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Abstract

In this thesis we explore quantum aspects of black holes from a variety of perspectives. In
part I of this thesis we are motivated by the black hole information paradox to explore the
idea of gravitational wave echoes from the perspective of black hole microstate statistics.
We adopt the idea that a UV complete description of a black hole should involve eSBH

microstates in a thermal ensemble, where SBH = A
4GN

, is the Bekenstein Hawking entropy
of the black hole. Furthermore, we take the stance that issues about the existence of echoes
and black hole microstructure might be understood in terms of thermal correlators in the
ensemble of microstates. We make use of the spectral form factor as a proxy for a thermal
2-point correlator calculation. We study how spacing statistics between microstates affects
the thermalization behaviour of the black hole at late and early times. We find “echoes”
in cases where there is substantial eigenvalue repulsion between individual microstates or
if there are regularly spaced clusters of microstates. In part II of the thesis we analyze
the process of information recovery and unitarity in black hole/gravity systems coupled to
non-gravitational baths. In the first work of part II we study how the evaporation rate of
a black hole changes when radiation is extracted near the horizon and apply our results to
study how long it takes to recover information thrown into a black hole after the Page time.
In the last work of part II we study entanglement wedge nesting in 3D AdS spacetimes cut
off by an end-of-the-world brane. Finally, in part III we summarize the main results of the
research works.
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2
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Chapter 1

Thesis Introduction

In this section of the thesis we will begin by giving a basic review of some useful concepts
and equations in the subjects of General Relativity, Quantum Theory, and black hole
physics which may aid in the understanding of the topics covered in this thesis. Followed
by these reviews we will give an overview of recent advancements in our understanding
of the quantum nature of black holes and then conclude the introduction by giving an
overview of the main works complied in this thesis and the types of questions they are
attempting to investigate/address.

1.1 Basic Review of General Relativity

Alongside the formalism of Quantum Theory, Einstein’s General Theory of Relativity serves
as one of the great pillars of modern theoretical physics. It formulates our familiar notions
of space and time as one entity called spacetime and formulates the force of gravity in
terms of quantities that characterize the curvature of spacetime.

In the following subsections we will go over some aspects of General Relativity that
will be useful to know in the reading of this thesis. For a more thorough treatment of the
subject we refer the reader to the following textbooks which cover the ideas we will review
[36, 154, 120, 15].
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1.1.1 Manifolds, Tensor Fields, and the Metric

The rich mathematical theory of differential geometry and tensor analysis lies at the heart
of the mathematical formulation of spacetime and its curvature. A spacetime in d + 1-
dimensions is described by a manifold, denoted Md+1, which is essentially a space that
resembles flat space in a sufficiently small open neighborhood of any point p ∈ Md+1. This
aspect of the manifold is very important because it allows one to generalize the familiar
notion of vector spaces in Euclidean/Lorentzian flat spaces to curved manifolds through
the introduction of a tangent space to a point on the manifold.

The tangent space is a way by which one can associate a vector space to any point
p ∈ Md+1. We denote the tangent space to the point p as Tp(Md+1). The dimension
of the tangent space is equal to the dimension of the manifold (in our case here it is
d + 1-dimensional). Like any vector space, it will be spanned by d + 1 basis vectors, a
particularly useful basis for the tangent space is the so called “coordinate-basis” which is
the set of partials, {∂µ}dµ=0. Along with the tangent space one can define the cotangent
space T ∗

p (Md+1) which is a vector space of equal dimension to the tangent space and is
spanned by d + 1 “dual basis vectors.” We denote the dual basis vectors (in coordinate
basis), as {dxµ}dµ=0, which will satisfy the identity ∂ν(dx

µ) = dxµ(∂ν) = δµν . Under general
invertible coordinate transformations of the form x̃ = x̃(x) the basis and dual basis vectors
transform as follows:

∂µ =
∂x̃µ

′

∂xµ
∂̃µ′

dx̃µ
′
=
∂x̃µ

′

∂xµ
dxµ.

(1.1)

Note that throughout this thesis we use Einstein summation convention where repeated
indices are summed over (e.g. AµBµ =

∑d
µ=0A

µBµ). One can define a general (n,m)-tensor
field T over the manifoldMd+1. It is a multi-linear map T : T ∗

p ×···×T ∗
p ×Tp×···×Tp → R.

In the coordinate basis it can be expressed as follows:

T = T µ1µ2···µnν1ν2···νm∂µ1 ⊗ ∂µ2 ⊗ · · · ⊗ ∂µn ⊗ dxν1 ⊗ dxν2 ⊗ · · · ⊗ dxνm , (1.2)

where T µ1µ2···µnν1ν2···νm are the components of T in the coordinate basis. The tensor T
represents a physically meaningful quantity over the manifold and should be invariant under
general coordinate transformations. In particular, we define the coordinate transformed
tensor as follows:

T̃ = T̃ µ
′
1µ

′
2···µ′n

ν′1ν
′
2···ν′m ∂̃µ′1 ⊗ ∂̃µ′2 ⊗ · · · ⊗ ∂̃µ′n ⊗ dx̃ν

′
1 ⊗ dx̃ν

′
2 ⊗ · · · ⊗ dx̃ν

′
m . (1.3)
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Using the transformation law for the basis vectors and their dual we will find that the
components of the transformed tensor (i.e. T̃ µ

′
1µ

′
2···µ′nν′1ν′2···ν′m) must transform in a specific

way to ensure that T̃ = T . In particular, the components of a (n,m)-tensor, T , should
transform according to the identity below:

T̃ µ
′
1···µ′n

ν′1···ν′m(x̃) =
∂x̃µ

′
1

∂xα1
· · · ∂x̃

µ′n

∂xαn

∂xσ1

∂x̃ν
′
1
· · · ∂x

σm

∂x̃ν′m
Tα1···αn

σ1···σm(x(x̃)). (1.4)

Some common examples of tensor fields are:

• Scalar field, ϕ, which transforms as (0, 0)-tensor field.

• Vector field, V = V µ∂µ, whose components, V µ, transform as (1, 0)-tensor fields. For
example, if we parameterize a line using some parameter λ then the tangent to the
curve dxµ

dλ
describes the components of a vector field.

• One-form field, ωµdx
µ, whose components, ωµ, transform as (0, 1)-tensor fields. For

example, the gradient of a scalar field ∂µϕ describes the components of a one-form.

More often than not we will work in a prescribed coordinate system and manipulations of
tensors will reduce to the manipulation of tensor components. Therefore, from this point
forward (unless otherwise specified) we will identify tensors with their components in the
natural coordinate basis. If we ever need the full physical tensor object we can “tack-on”
the necessary basis vectors and one-forms after the manipulations are complete.

Now that we have reviewed some basic facts about tensors and how they transform
under coordinate transformations, we will define some operations which allow us build new
tensors from old ones. Lets suppose we have a (n,m)-tensor T and a (p, q)-tensor U . We
can define a (n+ p,m+ q)-tensor by taking the tensor product. The new tensor, denoted
T ⊗ U , will have the following components:

(T ⊗ U)µ1··µnα1··αp
ν1··νmσ1··σq = (T µ1··µnν1··νm)

(
Uα1··αp

σ1··σq
)
. (1.5)

We can also do an operation between tensor components called “index contraction.” This
amounts to taking an upper index and lower index and setting them equal to each other
(i.e. summing over the indices). For example, lets consider an (n,m)-tensor T we can
apply the operation of index contraction to the k-th upper index and p-th lower index

3



(where 1 ≤ k ≤ n and 1 ≤ p ≤ m) shown below1:

δνpµkT
µ1··µk··µn

ν1··νp··νm =
d∑

µk=0

T µ1··µk−1µkµk+1··µn
ν1··νp−1µkνp+1··νm . (1.6)

The resulting object is a (n− 1,m− 1) tensor field. This also extends to tensors that are
built from a tensor product of multiple tensors. As long as we contract one upper and one
lower index the result will transform as a tensor. We can see that in certain cases index
contraction can be used to define coordinate invariant quantities. A simple example is to
contract a one-form with a vector we will obtain a scalar field which is invariant under
coordinate transformations.

Now that we have defined basic operations that allow us to build up tensors from other
tensors through the use of tensor products and index contraction we move on and define
the metric. The metric is a special object which allows one to measure distances and angles
on a manifold. More specifically it maps a pair vectors in Tp(Md+1) to real numbers. We
denote this map, g, and it has the following properties for V,W,Z ∈ Tp(Md+1) and a ∈ R:

• It is symmetric: g(V,W ) = g(W,V ).

• It is linear: g(aV +W,Z) = ag(V, Z) + g(W,Z).

• It is non-degenerate: There is no V ̸= 0, such that g(V,W ) = 0 for any possible
choice of W ⇒ det(g) ̸= 0.

The metric allows us to distinguish the difference between three types of non-degenerate
manifolds through the signature. The signature is essentially the number of positive and
negative eigenvalues of the metric. We have the following classification:

1. Riemannian (Euclidean) manifold: All eigenvalues of metric are of one sign (usually
we take convention that they are all positive). The short-hand is to say the signature
is (+,+,+, ...,+)

2. Lorentzian manifold: All eigenvalues except one are of the same sign. The short-hand
is to say signature is (−,+,+, ...,+), this is the convention we adopt in this thesis.

1Although, it is computational clear why the appearance of the Kronecker delta symbol is necessary in
the process of index contraction it has a much deeper meaning when we consider the basis and dual basis
vectors. If we recall that the basis and dual basis satisfy dxµ∂ν = δµν we can view index contraction as
making use of this identity we are actually contracting the k-th basis with the p-th dual basis vector to
get the Kronecker delta symbol.
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3. Indefinite manifold: A non-degenerate manifold that is neither Euclidean nor Lorentzian.

The statement we made before, that spacetime is a manifold, can be refined further by
stating that spacetime is a Lorentzian manifold. Unlike Euclidean manifolds, which will
always have a non-negative inner product between vectors, a Lorentizan manifold can have
an inner product which can be positive, negative, or zero. In particular, we have three
types of vectors in a Lorentzian manifold:

• A vector V ∈ Tp(Md+1) is timelike if g(V, V ) < 0.

• A vector V ∈ Tp(Md+1) is lightlike (null) if g(V, V ) = 0 (also we assume V ̸= 0).

• A vector V ∈ Tp(Md+1) is spacelike if g(V, V ) > 0.

This adds additional structure to the manifold which is not present in an Euclidean man-
ifold namely the notion of causality and lightcones2.

Now that we have introduced the notion of a metric and how it defines the type of
manifold we deal with we will connect it to our discussion of tensor fields. In particular,
the metric is also tensor due to the fact that it is a linear map. We can express the metric
in the coordinate basis by writing:

g(V,W ) = g(V µ∂µ,W
ν∂ν) = g(∂µ, ∂ν)V

µW ν . (1.7)

We identify g(∂µ, ∂ν) = gµν as the components of the metric in the coordinate basis. So
the metric now becomes a symmetric (0, 2)-tensor. Using it, we can define the invariant
spacetime infinitesimal length element:

ds2 = gµνdx
µ ⊗ dxµ = gµνdx

µdxµ. (1.8)

Beyond just defining a length element, the metric tensor also serves as a way to lower the
indices of other tensors defined on the manifold. In particular for a given tensor (n,m) we
can obtain a (n− 1,m+ 1) tensor as follows:

gαµkT
µ1··µk−1µkµk+1··µn

ν1··νm = T µ1··µk−1
α
µk+1··µn

ν1··νm . (1.9)

We can see that one of the indices of the metric tensor is contracting with an upper index
of the T . This is usually called “lowering the index” of T . The inverse metric denoted gµν

is a (2,0)-tensor which satisfies the following identity:

gµαgαν = δµν . (1.10)

2The discussion of causality is quite rich and plays a central role in understanding the propagation of
matter field in various spacetime backgrounds and in the discussion of horizons.
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In a similar way by which one can lower the index of a tensor with the metric the inverse
metric can be used to “raise the index” of a tensor. In other words, we can use the inverse
metric and get a (n+ 1,m− 1)-tensor from a (n,m)-tensor as follows:

gανpT µ1··µnν1··νp−1νpνp+1··νm = T µ1··µnν1··νp−1

α
νp+1··νm . (1.11)

Now that we have gone over the basics of a manifold and how to define tensor quantities
over the manifold, we proceed to the next subsection and define the notion of a geodesic,
derivatives of tensors, and how to quantify and compute the curvature of a manifold given
the metric tensor.

1.1.2 Geodesics, Derivatives, and Curvature

The familiar fact that the shortest distance between two points in Euclidean flat space is
a straight line can be generalized to curved manifolds through the concept of a geodesic.
We fix two points on the manifold p1, p2 ∈ Md+1 and define a line segment in the manifold
which connects the two points. We parameterize this line through some arbitrary parameter
λ ∈ [λ1, λ2] and write it as xµ = xµ(λ), where p1 = xµ(λ1) and p2 = xµ(λ2). Then the
length of this line can be expressed in terms of the following coordinate invariant length
functional involving the metric and the tangent vector to the curve:

s[x, ẋ] =

∫ λ2

λ1

√
gµν ẋµẋνdλ =

∫ λ2

λ1

√
gµν

dxµ

dλ

dxν

dλ
dλ. (1.12)

The geodesic connecting the two points will be stationary under variations of the form
xµ → xµ + δxµ. In particular we have that:

δs[x, ẋ] = −
∫ λ2

λ1

[
gσν ẍ

ν + 1
2
(∂µgνσ + ∂νgµσ − ∂σgµν) ẋ

µẋν√
gµν ẋµẋν

]
δxσ = 0. (1.13)

Setting the terms in the numerator in the square brackets to zero gives the following
equation of motion:

d2xµ

dλ2
+ Γµαβ

dxα

dλ

dxβ

dλ
= 0

Γµαβ =
1

2
gµσ (∂αgβσ + ∂βgασ − ∂σgαβ) .

(1.14)

The equation above is called the “geodesic equation” and solving it gives the trajectory
of a geodesic connecting two fixed points in a spacetime. The three index object, Γµαβ,
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is called a Christoffel symbol (sometimes called the metric-compatible connection) and is
not a tensor. However, it plays a central role in quantifying the curvature of a spacetime.
Before discussing this it is worth mentioning that are three types of geodesics in spacetime
which are distinguished by the inner product of the tangent vector to the geodesic:

• Timelike geodesics: gµν
dxµ

dλ
dxν

dλ
< 0.

• Lightlike (null) geodesics: gµν
dxµ

dλ
dxν

dλ
= 0.

• Spacelike geodesics: gµν
dxµ

dλ
dxν

dλ
> 0.

Now that we have discussed geodesics which generalize the notion of straight lines to
curved manifolds we will discuss how to compute rates of change of tensor fields defined
on a manifold. In general given a (n,m)-tensor the partial derivative of a tensor will not
result in a tensor quantity. Instead, one must introduce the notion of a covariant derivative,
denoted ∇µ, which acts on an (n,m)-tensor, T , as follows:

∇µT
µ1··µn

ν1··νm = ∂µT
µ1··µn

ν1··νm + Γµ1µαT
α··µn

ν1··νm + · · ·+ ΓµnµαT
µ1··α

ν1··νm

− Γαµν1T
µ1··µn

α··νm − · · · − ΓαµνmT
µ1··µn

ν1··α.
(1.15)

Unlike the derivative of a tensor which in general is not a tensor the covariant derivative of
a (n,m) tensor results in a (n,m + 1)-tensor. Some useful identities/properties involving
the covariant derivative are as follows:

• It acts linearly: ∇µ [T
µ1··µn

ν1··νm +Qµ1··µn
ν1··νm ] = ∇µT

µ1··µn
ν1··νm +∇µQ

µ1··µn
ν1··νm .

• It obeys a product rule:

∇µ [T
µ1··µn

ν1··νmQ
α1··αp

β1··βl ] = ∇µT
µ1··µn

ν1··νmQ
α1··αp

β1··βl + T µ1··µnν1··νm∇µQ
α1··αp

β1··βl .

• The covariant derivative of the metric and inverse metric vanish: ∇αgµν = 0 and
∇αg

µν = 0.

• If ϕ is a scalar (i.e. (0,0)-tensor) then, ∇µϕ = ∂µϕ.

Now that we have defined the notion of a covariant derivative of a tensor we can proceed
to quantify the curvature of a manifold through the definition of the Riemann curvature
tensor. It is given by:

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ. (1.16)
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Although Christoffel symbols by themselves are not tensors, the Riemann curvature tensor
defined above really is a (1, 3)-tensor. It defines the curvature of a manifold at any point
in terms of the first and second derivatives of the metric tensor. In particular, one says a
manifold is flat exactly when all components of the Riemann tensor vanish at all points on
the manifold. If this does not hold then the manifold is not flat and has curvature quantified
by the Riemann tensor. The Riemann tensor has a number of symmetries involving the
placement of indices. To discuss these symmetries it is useful to lower the upper index and
talk about Rρσµν = gρλR

λ
σµν . With this we have the following identities:

• Antisymmetric in first two indices: Rρσµν = −Rσρµν .

