of uncertainty in
real-time steady-state decision making (i.e., not scheduling or planning time horizons) for PCC is unknown.

While the models used in RTO are often mechanistic, there is no guarantee that the model parameters are near their
true values; hence, parameters estimation schemes must be considered to improve the RTO’s predictions. Indeed, for
a PCC system being modelled mechanistically, Hughes et al. (2022) recently showed the importance of parameter
accuracy through uncertainty quantification of mass transfer and kinetic parameters and their impacts on the
effectiveness of carbon capture. To this end, RTO schemes typically employ the so-called ‘two-step’ approach,
whereby a parameter estimation (PE) layer is employed to update RTO model parameters periodically. Previous RTO
implementations for PCC, have not considered the estimation layer of the two-step approach (i.e., they have assumed
perfect parameters and measurable disturbances). In most of the cases, this is a strong assumption as online
measurement of some disturbances (e.g., compositions) or perfect knowledge of model parameters (e.g.,
thermodynamic activities or mass transfer parameters) are not realistic. As such, this assumption remains to be

addressed such that the PCC RTO is fully implementable in a real-life scenario. In contrast, cases with rapidly
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fluctuating parameters and economics make the two-step approach for RTO unsuitable as set points can quickly
become suboptimal. Instead, a robust optimization approach could be deployed for this task. However, robust
optimization, which has been an active research consideration for PCC in longer timescales, has also yet to be

considered in context of RTO.
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3. Robust Control of a CO; Capture Absorber

In this work, we focus on a monoethanolamine (MEA)-based chemical absorption PCC method, for which the
chemistry and process have been extensively studied (e.g., Dugas, 2006; Hikita et al., 1997). These studies have
enabled the development and verification of mathematical models, which in turn, can be used for model-based
optimization and control as presented herein.

One optimization approach that has not been considered to make the MEA-based PCC plant robust through its control
is the multi-scenario approach. In general, scenario-based approaches are commonly used when considering robust
operation using MPC under uncertainty whereby an optimal controller considers multiple discrete realizations of
uncertainty and aims to find optimal control actions that can accommodate all the pre-specified uncertainty
realizations. The multi-scenario approach, as implemented in the present work, has previously been used for a large-
scale nonlinear model of an air separation unit (Huang et al., Biegler, 2009), and linear hydrodynamic model for water
resource management (Tian et al., 2017). To the authors’ knowledge, the past robust controllers applied to the MEA
PCC plant have used linear and reduced-order models while this study uses a nonlinear dynamic mechanistic model
for this process. Such a model enables the controller to explicitly address uncertainty where it is most likely to occur;
in parameters associated to specific chemical phenomena and in the process operating conditions dictated by upstream
units.

The aim of this study is to use a mechanistic dynamic model to implement and assess the performance of a robust
NMPC on the absorber in an MEA-based PCC pilot-scale plant. To the authors’ knowledge, this is the first study that
has implemented robust control in the MEA-based PCC process (or any other CCS process) with the multi-scenario
approach while using the actual mechanistic model of the process. This work explicitly accounts for exogenous
uncertainty that will affect the absorber daily owing to changes in operating policies of the upstream emission-
producing plant (e.g. rapid changes in flue gas flowrates and uncertainty in flue gas composition); as well as

endogenous parametric uncertainty in the plant model via its thermodynamic properties.

3.1. MEA-based Absorber Model

The dynamic mechanistic model used in this work was adapted from Harun et al. (2012) and describes an MEA-based
COz absorber unit in a PCC pilot plant as a packed column. The arrangement and operating conditions are based on
the pilot plant studied by Dugas (2006). The model is a partial differential algebraic system of equations (PDAEs) as
it is composed of ordinary (ODEs) and partial differential equations (PDEs) as well as algebraic equations (AEs).

The absorber, shown in Figure 3-1, operates at atmospheric inlet pressure and has four components:
monoethanolamine (MEA), carbon dioxide (CO2), water (H20), and nitrogen gas (N2), which are denoted as the set
i ={MEA,CO,, H,0,N,}. The column has two inlet and two outlet streams located at the bottom and the top of the
column’s axial domain (z(m)), which are at z = 0 and z = H, respectively. The top inlet stream, referred to as the
“lean” amine stream, consists of a liquid phase mixture of MEA, COz, and H>O. In the full PCC plant, this stream
comes from a storage tank that mixes fresh MEA with the recycled MEA from a downstream stripper that regenerates
and recycles the solvent. The bottom inlet of the column, referred to as the flue gas stream, consists of CO2, H20, and
N2. This gaseous mixture comes from an upstream combustion source and contains the COz for removal. The top

outlet stream, referred to as the vent gas, consists of unremoved CO> as well as H2O and Na. The bottom outlet stream,
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referred to as the “rich” amine stream, consists of all four components and goes to the aforementioned stripper for
isolation of the COz and regeneration of the amine solvent. Inside the column, a small amount of gaseous COz is
naturally absorbed into the liquid phase from the gas phase. More importantly, the absorption relies on the reactive
mechanism that takes advantage of the weak acid and base properties of the CO2 and MEA (or other alkanolamines),
respectively. These two components react to make a water-soluble salt containing the CO2, which readily dissolves
into the liquid phase rich amine solution. A detailed description of this mechanism can be found in (Vaidya and Kenig,
2007).

Vent gas Lean amine solution:
l ! 9
Ci,in' Tinr uin
Flue gas
g 79 .9 7=0
Ciin Tins Uin

COz—rich amine solution

Figure 3-1: Absorber column arrangement with inputs and outputs. Components are MEA,
CO., H20, and N2

The absorber model considered in this study operates under the following assumptions:

1. There is turbulent flow within the column, which is approximated as plug flow.
The system is modelled as axially distributed and is assumed to be well-mixed in the radial direction.
The gas phase is ideal owing to low operating pressures.
The pressure drop along the height of the column is linear.
Nz only exists in the gas phase, phase changes occur in all other components in both directions.
There is thermal equilibrium between the phases.

There is no accumulation in gas and liquid films.

® =N kWD

The liquid phase has a constant velocity in the axial domain for a given inlet flowrate.
This model consists of molar component balances for the gas and liquid phases, energy balances for the gas and liquid
phases, rate equations, chemical kinetic equations, equilibrium equations, and physical property descriptions. These

are presented next.

3.1.1. Molar Component Material Balances

The molar component material balances describe the dynamics of the constituent component concentration in each

phase owing to chemical reactions, changes in equilibria, and mass transfer. They are as follows:
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dt = HLE‘F aWNi (3-1)
ac’ acy 50Uy
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where C}(mol/m?) and Cig (mol/m3) are liquid and gas molar concentrations of component i, respectively; and
w(m/s) and u,(m/s) are liquid and gas velocities, respectively. a,, (m?/m3) is the wetted area, while
N;(mol/m?/s) is the molar flux between phases for component i. The molar flux directions are defined as positive
for gains of material in the liquid phase and, accordingly, negative for gains of material in the gas phase.

While the assumptions stated that there is a fixed liquid velocity along the height of the column for a given liquid inlet
flowrate, the same is not assumed for the gas velocity since the gas phase is much less dense and loses substantially

more momentum as it travels up the column. This decrease in velocity is expressed as a momentum balance for the

gas phase:
ou, u,dP u,dT, a
49 4 9_9_ VN (3-3)
0z Pdz T,dz (2, 4
i=1

where P(bar) is the absorber pressure as a function of position in the axial domain, T, (K) is the gas phase temperature,

and CJ =Y, Cig (mol/m3) is the total gas concentration.

3.1.2. Energy Balances

The energy balances describe the dynamics of the temperatures of the two phases owing to chemical reactions,
equilibria, and heat transfer. They are stated as follows:

dT, aT; a

5 W5~ % [hgl(Tl - Tg) + AI-IranCOZ - AH;ZgNHZO + hout(Tl - Tamb)] 3-4
dt 0z i=1Cpi Gi (3-4)
dT, aT, a

g _ g w
@~ UGty eror (T ) (3-5)

where T;(K) is the liquid phase temperature, hy, (J/mol/K) is the interfacial heat transfer coefficient given by the

Chilton-Colburn heat and mass transfer analogy (Geankoplis, 2003), and T, (K) is the temperature of the

surroundings. czl,_l-(] /mol/K) and Cg ;(J/mol/K) are the liquid and gas specific heat capacities of component i,

respectively; N¢o, and Ny, are the molar fluxes of CO2 and H20, respectively, calculated using the two-film mass
vap

transfer model. AH,..,, (J/mol) is the molar heat of reaction, AHy_,, (J/mol) is the molar heat of vaporization of water,

and h,,,, (W/m?%K) is the heat transfer coefficient between the absorber and its surroundings.

3.1.3. Mass Transfer

The two-film model gives the rate of mass transfer within the absorber for all components excluding Nz, as it is

assumed to only occur in the gas phase. The model is stated as follows:

N; = K (p; — pi) (3-6)
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1 1 He;
= (3-7)

where Kig (mol/m?/Pa/s) is the overall mass transfer coefficient for the gas phase while klfq (mol/m?/Pa/s) and
k!(m/s) are the binary gas and liquid mass transfer coefficients for component i, respectively. p; (kPa) and p; (kPa)
are the partial and equilibrium pressures for component i, respectively. He; (kPa m3 /mol) is the Henry’s law constant
for component i. The use of an overall mass transfer coefficient eliminates the need to calculate interfacial
concentrations and, as stated earlier, transfer from the gas to the liquid phase was used as the convention for positive
mass transfer. The model assumes that resistance to mass transfer for liquid H-O and MEA is negligible because these
components have a higher solubility; thus, most of their resistance to mass transfer occurs in the gas phase (Harun et
al., 2012).

As mentioned above, the acid-base chemical reactions between CO> and MEA described by Austgen et al. (1989)
dictates the amount of CO2 absorbed in the liquid phase solvent. The effect of this increase is captured by the
enhancement factor (E, ), which represents an approximate analytical solution to the differential equations governing
the diffusional mass transfer and chemical reactions occurring in the liquid film. The enhancement factor is valid
under the pseudo-first order reaction scheme with respect to COz2; which is valid in the situation where an alkanolamine
is absorbing COz in a packed column, owing to the increased mixing afforded by the packing (Kvamsdal et al. 2009).
This scheme is facilitated by low COz partial pressure, high reactant concentration, and short contact times; thus,
ensuring that mass transfer is enhanced by the reactions while not depleting the amine concentration. The volume of

amine is considered constant throughout the film and equal to that of the bulk phase. The enhancement factor is given
by:

Vk2ChgaDeo,
Baps ="—7 (3-8)
CO,

where k,(m?/mol/s) is the second-order reaction rate constant and Cj;5 4 (mol/m3) is the liquid molar concentration

of free MEA, both calculated from Hoff et al. (2004). D¢, (m?/s) is the diffusivity of CO> in the MEA solution.

3.1.4. Equilibria

The dynamic model considers chemical and phase equilibria together. Chemical equilibrium describes the balance
between ionic and molecular species in the liquid phase while phase equilibrium describes the balance between phases

at the gas-liquid interface. For H20 and MEA, the equilibrium pressure at the interface is expressed as follows:

vap

Pl = XYip; (3-9)

where x;,y;, and pf “P(kPa) are the liquid fraction, activity coefficient, and vapor pressure of component i,
respectively. Since the temperature of the system exceeds the supercritical temperature of COz, it does not exist in the

liquid phase. Instead, the equilibrium pressure of COz is calculated using Henry’s law:

Pco, = Heco,Cco,Yco, (3-10)
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where C¢o, (mol /m3) is the liquid molar concentration of free COz from Hoff et al. (2004), and Yco, is the activity

coefficient of COa.

3.1.5. Physical Properties, Absorber Design and Model Inputs

Table 3-1 lists the physical properties used in the model, their sources, and values (if constant). Variable physical
properties are calculated using correlations provided in the corresponding reference. Table 3-1 also lists the packed
column design characteristics as used in this study. Additionally, Table 3-2 lists the required inputs for the model,
which come in the form of initial conditions and inlet (boundary) operating conditions. Initial conditions are obtained
from measurements/estimates from the absorber while operating conditions are obtained from

measurements/estimated from upstream units.

Table 3-1: Physical properties and design characteristics used for the absorber column model.

Physical Property Value Source

Ambient Temperature (K) Tymp = 297.6 | Harun et al. (2012)

Heat transfer coefficient between absorber | h,,; = 430 | Kvamsdal and Rochelle (2008)
and surroundings (W/m2/K)

Molar heat of reaction (kJ/mol) AH,,, = 48 | Kvamsdal and Rochelle (2008)
Molar heat of vaporization (k]/mol) AHy'% = 82 | Poling et al. (2007)

MEA activity coefficient Ymea = 0.677 | Aspen Property Package
CO: activity coefficient Yco, = 0.381 | Smith et al. (2005)

H>0 activity coefficient Yu,0 = 0.974 | Smith et al. (2005)

Wetted area (m?/m?) a,, Onda et al. (1968)

Liquid component heat capacity (J/mol/K) Crln,i Hilliard (2008)

Gas component heat capacity (J/mol/K) cg ; Aspen Property Package
Liquid component mass transfer coefficient k! Onda et al. (1968)

(m/s)

Gas component mass transfer coefficient klt" Onda et al. (1968)
(mol/m?/Pa/s)

Component Henry’s law constant He; Haimour and Sandall (1984)
(kPa m3/mol)

Second-order reaction rate constant k, Hikita et al. (1977)
(m?/mol/s)

COz diffusivity in solvent solution (mol/m3) Dco, Ko et al. (2001)

Component vapour pressure (bar) p; " Aspen Property Package
Design Characteristics
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Column internal diameter (m) 0.43 Cerrillo-Briones and Ricardez-Sandoval (2019)

Packing height (m) 6.1 Cerrillo-Briones and Ricardez-Sandoval (2019)
Packing type IMTP #40 Cerrillo-Briones and Ricardez-Sandoval (2019)

Table 3-2: Model inputs: initial and operating conditions required

Initial Condition (0 <z < H,t = 0) | Boundary Condition (z =0,z = H,t > 0)

Gas Cf(2,0) = C,(2) c?(0,6) =C? (t)

i,in

T9(z,0) =TI (2) T9(0,t) = T; (1)

u9(0,t) = u (t)

P9(0,t) = P(t)

Liquid Cl(z,0) = CL,(2) C{(H,t) = Cl (D)

T'(z,0) = T;(2) T'(H,t) = T}, (t)

ul(z,t) = u,(t)

The outlined PDEs that comprise the mass and energy balances (equations (3-1)—(3-5)) are denoted as f4 along with
the AEs that comprise the process phenomena (equations (3-6)—(3-10)) and physical property (Table 3-1). This set of
equations represent the mechanistic model for this process, which require the column design specifications and

initial/boundary conditions presented in Table 3-1and Table 3-2, respectively.
3.2. Robust NMPC

In the present work, a nominal NMPC formulation will be implemented along with the multi-scenario formulation for
comparison. By nominal NMPC, we refer to an NMPC controller that includes no measures for dealing with
uncertainty in the formulation (it assumes that its parameters are known a priori). We begin by defining the multi-
scenario NMPC and subsequently presenting the nominal NMPC as a special case. Generally, an NMPC uses a
nonlinear dynamic process model to determine optimal control actions that minimize a loss function, e.g., set-point
tracking errors in the controlled variables. In the case of the multi-scenario NMPC, the controller considers multiple
realizations of the model’s uncertain parameters, which results in instances of the process model denoted by the set
“r”. The operation of the NMPC in the feedback control strategy is depicted in Figure 3-2, which shows a control
structure operating at a time t in the operation of a process where an NMPC receives measurements or estimates of
the plant states x, as initial conditions for the model, as well as the set points for the controlled variables y, . This
information is included in the formulation of the optimal control problem. For a multi-scenario discrete-time NMPC

at sampling time t , this problem is as follows:

S P P
. ~ 2 2
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(3-11)

S.t.
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Figure 3-2: Feedback loop between the simulated plant and multi-scenario NMPC. NMPC dependent on “r” while
plant is not.
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where||X||3 denotes a quadratic form on vector X € R™ with the weighting matrix A € R™". %, € R™ represents
the predicted states (differential variables) for each model realization, ¥,,;, € R"™> are the predicted controlled
variables for each model realization, and 8,. € R™¢ are the uncertain model parameters. Note that these variables are
defined as across the set “r”, representing the various model realizations corresponding to each realization in the
uncertain parameters. Y, € R" are the user-defined set points for the controlled variables, and X, € R"™* are the
measured or estimated states used as the initial condition. Note that these variables are not indexed across the set “r”
as they are externally acquired thus realization independent (they have the same value for all realizations). xo, € R™x
is the state vector acquired from the simulated plant, which is set as equal to x, for every NMPC execution thereby
enabling feedback to the controller. Au,,; € R™ is the vector of changes in the manipulated variables (Au,,; =
U,,; — Upypi—q). The controller tuning parameters include diagonal positive semidefinite matrices Q. € R™*™ and
R, € R™*™_which affect set-point tracking and control move suppression, respectively. P and C, which denote the
prediction and control horizons as integer multiples of the sampling intervals, respectively, also serve as tuning
parameters as they can affect the controller’s performance. Y>_; w, = 1 are nonnegative weights for different
uncertainty realizations where M is the user-defined number of realizations that the NMPC considers. As mentioned
above, these realizations represent instances of the process model that the NMPC simultaneously considers such that
each realization has a unique combination of uncertain parameters. Of the total model parameters, only a user-defined
subset is considered uncertain, this subset is chosen based on a priori process and model knowledge about which
parameters are difficult to estimate.

By solving the open-loop problem (3-11), an optimal control sequence U;, 1, ..., Us,¢ is obtained for the user-defined
control horizon C; beyond this horizon, the manipulated variables are assumed constant, hence the last constraint in
equation (3-11). The optimization problem from which this optimal sequence is acquired is subject to the system of
constraints composed of the aforementioned DAE system f4 and gg4, as well as input constraints u! < u,,; < u®.

far:R™ X R™ x R™ — R"™ denotes the set of nonlinear differential equations describing the evolution of states in
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the system, and g4,: R™ x R™ x R™ — R"9 denotes the set of inequality constraints imposed on the controller
(aside from the manipulated variable contraints). u! and u" € R™ denote the lower and upper bounds for the
manipulated variables and reflect the physical limitations of the process and its controllers. For the multi-scenario
NMPC the DAE system composed of f;,- and g4, contains “r” realizations of the uncertain parameters @,.. This DAE
system is used to predict the process’ evolution for a user specified prediction horizon P for the given uncertainty
realizations. This enables the objective function to determine the optimal control actions for the given control horizon.
As shown in problem (3-11), the objective (loss) function contains two weighted terms: one minimizes quadratic
deviation from specified set-points and the other penalizes changes in the control actions. From the optimal control
sequence obtained by solving problem (3-11), the first control action u,, ¢ is passed to the plant as depicted in Figure
3-2. The plant is then simulated for a fixed interval At using the input u;,, and a nonlinear process model. This
simulation enables the plant states to evolve to x;, 1 and, after the time interval At has elapsed, the process of obtaining
and giving measurements/estimates to the NMPC is repeated. By using the evolved states x,,; as feedback to solve
problem (3-11) again recursively during each time interval At , the scheme becomes closed loop. This is shown in the
feedback portion of Figure 3-2 where the initial condition is updated as X, = x, after moving the horizon from t to
t + 1. In this study, we assume full state and disturbance information availability (i.e., the relevant information needed
by the NMPC can be precisely measured or estimated). State estimation for the MEA PCC system remains an open
challenge that will be addressed in future work. Note that past NMPC studies on this system (e.g., Akesson et al.,
2012; Chan and Chen, 2018; Decardi-Nelson et al., 2018) have made similar assumptions. Also note that feedback
does not necessarily need to occur at every sampling interval; however, more frequent feedback often leads to better
control performance.

The mechanism by which the multi-scenario NMPC makes the controller robust is by finding a single optimal control
sequence U;,q, ---, Ugc that minimizes the objective function for all model realizations given the feedback x, = x,
from the plant. This unique optimal control sequence accommodates for the user-defined set of possible values that
uncertainties parameters may manifest during operation. This makes the control actions robust to uncertainty in the
sense that although the “true” parameter values are not ascertained by the NMPC controller, the actions will be well-
suited for performance across the defined set of uncertain parameter realizations.

As mentioned above, the nominal NMPC occurs as a special case of the multi-scenario NMPC when only a single
scenario is considered with no further safeguards against uncertainty. The single scenario corresponds to a nominal
realization of the model uncertain parameters, i.e., 8, Vr € {1}. This assumption simplifies the formulation and
shrinks the model size as variables are no longer indexed across “r”, however; it ignores model uncertainty by making
the assumption that the model provides a perfect representation of the system. Unfortunately, this is often not the case
in practice and may result in non-optimal operation because of poor controller performance. Worse still, this
assumption may lead to infeasibility.

Both the nominal and multi-scenario NMPC controllers are implemented in a control loop with plant simulation
containing a single realization of the uncertain parameters 8. The nominal and multi-scenario NMPC use the large-
scale mechanistic model of the absorber column, consisting of f; and f,,, respectively. This model has been

presented in Section 3.1.
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3.3. Model Implementation and Validation

The nominal and multi-scenario NMPC optimization formulations are NLP and were implemented in the Pyomo
environment, an optimization library in PYTHON (Hart et al., 2011). The axially distributed, continuous-time
differential-algebraic system presented in Section 3.1 was discretized axially into ten finite elements using the
backward finite difference method. This discretization was determined in the model validation stage by considering
different numbers of finite elements for the axial domain. Since there is a tradeoff when considering discretization
resolutions between model size and accuracy, a course axial discretization was used to prevent the model from
becoming untenably large when discretized in time. The axially discretized absorber model has 80 states and 1,781
algebraic variables. Likewise, the model was discretized in time into eight elements to a step size of 12.5 seconds
using three-point Radau collocation on finite elements for all experiments. The Radau collocation method was chosen
because of its high accuracy and built-in functionality in Pyomo. The high-resolution discretization in time is necessary
because fast responses are observed owing to the fact that the model represents a pilot-scale plant and disturbances
are considered directly at the system boundaries. It was found that step sizes larger than 12.5 seconds presented
difficulties to the solvers when solving the NMPC problem and smaller sizes would have increased the problem size,
making it unnecessarily large. The interior-point optimization algorithm (IPOPT) (Wachter and Biegler, 2005) was
used to search for local solutions of the nominal and robust optimization problems presented in (3-11). The studies
presented in this section were performed on an Intel core i17-4770 CPU @ 3.4GHz. The nominal inlet conditions for
the pilot-scale absorber model are adopted from Cerrillo-Briones and Ricardez-Sandoval (2019) and are presented in
Table 3-3.

Table 3-3: Base case inlet operating conditions

Flue Gas Inlet (z = 0) Lean Solution Inlet (z = h)
T, (K) 319.17 314
yMEA 1 xMEA (mol/mol) 0 0.1
yicr‘l’z/x’i‘:mz (mol/mol) 0.175 0.030
ygfo/ngo(mol/mol) 0.025 0.870
yi2/x? (mol/mol) 0.8 0
w,, (m/s) 0.64 0.00473

In order to start the controller tests at realistic points, the inlet conditions stated in Table 3-3 were used to solve a
steady-state version of the nominal absorber model. This steady state provided initial conditions for all undisturbed
states at which to begin the dynamic plant simulations. Moreover, the NMPC model’s performance in the solver is
sensitive to how the algebraic variables are initialized in the solver. This is because the optimization problem is large,
containing 64,488 nonlinear algebraic equations and 64,497 variables for the nominal (single-scenario) NMPC.
Accordingly, prior to starting test scenarios, a feasibility problem is executed and the algebraic variables from this

feasibility problem are used to initialize subsequent NMPC solves.
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The model was validated at steady state using the base case operating conditions reported by Harun et al. (2012).
These validation operating conditions differ from the base case operating conditions used in this study (shown in Table
3-3) as they have altered reference fluid velocities. The lower fluid velocities used in this study result in lower carbon
capture rates than those considered in the Harun et al. (2012); however, the results obtained are nevertheless
representative of the MEA PCC plant. The model was validated at steady state to compare the outputs to past
implementation of the model, the validation outputs are displayed in Table 3-4. The outlet stream values were
compared to Cerrillo-Briones and Ricardez-Sandoval (2019) and Harun et al. (2012). The latter of these studies was
itself validated using experimental data from an MEA absorption CCS pilot-scale plant from Dugas (2006) and found
to be in good agreement.

Table 3-4: Steady-state validation data for the current absorber model using the base case operating conditions from Harun et
al. (2012). Model 1: Cerrillo-Briones and Ricardez-Sandoval (2019), Model 2: Harun et al. (2012).

Vent gas Rich amine solution
Current Model 1 Model 2 Current Model 1 Model 2
model model
Temperature (K) 314.45 314.78 314.15 330.61 328.04 327.76
Total molar flowrate | 3.49 3.53 3.47 32.87 31.68 32.87
(mol/s)
Mole Fraction
MEA 0.0001 0 0 0.0981 0.1044 0.1021
CO2 0.0088 0.0108 0.0085 0.0555 0.0502 0.0503
H0 0.0717 0.0761 0.0651 0.8464 0.8452 0.8475
N2 0.9193 0.9066 0.9264 0 0 0

As shown in Table 3-4, the current model implementation with the base case operating conditions from Harun et al.
(2012) is in very good agreement for all output values with both models against which it was tested. The output values
predicted by the present model have a 4.012% difference and 2.43% difference from model 1 and model 2,
respectively; and there are no egregiously inaccurate values. This also validates the choice of resolution for the axial

discretization mentioned above. Based on these results, the model was deemed fit for use in the study.

3.4. Results

In the PCC absorber model presented in Section 3.1, four parameters were considered uncertain. These included the
species activity coefficients in the equilibrium pressure relations (Yyga, Yco,» Va,0) and the CO2 flue gas inlet fraction
(yifloz). To the authors’ knowledge, this is the first study that explicitly considers uncertainty in these parameters for
the post-combustion COz absorber unit. The activity coefficients are featured in the equilibria model (equation (3-9));
an earlier study (Cerrillo-Briones and Ricardez-Sandoval, 2019) established their significant effect on the system’s

mass transfer rate. The activity coefficients were chosen as uncertain parameters because they typically exhibit
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variation with changing operating conditions (Austgen et al., 1989). This potential variation is addressed in the
proposed robust NMPC implementation by treating them as uncertain parameters. Meanwhile, the feed fraction is an
inlet condition that is likely to be uncertain due to upstream variations in fuel quality (e.g., change in the type of coal)
and demands as well as changes in the operating conditions of the fossil-fired power plants. For simplicity, changes
in the CO: flue gas inlet mole fraction are reflected only in the H2O gas inlet mole fraction, so they are treated as a
single uncertain parameter. This is assumed because any changes in the upstream process will only affect the relative
ratio of combustion products in the flue gas (COz and H20), while the fraction of the two non-combustible components
will be effectively fixed because there is no MEA in the flue gas and Nz is inert. Table 3-5 contains the nominal values
for the uncertain parameters considered in this study.

Table 3-5: Uncertain parameters and their nominal values

Uncertain Parameter (f) | Nominal Value (6™°™)
YMEA 0.677
Yco, 0.381
Yi,0 0.974
yigloz 0.175

The nominal NMPC and the multi-scenario NMPC definition from (3-11) were applied to the COz absorber model
presented in Section 3.1. The formulation of the former will be omitted for brevity as the requisite assumptions were
presented above; however, we define the optimization problem for the latter and is as follows:
M p p
min }Z w, ( (%CCpyir(Rpyir) — %CCT, 2) + Z AFy,,
1 j=1

Fl .. Vie(1,..P

int+i ~PY =] =
S.t.
. (3-12)
fd,r (xt+i,rl Fl,inH_]-’ er) = Xerit1r Vi € {O, w, P = 1}, Vr € {1, ,S}
X =%
Fll,in =< Fl,inH_i < Fl},lin vie{l,..,P}

where the manipulated variable is the total liquid feed flowrate F}.,, with lower and upper bounds at Fll'l-n = 10mol/s
and Fl’,lin = 80mol/s , respectively. This input range provides a physically realistic range for the feed rate while
allowing for fast control action. Note that the liquid inlet flowrate is typically used in conjunction with the reboiler
duty as manipulated variables when considering an entire MEA PCC plant; in this study however, only the former is
used however since it directly affects the absorber being studied and is better suited for disturbance rejection and fast
control. As shown in Section 3.1, the states defined in the differential model equations f; for which initial
conditions X; = x, are required are the component phase concentrations and phase temperatures corresponding to
equations (3-1), (3-2), (3-4), and (3-5). Similarly, the model contain equations (3-3) and (3-6)—(3-10), along with
physical property relations from Table 3-1. The control and prediction horizon were both set as 100 seconds, which

discretized into eight time intervals (P = C = 8). This was determined based on preliminary uncontrolled step
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disturbances tests where the most parsimonious discretization that provided an acceptable resolution for observing
dynamics was obtained. The weighting matrices were set as identity matrices of proper dimensions (Q = I™v*™ and
R = [™+*™) and, as no underlying distribution of the expected values of the uncertain parameters is available, the
realization weighting parameter is assumed to be equal for all realizations (w; = w, = - = wy); the latter inherently
assumes that the uncertain parameter values are uniformly distributed. The controlled output (variable) in the objective
function is set as percentage of COz captured from the flue gas, which will have a unique steady state for a given set

of initial and operating conditions. This variable is defined as follows:
€02 _ €05
%CC = L—— 0, Ut % 100% (3-13)
in

For the multi-scenario controllers tested, it is expected that there will be increasing loss in performance as the
controller considers a larger number of scenarios. This performance deterioration manifests as less aggressive control
actions and eventual set-point offsets. This effect can be examined by comparing the performance of a nominal NMPC
under no plant-model mismatch (i.e., the case where the controller knows the plant parameters perfectly) to the
performance of the multi-scenario NMPCs. Since the nominal NMPC has a perfect model of the plant, which results
in off-set free tracking, it provides an upper limit for controller performance. Thus, for a given controller tuning, the
performance of the nominal NMPC can be used as a benchmark to compare the performance of controllers that do
result in offset (i.e., robust NMPC controllers and NMPC controllers that consider a plant-model mismatch). To
quantify the performance degradation of the robust controller, the price of robustness was used, i.e., the percent
difference in performance of the robust controller relative to the nominal NMPC controller. It is expected that the
price of robustness (PoR) will increase to reflect increasing conservativeness of multi-scenario NMPCs as they

consider more uncertainty realizations in their formulation. PoR is defined as follows:

_ ]robust - ]Nominall

PoR | X 100% (3-14)

Inominai
where “Jropust” and “Inomina;” are the performance indices of a given controller. This robust control PoR is designed
to be analogous to the same concept used robust optimization, which quantifies the loss in performance incurred by
computing a robust (as opposed to deterministic) solution (e.g., Schobel and Zhou-Kangas, 2021). These terms are

defined as the sum of squared errors with respect to a CO2 removal percentage set-point over a time period (T), i.e.

T
J. = Z(%CC" = %CCp;)?, Ve = {nominal,robust } (3-15)

i=0
Percent offsets from the desired set-point at the final steady state of simulation were also used for assessment of the
robust NMPCs tested. Another factor to consider when using multi-scenario controllers is the increase in size of the
multi-scenario NMPC optimization problem. The size of the problem increases proportionally to the number of
realizations considered by the controller, thereby increasing the CPU time to solve each optimization problem.
Accordingly, averaged CPU times for NMPC executions were also recorded to assess performance in a given

simulation.
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3.4.1. Effect of Size of Uncertainty Region

The effect of the size of the uncertainty region was investigated first. The uncertainty region refers to the symmetric
interval box of a priori defined values around the nominal parameter values in which the uncertain parameters are
bounded in a multi-scenario formulation (i.e., @ € [(1 — @)8™°™, (1 + @)0™°™]), where the parameter « is used to
represent the size of the uncertainty region. Given increasing sizes of uncertainty regions «, the robust controller
performance is expected to degrade since the uncertain parameters are able to take on a wider range of values, which
the controller must accommodate for. The source of the performance degradation is of interest as it could manifest as
less aggressive control action or set-point offset.

As mentioned above, a nominal NMPC was designed with the uncertain parameter values set to their corresponding
nominal parameters (Table 3-5), which were the same values used in the plant for this scenario. This corresponds to
the operational case where the model describes the plant perfectly, which may rarely occur in practice. As can be seen
in Table 3-6, the nominal NMPC has no set-point offset in the %CC controlled variable. As mentioned above, the
performance of the nominal NMPC was used to determine the PoR to compare multiple three-realization multi-
scenario NMPCs that were also tested in the plant simulation. The three-realization multi-scenario NMPCs tested had
increasingly large uncertainty region sizes (i.e., increasing a value). The scenarios in the three-realization controllers
were defined at the nominal (8™°™), minimal (' = (1 — @)@™™), and maximal (8® = (1 + a)@™°™) values of each
uncertain parameter for the given size of uncertainty region. These controllers were tested in a disturbance rejection
scenario, where two subsequent 5% steps down in total flowrate of flue gas (F;2) were implemented 44 time-intervals
(550 s) apart, as displayed in Figure 3-3. The 44 intervals between the steps were used to ensure sufficient time for
the %CC output to reach steady state prior to disturbing the system again. Subsequent smaller steps down were
implemented in favor of a single large step for ease of convergence in the IPOPT solver.

Table 3-6: Price of robustness, offset, and CPU time for increasing uncertainty region sizes

a PoR (%) Offset (%) CPU time (s)
0 (nominal) 0 0 55.71
0.2 5.74 0.0253 183.14
0.25 9.57 0.0396 192.42
0.3 14.82 0.0568 192.74
0.35 21.77 0.0768 218.73
0.4 29.36 0.0968 208.27

Table 3-6 summarizes the results of these tests. As shown in this table, there is substantial performance degradation
as reflected in the increasing PoR for increasing uncertainty region sizes. This degradation comes mostly in the form
of offset as displayed in Figure 3-5. While the nominal NMPC shows no offset, each subsequent robust NMPC
controller shows an increasing amount of offset with an increased uncertainty region size. A single-scenario NMPC
with poorly chosen uncertain parameters (i.e., different than the nominal plant parameters), however, would not exhibit

off-set free performance like the one exhibited by the nominal NMPC. This would be analogous to the case where a
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NMPC no longer has a perfect plant model (plant-model mismatch) and is where multi-scenario approach can be
beneficial; this type of behavior is investigated in the following sections. It can be also observed in Figure 3-4 and
Figure 3-5 that the conservatism is not reflected in the aggressiveness (or lack thereof) of the control actions as each
plant reaches its new steady state at approximately similar times for all the robust NMPC controllers. These figures
also show that small changes in the manipulated variable reflect with quite substantial changes in the controlled
variable. The results in Table 3-6 also suggest that there is an increasing price of robustness difference for constant
increases in size of the uncertainty region. This nonlinear relationship highlights the need to define an uncertainty
region size that covers the expected uncertainty but not so large as to squander the potential benefit of the multi-
scenario approach. Moreover, a small increase in mean CPU time per simulation can generally be observed for
increased sizes of uncertainty region. A similar effect was observed in a scheduling context by Li and Ierapetritou
(2008) and is explained by a decrease in the size of the feasible region making it more difficult to find a solution as

robustness requirements increase.
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Figure 3-3: Inlet flue gas flowrate (disturbance) for Scenario A (5.1) and Scenario B (5.2)
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Figure 3-4: Inlet solvent flowrate (manipulated variable) for step-down simulations and increasing uncertainty region size
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Figure 3-5.: Percent Carbon capture (controller variable) for step-down simulations and increasing uncertainty region size
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3.4.2. Effect of Number of Realizations

With the effect of uncertainty region size established, the effects of the number of scenarios considered by the
controller on performance and CPU time were assessed. The size of the uncertainty region may be different for each
parameter. In principle, historical plant data, seasonal and diurnal changes in the process, and process heuristics can
be used to determine the size of the uncertainty. However, for the remainder of this work a = 0.3 was chosen as the
uncertainty region size for all of the uncertain parameters. This uncertainty region size was selected based on a
preliminary analysis that showed that a 30% variation in the uncertain parameters represented significant process
variability that is often observed during operation. Moreover, from the results of Scenario A, it was concluded that
this uncertainty region size represents an acceptable trade-off between uncertainty region size (robustness) and PoR.
Each of the uncertain parameters was discretized to its nominal, low or high values to limit the number of possible
uncertainty realizations. Even with this limitation, since there exist four uncertain parameters that can occur at
either ™°™, @', or O"; there are 3* = 81 possible combinations of these parameters. However, including 81
realizations in a controller is unrealistic as the CPU time would become computationally intractable; thus, the
maximum number of realizations allowed for a multi-scenario controller was chosen to be 7 based on observed CPU
times and preliminary closed-loop simulations. These realizations are displayed in Table 3-7.

Table 3-7: Possible parameter realizations for the controllers and the plants

S1(P1) S2 (P2) S3 S4 (P3) S5 S6 (P4) S7
YMEA gnom gh 91 gh 91 91 gnom
YCOZ gnom gh 91 91 91 gh gnom
YHZO gnom gh 91 gh gh gnom gnom

CO, gnom gh 91 gh gh gnom 91
yin

These realizations were chosen with the goal of exploring a mix between expected and worst-case combinations of
uncertain parameters. That is, the scenarios aim to represent (with only a few realizations), the full set of parameter
realizations that may actually occur. It would be desirable to include a large number of these scenarios to make the
controller robust; however, this number is limited by the CPU time. Note that the choice of these parameter realizations
(as well as the number of realizations) in the controller can drastically affect closed-loop performance. Accordingly,
the choice of realizations should be tailored to the specific application, especially when the operator has insight on the
potential uncertainty. In this case specifically, each scenario was chosen as it represented a distinct combination of the
uncertainty parameters that is significantly different from the other realizations in the uncertain parameter realization
set.

While testing the performance of the multi-scenario controllers against a large sample of plants with different
parameter realizations would be the best way to assess their benefit, time limitations required only simulating the
controllers in a few plants, which itself still required significant computational effort. As such, a sample of four plants
with different uncertain parameter realizations was chosen such that it would be as representative as possible to the

potential variations in uncertain parameters and such that statistical measures approximately reflected the benefits of
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the multi-scenario controller. The chosen simulated plants contained the parameter value realizations in Table 3-7 that
correspond to S1, S2, S4, and S6, i.e., P1, P2, P3 and P4, respectively. With regards to the parameter values displayed
in Table 3-7, S1 was chosen as it contained only nominal parameter values, S2 was chosen as all values were at the
same (high) uncertain region boundaries, S4 was chosen as it contained values that were at different (high and low)
uncertainty region boundaries, and S6 was chosen as it contained a mixture of nominal and uncertainty region
boundary uncertain parameters.

Robust NMPC controllers with three, five, and seven scenarios were evaluated on the aforementioned plants. Also, an
NMPC with uncertain parameters values different that the nominal uncertain parameters was considered. The
performance of the robust controllers was tested using the same disturbance rejection tests as in Scenario A, shown in
Figure 3-3, with a shorter simulation time of 950 seconds. The shorter simulation time was introduced to cut down on
the computational effort required to obtain the results. Nevertheless, it proved to be more than sufficient time for the
systems to reach their new-steady state after both disturbances are introduced as shown in the results from Scenario
A. In this scenario, however, the controllers were compared based on their performance indices, as displayed in Table
3-8.

Table 3-8: Performance indices of various NMPCs and multi-scenario NMPCs in different plants (i.e., with different uncertain
. ) Y y: L
parameter realizations). The average column represents the average performance index of a given controller in all plants simulated
(] ), with their respective standard deviations (0 ). *Plants where controllers exhibited ringing for the default tuning parameters
[od -

Controller | Scenario(s) | J, J. J. J. Average | Std. Mean | No. of
(P1) (P2) (P3) (P4) J. Dev | CPU | Equations
gy, (s)

C1 S1
(Nominal) 13.044 | 19.250 | 14.576 | 11.940 | 14.703 3.218 | 509 | 64,488
C2 S2 32.020 | 11.126 | 31.646 | 20.581 | 23.843 10.00 | 57.7 | 64,488
C3 S1,82,S3 14977 | 15455 | 16.475 | 11.163 | 14.518 2.322 | 192.3 | 193,416
C4 S1, 82, S3,

S4, S5 14.679 | 17.657 | 15.469 | 11.969 | 14.944 2.349 | 385.7 | 322,344
Cs S1, 82, S3,

S4, S5, S6,

S7 15.161 | 15.700 | 16.537 | 11.350 | 14.687 2295 | 718.6 | 451,272

The results in Table 3-8 show that the mean CPU time increases as the robust controllers takes more realizations into
account. This is expected as the size of the problem grows proportionally to the number of scenarios as reflected in
the number of equations, thus increasing the size of the search space that the NLP solver must consider. The degrees
of freedom for each problem, however, remained fixed at eight (time intervals in the control horizon) regardless of
the number of realizations considered in the controller. Nevertheless, since the total model size does grow with
realizations, it is crucially important to determine whether the sacrifice in computational effort in the multi-scenario

controllers is worth the increased robustness. For instance, consider C2 (an NMPC controller with parameters on the
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high end of uncertainty region) and C5 (the seven-scenario controller). The mean performance index across all plants
tested is ~1.62 times higher for C2 while the mean CPU time is time is ~12.45 times higher for C5. On face value, it
appears that for the additional computational effort required for C5 to be justified, the operator must be placing
significant priority to performance. However, this experiment only simulates approximately 16 minutes of plant
operation. This is a relatively short amount of time where only two step-changes in the upstream process are introduced
into the plant. A longer simulation time, which is unrealistic to perform for all controllers in all plants due to time
constraints, would better illustrate the performance disparity between the two controllers. Nevertheless, in a real test
scenario the PCC absorber could be operating continuously for days provided that the downstream combustion process
is operating.

Despite the large computational cost of C5, very similar performance improvement over C2 was achieved with the
three-scenario controller (C3) without as much additional computational burden. The mean performance of C2 is
~1.64 times higher than that of C3, while the mean computational time of C3 is a much more reasonable (compared
to C5) ~3.33 times higher than that of C2. This, with C3 the operator would still be placing priority on performance
over computational burden but not nearly as much as with C5. As mentioned above, this performance disparity would
become increasingly large with longer test times as more error accrues in the performance indices. Although the
performance of C3 and C5 are very similar despite much larger mean CPU times for C5, it should be noted that this
is likely due to the small sample of plants used in this study. Across a larger set of plants, we would expect to see a
clear benefit when using C5 since it is the most robust controller.

As indicated in previously, the uncertain parameters have been chosen to be uniformly distributed with their nominal
parameter values in the center of the distribution. As a result, C1, which contains the uncertain parameters’ nominal
values that are centrally positioned in the uncertainty region; is expected to have some inherent robustness and
therefore present good performance in most plant cases (as show in Table 3-8). This is analogous to the case where a
NMPC is designed with well-chosen/estimated parameters and is reflected in Cls average performance index (J, in
Table 3-8), which is closer to that of the robust multi-scenario controllers (C3,C4, and C5) than that of the other single-
scenario controller with large plant-model mismatch (i.e. C2). However, it is not always the case that parameters can
be well chosen/estimated, i.e., when the parameter estimation problem is too large, not repeated frequently enough, or
when variables are approximated as parameters. To contrast, C2 (i.e., the NMPC with parameter values at the high
end of the uncertainty region) was observed to show substantially worse performance than Cl1, as reflected in the
average performance index of C1 which is ~0.617 times that of C2. This is because C2 lacks the inherent robustness
imparted on C1 by having centrally located parameter values in the uncertainty region and is analogous to the case
where the NMPC is designed with poorly chosen/estimated parameters. Moreover, for C1 and C2, we observe a larger
standard deviation in their performance across plants. This is particularly evident in C2 but still noticeable with C1.
This means that these controllers show more variation in their performance in different plants (i.e., good performance
in some plants and poor performance in others). Take for instance C1, which performs well relative to other controllers
in P1 but less so in P2. Cls performance in P1 should be very good as its single scenario contains no plant-model
mismatch to P1. However, its performance in P2 is worse because all the parameter values are largely mismatched;

the converse can be said about C2. In contrast, the multi-scenario controllers show a more consistent performance
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among the different plants tested as reflected in their low deviations for the plant sample although the mean
performances indices are very similar to that of C1. Having consistent operation despite uncertainty, such as the
proposed robust NMPC enables, is crucial for a process like PCC as its economics and emissions must be controllable
to be attractive for industrial implementation. Load changes in the upstream power plant are common and cause these
operational disturbances, making it important to consider them on a model level.

Since we are assessing the controllers based on their performance index, it is important to notice that the experiment
designed in this section has two subsequent transients and little time for the %CC (controlled variable) to be at steady-
state. More time at steady-state and longer simulations times would allow the performance index to accrue more error
and the benefits of the robust controllers would be even more pronounced as they would display reduced set point
offset. This effect will be shown in the next section as we consider a prolonged test case that the controller might

encounter in a real MEA-based PCC absorber’s daily operation.

3.4.3. Diurnal Variation in Flue Gas

As stated above, the absorber’s operation will occur downstream from a COz emission source resulting in exogenous
disturbances to the PCC plant operation. Coal-fired power plants are of specific interest to be retrofitted with PCC
units and, as such, the coal-fired power plant will dictate the daily operational variation of the PCC plant.
Conveniently, this provides a realistic test case under which the robust NMPC designed for the MEA PCC absorber
can be evaluated for a longer operational period than in Section 3.4.2.

