
Upsampling Indoor LiDAR Point
Clouds for Object Detection

by

Yikai Yao

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Science
in

Geography

Waterloo, Ontario, Canada, 2023

© Yikai Yao 2023

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

As an emerging technology, LiDAR point cloud has been applied in a wide range of fields.
With the ability to recognize and localize the objects in a scene, point cloud object detection
has numerous applications. However, low-density LiDAR point clouds would degrade the
object detection results. Complete, dense, clean, and uniform LiDAR point clouds can
only be captured by high-precision sensors which need high budgets. Therefore, point
cloud upsampling is necessary to derive a dense, complete, and uniform point cloud from
a noisy, sparse, and non-uniform one.

To address this challenge, we proposed a methodology of utilizing point cloud upsam-
pling methods to enhance the object detection results of low-density point clouds in this
thesis. Specifically, we conduct three point cloud upsampling methods, including PU-Net,
3PU, and PU-GCN, on two datasets, which are a dataset we collected on our own in an
underground parking lot located at Highland Square, Kitchener, Canada, and SUN-RGBD.
We adopt VoteNet as the object detection network. We subsampled the datasets to get
a low-density dataset to stimulate the point cloud captured by the low-budget sensors.
We evaluated the proposed methodology on two datasets, which are SUN RGB-D and
the collected underground parking lot dataset. PU-Net, 3PU, and PU-GCN increase the
mean Average Precision (under the threshold of 0.25) by 18.8%,18.0%, and 18.7% on the
underground parking lot dataset and 9.8%, 7.2%, and 9.7% on SUN RGB-D.

iii

Acknowledgements

First of all, I am deeply grateful to Prof. Dr. Jonathan Li from the Department of
Geography and Environmental Management, University of Waterloo for his direction as
my supervisor during my master’s study.

I would also like to express my sincere thanks to Dr. Linlin Xu from the Department of
System Design Engineering, University of Waterloo, and Prof. Michael A. Chapman from
the Department of Civil Engineering, Ryerson University for being thesis defense members.

In addition, I would like to extend my heartfelt appreciation to those who give me help
and support during my graduate study. I am thankful to Dr. Yiping Chen from the School
of Geospatial Engineering and Science, Sun Yat-sen University for her instruction and
guidance in making this thesis and exploring this field. I am thankful to Weikai Tan and
Dedong Zhang from the Department of System Design Engineering, University of Waterloo,
and Hongjie He from the Department of Geography and Environmental Management,
University of Waterloo for their help and advice in experiments and data capturing. I
am thankful to Sarah Fatholahi from the Department of Geography and Environmental
Management, University of Waterloo for her cooperation with me in a previous conference
paper during my graduate study. I am thankful to Jirui Hu and Jingtian Tan from the
Department of Geography and Environmental Management, University of Waterloo for
their equipment support for my presentation in thesis defense. And I am also thankful to
all the members of the Geospatial Intelligence and Mapping Lab for their support during
my graduate study.

At last, I would like to convey my gratitude to my parents, all my friends, and my
instructors. Without their guidance, company, and support, I could not have completed
my graduate study.

iv

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

List of Figures viii

List of Tables x

List of Abbreviations xi

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives of Thesis . 2

1.3 Structure of the Thesis . 2

2 Background and Related Work 4

2.1 Terminology Definition . 4

2.2 Point Cloud Upsampling Methods . 5

2.2.1 Non-Deep Learning-Based Methods 6

2.2.2 Deep learning-based methods . 13

v

2.3 Benchmark . 22

2.3.1 Datasets . 22

2.3.2 Evaluation Metrics . 24

2.4 Object Detection Method . 28

2.4.1 Grid and Voxel-based method . 28

2.4.2 Point-based method . 29

2.5 Chapter Summary . 31

3 Proposed Methodology 32

3.1 Workflow . 32

3.2 Dataset . 32

3.2.1 Dataset Collection and Specifications 34

3.2.2 Data Preprocessing . 35

3.3 Point Cloud Upsampling . 38

3.4 Point Cloud Object Detection . 39

3.4.1 Object Detection Method . 39

3.4.2 Model Training . 39

3.4.3 Evaluation Metric . 40

3.5 Chapter Summary . 40

4 Results and Discussion 42

4.1 Experimental Setups . 42

4.2 Experimental Results . 43

4.2.1 Quantitative Results of the Underground Parking Lot Dataset . . . 43

4.2.2 Qualitative Results of the Underground Parking Lot Dataset 44

4.2.3 Quantitative Results of SUN RGB-D Dataset 52

4.3 Chapter Summary . 55

vi

5 Conclusions and Recommendations 56

5.1 Conclusions . 56

5.2 Contributions . 56

5.3 Recommendations for Future Research . 57

References 59

vii

List of Figures

Figure 2.1 Schematic diagram of Moving Least Square projection (Source: Alexa
et al., 2003) . 6

Figure 2.2 General structure of deep learning-based point cloud upsampling
methods (Source: Zhang et al., 2022) . 13

Figure 2.3 Patch extraction of (a) Pu-Net and (b) PU-GAN. (Source: Yu et al.,
2018, Li et al., 2019b) . 14

Figure 2.4 Architecture of PU-Net (Source: Yu et al., 2018) 15

Figure 2.5 Architecture of 3PU (Source: Wang et al., 2019) 16

Figure 2.6 Architecture of the upsampling network unit (Source: Wang et al.,
2019) . 16

Figure 2.7 Architecture of the feature extraction unit (Source: Wang et al., 2019) 17

Figure 2.8 Architecture of the generator of PU-GAN (Source: Li et al., 2019b) 18

Figure 2.9 Architecture of up-down-up feature expasion unit (Source: Li et al.,
2019b) . 19

Figure 2.10 Architecture of the discriminator of PU-GAN. (Source: Li et al.,
2019b) . 20

Figure 2.11 Architecture of PU-GCN (Source: Qian et al., 2021) 20

Figure 2.12 Architecture of (a) Inception DenseGCN and (b) nodeshuffle (Source:
Qian et al., 2021) . 22

Figure 2.13 Architecture of VoteNet (Source: Ding et al., 2019) 30

Figure 3.1 Workflow of the proposed method 33

viii

Figure 3.2 Mobile Laser Scanning system (left) and the Livox Horizon laser
scanner(right) . 35

Figure 3.3 Bird’s eye view of the collected dataset 36

Figure 4.1 Relationship between subsampling ratio and AP 43

Figure 4.2 Reference point cloud and ground truth bounding boxes 45

Figure 4.3 Object Detection Result of low-density point cloud 46

Figure 4.4 Object Detection Result of upsampled point cloud by PU-Net . . . 47

Figure 4.5 Object Detection Result of upsampled point cloud by 3PU 48

Figure 4.6 Object Detection Result of upsampled point cloud by PU-GCN . . 49

Figure 4.7 From top to down is: (a) original point cloud and ground truth
bounding box, (b) low-density point cloud and the object detection result,
and (c)-(e) upsampled point cloud by PU-Net, 3PU and PU-GCN and cor-
responding Object Detection Results . 51

ix

List of Tables

Table 2.1 Basic information of the public datasets adopted by upsampling research 23

Table 3.1 Specifications of SUN RGB-D . 34

Table 3.2 Specifications of the underground parking lot data 37

Table 4.1 AP(%) and AR(%) for the object detection result of low-density and
upsampled data . 44

Table 4.2 AP@0.25(%)) of the object detection result on SUN RGB-D 53

Table 4.3 AP@0.5(%) of the object detection result on SUN RGB-D 53

Table 4.4 AR@0.25(%) of the object detection result on SUN RGB-D 54

Table 4.5 AR@0.5(%) of the object detection result on SUN RGB-D 54

x

List of Abbreviations

AP Average Precision 40
AR Average Recall 40
AUC Area Under Curve 40

CAD Computer Aided Design 22
CD Chamfer Distance 25

EAR Edge-Aware Resampling 9
EMD Earth Mover’s Distance 26

FN False Negative 40
FP False Positive 40

GAN Generative Adversarial Networks 18
GCN Graph Convolutional Network 20
GNSS Global Navigation Satellite System 1
GTV Graph Total Variation 11

HD Hausdorff Distance 25

IoU Intersection over Union 40

KNN K-Nearest-Neighborhood 12

LiDAR Light Detection and Ranging 1
LOP Locally Optimal Projection 8

xi

MLP Multi-Layer Perceptions 17
MLS Moving Least Square 6

NUC Normalized Uniformity Coefficient 26

TP True Positive 40

xii

Chapter 1

Introduction

1.1 Motivation

3D geospatial information is essential in recognizing objects and phenomena in the real
world. Accurate 3D spatial information has important applications in a large range of fields,
including cultural heritage documentation(Soler et al., 2017), mobile robotics (Guerry et
al., 2017), autonomous driving (Pham et al., 2020), and navigation (McCrae et al., 2009).
As a traditional way to obtain 3D spatial information, Global Navigation Satellite System
(GNSS) and other satellite-based positioning technologies lose precision or become invalid
inside buildings, underground, and in other locations where there is a large number of
obstacles to their transmission signal (Chelly & Samama, 2009). Therefore, Light Detection
and Ranging (LiDAR), a new technology that can obtain 3D spatial information in the
form of point clouds from the GNSS-denied environment, has been attached more attention
from scholars, investigators, and those who may concern (Chen et al., 2022).

As a datatype that contains rich 3D information, the 3D LiDAR point cloud has a
variety of applications in real-time intelligent systems such as autonomous driving and
augmented reality (Hu et al., 2020). Point cloud object detection is a significant application
of LiDAR point cloud. The object detection method would identify objects within a point
cloud and their corresponding classes (Mao et al., 2022). With the ability to intelligently
predict the positions, size, and categories of critical objects around autonomous vehicles
and intelligent robots, point cloud object detection is essential to autonomous driving and
intelligent robotics.

However, in some circumstances, data quality becomes an important challenge that af-
fects the performance of point cloud object detection methods. Researchers have indicated

1

that noisy, sparse, and non-uniform data with low quality can result in a bad perfor-
mance in many point cloud-based subjects including object detection (Choi et al., 2021).
However, low-budget LiDAR sensors usually produce noisy, sparse, and non-uniform point
cloud data, and the cost of high-precision devices that produce high quality is also high.

In order to solve the data quality challenge resulting from device limitation, point cloud
upsampling aims at generating a dense, complete, and uniform point cloud from the sparse,
noisy, and non-uniform input (Zhang et al., 2022). In recent years, different deep learning-
based and non-deep learning-based point cloud upsampling methods have been proposed.
However, they are tested on a limited range of benchmarks. Otherwise, the effectiveness
of these methods in other practical applications is rarely evaluated.

Considering the need of enhancing the object detection results on low-density point
clouds and the lack of exploration of point cloud upsampling on practical applications,
this thesis utilizes point cloud upsampling methods to enhance the performance of object
detection on low-density point clouds.

1.2 Objectives of Thesis

The thesis aims to address the challenges of the degradation of object detection results
stemming from low point cloud density by point cloud upsampling methods. Specifically,
these objectives can be summarized as follows:

1. To enhance the object detection results of low-density point clouds via point cloud
upsampling.

2. To conduct an accuracy assessment to evaluate the effectiveness of point cloud
upsampling in enhancing object detection results of the low-density point cloud and to
compare the performance of different point cloud upsampling methods.

3. To collect and create an indoor point cloud dataset of an underground parking lot
located at Highland Square, Kitchener, Canada for object detection tasks.

1.3 Structure of the Thesis

The thesis consists of five chapters.

Chapter 1 illustrates the thesis motivation, objectives, and structure.

2

Chapter 2 illustrates the related works of this thesis. It first provides the definition of
related terminology, then reviews the related point cloud object detection methods, point
cloud upsampling methods, and data benchmarks for point cloud upsampling.

Chapter 3 describes the proposed methodology of this thesis, including workflow, dataset,
point cloud object detection methods, point cloud upsampling methods, and evaluation
metrics.

Chapter 4 shows the results of the experiments, including experimental setups, results
on the underground parking lot dataset, results on the SUN RGB-D dataset, and some
discussion of the results.

Chapter 5 concludes the contribution of the thesis, discusses its limitations, and plans
for future work.

3

Chapter 2

Background and Related Work

The content of this chapter is a literature review of the related methods and benchmarks.
Section 2.1 defines the terms that would be used in this thesis. Section 2.2 shows the
related point cloud upsampling methods, including deep learning-based methods, non-
deep learning-based methods, and benchmarks used in these methods. Section 2.3 talks
about the benchmarks adopted in the related point cloud upsampling methods. Section
2.4 discusses related point cloud object detection methods. And section 2.5 summarizes
this chapter.