• Antisymmetric in last two indices: Rρσµν = −Rρσνµ.

• Invariant under first and last pair interchange: Rρσµν = Rµνρσ.

• Sum of cyclic permutation of last three indices vanish: Rρσµν +Rρνσµ +Rρµνσ = 0.

These index symmetries imply that the Riemann tensor in d+1 dimensions has d(d+2)(d+1)2

12

independent components.

From the Riemann tensor there are a number of other tensors on can define which often
show up in the context of gravity. In particular, the Ricci tensor is a (0, 2)-tensor which is
defined as follows:

Rµν = Rλ
µλν . (1.17)

The Ricci tensor is symmetric under the interchange of its indices. Using the Ricci tensor
we can define the Ricci scalar as follows:

R = Rµ
µ = gµνRµν . (1.18)

Both the Ricci scalar and Ricci tensor are used to define the Einstein tensor:

Gµν = Rµν −
1

2
Rgµν . (1.19)

It has the property that:
∇µGµν = 0. (1.20)

The Einstein tensor plays the role of encoding the geometry and curvature in the Einstein
field equations which describes the dynamics of the spacetime manifold in the presence of
matter and energy.
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1.1.3 Einstein Hilbert Action and Field Equations

Thus far we have discussed the idea of manifolds and tensor fields. In this subsection we will
briefly discuss the Einstein field equations. These encode the dynamics of the spacetime
manifold itself. In particular, the central idea behind the Einstein field equations is that
matter and energy generate spacetime curvature. Mathematically, the idea is made precise
through the Einstein field equations (with cosmological constant):

Gµν + Λgµν = Rµν −
1

2
Rgµν + Λgµν = 8πGNTµν . (1.21)

The left hand side contains information about spacetime geometry and its curvature which
can be written in terms of the metric tensor, gµν , and its derivatives. The constant Λ
is called the “cosmological constant” and is an additional term that is added in the field
equations which gives rise to a non-trivial energy density in spacetime even in the absence
of matter (i.e. related to the energy density of quantum fields in the vacuum state).

The right-hand side is the stress-energy tensor of matter fields that propagate in the
spacetime. Since any spacetime can arise through an appropriate choice of Tµν it is possible
to construct pathological spacetimes with closed time-like curves or naked singularities. For
this reason, it is useful to constrain the kind of matter field configurations. What we deem
as physically allowable configurations of matter are motivated by our current understanding
of matter and is summarized in terms of mathematical relations called energy conditions.

Einstein’s Field equations (with cosmological constant) can also be derived from the
principle of least action through the Einstein-Hilbert action with cosmological constant,
denoted IEH [g] (with an appropriate boundary term), plus some covariant matter action
denoted Imatter[g,Ψ] and often serves as a useful starting point when discussing quantum
aspects of gravity and the dynamics of the propagation of matter fields on spacetime.
Explicitly, the action of interest is given by:

Igrav+matter[g,Ψ] = IEH [g] + IB[g] + Imatter[g,Ψ]

IEH [g] =
1

16πGN

∫
Md+1

dd+1x
√
−g [R− 2Λ]

IB[g] =
σ

8πGN

∫
∂Md+1

ddy|h|1/2K

Imatter[g,Ψ] =

∫
Md+1

dd+1x
√
−gL(Ψ),

(1.22)

where IB[g] is a boundary term which allows us to obtain a well defined variational problem
when varying the metric (σ = ±1 depending on if the boundary is timelike or spacelike).
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Note that there actually two dynamical fields one involves the matter fields Ψ and the
other involves the metric g. Varying the gravity plus matter action with respect to the
inverse metric gµν will give rise to the Einstein field equation given in Eq. (1.21) with:

Tµν = −2
1√
−g

δImatter
δgµν

. (1.23)

Note that the action also contains matter fields which we should also treat dynamically.
So we also have another set of equations of motion beyond the Einstein equations field
equations which are given by requiring:

δImatter
δΨ

= 0. (1.24)

A common example of Imatter is for a minimally coupled massive scalar Ψ where:

Imatter[g,Ψ] =

∫
Md+1

dd+1x
√
−g
[
−1

2
gµν∇µΨ∇νΨ− 1

2
m2Ψ2

]
. (1.25)

In this case the equation of motion for the scalar is the wave equation (Klein-Gordon
equation in curved spacetime):

□Ψ−m2Ψ = 0

□ = gµν∇µ∇ν .
(1.26)

The stress energy tensor for the scalar field becomes:

TΨ
µν = −2

1√
−g

δImatter
δgµν

= ∇µΨ∇νΨ− 1

2
gµν∇λΨ∇λΨ− 1

2
m2gµν (1.27)

So the issue of fully solving the classical problem of a scalar field propagating on a fully
dynamical spacetime involves finding a simultaneous solution to both Ψ and g in the
following equations:

Rµν −
1

2
Rgµν + Λgµν = 8πGN

[
∇µΨ∇νΨ− 1

2
gµν∇λΨ∇λΨ− 1

2
m2gµν

]
□Ψ−m2Ψ = 0.

(1.28)

Even for this simple example the full dynamical problem is very difficult to solve exactly and
often certain assumptions are made. For example a common approach, is to treat GN as a
perturbative parameter. One begins by trying to find a solution in the regime where GN →
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0 (in this limit we can think of approximating spacetime as a fixed curved background with
fields propagating on it, not changing the overall geometry too much). In this case the
right-hand side of the Einstein field equations vanish and one can study solutions of the
scalar wave equation on a fixed curved background. Once such a solution is found then
a more general solution might be built up around this background as perturbative series
in GN . Even this leading order solution serves as a useful effective tool to study wave
phenomena on curved backgrounds. For this reason as well others, it is often quite useful
to simply study the Einstein equations when Tµν = 0 (i.e. the Einstein field equation in a
vacuum).

When we set Tµν = 0 the Einstein field equations reduce to what are called the Einstein
vacuum equations which read (d ≥ 2):

Rµν −
2Λ

d− 1
gµν = 0. (1.29)

In the case when Λ = 0 one solution to the vacuum equation is flat Minkowski spacetime
(the manifold over which special relativity is formulated), R1,d, and has the following line
element in Cartesian-like coordinates:

ds2 = −(dx0)2 + (dx1)2 + (dx2)2 + · · ·+ (dxd)2. (1.30)

One interesting aspect about this solution is that it is a maximally symmetric spacetime
it has the (d+1)(d+2)

2
Killing vectors (the maximal number you can possibly have in d + 1-

dimensions)3. A useful fact of maximally symmetric spacetimes is that the Riemann tensor
of the spacetime is completely determined by the Ricci scalar. In particular, we have the
following formula for the Riemann tensor of a maximally symmetric manifold:

Rρσµν =
R

d(d+ 1)
(gρµgσν − gρνgσµ) . (1.31)

The maximally symmetric analogue of Minkowski spacetime for Λ < 0 is called Anti-
de Sitter spacetime (or pure AdS). In global coordinates the spacetime has the following
metric:

ds2 = L2
(
− cosh2 ρdτ 2 + dρ2 + sinh2 ρdΩ2

d−1

)
. (1.32)

3We say that a vector ξµ is a Killing vector if the Lie derivative of the metric along the integral curves
generated by ξµ vanishes. This condition corresponds to solving Killing’s equation ∇µξν + ∇νξµ = 0.
Physically, it means that if I move along the integral curves generated by the vector Killing vector field
the way I measure distances (i.e. the metric) will not change. Maximally symmetric spacetimes in d + 1
dimensions have the maximal number of Killing vectors corresponding to d+1 translations, d boosts, and

d(d− 1)/2 spatial rotations for a grand total of (d+1)(d+2)
2 Killing vectors.
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One can check that this constitutes a solution to the vacuum equations with the AdS
radius, L, identified with the cosmological constant through the following relation:

ΛAdS = −d(d− 1)

2L2
. (1.33)

Such negatively curved spacetimes are of central importance in the discussion of the
AdS/CFT correspondence which we will discuss in later sections.

For Λ > 0 the maximally symmetric analogue of Minkowski spacetime is de-Sitter
spacetime (or dS). In global coordinates the spacetime has the following line element:

ds2dS = −dτ 2 + L2 cosh2
( τ
L

)
dΩ2

d. (1.34)

This spacetime serves as a useful starting point when discussing cosmological spacetimes
(which we will not discuss in this thesis).

In this thesis we will mainly concern ourselves with spacetimes with Λ ≤ 0 (i.e. asymp-
totically flat or AdS).

Of course, the maximally symmetric solutions are but one example of solutions to the
Einstein vacuum equations. Black holes (the primary concern of this thesis) are another
example of spacetimes that are solutions to the equations. We will discuss these solutions
in more depth in later sections.

1.2 Basic Review of Quantum Theory

Alongside the formalism of General Relativity, Quantum Theory serves as one of the great
pillars of modern theoretical physics. It serves as the fundamental formalism to study the
quantum nature of matter and its interactions with the electromagnetic, weak nuclear force,
and strong nuclear force. All of which can be understood in a unified framework called the
“Standard Model.” At the heart of quantum theory lies the idea that a physical system
can be described in terms of a state vector living in a Hilbert space. This state vector
evolves according to deterministic laws but the predictions we extract from measuring a
quantum state are of a probabilistic/statistical nature.

In the following subsections, we will go over some aspects of quantum theory that will
be useful to know in the reading of this thesis. For a more thorough treatment of the
subject we refer the reader to the following textbooks which cover the ideas we will review
[109, 118, 15].
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1.2.1 Hilbert Spaces, States Vectors, and Operators

In quantum mechanics physical systems are described by a state vectors |ψ⟩ and the state
vector lives in a Hilbert space, H, which is a vector space over the complex field, C. The
vector space has an inner product, which maps two state vectors to a complex number and
has the following properties for any three |ψ⟩ , |ϕ⟩ , |χ⟩ ∈ H and any a, b ∈ C:

1. Positivity : ⟨ψ|ψ⟩ ≥ 0 and is saturated iff |ψ⟩ = 0.

2. Linearity: ⟨ψ| (a |ϕ⟩+ b |χ⟩) = a ⟨ψ|ϕ⟩+ b ⟨ψ|χ⟩.

3. Complex conjugation: ⟨ψ|ϕ⟩ = ⟨ϕ|ψ⟩∗.

Using this inner product we require that the state vector, |ψ⟩, of a physical system to be
of unit norm (i.e. ⟨ψ|ψ⟩ = 1). Any state vector can be decomposed into basis vectors that
span the Hilbert space. In particular, we can choose a set of orthonormal basis vectors,
{|n⟩}, which span H. Then we can write any state, ψ, in the basis {|n⟩}:

|ψ⟩ = I |ψ⟩ =
∑
n

|n⟩ ⟨n|ψ⟩ =
∑
n

⟨n|ψ⟩ |n⟩ =
∑
n

ψn |n⟩ , (1.35)

where we used the fact that the identity operator, I =
∑

n |n⟩ ⟨n|, and defined expansion
coefficients, ψn = ⟨n|ψ⟩ ∈ C. The dual to the state |ψ⟩ is ⟨ψ| and this can be written in
the dual basis {⟨n|} as follows:

⟨ψ| =
∑
n

ψ∗
n ⟨n| . (1.36)

Due to the fact that the state has a unit norm we obtain the following identity for the sum
over the modulus square of the expansion coefficients:∑

n

ψ∗
nψn =

∑
n

|ψn|2 = 1. (1.37)

We can also describe a composite quantum system. Suppose |ψ1⟩ ∈ H1 and |ψ2⟩ ∈ H2,
then we can describe the joint quantum state as a tensor product of the two state vectors
|ψ1⟩ ⊗ |ψ2⟩ in a larger Hilbert space H1 ⊗ H2. If {e(1)n } and {e(2)n′ } constitute a complete

basis for H1 and H2 respectively, then {e(1)n ⊗ e
(2)
n′ } forms a complete basis for H1 ⊗H2.

Now that we have defined the mathematical language by which we define states and
subsystems of a physical system we can discuss the issue of physical processes. In quantum
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mechanics a physical process is represented by a some operator. The operator is a linear
map that takes state vectors to other state vectors. For example, if A is operator then we
can act on some state vector |ψ⟩ to get another state vector |ϕ⟩. We write:

|ϕ⟩ = A |ψ⟩ . (1.38)

In this thesis we will primarily be interested in unitary and hermitian operators. A unitary
operator, U , is a map from H to itself which has the following property:

U−1 = U †. (1.39)

These types of operators usually implement time evolution or dynamics of a closed quantum
system. Another class of operators that are of particular interest in quantum mechanics are
Hermitian operators which satisfy A = A†. These operators are usually used to represent
observables (i.e. quantities which can be measured). We can always write an observable A
in a diagonal form given by:

A =
∑
n

an |An⟩ ⟨An| , (1.40)

where |An⟩ forms a complete orthonormal basis for the Hilbert space over which it acts.
Furthermore, since the operator is Hermitian an ∈ R.

When we measure an observable A the possible outcomes of the measurement are given
by the eigenvalues of the spectral decomposition of A (i.e. {an}). The probability of
obtaining the particular outcome with eigenvalue an (assuming no degeneracies) when the
system is in a state ψ is:

p(an) = | ⟨An|ψ⟩ |2. (1.41)

If we do indeed measure an then immediately after the measurement the state of the system
is given by.

|ψ′⟩ = ⟨An|ψ⟩
| ⟨An|ψ⟩ |

|An⟩ . (1.42)

So up to a phase the new state after obtaining the outcome an is |An⟩.
We are also often interested in the expectation value of an observable, A, when a system

is in a particular state |ψ⟩. This is given by:

⟨A⟩ψ = ⟨ψ|A|ψ⟩ . (1.43)

We can expand this quantity in the basis where A is diagonal to obtain:

⟨A⟩ψ =
∑
n

an| ⟨An|ψ⟩ |2 =
∑
n

anp(an). (1.44)
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It is the the weighted average over the possible outcomes. An important aspect of operators
is that they generally do not commute. This leads to the notion that there are certain
observables that cannot be simultaneously measured to arbitrary accuracy. The prime
example being the position and momentum operators which have a commutator of the
form:

[x, p] = xp− px = iℏ. (1.45)

Since the two operators do not commute they cannot be simultaneously diagonalized and
therefore eigenstates of one operator are not eigenstates of the other. Such commutation
relations often serve as starting points for the the canonical quantization of fields in quan-
tum field theory and generally are the origin of the “weird” and counter-intuitive aspects
of quantum theory.

1.2.2 Unitary Time Evolution and the Hamiltonian

In this subsection, we will briefly discuss the role that the Hamiltonian plays in the time
evolution of states in the Schrodinger picture and operators in the Heisenberg picture. In
the Schrodinger picture, states are defined to evolve with time and operators are thought
to be fixed. The dynamics of a system is captured by the Schrodinger equation given by:

iℏ
∂

∂t
|ψ(t)⟩ = H |ψ(t)⟩ , (1.46)

where H is a hermitian operator and is the quantum analogue of the total energy of a
system. Recall that earlier in this subsection we mentioned that time evolution of a closed
quantum system is generally governed by a unitary operator, U(t, t0) which takes a state
vector at time t0, denoted |ψ(t0)⟩ to another state vector at a later time t, denoted |ψ(t)⟩.
More explicitly, we have:

|ψ(t)⟩ = U(t, t0) |ψ(t0)⟩ . (1.47)

With some work one can show that H and U are related by the following equation:

iℏ
∂U

∂t
= HU. (1.48)

In the special case where the Hamiltonian is time independent one can obtain the following
expression for U in terms of H:

U(t, t0) = e−
i
ℏH(t−t0). (1.49)
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With these results in mind lets consider how the expectation value of an observable evolves
in time. As we already reviewed in the Schrodinger picture, state vectors evolve according
to Schrodinger’s equation, given in Eq. (1.46). The expectation value of an operator A,
which is taken to be time independent in this picture, will satisfy the following equation:

∂

∂t
⟨A⟩ψ = ∂t ⟨ψ(t)|A|ψ(t)⟩ =

i

ℏ
⟨ψ(t)|[H,A]|ψ(t)⟩ . (1.50)

We can see that observables that commute with the Hamiltonian will have expectation
values that remain constant with time.