Due to diurnal variation in consumer demands, energy consumption occurs in a cyclical manner whereby the demand
is highest in the middle of the day and lowest during the night. Similarly, for a region that is dependent on coal-fired
power, the demand to the plant will also be cyclical leading to a periodic variation in the quantity of flue gas released.
This periodic variation in the flue gas released by the plant provides a periodic disturbance to the MEA PCC plant.
An example of region that is reliant on coal-fire power and experiences a diurnal demand variation is the Canadian
province of Alberta. Based on single-day data from the Alberta Electric System Operator (AESO), the cycle amplitude
of the province’s daily internal load is ~8.95% of the midline (average load) (AESO, 2019).
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Figure 3-6. Diurnal Inlet flue gas flowrate variation (disturbance) for Scenario C (5.3)

As such, the disturbance in the flue gas flowrate shown in Figure 3-6 was used to approximate the single-day cycle in
order to test the efficacy of several controllers for a single cycle. The periodic behavior was approximated as step
changes in the flue gas flowrate to the absorber every 45 sampling intervals (~9.4 minutes). The amplitude of the
variation in flue gas flowrate was assumed to be 10% of the midline flowrate based on the aforementioned daily
observations from AESO. The cycle length was compressed to 75 minutes due to time limitations as a 24h simulation
would be prohibitively long. Nonetheless, all controllers were shown to exhibit fast enough responses to reject each
step disturbance before a subsequent one was introduced into the system.

For this test case, NMPC controllers involving one and three-scenarios (¢ = 0.3) were implemented. The three-
scenario robust NMPC controller was chosen as it could be shown to have benefits over single-scenario NMPCs with
plant model-mismatch as demonstrated in Section 3.4.2 while maintaining more acceptable computational costs
relative to higher-scenario controllers. Specifically, controllers C1, C2, and C3 (Table 3-8) were implemented in P1,
i.e. plant with nominal uncertain parameters (Table 3-7). Moreover, to further elucidate the benefits of the multi-
scenario controller more clearly, uncertain parameters values for a second test plant were randomly generated (based
on a uniform distribution) inside the 30% uncertainty region. In addition to testing C1, C2, and C3 for a longer
simulation in P1, the controllers were also implemented in this plant (P5) using random values in the uncertain
parameters. The parameter values for P5 are displayed in Table 3-9.

Table 3-9: Randomly determined uncertain parameter realization for Plant 5

Uncertain Parameter (0) Ops

YuEa 0.846
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Yeo, 0.453

Viy0 1.062

co
yCoe 0.182

Table 3-10: Performance indices and CPU times for single-scenario (C1 & C2) and multi-scenario (C3) NMPCs in Plant 1 and

Plant 5
Controller Scenario(s) | ], Mean J. Mean
(P1) CPU(s) | (P5) CPU (s)
C1 (Nominal) | SI 33.143 74.135 66.281 | 47.427
C2 S2 157.647 | 79.583 71.593 | 58.422
C3 S1,82,S3 39.021 186.750 | 35.151 | 202.908

Table 3-10 summarizes the results for this scenario. As expected, the multi-scenario controller (C3) exhibited far better
performance than the single-scenario NMPC with plant-model mismatch (i.e., C2) in P1. This was markedly illustrated
by the longer simulation length of 75 minutes in this scenario compared to 18.75 minutes in the simulation from
Scenario B. This is further exhibited in Figure 3-7,where the performance of C3 when employed in P1 is much more
like the performance of the C1 (nominal controller) than that of C2 (controller with plant-model mismatch). Moreover,
although the robust controller (C3) requires on average ~2.35 times the computational effort of C2, its performance
index is ~0.25 times that of C2, thus justifying the additional computational effort. This reinforces the notion that the

robust controller’s benefits are more clearly observed over a longer operating window.
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Figure 3-7: Percent Carbon capture for diurnal variation in flue gas simulations in Pl
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In P5 (random plant uncertain parameter realization), both C1 and C2 performed relatively similarly with respect to
performance indices and CPU times as shown in Table 3-10. However, as with P1, the robust NMPC controller (C3)
exhibited a better performance index that is half of that observed for C1 and C2. Note that in this case, C1 (nominal
NMPC) has plant-model mismatch because plant P5 contains random realizations in the uncertain parameters, which
no longer correspond to those in C1. This robustness came at a significant computational cost as each NMPC execution
for C3 required ~4 times the CPU time relative to C1 and C2. Nevertheless, as shown in the simulations over a longer
operational time, the benefits of a robust NMPC are evident even when only a small number of scenarios are
considered. This performance benefit accrues over time and is significant in a plant that operates continuously for
several hours or days such as a PCC plant. The simulations performed in this section, although longer than that shown
in the previous scenario, are still relatively short compared to the operational time of a PCC plant. Consequently, real
plant operation would see even more pronounced benefits from using the multi-scenario approach. As mentioned
earlier, consistent performance despite uncertainty is essential to the PCC process. We have demonstrated in this
scenario that, given a realistic load following experiment, the robust controller has superior regulatory performance
for the %CC set-points. Having robust control, such as that presented in this work, makes the process industrially

viable given the importance of economics and emissions.

3.5. Summary

The study herein presents a robust controller for a PCC absorber. This is the first explicit treatment of uncertainty
associated with operating conditions and physical property descriptions in the MEA PCC process and it was enabled
by the use of a dynamic mechanistic model. Uncertainties in activity coefficients are considered along with disturbance
uncertainty in the flue gas inlet flowrate. The multi-scenario approach was used to address uncertainty and several
aspects of this formulation where investigated. The size of the uncertainty region was first investigated with step
experiments where it is found that increasing uncertainty leads to decreased control performance, primarily through
off set. The effect of number of scenarios in the controller was also studies where overall (i.e., across potential
uncertainty realizations) performance improvement is observed at the expense of large increased in computational
effort. Lastly, a case of diurnal load variation from the power plant to the PCC plant is studied, and the robust controller
is found to have better overall performance in this practical scenario. Overall, the deployment of robust controllers
like the one presented herein can aid in the operation of PCC to ensure set points are reached accurately to maintain

operation at economically optimal levels.
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4. Integrated Operating Scheme of a CO: Capture System
The control system of the PCC process is crucial in ensuring its productive, safe, and cost-effective operation. As it
currently stands, the use of PCC is of net economic detriment to the operation of the upstream power plant with which
it is implemented. As such, the economically optimal controlled operation of this process is a crucial aspect that must
be investigated to encourage widespread adoption of this technology. This can be achieved using what is known as
the two-layer approach whereby real-time optimization (RTO) and model predictive control (MPC) are implemented
hierarchically, which will be the focus of this study.
While there are many control studies that investigate the dynamic and controlled behaviour of the PCC system (e.g.,
Akesson et al., 2012; Sahraei and Ricardez-Sandoval, 2014), the economically optimal operation of this process has
not received as much attention. Some notable works in this field include the economically optimal operation of the
entire PCC process by Panahi and Skogestad (2012); similarly, single-layer economic model predictive control
(EMPC) strategies have been proposed by Chan and Chen (2018) and Decardi-Nelson et al. (2018). The literature,
however, has not yet considered the implementation of a unit-based two-layer approach; whereby the major PCC units
are operated with their own RTO and controller. A decentralized approach such as this allows for increased RTO
execution frequency as the economic optimization can be performed upon a single unit reaching steady state (instead
of the entire system).
Accordingly, the contributions of this chapter are as follows:

1) Jointly address the economic operation, control, and state estimation for general PCC plants operating
downstream from fuel-fired power plants by using a mechanistic process model in RTO, NMPC, and MHE layers,
respectively. To the authors’ knowledge, this is the first operational scheme in PCC (or indeed any CCS) to use an
optimal three-layer operational approach and a mechanistic process model in each of the manufacturing layers. The
mechanistic process model is well-suited to perform this task as it produces highly accurate decisions and predictions
in each of the layers, which results in an effective operation scheme in closed loop. Moreover, RTO is suitable for this
system as it is computationally efficient and produces economically attractive set points.

2) Introduce a generalized economic objective function that can be adapted for all PCC plants (i.e., with
different designs, solvents, prices, etc.). The proposed economic function brings together the aforementioned aspects
of the economics for the first time (i.e., energy, chemical, utility), and includes novel carbon economy factors (i.c.,
social cost and recoups). A detailed economic model is key when many competing incentives can affect process costs
such as in PCC. Using the proposed economic model, the RTO can provide realistic economically optimal steady
states for different upstream power plant operations at which to maintain key variables while also incentivizing the
removal of COs.

3) Design a centralized multivariable control approach for the PCC plant, which enables large disturbances
from the power plant to be handled through the manipulation of makeup streams. The proposed NMPC control scheme
is advantageous since the PCC system exhibits strong interactions between the manipulated and controlled variables.
In addition, the manipulation of both makeup streams, which is a first in this the present study, helps in

diluting/concentrating removal solvents to effectively manipulate the removal of COx.
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4) Introduce the first model-based advanced estimation to be used within a control framework for PCC plants.
The scheme consists of an MHE formulation that requires a realistic/accessible set of measurements and can
accommodate for a substantial amount of noise. The mechanistic model applied to the estimation layer accurately
captures the past process dynamics, which helps in producing highly accurate state estimates for the nonlinear
dynamics exhibited in PCC.
The study herein employs the model used in Chapter 3 with some modifications (described in the following sections)
to consider stripper-side effects. This economic operation scheme is applied to the absorber section of a pilot-scale
PCC plant with approximations of the stripper section effects. The plant and scheme are subjected to scenarios that
would occur in PCC plants owing to changes in the power plant including: A) co-firing of coal and biomass, such that
the economics of each fuel under the new objective function can be observed; B) diurnal variation in flue gas
quantities, which allows for assessment of the scheme performance under upstream power plant load variation; and
C) price changes, such that the dependence of the economics on prices can be assessed. These scenarios are primarily
assessed using their process economics as it pertains to the improvements in steady-state PCC cost and the associated

energy penalty on the power plant imposed by the RTO.

4.1. Proposed Economic Operation Scheme and Formulations

PCC plants are subject to frequent disturbances, which impact the process operation and economics. Operating
conditions that were once economically optimal become suboptimal thereby rendering the process set points outdated.
For instance, a PCC system that requires a high CO2 removal set point to maintain good process economics could be
subject to a decrease in CO2 composition in the flue gas. This disturbance would allow for a decrease in the removal
set point because of the lower throughput of COs. In this situation, the lower removal set point would be an opportunity
for savings from chemical materials (i.e., water and solvent consumption) as well as energy costs, which inflate the
removal rate. As indicated above, economic detriment posed by the PCC to the upstream power plant remains the
main factor in preventing adoption of this technology; thus, economical operating schemes are paramount in inciting
its widespread uptake. Figure 4-1 outlines the flow of information of the proposed scheme, described next, which aims
to operate the process in an economically optimal fashion while maintaining the closed-loop operation of the plant on
target and using few available online measurements.

The PCC plant is subject to disturbances denoted as d, in Figure 4-1. These disturbances cause the plant to deviate
from its predefined set points, which can have economic and safety implications. An advanced model-based controller
such as NMPC can be deployed to ensure that the plant meets its operational targets despite the occurrence of these
disturbances. At every sampling interval, the NMPC requires access to the full set of model states (i.e., concentrations,
temperatures, hold ups); however, only a small portion of the states are often available for online measurements (z;),
which are typically corrupted with measurement noise v;. The lack of a full set of measured states to provide to the
NMPC requires the use of a reliable state estimation framework that can operate for a wide range of operating
conditions. In this work, MHE is employed since it can deal with process nonlinearities that are present in PCC. MHE

comprises a dynamic optimization problem that uses the available noisy measurements (z; + v;, as shown in Figure

42



4-1) to provide an estimate of the full set of plant states (X;) at the current time. These estimates are computed such
that the model state predictions are consistent with historical process measurements and estimates.

Once the set of states are estimated by the MHE, they are fed to the NMPC as initial conditions (X; yypc = Xt muE,
as shown in Figure 4-1) to solve another dynamic optimization problem that determines control actions for the plant.
The control actions are computed such that the controlled variables are regulated towards their set points by the process
manipulated variables (u;, 4, as shown in Figure 4-1). The manipulated variables are subsequently passed to the plant,
and after a time interval has elapsed (i.e., t « t + 1), the procedure of measurement, estimation, and control is
repeated. This repeated cycle provides constant feedback to the NMPC via the MHE so that the plant behaviour is
properly regulated.

On a longer timescale, as the process operation varies significantly owing to the disturbances, operating points must
be updated as noted above. When the closed-loop operation of the plant is at steady state, the RTO is triggered such
that a new economically optimal steady-state operating point is defined for the plant. The RTO uses steady-state
measurements (z, + v,) to provide updated controlled variables set points to the NMPC (yg,, = Ygro, as depicted in
Figure 4-1). These set point updates cause the NMPC layer to operate the system dynamically such that the updated
controlled variables are eventually reached. Upon reaching these set points, the plant will be operating in an
economically optimal manner until a new disturbance occurs. Each of the components of Figure 4-1 is discussed in

further detail in the following subsections.
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Figure 4-1: Proposed scheme for PCC plants.
4.1.1 RTO formulation

A novel RTO economic function for a general PCC process is introduced along with the RTO formulation, which
provides updated set points to the NMPC as depicted in Figure 4-1. The RTO formulation proposed for PCC plants is

as follows:
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where fg: R™ X R™ — R™ x R™ is the PCC model at steady state, which maps the disturbance variables (d €
R™) to the steady states (X € R™r), manipulated variables (u € R™), and the controlled variables (y € R™).
gs: R™ x R™ X R"™ — R™ denotes the set of inequality constraints (aside from upper and lower bounds) that
determine the feasible region for the PCC plant in the RTO framework. y! and y* € R™ are the lower and upper
bounds for the controlled variables, respectively, whereas u! and u"* € R™ are the lower and upper bounds for the
manipulated variables, respectively. The RTO procedure can also involve a parameter estimation step, which uses the
available measurements to estimate uncertain parameters; this step is omitted for brevity.
The objective function lumps the major economic factors present in the PCC process into five categories. Firstly, it
considers the fresh feeds of chemical solvents ‘i’ used for absorption, which are often expensive (e.g., CANSOLV,
KS-1, AMP/PZ, etc., Danaci et al., 2021). These chemicals typically perform the removal of the CO2 via various

reactive absorption mechanisms. As such, the first (chemical) cost term is comprised of the fresh feeds of the various

mkup

chemicals being fed to the process (1, ;

) along with their respective market price (Pppem ;)-

The second term (sales) represents the recoups that can be made by selling the captured CO». This is the first time that
this cost has been considered explicitly in an economic optimization function for PCC (it has previously only been
considered in technoeconomic analyses e.g., Nwaoha and Tontiwachwuthikul, 2019). As CCS technologies become
increasingly mature, a competitive market for the captured product will emerge, thus allowing for emitters to recover
some of the losses incurred by the capture process. This term consists of the price of selling captured CO2, (Psges)

and the capture rate of COz (mg?fz’). This “price’ is negative as this term represents a profit (contrasted to the other

terms which represent a cost). { € [0,1] denotes an efficiency factor that quantifies the portion of the total CO2
captured that can be sold.

The third term (carbon) consists of the social cost of carbon (SCC), which includes the market cost of emitting CO2
as well the non-market negative externalities of emissions. Negative externalities are costs not typically borne by the
emitter but by a third-party (e.g., the associated effects on human and environmental health and their remediation) and
are largely ignored within most carbon tax frameworks. By taking the social cost into account, the economic burden
of these externalities is shifted back to the emitter, thus representing a larger penalty than a carbon tax. This term

. vent

consists of the price of emitting carbon (P, ) and the CO2 emission rate (g, ) via the vent gas. This is the first

time that SCC is used in the economic optimization of a PCC process to provide a more complete perspective of the
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effects of emissions. Past studies have used simple carbon tax prices (Decardi-Nelson et al., 2018) however, a carbon
tax will under-incentivize the removal of COz as it ignores the negative externalities caused by the emission of COa.
The fourth (energy) term is comprised of all the energy-intensive units ‘j’ within the plant (e.g., reboilers, blowers,
pumps, preheaters, etc.). This cost term is typically the most significant within PCC plant and is, in fact, the reason
why their widespread uptake remains nascent. It consists of the unit price of energy (e.g., steam, electricity, etc.,
Penergy,j) as well as the energy consumption requirements (e.g., duty, load, etc., Qepergy,j)- As the proposed scheme
does not include a model of the power plant, this energy cost considers the energy requirements of the PCC plant but
not its potential effects on the associated energy generation (i.e., the economic effect of taking steam for the PCC that
could otherwise be used to produce energy). While the effects of PCC on the power plant are not considered in the
RTO decisions, they are nonetheless assessed to ensure that the PCC is hindering the power generation unduly; this is
discussed in the following sections.

The fifth (water) term is comprised of all the water-consuming units ‘k’ within the plant (e.g., makeups, condenser,
etc.). This cost term is typically not very significant for PCC plants owing to the low price of water but it is included
for completeness. This term consists of the price of water (Py, o) as well as the water consumption by individual units
(M50,00)-

Using the economic function described in formulation (4-1), the RTO determines the set points for the controlled
variables (Y, = Ygro) to pass to the controller, as shown in Figure 4-1. These set points will change significantly as

disturbances (d) occur. The RTO problem is triggered when the PCC system reaches steady state; to detect steady

state, there are various criteria that can be applied as outlined by Rhinehart (2013).

4.1.2 NMPC Formulation

The NMPC uses the dynamic process model to determine the control actions that are used by the plant at every
sampling interval to regulate the process. For PCC plants, which are highly nonlinear, an NMPC rather than a linear
MPC is preferred to provide quick control actions with little offset.

In NMPC, the manipulated variables act to regulate the controlled variables to the steady-state set points supplied by
the RTO (y,, € R™) in the presence of disturbances. The control actions are computed by solving an optimal control
problem on a future time horizon whereby the sum of squared errors between the controlled variables and their set
points as well as the squared changes in the manipulated variables are minimized. These, respectively, minimize set
point offset and manipulated variable movement. To solve this dynamic problem, the mechanistic model requires the
full set of process states as initial conditions, which acts as feedback from the plant to the controller; these are estimated
by the MHE estimation framework based on the available plant measurements. With the initial conditions, the NMPC
model is used to predict the future process behaviour on the future horizon i € {1, ..., P} (i.e., X¢4q, ---, Xep) and
determine manipulated variable trajectories on the horizon i € {1, ..., C} (i.e., Uzyq, ..., Up,c) that are optimal for the
given objective function; these horizons are depicted as t + P and t + C in Figure 4-2, respectively. The first of these
manipulated variables values (i.e., u;,1, shown at the t + 1 marker Figure 4-2) is passed to the plant, which is then

operated for a sampling interval (At = 1 interval, as depicted in Figure 4-1). At this new interval, the NMPC is re-
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computed, thus moving the horizon forward in time and creating a ‘moving horizon’. In the case of a nominal NMPC

(as opposed to robust in Chapter 3) with MHE estimates, the formulation solved at every time instance is as follows:

p P
2
i V,,: — A2
i U=y lly + ) o,
=1 i=1

s.t.

faReri Weris Aeriy Veri) = Xpyiva vi €{0,...,P — 1}

Xenmpc = XeMHE (4-2)
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where||X||5 denotes a quadratic form on vector X € R™ with the weighting matrix 4 € R™" | f,: R™ X R™ X
R"™ — R™ x R™ is the dynamic mechanistic model (not at steady state as with the RTO). Inputs to problem (4-2)
are the initial conditions (X, yypc € R™) and disturbances (d,,; € R"?) whereas the outputs are the states (X,,; €
R™), manipulated variables (u.,; € R™), and controlled variables (¥,,; € R™) on their respective horizon P or C.
The disturbances d,,; are denoted with the time index (compared to d in the RTO) as a trajectory of disturbances is
required by the NMPC; however, this trajectory in the prediction horizon is assumed to be constant (i.e., d; = dyy 1 =
--+) as knowledge of the disturbances cannot be known a priori to their occurrence. The feedback from the plant at the
beginning of the horizon ‘t* (%, yyr € R™) is comprised of measurements and estimates made by the MHE scheme
as shown at the t marker in Figure 4-2. The terms Q, € R™*"r and R, € R™*™ are weights used to tune the
controller such that its performance is acceptable. g4: R™ X R™ x R™ X R™ — R™ denotes the set of inequality
constraints (aside from upper and lower bounds) that can be applied to the NMPC-predicted trajectories. As with the
RTO in equation (4-1), y! and y* € R™ are the lower and upper bounds for the controlled variables, respectively;
and u! and u® € R™ are the lower and upper bounds for the manipulated variables, respectively; in the future horizon.
The NMPC as described in formulation (4-2) provides the control actions (u,,1) to the plant by which the set points
provided by the RTO can be tracked. It imposes dynamic operation on the plant to reject disturbances (d;) when occur
and to change set points (¥s,) when specified by the RTO. Each execution of the NMPC problem requires feedback
from the plant via the MHE such that the full set of plant states are provided as inputs at each time interval (At) to the
NMPC framework as shown in Figure 4-2. This NMPC differs from the one presented in Section 3.2. in that it only
considers a single realization (i.e., it is not robust, hence no explicit dependence on model parameters is shown). This
controller also has multiple manipulated and controlled variables; moreover, the tuning between the tracking and

suppressions terms is significantly different as will be discussed in the next sections.

4.1.3 MHE Formulation

As noted with the NMPC, most PCC plants (and indeed most CCS processes) exhibit a highly nonlinear behaviour;

hence, the state estimation is often subject to substantial process uncertainty for which linear filters (e.g., KF) may be
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ill-suited. Moreover, measurements are corrupted with noise and PCC plants are subject to process constraints that
must be satisfied during operation (e.g., safety bounds on temperature estimates). MHE is particularly well-suited for
these types of problem as it enables the use of a detailed model to handle process nonlinearities, process constraints,
and provides substantial smoothing of noise. In the proposed scheme, the MHE uses a dynamic process model to
estimate the full state vector at every sampling interval (At = 1 interval) such that it can be supplied to the NMPC as
feedback (i.e., X, yyr € R™ is used as initial conditions for the problem in equation (4-2)). This requires that plant
measurements be supplied to the MHE at every execution such that it has updated information on the most recent (as
well as past) states of the plant. In contrast to the NMPC, which makes future predictions of the process, the MHE
esimates the current process state by building a horizon N time intervals into the past, i.e., k € {0, ..., N} (depicted at

the t — N marker in Figure 4-2).

uA — MHE M‘(’q.f1f"||_of ‘\'Ill..."l l'.l ﬂM . “J ~l'|r‘\ .f t+P|
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Figure 4-2: Relationship between MHE and NMPC. x denotes a state variable and u denotes a manipulated variable. Cyan X
markers denote points of interest. Past of the process denoted in red, future of the process denotes in black.

In the past horizon, the history of the process can be reconstructed through its known measurements, estimates, and
control actions; leading to a current state estimate that conforms with past plant behaviour. The MHE formulation

solved at every time instance ¢ and is as follows:

N N-1
in S wewelll, + ) Iwead, +o
3t—N|t'1I}tl—151trWt—i|t - t=ijtllg, e t=iltllg, t=N

vi€{0,...N}
S.t.
fa@eoijo Wi, Aoty Veoije) = Reivage + Veoisape vie({l,..,N} (4-3)
ha(Re_ije) = Zeoi + Weeige vi €{0,..,N—1}
Ga(Xe_ijo e de_,Pe_ye) < O vi € {0, ..., N}
YV <Vege S y" Vi € {0, ..., N}

where z,_; € R"z is the history of the process measurements for the past N time intervals until the time ‘t’ at which
the MHE is executed. v;_;;q;¢ € R™ and w,_;, € R" are the process and measurement noise terms on the past
horizon, respectively; the square of these noise terms is minimized in the objective function. h;: R™ — R"z is the
observation model and, as with the NMPC, f ;: R™ X R™ x R™ X R™ — R™* is the dynamic mechanistic process

model. The inputs to problem (4-3) are the manipulated variable (u,_; € R™), disturbance variable (d,_; € R"d),
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measurement (Z,_;), and state (X,_;,) histories on the horizon N and the output the current system state (X, € R"x).
Q. € R"™**"x and R, € R"#*"z are weighting matrices for the objective function; these are inversely proportional to
the process and measurement noise covariances, respectively. Both @, and R,, are estimated at every sampling interval
based on previous estimates and measurements, respectively. As with the NMPC and RTO, y' and y* € R™ are the
lower and upper bounds for the controlled variables, respectively. g4: R" X R™ x R™ x R™ — R"s denotes the
set of inequality constraints (aside from upper and lower bounds) to which the MHE estimates must adhere. ¢,_y € R
denotes the arrival cost, which penalizes the MHE for truncating the horizon to a finite length, this can be estimated
using a variety of filters as explored in Valipour and Ricardez-Sandoval (2021).

The first (process noise) term in the objective function represents the process uncertainty within the MHE horizon.
Moreover, the second (measurement noise) term represents the errors in the MHE state estimates with their associated
historical measurements within the estimation horizon. The arrival cost accounts for previous information discarded
in the MHE since it was gathered before the current estimation horizon (i.e., historical information of the process prior
to t — N). By embedding prior available measurements within the MHE problem, the objective function ensures that
the current state estimates are consistent with prior state measurements. The resulting MHE state estimates for a given
time interval are provided to the NMPC and used as the initial conditions to solve the corresponding optimal control
problem. Hence, the future state trajectories predicted by the NMPC begin at the MHE-estimated operating point of
the system (as shown where the two trajectories meet in Figure 4-2). Given the estimates provided by MHE at the
current time interval ‘t” (X, ypyE), the NMPC problem provides the optimal control actions to run the process plant
and perform MHE for the next time interval ‘t < t + 1’. That is, once the new measurements are available (from the
process plant), MHE uses these measurements together with the control actions provided by NMPC to estimate the
states that are needed to initialize the NMPC problem. Note that inaccurate initial conditions provided by the MHE
would likely result in inaccurate control actions predicted by the NMPC thus resulting in an undesirable or even
unstable closed-loop operation of the system. Likewise, inaccurate control actions provided by NMPC may lead to a
significant loss of performance in the MHE scheme and therefore inaccurate estimations. Thus, a high performance
of both the NMPC and MHE schemes is required to avoid intensifying the errors and to achieve a proper closed-loop
performance.

Using the formulations presented in this section, information is exchanged between the operational layers as depicted
in Figure 4-1 and in Figure 4-2 for the NMPC and MHE schemes. The RTO provides economically optimal set point
updates (yp,) to the NMPC upon the occurrence of disturbances (d,). These set points are achieved by the NMPC
through the manipulated variables (u;, ), which are used to control the plant. The NMPC is provided with the current
states as feedback to determine optimal control actions; these states are estimated by the MHE (X, ypg) using the
available noisy measurements (z, + v,). The control/estimation procedure is repeated at every sampling interval (At),

while the RTO procedure is performed less often when the system reaches steady state.

4.2. PCC Absorber Section Case Study

The PCC model presented in Section 3.1 was adapted to consider stripper-side effects as shown herein. The PCC plant

operates as described next. An MEA/water solution is outputted through the bottom of the stripper for which a reboiler
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determines the ratio of this solvent solution that is recycled between the buffer tank and stripper; higher reboiler duty
leads to increased COz desorption in the stripper. The buffer tank recycle stream containing MEA, water, and traces
of CO2 goes through the cross-heat exchanger where it pre-heats the colder rich amine solution. The recycle stream
then reaches the tank where it is mixed with two makeup streams of fresh water and fresh MEA such that the solution
is concentrated or diluted as required. The recycled amine solution enters the buffer tank at 366.5 K (Nittaya, 2014);
thus, the tank contents are cooled using an internal coil through which water is circulated.

As shown Figure 4-3, PCC plants are composed of absorber and stripper sections, which provide a natural partition
for operational schemes. In this study, the absorber section is primarily being studied (Figure 4-3, left dashed box),
with some approximations on the behaviour of the stripper section reboiler (Figure 4-3, right dashed box). The focus
was placed mainly on the absorber section as it is where the carbon capture from the flue gas occurs; thus, it is the
most important unit from a processing perspective. This partition was necessary as to restrict the size (thus, the
computational time) of the simulated plant as assessment of the entire plant would have been prohibitively protractive.
As RTO is an inherently steady-state method, the decision was made that steady-state approximations of the stripper
section were sufficient for its assessment. Accordingly, the stripper section economics (particularly those of the
reboiler), which are important to the process, are considered through steady-state approximations elaborated upon in
this section. Moreover, changes in the stripper section are assumed to occur as disturbances to the absorber section,
elaborated upon in Section 4.2.2; this way the stripper side operation and associated dynamics are considered in the
present analysis. The NMPC and MHE implemented in the present case study, moreover, are quite general and could
be applied in the larger context of a PCC plant scenario if the stripper section behaviour could be considered.

i = {MEA, CO,, H,0,N,} MEA Water
makeup: makeup:
s’ i

nicup
MEA

CO,
| ) product
Lean amine: F/;

Vent gas: ¢
%CC
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Figure 4-3: PCC plant. Dashed lines denote the units being considered in this study (i.e., the absorber section and reboiler). Blue
font denotes controlled variables, purple font denotes additional RTO decision variables, green font denotes manipulated variables,
and red font denotes disturbance variables (outlined in Section 4.2.3).

The dynamic mechanistic model for the absorber section of the PCC plant used for the layers in this study was adapted
from Harun et al. (2012) and Nittaya (2014), which was based the operating conditions for the process on the pilot
plant data and configuration from Dugas (2006). The model comprises a set of partial differential equations (PDEs),
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ordinary differential equations (ODEs), and algebraic equations (AEs) to describe the system dynamics and
phenomena; together these are a partial differential-algebraic system of equations (PDAEs). The process model
consists of material balances, energy balances, and physical property models for both units, which are presented in
the next subsections. Additionally, the absorber model consists of rate equations, chemical kinetics equations, and
equilibrium equations; these, along with the assumptions made in developing the absorber model, are omitted for

brevity, a full description of this model is provided in Chapter 3.
4.2.1 Buffer Tank Model

As shown within the left dashed box in Figure 4-3, the inputs to the tank are the recycled solvent coming from the
stripper as well as the fresh water and MEA makeups. The output from the tank is the lean solvent going to the
absorber. Component material balances for the buffer tank account for changes in molar holdup caused by control
actions on the inlet and outlet flowrates. Moreover, changes in molar holdup also occur upon disturbances in the
recycled flowrates coming from the stripper section as depicted in Figure 4-3. Nitrogen is assumed to be insoluble in
the amine solvent; thus, the buffer tank does not contain this component as in the absorber, i.e., Niank = Neomp — 1
The material balances for the tank are differential molar balances for each soluble component where no reaction is

taking place and the well-mixed assumption holds (stirred tank). The molar holdups are modelled as follows:

dntank
MEA _ prec + Fkup _ ptank (4-4)
dt MEA MEA MEA,out
tank

dnCOZ — [rec _ ptank (4_5)
dt CO, CO,,0ut
tank

dnHZO = Frec 4 kaup _ ptank (4'6)
dt — YT Hy0 H,0 H,0,0out

where Fﬂzrg];upand FI;Z gup (mol/s) denote the fresh MEA and water flowrates, respectively. nf*™* (mol) denotes the

Ftank — Zntank F_TEC

abs _ yMtank
Lin i=1 F Z

tank holdup component moles. and 'y im1 FPY (mol/s) (as shown in Figure 4-3) denote

the total recycled and tank outlet molar flowrates of species i, respectively.

In addition to the component molar balances, an overall material balance is required to model the tank’s holdup as it
can also change significantly because of the control actions taken to regulate the PCC system and due to changes in
the recycled stream. For instance, a control action may impose an increase in the makeup flowrates which, if not
adequately accounted for in the outlet flowrate, may cause the tank level to continually rise. Tracking the tank’s liquid
level is a necessary safety requirement to avoid overflows or emptying of the tank (i.e., for inventory management).
The inventory requirements of the tank must be coordinated with the removal requirements of the absorber (i.e.,
changing the makeup flowrates may affect the liquid level while also affecting the amount of absorption occurring).
Hence, a centralized multi-variable controller such as NMPC is well suited to handle this interaction. This balance is
performed under the assumption of constant inlet liquid densities in the makeup streams, which are valid as inlet
stream are assumed to have constant compositions and temperatures. In contrast, the recycle and outlet density stream

densities are modelled using the physical property models presented in the next section, as the composition of these
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streams may vary due to changes in the operation of the stripper section. As such, the tank liquid level is modelled as
follows:

tank tank mkup mrup b
Atankdh M Fin” | Fuea +FH20 Fiim 4-7)

dt  p™ " puypa PH,0 Ptank

where h(m) denotes the tank liquid level and A***(m?) denotes the tank cross-sectional area. p"¢, pyga, Pu,0, and

pt (mol /m?) denote the total recycle, fresh MEA, fresh water, and total outlet stream molar densities, respectively.
In addition to the component and overall material balances, an energy balance is required for the tank. Within this
unit, streams of different temperatures are mixed, and cooling is applied. Hence, temperature tracking is needed
because thermodynamic changes in the tank can lead to changes in the removal rate of the subsequent absorber unit.

The temperature changes within the tank are modelled as follows:

Ntank
thank
tank_,tank
Cpll. n;
Z dt
i=1
. k (4-8)
_ prec ,rec yptank rec mkup mkup tank _ pm uP
Fotalcpl (T T )+ MEA CleEA(T )

mkup mkup tank __ mkup
+F Cp,LH, O(T )+Qcool

where cmnk(] /mol/K) denotes the tank component specific molar heat capacities. T***(K) denotes the bulk tank

temperature while Trecy cle TP and kaup K) denote the inlet recycled, fresh MEA, and fresh water temperatures,
p MEA

respectively. Likewise, ¢,5%, c;ll]f;,‘zg 4, and cﬁ_‘ﬁfo /mol/K) denote the specific molar heat capacities of the recycled,

fresh MEA, and fresh water streams, respectively. Q.,,;(W) denotes the cooling duty supplied to the tank through a

coil.

Table 4-1 contains physical property models, parameters, and design characteristics associated with the tank model

described herein.

Table 4-1: Physical property and design characteristics for the tank model.

Physical Property Value Source

Stream heat capacity (//mol/K) Cp.t Hilliard (2008)
Recycled stream molar density (mol/L) pree Weiland et al. (1998)
Tank liquid molar density (mol/L) ptank Weiland et al. (1998)
MEA molar density (mol/L) Puea = 5.05 x 107> | Aspen Property Package
Water molar density (mol/L) Pr,0 = 1.87 X 10=> | Aspen Property Package
Design Characteristics

Internal diameter (m) ptank = 2 Harun et al. (2012)
Height (m) htenk = 2 Harun et al. (2012)

4.2.2  Stripper Section Approximation

For the RTO layer to find an economically optimal point, approximations regarding the steady-state stripper section

behaviour are made herein for a more realistic representation of the process and its economics. These additional
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equations were included as part of the RTO model to consider the stripper-side reboiler steam and solvent depletion
costs.

The largest cost in the PCC plant is incurred by the steam supplied to the stripper section reboiler, which is energy-
intensive and often draws the required heating steam from the upstream power plant. To consider the reboiler cost,

simulated steady-state data between reboiler duty and lean loading from Nittaya (2014) was correlated to yield:
LL = Qrep + breereb (4'9)

where LL(mol/mol) denotes the lean loading in the recycled stream and Q,.., (W) denotes stripper-side reboiler duty
as shown in Figure 4-3. To correlate the data in this range, a linear model was found to accurately fit the data available
with R? = 0.97 (see Figure A-1in Appendix A), thus not requiring a more sophisticated regression model. In this case,
the nominal reboiler duty value of 153,600 W corresponds to the nominal operation outlined in Nittaya (2014) and
the data were within +5% of this nominal value. A sensitivity analysis performed by Nittaya (2014) also established
that the £5% range provides ample flexibility for the reboiler to affect the lean loading (i.e., the loading is very
sensitive to the reboiler duty and this range of heat duties varies the loading from ~0.23 to ~0.32 mol/mol, which
is a typical range for a pilot-scale PCC unit). Accordingly, the reboiler duty (Q,.,) was also constrained within this
range in the RTO, where it becomes an additional decision variable. The reason for inclusion of reboiler duty as a
decision variable in the RTO through the simplified model in equation (4-9) was to consider the significant reboiler
cost and to understand its effect on the optimal RTO-determined controlled variables.

Solvent depletion also occurs in the stripper section due to the condenser (top right of Figure 4-3), which outputs some
solvent with the purified COz. The absorber section does not contain the condenser; thus, no solvent depletion is
explicitly being accounted for in the RTO model. The depleted MEA and water, while not as expensive as the reboiler
steam, need to be considered so that the system has incentive to supply makeups at steady state; thus, necessitating
the modelling of solvent depletion by further approximating the behavior in the stripper section. If depletion were not
considered in the absorber section it would be assumed that all the solvent can be regenerated and remain in the system;
in this case, the RTO would not have incentive to feed fresh makeups at steady state owing to the high cost of the
solvent chemicals (particularly MEA); this situation would be unrealistic. Accordingly, additional equations were
added to model the steady-state depletion of MEA and water in the stripper and to connect the enrichment effect of
the reboiler in equation (4-9) to the recycled stream flowrates. These equations were designed rather than fitted, such
that they accounted for the contributions made by all ‘fresh’ inlets of the depleting species (i.e., the makeup MEA and
water as well as flue gas water content). In the absence of data regarding this behaviour, the depletion was assumed
to increase proportionally to the fresh feeds provided and subsequently approach constant depletion as the fresh feeds
approach their nominal value; this behaviour was approximated using exponential functions for use within the RTO
optimization problem.

Together with the reboiler approximation in equation (4-9), the RTO steady-state stripper is approximated to affect

the recycle stream going from the stripper into the tank as follows:

k
FyEa = Qypa — bMEAexp(CMEAF;\Z;Aup) (4-10)
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Fgg; FICIEECALL - Frec (areb + breb Qreb) (4'1 1)

rec

k L 1A
neer = o + Vo B = buyoexp(Cuo (o™ + Vo EL 1)) (4-12)

where the parameters for equations (4-10)—(4-12) are listed in Table 4-2.
Table 4-2: Additional RTO model parameters.

i a; b; ¢
Reboiler 1.19 -5.94e-6 -
MEA 3.2096 3.2096 -55000
‘Water 27.68 27.68 -5000

Due to the lack of data regarding species depletion in this specific pilot-scale system, the constants for the recycled
stream parameters in equations (4-10) and (4-12) were designed such that the depletion follows the behaviour expected
in a complete PCC plant. That behaviour is as follows: the MEA recycled from the absorber depletes exponentially to
zero as less makeup MEA is added since this stream is the only source of fresh MEA into the system. In contrast, the
recycled water depletes exponentially to a constant value specified by the flue gas water content as fresh water enters
the system through both the makeup and flue gas streams. The pre-exponential coefficient for MEA (ayz,) was chosen
such that the recycle flowrates were effectively zero if no fresh feeds were provided, while the decay rate (byz4) Was
chosen to approximate linear increases in depletion that reach an asymptote as the makeup stream approaches its
nominal value, this behaviour can be seen in Figure A-2a in Appendix A. For consistency, the behaviour of the water
recycle was also modelled with an exponential function. However, since there are two fresh water streams (i.e., within
the flue gas and the makeup stream), there will always be water in the recycled stream (as water vapour is a by-product
of combustion). As such, the pre-exponential and decay rates for water (a,,q¢er» Dwater> respectively) were chosen
such that the water content in the recycle would increase approximately linearly with increased makeup, as shown in
Figure A-2b in Appendix A. The behaviour approximated herein inherently assumes that the condenser duty (hence
the depletion) remains constant. In principle, the condenser duty would be one of the manipulated variables in the
stripper section, but this unit is out of the scope of the present study as noted previously.

Note that these correlations approximate the steady-state effect of the reboiler and condenser on the makeup streams
and do not attempt to capture dynamics. To account for the impact of these correlations on the recycle stream in the
transient domain, a ramp disturbance is assumed to occur such that the recycled stream flowrate and composition are
updated from their pre-RTO values to RTO-optimized values; these are described in detail in the following sections.
The assumption of the recycle stream as a ramp is made here to reflect a typical operating condition of the stripper
section. Note that the proposed operational framework is not limited to this assumption and can be extended to consider
other profiles entering the absorber section from the recycle stream. With the treatments of stripper section effects as

disturbances; the important effect of the stripper section on process dynamics is not disregarded.
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4.2.3  Model Solution and Nominal Operation

The set of PDAESs representing the PCC absorber section presented previously require the inputs outlined in Table 4-3
whereby the steady-state version requires only boundary conditions, and the dynamic version requires initial and
boundary conditions. The models are implemented in the Pyomo environment, an optimization modelling package for
PYTHON (Hart et al., 2011). The absorber model is discretized in the axial (z) domain in the steady-state version
while additional discretization in the time (t) domain is required in the dynamic model. This enables the differential
equations comprising the continuous time/space models to be efficiently solved. The discretization is performed using
four-point orthogonal Radau collocations on finite elements in the time domain and backward finite differences in the
axial domain. Collocations were chosen for the time domain because of their accuracy and built-in functionality within
Pyomo. To achieve an accurate dynamic model, this discretization was prioritized such that the time interval At =
12.5s (i.e., 8 intervals in a 100 second time horizon) was chosen as the finite element size in both absorber and tank
models. A more parsimonious 7., = 10 finite elements were used in the absorber axial domain to keep the model
size as small as possible without sacrificing accuracy in the solution.

Table 4-3: Inputs required by the absorber section model

Initial  conditions | Boundary conditions
0<z<Ht=0) |(z=0,z=H,t=0)
Absorber | C7(z,0) = C)(2) c?,t) =C? (t)

iin

(gas)

T,(2,0) = T, (2) Ty(0,t) = Ty in (1)
u9(0,t) = ug, (t)

Absorber | C/(z,0) = Cl,(2) C{(H,t) = Cli, (D)

(liquid)
T,(z,0) = T, (2) T,(H,t) = Tl,in(t)
ul(z,t) = ujp (1)
Tank Ttank(Q) = TEank
h(0) = ho
n;(0) = nyp

Prior to discretization, the models (i.e., absorber and tank) have a collective 16 states and 210 algebraic variables,
which grows to 116 states and 1,977 algebraic variables with absorber axial discretization (i.e., when solving the RTO
problem). This further grows to 3,712 states and 63,168 algebraic variables with axial discretization of the absorber
and time discretization of the entire absorber section (i.e., when solving the NMPC and MHE problems). The states
of the system are the differential variables in the previously presented differential equations (i.e., the liquid and gas
concentrations and temperatures in the absorber as well as the molar holdups, liquid level, and temperature in the
tank). The algebraic variables correspond to all other phenomenological and physical property models in the system.
An interior-point algorithm (Wachter and Biegler, 2005) was used to solve the large-scale optimization problems

described in the following sections on an Intel core 17-4770 CPU @ 3.4 GHz. Both steady-state and dynamic versions
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of the models described in this Section 3.1 and Section 4.2 (in the steady-state case) are used in the proposed scheme.
The collective vector of equations representing the discretized models is denoted as f in its steady-state version and
f 4 its dynamic version.

In addition to the initial and boundary conditions, the PCC absorber section case study considered herein also requires
additional inputs in the form of the manipulated variables and the disturbance variables. In the PCC absorber section,
the manipulated variables which act as control actions are the flowrate of solvent solution into the absorber, the fresh

MEA makeup flowrate into the tank, the fresh water makeup flowrate into the tank, and the tank cooling duty; i.e.,

u= [Fl‘fil,’ls FATE’;W Fﬁ’ggf Q.00:]T as depicted in Figure 4-3. Manipulation of both makeup streams is a key
novelty within this work as they can significantly impact the economics and operation of the absorber section of this
plant. For this purpose, a centralized MPC approach is best suited as it can model and account for the interaction
between the makeup streams, the amount of carbon captured, and the tank level.

The operation of an actual PCC system is subjected to disturbances that can have significant effects on the process
behaviour and economics. In this study, the main disturbances being considered are: 1) the flue gas flowrate, which
varies based on the load variation in the upstream power plant; 2) the flue gas COz content, which varies based on the
fuels being used in the upstream power plant; and 3) the recycle stream flowrates, which vary based on the makeup
fed to the system and the operation of the stripper section reboiler. Changes in the flue gas CO:2 content are assumed

to be reflected by changes in the flue gas water content (i.e., a 0.01 fraction increase in COz is accompanied by a 0.01

fraction decrease in H20 in the flue gas); hence, changes in the fractions are treated as a single disturbance variable.

flue flue rec rec recqT.
I Yco, Fyga Fco, Frgol's

Accordingly, the disturbances considered in this work are denoted as d = [
these are depicted in Figure 4-3.

In the PCC absorber section, the controlled variables comprise the percent carbon capture (%CC), the MEA
concentration in the lean solvent (CH4¥(mol/L)) from buffer tank to absorber, the buffer tank temperature
(T*k(K)), and the buffer tank level (h*¥™*(m)); i.e.,y = [%CC CHa%k Ttank ptank]T The percent carbon
capture is defined in.

This nominal operation occurs at the nominal values for the manipulated variables u,,, =
[32.17 0.0002 0.2 139,000]"T and the nominal values for the disturbances  dpom =
[4.012 0.175 3.2098 0.98 27.78]7; these correspond to the nominal controlled variables ¥, =
[96.23 4847 314 1]7 (Harun etal., 2012; Nittaya et al., 2012; Nittaya, 2014). The complete stream data for the
nominal conditions as predicted by the current model can be found in Table A-1 (Appendix A). Combinations of

nominal disturbance variables and nominal manipulated variables are used as the initial or final operating conditions

for several of the operational cases presented in Section 4.3.

4.2.4 Model Validation

The model presented in the previous section was validated using different sources of data available in the literature as
a single set of comprehensive data for this system is unavailable. Table 4-4 presents a comparison of outlet stream
predictions for the nominal operation (i.e., corresponding t0 U,om> @nom> aNd Ynom) Of the absorber model as

implemented in this study and of a previous mechanistic model reported in Harun et al. (2012). The authors of the
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prior model provided detailed data on the outlet streams at the nominal operating condition defined previously and in
Table A-1 (Appendix A); this included compositions, flowrates, and temperatures; these can be compared to
predictions of the present model.

Table 4-4: Comparison of absorber output predictions against previously reported mechanistic model implementation. Error of
predictions of present study with respect to Harun et al. (2012) also presented.