2.1 Terminology Definition

LiDAR: LiDAR (Light Detection and Ranging) is a range measurement method. LiDAR
measures distance by first targeting an object with a pulsed laser and then recording
the time that the reflectance returns to the receiver (Williams Jr, 2017). 3D LiDAR
sensors have strong environmental adaptability as they not only allow detection of all
kinds of obstacles (Moosmann et al., 2009) but are also robust to a large range of conditions
including day or night, with or without glare and shadows (Wu et al., 2018).

Point Cloud: The point cloud is a set of discrete data points in space with their cartesian
coordinates recorded, and sometimes with some other attributes such as RGB or reflectance
rate (Griffiths & Boehm, 2019). The LiDAR point cloud, which refers to the point cloud
captured by LiDAR sensors, is an important type of point cloud.

Point Cloud Density: Point cloud density is used to describe the intensity of the dense
degree of the point cloud. There are many different definitions of point cloud density. As

4

in this thesis, points within point clouds are distributed on the surface of the object we
choose the definition used in CloudCompare (GPL software, 2022), which is the number
of points per unit area on the surface.

Point Cloud Upsampling: Point cloud upsampling refers to the technique that generates
high-density point clouds with uniform point distribution from the sparse input without
changing the shape of the objects (Yu et al., 2018).

Point Cloud Subsampling: Point cloud subsampling refers to getting a portion of the
point cloud data to reduce its size as well as preserve the original data structure (Lang
et al., 2020).

Point Cloud Object Detection: Point cloud object detection refers to the technique
that recognizes the sizes, categories, and positions of the object inside a 3D space. Given
an input point cloud scene, point cloud object detection would output 3D bounding boxes
of the predicted objects within, their predicted classes, and a confidential score of the
prediction (Mao et al., 2022).

Low-density Point Cloud: Low-density point cloud refers to the point cloud dataset
that the point distribution is sparse, which would decrease the performance of some of the
applications such as object detection. The threshold of the low-density point cloud varies
with different scenarios. A point cloud density of 1000 pts/m2 is used in the evaluation of
some point cloud object detection methods (Ding et al., 2019). Therefore, in this thesis,
the point cloud with a density lower than this value is regarded as a low-density point
cloud.

Deep learning: Deep learning is a special kind of machine learning method. It utilizes
multiple processing layers to learn multiple levels of data representations (Goodfellow et
al., 2016). In recent years, deep learning has made a significant improvement in numerous
fields of artificial intelligence, which includes speech recognition, semantic segmentation,
and big data analysis.

2.2 Point Cloud Upsampling Methods

Point cloud upsampling methods can be divided into two types: non-deep learning-based
methods and deep learning-based methods. Non-deep learning-based methods are proposed
in the early years before the development of deep learning and deep learning-based methods
utilized deep learning networks.

5

2.2.1 Non-Deep Learning-Based Methods

2.2.1.1 Moving Least Square-Based Surface Interpolation

Early work by Alexa et al. (2003) proposed the first point cloud upsampling algorithm by
inserting points into the original point cloud. This method first conducts the Moving Least
Square (MLS) projection to generate a smooth manifold surface as the approximation of
the original point cloud called the MLS surface. Then it interpolates points on that surface
to increase the density of the point cloud.

MLS Surface Approximation: MLS reconstructs a continuous surface from a set of
dispersed points at a local region that minimized the sum of weighted least squares measure
biased of these points. In the situation of generating the local approximation surface near
point r, as is shown in Figure 2.1 below, MLS first finds a local reference domain near the
point and then conducts local mapping.

Figure 2.1 Schematic diagram of Moving Least Square projection
(Source: Alexa et al., 2003)

The reference domain is a local plane for reference. It can be described as the following
equation:

H =
{
x | ⟨n, x⟩ −D = 0, x ∈ R3

}
, n ∈ R3, ∥n∥ = 1 (2.1)

6

where n is the normal vector of the plane. And H needs to minimize a weighted sum of
squared projection distances of the points pi to the plane, which can be described as :

N∑
i=1

(⟨n, pi⟩ −D)2 θ (∥pi − q∥) (2.2)

where ∥∥ stands for L2 normalization, and θ is a smooth, positive, monotone decreasing
function.

Based on the reference domain, a polynomial approximation g is computed to map the
local point to the approximation surface. This polynomial approximation minimized the
weighted least squares error:

N∑
i=1

(g (xi, yi)− fi)
2 θ (∥pi − q∥) (2.3)

where (xi, yi) is the representation of the projection of pi on H in a local coordinate system,
and fi = n(pi − q), which is the projection distance from pi to H.

Notice that the function θ gives less weight to the point which is further from r in
two steps, so these two steps can only consider local points, which saves computational
resources when the number of points is big.

Points interpolation: After generating the MLS surface for approximation, points
are inserted into the surface for increasing the density. The principle of inserting points is
computing the Voronoi diagrams on the MLS surface and adding points at the vertices of
the diagrams. However, generating the Voronoi diagrams on the whole surface is computa-
tionally excessive, and local approximations are used. In each iteration, one existing point
is randomly selected, and a local MLS approximation surface is generated. The nearby
points are projected to the surface and a Voronoi diagram on this surface is computed.
The vertex which is the furthest to its nearest point is added as the new point. The process
keeps iterating until the furthest distance from the vertices to the point is smaller than a
threshold.

This method is based on the approximation surface of the point cloud, so it does not
work well to point clouds that have sharp structures. And it cannot control the upsampling
ratio.

7

2.2.1.2 Locally Optimal Projection operator

Lipman et al. (2007) introduced a Locally Optimal Projection (LOP) operator for point
cloud surface approximation and applied it to point cloud upsampling. LOP projects an
arbitrary number of points to a given point cloud to make it fit the distribution of that point
cloud. Point cloud upsampling can be done with multiple iterations of this distribution.
Given an initial point cloud P and a projected point cloud Q is projected such that it
minimized the sum of the weighted distance to points in P, with respect to radial weights
centered at Q. And points in Q should have a uniform distribution, and the point inside
should not have a too short distance from each other. Q should follow the equation below:

Q = argminX={xi}i∈I
{E1(X,P,C) + E2(X,C)} (2.4)

E1(X,P,C) =
∑
i∈I

∑
j∈J

∥xi − pj∥ θ (∥ci − pj∥) (2.5)

E2(X,C) =
∑
i′∈I

λi′
∑

i∈I\{i′}

η (∥xi′ − ci∥) θ (∥ci′ − ci∥) (2.6)

where C is the original point cloud of Q before projection, θ, and η are two fast-decreasing
smooth weight functions and lambda are balancing terms. The term E1 leads the projection
points moving toward the local distribution center, and the term E2 limits the distance
between the point of Q and keeps its distribution uniform.

LOP is a parameterization-free method and it does not rely on local normal estimating,
local plane fitting, and other forms of local parametric representation. Therefore, it can deal
with data and shape that have an ambiguous orientation or complex structures. However,
LOP cannot produce a uniformly distributed point cloud on some occasions when the
given point cloud is highly non-uniform, and Huang et al. (2009) proposed the weighted
locally optimal projection (WLOP) to improve LOP using a weighting option for noise
and outlier removal, which could produce more uniformly distributed data for better shape
reconstruction.

Preiner et al. (2014) applied the WLOP operator to a continuous representation of a
point set and proposed a novel surface reconstruction technique called Continuous LOP
(CLOP). CLOP describes the point cloud’s density in a geometry-preserving manner by
a Gaussian mixture model, which makes it more compact for representation. CLOP runs
several times faster than WLOP. And it also provides better sampling regularity with no
constrain on the number of sampling points, which makes it more capable of upsampling.

8

2.2.1.3 Edge-Aware Resampling

As previous works all assumed that point cloud surfaces are smooth and thus do not
perform well in processing sharp structures, Huang et al. (2013) proposed an edge-aware
point cloud resampling method called Edge-Aware Resampling (EAR) which is able to
process noisy and outlier-ridden point clouds in an edge-aware manner. EAR can be
applied in upsampling, and is capable of producing point sets with normal that are free
from noise and also preserve sharp features.

EAR is conducted by first resampling the points away from the edges and calculating
normals, and progressively inserting points to approach the edge singularities. Specifically,
EAR can be divided into two steps: Resampling away from edges and edge-preserving
upsampling.

Resampling away from edges: In this step, given an unorganized and noisy point
set a resampled point set associated with normals that can better represent the underlying
smooth surface way from the edges is output. To create an initial input, the normals
of points in the point cloud are estimated by traditional normal estimating methods like
LOP. These normals are not accurate when the underlying surface is not smooth, so the
following steps are needed. Taking the initial input, an iteration between separating and
smoothing normals and resampling the points away from the edges is conducted.

In the separating and smoothing normals process, normals are estimated based on an
anisotropic neighborhood. The normals are calculated based on the goal of minimizing the
sum of differences between the assigned normals and other normals in their neighborhood.
Specifically, given a point si = (pi,ni) from the point cloud where pi stands for the coor-
dinates and ni stands for the normal, the normal difference between this point and other
points in its neighborhood is measured by the equation below:

f (pi,ni) =
∑

si′∈Nsi

∥ni − ni′∥2 θ (∥pi − pi′∥)ψ (ni,ni′) (2.7)

where ∥∥ stands for the l2 normalization and Nsi = {si′ | si′ ∈ S ∧ ∥pi − pi′∥ < σp} defines
the neighborhood of si with the given neighborhood size σp .θ and ψ are two weighted
functions, which follow the equations:

θ(r) = e−r2/σ2
p (2.8)

ψ (ni,ni′) = e
−
(

1−n⊤
i ni′

1−cos(σn)

)2

(2.9)

9

where σn is the angle parameter that scales the similarity of normals in the neighborhood
and is set to 15◦ by default. The goal of this process is to get an oriented point set
S = {si}i∈I = {(pi,ni)}i∈I ⊂ R6 with normal which minimized the sum of the normal
difference between points and their neighborhood points, which can be described as the
equation below:

S = argmin{si}i∈I={(pi,ni)}i∈I

∑
i∈I

f (pi,ni) (2.10)

To achieve this, the normal ni for each point si is iteratively updated as:∑
si′∈Nsi

θ (∥pi − pi′∥)ψ (ni,ni′)ni′∑
si′∈Nsi

θ (∥pi − pi′∥)ψ (ni,ni′)
→ ni (2.11)

To remove the noise and outlier points, the resampling process is conducted to resample
points away from the edges. In the resampling process, an altered anisotropic LOP operator
is used. This LOP is edge-aware and added a normal-dependent weight function.

Edge-preserving upsampling: To fill in the gap along edges which appears in the
last process, an edge-preserving upsampling is conducted to insert points in these gap
areas. There are three requirements for the insertion operations: (1) the inserted point
sk = (pk,nk) should lie on the underlying surface, (2) the normal nk should be vertical to
the surface at pk and (3) the distribution of the points in the local neighborhood should
be uniform. EAR designs a novel projector that divides the insertion operation into three
steps: (1) finding an insertion base location bk in a spare area, (2) optimizing the projection
distance dk to the underlying surface and (3)determining the normal direction nk and
project points from the base location to the underlying surface. The final location pk can
be described as the following:

pk = bk + dknk (2.12)

To make the final distribution uniform, the base location should be selected in the sparse
area of the local neighborhood. Therefore, given an existing point si and its neighborhood
Nsi where the base would be located, the location of the base b should follow:

C(b) = min
si′∈Nsi

D (b, si′) (2.13)

It has the advantage that the same location would not be secondly chosen as the base. To
decrease computation, an approximation base location is calculated by limiting the candi-
date locations on the midpoint between si and its neighbor points in Nsi . The following

10

base should be placed in the low-density area or along sharp boundaries. So, a priority
score is defined to decide which neighborhood the next point should be inserted to. For a
given point si, its priority follows:

P (si) = max
si′∈Nsi

(
2− n⊤

i ni′
)ρ
C

(
pi + pi′

2

)
(2.14)

where ρ is an edge-sensitivity parameter and is set to 5 by default.

