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Abstract

The Radio Frequency (RF) Power Amplifier (PA) is the main consumer of power in a
wireless transmitter. Energy efficient PA design aided with circuit simulation tools requires
accurate nonlinear models of the power transistors that lie at the heart of the PAs. This
thesis proposes a novel methodology for extracting and implementing power transistor
behavioral models from load-pull measurements. These models provide a valuable design
aid to power amplifier designers looking to simulate the nonlinear behaviour of their RF
circuit designs based on nonlinear characterizations of the power transistors.

Two types of power transistor behavioural models are proposed in this work. The
first type is called the time-domain poly-harmonic distortion model (TD-PHD) and it
targets the nonlinear multi-harmonic response of power transistors at a fixed fundamental
frequency. This type of model allows the PA designer to simulate how the harmonic
impedances of their designed RF matching networks effects the large signal behaviour of
the PA. The TD-PHD model is shown to be able to replicate the time-domain waveforms
of a power transistor under multi-harmonic source and load-pull characterization.

The second model is a generalization of the first model to target a set of non-uniformly
spaced fundamental frequencies and is called the time-domain multi-tone distortion model
(TD-MTD). Time-domain multi-tone distortion models that are extracted from load-pull
measurements spanning multiple carrier frequencies are shown to recreate the load-pull
performance contours of interest to PA designers. As a demonstration of TD-MTD models,
two distinct behavioural models for the main and peaking transistors of a two-way Doherty
PA design are extracted from load-pull measurements and the resulting PA design is then
simulated and shown to accurately reflect the measured performance of the fabricated PA
as a validation of the usefulness of this modelling methodology for high power amplifier
design.
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Chapter 1

Introduction

This thesis will aim to provide power amplifier designers with a methodology to develop
simulation models for the power transistors they use in their designs. These models will
be based on Radio Frequency (RF) measurements of the power transistors. These mea-
surements are performed in similar electrical conditions to how the power transistor will
operate when it is functioning as part of a power amplifier design. The objective of this
research was to propose a methodology to produce nonlinear models of a power transistor
from the RF measurements of those devices. These models are called behavioural models,
since they only model the RF behaviour of the device as measured, directly.

The large signal characterization of a high power transistor involves the RF measure-
ment of the power transistor over varying loads and bias conditions, requiring calibrated
narrow-band pulsed-RF measurements at different power levels and at different frequen-
cies. The datasets produced from power transistor RF characterization can often get very
large. One of the main objectives of this research was to find the simplest form a be-
havioural model should have that can both capture the nonlinear dynamics of the power
transistor and uniquely fit the behaviour of the device over the entirety of the measurement
dataset. We tried to avoid developing a modeling strategy that relies on using a guided
characterization on a fixed measurement grid in order to extract the different model pa-
rameters, and instead focused on being able to generate models from arbitrary spaced and
randomly-generated load-pull data. The incentive here is to develop a methodology to
convert already existing load-pull data of RF power transistors into behavioural models
that can be used to design RF power amplifiers in the circuit simulator.

While all the nonlinear behavioural models that have been proposed in the literature
have been described in the frequency-domain, that is, they describe the behaviour of the
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signal at the device ports at discrete frequencies, our research found that a simpler model
construction can be used to describe the nonlinear behaviour if a time-domain model is
used. This time-domain modeling approach lends itself pretty well to future generalization
to multi-tone and modulated signal stimulus as the analysis and simulation of the long-term
memory-effects rely heavily on time-domain methods. Another aspect of power transistor
modeling that this research set out to tackle was the development of models that can track
the so-called hard nonlinearities of RF power transistors without using look-up tables,
while providing a robust converging model in a nonlinear circuit simulation environment.

There are two main contributions in this thesis. The first contribution is the pro-
posal of Time-Domain Poly-Harmonic Distortion (TD-PHD) models. These models were
inspired by the state of the art poly-harmonic distortion models that were described in
the frequency-domain, but were reformulated to be described in the time-domain. Poly-
harmonic distortion models target the multi-harmonic behaviour of a power transistor at a
fixed fundamental frequency. Part of this contribution is the methodology to post-process
the measurement dataset in order to prepare it for the proposed behavioural model extrac-
tion. The other part of this contribution is the implementation of the extracted model in a
harmonic balance circuit simulation, an important type of nonlinear RF circuit simulation
used for power amplifier design. The second contribution of this thesis is the proposal
of Time-Domain Multi-Tone Distortion (TD-MTD) models. These models are a general-
ization of the TD-PHD models to allow for a model extraction from measurement data
spanning a non-uniformly spaced frequency grid. This generalization allows the power
amplifier designer to take their load-pull data spanning multiple frequencies as is, and fit
a single TD-MTD model to the load-pull data such that the simulation model behaves
the same way in the harmonic balance simulation of the power amplifier circuit as it does
in the measurement of the fabricated power amplifier. With the TD-MTD model (and
also similarly for the previous TD-PHD model) this end is achieved without imposing any
additional restrictions on the measurement dataset used to extract the model, that is, a
model can be extracted from measurements that are irregularly spaced in the measurement
space.

In this thesis, a demonstration of the TD-MTD model for the design of a two-way
Doherty power amplifier is used as a validation of the large-signal design application of
the proposed behavioural model. The comparison of the simulation and the measurement
was also done for the same power amplifier design with a compact model available from
the power transistor vendor and it is shown that the prediction of the TD-MTD model for
the Doherty power amplifier performance is no worse than a compact model. It should be
stressed that the purpose of behavioural models is not to replace compact models, but to
fill in the modeling gap when compact models are not available. The device used for the
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demonstration in this thesis was a mature LDMOS RF power transistor device with a ma-
ture compact model. Often power amplifier designers are working with power transistors
that are recently designed or are from vendors that don’t have readily available compact
models for their power transistor devices. The availability of load-pull measurement plat-
forms allows power amplifier designers to fully characterize the RF nonlinear performance
of their power transistor devices at the frequencies of interest, in addition to the ability to
use this captured data to create a simulation model that can be used to design a power
amplifier around that power transistor.

In the implementation of both the TD-PHD and TD-MTD models presented in this
thesis, artificial neural networks (ANNs) are used to implement the multi-variate nonlinear
function at the heart of the model. While non-ANN versions of the TD-PHD and TD-
MTD model were theorized and implemented in the work towards this thesis, the ANN
implementation that is mainly presented in this thesis allows the tackling of the hard non-
linearities of the RF power transistor, and the structure of the smooth bounded activation
functions of the artificial neurons that make up the artificial neural network allow for the
generation of a model that has robustly converges to the solution within the iterations
of the nonlinear circuit simulator. The contributions of this thesis include use of ANNs
to tackle the hard nonlinearities, but also the structure of the model, the time-delays be-
tween the auxiliary signals used in the model, the implementation of the models in the
frequency-domain simulator, and how the measurement data has to be post-processed for
model fitting.

The models proposed in this thesis are extracted from load-pull measurements of RF
power transistors. These load-pull measurements can either be real measurements of phys-
ical power transistors, or it can be simulated load-pull measurements. A compact model
can be simulated in a harmonic balance simulator and the simulation result can be stored
as load-pull data that can be used to extract a behavioural model. Using this method, one
can extract a behavioural model to fit the simulated large signal behaviour of a compact
model. In this technique the compact model will be the device under test, and the harmonic
balance simulator will emulate the load-pull measurement of the power transistor device.
One reason to use this method when evaluating behavioural models is because the har-
monic balance simulation of a compact model is deterministic and if a behavioural model
can reproduce the same load-pull measurement result as the compact model when the be-
havioural model itself is put as the device under test in a simulated load-pull measurement,
then it shows that the behavioural model is at least capable of mimicking a nonlinear device
with the complexity of compact models. Of course the next level of validation, after the
extraction of simulation models from measurements of power transistors, is the accurate
simulation of a power amplifier design that incorporates these power transistors. A good
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model will be able to provide a good simulated prediction of the RF measurement of the
physically built power amplifier design.

In Chapter 2 the state of the art of power transistor modeling and simulation will
be presented, starting with a background on the application of computer-aided design of
power transistors followed by an explanation of the physics of the power transistors and
the different nonlinear and dynamical effects involved in power transistor operation. Then
an overview of the compact modeling of power transistors will be provided as it is the main
alternative for power transistor models to the behavioural models presented in this thesis.
Next, the harmonic balance simulation, the main type of nonlinear frequency-domain cir-
cuit simulation that is used by power amplifier designers will be discussed. Parallel to the
simulated environment, the large signal characterization techniques used to measure the
large signal behaviour of the power transistor, including the type of RF stimulus and var-
ious load-pull measurement and calibration techniques will then be discussed. The nature
of the frequency-domain simulation in harmonic balance and the frequency-domain mea-
surement capture for load-pull characterization of power transistors allows for the ability
to define behavioural models that describe the spectral scattering purely in the frequency-
domain. The frequency-domain poly-harmonic distortion models that have been presented
in the literature will thus be covered next. Finally a discussion of the limitations of the
behavioural models of power transistors presented in the literature will motivate the model
proposed in Chapter 3.

In Chapter 3, the time-domain poly-harmonic distortion model, the first contribution
of this thesis will be presented. First an intuitive argument for the TD-PHD model will be
presented that doesn’t require much advanced mathematics but will convince the reader
that the structure of the time-domain model makes sense and is indeed the most compact
form the model could take to capture the nonlinear poly-harmonic dynamics of interest.
Then a more sophisticated argument will be presented that presents the TD-PHD model
as a natural extension of finite impulse response models to nonlinear systems, essentially
viewing the TD-PHD model as a nonlinear impulse response model. Next the process
to extract the TD-PHD model from multi-harmonic load-pull data and also the process
of implementing the extracted model in a harmonic balance simulator will be described.
Finally a measurement-based validation of the prediction of the multi-harmonic behaviour
of a power transistor at a fixed DC bias and fundamental frequency of a 10W GaN power
transistor is demonstrated based on a randomly generated set of active load-pull measure-
ments. The prediction of the model for passive load-pull measurements that were not used
in the training set were used as a validation for the predictive capability of the TD-PHD
model for modeling the multi-harmonic load-pull measurement data.

In Chapter 4, a generalization of the models of Chapter 3 called the time-domain multi-
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tone distortion (TD-MTD) models will be proposed. This generalization of the model is
to account for the fact that power amplifier designers often have load-pull measurement
data at multiple fundamental frequencies while the TD-PHD model as it was proposed was
fixed to a single fundamental frequency, requiring the power amplifier designer to extract
a distinct TD-PHD model for each fundamental frequency, even though the underlying
nonlinear behaviour, as represented by the hypothetical Volterra-series description of the
power transistor is constant. Through a Volterra series projection formulation, the TD-
PHD model will be seen as a special case of the more general TD-MTD model that can
account for a non-uniformly spaced frequency grid as the basis of the time-domain be-
havioural model. Finally a measurement-based validation of the TD-MTD model will be
presented by first showing that a single time-domain power transistor model can fit the
load-pull data extracted at multiple fundamental frequencies. Then a TD-MTD model at
a class AB bias will be extracted for a Main power transistor device and another TD-MTD
model at a class C bias will be extracted for a Peaking power transistor device in a Do-
herty power amplifier configuration. The resulting power amplifier with the two extracted
nonlinear power transistor behavioural models will then be shown to model the large signal
behaviour of the power amplifier comparably to how the compact model of the power tran-
sistor models the same behaviour, showing that behavioural models, particularly TD-MTD
models, can be used to design power amplifiers solely based on large-signal measurements
of power transistor devices.

Finally in Chapter 5 the thesis will be concluded with an overview of the main con-
tributions of the thesis and a discussion of future directions that are motivated by the
findings of this research.
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Chapter 2

State of the Art of Nonlinear Power
Transistor Modeling

In this chapter, an overview of the application of developing radio frequency (RF) power
transistor models and using them to design RF power amplifiers will be presented in Section
2.1. Further, the underlying physical phenomenon that leads to the behaviour exhibited by
power transistors will be explored in Section 2.2. Next, the state of the art of the varieties of
power transistor models used by power amplifier designers will be discussed, starting with
compact models of power transistors in Section 2.3. Another type of transistor model that
will be discussed in this chapter are behavioural models of power transistor that model the
characterized behaviour of the power transistor directly. The large signal characterization
methods used to measure the behaviour of power transistors for the purpose of behavioural
model extraction is discussed in Section 2.5. Next the most commonly used nonlinear RF
behavioural model called the poly-harmonic distortion (PHD) model will be presented in
Section 2.6. Finally the limitations of the PHD model will be discussed in Section 2.7 to
motivate the power transistor behavioural models proposed in this thesis.

2.1 Background

Mobile wireless communication requires a wireless network that provides the mobile users of
the network a way to send information via an uplink path and a way to receive information
via a downlink path. In the downlink path, the base-station radio that is connected to the
wider network through high-speed fibre-optical communication, transmits the downlink
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Figure 2.1: Simplified Downlink Path of a Mobile Wireless Communication Network

signal through an antenna with a wide radiation pattern in order to target the mobile
users that are scattered across a wireless coverage area. In order to broadcast a downlink
signal that has the information of many users over a wide region of space, the downlink
broadcast antenna requires a signal of high power. To produce a high power signal from
a low power digitally generated modulated signal, many amplification stages are typically
required, and the final stage of amplification that boosts the power of the information-
carrying modulated signal enough to be transmitted over the antenna is called the power
amplifier. Figure 2.1 shows a typical simplified diagram of the path that the downlink
signal takes to get to the mobile users.

Today, existing and emerging radio standards (5G, 6G, and so on) will push the re-
quirements of spectrum efficiency, linearity, quality of service and power efficiency, targets
that are often-times in conflict with one another. The radio downlink is the part of the
communication system that consumes the most amount of power and at the same time the
power amplifier is the most nonlinear component in the downlink communication chain.
If the nonlinearity of the power amplifier is not addressed, the spurious emissions that are
generated as a result of the nonlinearity will violate the requirements enforced by spectrum
regulatory bodies. Through the use of linearization techniques like Digital Pre-Distortion
that can correct for the spectral regrowth of power amplifiers in adjacent bands, the de-
sign of highly power-efficient power amplifiers that are quite nonlinear in their operation
becomes an attractive approach in the design of the downlink power amplifier.

This means that the circuits designed by the power amplifier designer will be designed to
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be nonlinear and in fact the nonlinear operation of the circuits is used to make more efficient
RF power amplifiers. Providing tools that would allow the power amplifier designer to tune
the nonlinear performance of their design over frequency in a simulation environment from
models of the nonlinear components of the circuit can be greatly beneficial in the circuit
design progress and is indeed the goal of this research.

Since the source of nonlinearity in a power amplifier circuit are the nonlinear power
transistors, the next section will discuss this nonlinear behaviour that is exhibited by
the power transistor and illuminate the inherent complexity involved with modeling the
behaviour of an RF power amplifier.

2.2 The Nonlinear Behaviour of a Packaged High Power

Transistor

Power amplifier designers can use computer-aided design (CAD) tools to simulate the per-
formance of their designs before they manufacture their circuits. To design power amplifier
circuits in a simulation environment, an accurate power transistor model is required.

Figure 2.2: Single Transistor Power Amplifier

A power amplifier design can include a single power transistor like in Figure 2.2 or could
have two power transistors like the two-way Doherty power amplifier structure of Figure
2.3 or have even more transistors in an N-way Doherty or other efficiency enhancement
power amplifier topologies with multiple transistors like the Load Modulated Balanced
Amplifier.
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Figure 2.3: Two Transistor Doherty Power Amplifier

To make an amplifier, an actuated device like a transistor as shown in Figure 2.4 is
biased by applying a DC gate electrical potential VGS between the gate and source leads of
the device and then applying the DC drain electrical potential VDS between the drain and
source leads of the device. Figure 2.5 shows the DC relationship between the current that
flows between the drain and the source as a function of both the gate to source and the drain
to source electrical potential for an ideal zero threshold voltage field effect transistor device.
When the power transistor is biased in the saturation region, the output characteristic
of the transistor and its drain current in particular, becomes mainly a function of the
actuating gate voltage. This allows an application where low power signals incident at the
gate can be effectively amplified into high power signals generated at the drain. Figure 2.6
shows the relationship between the gate to source voltage and the drain to source current
for a fixed drain to source voltage. The RF signal behaviour of the power transistor is
heavily dependent on where the transistor is biased on this curve. Figure 2.7 shows how
the RF amplification of a power transistor changes based on its classes of operation with
the example of an ideal current conduction transfer function used for a transistor, as the
conduction angle of a hypothetical sinusoidal wave input is different for each case [1]. In
this ideal case, the conduction angle represents the angular duration between 0◦ and 360◦

that the drain will be conducting current when the input of the transistor is incident with
a sinusoidal RF signal. In each case the power transistor is biased at a different offset
relative to the threshold gate voltage. While a class A bias provides the most linearity
with a conduction angle of 360◦, it is also the least efficient bias as it is consuming power
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Figure 2.4: The DC bias of a packaged power transistor

in the entirety of the sinusoidal input voltage swing, and also when there is no RF signal
being applied. A class B operation is when the transistor is biased right at gate threshold
voltage of the device and will have a conduction angle of 180◦, resulting in a half-sinusoidal
current waveform generated at the drain of the device in the ideal case. A class AB bias
is any bias in between class A and class B that may be desired due to a good trade-off
between linearity and power efficiency. A class C biased device will be biased below the
gate threshold voltage in the “off region” of operation. A class C biased device behaves
like a passive device at small signal levels, but as the magnitude of the incident signal
increases and the conduction angle of device increases, eventually the device will have
more than unity power gain. This power-level dependence of a class C biased device makes
it very useful in a Doherty configuration power amplifier. In a Doherty PA, the peaking
(auxiliary) amplifiers are biased in class C as these transistors are meant to provide power
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Figure 2.5: The DC IV characteristics of a hypothetical field effect transistor with zero
threshold voltage

for the peaks of the modulated signal that is being amplified with good power efficiency,
while being off and not consuming much power at backed-off power levels. The plots of
the classes of operation only provide a simplistic view of how the transistor will behave
as the actual shape of the DC current curves are not as ideal as the one shown in Figure
2.5 and the transistor device of Figure 2.4 has a frequency dependent response due to the
many electrical parasitic behaviour from both the package and bonding manifold to the
capacitance of the transistor die itself. Many power transistors have very nonlinear gate
to source capacitance like in the case of Gallium Nitride High Electron Mobility Transistor
(GaN HEMT) devices or have a very nonlinear drain to source capacitance like in the case
of Laterally Diffused Metal Oxide Semiconductor (LDMOS) devices which further changes
the nonlinear behaviour as a function of the output power level.
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Figure 2.6: The DC relationship between the gate DC voltage and the drain current for a
fixed DC drain voltage value

In addition to the electrical nonlinear behaviour of the power transistor, the power
transistor behaviour is highly dependent on temperature. The DC drain to source current
is known to drift and increase when biasing power transistors due to self-heating effects.
These changes also show themselves in the large signal RF behaviour of power transis-
tor. In addition, some GaN HEMT power transistors display significant “trapping effects”
where trap states can form for the electric charge carriers due to the impurities at the
semiconductor material interfaces. The time constants associated with the temperature
and trapping effects are usually much slower than the electrical behaviour of the power
transistor and thus contribute to the so-called long-term memory effects of the RF power
transistor. As a result of these memory effects, more DPD resources would be required
to correct for these effects and the amount of achievable correction with for a finite DPD
algorithm will be limited.
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Figure 2.7: The basic single transistor analog power amplifier classes of operation

One of the main tasks of RF power amplifier design is the design of the input and out-
put matching networks at the gate and the drain of the power transistors. These matching
networks present the appropriate input and output impedances to the device at the oper-
ating frequencies as well as harmonic frequencies. In the design of linear RF amplifiers, the
task of designing these matching networks can be performed by extracting the linear S-
parameters of the power transistor and thus using closed form solutions to find the optimal
matching input and output impedances of the transistor [2]. However when the power tran-
sistor is exhibiting nonlinear behaviour then its RF performance metrics like power gain
and input return loss will also need to be measured as the input power level is increased.
Due to the nonlinearity of the power transistor, these RF characteristics also change when
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the RF load impedance changes. This is why for the nonlinear characterization of a power
transistor involves large-signal load-pull measurements. In these load-pull measurements,
the fundamental load impedance presented to the drain of the power transistor at the oper-
ating frequency is varied, and power sweeps of the input power are performed on the device
where the DC and RF behaviour of the power transistor is completely measured at both
the gate and the drain of the device. The load-pull measurements are frequency dependent,
so all these load-pull measurements will need to be performed across the frequency band
of interest.