Vent gas Rich solvent

Present Harun et | Present Harun et

study al. (2012). | study al. (2012).
Temperature (K) 314.06 314.15 319.89 327.76
Flowrate (mol/s)
MEA 0.0000 0.0000 3.2098 3.3560
CO2 0.0427 0.0295 1.6393 1.6534
Water 0.2340 0.2259 27.8460 27.8573
N2 3.2100 3.2146 0.0000 0.0000
Total 3.4867 3.4700 32.6951 32.87
Mean error (%) 8.1641 1.3638

As shown in Table 4-4, the predictions made by the current model conform well with previous model predictions
(mean output predictions < 8.2 % error). In particular, the error of the vent gas stream is elevated by the CO2
composition; nevertheless, this composition is very small in magnitude (~1 mol%) so small inaccuracies tend to
inflate the error. This suggests that the absorber column boundaries (i.e., outlets) are being predicted well without
making conclusions as to the accuracy along the absorber height. While having validation at the nominal operation is
acceptable, a complete validation at various operating conditions is necessary to conclude that the model is valid for
a range of operations. Two key process variables for which there is experimental as well as simulated data across
several operating conditions are the solvent temperature and the %CC. By analyzing solvent temperature profiles, the
existence of the so-called temperature bulge, which is characteristic of the reactive mechanism in the PCC absorber,
can be verified. Moreover, the conformance of the absorber predictions can be assessed. Although a set of
experimental data of compositions along the absorber height is not available due to the intractability of online
composition analysis for this system, the %CC can be obtained from the boundary compositions and has been reported.
By analyzing the %CC, it can be verified that this key performance variable is indeed being predicted accurately; this
is particularly important in the RTO and NMPC layers where the %CC is being used explicitly to define set points.
Kvamsdal and Rochelle (2008) present two experimental data sets (temperature profiles and corresponding %CC) and
an additional two simulated temperature profiles (generated by their own model). The former are named case 1 and 2
in the present study while the latter simulated profiles are referred to as case 3 and 4 in the present study. The
temperature profiles that comprise cases 3 and 4 were sampled at regular intervals to generate individual data points.
Each case represents a significant change in operating conditions via the flue gas flowrate, composition, and

temperature; the lean solvent flowrate, composition, and temperature; as well as the column packing height. The inlet
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compositions required to achieve these profiles along with their naming conventions in Kvamsdal and Rochelle (2008)
can be found in Appendix A, Table A-2. Figure 4-4 shows the temperature profiles predicted by the present model
along with data for temperatures from Kvamsdal and Rochelle (2008) for the four different operational cases while
Table 4-5 presents the error in the predictions made by the model in the present study with respect to the data from
Kvamsdal and Rochelle (2008).
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Figure 4-4: Temperature profile prediction for various operating cases. a) experimental data, b) simulated data.

Table 4-5: Comparison of absorber temperature profiles and %CC predictions against previously reported data. Error of
predictions of present study with respect to Kvamsdal and Rochelle (2008) also presented.

Case# | %CC present | %CC Error in %CC | Mean error in
study (Kvamsdal and | (%) T, (%)
Rochelle, 2008)
1 95.03 93.85 1.257 0.310
2 72.07 70.95 1.578 3.781
3 86.77 86.20 0.661 2.700
4 93.61 93.35 0.278 2.892

As shown in Figure 4-4, the temperature profiles align closely with the data from Kvamsdal and Rochelle (2008), this
is corroborated by the low mean errors in T; presented in Table 4-5 (< 4% across all operating conditions). The present
model slightly underestimates the profiles for the entire length of the column in case 2 while, in cases 3 and 4, the
present model underestimates the profiles prior to the bulge and overestimates after the bulge. Moreover, they key
%CC predictions made by the present model conform with the data from Kvamsdal and Rochelle (2008) even more
closely (< 2% across all operation conditions). This close agreement in temperature and %CC predictions compared
to Kvamsdal and Rochelle (2008) are well within the range of acceptability for the wide range of operating conditions
summarized in Table B2. Moreover, the accuracy of outlet stream predictions compared to Harun et al. (2012)
summarized in Table 4-4 given further confidence in the accuracy of the model as it is an independent data set. These
findings suggest that the current absorber model conforms with past models as well as experimental data, thus it is

adequate for use in the present study. Additionally, the simplified reboiler correlation in Section 4.2.2 was also shown
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to accurately correlate reboiler duty to lean loading (which serves as an input to the absorber as show in Table B2)

within the range being considered in this study with R? = 0.97, implying small residuals and highly correlated data.

4.3. Scheme Implementation and Assessment

The specifics of the implementation of the model presented in Sections 3.1 and 4.2.2 to the scheme proposed in Section

4.1 are presented next along with the assessment tools used for different layers within the scheme.

4.3.1. RTO Implementation and Assessment

The RTO uses the economic function presented in equation (4-1) along with a steady-state version of the mechanistic
process model and stripper approximations to determine the economically optimal steady state for the controlled
variables. State measurements are typically fed to the RTO such that a parameter estimation problem is solved prior
to the economic optimization procedure. In this study, we assume no parametric mismatch, thus not requiring the
parameter estimation step. However, the steady-state wait-time associated with the parameter estimation step is

enforced using the following heuristic for triggering of the RTO:

Ve = Yeei < 0.005Y,0m vi e {1,..,10} (4-13)

which declares that the system is at steady state when the controlled variables are changing at a rate of less than 0.5%
of their nominal value from the current sampling interval to the previous ten sampling intervals. A simple heuristic
such as this is assumed to be acceptable for the present PCC case study; for more sophisticated methods, the field of
steady-state detection provides ways to automate this trigger (e.g., Rhinehart, 2013).

The additional correlations (5-9)—(5-12) are included within the steady-state model f such that decisions can made
regarding the reboiler operation without explicitly considering it in the control scheme. With the inclusion of the
stripper section approximations within fg, the RTO objective function in equation (4-1) as it pertains to the system

described in Section 4.1 simplifies to:
_ . mkup . g . g . g
Cprocess - PMEAmMEA + Psales (mCOZ,in - mCOZ,out) + PCOchoz,out + PsteamQreb (4'14)

where Cpyocess($CAD/s) is the cost of operating the PCC absorber section. mﬂ‘;’f“” (tn/s) is the flowrate of fresh

makeup MEA into the system as shown in Figure 4-3; this is the only chemical cost considered in this case. mg‘;z =

g
COy,in

)
COy,0ut

m —1m (tn/s) and mgoz_out(tn /s) are the flowrate of carbon captured and emitted, respectively, by the
absorber. Q,.., (W) is the reboiler duty as modelled by steady-state lean loading equation (4-9), which is an additional
decision variable aside from the controlled variables; this is the only energy cost considered in this case. In this case
study, the efficiency factor introduced in equation (4-1) was assumed to be { = 1 for simplicity. Moreover, pumping
and water costs are assumed to be negligible.

Another consideration when optimizing the PCC plant is the impact it has on the upstream power plant. Namely,
operating the PCC plant with higher reboiler duty decreases the power plant profits by using steam that could otherwise

be used for power generation. To analyze the impact, the lost profits owed to reboiler operation were estimated as:
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Cenergy = AQreb (Pelec - Psteam)n (4'15)

where Copergy($CAD/yr) are the lost profits (energy penalty) owing to reduced energy generation, AQ,..,(MW)
denotes the difference between the current reboiler duty and its previous or nominal value, P, is the price of
electricity sold to consumers. The efficiency factor (1) accounts for the losses in converting thermal energy from
combustion-generated steam to electrical energy for consumers. For the present absorber section case-study, this factor
is defined as n = 0.4 (Mac Dowell and Shah, 2013); however, this user-defined parameter may vary depending on the
power plant. The price term uses the difference between the electrical sales cost and the steam cost to evaluate the
losses not already considered within Cp,.cess; in this way, only sales cost mark-up is considered (i.e., the raw steam
cost is not double counted). This additional energy penalty to the power plant can be compared against the savings
achieved by the PCC RTO to have a more complete perspective on the economic impact. The prices associated with
equations (4-14) and (4-15) are summarized in Table 4-6.

Table 4-6: Prices for economic terms, adjusted for inflation and converted to $CAD.

Term Value Source

MEA (Pyga) 2420 $CAD /tn fresh MEA Straathof and Bampouli (2017)

Sales (Psgies) —50 $CAD/tn CO, sold Nwaoha and Tontiwachwuthikul (2019)
COz2 (P¢o,) 176 $CAD /tn CO, removed Nordhaus (2017)

Steam (Pgteqm) 0.065 $CAD /kWh Karimi et al. (2011)

Electricity (P,,.) | 0.115 $CAD/kWh OEB (2021)

There is little consensus on the true SCC, and various models have been proposed in the literature (Nordhaus, 2017).
In this work, we estimated the price using the DICE-2016R with a 2.5% discount rate. Note that this is the first time

this cost is used in the economic optimization of a PCC process.

The lower and upper bounds for the controlled variables (y* and y®) are set as follows:

0 < %CC <100 (4-16)
3000 < Ci2Y (mol/L) < 6000 (4-17)
300 < Ttk (K) < 345 (4-18)
0.05htak < h (m) < 1.95htenk (4-19)

The constraint on the controlled variable for the tank level is an important safety constraint to avoid overflowing and
imposes that the tank level’s set point does not exceed the physical tank dimensions (within a 5% safety factor).
Moreover, the tank temperature constraint ensures that the absorber feed temperature is within an acceptable range for

this operation.
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Using the new economic function described in equation (4-1) applied to this case study in equation (4-14), the RTO
passes updated controlled variables as set points (i.e., Y5, = ¥) to the NMPC upon its execution which, as mentioned,
requires for the controlled variables to be steady in time by the criteria described in equation (4-13).

In addition to the set point update, the execution of the RTO also incites a ramp disturbance in the recycle flowrates
through the approximated model described in Section 4.2.2. In other words, the recycled flowrates ramp from their
outdated values to those specified by the RTO. A ramp is used such that there is a delay between making stripper side
decisions and their effect on the absorber as these changes would not occur instantaneously in the plant. As mentioned
in Section 4.2.2, the recycled stream is treated as a disturbance for the NMPC to reject when the set points are changed.
The treatment as a disturbance is necessary as the NMPC does not have a stripper section model to predict the
behaviour of the recycle stream. The ramp begins when the RTO is executed and last for 200 time intervals (i.e.~40
minutes), when the recycle stream reaches its new flowrate and composition as specified by the RTO. This number of
sampling intervals (~40 minutes) was chosen to model the time-delay between changes on the absorber/stripper
sections and their effect on the recycled stream (i.e. changes in makeup streams and heat duty will not have immediate
effects on the recycle stream). A similar delay was observed in open-loop tests by Nittaya (2014), thus supporting the
assumption that stripper section dynamics would occur gradually.

For the overall integrated scheme, the performance is economically driven, thus the process economics are assessed
through an annualized version of the RTO objective function in equation (4-14) at every sampling interval.
Additionally, the payback period tp,qypack (h) is used to quantify the amount of time that the process must be operated

at a new steady state for to justify the execution of the RTO. This term is defined as follows:

t?TU
Cpccdt
B ft(}]zTo PcC (4-20)
tpayback = Tannum 0 ~f
Chcc — Cpec

where t&7%and tFTO (hr) denote the initial and final times at which a given RTO execution imposes dynamic operation

on the plant, respectively (i.e., tX¢ is the time at which the RTO is executed and tf}m is the time at which the set

point change is completed). C¢c and C gcc ($CAD /yr) denote the initial (unoptimized) and the final (optimized)
steady-state cost of the plant operation. T,,,um (8760 hr/yr) is used to convert the annualized costs to payback

periods in hours.

4.3.2. NMPC Implementation and Assessment

In the proposed NMPC controller, the horizons are set to be equivalent and equal to 100 seconds (i.e., P = C = 100s),
these were previously found to provide good control performance (Chapter 3). The first term in the objective function
in problem (4-2) is weighted using the diagonal matrix Q, = diag(4,2,3 x 10%,5 x 10™*), which aims to regulate
the system towards its set points. The second term in the objective function is weighted by the diagonal matrix R, =
diag(3.5 x 107,2 x 103,30,2 x 1078), which supresses sudden changes in the manipulated variables. The dynamic
performance of the proposed scheme is dependent on these tuning parameters as they balance tracking speed with
aggressive changes in the manipulated variables. These must be balanced as fast tracking is desired for good

performance, but overly quick control actions put undue burden on process equipment (i.e., manipulated variables).
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For this case study, preliminary closed-loop simulations as well as RGA analysis were used to tune the controller
weights. The former helped in tuning the move-suppression matrix to ensure unrealistically fast control actions were
supressed, while the latter served as a guideline to assess interactions between variables such that high interaction was
avoided while evenly prioritizing the control objectives. This unique tuning and structure of the controller makes it
difficult to compare to previous control approaches, which have different control mechanisms and priorities.

As with the RTO, y! and y™ are the lower and upper bounds for the controller variables, respectively, as outlined in
equations (4-16)—(4-19), and u! and uPare the lower and upper bounds for the manipulated variables, respectively.

The manipulated variable bounds are defined as follows:

0 < F2bs (mol/s) < 100 (4-21)
0 < F9% (mol/s) < 5 (4-22)
0 < EMUP (mol/s) < 2 (4-23)
—500,000 < Qcor (W) <0 (4-24)

These bounds are chosen such that they provide the manipulated variables with a realistic range, while still providing
operational flexibility. Note that the cooling duty in equation (4-24) is negative as heating is positive in the convention
used herein. Using this NMPC tuning, horizon, and bounds, the economically important controlled variables (i.e.,
carbon capture and MEA content going to the absorber) can be tracked quickly and flexibly using makeup streams
while also considering safety limitations (i.e., in the tank level and temperature).

Assessment of the control scheme is performed by analyzing the transient times and shape of the responses observed
in the system. Moreover, the sum of squared errors (SSE) between each controlled variable and its respective set point

is computed as follows:

SSE= ) (%= Vis)’ (4-25)
i=1

where n is the number of sampling intervals un a given scenario and SSE € R™ denotes the vector of SSE for the
controlled variables. The tracking performance of each variable is assessed separately as they have largely different
magnitudes and controller tunings, thus prohibiting their direct comparison. Using SSE, the performance of the

controller is quantified through its tracking performance.

4.3.3. MHE Implementation and Assessment

In the present work, the MHE is formulated such that only a few realistically achievable measurements are required
for state estimation; this is enabled by the mechanistic MHE model. This is the first MHE implementations for any
PCC plant that uses a mechanistic model, few measurements, and does not require decomposition of the column axial

domain into subdomains with their own estimators.
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The discretization necessary to solve the axially distributed absorber model poses a measurability challenge because
each of the ny,, discretization point along height domain requires an initial condition to solve the NMPC problem.
For instance, online measurement of the concentrations along the column height is not practical because analysis of
stream compositions is time and resource intensive. Accordingly, only the inlet stream (boundary) compositions into
the absorber are assumed to be measurable; this leaves the compositions along the ny,, — 2 remaining column heigh
discretization points to be estimated. Conversely, the temperatures at every spatial discretization point in the column
are assumed to be measurable. Having several temperature measurements is realistic since only conventional
thermocouples are only required. Furthermore, the states in the storage tank are comparatively fewer as they only
include the level, temperature, and molar holdup. The temperature measurement in the tank is realistic as it only
requires a thermocouple, while measuring level is also commonplace using pressure transmitters/transducers. In total,

32/116 system states are assumed to be measured online and are as follows:

T T T T
z, = [T;lbs C‘fi’.‘;f; Tgbs C‘g'abs Tltank hfank]T (4-26)

where T¢PS and T;bs € R™ez denote the liquid and gas temperature measurements along the absorber column height,

g,abs
CO

respectively. C;‘fl:’zs and € R™omp denote the liquid and composition measurements at the absorber column

boundaries, respectively. Tf*"*

and hf%"* € R denote the tank temperature and level measurements, respectively.
The molar holdup in the tank is readily observable as it is assumed that the composition of inlet from tank to absorber
is measurable; thus, the concentration of the tank is also known due to the well-mixed assumption. This is estimated

as follows:

ntank — T[(Dtank/z)z hltankcl,abs 4-27)

Nfez

where nt@"k € R™comp denotes the molar holdup in the tank. In the present PCC absorber section case study, as some
of the states are directly measured and some can be calculated, h is effectively a diagonal matrix of proper dimensions
augmented with the tank holdup equation (4-27) (i.e., hy € RWz+ncomp) XNz,
The MHE horizon used in this study was set to be of the same length as the NMPC horizons (i.e., N =P =C =
100s). This horizon was determined through preliminary closed-loop tests and was found to be long enough to achieve
a good state estimate without the approximation of an arrival cost that is often required in MHE problems (Valipour
and Ricardez-Sandoval, 2021). A shorter horizon resulting in a more parsimonious MHE problem would be enabled
by the inclusion of arrival cost; however, this is out of the scope of the present study.
In the present scheme, the measured/calculated buffer tank states are passed directly to the NMPC while the estimated
absorber states must be solved for by the MHE and then passed to the NMPC. Since the tank measurement are noisy
as they do not experience the filtering effects of the MHE, a first-order filter with a constant of 4 = 0.5 is imposed on
the states of the tank provided to the NMPC to mitigate the noise effects in the control actions, i.e.:

Tie™eF = AT + (1= DT

higer = AR + (1 — D™ (4-28)

n:ank,F — An:gr;k,ﬁ‘ + (1 _ A)n:unk,m
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where superscripts F and m denote a filtered and a measured value, respectively.
Using the observation strategy and horizon outlined, the scheme can provide accurate state estimates for the NMPC
to produce effective control actions. The quality of these estimates is assessed by analyzing the mean squared error

(MSE) between the estimated and true %CC. MSE is defined as follows:
n
1 2
MSE = ;Z(%CCL-_T —%CC;,) (4-29)
i=1

where n is the number of sampling intervals in a given scenario (or for a given time span) and the subscripts T and e
denote the true and estimated %CC for sample i, respectively. The MSE of %CC is used as a proxy to assess the
performance of the MHE as only the absorber states are estimated and %CC is the most crucial output from the

absorber portion of the model.

4.4. Results and Discussion

To evaluate the performance of a real-life PCC plant, the proposed closed-loop scheme shown in Figure 4-1 was
implemented in the pilot-scale system described previously. The transient operation of the system is described using
the dynamic model f,;, where noise is added to the process and the measurements. Process noise (i.e., owed to
unmodelled fluctuations in the system) is inserted via the initial conditions between one simulation interval and the
next, while measurement noise (i.e., owed to instrumentation errors) is inserted via the measured states passed to the
MHE. Both of these noises are assumed to be zero mean, normally distributed, with a standard deviation of 0.02% of
the corresponding nominal state values, i.e. N (0, (0.0002x,,,,,)?) where x,,,,, is the state vector corresponding to
the nominal operation indicated in Table B1.

As noted previously, the model parameters used herein are experimentally determined from prior studies. Accordingly,
the present work assumes that they manifest at their nominal value in both the plant and the mechanistic models used
in the proposed scheme (i.e., no structural or parametric mismatch was assumed). However, if parametric uncertainty
were observed, the scheme would experience some deterioration owing to a loss in control, estimation, and RTO

performance.

4.4.1. Scenario A: Cofiring of Fuels

Cofiring refers to the operation of a power plant that combusts different types of fuels within the same operating period
to lessen the environmental impact of a highly emissive fuel. One such emissive fuel is coal and, as there is a greater
shift to renewables, the potential of cofiring with biomass (Yang et al., 2019) is being increasingly investigated in
terms of feasibility and benefits. However, this operational case (co-firing) has yet to be examined through an
economic optimization framework, which can help to further reduce emissions as well as cost.

In this scenario, the cofiring of biomass and coal is illustrated through its impact on the flue gas composition being
supplied by the power plant to the downstream PCC absorber section. The scheme presented in this work is particularly
well-suited for this scenario as the RTO can find new economically optimal steady states depending on the fuel used
in the combustion process. In this scenario, only the transition between 100% biomass and 100% coal firing is studied;

however, the proposed RTO framework for this case study is suited to determine set points for any fuel ratio in
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between. The starting point for this scenario corresponds to the nominal manipulated variables values presented in
Section 4.2.3 and the PCC plant operating downstream from a biomass-fired plant (yo, = 0.12). From this initial
operation, coal (y¢o, = 0.175) is introduced into the upstream power plant with the fuel ramping up from 0% coal
content to 100% coal content within a span of 200-time intervals (~40 minutes). This is reflected in a flue gas CO2
fraction that ramps from 0.12 (fully biomass-fired) to 0.175 (fully coal-fired), as shown in Figure 4-5a. The controller
first rejects the disturbance imposed on the flue gas composition by the change in fuel, reaching a new steady state at
~7.5 hours as determined by meeting the criteria in equation (4-13). At this time, the RTO is executed such that an

economically optimal set point is found for the new flue gas composition corresponding to coal-firing.
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Figure 4-5: Flue gas CO: content, process cost (b shows full profile, g shows zoomed in profile), controlled variables, and
manipulated variables for a cofiring scenario. Dashed vertical lines represent times at which the RTO was executed, thus inciting
a set point change.

The responses on the buffer tank temperature and cooling duty in this scenario can be found in Figure A-3 (Appendix
A). In general, the temperature is tracked quickly and has little impact on the process economics. Contrastingly, the

Ctavk and ht*"k; Figure 4-5c, d, e, respectively) are tracked more slowly. This

other controlled variables (i.e., %CC,
occurs as the tank inlet and outlet flowrates, which affect the level, interact with the removal rate and MEA
concentration; thus, a slower coordinated response is made by the NMPC to track these interacting controlled
variables.

Figure 4-5c shows the plant %CC along with the MHE-estimated %CC; for this scenario, the MHE estimates were
observed to be in good agreement with the true plant with an MSE = 1.239 x 1073, This is the case for all scenarios
in the present study and is owed to the use of the mechanistic model in this layer and the use of a long horizon in the

MHE framework. Nevertheless, the MHE occasionally drifts from the true states as can be seen during some time
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periods in Figure 4-5c (ie., t =6 h —» 6.9 h with MSE = 6.830 x 1072 and t = 13.7 h > 14.4 h with MSE =
5.160 x 1072).

To gain further insight into the effect of the proposed RTO framework, a ‘no-MHE’ case was performed whereby the
cofiring scenario is repeated with the assumption of full access to the system states. This occurs when all the true plant
states can be measured thus making the state estimation framework (i.e., MHE) unnecessary. In principle such a ‘no-
MHE’ case is unrealistic as composition measurements are difficult to perform online for the PCC absorber;
nevertheless, it is valuable to assess the performance of the proposed scheme under this assumption to assess the
impact and need of a reliable estimation scheme. Note that previous economic operation studies in PCC have not
considered an estimation scheme and hence have not addressed the issue of state accessibility. Since the MHE provides
state estimates to the NMPC, which may differ from the true plant states, the controller and economic performance
can be affected by using estimation. Hence, the ‘no-MHE’ case enables observation of the deterioration that an
estimation scheme causes on the operational framework. For the present ‘no-MHE’ case, the first-order filter with 4 =
0.5 is imposed on all states to smooth noise and the RTO is assumed to be executed at the same time as the MHE
scenario. As the SSE described in equation (4-25) quantifies the tracking performance of the NMPC, this measure can
be used to assess the controller performance under the MHE and ‘no-MHE’ cases. To make a fair comparison, the
NMPC controller tuning parameters, and characteristics remain the same for both scenarios. Table 4-7 summarizes

the tracking performance under the MHE and ‘no-MHE’ scenarios.
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Figure 4-6: Controlled variables in MHE and no-MHE cases for Scenario A. Sub-windows display ranges in which MHE-
induced performance loss is most severe.

Table 4-7: Effect of MHE on control and economic performance for Scenario A.

Controlled variable 53k 53k Performance
(MHE) (no-MHE) loss (%)

%CC (%) 3827 3657 4.649

CEEY (mol /L) 1.530 x 108 1.416 x 108 8.051

Ttank (K) 30.68 23.56 30.22

htenk (m) 0.7931 0.7376 7.524

Economics Cost (MHE) Cost (no-MHE)

18h

f Cprocessdt ($CAD) | 9018 8977 0.4567

0

As displayed in Table 4-7 and the drift observed in the controlled variable plots (Figure 4-6a, b, c, particularly the
sub-windows), the tracking performance is better in all ‘no-MHE’ controlled variables as reflected by lower SSE
values in Table 4-7. The ‘no-MHE’ case provides an upper bound for controller performance as it has access to the

true plant states and, in principle, the control performance is best when true plant states can be measured. In contrast,
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the MHE estimates were shown to sometimes drift from the actual plant states, thus adversely affecting performance.
As such, the percent error of the MHE case with respect to the ‘no-MHE’ case reflects the loss in controller
performance owed to the MHE. Nevertheless, the MHE case reflects a more realistic condition since most of plant
states are often not available for online control. These losses due to the MHE estimation are generally low (< ~8%)
except for that of the tank temperature; however, the temperature dynamics are fast compared to other controlled
variables and the deviations from the set points are primarily due to noise as shown in Figure A-3 (Appendix A). The
speed of the tank temperature dynamics, and the fact that there is little deviation from its set point in both MHE and
‘no-MHE’ cases (SSE is on the order of 20—-30 across the entire simulation while the nominal tank temperature is on
the order of 314 K) suggest that the deterioration in tank temperature tracking performance caused by the MHE is
negligible in reality because the deviations are caused by noise, thus this variables will not have a significant impact
on the rest of the process. In terms of economics, there is little difference in the total process cost as reflected by the
cost integral in Table 4-7 whereby the economic loss of the MHE case with respect to the ‘no-MHE’ case is low. This
implies that the loss in tracking performance caused by the MHE does not propagate to the economics because the
economic improvements are being achieved in the steady-state phase. That is, the MHE was able to track the true plant
states accurately using only a low number of measurements available in the plant. While at steady state, the behaviour
of the controlled variables in the MHE and ‘no-MHE’ cases in Figure 4-6 are observed to have essentially no offset
(hence no economic loss). Additionally, Figure 4-5c displays the true %CC and the MHE-estimated %CC, which again
show virtually no offset while at steady state. These results highlight the benefits in using an advanced state estimation
scheme such as MHE for the optimal operation of PCC plants. We can conclude that the deterioration from a control
and economic perspective caused by the MHE is acceptable considering how few measurements are used and the level
of noise. Thus, the MHE performs well in estimating the system states and its application is not a significant detriment
on the larger scheme. This result is of prime importance since state estimation will always be necessary for plants such
as the PCC system since many plant states cannot be measured online.

As shown in Figure 4-5¢, d, and e, following the ramp disturbance at t = 0 h, the NMPC was able to track the system
back to its original set points by t = 7.5 h with a few damped oscillations. The initial ramping in the flue gas content
from O to t = 0.7 h hours cause the flowrate manipulated variables (i.e., Figure 4-5h, i, and j) to also ramp to minimize
the effect of the disturbance on the controlled variables. Once the ramp has been completed, hysteresis from this initial
ramping action causes the NMPC to modulate the manipulated variables to quickly track the set points. A less
aggressive controller tuning (i.e., more weight on control move suppression terms) could have resulted in less
oscillation at the expense of control speed; however, due to the stable nature of the PCC system these small oscillations
are deemed acceptable.

The increase in COz content in flue gas initially disturbs the system such that the original %CC cannot be maintained
with the pre-disturbance MEA content in the solvent fed to the absorber; thus, rejecting the disturbance to the %CC is
achieved through the increase of the MEA makeup flowrate, as shown in Figure 4-5i. While the initial makeup flowrate
is merely 0.0002 mol/s, the flowrate after the disturbance rejection is ~0.4 mol/s, thus constituting a two
thousandfold increase in the flowrate. Despite the relatively low unit price of MEA, the disturbance rejection phase

of the scenario leads the process to a very economically disadvantageous combination of controlled and manipulated
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variables as the high MEA makeup flowrate is not accompanied by a commensurate increase in the %CC because of
the disturbance. Accordingly, this makeup stream is the primary driver of a drastic increase in process economics
following the disturbance rejection compared to the initial process cost (~59,000 $CAD/yr at t=0h to
~1.5M $CAD /yr t = 7.5 h; Figure 4-5g and b, respectively). That is, despite MEA being seemingly inexpensive per
unit volume, the makeup flowrate is drastically elevated as to have a significant negative impact on the economics.
The MEA cost as the primary driver of this condition is also confirmed by the similarity of trajectories of process
economics and MEA makeup flowrate in Figure 4-5b and i, respectively. For the proposed NMPC structure to reject
the large flowrate disturbance, this behaviour is unavoidable as the only way to substantially maintain %CC on target
is through the MEA makeup. These poor steady-state economics last until corrective action is taken by the RTO to
find a new suitable set point for the system.

The RTO is executed at t = 8 h to re-optimize the plant economics under the new operating conditions. To achieve
the new set points, which in principle represent a more economical operating point, the process must first undergo
another dynamic phase while control actions are imposed. These dynamics are observed to be expensive; during this
transient, a process cost peak occurs at t = 8.5 h, which is caused by a similar peak in the MEA makeup flowrate.
The peak occurs as the RTO imposes an increase in %CC and Cifa%¥ set points, which are quickly acted upon by an
increase in MEA makeup flowrate. This increased cost period is brief, however, and after the dynamics associated
with the increase in reboiler duty shown in Figure 4-5f have elapsed, the MEA makeup decreases back to a near-zero
value as the lean loading is decreased through the recycle stream; thus, a large amount of MEA makeup is no longer
necessary to maintain the new %CC set point. These expensive dynamics suggest that the approach presented herein
should be applied especially when the system experiences significant and sustained disturbances. The set point
increases in %CC and C{¥ take advantage of the fact that an increased composition of CO; in the flue gas makes it
economically advantageous to remove more COz to be sold at the expense of a small increase in reboiler cost, which
allows for the reduction of the MEA makeup flowrate as the associated cost. After this initial peak, the controlled
variables approach their set point at t = 18 h and the new RTO-defined operating point for the process has a low
operating cost of ~48,000 $CAD /yr with respect to the operating cost of pure biomass firing.

The original ~59,000 $CAD /yr (biomass) steady-state cost is broken down into ~86,000 $CAD /yr from reboiler
steam, ~ — 32,000 $CAD /yr from COz sales, ~4,000 $CAD /yr from SCC, and ~1,000 $CAD /yr from MEA costs.
This is compared to the final ~48,000 $CAD /yr (coal) steady-state cost broken down into ~90,000 $CAD /yr from
reboiler steam, ~ — 47,000 $CAD /yr from COz sales, ~5,000 $CAD /yr from SCC, and ~0 $CAD /yr from MEA
costs. This breakdown shows that the RTO increases reboiler duty to achieve more capture (thus sales) despite the
increased amount of COz content in the flue gas; this is reflected in an increased reboiler cost and an increased sales
profit from the initial to the final steady state. This increased reboiling will typically have implications on the operation
of the upstream power plant (e.g., reduction of the power plant’s energy output). As a consequence of increased
reboiling, the absorber enrichment in the latter (coal-fired) state is primarily achieved through the reboiler rather than
the makeup stream, leading to a low MEA makeup cost. The increase in sales profit seen here exemplifies the
importance of a carbon economy where CO: is treated as a sellable product rather than an unwanted biproduct as noted

by Nwaoha and Tontiwachwuthikul (2019), thereby encouraging higher capture rates. Moreover, an increase in SCC
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is observed due to the increased CO: content in the flue gas, which leads to more total emissions as reflected in the
cost (but less relative emissions considering that more CO:z is being fed to the absorber). This breakdown reflects the
large effect that recoups can have to strengthen the incentive to remove CO2 as well as make the PCC process more
economically feasible. From an energy standpoint, the execution of the RTO increases the reboiler duty from an
original ~151,800 W to ~157,500 W. As per equation (4-15), this increase constitutes approximately a
1315 $CAD /h decrease in power plant profits, which is entirely justified considering the ~11,000$CAD/h (i.e.,
~12% energy penalty) decrease in the optimal steady-state PCC operating cost.

In summary, the net (i.e., including energy penalties) optimal steady state cost for coal is ~19% cheaper than the
optimal steady state cost associated with biomass. This occurs as the increased COz content in the flue gas from coal
combustion allows for more carbon to be captured and sold at the expense of a minor increase in reboiler duty.
Moreover, the evolution of the process economics in this scenario provides new insights with regards to the NMPC
and RTO behaviour. The NMPC structure used in this study, while working well to reject disturbances, can lead to
drastically increased steady-state operating costs as evidenced in the disturbance rejection phase of the scenario where
a significant amount of MEA is required. These high costs, however, are quickly alleviated through the execution of
the RTO which lessens the solvent enrichment caused by the MEA makeup and increases the solvent enrichment
caused by the reboiler. Moreover, the process dynamics imposed by the NMPC when tracking a new set point can
also be expensive because of brief peaks in the MEA makeup; these dynamics are acceptable as they are relatively
short-term and are necessary to achieve a more economical operating point. Despite the expensive transients achieved
by the proposed scheme, the manipulated variables make a coordinated response as the NMPC is a centralized (multi-
variable) control scheme. In contrast, decentralized control strategies would likely lead to even more expensive
transient costs as interactions between various control loops would not be accounted for leading to slower control
actions; this is a further benefit of the proposed NMPC-based control structure in the case-study. Nevertheless, the
losses incurred while operating dynamically to reach a new RTO-defined steady state are justified as they will be
recovered in the long term provided that the system is operated at steady state for a sufficiently long period thereafter.
For instance, in this case the payback period is tpqypeck = 18 h. Moreover, with this control structure, the post-
disturbance steady state costs and dynamic costs are inflated due to the unavailability of reboiler duty as a manipulated
variable and the high price of MEA. Lifting this restriction and manipulating the reboiler duty as well as makeup
stream would likely shorten the payback period by making the dynamics less expensive; however, this is out of the
scope of the present study. Still, the approach proposed in this work was shown effective for the cofiring of fuels,
which is an increasingly common operational scheme in fuel-fired power plants, while incurring an acceptable energy

penalty.

4.4.2. Scenario B: Diurnal Variation of Inlet Flowrate

It is common for power plants to respond to changing energy demands. Diurnal variation is one case that occurs over
the course of the weekday for load-changing power plants, whereby the energy demand of the plant varies cyclically.
Peak hours often occur in the late mornings, afternoon, and early night; while low demand occurs the late night, and

early mornings. To accommodate cycling energy demands, the quantity of fuel combusted, and thus the quantity of
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flue gas, both undergo similar diurnal cycles. This scenario has been investigated before (Akula et al., 2021; Harun et
al., 2012). In our previous works (Chapter 3 and Appendix A), however, the controller had limited flexibility as it only
considered the absorber, thus the solvent could became easily saturated with COa, limiting size of disturbances that
could be rejected. Through the integration of the control layer in the absorber and buffer tank in this work, larger
fluctuations in flue gas flowrate can be rejected as the solvent entering the absorber can be readily concentrated or
diluted using the makeup streams.

In this scenario, the cyclic behaviour is modelled as steps around a nominal flue gas flowrate as displayed in Figure
4-7a; this signal has an amplitude equal to 40% of the nominal flue gas flowrate (i.e., there is a 20% step up and a
20% step down from the nominal flue gas flowrate), which exceeds the amplitude explored in previous studies.
Following each disturbance, the controller tracks to its outdated set point. Upon reaching an outdated steady state, the
RTO is executed such that an updated operating point is defined. This procedure of disturbance rejection and set point

tracking would be repeated daily; for the sake of brevity, only a single cycle is performed in this work.
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Figure 4-7: Flue gas flowrate, process cost (b shows full profile, g shows zoomed in profile), controlled variables, and manipulated
variables for a diurnal variation scenario. Dashed vertical lines represent times at which the RTO was executed, thus inciting a
set point change.

The responses on the buffer tank temperature and cooling duty in this scenario can be found in Figure A-4 (Appendix
A). For this scenario, the MHE estimates were observed to be in good agreement with the true plant with an MSE =
7.076 x 10™* and the similar trajectories displayed in Figure 4-7c. While a ‘no-MHE’ case was not performed in
scenario B as in scenario A for brevity, an MSE on the same order as the scenario A suggests that the MHE performance
is similarly good, thus allowing the NMPC to have good performance.

This scenario begins at the economically optimal operating point corresponding to the nominal disturbances outlined

in Section 4.2.3. A first disturbance is imposed at t = 0 h and constitutes a 20% step up in flue gas flowrate, thus
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beginning the ‘peak’ hours. Such a disturbance would cause the %CC to decrease drastically as the amount of solvent
being fed into the absorber would no longer be sufficient; however, the disturbance is rejected by the controller through
an increase in the MEA makeup flowrate, which enriches the solvent going into the absorber thereby accounting for
the excess flue gas. The first disturbance is rejected by t = 4 h with a few brief damped oscillations; however, the
resulting process economics are unfavourable because of the new MEA makeup flowrate of ~0.7 mol/s as shown in
Figure 4-7i. This is also reflected in the increase of process cost from ~48,000 $CAD/yr (Figure 4-7g) pre
disturbance rejection to ~3.1M $CAD /yr (Figure 4-7b) post disturbance rejection. At this point (t = 4 h), the RTO
is executed and leads to a transient lasting until ¢ = 9 h, whereby the reboiler duty is increased (Figure 4-7f) to enrich
the recycle stream, thus allowing the system to maintain a high %CC with a lower makeup flowrate. This quickly
reduces the process cost to ~42,000 $CAD /yr (Figure 4-7g). This new set point is accompanied by an energy penalty
to the upstream power plant of 654 $CAD /yr owed to the increase in reboiler duty; this is acceptable considering the
price reduction from the previous optimal steady state of ~6000 $CAD /yr. Without executing the RTO, the process
would have remained at the elevated post-disturbance cost; thus, the cost maintaining the outdated set point (i.e., doing
nothing) would be substantial.

Att = 9 h, asecond 40% step down in flowrate is imposed, thus ending the peak hours. The controller works to reject
this disturbance but as shown in Figure 4-7c, d, and e, there is a flattening of the controlled variables at t = 10 h. At
this point, the (40%) step-down disturbance makes the pre-disturbance %CC set point too low to be reached by the
controller as the high reboiler duty elevates the plant %CC. Despite the MEA flowrate being near its lower bound
(Figure 4-71) and the water flowrate being at its upper bound (Figure 4-7j), there remains a nearly 2%CC upward
offset as the size of the disturbance makes the outdated set point unreachable for the current reboiler duty. In addition
to this offset, the system quickly reaches a point where the cost fluctuates noisily as a result of modulation of the MEA
makeup near its lower bound (as reflected in Figure 4-7g at t = 9 h — 10 h ). This occurs owing to the strong
interaction between the MEA makeup and its simultaneous (and conflicting) effect on both the tank level and the % CC.
Despite the MEA makeup still varying, it has very little effect on the controlled variables as they are nearly constant
by ~10 hours. Moreover, the process cost is still varying at this point with a minimum of ~60,000 $CAD /yr. As the
controlled variables have flattened by t = 10 h, the RTO is executed whereby a new reachable set point is computed
and the system undergoes a transient that lasts until t = 17 h hours and reduces the steady-state cost to
~50,000 $CAD /yr. The transient associated with this set point change (t = 10 h — 17 h) is longer than the previous
set point change (t = 4 h = 9 h) as the system starts far from its optimal operating point because the previous set
point corresponds to a flue gas flowrate that is 40% higher. Despite the new optimal steady state having a cost that is
~8000 $CAD /yr higher than the previous steady state, the energy penalty incurred to the upstream power plant is
—2385 $CAD /yr because of the reduction in reboiler duty. In this case, the RTO decision helps the power plant
operation as well as the PCC since ~30% of the losses imposed by the new disturbance on the system will be offset
by increased power plant profits owing to the reduction of steam being routed to the PCC plant.

Att = 17 h, a third 20% step up in flowrate is imposed, thus returning the system to its nominal flue gas flowrate.
This disturbance is successfully rejected by t = 20 h but results in another high operating cost of ~2.6M $CAD /yr
due to the high MEA makeup flowrate of ~0.5 mol/s. The RTO is executed again at t = 20 h, whereby the process
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cost is returned to its original ~48,000 $CAD /yr in just under t = 24 h, thus completing a cycle. This new set point
is accompanied by an energy penalty to the upstream power plant of 1731 $CAD /yr, which is substantial as it negates
~87% of the price reduction from the previous optimal steady-state cost of ~2000 $CAD /yr.

As with the Scenario A, large MEA makeup flowrates following disturbance rejection phases are observed. This re-
emphasizes the large economic effects that MEA cost can have despite its relatively low price. In contrast to Scenario
A, the disturbances in the present scenario occur relatively frequently, resulting in a plant that is in the disturbance
rejection phase more often. This leads to frequent dynamic operation, which was observed to be expensive. Despite
this, when the RTO is executed the dynamic process cost (i.e., when a new set point is being tracked) typically
decreases drastically following a peak as the NMPC often reduces the MEA makeup quickly.

In the three RTO periods associated with a daylong operation with three disturbances observed in the present scenario,
the optimal process cost decreases by ~6000 $CAD/yr, increases by ~8000$CAD/yr, and decreases by
~2000 $CAD /yr for each RTO period, respectively. The first cost decrease is enabled by the increase in flue gas
flowrate, which allows for substantially more carbon to be captured and sold per unit time with only a slight increase
in reboiler duty. It is associated with a sizable net (considering energy penalty) cost improvement of ~12% with
respect to the pre-disturbance process cost. The second RTO period and its associated increase in cost occurs because
of the significant decrease in flue gas flowrate, which allows for less sales recoups. Despite this, the RTO still enables
the reduction of steady state cost from the post-disturbance steady state by ~17%; that is, while there is an increase
of steady state cost with respect to the previous disturbance in this case, the RTO still results in significant loss
abatement from the second disturbance-rejection phase. Furthermore, the third RTO period observed a more modest
~0.6% of net cost improvement over the previous RTO period because of a large energy penalty as noted above.
Dynamically, for the three RTO periods observed in this scenario, the payback periods were calculated to be
tpayback = 8N, thaypack = 12 h, and t,qypack = 7 h in chronological order. Thus, none of the RTO periods are
operated at steady state for a sufficiently long time to justify the expensive dynamics as the payback period is not
completed before a new disturbance is imposed. For a scenario such as this where the system has little time to settle
before more disturbances are imposed, an EMPC structure may be more well-suited for the dynamic costs to be
considered; however, EMPC also has disadvantages as stated in the introduction. Nevertheless, this scenario showed
that the execution of the RTO decreased the steady-state costs from the disturbance-rejection phase cost in all three
RTO periods observed herein, and that the scheme can handle very large disturbances in flue gas flowrate (with the
caveat of expensive dynamics). For slower power plants that do not impose such large load changes on the PCC
process, this approach would be more suitable. Moreover, the energy penalty of the power plant was relatively small
or negative for two of the RTO periods; even when the penalty was large, it did not exceed the savings incurred by

the RTO.

4.4.3. Scenario C: Variation in Prices

To assess the effect of the pricing of RTO economic cost terms on the system’s operation, disturbances were imposed
on the prices associated with the two primary cost terms (i.e., those that incur the biggest profit or loss during nominal

operation as established in the cost breakdown in scenario A). Accordingly, the largest contributors to the overall cost
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were found to be the reboiler steam cost and COxz sales profit. These prices were varied within =10% of their nominal

value in a series of steps over five RTO periods as depicted in Figure 4-8a.
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Figure 4-8: Price profiles, process cost, controlled variables (b shows full profile, g shows zoomed in profile), and manipulated
variables for price variation scenario. Dashed vertical lines represent times at which the RTO was executed, thus inciting a set
point change.

The responses on the buffer tank temperature and cooling duty in this scenario can be found in Figure A-5 (Appendix
A). As with the previous scenarios, the MHE estimates were observed to be in good agreement with the true plant
with an MSE = 1.075 x 1073, Moreover, a ‘no-MHE’ case was performed for this scenario as summarized in
Appendix A (Figure A-6 and Table A-3). The control and economic performance loss in this scenario were found to
be similarly small to that observed in Scenario A; hence, it is deemed acceptable under the assumptions considered
for the present MHE scheme.

The starting point for this scenario corresponds to the nominal conditions outlined in Section 4.2.3 and Table A-1
(Appendix A), in which the system starts far from its economically optimal steady state as reflected in the long initial
transient (~8.5 hours) in %CC, C{&Y, and h**™* (Figure 4-8c, d, and e, respectively). Once the system reaches its new
operating condition at the end of this transient, the subsequent dynamics related to price changes are comparatively
short as they represent adjustments near the optimum rather than a move into a radically different operating point.
This is reflected in the small magnitude of the adjustments and brief dynamics made on the %CC and h*®** in RTO
periods 2-5.

Figure 4-8b and g show the process cost after execution of the RTO with updated pricing and the subsequent tracking
to the newly defined set points that were observed. This profile is compared to the process cost profile of a ‘no RTO’
case (also shown in Figure 4-8b and g) where the controlled and manipulated variables are maintained at their nominal

values (i.e., ¥Y,,om and u,,,,,, respectively). This way, the economic benefit of executing the RTO over remaining at
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the nominal operating conditions suggested in the literature (Nittaya, 2014) can be assessed. The RTO always supplies
economically advantageous operating points; however, the amount of improvement over the nominal scenario depends
on the specific pricing as summarized in Table 4-8. These improvements range from modest (RTO period 3, nominal
sales prices and high reboiler price) to substantial (RTO period 5, low sales price and high reboiler price).

Table 4-8: PCC savings, energy penalty, and net savings for different RTO periods (price combinations) with respect to the no

RTO’ case.

RTO PCC savings | Energy penalty | Net savings
period | ($CAD/yr) ($CAD /yr) (%)

1 3047 1149 4.45

2 2776 1005 3.50

3 2417 876 2.64

4 2608 946 3.38

5 8742 —1032 14.47

The second and third RTO periods, after the system reaches its first economic optimum and only reboiler prices are
disturbed, provide modest economic advantages over the ‘no RTO’ operation. This suggests the economic optimum
is only mildly dependent on the price of steam although steam comprises a large part of the total cost. The importance
of steam price is corroborated by the increase in cost from ~39,000 $CAD/y to ~56,000 $CAD/y upon the two
steam price increases, which represents a significant economic penalty. In other words, the reboiler cost makes up a
large part of the process economics, but the RTO can only provide modest improvements to offset changes in this
price if the system begins at an optimum. Nevertheless, these improvements are worthwhile if the price holds for a
long time thereafter. These increases in reboiler cost also cause the RTO to generate lower %CC set points as the
removal of %CC is disincentivized since it becomes more expensive for the reboiler to provide a MEA-rich recycle
stream. Moreover, with the reboiler prices increasing during the second and third RTO periods, the system experience
successive decreases in savings and energy penalty. The energy penalty to the power plant is decreased as the RTO
dictates that less duty is required as the steam price becomes more expensive while the PCC savings also decrease as
less carbon is captured as a result. In both periods, the decreases in PCC savings outpaces the decreases in energy
penalty, resulting in lower net savings.

