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Abstract

Automated detection of small objects such as vehicles in images of complex urban
environments taken by unmanned aerial vehicles (UAV) is one of the most challenging tasks
in computer vision and remote sensing communities, with various applications ranging from
traffic congestion surveillance to vision systems in intelligent transportation. Deep learning
models, most of which are based on convolutional neural networks (CNNs), have been
commonly used to automatically detect objects in UAV images. However, the detection
accuracy is still often unsatisfactory due to the shortcomings of CNNs. For instance,
CNN collects data from nearby pixels, but spatial information is lost due to the pooling
operations. As such, it is difficult for CNNs to model certain long-range dependencies.

In this thesis, we propose a Swin Transformer-based model that incorporates convolu-
tions with the Swin Transformer to extract more local information, mitigating the problem
of small object detection from complex backgrounds in UAV images and further improving
the detection accuracy. By using the Swin Transformer, our model leverages both the
local feature extraction of convolutions and the global feature modeling of transformers.
The framework was designed with two main modules, a local context enhancement (LCE)
module and a Residual U-Feature Pyramid Network (RSU-FPN) module. The LCE mod-
ule is used to implement dilated convolution and increase the receptive field of each image
pixel. By combining with the Swin Transformer block, it can efficiently encode various
spatial contextual information and detect local associations and structural information
within UAV images. In addition, the RSU-FPN module is designed as a two-level nested
U-shaped structure with skip connections to integrate multi-scale feature maps. A loss
function combining normalized Gaussian Wasserstein distance and L1 loss is also intro-
duced, which allows the model to be trained using imbalanced data. The proposed method
was compared with the state-of-the-art methods on the UAVDT dataset and Vis-Drone
dataset. Our experimental results obtained on the UAVDT dataset indicated that our
proposed method increased the average precision (AP) by 21.6%, 22.3% and 25.5% over
Cascade R-CNN, PVT and Dynamic R-CNN detectors, respectively, demonstrating its
effectiveness and reliability on small object detection from UAV images.
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Chapter 1

Introduction

1.1 Statement of Problems

With the popularization and commercialization of drones, the cost of using airborne remote
sensing decreases year-by-year. The significance of UAV images has permeated many
industries, including disaster monitoring [1],[2], ecological environmental conservation [3],
mineral resource exploration, and public safety. The UAV image contains an extensive
amount of useful information that can be retrieved and used in various sorts of research,
both in science and technology. Automatic object detection is an essential direction for
computer vision since it can reduce human resource consumption while processing images
efficiently and intelligently. In the field of computer vision, traditional object detection
methods are usually based on low-level features from a class-specific learner (e.g. SVM)
to predict a single class of images using sliding window methods and constructed features
such as Histogram of Oriented Gradient (HoG) [4] and Scale-Invariant Feature Transform
(SIFT) [5]. However, real-world surroundings may be too complicated and variable for
traditional object detection methods to process. Objects may be covered by additional
items or environmental elements such as shadows and reflections. Furthermore, influenced
by various factors, for instance, the weather condition, light intensity, and the parameters
of sensors, the current demands for object detection tasks in UAV imagery cannot be
satisfied by conventional approaches.

In recent years, the field of object identification of natural images has made significant
strides forward with the advance of deep learning. The utilization of deep learning tech-
niques has revolutionized the area of object detection, providing a precise and effective
method to recognize objects in complicated and constantly changing surroundings.
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Convolutional neural networks (CNNs) possess remarkable capabilities for adapting to
new data and extracting meaningful features and outperform traditional object detection
methods. Two-stage methods, for instance, R-CNN [6], Faster R-CNN [7], Cascade R-
CNN [8], and Dynamic R-CNN [9] use region proposal and object classification. These
methods identify potential regions in the image and use a classifier to assess the presence
of objects within the regions identified in the first stage, and further categorize the object.
However, most CNN-based models prioritize complex architectural designs like residual
learning [10, 11] and dense connections [12]. CNN-based models are intended to process
specific, nearby areas of an image and might not be proficient at obtaining a holistic
understanding of the global contextual information in which an image appears.

With attention mechanisms [13] making a big splash, transformer-based models became
more and more utilized in object detection tasks [14, 15] to compensate for the incapac-
ity of CNN models to model long-range dependencies between objects and features in an
image. Dosovitskiy [16] produces a method without convolutions called vision transformer
(ViT), which uses self-attention mechanisms to capture global dependencies between im-
age patches. Swin Transformer [17] utilizes a shifted window scheme that facilitates the
modeling of long-range dependencies in the image data.

Although gratifying results have been achieved in general object detection, the ability
of transformers to detect small objects on UAV images remains limited. The performance
of the transformer-based model on the UAV image dataset is far from satisfactory in terms
of accuracy and efficiency. Several special challenges cause difficulties in aerial image de-
tection: Compared with the image, the target usually has a smaller scale. Unlike objects
with appropriate proportions, small objects pose more significant challenges because of
their small size and the complex background, which will seriously deteriorate the feature
representation, thus challenging the most advanced object detector [18]. Compared to
natural images, the performance of representation learning for UAV images is negatively
impacted by scale differences. As images are transmitted in the models, their resolution
may degrade and the images may become blurred after being encoded and decoded, result-
ing in small objects merging into the background. Hence, detectors must be designed to
distinguish small objects from the surrounding background. Moreover, it is typical for the
small targets to be sparsely and unevenly distributed across the entire image. Figure 1.1
shows the examples captured by a UAV platform with a resolution of 1080 x 540 pixels.

In the realm of object detection, one of the most significant hurdles is effectively pro-
cessing features across multiple scales. Early methods of detection relied on pyramid fea-
ture hierarchies extracted from backbone networks to make predictions. Feature Pyramid
Network (FPN) [19] was one of the first techniques to propose a top-down approach for
combining multi-scale features. Since then, other methods such as PANet [20], STDN [21],
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Figure 1.1: RGB UAV image with bounding boxes of vehicles overlay in blue.

M2det [22], and BiFPN [23] have been developed to further improve multi-scale feature
fusion. More recently, NAS-FPN [24] utilized neural architecture search to automatically
design feature network topology. However, this approach required significant computa-
tional resources and produced a network that was challenging to interpret. In this thesis,
we present a novel RSU-FPN network, which provides a more intuitive and systematic
approach to enhancing feature fusion across multiple scales.

1.2 Objectives and Contributions

We intend to develop a new model to mitigate the problem of detecting small-scaled ob-
jects which appear relatively small in size and have fine details that may be difficult to
discern in UAV images. Moreover, we intend to conduct a comparative analysis on two
public datasets. Furthermore, we plan to implement quantitative analysis and compare
the metrics to show the extent of improvement to existing models.

In this work, we develop an object detection method for recognizing UAV images based
on Swin-Transformer [17], which detects not only the bounding box of identified small
objects but returns their classification. We propose a Local Enhancement Module in con-
junction with Swin Transformer to boost the network’s ability of perceiving the local
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context. The motivations of this work are (1) to develop a new model for better detection
of small objects in UAV images to support urban surveillance and (2) to design a better
loss function for quantifying the similarity of two bounding boxes.

The major contributions of this work are listed below:

First, a Local Context Enhancement module is introduced into Swin Transformer to
enhance the local perception.

Next, we propose a new multiscale feature fusion module, i.e., RSU-FPN for small
object detection from UAV images.