An alternate approach to computing expectation values of hermitian operators is to
take the state vectors as being time independent and writing the operators as time depen-
dent. This approach is called the Heisenberg picture. In this picture we can rewrite the
expectation values of the hermitian operator A as follows:

⟨A⟩ψ = ⟨ψ(t)|A|ψ(t)⟩ = ⟨ψ(t0)|U †(t, t0)AU(t, t0)|ψ(t0)⟩ . (1.51)

We define the following time dependent Heisenberg operators by conjugating with the
unitary responsible for time evolution:

H(t) = U †(t, t0)H(t0)U(t, t0)

A(t) = U †(t, t0)A(t0)U(t, t0).
(1.52)

With some work these operators can be shown to satisfy the following equation of motion:

∂

∂t
A(t) =

i

ℏ
[H(t), A(t)]. (1.53)

Usually in the area of AdS/CFT and quantum field theory (and throughout this thesis) we
will find it most convenient to use the Heisenberg picture where states are fixed and oper-
ators are time dependent. In particular, in the special case where H is time independent
we have a very simple prescription for computing expectation values of observables:

⟨A(t)⟩ψ = ⟨ψ|A(t)|ψ⟩ = ⟨ψ|e
i
ℏHtAe−

i
ℏHt|ψ⟩ , (1.54)

where |ψ⟩ = |ψ(0)⟩ and A = A(0).

1.2.3 Density Matrices and Von Neumann/Entanglement En-
tropy

In this subsection we will give a basic overview of quantum information theory focusing
on the concept of entanglement entropy. Our discussion begins with the density matrix
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formalism of quantum mechanics which can be thought of as an extension of the state
vector formalism we described in Section 1.2.1. In the density matrix formalism we are
given an ensemble of quantum states {|ψk⟩}Nk=1. Each state is weighed by a probability
0 ≤ pk ≤ 1 and

∑N
k=1 pk = 1. Now the state of a physical system is given by the density

matrix (operator):

ρ =
N∑
k=1

pk |ψk⟩ ⟨ψk| . (1.55)

As we can see from the definition above the density matrix has the following properties:

• Unit trace: Tr(ρ) = 1.

• Positive Hermitian operator: ρ = ρ† and eigenvalues are non-negative.

The expectation value of an observable A when the quantum system is described by ρ is
now given by the following:

⟨A⟩ρ = Tr(Aρ) = Tr(ρA) =
N∑
k=1

pk ⟨A⟩ψk

⟨A⟩ψk
=
∑
n

an| ⟨An|ψk⟩ |2.
(1.56)

Unitary evolution of a quantum system described by a density matrix ρ is given by conju-
gation of a unitary operator U shown below:

ρ(t) = U(t, t0)ρ(t0)U
†(t, t0). (1.57)

The time evolved density matrix is still a density matrix (i.e. a positive unit trace Hermitian
operator). The possible set of outcomes that we measure for an observable A is still given
by the eigenvalues of A (where A |An⟩ = an |An⟩) except now the probability that we obtain
a particular eigenvalue an is given by:

p(an) = Tr (|An⟩ ⟨An|ρ|An⟩ ⟨An|) = ⟨An|ρ|An⟩ =
N∑
k=1

pk| ⟨An|ψk⟩ |2. (1.58)

If one does obtain a value an after the measurement of the system then immediately after
the measurement the system is described by the following density matrix:

ρ′ = |An⟩ ⟨An| . (1.59)
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In the density matrix formalism we generally distinguish between two kinds of states.
A pure state is one in which the density matrix after being diagonalized contains only
one non-zero eigenvalue equal to 1. Otherwise we call the state a mixed state. When the
state is pure it is straightforward to check that one recovers the state vector formalism.
An important fact about pure states is that a pure state undergoing unitary evolution
will remain pure this fact will be important in the discussion the black hole information
paradox.

A particularly important quantity which one can compute using a density matrix is the
Von- Neumann entropy it is given by taking the following trace of a density matrix ρ:

SV N(ρ) = −Tr [ρ ln ρ] . (1.60)

To concretely compute the quantity above it is useful to express the density matrix in a
particular orthonormal basis so that it is diagonal:

ρ =

dim(H)∑
i=1

pi |i⟩ ⟨i| . (1.61)

The Von-Neumann entropy becomes:

SV N(ρ) = −
dim(H)∑
i=1

pi ln pi. (1.62)

Where we take “0 ln 0 = 0.” From this we can immediately see that if ρ describes a pure
state the Von-Neumann entropy is exactly zero. The Von-Neumann entropy is maximized
when pi =

1
dim(H)

for all i’s and the Von-Neumann entropy is ln [dim(H)]. Sometimes one
refers to states in which ρ ∝ I as “maximally mixed states.”

Now that we have discussed the basics of density matrices and the Von-Neumann
entropy associated with a density matrix we can discuss the idea of entanglement entropy.
Before doing this however, we need to discuss the taking the partial trace of density matrices
describing composite systems.

Suppose we have a density matrix, ρAB, describing a composite system in a joint Hilbert
space HA ⊗ HB. We define the reduced density matrix for subsystem A through an op-
eration called the partial trace. Taking the partial trace of ρAB can be accomplished by
choosing a normalized basis for HB, lets say it is given by the set of vectors {|i⟩}, and
computing:

ρA = TrB(ρAB) =
∑
i

⟨i|ρAB|i⟩ . (1.63)
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In a similar manner we can also find the reduced density matrix for subsystem B by taking
a partial trace over subsystem A:

ρB = TrA(ρAB). (1.64)

In the special case where ρAB describes a pure state in the composite system (i.e. ρ =
|Ψ⟩ ⟨Ψ|) we can define a quantity called the “entanglement entropy” which is the Von-
Neumann entropy of the reduced density matrices.

SEE(ρA) = −Tr(ρA ln ρA) = −Tr(ρB ln ρB) = SEE(ρB). (1.65)

The reason it is called an “entanglement entropy” is because it can be used to diagnose
the existence of quantum entanglement between the subsystem A and B (we must stress
that the state of the composite system must be pure). In particular, we have:

• SEE(ρA) = 0 iff |Ψ⟩ can be written as a product of two states in each subsystem (i.e.
a non-entangled state).

• SEE(ρA) > 0 iff |Ψ⟩ cannot be written as a product of two states in each subsystem
(i.e. an entangled state).

This concludes our overview of the basics ideas involved in the discussion of entanglement
entropy.

1.2.4 Quantum Statistical Mechanics in Canonical Ensemble

In this subsection we will go over the basics of quantum statistical mechanics and the
computation of partition functions in the canonical ensemble.

We start with a quantum system with a Hamiltonian, H, which governs its dynamics.
When we place such a quantum system in contact with a thermal bath of fixed temperature
T = 1

β
we are considering the system in the so called “canonical ensemble.” The system

in equilibrium is described by the following density matrix:

ρcan. =
e−βH

Z(β)
. (1.66)

The normalization constant in the denominator is the canonical partition function and can
be computed through the following trace:

Z(β) = Tr
[
e−βH

]
=
∑
k

⟨Ek|e−βH |Ek⟩ =
∑
k

e−βEk , (1.67)
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where we evaluated the trace using the eigenstates of the Hamiltonian to get a more familiar
expression of the canonical partition function. With the help of the partition function one
can construct the “free energy” of the system given by:

F = −T lnZ(β). (1.68)

One can then use this to compute thermodynamic quantities like entropy given by:

S = −∂F
∂T

. (1.69)

We can compute the thermal average of an observable O in the ensemble, denoted ⟨O⟩β,
as follows:

⟨O⟩β = Tr [ρcan.O] =
Tr[e−βHO]

Z(β)
. (1.70)

More generally one might consider a set of observables in the Heisenberg picture Oi(ti) and
compute n-point thermal correlators in the thermal ensemble as follows:

⟨O1(t1)O2(t2) · · ·On(tn)⟩β =
Tr
[
e−βHO1(t1)O2(t2) · · ·On(tn)

]
Z(β)

. (1.71)

One can also generalize these notions to more general kinds of thermodynamic ensembles.

1.3 Black Holes

Classical black holes are solutions to the Einstein field equations. However, for the past
half a century they have served as systems where the conflict between gravity and quantum
theory becomes apparent. In the discussion of in information paradox the need to enforce
unitarity in black hole evolution appears to challenge fundamental assumptions about the
quantum nature of black hole horizons and whether they should really exist in a UV
complete description of gravity.

In the following subsections we will go over some aspects of black holes that will be
useful to know in the reading of this thesis. For a more thorough treatment of the subject
we refer the reader to the following textbooks/notes which cover the ideas we will review
[36, 15, 65, 154, 99, 153].
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1.3.1 Black Holes and Black Hole Thermodynamics

Black holes in Einstein’s theory of General Relativity represent solutions of the Einstein
field equations, given by Eq. (1.21). The most simple class of black holes are spherically
symmetric. In particular, a spherically symmetric black hole solution will have a line
element of the following form:

ds2 = −f(r)dt2 + dr2

f(r)
+ r2dΩ2

d−1. (1.72)

The precise kind of black hole we are dealing with as well as its asymptotic properties are
determined by specific choices of the function f(r). In this thesis the most general kind
of black hole we will be dealing with is the AdS Reisener-Nordstrom black hole. The line
element of the black hole takes the form of Eq. (1.72) with f(r) being:

f(r) = 1− 2m

rd−2
+

q2

r2(d−2)
+
r2

L2

m =
8πGNM

(d− 1)
(

2πd/2

Γ(d/2)

)
q2 =

8πGNQ
2

(d− 1)(d− 2)
(

2πd/2

Γ(d/2)

) ,
(1.73)

where M is the mass and Q is the charge of the black hole. If we set Q = 0 we will recover
the AdS Schwarzschild black hole and we can also discuss asymptotically flat RN black
holes by sending the AdS radius L → ∞. The horizon, r = rH , is the largest real root
of the f(r) (i.e. f(rH) = 0). The apparent occurrence of the singularity at the horizon,
r = rH , is simply an artifact of the coordinate system and can be removed by choosing
a different coordinate system. A famous example are the in-going Eddington-Finkelstein
coordinates (v, r) where we define v = t+ r∗ and then write the metric as follows4:

ds2 = −f(r)dv2 + 2dvdr + r2dΩ2
d−1. (1.74)

We can see that even though f(r) vanishes at the horizon the metric is well defined.
Another useful coordinate transformation (assuming that f ′(rH) ̸= 0) which leaves the

4The coordinate r∗ is called the tortoise coordinate. It is related to the radial coordinate r through
the following relation dr∗ = dr/f(r). In this redefinition of the radial coordinate the horizon is pushed to
r∗ → −∞ and radial infinity is at r∗ → ∞ for asymptotically flat black holes or r∗ <∞ for asymptotically
AdS black holes.
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horizon regular can be defined as follows:

ũ = −e−
1
2
f ′(rH)(t−r∗)

ṽ = e
1
2
f ′(rH)(t+r∗).

(1.75)

With some work one will arrive at the following expression for the Schwarzschild metric:

ds2 =
4f(ũ, ṽ)

ũṽ

dũdṽ

f ′(rH)2
+ r(ũ, ṽ)2dΩ2

d−1. (1.76)

Near the horizon one can expand the tortoise coordinate (assuming that f ′(rH) ̸= 0 and
well defined) to find that:

lim
r→rH

f(ũṽ)

ṽũ
= −ecf ′(rH)f ′(rH), (1.77)

where c is some integration constant associated to the integral to get the tortoise coordinate
and we can see that the expression is completely well defined and non-zero at the horizon.
Note that the exterior spacetime outside the horizon was specifically given by ũ < 0 and
ṽ > 0 but we can also have three other sign combinations for ũ, ṽ. In particular we can
have a second exterior region with ũ > 0 and ṽ < 0, the future interior when ũ, ṽ > 0 and
the past interior for ũ, ṽ < 0. The horizon(s) are at uv = 0. The coordinates in which we
have the maximally extended solution is often called Kruskal coordinates.

A particularly important coordinate system when discussing the near horizon physics
of non-extremal black holes (i.e. black holes with f ′(rH) > 0) are Rindler coordinates.
These can be obtained by expanding the the metric given in 1.72 near the horizon r = rH ,
we obtain:

ds2 = − [f ′(rH)(r − rH)] dt
2 +

dr2

f ′(rH)(r − rH)
+ r2dΩ2

d−1. (1.78)

We redefine the radial coordinate using the following relation dρ = dr√
f ′(rH)(r−rH)

⇒ ρ =

2
√
r−rH√
f ′(rH)

and obtain the following near horizon metric:

ds2 = −
(
ρf ′(rH)

2

)2

dt2 + dρ2 + r(ρ)2dΩ2
d−1. (1.79)

The (t, ρ) part of the metric describes a Rindler space which also appears in the discussion
of constantly accelerated observers. In particular, an observer with a constant proper
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acceleration (in a spacetime with no black hole) will experience very similar physics to an
observer which is sitting at a constant radial distance near the horizon of a black hole.

At this stage it is interesting to recall that the black hole solutions are solutions to
the Einstein field equations. Furthermore, the Einstein field equations can be obtained
through the principle of stationary action using the Einstein Hilbert Action. In standard
quantum field theory one can define statistical systems using the action by Wick rotating
to imaginary time on a circle whose periodicity defines the temperature and using periodic
boundary conditions on the fields[15, 118]. This motivated the quantum gravity community
to define a statistical system associated with the Einstein Hilbert action whose partition
function is schematically written as (up to counter terms and boundary terms)[57, 15]:

Z =

∫
fix∂V

[Dg]e−S
Euc.
EH [g]. (1.80)

We use the Euclidean version of the Einstein Hilbert action SEuc.EH [g] and fix the asymp-
totic metric and sum over possible geometries (metric) consistent with the fixed boundary
condition. In general, such a path integral is not well defined and it is not even clear
how to evaluate such an object. However, it has been suggested that one might under-
stand/approximate such a path integral in terms of a sum of smooth Euclidean geometries
which are saddles of the Euclidean action. In particular, one might suggest an approxima-
tion scheme of the form:

Z ≈
∑
i

e−S
Euc.
EH [gi], (1.81)

where gi are solutions to the equations of motion of the Euclidean action. By carefully
including counter and boundary terms this object is expected to be well defined and can
also be explicitly computed in simple examples and then treated as a partition function
from which thermodynamic quantities can be computed.

As a simple example, one can consider the saddle corresponding to the Euclidean
Schwarzschild black hole. To obtain the Euclidean black hole saddle one can start with
the Lorentzian saddle metric of the form given in Eq. (1.72) and take t → itE which is
periodic and its period defines a temperature for the statistical system we defined in terms
of the action. The Euclidean metric takes the form:

ds2 = f(r)dt2E +
dr2

f(r)
+ r2dΩ2

d−1. (1.82)

The metric above is regular everywhere in the exterior of the black hole except possibly
near the horizon. Using the discussion of Rindler coordinates as a description of the near
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horizon geometry we will find the following metric near the horizon:

ds2 =

(
f ′(rH)

2

)2

ρ2dt2E + dρ2 + r2dΩ2
d−1. (1.83)

Now we redefine the dtE = 2dϕ
f ′(rH)

so that we have:

ds2 = ρ2dϕ2 + dρ2 + r2dΩ2
d−1. (1.84)

The (ρ, ϕ) part of the metric will contain a conical singularity unless we require ϕ ∼ ϕ+2π.
Therefore, the smoothness condition requires us to fix the periodicity of tE which we set
to the temperature β. We get the relation between the temperature and f :

β =
4π

f ′(rH)
. (1.85)

So the Euclidean black hole saddle takes the shape of a cigar in (tE, ρ) coordinates. The tip
of the cigar, which is smooth by the identification between temperature and the f ′(rH), is
what the horizon becomes in the Euclidean description. Miraculously when we evaluate the
regulated value of the Euclidean action on the black hole saddle and take that as defining
a partition function for the black hole and compute its entropy we will obtain the famous
Bekenstein Hawking formula for the entropy of the black hole [20]:

SBH =
A

4GN

. (1.86)

Associated with the black hole is also a temperature which is often referred to as the
Hawking temperature:

TH =
1

β
=
f ′(rH)

4π
. (1.87)

It is unclear why the computations above should really give a correct answer. After all,
we only approximated the full partition function via a saddle point approximation (which
we really just took a functioning definition of the sum of metrics for a lack of a better
approach). We only included the black hole saddle and there might be other ones (as we
will see in the discussion of the Hawking-Page transition in AdS/CFT). It ultimately forces
us to ask if this just a happy coincidence or is there something more deeper involved?

There are some interesting semi-classical computations which seem to clarify and also
deepen some questions about the thermodynamic nature of black holes. In particular,
Hawking’s application of quantum field theory on Lorentzian black hole backgrounds pre-
dicts the existence of Hawking radiation [68]. The black hole, due to near horizon quantum
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effects, losses its energy by emitting Hawking radiation at a temperature which given by
Eq. (1.87). So at least physically it seems there might be reasons why the black hole
might have a temperature because it really does radiate like a thermal body. The entropy
is still quite mysterious however. Nonetheless, there are a large number of approaches and
computations that one can do to motivate the idea that black holes are thermodynamic
systems which obey analogues of the conventional 4 laws of thermodynamics [18]:

• Zeroth Law of BH thermodynamics: A stationary black hole as constant surface
gravity κ5.

• First Law of BH thermodynamics: dE = κ
8π
dA+ΩdJ+ΦdQ. Changes in total energy

of black hole arise from changes in charge Q, angular momentum J , and area A.