Since the behaviour of the power transistor is nonlinear, due to a stimulus at the
operating frequency, there will be power generated at both the gate and drain of the device
at the harmonic frequencies. This means that in addition to a fundamental frequency
impedance termination, the harmonic impedance terminations at both the gate and the
drain of the device can have an effect on the performance. The design of the power
amplifier, in the narrow-band sense, involves the design of the input and output matching
networks that provide the input and output impedances at the operating frequency and its
harmonic frequencies that give the desired performance. This is called the “poly-harmonic
design space” at a given fundamental frequency and it is the space where the load-pull
measurements will be performed.

The discussion of how the large-signal RF behaviour of a power transistor device can
vary with bias, impedance terminations and frequency, brings into focus the importance
of having accurate power transistor models for the simulation of power amplifier circuits.

2.3 Compact Models

Compact models of power transistors are implicit models of their electrical behaviour.
These models are formulated based on a known theory of operation of the device and are
expressed as a circuit representation which includes linear and nonlinear elements. This
circuit representation of the model consists of nodes that are connected by branches. Each
branch of the circuit can be equivalently represented by a differential equation (e.g. the
relationship of the current flowing through a capacitor and the electrical potential across
the capacitor is a differential equation). Due to this basic fact, compact models are not
frequency specific as they’re made up of time-domain differential equations that hold for
all frequencies of interest. The basic compact model topology used in the literature for
packaged power transistors involves the logical separation of the package model from the
inner transistor. The inner transistor is then also further sub-divided and modelled as
an active intrinsic transistor embedded within a passive extrinsic shell. The underlying
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Figure 2.8: Typical Compact Model Topology of a Field-Effect Transistor [3]

assumption here is that the extrinsic network is linear and non-temperature-dependent
while all the nonlinearity of the device as well as thermal effects originate from the intrinsic
transistor. Some models even include the trapping effects exhibited by the power transistor
as part of the intrinsic transistor description [3] [4].

Figure 2.9 shows a simplistic nonlinear model of the intrinsic transistor used by many
compact models. Here the total gate-to-source and drain-to-source current of the intrinsic
transistor is represented by a current source in parallel with a charge source and described
by the state equations 2.1 and 2.2 [5]:

Idrain(t) = Id (Vgs(t), Vds(t)) +
d

dt
Qd (Vgs(t), Vds(t)) (2.1)

Igate(t) = Ig (Vgs(t), Vds(t)) +
d

dt
Qg (Vgs(t), Vds(t)) (2.2)

The drain and gate current expressions of equations 2.1 and 2.2 are separated into a
conduction current nonlinearity (nonlinear current sources Id and Ig) and a displacement
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Figure 2.9: Intrinsic Transistor Model

current nonlinearity (nonlinear charge sources Qd and Qg). Nonlinear capacitive effects
that are common in many transistor devices such as LDMOS and GaN HEMTs and are
represented by these displacement current nonlinear terms that can account for a general
two-dimensional nonlinear capacitance.

The development of compact models requires a strong insight into the actual sources of
linear and nonlinear dynamics of the device. For example, the nonlinearity of a transistor
device is not entirely static, meaning that having the DC input/output trans-conductance
of the intrinsic transistor does not have all the information to predict the nonlinear dynam-
ics of the transistor. This is in part due to nonlinear capacitances (capacitances that vary
with the instantaneous voltage level) of devices which show up as nonlinear charge sources
in the intrinsic transistor model. These nonlinear components of the intrinsic transistor
can themselves be temperature dependent. A thermal sub-circuit that tracks the tempera-
ture of the transistor as a function of power dissipation is usually used in compact models
to model the thermal effects of the power transistor. Some very useful compact models in
the literature include the Angelov model [6][7], the Root model [8][9], and the DynaFET
model [10][11]. The DynaFET model in particular is summarized in Figure 2.10 where an
artificial neural network that takes a parameter input from a self-heating circuit meant
to simulate the junction temperature and separate trapping circuit meant to simulate the
trap states. The field of research of compact model design is active and ongoing work is
being done to improve the modeling capability of compact models for the objective of RF
power amplifier design [12][13][14][15][16].

A common strategy employed in the development of compact models of a power tran-
sistor, after determining a compact model topology that reflects the dynamics of the device
of interest, is to experimentally extract the chosen model parameters from measurements
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Figure 2.10: Form of the DynaFET compact model

that isolate the parameters of interest. For instance, for packaged transistors, the package
model and the bonding manifold to the transistor die can be modelled in 3D electromag-
netic simulation software, and measurements can be de-embedded through this simulated
package model to get to the transistor die measurement reference plane. For compact
models of the general form of Figure 2.8, the extrinsic shell is usually extracted next via
a measurement that isolates the effect of the intrinsic transistor from the extrinsic shell.
By doing this, the model engineer will then be able to de-embed measurements of the
transistor to the intrinsic transistor in order to extract the active parameters. In order to
delineate the extrinsic shell from the intrinsic transistor, a technique known as the cold
FET measurement is often used [5]. In this technique, the active transistor is kept unstim-
ulated by keeping the transistor in the OFF state and measuring its small signal response.
It is assumed that the dynamics measured when the transistor is off is mainly due to the
extrinsic shell. Using a frequency sweep of its two-port parameters, the extrinsic shell
parameters can be optimized to match the cold FET measurements.

After determining the extrinsic shell parameters, the focus is on determining the conduc-
tion current and displacement current nonlinearities of the intrinsic transistor respectively.
If the model is a electro-thermal model, these intrinsic parameters will be measured in a
temperature controlled environment and will be made to be a function of temperature.
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In addition some new compact models also include trap state variables for the intrinsic
transistor to account for the non-ideal trapping effects seen in some transistor topologies
like GaN HEMT devices. Extracting the parameters for the trapping model also requires
its own specialized measurements of the power transistor.

The extraction of the intrinsic parameters has been traditionally performed using pulsed
DC and RF measurements. The measurement is pulsed so that the self-heating effects do
not have an effect on the measured behaviour of the transistor. The gate and drain DC
voltages are swept, and for each DC bias condition, a small-signal S-parameter measure-
ment is performed to extract the bias-dependent local linear dynamics of the transistor.
The DC current measurement of the intrinsic transistor at each DC voltage bias point is
used to determine the conduction current nonlinearity (Id and Ig functions of equations
2.1 and 2.2 respectively). The S-parameter measurements at each bias point are used with
numerical integration (and an assumption of charge conservation of the intrinsic transis-
tor) to find the displacement current nonlinearity terms (Qd and Qg of equations 2.1 and
2.2 respectively) [5]. Using this method the large signal intrinsic transistor behaviour is
extracted only from bias-dependent small-signal measurements.

After numerically extracting the values of the two-dimensional nonlinear functions rep-
resenting the DC conduction current nonlinearities Id(Vgs, Vds) and Ig(Vgs, Vds), and the
displacement current nonlinearities Qd(Vgs, Vds) and Qg(Vgs, Vds) over a range of (Vgs, Vds)
DC biases, a closed form equation can then be fit to these points or a curve-fitting tools
like artificial neural networks (ANNs) is often employed.

An important point to note is that a compact model is fundamentally a time-domain
model in the sense that every single component of the model, whether a circuit element
or nonlinear equation describing conduction current or displacement current is described
by a time-domain differential equation. The frequency behaviour of the compact model is
implied by the time-domain description. It is in this sense that a compact model is not
an explicit model of the frequency domain behaviour of the device. To see what frequency
domain and large-signal behaviour is implied by a certain compact model, it will have to
be simulated in a large-signal circuit simulator. Since the measurements that were used to
extract the compact model using the common method were all small-signal measurements,
resulting in a model that can imply a certain large signal behaviour, a good validation of
compact models is their ability to predict the large signal behaviour of a power transistor,
especially under load-pull measurements. If there is significant error between the large-
signal prediction of the compact model in the large-signal simulator and the large-signal
measurement of the power transistor, then the model engineer can go back and re-tune
their compact model parameters to result in a simulated large-signal performance that has
less error when compared to the load-pull measurements of the power transistor.
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It should be noted that the extraction and development of compact models of power
transistors is neither an easy task, nor can it be done with simple measurements of the
power transistor. Often when power transistors are new and in development, mature
compact models that accurately model the large-signal behaviour of the power transistor
in a circuit simulator are not available, leaving the power amplifier designer with only load-
pull measurements of the power transistor as their only design guide. This is the primary
motivation for the development of behavioural models of RF power transistors. Behavioural
models will fit the load-pull measurement data directly and behave in the circuit simulator
exactly like how they were measured to behave in the load-pull measurement.

2.4 Harmonic Balance Simulation of Nonlinear Cir-

cuits

The first computer simulation tools that simulated the nonlinear behaviour circuits used
time-domain methods. The time-domain simulator steps in time, and solves for the circuit
behaviour for each discrete time given the behaviour at the previous time samples. When
it comes to the simulation of the response of nonlinear circuits to a periodic stimulus, e.g.
a sinusoidal stimulus at a fixed fundamental frequency, then the time-domain simulator
would start at an initial seed (instantaneous state of the circuit) and evolve in time until
the time-domain response converges to a periodic response with the same fundamental
frequency as the stimulus signal. At this periodic steady-state response, the entirety of
the voltage at each node of the circuit can be described by its Fourier series coefficients
at DC, the fundamental frequency of the periodic response and its harmonic frequencies.
Harmonic balance simulation is a frequency-domain simulation that quickly resolves to
the periodic response of the circuit by only accounting for the behaviour of the linear and
nonlinear circuit at these fixed discrete Fourier series frequencies [17][18].

When a nonlinear circuit Netlist is defined, the harmonic balance simulator would need
to track a voltage vector of complex Fourier coefficients and at every node of the circuit
and a current vector of complex Fourier coefficients for every branch of the circuit. These
Fourier coefficients include the value at DC (frequency of 0) and the complex phasor at
each harmonic frequency of the fundamental frequency representing the magnitude and
phase of the sinusoidal component at that harmonic frequency.

It’s important to note that harmonic balance simulation is a discrete frequency domain
simulation, so even though the time-domain waveforms of the voltages and currents can
be plotted as though they are continuous waveforms, this continuous representation is
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just an evaluation of the discrete terms of a Fourier series, and so the voltage and current
information extracted from the simulation are fundamentally discrete. When doing a power
sweep of a power transistor model in harmonic balance simulation, for each power level a
separate harmonic balance simulation is performed until convergence is obtained for each
power level state independently.

The poly-harmonic distortion models (that will be discussed in Section 2.6) are defined
to fully take advantage of the harmonic balance simulator by having the input and output
terms of the frequency domain model match up with the simulation harmonic frequencies.

The harmonic balance simulation of a compact model of a power transistor can be seen
as the simulation analog of performing a frequency-domain measurement on the physical
power transistor. In the next Section, the techniques used in the large-signal characteriza-
tion of power transistors will be discussed.

2.5 Large Signal Characterization of Power Transis-

tors

To measure the full large signal RF periodic behaviour of a power transistor device in a
lab, there are different measurement techniques, based on different types of measurement
instruments, namely either a Large Signal Network Analyzer (LSNA), Nonlinear Vector
Network Analyzer (NVNA), or a multi-channel high-speed oscilloscope [19]. The most
popular method that is used for the full-waveform periodic characterization uses an NVNA,
and that’s what is discussed in the next subsection.

2.5.1 Calibration and Measurement of a Nonlinear Vector Net-
work Analyzer

The Vector Network Analyzer (VNA) has been a ubiquitous tool in RF measurement
laboratories globally as they provide a comprehensive platform for performing calibrated
relative measurements between different RF receivers, allowing for the extraction of S-
parameters of different linear networks. Using a common local oscillator at a specific
frequency to down-convert the sampled incident and reflected waveforms down to an inter-
mediate frequency (IF) and then sampling those IF signals using time-coherent ADCs, an
VNA is able to fully capture the relative relationship between the incident and reflective
waveforms at the device ports one RF frequency at a time. And since for linear systems,
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the characterization of the system is not a function of power, a VNA calibration and mea-
surement does not include or need an absolute RF power calibration as all measurements
and calibrations are performed relative to each other and the absolute value of the power
is not known. In addition, since a VNA measures each frequency separately, if it were to
measure the harmonic response of a nonlinear circuit to a fundamental frequency stimulus,
it would not be able to infer the relative phase of the harmonic signal it measures relative to
the fundamental frequency as the VNA can only perform cross-port relative measurements
but not cross-frequency relative measurements.

The Nonlinear Vector Network Analyzer overcomes the limitations of VNAs for per-
forming large-signal multi-harmonic periodic waveform measurements by augmenting a
standard VNA with a power calibration to allow for the measurement of absolute power
levels, resulting in an 8-term calibration model that can be used for load-pull measurements
[20][21][22][23][24]. In addition to the power calibration, a system phase reference is mea-
sured on a separate RF receiver of the NVNA to allow for cross-frequency relative phase
measurement of the waveforms. By performing a standard VNA calibration followed by a
power calibration and then a phase calibration, a full NVNA calibration can be achieved
that allows for the full periodic (multi-harmonic) waveform characterization of both the
incident and reflected waves on each port of the device under test (DUT) [19] [25][26].
Figure 2.11 is an illustration of the NVNA system around the DUT device (shown with
the letter A).

For power transistor and power amplifier measurements, pulsed-RF measurements are
used since using a non-pulsed sinusoidal RF signal at the saturation power levels of a
high power transistor device would result in excess heat generated by transistor device and
would likely cause heat damage. When the power transistor is used to amplify a modulated
signal with a high peak-to-average-power-ratio (PAPR) then instantaneously the amplifier
will output RF powers close to the saturation level but since the modulated signal is at
those peak powers for a short time, the self-heating at the peak power do not result in
heat damage, since on average the RF output power is at a backed-off level compared to
the saturation power level of the power transistors. A 10% duty cycle can allow for the
characterization of the periodic response of the power transistor at its peak powers without
overheating the device. Performing pulsed measurements requires some considerations on
triggering of instruments used for the DC measurement during the RF-pulse and can be
performed using triggered digital multimeters or current probes attached to a triggered
oscilloscope.

Though a NVNA calibration and measurement instrument is a requirement for the type
of power transistor characterization that is needed for model extraction, it is not sufficient
as a power sweep measurement of a general RF power transistor when it is terminated
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Figure 2.11: A Nonlinear Vector Network Analyzer (NVNA) measurement

with 50Ω ports does not give a full account of the its entire nonlinear behaviour and the
load-impedance would need to be varied to explore the nonlinear response of the power
transistor in more detail. This is the topic of the next subsection which describes the
load-pull measurements of power transistors.

2.5.2 Load-Pull Measurements of Power Transistors

In a load-pull measurement of a power transistor, a power sweep is performed on the power
transistor for different values of load impedances (or source impedances for the case of
source-pull measurement). In Passive Load-pull [27], passive tuners, which are mechanical
devices that can produce desired RF impedances at desired frequencies are employed for
the large-signal power sweep measurement like in Figure 2.12.

22



Figure 2.12: A Passive Load-pull Measurement

In the example of Figure 2.12 a three-harmonic source tuner and a three-harmonic
load-tuner is used and is placed outside the dual-directional couplers that are calibrated
to measure the input and output waveforms at the DUT measurement reference plane.
Placing these tuners outside of the couplers allows for the changing of the impedance
termination seen by the power transistor without changing the required RF calibration for
the measurement. The harmonic tuners allow the designer to set the input and output
impedances (or equivalently the reflection coefficient) presented to the power transistor.
These passive tuners require automated mechanical/RF calibrations where the tuner probes
move through their positions and the S-parameters of the tuner are measured, allowing
the tuner software to be able to predict what the S-parameters of the passive tuner are
at every tuner position. In addition the tuner software allows them to be reconfigured
mechanically to generate a requested RF impedance at a specific calibrated frequency, and
in the case of multi-harmonic tuners, will also present the desired impedances to the DUT
at the harmonic frequencies.