In addition, we propose a new loss function by combining L1 loss with Normalized
Gaussian Wasserstein Distance for training unbalanced samples.

Finally, our method achieves state-of-the-art performance on UAVDT [25] dataset and
Vis-Drone [26] dataset.

1.3 Thesis Outline

This thesis is divided into five chapters. Each chapter is constructed as follows. Chapter 1
introduces the statement of challenges of object detection on UAV images, the objectives
of the study, and the main contributions in this work. Chapter 2 presents a summary of
frequently used deep learning approaches for object identification in both natural images
and UAV images, coupled with comparisons of the strengths and shortcomings of various
methods. Chapter 3 illustrates the conceptual framework of the proposed method as well as
the evaluation metrics. Two mainstream datasets are used to evaluate the performance of
our method. The results obtained from the quantitative evaluation, qualitative evaluation,
and ablation study are exhibited in Chapter 4. Finally, Chapter 5 summarizes the conclu-
sions and recommendations of the work and indicates several potential improvements in
the directions for future works.
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Chapter 2

Literature review

This section provides a review of relevant research in relation to the proposed study, pri-
marily covering five topics: traditional object detection methods, generic object detection,
object detection in UAV images, feature fusion networks, and data augmentation.

2.1 Traditional Object Detection

Conventional approaches for object detection rely on manually crafted and extracted fea-
tures. Additionally, simpler machine learning techniques such as SVM, decision trees, and
random forests are commonly used. These methods follow a common architecture that can
be divided into three main stages: proposal creation, feature representation extraction, and
classification. In the proposal creation stage, the algorithm often employs sliding windows
to locate areas within the image that are presumed to contain objects of interest. The
feature representation extraction stage involves extracting feature vectors from the regions
of interest identified in the previous stage. During the feature extraction stage, feature
vectors are obtained and subsequently encoded using descriptors like HOG [4], Haar [27],
SIFT [5], or Speeded Up Robust Features (SURF) [28]. Finally, the classification stage
is trained to establish a correlation between object labels and the regions that have been
suggested and encoded by feature descriptors.

P. Viola and M. Jones [29] utilizes Haar-like [27] features, integral image calculations,
Adaboost, and a cascading classifier. To detect Haar-like features, the algorithm slides a
small window across the input image and computes integral images to reduce the compu-
tational complexity. Each Haar-like feature is then evaluated using a trained Adaboost

5



classifier, which identifies the classifier associated with that feature. Finally, the classifiers
are combined using a cascading approach, in which each stage has a set of classifiers that
are applied in sequence to filter out negative samples.

Navneet Dalal and Bill Triggs [4] made substantial progress in feature extraction and
object detection by enhancing the Scale-Invariant Feature Transform (SIFT) [5] algorithm
and introducing a new feature descriptor known as the Histogram of Oriented Gradients
(HOG) [4]. After the image has been divided into small, interconnected regions(cells), a his-
togram is created to represent the angle directions or edge orientations of the pixels within
each cell. The histogram is generated based on the gradient orientation. Subsequently, the
cells are partitioned into distinct bins. Adjacent cells are then clustered together within
the same spatial region. Finally, the collection of normalized histograms forms the block
histogram, and the set of these block histograms constitutes the descriptor, which serves
as the basis for histogram aggregation and normalization in the HOG method.

Despite the fact that traditional object detection algorithms are used less frequently in
contemporary research, they continue to be influential in history. The techniques and con-
cepts introduced by these algorithms have served as crucial guidance and inspiration for the
advance of modern deep learning algorithms. For instance, the Non-Maximum Suppres-
sion [30] algorithm facilitates the elimination of duplicated prediction anchors. However,
the traditional object detection method has some drawbacks that limit its effectiveness
in modern applications. An example of a limitation of the traditional object detection
method is that it often generates a significant number of proposal anchor boxes that are
either redundant or invalid. These boxes may not accurately match with any actual object
of interest and can result in increased processing time and higher computational costs.
Furthermore, manually designed features are often based on prior knowledge or assump-
tions about the data, and may not adapt to new or changing environments. As a result,
traditional object detection methods may struggle to achieve high accuracy in challenging
or unfamiliar scenarios.

2.2 Generic Object Detection

Deep learning has led to considerable progress in object detection in recent years. Deep
neural network-based object detection techniques can be categorized into two-stage and
one-stage detectors [31]. The two-stage method generates region proposals and predicts
categories for each region proposal. For one stage detector, the process of object classifi-
cation and bounding-box regression is performed directly on the image without relying on
pre-generated region proposals.
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Two-stage detectors divide the process into two distinct steps: region proposal and
object classification. Ren et al. [7] put forward RPN which uses the convolutional neural
network to generate region proposals directly and identifies the objects based on the propos-
als extracted from RPN. As it increased the efficiency and precision of object identification
tasks, it is regarded as an important advancement in computer vision. A region proposal
network (RPN) is used by Faster R-CNN [7] to provide region proposals for the objects in
an image. The object proposals are then classified and improved using a region-based con-
volutional neural network (R-CNN), which receives the input from these proposals. While
the RPN and R-CNN share convolutional layers, the model is quicker and more effective.
In comparison to earlier models, this method enables Faster R-CNN to provide state-of-
the-art results on a number of benchmark datasets at a much lower computational cost.
The invention of the Faster R-CNN has inspired following object identification research and
is now a well-liked option in practical applications, including as self-driving automobiles,
video surveillance, and face recognition. Terrail [32] utilizes the Faster R-CNN algorithm
to identify vehicles in the infrared images in VEDAI [33] dataset, and their approach yields
an average precision of 77.8% and a recall of 31.04% in detecting objects.

Mask R-CNN [34] is a sophisticated model that builds upon the Faster R-CNNmodel. It
employs a two-stage approach like Faster R-CNN and incorporates a segmentation branch
to improve the primary model. The model begins by using a region proposal network
(RPN) to generate proposals for regions of interest in the image. Then, a region-based
convolutional neural network (R-CNN) is utilized to classify and refine the proposed re-
gions. Additionally, the model enhances ROI Pooling with the use of ROI Align, which
employs bilinear interpolation to acquire pixel values. Overall, Mask R-CNN represents a
significant advancement in object detection and segmentation technology. Mask R-CNN
has the advantages of simple structure, good flexibility, and remarkable effect. Vemula et
al. [35] perform Mask RCNN on the powerline dataset and achieve good performance.

In the cascade [8] architecture, the initial detector produces a substantial number of
region proposals using less strict thresholds. The subsequent detector applies more rigor-
ous thresholds to filter the proposals generated by the previous stage. Finally, the most
stringent detector only accepts a few proposals for further processing and object detection.
The Cascade R-CNN detection network uses the initial regression of the anchor to obtain
the input Region of Interest (RoI) for the first detection head. Nevertheless, the direct
use of multiple classifiers makes it challenging to train a regressor that produces accurate
results for potentially perplexing categories [36].

Dynamic R-CNN [9] is a SOTA object detection model which is proposed to au-
tonomously modify the criteria for assigning labels and the loss function based on the
candidate proposals. The dynamic architecture enables more efficient utilization of the
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training data and challenges the model to accommodate a greater variety of high-quality
data inputs.

While the two-stage algorithm is known for its high accuracy in object detection, it is
computationally expensive and can hinder its real-world application. Unlike two-stage de-
tectors, single-stage object detectors consider the object detection problem as a regression
task. One-stage object detection methods, such as those in the YOLO [37] family, have
gained significant popularity in recent years due to their efficiency and high speed.