• Second Law of BH thermodynamics: Sgen. = SBH + Sout ≥ 0. Entropy of black hole
plus fields outside of black hole will not decrease.

• Third Law of BH thermodynamics: Black hole cannot be made to have κ = 0 after
a finite number of processes.

1.3.2 Black Holes and AdS/CFT

A great deal of progress has been made in clarifying the origins of black hole entropy and
temperature since the formulation of the AdS/CFT correspondence. The AdS/CFT corre-
spondence was first formulated in Maldacena’s work [96]. With its formulation, emerged a
central idea, that quantum gravitational systems in asymptotically AdSd+1 spacetimes are
dual to conformal field theories in in one less dimension which live on the d-dimensional
boundary of asymptotically AdSd+1 spacetime. The correspondence represented a con-
crete/controlled realization of the “holographic principle” which stated that gravity in an
enclosed volume V has an equivalent description in terms of some theory that lives on the
boundary of the enclosed space ∂V [142, 146].

In its most non-restrictive incarnation the basic idea behind the study of quantum
gravity via AdS/CFT is that there is a gravitational system (String Theory, Supergrav-
ity, Einstein gravity, etc..) in a d + 1-dimensional asymptotically AdS spacetime called
the “bulk”. For this gravitational system there exists a holographic CFT system on the
boundary which will be equivalent to the bulk gravity system. In particular, the CFT
system, if understood well enough provides a complete UV description of quantum gravity

5Note that the surface gravity is related to the Hawking temperature of the black hole via κ = 2πTH .
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effects in the bulk. In this framework, one views states in the CFT descriptions as dual to
some bulk configuration6. In particular the most simple examples of this duality between
states and geometries is the relation between the vacuum state of the a holographic CFT,
|0⟩, and the geometry of empty AdS.

|0⟩ ↔ Vacuum AdS. (1.88)

Within this framework we one can introduce fields in the bulk, ϕ(x, z), which are dual to
certain to certain gauge-invariant operators on the boundary CFT O(x).

O ↔ ϕ. (1.89)

Then computation of correlators in the vacuum state of the CFT is dual to describing
scattering of dual fields in the bulk:

⟨0|O(x1)O(x2) · · ·O(xn)|0⟩ ↔ Scattering processes of dual ϕ fields in AdS. (1.90)

More generally we have an equivalence between the full quantum gravity partition function
in the bulk and the boundary CFT partition function:

Zbulk = ZCFT . (1.91)

We can apply this to AdS black holes and connect it to our previous discussion of
the Euclidean path integral for gravity and the entropy and temprature of a black hole.
Recall that one does the path integral by fixing the asymptotics of the Euclidean bulk
geometry. In AdS/CFT the CFT lives on the asymptotic boundary. We can consider
the thermal CFT by compactifying the time direction and then go through the standard
procedure to compute the partition function as well as thermal correlators. Due to the
AdS/CFT correspondence this has a dual interpretation of finding the partition function
using the Euclidean path integral. In such a setup one sees that by fixing the boundary
CFT and then filling out the bulk geometry with the smooth cigar results in the following
identifications:

• The Hawking temperature of the black hole is the temperature of the thermal CFT
(with some caveats which we will shortly discuss).

6It is not necessarily expected that all choices of CFT states correspond to “nice” geometries. There are
special states within the CFT which have been demonstrated to be dual to some smooth bulk geometries
(at least in certain regimes) the most well understood probably being the vacuum state of a holographic
CFT being identified with vacuum AdS.
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• The entropy of the black hole can be interpreted as arising from the entropy of the
CFT living on a sphere (assuming the horizon is spherical). In particular, aspects
of the microstates involved in the sourcing the black hole entropy can be studied by
studying the CFT spectrum of states.

Now lets discuss the caveat for the first point. The point about AdS/CFT is that the
gravitational partition function in the bulk (with fixed asymptotics) can be defined in
terms of a CFT partition function. But note that Zbulk is usually difficult to define and
compute explicitly. We simply opted to approximate/define Zbulk as a sum over on-shell
bulk geometries that are consistent with the prescribed boundary conditions. If we consider
the cigar geometry as corresponding to the black hole there is also another bulk Euclidean
geometry which looks like a cylinder which is thermal AdS (can be though of as empty
AdS with a thermal gas) which can also be made to satisfy the boundary conditions. So we
actually have a competition between two saddles. The black hole saddle and the thermal
AdS saddle. Both these saddles should be included in the Zbulk calculation i.e.:

ZCFT = Zbulk ≈ e−SEH [gBH ] + e−SEH [gThermalAdS ]. (1.92)

One can compute the free energy associated with each of the saddles and determine which
is thermodynamically favoured. One will find that at temperatures:

T ≤ d− 1

2πL
. (1.93)

Thermal AdS is more favored than the black hole saddle and for:

T >
d− 1

2πL
. (1.94)

the AdS black hole is favoured. The transition between these two saddles is called the
Hawking-Page transition. So when we say that in AdS/CFT the CFT in a thermal en-
semble is describing a black hole we really mean that it should describe an AdS black hole
well beyond the Hawking Page transition such black holes will have rH/L ≫ 1 and are
sometimes referred to as large AdS black holes. These are thermodynamically stable (have
positive heat capacity) and can be understood as being in equilibrium with the Hawk-
ing radiation they emit. The reason for this is that AdS has a confining potential which
essentially puts the black hole in a box. For very large AdS black holes the black hole
is large enough that Hawking radiation emitted from the black hole will bounce off the
conformal boundary and be reabsorbed by the black hole sufficiently quickly preventing it
from completely evaporating. This is in contrast to very small AdS black holes, which will
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have rH/L ≪ 1 which are not thermodynamically stable and eventually evaporate away
similar to black holes in asymptotically flat space. So at sufficiently high temperatures a
holographic CFT in a thermal ensemble should describe a large AdS black hole (rH ≫ L).
Correlators evaluated in the CFT will primarily get contributions from studying the prop-
agation of the dual fields in the black hole background. Now that we have discussed some
basic ideas of how black holes are described in AdS/CFT we can continue and describe the
black hole information paradox. Again, for a more comprehensive review of the subject we
recommend [65, 15].

1.3.3 The Information/Firewall Paradox and the need for Mi-
crostructure

The black hole information paradox arises from the realization that Hawking’s computation
of black hole evaporation via Hawking radiation emission allows for a mechanism by which
pure states can evolve into mixed states. In particular, suppose we have some matter in a
pure state |ψ⟩ and then we allow the matter to collapse to a black hole. Immediately after
collapse, according to Hawking’s calculation the black hole will start to emit Hawking
radiation. The Hawking radiation is going to be thermal and hence in a mixed state.
If we trust/assume that the process of Hawking radiation continues until the black hole
completely evaporates we will be led to a troubling conclusion. Namely that matter that
started in a pure state has evolved, through the formation of a black hole and its subsequent
evaporation, into a mixed state of thermal Hawking radiation. This raises questions about
the nature of quantum gravity and makes one question whether it should be unitary as
all other quantum theories of nature are. In particular, Hawking’s computations that
unitarity is violated through the process of black hole evaporation is problematic from the
perspective of the AdS/CFT conjecture which postulates the even black hole evaporation
at least in AdS should be dual to some unitary CFT description. This has led many to
take the stance that:

1. There is something wrong with Hawking’s calculation and should not be trusted to
the end of the evaporation process.

2. Black hole evaporation is a unitary process (especially if you believe in AdS/CFT).

Now the first point is fairly reasonable since Hawking’s calculation is based on semi-classical
principles there are valid reasons to distrust Hawking’s computation all the way to the end
of the process. Now one might suggest that there is not actually a problem then Hawking’s
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calculation is incomplete at the end of evaporation and nothing can be said. However,
as we will discuss shortly, if we do insist that unitary be respected (which we should if
AdS/CFT is correct) then the information paradox is actually much worse. As we will see
issues begin even before the black hole has a chance to become Planck sized in a regime
where Hawking’s calculation might be expected to go through without issue. So lets now
discuss what should happen if the black hole evolves unitarily.

Our discussion starts with the quantity known as the entanglement entropy of Hawking
radiation. This quantity is motivated by the idea that each Hawking quanta has a partner
behind the horizon which it is entangled with it so that the joint system of the radiation
and black hole is pure (the reason for this entanglement to exist is because it is important
if we want to have a drama-free horizon and if Einstein’s equivalence principle is respected
at the horizon). In particular, if one takes the joint system which is thought to be pure,
and traces out the black hole then the entanglement entropy of the Hawking radiation will
follow the Page curve[115, 8] (if the process is unitary) depicted in Figure 1.1.
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Figure 1.1: Above is a depiction of the entropies involved during the evaporation process as
a function of time. The yellow line is the Bekenstein-Hawking entropy of the evaporating
black hole, it decays with time. The blue line is the entanglement entropy of Hawking
radiation according to Hawking’s calculation which violates unitary expectations. Finally
the green line is the Page curve. Before the Page time it coincides with Hawking’s calcu-
lation and after the Page time it coincides with the Bekenstein Hawking entropy of the
black hole and should go to zero indicating purity of the final state of radiation.

The explanation for this is fairly simple. Initially there is no Hawking radiation so
the entanglement entropy of Hawking radiation is zero. In the early stages of evaporation
the black hole will emit Hawking radiation and each quanta is entangled with another
partner mode behind the horizon so entanglement entropy of the black hole will gradually
increase. Roughly after the black hole emits half its initial entropy one should expect the
entanglement entropy of the radiation to reach a peak. The time which this occurs is
referred to as the Page time. After the Page time the subsequent radiation that is emitted
from the black hole should start to purify the earlier radiation and the entanglement
entropy should begin a downward slope and go to zero signifying that the final state is
pure (of course we know that Hawking’s calculation does not predict this even though the
black hole is macroscopic and not Planckian but this is what we should expect if black
hole evolution is truly unitary). Now we can see why the insistence of unitarity poses an
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interesting puzzle. It is not the case that the issue begins when the black hole becomes
Planckian; the real issue begins as soon as the Page time when the black hole is macroscopic
and spacetime near the horizon is weakly curved so we expect Hawking’s calculation to be
perfectly fine. So if we insist to preserve unitarity then we must figure out why Hawking’s
calculation should not go through (i.e. what assumptions go into Hawking’s calculations
which may not be satisfied after a Page time).

To understand what goes wrong it is important to more carefully discuss the role that
entanglement plays in discussing the smoothness of the horizon and how the monogamy
of entanglement suggests the development of firewalls after the Page time[65, 99]. In
particular as we already stated the entanglement between the modes in the interior and
the Hawking quanta serve as a method by which the spacetime at the horizon remains in a
vacuum state. However, in order to begin the process of purification of the radiation after
the Page time, the new Hawking quanta must also be entangled with the older Hawking
quanta the black hole emitted. This requires a single Hawking quanta to be maximally
entangled with two subsystems which is not possible due to the monogamy of entanglement
(i.e. a system can only be entangled so much to two other systems). This has led to the idea
that in order to save unitary evolution one must “cut” the entanglement between modes
inside the horizon and the Hawking quanta outside. This will lead to a disruption in the
entanglement between the interior and exterior fields and lead to a divergence called the
“firewall” [10]. Basically it is believed that after the Page time a very high energy curtain
of energy would form near the horizon which would violate Einstein’s equivalence principle
and our hopes of have a smooth drama free horizon (this may also explain why Hawking’s
calculation should not match the Page curve after the Page time since smoothness of
the horizon needs to be thrown out due to the presence of a firewall). This marked the
beginning of the realization that unitary evolution might require us to throw out the notion
of a black hole having a smooth horizon with no microstructure.

Since the formulation of these problems it has been realized that a proper resolution
to the information problem will require the abandonment of at least one of the three
assumptions listed below [21]:

1. Unitary evolution for black holes.

2. Smooth horizon for black holes.

3. Locality of quantum theory in the presence of black holes.

We want to keep unitarity so we must either give up on locality (e.g. Giddings’ non-violent
unitarization[58, 59, 60] and quite possibly the recent islands proposal[8]) or we must give
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up on the notion of a horizon (e.g. in the discussion of fuzzballs[99, 100]). The main
point here is that if unitarity is to be held sacred then there is the need for
new physics/microstructure near the horizon.

Before concluding our discussion of the information paradox and how it motivates the
need for microstructure near the horizon it is worth pointing out that there is also another
version of the information paradox which was actually discussed by Maldacena in the early
days of the AdS/CFT correspondence when he introduced the the thermofield double state,
|TFD⟩, as the the holographic dual of the eternal two-sided AdS black hole[97]. Here we
give a brief overview of Maldacena’s version of the information paradox. The main points
of Maldacena’s version of the information problem is as follows:

• Large AdS black holes with spherical horizons are dual to a thermal ensemble of
holographic CFT states of a CFT living on a sphere (i.e. a compact space).

• Since the CFT lives on a compact space the spectrum of states will be discrete.

• Initially thermal correlators of CFT operators are expected to decrease.

• At late times discreteness of spectrum of states becomes important and correlators
should not decay to zero but instead fluctuate with average amplitude that is expo-
nentially small in entropy.

• Computation of quasi-normal modes in bulk (which would be dual to to computation
of two point correlator on CFT) will also decay at early time consistent with the CFT.

• Quasi-normal modes continue to decay forever and there will be mismatch between
thermalization behaviour in bulk and CFT.

• Absence of decay to zero in CFT calculation is signature of unitary evolution.

• Decay to zero of perturbation in quasi-normal mode decay calculation signal that
information of perturbation is lost and violates unitarity.

Maldacena has suggested that a way forward was to include the thermal AdS saddle in the
calculation as well to prevent the decay, since the partition function of the CFT is really a
sum over saddles in the bulk and after a long time the thermal AdS saddle would dominate
the behaviour and prevent decay. Since Maldacena pointed this out there were a number of
papers that investigated this in more detail from the Lorentzian perspective[17, 138, 147].
These works concluded that the horizon was the primary culprit which caused correlators
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in the bulk to decay to zero and it was suggested that modifications to the near horizon
geometry may be necessary to restore unitary evolution. So even well before the discussion
of the firewall problem, nearly a decade later, there were reasons to suspect the notion
of horizon smoothness in a unitary bulk description of a black hole. In the past 5-10
years, a great deal of interest has been sparked in the discussion of both versions of the
information paradox (i.e. the Page curve version and late time correlator version). In
the next subsection we will briefly describe these efforts as well as experimental efforts to
detect signatures of horizon modifications.

1.4 Recent Frontiers of Exploration for Black Holes

The assumption that black holes should evolve in a unitary manner seems to require some
new physics near the horizon well before the black hole becomes Planck sized. This has
been suggested both by the firewall problem (and the discussion of the Page curve) as well
as the subsequent analysis of Maldacena’s version of the information problem involving
the late time behaviour of correlators. In the past 5-10 years a great deal of theoretical
progress has been made in understanding how to reproduce a Page curve [8, 117, 7] as
well as some expected features of the late behaviour of correlators which are intimately
connected to the discussion of quantum chaos and random matrix theory. Parallel to these
developments there have been interests in trying to experimentally determine if there are
modifications to the near horizon physics of black holes. In particular, if the modifications
to the near horizon physics of black holes result in the partial reflection of perturbations
then one might detect signatures of such near horizon microstructure in gravity waves that
are emitted after a binary system coalesces and forms a black hole.

1.4.1 Connections between Black Holes, Quantum Chaos, and
Random Matrix Theories

Lets begin our discussion with the developments that have found black holes to be dual
to quantum chaotic systems [78]. The discussion of classical chaos can be traced back
to the idea of having a system with two initial conditions that are “close” which evolve
to configurations that are very far away from from each other in the state space. As an
example one can consider a one dimensional system with phase space variables (q, p), where
q is a position and p is a momentum. The system is said to be chaotic if the following
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Poisson bracket grows exponentially with time:

{q(t), p(0)}P.B. ∼ eλLt. (1.95)

This is essentially saying that initial conditions that are close in phase space will have
trajectories that evolve away from each other exponentially fast (the essence of chaos).
The quantum analogue of this statement is involves replacing the Poisson bracket with
commutator and promote q and p to operators. So we say a quantum system with a
large number of degrees of freedom, N , in a thermal ensemble is quantum chaotic if the
square of the commutator of two generic unitary hermitian operators, W,V , also grows
exponentially:

C(t) = −⟨[W (t), V (0)]2⟩ ∼ e2λLt. (1.96)

The rate of growth in the exponent, λL, is often called the Lyapunov exponent and is used
to characterize the degree of chaos (i.e. the larger λL is the more chaotic the system is said
to be). If we expand out the commutator squared we will get an expression of the form:

C(t) = 2 ⟨W (t)W (t)V (0)V (0)⟩β − 2 ⟨W (t)V (0)W (t)V (0)⟩β . (1.97)

The first term in the above equation is a time ordered correlator and the last term is called
the out-of-time-order correlator (OTOC). At t = 0 the two terms cancel and C(0) = 0.
Due to the unitary condition the second term evaluates to 1 so we have:

C(t) = 2
[
1− ⟨W (t)V (0)W (t)V (0)⟩β

]
. (1.98)

If we assume that the system is chaotic then we should have:

C(t) = 2
[
1− ⟨W (t)V (0)W (t)V (0)⟩β

]
∼ e2λLt. (1.99)

So saying that the commutator squared is exponentially increasing is a statement that the
OTOC exponentially decreases. This diagnosis (i.e. the exponential decay of OTOCs is
often used rather than the commutator squared which has natural analogue to the classical
Poisson bracket diagnosing chaos).

