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Abstract

In this work, we propose Sparse2SOAP, an extension of the previous work in Sparse2Dense
that uses knowledge distillation in a teacher-student framework to densify 3D features, to
enable its uses for cross-domain LiDAR-based 3D object detection in autonomous driving.
This is achieved by utilizing Stationary Object Aggregation Pseudo-labelling (SOAP) from
prior work, to generate high-quality pseudo-labels for Quasi-Stationary (QS) dense point
cloud objects in Simply Aggregated (SA) point clouds. The dense object pseudo-labels
can then be paired with the corresponding sparse objects pseudo-labels creating dense-
sparse pairs for knowledge distillation. We additionally propose a masking method for
handling knowledge distillation for dynamic objects. We evaluate the proposed method
using nuScenes and Waymo datasets for Unsupervised Domain Adaptation (UDA) tasks.
We observe an increase in mAP and AP for classes with many QS objects. To the best
of our knowledge, we are the first to perform feature alignment between sparse and dense
point cloud representations using aggregated point clouds in the context of UDA.
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Chapter 1

Introduction

In Chapter 1 of this thesis, I will motivate the need to develop methods for domain adapta-
tion, particularly for the autonomous vehicles setting. Then, I will describe the underlying
causes for domain adaptation, and give a formal definition of the problem/task. Then, I will
detail related work for 3D object detection and domain adaptation, and lastly summarize
the contributions of this work.

1.1 Motivation

The realization of fully Autonomous Vehicles (AVs) promises safer and more efficient meth-
ods of transportation, and thus would be considered a landmark achievement in science
and engineering. In order to achieve this goal, an AV needs to be able to execute a series of
perception, planning, and control tasks in complex and dynamic scenarios. Additionally,
AVs are considered to be safety-critical systems where failure to successfully perform the
aforementioned tasks may result in the loss of human life. Figure 1.1 depicts a general
software stack for an autonomous vehicle. The AV observes it environment using a series
of sensors, then the collected data is processed by the perception module where 3D ob-
ject detection is carried out to localize and classify other agents in the environment. In
the subsequent module, long term prediction and motion forecasting is performed for all
agents. Then, in the planning module, the ego vehicle performs it own path planning for
a short time horizon. Lastly, the AV determines the control inputs needed to execute the
desired path/action whilst operating within a set of given constraints.

The task of 3D object detection performed by the perception module is a critical com-
ponent as it is charged with correctly detecting other agents in the scene such as cars,
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Figure 1.1: A general software stack for an autonomous vehicle. The AV observes its
environment using sensors such as camera, LiDAR, and radar as shown on the left. This
data is then passed as input to a series of modules to executed the required operations for
navigating the environment.

cyclists, and pedestrians. As a result, this carries significant safety requirements. Addi-
tionally, since the perception module is executed first, the resulting information is relied
upon by all subsequent modules. LiDAR-based measurements provide valuable 3D infor-
mation by accurately recording the range and scale of objects independent of the lighting
conditions. State-of-the-art performance for 3D object detection is obtained by training
Deep Neural Networks (DNNs) in a supervised fashion [27, 12, 18, 31, 17]. However, su-
pervised training relies heavily on the foundational principles regarding data for machine
learning; that the data be i) large, ii) diverse, and iii) be correctly/accurately annotated.
Additionally, supervised learning assumes that the training and testing data are identi-
cally distributed. If these requirements/assumptions are fulfilled then supervised training
is highly effective. Many research institutions and companies have published large-scale
LiDAR datasets for 3D object detection for the AV setting [9, 4, 11, 2, 19, 24, 15]. However,
the available datasets only cover a small subset of domains encountered by an AV, where
in the field of computer vision a domain is a particular distribution of values that make
up the information content of the observed images/frames. A change in any factor that
causes a non-negligible shift in the distribution of values is referred to as a domain shift. A
domain shift can be caused by changes in the lighting conditions, view/perspective, object
appearance, or object context. In 2D camera images, the domain is primarily dependent
on the texture, which reflects the surface characteristics of objects. In 3D LiDAR point
clouds, the domain is primarily determined by the geometric nature of the points [30].

It is essential to have methods for either learning domain invariant features with respect
to certain domains or to be able to easily and efficiently map between two domains. This
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Train Data Val. Data
Average Car Truck Bus Motor. Cyclist Ped.

AP AP AP AP AP AP AP
20% nuScenes nuScenes 51.5 79.2 45.6 57.1 38.9 21.0 67.4
20% nuScenes Waymo 10.4 24.8 1.4 9.5 17.5 7.3 2.3
100% nuScenes Waymo 16.2 33.7 3.8 22.9 20.2 12.6 4.1
20% Waymo Waymo 56.5 68.3 34.2 49.0 53.1 68.4 65.9

Table 1.1: Baseline performances for in-domain, cross-domain, and oracle models with
nuScenes as the source domain and Waymo as the target domain using the CenterPoint
detector.

is because it is observed that a model trained in one domain and validated in another
domain experiences significant performance degradation as shown in Table 1.1. Table 1.1
shows good in-domain performance in Average Precision (AP) for a model trained on 20%
nuScenes data and validated on nuScenes. However, a decrease in AP of 41.1% and 35.3%
is observed for a model validated on Waymo, but trained on 20% nuScenes and 100%
nuScenes, respectively. This is a significant decrease compared the oracle model, which
sees values similar to the in-domain model for nuScenes, when trained and validated on
Waymo. A naive solution would require collecting and labelling data for a new domain
and re-training the DNN; however, this is infeasible as the collection of data and labelling
by human annotators is extremely expensive and time-consuming. However, of the two
operations the human- labelling is the most significant barrier, as collecting unlabelled
data is far easier with the current number of AV research vehicles and engineers. Thus, the
present work is performed under this consideration. To address the observed performance
degradation, this work explores Unsupervised Domain Adaptation (UDA) for 3D object
detection where the objective is to adapt a model trained in a source domain with labelled
data to a target domain with unlabelled data to perform well in the target domain, thereby
reducing to domain gap.