The projection distance is determined by minimizing the sum of the weighted total
projection distance between p and the other points in the neighborhood, which follows:∑

si∈Nbk

(
n⊤ (p− pi)

)2
θ (∥p− pi∥)ψ (n,ni) (2.15)

Therefore, the distance dk is obtained as:

dk (bk,n) =

∑
si∈Nbk

(
n⊤ (bk − pi)

)
θ (∥bk − pi∥)ψ (n,ni)∑

si∈Nbk
θ (∥bk − pi∥)ψ (n,ni)

(2.16)

Normal is determined by two criteria: the projection distance should be small, and the
normal of the inserted point should fit the normal distribution of the local neighborhood
of the base point. Therefore, it is first decided whose neighborhood of the two neighbors
of the base point to use based on the projection distance:

l = argmin
l∈{i,j}

dk (bk,nl) (2.17)

Then, nk is computed by minimizing f(bk,n), and fixing n = nl when calculating the
directional weight ψ(n, .).

As bk, dk, and nk are calculated, the inserting point can be determined by Eq.(2.12).

2.2.1.4 Graph Total Variation Based Method

Leveraging on the progress in graph signal processing, Dinesh et al. (2019) proposed a
local 3D point cloud upsampling algorithm via Graph Total Variation (GTV). This method
achieves upsampling by inserting points in the origin point cloud and then adjusting the
points’ position to promote piecewise smooth surfaces, which means the surface normals
between neighboring points differ minimally over the 2D surface except at the boundaries.

11

The input of this method should be a low-density point cloud that the normal is esti-
mated in prior. First, this method constructs a triangular mesh of the origin point cloud
via Delaunay triangulation and initializes the new points at the centroids of the local tri-
angles. To make the underlying surface piecewise smooth, the inserted points should be
fine-tuned, and the GTV is defined for judging. A K-Nearest-Neighborhood (KNN) graph
G = (V , E) is constructed to connect points in the point cloud. The nodes in V are points
in the point cloud, and the edges in E describe the connection among points. And a weight
function wi,j ∈ R+ is designed to describe the similarity between nodes, which follows:

wi,j = exp

{
−
∥pi − pj∥22

σ2
p

}
cos2 θi,j (2.18)

where pi and pj are the positions of points i and j, θi,j are the angle between the surface
normal of i and j, and σp is a parameter. A higher value of wi,j means that the position
of points i and j are close, and their normal are similar. Therefore, GTV is defined as
follows:

∥n∥GTV =
∑
i,j∈E

wi,j ∥ni − nj∥1 (2.19)

And the point-adjusting function can be formulated to the minimization of GTV value.

As the normal of points cannot be described as a linear function of its coordinate and
its neighbors, the point cloud is separated into two disjoint parts (say green and yellow),
and when adjusting the point in the yellow part, only neighboring points in the green part
are employed as reference. Therefore, the normal ni for a point i in the yellow part can be
written as:

ni = Aipi + bi (2.20)

where Ai ∈ R3×3 and bi ∈ R3 can be computed by the neighbors of i in the green part. For
each part, a new KNN graph G1 = (V1, E1) is constructed that only connects neighboring
points in the opposite part. Therefore, based on Eq.(2.20), the difference between normal
in two connected points in G∞, donate by m, can be defined as:

m = Bp+ v (2.21)

And the object of minimizing GTV can be written as follows:

S = argmin{si=(pi,ni)}∈S

∑
i,j

wi,j ∥mi,j∥1 (2.22)

12

While subject to linear constraints in Eq.(2.21). Therefore, the optimization framework
can start with solving Eq.(2.22) for the yellow part while fixing the green parts. Then,
construct another k-NN for the green part and solve Eq.(2.22) with the newly solved yellow
part. This alternate optimization is continuously conducted between these two parts until
convergence.

In general, non-deep learning-based methods can achieve the upsampling task to some
extent. However, they have many limitations. Some of these methods rely on priors, such
as normal estimation. And some also have an assumption that the surface is smooth, which
is not a common case in practice. And most of these methods are not data-driven and
cannot precisely control the density after upsampling.

2.2.2 Deep learning-based methods

As point cloud is a format that does not have specific spatial order and regular grid struc-
ture, the early-stage research converted point cloud into other representation structures
including 3D volumetric grids and geometric graphs, which increase unnecessary calcu-
lation and redundancy. In recent years, however, some networks have been proposed to
directly process point clouds, including PointNet (Qi et al., 2017a), PointNet++ (Qi et al.,
2017b), and DGCNN (Phan et al., 2018). Therefore, point cloud upsampling with deep
learning has become a popular topic and many deep learning-based point cloud upsampling
methods have been proposed.

Most of the deep leaning-based point cloud upsampling pipelines consist of three com-
ponents: the feature extraction component, the upsampling component, and the point set
generation component, which is shown in Figure 2.2 below.

Figure 2.2 General structure of deep learning-based point cloud upsampling methods
(Source: Zhang et al., 2022)

As the first component after an N × 3 point cloud is input, the feature extraction
component would extract an N × C point cloud feature from the input. Here N is the

13

number of points in the point cloud and C is the dimension of the feature. Then, the
upsampling component would expand the point feature to N×rC ′, and r is the upsampling
ratio. Finally, the point set generation component would reconstruct the point feature to
point clouds with 3D coordinates. The density would increase to r times of the origin.
Among all these three components, the upsampling component is the one that has the
largest influence on the upsampling performance.

Before the main structure of most of the deeplearning-basedd point cloud upsampling
methods, patch extraction is conducted. The point clouds generated from the complete
object are different in size and point number, which can also be too large. So, Patch
extraction aims at avoiding a too-large input size for computation saving and keeping the
size of input patches consistent. The deep learning-based point cloud upsampling methods
have similar patch extraction processes, and some of them are shown in Figure 2.3 below.

Figure 2.3 Patch extraction of (a) Pu-Net and (b) PU-GAN.
(Source: Yu et al., 2018, Li et al., 2019b)

On the surface of the points cloud of these objects, a certain number of points are
randomly selected. For each of the selected points, the nearby points within a certain
geodesic distance d are selected to grow surface patches. Then these patches are sampled
with Poisson disk sampling and only a certain number of points are reserved to generate
the final patch to be input to the upsampling networks. To preserve features of different
sizes and densities, the geodesic distance d is set with varying sizes.

14

2.2.2.1 PU-Net

Yu et al. (2018) proposed represented Point Cloud Upsampling Network (PU-Net) to gen-
erate a denser and uniform point cloud from the low-density input. The architecture of
PU-Net is shown in Figure 2.4 below.

Figure 2.4 Architecture of PU-Net
(Source: Yu et al., 2018)

Like most of the deep learning-based point cloud upsampling methods, the architecture
of PU-Net consists of three components: the feature extraction component, the upsampling
component, and the point set generation component. In its feature extraction component,
PU-Net adopts the hierarchical feature learning mechanism and Multi-level feature aggre-
gation mechanism proposed by PointNet++. To extract both local and global features,
PU-Net used hierarchical feature learning to capture features under different scales. Then,
these features are concatenated together as embedded point features by Multi-level feature
aggregation. In its Upsampling component, PU-Net duplicates the embedded feature r
times before they are put into different convolutional layers with the same sizes. Then the
results are concatenated together and reshaped. Finally, in its Point set Generation com-
ponent, features are reconstructed to 3D coordinates through a series of fully connected
layers.

PU-Net is the first deep learning-based point cloud upsampling model, and it overcomes
many limitations of the non-deep learning-based methods including the reliance on prior
and the assumption of the smooth surface. However, it also has some limitations as it
cannot fill the holes and it would miss part or meaningful details when processing tiny

15

structures. And its upsamling component structure would make the generated point cloud
clustered around the original point position.

2.2.2.2 3PU

As PU-Net fixes the level of detail included in the input patches, it ignored both high-level
and low-level geometric structures. To solve this limitation, Wang et al. (2019) proposed a
patch-based progressive 3D point cloud upsampling network called 3PU. 3PU proposed a
multi-step upsampling method, which separates the whole upsampling process into a series
of sub-steps. The architecture of 3PU, which is shown in Figure 2.5 below, consists of
several Upsampling network units and each expands the feature size two times. According
to the detailed structure shown in Figure 2.6, each of the upsampling network units contains
a feature extraction component and an upsampling component. These units with the same
structure are employed to different levels of detail.

Figure 2.5 Architecture of 3PU
(Source: Wang et al., 2019)

Figure 2.6 Architecture of the upsampling network unit
(Source: Wang et al., 2019)

16

The feature extraction component would extract an N*C feature from an N × d (d is
the dimension) point set which is the origin input point cloud or the output of the previous
upsampling network unit. As shown in Figure 2.7, each feature extraction component also
contains several dense blocks. Each dense block would first compress the input, which could
be a point set or the output feature from the last dense block to a fixed number of features.
Then features are grouped by feature-based KNN, passed through a series of densely con-
nected Multi-Layer Perceptions (MLP), and finally max-pooled to get order-invariant. The
dense connection means concatenating feature output from two different layers together
to form a new feature. The dense connection reuses the information, which increases the
reconstruction accuracy as well as reduces the number of parameters in the model. 3PU
also introduces the dense connection between dense blocks and features produced by dense
blocks are fed into the following blocks.

Figure 2.7 Architecture of the feature extraction unit
(Source: Wang et al., 2019)

The Upsamling component, which is specifically called the feature expansion unit in
3PU, would expand the feature with the size N × C to coordinate with size 2N*d. In
the feature expansion unit, 3PU added position variations to features. Features are dupli-
cated 2 times, and each of them is assigned a 1D code with the value -1 or 1 before they
were concatenated together to form a feature with the size 2N × (C + 1). And a set of
MLPs compress the feature to the coordinate size 2N × d as a simple point set generation
component.

To enhance the communication between units, 3PU also introduces inter-level skip-
connections. Features extracted from the previous level are passed to the current level and
interpolated to the feature generated there.

3PU superiors the previous methods in point cloud upsampling. However, its multi-step
structure makes it computationally expensive.

17

2.2.2.3 PU-GAN

Li et al. (2019b) proposed a point cloud upsampling adversarial network called PU-GAN.
Like other Generative Adversarial Networks (GAN), the structure of PU-GAN contains a
generator and a discriminator. The generator tries to generate ‘fake’ data, which is the
high-density point clouds in this case, and the discriminator tries to tell the real data to
force the generator to create data closer to the real ones.

As is shown in Figure 2.8, the structure of the PU-GAN generator also contains those
three components: the feature extraction component, the upsampling component, and the
point set generation component. PU-GAN adopted the feature extraction component from
3PU and its dense connection mechanism, where an N × d point cloud is input and an
N × C point-wise feature is output.

Figure 2.8 Architecture of the generator of PU-GAN
(Source: Li et al., 2019b)

In the Upsampling component, PU-GAN proposed an Up-down-up feature expansion
unit Figure 2.9. The input feature F is first processed by MLPs to form feature F1. Then
F1 is upsampled by an up-feature operator to form Fup′, then downsampled by a down-
feature operator to create F2. Then the difference between F1 and F2, donate as F∆, is
calculated. Then F∆ is upsampled again by another up-feature operator, and Fup′ is added
to it for self-correction to create the final Fup.

In the up-feature operator, the input feature with the size N × C is first duplicated r
times. And the 2D grid mechanism in FoldingNet(Yang et al., 2018) is used to generate a
unique 2D vector from each feature copy. These vectors are appended to the corresponding
copy to create a feature with size N × (rC +2). Then it is passed through a self-attention
unit and a set of MLPs to produce the output upsampled features with the size rN × C.

The self-attention unit is proposed for feature integration after concatenation. Three
matrices G, H, and K are extracted from the input feature by three separated MLPs.

18

Figure 2.9 Architecture of up-down-up feature expasion unit
(Source: Li et al., 2019b)

Then the attention weight W is calculated by the equation W = fsoftmax

(
GTH

)
means

the softmax function. Then, the feature weight is calculated by WTK, and the input
feature is added to it to create the output feature.

In the down-feature operator, the rN ×C input is first reshaped to an N × rC format
and then compressed by MLPs to create the origin shape N × C.

In the point set generation component, a set of MLPs is used to regress 3D coordinates
from Fup. As the points in the latent space are still close to the input, the farthest sampling
is adopted to keep the generated point not too close to each other. Therefore, the value of r
when creating Fup is a certain value (specifically, 2) larger than the point cloud upsampling
ratio.

The discriminator would generate a confidential value about whether its input is a real
point cloud or it is created by the generator. The architecture of the discriminator is shown
in Figure 2.10, which utilizes the basic network architecture in Point Completion Network
(PCN) (Yuan et al., 2018) to extract global features. Then, a self-attention unit is adopted
after the features are concatenated to enhance feature integration and improve extraction
capability. Then, features are input into a set of MLPs, a max pooling layer, and a set of
Fully Connected layers to generate a confidence value. If the confidence value is close to 1,
the discriminator predicts with much confidence that the input should come from the real
world and otherwise be generated by the generator.