So why is this important for our discussion of black holes as quantum chaotic systems?
The answer is because a holographic CFT in a thermal ensemble at very high temperatures
describes the exterior of a large AdS black hole in the bulk. This realization motivated the
works [135, 136] that gave a bulk interpretation to the computation of OTOC and used
the bulk computations to argue that the holographic CFT should have thermal correlators
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that decay exponentially fast at a rate with a Lyapunov exponent characterized by the
bulk black hole’s Hawking temperature:

λL = 2πTH =
2π

β
. (1.100)

In particular, the phase of exponential decay was shown to occur at times much earlier
than the so-called scrambling time, tscr ∼ β ln(N), but later than the time scale set by
the inverse temperature, β. This result connected the chaotic aspects of black holes to
older ideas that black holes acted as the fastest scramblers of information. In particular,
the results suggested that the chaotic dynamics were connected to the fast scrambling of
quantum information thrown into a black hole. Along with the notion that black holes
were unitary systems that had the fastest scrambling rates [134] it was conjectured that the
Lyapunov exponent for black holes formed an upper bound on the set of possible values
of the Lyapunov exponent for large N quantum thermal systems (i.e. black holes are
maximally chaotic systems)[94].

Up to that point the notion that black holes were quantum chaotic systems was mostly
understood from a bulk perspective these ideas were difficult to explore directly in the
boundary CFT system (this is because the usual examples of the duality involved strongly
coupled gauge theories which are difficult to treat analytically). This changed with the re-
alization that the SYK model saturated the Lyapunov bound and exhibited some emergent
conformal symmetries (suggesting a possible AdS2 gravity description) at low energies in
the infinite N regime[123, 55, 56, 145]. The SYK model is a quantum mechanical model
(0+1-dimensional QFT) which consists of N Majorana fermions whose dynamics are gov-
erned by the following Hamiltonian:

HSY K =
N∑

i,j,k,l=1

Jijklχiχjχkχl, (1.101)

where N is even and Jijkl is a random coupling parameter which is Gaussian distributed.
The Majorana fermions obey the following anti-commutation relations {χiχj} = δij. The
reason this was exciting was because the SYK model represented a concrete quantum
system which not only saturated the Lyapunov bound for black holes but was simple
enough to analyze analytically in large N regimes. It was also relatively simple to do more
exact numerical computations at finite N and diagonalize the Hamiltonian given in Eq.
(1.101) discrete spectrum of states. In particular, numerical computations of correlators at
finite N made it possible to now understand the late time behaviour of correlators and how
they fluctuate (note that this was not an easy task directly from the bulk perspective).
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With the study of the SYK model it was noted that the late time behaviour of correla-
tors immediately after the initial decay would exhibit a linear ramp followed by a plateau.
This behaviour was also found in the closely related computation of the spectral form
factor for the SYK model given by:

⟨ZSY K(β + it)ZSY K(β − it)⟩ = ⟨
∑
n,m

e−β(Em+En)ei(En−Em)t⟩ , (1.102)

where the braket means to average over many numerical samples (recall that the SYK
Hamiltonian involves a random coupling Jijkl) and En are the eigenvalues of the diagonal-
ized SYK Hamiltonian. In the work [42] the late time ramp was traced back to the spectral
statistics of the spacing between eigenvalues. In particular, it was demonstrated that the
spacing statistics between eigenvalues exhibited “repulsion” which is a key feature found
in the study of random matrix theories. This connected the spectrum statistics of black
holes to the spectrum statistics of random matrix theories involving classical Gaussian
ensembles.

Lets conclude this subsection with a brief overview of “classical” random matrix theory
i.e. the theory of random matrices belonging to the following ensembles:

• Gaussian Orthogonal Ensembles (GOE): The set of real symmetric square matrices
whose elements are Gaussian distributed random variables.

• Gaussian Unitary Ensembles (GUE): The set of square hermitian matrices whose
whose elements are Gaussian distributed random variables.

• Gaussian Symplectic Ensemble (GSE): The set of square matrices whose elements
are defined by quaternions which Gaussian distributed.

Lets suppose we take an N × N matrix from any one of the three ensembles above and
diagonalize it we will have a set of of randomly distributed eigenvalues {λ1, λ2, ..., λN}.
The study of random matrix theory is the study of the statistical properties of the ran-
dom eigenvalues we get. In particular, a very important result for the three ensembles
listed above is that the eigenvalues exhibit eigenvalue “repulsion.” This repulsion can be
quantified by studying the spacing statistics between an adjacent pair of eigenvalues. It
is a well known fact in random matrix theory that the probability of having two adjacent
eigenvalues a distance s away from each other is well approximated by the Wigner surmise
which is a probability distribution which takes on the following form (in the equation below
we set s to be a dimensionless distance and did not write a normalization):

Pα(s) ∼ sαe−s
2

. (1.103)
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The label α is sometimes referred to as the Dyson index and is equal to 1,2, and 4 for the
GOE, GUE, and GSE respectively. There are many other facts about these ensembles but
we will not heavily rely on them in this thesis (if the reader is interested in learning more
about the mathematical details of random matrix theory a good introduction is [93]).

1.4.2 Echoes as Signatures of Near Horizon Microstructure

In this subsection we will give a brief overview of the main conceptual aspects of the
experimental search for echoes and why they are thought to be a smoking-gun signature
of non-trivial near horizon modifications to a black hole (see [3] for a more comprehensive
review.) .

The discussion of echoes begins with the discussion of how they might be formed. Aside
from the commonly known matter collapse to a black hole, a black hole may also form when
two sufficiently large massive bodies (e.g. two black holes, two neutron stars, etc..) in a
binary system orbit into each other and form a black hole. After the initial merging of the
two bodies it is expected that the black hole will settle to an equilibrium state by emitting
gravitational waves. The precise physics of the ringdown after the merge event is widely
regarded as being controlled by a set of quasi-normal modes of the resulting black hole.

Quasi-normal modes are obtained by studying wave phenomena in black hole back-
grounds. Schematically, one solves a wave equation of the form □Ψ = 0, where □ is the
given by □ = gµν∇µ∇ν and g is the metric for the black hole. The quasi-normal modes
are obtained by finding solutions that obey specific boundary conditions, namely:

• The perturbation at the horizon obeys “in-going” boundary conditions.

• The perturbation at infinity is obeys “out-going” boundary conditions.

When one uses these modes to model the ringdown one gets a smooth decay profile for the
decay of the amplitude of the perturbation which is what one would expect (eventually the
black hole absorbs everything or things are sent off to infinity and never come back).

The discussion of echoes involves changing the boundary condition near the horizon
from a purely ingoing boundary condition to a partially reflective (mixed) boundary con-
dition. The physical motivation is that there are some unknown quantum gravity effects
near the horizon which come together and effectively behave like a cutoff near the hori-
zon with some non-standard boundary conditions which allow for the partial reflection
of perturbations near the horizon. When such modes are used to model the ringdown

37



of the modified black hole one initially obtains a smooth decay not unlike the standard
quasi-normal mode decay. However, after some time scale tdev there are deviations away
from the standard signal these deviations manifest as repeating echoes (i.e. a resurgence
in the amplitude of the perturbation as measured by a distant observer). The physical
explanation for the repeating echoes is that there are modes trapped between the modified
horizon and the angular momentum barrier which bounce back and fourth as they slowly
leak out. In the geometric optics approximation the time delay between the echoes for a
spherically symmetric black hole would be approximated by:

techo =

∫ r0

rH+δr

2

f(r)
dr, (1.104)

where δr is the radial coordinate distance away from the horizon where the semi-reflective
boundary condition is enforced and r0 is the position of the angular momentum barrier.
It is easy to see that this is just the length of time it takes for a null radial geodesic to go
from the point rH + δr to the angular momentum barrier at r0 and back again.

A particularly interesting choice for δr corresponds to fixing the boundary conditions
a proper Planck length away from the horizon. In such a case it was noted that the echo
time was comparable to the scrambling time of the black hole:

techo ∼ β ln(SBH). (1.105)

So it was suggested that if echoes did show up in the gravitational wave data collected
by the Laser Interferometer Gravitational-wave Observatory (LIGO) in the aftermath of a
binary merger and they were delayed from each other by a scrambling time scale, that such
echoes would be smoking gun signatures of near horizon modifications localized within a
Planck length of the horizon.

1.5 Overview of Thesis

1.5.1 Central Ideas and Motivations of Part I

Part I of this thesis will primarily be motivated by the recent advancements discussed in
Sections 1.4.1 and 1.4.2.

In Chapter 2, we set out with the idea that in AdS/CFT all possible information about
how a black hole relaxes in a manner consistent with unitarity is governed by the calculation
of correlators in the state we believe the black hole geometry is dual to. We suggest that if
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black holes really did have microstructure near the horizon then a CFT calculation would
be able to determine their existence. In this chapter, we explore this idea by noting the
resemblance of the echo time with the scrambling time and try to understand how echoes
would manifest in a dual CFT calculation. The guiding questions of the chapter are:

• To what extent can the Echo time scale mimic the Scrambling time scale for AdS
black holes?

• If the Echo time scale can be identified with the scrambling time scale of AdS black
holes, is there a holographic interpretation?

• What would it mean if a correlator in a holographic CFT state exhibited echoes?

In Chapter 3, we take some of the ideas and results in Chapter 2 and explore the phenomena
of echoes from a more quantum perspective. We are guided by the idea that the discreteness
of the spectrum of microstates of a Large AdS black hole with a spherical horizon is
responsible for the absence of the decay of correlators at late times. We entertain the
idea that perhaps echoes can be directly attributed to the discrete nature of black hole
microstates and explore this idea. The basic idea is that from the CFT perspective the
black hole in the bulk is a thermal ensemble of eSBH microstates. The unitary ringdown of
the black hole in the bulk would be described by a thermal correlator calculation in the
thermal ensemble of microstates and that would in turn depend on the precise statistics of
the microstates in the ensemble (see Figure 1.2 for a depiction).
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Figure 1.2: Depicted above is a diagram showing the differences between a non-unitary
classical black hole on the left and a unitary (quantum black hole) one on the right. The
classical black hole absorbs all modes of a perturbation and this results in the smooth decay
of the perturbation to zero. The unitary black hole has a discrete spectrum of microstates
so only certain modes can be absorbed and other are reflected. In particular, at early
times the perturbation has not been able to resolve the discrete nature of the spectrum
of the black hole so the amplitude decays in a manner similar to the non-unitary black
hole. After a time scale tdev the microstructure is probed and deviations manifest. Precise
nature of deviations depends on specifics of the ensemble of microstates depicted at the
very bottom of the figure.

With this picture we set out to investigate the following questions:

• Can the existence of echoes be attributed to the discreteness of the spectrum of black
hole microstates?

• What would the existence of echoes imply about the microstate spectrum statistics
of a black hole?
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• Are echoes compatible with the notion of black holes being quantum chaotic systems?

• If we do not find echoes does this mean there is no microstructure near the horizon?

• Does the issue of a black hole having a smooth horizon depend on the microstate
statistics?

1.5.2 Central Ideas and Motivation of Part II

Part II of this thesis is loosely based/motivated by the recent advancements in reproducing
the Page curve for evaporating black holes coupled to baths [117, 7, 8, 38, 37, 107, 90].

Chapter 4, is primarily motivated by the work of Pennington who computed the in-
formation recovery time in a system involving a black hole coupled to a bath[117]. He
assumed that radiation is extracted near the horizon (with some kind of un-specified ex-
traction method) so that greybody factors could be ignored and used a certain expression
for the evaporation rate of a black hole. With that he computed that information thrown
into a black hole after the Page time could be recovered in a scrambling time scale. The
guiding questions in Chapter 4 are:

• Can we model Pennington’s non-specific extraction method near the horizon with a
concrete model involving a absorptive screen placed near the horizon?

• How does the evaporation rate change as a function of how close and absorptive the
screen is?

• If the evaporation rate changes how does it affect Pennington’s computation of the
scrambling time?

• What is the physics of the absorptive screen and can it be understood in terms of a
coarse grained boundary CFT?

• Will the screen violate energy conditions?

Chapter 5, is primarily motivated by the works [38, 37, 107, 90]. We set out to inves-
tigate when entanglement wedge nesting is violated in three dimensional AdS spacetimes
that are cut off by an end-of-the-world brane. Our investigations were and are continued
to be guided by the questions:

• Can we define an entanglement wedge associated with a subregion on a brane?
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• Are there non-trivial constraints on the gravity theory living on the brane which
can be obtained by studying the violation of entanglement wedge nesting in the
island/connected phase?

• What is the interpretation of the constraints and are they correct (i.e. are they just
sufficient conditions or necessary)?

• What is the nature of the apparent non-local identifications between subregions in
non-gravitating regions and gravitating regions on the brane in the connected/island
phase?

• Can the results we obtained in 3D be extended to higher dimensions?

• What will our results mean for black holes coupled to bath setups in double holog-
raphy?
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Part I

Echoes and Near Horizon
Microstructure from Black Hole

Microstate Statistics
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Chapter 2

Quantum Nature of Black Holes:
Fast Scrambling versus Echoes

Two seemingly distinct notions regarding black holes have captured the imagination of
theoretical physicists over the past decade: First, black holes are conjectured to be fast
scramblers of information, a notion that is further supported through connections to quan-
tum chaos and decay of mutual information via AdS/CFT holography. Second, black hole
information paradox has motivated exotic quantum structure near horizons of black holes
(e.g., gravastars, fuzzballs, or firewalls) that may manifest themselves through delayed
gravitational wave echoes in the aftermath of black hole formation or mergers, and are po-
tentially observable by LIGO/Virgo observatories. By studying various limits of charged
AdS/Schwarzschild black holes we show that, if properly defined, the two seemingly dis-
tinct phenomena happen on an identical timescale of log(Radius)/(π×Temperature). We
further comment on the physical interpretation of this coincidence and the corresponding
holographic interpretation of black hole echoes.

2.1 Introduction

Recent studies of black holes from the point of view of string theory and quantum infor-
mation suggest that the horizon of a black hole may be modified. Most notably, modified
horizons appear in the context of the black hole information paradox in the form of a fire-
wall [10, 122, 140] and also within string theory in the tight fuzzball paradigm [99, 100, 64].
These descriptions usually suggest modifications within a Planck length of the horizon, we
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refer to these as “hard” modifications. These are in contrast to studies which suggest
“soft” modifications which can manifest as soon as one gets within a black hole radius of
the horizon [58, 59, 30]. Furthermore, recent experimental results from the detection of
gravitational waves have provided tentative (albeit controversial) evidence of modified hori-
zons [4, 40, 1] (see [156] and [5], for counterpoint and rebuttal). A particularly interesting
property of black holes with modified horizons comes from the study of its quasi-normal
modes. Typically, quasi-normal modes of a black hole are found by requiring in-going
boundary conditions at the horizon [75, 23]. However, for black holes with modified hori-
zons, it is believed that such boundary conditions will be altered. One way to model such
changes is to introduce boundary conditions on a surface which exists within a proper
Planck length of the horizon1. This surface or membrane allows for the partial reflection
of perturbations. Studies using this approach have shown that the quasi-normal modes
exhibit “echoes”[31, 32, 98, 33, 34, 155, 35]. The term “echoes” is used to refer to a feature
of the late time decay behaviour of the quasi-normal modes. For typical black holes (i.e.
black holes with smooth horizons) the decay is exponential. For black holes with modified
horizons the late time behaviour is accompanied by small repeating peaks in the amplitude.
The physical reason why one sees repeating peaks in the amplitude is because perturba-
tions will bounce back and fourth between the modified horizon and angular momentum
barrier (similar to echoes created using sound waves). The time delay between adjacent
peaks is referred to as the echo time. The echo time, in the geometric optics approxima-
tion, is twice the tortoise coordinate distance between the modified horizon/membrane and
angular momentum barrier [4, 155]:

techo ≃ 2|r∗|membrane. (2.1)

It was first noted in [4] that the echo time was comparable to the scrambling time scale
for black holes.