Redmon [37] introduces a novel approach that merges the feature extraction and local-
ization part into a holistic structure. The YOLO architecture partitions the input into a
grid and instructs each grid cell to predict the category probabilities and the localization of
the object within that cell. Furthermore, it does not require external region proposal tech-
niques to generate potential object locations, which speeds up the inference time. However,
the limitation of the Yolo network is that it can only identify a finite number of objects in
each grid, which makes it challenging to achieve dense predictions and it is not accurate in
identifying small targets. Redmon et al. propose an improved version YOLOv2 [38] which
involves the use of Darknet for implementation and achieves a mean average precision
(mAP) of 76.8% on the Pascal VOC 2007 [39] dataset. In addition, the concept of feature
pyramid networks (FPN) is introduced in YOLOv3 [40] to detect objects at different scales
and smaller objects that are not easily detected by earlier versions of YOLO.

Ning et al. [41] add Pyramidal Feature Hierarchy, predicting the object on a feature map
with different receptive fields. The SSD model employs a multi-scale feature map technique
to find objects in the image at various sizes and positions and utilizes pre-defined anchor
boxes of varying sizes and aspect ratios to anticipate the locations of objects. Soleimani
[42] uses an SSD detector to generate object regions of interest from low-altitude aerial im-
ages. One significant challenge faced by the SSD network is the computational complexity
associated with detecting feature maps of different scales. Furthermore, when confronted
with occlusion and background noise in highly dense crowds, SSD will achieve unsatisfac-
tory results. SSD involves utilizing low-level feature maps to predict small objects, due
to their limited receptive fields, they cannot effectively capture high-level semantic infor-
mation from the surrounding, resulting in the inaccurate detection of partially obstructed
objects. To address the issue, Wang et al. integrate the channel-wise attentional module
into the existing SSD model. Lu et al. [43] propose a feature fusion SSD to enhance
the detection performance on NWPU VHR-10 dataset [44]. These algorithms are aimed
at improving the accuracy of detecting small targets. As the literature mentioned above,
one-stage detectors are appropriate for balancing speed and accuracy. However, the size
of the object is a significant challenge when it comes to object detection in UAV images.
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2.3 Object Detection in UAV Images

Despite significant advancements have been achieved in object detection in natural scenes,
the performance in high-resolution UAV images is not satisfactory. UAV image object
detection poses greater challenges compared to general object detection due to several fac-
tors. First, small objects comprise a larger portion of the UAV image dataset. In addition,
UAV images typically offer a top-down perspective and broad coverage area because of the
elevated viewpoint from high altitudes. Due to variations in camera viewpoint, the size of
objects can vary greatly both within an image and across different categories. Therefore,
researchers specialize in searching for frameworks for detecting small objects.

ClusDet [31] is designed as an end-to-end cluster detection framework to concurrently
tackle the challenges associated with detecting objects in aerial images, including the vari-
ations in object size and the sparse distribution of objects in the scene. Furthermore,
an efficient ScaleNet is introduced to mitigate the heterogeneous size problem in densely
populated regions, leading to the improvement of object detection. A multi-object image
is divided into numerous images with fewer objects and extends or fills the photographs
based on the respective sizes of the split images. However, the effectiveness of this method
is heavily influenced by model parameter selection, including but not limited to the de-
termination of the number of clusters (N) which must be decided beforehand and cannot
be adjusted later [45]. If the overall count of objects within the image is greater than
N, certain regions will undoubtedly be disregarded, forcing these overlooked zones to be
inaccurately identified, leading to a decline in detection accuracy. In addition, ClusDet is
specifically designed for object detection in aerial images, it may not perform as well on
other datasets.

General object detectors often struggle to accurately detect and count the number of
people in highly dense environments. To cope with the issue, Li et al. [46] incorporate
density maps into aerial image object detection. A density map-guided image cropping
method is introduced to leverage contextual and spatial information among objects, leading
to superior object detection accuracy. Moreover, an efficient algorithm is put forward for
producing image crops without the need for extra deep neural network training. The
density map is subjected to a sliding window to obtain the total pixel intensity, which
is then compared to a preset threshold to create a mask, and areas with density values
exceeding the threshold are selected to form image crops. The output is produced by
combining the results from the image crops and the original image. The limitation of the
method is that the establishment of reliable density maps is a complicated procedure and
may call for extra resources and knowledge. As a result, the usefulness of this approach
may be restricted in some circumstances.
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The shooting altitude of UAVs may vary substantially. As a consequence, objects in
the same category might vary significantly in size, making anchor-based detectors difficult
to establish the anchor size. Thus, it is important to minimize the variation in object
size among images. To solve the issue, clustering algorithms are used in CRENet [47]
to search for regions containing dense targets. By calculating the difficulty value of each
clustered region, difficult regions are mined, and simple clustered regions are eliminated
to improve detection speed. The experimental results indicate that CRENet achieves
good performance on the VisDrone [48] dataset. However, the selection of the clustering
parameters results in a significant influence on the method’s performance and the adaptive
searching mechanism utilized to discover object candidates is critical to the efficacy of this
approach. Omitted detections and erroneous object localizations may occur if the adaptive
searching procedure is not sufficiently strong.

Moreover, the motion blur caused by flying at high speeds and low altitudes can affect
densely packed objects, making it even more challenging to distinguish individual objects
accurately. To solve the issue, TPH-YOLOv5 [49] is added an additional prediction head to
identify distinct-scale objects and the Transformer Prediction Heads (TPH) are introduced
to investigate the predictive capabilities of the self-attention mechanism. Additionally,
the convolutional block attention model (CBAM) is incorporated to identify regions of
attention on the scenes containing high-density targets. However, the use of an additional
prediction head results in a significant requirement for computing resources and can be
time-consuming.

2.4 Feature Fusion Networks

To enhance the recognition of tiny and dense objects in UAV images, researchers have
suggested several ideas such as enhancing feature maps, utilizing context information,
and employing data enhancement techniques. By implementing these concepts, numer-
ous multi-scale object detection techniques have been developed, including FS-SSD [50],
HRDNet [51], and MPFPN [52].

Feature Pyramid Network(FPN) [19] takes input images of any size and produces fea-
ture maps at multiscale that are proportional to the input image size and employs a
combination of feature extraction and feature aggregation through lateral connections to
integrate high-resolution and on a semantic level deficient characteristics alongside low-
resolution and on a semantic level robust characteristics [50]. Nuri [53] utilizes Mask
R-CNN with FPN to extract trees from high-resolution RGB UAV images, which sustains
a considerable degree of accuracy in the detection.
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Liu et al. [51] introduce a new high-resolution detection model, which takes image hi-
erarchy and feature hierarchy into account. HRDNet creates the MD-IPN, a module with
multiple depths and streams, to achieve a balance in performance across small, medium,
and large objects. Additionally, another novel module, MS-FPN, is proposed to appro-
priately integrate the multiscale features, which combines diverse semantic representa-
tions from these feature groups at various scales and achieve SOTA performance on MS
COCO2017 [54] dataset.

Liang et al. [50] introduce a single-shot detector that employs feature fusion and scaling.
FS-SSD creates two feature pyramids to detect small objects through the optimization of
the feature fusion module and the incorporation of the deconvolution operation alongside
the average pooling operation. The addition of average pooling can aid in mitigating
network overfitting by reducing the overall number of parameters and offering background
image information.