During the fourth RTO period in which the sales price is increased, an increasing incentive to remove COz is observed
through a slight increase in %CC set point. This occurs along with a significant drop in process cost to
~46,000 $CAD /y as more economic benefits can be recouped through CO: sales. This period also represents an
increase in the improvement over the no RTO case from the previous period as displayed in Table 4-8, which suggests
that there is a larger economic benefit to be gained by executing the RTO upon sales prices changes. In this fourth
period, the energy penalty increases owing to the increased recoup price, which incentivizes removal and higher
reboiler duty. In contrast to the previous two periods, the increase in PCC savings is greater than the increase in energy
penalty, hence an increase in net savings is observed.

The notion of potentially large savings to be made upon changes in sales price is further reinforced in the fifth RTO

period, which represents the most substantial cost improvement over the ‘no RTO’ case. This occurs with a low sales
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price, which decreases the %CC set point by drastically decreasing the reboiler duty leading to a large price increase.
In this period, the RTO allows less COz to be removed since the economic incentive of selling the capture material is
significantly reduced. This is reflected in the process economics as there is a decrease in the money recouped through
sales, causing the process cost to increase to a high of ~65,000 $CAD/y. A substantial decrease in reboiler duty such
that it goes below the reboiler duty in the ‘no RTO’ case is dictated by the RTO in this period; hence the negative
energy penalty as shown in Table 4-8. In this case, the savings are substantial as they are made with respect to both
the PCC and the power plant, hence the large net savings.

As observed in this scenario, there can be a significant dependence of optimal process cost on the material and energy
prices as shown in Figure 4-8g ranging from ~39,000 $CAD/y to ~56,000 $CAD /y. However, these all represented
improvements with respect to the nominal operating point reported by Nittaya (2014) with net savings ranging from
~3 — 14% as summarized in Table 4-8 (i.e., net because the associated energy penalties are accounted for). As in
previous scenarios, the dynamics associated with some set point changes were observed to be costly during some
periods of time. This was observed at the beginning of RTO periods 1 and 4 where there are short (~40 minute) spikes
in MEA makeup. Accordingly, the RTO should be primarily executed if the prices are expected to hold thereafter such
that the detriment from the spikes can be made up for by the improved steady-state economics. As in the previous
scenarios, the energy penalty to the power plant never exceeded the RTO savings, thus justifying the use of an RTO
framework. Day-to-day variations in typical commodity/energy prices are often noisy and small, thus they would not
warrant set point changes. In contrast, price variation on the order observed in this scenario (i.e., £10%) would occur
less regularly; these would warrant the execution of the RTO as doing nothing would represent significant additional
costs as shown by the comparison to the no RTO case in Table 4-8. That is, large price changes as observed in this
scenario are outside the tolerance of noise and occur when there is a market change; these price changes would justify
the use of RTO such that the payback period is short given the expensive dynamics observed.

The averaged computational times for the RTO, NMPC, and MHE in the proposed scheme for this scenario are 4.33 s,
55.43 s, and 64.65 s, respectively. The CPU times do not change significantly across test scenarios as the optimization
problems are of the same size and were carried out using the same hardware; thus, these times are representative for
all scenarios. As can be observed in the CPU times for the dynamic optimization problems, the implementation of a
large model as in the present study requires significant computational effort; this is one of the drawbacks of using a
mechanistic model. Despite having the same number of equations, the MHE problem requires more CPU time than
the NMPC problem, owing to an increased number of decision variables (i.e., manipulated variables trajectories in
NMPC vs. state trajectories in MHE). The long computational times of the dynamic optimization problems used herein
warrant adjustments in the solution strategy for the scheme to be used in a real plant. One option is to accept the
computational delay caused by these long CPU times and asses its effect on the control and estimation layers; however,
this can have detrimental effects on performance. Previous studies have proposed the use of terminal conditions to
mitigate this issue (Chen et al., 2000), but this increases the implementational complexity of the control scheme. More
attractively, a reduction in this computational effort can be achieved through efficient reformulations such as the

advanced-step NMPC presented by (Zavala and Biegler, 2009).
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4.4.4. Remarks

The scheme was implemented on an MEA-solvent pilot-scale PCC absorber section and a mechanistic process model
was used for the layers comprised in the proposed scheme. The absorber section and proposed scheme were subjected
to test scenarios including cofiring, diurnal variations, and price variations to assess performance. A ~19%
improvement in process cost was observed in the cofiring scenario (A) with only a small (~0.5%) of economic
performance deterioration caused by the MHE. The diurnal variation scenario (B) revealed improvement in steady-
state economics upon the introduction of each new disturbance from ~12% cost improvements (in the cases where
disturbances caused the cost to improve) to ~17% loss abatement (in the cases where the disturbances caused the cost
to increase). Furthermore, a ~3% to ~14% cost improvement with respect to maintaining a constant set point was
observed for different economic incentives (through price variations) in the scenario C.

Dynamically, the NMPC layer was shown to track the RTO-supplied economically optimal set points quickly in all
scenarios while maintaining non-economic variables, such as temperature and level, steady. Occasionally, the control
actions in the NMPC were observed to be expensive because of the use of MEA makeup as a manipulated variable;
this would make the proposed scheme expensive to execute for plants subject to continuous disturbances where steady-
state operation is not sustained for long periods. This finding is consistent with the fact that RTO is a steady-state
optimization method, which does not consider dynamics when determining set points. Nevertheless, the payback
periods for the scenarios observed in this work were found to be reasonable with respect to the RTO period lengths
(i.e., the payback period were of similar lengths to the RTO periods). Moreover, the MHE was observed to provide
consistently acceptable estimates of the absorber as observed through the NMPC performance, which showed little
deterioration compared to when full state access was assumed. The fidelity of the estimates was also evidenced by the
low error in the MHE-estimated %CC with respect to the true %CC .

From a process economics perspective, it was found through the test scenarios that there is a substantial potential to
recoup costs through CO: sales; this was most salient at high inlet COz concentrations (i.e., with very emissive fuels)
and high flue gas throughputs, whereby the PCC plant was operated at a high %CC. Furthermore, the energy penalty
to the upstream power plant was always lower than the economic benefit incurred by the RTO; thus, justifying the
execution of the RTO even if the energy consumption led to some reduction of its potential cost improvements. It is
thus evident that the RTO, while not having a model of the power plant, is able to make sensible decisions regarding
the energy use of the PCC plant such that the power plant does not experience an undue energy burden because of

carbon capture.

4.5. Summary

An operating scheme was proposed for the economic optimization of PCC. The RTO layer introduces a novel
economic function, which provides a comprehensive consideration of process economics through its inclusion of SCC,
CO:z sales profit, chemical cost, and energy cost; this provides realistic and economical set points to the control layer
through its use of the proposed economic function. The NMPC layer enables the centralized control of the absorber
and buffer tank while keeping the system inside its physical and safety constraints. Moreover, the control structure in

the case study provides adequate control flexibility because of its ability to concentrate and dilute the absorber feed
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using the buffer tank makeup streams. The MHE layer provides accurate estimates of the states required to execute
the previous two layers while only requiring a realistic number of measurements and ensuring that the estimates adhere
to constraints. The case study results demonstrate that the operational approach presented herein do, in fact, provide
an economically optimal operating approach for PCC operating downstream from fuel-fired power plants. Approaches
such as this will be paramount in achieving economic viability in PCC such that fuel-firing can become

environmentally viable.
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5. Low-variance Parameter Estimation
To the authors’ knowledge, a scheme to abate the effect of noise directly in parameter estimates in RTO has not been
proposed in the literature. The present study introduces a low-variance PE (Iv-PE) algorithm coupled with RTO for
the economic operation of noisy processes. The 1v-PE scheme reduces the error in parameter estimates with a twofold
strategy. Firstly, the available measurements are probed for their information content to ensure low parameter
variability (i.e., high precision) by performing “challenger” PE problems with different measurement combinations;
this ensures that most of the information-rich measurements are used for PE. Secondly, a filter is introduced to reduce
the frequency of high-error estimates by establishing parameter bounds; this prevents estimates beyond realistic
bounds to be implemented in the system. Using the measurement-probing and data-filtering steps, the proposed
method results in low measurement-to-parameter noise propagation and elimination of high-error estimates. The
deployment of the proposed method does not entail a fundamental redesign of the two-layer RTO scheme that is
prevalent in industry; this makes it an attractive way to augment RTO performance in any system that uses the two-
layer approach. As will be shown in the following sections, the method only requires additional computations to be
performed using the recurrently sampled measurements which would be collected nonetheless. Notably, this approach
is not mutually exclusive with any aforementioned technique (i.e., GED, DR, robust estimation) since it chooses
favourable measurements (pre-estimation) and filters noise from the resulting estimates (post-estimation). The
proposed method can be used to improve the efficacy of robust estimators in noisy conditions and be included as an
extra data-processing step with data reconciliation, gross error detection, or any online estimation task (e.g., state
estimation).
The study is structured as follows: preliminary notation and standard definitions are defined at the outset; Section 5.1
outlines the regular formulations for RTO, PE, and NMPC to expound on the arising issues with PE and provide
context for the proposed algorithm. Section 5.2 presents, and rigorously motivates the proposed algorithm, also
providing frameworks to analyze process economics and constraint violations in RTO-operated systems. Section 5.3
illustrates the implementation of the proposed algorithm through two case studies: an evaporator process and the
Williams-Otto process. Section 5.4 summarizes the findings and provides areas of future work.
Preliminaries
Bolded letters denote matrices and vectors, while plain letter done scalars. Lower-case bolded letters denote vectors,

while upper-case bolded letters denote matrices. I,, € R™*™ denotes an identity matrix of dimensions n; X n;.

I, € R™>*"i*1) denotes a matrix composed of the identity matrix of dimensions i X i with a zero vector of length

i inserted as column j, e.g.:

1 0 0 O
L:=0 1 0 0 (5-1)
0 0 0 1
Given a generic vector X = [¥1 ** ¥,]T, some operations on the vector are defined. ||x||,> denotes a quadratic

form on the vector x € R™ with the weighting matrix A € R™*™x, ¥ € R"* denotes model prediction of x € R™x,
Model predictions are not inputs to the model nor the decision variables; rather, they are generated while solving

optimization problems but not conveyed to any other layers unless explicitly stated. {x,_;})~, denotes a discrete
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sequence of the vector x from the present time ¢t to time t — N. X € R™X denotes the average of the sequence and o,

denotes the standard deviation of that sequence, i.c.:

0

1
X = N .ZN Xiti (5'2)
=
0y Ctini = B2
— i=—N t+i (5_3)
Tx N—1

Similarly, the covariances of elements within the vector x given their discrete sequence {x,_;}\, is estimated as

follows:

N
1 . .
K;j= Nz(xi't_k = X)) (X e—k — X7) vie{l,..,n},Vj€e{l,..,n,} (5-4)
k=0

The latter expression can be used to construct the covariance matrix K, € R"™**"x_ Lastly, this study uses US$ as the

monetary basis.
5.1  Real-time Optimization of Controlled Plants

a) b)
Measurements: z
t—t+AT t—t+At

PE
| Parameters: 0

RTO | Plant I-— Disturbances: d
I Set points: Y,

Controller

———

Figure 5-1: Typical RTO scheme for a controlled plant with a) independent optimization and control models, b) equivalent
optimization and control models.

Measurements: z

t«t+AT te—t+At

| Plant I-— Disturbances: d

Set points: Ysp

Parameters: 6

Control actions: u Control actions: u

Figure 5-1 depicts the exchange of information between the plant, RTO, PE, and controller via the two-step approach.
Herein, a continuous plant is assumed to be subject to measurable disturbances (d € R"¢). Note that this assumption
is made for simplicity (i.e., measurability is not necessary for the proposed method as will be discussed later in this
section). Measurements (z € R"z) can be acquired from the plant such that enough new data is collected to perform
the PE problem at every RTO period AT. The PE problem supplies the RTO economic optimization problem with
updated model parameters (@ € R™¢) which, in turn, supplies the controller with set points (¥, € R™). Note that y
denotes the controlled variables that are regulated towards their respective set points (¥s,). The controller regulates
the plant towards the RTO-supplied set points at every sampling interval At such that the plant is kept on target. Note
that AT = kAt where k € Z* (i.e., the RTO period is a positive integer multiple of the sampling interval), and typically
AT > At. Moreover, while state accessibility is often an issue in process plants, we assume that the required
measurements are accessible for the purposes of this work (i.e., full state access is considered); this is not necessary

for the scheme but done for simplicity and to remove confounding factors.
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Two controller implementations are possible as depicted in Figure 5-1, a) when the controller uses an individual
internal model/scheme and, b) when the RTO, PE, and controller models are equivalent (i.e., they use dynamic and
steady state versions of the same model). The latter case is of primary interest as parameter updates are passed to both
RTO and controller, thus affecting the scheme’s performance in a twofold manner. For the purposes of this study, the
parameter estimates are passed to both layers; however, they need only be passed to the RTO or NMPC layers to affect
the system operation. Indeed, in larger systems where the online mechanistic control problem is expensive to compute,
the use of a mechanistic MPC may be impractical such that the controller will be incompatible with PE. The use of
equivalent models often necessitates that the controller uses detailed process models to match the PE and RTO layers,
which are typically nonlinear, hence the use of nonlinear model predictive control (NMPC), as depicted in Figure
5-1b. The NMPCs employed herein use a dynamic version of the steady-state model deployed in the RTO and PE.
Indeed, the interaction between NMPC and RTO has been studied previously (Adetola and Guay, 2010; Diehl et al.,
2002); to the authors’ knowledge, studies addressing a reduction of parameter variability owed to measurement noise
are not available in the literature. Generally, RTO problems are formulated as follows:

min @

y
s.t.

fsX,yudo)=0 (5-5)
g Zud)<0

l h
y<y<sy
ut<u<uht

where @ € R denotes the economic model for which the process is optimized. In formulation (5-5), it is assumed that
@ is an economic loss function being minimized; however, maximization of a revenue function also occurs. The inputs
to the RTO formulation (5-5) are the current process disturbances (d) and the uncertain model parameters (@), while
the outputs are the economically optimal controlled variables (y € R™). The process state predictions (X € R™) and
the manipulated variables (u € R™*) corresponding to the optimal set points are also generated by the model.
fs:R™ x R X R — R™ X R™ denotes the steady-state process model. y! and y* € R™ are lower and upper
bounds for the set points, respectively, while u! and u"* € R™ are lower and upper bounds, respectively, for the
manipulated variables. gg: R™ X R™ X R™ — R™ are any constraints (aside from those on the inputs and set
points) to which the economic optimum must adhere. The RTO supplies the controlled variable set points to the
controller (i.e., ¥5p). Although the RTO may provide a set point that is challenging to match by the controller because
of model uncertainty in both layers, the set point is nonetheless conveyed between the layers as it approximates the
economic optimum (with some error); this point is described in the following section. Executing the RTO (and
corresponding PE) problem too frequently would put undue computational burden on the plant and may not necessarily
lead to drastic improvement in performance. Accordingly, the RTO problem is executed every RTO period AT as
specified by the user, such that the set point is periodically being updated as more plant data becomes available. In
contrast, the controller acts on the plant at every sampling interval At.

The controller is tasked with regulating the controlled variables towards the RTO-defined set points. In the case of an
equivalent model between layers (Figure 5-1b) an NMPC can be considered. NMPC (or MPC more generally) takes

plant state measurements or estimates at every sampling interval At and uses them as initial conditions for a process
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model to predict plant behaviour on the horizon P. The manipulated variables are used as decision variables on the
horizon C such that the NMPC generates the sequence {u,,;}5_; (C < P such that u is assumed to remain constant
beyond C). The first instance of manipulated variables from this sequence u,, are subsequently provided to the plant

such that the system is controlled. The NMPC problem is formulated as follows:

P P

min §||y ~ el + § (XTI

Up4iViIE(L,...P} 4 tillg, t+illRc
i=1 j=1

s.t.

faReri Vero Wesin A1y 0) = Xy vie{l,..,P—1}

X, = X (5-6)
9aReyp Ui diy) <0 vie{l,..,P}

V<P <y Vi € {1,..,P}

ul <u,; <ub vi € {1,..,P}

Uprirr = Upyi vie{C,..,P—1}

where all variables are defined as in the RTO with an additional dependence on time. The first term of the objective
function represents a minimization of the sum of squared errors between the controlled variables and their set points
over the horizon P, while the second term minimizes the squared changes in the manipulated variables from one time
period to the next (i.e., AUyy i1 = Uppizqg — Uesi Vi € {1, ..., C}). These objective function terms affect control
performance and manipulated variable speed, and are subject to the diagonal weighting matrices Q, € R™*™ and
R, € R™*™u_ respectively, which are determined from prior tuning. fg: R™ X R™ x R™ x R"0 — R™ x R™
denotes the dynamic process model. g4z: R™ X R™ X R" — R™9 are the set of inequality constraints (aside from
the controlled and manipulated variable constraints) that are imposed on the predicted trajectories. The inputs to the
NMPC dynamic optimization problem are the initial conditions x, € R™, which are state measurements or estimates;
as well as the disturbance trajectories (d; = - = d,, p) and the model parameters (8), which are assumed to remain
constant at the latest disturbance and PE-defined value for the entire controller prediction horizon, respectively. The
outputs of this problem are the optimal manipulated variable trajectory (u,,; € R™) as well as the predicted state
(%;+; € R™) and controlled variable trajectories (¥,,; € R™). Only the first time-instance of the manipulated
variables trajectory (i.e., U;41) is implemented in the plant. After this, the plant is operated for a sampling interval At
whereby new measurements are given to the NMPC as feedback and the formulation in equation (5-6) is re-solved;
therefore, the process of sampling and solving the NMPC problem is repeated recursively, and the scheme becomes
closed-loop.

The uncertain model parameters (8) associated with formulations (5-5) and (5-6) must be estimated prior to every
execution of the RTO problem (5-5) to reconcile the plant model with the current steady state operating conditions.
The PE optimization problem is based on Bayesian inference, which allows for the embedding of prior information
and determination of weighting terms in a statistically rigorous manner. This assumes that measurements (and thus

the noise associated with measurements) obey a Gaussian distribution; the complete outline of the probabilistic

81



interpretation can be found elsewhere (Cox, 1964). As such, the work herein is limited to Gaussian noise, which is
indeed a very common assumption in process systems.
The PE problem uses a measurement sequence {Z,_;}'L,, whereby the past M steady-state samples are considered.
This allows for averaged measurements (z € R™z) to be computed using equation (5-2) along with the measurement
covariance matrix (K € R"2*"z) using equation (5-4). The PE problem is as follows:

min||2 — 2|l -1

s.t.

fs(%9,u,d6)=0 (5-7)

h(xud)=2

gs(zud)<0

<o <ot
fs:R™ X R™ x R" — R™ x R™ is the steady-state process model that also corresponds to the model used in
formulation (5-5). @' and @" € R" are lower and upper bounds, respectively, for the parameter estimates.
gs:R™ x R™ X R"™ — R™ are any constraints (aside from those on the inputs and set points) to which the
estimates must adhere. Moreover, hg: R™ X R™ X R™ — R"z denotes the function between the model inputs and
measurement prediction. The measurements can coincide with the states or be functions of the model inputs/states.
The objective function in problem (5-7) minimizes the differences between the model measurement predictions and
the sample-averaged measurements by using the model parameters as the decision variables. The inverse covariance
matrix (K~1) weights the objective function such that high-variance measurements are assigned low weights with the
converse occurring for low-variance measurements. By performing the sampling and averaging, less noisy
reconciliation between plant and model are achieved; however, some noise will still propagate to the parameter
estimates as experimental data are used. In executing this formulation, the plant and model are reconciled for current
operating conditions as the latest available steady-state plant data including the measurements, manipulated variables,
and disturbances are used. As such, the inputs to this problem are the averaged measurements (Z), averaged
manipulated variables (), and disturbances (d) while the outputs are the parameter estimates (8). While a large M
would be preferable for its averaging effect (especially in the presence of noise), this can lead to the use of
measurements that are not truly at steady state (e.g., owing to drift or subtle control actions over time); thus, the size
of M is typically limited. Note that this formulation can also be adapted for disturbance estimation or joint
parameter/disturbance estimation; however, this work is restricted to cases involving parameter estimation.
As both RTO and NMPC layers are privy to the parameter estimates, poor PE performance can lead to suboptimal
operation via inaccurate RTO set points and set point offset in the NMPC layer when compared to the true optimum.
Given the formulations presented above, the importance of the PE problem becomes clear from the dependence of the
RTO and NMPC on 6. Moreover, the gaps for a method to deal with variation in parameter estimates can be expounded
upon:

1) More information (i.e., measurements) do not necessarily mean that the PE problem (5-7) will yield better

estimates as covariances (K) may, in fact, weigh the problem unevenly such that it becomes ill-conditioned.

82



Typically, all available measurements (z) are used when solving PE problems; accordingly, there is need for
a method that can choose a favourable subset of measurements to provide to the PE step.

2) Problem (5-7) uses a sample of measurements ({z,_;}!,), which are subject to noise through the sample
average Z and the covariance matrix K. The propagation of noise from the measurements to the parameter
estimates can cause economic losses, which accrue in the long-term. There remains a gap for a method to
ensure this does not occur by filtering for erroneous estimates.

To address these issues, the low-variance PE procedure is introduced herein and presented in the following section.
This comprises an algorithm that determines favourable measurements to embed in the PE problem as well as a filter

to reject instances where the parameters are poorly estimated.

5.2  Low-variance Parameter Estimation (Iv-PE)

The proposed low-variance PE (i.e., Iv-PE) scheme works by reducing the variability in parameter estimates with
respect to their expected value, which is equivalent to their true value provided that the system is absent of systematic
errors (see assumption 3 below). Accordingly, any single estimate may not be more accurate at a given PE/RTO
iteration; however, the estimates over time will be more precise, thus benefits will accrue over many RTO periods. In
this section, the scheme is motivated through analysis of the set point error, which is attributed to parameter error.
Then, the algorithm comprising the scheme is discussed step-by-step. Moreover, the economic implications of the
method are discussed, with a novel algebraic and geometric interpretation of RTO economics. Assessment metrics for
the scheme are introduced at the end of this section.

The following assumptions are made herein:

1) The time operating at steady state far exceeds the time operating dynamically. This is an underlying
assumption in systems that operate with RTO (Darby et al., 2011) (i.e., not specific to the proposed approach)
as the principle of steady-state optimization is that cost-optimal operating policy is steady while dynamic
operation is expensive and should be minimized.

2) The measurement noise is additive Gaussian and occurs owing to random errors. As noted earlier, this is an
underlying assumption of standard PE in equation (5-7) as the least-squares objective embedded with prior
measurements arises from Bayesian inference in the presence of Gaussian noise (Cox, 1964).

3) Plant—model mismatch is owed to PE error. This is a standard assumption in the two-layer RTO ((Darby et
al., 2011) whereby a mechanistic model is assumed to provide an adequate representation of the system and
only requires parameter estimates to match the plant. Mechanistic process models are increasingly common
and available for RTO; however, in cases where such model is not available, other approaches (Marchetti et
al., 2009; Roberts and Williams, 1981) can be considered. The PE error herein is owed to large amounts of
noise to which the measurements are subjected. Measurement bias and similar systematic errors are not
addressed herein as they would require GED. In principle, GED could also be addressed within the proposed
scheme but would require an extra processing layer as indicated in the introduction. However, as this is the
first study to use the proposed approach, extra layers were not considered to explicitly assess the benefits and

limitations of the method.

&3



5.2.1. Effect of Parameter Errors on Set Point Tracking

A theoretical argument is first made to motivate the proposed approach, which connects parameter error to set point
error for an RTO-operated system. Consider a single RTO period during which the process loss is minimized
(alternatively, revenue can be maximized). For a constrained RTO to operate the process at its “true” economic
optimum (i.e., the economic optimum corresponding to the plant, not the mismatched model) the controlled variables

must fulfill the Karush-Kuhn-Tucker (KKT) conditions, i.c.:
VO (y5e) + 1 (yi5e) A+ 15 (¥4 1 =0
fyge)=o0
g(yge) =0
1g(ye)=0p20

where J; € R™*" and A € R™ are the Jacobian matrix and KKT multipliers of the process model, respectively.

(5-8)

Moreover J, € R"*™ and 4 € R" are the Jacobian matrix and KKT multipliers of the process constraints,

respectively. y&*¢ € R™ in equation (5-8) denotes the controlled variables set points that achieve a true economic

true ;

optimum (i.e., plant KKT conditions). In practice, the true economic optimum yg,*¢ is difficult to achieve because of

mismatch between the plant and RTO model. As such, the performance of an RTO optimizer can be assessed by the
difference between the actual controlled variables achieved by the system and the true set points. Over time, this can
be quantified using an error metric; herein the integral square error (ISE) is considered owed to its common use in

control systems. Accordingly, the error is quantified over the single RTO operating period (Tgro = AT):

TrTO 2
ISE = f 570 — yigeell, ~dt (5-9)
0 ny

where yRT? € R™ denotes the actual controlled variables achieved by the RTO-operated system. y&7*¢ and yRT? ar

distinct as the RTO may not operate the system at the theoretical optimum owing to modelling errors, thus the gap
between the achieved set point and the true optimum is expressed by the error metric in equation (5-9). The set point
offsets in equation (5-9) provide a way to analyze the efficacy of an RTO-operated system on a theoretical basis. As

values of yRT?

are not known a priori, the effect of offset is analyzed under several hypothetical scenarios as shown
next.

The operation of process plants is composed of many RTO periods; however, taking a more granular view as done
here, a single RTO operating period can be segmented into distinct phases: the suboptimal phase, the dynamic phase,
and the optimal phase; these are depicted in Figure 5-2. The suboptimal phase corresponds to the time before the RTO
is executed and the system is operating at a point that is outdated/suboptimal (ys*? € R™), the dynamic phase occurs

dyn € R™), and the optimal phase occurs

once the RTO has been executed and the system is in a transient state (y'
once the system is operating at its RTO-defined set point (y°P* € R™). Note that the “optimal phase” here
corresponding to y°P¢ refers to optimal as achieved by the PE/RTO-operated system and may, in fact, not be the true

lant optimum y¢%¢ as the RTO can result in offset with respect to the true set point as show in equation (5-9). The
p Y Ysp Y p q

RTO sub

segmentation of the RTO period into three phases allows for y*'“ as defined previously to be decomposed into y
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y®™" and y°Pt. These phases have durations tg,, tayn, and t,p;, such that for a single RTO period Trro = tsyp +

tayn + topt-

true { —
.ysp

yopt i

ysub 4

tsub tsub + tdyn + topt

Figure 5-2: Segmentation of RTO period. Dotted (--) line denotes the true (theoretical) optimum. The integral of differences
between true optimum and actual phase values highlighted red (suboptimal phase), green (dynamic phase), and blue (optimal
phase).

This allows for equation (5-9) to be segmented into phases, for which the set point difference in each phase is shown

in Figure 5-2 as follows:

tsub tdyn‘”sub
sz = [ eyl Caer [ ooy, Ca
In, In,
0 tsub 5_10)
tsubttdynttopt (
N
In,
tsub+tdyn

Since RTO is inherently a steady state method, assumption 1 outlined above is made; indeed, predominantly steady
state operation is largely the case for many process plants. This leads to tep, tops > tayn = Trro = tsup T tope» thus

simplifying equation (5-10) to:

tsub tsubttopt
155:[ ly=e> = yigee|| “at + f Pt — yigee||  “at (5-11)
ny ny
0 tsub

The RTO-defined controlled variables can be partitioned into the true value (as defined above) and their deviation

from the true value (o € R™ ), which allows for the expansion into:

tsub tsub"'topt
2 2
155 = [ e+ o —yigel, Caer [ g oo -y, Car (5-12)
0 tsub

which simplifies to:
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ISE = f(:sub”asub”Inyzdt n ftzssbb+topt”a.opt”InyZdt”Tg(ygzue) =0;u=0 (5-13)

Moreover, as only steady state periods are being analyzed, the deviations from the true values are constant for a single
given RTO period (i.e., not a function of time) as show geometrically in Figure 5-2. The solution of equation (5-13)

provides a definition of the ISE performance metric for RTO:
ISE = ||o**t||  *toup + llo*Ptly, %t
= |jo Iny sub o lny opt (5-14)

Using equation (5-14), the performance of two operating schemes can be compared: the first (Iv), which reduces the

set point deviation; and the second (r), which is the regular RTO problem:

2 2 2 2
ISElv - ISEr = ”aﬂ;‘b”Iny tsub,lv + ||0';)5t”1ny topt,lv - ”o'f*ub”Iny tsub,r - ”a.gpt”Iny topt,r (5-15)

To have an equivalent assessment of the schemes, it can be assumed that both operating schemes in equation (5-15)

begin at the same suboptimum (i.e., af},‘b = ¢5¥P) and can act at the same time (i.e., tsubiw = tsupr = tsup and
topt,lv = topt,r = topt,)a thuS:
ISE, — ISE, = (||a?®]] “—|lo%%|| )t
[ r = ”0117 ||1ny - ||0r ”Iny opt (5-16)

Which, since t,,, > 0 by definition, leads to:
opt 2 opt 2
ISE,, —ISE, < 0 < ||a? Hzny < ||oy ||lny (5-17)

Following assumption 3, it can be concluded that by reducing the error in parameter estimates (@), the deviations from

the set points are also minimized as the uncertain parameters represent the only source of plant—model mismatch, thus:

2 2
ISEy =I5By <0 & Jlogill, * <loarll,

(5-18)

Since the set point corresponding to y;;,“"’ is indeed an economic optimum by definition, the minimization of parameter

deviations will lead to improved economics as effected through the set points. This can be generalized to multiple
RTO periods if the deviations o are re-defined as standard deviations, thus they represent the mean deviation across
many RTO periods. An algorithm to achieve this lowering of parameter deviation, which fulfills the assumptions made

herein is presented next.

5.2.2. Proposed Approach (Iv-PE)
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Figure 5-3: The proposed low-variation parameter estimation algorithm for RTO. The blue block denotes the restarting criteria
for the measurement-probing block (in the red block). The green block denotes the parameter update procedure in the RTO and
NMPC.

The proposed algorithm to lower the variability in the parameter estimates is depicted in Figure 5-3 and divided into
three blocks to facilitate discussion. The key idea is to test available measurements sequentially for whether they help
or hinder the variability of the parameter estimates by performing “challenger” PE problems (i.e., potential PE
formulations of which the results are not implemented in the RTO or NMPC). The parameter estimates of the
challenger problems are compared to those of a benchmark problem, whereby the challenger problem is a version of
the benchmark problem with an omitted measurement. If the challenger problem performs better with the omitted
measurement, it becomes the new benchmark problem. At the first iteration of the algorithm, the benchmark problem
contains all available measurements, this way they may all be probed as the algorithm progresses; as the progression
occurs, each successive benchmark problem will have a lower parameter variability. The removal of measurements is
preferable to the addition of measurements as addition will require an initial subset of fixed measurements to be chosen
a priori. Both challenger and benchmark problems are executed several times; accordingly, data regarding the
parameter estimates is collected to calculate their statistical parameters. These are used twofold: 1) to determine the

combination of measurements that leads to the lowest azpt; 2) as filters to discard inaccurate parameter estimates (i.e.,

those outside of the tightest +a?§7").
The scheme can begin at any point in the operation of a process by going through the restart/terminate block in Figure
5-3 (i.e., checking if an operating point change has occurred and if all conditions for the measurement-probing

procedure are met). Once these conditions are met, the measurement-probing block in Figure 5-3 is activated (the
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activation conditions will be explained in detail at the end of this section). Upon activation, a counter is set to j = 1
and all measurements are assumed to be used (i.e., zy € R"% where n, = n, ). The challenger problems as shown in
the measurement-probing block of Figure 5-3 and defined in formulation (5-19) are solved M times over M sampling
intervals At such that each problem has a data window with a new measurement added and an old measurement
discarded with respect to the previous problem. This process of executing M challenger problems is performed by
excluding a measurement from the benchmark PE problem via the formulation in equation (5-19). The challenger
problems are performed offline such that their estimates are never conveyed to the other layers. At j =1, the
benchmark is the regular PE problem as defined in equation (5-7) with z,, and it is also solved M times over M
sampling intervals. This benchmark problem will change if a better formulation is found by the challenger problem,
otherwise is it kept.

The challenger PE problems are formulated as a modified PE problem where the variables are defined as in equation

(5-7) except for { € R"#~1, The challenger problems are as follows:

h(xud)=2 (5-19)

where { excludes measurement j from the PE problem using I, 1€ R®z=DXnz guch that only a subset of

measurements  are used with the respective covariance matrix & € R™z~D*®z=1 and averages { = I ng-1j Z-

After M executions of problem (5-19), the parameter sequence {0 4 )'t_,-}liwzo is available, allowing for the calculation

of the standard deviation of that sequence ¢(). Moreover, M executions of a benchmark PE problem (i.e., with the
full set of measurements z) have also been performed to obtain the sequence {0(2) ,_;}IZ, with variation benchmark
Og(z)- Note that M is a system parameter and is limited by the RTO period size as it will determine the computational
time associated with the proposed scheme along with the number of challenger problems required; more details about
this parameter are provided in the following section.

The information content (/C € R) metric introduced by Vrugt et al. (2001) is adapted for PE as follows:

0' .
1€ =1-"0% vie1,..,ny) (5-20)

09(2),i.k
where k = j + n, — n, denotes the number of measurements probed hitherto.
The IC metric in equation (5-20) quantifies if, and by how much, the exclusion of a measurement helps in the decrease
of parameter variability. IC; ;, > 0 implies that the removal of a measurement helps reduce variability while IC; , < 0
implies that the removal increases the variation. The IC metric was chosen due to its simplicity and the fact that it
does not require plant perturbations such as alternatives metrics like the sensitivity matrix (Kravaris et al., 2013). In

essence, equation (5-20) determines whether each measurement is beneficial or detrimental to the expected error of
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the PE problem via parameter standard deviations. The deviations are used in evaluating a benchmark problem (i.e.,
with lowest variance set of measurements found thus far in the measurement probing phase) and a challenger problem
(i.e., with a potentially better set of measurements). To quantify the aggregate effect of measurement exclusion in

systems with many parameters, the overall IC (¢, € R) is defined as follows:

ng
=) 1Cy (5-21)
i=1

This is depicted within the measurement-probing block of Figure 5-3 to determine whether to exclude or keep a
measurement as follows:

If ¢, > 0, the exclusion of the measurement is deemed beneficial as cumulative impact of the exclusion is
net positive across all estimated parameters in the system (i.e., the variation in some parameters may decrease while
the variance in other may increase; however, the net effect is of decrease in variation). As such, the measurement j
being tested is removed from the PE formulation and the challenger formulation becomes the new benchmark problem,

thereby reducing the dimension of the measurements vector by one i.e.,

n,«—n,—1=zeR™ « e R

following this, the probing process then proceeds whereby the previous second measurement, which is now the first
measurement (i.e., z; <— z,), is probed for its information content.

If ¢ < 0, the exclusion of the measurement is not beneficial, thus the measurement is retained, and a new
exclusion candidate is chosen i.e., j «— j + 1.
This process is then repeated sequentially for available measurements k € {1,...,n, } until either of the three
conditions in the restart/terminate block of Figure 5-3 is fulfilled: 1) the operating point changes as dictated by a
sudden disturbance to the system, thus interrupting the measurement-probing process and setting j = 1, 2) the
minimum number of allowable measurements are reached as specified by the user based on identifiability analysis
(Guillaume et al., 2019) or process knowledge or, 3) the scheme has gone through all the available measurements and

chosen only to exclude a small subset. The latter two conditions are reflected in the following:

n, = nz,min (5'22)

n,=j (5-23)

where 1, ,,;, is the minimum number of measurements required for the system to be identifiable. Condition (5-22)
ensures that the minimum number of measurements needed (conversely, the maximum number of measurements that
can be excluded) are retained. Additionally, condition (5-23) stops the data acquisition when all original measurements
have been analyzed as reflected by the index k being equivalent to the original number of measurements n,, (and
condition (5-22) has not yet been fulfilled). Condition (5-22) is predominant as reflected in Figure 5-3 whereby it is
checked before condition (5-23); this is to ensure sufficient measurements always remain such that the system is

1dentifiable.
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Once the measurement-probing block of the algorithm in Figure 5-3 is completed, the information-rich measurement
vector z is known and the filter bounds [@ — Oo(2) 0+ Og(»] can be calculated using the parameter sample

{0(2) .}, from the final benchmark problem (i.e., the one corresponding to the subset of measurements that were
chosen to be used in the PE problem implemented in the RTO and NMPC). The sample of parameter estimates
corresponding to the chosen subset of measurements is used to calculate these bounds as the standard deviation. Since
the standard deviation is the average difference between the expected parameter value and the individual estimates
within the sample, future estimates outside of the bounds established by the standard deviation (i.e., those with higher-
than-average distance from the expected parameter) are deemed unacceptable. This avoids potential high-error
estimates whereby noisiness may be propagating excessively to the estimates. With this information, the PE problem
(5-7) can be performed and implemented at every RTO period AT with the chosen subset of measurements z as
depicted in the update block of Figure 5-3. This PE problem corresponds to the one with the final z determined by the
measurement-probing block of the algorithm and generates the estimates 8, which are assessed with the filter bounds.
If the estimates are outside the filter bounds, they are not accepted, and another sampling interval is taken to collect
measurements; this process is repeated until an acceptable set of parameter estimates are generated. If the estimates
are inside the filter bounds, the parameters are used to update the NMPC and execute the RTO problem.

The update procedure is not repeated for another RTO period (i.e., t «— t + AT) unless a new operating point is
introduced as depicted by the upper decision block in Figure 5-3, which restarts the measurement-probing process.
When a sudden operating point change occurs, as indicated by a sudden large change in control actions or process
economics, the measurement-probing block of the algorithm in Figure 5-3 is reactivated by the restart /terminate block.
This is done to ensure that favourable measurements are being used for the PE problem under the new operating
conditions. Note that ‘favourable’ measurements may not mean optimal as stopping criteria (5-22) may halt the
algorithm before all measurements are probed for IC. Nevertheless, the subset of ‘favourable’ measurements chosen
by the proposed scheme will always lead to parameter estimates that are equally accurate or more accurate than the
original set of measurements. Alternatively, the measurement-probing block can also be activated through the
restart/terminate block if there is a sudden change occurs as the measurement probing procedure is proceeding, this is
checked for after every new challenger problem is introduced (i.e., t «<— t + MAt).

In summary, the algorithm proceeds as follows:

Iv-PE algorithm applied to RTO:

1. New operating point?
a. Yes: activate measurement-probing block, go to step 4
b. No: go to step 2
2. Ny = Nymin?
a. Yes: activate parameter update block, go to step 5
b. No: go to step 3
3. n, =j?
a. Yes: activate parameter update block, go to step 5
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b. No: activate measurement-probing block, go to step 4

4. Measurement-probing, set j = 1

a. Execute M challenger and benchmark problems (5-19) and (5-7), respectively

i. | If ¢, > 0:j =1, measurement excluded, new benchmark problem established, go to

step 1

ii. | Else: j+= 1, measurement retained, keep old benchmark problem, go to step 1

5. Parameter update

a. Execute actual PE problem

i. | If@ -0y <8 <8+ 0,y update RTO and MPC parameters, t+= AT, return to step 1

ii. | Else: t+= At, return to step 5a

It should be noted that the algorithm presented above is designed to reduce parameter variation across RTO periods,
not to detect gross errors. However, the method could be adjusted for GED through hypothesis testing (Ozyurt and
Pike, 2004) of the parameter estimate means generated by the benchmark and challenger problems in the lv estimation
algorithm. Accordingly, a test statistic could be used to determine whether measurement removal in the probing
procedure generates shifting means, thus identifying gross errors. The Iv-PE, as proposed herein, has two major
advantages over the regular PE applied to RTO: firstly, the most information-rich subset of measurements is chosen
to reduce parameter variability; secondly, the parameter filter avoids RTO periods with poorly estimated parameters.
As shown in the previous section, this will result in lower set point error and, in turn, better process economics.
Importantly, the information content procedure only requires sampling and can be performed offline as its solutions
are not implemented in the system being operated. The only time at which the proposed scheme interacts with the
process control loop is when the RTO set points are updated. Otherwise, only an additional independent
computer/processor is necessary for repeated execution of the PE problems, which do not interfere with the regular
process control loop; this makes the requirements for implementation relatively simple, hence its appeal of industrial
systems. The information content procedure may be adjusted through sample sizes such that it can fully occurs within
the RTO period; the assessment of this computational expense to the PE computer will be elaborated on in the

following section.

5.2.3. Scheme Assessment and Economic Analysis

The proposed scheme is mainly analyzed through variation, the process economics, and constraint violations; these
are the factors that affect the PE, NMPC, and RTO problems, which the scheme aims to improve upon. The variation
is captured through the standard deviation of parameters, the economics are calculated using the process
revenues/losses and their rates, and the constraint violations can be quantified through their cumulative magnitude.

As shown in Section 5.2.1, the ISE of the operation of an RTO system is linearly dependent on the operating time;
thus, the cumulative error can be written as a linear combination of the error terms of each individual RTO period.
The same follows for the process economics R($), where a revenue is made if R > 0 or a loss is incurred if R < 0.

This occurs as the operation is a combination of constant rates P($/time). P > 0 is a profit rate and occurs when the
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operator is selling produced commodities; in contrast P < 0 is a price rate and occurs when a process is operating at
a loss.

As stated previously, the RTO period consists of three phases (Tgro = tsup + tayn + tope)- These correspond to
suboptimal operation before the set points are updated tg,; (time), a fast (i.e., negligible) dynamic operation, and
RTO-optimal operation once the set points are updated t,,, (time). The respective suboptimal, dynamic, and optimal
process profit/cost rates are Pgyp, i, Payn i» and Py, ; ($/time) are dependent on the specific RTO period i. This enables

calculation of the cumulative process economics (i.e., as the process progresses), i.c.,

N
TrTO
R=Y f P, dt (5-24)
i=0 "0
Again, this can be segmented into three phases: suboptimal, dynamic, and optimal, i.e.:
N tsub tsubttdyn tsubttdynttopt
R=) f Poyp dt + f Payni dt + f Popes dt (5-25)
i=0 "0 tsub tsubttdyn
As the RTO operation is inherently steady state, the dynamics are assumed to ensure quickly, thus simplifying to:
N tsub tsubttopt
R= Z f Pos; dt + f Pope dt (5-26)
i=0 "0 tsub

Both suboptimal and optimal phases are composed of constant profit/loss rates whereby the time that is not spent

operating optimally during the RTO period is spent operating suboptimally instead, this can be expressed as:

N
R = Z tsubpsub,i + toptPopt,i (5-27)

=0
Substituting back the expression t,,; = Trro — tsup, Whereby the time that is not spent operating optimally during
the RTO period is spent operating suboptimally instead, both terms can be expressed in terms of the total RTO period
length and the suboptimal time:

N
R =" tuunPouni + Taro = o) Popts (5-28)

i=0
For a single RTO period, equation (5-28) could be used to build forecasting tools such as payback periods as
exemplified in the Appendix B (payback period). If the system were not to act promptly (i.e., be delayed beyond the
regular suboptimal time), the time operating suboptimally would be protracted, thus causing diminished economic
performance. For instance, suppose the delay incurred at a given RTO period is 7, this causes further suboptimal

operating time expressed as:

N
R= Z Psub,i(tsub,i + Ti) + Popt,i (TRTO - tsub,i - Ti) (5'29)

=0
This situation is best avoided as the Trro — tgyp j — 7; term diminishes the potential benefit of an RTO scheme over
time. This is especially important in the Iv-PE/RTO system as offline computations must be performed before set
point updates. As a result, the computational burden, which is associated with the information content procedure must

also be considered in order to avoid the delay.
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The size of M (i.e., the number of samples used for averaging in problems (5-7) and (5-19)) will determine whether
delay occurs in the proposed 1v-PE/RTO scheme through the information content procedure occurring in the PE
computer. If M is small, the estimation formulation (5-7) will not benefit from the smoothing of noise of a large sample
size, thus resulting in high variance estimate. In contrast, a large M may capture slow dynamics such as drift or, as
noted above, computational delays in the execution of the RTO problem (5-5). Drift would result in high-error
estimates as the data collected would not be dynamic, thus the steady-state estimation problem would aim to fit
parameters to dynamic data using a steady-state model. Computational delays would result in performance
deterioration that could become significant if they delay persists over time as shown in equation (5-29).