The scrambling time scale appears when black holes are studied from an information
theoretic point of view 2. In the context of quantum information recovery, the scrambling
time scale can be viewed as a lower bound on the time it takes between throwing informa-
tion into a black hole and being able to recover it, with small error from the subsequent
Hawking radiation [73, 134, 158]. It has also been described as the amount of time it takes
for a qubit of information thrown into a black hole to become thoroughly “mixed” [134, 86].
There are many methodologies in the current literature to calculate the scrambling time
scale for black holes [134, 86, 136, 91, 29]. Depending on the particular approach one takes

1Since these modifications are localized within a Planck length of the horizon we would classify these
as “hard” modifications.

2Usually these types of studies assume that black hole evaporation is unitary.
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the exact mathematical expression for the scrambling time scale may vary. However, as
diverse as they may be, it seems that the approaches described in [134, 86, 136, 47, 91, 29]
give a time scale that can be roughly quantified by the following expression3:

tscr ∼ β ln(S). (2.2)

Here, β is the inverse temperature of the system and S can be viewed as the number of
microscopic degrees of freedom in the system which take part in the fast scrambling process.
The reason we do not explicitly identify S with entropy of the black hole is because this is
not generally true. For example, in [134] the scrambling time scale for very small AdS black
holes4 is given by setting S ∼ rH/ℓp, where rH is the horizon radius and ℓp is the Planck
length. However, for very large AdS black holes (i.e. the ones that are thought to be dual
to large N CFTs) the scrambling time scale is given by setting S ∼ L/ℓp, where L is the
AdS radius. From this it follows that, for very small AdS black holes (or asymptotically
flat black holes) it is reasonable to identify S with the full Bekenstein-Hawking entropy of
the black hole. However, for very large AdS black holes S is really given by the Bekenstein-
Hawking entropy of a small cell on the horizon whose characteristic length is given by the
AdS radius. Indeed, this seems to be consistent with the scrambling time scale given by
analyzing the behaviour of out of time order correlators [94] for large N CFTs which states
that the scrambling time scale is given by tscr ∼ β ln(N2)5.

In this work, we will do a detailed analysis of the time scale set by the echo time
for asymptotically AdSd+1 black holes in various regimes. The main reason for analyzing
the echo time scale for AdS black holes is because, we want to understand exactly how
accurately the echo time scale can mimic the scrambling time scale.

In Section 2.2, we introduce the definition for the echo time of a spherically static black
hole and define the location of the membrane in relation to the mathematical horizon. We
introduce the Planck length scale by requiring the membrane is within a proper Planck
length of the horizon. This enables us to expand the echo time integral as a series in
the Planck length with a leading order Log term that will later be compared with the
scrambling time scale. In Sections 2.3 and 2.4, we explicitly calculate the echo time for
different types of AdS black holes and verify the validity of the series expansion defined in
Section 2.2. A central aspect of of the calculations done in Sections 2.3 and 2.4 is to do a
detailed analysis of the O(1) sub-leading term in the series expansion to see how large it

3This is not to say that every approach to compute scrambling time gives a time scale similar to Eq.
(2.2). A notable exception is suggested by Peter Shor in [137], which we will comment on in Section 2.7.

4Such black holes are good approximations to asymptotically flat black holes as long as we consider
processes occurring close to the horizon, fast scrambling is one such process.

5Where we identify (L/ℓp)
d−1 ∼ N2 for large N CFTs.

46



gets in various regimes. In Section 2.5, we compare the echo time scale and the scrambling
time scale. More specifically, in Section 2.5.1 we review the scrambling time scale in [134]
and find that the scrambling time scale and echo time scale agree up to a factor of two.
In Section 2.5.2 we review the results of [91, 29] and discuss how the scrambling time
scale in [91, 29] is related to the scrambling time scale given in [134]. Furthermore, we
review how the results of [91, 29] suggest that there are modifications to Eq. (2.2) for near
extremal Reissener-Nordstrom (RN) black holes. We find that the modifications, suggested
by [91], to the scrambling time scale initially appears to be inconsistent with the echo time
scale. We show that the discrepancy can be traced back to how one defines the smallest
“reasonable” perturbation to a black hole. In Leichenauer’s work, the smallest reasonable
semi-classical perturbation is defined such that the entropy of a the black hole changes by
one. We argue that this is too restrictive and propose a different definition (see Appendix
A.5) which results in an agreement between the echo and scrambling time scales in the
near extremal regime. In Section 2.6 we pose the question of whether echoes can exist
within the framework of AdS/CFT. Based on the results of the previous sections, we give
a heuristic picture of how the phenomena of echoes may be related to the phenomena of
fast scrambling and what they tell us about the evolution of the Planck scale structure of
the horizon. In Section 2.7, we conclude by summarizing the major findings of this chapter
and discuss what they imply for future studies into the connection between echoes and fast
scrambling.

2.2 Universal Features of Echo Time for Spherically

Static Black Holes

2.2.1 Defining Echo Time

In this section, we will introduce the exact definition of the echo time we will be using
in this chapter. To simplify our calculations we will restrict our discussions to spherically
symmetric d+ 1-dimensional black hole metrics of the form:

ds2 = −f(r)dt2 + dr2

f(r)
+ r2dΩ2

d−1, (2.3)

with d ≥ 3. The echo time, in the geometric optics approximation is [4, 155]:

techo = 2

∫ rt

rH+δr

dr

f(r)
, (2.4)
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which is the coordinate time it takes for a radial null geodesic to go from rt to rH + δr
and back (hence the factor of two). Here, r = rH + δr is the location of the semi-reflective
membrane, with rH being the location of the event horizon, i.e. f(rH) = 0. The upper
bound of the integral, rt, can be understood as a turning point of the effective potential
that our perturbations are subject to. To understand exactly what this means we will
consider a minimally coupled scalar field in a background defined by Eq. (4.68). In this
case, the equation of motion for the scalar field can be simplified to a radial equation of
the form:

d2R
dr2∗

+
(
ω2 − Veff(r)

)
R = 0. (2.5)

The details of the derivation of Eq. (2.5) as well as the exact form of the effective potential,
Veff , is given in the Appendix A.1. We define rt as:

rt = min{r : ω2 − Veff(r) = 0}. (2.6)

With this definition, it is clear that the turning point depends on the frequency, ω, of
the scalar perturbation. In this chapter we will be focusing on the echo time for “low”
frequency perturbations6. Exactly what is meant by “low” frequency will be explained
later and made more clear when we calculate the echo time in explicit examples. We shall
see that, for our purposes, the exact value of rt will not be important in the “low” frequency
regime. Finally, we will relate δr to the Planck length, ℓp, through the following integral
expression:

ℓp =

∫ rH+δr

rH

dr√
f(r)

. (2.7)

Physically this means that the membrane is a proper Planck length away from the horizon.

2.2.2 Near Horizon Expansion of Echo Time

Now that we have defined what the echo time is, we will expand Eq. (2.4) in terms of ℓp.
To do this we will make the following assumptions on f(r)7:

1. f(rH) = 0

6Recent studies [113, 114] involving echoes has suggested that the reflection probability off the mem-
brane for high frequency perturbations is exponential suppressed.

7All the assumptions we make are true for the black holes considered in this work.
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2. f ′(rH) ̸= 0

3. f(r) is non zero and non-singular for r > rH

With these assumptions, we will split the echo integral into two parts:

techo =

∫ r0

rH+δr

2

f(r)
+

∫ rt

r0

2

f(r)
. (2.8)

Roughly speaking r0 is to be chosen such that we can do the first integral by retaining only
the leading order terms in the near horizon expansion of f(r). In general r0 ∼ rH . This is
deduced by considering the length scale set by the ratio of derivatives |f (n)(rH)/f

(n+1)(rH)| ∼
rH . Therefore, we will write the upper limit as r0 = CrH with C > 1. With this we can
calculate the first integral in Eq. (2.8):∫ CrH

rH+δr

2dr

f(r)
≈
∫ CrH

rH+δr

2dr

f ′(rH)(r − rH) +
1
2
f ′′(rH)(r − rH)2

=
β

2π
ln

[
(C − 1)rH

δr

(
1 + c2

c1
δr

1 + (C − 1) c2
c1
rH

)]
,

(2.9)

where cn = f (n)(rH)/n!. It is straightforward to calculate the leading order relation between
the Planck length and δr. Using Eq. (2.7) we find that:

ℓp =

√
βδr

π
⇒ δr =

πℓ2p
β
, (2.10)

where β = T−1 = 4π/f ′(rH). To simplify the final result for the leading order term we will
set C = π + 18. Any error this introduces will be finite and of O(1). The O(1) error will
be absorbed into the sub-leading terms in the Planck length expansion. With this choice
of C, we find that:∫ (π+1)rH

rH+δr

2dr

f(r)
≈ β

2π

[
ln

(
βrH
ℓ2p

)
− ln

(
1 +

f ′′(rH)

8
βrH

)
+O(ℓp)

]
. (2.11)

Therefore, in general we can write the series expansion for the echo time as:

techo =
β

2π

[
ln

(
βrH
ℓ2p

)
+ χ+O(ℓp)

]
,

χ = − ln

(
1 +

f ′′(rH)

8
βrH

)
+ χ0.

(2.12)

8This is simply a convention that fixes the form of the leading order Log term in the series expansion.
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In Eq. (2.12) χ0 is roughly given by the second integral term in Eq. (2.8) plus any small
errors we introduce by fixing C = π + 1 and doing integral in Eq. (2.11). Consequently,
the way we defined χ0 makes it impossible to know its exact value without explicitly doing
the echo integral and expanding it as a series. However, we can give a sufficient condition
on it being finite. In particular, we are guaranteed that χ0 is finite as long as the second
integral in Eq. (2.8) converges. This is guaranteed if rt is finite which brings us to a more
precise definition of what is meant by a “low” frequency perturbation. For the black holes
we will be considering the effective potential will vanish at the horizon and slowly increase.
Depending on the kind of black hole, the effective potential may continue to increase (for
very large AdS BH as shown in Fig. 2.1) or reach a local maximum at some point, rc,
(for very small AdS shown in Fig. 2.1 or asymptotically flat BH). In the case where a
local maximum is achieved we will only allow rt ≤ rc. This will naturally place an upper
bound Ω on the set of frequencies we are dealing with. We will define “low” frequency as
ω < Ω. So we see that the low frequency criterion is needed to ensure that the size of χ0

is controlled9.

However, note that even if χ0 is finite this does not imply that the entire sub-leading
term χ is going to be finite. This is why we decompose χ in Eq. (2.12) into two pieces.
The Log term will be finite far from the extremal regime, but as we approach the extremal
regime the Log term will become uncontrollably large. Therefore, we should combine the
the Log term in the definition of χ with the leading order Log term to get the following
leading order contribution to the echo time for a near extremal BH:

textecho ≃
β

2π

[
ln

(
8

ℓ2pf
′′
ext(rH)

)
+O

(
1

βrH

)]
. (2.13)

Together, Eqs. (2.12 - 2.13) completely characterize the behaviour of the leading order
terms in the series expansion of the echo time in various important regimes. Furthermore,
we are guaranteed that sub-leading terms are either finite or suppressed by the Planck
length ℓp. In the next section, we will explicitly calculate the echo time for various types
of black holes and show that the echo time can be arranged as a series given by Eq. (2.12).
We will give explicit expressions for χ in these examples. In particular, we will show that χ
is finite for non-extremal black holes and diverges logarithmically in β in the near extremal
regime.

9We intentionally did not provide a definition of low frequency for large black holes whose effective
potential has no local max. This is because χ0 is always finite and does not change a great deal as we
increase the turning point.
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Figure 2.1: Above is a depiction of how echoes are generated for very large (rH/L≫ 1) and
very small (rH/L≪ 1) AdS black holes. The event horizon in these coordinates is at r∗ =
−∞ and the conformal boundary is at r∗ = 0. The general solution to the massless scalar
wave equation near the horizon takes the form ψ ∼ Ae−iω(t+r∗) + Be−iω(t−r∗). The semi-
reflective membrane, depicted by the vertical read line, allows for the partial reflection of
scalar perturbations with a reflectivity of |(B/A)e2iωr∗|2. After the perturbation is partially
reflected off the membrane it will head towards the conformal boundary and encounter the
effective potential causing reflection back towards the membrane. The process repeats until
the perturbation dissipates. For very small black holes the effective potential contains a
local max before diverging near the boundary. This is in contrast to very large black holes
whose effective potential continues to increase. For asymptotically flat black holes the local
maximum is still present. However, there is no conformal boundary and the potential does
not diverge.

2.3 Echo Time For AdS Schwarzschild Black Holes

2.3.1 Overview of AdS Schwarzschild Solution

The line element of a d+1-dimensional AdS Schwarzschild black hole is given by Eq. (4.68)
with f(r) given by:

f(r) = 1− 2M

rd−2
+
r2

L2
, (2.14)
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where L is a constant called the AdS radius and M is a measure of the mass of the black
hole. The largest real root of f(r) is the location of the event horizon and will be denoted
as rH . Using this fact it is useful to rewrite f(r) in terms of the horizon radius to get:

f(r) = 1 +
r2

L2
−
(rH
r

)d−2
(
1 +

r2H
L2

)
. (2.15)

We can then easily write down an expression for the temperature of the black hole:

T =
1

4π

df

dr

∣∣∣∣
r=rH

=
dr2H + (d− 2)L2

4πrHL2
. (2.16)

Analyzing the sign of dT/drH gives us insight about the heat capacity of AdS black holes.
In particular, black holes with r2H/L

2 < (d − 2)/d will have a negative heat capacity and
black holes with r2H/L

2 > (d − 2)/d will have a positive heat capacity. The black holes
with positive heat capacity are commonly referred to as large black holes and ones with
negative heat capacity are referred to as small black holes.

2.3.2 Echo Time in the Planar Limit

Since very large AdS Schwarzschild black holes at high temperature are well approximated
by planar black holes it will be useful to calculate the echo time for a planar black hole.
The planar black hole metric is given by Eq. (4.68) with10:

f(r) =
rd − rdH
L2rd−2

. (2.17)

The temperature is given by:

T =
drH
4πL2

. (2.18)

10This not exactly correct. Technically we have to replace dΩd−1 with the metric on a d− 1 plane. Now
the solutions to the scalar wave equation will be decomposed into plane waves instead of hyper-spherical
harmonics. The large angular momentum modes maps to large linear momentum modes along the horizon.
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In this case the echo time integral can be expressed in terms of the hyper-geometric function
for d ≥ 3 and is given by:

techo =

∫ rt

rH+δr

2L2rd−2

rd − rdH

=
2L2

r

[
2F1

(
1,−1

d
,
d− 1

d
,
rd

rdH

)
− 1

] ∣∣∣∣rt
rH+δr

=
β

2π

[
drH
r

2F1

(
1,−1

d
,
d− 1

d
,
rd

rdH

)
− drH

r

] ∣∣∣∣rt
rH+δr

.

(2.19)

With some work, we can write the echo time above as a series given by Eq. (2.12) with
χ(rt, rH) given by:

χ(rt, rH) =
drH
rt

2F1

(
1,−1

d
,
d− 1

d
,
rdt
rdH

)
+ d

(
1− rH

rt

)
− iπ − αd

αd = γ + ln(πd) + ψ

(
−1

d

)
,

(2.20)

where γ ≈ 0.577 is the Euler-Mascheroni constant and ψ is the digamma function. We
define χ∞ as the value of χ when we take the turning point rt = ∞. For the planar black
hole we get a finite result:

lim
rt→∞

χ (rt, rH) = χ∞ = −γ − ln(πd)− ψ

(
1

d

)
. (2.21)

Here, χ∞ represents an upper bound on the set of all possible values of χ. In other words
if we find that χ∞ is finite, it puts a non-trivial upper bound on χ in the series expansion
given by Eq. (2.12). In Fig. 2.2 we plot χ as a function of the ratio rt/rH in different
dimensions. We see that in general, χ is a strictly increasing function of the turning point.
This makes sense because the further the turning point is the longer it takes for the echo
to go from the membrane to the turning point. Furthermore, we see that for large values
of the turning point χ is approaching χ∞. We can ignore the divergence in the plot as
rt → rH because we always consider our turning points to be far away from the horizon11.
Most importantly the plot shows that χ ≤ χ∞ <∞.

11Actually the divergence we see is necessary. The echo time should go to zero if we approach the horizon
and indeed the divergence in χ will cancel with the divergence in the leading order term as we send ℓp → 0
to give an echo time of zero.
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Now that we have verified that χ is finite we can safely ignore it and focus our attention
to the leading order term. We can use the expression for the temperature given by Eq.
(2.18) to write down the leading order contribution to the echo time:

techo ≃
β

2π
ln

(
βrH
ℓ2p

)
=

β

2π
ln

(
4π

d

L2

ℓ2p

)
. (2.22)

This expression will be useful when we start comparing scrambling time to echo time for
very large AdS black holes.
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Figure 2.2: Correction to the echo-Log, χ (defined in Eq. (2.12)) as a function of the upper
bound on echo integral (Eq. (2.4)) for a d+1-dimensional planar (or large spherical) black
hole. We see that χ asymptotes to a finite value given by Eq. (2.21) for χ∞.

