
DP-Select: Improving Utility and
Privacy in Tabular Data Synthesis

with Differentially Private
Generative Adversarial Networks and

Differentially Private Selection

by

Faezeh Ebrahimianghazani

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2023

© Faezeh Ebrahimianghazani 2023



Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

This thesis proposes DP-Select, a novel approach to tabular data synthesis that com-
bines DP-GAN and differentially private selection. We develop a mutual information-based
selection method that is flexible and scalable for high-dimensional data and large numbers
of marginals while being differentially private. We evaluate DP-Select on various datasets
and demonstrate its effectiveness and utility compared to existing DP-GAN methods. Our
results indicate that DP-Select significantly enhances the utility of synthesized data while
maintaining strong privacy guarantees, making it a promising extension of DP-GANs for
privacy-preserving data synthesis in terms of differential privacy. We also show that DP-
Select performs better for smaller privacy budgets, making it an attractive option for
scenarios with limited privacy budgets.
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Chapter 1

Introduction

Sharing high-dimensional and sensitive datasets, particularly in fields such as healthcare
and finance, presents a challenge due to privacy concerns and regulatory limitations. Tradi-
tional anonymization techniques are often insufficient to protect privacy [29], necessitating
novel approaches to preserve the usefulness of data while maintaining privacy. Synthetic
data, generated by models, provides a solution by allowing the user to control the amount
of private information released and the resemblance to real data. Synthetic data is a
useful substitute for real data in situations where data privacy is a concern, while still
enabling analysis and learning [30]. Our work focuses on improving the utility and privacy
of synthetic data generation through a novel approach that builds on differentially private
generative adversarial networks and differentially private selection.

Differential privacy is a rigorous framework for protecting sensitive information from
malicious actors, and it has become a widely accepted standard for privacy preserva-
tion [17]. This framework provides strong theoretical privacy guarantees, which have been
adopted by researchers and industry leaders (e.g., [3, 13, 45]). Specifically, a randomized
algorithm satisfies differential privacy if for any two neighboring datasets (i.e., datasets
that differ by the inclusion or exclusion of a single data point), the probability of produc-
ing any particular output is nearly the same, up to a factor of at most exp(ϵ), where ϵ is
a privacy parameter. In other words, the distance between the output distributions of the
algorithm for two input datasets, where one dataset has a single additional datapoint, is
bounded.

There are different approaches for differentially private data synthesis. DPSGD (dif-
ferentially private stochastic gradient descent) [1] is a crucial component in many deep
learning-based algorithms that enables differentially private training of neural networks.
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Although DPSGD was not originally designed for generative models, it can be applied to
both GANs [49, 54] and VAEs [10]. Another method that is commonly used is the PATE
mechanism [38], which can create a private predictor for black-box models. In GAN mod-
els, the discriminator has been replaced with a private PATE model, and it has also been
used as a way to pass gradients from discriminator to generator privately [52]. Addition-
ally, some approaches represent data in a low-dimensional form, such as using a Bayesian
network [53] to learn the generation process. The NIST competition1 was won with an
algorithm that learns all 2-way distributions in a differentially private way and generates
data from potentially inconsistent marginals through post-processing [33].

Fan et al. (2020) [22] presents a detailed experimental study on the application of
GAN to relational data synthesis. The paper reveals that the current differential privacy
(DP) preserving GAN solutions are less effective than traditional data synthesis methods
that ensure DP. While GAN approaches for data synthesis are still subject to ongoing
research [24, 56], this thesis aims to enhance the current differentially private GAN methods
by introducing a postprocessing step. The proposed DP-Select algorithm, in combination
with GAN, has the potential to become a competitive data synthesis approach that ensures
both privacy and utility.

In this thesis, we propose a new approach called DP-Select that improves the utility and
privacy of tabular data synthesis. DP-Select builds upon a differentially private generative
adversarial network (DP-GAN) to generate a pool of potential data points that are similar
to the original dataset. We then use a differentially private selection method based on
mutual information to select the most representative data points that match a set of
selected marginals.

We perform experiments to assess the efficacy of DP-Select on two datasets and in
various privacy regimes. Our findings demonstrate that DP-Select improves the utility of
synthesized data considerably when compared to DP-GAN alone, as assessed by classifica-
tion accuracy. DP-Select attains higher levels of utility while ensuring robust privacy guar-
antees, rendering it a promising approach for differential privacy-based privacy-preserving
data synthesis. Furthermore, our experiments revealed that DP-Select’s improvement over
DP-GAN is more significant with lower privacy budgets compared to higher privacy bud-
gets, making it an appealing alternative for scenarios with constrained privacy budgets.
However, DP-Select is a very inefficient algorithm requiring considerable computational
resources. In order to scale DP-Select to larger data sets we propose a parallel version of
the algorithm that leverages parallel composition in differential privacy. Through exper-

1https://www.nist.gov/ctl/pscr/open-innovation-prize-challenges/

past-prize-challenges/2018-differential-privacy-synthetic
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imentation, we found that using five parallel threads, our algorithm achieves maximum
utility while reducing the running time to one-seventh of the original algorithm.

In summary, the contributions of this thesis are:

• The introduction of DP-Select, a new technique for generating tabular data that
combines DP-GAN with differentially private selection.

• The design of a differential privacy-based selection method that utilizes mutual in-
formation and is adaptable to high-dimensional data and numerous marginals.

• The development of a parallel version of DP-Select that significantly improves its
efficiency while maintaining or even improving its utility, making it scalable to larger
datasets.

• An empirical evaluation of DP-Select on various datasets that demonstrates its ef-
fectiveness and utility compared to existing methods.

3



Chapter 2

Related Work

Differential privacy (DP) is a well-established and widely accepted concept for privacy
protection and a state-of-the-art approach for ensuring privacy in data analysis [17]. Dif-
ferential privacy has received significant attention due to its ability to provide provable pri-
vacy guarantees and quantifiable privacy loss, as well as offering strong protection against
re-identification and re-construction attacks [20]. Differential privacy can be ensured by
integrating it into non-private algorithms, such as those designed for specific tasks such as
classification or statistical data release, in order to safeguard the individuals’ information
used as input. However, this requires redesigning each algorithm individually. In contrast,
this thesis focuses on generating a differentially private synthetic dataset that can serve as
input for existing non-private algorithms. Although this approach may not optimize utility
for a specific task, it is more versatile since any task can be performed using the synthetic
dataset without the need to modify existing non-private algorithms. A number of previous
studies have been carried out on generating differentially private synthetic datasets (e.g.,
[49, 52, 40]), and this thesis contributes to this body of work.

2.1 Deep generative methods

DPGAN by Xie et al. (2018) [49] is a differentially private generative adversarial network
that uses moments accountant [2] to ensure the privacy of sensitive data while generating
synthetic data that closely resemble the original data. DPGAN uses DPSGD [1] and adopts
the WGAN [4] objective. DPGAN clips the model weights w, to ensure the discriminator
network is Lipschitz [4]. Authors show that by clipping w to a bounded box, the gradients
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are automatically bounded by some constant cg, without an explicit gradient clipping step
as in DPSGD.

PATE-GAN, proposed by Jordan et al. (2019) [52], employs the PATE method[38, 39]
for differential privacy. It trains the student discriminator using generated samples that
are labeled by the teachers and do not require the student discriminator to access publicly
available datasets.