1.2 Formal Definition of the Problem and Task

Domain shifts in 3D point clouds for the AV setting can occur as a result of a change in
any of the point cloud characteristic properties. Although a shift in the distribution of a
single property is sufficient, in general a domain shift is often a result of a change in several
properties co-occurring simultaneously. Some common properties that are known to cause
domain shifts are: point cloud noise, occlusions, sensor type (LiDAR sensor model), sensor
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setup (LiDAR installation method), and variations in the object instances such as type,
frequency, and characteristic attributes.

To formally describe the aforementioned task of domain adaptation, we follow the work
of Pan et al. [16]. A domain is defined by the tuple (χ, P (X)) where χ is a powerset of
examples and referred to as the feature space and with P (X) as the marginal probability
distribution of X. Then, the dataset for the task, X, is a finite set in χ (X ∈ χ) and x is a
particular instance in X (x ∈ X). For a given domain (χ, P (X)), a task is then defined by
the tuple (Y , P (Y |X)) where Y is the label space and is a powerset of all labels for the given
task. The finite set Y ∈ Y containing of the labels corresponding to the dataset X with
y ∈ Y being a particular instance label. The objective predictive function that is learn-
ing during training approximates the conditional probability distribution, P (Y |X). The
source and target domains are then denoted as DS = (χS, PS(XS) and DT = (χT , PT (XT )
with learning tasks TS = (YS, PS(YS|XS) and TT = (YT , PT (YT |XT ), respectively. Models
obtained when DS = DT , TS = TT , and YS,YT are observable are considered to be trained
in the conventional supervised fashion. However, DA scenarios occur when DS ̸= DT ,
TS = TT , and YS,YT are observable and unobservable, respectively.

To perform 3D object detection via a DNN approach, then it is necessary to learn an
objective predictive function D to map the environment point cloud (P) of the ego vehicle
scene to an output space (Y) that localizes and classifies m objects according to Equation
1.1:

Dθ : P → Ŷ (1.1)

where the set P = {p1, ..., pn} contains n LiDAR points with pi|ni=0 ∈ R4 specifying the
coordinate x,y,z, and reflectance r of the ith point. The predicted annotations is the set
Ŷ = {y1, ..., ym} contains m bounding box annotations with yj|mj=0 ∈ R8 that specifies the
coordinate of the box center (x,y,z) and dimensions (l,w,h) of the bounding box shape,
heading angle expressed as the yaw angle, α. The bounding box annotations are expressed
in the Bird’s-Eye-View (BEV) of the scene. The final element in the annotation yj is the
class label, ck for k ∈ {car, truck, bus,motorcycle, cyclist, pedestrian}. In the conventional
setting of supervised-learning, the model D parameterized by θ is optimized by minimizing
the classification and regression loss over the source dataset between the predictions and
ground truth, Ŷ and Y , respectively. In this work we aim to first establishDθ by supervised
training on the source domain and then adapt the model by introducing pseudo-labels, Ỹ
and minimizing the classification and regression loss over the target dataset between the
predictions and pseudo-label, ŶT and Ỹ , respectively. The resulting model localized and
classifies objects according to Equation 1.2 on the target domain
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Dϕ : PT → ŶT (1.2)

The result of Equation 1.2 is the adaptation of a model parameterized by θ to model
parameterized by ϕ, Dθ → Dϕ such that the model Dϕ performs well on the target domain.

1.3 Related Work

Domain adaptation has emerged as a highly active area of research regarding 3D object
detection as it is an essential element for detector model deployment at scale. There are
several prominent methods regarding DA for 3D object detection for autonomous driving.
In this work, we detail 3 popular methods and describe example work for each method.
The three methods detailed in this work are: Domain Invariant Representations, Genera-
tive Methods, and Feature Alignment Methods. Lastly, we detail the work Sparse2Dense:
Learning to Densify 3D Features that inspired this research.

1.3.1 Domain Invariant Representations

The objective of Domain Invariant Representations is to move the domains into a common
semi-canonical representation. The mapping can be applied to the input space or the
output space, and thus generally take the form of an data-preprocessing or data-post-
processing module that is employed in conjunction with a base model.

Semantic Point Generation (SPG): Xu et al. [26] proposes Semantic Point Gener-
ation (SPG) as a preprocessing point cloud module that takes the raw point cloud as input
and generates a set of semantic points (points + point labels) to complete the partially ob-
served foreground object point clouds. The SPG module performs point voxelization and
subsequent voxel feature encoding to generate low-level BEV feature maps. The low-level
BEV feature maps are then processed by 2D CNNs to propagate spatial features and learn
high-level BEV features. The resulting BEV features are then used for prediction for each
3D voxel. The objective is to classify each voxel as occupied by a foreground object or not,
and if so, to regress that mean value of the voxel points.

The learning of foreground regions is investigated using two proposed techniques: i)
hide and predict, and ii) semantic area expansion. In the hide and predict method, some
of the voxel points are dropped and the network is charged with predicting the missing

5



points. In the semantic area expansion method, the set of supervised voxels is expanded
to include voxels empty voxels that neighbour occupied voxels

Domain Invariant Representation methods have shown to be very effective. However,
because they generally involve preprocessing and/or post-processing techniques on top of
a base model there is significant computational overhead and therefore they often do not
achieve real-time deployment.