2.3.3 Echo Time for Asymptotically Flat Schwarzschild Black
Hole

In this subsection, we will compute the echo time for asymptotically flat Schwarzschild
black holes. The reason this is interesting is because, we expect the effective potential
close to the horizon of a small AdS black hole to be well approximated by the effective
potential of an asymptotically flat black hole. Due to this fact, we should expect the low
frequency echo time for a small AdS black hole to approximately match with echo time of
an asymptotically flat black hole.

To begin, we recall that for an asymptotically flat Schwarzschild black hole in d + 1-
dimensions f(r) is given by:

f(r) = 1−
(rH
r

)d−2

, (2.23)
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and the temperature is given by:

T =
d− 2

4πrH
. (2.24)

It follows that the echo time is given by 12:

techo =
β

2π

∫ rt

rH+δr

(d− 2)

rH

(
1−

(
rH
r

)d−2
)dr

=
β

2π

[
(d− 2)

r

rH
2F1

(
1,− 1

d− 2
,
d− 3

d− 2
,
(rH
r

)d−2
)] ∣∣∣∣∣

rt

rH+δr

.

(2.25)

With some work we can eventually write the echo time in the prescribed form given by Eq.
(2.12) with χ given by:

χ(rt, rH) =
(d− 2)rt

rH
2F1

(
1,

1

2− d
,
d− 3

d− 2
,

(
rH
rt

)d−2
)

− αd−2

αd−2 = γ + ψ

(
−1

d− 2

)
+ ln (π(d− 2)) .

(2.26)

Just like for the planar black hole we can plot χ as a function rt/rH in Fig. 2.3.

Once again we find a strictly increasing function. However this time we find its not
bounded and diverges as the turning point gets larger. The reason for this is because the
point r → ∞ is mapped to infinity in tortoise coordinates. To get finite results we have
to restrict rt to something finite. A natural choice of the turning point is the location of
the local maximum of the effective potential. It will represent the upper bound on the set
of possible turning points that leave χ finite. In this case, it turns out that in the large l
regime we can analytically solve for the location of the local maximum. It is located at:

rc =

(
d

2

) 1
d−2

rH . (2.27)

Using this we can calculate χ(rc, rH) = χmax and find that:

χmax = (d− 2)

(
d

2

) 1
d−2

2F1

(
1,

1

2− d
,
d− 3

d− 2
,
2

d

)
− αd−2. (2.28)

12It should be noted that taking the limit of the above expression as d → 3 is ill defined. The formula
above only works for d ≥ 4. The d = 3 case will be calculated separately in the next subsection.

55



d=4

d=5

d=6

d=7

d=8

d=9

d=10

-10 -8 -6 -4 -2 2 4
log

rt

rH
-1

-20

20

40

60

80

100
χ

Figure 2.3: Same as Fig. 2.2, but for a d+1-dimensional asymptotically flat Schwarzschild
black hole. The divergent behaviour implies we must impose a cutoff to control the how
large χ becomes. The cutoff is implemented using the low frequency criterion discussed in
Section 2.2.

By definition we know χ < χmax < ∞ and therefore finite. At this point the reader may
be worried about the fact that rc < r0 = (π + 1)rH . In Section 2.2 we split the echo
integral into two parts and made an implicit assumption that rt > r0 we can see that this
assumption is not true here. Even so, this fact will not change the conclusion that χ is
finite. However, it will change the sign of χ and make χ < 0. More generally, when we plot
χ as a function of the turning point there will always be a set of turning points in which
χ < 0. This will roughly correspond to when rt < r0. We say roughly because χ is not
exactly given by the second integral in Eq. (2.8) it also contains other small errors which
we discussed in Section 2.2.

Now that we have addressed the subtleties that go into making χ finite for asymptoti-
cally flat Schwarzschild black holes we can analyze what the leading order term looks like.
We can use the expression for temperature given by Eq. (2.24) to get:

techo ≃
β

2π
ln

(
βrH
ℓ2p

)
=

β

2π
ln

(
4π

d− 2

r2H
ℓ2p

)
. (2.29)

This expression will also be useful when we start comparing scrambling time to echo time
for very small AdS black holes.
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2.3.4 Echo Time for 4D AdS Black Hole

So far we have only done calculations that will give the echo time for for very large or
very small AdS black holes in arbitrary dimensions. Now, we want to fix the dimension of
spacetime and do the integrals without making assumptions on the size of the AdS black
hole. In 4D the echo time is given by an integral of the form:

techo =

∫ rt

rH+δr

2rL2

L2(r − rH) + (r3 − r3H)
dr

=
β

2π

[
2 + 3x2H

xH
√

4 + 3x2H
arctan

(
2x+ xH√
4 + 3x2H

)
+ ln

(
x− xH√

1 + x2 + xxH + x2H

)] ∣∣∣∣∣
xt

xH+δx

,

(2.30)

where xH = rH/L, x = r/L, δx = δr/L, and xt = rt/L. We can express the result as a
series expansion given by Eq. (2.12) with χ given by:

χ(xt, xH) =
2 + 3x2H

xH
√

4 + 3x2H

[
arctan

(
2xt + xH√
4 + 3x2H

)
− arctan

(
3xH√
4 + 3x2H

)]

+ ln

(
xt − xH
πxH

√
1 + 3x2H

1 + x2t + xtxH + x2H

)
.

(2.31)

We can use this result to compute χ for d = 3 asymptotically flat black hole by taking the
limit as L→ ∞ we find:

χ(rt, rH) =
rt
rH

− 1 + ln

(
rt
rH

− 1

)
− ln(π). (2.32)

It is easy to see that χ is strictly increasing with the turning point and diverges with rt as
expected. We can compute χmax by setting rt = rc = 3rH/2 this gives:

χmax =
1

2
− ln (2π) ≈ −1.34. (2.33)

This completes our d = 3 calculation for asymptotically flat black holes.

Next we calculate χ∞ by taking rt to infinity this will result in the following expression:

χ∞(xH) =

(2 + 3x2H)

[
π − 2 arctan

(
3xH√
4+3x2H

)]
2xH

√
4 + 3x2H

+ ln

(√
1 + 3x2H
πxH

)
. (2.34)
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Figure 2.4: The blue line plots χ∞, the yellow line represents the planar black hole result,
and the green line plots the truncated series of χ∞ near xH = 0 given in Eq. (2.35).

We plot χ∞ as a function of xH = rH/L to get the blue line in Fig. 2.4. We see that χ∞
strictly decreases and approaches the value of χ∞ for the planar black hole represented by
the horizontal yellow line. The reason that χ∞ is strictly decreasing is because the horizon
of a larger black hole will be closer to the conformal boundary at infinity. If we analyze
the behaviour of χ∞ for small values of xH we will find that it diverges as xH → 0. The
divergent behaviour can by deduced by analyzing the series expansion of χ∞ near xH = 0:

χ∞ ≈ π

2xH
− ln (πxH)−

3

2
+O(xH). (2.35)

The green line in Fig. 2.4 shows that the series expansion above describes χ∞ accurately
for xH ≲ 0.3. This means that for very small black holes even though χ∞ is finite it
can become arbitrarily large for an arbitrarily small AdS black hole. However, we recall
from our discussions in Section 2.2 that we only want to consider low frequency modes. In
such a case, the “low” frequency modes will encounter a local maximum in the effective
potential, similar to the asymptotically flat case, before they have a chance of getting to the
conformal boundary. Therefore, for low frequency modes we can ignore the fact that χ∞
is unbounded for very small AdS black holes. This means that χ will always be bounded
and much smaller compared to the leading order Log term in the series expansion.

Finally, we can make the following statement about the leading order contribution to
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the echo time for a d+1 -dimensional AdS black hole for low frequency perturbations::

techo ≃
β

2π
ln

(
4π

d(x2H + 1)− 2

r2H
ℓ2p

)
=


β
2π

[
ln
(

4πL2

ℓ2pd

)
+O(1/x2H)

]
xH ≫ 1

β
2π

[
ln
(

4πr2H
ℓ2p(d−2)

)
+O(x2H)

]
xH ≪ 1 and rt ≤ rc.

(2.36)
Unsurprisingly, we see that up to small corrections the leading order term for very large
and very small AdS Schwarzschild black holes will match the planar black hole, Eq. (2.22),
and Schwarzschild black hole, Eq. (2.29), at the same temprature respectively. Similar
calculations can be done in higher dimensions to verify similar results that have been ex-
plored for 4D AdS Schwarzschild black holes. Through these calculations we have explicitly
checked that for non-extremal black holes χ is always finite13.

2.4 Echo Time for Reissner-Nordstrom Black Holes

2.4.1 Overview of RN Solution

In this section, we want to understand what happens to the echo time for a Reissner-
Nordstrom (RN) black hole in the near extremal regime. The RN black hole in d + 1-
spacetime dimensions is given by Eq. (4.68) with:

f(r) = 1− 2M

rd−2
+

Q2

r2(d−2)
. (2.37)

The event horizon is given by the largest root of f we can explicitly write down the roots
as:

y± = rd−2
± =M

[
1±

√
1− Q2

M2

]
, (2.38)

where the event horizon is at r+ and r− is the inner horizon. We can rewrite everything
in terms of r±:

Q2 = y+y−

M =
1

2
(y+ + y−)

f(r) =
(rd−2 − rd−2

+ )(rd−2 − rd−2
− )

r2(d−2)
.

(2.39)

13With the additional assumption that for very small black holes we only consider echo time for modes
of sufficiently small frequency such that rt ≤ rc.
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The temperature of the black hole is given by:

T =
d− 2

4πr+

[
1−

(
r−
r+

)d−2
]
. (2.40)

The extremal limit of the black hole occurs when r− = r+. Since we are dealing with an
asymptotically flat black hole solution we should use the position of the local maximum as
the turning point to get finite results. In the large l regime we can find the local maximum
at:

rc =

[
d(rd−2

+ + rd−2
− )

4

(
1 +

√
1− 4(d− 1)

d2
4rd−2

− rd−2
+

(rd−2
+ + rd−2

− )2

)] 1
d−2

. (2.41)

It can be checked that as long as Q2 ≤M2 then rc is real.

2.4.2 Echo Time for Non-Extremal RN Black Hole

To calculate the echo time we need to calculate the following integral:

techo =

∫ rc

r++δr

2[
1−

(
r+
r

)d−2
] [

1−
(
r−
r

)d−2
]dr. (2.42)

Unfortunately, there does not appear to be a closed form for the integral unless we fix
d ≥ 3 to some particular value. As an example we can fix d = 3. When we do this we find
that:

t
(d=3)
echo =

β

2π

[
r(r+ − r−) + r2+ ln (r − r+)− r2− ln (r − r−)

r2+

] ∣∣∣∣rc
r++δr

. (2.43)

The expression for rc when d = 3 is:

rc =
3

4
(r+ + r−)

(
1 +

√
1− 32

9

r+r−
(r+ + r−)2

)
. (2.44)

We expand the echo time in terms of the Planck length and get it into the form given by
Eq. (2.12), where χ is given by:
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χ =
1− x

4

[
3x− 1 +

√
9 + x(9x− 14)

]
+ x2 ln

[
4(1− x)

3− x+
√
9 + x(9x− 14)

]

+ ln

[
−1 + 3x+

√
9 + x(9x− 14)

4π

]
,

(2.45)

where x = r−/r+. It is not difficult to see that χ is well defined and finite away from the
extremal regime. However, as we approach the extremal regime there is a divergence of
the form:

χ = ln

(
1− x

π

)
+O(1− x). (2.46)

As expected, χ will diverge logarithmically as x → 1. We will address this divergence in
more detail in the next section. Assuming we are far from the extremal regime, we can
write down the leading order contribution to the echo time for a d+1 -dimensional RN
black hole as:

techo ≃
β

2π
ln

(
βr+
ℓ2p

)
=

β

2π
ln

(
4π

(d− 2)(1− xd−2)

r2+
ℓ2p

)
. (2.47)

Looking at the expression above it is clear that the expression in the log is also diverging
in the extremal limit.

2.4.3 Echo Time for Near Extremal RN Black Hole

In the previous section, we calculated the echo time for an RN black hole in 4D and showed
that χ was divergent in the near extremal limit. If we now go towards the extremal limit
and combine the result for χ given in Eq. (2.46) with Eq. (2.47) the echo time for a 4D
RN black hole is given by:

t
(d=3)
echo =

β

2π

[
ln

(
4r2+
ℓ2p

)
+O(1− x) +O(ℓp)

]
. (2.48)

We see that the divergence in χ canceled with the divergence in β leading to a finite
expression for the Log. Moreover, we can check that the leading order term in the expansion
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of echo time in the near extremal limit is exactly given by Eq. (2.13). To do this we recall
that:

fext(r) =

(
rd−2 − rd−2

+

)2
r2(d−2)

⇒ f ′′
ext(r+) =

2(d− 2)2

r2+
. (2.49)

Plugging this into Eq. (2.13) we find:

textecho ≃
β

2π
ln

(
4r2+

(d− 2)2ℓ2p

)
. (2.50)

Which correctly reproduces the leading order term in the echo time in the near extremal
limit for d = 3. One can also check this formula also works for any d ≥ 3. This corroborates
our claim that the leading order term in the echo time should look like Eq. (2.13) for near
extremal black holes.

We can also apply Eq. (2.13) for very large near extremal AdS RN black holes to find:

textecho ≃
β

2π
ln

(
4L2

d(d− 1)ℓ2p

)
. (2.51)

For very small near extremal AdS RN black holes we will get the same leading order term
as in the the asymptotically flat case, assuming rt ≤ rc, which is given in Eq. (2.50). The
details of how to calculate f ′′

ext(r+) for AdS RN black holes is given in Appendix A.2.

We can summarize the results of Section 2.3 and Section 2.4 as follows. We found
that the leading order term for the echo time for very large AdS black holes in both near
extremal and non-extremal regimes is given by14:

t
(Large)
echo ≃ β

2π
ln

(
L2

ℓ2p

)
≃ 2

d− 1

β

2π
ln(N2). (2.52)

For very small or asymptotically flat black holes in both near extremal and non-extremal
regimes the echo time is given by:

t
(Small)
echo ≃ β

2π
ln

(
r2H
ℓ2p

)
≃ 2

d− 1

β

2π
ln(SBH), (2.53)

where SBH is the Bekenstein-Hawking entropy of the black hole. The important fact to
note here is that the echo time scale for large black holes is set by the the AdS radius and

14Note that in the context of AdS/CFT the ratio L/ℓp is a measure of the effective degrees of freedom
of the dual CFT state [126]. In particular, for large black holes dual to large N CFTs we know N2 ∼
Ld−1/ℓd−1

p .
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for small AdS (or asymptotically flat) black holes it is set by the horizon radius. This is
consistent with the way the scrambling time scale differs for large and small AdS black
holes discussed in Section 2.2.

In the next section we will do a more detailed comparison of the time scales given by
Eqs.(2.52 - 2.53) to the scrambling time scales given in [134, 91, 29].

2.5 Echoes vs Scrambling

2.5.1 Comparison to Charge Spreading Time Scale

In this section, we will compare the echo time scales given by Eqs. (2.52 - 2.53) with the
scrambling time scale conjectured in [134]. We will focus on the charge spreading derivation
which is done in the stretched horizon framework [143]. In the derivation it is assumed that
the amount of time it takes for charge from a point source to spread uniformly throughout
the black hole horizon can be identified with the scrambling time scale. In [134] the true
horizon was replaced by a Rindler horizon and the charge spreading calculation was done
for the Rindler horizon. With some work, which is detailed in [134, 141], the following
expression was derived:

tsp =
β

2π
ln

(
∆x

ℓs

)
, (2.54)

where tsp is the Schwarzschild time it takes for the charge density to spread a distance ∆x
along the horizon and ℓs is the string length15. The length scale ∆x, in general, cannot be
identified with the horizon radius of a black hole. In particular, depending on the size of
the AdS black hole, one will naturally choose either rH or L length scales for ∆x. In [134]
for asymptotically flat black holes ∆x ∼ rH and for large AdS black holes ∆x ∼ L. Let us
now discuss why these choices make sense 16.