DP-CGAN by Torkzadehmahani et al. (2019) [47] adopts the CGAN [37] objective that
allows both the generator and discriminator to be conditional on some side information
such as the class label. DP-CGAN uses Renyi Differential Privacy (RDP) [36] accountant
to obtain a tighter estimation on the differential privacy guarantees compared to moments
accountant [2]. Several recent approaches concentrate on particular scenarios, such as
decentralized databases. DP-FedAvg-GAN by Augenstein et al. (2019) [5] proposes to
train differentially private generative models with federated learning.

DPGAN [49] and PATE-GAN [52], among the methods discussed above, can be applied
to tabular data. However, the unique properties of tabular data, such as correlated features,
mixed data types, and potential mode collapse, pose difficulties for GANs to learn the
tabular data distribution. Therefore, there exist differential privacy generative models that
are tailored specifically for tabular data. Table-GAN, a GAN-based architecture developed
by Park et al. (2018) [40], represents one of the initial attempts to tackle privacy concerns
by generating synthetic tabular data that exhibit comparable statistical properties to the
original table. DP-CTGAN by Fang et al. (2022) [24] adapts the CTGAN model [50]
to generate secure tabular medical data in the federated learning setting. CTAB-GAN,
proposed by Zhao et al. (2021) [56], is designed to address data imbalance and long-
tail issues while effectively modeling diverse data types, such as a mix of continuous and
categorical variables.

There are several works available that survey and compare existing differentially private
data synthesis methods [23, 46], but only a few of them specifically focus on differentially
private GANs for tabular data synthesis. One of the works that particularly motivated
this thesis is published by Fan et al. in 2020 [22]. In this paper, the authors conducted
a comprehensive experimental study for applying GAN to relational data synthesis. The
authors demonstrate that the current solution for differential privacy (DP) preserving
GAN is not as effective as traditional data synthesis methods that offer DP guarantees.
Therefore, the goal of this thesis is to improve the existing differentially private GAN
methods by adding a postprocessing step. To avoid complexity, we have opted to use the
simple DPGAN [49] as our base model.
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2.2 Other methods

In this subsection, we explore non-GAN methods for producing differentially private syn-
thetic datasets, which can be classified into two categories: game-based methods and
graphical model-based methods.

MWEM [27] and Dual Query [25] are two approaches that view dataset synthesis as a
two-player zero-sum game. MWEM maintains the distribution of the data player using a
no-regret algorithm. However, when the dataset domain is large, it becomes infeasible to
maintain the full distribution. On the other hand, Dual Query maintains a distribution
over queries instead of the dataset, with each generated record consuming a portion of the
privacy budget. Both methods require a predetermined workload of queries, rendering them
unsuitable for handling arbitrary kinds of tasks with sufficient accuracy. Although recent
works [48] have improved MWEM and DualQuery by replacing their core components,
they still rely on the exponential mechanism to provide privacy and do not address the
fundamental limitations of these methods.

Graphical Model Based Methods (GMBMs) aim to estimate a graphical model that pro-
vides an approximation of the distribution of the original dataset in a differentially private
manner. Some GMBMs, such as PrivBayes [53] and BSG [7], employ a Bayesian Network
to approximate the data distribution. PrivBayes initially employs a private process to
determine the network structure, followed by obtaining the noisy conditional probability
distribution of each node. Other GMBMs, such as PGM [34] and JTree [11], utilize Markov
Random Field to approximate the data distribution. PGM aims to estimate a Markov Ran-
dom Field that best matches a set of predefined low-dimensional marginals, while JTree
aims to estimate a dependency graph and subsequently transform it into a junction tree
to obtain the Markov Random Field. However, a primary limitation of GMBMs is their
inability to handle dense marginals that capture more correlation information.

PrivSyn [55] proposes a different approach to dataset representation, using a large set
of low-degree marginals instead of graphical models. The authors [55] introduce a metric,
called InDif, to privately measure the correlation between pairwise attributes and select the
marginals based on these measurements. They add guassian noise to the selected marginals
to ensure privacy. Additionally, PrivSyn iteratively updates a synthetic dataset to ensure it
matches the target set of noisy marginals. While PrivSyn does not use Mutual Information
(MI) due to its high global sensitivity, we can leverage MI in DP-Select because we do not
calculate the marginals privately. Rather, we use marginals privately to iteratively update
the synthetic dataset.

One major advantage of our method, DP-Select, is that it builds upon a DP-GAN,
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which already generates a pool of potential data points similar to the original dataset at
a cost of a part of the privacy budget ϵdp-gan. Furthermore, our selection method is not
limited to a specific structure, such as graphical models, and is, therefore, more flexible
and adaptable to a wider range of datasets. Additionally, since we do not compute the
marginals privately and the sensitivity of the score function is not dependent on the number
of marginals, our algorithm is not limited by the number or dimension of the marginals
except for computation limitations. This makes DP-Select a highly scalable and versatile
approach to dataset synthesis.

7



Chapter 3

Background and Problem Statement

In this section, we introduce the fundamental concepts of differential privacy and briefly
review the Generative Adversarial Network (GAN) architecture and its differentially pri-
vate variant, DP-GAN. Finally, we present a formal problem definition for the task of
differentially private data synthesis with DP-Select.

3.1 Differential Privacy

Differential privacy [18] is the privacy model used in our approach, which aims to protect
the privacy of sensitive input data. A randomized algorithm M is said to satisfy differential
privacy if the presence of a data point in the input to M cannot be distinguished by the
output of M , except with a bounded probability.

Definition 1. Differential Privacy [20]. A randomized algorithmM is (ϵ, δ)-differentially
private if for any two neighboring datasets D and D′ (differing in a single point) and for
any subset of outputs S:

P (M(D) ∈ S) ≤ eϵP (M(D′) ∈ S) + δ,

where M(D) and M(D′) are the outputs of the algorithm for neighboring datasets D
and D′, respectively.

It can be shown that the definition is equivalent to:

| log (P (M(D)=s))
(P (M(D′)=s))

| ≤ ϵ,
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with probability at least 1 − δ for any two neighboring datasets D and D′, where
ϵ reflects the privacy level. A small ϵ implies small differences in output probabilities
between databases D and D′, indicating high perturbations and therefore high privacy.

One of the fundamental properties of differential privacy is post-processing. This means
that if the output of a differentially private mechanism is further processed by a function
that does not depend on the input data, the resulting output remains differentially private.

Lemma 1. Post-Processing. If M(x) satisfies (ϵ, δ)-differential privacy, then for any
(deterministic or randomized) function g that is independent of x, g(M(x)) satisfies (ϵ, δ)-
differential privacy.

3.2 Generative Adversarial Network

A Generative Adversarial Network (GAN) [26] is a deep learning framework that learns
to generate samples from a target distribution pdata(x) by training two neural networks:
a generator G and a discriminator D. The generator maps a latent vector z from a prior
distribution pz(z) to a sample x = G(z), while the discriminator tries to distinguish between
samples from the true data distribution and those generated by the generator. The two
networks are trained simultaneously in a two-player minimax game, where the objective of
the generator is to fool the discriminator into thinking that its samples are real, and the
objective of the discriminator is to correctly distinguish between real and fake samples.
The training process can be formalized as follows:

min
G

max
D
{Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))}, (3.1)

where D and G are the discriminator and generator functions, respectively, and the
objective function is the binary cross-entropy loss.