PU-GAN makes great progress in a more uniform distribution of output point clouds,
as well as the reduction of tiny holes and detail structures. However, PU-GAN is specially
designed for filling tiny holes, so it does have a good performance to fill in large gaps and
holes in point clouds.

19

Figure 2.10 Architecture of the discriminator of PU-GAN.
(Source: Li et al., 2019b)

2.2.2.4 PU-GCN

Qian et al. (2021) proposed a novel Graph Convolutional Network (GCN) based point cloud
upsampling model called PU-GCN. As the author believes that the Upsampling compo-
nent of the previous methods either operates points only based on themselves and ignores
the relationship to their neighborhood or generates patches too similar to the input, PU-
GCN adopts GCN structure into point cloud upsampling to aggregate the neighborhood
information among points. Like most of the other deep learning-based point cloud upsam-
pling networks, PU-GCN the architecture of PU-GCN, which is shown in Figure 2.11, also
has those three components: an interception feature extractor for feature extraction, an
upsampler for upsampling, and a coordinate reconstructor for point cloud generation.

Figure 2.11 Architecture of PU-GCN
(Source: Qian et al., 2021)

In the feature extraction component, PU-GCN uses an inception feature extractor. A
KNN layer is used at the beginning of this component to build the neighborhood graph of
the input points. In this graph, the nodes represent the points, and the edges represent
the connections between each point and its K nearest neighbors. This neighborhood graph
is needed for the following GCN processing. Then a GCN layer is used to extract features
in latent space. Then the features are passed through several (two by default) Inception

20

DenseGCN blocks. The outputs are combined with residual connections before they are
input into the upsampler component. The default GCN layer is EdgeConv proposed in
DGCNN.

The Inception DenseGCN block is a new multi-scale point feature extractor proposed by
PU-GCN. A single-layer MLP, which is named a bottleneck layer by PU-GCN, is adopted
for feature compression to reduce the calculation. Then the features are input into two par-
allel DenseGCN blocks. As the architecture shown in Figure 2.12a, each of the DenseGCN
blocks consists of three dilated graph convolutions (Li et al., 2019a) layers, which are
densely connected. These DenseGCN blocks have different dilation rates, which ensure
the ability to gain different respective fields without increasing the number of nodes in
the neighborhood. The DenseGCN blocks also share the same graph structure to reduce
calculation. Then global contextual information is extracted from the compressed fea-
ture by a global pooling layer. These layers have different receptive fields, and therefore
multi-scale information is extracted. The output of these layers and the input features are
concatenated together to form the final output.

In the Upsampling component, PU-GCN proposed NodeShuffle, and its architecture
is shown in Figure 2.12b. A bottleneck layer first compressed the input size to N × C
to reduce the calculation. Then feature is expanded to a wider size of rN × C by the
NodeShuffle. In the NodeShuffle, a GCN layer is adopted to expand the input feature to
shape N × rC and rearranged the shape of the feature of rN × C. PU-GCN is the first
Method that introduces Graph Convolutions into Point Cloud Upsampling. The GCN
structure enables NodeShuffle to encode local neighborhood spatial information and learn
new points from latent space.

In the coordinate reconstruction component, PU-GCN adopted two sets of MLPs to
reconstruct point feature to 3D coordinates. The output is the desired denser point cloud
with the size of rN × 3.

PU-GCN is able to generate point clouds with intricate structures and details. PU-
GCN outperformed other state-of-the-art Point Cloud upsampling methods in many public
datasets. It can generate point clouds with fewer outliers. Furthermore, it requires fewer
parameters than other methods.

Although many of the deep learning-based point cloud upsampling methods have been
proposed, there are few pieces of research utilizing them on other real-world point cloud
applications such as object detection and semantic segmentation. Furthermore, although
many of the more recent methods claimed that they have some improvement to the previous
methods, the actual influence of them on the practical application is not clarified.

21

(a) (b)

Figure 2.12 Architecture of (a) Inception DenseGCN and (b) nodeshuffle
(Source: Qian et al., 2021)

2.3 Benchmark

2.3.1 Datasets

Many of the datasets have been employed in the evaluation of point cloud upsampling
methods and the training of deep learning-based methods, and some of them are public.
Many of the research teams of deep learning-based point cloud upsampling methods also
construct their own dataset as a supplement to the public dataset. These datasets cover
a wide range of object types, and they are also different in density, quality, generating
methods, and sample number. The basic information of some of the public datasets are
listed in Table 2.1.

2.3.1.1 Synthetic Datasets

ModelNet (Wu et al., 2015)(which have two visions, ModelNet10, and Model40), ShapeNet
(Chang et al., 2015), SHREC15 (Pickup et al., 2015), and PU1K (Qian et al., 2021) are
some of the typical synthetic datasets adopted by point cloud upsampling methods. Some
of the upsampling methods select and combine some subsets of these datasets for training
and testing. Most of these datasets contain 3D Computer Aided Design (CAD) models
of objects that belong to some of the most common categories in the real world, such
as animals, airplanes, toilets, chairs, and beds, to name a few. These CAD models are

22

Table 2.1 Basic information of the public datasets adopted by upsampling research

Name Sample Training Testing Type
ModelNet10(Wu et al., 2015) 4899 3991 605 Synthetic
ModelNet40(Wu et al., 2015) 12311 9843 2468 Synthetic
ShapeNet(Chang et al., 2015) 51190 - - Synthetic

PU1K(Qian et al., 2021) 1147 1020 127 Synthetic
SHREC15(Pickup et al., 2015) 1200 - - Synthetic
FASUST(Bogo et al., 2014) 300 100 200 Real-Scan

ScanObjectNN(Uy et al., 2019) 2902 2321 581 Real-Scan
KITTI(Geiger et al., 2013) 14999 7481 7518 Real-Scan

collected from many public resources, including Princeton Shape Benchmark (Shilane et
al., 2004). These CAD models are converted to point clouds by depth images and other
methods such as furthest point sampling and Principal component analysis. As these
methods are synthetic, the objects within are well-classified, complete, and do not have
noise (Uy et al., 2019)., which are not similar to real-world situation.

2.3.1.2 Human Pose Real-Scan Datasets

The synthetic dataset does not have noise and missing data, which made them unrealistic.
Therefore, Bogo et al. (2014) construct a real scanned high-resolution dataset called Fine
Alignment Using Scan Texture (FAUST). FAUST contains scans of 10 different people
making a variety of poses. Bogo et al., use a full-body 3D stereo capture system for data
capturing. It consists of 22 scanning units and each of them is composed of a single 5MP
RGB camera, several speckle projectors, and a pair of stereo cameras. The appearance of
FAUST is a supplement to the lack of public real-scanned point cloud datasets, and it is
also complementary to synthetic datasets. However, as the dataset is derived from human
poses, it does not have wide usage and is not very representative. And it cannot be used
in the comparison with synthetic datasets as the type difference.

2.3.1.3 Indoor Object Real-Scan Datasets

ScanObjectNN (Uy et al., 2019) is another real-scan dataset aiming at providing more real-
istic point cloud information than those complete, well-segmented, and noiseless synthetic
datasets. ScanObjectNN is constructed by extracting objects from the annotated scenes

23

within two real-world scene mesh datasets: SceneNN (Hua et al., 2016) and ScanNet (Dai
et al., 2017). The presence of background noise, non-uniform density, and holes due to in-
complete scans makes it different from the CAD-based synthetic datasets. The objects in
ScanObjectNN belong to 15 categories, which are common indoor objects in the real world,
such as desks, chairs, and sofas. Therefore, ScanObjectNN is a representative dataset and
can be used in the comparison with synthetic datasets with similar object categories. But
one of its limitations is that it does not provide the information in a whole scene.

2.3.1.4 Large-Scene Real-Scan Datasets

KITTI (Geiger et al., 2013) (Karlsruhe Institute of Technology and Toyota Technological
Institute) is one of the most popular public datasets for research in autonomous driving,
robotics, and computer vision, and is also employed in point cloud upsampling[PU-GAN].
It is a calibrated, synchronized, and rectified dataset on traffic scenarios, which contains
point cloud information. The dataset is captured by a system with different sensor modal-
ities, including two grayscale cameras, two color cameras, four optics lenses for 2D image
capturing, one GPS navigation system for location recording, and one 3D laser scanner
for point cloud capturing. The traffic scenarios represented by KITTI are useful in a wide
range of applications, which ensure its versatilities and representativeness. However, as it
utilized GPS in data capturing, it cannot represent the GNSS-denied scenarios, such as
some indoor and underground places.

2.3.2 Evaluation Metrics

To evaluate the performance of a point cloud upsampling method and train a deep learning-
based model with gradient descent, a ground truth high-density point cloud is necessary
for each input low-density point cloud to make a comparison with the generated point
cloud. And due to the adoption of patch extraction, each patch should have a ground
truth patch with a density a fixed number of times larger than it. However, for each of the
objects in public datasets, there isn’t a corresponding high-density ground truth. And this
cannot be achieved by rescanning the same object with devices that can capture denser
point clouds, as it is difficult to find corresponding patches. Therefore, during experiments,
the researchers regard the point clouds in the current datasets as ground truth, and each
extracted patch is downsampled by Poisson disk sampling, random downsampling, and
some of the other downsampling methods to get a low-density patch. Then the ground
truth is compared with the generated patch from the low-density one for evaluation or
training.

24

The performance of the point cloud upsampling method is evaluated by the generated
point cloud. There are two requirements for the generated point clouds: they should
keep the original shape and feature, and the points within should not cluster together.
Therefore, there are some metrics that evaluate the performance of the upsampling methods
in the corresponding two aspects: the similarity between the generated point cloud and
the ground truth, and the uniformity of the generated point cloud.

2.3.2.1 Similarity Evaluation

Many metrics for measuring the similarity of sets and distributions are adopted by point
cloud upsampling methods to measure the similarity of point clouds. Some typical metrics
are introduced below:

Chamfer Distance (CD): For two point cloud, Chamfer Distance would calculate
the sum of the mean value of the minimum square distance from all points in each point
cloud to the other. It follows the equation below:

dCD(X, Y) =
1

|X|
∑
x∈X

min
y∈Y

||x− y||22 +
1

|Y |
∑
y∈Y

min
x∈X

||x− y||22 (2.23)

where X and Y are two point clouds, |X| and|Y | are the number of points within X and Y,
and x and y are points within them. Eq. (2.23) represents the sum of the average distance
from any of the points x in X to its closest point in Y, and the average distance from any
of the points y in Y to its closest point in X.

Hausdorff Distance (HD): Hausdorff Distance measures the distance of two sets in
metrics space. When measuring the distance between point clouds, HD can be regarded as
the maximum value of the distance from a point in one point cloud to its closest neighbor
point in another. It follows the equation below:

dHD(X, Y) = max

{
sup
x∈X

d(x, Y), sup
y∈Y

d(y,X),

}
(2.24)

d(a,B) = inf
b∈B

||a− b||2 (2.25)

where X and Y are two point clouds, sup means supremum and inf means infimum. Eq.
(2.24) calculates the minimum distance from a point in one point cloud to all the points
in another. And Eq. (2.25) calculates the maximum one of this minimum distance.

25

Earth Mover’s Distance (EMD): Earth Mover’s Distance (EMD) is a metric that
measures the similarity in transportation processes. It measures the minimum cost of con-
verting one distribution into another. If it only takes a small cost to change one distribution
into another, it means these two distributions are similar. When measuring the similarity
of two point clouds, EMD calculates the minimum of the sum distance of moving points
in one point cloud to change it to another point cloud. It follows the equation below:

dEMD(S1, S2) = min
ϕ:S1→S2

∑
x∈S1

||x− ϕ(x)||2 (2.26)

where S1 and S2 are two point clouds, and ϕ : S1 → S2 is a bijection mapping.

2.3.2.2 Uniformity Evaluation

Another important evaluation indicator for generated point clouds is the uniformity of
the points distribution. The distribution of the points in generated point cloud should be
uniform. There are also some metrics measuring the uniformity of point clouds.

Normalized Uniformity Coefficient (NUC): Normalized Uniformity Coefficient is
first proposed in PU-Net to measure the uniformity of the point cloud distribution. To
calculate NUC, several equal size disks are randomly put on the surfaces of objects of the
generated point cloud datasets. And NUC is the standard deviation of the number of
points in disks. It follows the equation below:

avg =
1

K ×D

K∑
K=1

D∑
D=1

nk
i

nk × p
(2.27)

NUC =
1

K ×D

K∑
K=1

D∑
D=1

(
nk
i

nk × p
− avg)2 (2.28)

where nk
i is the number of the points in the i-th disk of the k-th object, nk is the total

points number within the kth object and p represents the percentage of the disk areas over
the sum of the surface area.