Passive tuners have the advantage of being able to operate under very high powers,
making them very attractive for the load-pull measurement of high power RF transistors.
The tuning capability of the passive tuner is limited to a certain maximum reflection coeffi-
cient magnitude (a reflection coefficient typically limited to around 0.9 at RF frequencies).
With the imposition of the dual directional couplers in front of the passive tuners, any
insertion loss from those couplers, as well as the insertion loss of the transistor fixture will
will further limit the achievable RF reflection coefficient magnitude at the power transistor
plane. Another drawback of passive load-pull is due to the fact that the passive tuners are
mechanical devices, they are slow to re-adjust and so passive load-pull measurements are
much slower than active load-pull measurements that are fully electrical and do not have
any moving parts for the measurement.

In active load-pull [28][29][30], the impedance, or alternatively, the reflection coefficient
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generated at the device plane is not the result of the reflection of a passive system, but
the result of an active system that injects power back into the device to emulate a desired
reflection coefficient. Figure 2.13 shows the basic idea behind an active load-pull system.
The reflection coefficient Γ seen at a device port is the ratio of the incident wave (repre-
sented by a complex number a) on the port to the reflected wave from the port (represented
by another complex number b). The b wave is generated by the device and can be diverted
to a load to be dissipated through an RF circulator. This circulator can also be used to
inject any desired a wave incident back onto the device independent of the b wave generated
by the device. The active load-pull system will then try to maintain a desired reflection
coefficient Γ = a/b by adjusting the injected a wave accordingly.

Figure 2.13: An active load-pull measurement

One of the drawbacks of using active load-pull for high power devices is that since
the a wave has to be independently produced, to generate a high reflection coefficient Γ
at the load of the device, the a wave produced must be comparable in magnitude to the
high power b wave generated by the device, resulting in the requirement of high-power
and expensive drivers in the active load-pull measurement setup. The main advantage of
using active load-pull is the measurement speed, as these systems do not have any moving
parts, they can measure many impedance loads rather quickly while the same number of
measurements in a passive load-pull system would take thousands of times longer.

It is possible to take advantage of the benefits of both passive and active load-pull
systems by employing what is referred to as a hybrid load-pull system, demonstrated by
Figure 2.14.

In a hybrid load-pull measurement system, the a wave required for the generation of the
desired reflection coefficient is partially generated by the reflection of a passive tuner but
also has a contribution from an active load that generates the rest of the a wave presented
to the device load. In this method, a high-power (expensive) driver as an active load can
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Figure 2.14: A hybrid load-pull measurement

be avoided, by using a passive tuner to get the load impedance to an impedance close
to the desired high reflection coefficient target, and have a local and fast active load-pull
around that passive impedance. This allows one to take advantage of the speed of active
load-pull while not requiring a very high power active-load driver.

An analogy to the load-pull measurement of a power transistor using RF measure-
ment instruments also exists in the harmonic balance simulation of a power transistor
model. Creating the same conditions as a load-pull measurement, that is, changing the
load impedances and performing power sweep measurements, can also be performed in
a simulation environment in what is known as a simulated load-pull measurement. In
fact, as stated before, the only way to find out what the large-signal performance is im-
plied by a compact model at different load impedances is to perform a simulated load-pull
measurement on the power transistor model in a harmonic balance circuit simulator.

Power transistor models that are explicitly directly derived from load-pull measure-
ments are behavioural models of power transistors and have been used in the design of RF
power amplifiers [31][32][33][34]. A good methodology used in this research to evaluate the
efficacy of a behavioural model before getting involved with the complexities of performing
large-signal measurements on power transistors, was to use a compact model as a device
under test, and to perform simulated load-pull measurements on this compact model. The
extracted load-pull measurements would then be used to extract a load-pull measurement
as shown in Figure 2.15.

Of course the extracted behavioural models can themselves be used as the device under
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Figure 2.15: Using a Compact Model of a Power Transistor as the Device Under Test for
a Simulated Load Pull Measurement

test in a load-pull simulation. Once a behavioural model is shown to at least be capable
of replicating the simulated behaviour of a compact model of a power transistor, then it
can at least have a chance to model the real measured behaviour of a power transistor
as the behaviour of the compact model in a harmonic balance simulator can be seen
as representative of how a power transistor of a par typically behave in measurements
though there are differences that further necessitates the measurement validation of power
transistor behavioural models.

In the next Section the poly-harmonic distortion model will be introduced as the dom-
inant nonlinear frequency-domain behavioural modeling strategy used in the industry for
RF power amplifier design.
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2.6 Poly-Harmonic Distortion Models

The process involved in the development of compact models as discussed in Section 2.3
is quite complex. Creating compact models of power transistors requires a high level of
theoretical knowledge of device physics and access to specialized equipment used to extract
these models. In addition, the extraction of a compact model requires an experienced
person to guide the model development and to tweak and tune parameters if needed. Power
amplifier designers in general do not have the knowledge to develop a compact model and
if they need a computer-aided design model for a packaged transistor and they aren’t part
of the organization that manufactures the transistor, then they are often left with only
one type of model, which is a black-box, or behavioural model of the power transistor. To
develop a behavioural model one only needs to measure the power transistor’s behaviour
of interest at the device ports and the behavioural model will predict how the device
will electrically react at its ports without requiring any further insight into the inner-
workings of the device. In fact the underlying semi-conductor technology used to make the
power transistor doesn’t matter as behavioural models by their very nature are technology-
agnostic.

The most ubiquitous behavioural model for RF systems are S-parameters [35]. S-
parameters are one of the many multi-port evaluated transfer functions of linear time-
invariant systems defined at discrete frequencies[36][37] that are specifically suited to de-
scribe the RF power transfer characteristics of a multi-port system given known port
reference impedances (Z0, which is set to 50Ω in most RF applications). With the use
of S-parameters one can simulate the linear response of a RF circuit. When the active
components of the RF circuits are operating in a very linear manner, which is the case for
the design of low noise amplifiers for instance, they can be approximated quite well with
a linear model across frequency. An S-parameter model of a two-port system would con-
sist of only four complex numbers (the S-parameters) at each frequency f and two linear
equations, one for each port:

B1(f) = S11(f)A1(f) + S12(f)A2(f) (2.3)

B2(f) = S21(f)A1(f) + S22(f)A2(f) (2.4)

The pseudo-powerwaves A1 and A2 are the incident waves at port 1 (the gate) and port
2 (the drain) of the power transistor and B1 and B2 are the reflected waves at these two
ports as shown in Figure 2.16 and are related to the voltage and current at the ports of
the device by the following relationships:
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Figure 2.16: Incident and reflected powerwaves on a device under test

A1(f) =
V1(f) + Z0I1(f)

2
√
R0

(2.5)

B1(f) =
V1(f)− Z0I1(f)

2
√
R0

(2.6)

A2(f) =
V2(f) + Z0I2(f)

2
√
R0

(2.7)

B2(f) =
V2(f)− Z0I2(f)

2
√
R0

(2.8)

For an amplifying transistor, the S11 parameter is called the input match parameter,
while the S22 parameter is called the output match parameter. S21 is the gain parameter
and S12 is the reverse isolation parameter.

As can be seen from what is required for a behavioural model for a linear system,
the description of the system at each frequency is independent of its description at other
frequencies. In linear systems there is no cross-frequency interaction between signals.

Early attempts to develop a behavioural model for nonlinear systems focused on gen-
eralizing the S-parameters by tweaking the model slightly. Initially a technique known as
Hot S-Parameters was proposed where the S-parameters of the nonlinear system were a
function of the input power level [38] as well as frequency:

B1(f) = HotS11(f, |A1(f)|)A1(f) + HotS12(f, |A1(f)|)A2(f) (2.9)

B2(f) = HotS21(f, |A1(f)|)A1(f) + HotS22(f, |A1(f)|)A2(f) (2.10)

28



However it was soon discovered that this technique is lacking in accuracy since the
resulting reflected waves B2 would empirically depend on the relative phase of the A2 and
A1 waves, which is a uniquely nonlinear effect that is not captured by the linear form of
the initial extension of S-parameters. To account for the phase variation, instead of using
a model that used 4 complex parameters, 2 extra complex numbers were added to add
enough degrees of freedom to account for phase variation of the A2 wave relative to the A1

wave. This model is referred to as Hot (Active) parameters by Keysight Technologies and
is the successor to the older Hot S-parameters:

B1 = X
(F )
11 (|A1|)P +X

(S)
12 (|A1|)A2 +X

(T )
12 (|A1|)PA∗2 (2.11)

B2 = X
(F )
21 (|A1|)P +X

(S)
22 (|A1|)A2 +X

(T )
22 (|A1|)PA∗2 (2.12)

where P = A1/|A1| = ej∠A1 is the pure phase component of the incident wave A1 at each
frequency. The addition of this term is to ensure that the model remains time-invariant
while accounting for the relative phase of A2 and A1. For instance by observing equation
2.12, the output reflected wave B2 is made up of two parts, the first part X

(F )
21 (|A1|)P is

only dependent on the phase of A1, while the second part X
(T )
22 (|A1|)PA∗2 is only dependent

on the relative phase of A2 and A1. The dependency on the relative phase, instead of an
absolute phase is due to |A1| being the “Large Signal Operating Point” (LSOP) of the

model. The X
(T )
22 is an interaction parameter that describes how the A2 wave interacts

with the A1 wave with their relative phase taken into account. X
(F )
11 (|A1|)/|A1| is the

active input match term which varies with input power. X
(F )
11 (|A1|)/|A1| is the active gain

term of the model while X
(S)
12 (|A1|) is the active reverse isolation term.

The behavioural models up to this point only account for wave interaction at the funda-
mental frequency, but as mentioned before, the nonlinearity of the power transistor results
in the generation of power at harmonic frequencies which interacts with the surrounding
circuit at those frequencies.

Moving beyond the Hot (Active) model, to account for the interaction of the waves
at the harmonic frequencies, an assumption can be made that the harmonic effects can
be linearly super-imposed on to the resulting output wave through what is referred to as
the harmonic superposition principle. To account for such models that involve the cross
interaction of harmonic waves, we will shift to a poly-harmonic notation for the incident
waves and referring the the incident wave at port 1 (the gate of the power transistor) at the
fundamental frequency and its harmonics respectively as A11, A12, A13, and so on and the

29



incident waves at port 2 (the drain of the power transistor) at the fundamental frequency
and its harmonics respectively as A21, A22, A23, and so on. Similarly the reflected waves
at the input of the device at the fundamental frequency and its harmonics will be referred
to as B11, B12, B13 and reflected wave at the output of the power transistor are denoted
by B21, B22, B23 and so on.

Using this notation, the model that is sometimes referred to as the matched-load X-
parameter model is defined for each reflected wave Bef at port e and harmonic frequency
f is expressed as [39][40][41]:

Bef = X
(F )
ph (|A11|)P−h +

∑
g,h

(
X

(S)
ef,gh(|A11|)AghP f−h +X

(T )
ef,gh(|A11|)A∗ghP f+h

)
(2.13)

where {g, h} /∈ {{1, 1}}. Here the same type of modeling through X(S) and X(T ) terms is
extended to have a contribution from all the incident waves at all ports and all harmonic
frequencies. In order to extract these X-parameters, the LSOP of the model will have to be
held constant while a tickler tone is injected as an incident wave at every port and at every
harmonic frequency. This tickler tone is injected at varying relative phases compared to
the fundamental frequency A11 tone. This emphguided characterization step is essential for
the extraction of these X-parameters. Figure 2.17 shows that a local circular perturbation
of each of the harmonic incident waves Agh results in an elliptical perturbation in the
resulting Bef reflected wave. The X(S) and X(T ) terms in conjunction define the local
stretching and skewing of the complex plane. Since all the parameters of the model are
a function of |A11|, the underlying assumption is that since |A11| is the most significant
incident wave, it’s the only dimension along which the nonlinearity can vary. This can
be a good assumption for nonlinear power amplifiers that have been matched to the load
impedance close to 50Ω, which results in a very small A21 wave reflected back onto the
load side of the power amplifier in a Z0 = 50Ω system.

In this X-parameter analytic model the output phasors at each harmonic are linearly
related to all the other input phasors and also their complex conjugates. To explain why
there is a dependence on the complex conjugates, it should be noted that the set of complex
numbers A11, A12, A13, A14, and so on are Fourier series coefficients of a periodic real-valued
time-domain waveform as follows:

a1(t) =
1

2

hmax∑
h=0

(
A1he

jhω0t + A∗1he
−jhω0t

)
(2.14)
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Figure 2.17: Visual representation of the X
(F )
ph , X

(F )
ph,qi and X

(T )
ph,qi X-parameters

b1(t) =
1

2

hmax∑
h=0

(
B1he

jhω0t +B∗1he
−jhω0t

)
(2.15)

a2(t) =
1

2

hmax∑
h=0

(
A2he

jhω0t + A∗2he
−jhω0t

)
(2.16)

b2(t) =
1

2

hmax∑
h=0

(
B2he

jhω0t +B∗2he
−jhω0t

)
(2.17)

This exponential Fourier series representation of the time-domain incident periodic
waveform at the input of the power transistor makes it explicit that since the value of a1
is real at all time, then the negative frequency Fourier series coefficients are the complex
conjugate of the positive frequency Fourier series coefficients. This means that any sort
of analytic expression of the time-domain waveform a1(t) if re-written in Fourier series
notation will necessarily have contributions from the both the positive frequency Fourier
series coefficients and the negative frequency Fourier series coefficients.

To have a time invariant expression of reflected wave Fourier series coefficients as a
function of the incident wave Fourier series coefficients, it’s necessary to make the phase of
all the complex phasors be expressed as a relative phase to a system phase reference, which
will be the phase of A11. In this thesis, the tilde symbol on top of the phasor will denote
that its phase has been referenced to the system reference phase. So Ã11 = Ã∗11 = |A11|,
Ã21 = A21P

−1, Ã12 = A12P
−2, and so on where P = A11/|A11| = ej∠A11 is the absolute
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Figure 2.18: Periodic stimulus in the frequency domain

phase of the phase reference. In general the notation for the phase referenced Fourier series
coefficients will be:

Ãgh = AghP
−h (2.18)

B̃ef = BefP
−f (2.19)

This leads to a simple representation of the general functional form of the poly-harmonic
distortion model, that is both a time-invariant and analytic expression [42]:

B̃ef = fef

(
|A11|, Ã21, Ã

∗
21, Ã12, Ã

∗
12, Ã22, Ã

∗
22, · · ·

)
(2.20)

The describing functions fef in equation 2.20 are analytic, meaning the output variable
of each of these functions can be approximated locally around a bias point with a Taylor-
series approximation of its input variables. It can be seen that the X-parameter analytic
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model of equation 2.13 is the first-order Taylor-series approximation of the PHD describing
function of 2.20 taken around a constant bias point of |A11|, which is the LSOP of the model.

As mentioned before, the matched X-parameter model defined by the describing func-
tions of equation 2.13 targeted matched power amplifiers as the device under test. This
assumption is not true when the device that is to be modelled is a power transistor that
in general does not have the system characteristic impedance as its input and output
impedance and thus can have a significant A21 wave reflected back on it.

This matched X-parameter model’s assumption would be valid in modelling a matched
power amplifier that is only going to be driven at its input. However the harmonic superpo-
sition principle assumption of the model breaks down as the magnitude of the fundamental
output reflection coefficient as well as the harmonic reflections on the device increases sig-
nificantly [43]. This limitation is the same as the limitation of the first-order Taylor series
approximation.

In an extension of the applications of the matched X-parameter model to the cases where
the output behaviour of the power transistor can vary significantly based on the fundamen-
tal frequency impedance termination, the LSOP definition used by the X-parameter model
can be extended to include these variations. To include the effects of the load termination
at the fundamental frequency, the X-parameter describing functions of equation 2.13 can be
modified to include the reflection coefficient term Γ21 = A21/B21 = (ZL1 − Z0)/(ZL1 + Z0)
where ZL1 is the fundamental frequency load impedance and is added to the LSOP defini-
tion as follows:

B̃ef = X
(F )
ef (|A11|,Γ21) +

∑
g,h

(
X

(S)
ef,gh(|A11|,Γ21)Ãgh +X

(T )
ef,gh(|A11|,Γ21)Ã

∗
gh

)
(2.21)

where {q, i} /∈ {{1, 1}, {2, 1}}.
The expression of equation 2.21 accounts for the significant output variation as a result

of the load impedance variation by extracting a different set of X-parameters for each load
impedance signified by Γ21. This however is not a complete picture, as significant variation
in the harmonic impedance terminations of transistors has been shown to significantly
vary the nonlinear operation of the device beyond what is modeled by the addition of the
X(T ) terms of the X-parameter model. One solution to account for such cases of extreme
nonlinearity would be an extension of the model to add those impedance terminations to
the LSOP definition as well. Here for instance, if it becomes apparent that a large enough
second harmonic incident wave A12 or A22 significantly changes the nonlinearity of the
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device, then those parameters will have to be added to the LSOP definition in order to
keep the first-order Taylor series approximation of the X-parameter model valid. With the
addition of every new parameter as a “significant parameter”, a new dimension is added
to the LSOP space, and all the X-parameters will need to be extracted for all the possible
combination of values of the significant parameters of the LSOP space. At its extreme,
when including all the PHD variables in the LSOP definition, the X-parameter model
will only be a highly multi-dimensional look-up table of X(F ) terms that will require a
multi-dimensional interpolation function to simulate in a harmonic balance simulator.