3.2.1 Differentially Private Generative Adversarial Network

DP-GAN [49] is a variant of GAN that satisfies differential privacy by adding noise to
the gradients during the training process and by clipping the gradients to a maximum L2
norm [1]. Specifically, DP-GAN adds Gaussian noise with variance σ2 to the gradients
of the discriminator during each iteration of training, where σ is chosen such that the
resulting mechanism satisfies a given privacy budget ϵ. The privacy guarantee is achieved

9



Denotation List
D the original dataset

Ndp-gan a DP-GAN trained on D
G the generator function of Ndp-gan

Pool a pool of candidate synthetic data generated by G
D′ the final output synthetic dataset

Table 3.1: A table of denotations used in this thesis.

by using the moments accountant technique [2] to keep track of the privacy cost of the
noise added at each iteration. The noise addition has the effect of smoothing the output
of the discriminator, which in turn makes it more difficult for an attacker to infer sensitive
information about the input data.

3.3 Problem Definition

The problem we aim to address is the low utility of differentially private generative adver-
sarial networks (DP-GANs), as reported in previous research [22]. To improve the utility
of DP-GANs, we propose a post-processing approach using differentially private selection.
Specifically, we consider the problem of generating a differentially private synthetic dataset
D′ that closely approximates the distribution of an original dataset D while preserving pri-
vacy. Our approach assumes that we have access to a trained DP-GAN, denoted as Ndp-gan,
which is trained on D with a privacy parameter ϵdp-gan. Using Ndp-gan’s generator G, we
generate a large number of candidate synthetic data, denoted as Pool. Our goal is to select
a subset of Pool that preserves the utility of D, meaning that a classifier trained on D′ per-
forms comparably to one trained on D, and satisfies a differential privacy constraint with
a given privacy budget ϵdp-select. Therefore, the research question we address is whether
post-processing DP-GANs using selection can improve their utility.

3.3.1 Utility

The utility of synthetic data depends on the intended use in downstream applications. In
this thesis, we focus on the use of the synthesized dataset for training machine learning
(ML) models, which has been a common focus in recent works [22, 9, 50, 51, 40, 6, 12, 31].
In other words, the machine learning model trained on the synthetic dataset D′ should
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yield comparable performance to that trained on the original dataset D. To streamline the
evaluation process, this thesis focuses on classification models, specifically decision trees.
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Chapter 4

Algorithm

This thesis proposes DP-Select, a post-processing selection algorithm to improve the utility
of data synthesized by DP-GAN. The algorithm selects a subset of synthetic data generated
by the DP-GAN based on their similarity to the marginals of the original dataset. Mutual
information is used to identify the important marginals, and an iterative process is used to
add a new data point in each iteration to the output dataset while ensuring privacy with
the exponential mechanism.

DP-Select is effective at preserving differential privacy but can face performance issues
with large datasets for two reasons. First, computing the marginals of potential data points
becomes increasingly time-consuming as the dataset grows, leading to longer running times.
Second, the privacy budget for each iteration of the exponential mechanism decreases with
large datasets, resulting in low utility. These performance issues can make DP-Select
impractical for real-world applications where fast and efficient data processing is necessary.
To address these performance issues, we propose Parallel DP-Select in Section 4.4.

4.1 Overview of the Algorithm

The algorithm starts by training a DP-GAN on a private dataset, producing a synthetic
dataset as output. We use the generator of the DP-GAN to create a semi-infinite pool of
synthetic data, which has 10-20 times larger size than the original dataset.

We then select a subset of this semi-infinite pool as the output dataset. To do that we
first use mutual information to calculate the most important low-dimensional marginals
for the original dataset. In the iterative process, we select a datapoint from the pool

12



Figure 4.1: Overview of the algorithm

that maximizes the similarity of the output dataset to the original dataset in terms of
the marginals we have selected. We use the exponential mechanism to protect privacy by
randomizing the selection process, ensuring that the marginals that were derived directly
from the original dataset maintain private.

We repeat the iterative process until the desired number of data points have been
selected. The final output dataset is the selected subset from the pool. Figure 4.1 shows
a summary of the algorithm.

4.2 Training the DPGAN

Generative adversarial networks (GANs)[26] are a class of machine learning models that
consist of two components: a generator and a discriminator. The generator learns to
produce synthetic data samples that resemble real data, while the discriminator learns to
distinguish between real and synthetic data samples. The two components are trained
together in a process called adversarial training.

In an adversarial process, the generator tries to produce synthetic samples that fool
the discriminator, while the discriminator tries to correctly identify which samples are real
and which are synthetic. The objective of the generator is to maximize the probability
that the discriminator incorrectly labels a synthetic sample as real. The objective of the
discriminator is to correctly classify the samples as real or synthetic.

By training the generator and discriminator in this way, we can create a model that
can produce synthetic data samples that closely resemble real data. Adding noise to

13



the gradient updates during training and clipping the gradients of the discriminator are
techniques used to ensure differential privacy [1].

To train the DP-GAN, we follow the standard DPGAN[49] and use a standard WGAN
(Wasserstein GAN)[4] architecture with added noise and clipping the gradients of the Dis-
criminator to ensure differential privacy. Through the moment accountant mechanism[2],
we can compute the final composition result ϵ.

Lemma 2. [49] The output of generator learned in a Differentially Private Generative
Adversarial Network guarantees (ϵ, δ)-differential privacy.

Once the DP-GAN is trained, the generator can be used to create a semi-infinite pool
of synthetic data samples. We use this pool as input to our iterative process for improving
the synthesized data, as described in the next section.

4.3 DP-Selection process

The purpose of the algorithm is to select the best subset of a large pool of potential data
points that match the original dataset in some way, such as marginal distributions. The
algorithm proceeds as follows:

1. Randomly select some potential data points from the pool.

2. Calculate a score for each of the selected data points, which reflects how adding
each data point to the output dataset would affect the similarity between the output
dataset and the original dataset. The score is based on the distance between the
marginal distributions of the original dataset and the potential output dataset.

3. To provide privacy, the algorithm uses the exponential mechanism to select the data
point with the highest score and adds it to the output dataset.

4. Repeat steps 1-3 until the output dataset size is equal to the desired size of the output
dataset.

To balance runtime and utility performance, we randomly select T potential data points
from the pool as the first step. T can be equal to the size of the dataset pool, but this can
result in slow runtime without significant improvement in utility. Alternatively, choosing
a smaller T may result in a noticeable increase in runtime but a slight decrease in utility.

14



Algorithm 1: DP-Select

Input: D: Original dataset
ϵtotal: total privacy budget used
ϵ-ratio: ratio of ϵdp-gan to ϵtotal

Result: Selected: a subset of potential data-points selected for output dataset
ϵdp-gan ← ϵ-ratio× ϵtotal ; /* initialization */

ϵdp-select ← (1− ϵ-ratio)× ϵtotal;
pool-size← 10× |D|;
selected-size← |D|;
T ← 20 ; /* number of random data points selected in step 1 */

Pool← DP-GAN(D, ϵdp-gan, pool-size);
; /* generating a pool of potential data points */

ϵpartial ← Bounded-range-composition(ϵdp-select, |Selected|);
; /* calculation of the privacy budget used in each iteration */

Selected = {};
while |Selected| < selected-size do

potential← rand(Pool, T ) ; /* step 1 */

scoresi ← score-function(Selected ∪ potentiali,D) ; /* step 2 */

selected-datapoint← exponential-mechanism(potential, scores, ϵpartial) ;
/* step 3 */

Selected← Selected ∪ selected-datapoint
end
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In our experiments, we found that selecting T = N is not efficient due to poor runtime
and insignificant utility improvement. With T = m × |Pool|

|D| , the probability of a set of c

datapoints not being selected randomly in the whole algorithm is less than e−mc. Moreover,
the order of adding data points to the output has a low impact on output dataset utility.
Therefore, selecting a smaller T with negligible utility loss is acceptable. We use T = |Pool|

|D|
in our experiments.