1.3.2 Generative Methods

The objective of Generative Methods is to learn a mapping between domains by minimizing
the distance between the distributions of each domain. These methods generally consist of
mapping source domain to target domains in a way that preserves annotation information.

Cycle and Semantic Consistent Adversarial Domain Adaptation (CSCADA):
Barrera et al. [1] propose to employ CycleGAN [37] to map simulated projected BEV
LiDAR point cloud to the “real” BEV LiDAR point cloud domain. To address the issue
of maintaining semantic consistency between domains, Barrera et al. propose applying
SalsaNext [6] to each domain to perform semantic segmentation and ensure similarity by
applying pixel-wise cross-entropy loss.

Generative mapping methods do not generally achieve state-of-the-art performance,
however, they do show to be effective at generating additional data that can be used to
improve model performance.

1.3.3 Feature Alignment Methods

The objective of Feature Alignment Methods is to align the feature of the target and source
domain by employing the use of a similarity/distance losses. This results in obtaining
domain-invariant feature representations.

3D Contrastive Co-Training (3D-CoCo): Yihan et al. [30] propose 3D-CoCo,
which consists of two components based on two main insights for domain adaptation. The
first is based on the observation that high-level BEV features are more transferable than
low-level BEV features. This is because high-level features are more indicative of the
semantic information whereas the low-level features encompass the geometric information
of the voxel points. In order to exploit this knowledge, the authors employ separate
domain-specific 3D encoder modules to generate feature maps that accurately encode the
geometry of the points at each voxel and a single domain-agnostic module for learning
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Figure 1.2: An overview of the Sparse2Dense framework. The dense teacher model (DDet)
is encompassed by the red box and the sparse student model (SDet) is encompassed by the
blue box. Knowledge distillation is performed using the feature maps at point A and B and
at the detector heads. The Point Cloud Reconstruction (PCR) module is “cut at inference”
since it is only implemented during training of the student model and not required during
testing.

domain invariant BEV features. The second component performs contrastive instance
alignment, which had been found to be ineffective in previous studies. The objective
of contrastive instance alignment is to drive the feature centroids of similar samples from
different domains closer to each other. The authors observe that a naive implementation of
contrastive instance alignment creates a mismatch between the sample distribution for the
source and target domain as the pseudo-labels are biased towards easy samples. Therefore,
Yihan et al. propose hard sample mining to better align the distribution between the
ground truth labels and the pseudo-labels.

Feature alignment has been found to be a relatively simple yet effective strategy for
DA. However, 3D-CoCo performs domain alignment between sparse 32-beam and sparse
64-beam LiDAR sensor domains. This is suboptimal as we believe the domain alignment
should be performed between less informative domains and more informative domains.

7



1.3.4 Sparse2Dense: Learning to Densify 3D Features

Wang et al. [22] propose Sparse2Dense, a teacher-student framework for densifying 3D
features in the latent space to boost the network performance to detect small, distant, and
partially observed objects. Figure 1.2 shows an overview of the Sparse2Dense framework.
Densification is achieved by first training (stage A in Figure 1.2) a dense point cloud
detector (DDet) on point clouds with complete Foreground (FG) objects (aggregated object
point clouds using ground truth bounding boxes with symmetry completion) and sparse
Background (BG) as shown by the red model with the black data pipeline in 1.2. This
teacher model is then used to distill knowledge of dense objects into the student model
trained (stage B in Figure 1.2) on sparse point clouds (SDet). During training of SDet
on sparse point clouds, the teacher model takes 2 point cloud inputs: complete FG +
sparse BG (black line) and complete FG only (grey line). Wang et al. propose 2 additional
modules, S2D and Point Cloud Reconstruction (PCR), for training the student model
(blue model in Figure 1.2) to densify the 3D features. The S2D module is used to filter out
the background features and the PCR module is used to perform voxel-level point cloud
reconstruction by predicting each voxel as occupied by FG points or not and if so, then
regressing the mean position of the voxel points. Knowledge distillation is performed in
the network body at points A and B by applying Mean Squared Error (MSE) loss to align
the features of DDet and SDet. Additionally, knowledge distillation is performed at the
detector heads by applying focal loss [13] using the DDet probability heatmap and the SDet
probability heatmap as input. Focal loss is an extension of the conventional Cross Entropy
loss that is used for applications with significant class imbalance. In this application there
is significant class imbalance between FG and BG.

The work of Sparse2Dense is shown to be effective for boosting the performance of
in-domain 3D object detection. However, it cannot be naively applied to DA for a target
domain since the lack of ground truth bounding boxes does not allow for one to obtain
the dense object point clouds. Thus, it is the work of this thesis, to propose a scheme for
generating the dense FG + sparse BG, dense FG only, and sparse point cloud frames for
an identical scene in the target domain and then extending the Sparse2Dense framework
to align the dense and sparse features.

1.4 Contributions

In this work, we are the first to perform feature alignment between sparse and dense point
cloud representations using aggregated point clouds in the context of Unsupervised Domain
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Adaptation (UDA). Previous studies that perform sparse-to-dense feature alignment are
not applicable to UDA [22, 7] while previous studies that perform feature alignment in UDA
are only applicable for sparse-to-sparse feature alignment [30, 34, 5, 25]. Thus, we are able
exploit all LiDAR frames in a sequence rather than a single or a few consecutive frames.
Utilizing the SOAP method allows us to align the sparse and dense features for quasi-static
objects, and we propose an elliptical masking technique for handling dynamic objects.
Our evaluation using two large-scale well-known AV datasets, nuScenes [2] and Waymo
[19] demonstrates that Sparse2SOAP can effectively align the sparse and dense feature
increasing the Average Precision (AP), precision, and recall for 3D object detection.
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Chapter 2

Sparse2SOAP

In Chapter 2 of this thesis, we first describe the data pipeline implemented to mimic the
input point clouds utilized by Sparse2Dense for the target domain. Then, we will describe
the proposed method for updating a source domain teacher model to effectively be utilized
as a teacher model in the target domain. Lastly, we will describe the modifications made
to Sparse2Dense to extend it for the task of DA for 3D object detection.