The time required to perform k = j + n, — n, sets of challenger problems (as shown in Figure 5-3) each requiring
M samples, depends on the length of the sampling time (At) with respect to the CPU time of each challenger problem

(Atchauienger)- Whichever time is greater limits the speed of the information content procedure, i.e.,

. B {kMAt if At > Atepauenger (5-30)
comp kMAtchallenger if Atchallenyer > At

In the case studies considered in this work, M was sized based on equation (5-30) such that the delayed revenue case
in represented by equation (5-29) would be avoided. To do so, it is assumed that ¢y, = AT such that the maximum
allowable computational time (assuming no parallelization, which can also be considered through an integer multiple
of equation (5-30)) was equal to the RTO period, as to avoid any delay. Moreover, k :=n,, was assumed such that
all available measurements are assumed to be probed via challenger problems. The time-limiting conditions can be
verified through preliminary PE executions, and it was found that At > At p g ienger for both case studies herein (i.e.,
the sampling period is longer than the computational time to execute a PE problem). Accordingly, the M for each case
study was determined by rearranging equation (5-30) and substituting the aforementioned definitions (:=) as follows:

_ AT
- Atn,,

(5-31)

such that RTO delays are avoided.
Furthermore, the proposed scheme also helps to avoiding constraint violations. To quantify this effect, the sum of
absolute constraint violations is considered, i.c.,
Ty
SAV = Zlgpzant,t - 4| (5-32)

t=0
where Ty (time) is the total time for which the system is operated while g,qn¢ and g are the actual (measured) and
bound values for the constraints being violated, respectively. The absolute sum is used as it gives a good physical
sense of the amount by which the constraint is being exceeded cumulatively over time. SAV is preferred to an
alternative metric like sum of squares, which also quantifies the violation but does not correspond to an actual plant

quantity because of the squaring.
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53 Case Studies

The proposed scheme was tested for updating the RTO and NMPC parameters as depicted in Figure 5-1b with
matching optimization and control models (however, they need only be passed to one of these layers to influence the
process operation). Two simulated case studies are performed: a forced circulation evaporator (Lee et al., 1989) case
exemplifies the benefit of avoiding constraint violations and the Williams-Otto CSTR (Williams and Otto, 1960)
shows the economic benefit of the Iv-PE/RTO scheme. Each case study is tested under different parameter realizations
(i.e., where the plant manifests distinct parameter values/combinations) whereby both regular PE and 1v-PE schemes
must repeatedly estimate the parameters to feed to the RTO and NMPC. The initial conditions (i.e., at T = 0,t = 0)
for all scenarios within each case study correspond to the optimal operating point given by the nominal parameter(s).
Note that this is only the starting point, and each scheme then proceeds to pursue the true optimum corresponding to
the actual parameters for a given scenario. A consistent starting point for both PE/RTO schemes (i.e., the regular and
low-variance) and across all scenarios ensures comparability in the dynamic domain such that no scheme/scenario
starts at a more advantageous point. As a result, the plant is assumed to have arrived at a new operating point in both
case studies, thus progressing through the restart/terminate block in Figure 5-3 and triggering the measurement-
probing block. Both case studies assume full state accessibility as to not confound the performance of the proposed
method with the performance of a potential state estimator. Nevertheless, many industrial systems require state
estimation for unmeasured states; these estimators (e.g., Kalman filter, extended Kalman filter, and moving horizon
estimation) also use noisy process measurements. As the proposed method targets measurement noise, it can be
adapted to be compatible with the state estimators and improve the quality of estimates (provided that the system is
both identifiable and observable).

In both case studies, the time intervals (i.e., sampling times) are chosen based on literature values (Amrit et al., 2013).
Moreover, the RTO intervals were chosen to be significantly longer than the transient times as to satisfy assumption
1 (Section 5.2). The noise levels are set to be sufficiently high to cause large errors in PE, the minimum number of
measurements were based on preliminary tuning experiments, and the sample size M was for each case was determined
using equation (5-31). The proposed scheme will be denoted as “RTO (Iv-PE)” while the regular RTO will be denoted
as simply “RTO”.

The scheme is deployed for various combinations of uncertain parameter(s) as different scenarios within in each case
study; the goal of the RTO is to repeatedly estimate the uncertain parameters and operate the system as close to the
true optimum as possible. During this time, disturbances were assumed to be measurable and steady as to be able to
assess the scheme in the neighbourhood of the optimal operating point and not in large transients; since RTO is a
steady state scheme, significant dynamics could confound the analysis. As such, any dynamics observed are owed to
set point fluctuations and control actions incited by changing parameter estimates in the RTO and NMPC layers,
respectively.

The schemes were assessed on three factors: parameter variability, process cost, and constraint violation (in cases
where this occurs). Metrics to quantify these factors are computed a posteriori to each simulated case study for both
RTO-operated systems with the standard PE and the lv-PE. Firstly, the variability is captured through the standard

deviation of parameter estimates computed using formulations (5-7) and (5-19). The standard deviation of parameter
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estimates is central to the proposed approach as it is the main factor effected by the IC procedure in Section 5.2.2,
which reduces variability using equation (5-21). As the system is repeatedly estimating parameters for each realization,
the variability measures how much these parameters vary by PE execution such that low variability is desired.
Secondly, the process economics, which the reduced parameter variability improves upon, are computed through the
cumulative process revenue/cost in equation (5-28) divided by the total operating time of a given scenario. As the
system should operate primarily at steady state, this mean process cost should approximate the RTO-optimal steady
state cost achieved for each case/scenario. Furthermore, constraint violations can occur as previously mentioned; the
cumulative violation is computed using equation (5-32). As these violations are undesirable, the constraint violation
metric used herein is ideally minimized by estimating parameters that yield non-violating set points in the RTO layer.
Both case studies were simulated and optimized in the Pyomo environment, which is a modelling package for
PYTHON (Hart et al., 2011). Both dynamic simulations were discretized in the time domain using four-point Radau
collocations on finite elements per sampling interval. The optimization problems were solved using the MA27 IPOPT

solver from the HSL library on an Intel core 17-4770 CPU @ 3.4 GHz.

5.3.1. Forced Circulation Evaporator

Fy, T3 F200
T500 (cooling water)
condenser
> F5
separator
(steam) Fig9, T100 —@—v
B, evaporator
condensate +——
F; ( )‘— 7
(feed) Fll Tll Xl z
=@ »T,, X, (product)

Figure 5-4: Forced-circulation evaporator process. Blue denotes controlled variables, green denotes manipulated variables, and
red denotes additional measurements (i.e., aside from the controlled variables) as implemented in the present study.

The forced circulation evaporator (Figure 5-4) is a common unit in chemical plants; the mechanistic process model,
along with its use in simulation studies, was first introduced by Lee et al. (1989). The system is of particular interest
in the process control literature because of its nonlinearity and many potential control loops owed to the number of
possible manipulated/controlled variable pairings (Govatsmark and Skogestad, 2001). Moreover, the optimal

operating point of the system has been observed to occur at an active constraint, hence it provides a good setting in
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which to investigate the effect of parameter estimates under a potential RTO constraint violation. The evaporator

model consists of the following material balances:

dx
H—2=FX, - F,X, (5-33)

dt

dP.
o =B (5-34)
F,=F, —F, (5-35)

where F,, F,, F,, and F5 (kg/min) are the stream mass flowrates outlined in Figure 5-4; X, and X, (%) are the feed
and product compositions of the product chemical, respectively, and P, (kPa) is the evaporator pressure. Note that the
third material balance (33-3) implies a constant mass holdup in the evaporator, which is reflected in the constant

holdup term H(kg). The energy balance over the entire process is modelled as follows:

T, = 0.5616P, + 0.3126X, + 48.43 (5-36)

T, = 0.507P, + 55 (5-37)

_ Q100 — F1Cp(T2 -T)

F, p

(5-38)

where T;, T, and T5 (°C) are the stream temperatures as outlined in Figure 5-4 whereas Qo (kW) is the steam jacket

heat duty. The steam jacket energy balance is modelled as follows:

Ty00 = 0.1538P, 0 + 90 (5-39)
Q100 = UA; (Tyo0 — T) (5-40)
UA, = 0.16(F, + F3) (5-41)
Fio0 = Qoo (5-42)

S

where T;00(°C) , Pigo(kPa), and F,(kg/min) are the saturated steam temperature, pressure, and mass flowrate,
respectively. UA; (kW /°C) is the heat jacket heat transfer coefficient. The condenser is modelled as follows:
_ UA, (T3 — Tap0)
200 = N U4, (5-43)
2C, Fy9

_ Q200
K

Fs (5-44)

where T,40(°C) , Q00 (kW) , and F,,(kg/min) are the cooling water temperature, cooling duty, and mass flowrate,

respectively. In this case, the manipulated variables are the steam pressure, cooling water flowrate, and recirculation
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flowrate (i.e., u = [Pioo Fa00 F3]7); the controlled variables are the product composition, temperature, and
evaporator pressure (i.e., ¥y = [X; P, T,]7); the uncertain parameter is the condenser heat transfer coefficient (i.e.,
0 = [UA,]"). The initial measurements are the controlled variables, as well as the separator outlet temperature (i.e.,

zo=[X, P, T, Ts]7). The process losses are to be minimized according to the following objective function:
@ = F,(F; + F3) + PiFio0 + By Faoo (5-45)

where P,, P, and P, are the electricity, steam, and cooling water prices, respectively, in Table B-1 (Appendix B).

The RTO and NMPC problems (5-5) and (5-6) are subject to the following constraints on the controlled variables:

25 < X,(%) < 100 (5-46)

40 < P,(kPa) < 80 (5-47)

Moreover, the RTO and NMPC problems are also subject to constraints on the manipulated variables:

10 < Pygo(kPa) < 400 (5-48)
10 < F,q9(kg/min) < 400 (5-49)
1 < F3(kg/min) < 100 (5-50)

Lastly, following constraints are imposed on the estimated parameters in problems (5-7) and (5-19):
0.1 < UA, (kW /°C) <20 (5-51)

Table B-1 (Appendix B) presents the model parameters and nominal values used in this study.

The proposed scheme was implemented for this case study using the process model, controlled variables, manipulated
variables, constraints, and uncertain parameters described in this section. The system is operated for 833 h with an
RTO period of AT = 16 hours and a sampling interval of At = 4 minutes. n,,,;, = 1 was chosen based on prior
identifiability analysis and the process and measurement noises (w, v; owed to mismatch and instrumentation error,
respectively) are additive and zero-mean with 0.1% of the nominal state values as variance N (0, (0.001x,,0,,)%). The
NMPC controller tuning for formulation (5-6) is Q = diag(1,1,1), R = diag(0.09,15,20) and P = C = 200At;
these are based on preliminary manual tuning to balance tracking speed and stability. Table 5-1 presents the
formulations to the corresponding optimization problems (5-5), (5-6), and (5-7) associated with this case study.

Table 5-1: PE, RTO, and NMPC formulations for evaporator case study. *S.S. indicates that a steady-state version of the model
is used in the corresponding layer.

PE RTO NMPC
Objective 200 , 200 ,
a = 2 — 3
function ”Z_Z”K_1 Eq (6_45) Z”ysp yt+i||Q +Z”Aut+]”R
i=1 j=1
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Decision
variables 0 =[UA,]T y=[X, P, T,]F U1 = [Proog+1 Faoors1 Fapen]T
Model Egs. (5-3r3n)o—ézl-44). SS. | Egs. (5-31311)0—521-44). S5 | Bgs. (5-33)(5-44). Dynamic model
Constraints Egq. (5-51) Egs. (5-46)—(5-50) Egs. (5-46)—(5-50)
I Z=la B T LI 6 = [UA,I" Tt
nputs u_= [Pl(lo 5200 _F3]T d=[F, T, X Ysp = [X2sp Pasp Tasp]”
d=[F, T, X]" dy=[Fie Ty Xiel”

The CPU time of each challenger problem is ~0.03 seconds, which is significantly less than the sampling time.
Accordingly, the sampling time dictates the computational burden of the information content procedure as per equation
(5-30) and the RTO sample size is set to M = 60 as per equation (5-31). All scenarios tested required k = 4 sets of
challenger problems as shown in Table 5-2, which corresponds to an actual computational burden of ~3.3 hours (to

perform all challenger problems), which is well within the RTO period of 16 hours, thus enough data can be collected

within the RTO period to perform the information content procedure with no delay.

The uncertain parameter is assumed to materialize in the interval [(1 — @)6,,5,, (1 + @)0,0, ], Wwhere a = 0.1, for
simplicity. The nominal parameter value (corresponding to the initial operating point) can be found in Table B-1
(Appendix B). In each scenario, the true plant parameter manifests at a value from the five uniformly spaced points
shown in the first row of Table 5-2. It should be noted that the scheme can be used to estimate any realization of the

“true” parameter value; however, the five scenarios in Table 5-2 were chosen such that they would be representative

of the entire uncertain parameter domain while limiting the number of scenarios required for testing.

Table 5-2: Results for parameter scenarios in the evaporator case study under low-variance and regular RTO implementations.

Scenario 1 | Scenario 2 | Scenario3 | Scenario4 | Scenario 5
(S1) (S2) (S3) (S4) (S5)
UA, (kW /K) 0.96,,m 0.956,,om Brom 1.056,,0m 1.16,,m
091y (K) 0.67 0.61 0.03 0.28 0.65
o, (K) 1.85 1.17 0.82 0.82 2.45
Prro (w-pry ($/5) 272.77 343.11 270.71 270.39 370.00
Prro ($/5) 245.20 272.18 303.32 261.73 255.52
SAVrro aw-pey (%) | 215151 21310.10 3878.97 5407.98 4023.45
SAVpro (%) 229805.00 | 186815.60 | 160069.42 | 146878.65 | 179640.75
k 4 4 4 4 4

Figure 5-5a displays the process losses for several of the scenarios listed in Table 5-2. It should be observed that the

losses and average price rate (P) in all scenarios (except S3) are lower (i.e., favourable) for the regular RTO
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implementation than the lv-PE/RTO. This occurs despite the lower variation in the parameter estimates (o) for all
scenarios achieved by the Iv-PE/RTO as summarized in Table 5-2. Figure 5-5b elucidates that the regular RTO is
achieving this decreased cost through violation of the composition constraint in equation (5-46); this is also reflected
in substantially lower SAV when the Iv-PE/RTO is implemented. The SAV, as defined in equation (5-32), ranges from
one to two orders of magnitude lower when using the 1v-PE/RTO than those achieved when using the regular RTO;
this results in significant less product being off-specification. The constraint violation occurs as the RTO and NMPC
models, which have the estimated parameters, are mismatched from the plant, which has the “true” parameters. Thus,
the set points for the RTO and control actions for the NMPC, which appear constraint-abiding in their corresponding
optimization problems, are not so when implemented in the plant. As a result, the better (i.e., lower) price rates of the
regular RTO are misleading as the product being produced in the constraint-violating periods will not meet the required
specifications. In reality, off-specification product such as that produced in the regular RTO implementation would
have to be reprocessed, thereby increasing the processing costs. As the re-processing cost is not considered herein, the
regular RTO misleadingly appears to be economically superior in all scenarios (except for S3, where the true parameter
was set to their nominal value). In contrast, Figure 5-5b also shows that the Iv-PE/RTO generally operates the plant
directly at the constraint and does not vary the set point for X, as it does with the set points for T, and P, as shown in
Figure 5-5c and Figure 5-5d, respectively. As such, most constraint violation that occurred using the Iv-PE/RTO was

likely owed to noisy plant fluctuations and not to the proposed parameter estimation scheme.
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Figure 5-5: Economics and controlled variables for the evaporator case study. a) losses ($), b) product composition, c) product
temperature, d) evaporator pressure.

This variation caused by the parameter on the RTO operation is seen most prominently on Figure 5-5¢ and Figure

5-5d whereby the product temperature and evaporator pressure controlled variables vary when using the regular RTO
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compared to a significantly more consistent operation produced by the lv-PE/RTO. This variation has a significant
impact on the process cost as observed in the sub-window of Figure 5-5a, where the optimal cost for the Iv-PE RTO
implementation does not actually vary significantly with respect to the true parameter realizations while the cost of
the PE/RTO does despite only a single parameter being assumed to be uncertain in this process. Aside from the
constraint violation observed for this case study, the increased variability of the regular RTO also leads to a more

active control layer, which is undesirable from an operation and maintenance perspective.

5.3.2. Williams-Otto CSTR

Fy Fg

—> Fr, X4, Xp, Xc, Xp, Xg, X¢

Figure 5-6: Williams-Otto CSTR. Blue denotes controlled variables and green denotes manipulated variables as implemented in
the present study.

The continuous stirred-tank reactor (CSTR) first described by Williams and Otto (1960) is another common system
used for real-time optimization and control studies (e.g., Amrit et al., 2013; Matias and Le Roux, 2018; Miletic and
Marlin, 1998). This system has been used as a benchmark example for many economic optimization methods as it
provides a relatively small but nonlinear setting that can be used to highlight potential economic improvements. The
process is depicted in Figure 5-6 and consists of two pure inlet streams of substrates A and B with mass flowrates F,
and Fy (kg/s), respectively. While the former flowrate is a disturbance variable, the latter serves as a manipulated
variable. Three reactions occur in the system as shown in equations (5-52)—(5-54) whereby D and E are the desired

products while C and G are intermediate and undesirable biproducts, respectively:

k

A+ B> C: ky = Aje E1/TR (5-52)
k

B+C3D+E: ky=AyeF2/Tr (5-53)
k

C+D3G: ky = Aze B3/TR (5-54)

where k4, k,, and k5 (s™1) are the reaction rate constants as expressed by the rate laws with pre-exponential factors

(Aq, Ay, A3(s™1)) and activation energies (E;, E,, E3(K)). The activation energies in this case study are in units of
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temperature as converted using ideal gas constant. These rate laws depend on the tank temperature T (K). The process

dynamic and steady state behaviour are modelled using the equations:

dx
W—2=F —FX,— 7, (5-55)
dt
dx
W=L=F, —FXy—1, —1, (5-56)
dt
dx
Wd—tc = —FoXo +2r, —2r,— 14 (5-57)
dx
Wd—tD = —FgXp +1, — 0573 (5-58)
dx
W—L = —FX; +1, (5-59)
dt
dx
Wd_tG = —FyX; + 1.57 (5-60)

where X, Xg, X¢, Xp, Xg, and X; (kg/kg) are the respective component mass fractions. W (kg) is the mass holdup

in the tank, which is assumed to be constant such that the tank material is always at steady state, i.e.,
Fy=F,+Fy (5-61)

where the tank outlet flowrate is Fi (kg/s). The reactions proceed according to the substrate concentrations as follows:

=k X, XgW (5-62)
1, = kyXgX W (5-63)
1y = kaXo XpW (5-64)

where 1y, 15, and r3(s™1) are the reaction rates. The manipulated variables for this process are the inlet flowrate of B
and tank temperature (i.e., w = [Fz Tr]"). The controlled variables, states, and initial measurements are the
component mass fractions (i.e.,zo=y=x=[Xs4 Xz X¢ Xp X¢ X;]7). The model uncertain parameters
considered in this case study are the activation energies (i.c., @ = [E; E, E3]7). The process revenue is to be

maximized in this case according to the following objective function:
@ = PyFpX, + PgFrXp — PyFy — PgFy — P Ty (5-65)

where Py, Pg, Py, and Py are the prices of the products and substrates in Table B-2 (Appendix B).
The RTO and NMPC problems (5-5) and (5-6) are subject to constraints on the controlled variables:

0 < y;(kg/kg) <1 Vi€(l,..,n} (5-66)
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Moreover, the RTO and NMPC problems are also subject to constraints on the manipulated variables:

2 < Fgz(kg/s) <10 (5-67)

323.15 < TR(K) < 423.15 (5-68)
Lastly, following constraints are imposed on the estimated parameters in problems (5-7) and (5-19):

0.1 < E, E, E;(K) < 50,000 (5-69)

Table B-2 (Appendix B) contains the model parameters and nominal values as used in this study.

The proposed scheme was implemented for the present case study with the model, controlled variables, manipulated
variables, constraints and uncertainty parameters described above. The system is operated for 500 h with an RTO
period of AT = 6.5 h and a sampling interval of At = 3 min. n,,,;, = 3 was determined based on preliminary
identifiability analysis and the process and measurement noises (w, v) are additive and zero-mean with 10% of the
nominal state values as variance NV'(0, (0.1x,,0,,)%). The NMPC controller tuning for formulation (5-6) is Q =
diag(1,1,1,2,1,2), R = diag(3,0.03), and P = C = 10At, based on preliminary manual controller tuning. Table
5-3 presents the formulations to the corresponding optimization problems (5-5), (5-6), and (5-7) associated with this
case study.

Table 5-3: PE, RTO, and NMPC formulations for evaporator case study. *S.S. indicates that a steady-state version of the model
is used in the corresponding layer. S = {A,B,C,D, E, G} is the set of all species.

PE RTO NMPC
Objective 10 } 10 ]
function Iz - ZHK‘12 Eq. (6-65) Z”yw - J’t+i”Q + Z”Autﬂ'”R
i=1 j=1
Decision
variables 0=[E E B y=[Xivies]" Upyq = [Feerr Tresa]”
Egs. (5-52)—(5-64).S.S. | Egs. (5-52)—(5-64). .
Model Egs. (5-52)~(5-64). D I
model S.S. model gs. (5-52)—(5-64). Dynamic mode
Constraints Eq. (5-69) Egs. (5-66)—(5-68) Egs. (5-66)—(5-68)
- =[E, E, E;3]IT ,
Inputs u=[F T;I" ° [dl— [FZ]T . Ysp = [XispVi €S]T
d=[F,]" 4 d, = [Fac]"

In the present case study, each challenger RTO problem required ~0.02 s to perform and, as with the previous case
study, this implies that At > Atgypmmy - Thus, M = 20 according to equation (5-31) to avoid delays. As stated in Table
5-4, all scenarios required either k =5 or k = 6 sets of challenger problems to be performed, leading to a total
computational time of 5 and 6 hours (to perform all challenger problems), respectively. This is within the RTO period
time; thus, enough data can be collected, and the challenger problems can be performed with no computational delay

to the RTO as determined with equation (5-31).
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Each uncertain parameter is assumed to materialize only at a low (1), nominal (), and high (h) value in the interval
[(1—a)B,om (1 + @)Opm], where @ = 0.1 and the nominal parameters listed in Table B-2 (Appendix B). To the
authors’ knowledge, this represents the largest parameter uncertainty region to have been considered for the Williams-
Otto plant. Hence, a total of 3% possible uncertainty scenarios were possible from which the 9 scenarios Table 5-4
were randomly selected as a representative sample. As with the previous case study, the discretization of the
uncertainty was done for simplicity and the proposed scheme can be used to estimate any parameter combination
within the aforementioned interval (i.e., it is not limited to any particular set of parameter realizations).

Table 5-4: Results for parameter combination scenarios in the Williams-Otto case study under low-variance and regular RTO
implementations.

S1 S2 S3 S4 S5 S6 S7 S8 S9

E; h h n h h l h n n

E, n l n h h l l l n

E; h l h n h l n h l
Og.1» (K) 99 106 51 59 66 71 201 250 128
og, (K) 3325 | 3734 | 1964 | 3678 | 3513 | 4693 | 4973 | 5198 | 4978

Prroqwrry (8/5) | 299 | —483 | 517 | —639 | —2.40 | —-1.69 | 121 | 7.90 | —6.33

Paro ($/5) 244 | —501| 500 | —7.19 | —2.77 | —3.18 | 1.01 | 7.29 | —7.51

%improvements | 18.39 3.73 3.29 12.52 | 1542 | 88.16 | 16.53 7.72 18.64

k 6 6 6 5 6 6 6 6 5

Figure 5-7 displays the process revenue/losses for several non-overlapping scenarios from Table 5-4 calculated using
equation (5-28). As can be observed, the parameter combination affects whether the process will operate at a revenue
or loss; the Williams-Otto plant is only profitable in some cases. Nevertheless, the Iv-PE/RTO always results in a
more economical operation. This is reflected in the average profit rates (P) for both schemes as shown in Table 5-4
whereby the Iv-PE/RTO has lower average rates in all scenarios as quantified in the %improvement. These improved
economics are a result of the decreased variation in the parameter estimates over the 80 RTO periods analyzed, which
are observed to generally have decreased by one or two orders of magnitude as per the o values in Table 5-4.
Depending on the parameter combination, the Iv-PE/RTO can lead to modest (e.g., 3.28% for S3) or significant (e.g.,

88.16% for S6) improvements on revenue/loss with respected to the regular RTO.
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Figure 5-7:Revenue/loss ($) for several of the scenarios in the Williams-Otto case study.

The effect of variance manifests most directly on the manipulated variables, as shown for S8 and S9 in Figure 5-8 and
Figure 5-9, respectively. Figure 5-8 exemplifies the effect that measurement noise has on the NMPC and RTO via the
parameter updates in an operating scenario without active constraints. As displayed therein, both manipulated
variables have brief spikes that correspond to the cases when parameters and set points are changed through execution
of the PE and RTO. This is primarily due to the sudden change in controller parameters, which momentarily sends the
system on a transient, but also corresponds to small set point corrections. These spikes were observed to be
significantly smaller for the Iv-PE/RTO than the regular RTO; the resulting transients, which are shorter when the Iv-
PE/RTO is employed, ensure that the system operates near its optimum for a longer period, thus improving economic
performance. The Iv-PE/RTO can be observed to result in a far more consistent performance, thus damping the effect
of the noisy measurements on the scheme. Figure 5-9 is an atypical scenario where the optimal operating policy occurs
at the lower bounds of the manipulated variables in equations (5-67) and (5-68); however, this further elucidates how
the Iv-PE/RTO can maintain the system at its bound with smaller and less frequent deviations. Another consequence
observed therein is the effect of the filter-step of the Iv-PE/RTO to avoid periods where the system is operating at non-
optimal points. This is also observed between T = 30 and T = 40 in Figure 5-9 whereby both manipulated variables
are not operating at their bounds (i.e., the economic optimum); meaning that the regular RTO was passed an

significantly suboptimal set of set points and parameters, which did not reflect the current operating conditions.
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Figure 5-8: Manipulated variables for S8 of the Williams-Otto case study under the Iv-PE/RTO and the regular RTO
implementations. (a) reactor temperature, (b) inlet flowrate of substrate “B”.
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Figure 5-9: Manipulated variables for S9 of the Williams-Otto case study under the Iv-PE/RTO and the regular RTO
implementations. (a) reactor temperature, (b) inlet flowrate of substrate “B”.

Figure 5-10 provides contours of the process profit rates (i.e., $/time) for S8 and S9. These were constructed using
the true plant parameters such that they are the “true” profit rate contours. Since these are the “true” contours that
correspond to the true parameters in S8 and S9, the performance of the PE scheme can be assessed by how closely
they approach the top elevations therein. If the steady-state combinations of manipulated variables are treated as a
sampled quantity, the confidence ellipsoids for these manipulated variables in both regular RTO and Iv-PE/RTO can
be constructed. By superimposing these ellipsoids on the contours, the precision and accuracy of the PE schemes is
visualized through the size and closeness to the true optimum, respectively. Figure 5-10 shows these ellipses being
centered in the contour region with the most economical profit rates as per the black-shaded elevations, this confirms
that the RTO is indeed operating generally near the optimum. However, in both scenarios, the confidence ellipse for
the Iv-PE/RTO can be observed to be inside the confidence ellipse for the regular RTO; this confirms that the variance
in the steady-state manipulated variables has decreased, and in some cases by a significant amount (e.g., S9). The
statistical interpretation follows that if many different samples were taken to replicate the construction of the ellipses,

then 95% of the constructed ellipses would contain the mean; as such small ellipses imply lower variation in the
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sampled quantities — in this case, the manipulated variables. Accordingly, the improvement in process economics

occurs through this decrease in variation.
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Figure 5-10: Contour plots with the process profit rates (3/s) on the elevations and manipulated variables on the axes for the
Williams-Otto case. (a) S8, (b) S9. 95% confidence ellipsoids shown for the manipulated variables under the regular RTO (dashed
lines) and Iv-PE/RTO (solid lines).

54  Summary

Noisy measurements and model uncertainty are inevitable when operating chemical processes, which may lead to
poor RTO performance. As RTO attempts to address model uncertainty by adapting model parameters, noisiness can
propagate to these parameter estimates leading to poor process performance. An algorithm for reducing noise
propagation from the measurements to the parameter estimates is introduced herein; with an error bound step to ensure
high quality estimates are obtained. The scheme is motivated through an analysis of RTO economics as affected by
set point error owed to parameter inaccuracy. Moreover, the potential computational cost of the scheme is analyzed
to avoid any delays are incurred as a result. In two case studies, the estimated parameters are passed to both RTO and
NMPC layers as to impact operation significantly. The proposed scheme was found to improve process economics

with set points closer to the true plant optima and improved constraint adherence.
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6. Parameter Estimation and Robust Optimization of a CO; Capture System

Based on the literature review in Section 2.3, uncertainty in the real-time optimization of PCC plants has not been
explicitly addressed. To the authors’ knowledge, noisiness also remains an open issue as it pertains to PCC estimation
schemes and no method has been tested to abate its effects in COz capture systems; hence, the effect of parameter
fidelity on model-based control and optimization performance for PCC has not been reported. In addition, parameter
and economic robustness have not been jointly addressed in the online optimization of PCC. In particular, the previous
work in Chapter 4, which is the most comprehensive RTO implementation in PCC to date, did not consider any type
of uncertainty and a very limited set of disturbances. Accordingly, a detailed exploration of the optima across possible
disturbances ranges, the addition of novel parameter estimation, and robust optimization layers, will provide new
insights on the remaining computational challenges (i.e., uncertainty and noise) that could inhibit the deployment of
online economic optimization in PCC plants. The specific objectives considered in the present study are as follows:

1. A high-fidelity framework is proposed for the estimation of uncertainties in high noise environments without
requiring data reconciliation. Uncertainty in the thermodynamic parameters and flue gas compositions for
post-combustion carbon capture is estimated in the context of RTO.

2. The proposed estimation scheme is compared to standard PE and DR via their respective impacts on PCC
performance. These analyses are performed on a long (i.e., month) timescale to assess the impact of real-time
decisions on long-term PCC operation.

3. A sensitivity analysis is performed for the optimal cost and rate of carbon capture. The effect of disturbances
and economic incentives are quantified for the optimal operation of PCC.

4. A new robust RTO scheme is presented along with an update strategy for PCC set points under diurnal
operation. The proposed estimation scheme is also used for uncertainty quantification to yield robust
solutions. This new robust RTO scheme explicitly and simultaneously considers uncertainty in the economic
parameters and in the operational parameters of the CO:z capture plant.

This work is structured as follows: Section 6.1 details the formulation for the PE scheme and the robust RTO
formulation; Section 6.2 briefly overviews PCC and introduces assessment metrics and constraints for the proposed
scheme; Section 6.3 exhibits the test scenarios on the proposed scheme; and Section 6.4 summarizes the insights

gained from this study and outlines future works.

6.1. Proposed Scheme and Formulations

RTO is a model-based optimization method that has been proposed in the literature (e.g., Darby et al., 2011) to achieve
the economically optimal steady-state operation of process systems. As the models used for RTO are subject to
uncertainty, the two-step RTO approach is deployed, which continually updates the model via estimation of
parameters. The estimation step, which uses available steady-state process measurements, can address parametric
uncertainties in the phenomenological model parameters and external disturbances. In addition to parametric
uncertainty, uncertainty also manifests through measurement noise. If the system is noisy, this can adversely impact
the fidelity of estimates acquired using the measurements; no practical method or assessment of this issue has been
proposed in the context of PCC. This section presents the general formulation for RTO under uncertainty, a noise-

abatement scheme to ensure estimates are indeed reliable, and a robust RTO to address price fluctuations.
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Figure 6-1: Potential RTO architectures. a) parameter uncertainty considered; previous PCC works omitted green block and no
uncertainty, b) parameter uncertainty considered using the method in Section 6.1.1, ¢) parameter and price uncertainties
considered using the method in Section 6.1.2. Novel layers considered in this study are shown in red.

RTO-operated systems work in the manner depicted in ca. The RTO computes controlled variable set points, which
are passed to the controller. The controller (which could be PID, MPC, NMPC, etc., omitted for brevity) acts by
receiving feedback from the plant in the form of state measurements and regulating the plant towards the RTO-defined
set point through the manipulated variables, making the scheme closed loop. On a longer timescale, known as the
RTO period AT, the parameter estimation (PE) problem is executed such that uncertain parameters are updated and
the RTO can re-compute the set points under changes in operating conditions.

Generally, RTO is used to optimize process economics such that the process operating conditions can be adjusted as
a response to varying disturbances. The formulation for RTO economic optimization with uncertain parameters can
be found in Section 5.1, equation (5-5). In the context of energy systems, the economic function @ could represent
emissions, energy consumption, or a comprehensive economic function. Moreover, measurable disturbances (d;) may
include changes in electricity demands, fuel grades, or regulatory constraints. The uncertain parameters (8;) can
include any experimentally determined phenomenological constants (e.g., kinetics, thermodynamics, and equilibrium)
or unmeasured disturbances (e.g., compositions) that are built into the model fg. While the uncertain parameters are
inherent to the process model, the unmeasured disturbances are external (i.e., a function of factors outside the plant).
For PCC, model parameters can include activity coefficients or reaction kinetic parameters, while unmeasured
disturbances can include inlet compositions. In process systems, the uncertain model parameters and unmeasured

disturbances can both be treated as uncertain parameters, thus necessitating an estimation scheme.

6.1.1. Low-variance PE Formulation (Iv-PE)

As mentioned above, uncertain parameters are treated as inputs to the RTO model. Rather than assuming these
parameters are fixed, they are updated at regular intervals in the two-step RTO implementation. Moreover, there are
many external factors that can be considered as unmeasured disturbances in energy and CO: capture systems, which
are highly dependent on human behaviour, environmental factors, and process inputs. For instance, energy demands
may vary diurnally as in Chapter 4, government production incentives may change as in Chapter 3, or process inputs
material grades and types may fluctuate (e.g., Hodzi¢ et al., 2016; Loeftler and Anderson, 2014). These unpredictable

changes may result in changes in flue gas composition, which may be difficult or inaccurate to measure. These
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unmeasured disturbances can also be treated as uncertain parameters. The uncertain parameters @ as defined in this
work, are time-invariant, i.e., they do not change as an explicit function of the sampling interval but can vary because
of the external factors, e.g., changes in the operating conditions. As such, they are updated every RTO period AT prior
to the set point update. Moreover, the uncertain parameters are bounded such that they are assumed to materialize
within a certain range determined a priori and constraints on their estimates can be considered in the PE problem to
provide a search space. The uncertain parameters herein are classified into two subsets 8 = [64  6,]7. 8, € R"¢a
are the uncertain parameters that come from external sources (e.g., unmeasured disturbance) while 8, € R™ are

parameters that are inherent to the process model (e.g., physical properties); accordingly, ng = ng, + Ng,,.

As mentioned previously, the estimated uncertain parameters (0) are passed to the RTO formulation in equation (5-
1) at time ¢ as depicted in Figure 6-1a and can also be passed to a controller with a matching model to the RTO. These
are updated at every RTO period AT such that the plant and model are consistently being reconciled. However, the
estimation scheme requires noisy measurements (z,) that will inherently include noise that may be propagated from
the measurements to the parameter estimates. If the RTO economics are sensitive to these estimated quantities,
substantial economic losses may occur. In a system such as PCC, this could manifest through increased energy
consumption, resource use, or emissions, which are costly and have prices that accrue over time. Accordingly, the low
variance estimation (Iv-PE) method proposed in Chapter 5 is deployed herein to abate the propagation of noise from
measurements to estimates. The lv-PE method uses formulation (5-19) to determine a measurement set that results in
the lowest errors in 8, a prior to the PE problem. Within the 1v-PE algorithm, many PE problems are executed offline
via a bootstrapping method. The standard deviations in estimates given multiple different measurement sets are
compared to determine which measurements result in the highest precision. Additionally, 1v-PE uses the statistics
acquired by the bootstrap to provide error bounds and filter the estimates 6, a posteriori to the online PE problem.
Interestingly, 1v-PE has yet to be applied to a large-scale system like PCC; thus, its benefit on this class of systems
with many inputs and slow dynamics is unknown. PCC, for which uncertainty has not been addressed in online
economic optimization, is well-suited to lv-PE as it has infrequent set point changes resulting in long periods at steady
state. The measurements acquired at steady state will enable the repeated data collection required for the bootstrapping
that Iv-PE entails; as such, high-fidelity parameter estimates can be computed to operate the system near its true
optima. Moreover, the mechanistic PCC has been shown to exhibit parameter sensitivity (e.g., Cerrillo-Briones and
Ricardez-Sandoval, 2019; Hughes at al., 2022). The exchange of information between the lIv-PE and PE layers are
shown in Figure 6-1b while the full algorithm can be found in Section 5.2.2.

6.1.2. Robust RTO (rRTO)

In addition to the uncertain parameters (6,), the RTO presented in equation (5-5) can also manifest uncertainty in the
economics. In this case, the economic function is denoted as @ (X, P,) where P, € RP are the economic uncertainties
at time t. When economic uncertainty occurs, the operator may want to find an operating point that works well for a
range of uncertain economic scenarios. For instance, when the economics (P;) and parameters (8;) are frequently
fluctuating, a single solution that works well regardless of the actual realization of uncertainties that happen in the

future may be advantageous (i.e., a robust solution that is also suitable for the short-term future); however, this robust
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solution may sacrifice performance if uncertainties remain fixed and an accurate parameter estimation scheme is
available. As mentioned in Section 2.3, previous studies have considered economic robustness in PCC; however, those
schemes make decisions in scheduling and planning timescales, not in real-time. In this economically robust paradigm,
one can also address uncertainty in the parameters by bypassing the PE problem and formulating a problem that is
robust to both parameter and economic uncertainties.

To achieve RTO robustness with uncertainty in both economics and model parameters (in contrast to uncertainty in
parameters only as in Section 6.1.1), the multi-scenario approach can be employed where various model realizations
are solved. This approach has been employed in PCC design (Cerrillo-Briones and Ricardez-Sandoval, 2019) and
control (Chapter 3), but never considered in an online real-time economic optimization context such as RTO. As such,

the multi-scenario approach is applied for robust RTO (rRTO) herein at time t as follows:

. n s
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where all variables and functions have the additional index j € {1, ..., n,.}. This index represents individual scenarios
being considered, which generates various instances of the process model; each instance j represents a realization of
the uncertain parameters. Accordingly, the last constraint in formulation (6-1) ensures the set point decision variables
for all realizations are equivalent. Through the set point equivalence, a single set point is found that is optimal for all
realizations; this is the set point that is provided to the control layer as shown in Figure 6-1c.

To choose which uncertainty combinations are featured in j, the uncertain parameters are assumed to manifest within
[Gi'rRTo, G?JRTO], which represents the lower and upper bounds of the parameter uncertainty region, respectively. As

with the uncertain parameters, the objective function @ has the dependence on Py, which can manifest within the

region [PL, P!]. Accordingly, n,., which corresponds to the index j, is the number of scenarios considered within these
regions upon discretization of the intervals. Note that the bounds of the regions are indexed in t such that they may
expand or contract across RTO periods to accommodate for changing levels of uncertainty. The scenarios encompass
the bounds of the uncertainty region; however, the choice of discretization for the uncertainty regions is a user-defined
choice that balances computational efficiency with robustness. As more scenarios are included, the model size grows
but represents a better approximation of the continuous uncertainty region between the bounds.

Owing to the parameter and economic uncertainty region discretization described above, the economics of the various
model realizations are minimized jointly in the rRTO objective function in equation (6-1). Each objective function
=1;

term is weighed by w, ;, which corresponds to the probability of a given realization occurring such that Z?;l Wy j

these must be established a priori based on the underlying statistical distribution that the uncertain parameters and
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economics obey. As with the uncertainty regions above, the weights are indexed in ¢ to reflect changing realization
probabilities.

While P! and P! must be established based on knowledge of the economic process incentives, the size of the parameter
uncertainty region (defined by 05’”0, 0?'”"0) are typically difficult to quantify and are based on process knowledge
rather than a systematic uncertainty quantification method. However, the 1v-PE method presented in Section 5.2.2
presents a bootstrap method that acquires data at every sampling period At to quantify the parameter uncertainty region

via the parameter standard deviations generated therein. As such, the parameter uncertainty region for the rRTO

problem is defined as [87"%"?, 07"%"°] = [@, — \/LMagt, 9, + \/LMGOJ where 8,, 0g,, and M are the sample mean,

standard deviation and size, respectively, as defined by the algorithm in Chapter 5. As the quantities acquired in the
Iv-PE procedure are indexed in time t to accommodate for changing levels of uncertainty across RTO periods, these
bounds also reflect changing uncertainty. Moreover, T allows for the use of confidence intervals to reflect the error
tolerance of the user and can be retrieved from a two-sided t-distribution; this gives statistical significance to the
robustness in formulation (6-1). The parameter uncertainty region [Bi’rRTO, 0;"”"0] differs from the PE optimization
bounds in Chapter 5 as it is acquired from the 1v-PE algorithm while PE bounds are defined based on process
knowledge.

By bypassing the PE step in problem (5-7) and only conveying parameter bounds to problem (6-1), the rRTO
formulation finds robust solutions that account for economics fluctuations and parameters uncertainties. Accordingly,
the rRTO formulation (6-1) can be deployed instead of the hierarchical approach that uses formulations (5-5) and (5-

7). This exchange of information is shown in Figure 6-1c.
6.2. Scheme Implementation and Assessment

A pertinent application of the methods outlined in previous sections is PCC; a technology whose global industrial
adoption is currently limited by its unfavourable process economics. Figure 6-2 shows the PCC plant and the

uncertainties therein.
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Figure 6-2: PCC plant layout. Blue denotes controlled variables, green denotes manipulated variables, red denotes disturbances,
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purple denotes uncertainties.

The two-layer RTO and rRTO schemes outlined in Sections 6.1.1 and 6.1.2, respectively, are deployed on the PCC
plant. Figure 6-1a shows the scheme deployed in Chapter 4; as shown therein, the previous RTO implementation for
PCC assumes measurable disturbances and does not account for uncertainty, which are restrictive assumptions that
could lead to significantly suboptimal operation. As summarized in the literature review, previous works did not
consider the two-layer architecture shown in Figure 6-1a as the green parameter estimation layer was omitted.
Consequently, no previous work considered a noise-abatement scheme (e.g., Figure 6-1b) as outlined in the
introduction. In contrast, the two schemes proposed in Figure 6-1b and Figure 6-1c lift these assumptions to explicitly
account for noise , model, and economic robustness to the operation of the PCC plant..

Information regarding the manipulated and controlled variables, with their corresponding nominal values, can be
found in Section 4.2.3. As noted earlier, uncertain parameters can be segmented into physical properties and
unmeasured disturbances, which will be assessed individually through their respective estimates on the RTO scheme.
In the PCC plant, both the flue gas flowrate and CO: content entering the absorber are typical disturbances. Both
disturbances are typically measurable in power plants (e.g., via a flowmeter and a katharometer, respectively).
Although the accuracy of the katharometer is generally adequate for monitoring of emissions (e.g., £0.5 mol% in
absolute terms; ABB, 2003), it may not be adequate for RTO where the optimum is sensitive to the carbon content of
the flue gas. Accordingly, an estimation scheme is proposed for the flue gas CO2 and H>O concentrations (i.e., 84 =

T
[ygé;‘e y}lege] ) while flue gas flowrate is assumed to be a measured disturbance (i.e., d = [F ]T). The estimated

unmeasured disturbances are treated as uncertain parameters (64) and provided to the RTO layers such that high-
fidelity composition estimates are generated and lead to high-fidelity set points. Only these two component fractions
are taken as disturbances as the nitrogen fraction is fixed since it is inert in the upstream combustion process, and the
MEA is assumed to be unevaporable. The nominal values for the measurable and unmeasured disturbances are d,, o, =
[4.012 mol/s]" and 04,4, = [0.175 mol/mol 0.025 mol/mol]”, respectively. Moreover, activity coefficients

are assumed to be the cause of the parametric uncertainties in the PCC model and, as such, are considered uncertain
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parameters (i.e., @, = [Ymea Yco, Yn,0]"). While these parameters are assumed to be constant in the process
model (i.e., time-invariant), their true values are not precisely known and are designed to capture non-idealities in
fluid behaviour, which may vary over time as the operation of PCC is highly nonlinear. Accordingly, it is important
to update the parameters on a regular basis as operating conditions change. The nominal values for the uncertain

parameters are 8, n,m = [0.381  0.677  0.974]").

The present analysis assumes that only 12 measurements are available for estimation, which are denoted as z =

[CZT Cf)T Tgo Ton Tio TLH]T. These include the liquid (C}) and gas (Cf;) compositions and temperatures at
the bottom and top of the absorber column. Only a single set of gas and liquid absorber concentration measurements
along the absorber height are used; thus, it is assumed that these are accessible at the column top and bottom outlets,
respectively. This is done as sampling of inlet and outlet streams is more practical than sampling along the column
height; moreover, good estimate quality was observed with these sampling locations in Chapter 4. The sample size
assumed to be M = 40 such that the estimation schemes can provide good estimates while not incurring any delays
in the execution of the RTO. This sample size was chosen based on preliminary simulations and ensures significant
measurement averaging occurs such that increasing beyond this size makes little difference. Conversely, significantly
smaller sample sizes may allow noise propagation as they do not benefit from averaging effects. In addition to these

measurements, the following bounds are also given to the PE problem (5-7) in the case of uncertain model parameters

(0,):
0 <¥YmEearYcoy Vo < 2 (6-2)

The upper bound of equation (6-2) is chosen as to match the activity coefficient range for mixed amine solutions
loaded with CO:z presented in Kaewsichan et al. (2001). Furthermore, the following constraints are included in the PE

problem in the case of unmeasured disturbances (6,):

flue flue __
co, +sz0 =0.2

0< yggge,yg;ge <02

(6-3)

The former fixes the total amount of COz and water in the flue gas (since nitrogen is assumed to be 80 mol% of the
flue gas), while the latter provides upper and lower bounds for the mole fractions. Equation (6-3) encompasses the
potential carbon dioxide fraction of typical PCC power plants (Danaci et al., 2021). The lower and upper bounds for
the PE problems establish a finite estimation search space and are not included in the RTO economic optimization
problem as the disturbances and parameters are not decision variables in the RTO formulation. Similar constraints on
manipulated and controlled variables in PCC can be found in Section 4.2.3.