The algorithm’s approach balances utility and privacy by choosing the data points with
the highest scores to maintain similarity to the original dataset while protecting privacy
through the exponential mechanism. This technique ensures that the output dataset mim-
ics the marginal distributions of the original dataset, providing an effective solution for
privacy-preserving data selection.

In the following subsections, we will provide more details on each step of the algorithm
process, including the selection of important marginal distributions, the calculation of the
score for each data point, and the application of the exponential mechanism to ensure
privacy. You can find a pseudo-code that outlines the steps of our DP-selection algorithm
in Algorithm 1. This provides a clearer understanding of how the algorithm works and
how it can be implemented.

4.3.1 Marginal selection

To ensure that the synthetic dataset preserves the relationships between the features of
the original dataset, we select the k most important marginals using mutual information.
This helps to establish a reliable basis for comparing the synthetic and original datasets.
Specifically, we calculate the mutual information between each pair/triplet of features and
select the k highest ones. The mutual information between two random variables X and
Y is defined as:

I(X;Y ) =
∑

y∈Y
∑

x∈X p(x, y) log p(x,y)
p(x)p(y)

where p(x, y) is the joint probability distribution of X and Y , and p(x) and p(y) are
their marginal probability distributions.

After selecting the k most important marginals, we also calculate their importance
weights based on the mutual information values. Specifically, the importance weight of
each marginal is calculated as:

wi =
Ii∑k

j=1 Ij
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where Ii is the mutual information value of the i-thmarginal, and wi is its corresponding
importance weight.

The value of k is chosen based on the desired level of accuracy and the available com-
putational resources. In our experiments, we found that selecting the top 10% of the
marginals resulted in a good balance between accuracy and computational efficiency.

By computing the distance to the k most informative marginals selected based on mu-
tual information, we ensure that the synthetic dataset generated by our algorithm main-
tains the relationships between the features of the original dataset, thereby producing
similar marginal distributions.

4.3.2 Score function

Algorithm 2: Score function

Input: D: Original dataset
D̂: a subset of potential data points selected for output dataset until now
c: the candidate data point

Result: score: score of the candidate point
for attr-pair = (attr1, attr2) where attr1, attr2 ∈ D.attributes do

X, Y ← Dattr1,Dattr2;
I(attr-pair)←

∑
y∈Y

∑
x∈X p(x, y) log p(x,y)

p(x)p(y)
; /* mutual information

between two attributs */

end
best-marginals← k attr-pairs with k highest I(attr-pair);
weighti ← Ii∑k

j=1 Ij
for i ∈ {1, ..., k};

Dtemp ← D̂ ∪ {c};
score ← 0;
for marginal ∈ best-marginals do

score ← score+ weighti ×Dist(D,Dtemp,marginal)
end
return −score;

To evaluate the similarity between the output and original datasets, we calculate the
distance between their marginal distributions using three distance measures: Density dis-
tance area, Kolmogorov distance, and L2 density distance.
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Definition 2. Kolmogorov distance. The Kolmogorov distance is a statistical measure
of the difference between two probability distributions. It is defined as the maximum absolute
difference between the cumulative distribution functions (CDFs) of the two distributions.
More formally, given two cumulative distribution functions F and G respectively for two
distributions X and Y , the Kolmogorov distance is defined as:

DK(X, Y ) = supx |F (x)−G(x)|

where x is a value in the support of both distributions and supx denotes the supremum
(i.e., the least upper bound) over all possible values of x. The Kolmogorov distance is a
non-negative real number between 0 and 1, with 0 indicating that the two distributions are
identical, and 1 indicating that they are completely different.

Definition 3. Density distance area [8]. The density distance, also known as the
density difference area, is a measure of distance between two probability density functions
(PDF). If X and Y have PDFs f and g, the density distance between X and Y is defined
as:

DD(X, Y ) =
∫
|f(x)− g(x)|dx

where the integral is taken over the entire domain of x. If X and Y are discrete random
variables taking integer values, the density distance can be expressed as:

DD(X, Y ) =
∑n

i=1 |f(X = xi)− g(Y = xi)|

where the summation is taken over all possible values of xi.

DD(X, Y ) is the L1 distance between the PDFs of X and Y .

Definition 4. L2 density distance. The L2 density distance is a measure of distance
between two probability density functions (PDFs), denoted by f and g, based on the L2 norm
of their difference. It is defined as:

DL2(X, Y ) =
√∫

(f(x)− g(x))2dx

This formula is similar to the Density Distance Area, but instead of taking the absolute
value of the difference between the densities, it squares the difference and takes the square
root of the integral of the result.

Based on experiments, we found that the density distance measure yields the best
results. Density distance measure computes the distance between the histogram of the
marginal distributions of the two datasets by comparing the areas between their density
curves.
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To calculate the score of a candidate data point, we temporarily add it to the output
dataset and calculate the distance between its marginal distributions and those of the
original dataset using the Density distance measure. Since some marginal distributions
may be more important than others in preserving the relationships between the features, we
weigh the distances using the importance weights calculated in the previous step. Finally,
we sum up the weighted distances of all marginal distributions to obtain the distance score
of the candidate data point. Since we need to select the candidate with the lowest distance
score, we negate the score and use it as the input to the exponential mechanism. The
mechanism is designed to output an approximate argmax of the input function, so we
select the candidate with the lowest distance (negated) score. The score function can be
found in Algorithm 2.

Lemma 3. The global sensitivity of the score function with density distance area as the
distance metric is 2

|D|+1
, where |D| is the size of the dataset.

Proof. The sensitivity of the score function is defined as:

∆s = max
D,D′:d(D,D′)≤1

|score(D)− score(D′)|, (4.1)

where d(D,D′) represents the distance between two datasets D and D′, and we say that
two datasets are neighbors if their distance is 1 or less.

{MD
1 ,MD

2 , ...,MD
k } denote the k important marginals of dataset D. All marginals are

normalized and each MD
i has b bins. We denote the value of jth bin of MD

i by MD
i (j).

If dataset D′ has one data point x0 added to the dataset D and x0 belongs to the jth0
bin of MD

i , then the marginal MD
i of D′ differs from MD′

i as follows:

MD′

i (j) =

{
MD

i (j)×|D|+1

|D|+1
, j = j0.

MD
i (j)×|D|
|D|+1

, j ̸= j0.
(4.2)

The maximum value of the sensitivity occurs when the difference between the density
distance areas of the marginals and the selected potential data points is maximum. If we
assume that the selected potential data points do not change, then the maximum difference
in the density distance area is given by:
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|Dist(D)−Dist(D′)| < |M
D
i (j0)× |D|+ 1

|D|+ 1
−MD

i (j0)|+
∑
j ̸=j0

|MD
i (ji)−

MD
i (ji)× |D|
|D|+ 1

|

=
1−MD

i (j0)

|D|+ 1
+

∑
j ̸=j0

MD
i (ji)

|D|+ 1
<

1

|D|+ 1
+

∑
j ̸=j0

MD
i (ji)

|D|+ 1
<

2

|D|+ 1
(4.3)

Since the score function is a weighted sum of the distance values, the sensitivity of the
score function is 2

|D|+1
.