Even in less extreme cases of extending the LSOP, there are a few problems that arise
from interpolating the model parameters over a multi-dimensional space. The first problem
is the problem of interpolating complex numbers, as the interpolation of complex numbers
can have discrepancies whether the interpolation is performed over the real-valued magni-
tude and phase components of the complex numbers, or the real-valued real and imaginary
components of the complex numbers. The model will rely heavily on an interpolation
function to be simulated, and the choice of the interpolation also can change the result
of the simulation. Using a model that relies on an interpolation function can force the
measurement required for the extraction of the model to focus its measurements where
the transistor nonlinearity varies significantly since a more densely spaced set of look-up
table points are required to account for a bigger gradient in the measurement space. Often
efficient underlying interpolation algorithms for look-up table models require the multi-
dimensional interpolation data to be on an evenly spaced uniform multi-dimensional grid,
something that is at odds with load-pull data that is often measured on irregular grids. In
addition to an explosion of the required look-up table parameters, the more variables that
are added to the model, the more highly dimensional look-up tables models become prone
to simulation convergence problems.

Another approach that avoids all the simulation problems of look-up tables is to define
a higher order model for the describing functions of equation 2.20, beyond a first order
model to fit the load-pull measurements of a power transistor. The Cardiff model [44]
uses a multi-dimensional Fourier series expression as the describing function used for the
PHD model. The intuition behind this model is that each of the harmonic outputs of
the PHD model is periodic with respect to the phase component of each of its inputs
∠Agh. This periodic relationship can be modeled with a multi-dimensional Fourier series
expression in the periodic angle variables ∠Agh. Each of these multi-dimensional Fourier
series coefficients are then expressed as a function of the magnitudes of the inputs of
the PHD modeling framework. Equation 2.23 shows a three variable (a11, a21 and a22)
expression of the formulated Cardiff PHD model [44]. This model takes into account the
effect of the second harmonic load injected power (due to a reflection caused at the second
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harmonic termination) on the output power available from the device under test.

B̃ef =
∑
n

Gef,n(|A11|, |A21|)ej(n∠Ã21) (2.22)

Figure 2.19: Change in B̃21 with constant |A11| and a polar sweep of Ã21

B̃ef =
∑
n

∑
r

Gef,n,r(|A11|, |A21|, |A22|)ej(n∠Ã21+r∠Ã22) (2.23)

In another Cardiff model used for a power transistor second harmonic investigation,
the source side second harmonic incident incident wave a12 were shown to be significant,
this model was reformulated with this variable instead as seen in equation 2.24 [45].

B̃ef =
∑
n

∑
r

Gef,n,r(|A11|, |A21|, |A12|)ej(n∠Ã21+r∠Ã22) (2.24)

The main problems of the models expressed in equations 2.23 and 2.24 are that both are
three-variable input models and can only account for the effects of their respective three
variables at their outputs. For example to have a complete two-harmonic PHD model, a
Cardiff formulation of the type expressed in equation 2.25 is necessary. It becomes quickly
apparent that adding more input variables to this model increases number of required
dimensions of the model significantly (without accounting for higher harmonic effects which
can be significant and important in predicting the power efficiency of transistors).

B̃ef =
∑
n

∑
r

∑
q

Gef,n,r,q(|A11|, |A21|, |A22|, |A12|)ej(n∠Ã21+r∠Ã22+q∠Ã12) (2.25)
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Others have used other higher order functions as the describing functions of the PHD
modeling framework which involves using piece-wise formulation of the PHD model [46]. In
another instance, Padé approximation instead of a polynomial expression for the describing
functions as seen in equation 2.26 [47]. A rational function has infinite polynomial terms in
its equivalent Taylor series expression and thus a Padé approximation has the potential of
fitting the nonlinearity of the device under test with fewer terms compared to a polynomial
PHD model like the Cardiff model.

B̃ef =
Gef +

∑
ghGef,ghÃgh

1 +
∑

ghHef,ghÃgh
(2.26)

A limitation of all the PHD models is that to increase the model capability to a high
number of harmonics, the number of model parameters increases and the extraction of these
models becomes more difficult. The number of describing functions required for a PHD
model increases with the number of harmonics in the model. A power transistor model
that has a DC describing function and nh harmonics of behavioural modeling requires
2× (nh + 1) describing functions.

We can note however that requiring 2× (nh+ 1) describing functions for a nh harmonic
time-invariant model is merely an artifact of the model being a frequency domain model
since time-domain representations of nonlinear systems, like the Volterra series are purely
defined in the time-domain and do not require separate describing functions for each har-
monic. It is this discrepancy in the requirements of the PHD model and the theoretical
possibility of modeling in the time-domain that motivates the research of this thesis.

2.7 Discussion on the State of the Art and Motivation

for This Thesis

Two different approaches to modeling power transistors in order to design a power amplifier
were discussed in this chapter, namely compact models and behavioural models. Though
compact modeling of power transistors is theoretically very capable of modeling the effects
and behaviours of power transistors in circuit simulators, they are often not available to
the power amplifier designers. In addition, while compact models of power transistors have
been shown to be very accurate in low and medium power applications, since the model
construction for higher power transistors results in including many units of the same unit
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die model, the model complexity grows to a level that it causes simulation convergence
problems in a nonlinear circuit simulator. Instead, for high power transistors, amplifier
designers can characterize the nonlinear behaviour of the power transistor under various
RF impedance loads, a measurement known as load-pull, and use the characterization data
directly to create behavioural models of the power transistors, and use computer aided
design tools to assist in designing the RF power amplifier. The goal of this research is not
to replace compact models but to augment them and allow for applications where compact
models aren’t feasible or where there is a benefit to using more simpler behavioural models.
For instance, in a higher-order system level simulation where a single power amplifier is
just one of many components of the overall system, behavioural models have an advantage
of providing potentially less computational complexity.

Among the behavioural modeling strategies that have been discussed in the litera-
ture, the main ones suited for power transistor modeling are the Poly-Harmonic Distortion
models. Many different variations of the PHD models were discussed. While some models
required the measurement data to be on a fixed grid to allow for the extraction of model
terms, this is something that is not always achievable and motivates a modeling scheme
where such requirements aren’t needed. There is also a desire to avoid the more extreme
implementations of the PHD model where the models is basically an interpolation of a
look-up table of load-pull data where it a high harmonic model becomes unfeasible since
load-pull space of the required multi-dimensional look-up table would be impractically
large to implement.

In an effort to simplify behavioural modeling that is based on load-pull measurements,
it is the objective of this research to propose behavioural models that can fit any gath-
ered load-pull measurement data, even if the data is on a non-uniform measurement grid,
while also having the simplest construction and most compact form the behavioural model
describing the nonlinear time-invariant system can have. It is also important that the
modeling strategy proposed not rely on any sort of guided characterization (for example
avoid the use of tickler tones used to extract X-parameters) where either large signal states
are fixed and swept on uniform grids in order to extract specific model terms.

Another aspect of the various different PHD models proposed before the work of this
thesis in the literature is the use of polynomial kernels in the construction of the models.
Tackling hard nonlinearities is often difficult with polynomials models without including
many higher order terms. A particular problem with using polynomial kernels is that
polynomial terms have very bad extrapolation (as they go to either positive or negative
infinity at each extrapolation extreme) and this results in very bad convergence of such
models in nonlinear circuit simulators. Artificial neural networks (ANNs) are a particular
form of nonlinear curve-fitting that has very good natural extrapolation. Partly due to the
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use of bounded activation nonlinear functions (like the Sigmoid function) in the artificial
neuron models, ANNs allow for the generation of very simulation-friendly nonlinear models.

The time-domain PHD (TD-PHD) model that will be proposed in Chapter 3 will use
the same multi-harmonic frequency grid as an PHD model, but will describe the nonlin-
ear behaviour using a single time-domain nonlinear expression at each port, essentially
allowing for a more compact construction of the power transistor behavioural model than
the PHD model to achieve the same time-invariant modeling capability. This allows for
a fundamentally more compact expression of the behavioural model compared to a series
of frequency-domain expressions. This compact form of the model construction allows
the ANN implementation of the TD-PHD model to have the minimum number of output
neurons compared to an ANN implementation of the frequency-domain PHD model. In
fact, a fully-ANN implementation of the frequency-domain PHD model would require a
separate ANN (with its own required training time) for each of the spectral outputs of the
model. Since ANNs are often over-designed and have more neurons than the minimum
amount needed to achieve the desired accuracy, an implementation of a TD-PHD model
with ANNs will require less artificial neurons and less overall computation complexity than
an implementation of a frequency-domain PHD model with ANNs.

In Chapter 4, the TD-PHD model will be generalized to load-pull measurements span-
ning multiple non-uniformly spaced fundamental frequencies, fulfilling the objective of
making a single compact nonlinear time-invariant behavioural model that is based on gen-
eral load-pull characterization data of a power transistor.
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Chapter 3

Time-Domain Poly-Harmonic
Distortion Models

This chapter will present the first major contribution of this thesis, the time-domain
poly-harmonic distortion (TD-PHD) model. Section 3.1 will begin with an intuitive, less-
technical argument for why time-domain poly-harmonic distortion (TD-PHD) models have
the right structure and the appropriate degrees of freedom to compactly describe the be-
haviour of a nonlinear time-invariant system under periodic multi-harmonic stimulus.

Afterwards, in Section 3.2 a more technical derivation of the TD-PHD models will be
presented based on an extension of how linear time-invariant discrete systems are modelled
in the time-domain. This will be called the nonlinear impulse response formulation of TD-
PHD models.

After this initial theoretical justification for the TD-PHD model, in Section 3.3 the de-
velopment method of TD-PHD models, which includes the methodology of power transistor
characterization, the extraction of the proposed behavioural model from multi-harmonic
the load-pull measurement data, the implementation of the extracted model as a Netlist
in a harmonic balance simulator, and finally, the measurement validation of the model will
be presented before the conclusion of the chapter.

3.1 The Intuitive Argument for TD-PHD Models

The poly-harmonic distortion models target the periodic response of a nonlinear time-
invariant system. This means that the state of the system and the device when it is being
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simulated is such that all the voltages and currents are periodic with a fixed fundamental
frequency, and hence the time-domain waveforms of the voltages and currents repeat in
time with a fixed fundamental period. The harmonic balance simulation is well suited for
this type of periodic simulation of a nonlinear system as the nonlinearity of the system
does not result in the generation of frequencies that are not an integer multiple of the
fundamental frequency of the simulation, that is, if a nonlinear system is stimulated with
a periodic stimulus, the nonlinearity will not change the periodicity of the the resulting
stimulus but instead the nonlinearity can lead to the generation of harmonic RF content.

Figure 3.1: A single period of a periodic signal fully represents the waveform over all time

When the nonlinear time-invariant system is stimulated at its inputs with periodic
signals that have a period of length T0 (and fundamental angular frequency of ωc = 2π

T0
),

the outputs of this system will also be periodic signals with the same fundamental period
like the waveform in Figure 3.1. The non-sinusoidal shape of the periodic waveform is
produced by the harmonic content of the waveform. What is referred to as the large-
signal behaviour of the system is fully represented by its voltage and current time-domain
waveform shapes over the fundamental period.

A general time-domain behavioural model for poly-harmonic periodic stimulus must
map the time-domain shape of the the periodic input waveforms onto the time-domain
shape of the periodic output waveforms. The behavioural model should be able to predict
the output waveform of the system for any given input waveform to the system at that
fundamental frequency. As a demonstrative example, a 1-port nonlinear system will be
considered. The nonlinear behaviour of this system can be described as an admittance map-
ping between the shape of the voltage waveform over its fundamental period to the shape
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of the current waveform over that same fundamental period. The model could have been
alternatively described as a RF scattering mapping by mapping the time-domain shape of
the incident a(t) waveforms onto time-domain shape of the reflected b(t) waveforms, where
the time domain signals a(t) and b(t) are related to the time domain signals v(t) and i(t)
through the following two equations:

a(t) =
v(t) + Z0i(t)

2
√
R0

(3.1)

b(t) =
v(t)− Z0i(t)

2
√
R0

(3.2)

It should be noted that the choice of the input and output variables does not matter for
the circuit simulator as either types of model, an admittance-type or RF-scattering-type,
can be implemented and used within modern harmonic balance simulators.

In order to capture the shape of the periodic waveform in a discrete simulator, the
time-domain waveform would have to be discretely sampled over its fundamental period
with a sampling that is evenly spaced in time, with enough discrete time resolution to
capture the harmonic content that is generated. Since the response is periodic, the only
thing that is necessary for this mapping is to map the behaviour of the system over a single
period. In this time-domain view of the voltage and current signals, the sampled value of
the voltage and current waveform at each one of the N fixed sampling times spanning the
fundamental period at each port of the device will be referred to with a separate variable in
this behavioural modeling scheme. Based on Nyquist theory if the maximum non-aliased
frequency of the system is at harmonic-order hm (where hm is a positive integer), at least
N = 2hm + 1 time-samples will be required in the fundamental period of the signals in
order to be able to capture frequency content up to an order of hm.

The continuous time-domain voltage waveform v(t) will be discretized into an indexed
vector of sampled voltage v[k] where index k goes from 0 to N − 1, such that in this
notation, v[0] = v(0), v[1] = v(T0/N), v[2] = v[2T0/N ], v[3] = v(3T0/N), and so on, until
v[N − 1] = v((N − 1)T0/N) where T0 is the fundamental period of the signal. A similar
time-vector discretization notation will be used for the time domain current waveform i(t)
into an indexed vector of sampled currents i[k] = i(kT0/N).

N functions (labeled f0 through f2hm in the formulation of equation 3.3), one for each
fixed sampling time, each having N = 2hm+1 input arguments as shown in Figure 3.2 can
be used to define the most general behaviour model that can be defined in the time domain
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given this particular discretization of the time-domain signals. These functions will have
the general mapping as follows:

i[0] = f0(v[0], v[1], · · · , v[2hm])

i[1] = f1(v[0], v[1], · · · , v[2hm])

· · ·
i[2hm] = f2hm(v[0], v[1], · · · , v[2hm])

(3.3)

Figure 3.2: A basic non-time-invariant but general discrete waveform shape mapping
scheme

This most general representation of a behavioural model as described in equation 3.3
and shown in Figure 3.2 while being theoretically complete in that there should exist a set
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of functions that can map the input to output behaviour for any given periodic input as
described, it does not account for the fact that the underlying system that is being modeled
is a time-invariant system. This non-account for time-invariance stems from the fact that
the each of the inputs to the model are fixed to a specific simulation time. This results in
N independent functions f0 through f2hm being required to describe a system that could
have otherwise been describe with a time-invariant description that isn’t fixed in time.

The main feature of a time-invariant system is that a delay in the input signal (shifting
the input waveform forwards or backwards in time) will result in the same output waveform
but advanced or delayed in time by the same amount. Thus this representation can be
simplified further under the assumption that the system is time-invariant. Time-invariance
of a function fTI implies that if the time-domain output at a given time t is i(t) = fTI(v(t)),
then the time shifted output at a different time t+∆t is i(t+∆t) = fTI(v(t+∆t)) where ∆t
is a time-offset. This allows the following full time-domain and time-invariant behavioral
model formulation for stimulus of fundamental period T0 using a single multi-variate time-
invariant function f :

i[0] = f(v[0], v[1], · · · , v[2hm − 1], v[2hm])

i[1] = f(v[1], v[2], · · · , v[2hm], v[0])

· · ·
i[2hm] = f(v[2hm], v[0], · · · , v[2hm − 2], v[2hm − 1])

(3.4)

Here the (2hm + 1) independent functions f0 through f2hm are replaced with a single
time-invariant function f that gives the entire discrete-time periodic output as a function
of discrete-time periodic input.

Alternatively using a circular index for the discrete periodic representation where v[k] =
v[k ± n(2hm + 1)] for all values of n ∈ N, we can write the expressions of equation 3.4 in
the unified expression of:

i[k] = f (v[k], v[k − 1], v[k − 2], · · · , v[k − 2hm]) (3.5)

The time-invariant models described by equation 3.5 will be henceforth referred to as
Time-Domain Poly-Harmonic Distortion (TD-PHD) models.

This is the simplest form a nonlinear time-invariant system that is to map the shape
of the periodic waveform in the time-domain can hold. Comparing this formulation to
the equivalent of an PHD model as seen in equation 2.20, it becomes apparent that only a
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Figure 3.3: A time-invariant discrete waveform shape mapping scheme

single output variable and hence a single describing function is required to describe a 1-port
nonlinear time-invariant system regardless of the number of harmonics that were involved
in the model in the TD-PHD model while a separate describing function is required for
the addition of every harmonic term to the PHD model.

The single-port TD-PHD model can be extended to multi-port systems. Equation 3.5
can be generalized up to n ports to define the n-port behavioral model as follows (the
subscripts in this notation represent the port number):
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ip[k] = f(v1[k], v1[k − 1], · · · , v1[k − 2hm],

v2[k], v2[k − 1], · · · , v2[k − 2hm],

· · · , vn[k], vn[k − 1], · · · , vn[k − 2hm])

(3.6)

The TD-PHD model accounts for harmonic information in the shape of the time-domain
waveform by incorporating a denser sampling in the time-domain. The more points that are
used to sample the input periodic signals in the model, the equivalent harmonic resolution
of the model increases.

In the above N was set to be 2hm + 1. This is due to the Nyquist criteria for discrete
sampling of a signal, the maximum non-aliased harmonic frequency that can be sampled
is related to the number of sampling over the fundamental period. In the next sub-section
the TD-PHD model will be further developed with discrete sampling theory in mind.

3.2 The Nonlinear Impulse Response Formulation of

TD-PHD Models

In this section, the frequency-domain PHD model will be viewed from a different perspec-
tive, one that is based on time-invariant discrete systems modeling theory.

A common characteristic of all the frequency-domain PHD models discussed in the
previous chapter was that the Poly-Harmonic Distortion describing functions at each of
the frequencies are defined independently of all the other describing functions at the other
harmonics. This was the case even though a common underlying nonlinearity has resulted
in the generation of all the spectral content. When considering the form of general time-
invariant behavioral models in the time-domain, namely impulse response functions for
linear systems and the Volterra series for nonlinear systems, it can be noted that the
description of the time-invariant system in the time-domain definition only requires the
description of the output of the system at an arbitrary point in time since the output of
the system at other arbitrary times can be inferred using the the time-invariance property
of the description. In a time-invariant description of a system, the value of the output
signal at an arbitrary point in time is only a function of the values of the input signal at
time offsets relative to that arbitrary point in time.