Uniformity Metric in PU-GAN: As NUC does not consider the point cloud dis-
tribution in disks, it neglects the local points clutter within disks. Therefore, PU-GAN
proposes another uniformity measuring metric to improve this limitation. This metric
measures the uniformity of the point distribution in patches after patch extraction, so the

26

uniformity of objects and datasets can be measured by the average number of all the patch
uniformity values within.

For the j-th patch Sj, M seed points are randomly selected on the patch surface by the
farthest sampling. From each seed point, a disk is grown by a ball query with radius rd.
Following the chi-squared model, the distribution of points among disks is defined as:

Uimbalance (Sj) =
(|Sj| − n̂)2

n̂
(2.29)

n̂ = rNp (2.30)

p =
πr2d
π12

= r2d (2.31)

where n̂ is the expected point number within a disk, r is the upsampling ratio and rN is
the points number in the upsampled patch. P is the proportion of the disk area to the
whole patch area. What needs to be noticed is that PU-GAN would normalize patches
into a unit sphere in patch extraction. So, p is calculated in Eq. (2.31).

To measure the distribution within disks, the distance of each point to its closest neigh-
bor is measured and donated as dj,k, where j is the index of disks and k is the index of
point. In an ideally uniformly distributed patch, the distance between points and their
closest neighbor d̂, is the same, and its value can be calculated using Eq. (2.33). So, the
deviation of dj,k from d̂ can be measured following chi-squared model as:

Uclutter (Sj) =

|Sj |∑
k=1

(
dj,k − d̂

)2

d̂
(2.32)

d̂ =

√
2πr2d

|Sj|
√
3

(2.33)

As Uclutter considers local uniformity, and Uimbalance considers nonlocal uniformity, the
final uniformity metric combines them together to get:

Luni =
M∑
j=1

Uimbalance (Sj) · Uclutter (Sj) (2.34)

27

2.4 Object Detection Method

Object detection is one of the important applications of the LiDAR point cloud. Point
cloud object detection can recognize and localize objects of certain categories from 3D point
clouds. In recent years, numerous state-of-the-art point cloud object detection methods
have been proposed by researchers. Most of the state-of-the-art point cloud object detection
methods are deep learning-based, and they can also be divided into the Grid and Voxel-
based method, and the point-based method.

2.4.1 Grid and Voxel-based method

Unlike 2D images which have regular grid structures, the irregular and unstructured char-
acteristics of the 3D point cloud make the point cloud object detection challenging. Some
early-stage researchers try to build regular structures for point clouds by converting points
into regular 3D voxels or projecting 3D point clouds on a 2D surface, which can be directly
applied by convolutional networks.

A group of researchers (Beltrán et al., 2018) represents a point cloud by its bird’s-eye
view (BEV) and utilize 2D convolutional networks for feature learning and bounding box
generation. And some of these methods also utilize multi-sensor and also utilize the infor-
mation in the 2D image of the corresponding point cloud (Ku et al., 2018; Liang et al.,
2018). These methods are often adopted in outdoor scenarios such as car detection in au-
tonomous driving where there aren’t many obstacles in the horizontal direction. However,
these methods ignore information from other directions. Therefore, these methods do not
have satisfactory performance in indoor environments where the objects to be detected are
blocked by other objects in the bird’s-eye view. And the need for 2D images also increases
the cost. There are also other methods that project point clouds on the front view(Zhou
et al., 2019), and some methods combine the bird’s-eye view, front view, and 2D image
together(Chen et al., 2017). However, they all have similar limitations.

Zhou and Tuzel (2018) proposed an End-to-End Voxel-based point cloud object detec-
tion network called VoxelNet. VoxelNet conduct a series of Voxel-based process to convert
the irregular point cloud into a regular structure. The 3D space is subdivided into equal
size voxels and points in the input point cloud are grouped into the corresponding voxel.
Then, random sampling is conducted to reduce computational costs and the imbalance of
points number among voxels. These processes use voxels to build a regular spatial struc-
ture for the input point cloud, which can be later processed by 3D convolutional networks.

28

Compare to the methods projecting point cloud to 2D surfaces, VoxelNet better utilizes fea-
tures in all direction and have fewer scenario limitation. However, its voxel-based structure
cost large memories and computation resources. And information is lost in the building
of the voxel structure. Yan et al. (2018) proposed Sparsely Embedded Convolutional De-
tection (SECOND) and tries to improve the computation efficiency by sparse convolution
operation, but it also has the second limitation.

2.4.2 Point-based method

Attribute to PointNet(Qi et al., 2017a) and PointNet++(Qi et al., 2017b), an increasing
number of point cloud object detection methods have been proposed to directly process
the input point cloud and extract features from it. The common way of point-based object
detection method is first assigning a group of points to the candidates of each object, and
then computing features from these point groups(Liu et al., 2021).

2.4.2.1 VoteNet

Ding et al. (2019) proposed a point-based object detection method called VoteNet. Inspired
by the Hough Voting strategies, VoteNet locates the centroids of objects by point voting
and aggregate votes to generate object proposals with high quality. The architecture of
VoteNet is shown in Figure 2.13. The whole architecture can be divided into two parts:
feature learning and point cloud voting, and object proposal generation and classification
from votes.

Learning the features, including geometric contexts and spatial relationships within
the input point cloud is essential in the subsequent vote generation process. VoteNet
leverages the PointNet++ backbone for the feature-learning. The PointNet++ backbone
is significant, not only it ensures the ability to directly process the irregular input point
cloud, but it can also extract features at different levels from the input point cloud because
of its multi-scale and skip connection structure. The feature extraction structure would
output a point set subsampled from the input point with not only their coordinates but
also an enriched feature vector.

Hough Transformation is a technique for detecting object instances within a certain
class of shapes from a scene, even with noise (Milletari, 2018). The traditional Hough
Transform method finds the centroid of the object to represent the object’s position by
voting through key points within the object. Key points would vote for candidate positions
based on their own feature. The process of mapping the voted position and point feature

29

Figure 2.13 Architecture of VoteNet
(Source: Ding et al., 2019)

is achieved based on indexing the pre-build code book, which costs high computational
resources. In VoteNet these processes are completed by the voting module, which consists
of a fully connected MLP network, with ReLU and batch normalization. Taking the seed
feature, the voting module would output votes with renewed positions and features. Unlike
the seeds, the votes are no longer located at the surface of the objects. However, they are
more likely to locate inside the objects. And votes are clustered together, which is easier
for the cue combination from different parts of the object.

After votes are generated, VoteNet needs to generate the object proposal from votes
and classify the objects. The votes are first clustered together by sampling and grouping.
In order to integrate a clustering technique into the end-to-end network, VoteNet first
conducts a farthest point sampling. A subset with K votes is sampled from the original set
of votes. Then clusters are formed from these sampled votes by position. A cluster would
be grown from each of the sampled votes, and other votes within a certain distance would
be grouped into these clusters. Each of these clusters is a candidate object. The number K
should be a number much larger than the object within the scene, and only the candidate
that has a confident number larger than a certain value would be reserved, which would
be included in the final object’s proposal.

The traditional Hough Transformation method determines the boundary of objects
by a back-tracking process. VoteNet aggregates votes and generates proposals in a more
efficient way by leveraging a point-set learning network. A shared PointNet is chosen in

30

VoteNet for proposal generation. The vote clusters are first normalized to fully use the
local vote geometry. Then, the cluster is processed by a module with a structure similar to
PointNet. The votes clusters are first processed by an MLP independently before pooling
by a channel-wised max pooling layer. Then, a second MLP is conducted to further combine
information from different votes to generate the final proposal. The final proposal contains
information on the assigned categories of the objects, the confidential scores, and some
information that can reconstruct the bounding boxes.

VoteNet is the fundament of many state-of-the-art point cloud object detection meth-
ods. The following methods optimize VoteNet in different ways, including speed, voting
strategies, and the localization of the bounding boxes (Yang et al., 2020; Zhang et al.,
2020).

Point-based object detection methods have a great advantage over grid and voxel-based
methods. They fully utilize the information in the point cloud, and they need less memory
and computational resource.

2.5 Chapter Summary

According to the literature review, the more recent deep learning-based point cloud upsam-
pling methods had more advantages than non-deep learning-based methods. Therefore, the
thesis is more focused on the deep learning-based point cloud upsampling methods. The
state-of-the-art point cloud upsampling methods were tested on a wide range of bench-
marks. However, these benchmarks failed to include full indoor scenes. The evaluation
metrics used to evaluate the state-of-the-art point cloud upsampling methods failed to
illustrate the performance of point cloud upsampling methods on concrete practical appli-
cations. Therefore, this thesis would explore the application of point cloud upsampling in
some more specific practical applications such as point cloud object detection.

31

Chapter 3

Proposed Methodology

This chapter introduces the specific methodology proposed in this thesis. Section 3.1
introduces the workflow of the proposed methodology. Section 3.2 introduces the datasets
used in this thesis, including. Sections 3.3 and 3.4 introduce the point cloud upsampling
and object detection methods, the process of training models, and the information of pre-
trained models, respectively. Section 3.5 is the chapter summary.

3.1 Workflow

In this thesis, a methodology is proposed for enhancing the object detection result of
the low-density point cloud via point cloud upsampling. Figure 3.1 shows the workflow
of the proposed methodology, which consists of four parts: dataset preprocessing, object
detection model training, point cloud upsampling, and point cloud object detection. In
part one, the raw datasets are preprocessed into a training set and a low-density testing
set. In part two, an object detection model is trained by the training set. In part three,
the low-density testing set is upsampled by the pre-trained point cloud upsampling models.
And in part four, object detection is conducted on the upsampled testing set by the trained
object detection model.

3.2 Dataset

In order to fill up the lack of indoor benchmarks on point cloud upsampling research, this
thesis adopts indoor LiDAR point cloud datasets for supplements. SUN RGB-D (Song et

32

Figure 3.1 Workflow of the proposed method

33

al., 2015) is a famous public real-scanned indoor scene dataset. It contains scenes of rooms
in the buildings. And the underground parking lot is a special kind of indoor environment
with special characteristics. Compared to outdoor driving environments, underground
parking lots are more challenging as their dim lighting, reflections on the road, the presence
of pillars, and poor GNSS signals (Suhr & Jung, 2016), thus they require higher precision
for the navigation systems. It can also be regarded as the working environment for indoor
intelligent robots like other indoor environments. Therefore, both SUN RGB-D dataset and
an underground parking lot dataset are adopted in this thesis. As there is a lack of public
point cloud datasets for the underground parking lot, an indoor LiDAR point cloud dataset
collected from the underground parking lot located at Highland Square, Kitchen, Waterloo
is collected. The underground parking lot has a large scene with sparse object distribution
and the room scenes represented by SUN RGB-D have dense object distribution, which
makes them complementary

3.2.1 Dataset Collection and Specifications

3.2.1.1 Specifications of SUN RGB-D

SUN RGB-D is collected by Intel RealSense 3D Camera, Asus Xtion LIVE PRO, and
Kinect V1 and V2. It contains 10335 RGB-D images, each of which represents a scene of
a room. The objects within the rooms are common objects in daily life and belong to 800
different categories. Their 2D and 3D dense annotations are also included in the dataset.
Table 3.1 shows the specification of SUN RGB-D.

Table 3.1 Specifications of SUN RGB-D

Parameter Specifications
Sensor Intel RealSense, Asus Xtion, and Kinect v1 and v2

Images Nuimber 10335
2D Annoations Number 146617
3D Annoations Number 64959

Objects Categories Number Over 800

3.2.1.2 Collection and Specification of the Underground Parking Lot Dataset

Our own dataset on the underground parking lot is collected by a single Livox Horizon
laser scanner used for data collection. The scanner has an effective field of view (FOV) of

34

the scanner is 81.7°(Horizontal) × 25.1°(Vertical), with a distance random error of fewer
than 2 centimeters and an angular random error of less than 0.05°. The scanner’s strongest
return point rate is 480,000 pts/s and the dual return point rate is 240,000 pts/s. The
scanner is mounted on a baby carrier to compose a Mobile Laser Scanning system. The
pictures of the devices are shown in Figure 3.2 below. In the data collection process, the
Mobile Laser Scanning system is pushed across the parking lot through the drive path,
forming a closed loop.