4.3.3 Exponential mechanism

The exponential mechanism, first introduced by Frank McSherry and Kunal Talwar in
2007[35], is a method used to create algorithms that ensure differential privacy. There is a
private set domain D and an object domain H. It maps a set of n inputs from domain D
and an object function h ∈ H to a probability distribution over the range R. The privacy
mechanism makes no assumption about the nature of D and H.

Let s : Dn×H ↪→ R be a function that assigns a score to the pair (X, h), where X ∈ Rn

and h ∈ H. The score reflects the appeal of the pair (X, h), i.e., the higher the score, the
more appealing the pair is. Given the input X ∈ Dn, the mechanism’s objective is to
return an h ∈ H such that the function s(X, h) is approximately maximized.

Lemma 4. The exponential mechanism (ME) is a mechanism that takes inputs X, H, and
s and outputs an object h ∈ H, where the probability of selecting a specific h is proportional
to exp( ϵs(X,h)

2∆
). The exponential mechanism ME is epsilon-diferentially private.

In our process, the input X ∈ Dn corresponds to the original dataset that we wish to
protect, s is a score function that assigns a score to candidate results based on their desir-
ability, and H is a set of random candidates generated by the mechanism. The objective
of the mechanism is to return a candidate result h such that the score function s(X, h) is
approximately maximized, while ensuring that the original dataset remains private.

To achieve this, we use the exponential mechanism ME(D,H, s) as follows:

• Define s(X, h) as the score function that evaluates the desirability of candidate results
hi ∈ H given the original dataset as explained in Section 4.3.2.
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• Choose h with probability proportional to exp( ϵs(X,h)
2∆

), where ϵ is a privacy parameter
that determines the level of privacy protection, and ∆ is the sensitivity of the score
function.

By setting ϵ to a suitably small value, we can ensure that the mechanism provides strong
privacy protection for the original dataset, while still returning a desirable candidate result
h.

4.3.4 Composition theorems and bounded-range DP

One of the crucial properties of differential privacy is its behavior under composition.
When running multiple differentially private algorithms on the same dataset, the resulting
composed algorithm is also differentially private, but with some degradation in the privacy
parameters (ϵ, δ). This makes composition a useful tool in algorithm design, as it allows
for the combination of simpler algorithms to create new differentially private algorithms.
However, the privacy cost of each individual query may accumulate, leading to a higher
overall privacy cost for the combined queries. Composition theorems provide bounds on
the overall privacy cost of multiple queries based on the individual privacy guarantees of
each query.

Formally, we define the composition of differentially private mechanismsM0,M1, ...,Mk-1

as M = Comp(M0,M1, ...,Mk-1), where each Mi is run independently. The Sequential
Composition Theorem[19] states that the privacy degradation is at most linear with the
number of mechanisms executed (kϵ), while the Advanced Composition Theorem[21] al-
lows for a proportional degradation of ϵ to the square root of the number of mechanisms
executed (

√
kϵ), with an increase in δ.

Lemma 5. If F0 satisfies ϵ0-differential privacy And F1 satisfies ϵ1-differential privacy,
then the mechanism (F0, F1) which releases both results satisfies (ϵ0+ϵ1)-differential privacy.

For specific differential privacy mechanisms, further composition bounds can be ob-
tained through tighter analysis. In the case of our algorithm, we use the exponential mech-
anism repeatedly in the DP-selection part, which has a tighter analysis under bounded
range DP[16].

Definition 5. Bounded Range DP. If a mechanism M transforms a set of records in D
into an outcome set R, then we define M as ϵ-range-bounded (ϵ-BR) if for every y, y′ ∈ R
and any neighboring databases D and D′, the following condition holds:

Pr[M(D)=y]
Pr[M(D′)=y]

≤ eϵ Pr[M(D)=y′]
Pr[M(D′)=y′]

.
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Bounded range DP is a general notion of privacy, but it is particularly useful for expo-
nential mechanisms. All ϵ-DP mechanisms satisfy 2ϵ-BR, with the exponential mechanism
enjoying a tighter analysis as ϵ-BR[16].

The tighter analysis of ϵ-BR mechanisms allows for the derivation of tighter composition
bounds, as demonstrated by Durfee and Rogers in their work on top-k queries[16], which
was later improved by Dong et al.[14]. Although the optimal bound for the composition
of ϵ-BR mechanisms does not have a closed-form expression, a preliminary result with a
closed-form expression was proven by computing the supremum of the KL divergence.

Lemma 6. The adaptive composition of a ϵs-BR mechanism under n-fold adaptive com-
position is (ϵt, δ)-DP with:

ϵt = min{nϵs, n( ϵs
1−e−ϵs − 1− ln( ϵs

1−e−ϵs )) +
√

nϵ2s
2
ln(1

δ
)}.

We fix δ as 1
|D|1.1 to ensure that delta is less than 1

|D| .

BR composition on the exponential mechanism outperforms all other composition
techniques[28], and we adopt it to calculate ϵpartial in our DP-selection process. An alter-
native method of combining differential privacy mechanisms is parallel composition, which
can provide significantly better bounds but is only applicable in certain cases where the
data can be partitioned. In this approach, the dataset is partitioned into non-overlapping
subsets, and a differentially private mechanism is applied to each subset separately. Since
each individual’s data appears in only one subset, even if the dataset is partitioned into k
subsets, each individual’s data will only be subjected to one application of the mechanism.
We mention formal definition of parallel composition in Lemma 7 and use it to investigate
the privacy of our parallelized method.

Lemma 7. If a differentially private mechanism M(X) satisfies ϵ-differential privacy and
we split a dataset into k disjoint chunks (x1, x2, ..., xk), then the mechanism which releases
all of the results (M(x1),M(x2), ...,M(xk)) satisfies ϵ-differential privacy.

In the following section, we will examine the privacy guarantees of our approach.

4.4 Parallel DP-Select

DP-Select can be computationally expensive since the algorithm adds one data point at
a time to the output dataset. To address this issue, we develop a parallelized version of

22



DP-Select that speeds up the algorithm by processing multiple data points simultaneously.
Specifically, we parallelize the algorithm by partitioning the Pool and running multiple
instances of DP-Select in parallel on each partition. We split the pool into sections to
avoid repeated selection of data points. The resulting synthetic datasets generated from
each partition are then combined to form the final synthetic dataset.

The parallelized version of DP-Select has the potential to be faster than the original
algorithm since it can process multiple data points simultaneously, thereby reducing the
overall computation time. In our experiments, we found that the parallelized version of
DP-Select achieved a speedup of 10X on 32 CPU cores compared to the original algorithm.

In addition to parallelizing the algorithm to speed up running time, we can also nat-
urally leverage parallel composition to improve the utility. One approach is to partition
the original dataset into distinct sections and compute the marginals for each section sepa-
rately. These marginals can then be used as different reference marginals for each parallel
process in the selection process. In this case, we use parallel composition as defined in
Lemma 7 to share the privacy budget among all processes. This approach ensures that
each parallel process has the same privacy budget as the entire DP-Select algorithm, thus
maintaining the overall privacy guarantee.