2.1 Data Pipeline

In the work of Sparse2Dense [22] and as illustrated in Figure 1.2, the dense point clouds
used for in-domain 3d object detection feature complete FG objects that are created by
aggregating sequential LiDAR frames that are corrected for the motion of moving objects
and performing symmetry completion. However, in UDA this is not possible due to the lack
of ground truth bounding boxes. Therefore, in this work we use Simple Aggregation (SA)
as proposed by Huang et al. [10] for SOAP (Stationary Object Pseudo-labelling) objects,
which aligns sequential LiDAR frames using the pose information of the ego vehicle. The
resulting SA point cloud will contain aggregated points for quasi-stationary (QS) objects
and background, and point cloud distortions that appear as smudges for dynamic objects.
Ground points and smudges are removed by post-processing operations yielding a dense
point cloud for QS objects. This substantially reduces the domain gap caused by different
point densities and beam patterns between source and target domains. A source domain
SOAP model is trained and applied to the SA target domain to produce high quality
pseudo-labels for QS objects. The SOAP method is designed to detect quasi-static objects
by calculating a Quasi-Stationary Score (QSS) based on a weighted Intersection Over
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Figure 2.1: An overview of the Sparse2SOAP data pipeline for the target domain. Pipeline
1 (gold) highlights the modules used in generating PCL0 (SA FG only). Pipeline 2 (green)
highlights the modules used in generating the PCL2 (SA FG + Sparse BG). Pipeline 3
(purple) highlights the modules used in generating the sparse point cloud.

Union (IoU) formulation during training and ensuring consistent labelling using a Spatial
Consistency Post-processing (SCP) technique. Objects with a QSS > δ are taken to be
quasi-stationary. SCP is performed by obtaining per-frame bounding box predictions for
a sequence of SA point clouds. Then, all bounding box predictions are mapped into the
global coordinate frame via ego pose matrix transformations where the predictions are
clustered using an IoU threshold > µ. That is, bounding boxes with IoU below µ are
dropped. Then, the clusters are filtered based the number of SA bounding boxes, BSA

in each cluster, c according to |Bc
SA| > η to ensure consistent pseudo-labels. The target

domain SOAP pseudo-labels are then used to extract the dense object points from the SA
point clouds generating Simply Aggregated Foreground (SA FG) object point clouds as
shown in pipeline 1 (highlighted in gold) of Figure 2.1. The resulting SA FG points are
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Figure 2.2: A 2D BEV scatter plot of the input point clouds for Sparse2SOAP. The sparse
point cloud (left) is input to the student model while the SA QS FG + sparse BG and the
SA FG point clouds are input to the teacher model.

denoted as PCL0 and stored in a point cloud repository.

Pipeline 1 is then extended to form pipeline 2, which takes a sparse point cloud frame
and applies point removal to remove sparse object points inside the SOAP pseudo-labels
to form point cloud, PCL1 (background only). The points of PCL0 are then concatenated
with the points of PCL1 to generate the SA FG + sparse BG point clouds as shown in
pipeline 2 (highlighted in green) of Figure 2.1.

Pipeline 3 is simply the general data loading procedure for sparse point cloud frames,
which are stored in PCL3. Pipeline 3 is highlighted in purple in Figure 2.1. The 3 point
clouds denoted as PCL0, PCL2, and PCL3 are then used as the input point clouds for
Sparse2SOAP with PCL0 and PCL2 passed as input to the teacher and PCL3 passed as
input to the student model. A BEV visualizaton of the input point clouds is shown in
Figure 2.2.

2.1.1 Fine-Tune (FT) Source Domain Model and Pseudo-Label
Refinement

There exists a domain mismatch between the teacher input point clouds, PCL2 and the SA
point clouds used to train the source domain SOAP model. Therefore, the source domain
SOAP model is Fine-Tuned (FT) on PCL2 point clouds with the initial pseudo-labels
generated by the source domain SOAP model. This ensures the best performing model
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Figure 2.3: An overview of the Sparse2SOAP data pipeline.

is used as the teacher in Sparse2SOAP. The fine-tuning process is shown in Figure 2.3
and highlighted by the dashed magenta box. The SOAP pseudo-labels for the SA target
domain generated by the source domain SOAP model are a good first order approximation
of the object bounding boxes. However, they are still generated by a model optimized on
the source domain. Therefore, the SOAP pseudo-labels for the PCL2 point clouds are then
refined using the FT SOAP model. The source domain SOAP model proposed by Huang
et al. [10] is only trained to detect QS objects in the SA point cloud yielding an incomplete
set of pseudo-labels. Therefore, the SOAP method proposes to use a sparse model denoted
as Sparse CenterPoint in Figure 2.3 to detect dynamic objects and recover the complete set
of pseudo-labels. The SOAP pseudo-labels and the sparse pseudo-labels are then combined
using SOAP’s QSS evaluation, SCP, and Non-Maximum Suppression (NMS) to combine
the two sets of pseudo-labels, which are denoted as Sparse2SOAP pseudo-labels in Figure
2.3 and highlighted by the dashed turquoise box.
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Figure 2.4: An overview of the Sparse2SOAP data pipeline.