The foremost factor motivating the deployment of RTO is the process economics; thus, each scheme and scenario will

be analyzed by their cumulative cost C($CAD) across N RTO periods tested, defined as follows:

N
Crec = AT ) ¢, (6-4)
i=0

where ¢;($CAD /hour) is the price of operating the PCC according to equation (6-4) at every RTO period i.
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In addition to considering the cost of the PCC system, the effect that the reboiler has on the upstream power plant
must also be accounted for. The reboiler requires steam that comes from the power plant, resulting in a reduction of
the power generation capacity. This is accounted for by considering the cumulative energy penalty Coperqy ($CAD)

across N RTO periods tested in each scenario, defined as follows:

N
Cenergy = ATZ Qreb,i(Pelec = Psteam) (6-5)

i=0
where Q. ; (kW) denotes the reboiler duty, Pyo. and Psyeqm ($CAD /kWh) denote the electricity price rate and the
steam price rate, respectively, while 7 = 0.4 (Mac Dowell and Shah, 2013) denotes the efficiency of converting steam
to electricity in the power plant. The difference between energy sales and steam prices corresponds to the energy price
markup upon sale. These are multiplied by the reboiler duty through an efficiency factor to quantify the profit loss

incurred by using the steam in the PCC reboiler instead of using it in the power plant turbines.

In addition to quantifying the potential economic and energy effects of the RTO. The environmental effects are also
of utmost importance. To do this, the cumulative mass of CO2 emitted mﬁ'gl;tted (tn) over N RTO operating periods

is calculated as follows:

N
mEglited = ATM¢o, )" Fremtygent (6-6)
i=0
where Fj " (mol/hr) and y'c’g’zl_ti(mol /mol) are the vent gas flowrate and CO: fraction for each RTO period,
respectively, and M, (tn/mol) is the molar mass of COs. In addition, an influencing factor in the PCC economics
is the amount of MEA makeup added in the tank (as shown in Chapter 4). Accordingly, this is also considered in the

assessment of the RTO across N RTO periods tested in each scenario, i.c.,

N
k k
M = AT My Z Fup 6-7)
i=0

where mzlbf};p (tn) is the amount of makeup MEA used and Mg, (tn/mol) is the molar mass of MEA.

6.3. Results

The formulations outlined in Sections 6.1.1 and 6.1.2 are implemented in the PCC system described in Chapter 4.
Measurement noise is inserted to the estimation scheme via the steady-state measurement samples {z,_;}}2, and is
assumed to be additive zero-mean Gaussian noise with a standard deviation of 5% of the nominal measurement values
(i.e., M (0, (0.052,,9m)?), such that the noise can substantially affect estimate quality. Z,,,,, is the measurement vector
corresponding to the nominal operating conditions outlined in Section 4.2.3. The sensitivity of the cost-optimal process
operation is studied in Scenario A. Moreover, the proposed operating scheme in Section 6.1.1 is assessed in Scenario
B and Scenario C. Furthermore, the proposed operating scheme in Section 6.1.2 is assessed in scenario D. Both
schemes are evaluated through their effects on a long (months) timescale according to the metrics defined in Section

6.2.
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6.3.1. Scenario A: Sensitivity of Cost-optimal Operation

Power plants often follow a diurnal schedule whereby the electricity produced observes a time-of-use (TOU) pricing
model. TOU works such that price of energy is changed over the day so that providers can disincentivize excessive

consumption through periods of peak demand.
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Figure 6-3: TOU variation in steam price (top), SCC and carbon sales (bottom). Cyan dotted lines denote update times for

Scenario C.

Consumer pricing fluctuation amplitudes and timings were retrieved from the Ontario Energy Board [61] for a 24-
hour summer cycle. These amplitudes were incorporated into the steam price reported in Karimi et al. [60]. As such,
electrical losses via steam consumption to the PCC plant vary in the same manner as electricity price to consumer;
this is depicted in Figure 6-3 (top). Moreover, SCC [18] and carbon sales rates [59] were also assumed to vary in the
same schedule and amplitude with high, medium, and low values taken from the literature (Figure 6-3, bottom). These
are scheduled to incentivize removal during on-peak hours of high demand, with lesser incentives in off-peak hours
of low demand.

A sensitivity analysis was performed for the cost-optimal PCC operation under variation of the disturbances of flue

gas inlet flowrate (F}) and flue gas COx content (ygoh;e). This is done as previous studies only consider a limited set

of disturbance realizations, which are far more limited than the ranges typically observed in the literature (e.g., Danaci
et al. [16]). The flue gas flowrate is assumed to vary within a symmetric £15% interval centred around its nominal

value (reported in Section 4.3.2), i.e., FY = adp,,, where a € [0.85,1.15]. Furthermore, the flue gas CO2 content can

manifest between the range ygg;e € [0.12,0.175]. In addition to variation of disturbances, the prices can manifest at

the three levels (off, mid, on) corresponding to TOU as depicted in Figure 6-3. For this scenario, the uncertain mode
parameters are assumed to be perfectly known and manifesting at their nominal values as reported in Section 6.2.

Figure 6-4 shows the sensitivity analysis performed of the cost optimal operation.
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Generally, a trend of increasing and sensitive capture rates is observed with increasing flue gas CO:2 content as
evidenced in the first row of Figure 6-4. These increased optimal rates are coupled with a decreased process cost
(second row of Figure 6-4) as the PCC process can operate more efficiently with a more concentrated inlet (i.e., a
more concentrated flue gas has similar effect to a more concentrated solvent). In contrast, lower removal rates are
coupled with lower removal costs as the flue gas flowrate increases; however, the sensitivity to this disturbance is
significantly less than the sensitivity to flue gas composition. This is owed to less efficient operation as increased
throughput of flue gas requires a commensurate increase in amine concentration or reboiler duty, which is
economically disadvantageous. Accordingly, in situations of higher flue gas flowrates, the optimal operating policy is
to settle for low removal to minimize cost. An exception to the behaviours listed above occurs for the process cost
under the off-peak regime (bottom-left pane of Figure 6-4). Herein, it is observed that low flue gas compositions and
flowrates result in lower costs and there is little sensitivity to either disturbance. This occurs due to the weak economic

incentives in the low carbon and energy costs. Accordingly, the off-peak operating regime sees only small changes in
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Figure 6-4: Cost-optimal rate of carbon capture (first row) and process cost (second row) under varying disturbances and TOU.

The columns represent the TOU prices.

With respect to the TOU economic incentives, the off-peak prices result in the lowest overall capture rates with
middling process costs. This occurs as the off-peak prices favour conservative operation due to low carbon costs
(Figure 6-3); again, the off-peak prices result in decreased cost sensitivity to disturbances. This implies that the energy
price dominates the operation during off-peak hours whereby low capture is favorable as there is little removal
incentive and high energy detriment from excessive removal. In contrast, on-peak prices result in high capture rates
with the highest costs due to the increased carbon and energy prices. In this case, reasonably high capture is achieved
despite the high energy prices because the carbon prices are dominant. However, the highest removal rates and lowest
prices in the TOU pricing scenarios are achieved using mid-peak incentives, which balance removal and process costs
with middling carbon and energy pricing. The mid-peak incentives have unit costs that are sufficiently low to warrant

high removal rates while not being low enough to drastically increase reboiling or makeup (Figure C-1, Appendix C).
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The optimal price and rates of carbon capture are sensitive to both upstream disturbances and the economic incentives
on the process; this is reflected in an 6.4% range in removal rates and a 48,000 $CAD /yr range in annualized process
cost (see the corresponding colour bars in Figure 6-4). Accordingly, variation and uncertainty in these disturbances
and prices will have a significant effect on the operation of PCC; thus, are suitable for parameter estimation and robust

optimization in the forthcoming sections.

6.3.2. Scenario B: Estimation of Flue Gas Carbon Content (0,;)

Flue gas compositions to the PCC plant may vary with respect to time as feedstock to the upstream power plant varies
in grade (e.g., changes in the type of coal being used). Moreover, this variation is expected to occur in power plants
that employ cofiring (e.g., Hodzi¢ et al., 2016; Loeffler and Anderson, 2014), whereby various fuel types are used
within the same power unit. This necessitates an operating scheme that is flexible to different flue gas composition
profiles such that the process economics are optimized despite variation.

Scenario B considers a parameter estimation approach as outlined in Section 6.1.1., whereby the uncertain parameters
are provided to the RTO and control models. To explore the effect of measurement noise on scheme effectiveness,
this scenario compares four RTO implementations: 1) RTO with a standard PE and no noise-abating step (denoted
PE); this represents the scheme deployed in Chapter 4 with an additional PE layer, 2) RTO with traditional least-
squares DR (e.g., Albuquerque and Biegler, 1996; denoted DR-PE), 3) RTO with low-variance PE considering
information content and estimation filters (denoted Iv-PE), and 4) RTO with knowledge of the true value of the CO2
content (denoted TV). The latter of these cases is unrealistic as composition measurements of the flue gas are difficult
to perform online in practice; however, it provides an upper bound to economic performance as it results in an RTO
model with no mismatch from the plant.

The PE/RTO is run for 100 RTO periods of AT = 8 hours (i.e., 33 days) as to have a large sample of RTO executions

and sufficiently long RTO periods as suggested in Chapter 4. The main unmeasured disturbance/estimated parameter
(04 as defined in Section 6.2) is the flue gas CO2 content (ygélzw), which is varied for each RTO period. Danaci et al.
(2021) provides a breakdown of the flue gas CO2 compositions for different fuel types/grades; based on the range
reported therein, the flue gas CO2 molar fraction was sampled from a uniform distribution between 0.12 and
0.175 mol/mol (i.e., y{éze~71(0.12,0.175)). The PE deployed in this scenario must estimate this content such that
it can provide the RTO and control models with accurate information regarding the disturbance. The results from these

implementations are shown in Figure 6-5.
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Figure 6-5: Cumulative a) PCC cost, b) energy penalty, ¢c) CO; emissions, d) fresh MEA used for scenario B.

As illustrated in Figure 6-5a, the cumulative PCC cost, as defined in equation (6-4), over the 100 RTO periods tested
is significantly more expensive for the PE and DR-PE than the Iv-PE (~39% and ~25% more expensive,
respectively). With respect to the TV case, the PE, DR-PE and 1v-PE experience economic losses of ~50%, ~34%,
and ~8%, respectively; as such, the Iv-PE is the most cost-effective, followed by the DR-PE, and the PE. Comparing
the benchmark DR-PE with the proposed 1v-PE in Figure 6-5a, it can be observed that the two schemes indeed have
similar performance until period 55 whereby the economic profiles diverge. This is owed to an erroneous parameter
estimate, which was discarded by the 1v-PE scheme by the filter bounds. In contrast, this does not occur with the DR-
PE scheme, leading to an expensive period of operation. Moreover, the estimation schemes make subtle difference in
abating energy penalties as in Figure 6-5b (in fact, the TV case and 1v-PE incur a slightly higher energy penalty). This
is likely the main driver of decreased emissions (i.e., increased removal) observed in Figure 6-5c, whereby higher
reboiler duty leads to increased removal.

In contrast, as shown in Figure 6-5c¢ and d respectively, the CO2 emissions and MEA consumption can vary
substantially depending on the scheme used. The emissions over the 100 RTO periods tested are ~115%, ~137%,
and ~70% higher when using the PE, DR-PE, and lv-PE, respectively, over the TV case. This constitutes another
improvement of the Iv-PE and a deterioration of the DR-PE with respect to the PE case. While the 1v-PE performs
better than the PE and DR-PE, it is worse than the measurable disturbance case. This suggests that the CO2 emissions
predictions generated by the PCC model are highly sensitive to uncertainties in flue gas composition, which is
reasonable as the upstream composition will directly impact the outlet compositions. Moreover, the DE/RTO and DR-
PE/RTO require a significantly higher amount of fresh MEA that the Iv-PE and TV cases. Indeed, this appears to be
the main factor elevating the PCC cost in the PE and DR-PE schemes as steps in the MEA consumption depicted in
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Figure 6-5d align with steps in cost depicted in Figure 6-5a. As mentioned above, these are likely caused by outlier
parameter estimates in the PE implementation, which are filtered by the 1v-PE such that an unnecessary makeup is not
used. This finding also aligns with our previous work, where the MEA makeup was shown to be a major source of
PCC cost. In addition to the cumulative plots, the average parameter error across the three estimation schemes tested
are ~30%, ~35%, and ~40% for the Iv-PE, DR-PE, and PE schemes, respectively. Notably, the limitations of our
previous work in Chapter 4 are shown in the PE case, whereby its economic and emissions performance are worse
under uncertainty (~42% and ~45% additional deterioration with respect to the true parameter case, respectively). A
sample set point transition using the controller/estimator from Chapter 4 with the estimated parameters for one RTO
period is shown in Appendix C.

As reported in Chapter 4, the averaged CPU time for the RTO is 4.33 s. Additionally, the mean PE CPU time as
determined in this study is 4.45 s. As such, RTO and PE models are fit for online use.

6.3.3. Scenario C: Estimation of Activity Coefficients (6,,)

Thermodynamic parameters are critical to capture non-idealities in behaviour, which are often nonlinear for PCC
systems. Accordingly, the precise activity coefficients will never be exactly known and must be estimated to ensure

model fidelity; as such they are considered uncertain for this scenario. As with the previous scenario, the main

disturbance, flue gas CO> content (y{é;‘e) is varied for each RTO period and sampled from a uniform distribution

between 0.05 and 0.2 mol/mol (i.e., ygolze'v‘ll(0.0S,O.Z)). However, this scenario assumes that the disturbance is

measurable and accurate (i.e., does not have to be estimated) and, instead, requires PE to be deployed to estimate the
activity coefficients (6,) as defined in Section 6.2) such that they can be provided to the RTO and control models.
The true parameter values are assumed to be constant and equal to the nominal parameter vector presented in Section
6.2.

As with scenario B, the PE/RTO is run for 100 RTO periods of AT = 8 hours (i.e., 33 days) and four RTO
implementations are compared (PE, DR-PE, 1v-PE, TV). The TV case herein is unrealistic as activities are not usually
truly known; however, it provides an upper bound to economic performance since it assumes a perfect RTO model

parameters with respect to the plant. Figure 6-6 shows the results from these implementations.
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Figure 6-6: Cumulative a) PCC cost, b) energy penalty, ¢c) CO; emissions, d) fresh MEA used for scenario C.

As shown in Figure 6-6a, all estimation schemes experience substantially less deterioration in cost with respect to the
TV case (~4.25%, ~3.81%, and ~1.63% for the PE, DR-PE, and 1v-PE, respectively). This suggests that the PCC
process is less sensitive to the accuracy of parameter estimates than the disturbance estimates. Nevertheless, the Iv-
PE still outperforms the regular PE and DR-PE by ~2.51% and ~2.15%, respectively, over the 100 RTO periods
observed. While these improvements are more modest than in scenario B, it should be noted that this difference would
only continue to increase over time. In terms of energy penalty, all cases perform similarly as depicted in Figure 6-6b.
This reinforces the notion that the RTO does not take the power plant effect into consideration and is in line with the
operational scheme design in Chapter 4.

There is a more significant difference in terms of CO2 emissions (Figure 6-6¢) between the four cases whereby the lv-
PE emits ~16.74% and ~12.44% less than the PE and TV, respectively, and ~34.52% more than the DR-PE.
Accordingly, the Iv-PE and DR-PE RTOs are both over-removing while the PE RTO is under-removing CO2 with
respect to the TV case with the true parameters. This is likely the largest dividing factor between the economic profiles
in Figure 6-6a. Additionally, Figure 6-6d shows subtle differences with regard to the MEA consumed by the RTO in
the four schemes; the TV case uses the least fresh MEA, followed by the PE case, the 1v-PE case, then the DR-PE
case. While the differences in energy consumption and MEA usage are subtle; they likely contribute to the benefits of
the Iv-PE observed herein, which occur more gradually than in the large jumps observed in scenario B. Accordingly,

the lv estimation scheme is achieving its benefit through the lowered IC rather than the filters as in the previous
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scenario. In addition to the plotted results, the average parameter error for the estimated parameters across the three
estimation schemes tested are ~32%, ~40%, and ~67% for the Iv-PE, DR-PE, and PE schemes, respectively.

On aggregate, the accumulation of these lower steady-state costs is reflected in Figure 6-6a, where the benefit of 1v-
PE scheme accrues across many RTO periods resulting in more an economical PCC operation. A sample set point
transition using the controller/estimator from Chapter 4 with the estimated parameters for one RTO period is shown

in Appendix C.

6.3.4. Scenario D: rRTO Under Diurnal Economic Variation and Activity Coefficient Uncertainty

In this scenario, the TOU pricing model in Figure 6-3 was considered to formulate an update strategy for the PCC that
considers prices that vary at irregular intervals. Scenario C considers the rRTO update strategy described in Section
6.1. and is assessed across 100 days worth of operation. The cyan vertical dotted lines in Figure 6-3 denote RTO
update times; 12-hour periods lengths were chosen as the long and expensive transients observed in Chapter 4 prohibit
frequent set point updating, especially in cases where prices vary quickly. The update strategy assumes the RTO is
executed at the beginning of the off-peak night operation (19: 00) as shown in Figure 6-3, whereby the RTO can
exploit the constant low overnight price. The second update occurs at the beginning of daytime (7: 00), which begins
a succession of price changes to mid-peak (denoted m) and on-peak (denoted o) consumption levels. Both strategies
are subject to the economic fluctuations (P,) depicted in Figure 6-3 as well as uncertainty in 6, (ie., the
thermodynamic activity coefficients as described in Section 6.2.).

Three contrasting RTO schemes were compared. An RTO with knowledge of the true parameter values (labelled
tRTO) was implemented and uses a “live” price (i.e., the price at the time at which the RTO is executed). The tRTO
is unrealistic since the true parameter values are never known; however, it provides an upper bound for the system’s
performance. Moreover, a “naive” update strategy (labelled nRTO henceforth) was also deployed, which updates the
RTO set point based on the live price and updates the parameters using the two-step approach without making use of
the 1v estimation formulation (this is equivalent to Chapter 4 with an added PE layer). Lastly, a robust strategy (labelled
rRTO henceforth) updates the set point based on the expectation that the price will vary a few times in the coming 12-
hour period and that the uncertain parameters manifest with a uniform distribution. Accordingly, the rRTO formulation
in equation (6-1) is deployed with the following weights:

n
Wep = ﬁ X (6-8)

where ¢; denotes the operating length associated with each economic scenario k € {1, ...,n,} and n, is the total
number of parameter scenarios. The operating times (t; ) weigh the scenarios in the objective function such that prices
which are operated at for longer are prioritized; these timings known a priori as TOU timings schedules are pre-
determined by the Ontario Energy Board (2021). In the daytime period where the costs vary within a short amount of
time, this formulation is deployed such that a single operating point that is robust to the prices is used rather than using
an operating point that is optimal for a short period of time and subsequently suboptimal. To restrict the model size
when using the multi-scenario formulation, the uncertain parameters are assumed to manifest at their 95% confidence

interval lower (Gf,’t) and upper (Gf,‘yt) bounds as defined in Section 6.1. Respective scenarios used in the formulation,
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denoted as [ and h, are shown in Table 6-1. These bounds are determined by the Iv-PE algorithm using the parameter
estimate statistics prior to the execution of the rRTO and are updated at new operating points to accommodate varying
levels of uncertainty. Moreover, the uncertain economics are also assumed to manifest at the mid-peak (m) and on-
peak (o) prices when performing the daytime set point update, respectively Pt = P™ and P = P?, as shown in Figure

6-3. Table 6-1 shows the economic scenarios considered in the present rRTO.

The RTO-operated system is simulated for 100 days to generate costs/savings of the deployment of the rRTO with
respect to the RTO; these are shown in Table 6-2 for clarity (plots can also be found in Figure C-2, Supplementary
Information).

Table 6-1: Realization in uncertain parameters and economic function for rRTO.

Uncertainty | S1 | S2 |S3 [S4 [S5 |S6 |S7 | S8 |S9 |SI |S1 |SI |S1 |S1 |S1 |SI

Yma h h h h l l l !
Yeo, h h l ! l l h h
Vo h l h ! l h l h

¢ m (0] m (0] m (0] m 0 m (0] m (0] m (0] m 0

Table 6-2: Cumulative results for Scenario C over the testing period.

Scheme Period Cpec ($CAD) | Conergy(3CAD) | mggitted (tn) | mireke™® (kg)
Daytime 8148.80 9056.14 4.48 25.12
rRTO
Overnight 7119.14 8286.15 7.95 21.31
Daytime 8271.48 9108.18 4.65 23.88
nRTO :
Overnight 7207.64 8393.87 7.73 21.44
Daytime 8076.01 9006.85 4.52 24.05
tRTO
Overnight 7117.63 8629.10 7.82 21.40

A summarized in Table 6-2, the rRTO scheme only experiences total of ~0.48% economic performance deterioration
with respect to the tRTO case whereas the nRTO deteriorates by ~1.9% over the time observed herein. The former is
achieved through a ~1.7% reduction in energy penalty enabled by ~2.2% higher MEA consumption, which results
in ~0.75% higher CO2 emissions when compared to the tRTO. Distinguishing between daytime and overnight
periods, the rRTO is found to only experience ~0.9% deterioration in the former and ~0.02% in the latter. When
compared to the corresponding ~2.4% and ~1.3% daytime and overnight deteriorations for the nRTO, the benefit of
economic robustness becomes apparent. During the daytime period when prices fluctuate, the multi-scenario economic
function of the rRTO outperforms that of the nRTO and results in a larger discrepancy between the two schemes.

The economic benefits of using a robust approach are less than those when the parameter update scheme is deployed
for flue gas composition as in scenario B. This suggests that the PCC process is less sensitive to the activity coefficient
estimates despite them being uncertain in reality. Moreover, this is consistent with the “price of robustness”, whereby

a robust solution must sacrifice performance of a specific scenario for optimality in the uncertainty region. However,
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small improvements can result in significant savings if the process is expensive as with PCC and longer time periods
allow for further accretion of economic benefit. Extrapolating to a year’s worth of operation (this simulation length
would be computationally prohibitive), the rRTO scheme would continue to outperform the nRTO leading to ~5%
annual process cost improvement. This would result in total savings of ~2,250 $CAD over an extrapolated annual
PCC cost of a ~45,000 $SCAD /yr. As the PCC plant studies herein is a pilot plant, the benefits of would be even more

significant in an industrial scale plant where costs are higher.
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Figure 6-7: %CC set point trajectory statistics over 100-day testing period.

In terms of set point, the %CC set point is lower in the overnight period as shown in Figure 6-7. This occurs as there
is less incentive for carbon removal as reflected in the low overnight SCC and sales rates in Figure 6-3 (bottom). In
contrast, the %CC set point are significantly (~3%) higher during the daytime when the removal incentives are
stronger. As the nRTO finds the daytime set point with the live 7: 00 prices, this under-incentivizes the removal during
the daytime period where the prices increase owing to the TOU fluctuations. In contrast, the robust formulation in the
rRTO takes this variation into account and chooses higher daytime removal set point to account for periods of high
carbon prices, hence the higher %CC set point. Additionally, the nRTO is over-removing CO: in the overnight period
where removal incentives are not as strong, hence a higher %CC set point; this is owed to increased error in parameter
estimates when using the traditional PE approach when compared to a robust approach like the rRTO.

As the rRTO does not produce parameter estimates, the %CC is used as a proxy for operational variability. Figure 6-7
shows the statistics of the capture level’s diurnal schedule over the testing period, with lines representing means and
shaded regions representing standard deviations for each scheme considered in this scenario. As displayed therein, the
daytime set points under the rRTO, nRTO, and tRTO are 96.53 + 0.50%, 96.40 + 1.06%, and 96.46 + 0.19%,
respectively. Furthermore, the overnight set points under the rRTO, nRTO, and tRTO are 93.51 + 0.45%, 93.83 +
2.62%, and 93.61 + 0.38%, respectively. Accordingly, operation variability (as reflected in the standard deviations)
is significantly reduced using the rRTO with respect to the nRTO. In contrast, the nRTO set points experience higher
deviation than the rRTO set points despite being subject to the same disturbances and the same lv estimation scheme.
As observed in the previous scenarios and in Chapter 4, reduced dynamic operation that results from reduced set point
variability can impact operational costs. While the tRTO remains the best-performing scheme in terms of economics
and set point variability, the rRTO appears to show only small economic deterioration and set point variability (recall

that tRTO is an idealistic scenario as discussed above). The latter is desirable from a controllability standpoint as the

123



controller is put under less burden while maintaining relatively inexpensive process economics. Finally, the price
robustness of the rRTO appears to have an effect under the quickly fluctuating daytime price profiles explored herein,
which are typical in the diurnal operation of power plants. Again, the use of the Iv-PE layer to provide robustness
provides performance benefits with respect to our work in Chapter 4; these are reflected in the improvement rRTO

provides over nRTO with respect to cost, resource use, and emissions shown in Table 6-2 and Figure 6-7.

6.4. Summary

This work presents the first estimation scheme for the RTO of PCC systems under uncertainty. This is achieved
through the flue gas composition and activity coefficients; however, the scheme is stated generically such that it can
be applied to uncertainties that are identifiable given the measurements available. Additionally, the Iv-PE approach is
deployed, which is designed to abate the propagation of measurement noise to parameter estimates. 1v-PE finds the
best subset of measurements for each estimation task and filters high-error estimates, resulting in better estimation
accuracy and precision over time. This is also the first noise-abatement data processing scheme deployed in the
literature for PCC. The performance of the proposed schemes is assessed in terms of the steady-state economic and
environmental outcomes. Furthermore, a robust RTO along with an update strategy for the diurnal operation of PCC
systems are proposed to be used jointly with the 1v-PE scheme, which serves to quantify the parametric uncertainty.

The findings herein indicate that the 1v-PE schemes are more successful in their estimation with respect to the
traditional DR scheme and approach the true economic optima with an ~8% loss compared to a known parameter
case; this is contrasted with ~34% loss for the DR scheme. Moreover, the emissions and solvent consumption of the
Iv estimation scheme was also found to be consistently lower than the DR/estimation scheme. The results indicate
that, while estimation scheme with DR can work well, the use of 1v-PE can significantly improve the system
performance. Furthermore, the RTO with 1v-PE can come very close to the theoretical limit (i.e., RTO with true
parameter knowledge), thus resulting in nearly optimal performance observed in previous studies where uncertainties
were left unaddressed. Over the period tested, the present study also found that the use of the rRTO updating strategy
for periods of high price fluctuations can result in cost savings of about ~1.4% and up to ~80% set point variability
reduction over the two-step approach. All case studies observe economic improvements of real-time decision-making
on long timescales. With respect to our previous work (Patron and Ricardez-Ssndoval, 2022a), the results herein
indicate that a simple PE layer is insufficient to consistently provide high-quality operating points in noisy
environments with fluctuating economics; this is seen through consistent improvements in cost, environmental
performance, and resource use. Accordingly, the proposed schemes impart the necessary robustness to deal with these

realistic scenarios.
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7. Partial Modifier Adaptation

In this work, we propose an MA variant for frequently disturbed periodic systems. Instead of adapting the MA problem
with respect to all process inputs modifiers, the subset of modifiers is chosen that have the largest economic effects
on the operating point. The proposed approach is shown to be a special case of dMA where the modified directions
are limited to only include single inputs. While past approaches like dMA have used dimensionality reduction to
address plant-model mismatch in many-input systems, we propose that dimensionality reduction can also be used in
frequently-disturbed periodic systems, which has not been previously investigated in the context of dMA. The
decreased experimental burden enabled by dimensionality reduction enables quicker action in the proposed approach.
Moreover, an ancillary optimization problem is also proposed, which uses available plant and gradient information to
drive the system to constraint adhering regions between MA iterations. To the authors' knowledge, the work presented
in this study is the first AMA scheme to choose modification directions based on both model and plant (as opposed to
only model) economics; thus, choosing modification directions based on plant knowledge (i.e., not solely based on
model quantities). Moreover, it is the first dMA approach to address the effect of frequent periodic disturbances. This
is also the first MA study in which constraint satisfaction during modifier refinement has been addressed through an
optimal approach. Algorithms are outlined to integrate the partial modification and constraint satisfaction problems
into a joint scheme referred from henceforth as partial modifier adaptation (pMA). The pMA algorithms determine:
1) which inputs to use for adaptation such that perturbation time is reduced, 2) when and by how much to adjust the
operating point to ensure constraint satisfaction, 3) the number of directions to modify for a given disturbance
frequency. Using the proposed method, the system can approach the economic optimum before the occurrence of a
new disturbance while improving constraint satisfaction at each iteration. The proposed scheme is evaluated through
two case studies, which investigate the effect of number of modifiers, disturbance period, and filtering on cost
optimality and constraint satisfaction.

This work is structured as follows: Section 7.1 reviews the standard MA formulation, implementation procedure, and
assumptions in this work; Section 7.2 builds on this formation and provides the pMA formulation, the constraint
adjustment formulation, pMA properties, determination of modification directions, and corresponding algorithms;

Section 7.3 tests the pMA schemes in a variety of systems; and conclusion are outlined in Section 7.4.

7.1. Modifier Adaptation

The standard steady-state economic optimization problem is formulated as follows:
min ¢,
Ut
f(xpup,dy) =0 (7-1)
g(x,u,dy) <0
Up < Up < Uy

where x; € R™, u, € R™, and d; € R"d denote the model-predicted process states, inputs, and measured/estimated
disturbances, respectively, at time ¢ (i.e., the current time at which the solution will be conveyed to the plant). ¢, € R
denotes economic objective function (e.g., steady-state cost, energy consumption); in this work we take the convention
of minimization, however maximization is equally valid through the requisite reformulations. f: R"* x R"d — R™x

denotes steady-state process model, which maps the disturbances and inputs to the states (this model must fulfil the
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adequacy conditions like a positive definite Lagrangian Hessian matrix as outlined in Marchetti et al. (2009)). u; €
R™ and u,, € R™ denote the lower and upper bounds, respectively, for the process inputs. g: R™ X R™ x R"d —
R™s denotes the process inequality constraints (e.g., grade requirements, safety specifications). Formulation (7-1) does
not address uncertainty and is susceptible to model inaccuracies as f may not fully match the true plant f,.

Accordingly, MA adjusts the inequality constraints as follows:
Iuae = 9(u,d,) + g5, + Ilf,,t(ut —Uq) (7-2)

where g, € R"9 are 0" order modifiers (i.e., bias terms) and Mg € R™*M9 are 1% order modifiers (i.e., gradient

correction terms). Moreover, u,_; € R™ denotes the inputs from the previous MA execution with which the plant is
operating prior to solving the updated MA problem. The 1% order modifiers, as will be explained later in this section,
capture the difference between plant and model gradients (i.e., gradient error); hence the use of an input difference in

equation (7-2). Additionally, MA modifies the objective function as follows:
bmae = b + Ilﬁ,tut (7-3)

where pg, € R™ are 1* order modifiers. Note that the objective function is only adapted in the constraint gradients
with respect to the decision variables (as opposed to the difference between the inputs and previous inputs). This
occurs as objective bias terms (£4,) and modifiers with respect to prior inputs (u;tut_ﬂ would be constant terms,

thus would not contribute to the objective function as they would contribute to the feasible region via the constraints
in equation (7-2) (Marchetti et al., 2016).

Plant quantities are denoted with subscript p while model quantities are denoted with the subscript m. The 0™ order
modifiers are the difference between the plant and model constraint predictions at the pre-update operating point

defined by the previous MA iteration, defined as follows:
€9t = 9pt-1 — Imit-1 (7-4)

where gp,, 1 € R"9 and g,,,_1 € R"9 denote the plant and model constraints under the inputs (u,_1) from the
previous MA execution. Similarly, the 1% order modifiers are the difference between plant and model gradient

predictions at the current time, i.e.,

Bgt =Jgpau—1) ~gme—n) (7-5)

Hpe = vut_l ¢p - vut_ld)m (7'6)

where V,,, . denotes the gradient operator applied to scalar-valued plant and model economic functions (¢, and ¢, ,
respectively) at the operating point corresponding to Us_1. J g, u,_;) € R™*™ and J, @, o) € R™*™  denote,
respectively, the Jacobian matrices of the plant and model constraints with respect to the inputs at u;_;. The modifiers
in equations (7-5) and (7-6) are calculated by perturbing the inputs around the operating point (i.e., corresponding to

Uu;_4) and using a gradient estimation method. For this study, finite difference approximation (FDA) is used as it has
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been found to perform adequately in past studies (Marchetti et al., 2016); however, other techniques exist, which have
been previously compared in the literature (Mansour and Ellis, 2003). Accordingly, the gradients from FDA, which

populate the Jacobian and gradients in equations (7-5) and (7-6) are defined as follows:

agi _ gi,j,pert - gi,nom

viel, .., , Vj€E{l,..,n, -
3w 5 Pefl.ngh ViE(l ..} (7-7)
ad) ¢j pert — ¢n0m .
_r _ rjpert rTnom Vjie{l,..,n, _
oy 5 j €L,y } (7-8)

where du; denotes a small change (i.e., a perturbation) in the J™ input u;. Note that the subscript pert and nom refer
to the perturbed (i.e., post-perturbation) and nominal (i.e., pre-perturbation) quantifies, respectively.

Furthermore, modifiers are also passed through first-order filters to abate the effect of measurement noise and ensure
a smooth convergence to the true plant optimum; this also prevent sudden operating point changes that may be

impractical from an instrumentation perspective (i.e., overly aggressive control actions). The filters are defined as

follows:
&= Uy, — A — A8, (7-9)
1o = (Lugun, — Ag) OHG, — 4,01, Vi€l ..,n,) (7-10)
o = Uny = Ag)HG e = Aphtly . (7-11)

where 4, € R"9"™s and 44 € R™*™« are diagonal weighting matrices, which act on their respective modifers via
matrix multiplication. The e and f superscripts denote estimated (via FDA) and filtered modifiers, respectively.

Moreover, A, € R"9*™: is a nonzero weighting matrix and 1 € R™9*™ is a matrix of ones; these act on its
> Mg ngxny 5

modifiers via the element-wise multiplication ©. The elements of the filter matrices A € [0,1) are user-defined tunable
parameters that determines the rate of convergence of the MA scheme.

Figure 7-1 illustrates the standard MA procedure whereby the filtered modifiers are initialized at zero, n,, perturbations
occur, modifiers are calculated and filtered, the operating point is updated, and iterative refinement of the modifiers

occurs.
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Figure 7-1: Depiction of the standard MA algorithm.

The standard MA procedure as depicted in Figure 7-1, and all the methods presented hereafter, are subject to the
following assumptions for this work:

1. The plant experiences periodic disturbance (i.e., they occur at fixed time intervals).

2. Uncertain model parameters and their distributions are unknown as the plant only contains structural

mismatch.

3. Disturbances can be readily detected.
Assumption 1 is applicable to many plants whereby inlet raw material grades are updated on a regular basis. These
are treated as disturbances, which vary diurnally, seasonally, or according to upstream production schedules. Examples
of periodic disturbances include: energy systems (industrial boilers: Yip and Marlin, 2004), chemical plants (ethylene
production: Tian et al, 2013; polyamine production, distillation: Pan and Lee, 2003), biological systems
(nitrification/denitrification: Kornaros et al., 2012), and agricultural systems (greenhouse: Pawlowski et al., 2011).
Assumption 2 is generally the case in models that are not mechanistic whereby simplifying assumptions are made for
the model to be solvable. A process operator may deliberately choose to omit phenomena from a process model to
make it more parsimonious or the modeler may have formulated a mismatched model as complex analytical
expressions can cause problems in optimization programs. In any case, most models have some degree of structural
mismatch. Assumption 3 assumes that disturbance/steady-state detection is readily available; this means that the
operating mode (i.e., transient or steady) can be ascertained at any given time. While this is a non-trivial problem, it
is outside the scope of the current study. Examples of disturbance/steady-state detection use test statistics (Cao and

Rhinehart, 1995), Monte Carlo sampling (Hou et al., 2016) and Wavelet transforms (Jiang et al., 2003).
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7.2. Partial Modifier Adaptation

A new variant on the standard MA scheme outlined in Section 7.1 is proposed whereby only some input modifiers are
continually refined; thus, achieving quicker action in the presence of frequent periodic disturbances. This scheme is

denoted as partial modifier adaptation (pMA) and is depicted in Figure 7-2.
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Figure 7-2: Depiction of the pMA algorithm.
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7.2.1. pMA Formulations and Algorithm

As shown in Figure 7-2, there are three distinct operations that can occur within the proposed algorithm. Prior to the
first pMA iteration, initialization occurs whereby the filtered modifier values are defined as zero and the number of
gradient modifiers n,, is chosen; the choice of this term is discussed in section 7.2.3. Furthermore, we introduce & and
Qmaxs Which are defined for the operating point adjustment at the outset; these are discussed in depth later. For t = 0

the MA procedure proceeds as usual through the full MA (i.e., red block in Figure 7-2); n,, perturbations are made
and the corresponding modifiers s';,t, u‘;t, and u';‘t are computed as depicted in Figure 7-2.

After every operating point update, the new operating point is checked for constraint violations. If violations are
detected, the algorithm proceeds through the operating point adjustment (blue block in Figure 7-2), which is discussed
later. If no violations are present, the system is checked for any new disturbances; a new disturbance would trigger
the full adaptation procedure as depicted in Figure 7-2, otherwise the partial adaptation scheme is engaged as depicted
in the green block in Figure 7-2.

Assuming no disturbances and no constraint violations, the partial adaptation can begin after the initial iteration (i.e.,
t > 0). The modifiers corresponding to n, € {Z*:n, < n,} inputs are iteratively refined; these are chosen based on
their impact on the economic predictions of the MA problem such that the inputs with the largest effect are chosen.
This leverages the fact that not all inputs have the same effect on optimality and choosing the appropriate inputs will
yield a sufficiently good operating point without taking as much perturbation time. To evaluate the impact of
individual input modifiers on economic predictions, the “modified costs” are introduced herein to choose which n,
inputs modifiers should be used. Since all modifiers are calculated in the first full MA iteration, they can be used to

make process predictions at the current operating point; accordingly, the modified costs are defined as follows:

Bie = Ugpp e vjie{l,..,n,} (7-12)

ny

where the modified costs are sorted into the ordered set (i.e., sequence) U = {$j,t}j=0 and u,,4 € R™ is the

corresponding vector of inputs sorted by modified cost. The modified cost in equation (7-12) is used to rank possible
single-input modifications using the most recently available modifiers. Accordingly, the pMA scheme uses both plant
and model information to choose the inputs with respect to which the cost gradient has the largest gradient error (i.e.,
the largest modifiers). This modifier is then multiplied by the most recent input value to normalize gradient with
respect to the input magnitude. Accordingly, the inputs that are chosen by equation (7-12) are those that will lead to
the largest corrections in the cost gradient. The modified cost of each input will be different owing to their distinct
values and gradients. However, a situation may arise in which the difference is relatively small. Even if the small
difference is owed to numerical or process noise, both inputs in question will have similar effects on plant-model
mismatch so the choice of either input will have similar adaptation effects on the system.

With the minimization convention, the first n, elements of u,,4 are stored in the vector (v = uord,l:nM) € R™ as
these inputs yield the lowest modified costs; these correspond to the set of modified costs V = {U:j < n,,}. Moreover,
the remaining n,, — n, elements of u,,4 are stored in the vector (w = uord’nM:nu) € R(™u=™); these correspond to

the set of modified costs W = {U:j > n,}. In other words, the input variable vector is decomposed into two
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subvectors. u = [v w]7 and the sequence of modified costs is such that U = V U W. The inputs in v are those whose
modifiers lead to the best predicted economics (i.e., the least predicted costs); thus, only the modifiers corresponding
to v are adapted with respect to in the next partial MA execution. Thus, the partial adaptation objective function

becomes:
bomae = ¢¢ + Y;,tvt + wg,twt (7-13)

where Y4, € R™ and wy, € R™u=™) are the 1% order objective function modifiers corresponding to v and w,
respectively. Accordingly, like the input vector, the vector of objective function modifiers is decomposed into two
subvectors uy, = [V @]

Likewise, the adapted constraints become:
Ipmar = g(uy,dy) + €5, + Yg,t(”t —Vpq) + wg,t(wt —We_q) (7-14)

where y,, € R™*" and w,, € RMu~m)*Mg are the 1% order constraint modifiers corresponding to v and w,
respectively. Accordingly, like the input vector, the matrix of gradient modifiers is decomposed into two block
matrices, i.e., gy = [Vg @g]".

At each partial adaptation iteration, the members of V and W (and their corresponding vectors v and w) are refined
according to the ranked modified cost sequence in equation (7-12) as described above. This sequence is updated using
the newly updated economic function gradient modifiers (y4) along with the outdated modifiers (wg). This allows
for iterative refinement of the inputs that have the largest effect on economic function adaptation until convergence to
their final modifiers and final membership of V and W. This process of refinement is depicted in the “rank inputs”
block of Figure 7-2. We note that, the ability to change modification directions through V and the modified cost is
present in pMA but not the standard dMA (Costello et al., 2016); the latter can yield myopic behaviour owed to its
directional inflexibility.

If a disturbance is detected after any partial adaptation iteration, the previous members of V and W are no longer valid
as the operating point has changed and the gradients may be different in the new operating neighbourhood. This
triggers the disturbance block in Figure 7-2 that toggles between the full and partial adaptation schemes. The toggling
of schemes allows for a full set of modifiers pus and p, to be computed such that an entirely new U and its
corresponding u,,.4 can be found at the new operating point.

As only plant economics are considered in the input ranking equation (7-12), constraint satisfaction is unaddressed at
each partial adaptation iteration. Furthermore, constraint satisfaction upon convergence is not guaranteed when using
partial modification (i.e., no KKT matching). Even with consideration of the Lagrangian as in directional MA
(Costello et al., 2016), iteration satisfaction is not guaranteed. Indeed, full MA schemes (i.e., not only pMA) only
ensure constraint satisfaction at convergence; hence, the “path” to the optimum may be subject to iterations where
violations occur (Marchetti, 2022). Thus, recourse action is needed to avoid constraint violations at pMA iterations

and upon convergence where these violations could lead to safety or economic concerns (e.g., violation of temperature
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limits or production below purity specification). In systems with frequent disturbances, it is advantageous to satisfy
constraints along the path as convergence to a final steady state may never be achieved.

To minimize these iterative constraint violations, operating point “adjustments” ancillary problems are proposed to be
solved after every adaptation iteration where constraint violations are detected. These are depicted in the blue block
of Figure 7-2. The adjustment problems use process measurements and the plant gradient data available from the
partial adaptation perturbations to formulate of a quadratic problem (QP) that reduces or altogether closes the
constraint violation gap.

The partial adaptation section of the algorithm features adjustments occurring after the solution is applied to the plant.
As shown in Figure 7-2, these adjustments only occur if a constraint violation is detected. Once this occurs, the

following problem is solved:

min||Gacelloa’

9 =9y tJgw._pAv
gact = Ag

gin = (Ing _A)g
Gin<0 (7-15)
Q = diag(Ir1 " Ipmny)

1 >0
A =diag(®1 ang):ai={ Ipi

0 gp,iSO
—a<AMA<a

where g and g,, € R™ are the linear model-predicted and current (measured) plant operating point for all constraints.
Jgw,_) € R™*™ is the Jacobian of the constraints with respect to the subset of process inputs used in the partial
adaptation step; this is constructed using the most recent partial plant perturbation results. Using the most recently
calculated plant Jacobian, a local approximation of the constraint-input relationship is generated such that small input
adjustments can be computed. This differs from a constraint adaptation scheme (e.g., Chachuat et al., 2009) since it
uses a linear model with a satisfaction objective as opposed to a nonlinear model with an economic objective;
moreover, the adjustment step is used to compliment the pMA problem defined above, which acts on an economic
basis. The model-predicted constraint vector is partitioned into active and inactive constraints using the matrix 4 €
R™9*™g and its identity matrix difference I — A where I ng € R"9*"9, A contains diagonal identity elements to indicate
if the plant constraint g,,;Vi € {1, ..., n,} has been violated. Using the A matrix, the inactive constraint entries are set
to zero in the vector §,.; € R"9; conversely, the active constraint entries are set to zero in the vector g;, € R™s.
Using the inactive constraint predictions §;,,, the linearized model can be used such that they remain inactive using
the inequality constraint in formulation (7-15). Moreover, the objective function in (7-15) features a minimization
term for the active constraints g,., whereby their predicted value is minimized; this serves to bring their value to zero
as constraints in MA are posed such that the RHS is zero. This objective is weighted by a diagonal matrix of the
constraint violation magnitudes for the active constraints QA € R™9*"s ; this way larger violations are prioritized over
smaller violations. The decision variable for this problem is the vector of process inputs adjustments Av € R™, which
are bounded by the user-specified @ € R™ mentioned in the initialization section above. The adjustment bounds are

designed to be small through the choice of a, thus requiring little computational or transient time. Also required in
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initialization are the maximum number of constraint adjustments a,;,; this is imposed on the scheme such that there
is little delay in returning to the partial adaptation loop. Accordingly, @ and a,,, are user defined but should be small
(i.e., since they are assumed to be adjustments and not large changes). We note that the disturbance block is checked
at every iteration of the pMA algorithm as shown in Figure 7-2. Whether or not a constraint violation is detected,
disturbances must be checked to accommodate for their potential effect of suddenly changing the memberships in V
and W. The timeliness of this check is ensured by capping the number of adjustment iterations at @, 4.

While the operating point adjustment problem (7-15) focuses solely on constraint attenuation, the main pMA objective
in equations (7-13) and (7-14) is still to minimize plant-model mismatch through its modifiers. The reason for the
additional adjustments is to decrease potential constraint violations in the modifier refinement process whereby the
plant-model mismatch is not accounted for to its full possible extent within the pMA paradigm. Through the
adjustment subproblem (7-15), constraint-violating operating points may be abated quickly. Firstly, the measurement
of g, serves to localize problem (7-15) in the current constraint-space of the plant. This measurement is updated at
every adjustment problem iteration such that the local linear prediction of constraints g begins at the correct state.
Additionally, only the inputs contained within v are used for the constraint adjustment step as only the local plant
gradients for these inputs are updated as part of the pMA algorithm. Despite no guarantee being available for whether
violation will be avoided (this would require controllability of all states via all inputs); problem (7-15) uses readily
available information via g, and J 4(,,_,) as opposed to other constraint-feasibility approaches that require additional
data be estimated from the system (e.g., Hessian matrices). Note that problem (7-15) constitutes a discrete time one-
step-ahead linear-quadratic regulator whereby no control-move suppression terms are used, and the state matrix is an
identity matrix. In principle, such a linear quadratic regulator is solvable for an explicit feedback law using the
dynamic Ricatti equation; however, the inactivity constraints prohibit this for the system shown in equation (7-15).