This motivated the proposed time-domain PHD model [48][49] that mapped the input
signal behaviour onto the output signal behaviour on the same multi-harmonic frequency
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grid as the frequency-domain PHD models, but using a single time-domain nonlinear ex-
pression at each port to achieve this end. This is as opposed to requiring a different describ-
ing function for each frequency like it is required for PHD models. A compact expression
of a time-invariant system is beneficial if an advanced continuous function fitting tool like
artificial neural networks are used for the model fitting problem. For poly-harmonic mod-
els of time-invariant systems, a time-domain expression is more compact than a frequency
domain expression as it requires fewer output variables.

The frequency domain poly-harmonic distortion model describes the nonlinear time-
invariant dynamics of the power transistor using a frequency-domain basis of the input
signal. Since the harmonic balance circuit simulation is focused on the periodic response
of the system, at every simulation state the simulator solves for the voltages at every node
and the currents in every branch of the Netlist. The nonlinear time-invariant system will
generate harmonic content in response to a fundamental frequency stimulus, resulting in
waveforms that diverge from a sinusoidal shape and include harmonic content. Since the
periodic response of the circuit at a given fundamental frequency is being simulated, the
voltages and currents are represented by their Fourier series coefficients, a set of complex
numbers that provide the phasor representation of the cosine wave component at each
harmonic frequency. These coefficients include the DC bias, the fundamental frequency
component which is the dominant signal in an amplifier, and all the harmonic frequencies
that are at integer multiple frequencies of the fundamental frequency and are generated
from the nonlinear elements of the circuit.

The discrete frequency-domain representation of the periodic signal has an equivalent
discrete time-domain representation. The periodic signal can be either represented as a
sum of cosine waves at each of the harmonic frequencies or as a discrete sampling of the
continuous-time periodic waveform. These two representations, namely the Fourier series
coefficients and the sampling of the periodic waveform within its fundamental period are
related to each other via the discrete Fourier transform. The Fourier series representation
of the distorted periodic signal represents the shape of the waveform as the sum of the
DC and harmonic sinusoidal waves. Alternatively a discrete sampling of the same continu-
ous waveform within its fundamental period can represent the continuous waveform given
enough samples within the fundamental period. An example of this duality is shown in
Figure 3.4.

In this section, for simplicity of representation, it is assumed that the nonlinear system
of interest is a single-port system. That is, the system interacts with the surrounding world
at one port and the behavioral model consists of the mapping of the incident a1(t) waveform
at that port onto the reflected b1(t) waveform from that same port. The extension to 2-port
(or multi-port) systems from the single-port formulation is trivial and will be performed
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Figure 3.4: A periodic signal over its fundamental period (thick line) can be equivalently
represented as either a sum of discrete harmonic frequency components (represented by
waveforms with dashed lines) or as discrete time representation (represented by the discrete
dots on the thick line)

at one step at the end in order to have a model that can be applied to power transistors.

S-parameters are a linear time-invariant behavioural model defined in the frequency
domain at a discrete set of frequencies. The discrete transfer function defined by an S-
parameter model at a set of harmonic frequencies 0, f0, 2f0, 3f0, ..., hf0 can be alternatively
described by an equivalent finite impulse response (FIR) model. This FIR model is just
the inverse Fourier transform of the S-parameters on the discrete frequency grid. Note
that since the input and output waveforms (a1(t) an b1(t)) are real-valued over time, the
value of the Fourier series coefficients A1k at negative frequencies is the complex-conjugate
of the Fourier series coefficients at positive frequencies.

a1(t) =
h∑
k=0

1

2

(
A1ke

j2πkf0t + A∗1ke
−j2πkf0t

)
(3.7)
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b1(t) =
h∑
k=0

1

2

(
B1ke

j2πkf0t +B∗1ke
−j2πkf0t

)
(3.8)

If the S11 parameters at the harmonic frequencies are labeled as Sk for the k-th harmonic
parameter, then the vector of S-parameters is related to the vector of FIR coefficients hS
through the inverse discrete Fourier transform (IDFT):

{hS[0], hS[1], hS[2], · · · , hS[2h− 2], hS[2h− 1], hS[2h]} =

IDFT
{
S∗h, S

∗
h−1, · · · , S∗2S∗1 , S0, S1, S2, · · · , Sh−1, Sh

} (3.9)

This S-parameter FIR model can be seen as having the form:

b1(t) =
2h∑
k=0

a1(t− ktd)hS[k] (3.10)

where td = T0
2h+1

is the delay between the memory taps and T0 is the fundamental period.

The memory depth of the FIR model is limited to within the fundamental period (T0)
and the taps of the FIR model are equally spaced in time (with the spacing td) within
that range. Increasing the number of taps of the FIR model when the memory depth is
fixed to T0 is equivalent to increasing the “sampling rate” of the FIR model, which in turn
increases the maximum harmonic frequency that the FIR model can act upon. 2h+ 1 taps
in the FIR model ensures that h harmonics are within the Nyquist rate of the FIR model
sampling frequency.

The nonlinear model in the time domain will have to be a generalization of this FIR
model in terms of the time-domain samples used in the model. The basis for the nonlinear
model will be the same as the FIR taps (the sub-period fractional delayed inputs a(t−ktd)).
This gives the general form of the Time Domain Poly-Harmonic Distortion (TD-PHD)
model for a 1-port system:

b1(t) = f1 (a1(t), a1(t− td), a1(t− 2td), · · · , a1(t− 2htd)) (3.11)

where td = T0
2h+1

and T0 is the fundamental period and the TD-PHD describing function
f is a real-valued analytic function. In other words, the time-domain output b1(t) at any
time t is a multivariate nonlinear function of the value of the input a1 at all the different
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time-offsets from the current time t. This creates a generalization of the discrete impulse
response used in linear systems to nonlinear discrete time-invariant systems. In a way, the
TD-PHD model can be seen as a nonlinear impulse response model. And conversely when
the system is linear, the TD-PHD model collapses into being just a linear real-valued FIR
model.

Generalizing the scattering waveform TD-PHD model to the multi-port case, the inputs
to the TD-PHD model at every port will be sub-period delayed values of the inputs at all
ports of the device. The TD-PHD model for the kth-port of an n-port system up to
harmonic order h can be seen as a multi-dimensional nonlinear impulse response function
of the following form:

bk(t) = fk(a1(t), a1(t− td), · · · , a1(t− 2htd),

a2(t), a2(t− td), · · · , a2(t− 2htd),

· · · ,
an(t), an(t− td), · · · , an(t− 2htd))

(3.12)

The two-port TD-PHD model is the form of the model that will be used to model
high-power packaged power transistors for the design of high power RF amplifiers.

3.3 Development of Power Transistor TD-PHD Mod-

els

To develop a TD-PHD model for a power transistor, one must first start with a represen-
tative load-pull characterization of the power transistor behaviour that is intended to be
modeled. This characterization should stimulate the power transistor into states similar
to ones where it will be operating in when designed into a power amplifier circuit. In Sec-
tion 3.3.1 the unique characterization setup that was developed to perform multi-harmonic
hybrid load-pull measurements on a GaN HEMT power transistor will be presented.

The characterization data captured will be the basis for behavioural model generation.
For the generation of TD-PHD models, the measurement data will have to be discretized
in the form that coincides with the input variables of the TD-PHD model so a direct fit
model can be extracted from from the modeling data. Then the model describing functions,
whether polynomials or artificial neural networks, must be fit the load-pull characterization
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data to a good degree of accuracy for the behavioural model to be useful for power amplifier
design. In Section 3.3.2 the process to extract a TD-PHD model from multi-harmonic load-
pull characterization data will be outline.

After extracting the model parameters, these parameters must be implemented in a
simulation Netlist that describes the TD-PHD model as it is described in this thesis.
Section 3.3.3 will describe the implementation of the TD-PHD model in a harmonic balance
simulator in more detail.

Finally the implementation of the extracted TD-PHD model will have to be validated
against measurements of the power transistor that was characterized in order to show that
the model can predict the behaviour of the power transistor in a simulated environment,
allowing for the design of power amplifiers with multi-harmonic behavioural models that
take the effects of harmonic terminations of nonlinear circuits into account. Section 3.3.4
will present a comparison of the measurement of the large signal multi-harmonic behaviour
of the power transistor compared to the large signal simulation of the extracted TD-PHD
behavioural model. Figure 3.5 summarizes the steps required to develop a TD-PHD be-
havioural model of a power transistor device.

50



Figure 3.5: A flowchart of the steps required to develop a TD-PHD model

3.3.1 Multi-harmonic Loadpull Characterization Of Power Tran-
sistors

For a measurement validation of the TD-PHD model’s ability to simulate the poly-harmonic
large-signal behaviour of a power transistor, a GaN HEMT packaged RF power transistor
device that is sensitive to harmonic impedance terminations was biased at a fixed quiescent
current, and large signal load-pull measurements were performed on it. The objective was
to obtain a single simulation model that can encapsulate all the periodic behaviour of a
the power transistor at a fixed fundamental period and a fixed DC bias point.

Figure 3.6 shows a diagram of the measurement testbench that was used to measure
the large signal behaviour of a power transistor. This setup is a unique hybrid multi-
harmonic passive/active load/source-pull system that is devised for a two-port transistor
measurement. The passive 3-harmonic tuners (Focus Microwave MPT-1818-TC) allow for
setting the source and load impedances at 3 harmonic frequencies, but in this setup, these
passive tuners are used as a pre-match for the active load-pull measurement. In this setup
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Figure 3.6: Hybrid passive/active waveform engineering and large-signal characterization
testbench.

the active harmonic signals that will be used for harmonic load-pull are generated using
an arbitrary waveform generator with a very high sample generation rate. This allows the
setting of the relative amplitude and phase of the injected signal at the harmonic frequencies
with just a single signal source that will output a multi-harmonic waveform. High power
drivers in front of the active sources allows for the generation of higher magnitude reflection
coefficients beyond the capability of the passive tuners alone. Two phase-coherent channels
of a Keysight M8190A 12 GSa/s Arbitrary Waveform Generator (AWG) were used to
generate an active signal at the fundamental and second harmonic frequencies (2GHz
and 4GHz respectively). The AWG was synchronized with the Keysight N5242A PNA-X
NVNA via a 12GHz sample clock feed from the NVNA. The NVNA uses its second phase
coherent source to drive the phase reference of the NVNA allowing for the recreation of
the time-domain calibrated waveforms at the RF calibration plane.

The power transistor device itself will be placed in a transistor fixture which includes
a Thru-Reflect-Line (TRL) calibration kit that allows us to extract the S-parameters of
transistor fixtures on each port. The measurements performed at the RF calibration plane
will be de-embedded to the power transistor lead plane. The DC bias of the power transistor
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Figure 3.7: Active waveform engineering and large-signal characterization testbench during
calibration

is provided through external DC bias-tees. DC measurements on the ports of the device
are performed in parallel with the RF measurements to keep track of the power efficiency
of the power transistor while the RF impedances and input power presented to the power
transistor is varied.

Note that this is an open-loop active load-pull system and thus there will be no abso-
lute impedance control, but an accurate characterization will be performed on the power
transistor regardless. In this open-loop active loading scheme, a signal will be injected onto
the drain side of the power transistor device to deviate the impedance that is presented to
the transistor due to the passive termination provided by the passive tuners. However, this
final impedance that is presented to the device will not be controlled. Since the objective
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here is behavioural modeling, any nonlinear behaviour captured within the range of useful
RF performance of the power transistor can be used to develop the model and thus having
an open-loop active load-pull system, as opposed to a closed-loop one, would not be an im-
pediment. Since an NVNA measurement allows for the determination of the time-domain
waveforms of the drain current and drain voltage, the instantaneous peaks of the drain
to source voltage Vds(t) can be monitored to avoid getting close to the device breakdown
voltage. This will put a natural limitation on how hard the device will be pushed during
large signal characterization.

This open-loop active loading scheme only allows for active impedance variation over
two harmonics. An NVNA characterization that goes up to the higher harmonics (beyond
the third order) is performed even though there is no direct control over the impedances
and signals injected at those higher harmonic frequencies in the hopes that this higher
harmonic variation that is captured in the multi-harmonic load-pull data can reveal the
poly-harmonic behaviour of the device under test given the fact that a poly-harmonic be-
havioural model is being used that can theoretically respond to those higher harmonic
effects. This was important for the measurement strategy that was devised to get a rep-
resentative multi-harmonic load-pull measurement data-set that randomly spans the mea-
surement space of interest while having enough variation within the harmonic load and
source terminations.

Using the measurement testbed of Figure 3.6, a 10W GaN packaged RF transistor
(Wolfspeed CGH40010) was biased at a quiescent DC drain current of 45mA (Class AB)
and was subject to a 2-harmonic open-loop active load-pull with NVNA characterization
at 5 harmonics of a fundamental frequency of f0 = 2GHz.

In this research, a time-domain scheme for the generation of the active injection scheme
was devised that is in-line with the time-domain signal generation provided by the arbi-
trary signal generators. Considering that the test setup of Figure 3.6 uses an arbitrary
waveform generator to create the multi-harmonic incident RF waves, a limit of 10dB of
fundamental-to-harmonic power was used in the random active signal generation, to ensure
that the randomly generated signals are closer to the type of fundamental frequency am-
plification application that the power transistor will be used for in an RF power amplifier
design. Two time-domain active signals were used for the two-port active load-pull (one
for the source side, and the other for the load side) with a second harmonic component
with a fixed magnitude and phase compared to the fundamental frequency component,
effectively freezing the time-domain shape of the injected signal. While fixing the shape
of the injected a1(t) and a2(t) signals, the relative magnitude and sub-fundamental-period
time-delay of these signals were then swept. The relative magnitude and time-delay sweep
of the a2(t) with reference to a1(t), ensures that the reflected Γ21 and Γ22 impedances at
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Figure 3.8: The variation of the multi-harmonic load-pull characterization dataset in terms
of both the harmonic impedances as well as the dynamic load-lines of the device at the
power transistor reference plane

the fundamental and second harmonic frequency respectively are swept in every direction
around the passive impedance provided by the passive impedance tuners. Nshapes = 10
random a1(t) and a2(t) shapes were generated and for each of these combinations, active
load-pull measurements are performed to sweep the Nmagnitudes = 25 signal magnitudes
and Ndelays = 11 sub-fundamental-period time-delays of the two active multi-harmonic
signals to result in a total of 2750 NVNA measurements for the entirety of the load-pull
measurement space. Figure 3.8 shows the total variation of the first and second har-
monic reflection coefficients for this randomly generated load-pull characterization scheme.
The time-domain waveforms were also plotted with the time-dimension removed to create
dynamic load-lines comparing the IDS(t) vs VDS(t) behaviour showing that the character-
ization has spanned and stimulated a big part of the underlying nonlinearity of the power
transistor itself.

This extracted load-pull characterization set at a fixed fundamental frequency of f0 =
2GHz was then formatted in a way to make TD-PHD model extraction feasible as described
in Section 3.3.2.
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3.3.2 TD-PHD Model Extraction From Multi-Harmonic Load-
Pull Measurements

A power transistor can be modelled as a two-port system, where one port is the gate to
source terminal of the device and the other is the drain to source terminal. The two-port
version of equation 3.12 requires two TD-PHD expressions to be modelled:

b1(t) = f1(a1(t), a1(t− td), · · · , a1(t− 2htd),

a2(t), a2(t− td), · · · , a2(t− 2htd))
(3.13)

b2(t) = f2(a1(t), a1(t− td), · · · , a1(t− 2htd),

a2(t), a2(t− td), · · · , a2(t− 2htd))
(3.14)

where h is the maximum harmonic order of the TD-PHD model and td = T0/N is the
sub-period spacing between the inputs to the model and N = 2h+ 1 is the time-resolution
parameter of the model.

Each of the functions f1 and f2 are static, or memory-less expressions that have to
hold over the entire load-pull dataset. While the signals b1(t), b2(t) a1(t), a2(t), a1(t− td),
a2(t − td), and so on are periodic and have values over all time, the functions f1 and f2
only apply to a single instant in time. These two nonlinear functions have to fit the entire
load-pull measurement space over all time. To extract the functions f1 and f2, all the
periodic measurements will need to be converted into their time-domain representations.
Each one of the periodic measurements of the signals included in equations 3.13 and 3.14
will need to be sampled uniformly over the fundamental period. To extract the proposed
model, the load-pull measurement dataset will need to be converted from the frequency
domain to the time domain by means of a Fourier Series evaluation of the DC, fundamental
and harmonic frequencies:

a1(t) = Vgate,DC + Σh
k=1|A1k|cos (2πkf0t+ ∠A1k)

a2(t) = Vdrain,DC + Σh
k=1|A2k|cos (2πkf0t+ ∠A2k)

b1(t) = Igate,DC + Σh
k=1|B1k|cos (2πkf0t+ ∠B1k)

b2(t) = Idrain,DC + Σh
k=1|B2k|cos (2πkf0t+ ∠B2k)

(3.15)
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If the model order or the harmonic order of the model is too low, the model fitting
algorithm will have difficulty in finding a good fit to the data. A good model fitting
threshold would be a Normalized Mean Squared Error (NMSE) of better than -30dB for
the time-domain measurement dataset. The NMSE for a parameter y that is modeled with
the variables ymodel,i and measured with variables ymeas,i over the measurement dataset is
defined as follows:

NMSEy =

∑
|ymodel,i − ymeas,i|2∑

|ymeas,i|2
(3.16)

For this load-pull measurement dataset, since there are at least 5-harmonics of infor-
mation in the time-domain data, the time-domain resolution of the model N has to be at
least 11, meaning that a set of 22 input variables will be used for each output of this 2-port
model.