2.1.2 Dynamic Object Masking

The knowledge distillation techniques proposed by Sparse2Dense requires additional con-
sideration to be employed for DA in Sparse2SOAP. The SOAP teacher model is only
trained to detect QS objects, however the Sparse2SOAP pseudo-labels contain both QS
and dynamic objects. Therefore, we propose to assign a static ID to each pseudo-label
indicating if the bounding box is generated by the Sparse CenterPoint model or the FT
SOAP model. Then, the pseudo-labels used for knowledge distillation are only a subset of
the pseudo-labels used for regression and classification. Figure 2.4 shows the BEV visu-
alization of the sparse point cloud (left) containing all pseudo-labels, and the SA QS FG
+ sparse BG point cloud (middle). The magenta box highlights a cluster of pseudo-labels
that are present in the sparse point cloud but absent in the SA QS FG + sparse BG point
cloud. The corresponding regions are then masked in the feature maps that are used for
knowledge distillation between the SOAP teacher model and the student model such that
the student will not be penalized during feature alignment.
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Chapter 3

Experiments

In Chapter 3 of this thesis, we first describe the datasets employed for DA and all dataset
modifications made for the subsequent experiments. Then, we describe the models used for
the evaluation and ablation experiments. Lastly, we present the results of the experiments.

3.1 Datasets

The evaluation of Sparse2SOAP is performed using the following two large-scale autonomous
driving datasets: nuScenes [2] and Waymo [19]. Both, nuScenes and Waymo have been
extensively used in previous studies.

3.1.1 nuScenes Dataset

The nuScenes dataset [2] is a multimodal dataset published by Nutonomy in 2019 for the
development of object detection and tracking for autonomous vehicles. The LiDAR data
is collected using a single roof-mounted Velodyne HDL-32E (32-beam) rotating LiDAR
sensor at a sampling fequency of 20Hz. The nuScenes LiDAR sensor has a maximum
operating range of 70m. The dataset consists of 1000 sequences that each span 20 s in
length with 3D bounding boxes and labels for 23 classes with 8 attributes. The nuScenes
data was collected from various diverse regions in Boston and Singapore, both of which
feature dense and challenging traffic environments. Data is collected during night-time
and day-time driving scenarios. The nuScenes LiDAR point features consist of the (x, y, z)
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spatial coordinates and the intensity of the return laser pulse. The models trained on
nuScenes data use point clouds constructed from 10 consecutive LiDAR sweeps.

3.1.2 Waymo Open Dataset

The Waymo Open dataset [19] is a large-scale multi-modal dataset designed to facilitate
research and development for a variety of machine perception tasks such as image classifica-
tion, object detection, object tracking, semantic segmentation, and instance segmentation.
Waymo data is collected using a 5-LiDAR sensor configuration at a sampling frequency of
10Hz. The 5 sensor configuration consists of a single proprietary mid-range roof-mounted
rotating 64-beam LiDAR sensor and four short-range side-mounted 200-beam LiDAR sen-
sors. The maximum operating range of the LiDAR sensors is 75m and 20m for the
mid-range and short-range, respectively. Waymo consists of 1,150 sequences that span
20-second time intervals. Waymo LiDAR features consist of the standard (x, y, z) spatial
coordinates, laser intensity, and Waymo’s proprietary elongation measurement of the last
return. Data is collected in the San Francisco, Phoenix, and Mountain View regions un-
der a range of environmental conditions at various times of day. Additionally, there are
rainy sequences obtained from Kirkland, WA. Ground truth annotations are provided for
vehicles, pedestrians, and cyclists.

3.1.3 Object Classes

There is significant mismatch in terms of annotations between the nuScenes and Waymo
datasets. nuScenes contains 3D object detection annotations for 10 classes, whereas Waymo
only contains annotations for vehicles, cyclists, and pedestrians. Furthermore, the vehicle
class in Waymo encompasses different types of vehicles that have distinct labels in nuScenes
such as motorcycles. Therefore, many previous works label all Waymo vehicles as “car”,
and perform 3D object detection for a single car class [23, 29, 28, 21, 20, 32, 14, 30]. In
this work, we follow Huang et al. and create distinct car, truck, bus, and motorcycle labels
for the Waymo vehicle objects using the Waymo semantic segmentation labels in order to
properly compare with nuScenes. As a results, the proposed 3D object detector is tasked
with detecting the 6 classes that are common to both nuScenes and Waymo: {car, truck,
bus, motorcycle (motor.), cyclist, and pedestrian (ped.)}.
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3.1.4 Domain Gaps

Significant domain shifts occur between the nuScenes and Waymo data. In this section we
will describe the primary sources for the observed shifts. The first domain shift is caused
by the different LiDAR configurations as described in Section 3.1.1 and Section 3.1.2.
The Waymo LiDAR configuration yields a significantly different LiDAR beam pattern
and high point densities as a result of the high beam number side-mounted sensors. The
second domain shift is caused by the different locations sampled in each dataset. The
nuScenes dataset contains scenes from Singapore, whereas Waymo only contains scenes
from American cities. This results in different object distributions and different background
features due to the environments.

3.2 Models

We employ CenterPoint [31] as the base 3D object detector in this work for both the student
and the teacher models. CenterPoint was found to be the best architecture investigated in
Sparse2Dense [22]. We used the implementation developed by mmdetection3d [35] library
and performed the necessary modification and adaptations to implement the proposed
method. All models were trained using 100% nuScenes data and 20% Waymo data with
a batch size of 8 across 4 GPUs. Optimization during training is performed using the
AdamW optimizer with the one cycle cyclic learning rate schedule. In this section we
will give the training details for the 4 models used in the Sparse2SOAP method: Sparse
model, CenterPoint with SOAP model, FT with SOAP model, and the Sparse2SOAP (S2S)
Teacher-Student (TS) model.