The pMA algorithm is summarized as follows:

pMA operation:
Initialize: define n,,, &, a4y, ug,t_1 =0, 8{;,:—1 =0, [,L’;_t_l =0.
1. For t = 0: perform full MA and apply to plant.
2. Are constraints being violated?
a. Yes: a = 0, activate constraint adjustment, go to step 3.
b. No: proceed to step 5.
Operating point adjustments
3. Solve problem (15) and apply to plant.
4. Gviot <0o0ra>ay,”?
a. Yes: Proceed to step 5.
b. No: a+= 1, return to step 3.
5. New disturbance?
a. Yes: t+= 1, activate full MA, go to step 6.
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b. No: t+= 1, activate partial adaptation, go to step 9.

Full adaptation

6. Perturb n,, inputs.
7. Estimate n,, modifiers and filter.
8. Solve full MA problem using equations (2) and (3). Return to step 2.

Partial adaptation

9. Perturb n,, inputs.
10. Estimate n,, modifiers and filter.
11. Re-evaluate “modified costs” in equation (12) and refine modifiers in v.
12. Solve partial adaptation using equations (13) and (14).
13. Has the scheme converged to an operating point
a. Yes: end.
b. No: continue refining modifiers and return to step 2.

The benefit to the proposed pMA approach is twofold: firstly, using n,, < n,, input modifiers result in a faster acting
scheme that prioritizes economic modification; secondly, the adjustment step will enable iterates to be constraint
abiding without any additional information (e.g., Hessian matrix). On the other hand, the adjustment step in the
proposed pMA scheme is designed to act quickly and only take small steps. Accordingly, the system may not be able
to close the constraint gap if the adjustment step begins far from the constraint as the number of adjustment iterations
is limited in quantity and size. Crucially, the selection of n,, is not a trivial and an algorithm that leverages disturbance
periodicity to determine the number of modification directions is presented in Section 7.2.3.

We note that pMA is not mutually exclusive other approaches in the literature; indeed, the modified cost metric
introduced in this work can be used similarly to the sensitivity matrix in dMA to compute privileged directions (i.e.,
not limited to partial derivatives). Moreover, the dual methods and the use transient measurements introduced by
Costello et al. (2016) and Frangois and Bonvin (2014), respectively, can also be incorporated into the pMA scheme

proposed in this work.
7.2.2. pMA Properties

The vector v, of inputs used in the pMA approach can alternatively be represented by the block matrix V, € R™*"v,

Le.:

diag(uq, ..., u
Vt — [ .g( 1 n,,) (7-16)

0(nu—ny)><n,,
where 0, —n,)xn, € R™u=m)X"w denotes a zero matrix. Similarly, dMA defines its directions using the block matrix

U, e R je.:

U, =[6u, - bu,] (7-17)
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where (6u; € R™) Vj € {1, ..., n, } are the vectors containing input directions whereby a subset of the inputs elements
is chosen for each direction. From equations (7-16) and (7-17), it is evident that V, is a special case of U, whereby
only the diagonal elements in the top block are used. This represents an analogue to multivariable calculus whereby
partial derivatives represent a special case of directional derivatives. Since pMA implies a special case of AMA, some
properties of the latter can be applied to pMA.

Theorem 1: (Plant optimality for chosen input adaptations). Consider the pMA algorithm without measurement noise
and perfect estimation of plant derivatives in n, inputs. If the algorithm converges to the fixed point
(Uoo) €g,001 ¥ g,000 ¥ ,0)- this corresponds to a KKT point of the modified optimization problem in equations (7-13) and
(7-14), then u,, will be optimal for the plant in these n,, directions.

Proof: See Costello et al. (2018), Theorem 3.1. m

An advantage of pMA is that inputs are chosen based on readily available plant data whereby the information
necessary to compute the modified costs is found as part of the pMA algorithm during the perturbation step. Instead
of using model sensitivities with respect to uncertain parameters to determine U, the modified cost metric in equation
(7-12) uses the cost gradient modifiers (i.e., the plant-model cost gradient error) to determine the inputs to which the
cost is most sensitive (i.e., V;). These modifiers are multiplied by the latest-acquired input values to normalize their
magnitude; thus, pMA chooses the directions of highest normalized input error. Note that Costello et al. (2016)
normalize the sensitivity matrix with uncertain parameter ranges; however, this does not abide by assumption 2
(Section 7.1). Moreover, the approach presented offers benefits with respect to the active approach proposed by
Singhal et al. (2018); namely, it does not rely on parameter uncertainty being present or access to a probability density
as stated in assumption 2 (Section 7.1). With the approach presented in this work, we only consider the cost gradient
sensitivities, which are equivalent to the Lagrangian gradient in the case of no active constraints. Only cost sensitivities
are considered (as opposed to Lagrangian sensitivities) because the plant Lagrange multipliers cannot be readily

measured.

7.2.3. Disturbance Periodicity and the Number of Modification Directions

The aforementioned weaknesses in the standard MA scheme can be seen most saliently in equations (7-7) and (7-8),
which depend on the index Vj € {1, ...,n,} and correspond to the perturbation block in Figure 7-1. As previously
noted, these perturbations delay the operating point updates as they may be time-consuming. To analyze the refinement
time that the MA scheme requires, we introduce a user-defined perturbation time t (i.e., the required to perform a
single perturbation), a system-defined settling time T (i.e., the time required to reach a new operating point upon
modifier refinement), and an externally defined disturbance period AT (i.e., the time between subsequent
disturbances). The use of different T and T reflects the fact that small perturbations (of T duration) may not require the
same settling time as an operating point change (of T duration). This occurs as perturbations are meant to be small
(i.e., a fraction of an input’s value) while operating point changes are potentially large (i.e., a completely different set
of input values). Accordingly, if n,, t, or T are large, the MA refinement procedure will be time-consuming.

Furthermore, if AT is small, convergence to the true optimum may not occur before a new disturbance is imposed.
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That is, if the MA scheme requires n,,, iterations to converge to the optimum, the following inequality must hold if

convergence is to occur:
Ny aNy, T + NyaT < AT (7-18)

However, this inequality may not be fulfilled if n,, and 7 are large, or AT small as mentioned previously. By treating
equation (7-18) as an equality we can express the maximum number of MA iteration necessary to reach convergence

as follows:

AT

- n,t+T (719)

Npa

This ratio is not practically useful as many of these quantities are not known a priori; however, it serves for theoretical
discussion of the MA schemes in periodic settings. In contrast to MA equation (7-19), the number of iterations to
reach convergence for pMA is defined as follows:

AT

- n,t+T (7-20)

anA

since n,, < n,, perturbations are performed on most iterations, a larger number of pMA iterations may be performed
(i.e., nypa > Nyu). This results in quicker modifier refinement, which is the working principle of pMA. These
refinements will work towards the directional optimum given the chosen modification directions; as a full set of
modifiers is not refined until convergence, the pMA scheme will not converge to the plant KKT points as noted for
dMA (Costello et al., 2016). However, the directional optimum will certainly be better than a “do-nothing” case and
convergence to this optimum may occur more quickly (i.e., within a given disturbance period).

Recalling equations (7-19) and (7-20), which quantify the number of MA and pMA iterations that a given scheme
must perform to reach convergence, we propose a scheme-independent metric to assess the efficacy of various pMA
and MA schemes on a given system. While the number of modified inputs is scheme-dependent and the settling time
is not known a priori, thus rendering equations (7-19) and (7-20) impractical; they elucidate how the number of
iterations of each scheme is dependent on the disturbance period (i.e., nyy4 = f(AT)). Thus, for a given plant, the

best number of inputs modified with respect to can be expressed as piecewise function of the disturbance period:

1 AT <
n, =1: Gk <AT < {eya (7-21)
ny AT >¢,,

where n, is segmented into n, regimes such that n,, € {1, ..., n, } can be determined based on prior operation of the
system. {; Vj € {1, ...,n,} are the corresponding disturbance period boundaries that define the how many modifiers j
are suitable for refinement. According to equation (7-21), the number of inputs to be modified for (thus perturbed)
could be tuned using the disturbance frequency. Determination of the regime boundaries {; can be performed through
preliminary system runs, whereby data are collected for various frequencies such that equation (7-21) can be fully
defined for a given process; however, this may be impractical. Establishing regimes for n,, also allows for disturbances
to be approximately periodic. Put concretely, disturbances that have periods within the same period regime use the

same number of modifiers, thus exact periodicity is not needed for pMA to be applicable.
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A limitation of dMA is that the number of privileged directions must be pre-specified by the user such that n,, < n,.
With the pMA approach, we leverage the periodicity of the disturbances to determine the number of inputs for
adaptation as a function of the disturbance period. The following algorithm enables the systematic determination of

n, for a given disturbance period AT under a performance metric PM and a minimization convention:

Determination of n, for a disturbance period AT
Initialize: definen, = 1,1 =1, &, Apqy, B, u’gr,t_1 =0, ££‘t_1 =0, u';’t_1 =0.
1. Deploy pMA algorithm for n,, modifiers.
2. B disturbance elapsed?
a. Yes: Calculate PM for B previous disturbance period, go to step 3.
b. No: t « t + At, go to step 2.
3. [>2?
a. Yes: [+=1, go to step 4.
b. No: [+=1, goto step 1.
4. PM; < PM;_,?
(7-1) | Yes:n,+=1,gotostep 1.
(7-2) | No:n, =1—1,end.

The n,,-determination algorithm initial assumes that only one modification direction is being used (n,, = 1). The user
defines an allowable computational budget B along with all other pMA operational parameters. Once B disturbances
have elapsed, R or P,,,,4 can be computed for unconstrained and constrained systems, respectively. After the initial B
disturbance periods, another input direction is assumed to be available; hence n,+= 1. This allows for comparison
between the previous B and the next B disturbance periods on the basis of a user-defined PM whereby a modification
dimension is added until there is no significant improvement in the process cost (assuming a minimization convention).
Examples of performance metrics are provided in the next section for constrained and unconstrained MA-operated

systems.

7.3. Case Studies

The proposed scheme was tested using two case studies: the Williams-Otto CSTR (Williams and Otto, 1960) and the
forced circulation evaporator (Lee et al., 1989). The former case study explored partial adaptation on a two-input
system such that the effect of filtering and disturbance period can be isolated and assessed on an entirely economic
basis. The latter case study provides a setting in which to test partial adaptation on a three-input system with active
constraints such that the effect of number of adapted inputs and constraint satisfaction can be quantified on process
economics and throughput, respectively. Moreover, the evaporator also provides a constrained setting in which to
assess the proposed pMA against AMA. As stated in the introduction, we aim to improve on the aggregate performance
of MA across many disturbances; hence, showing any iteration is not very instructive. Instead, we introduce the
following performance metrics (PM), which summarize aggregate process performance over time.

Accordingly, the cumulative process economics R($) are calculated as follows:
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Ty
R= Z b (7-22)
k=0

where Ty (time) is the final scenario length and ¢, are the instantaneous process economics at time k. Additionally,

the time operating at constraint violating points is used as a measure to directly quantify constraint violation. This is
defined as follows:

tyiol = Z Aty (7-23)

VEEO,...Tf~1}|gi>0

where At are the sampling interval lengths; accordingly, the cumulative time at constraint violation over a test
scenario is quantified. Furthermore, constraint violations influence the quantity of material processed (i.e.,
throughput); especially in cases where below-specification product may be produced. The cumulative mass of material
process m (mass) is defined as follows:

m= M (7-24)

VEE(0,...T £}|g <0

where m,, is the instantaneous mass throughput at time k and the expression in equation (7-24) sums over constraint-
satisfying product. Lastly, the cost per mass rate Py, is defined using equations (7-22) and (7-24) as follows:

p R

prod m

(7-25)

The production metrics in equations (7-22)—(7-25) are computed a posteriori to the scenarios tested for each case

study.
7.3.1 Williams-Otto CSTR

The CSTR proposed by Williams and Otto, which is depicted in Figure 5-6 and presented in Section 5.3.2, serves as
a benchmark for MA. Its small size and nonlinearity make it a good example to examine price variation as a function
of the operating conditions.

The model in equation (5-52)—(5-62) captures the complete species dynamics and represents the Williams-Otto plant.
In addition to this plant model, a simplified steady-state model has also been formulated for the Williams-Otto CSTR.

The abbreviated model omits species C and uses the follow two-reaction scheme to approximate the system:

k —8077.6
A+2B>D+E:k, = (2.189 X 108)e( ) (7-26)

K —12438
A+B+D>G:k, = (4310 x 1013)e( Ta ) (7-27)

where all variables are defined as in Section 5.3.2 and the two-reaction scheme corresponds to the following steady-

state material balances:

0=F, — FpX, — ke X, Xp*W — k, X, Xp X, W (7-28)
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0 = Fy — FeXp — 2k, X, X5 * W — k, X, Xp X, W (7-29)

0 = —FgXp + kX, Xp2 W — kX, Xp X, W (7-30)
0 = —FgXg + k X, Xp*W (7-31)
0 = —FxX; — 3k, X, Xg XpW (7-32)

The inputs to the system are u = [Fz  Tg]T and the disturbance is d = [F,]. The nominal input and disturbance values
for the system are Uy, = [6.1 366.15]7 and d,,,, = [1.8]. The inputs have the bounds Fj € [3,6] and T €
[343.15,373.15] and the economic objective is to maximize the profit produced by the product species. This is
denoted using the following minimization (note the negative to convert maximization to minimization) objective

function:
—¢ = Fp(1143.38X,, + 25.92X;) — 76.23F, — 114.34F; (7-33)

The mismatched model in equations (7-28)—(7-32) is deployed using the regular MA and pMA schemes shown in
Figure 7-1 and Figure 7-2, respectively. Since only two inputs are available in this system, the pMA will only ever
adapt with respect to one of them while the MA will adapt with respect to both. These competing schemes are
evaluated on an economic basis using the cumulative profit function shown in equation (7-33) (i.e., PM = R). The
disturbance variable is changed every period (AT) from the distribution d ~ [U(0.3,3)]. All necessary 0" order system
information for MA is assumed to be measurable and sampled every At = 3 minutes = 1 time interval. The
perturbation sizes for these inputs are § = 0.001u, (i.e., 0.1% of the current input value) and they are assumed to last
T = 50 time intervals.

Three test scenarios are performed, which feature forty disturbance realizations d; VI € {1, ..., B}, B = 40, each
occurring every AT sampling intervals, such that the effect of the scheme can be analyzed over a long period of time
and over a wide range of operating conditions.

Scenario 1 has AT = 250. The filter matrices in equations (7-9)—(7-11) are assumed to all use an equivalent filter
constant A. This filter constant is varied for each simulation, which features a different random disturbance sequence
for each filter run. This allows for the performance of the scheme to be assessed across a wide array of disturbance
trajectories.

Scenario 2 sets AT = 250 and varies the filter constant (1). However, this scenario has the same disturbance sequence
for all filters runs. This way the efficacy of the scheme with respect to A can be extricated from the disturbance
trajectory. This filter is important in the performance of the scheme as it affects the speed at which the modifiers are
updated (and can thus inhibit the speed of pMA).

Scenario 3 has varying disturbance periods (AT), a filter constant of A = 0.01, and the same disturbance sequence for
each run. This extricates the effect of disturbance frequency on the scheme as it is designed to work best for increased

frequencies.
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Results from Scenario 1 are summarized in Table 7-1, where the pMA outperforms the standard MA scheme for small
filter constants based on the total process revenue. Aside from A = 0.01, the benefit of the pMA scheme appears to
be increasing as the modifiers are filtered less; this suggests that the filters indeed inhibit the speed at which the
proposed scheme finds an economically preferable operating point. Furthermore, a break-even point between full MA
and pMA occurs between 4 = 0.075 and A = 0.1 whereby full MA is best for higher filtering and pMA for lower.
This likely occurs as increased filtering inhibits the ability of pMA to act quickly, thus eliminating its advantage over
full MA. A conflating factor of this scenario is the random and varying disturbance sequence used for each filter run,
which makes the improvement of the proposed scheme a function of the filter and the specific disturbance sequence;
to extricate the former from the latter, scenario 2 keeps the same disturbance sequence for all filter runs.

Table 7-1: Results for all scenarios in the Williams-Otto case study. %I denotes the percent improvement (difference) in R of
PpMA with respect to MA.

Scenario 1 Scenario 2 Scenario 3
R (%) R ($) R (%) R R ($) R (%)
A %I A %I AT %I
MA pMA % MA pPMA % MA pPMA %

0.01 | 108,988 111,719 2.50 | 0.01 | 106,784| 129,272| 21.06 | 150 | 46,555 | 72,673 | 56.10
0.025 | 113,289 128,535| 13.46 | 0.025 | 113,289| 128,535| 13.46 | 200 | 63,667 | 92,379 | 45.10
0.05 | 127,230| 138,401| 8.78 | 0.05 | 114,611| 128,404| 12.03 | 250 | 106,784| 129,272 | 21.06
0.075 | 147,091| 152,130 3.42 | 0.075 | 116,983| 123,814 5.84 | 300 | 150,076| 115,675 | —23.26
0.1 | 198,767| 190,434| —4.19| 0.1 | 122,488| 117,857| —3.78

The results from Scenario 2 are shown in Table 7-1, whereby the trend in improvement of the pMA over the standard
MA scheme is more clearly appreciable than in Scenario 1 owed to the equivalent disturbance sequence in all filter
runs. This is also illustrated in the time domain by Figure 7-3, where the cost trajectories corresponding to the filter
runs are displayed. As shown therein, the respective process revenues of pMA and MA diverge as time progresses.
This is owed to the accretion of revenue over time and would continue further for longer scenarios. As the filter
constant is increased, the revenue dynamics of the two implementations become increasingly similar whereby the
PMA and standard MA show more overlap. As in Scenario 1, a break-even point occurs between A = 0.075 and 1 =
0.1 whereby the full MA becomes more favourable than the pMA as increased filtering inhibits convergence speed.
This scenario illustrates the merit of allowing the pMA to adapt with respect to a single input. As exemplified by better
performance for lower filter constants, Scenario 2 verifies the notion also observed in Scenario 1 that the advantage

the pMA has over the standard MA is inhibited by aggressive filtering.
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Figure 7-3: Profit accretion profiles for Williams-Otto case study, scenario 2, increasing filter constant.

The results from scenario 3 are also shown in Table 7-1, whereby a trend of increasing improvement of pMA over the
standard MA is shown for runs with decreasing disturbance periods. This is also depicted transiently in Figure 7-4,
whereby the revenue trajectories diverge increasingly as the disturbance period decreases (i.e., increased disturbance
frequency). Note that the plots in Figure 7-4 are compressed/elongated to show the forty disturbance periods in the
same range despite their varying period. As in the previous scenarios, a break-even point between the two schemes
exists between AT = 250 and AT = 300. From this, we can conclude that the input-number regime for this system

from equation (7-21) is as follows:

n = {1 AT < 250 (7-34)

Ny AT >300

Once the disturbance period becomes sufficiently large (i.e., infrequent disturbances), the pMA loses its competitive
advantage of acting quickly as the standard MA has sufficient time to approach and benefit from economically superior
operating points. Nevertheless, for short disturbance periods, the advantage can be significant (e.g., AT = 150 with
56.1% cost improvement); this exemplifies the applicability of the scheme for constantly disturbed systems as

proposed in the outset.
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Figure 7-4: Profit accretion profiles for Williams-Otto case study, scenario 3, increasing disturbance periods.

A couple conclusions can be made from the Williams-Otto case. Firstly, the filters are found to inhibit, or conversely
incite, the pMA scheme to perform better than the MA scheme through quick action. As this is a tuning parameter,
we conclude that pMA should use as little filtering as possible. Moreover, the disturbance period was found to affect
the efficacy of the pMA scheme as quick adaptation is more suitable for quick disturbances.

While the Williams-Otto case-study explored herein is excellent as a benchmark as it has been used in multiple studies,
it contains inherent features that leave some aspects of pMA unanswered. Firstly, it is a two-input system, which is
the bare minimum requirement for pMA. While this number of inputs provides a simple way to assess the system,
most industrial systems have more inputs. In this case study, only one of the two inputs is chosen for partial adaptation;
in other systems, a subset (as opposed to only one) input can be chosen for this task. Moreover, the Williams-Otto
optimization problem does not require any inequality constraints to be adapted; hence, the effect of the operating point

adjustment step was not observed; these aspects will be addressed in the next case study.

7.3.2  Forced Circulation Evaporator

The forced circulation evaporator, depicted in Figure 5-4 and presented in Section 5.3.1, is another nonlinear industrial
system that has been used for multiple model-based control and optimization studies. This system provides a different
perspective from the previous case study as its optima occur at an active constraint, making is a good setting in which
to observe potential constraint violations.

Equations (5-33)—(5-44) represent the mechanistic (i.e., “perfect”) evaporator model. For the purposes of this study,
equation and parameter values were changed to introduce a plant-model mismatch. Accordingly, the mismatched
model uses k¥ = 35.5 (kW - min)/kg in equations (5-38) and (5-44), k;, = 34.6(kW - min)/kg in equation (5-42),

and substitutes equation (5-41) for the following:

142



UA, = 0.16F, (7-35)

Notably, the product composition is subjected to the following constraint to ensure a sufficiently high-quality product

is generated by the evaporator:
X, = 25% (7-36)

The disturbance and manipulated variables for the forced circulation evaporator systemared = [X; F; T;  Tago]”
andu = [Pyoo Faoo F3]7, respectively. The nominal disturbance and input values are d,,,,, = [5 10 40 25]7
and U, = [200 200 50]7. The inputs have the bounds P, o, € [10,400], F,,, € [10,400], and F; € [1,100].

The objective of this system is to minimize the cost expressed as follows:
® = 0.1009(F, + F3) + 60F,,, + 60P; (7-37)

The disturbance variables are changed every period (AT) from individual uniform distributions that serve as multipliers
for the nominal disturbance values i.e., d~[U(0.8,1.2) -5 U(0.8,1.2)-10 U(0.8,1.2)-40 U(0.8,1.2)-25].
All necessary 0™ order system information for MA is assumed to be measurable and sampled every At = 1 minute =
1 time interval; moreover, a varying number of modifier directions are used for different scenarios in the case study.
The perturbation sizes for these inputs are § = 0.001u; (i.e., 0.1% of the current input value) and assumed to last
T = 300 time intervals. Moreover, the system is limited to only ten adjustment iterations j,,,, = 10 of & = 0.01v,_4
such that the next operating point update is not delayed significantly.

A few scenarios were performed for this case study, which features ten disturbances d; VI € {1, ..., B}, B = 10, each
occurring every AT sampling intervals. The disturbance period (AT), number of inputs modified with respect to (n,,),
and scheme (MA vs. pMA) are varied such that the timing and degree of modification can be analyzed. In addition to
the full MA and pMA, a version of the pMA without the operating point adjustment step (blue block of Figure 7-2) is
also deployed and denoted pMA(-); this scheme is impractical in practice but serves to observe the effect of the
adjustment step for active constraints proposed in this scheme. A number after pMA denotes the number of modifiers
being continually refined; for instance, pMA1(-) denotes that a single input is being modified with respect to and that
the constraint adjustment scheme is not being deployed.

The data for this scenario is shown in Appendix D, Supplementary Material for Chapter 7

Table D-1. Figure 7-5 shows the cumulative cost calculated using equation (7-22) of the competing scheme under
various disturbance periods. It should be noted first that the full MA is unable to ever perform a single iteration in the
AT = 2000 case; this occurs as performing n,, perturbations is too protracted and a new disturbance always occurs
before they finish. Moreover, longer disturbance periods entail longer simulation times, thus increasing values of R
with increasing AT, as shown in Figure 7-5. Nevertheless, as observed therein, the full MA outperforms the pMA and
PMA(-) schemes on a cumulative cost minimization basis for all disturbance periods where it can perform an iteration.
On this cumulative cost basis, there seems to be relatively little difference between pMA and pMA(-) as indicated by
their nearly equivalent trajectories. However, this superficial interpretation does not consider constraint violations,

thus the economic analysis should be adjusted to consider process throughput.
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Figure 7-5: Cost accretion profiles for evaporator case study, increasing disturbance periods.

As outlined in the introduction, basic MA schemes do not guarantee constraint satisfaction during modifier refinement;
moreover, as this study uses frequent periodic disturbances, the constraint satisfaction upon convergence property is
not observed since convergence is not reached. Table 7-2 summarizes the cumulative time at constrain violation as
defined in equation (7-23) while Figure 7-7 displays the throughput for all competing schemes as defined in equation
(7-24). Additionally, the constrain trajectories for all scenarios can be found in Figure D-1 (Appendix D). In terms of
times at constrain violation and throughput, the analysis favours the partial schemes until the disturbance period is
increased to AT = 4500. Regardless of the disturbance period, the pMA schemes are shown to always outperform
their pMA(-) counterparts on a constraint violation and mass processed basis. This is owed to the constraint adjustment
step, which ensures that the pre-perturbation operating point abides with the product purity requirement in equation
(32); thus, the pMA iterations produce above-specification product while their pMA(-) equivalents may not. This
effect of the adjustment step is further evident when comparing pMA to full MA whereby the former also outperforms
the latter on constraint violation and throughput bases. As illustrated in Table 7-2, the cumulative time at constraint
violation as defined in equation (7-23) is highest for the full MA scheme for all scenario except where the disturbances
are sufficiently spaced at AT = 4000. With more frequent disturbances, even the pMA(-) without adjustments
outperforms the full MA on constraint satisfaction; thus, the quick action given by the partial adaptation alone is

observed to have the effect of staying in constraint violating points for less time.
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Table 7-2: Cumulative time (min) at constraint violation t.,;,; for evaporator case study, increasing disturbance periods.

AT = 2000 | AT = 2500 | AT = 3000 | AT = 3500 | AT = 4000 | AT = 4500
MA - 240 302 328 310 281
PMA2 148 176 233 237 249 286
PMA2(-) 165 207 251 255 255 320
PMAI 119 146 205 255 3222 349
PMAI(-) 167 209 254 303 364 411

Analyzing a subset of constraint trajectories from Figure D-1 (Appendix D) more closely, Figure 7-6 displays the
results for the best ()M A1) scheme, its counterpart without the adjustment set (pMA1(-)), and the full MA scheme for
AT = 2500. In these trajectories, the result of the constraint adjustment step is more clearly appreciable. In several
time instances (e.g., T~0.7,4.6,7.6), the adjustment step is activated to bring the composition above the quality
constraint. The effects of the adjustment step with respect to constraint satisfaction are accrued over time, thus
generating the operational differences between pMA and pMA(-) schemes observed in in Table 7-2; these will

continue to accrue as the process operation evolves in time.

AT = 2500
— MA
— pMA1(-)
---- pMA1
-9
S
o~
X |
1
0 2 4 6 8 10

T (disturbances elapsed)
Figure 7-6: Product quality trajectory for AT = 2500 scenario in evaporator case study.

Figure 7-7 illustrates how the number of inputs modified with respect to (1,,) can impact the efficacy of the pMA
scheme. For short disturbance periods (i.e., AT = 2000, AT = 2500, and AT = 3000), the pMA1 (i.e., n, = 1)
scheme are best. This occurs as the disturbance happen frequently enough to require more iterations of the pMA that
are facilitated by the pMA1 schemes. For intermediate disturbance periods (i.e., AT = 3500 and AT = 4000), the
pPMA2 (i.e., n, = 2) scheme is the best. In this case, the disturbances happen less frequently as to allow for more

iterations of the pMA schemes performed in pMA2; however, they still occur frequently enough as to not favour the
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full MA scheme. Furthermore, for long disturbance periods (i.e., AT = 4500), the full MA scheme dominates as

enough time between disturbances occurs for the full MA to arrive near the plant optima.

le4a AT =2000 AT = 2500 AT = 3000

— MA
6 - 1 = pMA2(-)

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

T (disturbances elapsed) T (disturbances elapsed) T (disturbances elapsed)
Figure 7-7: Material production profiles for evaporator case study, increasing disturbance periods.
Figure 7-8 summarizes the aggregate effect of cost (Figure 7-5) and throughput (Figure 7-7) as defined in equation
(7-25) (i.e., PM = Py,,4). As with the throughput, a clear pattern emerges whereby the pMA schemes are superior to

the pMA(-) schemes, which are superior to the full MA scheme. Thus, for the evaporator case, the following regimes

are established for the number of inputs modified with respect to:

1 AT < 3000
n,=1{ 2 3500 < AT < 4000 (7-38)
n, AT >4000
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Figure 7-8: Cost per unit weight for evaporator case study, increasing disturbance periods.

In contrast to the William-Otto scenario, the evaporator exemplifies the potential economic importance of producing
constraint-adhering product as affected by increased production. Moreover, we observe the effect of different number
of input modifications more concretely and its relationship to the disturbance period.

While pMA was shown to outperform the traditional MA scheme in the case of frequent periodic disturbances, many
MA variants could have similar benefits to pMA under these conditions; one such variant is dMA (Costello et al.,
2016). As noted previously, dMA can choose multi-input directions for adaptation but requires the one-time local
computation of a parameter/input sensitivity matrix. While pMA can only use single-input adaptation directions,
sensitivities are computed locally; thus, a potential tradeoff is present between the schemes, making them apt for
comparison.

After determining the suitable number of modifier directions (i.e., n, = 1) using the n,-determination algorithm for
a disturbance period of AT =2000, several dMA scenarios were performed for the same ten-disturbance sequence was
imposed on the pMA. The results from the dIMA approach can be found in Table 7-3 whereby each scenario differs in
the point around which the model sensitivity matrix is identified (as noted in Costello et al., 2016; this matrix is
required for determining the privileged dMA directions U,.

Table 7-3: Performance of dMA scenarios with sensitivity matrix calculated at different operating point, n, = 1, and AT =
2000.

Scenario Sensitivity matrix point R (%) m(kg) P,roa ($/kg)
1 d=[60 98 379 232]" 6926.08 38404.97 0.180
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w=[350_ 200 40]"
— T
2 d= 1[14;1 [3%'7 Zg’g'l 502];?" ol 631430 24860.15 0.254
— T
3 d ‘u[5='1[ . 696'7 12:{;'0 93]9'9] 7004.76 38474.18 0.182
— T
4 d ‘155'_1 [333'9 20307'050?2] 6724.96 33030.24 0.204
— T
5 d - [=5[21 488'8 13439'895]2;}] 7024.16 38483.14 0.182
— T
6 d ‘155':6 [32; ;5'332?'5] 6418.26 28182.64 0.228
— T
7 d ‘u[‘fl[32946 1‘;3'7 53]21;.8] 6928.07 36818.15 0.188
— T
8 d ‘u[5_'8[2 188'8 13‘;0 412]%3] 6477.56 30165.92 0.21
dMA average - 6727.27 33552.42 0.204
pMA - 5827.37 30852.88 0.189

As shown in Table 7-3, and Figure D-2 (Appendix D), the performance of the dIMA scheme on the evaporator is highly
dependent on which point the sensitivity matrix is computed through the direction it chooses. Compared to the pMA,
which is not dependent on this matrix, the dMA can perform moderately better (e.g., scenario 1; ~4.8% improvement)
or significantly worse (e.g., scenario 2; ~34.4% deterioration). Note that pMA does not rely on a parameter
distribution being known a priori, thus this assumption is alleviated by the proposed approach. Moreover, the potential
variability in performance owed to the sensitivity matrix point is abated by using pMA. On aggregate, pMA
outperforms dAMA (~7.4% improvement in using pMA over the average in dMA), as shown in Table 7-3. Conversely,
the dMA is shown to be able to outperform pMA if the sensitivity matrix is computed at an adequate point; thus, there
is a tradeoff in the two schemes between average and variability in performance. As discussed above, this is mostly

owed to the use of multi-input directions compared to the ability to update directions online.

7.4. Summary

MA is a commonly used method to abate model uncertainty, but its gradient estimation step can cause delays in the
update of operating points. The pMA scheme presented in this chapter only modifies with respect to a subset of the
inputs chosen using the modified cost metric. This subset is refined as the pMA scheme progresses such that the
modifications are chosen to have the largest effect on the process economics. Additionally, pMA employs an operating
point adjustment step, which drives constraint-violating systems into constraint adhering regions prior to the
perturbation step. The proposed scheme was deployed on the Williams-Otto plant where it was found to be superior
to the full MA for small disturbance periods and small filter constants; thus, leveraging modifier refinement speed to
its economic advantage. Moreover, the pMA scheme was deployed for an evaporator case study with active constraints
whereby it was shown to increase material throughput through decreased constraint violation compared to the full
MA. Increased throughput was shown to also result in improved process economics. The evaporator case also
exemplified how the best number of modifiers is dependent on the disturbance period such that different numbers of
modifiers can be used in different disturbance regimes. With respect to dMA, pMA was found to lead to an average

performance improvement owed to its lack of dependence on the initial sensitivity matrix. Conversely, some dMA
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scenarios were found to outperform pMA if the initial sensitivity matrix was computed around certain operating points;

thus, there is a tradeoff in robustness and performance between the two methods.
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8. Conclusions and Recommendations
This PhD thesis has developed various practical algorithms for the online model-based economic optimization of
processes under uncertainty as well as economic operating schemes for processes that will contribute to sustainable
development. In an increasingly competitive world, the ability to update processes online gives operators an edge in
to addressing external disturbances and incentive changes. The core ideas developed herein revolve around RTO,
which continually updates process operating conditions with the assistance of ancillary layers (i.e., PE, MPC, MHE).
Two principal approaches are taken for steady-state economic optimization of processes: the two-step RTO and MA.
In two-step RTO, uncertain model parameters are updated prior to the economic optimization step; to this end, the
quality of set points is dependent on the fidelity of the parameter estimates. Approaches like DR have been developed
to help in the PE step; however, these aim to make measurements consistent with the model and are not selective of
measurements that may be inhibiting PE performance. In the MA approach, bias and gradient-correction (i.e.,
modifiers) terms are used to reconcile the optimization model with the plant. The gradient-correction terms require
perturbation to the plant in their estimation procedure, thus delaying the economic optimization of the plant. This
delay is especially salient in frequently disturbed systems and approaches like directional MA have been proposed to
modify a with respect to a subset of inputs and alleviate this delay. However, no approach in the open literature uses
a purely economic criterion in the input selection process and no approach has been designed to correct for constraint
violation in the modifier refinement process.
In addition to the algorithmic gaps defined above, practical gaps remain in the economic optimization of sustainable
many systems; in particular, this work concerns itself with PCC and RAS. While PCC has been widely studied from
many perspectives, the online economic optimization literature is scant. Some RTO and EMPC approaches have been
proposed but neither has considered the wide range of economic factors in PCC. Moreover, no PCC RTO scheme has
been fully implementable beyond simulation owed to lack of state estimation and a method to deal with model
uncertainty. Likewise, no online economic optimization schemes for RAS exist, primarily owing to the lack of process
models to use in an optimization program. For this reason, no effort has been afforded to formulating an economic
function and very little attention has been paid to treating RAS using a process controls/operations approach.
This PhD thesis sought to advance the corresponding fields of the gaps mentioned above by providing efficient and
practical algorithms for RTO under uncertainty as well as using economic incentives to operate novel processes
cheaply and incite their further development. The principal conclusions gained from this work are outlined as follows:
e A robust NMPC for a post-combustion CO2 capture absorber was presented in Chapter 3. The robust
operation of the absorber under parametric and process uncertainty using the robust NMPC controller was
compared against that of nominal and plant-model mismatched NMPCs for various disturbance rejection
scenarios. The controllers were assessed in a simulated plant with plant-model mismatch to elucidate the
benefits of the multi-scenario approach used in the design of the robust NMPC. As expected, the
computational demands of the robust NMPC controllers were found to be increasing with increasing size of
uncertainty regions and increasing number scenarios considered by the controller. Moreover, a larger
uncertainty region was found to exhibit more conservativism in the control moves leading to offset.

Nevertheless, it was found that for short simulation times the robust NMPCs generally led to better average
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performance and less variability in performance across plants in which the controllers were tested. Further,
for long simulations, where error can accrue over time; the performance of a robust NMPC controller was
found to be significantly better than that of the NMPCs with no robustness.

A novel operational scheme was proposed and implemented for PCC plants in Chapter 4. This includes RTO,
NMPC, and MHE layers. The RTO was found to provide consistent steady-state cost improvements across
all scenarios tested. These cost improvements always exceeded the energy penalty imposed on the upstream
power plant by the PCC plant; resulting in net gains despite any additional energy expended. In terms of
resource used, the MEA cost was found to be large following disturbance rejection and when operating
dynamically. Conversely, the MEA cost was found to be low when operating at the RTO-defined set points
while allowing for low reboiler duty to be necessary. CO2 sales were found to significantly lessen the process
cost in all scenarios. From an operational standpoint, the MHE was found to provide acceptable estimates to
the NMPC, leading to good control performance that resulted in economically attractive operating points.
Moreover, the NMPC was observed to perform well under an array of large disturbances through its use of
the makeup streams and its coordination of control objectives.

Chapter 5 proposed a novel low-variance parameter estimation (lv-PE) scheme applied to RTO for noisy
processes. The proposed scheme uses the information content (/C) metric, as well as establishing parameter
bounds for filtering; these novelties reduce the variability in parameter estimates over time and eliminates
poorly estimated parameters, respectively. The proposed scheme was implemented in two case studies,
namely a forced circulation evaporator and the Williams-Otto CSTR. The evaporator displayed the ability of
the proposed scheme to avoid constraint violations by one to two orders in magnitude, while the Williams-
Otto case study showed the improvement yielded by the proposed scheme on process economics ranging
from ~4 to 88%, depending on the scenario. Although the benefit provided by the lv-PE to each case study
was different, both were observed to result in significant reduction in parameter variation owing to the lv-
PE/RTO of one to two orders of magnitude.

Chapter 6 presents the first estimation scheme for the RTO of PCC systems under uncertainty. Both physical
properties and external disturbances are estimated through the approach proposed in Chapter 5. Moreover,
the 1v-PE algorithm is used for uncertainty quantification to formulate an rRTO. In both estimation cases
(physical property and disturbance), the 1v-PE is shown to improve the quality of the set points achieved via
their economics; this is compared with respect to traditional PE as well as PE with DR. The rRTO formulation
was also found to result in modest cost savings with a large reduction in set point variability, which would
reduce control burden.

The pMA scheme presented in Chapter 7 uses a directional approach to speed up the gradient estimation step
in MA. This is suitable for frequent periodic disturbance where modifier convergence may not be achieved.
A secondary constrain-adjustment problem is also presented to abate constrain violations and an algorithm
is presented to determine the number of adjustment directions for a given disturbance frequency. The

proposed scheme was found to provide up to ~56% improvement with respect to the standard MA scheme
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8.1.

in the Williams-Otto CSTR for short disturbance periods. Moreover, pMA was also found to outperform

standard MA and dMA scheme in an evaporator case study.

Recommendations for Future Research

Despite the advances outlined in this thesis, gaps remain in the literature that should be addressed. Furthermore, some

of the works presented herein have opened avenues for new areas of inquiry. These are as follows:

There remain a few issues to be solved before an approach using the NMPC in Chapter 3 becomes tractable.
Namely, a reduction in CPU time is necessary for online implementation of the NMPCs presented in this
study. This computational effort reduction can be achieved with fast NMPC algorithms, which use model
reduction (Yu et al., 2015) and advanced step strategies (Zavala and Biegler, 2009). However, model
reduction strategies may not be able to capture process nonlinearities and may not be able to consider
parametric uncertainty in the same level of detail as presented in this study. Thus, advanced dynamic
optimization decomposition techniques may be considered to reduce the computational effort.

Likewise, as shown in this work, the robust NMPC controllers do not have perfect performance and result in
some set-point offset. A natural extension of the multi-scenario-based robust controller to further reduce this
conservatism is the design of a multi-stage robust controller (Lucia and Engell, 2012).

The single-layer approach should also be considered by through the PCC objective function proposed in
Chapter 4 through deployment of EMPC.

The significant effect of the PCC stripper reboiler in terms of cost was observed in this study through a
simplified model. This finding warrants further investigation as to how the explicit inclusion of the reboiler
could aid the control layer in conjunction with MEA makeup manipulation as proposed herein. Additionally,
the loss of power plant efficiency resulting from steam used in reboiler heating also needs to be studied.

In PCC there exists a trade-off between changing the set point and the dynamics that ensue as a result, which
are often expensive. These economic trade-offs and the computational effort involved should be compared
to those frameworks that consider the process economics in the transient domain, i.e., EMPC. By adapting
the novel economic function proposed herein to a dynamic optimization problem that considers transient
costs in an approach like EMPC, a more comprehensive understanding of the connection between dynamics
and process cost could be established. Moreover, steady state and dynamical operational approaches can then
be compared such that the best PCC operational schedules and schemes can be determined for different power
plant operational scenarios.

Corrosion is also assumed to be negligible in the present study but is an important factor preventing the
uptake of PCC. A suitable control approach that explicitly models corrosion as noted in Rua et al. (2021b),
could potentially mitigate these effects by considering corrosion minimization as an additional operational
incentive; this will be a topic of future work.

The mechanistic PCC model used in this work was developed using data from a pilot plant and, accordingly,
the operating conditions, dynamics, and cost reflect this scale. In the future, a scale-up of this model must be

performed to assess the operational advantages of the scheme in an industrial system. The results obtained
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from this work also reflect the current economic incentives as manifested in the prices used. With scaled-up
conditions as well as future process developments that change the economic incentives (e.g., energy-efficient
solvents, increased carbon prices, decreased energy prices), the process can be re-optimized and reassessed
through the economic framework developed in this work, thus resulting in an optimal operation that can
simultaneously capture COz at low operational costs.

The concept of IC to pre-process measurements and generate parameter bounds could be adapted for a state,
parameter, or disturbance estimation procedure (or a joint estimation procedure). Moreover, the respective
estimators could also be adapted as dynamic problems to address issues such as parameter drift or frequent
unmeasurable disturbances.

As noted in Section 5.2.2, another direction for future work is the extension of the current Iv-PE methodology
for joint estimation variance reduction and GED.

The pMA scheme proposed in Chapter 7 has been implemented using the traditional perturbation method;
however, gradients acquisition can be made more efficient through dual MA. Future works will also
investigate the joint use of pMA and dual MA, which could lead to further benefits in speeding up modifier
refinement. The pMA scheme can be inhibited by filtering, this limits its applicability to low noise
environments; thus, an alternative noise abatement scheme must be proposed to make the scheme suited to
noisy measurements (e.g., the Iv-PE scheme in Chapter 5).

Furthermore, pMA in Chapter 7 was only tested in systems whereby preliminary runs may be performed for
tuning; this may not be achievable or desirable in all systems. Accordingly, online tuning and tuning budget
sizing for pMA requires further attention. The case studies presented in Chapter 7 were selected such that
they provide clear illustrations of the benefits and limitations of the proposed scheme. However, industrial
plants are usually more complex; future works will thus deploy pMA in high-dimensional constrained

chemical plants (i.e., those involving many inputs and constraints).
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Appendix A - Supplementary Material for Chapter 4

Supplementary Figures
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Figure A-2: Recycle stream correlations for a) MEA b) water, assuming nominal water content in the flue gas

169




314.1 A
= \H(
¥ 314.0 1
g
'\ u
: ' —— plant (MHE)
313.9 A : — set point
1
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
(b)
T
140000 -
z
3 130000 -
S I
7 :
120000 A :
I
T T T T 1 T T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
t[h]
Figure A-3: Scenario A plots of a) tank temperature and b) cooling duty. Dashed lines denote RTO executions.
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Figure A-4: Scenario B plots of a) tank temperature and b) cooling duty. Dashed lines denote RTO executions.
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Figure A-5: Scenario C plots of a) tank temperature and b) cooling duty. Dashed lines denote RTO executions.
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Figure A-6: Controlled variables in MHE and no-MHE cases for Scenario C. Dashed lines denote RTO executions.
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Table A-1: Nominal stream conditions for the present model.

Recycle Fresh Fresh Tank Flue gas Vent gas | Rich
stream MEA water outlet solvent
(lean
solvent)
Temperature (K) | 366.50 298.00 298.00 314.00 319.71 314.06 318.43
Flowrate (mol/s)
MEA 3.2098 0.0002 0.0000 3.2100 0.0000 0.0000 3.2098
CO2 0.9800 0.0000 0.0000 0.9800 0.7020 0.0427 1.6393
Water 27.780 0.0000 0.2000 27.980 0.1000 0.2340 27.846
N2 0.0000 0.0000 0.0000 0.0000 3.2100 3.2100 0.0000
Total 31.9698 0.0002 0.2000 32.170 4.0120 3.4869 32.6951
Table A-2: Validation cases and conditions for the present model against data from Harun et al. (2012).
Composition (mol/mol)
Case # Temperature (K) | Flowrate (mol/s) Lean Flue gas
solvent
Current | [42] Lean Flue gas | Lean Fluegas | LL Water CO2 Packing height

study solvent solvent (m)
1 32 314 320 29.0 3.52 0.279 0.013 0.177 5.00
2 43 313 327 29.3 5.28 0.231 0.022 0.170 7.80
3 28 313 321 58.2 7.07 0.287 0.016 0.165 5.85
4 39 313 328 60.0 7.02 0.228 0.016 0.169 6.10

Table A-3: Effect of MHE on control and economic performance for scenario C.

SSE SSE Performance
Controlled variable

(MHE) (no-MHE) loss (%)
%CC (%) 5240 4975 5.327
CAZ“E’X‘ (mol/L) 2.747 x 108 2.732 x 108 0.549
htenk (m) 1.704 1.628 4.668
Economics Cost (MHE) Cost (no-MHE)
18h
f Cprocessdt ($cAD) | 4790 4636 3.322
0
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Preliminary RTO Design

The study herein employs the model and nominal controller used in Chapter 3 and proposes a novel RTO formulation
to employ the two-layer approach for the PCC absorber. The RTO is accompanied by a nonlinear MPC (NMPC), both
of which use a mechanistic model of the PCC absorber. To the authors’ knowledge, this is the first work that makes
use of an RTO/NMPC formulation for the PCC absorber. In addition to the RTO/NMPC scheme, a Kalman filter (KF)
is used to provide state estimates to the layers, another novelty for the PCC absorber. Moreover, this study also
investigates the effects of time-varying carbon tax on the RTO/NMPC under transient changes in the operation of the
COz capture absorber unit, which has also not been considered previously. Such carbon taxes are becoming

increasingly prevalent as COz emission deterrents and their prices may fluctuate subject to market conditions.