Since the entire load-pull measurement data set is periodic with the period T0, the
output functions b1(t), b2(t), and the input functions a1(t), a1(t− td) through a1(t− 2htd),
and a2(t), a2(t − td) through a2(t − 2htd) are evaluated at times t = 0, t = td, t = 2td,
· · · , t = 10td. This means that each frequency-domain load-pull measurement at a fixed
power level in the dataset will be converted into 11 equivalent discrete time-sampled data
points. This will be the discrete time-domain dataset used for fitting the simulation-time-
independent nonlinear output functions f1 and f2 that implement the following TD-PHD
mappings:

b1(t) = f1 (a1(t), a1(t− td), · · · , a1(t− 10td)) (3.17)

b2(t) = f2 (a1(t), a1(t− td), · · · , a1(t− 10td)) (3.18)

Figures 3.9 and 3.10 show a graphical representation of how the time-domain input and
output signals are discretized respectively. The main insight that is illuminated in Figure
3.9 is that at each instance in time, having access to all the delayed versions of each of the
input signals allows surrogate access to the value of the input signals at other points in
time. This allows the TD-PHD model to act as a memory model that reacts to the history
of the input signal as well as the current instantaneous value of the input signal.

The multivariate nonlinear functions f1 and f2 can be implemented with multivariate
polynomial functions of the form:
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b1 =
∑
yi,zi

K(y1,··· ,y11,z1,··· ,z11)a1(t)
y1 · · · a1(t− 10td)

y11a2(t)
z1 · · · a2(t− 10td)

z11 (3.19)

b2 =
∑
yi,zi

L(y1,··· ,y11,z1,··· ,z11)a1(t)
y1 · · · a1(t− 10td)

y11a2(t)
z1 · · · a2(t− 10td)

z11 (3.20)

The polynomial coefficients K(y1,··· ,y11,z1,··· ,z11) and L(y1,··· ,y11,z1,··· ,z11) will have unique
real values for each polynomial power of the delayed inputs of input signals a1(t − ktd)
and a2(t − ktd) for values of k that go from 0 to 10. The main complication of using a
multivariate polynomial implementation is that the number of required model coefficients
increases as the model order is increased and the choice of which coefficients to include
and which to leave out becomes important in model extraction stability. In addition,
while polynomial models can allow for good interpolation, they are not well suited for
extrapolation beyond the training data. Since the nonlinear representation of polynomials
is limited, an artificial neural network model of f1 and f2 is used instead to avoid these
limitations. The decision to use artificial neural networks, especially one that has output
neurons with bounded activation functions (like the Sigmoid function), allows for better
simulation robustness for the model while tackling the hard nonlinearity that requires many
polynomial kernel functions to approximate.

The neural network topology used for modeling each of the two multi-variable nonlinear
functions f1 or f2 will have a distinct input neuron for each of the input signals a1(t− ktd)
and a2(t− ktd) and a single output neuron for b1(t) or b2(t) respectively similar to what is
shown in Fig. 4.7. All the inputs to the artificial neural network are normalized to a value
between 0 and 1 (using Min-Max Normalization). The layers of neurons in between the
input and output layers are referred to as the hidden layers. Each neuron in the hidden
layer will get an input from all the neurons in the previous layer and will model its output
based on the following neuron model:

y = S

(
b+

k∑
i=1

wixi

)
(3.21)

where xi are the k inputs to the neuron and S(x) = 1
1+e−x

is the sigmoid function. The
choice of the sigmoid function as the activation function of the neuron model ensures that
the output of the artificial neuron y will be a value between -1 and 1. Each artificial neuron
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will have input weights wi and bias value b as parameters that will need to be solved for
during the ANN training. The output neuron of each of the b1(t) and b2(t) ANNs will
denormalize the value of the output neuron from a value between -1 and 1 to the minimum
and maximum values that are available in the training dataset for the output variable.

A single hidden layer with enough neurons should be enough to model any continuous
nonlinear multivariate expression. The parameters of the ANN, the weights and bias
values are solved for given a chosen artificial neural network topology using the Levenberg-
Marquardt back-propagation algorithm available in the Neural Network Training Toolbox
of MATLAB [50][51]. In practise we noticed that to achieve the -30dB threshold NMSE, a
single hidden layer topology is capable of modeling the gate (input impedance) nonlinear
model for b1 but for the drain (output power) nonlinear model a two hidden layer neural
network topology was required to achieve the target NMSE with respect to the load-pull
data with a less number of neurons. It was observed that up to two hidden layers for
an artificial neural network can be simulated with modern harmonic balance simulators
without much trouble. Using a bounded nonlinear activation function for the output
neuron like the sigmoid function provides better simulation convergence compared to using
an unbounded linear activation function, even if the ANN trained with the linear output
neuron activation function achieved the required threshold NMSE. For the characterization
data that was extracted from the 10W GaN transistor in the previous Section, the gate
model ANN had a single-hidden-layer ANN with 100 neurons while the drain model ANN
had a two-hidden-layer ANN with 50 neurons in each hidden layer to achieve the threshold
-30dB of NMSE.

It’s important to note that even though an ANN has quite a complex visual represen-
tation, the ANN itself can be flattened into a single mathematical expression that can be
evaluated by the circuit simulator. The flattened expression for the ANN can be found
starting from the right side of the ANN as shown in Figure 4.7 and expanding out the
inputs from each neuron and replacing it with the neuron expression. At the end one is
left with a differentiable expression that can be implemented in a harmonic balance circuit
simulator.

3.3.3 Implementation of a TD-PHD Model in a Harmonic Bal-
ance Simulator

To implement the TD-PHD model that was extracted with the procedure outlined in the
previous section in a harmonic balance simulator, one can take advantage of the fact that
modern circuit simulators allow for time-domain nonlinear expressions to be defined in a
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circuit Netlist. In Keysight’s Advanced Design System (ADS) environment, a Symbolically
Defined Device (SDD) component can be used to implement this static time-domain non-
linear expression. Given the choice of an artificial neural network for the gate and drain
TD-PHD models, each of the trained ANNs can be converted into a flattened expression.
This flattened expression is generated starting at the output neuron and recursively calling
each of the neurons in the previous layer for an expression of their outputs. This recursive
call generates a single expression involving additions, subtractions, multiplications and ex-
ponentiations, all valid operations in defining a nonlinear expression within the harmonic
balance simulator. Since the ANN description is analytic with defined derivatives, the har-
monic balance simulator can thus load the nonlinear TD-PHD model and its derivatives
into memory to perform the nonlinear simulations of interest.

The nonlinear describing functions of the TD-PHD model as shown in Figure 3.12 re-
quires access to time-delayed versions of the input signals a1(t) and a2(t). These time
delayed inputs can be made available to this nonlinear expression through the use of sur-
rogate nodes in the Netlist that produce the delayed versions of the input signals. These
surrogate nodes can be generated through a chain of frequency-defined time-delays of each
of the input signals. These frequency-domain time-delay blocks of fractional-period de-
lay length of T0/N add a frequency-proportional phase shift by multiplying the each of
the fundamental and harmonic frequency phasors A1k (or A2k) by e2πjk/N where k is the
harmonic order of the phasor. Figure 3.13 shows the delayed versions of the input signal
that is made available in the Netlist as surrogate signals for the computation of the TD-
PHD model for a simple case where N = 7 as a visual demonstration. Stepping through
time it is apparent that the values of the signals at other times within the fundamental
period of the multi-harmonic signal are exposed within the circuit simulator and input to
the nonlinear describing functions of the TD-PHD model in a time-invariant manner. The
generation of these time-delayed signals within the simulator allows the simulator to access
the time-domain information that exists in the entirety of the fundamental period at any
time within the fundamental period of the signal by only accessing these surrogate signals
at the current instant. Then all of these surrogate nodes are fed into the static memory-less
TD-PHD expression to give the output signal b1(t) for the case of the gate model or b2(t)
for the case of the drain model.

The extracted model can then be implemented into this harmonic balance Netlist struc-
ture and the resulting behavioural model can be simulated to predict its performance under
various conditions. In Section 3.3.4 the extracted model for the 10W GaN device that was
characterized in Section 3.3.1, extracted in Section 3.3.2, and implemented in a Harmonic
Balance simulator in Section 3.3.3 will be validated against multi-harmonic load-pull mea-
surements.
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3.3.4 Comparison of the Simulation of Extracted TD-PHD Mod-
els with Multi-Harmonic Loadpull Measurements

The extracted and implemented 2GHz-fundamental frequency TD-PHD model of the 10W
GaN packaged RF power transistor (Wolfspeed CGH40010) biased at a quiescent DC
drain current of 45mA is then put in a simulated multi-harmonic load-pull harmonic bal-
ance simulation testbench to simulate its power sweeps for any given harmonic impedance
termination set at either port of the device under test. In our measurement validation,
a 2-harmonic active load-pull measurement was used to extract the TD-PHD behavioural
model, but passive load-pull measurements were used to validate the performance of the
extracted behavioural model. This was done so that the validation was not done based
on the same training set used to extract the model. The duality between the simulated
load-pull testbench and the load-pull characterization of the power transistor in the hybrid
load-pull power transistor characterization testbench was used as a basis for the validation
of the extracted and implemented model.

To showcase the multi-harmonic performance of the extracted TD-PHD model, the
passive tuner harmonic impedances at source and the load are set randomly, while the
presented a fundamental frequency load reflection coefficient is varied as shown in Figures
3.14 through 3.18. The multi-harmonic time-domain NMSE for the prediction of each of the
b1(t) and b2(t) is presented in each of these figures, showing that the single extracted large
signal TD-PHD model was able to predict the b1(t) and b2(t) time-domain waveforms with
a multi-harmonic time-domain NMSE of better than -25dB for the range of fundamental
mismatch tested.

Finally, a gradient-search algorithm was run on the multi-harmonic passive tuners
in order to tune the source harmonic and load harmonic impedances to maximize the
power-added efficiency. Figure 3.19 shows the comparison of the TD-PHD model gain and
the Power-Added Efficiency (PAE) performance in simulation compared against the mea-
sured performance at the optimal-search harmonic match, showing that the multi-harmonic
model was able to predict the peak performance of the single ended power amplifier with
an NMSE of the output waveform b2(t) better than -32dB. This demonstrates that a TD-
PHD model can be an effective tool for the design of high efficiency single ended power
amplifiers from multi-harmonic load-pull characterization of a power transistor device.
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Figure 3.9: A graphical example of an N=8 input signal discretization to develop time-
domain PHD modeling data
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Figure 3.10: A graphical example of an N=8 output signal discretization to develop time-
domain PHD modeling data
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Figure 3.11: Diagram of artificial neural network architecture used for the b2(t) output of
the power transistor model based on the 22 auxiliary signals a1(t) through a1(t−10td) and
a2(t) through a2(t− 10td)
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Figure 3.12: Harmonic balance implementation circuit of a 2-port TD-PHD model to use
as an RF transistor behavioral model
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Figure 3.13: A multi-harmonic waveform and its delayed version over 7 steps within its
fundamental period

Figure 3.14: Measured vs. TD-PHD model power sweep time-domain waveforms for ΓL = 0
with a NMSEb1(t) = −42.334dB and NMSEb2(t) = −38.637dB
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Figure 3.15: Measured vs. TD-PHD model power sweep time-domain waveforms for ΓL =
0.2∠60◦ with a NMSEb1(t) = −41.286dB and NMSEb2(t) = −30.985dB

Figure 3.16: Measured vs. TD-PHD model power sweep time-domain waveforms for ΓL =
0.2∠120◦ with a NMSEb1(t) = −41.123dB and NMSEb2(t) = −35.954
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Figure 3.17: Measured vs. TD-PHD model power sweep time-domain waveforms for ΓL =
0.2∠− 120◦ with a NMSEb1(t) = −40.844dB and NMSEb2(t) = −25.380dB

Figure 3.18: Measured vs. TD-PHD model power sweep time-domain waveforms for ΓL =
0.2∠− 60◦ with a NMSEb1(t) = −39.989dB and NMSEb2(t) = −26.017dB
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Figure 3.19: Measured Gain and Power Added Efficiency Performance of the 10W GaN
RF transistor compared to the TD PHD model prediction at the Maximum Efficiency
Optimum Impedance multi-harmonic match with an NMSEb2(t) = −32.029dB
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3.4 Chapter Conclusions and Discussion

In this chapter the time-domain poly-harmonic distortion model, which is one of the main
contributions of this thesis, was introduced as an alternative behavioural modeling scheme
to the frequency-domain PHD models in the literature that is instead exclusively defined
in the time-domain. First an intuitive argument was presented in Section 3.1 that showed
from first principles that the TD-PHD model has a reduced level of construction complexity
needed to describe the mapping between the shape of a multi-harmonic input signal onto
the shape of a multi-harmonic output signal in a time-invariant way.

Then in Section 3.2 a more rigorous development of the TD-PHD model is presented
that starts with a time-domain impulse response model derived from the frequency do-
main multi-harmonic S-parameters of the underlying system, and generalizes the results
to nonlinear time-invariant systems by showing how the TD-PHD model is in effect a
time-domain nonlinear impulse response model.

After this initial theoretical justification for the TD-PHD model, the procedure to de-
velop TD-PHD models from large-signal measurements of the power transistor is presented
in Section 3.3, where the entire process from the multi-harmonic load-pull characterization
of the power transistor to the preparation of the characterization data for model extrac-
tion, the details involved in artificial neural network modeling, the implementation of the
TD-PHD model in a harmonic balance simulator, and a measurement validation of the
extracted model is presented, justifying the usefulness of the TD-PHD model in designing
power amplifier circuits that require taking the harmonic impedance terminations into ac-
count. The extraction of the resulting time-domain poly-harmonic distortion (TD-PHD)
model required a small number of representative multi-harmonic load-pull measurements
to capture the nonlinear behaviour. It was also successfully integrated into ECAD tools
and can be exploited in the design single-ended harmonically tuned power amplifiers.

Nevertheless, the TD-PHD model as described in this chapter is fixed to a single fun-
damental frequency. This means that if a TD-PHD model Netlist construction as it was
proposed in this chapter is simulated at a different fundamental frequency than where it
was intended, the model would have no predictive capability. Another fundamental limita-
tion of the Netlist construction of the TD-PHD model proposed in this chapter is that its
strictly a harmonic balance simulation model. One way to implement a TD-PHD model
in a time-domain simulator would be an implementation that fixes the time-step of the
time-domain simulation to match the sub-period time-delay (td) of the TD-PHD model.

The TD-PHD model, being fixed to a single fundamental frequency, requires a wide-
band high power amplifier designer to extract a completely separate model to fit the load-
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pull measurements at each fundamental frequency, even though a common underlying
nonlinearity has resulted in the behaviour observed at all the individual fundamental fre-
quencies. In Chapter 4, the proposed TD-PHD model of this chapter will be generalized
such that a single time-domain model can fit load-pull measurements that were performed
over a non-uniformly spaced discrete frequency grid. The proposed model is a discrete-time
model that is tuned to act on a discrete set of frequencies. As a result the model, like the
TD-PHD model presented in this chapter, it will not be able to predict the performance
of the power transistor at frequencies that are not in the discrete frequency set of the
model. On the other hand the discrete frequencies can be chosen such that it spans over a
significant bandwidth of frequencies where load-pull measurements have been performed.
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Chapter 4

Time-Domain Multi-Tone Distortion
Models

A limitation of the TD-PHD model proposed in the previous chapter is that the model is
fixed to one fundamental frequency. This means that for load-pull measurements spanning
multiple fundamental frequencies, a separate TD-PHD model would be required at each
fundamental frequency, even though a common underlying nonlinearity has resulted in
the large signal behavior at each of these fundamental frequencies. In this chapter, the
previously proposed model will be extended such that a single time-domain model can fit
load-pull measurements with a non-uniformly spaced frequency grid that contains all the
load-pull design frequencies of interest. This model will be called the time-domain multi-
tone distortion (TD-MTD) model. Figure 4.1 summarizes the steps required to develop a
TD-MTD behavioural model of a power transistor device.

To validate this extended modeling framework, the large-signal simulation of a two-way
Doherty power amplifier with packaged LDMOS power transistors will be investigated and
compared against the measurements of the power amplifier and a simulation of the amplifier
using a compact transistor model. Unlike other attempts of Doherty power amplifier design
via behavioral models, load-pull measurements and compact models[52][53][54][55], this
thesis proposes a general framework that produces a single time-domain model that can
be used to approximate all the measured load-pull data with a time-invariant behavioral
model.
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Figure 4.1: A flowchart of the steps required to develop a TD-MTD model

4.1 The Volterra Series Projection Formulation for

TD-MTD Models

In this Section the Volterra Series representation of a power transistor will be taken as a
theoretical representation of the entirety of the underlying nonlinear dynamics of the power
transistor, then a discretization or projection of this infinite series expression for a subset
of stimulus signals that are fixed on a specific non-uniformly spaced frequency grid, using
a specific discrete set of auxiliary signals will be shown to be possible. Finally an extension
of the TD-PHD model that will be referred to as the time-domain multi-tone distortion
(TD-MTD) model will be derived by showing it is such a projection of the underlying
Volterra series representation of the power transistor given a specific defined time delay
between the auxiliary signals that corresponds to the shared fundamental frequency of the
load-pull dataset.
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Figure 4.2: Frequency grid (dashed lines) and location of frequency content (arrows) for
the TD-PHD model

4.1.1 Discrete Projection of a Continuous-Time Volterra Series
on a Fixed Frequency Grid

If the power transistor is assumed to be an equi-continuous and uniformly bounded non-
linear time-invariant system, then according to the Arzela-Ascoli theorem and Fréchet’s
approximation theorem [56], its behavior around a quiescent bias can be approximated
uniformly to an arbitrary degree of precision by a sufficiently high order Volterra series
[57][58][59]. For simplicity of representation, a one-port system will be used in the following
analysis but the arguments will be trivially generalized to two-port systems and beyond at
the end of this Section.