Using parallel composition increases the privacy budget for each repetition of the ex-
ponential mechanism, improving the utility of the output data. However, the size of each
section should not be too small, as this would reduce the population size used to calcu-
late marginal distributions, resulting in worse utility. Moreover, while parallel composition
ensures that the marginal distribution of each section is close to a section of the original
data, it does not guarantee that the marginal distribution of the union of the output of
all sections is close to the original data. Therefore, the number of sections is a sensitive
parameter in the algorithm, and we investigate its impact on utility in the results section.

It is important to note that parallel DP-Select can use any composition theorem to
allocate the privacy budget to each parallel section, and parallel composition can also be
used without a parallel algorithm. These are two independent concepts. Parallel DP-Select
focuses on improving the run time of the algorithm, while parallel composition optimizes
the utility of the output by balancing the privacy budget allocated to each repetition of the
exponential mechanism with the amount of information captured in the marginals of each
section. We demonstrate in Chapter 5 that parallel DP-Select using parallel composition
is the most optimal version of DP-Select in terms of running time and utility performance.
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4.5 Privacy guarantees

Algorithm 3: Privacy budget allocation

Input: ϵtotal: total privacy budget
ϵ-ratio: ratio of ϵdp-gan to ϵtotal
p: number of parallel processes

; /* ϵtotal = ϵdp-gan + ϵdp-select */

ϵdp-gan ← ϵ-ratio× ϵtotal
ϵdp-select ← (1− ϵ-ratio)× ϵtotal;
; /* replicate the ϵdp-select for each parallel process */

ϵparallel ← ϵdp-select;
; /* using BR composition */

; /* ϵparallel = min{pϵs, p( ϵs
1−e−ϵs − 1− ln( ϵs

1−e−ϵs )) +
√

pϵ2s
2
ln(1

δ
)} */

apply binary search to find closest ϵbr which satisfies :

ϵparallel = p( ϵbr
1−e−ϵbr

− 1− ln( ϵbr
1−e−ϵbr

)) +

√
pϵ2br
2
ln(1

δ
)};

ϵs = max(ϵbr,
ϵparallel

p
);

In this section, we examine the privacy guarantees of our algorithm by analyzing its
individual components. Our algorithm consists of two main components: DP-GAN and
DP-selection, each of which uses a portion of the total privacy budget. According to
Lemma 2, DP-GAN provides ϵdp-gan-DP on the output of the generator, independent of the
number of generated data points, ensuring that our data pool offers ϵdp-gan-DP guarantees.
Furthermore, according to Lemma 1, the post-processing feature of differential privacy
guarantees that any random or deterministic function applied to the data pool, such as
selecting a subset of data or normalizing over the features, would not incur additional
privacy costs.

However, since we are directly using information from the marginal distributions of
the original dataset to select the best candidate data points in repetitive tasks, we need to
introduce a mechanism to ensure that the selection process does not reveal any information
about the original dataset beyond the level of differential privacy that has been set. To
achieve this, we employ the exponential mechanism, as stated in Lemma 4. Specifically, if
we choose the data point with the best score based on the probabilities outlined in Lemma
4, we can guarantee ϵpartial-DP for a score function with sensitivity ∆S. The challenge
arises when we need to repeat this process |D| times to obtain a full dataset with the
desired size. In this case, we use the bounded range composition theorem, as stated in
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Lemma 6, to determine the privacy budget allocation for each repetition, to ensure that
the total privacy budget for the entire DP-selection process does not exceed ϵdp-select.

So, as stated in Lemma 5, by applying the sequential composition of differential privacy,
our entire algorithm satisfies ϵtotal-DP, where ϵtotal equals the sum of ϵdp-gan and ϵdp-select.
The privacy budget allocation for each repetition of the exponential mechanism in DP-
selection is determined by the bounded range composition theorem, ensuring that the
total privacy budget for the entire DP-selection process does not exceed ϵdp-select.

As the output size |D| increases, the privacy budget for each exponential mechanism
repetition decreases, and the running time of DP-selection also increases. To address
this, we use parallel DP-Select with parallel composition explained in 4.4. According
to Lemma 7, if each parallel section satisfies ϵparallel-DP, the entire DP-selection process
satisfies ϵdp-select-DP, where ϵdp-select equals ϵparallel.

By using parallel composition, the privacy budget for each repetition of the exponential
mechanism increases as the size of the output of each section decreases to |D|

#sections
, and

parallel DP-Select allows faster running time. As previously mentioned, if the size of each
section is too small, it can have a detrimental effect on the quality of the output data
since it reduces the population size used to calculate marginal distributions, leading to a
less accurate prediction of the utility. Furthermore, it is important to note that although
parallelization ensures that the marginal distribution of each section is similar to a section
of the original data, it does not guarantee that the marginal distribution of the output
from all sections combined will be similar to that of the original data.

Lemma 8. DP-Select is (ϵtotal, δ)-differentially private. The privacy budget of the algo-
rithm is given by the following formula:

ϵtotal = ϵdp-gan +min{nϵs, n(
ϵs

1− e−ϵs
− 1− ln(

ϵs
1− e−ϵs

)) +

√
nϵ2s
2

ln(
1

δ
)} (4.4)

where n represents the size of the output dataset for each parallel process, which is equal
to |D|

#sections
. ϵs represents the privacy budget used for each exponential mechanism, and δ

is set to 1
|D|1.1 .

In this section, we have evaluated the privacy guarantees of our algorithm by analyzing
the privacy properties of its individual components, DP-GAN and DP-Select, as well as
the parallelized version of our algorithm, Parallel DP-Select. Algorithm 3 describes how
the privacy budget is allocated across the different components of our algorithm. We
have shown that our algorithm provides robust privacy guarantees while also generating
high-quality synthetic data that can be effectively used for downstream tasks.
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Chapter 5

Experiments and Results

In this section, we present the experimental results of our proposed algorithm for gen-
erating synthetic data with differential privacy guarantees. We begin by describing the
experimental setup, including the division of the original dataset and the implementation
and execution of the experiments. Then, we introduce the datasets used in our experi-
ments, along with their characteristics. We also introduce the parameters of DP-Select
that affect the utility, such as the privacy budget and the pool size.

Next, we explain our evaluation metrics, which include utility measures used by papers
in this field, privacy guarantees, and running time. We evaluate the performance of our
model and compare it to other state-of-the-art methods, such as DPGAN. We also analyze
the effect of different parameters on the performance of our model and provide insights into
the strengths and limitations of our approach. Our main questions to answer in this section
are: how does our approach improve the utility of the synthesized dataset in comparison
to a DP-GAN, and how do parameters like epsilon ratio and section number affect the
performance?

It is important to note that when we refer to the classification accuracy of DP-GAN out-
put in this section, we are referring to an independent DP-GAN model that uses the entire
privacy budget (ϵtotal). This is different from the DP-GAN component used within our DP-
Select algorithm, which only uses a portion of the privacy budget (ϵdp-gan = ϵ-ratio×ϵtotal <
ϵtotal).
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5.1 Experiment setup

We implemented our data synthesis algorithm, as shown in Figure 4.1, using PyTorch [42].
To evaluate the performance of our framework, we follow the existing works for relational
data synthesis and split the dataset into a training set Dtrain, a validation set Dvalid,
and a test set Dtest, with a ratio of 4:1:1, respectively. Prior to training, we performed
preprocessing on the original dataset to ensure that all attributes were in numerical or
one-hot-encoded form. We then trained a DP-GAN on the training set Dtrain to obtain
optimized parameters for the discriminator and generator. We use the code provided by the
authors of Daisy [22] to implement our DP-GAN baseline. This code is publicly available
on GitHub 1. During the training of DP-GAN, we take a snapshot of the model at the
end of each of the ten epochs and evaluate the model on the validation set Dvalid for each
epoch. At the end of the training, we select the DP-GAN model snapshot with the best
performance on the validation set to generate a synthetic pool. Subsequently, we applied
the DP-select mechanism to the pool to obtain the synthetic output dataset D̂.