Scheme Formulations

In this work, the two-layer approach was used to maintain the PCC absorber unit near its economic optimum.
Moreover, a KF is used to provide state estimates from measurement. The RTO and NMPC are both formulated as
nonlinear optimization problems (NLPs). These are employed in conjunction to affect the plant as depicted in Figure

A-7.

RTO KF
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Figure A-7: Arrangement of exchange of information between the RTO, NMPC, KF, and the plant

RTO Formulation

The aim of the RTO in the operation of a process is to minimize the operating cost by computing an economically

optimal set point at steady state. The RTO designed for the absorber model is formulated as follows:

m?in PMEAmé‘OZ,out (52) + PCOZ mgoz_out (/-72) + Pe M/;Jump (/-72)

s.t. (A-1)
fs&yud =0

ul<u<ut

where X € R™, y € R™, u € R™, and d € R™ are the estimated state, controlled variables, manipulated variable,

and disturbance vectors, respectively. mlcozlout(tn/s) and mgozrout(tn/s) are the liquid and gas outlet CO2 mass

flowrates, respectively, which are contained in the state vector X. Moreover, W, (kWh/s) is the pump power
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needed to drive the inlets into the absorber, which is contained in the state vector X. Further, y, =¥ € R is the

optimization variable that is passed down as the set point to the NMPC framework, as depicted in Figure A-7. In the
case of the PCC absorber column, the optimization variable is the CO2 removal percentage, defined as in equation (3-
13).

In this study, the economic objective was formulated as the sum of three terms as shown in (6). These correspond to

MEA degradation cost (Pyg,4), the carbon tax cost (P¢o,), and the cost of electricity (F,). The specific rates for these

economic terms are Py g, = 2.99 $CAD /tn CO, captured (adjusted for inflation and converted to SCAD from Singh
et al., 2003); Pcp, = 50 $CAD/tn CO, emitted (Canada.ca, 2019); and P, = 0.066 $CAD/kWh (AUC, 2019),
respectively. The MEA degradation cost is incurred owing to the addition of fresh MEA to make up for solvent losses
in the process. The carbon tax cost is imposed by state regulatory bodies for releasing COz into the atmosphere. The
aforementioned carbon tax rate serves as a nominal value; however, the effect of price variations of this tax will be
studied. Lastly, the electricity cost comes from pumping the solvent from an upstream holding tank to the absorber.
s R™ X R™ — R™ X R™ represents the set of mass, energy balances and algebraic equations shown in Chapter
3. These are solved as a steady-state optimization problem for the RTO.

In the case of the absorber model, the states are phase component concentration and temperatures as stated in Chapter
3 and the manipulated variable for the absorber is the solvent flowrate into the column (F},). u! and uP € R™ are the
lower (10 mol/s) and upper (80 mol/s) bounds of the manipulated variable, respectively. These bounds are the same
as those used in the NMPC framework and reflect the physical limitations of the controller. While these are not
necessary to execute the RTO, they are included in the formulation to ensure that the set points determined by the
RTO are reachable by the controller. This ensures that the economically optimal set points are feasible by the overall
two-layer scheme.

The steady state model was discretized into ten finite elements in the axial domain using finite differences. Model
validation showed that the implementation of the absorber model was in good agreement with previous
implementations of the model. For the purposes of this study, the RTO is executed at a fixed 100 NMPC sampling
intervals (~21 minutes). Preliminary simulations found that this was sufficient time for the NMPC to reach the
setpoints dictated by the RTO for the sizes of disturbances in this study; thus, no steady-state detection measure was
used. Furthermore, this study assumes that the model parameters do not change substantially during operation, thus

no data reconciliation step is implemented. These two issues will be addressed in future work.
KF Formulation

The axially discretized absorber model has 110 states, which are required to execute the RTO and NMPC. The NMPC
deployed herein is the nominal realization of the controller described in Section 3.2. However, it is unlikely that all
the states will be available for measurement during the operation of the absorber. Accordingly, a Kalman filter (KF)
was used as a state estimator in the proposed scheme. In the current KF scheme, access to all temperatures, gas
concentrations, as well as inlet and outlet (boundary) states is assumed, totalling to 74 states. Contrastingly, all interior
liquid states, totalling to 36, are estimated. The measured states z, € R"z, where 2z, C x;, are used to predict all of

states X, € R™. Additionally, randomly sampled process (w, € R™x) and measurement (v, € R™z) noises were

174



introduced to the plant. These noises introduce uncertainty and plant-model mismatch into the system. The nonlinear
mechanistic model was used to perform a priori state predictions, while the discretized equations were symbolically

*Mx for the KF to yield a posteriori estimates. The initial state

differentiated to produce the Jacobian matrix J; € R™*
covariance matrix Pggp € R™*"x the process covariance matrix Q,xr € R™™x, and measurement covariance
matrix R, € RN2*Nz were defined as follows:

Pogr = O-PO,Kdeiag(xl,nomz' Ry xnx,nomz)

Qexr = UQt_szdiag(anomz: 'xnx,nomz)

Rikr = O-Rt,FKZdiag(Zl,nomz' Ry an,nomz)
where X; o Vi{1, ..., } and z; ,,,, Vi{1, ..., n, } are the states and measurements during nominal operation, described
in the following section. op, xr = Og, kr = 1le5 and oy . = le~® are the corresponding matrix weights. The complete
KF scheme is denoted as KF: R"z — R™ for brevity in Figure A-7. As with the NMPC, the KF was executed every

sampling interval (12.5 s).
Results

Three test scenarios were implemented to assess the performance of the RTO/NMPC implementation. The scenarios
were subjected to the series of disturbances d depicted in Figure A-8. These disturbances impose different sizes and
directions of steps every 100 NMPC sampling intervals and were chosen to represent substantial variation around the
nominal inlet flue gas flowrate (from 0.8 to 1.2 times its nominal value of 4.012 mol/s), which can be considered as
the main disturbance that will affect the operation of this unit. The test scenarios included observing the effects of a
fixed and a varying carbon tax; the fixed price tax case used a price of 50$CAD /tn CO, emitted, while the varying
carbon tax cost features subsequent 5$CAD steps up from the base price of 50$CAD /tn CO, emitted as displayed in
Figure A-9.

The test scenarios, presented next, correspond to 1) no RTO implemented (only regulation by NMPC to the initial
nominal set-point), 2) RTO /NMPC framework (Figure A-7) with a fixed carbon tax, and 3) RTO/NMPC framework
with a varying carbon tax (Figure A-9). In all scenarios, the disturbance followed the trajectory shown in Figure A-8
whereby it is at its nominal value for 25 sampling intervals (~5 minutes) and a step change is introduced every 100
sampling intervals (~21 minutes) thereafter. The inlet solvent flowrate (manipulated variable) and percent carbon

captured (controlled variable) results for these scenarios are shown in Figure A-10 and Figure A-11, respectively.
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The scenarios were assessed on the basis of their process cost from the first to the final disturbance, these results are

displayed in Table A-4. The costs were calculated using the expression employed in the RTO objective function shown
in (6). This instantaneous price rate is multiplied by the time interval lengths to give a total process cost comprised of
the MEA degradation, carbon tax, and electricity cost over the operating period considered in this study. The total cost
is also broken down into its aforementioned sources. The results for each scenario are discussed next.

Table A-4. Process cost for scenarios tested ($CAD).

Scenario Total | Tax | MEA | Electrical
Cost | Cost | Cost Cost
No RTO (fixed tax) | 13.46 | 631 | 7.13 0.01
No RTO (varying | 14.64 | 7.50 | 7.13 0.01

tax)
RTO (fixed tax) 11.98 | 6.31 | 5.67 0.01
RTO (varying tax) 13.23 | 7.51 | 5.70 0.01

NMPC Only (no RTO)

The NMPC was implemented without the RTO to regulate the set point subject to the disturbances shown in Figure
A-8. The 86.12 %CC set point in this case corresponds to the steady state operation of the absorber using the nominal
inlet flue gas fractions reported in Harun et al. (2012). The objective of this case was to establish a “do-nothing”
baseline cost, in which no set point updates based on process economics are considered.

It can be observed in Figure A-11 that the controller is able to successfully regulate to the set point for all except one
of the disturbances introduced. This exception occurs in the 5% disturbance interval (from ~5300 seconds to ~6600
seconds) and corresponds to a large +18% step-up in the disturbance variable with respect to its nominal value, as
shown in Figure A-8. During this period, Figure A-10 shows that the controller holds the manipulated variable at its
upper bound (80 mol/s) and despite this, the set point appears to be unreachable as the %CC reaches an asymptote in

Figure A-11. This unreachable set point occurs because it becomes increasingly difficult to achieve the same %CC
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for flue gas flowrates that are largely increased due to the upper bound of the manipulated variable. For this upper
solvent flowrate bound and concentration, the solution has been saturated with COz and has no remaining absorption
capacity. Typically, the flue gas flowrate serves as a manipulated variable for smaller disturbances (i.e. £10%). Larger
disturbances in the system would be handled by a downstream reboiler or upstream MEA make-up stream that would
enrich the concentration of the MEA solvent fed to the absorber, thereby increasing the CO- absorption capacity. It is
important to note that the issue of unreachable set points could have been avoided by executing RTOs when each
disturbance was introduced. This will be shown in the next section.

Using the results from the no-RTO scenario, the process costs were calculated for the fixed and varying tax rates. As
noted in Table A-4, the cost of this experiment is about 8.77% higher in the varying cost case than the fixed cost case.
This increase comes entirely from carbon tax. The increased cost occurs as the fixed cost case considers only the
minimum cost in the varying cost case. This disparity would widen with longer periods of operation where the cost

can accrue over time.

NMPC and RTO

The NMPC tested in the previous section was implemented along with the RTO for fixed and varying carbon taxes.
From Figure A-10, it is clear that the NMPC is not required to perform as aggressive of control actions in the
RTO/NMPC scheme compared to the no-RTO scheme. This is shown in the manipulated variable, which is at bounds
substantially less than in the no-RTO scenario. Furthermore, it can be observed in Figure A-11 that the controller
successfully tracks the new set points supplied by the RTO before the next disturbance enters the system for all
intervals. In fact, steady state is generally reached quickly, resulting in short transition times. Generally, the control
profiles (Figure A-10) for both the RTO/NMPC cases (fixed and varying carbon tax) look similar in shape; however;
it can be observed that the RTO selects slightly different removal set points in Figure A-11 for the 5" and 6%
disturbances (from ~5300 s to ~7800 s). The 5" disturbance corresponds to a combination in the highest carbon tax
rate (70$CAD) and disturbance (4.814 mol/s) entering the process. The confluence of these factors results in the
largest RTO set point disparity between the fixed and variable tax cost cases. The 6 disturbance is another large step
down in both the flue gas flowrate (-20%) and carbon tax rate (-40%). Aside from these two periods, however, there
is not a marked difference between the set points determined by the fixed and varying tax RTOs. This suggests that
the RTO is insensitive to carbon tax and disturbance variable changes unless they are large.

The RTO scenario with varying carbon tax incurred significantly (10.43%) more cost than the fixed carbon tax
scenario This is to be expected as the tax is increasing from its nominal value, which was considered in the fixed tax
case. Nonetheless, the economic benefit of employing the RTO is evident in Table A-4, which shows cost reductions
of 11.00% and 9.63% for the fixed and varying carbon tax cases, respectively, with respect to the no-RTO cases.
Moreover, as shown in Table A-4, the RTO in both tax cases gains most of its economic benefit by decreasing the
MEA degradation cost, which is reflected in the similar tax cost incurred in these cases. This reinforces the idea that
the RTO chooses to reduce costs via the MEA degradation cost and is insensitive to the carbon tax rate unless it is
subjected to large changes. These results show economic differences over the short operational time of ~130 min. This

would be even further apparent over a longer operational period of hours or days, which a PCC system would
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experience in real operation. Moreover, this study considers the operation of a pilot-scale unit, the magnitude of these

costs would be much higher in industrial-scale.

Summary

An RTO/NMPC implementation for a PCC absorber is presented. The implementation of a nonlinear mechanistic
dynamic model used to formulate an RTO and an NMPC in tandem is a novelty for this process. The RTO
simultaneously considers carbon taxes, energy prices, and solvent degradation; this is the most complete economic
function used in online optimization of PCC to date. The proposed scheme leads to improved steady state process

economics across disturbance and price change scenarios.

179



Appendix B - Supplementary Material for Chapter 5
Payback Period

Decomposing the RTO period revenues as in Section 5.2.1 for a single RTO period, the following expressions can be

constructed for a system in which the set point is changed at t = 0:

Ry =P(T; —7) + R, (B-1)
And a system where the set point remains the same t = 0:

Ri =P le (B-2)

where Ry and R; ($) in the LHS denote the revenue after and before the set point change, respectively. Py and P;
($/time) on the RHS denote the steady-state profit/price rates before and after the set point is changed, respectively.
T (time) denotes the transient time and R, ($) denotes the transient revenue. Ty (time) denotes the total operating
time.

If the transient between set points (R;) is expensive or less profitable, the revenue obtained when changing the set

point can be compared to the revenue obtained if the system had remained at the old set point:

Ry —R; = P{(T; — 1) + R, — P.T; (B-3)
As such, the equivalence (i.e., break-even) point occurs when:

0=P(T; —7)+R,—PT; (B-4)

which allows for the payback period Tpqypqck(time) to be expressed as:

_ Pt — R,
Tpayback = Tf = W (B—S)

as Py, P;, R;, and 7 become known after the system reached its new set point, this expression can be used for the

prediction of the length of time for a set point change to be economically justified.
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Supplementary Data

Table B-1: Model parameters for the forced-circulation evaporator. * denotes nominal value(s) for uncertain parameter(s).

Table B-2: Model parameters associated with the Williams-Otto CSTR as implemented in this study. * denotes nominal value(s)

Parameter Value
Mass holdup H=20kg
Unit conversion constant K =4kg/kPa
Condenser  heat  transfer
] UA, =4 kW /°C
coefficient*

Heat capacity of water

C, = 0.07(kW - min)/(kg - °C)

Latent heat of evaporation

(water)

Kk = 38.5 (kW - min)/kg

Latent heat of evaporation

(saturated steam)

K, = 36.6 (kW -min)/kg

Price of electricity (pumping)

P, = 0.001009 $/kg

Price of steam

P, = 0.60 $/kg

Price of cooling water

P, = 0.60 $/kg

for uncertain parameter(s).

Parameter

Value

Mass holdup

W = 2104.7 kg

Pre-exponential factor 1

A; = 1.6599 x 106 s71

Pre-exponential factor 2

A, =72117 x 108 s71

Pre-exponential factor 3

A; =2.6745 x 1012 571

Nominal activation energy 1* E, = 6666.7K
Nominal activation energy 2* E, =83333K
Nominal activation energy 3* E; =11111K

Price of substrate A

P, = 0.7623 $/kg

Price of substrate B

P, = 5.5542 $/kg

Price of heating tank

P, =0.01$/(s.K)

Sales price of product D

P, = 11.4338 $/kg

Sales price of product E

P, = 0.2592 $/kg
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Dynamic Transition

The control and estimation structure deploys a nonlinear model predictive controller (NMPC) and moving horizon
estimator (MHE), respectively. The sampling interval is assumed to be 12.5 seconds to capture quick process
dynamics and allow for good feedback control. The NMPC and MHE employ the dynamic mechanistic model (fy)
outlined in the supplementary information along with a least-squares objective; for brevity, the respective formulations
are omitted herein. As depicted in Figure 4-1, the NMPC layer uses the manipulated variables to regulate the PCC
plant towards the RTO-defined set points, while the MHE uses the available measurements to estimate states as
feedback to the NMPC; together these layers to achieve closed-loop dynamic operation of the PCC plant. As it pertains
to the assessment of the control scheme under different disturbance and parameter estimates, the sum of squared errors

with respect to the true set point is used here to quantify control performance:

n
2
SSEy = ) (v = ¥5*) (1)
i=1

r

where y and y&™¢ denote a controlled variable and its set point, respectively, as described in Chapter 4. In particular,

the dynamics of the key performance variables %CC and C{E% will be analyzed here as they will primarily dictate

the removal performance of the absorber.

Dynamics Example (Scenario B)

From a dynamic performance standpoint, the transition between PCC periods 14 and 15 were observed as illustrated

in Figure C-3 for the key performance variables and Figure C-4 for ancillary variables. The true flue gas CO:2

composition (i.e., disturbance) in period 14 is ycfé:e = 0.154. In period 15, the true disturbance value is ygolzew =

0.164 and the estimated values are ygéZ;E = 0.137 and ygéz:iv_DE = 0.163. Accordingly, the 1v-PE leads to a

significantly lower relative estimation error of ~0.6% (~0.09 mol% in absolute terms) while the regular PE leads to
an estimation error ~16.4% for this period. As noted above, higher estimation error results in significant losses in
steady state economics over long periods of time but also deterioration in control performance as shown in Figure

C-3.
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Figure C-4: Dynamic performance of ancillary controlled and manipulated variables in scenario B.

Moreover, as defined in equation (13), the sums of squared errors are provided in Table C-1.

Table C-1: Dynamic tracking metrics for transition between RTO periods 14 and 15.

PE Iv-PE

SSEyycc 2709 93.01

SSECAt/IagLAc 21.64 x 10° | 9.962 x 10°

The SSE for %CC and C}HY is two and one order of magnitude lower for the Iv-DE scheme than the DE scheme,

respectively; this is attributable to the improved accuracy of the ygoh;e estimate for lv scheme. The lower estimation

error results in the final operating conditions in Figure C-3a and b being closer to the true set points (i.e., less offset)
in the controlled variables as affected by the NMPC and MHE whereby better disturbance estimates are provided to
the dynamic mechanistic models used for control and estimation, respectively. Figure C-3c¢ shows the dynamic cost
for the competing schemes in which both schemes subject the system to temporary increases in cost through increased

MEA makeup (Figure C-3e trajectory coincides with that of Figure C-3c). In the control scheme with Iv-PE, the
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elevated cost occurs through a single rapid (~1.25 hr) peak in MEA makeup, while the elevated cost in the PE/control
scheme come from three consecutive long peaks in the MEA makeup. Both makeups eventually go to effectively zero
as the steady state makeup burden is mostly achieved by solvent regeneration in the stripper-side reboiler in Figure
C-3d.

While the Iv-PE RTO chooses to increase reboiler duty, the DE RTO chooses to decrease it. This results in lower
recycle COz concentration, thus lower lean loading (i.e., COz content in the lean solvent) in the Iv-PE control scheme.
Moreover, Figure C-3f shows that the Iv-PE control scheme also effectively adds zero water at the new steady state,
while the PE control scheme continues adding water to the system, thus diluting the lean amine solution. In aggregate,
these factors lead to the higher removal rate achieved by the Iv-PE control scheme despite a lower MEA concentration
in the buffer tank. The higher removal rate and higher carbon sales rate offset the higher reboiler duty used by the lv-
DE scheme with a low annualized steady-state operating cost of 50,224 $CAD/yr compared to a higher
51,994 $CAD /yr achieved by the PE.

Dynamic Example (Scenario C)

Dynamically, the transition between PCC periods 5 and 6 were observed as illustrated in Figure C-5. The flue gas CO2

composition (i.e., disturbance) in period 5 is ygé;‘e = 0.170 while the disturbance value in period 6 is ygé;‘e = (0.188.

In this scenario, the PE must estimate the model parameters given in Chapter 6 (i.e., Oppom =
[0.381 0.677 0.974]7) to pass to the NMPC and MHE. The Iv-PE yielded an estimate of ?o‘p,,,,_PE =
[0.380 0.345 0.983]7 while the regular PE yielded §p_p5 =10.363 0.236 1.136]". These estimates
correspond to percent errors of [0.2 49 0.9]7 and [4.7 65 17]7, respectively, thus the Iv-PE scheme improves
estimate quality across all parameters. It should be noted that the estimate for 6, = y¢(, is poor in both cases,
suggesting that the sensitivity of the measurement predictions to this parameter is low. This occurs as the mass transfer
model for COz is more elaborate and makes less simplifications than that of the other species; thus, it is less reliant on
the activity coefficient for prediction accuracy. Moreover, mass transfer of COz is dictated greatly by the enhancement
factor that is considered in the mass transfer coefficient calculation [9], not in the equilibrium pressure as effected by
the activity coefficient. Nevertheless, the control performance is found to be adequate, as shown in Figure C-5 for the

key performance variables and Figure C-6 for the ancillary variables.
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Figure C-6: Dynamic performance of ancillary controlled and manipulated variables in scenario C.

The sums of squared errors and dynamic costs are provided in Table C-2.

Table C-2: Dynamic tracking metrics for transition between RTO periods 5 and 6.

PE Iv-PE

SSEycc 4687 986.3

SSECAt/IagLAc 6221 x 10% | 1312 x 10°

Figure C-5a show the improvements in control performance of %CC, which is the key performance variable in this
system, whereby the 1v-PE control scheme can track the set point almost exactly in the given time while the regular
PE scheme remains with a mismatch. This is also reflected in the SSEq, - in Table C-2, which is an order of magnitude
lower for the 1v-PE control scheme. Moreover, while there remains significant offset for €y, in Figure C-5b, the

tracking performance is also significantly better in the Iv-PE control scheme as reflected in SSE cLank. As with the

previous scenario, the dynamic costs are mainly driven by the MEA makeup as indicated by the matching profiles in

Figure C-5c and Figure C-5e, where the 1v-PE control scheme uses significantly less MEA, leading to a more economic
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transient. A less aggressive control approach is also reflected in the water makeup Figure C-5f, whereby the lv-PE
control scheme peaks briefly while the regular PE control scheme applies bang-bang control for a small period of
time. The more efficient control exhibited by the 1v-PE scheme is facilitated by an increase in the reboiler duty (Figure
C-5d) to a higher level that the regular PE scheme whereby less makeup is required as a result.

Eventually, both schemes’ makeups (Figure C-5e and f) effectively approach zero as the systems approaches steady
state, this is accompanied by a commensurate drop in process cost (Figure C-5¢), whereby the final steady state costs

for the 1v-PE and PE scheme are 46,863 $CAD /yr and 47,886$CAD /yr, respectively.
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Appendix D - Supplementary Material for Chapter 7

Table D-1: Data for the evaporator scenario.

Mean processing cost M($/kg) Mass processed m x 103(kg)

T MA pMA2+ | pMA2 | pMALl+ | pMALI MA pMA2+ | pMA2 | pMAl+ | pMAL
2000 | N/A 654 728 566 566 N/A 481 535 473 617
2500 724 613 694 540 540 524 601 695 590 778
3000 764 644 691 593 593 603 723 769 694 845
3500 690 579 614 622 622 789 969 1,029 792 940
4000 600 558 573 669 669 1,057 1,215 1,236 857 998
4500 526 535 595 644 644 1,413 1,267 1,401 966 1,168
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Appendix E - Economic Model Predictive Control of a RAS System

Global consumption of seafood has undergone a fivefold increase over the past sixty years (FAO, 2022a). This has
prompted advancements in seafood production as wild fisheries are unable to meet the surging demand because of
stagnating wild fish populations. Accordingly, aquaculture, the process of human-reared farming of fish, has become
an increasingly important means of production, comprising nearly half of worldwide fish capture in 2020 (FAO,
2022a).

Typically, RASs assume that the operational variables of the units outlined above are constant, including feed rates to
the fish tank, solid removal fraction, ammonia conversion in the biological reactor, and oxygen flows to the aerators
and fish tank. This continues for a fixed amount of time until the fish have reached maturity and are removed from
the tank in a batch manner. After removal, the tank is refilled with juveniles, thus starting a new batch. Despite their
benefits, RASs has been shown to be expensive as their controlled environment requires increased energy and resource
(e.g., oxygen) use; thus, limiting their use to certain stages of the fish production cycle (e.g., hatcheries; D’ Agaro et
al., 2022). To this end, little attention has been paid as to how to optimize the economics of RAS systems in real time.
Process systems engineering (PSE) provides systematized approach to generate optimal production strategies for
chemical and biological processes. RASs can be modelled as batch processes whereby the products (fish) are processed
(grown) for a finite amount of time until they are ready for harvesting. Moreover, RASs encompass the three
interacting units outlined previously. In this context, PSE process control techniques have been applied to RASs (e.g.,
Dos Santos et al., 2022; Kamali ef al., 2023). The former study implemented an economic control scheme for RAS
while the latter implemented a regulatory model predictive control scheme complemented with a state estimator. PSE
practitioners have also employed model-based economic optimization approaches for various chemical and energy
systems (e.g., Mendiola-Rodriguez and Ricardez-Sandoval, 2022). However, online economic optimization has only
been deployed once in the RAS literature (Dos Santos et al., 2022). While this constituted a step forward in the PSE
for RAS literature, fish growth was not included in the economic model and a simplified process model was used in
the control scheme. Mechanistic process models deployed with an economic optimization approach can therefore
provide valuable decisions that influence fish growth dynamics and balance sales profits with operational costs. To
use PSE tools, many of which are model based, a RAS production model is necessary. Dynamic models of each of the
key process units have been developed in the literature. Moreover, fish growth and mortality models are also available.
Recently, Kamali et al. (2022) combined mechanistic process, fish growth, and fish mortality models to evaluate RAS
performance under several disturbance scenarios.

Aquaculture has traditionally occurred in fenced or caged environments where fish and feed waste build-up occurs.
The wastewater produced has prompted ecological and sustainability concerns owed to its disposal and resultant
makeup water consumption. To allay these issues, the recirculating aquaculture system (RAS) has been proposed. The
basic layout for RAS consists of three processes as depicted in Figure E-1: the fish tank, where fish are grown and
fed, makeup water is introduced, and fresh oxygen is diffused; the solid removal, where wastewater from the fish tank
is filtered to remove solid particles; and the biological reactors, where the water is aerated and dissolved waste is
treated with microorganisms to maintain water quality for recycling into the fish tank. This RAS layout can

significantly reduce water usage in fish rearing while maintaining fish population health.

190



AN
F # @@g => »
Qmakeup - > <R <X

4
- -
P

'g -~ v 0 hd
-t ™ e » 3

-

00%°5% 0% %0 ¢
BR2 BR1

moz moz

Figure E-1: RAS schematic. Clockwise from top left: fish tank, solid removal drum filter, biological reactors.

As per the literature reviewed above, a gap exists for a rigorous model-based economic optimization scheme applied
to aquaculture that considers fish growth and mortality within its decision-making. As such, we propose the use of an
economic model predictive control (EMPC) scheme for the operation of a RAS; the model developed by Kamali et
al. (2022) will be the basis of the present work. The EMPC proposed uses a novel economic function, which is the
first to account for fish sales, utility, and energy usage simultaneously. Another novelty in the current work is the
determination of RAS batch length through profit-tracking.

This study is structured as follows: firstly, we outline the RAS model; secondly, we detail the EMPC formulation;

thirdly, we test the proposed scheme across several scenarios; and, lastly, we highlight conclusions.

RAS Model

The dynamic mechanistic model presented by Kamali et al. (2022) was adapted for the present work. It consists of a
fish tank (FT), two fixed-bed biofilters (FBB1, FBB2), two moving-bed bioreactors with aerators (BR1, BR2), and a
drum filter; these units are shown in Figure E-1. The work herein assumes rainbow trout (Oncorhynchus mykiss) is
being produced. The model was validated in Kamali et al. (2022) where it was found to be consistent with experimental
RAS data from Fernandes et al. (2022). For brevity, only the most important features of the RAS model are outlined
herein; more details about this model can be found in Kamali et al. (2022). The key assumptions made in developing
the model are as follows:

1. The fish tanks are modelled as perfectly mixed reactors.

2. The solid removal is assumed to operate at steady state with constant efficiency.

3. The RAS model does not consider an energy balance; hence, temperature cannot be controlled and is treated

as a disturbance.

As described in Kamali et al. (2022), the components being modelled in the system are: soluble inert organic matter
(IOM), readily biodegradable substrate (BDS), particulate inert organic matter (POM), slowly biodegradable substrate
(SBS), heterotrophic biomass (BH), ammonia oxidizing bacteria (AOB), nitrite oxidizing bacteria (NOB), particulate
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products arising from biomass decay (PP), nitrite nitrogen (NO,), nitrate nitrogen (NO;), total ammonia nitrogen
(NH), soluble biodegradable organic nitrogen (SND), particulate biodegradable organic nitrogen (PND) and alkaline

components (ALK). These comprise the set of components 1.

Fish Tank

As noted above, a tank to grow fish is one of the RAS units. The changes in fish weight over time are modelled as

follows:

aw
W = bFfiSh - abFﬂsh — KWwn (E_l)

where W(g) is the weight of a single fish and Fy;4,(g/day) is the daily food intake of each fish. a(g/g) is the fraction
of food assimilated, b(g/g) is the efficiency of food assimilation, K(g/day) is the catabolism coefficient, and n is a
weight/catabolism exponent. The size of fish population is modelled through the following mortality model:

dN

Gr = "MinsN (E-2)

where N is the total number of fish in the tank and M;,;(s") is the instantaneous mortality rate. In addition to fish
growth and population, waste components build up in the fish tank such that the water becomes contaminated. The

concentration of a given waste component in the fish tank is modelled as follows:

dz;
VFTd_tl = QFT(Zi,in - Zi) +w; — Ly (E-3)

where Z; and Z; ;,,(kg/kg) are the bulk and inlet concentrations of components i € I, respectively. Vpr(m®) and Qpp =
Qmakeup T Qrecirculatea(M*/day) are the fish tank volume and inlet flowrate, respectively. w;(kg/day) and L;(kg/day)

are the excretion and feed loss rates of components i € I, respectively.

Waste Production and Solid Removal

Fish and feed waste constitute the total waste production in RAS. The waste dynamics are as follows:

dw;

e

=Fyi(1 — €055) — @; (E-4)

where 7 (days) is the residence time of the fish digestive system, which is treated as a well-mixed reactor. F(kg/day)
and ¢4, are the total system feeding rate and feed loss fraction, respectively. y; denotes the component-specific was

fraction of i € I. To remove the waste, a 40 um drum filter is assumed to work at a 48% removal efficiency.

Biological Reactors

The biological reactors work to convert compounds that are toxic into inert compounds. They are modelled as follows:

dS/ _ oo j (E-5)
Vi dar Qj(si,in -5 ) + Vi
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where j € {BR1,BR2}. S/ and S/

L'in(g/m3) are the bulk and inlet concentrations of components i € [ in unit j,
respectively. V}-(m3) and Q j(m3/day) are the bioreactor volume and inlet flowrate, respectively, rij (g/m’-day) is the

reaction rate of component i € I.

Aeration and Oxygen Addition

As show in Figure E-1, aeration occurs in the two BRs. Additionally, pure oxygen is introduced in the FT to
supplement the aeration. Both these processes assist in reoxygenation and remove carbon dioxide from the system.
Accordingly, the oxygen and carbon dioxide concentrations in units j € {FT, BR1, BR2} are modelled as follows:

j

0 j j j j -
Vi—t = Q(So,m = $0,) — 10, + mp, (E-6)
J
co j j j j -
I 7 dt = Q; (Séoz,in - Séoz) + 7”c]oz - méoz (E-7)
where S éz (kg/m®), S, éz'in (kg/m®), 7‘0].2 (kg/day), and méz (kg/day) are the bulk concentration, inlet concentration, oxygen

consumption rate, and fresh flowrate of oxygen, respectively, in unit j. Moreover, Sgoz(kg/m3), Séoz'in(kg/m3),

rcjoz (kg/day), and méoz (kg/day) are the bulk concentration, inlet concentration, carbon dioxide production rate, and

removal flowrate of carbon dioxide, respectively. The carbon dioxide is removed as the water becomes increasingly

aerated.
Model Parameters and Implementation

The dynamic model presented in equations (E-1)—(E-7) is denoted henceforth as f. The complete RAS model consists
of 63 states. Model parameters and algebraic equations are outlined in Table E-1; the latter are part of f but were not
detailed for brevity and can be found in Kamali et al. (2022). The inputs to each algebraic variable are also stated in
Table E-1. Moreover, the temperature dependence, which is crucial to the present study, occurs in these algebraic

variables (e.g., rcjoz is a function of temperature T (°C) and fish weight ).

For the RAS control system proposed herein, the manipulated variables available for control are u =
[F Qmakeup m(F)Z mgfl mgfz]T; these are the feeding rate, water makeup rate, oxygen diffusion rate, and
aeration rates, which are outlined with their corresponding unit in Figure E-1. The oxygen addition manipulated
variables correspond to the méz value for their respective unit in (E-6). While feed and oxygenation rates affect fish
health directly through metabolism and respiration, water makeup impacts water quality. The sampling interval of the
RAS is At = 0.1 days. The time-discretized dynamic optimization problem solved for the EMPC proposed in this
work constitutes 6,569 variables and 6,519 constraints when discretized using the backward finite difference method.
For a single sampling interval, the EMPC problem is solved in an average of 245 seconds; as the computational time
is much less than the sampling interval, the control scheme is implementable. Note that the current work assumes full

state accessibility (i.e., all feedback states are measurable).
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Table E-1: Model parameters and algebraic variables; f(-) denotes variable dependencies

Description Value
a Fraction of food assimilated (g/g) 0.4
n Body weight exponent 0.81
Ver FT volume (m?) 5.5
Vir1Var2 BR volume (m?) 0.4
Eloss Feed loss fraction 0.05
T Feed residence time (days) 0.211
b Efficiency of food assimilation fw)
Frisn Daily food intake of one fish f(F, T,W)
K Catabolism coefficient f(n
L; Component waste fraction fF
M, Instantaneous mortality rate (s™!) fw)
Tc:joz CO:z reaction rate (kg/day) f(T, W)
Tij BR reaction rates (g/m*-day) Ji¢ Sij )
rojz Oz reaction rate (kg/day) f(T, W)
Vi Waste fraction of component i f@

EMPC Formulation and Deployment

Measurements: X ¢oeqpack

l t—t+ At

EMPC Plant Disturbances: d;

Control actions: Uz

Figure E-2: EMPC exchange of information with plant.

Model predictive control (MPC) is a commonly used method to regulate the operation of variables in closed-loop
process systems subject to feasibility constraints. MPC takes the form of an optimization problem that is solved at
each sampling instant (At). This problem employs a process model to predict future process behaviour and obtain

optimal plant control actions to correct for future set point deviations. The MPC formulation is solved at every
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sampling interval, whereby the process model is updated via its initial conditions and the optimal control problem is
re-solved with the updated state.

EMPC is a variant of MPC that retains the internal predictive model but foregoes set point target tracking for an
economic objective (Ellis et al., 2014). EMPC is often implemented as depicted in Figure E-2 wherein it receives
measurements (or state estimates) as initial conditions to solve a dynamic optimization problem. The EMPC supplies
the plant with manipulated variables, thus regulating plant behaviour towards the achievement of an optimal economy.
Note that the EMPC does not use a constant set point like the traditional MPC scheme; rather, its control actions are
inherently economical and need not be at steady state (Ellis et al., 2014). The EMPC is solved at every sampling
interval At such that it constantly obtains feedback from the plant and predicts further into the future, thus making the
scheme closed loop. In the present study, the EMPC problem at time t is formulated as follows:

C
2
max | @it = ) Ibucill

upyiVie(l,..,P

i=1
Fphi Wiy 0) = X 1i1q ie{0,..,C—-1} (E-8)
Xe = xfeedback
Xy Uy) <0 i €{0,..,C}
ul <u,; <ub i €{0,...,C}

where x € R* and u € R* denote the process states and manipulated variables, respectively. Moreover, 8 € R?
denotes the time-invariant model parameters (i.e., in Table E-1). ¢: R* X R* — R denotes the economic objective
function, which generates economic prediction given the predicted states and manipulated variables. f: R* X R* x
R? - R* denotes the process model, which maps the states and manipulated variables to the future states on the
horizon C. u! and u" € R* denote the lower and upper bounds, respectively, for the manipulated variables, which
define the search space for the optimization problem. g: R* X R* — R9 denotes the process constrains that must be
satisfied by the EMPC solution. Xfeeqpack € R* denotes the state measurements (or estimates), which serve as initial
conditions to the dynamic optimization problem. The RAS model f is discretized using backward finite differences
with a resolution 0.1 days. The control and prediction horizons are equivalent at 5 days (i.e., C = 50); this was based
on Kamali et al. (2022).

In addition to the economic objective ¢, the EMPC formulation (E-8) minimizes the rate of change of the manipulated
variables (i.e., Au; = u; — u;_4) in the objective function such that aggressive control actions are penalized. The
weighing matrix (K) for this term ensures that the dynamics in the manipulated variables are balanced with the
economic objective. The tuning matrix for the present RAS system K = diag(1e=2 1e 2 1e3 1e 3 1e™3)
was determined using preliminary tuning simulations whereby each term was adjusted individually to yield smooth
control actions; each element in this matrix corresponds to a manipulated variable in the vector u defined in Section
8.1.5. The bounds on the manipulated variables imposed on (E-8) provide the feasible region for the EMPC dynamic
optimization problem. These bounds are adapted from Kamali et al. (2022) and are as follows:

0<F(g/day) <3

(E-9)
0< Qmakeup(m3/day) <3
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0= méz(kg/day) <1

The economic function in (E-8) is posed as a profit maximization problem in this work. It is formulated as follows:
¢ = ¢n_¢)( (E'IO)

where ¢, and ¢, are the profit and cost elements of the process economics, respectively. For the present RAS system,

the profit is directly related to fish production; accordingly:
b = PfishWt+CNt+C (E-11)

where P, (8/g) is the wholesale price of the fish being produced (rainbow trout in the present study). The total live

fish mass in the RAS system at the end of the horizon W, N, -(kg) is maximized. The endpoint (i.e., final) fish mass
at time C is considered as the fish only become products at the end of the batch. The cost element of the economic

function is as follows:

C
by =ht ) (Pme + Po,mfl ey ). PeDk,m-) (E-12)

i=0 keE
where P($/g), Py,($/g), and F,($/kWh) denote the feed, oxygen, and electrical prices, respectively. Only oxygen
input into the FT is accounted for in the cost function as the BRs receive their oxygen via aeration. D, ;,; denotes the
energy duties for k € E where E is the set of all energy-consuming units (i.e., water pumping, water treatment,
aeration, feed distribution, fish handling, fuel, and gas; D’Orbcastel et al., 2009). These utilities and energy are
consumed throughout the RAS process in contrast to the fish, which are only capitalized on at the end of each batch.
Accordingly, the path summation (as opposed to the endpoint) is considered in the objective function and minimized
accordingly. The prices considered in this study are listed in Table E-2.
Table E-2: RAS prices.

Term Price Source
Prish 7.35 $/kg fish FAO (2022b)
P 1550 $/tn feed D’Agaro (2022)
Py, 40 $/tn oxygen Dorris et al. (2016)
P, 0.20 $/kg fish D’Orbcastel et al. (2009)

Despite the RAS system being a batch process, it is subject to disturbances and has a long batch length (i.e., in the
orders of months); as such, an online method such as EMPC is best suited over formulating a single optimal control
problem that considers the complete batch length. However, this implementation does not allow for the batch length

to be considered explicitly as a decision variable. Instead, batch length is determined by tracking the cost over the
time elapsed (i.e., R = ¢, (T) — fOT ¢, (t) dt). R is expected to increase initially as fish are quickly growing from

juveniles provided that the fish remain in an acceptable environment for growth during the entire batch operation.
Subsequently, as fish growth slows down, the profit stagnates as a case of diminishing returns begin to occur.

Eventually, the profit will reach a maximum where the production costs (i.e., oxygen, feed, energy) begin to dominate;
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and R begins to decrease. The time at which the maximum occurs is therefore chosen as the batch length (tpq¢cn) of

the RAS process.

Results

Five test scenarios involving the RAS system presented in Section 8.1 are considered in the present study. All scenarios
begin by operating the RAS system at their constant nominal manipulated variables, i.e., U,gm =
[2 3 02 04 0.4]" corresponding to u. This constant operation is maintained for fifteen sampling intervals
(i.e., 1.5 days). The EMPC, tasked with determining the optimal trajectory in the manipulated variables (u), is
deployed for three constant temperature scenarios at 10°C (scenario 1), 15°C (scenario 2), and 20°C (scenario 3).
These temperatures are chosen based on the RAS operating range from Kamali et al. (2022). Moreover, scenario 4
involves an initial RAS operation at 20°C followed by a temperature step disturbance to 15°C at t = 80 days. This
mid-batch disturbance is imposed such that the EMPC can adjust its operating policy on-line; such a disturbance could
occur owing to seasonal ambient temperature changes. Seasonal changes are considered instead of diurnal changes as
small daily fluctuations will negate over the timespans simulated herein. Lastly, scenario 5 maintains all manipulated
variables at their nominal values until a cost profit maximum is observed. The key process variable and manipulated
variable trajectories are displayed in Figure E-3 and Figure E-4, respectively; Table E-3 provides a summary of results.
Firstly, it should be noted that scenario 1 is not productive. As shown in Figure E-3a and Figure E-3b, respectively,
the fish decrease in weight and the highest population decline is observed. This is because the 10°C temperature is
too cold for RAS operation as was noted in Kamali et al. (2022). Nevertheless, the EMPC acts to mitigate losses by
imposing low feed conditions (Figure E-4a) and low oxygen diffusion (Figure E-4c) ; the former two settle at non-
zero values to slow fish mortality. As this is a poor environment for fish growth, the maximum profit is achieved at
the beginning of the batch (Figure E-3c). Accordingly, it is best not to operate the RAS in these conditions as it can
only negatively impact the health and growth of the fish population. In this scenario, the batch length is effectively
zero and the profit correspond to the sales cost of the juveniles (Table E-3).

Table E-3: Final batch results.

Scenario Temperature tparcn (days) | R ($)
1 10°C 0 740.18
2 15°C 92.1 958.61
3 20°C 83.4 905.41
4 20 - 15°C 101.2 912.83
5 20°C (Unom) 4.9 748.98
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Figure E-3: Key process variable trajectories for scenarios tested.

In contrast to scenario 1, scenarios 2 and 3 result in acceptable environments for fish growth. Both scenarios have
maximum feeding (Figure E-4a) and maximum water makeup (Figure E-4b) to encourage fish growth. Moreover, the
oxygen diffusion in both scenarios (Figure E-4c) increases as the batch continues; this is to supplement the maximum
aeration to the biological reactors (Figure E-4d. and e.) such that the oxygen requirements of increasingly large fish
(Figure E-3a) are met. In a typical RAS operation, oxygen diffusion would be kept constant; thus, time-varying
diffusion as shown herein has not been previously considered. Despite the similarities in scenarios 2 and 3, it is
apparent that the former is a better environment for fish growth. With similar fish mortality rates (Figure E-3b),

scenario 2 can result in ~6% higher final batch profit over scenario 3 with only an additional 8.7 days of batch length
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(Table E-3, Figure E-3c). With respect to the starting price, scenarios 2 and 3 represent substantial valorisation in the

fish, ~30.5% and ~22.3%, respectively; thus, justifying the RAS operation.
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Figure E-4: Manipulated variable trajectories for scenarios tested.

Scenario 4 begins via the trajectories of scenario 3 until the occurrence of the temperature disturbance. At this point,
the oxygen diffusion (Figure E-4c) is decreased below the level of scenario 2. The disturbance also causes the batch
to be operated for a prolonged length of time as the profit (Figure E-3¢) undergoes an upward inflection such that its
maximum is delayed. As a result, the batch length of the scenario 4 (Table E-3) is longer that those of the constant
temperature scenarios while only achieving small (~0.8%) improvements and large deterioration (~4.8%) with
respect to the scenarios 3 and 2, respectively. Accordingly, it can be concluded that the temperature for RAS is best
kept constant with tight control if possible. Finally, scenario 5 presents a counterfactual to scenario 3 in which the

manipulated variables are kept constant at their nominal values as is typically done. As shown in Table E-3 and Figure
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E-3 (omitted from Figure E-4 for simplicity); this results in only slight valorisation of the fish. Thus, the RAS is only
profitable for 4.9 days before utility costs begin to dominate, after which continuing operation is not economically

advantageous.

Summary

The present study proposes an EMPC scheme for RAS, which considers fish production profits as well as utility costs.
The EMPC was applied to various scenarios and was always found to make economic decisions even in the case where
conditions were not suited for fish growth. In suitable conditions, the EMPC was able to significantly increase fish
profit through weight increase and low mortality rates while minimizing utility usage. In general, fish weights were
only increased to ~80 g, which is too small for wholesale. This aligns with the current main use of RAS in the early
fish life cycle (D’Agaro et al., 2022), whereby fish are graded by size and moved to traditional aquaculture
environments to minimize cost.

As shown in Kamali et al. (2020), the RAS model contains uncertainties such that it does not fully match experimental
data. As such, an approach to address uncertainty in the EMPC proposed herein is necessary. It is suggested that a
batch-to-batch implementation of MA is used for this system and compared to a dynamic parameter estimation
procedure. Future works will also incorporate a dynamic energy balance within the current RAS model; accordingly,
dynamic temperature control can be potentially implemented and further enhance the economics of this system. Other
disturbance scenarios should also be considered for the present EMPC (e.g., aerator failure). Moreover, the
relationship batch length and fish growth should be analysed in a multi-batch context such that the trade-off between
resuming an old batch and beginning new batch can be understood. The simultaneous selection of design and control
decisions (e.g., Rafiei and Ricardez-Sandoval, 2020) for RAS should also be explored as a potential avenue to improve
regulatory and economic performance. Finally, the current work is limited to rainbow trout and can be applied to any

aquaculture-reared fish.
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