Suppose a powerwave scattering model is used for behavioral modeling, where the input
signal is the incident powerwave signal a(t) and the output signal is the reflected powerwave
signal b(t). The time-domain continuous Volterra series gives the response of the nonlinear
time-invariant system b(t) for a known input signal a(t). The Volterra series represents the
output signal as a series sum of multi-dimensional convolutions of the input signal with
the kernel functions hn, where n is the polynomial order of the kernel function [18]:

b(t) =
∞∑
n=0

∞∫
0

· · ·
∞∫
0

n−times

hn(τ1, · · · , τn)
n∏
i=1

a(t− τi)dτi (4.1)

The real-valued kernel functions hn(τ1, · · · , τn) are a representation of the underlying
dynamic nonlinearity of the power transistor including its short and long term memory
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effects. Assume that a fixed set of time-domain continuous kernel functions provide a
frequency-independent description of the nonlinear time-invariant response of the power
transistor for all potential continuous input signals a(t). In order to create a behavioral
model that targets signals that are fixed to a certain discrete frequency grid, a projection
of the output of the frequency-independent infinite series expression of (4.1) can be found
for a subset of all possible signals that lie on a specific fixed frequency grid. In order
to theoretically compute the instantaneous output, b(t), of the Volterra-series expression
of (4.1), the circuit simulator requires the complete knowledge and access to the input
signal’s value at all instances in time and not just at time t, even though the circuit
simulator expects an instantaneous (that is, available at time t) time-domain expression
for the nonlinearity. To be able to emulate the instantaneous-time computation of the
Volterra series, the information about the past values of the input signal needs to be
made available to the circuit simulator at all instantaneous times. This can be achieved
through auxiliary signals in the model Netlist that reveal the time-domain value of the
history of the input signal to the circuit simulator, allowing an emulated computation of
the instantaneous output only based on the instantaneous values of these auxiliary signals.

The TD-PHD model[49] is such a projection of the continuous-time Volterra series ker-
nels onto a discrete frequency grid of frequencies that are multiples of a single fundamental
frequency f1. Although f1 is not the only frequency that can divide all the frequencies
of the frequency grid, it is the largest frequency that can do so. Any integer division of
f1 (e.g. f1/2 or f1/3 and so on) could have possibly also been used as the common fun-
damental frequency (fCF ) of the model. For the TD-PHD model as proposed in [49], the
fCF parameter was explicitly fixed to f1, the fundamental frequency of the multi-harmonic
load-pull measurement set, as shown in Fig. 4.2. This fCF parameter will be the key to
generalization of the TD-PHD modeling framework proposed in this chapter. The TD-
PHD model uses a set of auxiliary signals that are delayed versions of the input signals
evenly spaced in time to span the fundamental period (T = 1/f1) of the multi-harmonic
load-pull measurement dataset. Let the auxiliary signals xi(t) be N time delayed versions
of a(t) spanning its period (T ):
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x1(t) = a(t)

x2(t) = a

(
t− T

N

)
= a

(
t+ (N − 1)

T

N

)
x3(t) = a

(
t− 2

T

N

)
= a

(
t+ (N − 2)

T

N

)
· · ·

xN−1(t) = a

(
t− (N − 2)

T

N

)
= a

(
t+ 2

T

N

)
xN(t) = a

(
t− (N − 1)

T

N

)
= a

(
t+

T

N

)
(4.2)

By making the signals xi(t) available in the circuit simulator, the value of a(t) at
any time can be theoretically evaluated and made available for the computation of the
right-hand-side of (4.1). So a discrete projection of the Volterra-series can be found with
these auxiliary signals as its constituting basis. Since the choice of auxiliary signals in the
TD-PHD model is fixed to the period of a single fundamental frequency, a single TD-PHD
model cannot be used to represent the behavior of a nonlinear power transistor over multiple
non-uniformly spaced frequencies that was captured during a load-pull measurement. To
overcome this limitation, a generalization of the time-spacing of the auxiliary signals and
as a result, a new generalized discrete projection that allows for the extraction of a single
time-domain defined behavioral model for a non-uniformly spaced frequency grid will be
proposed. The models using this generalized framework will be referred to as time-domain
multi-tone distortion (TD-MTD) models. TD-MTD models are a generalization of TD-
PHD models in the sense that a TD-PHD model is a TD-MTD model where fCF is fixed
to a single fundamental frequency.

In order to allow for an instantaneous-time computation of the Volterra-series at time
t1, there must exist a time-invariant interpolation function that reveals the value of the
input signal a(t) at another time t2 from only the evaluation of the auxiliary signals, xi(t),
at time t1 and the knowledge of the time-offset between these two times ∆t = t2− t1. That
is, the condition required to be able to approximate the Volterra series instantaneously
and to provide a projection is the existence of a smooth continuous interpolation function
finterp:

a(t2) ≈ finterp(∆t, x1(t1), x2(t1), · · · , xk(t1)) (4.3)
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If the function finterp exists, then the continuous-time Volterra series expression collapses
onto the discrete projection:

b(t) = g(x1(t), x2(t), · · · , xk(t)) (4.4)

where the continuous simulation-time-independent static function g approximates the op-
erations on the right hand side of (4.1). In fact, the multi-variable nonlinear function g
in (4.4) is approximating the output of the expression of the Volterra series of (4.1) where
the time-dependent operand a(t) is replaced with a set of simulation-time-independent
operands xi(t) by taking advantage of the interpolation function. This can be achieved
without having an explicit expression for finterp by adopting a multi-variable polynomial
expression for g. Alternatively, in this work an artificial neural network was used to fit
this multi-variate function g as it is an effective fitting tool for continuous multi-variate
functions and it allows the avoidance of the numerical instability problems that arise when
a high nonlinear polynomial model order is required.

4.1.2 Formulation of the TD-MTD Model

In the previous Section, a multi-variable non-linear function g was introduced to approxi-
mate the Volterra-series when modeling the behavior of high power transistors over multi-
ple nonuniformly-spaced frequencies. In this Section, the auxiliary signals xi(t) that were
used as operands in the function g will now have to be defined such that they allow for
the extraction of the parameters of the multi-variable function g based on the load-pull
characterization data spanning multiple fundamental frequencies.

Since typically these frequencies are all integer multiples of a common frequency fCF ,
a common period exists for the time-domain representations of the load-pull measurement
data. In Fig. 4.3 the location of the spectral content of load-pull measurements are shown
for multiple fundamental frequencies. This common period is longer than the period of
any individual fundamental frequency in the load-pull characterization data and contains
more periods of the higher frequency characterization data and less periods of the lower
frequency data. A uniform sampling of the input signals over this much longer common
period can reveal the signals that are on a non-uniformly spaced frequency grid through
the Non-Uniform Discrete Fourier Transform Type I (NUDFT-I) [60] [61].

Suppose the auxiliary signals xi(t) of (4.2) are defined for T = 1/fCF and are evaluated
at time t = 0:
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Figure 4.3: Frequency grid (dashed lines) and the location of frequency content of multi-
harmonic load-pull at three different fundamental frequencies (arrows) for a TD-MTD
model

x1(0) = a(0)

xN(0) = a

(
T

N

)
xN−1(0) = a

(
2
T

N

)
· · ·

x3(0) = a

(
(N − 2)

T

N

)
x2(0) = a

(
(N − 1)

T

N

)
(4.5)

The set of discrete samples xi(0) can be used to generate a Fourier series representation
of the input signal a(t). These Fourier series coefficients are obtained from the Non-Uniform
Discrete Fourier Transform Type I (NUDFT-I) as follows:

Ak(0) =
N−1∑
n=0

a(nT/N)e
−j 2π

N

fk
fCF

n
(4.6)

The Fourier series coefficients Ak(0) are obtained when the functions xi(t) are evaluated
at t = 0. Using the time-shifting property, the Fourier Series coefficients at an arbitrary
simulation-time can be obtained by:
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Ak(t) = ejωktAk(0) (4.7)

where ωk is the angular frequency of each of the Fourier series coefficients Ak.

Comparing the auxiliary signals of (4.5) and the elements of the Fourier series expression
of (4.6), it can be noted that the Fourier series coefficient Ak(0) is a function of the delayed
input signals xi(0):

Ak(0) = fk (x1(0), x2(0), · · · , xN(0)) (4.8)

By the time-shift property for periodic signals, the Fourier series coefficient at simulation-
time t1 can be determined as:

Ak(t1) = fk (x1(t1), x2(t1), · · · , xN(t1)) (4.9)

The time-domain input signal at another arbitrary simulation-time t2 can be expressed
as the following Fourier series expression:

a(t2) =
h∑
k=0

1

2

(
Ak(0)ejkω0t2 + A∗k(0)e−jkω0t2

)
(4.10)

Using the time-shift property of (4.7), the expression of (4.10) can be re-written using
the time-varying Fourier series coefficients Ak(t1):

a(t2) =
h∑
k=0

1

2

(
Ak(t1)e

jkωk(t2−t1) + A∗k(t1)e
−jkω0(t2−t1)

)
(4.11)

In this expression an interpolation of the input signal at an arbitrary simulation-
time t2 is found that’s based on the auxiliary signals xi(t) evaluated at another arbi-
trary simulation-time t1 and the time offset between these two arbitrary simulation-times
∆t = t2 − t1. Thus (4.3) holds for the choice of auxiliary signals xi(t) and from (4.4),
the output at an arbitrary time t can be expressed using a simulation-time-independent
function of auxiliary signals evaluated at any simulation-time t:

b(t) = g (x1(t), x2(t), · · · , xN(t)) (4.12)

79



Now that the expression of the auxiliary signals needed to model the behavior of a non-
linear single port system over a non-uniformly-spaced set of frequencies has determined,
the expression of (4.12) can be generalized for two port systems, which is the form of the
model used for power transistors:

b1(t) =

g1(x1,1(t), x1,2(t), x1,3(t), · · · , x1,N(t),

x2,1(t), x2,2(t), x2,3(t), · · · , x2,N(t))

(4.13)

b2(t) =

g2(x1,1(t), x1,2(t), x1,3(t), · · · , x1,N(t),

x2,1(t), x2,2(t), x2,3(t), · · · , x2,N(t))

(4.14)

where N is the time resolution of the model and x1,k(t) and x2,k(t) are the auxiliary signals
based on the two input signals a1(t) and a2(t). In this generalization of one-port systems
to two port systems, the complete dependence of each of the output signals (b1(t) or b1(t))
on both of the input signals (a1(t) and a2(t)) is made explicit.

4.2 Extraction and Validation of the Proposed TD-

MTD Model and its Implementation in a Har-

monic Balance Simulator

In Section 4.2.1 the procedure to extract a TD-PHD model from load-pull measurements of
a high power transistor is outlined and its implementation in a harmonic balance simulator
is described. Any nonlinear load-pull-based behavioral model should at least reproduce the
load-pull data that was used to extract it. In Section 4.2.1, the extracted model is put
in a simulated load-pull testbench and the load-pull contours obtained from the simulated
measurements will be compared to the raw measurements used to extract the behavioral
model.

To truly demonstrate the modeling capabilities of using behavioral models of power
transistors in the practical design of power amplifiers, in Section 4.2.2 a two-way Doherty
power amplifier is simulated based on two behavioral models extracted from the main and
peaking power transistors respectively.
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Figure 4.4: The dual-device load-pull fixture designed for the NXP A2V09H525 package

It should be noted that the signals used during the load-pull measurement and the
validation of the two-way Doherty PA are all narrow-band pulsed-RF signals, even though
the Doherty PA is designed to amplify wider bandwidth modulated signals with a high
Peak to Average Power Ratio (PAPR). Even though narrow-band characterization of the
transistor doesn’t completely capture all the dynamics of the power transistor, a necessary
but not sufficient requirement of wide-band Doherty PA design is that it at least meets the
narrow-band RF performance requirements across the design band of interest. This means
that an extracted narrow-band model that is correct across the band can be used to tune
the performance of the wide-band PA across the band. On the other hand the extracted
TD-MTD model will only be able to model the large-signal narrow-band performance
across the band and will not be able to be used to simulate the modulated signal behavior
parameters like Adjacent Channel Power Ratio (ACPR).

4.2.1 Extraction of the Proposed TD-MTD Model from Load-
Pull Measurements and its Implementation in a Harmonic
Balance Simulator

To showcase the ability of the proposed TD-MTD model in fitting load-pull measurement
data spanning over multiple fundamental frequencies, a set of fundamental frequency load-
pull measurements at three frequencies (790MHz, 805MHz and 820MHz), that have a
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Figure 4.5: Block diagram of the load-pull measurement setup used to perform load-pull
measurements on the power transistor in an RF fixture

common fundamental frequency fCF of 5MHz, are performed on both the main and peaking
power transistors of the NXP A2V09H525 packaged high power (which has a peak power of
525W) LDMOS device that is intended for an asymmetrical two-way Doherty HPA design.
A dual-device load-pull fixture was designed for the NXP A2V09H525 device as shown in
Fig. 4.4. The fixture parameters were extracted from a custom built Thru-Reflect-Line
calibration kit and used to de-embed vector-corrected passive load-pull measurements to
the package plane of the transistor devices in a setup similar to the block diagram of
Fig. 4.5. A set of load-pull measurements were obtained that include DC Drain current
measurements and pulsed RF waveform measurements at the fundamental frequency at
the input and output of the power transistors. Pulsed 10% duty cycle RF measurements
are performed on high power transistors during load-pull since a non-pulsed RF signal at
the peak power of power transistor would excessively heat up the device at the peak powers
of the power transistor. The load-pull measurement sweep involved setting a passive load-
tuner to different fundamental load impedances at each of the frequencies and performing
a pulsed-RF power sweep at each of the tuner positions. These power sweeps were bound
at the upper end by a maximum gain compression of 5.5dB for the main device and 3.5dB
for the peaking device. Since the compression of the power transistor is highly dependent
on the load impedance, the input power ranges in the measurement data will vary with
impedance and frequency. The load-pull measurements were performed over a range of
impedances that covered the high power and high efficiency operations of the transistor.

The drain model of (4.14) will model the nonlinear output power generation of the
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Figure 4.6: Harmonic balance implementation circuit of a 2-port TD-PHD model to use
as an RF transistor behavioral model

power transistor while the gate model of (4.13) will model its nonlinear input impedance.
This behavioral model is implemented as a Netlist for a harmonic balance simulator in the
form shown in Fig. 4.6. To generate the auxiliary signals x1,i and x2,i in a harmonic balance
simulation Netlist, the time-delays can be implemented as a frequency-defined block in the
Netlist that applies a frequency proportional phase-shift to each frequency component of
the input signals. A train of fractional period time-delay blocks each creating a delay of
td = TCF/N in front of the a1 and a2 signals will reveal all the auxiliary signals x1,i and
x2,i to the time-domain simulation-time-independent nonlinear functions g1 and g2. This
allows the harmonic balance simulator to compute the time-domain output signals b1(t)
and b2(t).

To extract the proposed model, the load-pull measurement dataset will need to be
converted from the frequency domain to the time domain by means of a Fourier Series
evaluation of the DC and fundamental frequencies:
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a1(t) = Vgate,DC + |A11|cos (2πft+ ∠A11)

a2(t) = Vdrain,DC + |A21|cos (2πft+ ∠A21)

b1(t) = Igate,DC + |B11|cos (2πft+ ∠B11)

b2(t) = Idrain,DC + |B21|cos (2πft+ ∠B21)

(4.15)

If the model time resolution N is too low, the model fitting algorithm will have difficulty
in finding a good fit to the data. A good model fitting threshold would be a Normalized
Mean Squared Error (NMSE) of better than -30dB for the time-domain measurement
dataset.

For this load-pull measurement dataset, when the model time resolution N was set to
17, it was found to have better than -30dB NMSE for each of the time-domain parameters
b1(t) and b2(t) to the measurement data with the chosen fitting function for the TD-
MTD nonlinear functions g1 and g2. Since the fCF of this measurement set is 5MHz, the
common fundamental period will be T = 1/fCF = 0.2µs. This makes the sampling time
delay td = T/N = (0.2/17)µs. The discrete set of functions x1,1(t) through x1,17(t) and
x2,1(t) through x2,17(t) will be used to denote the time-domain delayed incident wave at the
input port a1(t) and the output port a2(t) respectively and are defined by the definition
outlined in (4.2).

Since the entire load-pull measurement data set is periodic with the period TCF , the
functions b1(t), b2(t), x1,1(t) through x1,17(t), and x2,1(t) through x2,17(t) are evaluated
at times t = 0, t = td, t = 2td, · · · , t = 16td. This means that each frequency-domain
load-pull measurement at a fixed power level in the dataset will be converted into 17
equivalent discrete time-sampled data points. This will be the discrete time-domain dataset
used for fitting the simulation-time-independent nonlinear output functions g1 and g2 that
implement the following TD-MTD mappings:

b1(t) = g1 (x1,1(t), x1,2(t), · · · , x1,17(t)) (4.16)

b2(t) = g2 (x2,1(t), x2,2(t), · · · , x2,17(t)) (4.17)

The neural network topology used for modeling each of the two multi-variable nonlinear
functions g1 or g2 will have a distinct input neuron for each of the auxiliary signals x1,i and
x2,i and a single output neuron for b1 or b2 respectively similar to what is shown in Fig.
4.7.
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Figure 4.7: Diagram of artificial neural network architecture used for the b2(t) output of
the power transistor model based on the 14 auxiliary signals x1,1 through x2,17

The gate model mapping of (4.16) was implemented with a two-hidden-layer artificial
neural network with 30 neurons in each layer achieving a NMSEb1(t) = −37.6281dB, while
the drain model mapping of (4.17) was implemented with a two-hidden-layer artificial
neural network with 50 neurons in each layer achieving a NMSEb2(t) = −31.1715dB for
the main device of the NXP A2V09H525. The ANNs were extracted using the Leven-
berg–Marquardt algorithm available from MATLAB. The extracted artificial neural net-
works implementing (4.16) and (4.17) were converted into a flattened expression. This
flattened expression can be recognized by the circuit simulator when implemented as
a simulation-time-independent multi-variable time-domain nonlinearity. In the Keysight
ADS harmonic balance simulation environment, this can be implemented using the Symbol-
ically Defined Device (SDD) component which will implement the multi-variable nonlinear
functions g1 and g2. The inputs to these multi-variable functions x1,2(t) through x1,17(t)
and x2,1(t) through x2,17(t) are made available in the model Netlist using a time-delay
chain of 16 time fractional period delays td of the input a1(t) and a2(t) signals respectively.
The time-delays are implemented in the Netlist as a frequency domain equation block
implementing the frequency proportional phase shift of (4.7).