Figure 3.2 Mobile Laser Scanning system (left) and the Livox Horizon laser scanner(right)

Our dataset is collected from an underground parking lot located at Highland Square,
Kitchener, Waterloo. The main object categories within the parking lot are pillars, columns,
ceilings, floors, and vehicles. The whole parking lot covers an area of 8000 m2, one-fifth of
which is used for testing and the rest is used for training. The dataset we collected from
the underground parking lot contains 170 million points, as shown in Figure 3.3. For each
point, its 3D coordinates and RGB reflectance are recorded by the sensor. Table 3.2 shows
the specification of the underground parking lot dataset.

3.2.2 Data Preprocessing

To generate a training set for efficient training, and a testing set simulating the point cloud
captured by low-budget sensors, both SUN RGB-D dataset and the underground parking
lot dataset are preprocessed.

For the SUN RGB-D dataset, the preprocessing process can be easily completed by the
toolbox provided with the public dataset. The toolbox converts the whole 10335 RGB-D

35

Figure 3.3 Bird’s eye view of the collected dataset

36

Table 3.2 Specifications of the underground parking lot data

Parameter Specifications
Sensor Livox Horizon laser scanner
Area 8000 m2

Number of Points 150 million
Density About 17,000 pts/m2

Main Structure pillars, columns, ceilings, floors, vehicles
Type of Information 3D coordinates, RGB reflectance
Collecting Speed 0.5 m/s

images to point cloud data, each of which contains 50000 points and annotations of the
objects inside. The whole dataset is split into around half for training and half for testing.
As the sample number of SUN RGB-D is too large, we get a subset of 150 patches from
the testing set to reduce the time cost.

For our own dataset collected from the underground parking lot, the dataset is first
merged to generate the whole scene by Simultaneous Localization And Mapping (SLAM)
algorithm provided by the scanner manufacturer (Livox, 2022). Then the dataset is man-
ually labeled, and 3D bounding boxes are computed with the labels. We manually remove
some obvious noises that have a large impact on the training processing, and also reserve
some not obvious noise points to keep the characteristic of real-scanned data. Then the
dataset is divided into cells with around 5m2 to reduce computation. Each cell contains at
least one pillar, and the pillars inside should not be split by the cell boundaries. Then, the
point cloud of each cell is subsampled into patches with 50000 points, to keep consistency
with SUN RGB-D data. The whole dataset is split into the training set with 1023 patches
and the testing set with 170 patches based on the training and testing area.

After the previous process, the point cloud density of both datasets is 1000 pts/m2.
Therefore, to simulate the sparse and non-uniform point cloud captured by the low-budget
sensors, the testing set of both SUN RGB-D and our own collected dataset are subsampled
to generate low-density datasets. The random subsample is used to stimulate the sparse
and non-uniform characteristic of the point cloud collected by the low-budget sensors.

37

3.3 Point Cloud Upsampling

To get a more satisfying object detection result, point cloud upsampling methods are
adopted to upsample the sparse and non-uniform low-density testing set to generate an
upsampled testing set with higher density and uniformity. Three deep learning-based point
cloud upsampling methods are chosen in this thesis, including PU-Net, 3PU, and PU-GCN.
All the methods are adopted to upsample the low-density testing set, and their impacts on
the final object detection results are compared.

PU-Net is a deep learning-based point cloud upsampling method. First, features of
multi-level are extracted from the input point with the PointNet++ backbone. Then the
features are upsampled in a multi-branch upsampling module, which input features into
multiple parallel MLPs and concatenate the output to get the expanded feature. Then,
the coordinate is reconstructed by a series of MLPs to generate the upsampled point cloud.

3PU is a multi-step point cloud upsampling method. It consists of a series of upsampling
units, each of which can expand the size of the input point cloud twice. In each upsampling
unit, 3PU first extracts features from the input point via intra-level dense connections, then
it expands feature size via code assignment. Finally, features are reconstructed into 3D
point clouds by MLPs. 3PU also adopts an inter-level skip connection to enhance the
communication between upsampling units.

PU-GCN is a GCN-based point cloud upsampling method. PU-GCN first uses a KNN
layer to build the neighborhood graph of the input point cloud. Then the feature is
extracted from the neighborhood graph through a GCN layer and a series of Inception
DenseGCN. The outputs of each DenseGCN layer are not only passed through the next
DenseGCN but also concatenated with the final output. Then the extracted feature is
input into the upsampling module with NodeShuffle layer, where the feature is first input
into a GCN layer to expand feature size, and then shuffled to expand the feature number.
Then features are input into the coordinate reconstructor, which consists of two MLPs to
generate the final point cloud.

In this thesis, we adopt the public pre-trained models provided by the PU-GCN research
team Qian et al. (2021). These models can enlarge the density of the input point cloud 4
times. These models were trained on PU1K for 100 epochs and a batch size of 64. The
Adam optimizer was used with a learning rate of 0.001 and a beta of 0.9. The models were
trained on the same computer with an NVIDIA TITAN 2080Ti GPU and an Intel Xeon
E5-2680 CPU. These models are trained in the same condition, which is considered to be
rigorous.

38

3.4 Point Cloud Object Detection

Object Detection is conducted on the upsampled testing set by the model trained with the
training set or pre-trained. Then the object detection result is evaluated by the evaluation
metric. Object detection with the same model is also conducted on the original and low-
density testing set for comparison.

3.4.1 Object Detection Method

We adopt VoteNet as the object detection method. Although some subsequent methods
optimize VoteNet in different aspects, we employ VoteNet to emphasize the effects of point
cloud upsampling methods.

VoteNet is a point-based deep learning point cloud object detection method. VoteNet
first extracts multi-level features from the input point cloud using PointNet++ backbone.
Then, votes are generated from the multi-level features by the voting module, which con-
sists of a series of fully connected MLPs. In the next step, votes are sampled and grouped
into clusters. And in the final process, the final object proposals are generated from the
vote clusters through a shared PointNet.

The final proposal is a multidimensional vector, and it contains an objectness score,
which estimates whether the proposal represents a true object, a classification confidential
number, an assigned class index, which estimates the possibility of the object belongs
to the assigned class, and information of bounding boxes, including its center, size, and
orientation.

3.4.2 Model Training

Different object detection models should be trained for different datasets. For SUN RGB-
D, we used the pre-trained model provided by the VoteNet research team (Qi et al., 2019).
The model was trained for 180 epochs and a batch size of 8. The Adam optimizer was used
with a learning rate of 0.001 at the beginning, decreasing by 10 times at the 80th and 120th

epochs. The models were trained on Volta Quadro GP100 GPU. This model is capable of
the object detection of 10 common indoor objects, including chairs and tables.

And we also trained a VoteNet model on our own collected dataset. We focus on
the object detection of Pillars and Vehicles, as they are obstacles in autonomous driving
that the autonomous shouldn’t bump into, and pillars are also the working object for

39

cleaning robots. Our model was also trained for 180 epochs and a batch size of 8. The
Adam optimizer was used with a learning rate of 0.001 at the beginning, and the learning
rate also decreased by 10 times at the 80th and 120th epochs. Our model was trained on
one NVIDIA GeForce GTX 1080 8GB GPU and one eight-core Intel® CPU i7-9700k @
3.60GHZ.

3.4.3 Evaluation Metric

The evaluation metric adopted in this thesis is Average Precision (AP) and Average Recall
(AR) proposed by Song et al. (2015). After the predicted bounding boxes are generated,
the 3D Intersection over Union (IoU) number between ground truth bounding boxes and
predicted bounding boxes are calculated, and the pairs with the IOU number larger than
a threshold are regarded as matched. In this thesis, the threshold is chosen to be 0.25 and
0.5. The matched bounding boxes are regarded as True Positive (TP). And the unmatched
predicted and ground truth bounding boxes are regarded as False Negative (FN) and False
Positive (FP). Let M be the number of matched pairs and G be the number of ground
truth bounding boxes, the AR follows:

AR =
TP

TP + FN
=
M

G
(3.1)

Each of the matched predicted bounding boxes have a confidential score. The confiden-
tial score can be used as another criterion and only matches with a confidential number
higher than a threshold number are obtained. When changing this threshold, the precision
and recall of the output subsequently change. Therefore, a Precision-Recall curve can be
plotted, and AP of the output can be calculated by the Area Under Curve (AUC) of the
Precision-Recall curve, which follows:

AP =

∫ 1

0

prec(rec)d(rec) (3.2)

where prec is precision and rec indicates recall.

3.5 Chapter Summary

In this chapter, we discussed the workflow and details of our proposed methods. The work-
flow consisted of four steps: data preprocessing, point cloud upsampling, object detection

40

model training, and object detection. In data preprocessing, a training test for model
training and a low-density testing set was generated. Then, the low-density testing set was
upsampled by three pre-trained point cloud upsampling models, including PU-Net, 3PU,
and PU-GCN. Parallelly, a VoteNet model for object detection was trained on the training
set. Finally, object detection was conducted on the upsampled testing set by trained or
pre-trained VoteNet models. We also illustrated the metrics for evaluation.

41

Chapter 4

Results and Discussion

This chapter introduces the result of this thesis and makes further discussion on it. Specif-
ically, Section 4.1 discusses the setup details for this thesis. Section 4.2 illustrates the
results, which include bout quantitative results and qualitative results. Section 4.3 sum-
marizes this result and makes further discussion.

4.1 Experimental Setups

In the experiment process, we find that the decrease in point cloud density does not have
an intense influence on the performance of the object detection models. The speed at
which we push the Mobile Laser Scanning when collecting data is 0.5 m/s which is tens
of times lower than the speed of the vehicles driving in the underground parking lot.
And considering the fact that pillars and vehicles are repeatedly scanned from different
angles, and some low-budget sensors have a point rate many times lower than our LiDAR
sensors, the subsample ratio is chosen to be 32 to simulate the point cloud capturing by
the low-budget sensors. To verify whether a 32 times subsample would result in an evident
decrease in point cloud object detection performance, we plot the change of AP with the
subsample ratio increase, and the result is shown in Figure 4.1. The result shows that
the AP decrease at the subsample ratio of 32 is significant, so the selection of 32 times
subsampling is confirmed.

42

Figure 4.1 Relationship between subsampling ratio and AP

4.2 Experimental Results

4.2.1 Quantitative Results of the Underground Parking Lot Dataset

The quantitative results of our own collected dataset are shown in the table 4.1 below.
According to the table, the VoteNet model we trained has high accuracy on the pillars
and vehicle detection on our own collected dataset, with the AP and AR close to 1 under
the threshold of 0.25. On the threshold of 0.5, its AP and AR are still higher than the
rest of the data. And the 32 times decrease in density cause an evident decrease in object
detection performance, and the AP and AR are the lowest. And after conducting point
cloud upsampling, the performance of the point cloud object detection is improved, with
the mean AP increasing from 0.77 and 0.39 to around 0.95 and 0.65 under the threshold of
0.25 and 0.5. According to Figure 4.1, these are similar to the mean AP when the original
point cloud is subsampled 8 times, which has the same point cloud density as the generated
point cloud. In practical application, this can result in a three times faster data collecting
speed, which leads to a three-fourth time-saving. It can also decrease the budget of the
sensor. And the mean AR at the threshold of 0.25 and 0.5 also increase from 0.79 and 0.48
to around 0.73 and 0.96, and the mean AR increases from around 0.5 to around 0.75.

The performance of the three point cloud upsampling methods is similar. Although
their metric values are close, PU-GCN has the best effect on pillars, and PU-Net has the

43

best effect on vehicles. PU-Net also has the best average performance when the threshold
is low, and 3PU has the best average performance when the threshold is high.

Table 4.1 AP(%) and AR(%) for the object detection result of low-density and
upsampled data

Origin Low-Density PU-Net 3PU PUGCN
Pillar-AP@0.25 99.7 68.1 93.6 93.9 94.1
Pillar-AP@0.5 69.3 34.3 66.8 66.8 67.0
Pillar-AR@0.25 100.0 68.5 93.7 94.1 94.4
Pillar-AR@0.5 80.1 43.0 75.9 76.9 74.5
Vehicle-AP@0.25 100.0 85.5 97.6 95.8 96.9
Vehicle-AP@0.5 89.4 44.1 63.1 64.0 63.6
Vehicle-AR@0.25 100.0 88.5 98.5 96.3 97.8
Vehicle-AR@0.5 90.3 53.5 70.6 69.9 70.3
mAP@0.25 99.8 76.8 95.6 94.8 95.5
mAP@0.5 79.3 39.2 65.0 65.4 65.3
mAR@0.25 100.0 78.5 96.1 95.2 96.1
mAR@0.5 85.2 48.3 73.3 73.4 72.4

4.2.2 Qualitative Results of the Underground Parking Lot Dataset

Figures 4.2-4.6 show the visualized object detection results. We extract one patch from
each of the cells and the object detection results of these patches are merged together. A
subsampled point cloud of the whole testing area is also presented with bound boxes for
reference. The bounding boxes represent the tested (or ground truth) vehicles or pillars,
while purple stands for True Positive vehicles, blue stands for False Positive vehicles, light
green stands for True Positive pillars, and dark green stands for False Positive pillars.