3.2.1 Sparse Model

The Sparse CenterPoint model is obtained by training CenterPoint on sparse point clouds
from random initial weights. The model is trained with SN augmentations [23] for domain
adaptations, which uses the statistics of the source and target domains to resize object
bounding boxes and object point clouds. The Sparse CenterPoint was trained on nuScenes
for 20 epoch with CBGS sampling [36] applied to the data and a maximum learning rate
of 10−3.
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3.2.2 CenterPoint with SOAP Model

The CenterPoint with SOAP model is initialized with the Sparse CenterPoint weights
and trained on SA source domain point clouds for 52,700 iterations with a maximum
learning rate of 10−3. Since the CenterPoint with SOAP model is trained to only detect
QS objects, the CenterPoint with SOAP training does not provide supervision for cyclist
and pedestrians as these objects are almost never considered to be quasi-stationary. Quasi-
stationary training is implemented with a threshold of δ = 0.8 for QSS. Additionally, SCP
is implemented with µ = 0.5 for clustering and η = 2 for filtering [10].

3.2.3 FT with SOAP Model

The FT CenterPoint with SOAP model is initialized with the Sparse CenterPoint model
weights and fine-tuned on the sparse target-domain point clouds for 5 epochs. The FT
CenterPoint with SOAP model regression is performed on the SOAP pseudo-labels with a
fixed learning rate of 10−4. We follow Caine et al. [3] and only use pseudo-labels with a
confidence scores > 0.5.

3.2.4 Sparse2SOAP (S2S) Model

Sparse2SOAP (S2S) consists of a teacher and a student model. The teacher is optimized
to operate on PCL2 and the student is optimized to operate on sparse point clouds. To
obtain the teacher model, refined pseudo-labels are first constructed by performing SCP
only for the QS objects detected by the CenterPoint with SOAP model. The S2S teacher
is then initialized with the CenterPoint with SOAP model weights and fine-tuned with the
same hyper-parameters as the FT with SOAP model described in Section 3.2.3.

The teacher and student components of the Sparse2SOAP model are initialized with the
S2S teacher weights. S2S is then trained for 20 epochs on the sparse target domain point
clouds (PCL3) with PCL0 and PCL2 processed by the teacher for knowledge distillation.
The maximum learning rate employed during S2S training is 10−3. We also train an
ablation model called S2S Distill that is treated identically to S2S, but we remove the S2D
module and the distillation loss at point A. The purpose of this ablation is to investigate
performance of only knowledge distillation without the extra capacity gained by the S2D
module.
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3.3 Metrics

In this section we will cover the two metrics employed in this thesis to quantify the per-
formance of the experiments. The metrics that are used are: the Percent Gain (% Gain)
and the Percent Domain Gap Closed (% Closed).

3.3.1 Percent Gain

The percent gain is used to quantify the experiments performed regarding the quality of the
pseudo-labels. The percent gain is simply the difference between the model being analyzed
and the baseline model and is given by Equation 3.1:

%Gain = APmodel − APbaseline (3.1)

3.3.2 Percent Domain Gap Closed

The percent domain gap closed is used to quantify the amount of the domain gap that the
model being analyzed has recovered using the baseline as the lower bound and the oracle
model as the upper bound. The percent domain gap closed is given by Equation 3.2:

%Closed =
APmodel − APbaseline

APoracle − APbaseline

· 100 (3.2)

3.4 Pseudo-Label Quality

Here we demonstrate the improvement obtained by fine-tuning the CenterPoint with SOAP
model on the PCL2 formatted Waymo point clouds to obtain the S2S Teacher model. This
is important as the CenterPoint models employed in the work of [10] et al. only operate on
either the SA point clouds or the sparse point clouds, whereas this work requires a teacher
model that is optimized to operate on the PCL2 point clouds.

We observe in this work that an overall increase in pseudo-label quality for the FT S2S
teacher model. The pseudo-label quality for the car class is given in Table 3.1. All models
were trained on nuScenes as the source domain and evaluated on Waymo as the target
domain while only using unlabeled target domain data as described in Chapter 2 of this
thesis.
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Model
Overall 0-30 m 30-50 m 50+ m

Level 1 % Gain Level 1 % Gain Level 1 % Gain Level 1 % Gain
Sparse 28.9 - 59.9 - 13.8 - 2.2 -
FT with
SOAP

43.4 +55.8 62.8 +15.4 38.6 +70.5 20.1 +71.3

S2S
Teacher

44.0 +58.1 69.6 +51.6 37.0 +66.0 16.9 +58.6

Oracle 54.9 - 78.7 - 49.0 - 27.3 -

Table 3.1: Pseudo-label quality for the car class for the 3 distance intervals by performing
prediction on PCL2 formatted point clouds. The source domain is nuScenes and the
target domain is Waymo. Evaluation is w.r.t. the Waymo validation set. The table gives
the performance on Level 1 objects, and the +/- sign indicates an increase/decrease in
performance relative to the sparse model. Bold indicates the best performing model.

The pseudo-label quality is increased in the short distance regime and in the overall
distance performance for Sparse2SOAP where the % Gain is observed to be 51.6% and
58.1%, respectively. However, the FT with SOAP model out performs Sparse2SOAP in
the moderate (30-50m) and far (50+m) distance regimes. This is most likely due to the
fact that the dense object point clouds in PCL2 are constructed using pseudo-labels, which
are more accurate in the short (0-30m) distance regime.

3.5 Domain Adaptation for 3D Object Detection

In Table 3.1 we observed an increase in pseudo-label quality for Sparse2SOAP. Analyzing
Table 3.2, we observe a consistent increase in domain adaptation performance in all distance
regimes for the car class. Table 3.2 shows an approx. 2%, 3%, and 1% increase for 0-30m,
50-80m, and 50+m regimes, respectively.