After obtaining D̂, we compared it with the original dataset Dtrain and the output
of DPGAN with the same privacy budget as our entire process on both data utility and
privacy protection. To ensure the robustness of our results, we repeated each experiment
three times and we averaged the results over the three runs. In summary, our experimental
setup consists of dataset splitting, DP-GAN model training, pool generation, DP-select,
and result comparison. The performance of our model was evaluated using a variety of
metrics, which will be discussed in section 5.1.3. In the following section, we will introduce
the datasets used in our experiments.

5.1.1 Datasets

Our proposed method is tested on two tabular datasets: the Adult income dataset and the
Forest CoverType dataset [15].

The Adult dataset [43] is in the social domain and contains information about an
individual’s annual income, which is influenced by various factors such as education level,
age, gender, and occupation. The dataset includes 41,292 records with 6 numerical and
8 categorical attributes, and the targeted feature is income, which has two unique values:
> 50k and ≤ 50k. Figure 5.1 shows a sample table from the Adult dataset, along with
some synthesized samples.

1https://github.com/ruclty/Daisy

27

https://github.com/ruclty/Daisy


Figure 5.1: (a) the above table shows first ten rows from the original Adult dataset, and (b)
the below table shows first ten rows from the synthetic dataset generated by our DP-Select
algorithm with ϵ = 2.

The CoverType dataset [44] contains tree observations from four areas of the Roo-
sevelt National Forest in Colorado. The dataset includes information on tree type, shadow
coverage, distance to nearby landmarks, soil type, and local topography. The simplified
version of the CoverType dataset that we use has 116,204 records with 10 numerical and
2 categorical attributes, and the targeted feature is coverType, which has 7 unique values.

5.1.2 Parameters

In our analysis, we vary several parameters to evaluate the performance of our approach.
One important parameter is the total privacy budget, which is the sum of the privacy
budgets used in the DP-GAN and DP-selection sections (ϵtotal = ϵdp-gan + ϵdp-select). This
parameter is particularly important when comparing our algorithm to others and assessing
the trade-off between privacy and utility.

The second parameter, the ϵ-ratio, represents the ratio between the privacy budget
used in the DP-GAN section (ϵdp-gan) and the total privacy budget used in the whole
process (ϵtotal = ϵdp-gan + ϵdp-select). A smaller ϵ-ratio means a larger part of the privacy
budget was allocated to the DP-Select process instead of the DP-GAN. This parameter is
particularly important for finding the best working ϵ-ratio and studying its impact on the
output utility.

Another parameter is the distance metric used in our score function, which measures
the similarity between the DP-GAN output and the original data. We explore the influence
of this parameter on the output in our experiments.
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We also use the pool size as a parameter to control the size of the DP-GAN output,
which affects the performance of our approach. For example, a pool size equal to 10 means
that the size of the DP-GAN output was 10 times the size of our desired output dataset.

Finally, we apply a parallelization technique to make our DP-selection algorithm faster
by partitioning the data into several sections. The number of sections (parallel processes)
used in this algorithm is a crucial parameter in studying the impact of parallelization on
the performance of our approach.

We use these parameters throughout the remainder of this section to compare our
method with DP-GAN and evaluate its performance. Additionally, we investigate the
impact of these parameters on the algorithm and explain the rationale behind their usage.

5.1.3 Evaluation metrics

DP-Select is evaluated in three aspects: utility, privacy, and running time.

Utility evaluation. To evaluate the utility of our DP-select algorithm, we train a
decision tree classifier with a depth of 10 on both the output dataset of DP-GAN and the
output dataset of DP-select and measure their accuracies on a test dataset. We define the
accuracy difference (acc-diff) between the two classifiers as:

acc-diff = accdp-select − accdp, (5.1)

where accdp-select and accdp-GAN are the accuracies of the classifiers trained on the output
datasets of DP-select and DP-GAN, respectively. By training the classifier on the output
and testing it on a separate dataset, we can assess how well the synthetic data mimics the
real data in terms of its ability to be used for downstream tasks such as classification.

Privacy Guarantee The DP-Select algorithm is designed to ensure differential privacy,
which guarantees that the risk of identifying an individual in the original dataset from the
generated synthetic data is limited. The privacy of the DP-Select algorithm is quantified
by the total privacy budget allocated to the algorithm (ϵtotal including the privacy budget
of DP-GAN ϵdp-gan and the privacy budget of DP selection ϵdp-select), which limits the
amount of information that can be leaked from the original dataset. Theoretical analyses
have shown that the DP-GAN algorithm satisfies differential privacy with a privacy budget
equal to ϵdp-gan. And we show in Subsection 4.5 that DP selection process also satisfies
ϵdp-select-DP so our whole algorithm satisfies ϵtotal-DP. Therefore, there is no need to assess
the privacy risk of the synthetic data generated by the DP-GAN using additional metrics.
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Running time To evaluate the running time performance of our DP-Select algorithm,
we measured its running time on a machine with 32 CPU cores. We also conducted
experiments to investigate the effect of parallelization and the number of sections on the
algorithm’s running time. Specifically, we varied the number of sections from 1 to 10
and measured the running time for each setting. Our experiments show that the use of
parallelization in DP-Select significantly reduces the running time compared to the non-
parallelized version.

5.2 Results

In this section, we compare the performance of our differentially private data synthesis
algorithm to DP-GAN for different privacy budgets (ϵtotal). Specifically, we evaluate the
utility of the generated datasets in terms of accuracy and privacy guarantees for different
values of ϵtotal. Additionally, we investigate the impact of the parameters introduced in the
previous section on the performance of our method.

5.2.1 Comparison to DP-GAN

We conducted a comparison between our DP-Select algorithm and DP-GAN using different
privacy budgets (ϵtotal), measured by the utility function of classification accuracy. The
results, shown in Figure 5.2, demonstrate that our DP-Select algorithm outperforms DP-
GAN in terms of utility for all privacy budgets considered. For example, when ϵtotal = 2,
DP-Select achieved a classification accuracy of 73.66% for the Adult dataset, while DP-
GAN achieved only 70.7%. Similarly, when ϵtotal = 8, DP-Select achieved a classification
accuracy of 74.45% for the Adult dataset, while DP-GAN achieved only 73.55%. These
results indicate that our algorithm can generate synthetic data with higher utility compared
to DP-GAN.

Moreover, the performance improvement of DP-Select over DP-GAN was larger when
ϵtotal was smaller. This can be attributed to the fact that DP-GAN may not be able
to generate good results with high probability in a high privacy regime. However, by
generating a larger pool of data with an even smaller ϵ (i.e., ϵdp-gan) and selecting the data
points that have closer marginals to the original data using DP-Select, we can improve the
utility of the generated data. The points displayed in the chart were chosen using Pareto
front selection among the average results of multiple runs with different epsilon values.
Pareto front selection refers to a set of non-dominated solutions that are considered optimal
if no objective can be improved without sacrificing at least one other objective.
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Figure 5.2: Comparing the utility of synthesized data of DP-Select with DP-GAN.