Current object detectors that rely on deep learning typically use feature extraction net-
works with a significant down-sampling factor to get high-level characteristics. However,
this often results in the loss or disappearance of feature information for smaller objects be-
cause of the limited number of pixels in low-resolution feature maps. Therefore, two extra
parallel branches are added in MPFPN [52], which perform up-sampling and lateral con-
nections from their respective layers. The subsequent pyramid layers are merged to collect
their features. The Supervised Spatial Attention Module (SSAM) integrated into MPFPN
is intended to counter the presence of complicated background noise and accentuate the
foreground information.

2.5 Data Augmentation

Data augmentation is an effective method for overcoming a dearth of training data and is
now extensively employed in a variety of deep learning applications. It artificially extends
the dataset by generating more equivalent data from a limited amount of data, thereby
increasing the size and diversity of the dataset. The commonly used technique for ad-
dressing the problem of class imbalance is data augmentation. Along with conventional
techniques such as flipping and rotating [55], various new data augmentation methods have
also been put forward. Currently, common methods of data augmentation such as Mosaic
[56], Mixup [57], and CopyPaste use various approaches to merge the pixel information of
several images into one single image in order to enhance the overall information available
in the image. A method called SamplePairing [58] has been introduced, which involves
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overlaying two different images and computing the average pixel values. The approach us-
ing Generative Adversarial Neural Networks (GANs) [59] involves mixing and combining
different images to generate fresh training samples. AdaResampling [60] utilizes a segmen-
tation CNN to produce a contextual map beforehand and arranges the objects based on
their scale and position. Manifold Mixup [61] involves training neural networks on the
combined linear representations of hidden features from the training examples. In Align-
Mixup [62], feature tensors are explicitly aligned to create soft correspondences between
two images.

2.6 Chapter Summary

In accordance with the findings of the literature review, deep learning methods outper-
form traditional object detection methods. While one-stage detectors are known for their
high speed, they often exhibit lower detection accuracy compared to two-stage detectors.
Therefore, in this thesis, we decide to propose a new two-stage model which utilizes the
advantages of the deep learning method and the feature fusion network to further improve
the accuracy and performance on UAV image datasets.
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Chapter 3

Improved Swin Transformer-based
Model

3.1 Overview Framework

In this section, a Swin-RSU network that utilizes the standard backbone–neck–head struc-
ture is introduced. Figure 3.1 demonstrates the architecture of Swin-RSUFPN network.
The input image is processed by the proposed Local Context Enhancement Swin Trans-
former (LCEST) backbone. Next, an RSU-FPN is designed to extract multi-scale feature
information for fusion to improve the accuracy of tiny object detection in the neck. Fi-
nally, the most widely used head of Faster R-CNN is utilized to perform feature map
classifications and bounding box regression.

Figure 3.1: The overall architecture of Swin-RSUFPN.
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3.2 Local Context Enhancement Swin Transformer

3.2.1 Swin Transformer Block

The Swin Transformer [17] block is a fundamental component of the Swin Transformer
architecture’s backbone. It is a variation of the ordinary Transformer block that processes
input features using multi-head self-attention and feedforward neural networks. Several
essential modules are introduced in the Swin Transformer block, for instance, the layer nor-
malization module, multi-layer perceptrons module, and multi-head self-attention (MSA)
modules that may be modified using either the conventional windowing (W-MSA) or shift-
ing windowing (SW-MSA) technique. To process an input with feature size H×W×C, Swin
Transformer initially separates it into distinct windows that do not overlap one another.,
each consisting of M×M patches. where H

M
× W

M
refers to the overall count of windows.

Self-attention is calculated for every window to create the attention output of W-MSA.
To establish connections between windows, the self-attention operation is applied to each
individual window by moving the feature by (⌊M

2
⌋, ⌊M

2
⌋) before partitioning. With a local

window feature X ∈ RM2×C , the Q, K and V matrices are constructed as follows:

Q = XPQ, K = XPK , V = XPV , (3.1)

The matrices PQ, PK , and PV are utilized in the Swin Transformer for projection
purposes and are common to multiple windows, allowing for efficient computation and
reduced parameterization. As a result, employing the mechanism of self-attention within
a specific local window, the attention matrix is computed as:

Attention(Q,K, V ) = SoftMax(QKT/
√
d+B)V, (3.2)

the relative positional encoding B is capable of being trained.

The Swin Transformer utilizes non-overlapping local windows to perform self-attention
computation by shifting the window partition between two subsequent levels in the hier-
archical map [63]. As shown in Figure 3.2, both layers on the left and right sides possess
the same window size. The left layer adopts the window partitioning method, commencing
from the upper left corner, and dividing 8x8 feature maps evenly into 2x2 windows, with
each window size of 4x4. As shown on the right side in Figure 3.2, shifted window tech-
nique is used to generate new windows. These cross-window connections across overlapping
windows are like the behavior of the CNN.
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Figure 3.2: Illustration of the shifted window in Swin Transformer Block.

3.2.2 Local Context Enhancement Module

Position coding in the transformer is unsatisfactory for detecting local associations and
structural information in images. Despite having a shifted window approach with sequen-
tial layers and a hierarchical structure, the Swin transformer still struggles to effectively
encode a wide variety of spatial context information. To solve this issue, we proposed
Local Context Enhancement Module that can be utilized in combination with the Swin
Transformer block. As illustrated in Figure 3.3, a dilated convolution layer followed by a
batch normalization layer and a RELU activation function is inserted in front of the Swin
Transformer block. Dilated convolution can widen the receptive field of spatial images,
making it possible to more accurately encode the multi-scale contextual information, ef-
fectively resolving the issue of inadequate spatial information extraction. A bigger number
for the receptive field of a neuron indicates that it has access to a broader range of original
images, suggesting that it may include information at a higher semantic level.

With the Local Context Enhancement Module applied, the notation of consecutive
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Figure 3.3: Two Successive Local Context Enhancement Swin Transformer Blocks.

Local Context Enhancement Swin Transformer blocks is computed as

x̃l = RELU(BN(DCONV (xl−1)),

x̂l = W-MSA
(
LN
(
x̃l
))

+ xl−1,

xl = MLP
(
LN
(
x̂l
))

+ x̂l,

x̃l+1 = RELU(BN(DCONV (xl)),

x̂l+1 = SW-MSA
(
LN
(
x̃l+1

))
+ xl,

xl+1 = MLP
(
LN
(
x̂l+1

))
+ x̂l+1, (3.3)

where x̃l, x̂l and xl indicate the output features of the RELU activation function, (S)W-
MSA module and the MLP module, respectively; W-MSA and SW-MSA indicate Windows
Multi-head Self-Attention and Shifted Windows Multi-Head Self-Attention, respectively.
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The scale and computational complexity issues of high-resolution images are resolved
by the Swin Transformer using a window-based hierarchy. The proposed backbone net-
work fully exploits the ability to express global features, captures a wealth of contextual
information and learns more discernible features.