A simulated load-pull measurement was performed on the implementation of the ex-
tracted TD-MTD model to test its ability to reconstruct the measurement dataset used to
extract the model. Since a mature compact model of this power transistor is also available,
the load-pull simulation of this compact model at the same DC bias condition and fre-
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Figure 4.8: The real part of the main power transistor input impedance load-pull contours
of the TD-MTD model and Compact Model at 2dB of gain compression across the three
discrete fundamental frequencies compared to the load-pull measurements

Table 4.1: Table of simulated NMSE of RF and DC parameters of the Compact model and
TD-MTD model of the NXP A2V09H525 main device over the entire load-pull measure-
ment dataset

Compact Model TD-MTD Model
NMSEB1 -15.2213 dB -47.6008 dB
NMSEB2 -20.6091 dB -41.5374 dB
NMSEIDrain,DC

-24.9673 dB -44.3599 dB

quencies were obtained and are included in this comparison. Table 4.1 shows the summary
of how well the compact model and extracted TD-MTD model fit the load-pull data over
the 3 fundamental frequencies in the RF reflected wave and DC drain current parameters.
Unsurprisingly the TD-MTD NMSE is spectacular here as it was extracted from the same
load-pull data. Fig. 4.8 and Fig.4.9 show the load-pull contours of the real and imaginary
part of the input impedance looking into the transistor gate (Zin = Rin + jXin) at 2dB of
gain compression. Since behavioral models fit the load-pull measurement data directly, it
is not surprising that the TD-MTD model has a better prediction of the input impedance
of the power transistor compared to the compact model. Fig. 4.10, Fig. 4.11 and Fig.
4.13 show the comparison of the load-pull simulation of the compact model, the extracted
TD-MTD model and the load-pull measurements in terms of the output power, operating
gain and drain efficiency at 2dB gain compression respectively. The compact model has its
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Figure 4.9: The imaginary part of the main power transistor input impedance load-pull
contours of the TD-MTD model and Compact Model at 2dB of gain compression across
the three discrete fundamental frequencies compared to the load-pull measurements

best accuracy towards the high power and high efficiency regions of the load-pull data but
the accuracy is less at impedances further away. Fig. 4.12 compares the AMPM load-pull
contours to the simulation of the two power transistor models at 2dB of gain compression
for the main device. Since the TD-MTD model is a behavioral model that does not use a
look-up table, the resulting simulated performance smooths out the noise in the measure-
ment data resulting in smooth AMPM contours that track the trend observed in the noisy
load-pull measurement data. Overall the TD-MTD model can faithfully model the load-
pull measurement data spanning multiple frequencies with a single smooth time-domain
fitting function.
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Figure 4.10: The main power transistor output power load-pull contours of the TD-MTD
model and Compact Model at 2dB of gain compression across the three discrete funda-
mental frequencies compared to the load-pull measurements

Figure 4.11: The main power transistor operating gain load-pull contours of the TD-
MTD model and Compact Model at 2dB of gain compression across the three discrete
fundamental frequencies compared to the load-pull measurements
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Figure 4.12: The main power transistor AMPM distortion load-pull contours of the TD-
MTD model and Compact Model at 2dB of gain compression across the three discrete
fundamental frequencies compared to the load-pull measurements

Figure 4.13: The main power transistor drain efficiency load-pull contours of the TD-
MTD model and Compact Model at 2dB of gain compression across the three discrete
fundamental frequencies compared to the load-pull measurements
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4.2.2 Doherty High Power Amplifier Simulation of Multi-Tone
Distortion Models

In this Section, the models extracted in Section 4.2.1 will be used to simulate the narrow-
band large signal operation of a Doherty HPA design over a set of discrete fundamental
frequencies. Since the load-pull measurement data used for model extraction only includes
DC and fundamental frequency measurements, these behavioral models do not react to har-
monic impedance termination in the circuit simulator. Under the assumption that packaged
LDMOS power transistor devices are not highly sensitive to harmonic impedance termi-
nations, an HPA design can be simulated solely based on collected DC and fundamental
frequency load-pull behavior. It should be noted that the theoretical derivation of this
model does not forbid the inclusion of harmonic data for the training of the model. For the
case of GaN power transistors when the harmonic termination becomes significant, it would
be suggested to perform harmonic load-pull measurements in conjunction with fundamen-
tal frequency load-pull at each of the fundamental frequencies. This load-pull measurement
space will contain a higher number of measurements but a TD-MTD model could be fit to
such a load-pull measurement set with the exact same procedure outlined in this chapter.
The validation of a TD-MTD for a multi-harmonic multi-fundamental-frequency load-pull
measurement space is not demonstrated here but is within the theoretical possibilities of
the application of TD-MTD models.

The 790MHz NXP A2V09H525-04NR6 Test Circuit with a PCB layout shown in Figure
4.14 and a Bill of Material of components shown in Figure 4.15 was used as the reference
circuit to validate the main and peaking device models extracted from the two power
transistors in the NXP A2V09H525 package. Since the top-copper structure PCB drawings
and the bill-of-materials of this reference circuit are available, the S-parameters of the
input and output matching networks of the reference PA circuit were extracted using
an EM simulation and vendor S-parameter models were used as a model for the passive
components. Harmonic balance simulation at 790MHz, 805MHz, and 820MHz were then

Table 4.2: Table of simulated NMSE of RF and DC parameters of the Compact model and
TD-MTD model for a power-sweep of the reference NXP A2V09H525 two-way Doherty
design

Compact Model TD-MTD Model
NMSE|B1| -16.8550 dB -25.2416 dB
NMSEB2 -17.8901 dB -18.8917 dB
NMSEIDrain,DC

-15.5059 dB -13.1730 dB
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Figure 4.14: Reference Doherty Printed Circuit Board Layout and Component locations

performed on the schematic representation of the reference PA circuit, which includes
the extracted main and peaking power transistor TD-MTD models, the extracted EM
structures and the discrete passive models, respectively. The results of the simulation
are compared to large signal pulsed-RF measurements of the reference PA as well as a
simulation of the circuit with the compact model of the devices. Table 4.2 summarizes the
NMSE of the compact model and the extracted TD-MTD compared to the measurement
data in terms of how well they reflect each of the fundamental frequency RF waves and
the DC drain current consumption over the power and frequency sweep. This table overall
shows that the TD-MTD model performed significantly better than the compact model
in predicting the input side RF behavior, while at the output side the compact model
performed slightly better in predicting the DC Drain current but slightly worse than the
TD-MTD model at predicting the RF behavior. Fig. 4.16 and Fig. 4.17 show the gain
magnitude and phase compression curves of the measured PA compared to the simulated
PA with the TD-MTD model and the compact model, while Table 4.3 shows the numerical
values of the gain magnitude and phase compression at the average power (49dBm) and
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Figure 4.15: Reference Doherty Printed Circuit Board Vendor Bill of Materials

peak power (57dBm) levels across the three load-pull frequencies. In Fig. 4.18 and Fig.
4.19, the input return loss and the drain efficiency of the two transistor models is compared
against the HPA measurement, while Table 4.4 shows the numerical values of the input
return loss and drain efficiency at the average power and peak power levels across the
three load-pull frequencies. While the TD-MTD model has a better approximation of the
back-off efficiency of the PA, the compact model does not under-estimate the efficiency
in the mid-power region of the power sweep as much as the behavioral model. Fig. 4.18
compares the simulated and measured input return loss as it varies with the output power
in this reference PA. The extracted TD-MTD behavioral model has a better prediction of
the return loss which is justifiable, given that the extracted TD-MTD model had a much
better fit of the input impedance of the power transistors compared to the compact model.
Part of the discrepancy between the simulation of the HPA Netlist, whether compact or
behavioral model and the measurement of the fabricated HPA can be attributed to the
inaccuracy of the simulation models used for the passive segments of the HPA circuit.
The level of error seen in Table 4.2 compared to Table 4.1 suggests that most of the error
could be attributed not the the active device error but due to other elements in the circuit
while both the compact model and extracted TD-MTD model had similar performance in
predicting the RF performance of the reference Doherty PA design. The transistor package
used to perform the load-pull measurement was not the same as the transistor used in the
reference circuit, which can attribute some of the difference between the modeled and
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Figure 4.16: Comparison of the simulated and measured AMAM frequency variation of
the reference Doherty PA

measured performance to device variation.

Designing an analog Doherty HPA with a behavioral model allows the HPA designer to
simulate the nonlinear load modulation of both the main and the peaking power transistors
as the power is ramped up. The designer can then track the performance of the HPA against
the extracted load-pull characterization data and visualize the load-modulation provided
by its input matching network and output matching and combining network design at all
the intermediate power levels from back-off to peak power. Fig. 4.20 and Fig.4.21 show
how the load impedance varies at the fundamental frequency of the main and peaking
transistor respectively during the power drive up of the Doherty HPA.

As can be seen from the load-modulation simulation of the peaking transistor in Fig.
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Figure 4.17: Comparison of the simulated and measured AMPM distortion frequency vari-
ation of the reference Doherty PA

4.21, the load impedance of the peaking device starts from around the complex conju-
gate of the peaking transistor’s off-state impedance and moves towards its optimal design
impedance close to the peak of the peaking device load-pull power contours at 1dB of gain
compression. As can be seen from Fig. 4.21, the simulation of the peaking device during
the Doherty PA simulation is presenting a drain impedance at back-off power that is out-
side of the passive load-pull characterization region of the peaking device. This means that
the low power behavior of the peaking device TD-MTD model is smoothly extrapolated to
a region outside of where the load-pull measurements were performed in order to have some
prediction of the turn-on characteristics of the peaking devices when it is being modulated
with significant power from the main device.
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Figure 4.18: Comparison of the simulated and measured input return loss frequency vari-
ation of the reference Doherty PA
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Figure 4.19: Comparison of the simulated and measured drain efficiency frequency variation
of the reference Doherty PA
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4.3 Chapter Conclusion

Traditional ECAD-based design of Doherty high power amplifiers relied on compact mod-
els of power transistors. Since compact models are often not available at the same pace
as transistor development, load-pull based designs of high power amplifiers are often em-
ployed to allow for quick turnaround. In this chapter, the TD-MTD behavioral model was
proposed as an extension of the TD-PHD model that was proposed in the previous chapter.
This model allows the high power amplifier designer to use load-pull characterization data
of power transistors captured over a discrete set of non-uniformly spaced frequencies and
convert that into a behavioural model of the power transistor for use in a simulation-based
design environment. Using a TD-MTD based model simulation as the cornerstone of high
power amplifier design can allow for fast turn-around of matching network designs without
trading off accuracy.

As validation for the model presented in this chapter, first TD-MTD models are ex-
tracted for both the main and peaking transistors intended to be used in an LDMOS Do-
herty high power amplifier design. The simulation of this two-transistor circuit is shown to
have less than 1 dB error in the prediction of the input return loss at both back-off-power
and peak-power levels, and less than 0.8dB and 2◦ error in the back-off gain and phase com-
pression and less than 1.4dB and 5.6◦ error in the peak power gain and phase compression,
and an error of less than 6% in drain efficiency over the range of simulated frequencies,
achieving a an NMSE of -18.89dB for predicting the B2 wave and an NMSE of -13.17dB for
predicting the DC Drain current over the power and frequency sweep. These errors were no
worse than the compact model based design. The use of a TD-MTD model allows the high
power amplifier designer to perform ECAD based design of a high power amplifier relying
solely on load-pull characterization data without compromising any simulation accuracy
compared to using a compact model as the power transistor model.
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Chapter 5

Conclusions

The computer-aided design of power amplifiers requires an accurate representative model
of the power transistor’s nonlinear dynamic behaviour in a circuit simulation environment.
While compact models of power transistors provide a bottom-up approach to build up a
power transistor model based on theory and expertise, they are often not available to the
power amplifier designers at the same pace as power transistor development. This has
driven the practical need for power transistor behavioural models based on large-signal
load-pull measurements of these devices.

The state of the art of behavioural models for power transistors before the work of
this thesis were variants of the frequency-domain poly-harmonic distortion (PHD) models
that described the spectral products of the output signals in the frequency domain as a
time-invariant function of all spectral components of all the input signals. All of these
PHD models required a distinct describing function for each of the spectral outputs of the
model. Since one of the goals of this research was to develop models that tackle the hard
nonlinearity exhibited by RF power transistors, the use of artificial neural networks as a
tool for the development of robust simulation models was explored. We believe that a
time-domain constructions of the proposed models of this thesis would provide a simpler
form in terms of the number of inputs and output variables for the construction of an ANN
behavioural model.

The contributions of this thesis involve the use of a time-domain description (as opposed
to a frequency-domain description) to describe the behaviour of the power transistor in
the nonlinear circuit simulator, allowing for a simplification in model representation and
construction.
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5.1 List of Contributions

5.1.1 A Model for the Multi-Harmonic Nonlinear Behaviour of
Power Transistors at a Fixed Fundamental Frequency

Inspired by the fact that the time-domain description of a time-invariant system is more
compact in its representation than an equivalent frequency-domain description, that is,
the description of the nonlinear system is reduced to a single output variable at each port
of the device in the time-domain description as opposed to requiring a different output
variable at each frequency in a frequency-domain description, a new behavioural model
was proposed called the time-domain poly-harmonic distortion (TD-PHD) model. This
model used the duality between the discrete frequency and discrete time representations
of signals to provide the same modeling capability of PHD models but in a more compact
form. This compact functional form allows the use of advanced continuous function fitting
tools like artificial neural networks model to model the continuous multi-variate nonlinear
functions at the core of the model. These multi-variate nonlinear functions act upon delayed
versions of the input signals spaced in time to span a single period of the periodic signal.
Using a TD-PHD model a series of multi-harmonic source and load-pull measurements at
a single DC bias point and a single fundamental frequency can be converted into a single
time-domain model that captures the variation of the large-signal performance of a power
transistor when the harmonic input and output matching network impedances that are
loading the power transistor are varied[48][49].

5.1.2 A Model for the Nonlinear Behaviour of Power Transistors
Across a Range of Fundamental Frequencies

Due to the TD-PHD model’s auxiliary signals spanning a single fixed period by definition,
its modeling capability was limited to a single fundamental frequency, requiring a separate
TD-PHD model to be extracted for other fundamental frequencies. In general power am-
plifier designers wish to design their amplifiers over a band of frequency and have collected
load-pull measurements at different fundamental frequencies over that band. To overcome
the limitation of the TD-PHD model being fixed to a single fundamental frequency, a
new model was proposed called the time-domain multi-tone distortion (TD-MTD) model
that generalized the concept behind the construction of a TD-PHD model to a frequency
grid that can contain load-pull measurements spanning multiple fundamental frequencies
as long as all those fundamental frequencies were integer multiples of a shared common
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fundamental frequency fCF . The TD-PHD model then becomes a special case of the more
general TD-MTD model, when fCF = f0. To validate the proposed TD-MTD model, mod-
els for two power transistors, one biased in class AB as the main device, and the other
biased in class C as the peaking device in an asymmetrical two-way Doherty power ampli-
fier were extracted based on single-harmonic load-pull measurements spanning a band of
interest. The extracted models were then put in a simulated load-pull measurement and
the simulation was able to reproduce the same performance as the measured large-signal
data as demonstrated in the simulated model load-pull contours across frequency at dif-
ferent output powers. In a further circuit validation of the TD-MTD models, a reference
power amplifier design from the transistor vendor was simulated based on EM models of
the printed circuit board and simulation models of the RF capacitors and was shown to
have no worse prediction of the Doherty power amplifier large-signal behaviour than the
vendor-developed compact model. This shows the usefulness in using measurement-based
models of power transistors in power amplifier development. Simulation-based design of
multi-transistor power amplifiers models can also provide the power amplifier designer some
insight as to how each of the power transistors in their design are being load-modulated at
different power levels across frequency[62].

5.2 List of Relevant Publications

• Amir-Reza Amini and Slim Boumaiza. Time-invariant behavioral modeling for har-
monic balance simulation based on waveform shape maps. In 2015 IEEE MTT-S
International Conference on Numerical Electromagnetic and Multiphysics Modeling
and Optimization (NEMO), pages 1-3, Aug 2015.

• Amir-Reza Amini and Slim Boumaiza. Time domain poly-harmonic distortion mod-
els of rf transistors and its extraction using a hybrid passive/active measurement
setup. In 2017 IEEE MTT-S International Microwave Symposium (IMS), pages
1061-1064, June 2017.

• Amir-Reza Amini and Slim Boumaiza. A time-domain multi-tone distortion model
for effective design of high power amplfiers. IEEE Access, 10:23152-23166, 2022.
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5.3 Future Work

Currently the measurement-based validation provided for the TD-MTD model is based on
fundamental-frequency load-pull measurements spanning multiple fundamental frequen-
cies. However, the proposed model can also theoretically deal with harmonic load-pull
data spanning multiple frequencies as well. An investigation into the ability of using the
TD-MTD modeling approach for multi-harmonic load-pull data of a power transistor span-
ning multiple fundamental frequencies is warranted.

Another possible direction for the applications of the TD-MTD model is its use in mod-
eling the multi-tone behaviour of power transistor, since the frequency grid of a multi-tone
stimulus, with its mixing and inter-modulation frequencies can be chosen such that they
are all multiples of a common fundamental frequency. This is a stepping stone towards
modeling RF power transistors under modulated signal stimulus. The time-domain model-
ing schemes proposed in this thesis can naturally be extended to account for the so-called
long-term memory effects that an RF power transistor exhibits when being stimulated by
a modulated signal stimulus. A first step of extending the work done in this thesis to
modulated signal behaviour is applying a similar scheme to the proposed TD-PHD/TD-
MTD model but applied on load-pull data extracted from modulated stimulus in order to
generate a behavioural model of the RF power transistor that targets envelope transient
harmonic balance simulations.

In addition, since the basis of all the models proposed in this thesis are the Volterra
series, this modeling framework can be used for other nonlinear devices or systems beyond
power transistors including RF diodes and mixers, since nothing in this work suggests
that the behavioural models proposed are only specific to power transistors as long as the
underlying system exhibits continuous nonlinear time-invariant behaviour.
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