The DA results for all 6 classes is given Table 3.3 and Table 3.4. The average column
in both tables is the same and is the mAP (Mean Average Precision) across all 6 classes.
In general, the average performance for FT with SOAP is better than the Sparse2SOAP
model by a small margin (0.9%).

In Table 3.3 it is observed that the bus and truck classes see a degradation in per-
formance. It should be noted that all other models have poor performance on truck.
The difficulties in truck most likely stem from differences in the label definitions between
nuScenes and Waymo.
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Model
Overall 0-30 m 30-50 m 50+ m

Level 1 % Closed Level 1 % Closed Level 1 % Closed Level 1 % Closed
Sparse 33.2 - 63.3 - 19.6 - 3.6 -
FT with
SOAP

47.8 +41.4 74.3 +43.8 37.6 +40.1 15.4 +32.5

S2S
Distill

48.8 +44.2 75.0 +46.7 39.7 +44.6 16.2 +34.9

S2S 49.8 +47.3 76.2 +51.2 40.9 +47.5 16.9 +36.8
Oracle 68.3 - 88.5 - 64.6 - 39.7 -

Table 3.2: Domain adaptation results for Sparse2SOAP on the car class for the 3 distance
intervals. The source domain is nuScenes and the target domain is Waymo. Evaluation
is w.r.t. the Waymo validation set. The table gives the performance on Level 1 objects,
and the sign +/- indicates a increase/decrease in performance relative to the sparse model.
Bold indicates the best performing model.

The DA results for motorcycle, cyclist, and pedestrian are given in Table 3.4. It is
observed that motorcycle sees an increase in Waymo Level 1 performance and that the
domain gap is closed by nearly 30%. However, Sparse2SOAP does not perform nearly as
well on cyclist and pedestrian. The performance is better than the baseline but does not
surpass the FT with SOAP model performance. This is most likely due to the lack of
supervision from the teacher during training. Most of the cyclist and pedestrian instances
are dynamic and as described in Section 2.1.2 those region will not receive any guidance
from the teacher on how to map the sparse features to the dense features. However, since
there is a small domain gap between motorcycles, cyclists, and pedestrians, then these
results suggest that more supervision for cyclist and pedestrian may result in similar gains
to motorcycles.

3.6 Precision-Recall Curves

Figure 3.1 shows the precision-recall (PR) curves for the car class for the models analyzed
in this work. PR curves demonstrate the model’s performance as a function of the decision
thresholds. There are regions on the PR curve in which the FT with SOAP model out
performs the Sparse2SOAP model. To analyze if the Sparse2SOAP model is indeed more
optimal than FT with SOAP, the F1-score was calculated using Equation 3.3:
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Model
Average Car Truck Bus

Level 1 % Closed Level 1 % Closed Level 1 % Closed Level 1 % Closed
Sparse 15.5 - 33.2 - 4.0 - 10.8 -
FT with
SOAP

24.0 +20.8 47.8 +41.5 6.7 +8.9 24.6 +36.1

S2S
Distill

22.2 +16.5 48.8 +44.2 5.2 +3.9 16.2 +14.1

S2S 23.1 +18.7 49.8 +47.3 5.7 +5.5 18.4 +19.9
Oracle 68.3 - 88.5 - 64.6 - 39.7 -

Table 3.3: Domain adaptation results for Sparse2SOAP on the car, truck, and bus classes.
The source domain is nuScenes and the target domain is Waymo. Evaluation is w.r.t.
the Waymo validation set. The table gives the performance on Level 1 objects, and the
+/- sign indicates an increase/decrease in performance relative to the sparse model. The
average is calculated over car, truck, bus, motorcycle, cyclist, and pedestrian in Table 3.3
and 3.4. Bold indicates the best performing model.

Model
Average Motorcycle Cyclist Pedestrian

Level 1 % Closed Level 1 % Closed Level 1 % Closed Level 1 % Closed
Sparse 15.5 - 21.4 - 5.5 - 17.9 -
FT with
SOAP

24.0 +20.8 27.5 +19.3 13.0 +11.9 24.4 +13.6

S2S
Distill

22.2 +16.5 30.7 +29.5 9.8 +6.8 22.8 +10.3

S2S 23.1 +18.7 30.6 +29.2 11.2 +9.1 22.9 +10.5
Oracle 68.3 - 88.5 - 64.6 - 39.7 -

Table 3.4: Domain adaptation results for Sparse2SOAP on the motorcycle, cyclists, and
pedestrian classes. The source domain is nuScenes and the target domain is Waymo.
Evaluation is w.r.t. the Waymo validation set. The table gives the performance on Level
1 objects, and the +/- sign indicates an increase/decrease in performance relative to the
sparse model. The average is calculated over car, truck, bus, motorcycle, cyclist, and
pedestrian in Table 3.3 and 3.4. Bold indicates the best performing model.
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Figure 3.1: Precision-recall curves for the car class by models trained with nuScenes as the
source domain and evaluated with Waymo as the target domain.

F1 =
2 · p · r
p+ r

· 100 (3.3)

Determining the threshold that corresponds to the maximum in F1-score is the thresh-
old that gives the best trade-off between precision and recall. That threshold is plotted as
a single scatter point for each model in Figure 3.1 and we see that at the optimal threshold,
the Sparse2SOAP model outperforms SOAP and the baseline model in terms of precision
and recall.
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Chapter 4

Limitations, Future Work and
Conclusion

In Chapter 4 of this thesis, we first describe the limitations of the proposed Sparse2SOAP
method. Then, we discuss some possible future work regarding additional experiments
on other DA appropriate dataset and better techniques for object sampling. Lastly, we
conclude this thesis.