3.2.3 Local Context Enhancement Swin Transformer-Based Net-
work Structure

Fig 3.4 shows the network architecture designed with Local Context Enhancement Swin
Transformer backbone. First, a patch partition layer is used to divide the input image with
the size of HxWx3 into non-overlapping segments. Each patch has a size of 4x4, which is
considered as a ”token” and the feature dimension of the patch is 4x4x3. The feature of
each patch is specified by concatenating the RGB values of the individual pixels. Then,
by utilizing a linear embedding operation, the characteristics are converted to the desired
dimension. To generate a hierarchical representation of the features, building on the pro-
posed Local Context Enhancement Swin Transformer(LCEST) backbone, the hierarchical
structure comprises four levels. The output resolution of ”Stage 1”, ”Stage 2”, ”Stage 3”
and ”Stage 4” is H

4
× H

4
, H

8
× H

8
, H

16
× H

16
and H

32
× H

32
, respectively.

Figure 3.4: The overall architecture of Local Context Enhancement Swin Transformer.
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3.3 RSU-FPN

3.3.1 U-block Architecture

We proposed a U-block which is created as a symmetrical U-shape encoder-decoder struc-
ture. It contains a number of 3x3 convolution layers placed in a series. A set of filters
is applied to the input feature map in the first stage of the U-block to enhance the fea-
tures with a varied number of channels. The filters are refined to recognize certain input
characteristics, such as edges, corners, or textures. Multi-scale features are obtained by
downsampling feature maps in a gradual manner and the characteristics are subsequently
converted into feature maps of high resolution through a range of methods, such as progres-
sive upsampling, concatenation, and convolution. The combination of convolution, batch
normalization, activation, downsampling, and upsampling is used in the design of U-block
to capture intricate interactions between the input and output.

A convolutional input layer takes the input feature map x, which has dimensions of
H×W×Cin, and converts it to an intermediate map F1(x) with the number of channels
equal to Cout. As demonstrated in Figure 3.5, the symmetric encoder-decoder structure is
designed to take in the F1(x) feature map generated at an earlier stage of the network, the
model is capable of extracting and encoding contextual information Φ(F1(x)) at multiple
scales in a way that has been specifically trained. Φ refers to the symmetrical U-shape
structure. Moreover, the local features and multi-scale features are fused together using a
residual connection through summation, which is represented as F1(x) + Φ(F1(x)).

Figure 3.5: Architecture of U-block.
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3.3.2 Residual U-FPN Network

In Figure 3.1, our study proposes the implementation of a Top-Down pathway to generate
high-resolution features through the process of upsampling the maps of characteristics
originating from higher pyramid stages. which are semantically more meaningful but have
a lower spatial resolution. Additionally, we adopt U-block as the foundational architecture
and use the notation {P2, P3, P4, P5} to represent the feature levels produced by our
improved Swin Transformer backbone. Each feature map {P2, P3, P4, P5} passes through
a U-block and generates a new feature map {N2, N3, N4, N5}, respectively. The spatial
resolution is gradually reduced by a factor of down-sampling as we progress from P2 to P5.
Furthermore, our framework deploys an enhancement of the Top-Down Path. The newly
generated feature maps that correspond to {N2, N3, N4, N5} are represented by {F2, F3,
F4, F5}. The U-block in Top-Down Path receives the input as the takes the concatenation
of feature maps that have been upsampled from the corresponding level Ni. Noted that
N5 is equivalent to F5, with no processing involved in F5.

3.4 Bounding Box Regression Loss Function

Since real objects are rarely precise rectangles, the bounding boxes of tiny objects often
contain background pixels. The bulk of the foreground pixels in these bounding boxes is
in the center, whereas most of the background pixels are concentrated at the edges. [64].
Additionally, the efficacy of anchor-based small object detectors is significantly dependent
on the quality of the training samples that are chosen [65]. Unfortunately, given the
restricted number of pixels available to effectively represent the object’s attributes, selecting
acceptable training examples becomes more difficult.

3.4.1 Normalized Gaussian Wasserstein Distance Loss

The Wasserstein distance can be employed to calculate the distance between two distribu-
tions. In the case of two normal distributions, µ1 = N (m1,Σ1) and µ2 = N (m2,Σ2), the
following is the formula for the Wasserstein distance of the second order between these two
distributions. [66]:

W 2
2 (µ1, µ2) = ∥m1 −m2∥22 +

∥∥∥Σ1/2
1 −Σ

1/2
2

∥∥∥2
F

(3.4)
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Moreover, if we consider Gaussian distributions Na and Nb that are generated based on
the bounding boxes A = (xa, ya, wa, ha) and B = (xb, yb, wb, hb), it is possible to simplify
the equation as:

W 2
2 (Na,Nb) =

∥∥∥∥∥
([

xa, ya,
wa

2
,
ha

2

]T
,

[
xb, yb,

wb

2
.
hb

2

]T)∥∥∥∥∥
2

2

(3.5)

By using the exponential form normalization, the Normalized Wasserstein Distance is
calculated as:

NWD (Na,Nb) = exp

(
−
√

W 2
2 (Na,Nb)

C

)
(3.6)

where C represents a custom fixed value. Therefore, the Normalized Gaussian Wasser-
stein Distance loss function is defined as:

LNWD = 1−NWD(Na,Nb) (3.7)

The Gaussian distribution model for the prediction box A is denoted as Na, while the one
for the ground truth box B is denoted as Nb.

However, the Wasserstein distance lacks scale invariance and may not be the most
appropriate option in situations where there is a wide range of object scales within the
dataset.

3.4.2 L1 Loss

L1 Loss is a measure of errors between prediction and ground truth. The equation is shown
below:

LMAE =

∑n
i=1 |yi − xi|

n
(3.8)

Even if the error is minimal, the L1 loss function still modifies the model using a constant
loss value, which causes the absolute value of the error derivative with respect to the
predicted value to remain at 1 when the predicted value is only slightly different from the
ground truth during the later stages of training. If the learning rate remains constant, it
will oscillate around the steady value of the loss function, making it challenging to achieve
higher accuracy through continued convergence.

20



3.4.3 Combined Regression Loss

LC = LNWD + λLMAE (3.9)

We define a combined loss function as a linear combination of the individual loss functions,
where λ is the trade-off parameter. All experiments have their respective modal weights
set to 5 to ensure consistency.

3.5 Experiments

3.5.1 Datasets

To evaluate the effectiveness of our proposed method, we perform our experiments on two
mainstream datasets: UAVDT [25] Dataset and Vis-Drone2019 [48] Dataset.

UAVDT: The UAVDT dataset is a compilation of data collected by a UAV platform
in several metropolitan locations and acts as a standard for UAVs. It covers a range of
scenarios, including plazas, main roads, motorways, toll booths, and intersections. This
dataset includes 40735 images. 60% of the dataset is randomly selected as the training
set, the validation set comprises 10%, and the test set comprises 30%. The image has
a resolution of 1080 × 540 pixels. The UAVDT dataset contains images with a more
complicated background than the VisDrone dataset. The latter dataset is composed of
three separate vehicle types that were evaluated in a total of fourteen unique situations.
These scenarios differ in terms of the prevailing weather conditions, camera views, flight
altitudes, and occlusions. Figure 3.6 shows examples of different scenarios in UAVDT
dataset. Figure 3.7 shows the distribution of UAVDT dataset.
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(a) (b)

(c) (d)

Figure 3.6: Annotated examples of different scenarios in UAVDT [25] dataset. (a) Night
with poor visibility. (b) Nightlight condition. (c) Day with good visibility. (d) Smoggy
weather.
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Figure 3.7: Distribution of UAVDT dataset. [25]

Vis-Drone2019: The dataset contains 10209 drone-captured images in a variety of
locations and scenarios, including urban areas, forests, coastlines, and highways, with
potentially significant differences in quality, scale, and perspective. The object detection
dataset has been divided into 3 subsets, 6471 training images, 548 validation images, and
3190 testing images. There are ten accessible evaluation categories, all of which contain
comprehensive annotations. The images have a resolution of approximately 2000 × 1500
pixels. The images were captured on days with clear skies and excellent visibility, as well as
clouds and reduced visibility. In addition, the dataset comprises images collected at various
times of day, spanning from early morning to late afternoon, which might change the
lighting conditions of the scene. The VisDrone dataset is a tough benchmark for computer
vision algorithms because of its variable weather and lighting conditions. Unfortunately,
the testing phase cannot be completed since the evaluation server is no longer accessible.
Thus, like earlier research, our method is assessed using the validation set. Table 3.1
demonstrates the initial row displays the range of pixel sizes for the objects, and the data
in the second row presents information regarding the quantity of objects that pertain to
the respective size category. Figure 3.8 demonstrates some examples of different scenarios
in VisDrone dataset.