We choose the best achievable classification accuracy by DP-Select algorithm for a
fixed value of ϵtotal by varying the other parameters: ϵ-ratio, pool size, distance metric,
and number of sections. This was done to showcase the best performance achievable by
DP-Select algorithm under different privacy budgets.

To evaluate our DP-Select algorithm in the remaining sections, we use the difference
between the classification accuracy of DP-Select and DP-GAN, denoted as acc-diff .

5.2.2 Effect of epsilon ratio

In this section, we investigate the effect of the ϵ-ratio on the performance of DP-Select.
To this end, we present the results of our experiments in the form of a bar chart, where we
compare the classification accuracy difference (acc-diff) of DP-Select and DP-GAN for
different values of the ϵ-ratio.

As shown in Figure 5.3, the performance of DP-Select is generally better when using
smaller ϵ-ratios. Specifically, when ϵtotal is 2, the smallest ϵ-ratio of 0.2 results in the
largest accuracy difference of 2.96 in favor of DP-Select over DP-GAN. As the epsilon-
ratio increases, the accuracy difference decreases, with the largest ϵ-ratio of 0.8 resulting
in no improvement over DP-GAN.

A possible explanation for this trend is that smaller ϵ-ratio allows for more privacy
budget to be allocated to DP-Select, resulting in a better selection of synthetic data points
that have closer marginals to the original data. On the other hand, larger ϵ-ratio may lead

31



to a greater emphasis on the generation of synthetic data by DP-GAN, which may not
always produce data that is representative of the original dataset.

Overall, our experiments suggest that the choice of the ϵ-ratio is an important consid-
eration when using DP-Select, and that smaller ϵ-ratio may lead to improved performance.

Figure 5.3: Effect of ϵ-ratio on performance of DP-Select

5.2.3 Effect of pool size

Another factor that can impact the performance of DP-Select is the size of the potential
data point pool. To investigate this, we evaluated the accuracy difference (acc-diff)
between DP-Select and DP-GAN for different pool sizes, while keeping the privacy budget
(ϵtotal) constant.

As seen in the Figure 5.4, there is a general trend of increasing performance for DP-
Select with larger pool sizes. For example, when ϵtotal is 2, increasing the pool size from
5 to 20 results in an acc-diff improvement from 1.13 to 2.96. Similarly, when ϵtotal is 4,
increasing the pool size from 5 to 15 results in an improvement from -0.72 to 1.38.

This trend can be explained by the fact that a larger pool of data points provides more
diversity and potentially better coverage of the underlying data distribution. Therefore,
DP-Select has a higher chance of selecting data points with closer marginals to the original
data, leading to higher accuracy.
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In summary, our experiments show that increasing the potential data point pool can
improve the performance of DP-Select. However, this also comes at the cost of increased
running time.

Figure 5.4: Effect of the pool size on performance of DP-Select

5.2.4 Effect of distribution distance metric

In this section, we evaluate the effect of different distance measures used in the score
function of DP-Select on its performance. Specifically, we consider the Kolmogorov dis-
tance, the L2 density distance, and the density distance area. For each distance measure,
we calculate the difference in classification accuracy between DP-Select and DP-GAN for
different privacy budgets.

As seen in the Figure 5.5, the density distance metric yields the highest utility among the
three distance measures considered. This observation suggests that the density distance
metric is more suitable for measuring the similarity between the marginal distributions
of the original and generated data points. One possible explanation is that the density
distance area is a more flexible and fine-grained measure of distribution distance, as it
takes into account the shape and location of the distributions. In contrast, the Kolmogorov
distance only captures the maximum difference between the CDFs, which may not provide
a complete picture of the differences in the distributions.
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For our purpose of synthesizing data with similar marginals to the original data, mea-
suring the distance between the PDFs seems more appropriate. This is because we want to
ensure that the synthesized data has a similar probability distribution as the original data,
which can be better captured by comparing the PDFs rather than the CDFs. L2 density
distance also compares the PDFs, however, in this case, L1 distance might be preferred
over L2 distance because it is more sensitive to differences between values at the tails of
the distribution.

Overall, our results highlight the importance of choosing an appropriate distance mea-
sure in the score function of DP-Select for generating high-quality synthetic data.

Figure 5.5: Effect of distribution distance metric on performance of DP-Select

5.2.5 Effect of number of sections

To investigate the effect of the number of sections on the performance of DP-Select, we
conducted experiments using different numbers of sections ranging from 1 to 10. We
computed the acc-diff for each number of sections and for different values of the total
privacy budget.

As we can see from Figure 5.6, the output utility of DP-Select is highly dependent
on the number of sections used in the computation. When the number of sections is too
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small or too large, the utility performance of DP-Select is decreased, however the optimum
choice (number of sections equal to 5) results in maximum utility.

The choice of the number of sections in the parallelized version of DP-select involves a
trade-off between the partial privacy budget for each differentially private data selection
iteration and the accuracy of the marginals of each section. A small number of sections al-
lows for larger sections of the original data to be used to extract the marginal distributions,
resulting in more accurate marginals. However, this means that the partial privacy budget
for each iteration of differentially private data selection using the exponential mechanism
is small. On the other hand, a larger number of sections means that we have a smaller
part of the original dataset to get the marginals from, leading to less accurate marginals
for the entire dataset. However, this provides a larger privacy budget in each iteration of
the data selection process using the exponential mechanism. This means that we can pick
the best data point candidate with a higher probability, even though the best candidate
may not be the actual best candidate, as we are comparing it to a less accurate marginal
distribution. Empirical results suggest that the optimal number of sections tends to be
around 5.

To complement our analysis of the effect of the number of sections on the output utility
of DP-Select, we also conducted experiments to evaluate the running time performance
of the algorithm for different values of the number of sections. We used a fixed dataset
size and varied the number of sections from 1 to 10, measuring the running time of each
experiment.

As shown in Figure 5.7, we observed a decrease in the running time of DP-Select as the
number of sections increased. This is because using more sections allows us to parallelize
the computation and distribute the workload across multiple processes, reducing the total
running time.

Overall, our experiments suggest that the optimal number of sections for DP-Select is
around 5, as it provides the best utility and also results in a significant decrease in running
time.
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Figure 5.6: Effect of number of the sections on the performance of DP-Select

Figure 5.7: Effect of number of the sections on running time of DP-Select
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Chapter 6

Conclusion

In this thesis, we proposed a novel method for improving the performance of DP-GANs on
tabular data synthesis tasks. Our approach, called DP-Select, post-processes the output
of DP-GAN by selecting data points that are more likely to be from the original dataset
based on their marginal distributions.

Our experimental results demonstrate that DP-Select significantly improves the utility
of synthesized data compared to DP-GAN alone, as measured by the classification accu-
racy metric. In particular, we show that DP-Select can achieve higher levels of utility
while maintaining strong privacy guarantees, making it a promising solution for privacy-
preserving data synthesis in terms of differential privacy. Furthermore, our experiments
showed that DP-Select performs better for smaller privacy budgets, making it an attractive
option for scenarios where the privacy budget is limited.

Moving forward, some open problems include comparing DP-Select to non-GAN data
synthesis techniques, which may provide insights into the strengths and weaknesses of
different methods. Additionally, exploring how we can modify the score function of DP-
Select to serve other downstream tasks could lead to further improvements in the quality
of synthesized data.
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