Figure 4.2 shows 23 pillars and 24 vehicles in the testing area. However, only 15
pillars and 19 vehicles are tested from the low-density dataset and 4 vehicles are False
Positive. Figures 4.4-4.6 show that point cloud upsampling makes an improvement to the
low-density data. After the upsampling of PU-Net, 21 True Positive pillars with 21 True
Positive vehicles are detected from the scene with only 2 False Positive vehicles. 3PU has
a better performance with 22 True Positive pillars and 23 True Positive vehicles detected
and with no false detection. The performance of PU-GCN is the worst in this visualization.
However, it still outperforms the low-density data, with 20 pillars and 20 vehicles of True
Positive detection, and one pillar and three vehicles of False Positive detection.

44

Figure 4.2 Reference point cloud and ground truth bounding boxes

45

Figure 4.3 Object Detection Result of low-density point cloud

46

Figure 4.4 Object Detection Result of upsampled point cloud by PU-Net

47

Figure 4.5 Object Detection Result of upsampled point cloud by 3PU

48

Figure 4.6 Object Detection Result of upsampled point cloud by PU-GCN

49

Figure 4.7 provides a detailed view of the point clouds in a cell, the ground truth
bounding boxes, and object detection results. There are two vehicles and two pillars in
this cell. However, only one vehicle and two pillars can be detected when the density is low.
After the upsampled by all the three point cloud upsampling methods, two vehicles and
two pillars can be detected. Overall, object detection on pillars and the car, which belongs
to the vehicle category, would generate bounding boxes closer to the ground truth, and the
predicted bounding boxes of the motorcycle, which also belongs to the vehicle category,
have an orientation difference to the ground truth. This is because of the fact that the
number of cars in this underground parking lot is more than motorcycles, and the trained
VoteNet model learns more features from cars. Among all three point cloud upsampling
methods, the point cloud generated by PU-GCN has the best object detection results in
the motorcycle as its predicted bounding box has the biggest overlay with the ground
truth. Under the same criteria, the performance of 3PU is better than PU-Net. This
indicates that from PU-Net to PU-GCN, the feature capturing and feature reconstruction
ability improves. For the object detection result on the other three objects, 3PU has the
best results. And the predicted bounding boxes generated by point cloud upsampled by
PU-GCN would cross the border of the ground truth bounding boxes. This can result
from the overfitting of the noise points. As the most recent method, PU-GCN optimizes
architecture from PU-Net and 3PU, which has better feature extracting and reconstruction
ability and can be more likely to overfit noise points. This could explain the reason that the
performance of PU-GCN is not as satisfying as the other two methods on some occasions.

50

(a)

(b)

(c)

(d)

(e)

Figure 4.7 From top to down is: (a) original point cloud and ground truth bounding box,
(b) low-density point cloud and the object detection result, and (c)-(e) upsampled point

cloud by PU-Net, 3PU and PU-GCN and corresponding Object Detection Results

51

4.2.3 Quantitative Results of SUN RGB-D Dataset

Tables 4.2-4.5 show the quantitative results of the SUN RGB-D dataset. The sense of
SUN RGB-D has more objects and more categories, even though point cloud upsampling
methods still show their capability to enhance object detection results. According to the
tables, the effect of point cloud upsampling is more evident when the threshold is 0.25.
And in the threshold of 0.5, the amount of AP and AR increase is smaller.

The objects in SUN RGB-D often have more complicated structures than the under-
ground parking lot dataset and the overall performance enhancement due is point cloud
upsampling is lower than that of the underground parking lot dataset. It can indicate
that the point cloud upsampling would have a better effect when the structures are not
complicated. Under the threshold of 0.25, point cloud upsampling can enhance the object
detection results from most of the categories. However, under the threshold of o.5, these
methods do not enhance the object detection results of some categories, and some are less
satisfying. Under the threshold of 0.5, these three point cloud upsampling methods cannot
enhance the detection of chairs and bathtubs, the that of the bathtubs even decreases.
This may be because that chairs and bathtubs have too many hollow or empty structures,
which may be easily affected by the noise points. Among the rest of the objects, PU-GCN
does not perform well on desks and dressers. The object that belongs to these categories
are similar, and the overfitting of PU-GCN makes the generated point cloud even more
similar, so the objects can be misclassified to the other category. 3PU does not perform
well on tables and bookshelves. It has extremely bad performance on the bookshelves,
the AP decreases even under the threshold of 0.25, and under 0.5, the decrease amount
is huge. Point cloud upsampling methods cannot perfectly preserve the original shape
and the multi-step upsampling structure of the 3PU increase the amount of the shape
change. Therefore, the performance decrease of these two categories may be because the
plain structure of the tables and the multi-layer structure of bookshelves are too sensitive
to shape change.

52

Table 4.2 AP@0.25(%)) of the object detection result on SUN RGB-D

AP@0.25
Ground Truth Low-density PU-Net 3PU PUGCN

bed 99.4 91.0 98.8 97.5 98.9
table 53.2 34.1 37.6 44.3 39.1
sofa 74.0 52.8 70.9 71.0 70.3
chair 91.3 68.9 72.9 78.2 75.1
toilet 98.2 80.1 99.1 74.0 91.6
desk 49.8 26.4 25.4 36.7 32.0
dresser 34.0 19.0 27.9 18.8 26.7
night stand 89.9 36.7 62.2 62.6 58.8
bookshelf 46.0 7.3 18.9 4.6 21.2
bathtub 100.0 100.0 100.0 100.0 100.0
mean 73.6 51.6 61.4 58.8 61.3

Table 4.3 AP@0.5(%) of the object detection result on SUN RGB-D

AP@0.5
Ground Truth Low-density PU-Net 3PU PUGCN

bed 82.2 72.2 79.4 80.1 82.2
table 18.2 7.8 9.5 7.5 10.4
sofa 47.2 40.0 52.9 43.6 45.8
chair 77.3 48.8 43.7 46.5 48.4
toilet 74.8 43.7 46.5 64.9 63.0
desk 10.0 6.3 12.7 25.8 2.5
dresser 19.3 3.6 4.0 6.2 2.3
night stand 61.2 20.5 32.9 34.6 19.8
bookshelf 12.6 0.9 11.1 0.5 11.1
bathtub 83.3 66.7 33.3 50.0 52.8
mean 48.6 31.0 32.6 36.0 33.8

53

Table 4.4 AR@0.25(%) of the object detection result on SUN RGB-D

AR@0.25
Ground Truth Low-density PU-Net 3PU PUGCN

bed 100.0 93.0 100.0 98.2 100.0
table 86.2 72.4 65.5 75.9 75.9
sofa 91.2 70.6 85.3 88.2 91.2
chair 99.2 85.2 94.3 93.4 89.3
toilet 100.0 100.0 100.0 90.0 100.0
desk 93.8 81.3 87.5 93.8 81.3
dresser 88.5 57.7 65.4 65.4 65.4
night stand 96.2 67.3 75.0 82.7 78.8
bookshelf 88.9 22.2 55.6 33.3 33.3
bathtub 100.0 100.0 100.0 100.0 100.0
mean 94.4 75.0 82.9 82.1 81.5

Table 4.5 AR@0.5(%) of the object detection result on SUN RGB-D

AR@0.5
Ground Truth Low-density PU-Net 3PU PUGCN

bed 87.7 82.5 89.5 89.5 89.5
table 31.0 20.7 17.2 13.8 13.8
sofa 58.8 50.0 61.8 55.9 47.1
chair 84.4 61.5 55.7 61.5 63.1
toilet 80.0 80.0 70.0 80.0 70.0
desk 37.5 31.3 31.3 31.3 18.8
dresser 50.0 15.4 15.4 30.8 19.2
night stand 73.1 36.5 40.4 48.1 38.5
bookshelf 44.4 11.1 11.1 11.1 11.1
bathtub 83.3 66.7 33.3 50.0 66.7
mean 63.0 45.6 42.6 47.2 43.8

54

4.3 Chapter Summary

According to the experimental results, the effectiveness of point cloud upsampling methods
on object detection can be proved. Point cloud upsampling methods have more effectiveness
in scenes that do not have many objects and the detection accuracy requirements are not
too high. Although many of the more recent point cloud upsampling methods can better
reconstruct object detail structures, this optimization does not take a significant part in
object detection. As an early-stage point cloud upsampling method, the performance
of PU-Net is not always exceeded by the other two more advanced methods. Due to
its feature extracting and reconstruction ability, PU-GCN is sensitive to noise, and its
performance would decrease in noise-rich senses or on noise-sensitive objects. And the
multi-step architecture of 3PU makes it not perform well on shape-change-sensitive objects.
And these three methods do not perform well on objects having large hollow or empty
structures. In a general view, the difference between these three methods in the application
is not significant, so the selection of the upsampling methods in practical applications can
be based on some more criteria including computation and time consumption.

55

Chapter 5

Conclusions and Recommendations

5.1 Conclusions

In this thesis, we enhance the object detection results of low-density datasets via point cloud
upsampling methods. Three point cloud upsampling methods, PU-Net, 3PU, and PU-GCN
are adopted in this thesis. And VoteNet is selected as the object detection method. These
methods are tested on a dataset collected in the thesis from an underground parking lot
located at Highland Square, Kitchener, Canada, and the public dataset SUN RGB-D, and
their advantage and disadvantage in different circumstances are evaluated.

In this thesis, the object detection results were increased by 18.8%, 18.0%, and 18.7%
on the underground parking lot dataset, and 9.8%, 7.2%, and 9.7% on SUN RGB-D in
AP@0.25 with the conduct of the point cloud upsampling methods PU-Net, 3PU, and
PU-GCN. Other evaluation metrics and visualization results also show that point cloud
upsampling methods make a satisfying improvement in object detection results.

5.2 Contributions

The contributions of the thesis are listed as follows:

1. This thesis proposes a methodology for enhancing the object detection result of the
low-density point cloud through point cloud upsampling. This can result in a decrease in
the sensors budget or about three-fourths of time-saving.

56

2. Collecting an indoor point cloud dataset from an underground parking lot located
at Highland Square, Kitchener, Waterloo, which filled in the blank to the lack of public
underground parking lot point cloud datasets.

3. Evaluating the performance of three state-of-the-art point cloud upsampling methods
on the ability on enhancing the point cloud object detection of the low-density point cloud
across different environments, and analyzing their advantages and disadvantages.

5.3 Recommendations for Future Research

In this thesis, we face many difficulties and challenges and have many recommendations
for future research. In this thesis, some attributes in the underground parking lot dataset
are not utilized, such as intensity. This is for keeping consistent with the SUN RGB-
D dataset, which does not have intensity attributes. However, as the laser has different
reflectance rates on different kinds of surfaces, the intensity can be utilized to identify the
type of objects and avoid manual labeling. Therefore, in future works which do not have
this limitation, intensity is recommended to use. Because of the noise of the underground
parking lot dataset, we have to remove some of the noise points manually to improve the
training effectiveness. And the object detection methods are sensitive to noise points, and
some noise points can lead to object deformation after upsampling. Therefore, future work
can aim at making point cloud upsampling methods not sensitive to noise. And due to
the noise points in our dataset in the underground parking lot, we cannot train the point
cloud upsampling methods on that. Therefore, although most of the real-scan point cloud
datasets reserve the noise points within to preserve the characteristics of the real-scan
point cloud, we suggest that a clean real-scan indoor point cloud data set is also important
for letting point cloud upsampling networks learning the feature of objects from the real
world including internal building structures. The model trained in this way may have a
better performance. And the current point cloud upsampling methods are not specific
to certain applications. Therefore, a point cloud upsampling method specially designed
for certain applications, such as object detection, should be meaningful. And at the early
stage of the thesis, we also evaluate the performance of point cloud upsampling on semantic
segmentation. However, the result is not good. And this can be another meaningful topic
in the future.

The methodology proposed in this thesis can also be expanded. It can be tested in a
wider range of datasets, and more point cloud upsampling methods can be tested on that.
Our proposed method has a wide range of applications. One of the most evident appli-
cations is that intelligent systems with only low-budget sensors do not need more model

57

training steps, and can just utilize the model trained with higher-density datasets, and
upsample their low-density datasets through point cloud upsampling. This is meaningful
in autonomous driving and robotics. And the source data can also be collected at a faster
speed, which is time-saving. We believe that point cloud upsampling would have more
applications in the future.