Table 3.1: Distribution of the bounding boxes in VisDrone train and validation set.

Size(pixel) <2002 2002 ∼ 4002 >4002 <322 322 ∼ 642 >962

number 487887 2035 42 306262 159999 23703
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(a) (b)

(c) (d)

Figure 3.8: Annotated examples of different scenarios in VisDrone dataset [26]. (a) Bird
view of the road. (b) Forest. (c) Congested condition. (d) Specific perspective.

3.5.2 Implementation

We conducted our experiments based on the MMDetection [67] toolbox and Pytorch frame-
work. To keep the training results consistent and comparable, we used identical hyperpa-
rameters for the training process. For the training phase, we used AdamW optimizer with
a weight decay of 0.05 and the initial learning rate was set to 0.0001. Furthermore, we
used standard data augmentation techniques for both the training and testing datasets,
including a horizontal random flip with a 0.5 probability. All the networks in this thesis
are trained for 20 epochs since the average precision (AP) shows little improvement after
15 epochs of training. All the experiments are processed on an NVIDIA A100 GPU with
a memory of 48 GB.
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3.5.3 Evaluation Metrics

To verify our proposed method, we utilize precision, recall, Average Precision, AP50, AP75,
APs, APm, and APl as the evaluation metrics. The precision metric calculates the ratio of
true positives out of all the positive detections. Recall refers to a statistic that determines
the ratio of true positives made in comparison to the total number of real objects present
in an image. The F1-score is a statistical metric, calculated as the harmonic mean of the
precision and recall scores, with 1 being the best possible score and 0 representing the
worst possible score. Intersection over Union (IoU) is a metric used to measure the size of
the intersection of two boxes divided by the size of their union. Average precision is the
area under the precision–recall curve. AP represents the average AP value when the IoU
is set at 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, and 0.95. AP75 and AP50 denote
the AP values corresponding to IoU thresholds of 0.75 and 0.50, respectively.

The formulas to calculate these metrics are presented below:

Precision =
TP

TP+FP
(3.10)

Recall =
TP

TP+FN
(3.11)

F1 =
2 x Precision x Recall

Precision+Recall
(3.12)

where TP indicates a correctly categorized positive sample and FP indicates an erroneously
classed positive sample. FN represents a negative sample that is wrongly classified, and
TN represents a negative sample that is correctly classified.
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Chapter 4

Results and Discussions

In this section, we present a comprehensive assessment of our suggested technique through
quantitative evaluation and qualitative evaluation. Furthermore, we conduct an ablation
study to explore the effect of LCEST backbone, the effect of RSU-FPN neck, and the effect
of the combined loss we proposed.

4.1 Quantitative evaluation

We conduct a comparative analysis to assess the effectiveness of our proposed method
compared with the SOTA object detection networks under the same settings, such as
Faster R-CNN, Dynamic R-CNN, and Cascade R-CNN.

Table 4.1: Evaluation metrics (%) for different models on the UAVDT dataset.

Models AP AP50 AP75 APs APm APl Precision Recall F1

FRCNN(ResNet-50) 55.7 69.8 66.9 20.2 79.8 84.6 96.3 61.8 75.3
FRCNN(PVT2-B0) 60.8 71.5 69.8 25.6 84.7 91.6 97.8 70.4 81.9
Cascade-RCNN 61.5 73.5 71.7 30.7 83.8 89.3 98.0 71.5 82.7
Dynamic R-CNN 57.6 65.3 64.6 14.3 86.9 92.7 98.5 64.3 77.8
Proposed Method 83.1 98.8 96.4 76.3 87.5 91.8 98.1 95.8 97.0

The comparative results in Table 4.1 demonstrate that our method achieves AP of
83.1%, which is greater than Faster R-CNN with the ResNet-50 [68] backbone, Faster
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R-CNN with the PVT2-B0 backbone, Cascade R-CNN, and Dynamic R-CNN by 27.4%,
22.3%, 21.6%, and 25.5%, respectively. Furthermore, the proposed method achieves 98.8%
AP50 and 96.4% AP75. Our proposed method has the best performance among these five
models in the evaluation metrics except APl, which is defined as the AP of test results
with object frame sizes larger than 96 pixels. Since our study primarily focuses on the
accuracy of tiny items in UAV images, the accuracy of larger objects may be neglected.
The proposed approach is particularly noteworthy as it shows significant enhancement in
detecting objects of small size. In comparison to the Faster R-CNN that uses the ResNet-
50 as the backbone network, this new method achieves an improvement of 56.1%, 7.7%,
and 7.2% AP for small, medium, and large object detection, respectively. In addition,
the proposed method improved on both APs and APm. Cascade R-CNN can be regarded
as an expanded version of Mask R-CNN that operates in multiple stages and shows an
improvement of 5.8% on AP compared with Faster R-CNN. We get the unsatisfactory
performance of dynamic R-CNN models in detecting small targets, with 57.6% AP, lower
than Cascade R-CNN by 3.9%. Moreover, our method achieves the highest recall and F1-
score, with 95.8% and 97.0%, respectively. The utilization of our technique additionally
empowers the model to identify more objects and achieve improved recall metrics.

Table 4.2: Evaluation metrics (%) for different models on the Vis-Drone dataset.

Models AP AP50 AP75 APs APm APl Precision Recall F1

FRCNN(ResNet-50) 22.4 37.2 23.7 11.0 36.4 40.9 52.1 29.7 37.8
FRCNN(PVT2-B0) 19.4 31.8 20.8 9.1 32.3 37.1 47.2 25.2 32.9
Cascade-RCNN 25.2 40.1 26.8 12.5 40.3 47.7 56.0 31.9 40.6
Dynamic R-CNN 13.7 24.7 13.5 6.4 25.2 15.0 55.4 18.2 27.4
Proposed Method 26.4 45.5 27.0 18.0 36.5 39.4 50.1 36.8 42.4

Table 4.2 illustrates the comparison results between different methods combined with
the respective backbones on the Vis-Drone2019 dataset. The proposed method achieves
superior performance with the highest AP and demonstrates a notable increase in the
precision of object detection, exceeding that of vanilla Faster R-CNN by 3.5% AP. Both
Dynamic R-CNN and Faster R-CNN with PVT2-B0 backbone demonstrate worse perfor-
mance in UAV image object detection. The values of AP50, AP75, and APs are improved
from Faster R-CNN to our proposed method, with an increase of 8.3%, 3.3%, and 7.0%,
respectively. Furthermore, the improvement primarily results from the detection of smaller-
sized objects. The increase in APs by 7.0% is particularly remarkable, which means that
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our method achieved significant results in detecting small objects, effectively improving the
precision of detection. The enhancement of APm and APl is not significant, the possible
reason is that the smallest resolution feature map from the backbone goes through only one
U-block and is not connected by a shortcut between the upper and lower layers of feature
maps. It is notable that our method achieves the highest recall and F1-score which can be
regarded as a significant improvement in the ability to detect small objects compared to
other models.