4.1 Limitations

Our Sparse2SOAP method has three fundamental limitations. The first two limitations
occur as a result of utilizing the SOAP method for generating pseudo-labels, while the third
is a more general limitation of DA. Firstly, as noted by Huang et al. [10] the construction
of the SA point clouds in the SOAP method requires that the LiDAR data be obtained in
a sequential fashion and that the corresponding ego pose information be available. This
requirement can be a limiting factor if it is desirable to follow this approach.

Secondly, the Sparse2SOAP teacher is based on the SOAP model, which is explicitly
trained to detect QS objects. Therefore, we apply a mask as detailed in Section 2.1.2 and
visualized in Figure 2.4 such that the Sparse2SOAP student is not penalized for the lack
of dense knowledge for dynamic objects. As a result, the Sparse2SOAP student receives
less supervision for these objects and correspondingly does not experience the same gain
in performance for classes with all or mostly dynamic objects compared to classes with
mostly QS objects.
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Model
0-30 m 30-50 m 50+ m

mAP % Gain mAP % Gain mAP % Gain
Baseline 70.6 - 52.3 - 32.6 -
SECOND 72.9 +2.3 55.3 +3.0 36.3 +3.7
Baseline 74.2 - 61.6 - 42.9 -
CenterPoint-
Pillars

77.9 +3.7 66.7 +5.1 49.4 +6.5

Baseline 80.8 - 64.2 - 45.4 -
CenterPoint-
Voxels

82.7 +1.9 67.6 +3.4 49.5 +4.1

Table 4.1: Performance gain over baseline approaches on Waymo validation set in different
ranges from Sparse2Dense [22]. Bold indicates the best performing model.

Type Distance (r) Percentage Number of Labels

Ground r < 30 33.97 279,093
Truth 30 ≤ r < 50 32.38 266,091
Labels r ≥ 50 33.65 276,471

S2S r < 30 42.63 263,169
Pseudo 30 ≤ r < 50 33.93 209,469
Labels r ≥ 50 23.44 144,665

Table 4.2: The percentage and number of labels in the three ranges analyzed for the ground
truth and pseudo-labels.

The third limitation is observed when comparing the Sparse2SOAP results in Table
3.2 to the Sparse2Dense results in Table 4.1. The authors of Sparse2Dense observe a
performance gain in all three distance intervals, but measure the greatest gain over baseline
for far range objects. Thus, the Sparse2Dense method is shown to be effective at densifying
features for difficult far range objects. However, we do not see the trend in Table 3.2. This
can be explained by analyzing the number and percentage of labels in the three distance
intervals for ground truth labels and pseudo-labels as shown in Table 4.2. The ground
truth labels are well distributed over the three distance intervals, whereas the pseudo-
labels are biased towards the closer distance interval. This is expected as the pseudo-labels
are obtained by a DNN model, which will be more likely to produce high confidence
pseudo-labels for higher point density objects in the close range regime. Therefore, this is
a limitation that arises in the DA task that is not encountered when using ground truth
labels.
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Figure 4.1: CDF/histogram plots for the number of predicted bounding boxes (pseudo-
labels) as a function of their confidence scores.

4.2 Future Work

In this work, we only investigated the scenario for when nuScenes is the source domain
and Waymo is the target domain. In this scenario, we found that the Sparse2SOAP model
is effective for the task of DA and can surpass the performance of other similar models
in terms of %Gain or %Closed. Thus, we intend to further investigate the ability of
Sparse2SOAP and analyze the scenario when Waymo is the source domain and nuScenes
is the target domain. We also hope to incorporate other datasets that are appropriate for
domain adaptation.

It was noted previously in this work that we follow Caine et al. [3] and only use
pseudo-labels with a confidence score greater than 0.5. These pseudo-labels are used to
extract object point clouds for sampling additional instances into each training frame.
This is a common practice as many frames will only have a few object examples of each
object type and sampling more examples can help the model to converge much faster.
Furthermore, object augmentations are applied to increase the diversity of the objects seen
by the model. The Cumulative Distribution Function (CDF)/histogram of the number of
predicted bounding boxes as a function of the confidence scores is shown in Figure 4.1. This
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figure shows that the vast majority of the predicted bounding boxes have low confidence
scores. Also, it is feasible that a lot of the pseudo-labels used that are close to the threshold
may be noisy or low quality. Therefore, there is a trade-off between the quality and the
diversity of the objects used. A high threshold applied to the predicted pseudo-labels will
yield a small number of high quality objects with little diversity, whereas a low threshold
will yield a diverse set of objects but many will be poor in quality. Most work regarding
object point clouds only focus on upsampling object points [33] or use CAD model to create
sparse object point clouds to be sampled into scene point clouds [8]. We think there is
more opportunity to intelligently inject object point clouds to increase data diversity. This
would allow one to use a high threshold for the pseudo-labels but maintain the diversity
of the samples.

4.3 Conclusion

In this work, we present the work Sparse2SOAP that extends Sparse2Dense, an in-domain
3d object detector framework, and shows that it can be adapted for DA. To achieve this, we
employ SOAP for generating high quality pseudo-labels. Then, we develop a data pipeline
for constructing target domain versions of the point clouds proposed by Sparse2Dense and
modify the Sparse2Dense knowledge distillation techniques to account for differences in
QS and dynamic objects. We use two large-scale well known autonomous driving datasets
in our evaluation and showed the effectiveness of the proposed method when nuScenes is
the source domain and Waymo is the target domain. The proposed method is shown to
perform well on objects with well-defined labels and many QS object instances. However,
objects with poorly defined labels (trucks) and objects that consist of mostly dynamic
instances (cyclists and pedestrians) do not experience the same increase in performance.
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