58

References

Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., & Silva, C. T. (2003). Com-
puting and rendering point set surfaces. IEEE Transactions on Visualization and
Computer Graphics, 9 (1), 3–15.

Beltrán, J., Guindel, C., Moreno, F. M., Cruzado, D., Garcia, F., & De La Escalera, A.
(2018). Birdnet: A 3d object detection framework from lidar information. 2018 21st
International Conference on Intelligent Transportation Systems (ITSC), 3517–3523.

Bogo, F., Romero, J., Loper, M., & Black, M. J. (2014). Faust: Dataset and evaluation for
3d mesh registration. Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 3794–3801.

Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S.,
Savva, M., Song, S., Su, H., et al. (2015). Shapenet: An information-rich 3d model
repository. arXiv preprint arXiv:1512.03012.

Chelly, M., & Samama, N. (2009). New techniques for indoor positioning, combining deter-
ministic and estimation methods. ENC-GNSS 2009: European Navigation Conference-
Global Navigation Satellite Systems, 1–12.

Chen, X., Ma, H., Wan, J., Li, B., & Xia, T. (2017). Multi-view 3d object detection network
for autonomous driving. Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 1907–1915.

Chen, Z., Xu, A., Sui, X., Wang, C., Wang, S., Gao, J., & Shi, Z. (2022). Improved-
uwb/lidar-slam tightly coupled positioning system with nlos identification using a
lidar point cloud in gnss-denied environments. Remote Sensing, 14 (6), 1380.

Choi, J., Song, Y., & Kwak, N. (2021). Part-aware data augmentation for 3d object detec-
tion in point cloud. 2021 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 3391–3397.

Dai, A., Chang, A. X., Savva, M., Halber, M., Funkhouser, T., & Nießner, M. (2017).
Scannet: Richly-annotated 3d reconstructions of indoor scenes. Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 5828–5839.

59

Dinesh, C., Cheung, G., & Bajić, I. V. (2019). 3d point cloud super-resolution via graph
total variation on surface normals. 2019 IEEE International Conference on Image
Processing (ICIP), 4390–4394.

Ding, Z., Han, X., & Niethammer, M. (2019). Votenet: A deep learning label fusion method
for multi-atlas segmentation. Medical Image Computing and Computer Assisted
Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, Oc-
tober 13–17, 2019, Proceedings, Part III 22, 202–210.

Geiger, A., Lenz, P., Stiller, C., & Urtasun, R. (2013). Vision meets robotics: The kitti
dataset. The International Journal of Robotics Research, 32 (11), 1231–1237.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
GPL software. (2022, March 30). Cloudcompare (Version 2.12.0). https://www.cloudcompare.

org
Griffiths, D., & Boehm, J. (2019). A review on deep learning techniques for 3d sensed data

classification. Remote Sensing, 11 (12), 1499.
Guerry, J., Boulch, A., Le Saux, B., Moras, J., Plyer, A., & Filliat, D. (2017). Snapnet-r:

Consistent 3d multi-view semantic labeling for robotics. Proceedings of the IEEE
International Conference on Computer Vision Workshops, 669–678.

Hu, Q., Yang, B., Xie, L., Rosa, S., Guo, Y., Wang, Z., Trigoni, N., & Markham, A. (2020).
Randla-net: Efficient semantic segmentation of large-scale point clouds. Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 11108–
11117.

Hua, B.-S., Pham, Q.-H., Nguyen, D. T., Tran, M.-K., Yu, L.-F., & Yeung, S.-K. (2016).
Scenenn: A scene meshes dataset with annotations. 2016 fourth International Con-
ference on 3D vision (3DV), 92–101.

Huang, H., Li, D., Zhang, H., Ascher, U., & Cohen-Or, D. (2009). Consolidation of un-
organized point clouds for surface reconstruction. ACM Transactions on Graphics
(TOG), 28 (5), 1–7.

Huang, H., Wu, S., Gong, M., Cohen-Or, D., Ascher, U., & Zhang, H. (2013). Edge-aware
point set resampling. ACM Transactions on Graphics (TOG), 32 (1), 1–12.

Ku, J., Mozifian, M., Lee, J., Harakeh, A., & Waslander, S. L. (2018). Joint 3d proposal
generation and object detection from view aggregation. 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 1–8.

Lang, I., Manor, A., & Avidan, S. (2020). Samplenet: Differentiable point cloud sampling.
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, 7578–7588.

Li, G., Muller, M., Thabet, A., & Ghanem, B. (2019a). Deepgcns: Can gcns go as deep as
cnns? Proceedings of the IEEE/CVF International Conference on Computer Vision,
9267–9276.

60

https://www.cloudcompare.org
https://www.cloudcompare.org

Li, R., Li, X., Fu, C.-W., Cohen-Or, D., & Heng, P.-A. (2019b). Pu-gan: A point cloud
upsampling adversarial network. Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, 7203–7212.

Liang, M., Yang, B., Wang, S., & Urtasun, R. (2018). Deep continuous fusion for multi-
sensor 3d object detection. Proceedings of the European Conference on Computer
Vision (ECCV), 641–656.

Lipman, Y., Cohen-Or, D., Levin, D., & Tal-Ezer, H. (2007). Parameterization-free pro-
jection for geometry reconstruction. ACM Transactions on Graphics (TOG), 26 (3),
22–es.

Liu, Z., Zhang, Z., Cao, Y., Hu, H., & Tong, X. (2021). Group-free 3d object detection via
transformers. Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2949–2958.

Livox. (2022). Livox-sdk/lio-livox: A robust lidar-inertial odometry for livox lidar. https:
//github.com/Livox-SDK/LIO-Livox

Mao, J., Shi, S., Wang, X., & Li, H. (2022). 3d object detection for autonomous driving:
A review and new outlooks. arXiv preprint arXiv:2206.09474.

McCrae, J., Mordatch, I., Glueck, M., & Khan, A. (2009). Multiscale 3d navigation. Pro-
ceedings of the 2009 Symposium on Interactive 3D Graphics and Games, 7–14.

Milletari, F. (2018). Hough voting strategies for segmentation, detection and tracking (Doc-
toral dissertation). Technische Universität München.

Moosmann, F., Pink, O., & Stiller, C. (2009). Segmentation of 3d lidar data in non-flat
urban environments using a local convexity criterion. 2009 IEEE Intelligent Vehicles
Symposium, 215–220.

Pham, Q.-H., Sevestre, P., Pahwa, R. S., Zhan, H., Pang, C. H., Chen, Y., Mustafa, A.,
Chandrasekhar, V., & Lin, J. (2020). A 3d dataset: Towards autonomous driving
in challenging environments. 2020 IEEE International Conference on Robotics and
Automation (ICRA), 2267–2273.

Phan, A. V., Le Nguyen, M., Nguyen, Y. L. H., & Bui, L. T. (2018). Dgcnn: A convolutional
neural network over large-scale labeled graphs. Neural Networks, 108, 533–543.

Pickup, D., Sun, X., Rosin, P. L., Martin, R. R., Cheng, Z., Nie, S., & Jin, L. (2015).
Shrec’15 track: Canonical forms for non-rigid 3d shape retrieval.

Preiner, R., Mattausch, O., Arikan, M., Pajarola, R., & Wimmer, M. (2014). Continuous
projection for fast l1 reconstruction. ACM Transactions on Graphics (TOG), 33 (4),
47–1.

Qi, C. R., Litany, O., He, K., & Guibas, L. J. (2019). Deep hough voting for 3d object
detection in point clouds. Proceedings of the IEEE/CVF International Conference
on Computer Vision, 9277–9286.

61

https://github.com/Livox-SDK/LIO-Livox
https://github.com/Livox-SDK/LIO-Livox

Qi, C. R., Su, H., Mo, K., & Guibas, L. J. (2017a). Pointnet: Deep learning on point
sets for 3d classification and segmentation. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 652–660.

Qi, C. R., Yi, L., Su, H., & Guibas, L. J. (2017b). Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. Advances in Neural Information Processing
systems, 30.

Qian, G., Abualshour, A., Li, G., Thabet, A., & Ghanem, B. (2021). Pu-gcn: Point cloud
upsampling using graph convolutional networks. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 11683–11692.

Shilane, P., Min, P., Kazhdan, M., & Funkhouser, T. (2004). The princeton shape bench-
mark. Proceedings Shape Modeling Applications, 2004., 167–178.

Soler, F., Melero, F. J., & Luzón, M. V. (2017). A complete 3d information system for
cultural heritage documentation. Journal of Cultural Heritage, 23, 49–57.

Song, S., Lichtenberg, S. P., & Xiao, J. (2015). Sun rgb-d: A rgb-d scene understanding
benchmark suite. Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 567–576.

Suhr, J. K., & Jung, H. G. (2016). Automatic parking space detection and tracking for un-
derground and indoor environments. IEEE Transactions on Industrial Electronics,
63 (9), 5687–5698.

Uy, M. A., Pham, Q.-H., Hua, B.-S., Nguyen, T., & Yeung, S.-K. (2019). Revisiting point
cloud classification: A new benchmark dataset and classification model on real-world
data. Proceedings of the IEEE/CVF International Conference on Computer Vision,
1588–1597.

Wang, Y., Wu, S., Huang, H., Cohen-Or, D., & Sorkine-Hornung, O. (2019). Patch-based
progressive 3d point set upsampling. Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 5958–5967.

Williams Jr, G. M. (2017). Optimization of eyesafe avalanche photodiode lidar for au-
tomobile safety and autonomous navigation systems. Optical Engineering, 56 (3),
031224–031224.

Wu, B., Wan, A., Yue, X., & Keutzer, K. (2018). Squeezeseg: Convolutional neural nets
with recurrent crf for real-time road-object segmentation from 3d lidar point cloud.
2018 IEEE International Conference on Robotics and Automation (ICRA), 1887–
1893.

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., & Xiao, J. (2015). 3d shapenets:
A deep representation for volumetric shapes. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 1912–1920.

Yan, Y., Mao, Y., & Li, B. (2018). Second: Sparsely embedded convolutional detection.
Sensors, 18 (10), 3337.

62

Yang, Y., Feng, C., Shen, Y., & Tian, D. (2018). Foldingnet: Point cloud auto-encoder via
deep grid deformation. Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 206–215.

Yang, Z., Sun, Y., Liu, S., & Jia, J. (2020). 3dssd: Point-based 3d single stage object de-
tector. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 11040–11048.

Yu, L., Li, X., Fu, C.-W., Cohen-Or, D., & Heng, P.-A. (2018). Pu-net: Point cloud up-
sampling network. Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2790–2799.

Yuan, W., Khot, T., Held, D., Mertz, C., & Hebert, M. (2018). Pcn: Point completion
network. 2018 International Conference on 3D vision (3DV), 728–737.

Zhang, Y., Zhao, W., Sun, B., Zhang, Y., & Wen, W. (2022). Point cloud upsampling
algorithm: A systematic review. Algorithms, 15 (4), 124.

Zhang, Z., Sun, B., Yang, H., & Huang, Q. (2020). H3dnet: 3d object detection using hybrid
geometric primitives. Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XII 16, 311–329.

Zhou, J., Tan, X., Shao, Z., & Ma, L. (2019). Fvnet: 3d front-view proposal generation
for real-time object detection from point clouds. 2019 12th International Congress
on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-
BMEI), 1–8.

Zhou, Y., & Tuzel, O. (2018). Voxelnet: End-to-end learning for point cloud based 3d
object detection. Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 4490–4499.

63

	Author's Declaration
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Objectives of Thesis
	Structure of the Thesis

	Background and Related Work
	Terminology Definition
	Point Cloud Upsampling Methods
	Non-Deep Learning-Based Methods
	Deep learning-based methods

	Benchmark
	Datasets
	Evaluation Metrics

	Object Detection Method
	Grid and Voxel-based method
	Point-based method

	Chapter Summary

	Proposed Methodology
	Workflow
	Dataset
	Dataset Collection and Specifications
	Data Preprocessing

	Point Cloud Upsampling
	Point Cloud Object Detection
	Object Detection Method
	Model Training
	Evaluation Metric

	Chapter Summary

	Results and Discussion
	Experimental Setups
	Experimental Results
	Quantitative Results of the Underground Parking Lot Dataset
	Qualitative Results of the Underground Parking Lot Dataset
	Quantitative Results of SUN RGB-D Dataset

	Chapter Summary

	Conclusions and Recommendations
	Conclusions
	Contributions
	Recommendations for Future Research

	References