In addition, we assess the precision and recall for each class, and the PR curves are
depicted in Figure 4.1. When comparing models at the same recall level, the model with
higher precision has better performance. Our model outperforms in most categories and
aids in achieving greater precision for identical recall levels. However, for the truck and
awning-tricycle categories, our model does not perform as well as other methods. One of
the potential reasons we speculate is that Transformer-based models need more training
data. The quantity of these classifications is exceedingly limited within the confines of the
dataset.

(a) (b)

(c) (d)
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(e) (f)

(g) (h)

(i) (j)

Figure 4.1: The precision-recall curves exhibit superior performance in each category on
the VisDrone dataset. (a) pedestrian. (b) people. (c) bicycle. (d) car. (e) van. (f) trucks
(g) tricycle. (h) awning-tricycle. (i) bus. (j) motors.
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4.2 Qualitative evaluation

The visualization of the comparison experiment performed on the VisDrone dataset is
shown in Figure 4.2. Our technique has shown to be very successful in highly populated
areas when objects like vehicles are tightly grouped together. Furthermore, our model also
detects several small-scale vehicles at the far end of the image, which are not included in
the ground truth annotations. The accuracy of model training and experiment evaluation
can be compromised by incorrect labeling of the ground truths.

For the UAVDT dataset, the results of our technique and four other SOTA models are
depicted in Figure 4.3. These models are evaluated under crowded road circumstances.
When it comes to accurately detecting automobiles in very congested junction road cir-
cumstances, our suggested technique is more accurate than the other common methods.
In certain locations when automobiles of a similar colour are parked near one another, our
approach is nevertheless able to accurately identify those vehicles. Some methodologies,
such as the Faster R-CNN, exclude the cars from these zones. Since our technique cor-
rectly identifies most of the vehicles seen in the UAV picture, we can conclude that it is
very effective at locating cars within the images captured by the UAV.

Moreover, as the visualization of detection results illustrated in Figure 4.4, our proposed
method still achieves relatively good performance and determines the location and category
of the vehicles even in hazy weather. On the other hand, we have also observed that
our method occasionally makes errors in identifying vehicles in the images. Some areas
covered in fog are mistaken as vehicles. However, the other four models have a limited
ability to recognize small objects in this extreme weather. These models appear to struggle
with identifying targets in foggy environments. Most of them are influenced by weather
conditions and have inadequate learning ability for small targets, thereby misjudging the
position information of small targets.

As illustrated in Figure 4.5, despite the effects of nightlight, our method still achieves
superior performance. Due to the lighting conditions, the color of certain vehicles appears
to merge with that of the road surface, making it difficult to distinguish them from their
surroundings. Furthermore, for CNN-based models, these vehicles are likely to be blurred
out during the convolution process, resulting in missing features and thus affecting the ac-
curacy of the model. Compared to other CNN models, our model still has high recognition
accuracy for smaller vehicles under nightlight conditions. Even in night light conditions,
our model continues to learn the characteristics of small targets and locates them in the
image.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Detection results of different methods on VisDrone dataset. The rectangles
indicate the bounding boxes that have been drawn around each detected object, and the
categories and confidence scores are marked within the bounding box. (a) Ground Truth.
(b) Faster R-CNN(ResNet-50). (c) Faster R-CNN(PVT2-B0). (d) Cascade R-CNN. (e)
Dynamic R-CNN. (f) Our Method.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Detection results of different methods under congested intersection road con-
ditions. The rectangles indicate the bounding boxes that have been drawn around each
detected vehicle, and the categories and confidence scores are marked within the bounding
box. (a) Ground Truth. (b) Faster R-CNN(ResNet-50). (c) Faster R-CNN(PVT2-B0).
(d) Cascade R-CNN. (e) Dynamic R-CNN. (f) Our Method.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Detection results of different methods in smoggy weather conditions. The
rectangles indicate the bounding boxes that have been drawn around each detected vehicle,
and the categories and confidence scores are marked within the bounding box. (a) Ground
Truth. (b) Faster R-CNN(ResNet-50). (c) Faster R-CNN(PVT2-B0). (d) Cascade R-CNN.
(e) Dynamic R-CNN. (f) Our Method.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Detection results of different methods in the nighttime scenarios. The rect-
angles indicate the bounding boxes that have been drawn around each detected vehicle,
and the categories and confidence scores are marked within the bounding box. (a) Ground
Truth. (b) Faster R-CNN(ResNet-50). (c) Faster R-CNN(PVT2-B0). (d) Cascade R-CNN.
(e) Dynamic R-CNN. (f) Our Method.
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4.3 Ablation study

This section outlines an ablation study that is conducted to determine the extent that each
component contributed to the accuracy of the entirety specifically on UAVDT dataset and
VisDrone dataset. We perform a series of ablation experiments on the baseline to explore
the significance of different modules by replacing the LCEST backbone, RSU-FPN and
combined loss, respectively. We analyze three configurations that may have an impact
on ultimate performance. Table 4.3 illustrates the gradual addition of modules at each
level to the baseline to demonstrate their compatibility on UAVDT dataset. The baseline
is ResNet-50 + FPN, LCEST stands for Local Context Enhancement Swin Transformer
backbone, RSU-FPN stands for Residual U-FPN neck, the loss function combined Normal-
ized Gaussian Wasserstein Distance and L1 loss is denoted as LC. ”

√
” means the module

is added. ”−” means the module is not added. The metrics of the baseline are demon-
strated in the first row of the table. AP/AP50 rises from 75.1%/94.2% in the second row
to 83.1%/98.8% in the final row. The ablation experiments on the VisDrone dataset are
displayed in Table 4.4.

Table 4.3: Evaluation metrics (%) for ablation study on UAVDT dataset.

Methods LCEST RSU-FPN LC AP AP50 AP75 APs APm APl

Baseline − − − 55.7 69.8 66.9 20.2 79.8 84.6
Baseline

√
− − 75.1 94.2 90.4 63.5 82.6 86.3

Baseline
√ √

− 75.6 94.5 91.0 64.3 82.9 85.8
Ours

√ √ √
83.1 98.8 96.4 76.3 87.5 91.8

Table 4.4: Evaluation metrics (%) for ablation study on VisDrone dataset.

Methods LCEST RSU-FPN LC AP AP50 AP75 APs APm APl

Baseline − − − 22.4 37.2 23.7 11.0 36.4 40.9
Baseline

√
− − 24.5 41.0 25.1 13.0 38.1 47.0

Baseline
√ √

− 25.9 44.5 26.9 17.0 36.6 24.0
Ours

√ √ √
26.4 45.5 27.0 18.0 36.5 39.4
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4.3.1 Effect of LCEST backbone

To verify the effectiveness of our Local Context Enhancement Swin Transformer backbone
on UAVDT dataset, we select Faster R-CNN(ResNet-50) + FPN as the baseline. An im-
provement is achieved by substituting the original ResNet + FPN backbone with LCEST
+ FPN. As shown in Table 4.3, from ResNet-50 to LCEST, all the scores increased signif-
icantly. LCEST is effective to improve the evaluation metrics. AP is increased by 14.9%.
The AP50, AP75, APs, APm, and APl values are all significantly higher than the baseline
values of 24.4%, 20.6%, 43.3%, 2.8%, and 1.7%, respectively. Figure 4.6(a) and (b) show
the comparison on a night with poor visibility. The baseline can distinguish only the larger
bus, while the smaller vehicles are completely ignored. It fails to differentiate automobiles
from the background. However, LCEST captures the character of small vehicles, improv-
ing the model’s capability to recognize diminutive entities. It suggests that the LCEST
backbone may enhance the capacity to locate targets and can effectively use the detector’s
capabilities to improve the precision of object detection.

Table 4.4 illustrates that metrics’ values exhibit a remarkable enhancement on Vis-
Drone dataset. The advancement in the metrics from baseline to LCEST, is attributed
to the integration of an improved Swin Transformer backbone. As compared to typical
CNN models, the employment of the LCEST backbone improves the metrics of numerous
experimental results. The AP increases from 22.4% to 24.5%, AP50 contributes more, from
37.2% to 41.0%. These experimental results demonstrate the efficacy of our methodology.
Figure 4.7(b) shows that a number of densely clustered vehicles on a congested road are
recognized accurately. However, the baseline is not discerning for dense targets, resulting
in many missing objects. Limited by a large number of overlapping regions, CNN-based
model is struggling to extract these features. The introduction of LCEST facilitates the
detection of densely distributed objects. We explain it as our proposed backbone can
extract global information and boost the model’s ability to perceive local details.
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(a)

(b)

(c)

(d)

Figure 4.6: The visualization of detection results on the UAVDT dataset by progressively
incorporating LCEST backbone, RSU-FPN, and Combined loss to the baseline. (a) Base-
line. (b) Baseline + LCEST. (c) Baseline + LCEST + RSU-FPN. (d) Baseline + LCEST
+ RSU-FPN + Combined loss.
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(a)

(b)

(c)

(d)

Figure 4.7: The visualization of detection results on the VisDrone dataset by progressively
incorporating LCEST backbone, RSU-FPN, and Combined loss to the baseline. (a) Base-
line. (b) Baseline + LCEST. (c) Baseline + LCEST + RSU-FPN. (d) Baseline + LCEST
+ RSU-FPN + Combined loss.
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4.3.2 Effect of RSU-FPN

To verify that the RSU-FPN neck can enhance the fusion of features, we replace the original
FPN [19] with our proposed RSU-FPN. As illustrated in Table 4.3, the AP of adding
LCEST and RSU-FPN in the baseline is 0.5% higher than the baseline with LCEST. The
improvement is observed consistently across small and medium scales. The application
of RSU-FPN has slightly improved the APs by 0.8%. Furthermore, AP50, AP75, and
APm values increase by 0.3%, 0.6%, and 0.3%, respectively, indicating that the proposed
fusion module combines high-level features and low-level features effectively within each
stage. Since the input of the RSU-FPN module is derived from the extracted features of the
LCEST backbone, RSU-FPN is only used to integrate the characteristics. The insignificant
improvements of the metrics still demonstrate a higher capability for feature fusion than
the original FPN. In Figure 4.6(c), further improvement in vehicle identification accuracy
is observed. Vehicles with a body colour like that of the road are also detected. The
visualization result is still convincing to support the efficacy of RSU-FPN.

Table 4.4 depicts the increase of 1.4% AP, 3.5% AP50, 1.8% AP75, and 4.0% APs, which
adequately demonstrates the advantages of the RSU-FPN. Furthermore, Figure 4.7 shows
a discernible enhancement in the detection results through the utilization of RSU-FPN.
In contrast to the detection results in Figure 4.7(b), we observe that most of the vehicles
present in these images are precisely detected. In addition, more pedestrians on the right
sidewalk are identified and several obscure vehicles at the end of the road are also marked
out. Pedestrians in the image have the characteristic of small scale. Under blurred visual
conditions, RSU-FPN still fuses the features of small objects and locates the bounding
boxes and assists in recognizing overlooked things which are considered as background.
Therefore, the experimental results demonstrate the exceptional value of our innovative
RSU-FPN module, which has proven to be an effective module for fusing complex features
from tiny objects.

4.3.3 Effect of Combined Regression Loss

We evaluate the effect of the L1 loss and our proposed combined loss on the model. Table
4.3 demonstrates that all scores have grown substantially. The implementation of the
Combined loss has resulted in an enhancement of the box AP, elevating it from 75.6% to
83.1%. More specifically, the improvements in performance are observed in APs, with a
substantial increase of 8.0 points in AP when compared to the corresponding baseline. In
Figure 4.6(d), more small-scale vehicles are detected at night. The experimental results
validate the positive impact of introducing combined loss.
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The results in Table 4.4 shows an improvement of AP, AP50, AP75, and APs. The test
results in Figure 4.7(d) are more consistent with the ground truth. As illustrated in Figure
4.7(c), we observe that some vehicles at the end of the road are marked out, but they are
not annotated by ground truth. Mislabeled ground truth has a direct effect on the process
of continuous model training and experiment assessment.

As a result, the experimental results highlight the importance of each configuration in
enhancing performance. The effectiveness of our method is confirmed by the significant
performance improvement achieved through each individual configuration, as well as their
combination.
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Chapter 5

Conclusions

5.1 Summary

In conclusion, object detection from UAV imagery is an essential technology with a wide
range of applications in numerous fields. Efficient and precise object detection in UAV
photography provides useful insights and data for decision-making processes in various do-
mains, making it a vital method for a variety of industries. Current conventional methods
and general deep learning-based methods do not yield adequate precision for high-precision
applications. In this thesis, we propose a new approach for the automated detection of
objects in images captured by unmanned aerial vehicles, named Local Context Enhance-
ment Swin Transformer. Specifically, to amalgamate the strengths of Convolutional Neural
Network (CNN) and Transformer, a Local Context Enhancement Module is proposed to be
used in combination with Swin Transformer. In addition, an RSU-FPN neck is introduced
to integrate intra-stage multi-scale features. The combination of L1 loss and normalized
Gaussian Wasserstein distance loss can mitigate the problem of being impacted by small
object location deviations. Furthermore, we conduct a comparative study and ablation
study on both UAVDT dataset and VisDrone dataset to evaluate the performance of our
proposed model. The experimental results demonstrate that our proposed method can
increase the accuracy of detection for small-scale objects and achieve SOTA performance
on UAVDT dataset and Vis-Drone dataset, with the AP of 83.1% and 26.4%, respectively.
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5.2 Future Work

Limitations are also observed in experimental experiments. Each epoch of the training
procedure takes a significant amount of time, and the training process demands high hard-
ware resources. The proposed method may be improved further, and future efforts can
concentrate on creating lightweight models and increasing performance, which could be
possible by putting effective transformers in place and using advanced optimization meth-
ods. Furthermore, we may evaluate our proposed model on the newly published dataset,
such as SODA-D dataset [69] and Manipal-UAV dataset [70].
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