In the charge spreading calculation the true black hole horizon is replaced by a Rindler
horizon. Such a replacement can only be valid within a small patch on the horizon. The
size of this patch should be identified with ∆x. We can estimate the length scale of the
patch by calculating the Kretschmann invariant, at the horizon of the AdS black hole. To

15In this chapter we will simply assume ℓs = ℓp and use the two interchangeably.
16The argument we present is not explicitly contained in [134]. The authors simply identified ∆x with

rH for the asymptotically flat black holes without explicitly explaining why such a choice is valid. With
our argument we hope to fill in this gap.
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understand why the Kretschmann invariant is important one can consider Riemann normal
coordinates at a point on or near the horizon. At the point of choice one is free to choose
a flat metric, up to corrections second order in displacement. In other words, we are free
to use use a Rindler patch. However, as we move away from this point along the horizon
corrections will arise that can be written in terms of the Riemann tensor. The Riemann
tensor will set an inverse length scale which should roughly be given by (the fourth root
of) the Kretschmann invariant. Therefore, to suppress higher order corrections, the size
of the neighborhood should be no bigger than this length scale. Now that we have an
understanding of this point, let us consider the example of a 4D AdS black hole. The
Kretschmann invariant is given by [74]:

RµνρσR
µνρσ|r=rH = 12

 2

L4
+

(
1 +

r2H
L2

)2
r4H

 ≃

{
36
L4 [1 +O(1/x2H)] rH ≫ L
12
r4H

[1 +O(x2H)] rH ≪ L,
(2.55)

where xH = rH/L. We see that the curvature invariant sets different length scales for large
and small or asymptotically flat black holes. This means that ∆x ∼ rH for small black
holes and for large black holes ∆x ∼ L. This is consistent with the scrambling time scales
suggested in [134].

Comparing to the echo time scales in Eqs. (2.52 - 2.53), we find agreement (up to a
factor of two) between the leading order echo time scale with the charge spreading time
scales for both small and large AdS black holes. Therefore, if it is reasonable to identify
scrambling time scale with charge spreading then, it is also valid to identify the echo time
with the scrambling time scale defined in [134].

2.5.2 Comparison to Mutual Information Disruption Timescale

In the previous subsection, we showed that the leading order contribution to the echo
time reproduces the scrambling time scale as defined by charge spreading in [134] (at least
for non-extremal black holes). In this section, we will review how the scrambling time
scale appears in Leichenauer’s calculation [91] of mutual information disruption. After
this review, we will compare with the echo time scale that we calculated.

In [91] one considers a two sided RN black hole in AdS. It is known that the holographic
dual to the two sided RN geometry is a charged thermofield double state of the form:

|cTFD⟩ = 1√
Z

∑
n,σ

e−
β
2
(En−ϕQσ) |n,Qσ⟩L ⊗ |n,−Qσ⟩R , (2.56)
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where |n,Qσ⟩L and |n,Qσ⟩R are energy and charge eigenstates that live on the left and
right conformal boundaries respectively. One can then consider two sub-regions A and B
on the left and right field theories respectively and ask how much entanglement there is
between the two sub-regions. One way of quantifying the entanglement is to calculate the
mutual information which is given by:

I(A,B) = S(A) + S(B)− S(A ∪B) ≥ 0, (2.57)

where S is the standard von Neumann entropy of the reduced density matrix of each
sub-region. In general, for sufficiently large sub-regions one can show that the mutual
information is non-vanishing. With these quantities in mind, one can then consider a
small perturbation to the field theory on one side. This will change or disrupt the mutual
information between regions A and B. More specifically, Leichenauer shows that the
mutual information goes to zero after a time t∗ given by [91]:

t∗ ∼
β

2π
ln

(
∆E

δE

)
, (2.58)

where ∆E = Etot − Eext, is the excess energy above the extremal energy and δE is the
energy of the perturbation17. The calculation was not directly carried out on the field
theory side but instead calculated in the bulk. This was done using the Ryu-Takayanagi
conjecture [129, 111, 126] which relates the quantities S(A), S(B), and S(A ∪ B) to the
area of the extremal surfaces that extend into the bulk. The perturbation on the bound-
ary is dual to the introduction of a shock wave that travels towards the event horizon
and lengthens the wormhole connecting the two sides of the RN black hole. The disrup-
tion of mutual information occurs because the extremal surface that extends through the
lengthened wormhole represents the term S(A ∪B), which will also increase and cause an
overall decrease in the mutual information. By considering the non-extremal regime (i.e.
∆E ≈ Etot), it was shown that the scrambling time scale, given by Eq. (2.2), is obtained
by identifying δE ∼ Etot/S, where S is the entropy of the black hole. Using this fact it
was suggested that the scrambling time scale for a near-extremal black holes should be
modified to tscr ∼ β ln(S − Sext), where S − Sext is the excess entropy above the extremal
black hole of the same charge.

More recently, the same time scale has been discussed in [29]. In [29] the time scale
derived by Leichenauer is recast completely in terms of black hole entropy rather than
energy quantities on the boundary:

17The energy above extremality of the field theory corresponds to taking the total energy Etot and
subtracting off the energy of the field theory in the zero temperature limit, Eext, keeping the charge fixed.
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t∗ ∼
β

2π
ln

(
S − Sext
δS

)
, (2.59)

where S is the entropy of the black hole, Sext is the entropy of the extremal black hole with
same charge, and δS is how much the entropy of the black hole has changed after begin
perturbed. Note that, by setting δS = 1 one will recover Leichenauer’s modified scrambling
time scale. Furthermore, we can use the first law for black hole thermodynamics and easily
see that setting δS = 1 corresponds to δE = TH , where TH is the Hawking temperature of
the black hole. Usually the absorption or emission of a single Hawking quantum is regarded
as the smallest “natural” choice of perturbation to a black hole in the semi-classical regime.
However, we should note that this condition might be too restrictive. For example, explicit
string theory constructions of near-extremal black holes can have δS ≪ 1 (e.g., see chapter
11.3 of textbook [19]). Moreover, the statistical interpretation of entropy suggests that the
number of microstates is given by eS, implying that δSmin ∼ e−S ≪ 1 (in lieu of significant
degeneracies)18.

Of course, perturbations with δS < 1 will not admit to a Hawking quanta (with char-
acteristic energy TH) interpretation. However, we suggest that this may not be enough
reason to disregard such perturbations in the semi-classical regime. To understand why
consider the following. Suppose we have a static spherically symmetric black hole and we
perturb 19 it to another static spherical black hole of a different radius. Since one cannot
resolve proper distances smaller than a proper Planck length it is reasonable to require
that any “measurable” perturbation should shift the horizon by an amount larger than a
proper Planck length. (We give a precise definition of what it means to shift the horizon
of a black hole by a certain proper length in Appendix A.5). For our purposes, we require
that for a given δR which corresponds to a coordinate shift in the horizon radius:

∫ RH+δR

RH

dr√
f(r)

≳ ℓp. (2.60)

The minimal observable perturbation will saturate the constraint above and will be denoted
as δRobs ∼ ℓ2pTH . Recall that the entropy of a spherically symmetric black hole in (d + 1)
dimensions is given by:

18One way to think about this is to consider the black hole of as a collection of qubits (as is done in
many considerations of scrambling in black holes) with a number of micro states equal to W = eS . The
smallest change in micro-states (or bits) should be larger than one. So this implies that δW = eSδS > 1.
This in turn implies δSmin > e−S . So even in the context of scrambling it is not necessary that δS > 1.

19Assume the perturbation only changes energy and not charge or angular momentum.

66



SBH =
CdR

d−1
H

ℓd−1
p

Cd =
Sd−1

4
=

πd/2

2Γ
(
d
2

) , (2.61)

where Sd−1 is the area of a (d− 1) unit sphere. We can take the first order variation of the
entropy with respect to the horizon radius and plug in δRobs ∼ ℓ2pTH to find:

δSobs ∼
Rd−2
H TH
ℓd−3
p

, (2.62)

where we dropped order one factors such as Cd. The expression above gives the smallest
change in entropy that results in a measurable change in the horizon radius. When we
deal with AdS RN black holes it is possible to have δSobs ≪ 1 when sufficiently close to
the extremal regime (See appendix A.4). So proper Planck shifts in the near extremal
regime do not have to admit to a description of perturbing by Hawking quanta with
characteristic energy TH . Nonetheless, you can still detect the effect of such perturbations
by measuring the proper shift in the horizon. This is why it is not always necessary
to discard perturbations that have δS < 1 since there are alternate ways to detect a
perturbation other than counting Hawking quanta.

Going back to Eq. (2.59) and using the choice δS = δSobs we will obtain time scales
consistent with the echo time given by Eqs. (2.52 - 2.53) (see Appendix A.3 for details of
calculations).

To summarize, we find that the mutual information disruption time scale defined by
Eq. (2.59) is connected to the scrambling time scale by making a choice of the smallest
reasonable δS. If one chooses δS = 1 one obtains Leichenauer’s modified scrambling time
scale for near extremal black holes. However if one instead insists that the smallest semi-
classical perturbation results in observable shifts in the horizon by a proper Planck length
then one will get a different time scale for scrambling consistent with the echo time. The
usual choice of setting δS = 1 or some other constant that is independent of any parameters
specific to the black hole will always give some kind of S−Sext dependence inside the Log.
However, as we argued these may not be the only perturbations of physical interest. One
may choose perturbations that depend on parameters of the black hole. Our example of
choosing perturbations that shift the horizon by a proper Planck length is one example
where δS has non-trivial β dependence (of the form δS ∼ rs/β).
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More recently the scrambling time scale has also been calculated in holographic contexts
that use entanglement wedge reconstruction [117, 7]. In particular, Pennington’s work [117]
applies to the types of black holes we have been studying in this chapter. The scrambling
time in his work is given by:

tscr ∼
β

2π
ln

(
RH

cevapβ

Rd−1
H

ℓd−1
p

)
∼ β

2π
ln

(
S − Sext
cevap

)
. (2.63)

In his expressions for the scrambling time there is a parameter, cevap, which depends on
where the Hawking radiation is being extracted near the horizon. In our recent work [132]
we have shown that cevap will generally have non-trival dependence on β. Depending on how
one chooses to extract radiation near the horizon cevap can have different β dependence.
This freedom/ambiguity on how we choose the β dependence of cevap is similar to the
freedom/ambiguity we have in choosing the β dependence of δS in Eq. (2.59).

2.6 Discussion: A Holographic Description of Echoes?

Thus far, we have motivated a mere mathematical relationship between that echo and
scrambling time scales. In this section, we want to speculate on the physical consequences
of being able to identify the scrambling time scale with the echo time scale in the context
of AdS/CFT.

For the sake of argument, we will assume that echoes really do exist in nature and that
they owe their existence to a modification of the event horizon at Planck scales due to
quantum gravity effects. Under these assumptions, it is natural to ask whether there is a
holographic description of echoes within the framework of AdS/CFT. This is because the
AdS/CFT correspondence claims to provide a complete description of quantum gravity in
the bulk in terms of a CFT. If echoes exist in nature they should somehow also show up
in the CFT description of quantum gravity.

To get an idea of how echoes might manifest themselves in a CFT calculation. It
is useful to assume the existence of a state |ψ⟩ which resembles a large one-sided black
hole with a modified horizon. More specifically, we want the bulk dual to have a smooth
geometrical description of a black hole when far away from the horizon. However, within
a Planck length of the horizon the smooth geometrical picture of spacetime should break
down. This is similar to the tight fuzzball proposal discussed [64]. This will result in an
interface between a smooth geometric exterior and a non-geometric interior as depicted in
Fig. 2.5. We will assume that the interface will effectively behave like the membrane that
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generates echoes in the bulk. We will denote this bulk spacetime as Mψ. Based on this
bulk model of the CFT state |ψ⟩ we will speculate how echoes in the bulk would manifest
in a CFT calculation involving |ψ⟩.

Figure 2.5: A diagram depicting the bulk dual of a particular CFT state that exhibits
echoes. The exterior far from the horizon resembles a standard black hole geometry. Within
a Planck length of the horizon one expects the smooth geometrical description of spacetime
to breakdown at the jagged surface colored in red. Effectively the interface between the
smooth exterior and non-geometric interior generates echoes.

To start we know that if we want to “see” echoes we need to perturb the bulk in
some way. This can be done by introducing a small perturbation near the conformal
boundary in the bulk at time t0. We can then consider the following quantity ∆ ⟨Ô(t)⟩ =
⟨ψ| Ô(t) |ψ⟩ − ⟨BH| Ô(t) |BH⟩. Where |BH⟩ is the CFT dual state to a black hole with a
smooth horizon (i.e. same bulk as Fig. 2.5 without jagged red interface) and Ô(t) is the
dual field theory operator to the perturbation in the bulk. We will refer to the smooth
horizon spacetime as MBH . The time evolution of the expectation value of the operator
Ô(t) in |ψ⟩ and |BH⟩ should be dual to the time evolution of the bulk perturbation around
a background Mψ and MBH respectively. Based on the bulk geometry we should roughly
expect the following behaviour:

∆ ⟨Ô(t)⟩ = ⟨ψ| Ô(t) |ψ⟩−⟨BH| Ô(t) |BH⟩ ≈

{
0 0 < t− t0 < techo

O[⟨ψ| Ô(t0) |ψ⟩] t− t0 ≃ techo,
(2.64)
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To understand why this should be the case we consider what is happening in the bulk
as time evolves. Initially, at t = t0 the perturbation is close boundary and far from the
horizon. Since Mψ and MBH are the same in such a region we also expect time evolution
of the perturbation to be the same. However, once the perturbation gets close to the
horizon it will behave differently in the two bulk spacetimes we are considering. In MBH

the perturbation will be unhindered and eventually pass through the horizon. However,
in Mψ the perturbation will encounter a reflective surface and get partially reflected back
towards the conformal boundary. Information of this reflection will not arrive back at the
conformal boundary until t− t0 ≃ techo. This is why we should expect ∆ ⟨Ô(t)⟩ ≈ 0 when
0 < t− t0 < techo. Once the reflected perturbation hits the boundary there should be a big
difference between ⟨ψ| Ô(t) |ψ⟩ and ⟨BH| Ô(t) |BH⟩ roughly of the order O[⟨ψ| Ô(t0) |ψ⟩].
After this time we expect the perturbation to bounce off the conformal boundary and
go back towards the horizon and repeat the same process we outlined above until the
perturbation dissipates entirely. If we were to plot ∆ ⟨Ô(t− t0)⟩ we would expect a result
resembling Fig. 2.6.

Figure 2.6: A diagram depicting how echoes will manifest themselves in a calculation
involving ∆ ⟨Ô(t− t0)⟩. Initially, the difference in the expectation value of the operator
is subject to small fluctuations around zero. After one echo time scale, one would find a
distinct signal above the usual fluctuations represented by the first peak. This signals the
first echo in the bulk. This would reflect off the boundary and go back towards horizon
and the process would repeat except subsequent echoes would gradually weaken (depicted
by subsequent peaks with smaller amplitude).

Now that we have discussed how echoes in the bulk would manifest themselves in a
dual CFT calculation we will discuss how we can use this picture to argue how echoes and
fast scrambling can be physically related. To begin, we recall that by perturbing a black
hole we can deduce the structure of the horizon by analyzing how the perturbation decays.
If the decay is accompanied by echoes then it suggests the existence of a modified horizon.
On the other hand, perturbing a black hole can also be regarded as the introduction of
information into the black hole. As the information approaches the horizon it will become
scrambled within a scrambling time scale. The process of scrambling the newly added
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information should gradually destroy the finely tuned entanglement between degrees of
freedom close to the horizon and lead to the development of modified horizons similar to
the scenarios discussed in [152, 135, 136]. Eventually, the bulk geometry should evolve into
configurations depicted in Fig. 2.5 and these types of bulk geometries would give us echoes.
In other words, we believe fast scrambling to be a mechanism by which bulk geometries
with smooth horizons can develop modified horizons which result in echoes. The findings
of this chapter which suggest that echoes and fast scrambling occur within time scales that
can be reasonably identified with each other seems to be consistent with this idea.

Another interesting proposal we have on how echoes may manifest in CFT calculations
is based on the work [94]. It was shown that for large N CFTs, with a holographic Einstein
dual, the following quantity has the following 1/N perturbative expansion:

F (t) = Tr[yV (0)yW (t)yV (0)yW (t)] = f0 −
f1
N2

e
2πt
β +O(N−4)

y4 =
1

Z
e−βH ,

(2.65)

where f0, f1 > 0 and depend on the choice of the operators V and W . The calculation of
the sub-leading term above is done by doing a gravity calculation similar to the type of
calculations done using shock wave geometries in [136, 135, 91]. In such calculations the
shock waves are perturbations to the horizon and the function F (t), we suggest, should
be viewed as a kind of response function which can diagnose the existence of a modified
horizon. In particular, we see that the echo time for very large black holes is consistent
with the scrambling time set by β

2π
ln(N2)20 which is also when the sub-leading term in

Eq. (2.65) becomes of order one. This means that the perturbative calculation after such
a time scale breaks down and one needs to include higher order terms. By including all
the higher order terms one might see echoes in the function F (t). If this was indeed the
case, it would help corroborate the claim that probing the horizon (via shock waves) will
cause the horizon to develop some modified structure, which would be responsible for the
echoes in F (t).

2.7 Conclusion

As we already stated in the introduction of this work the existence of echoes from an
experimental point of view is still tentative and controversial [4, 40, 1, 156, 5]. On the

20Recall that (L/ℓp)
d−1 ∼ N2.
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theoretical side, there are reasons to think that General Relativity does not tell the whole
story of the nature of spacetime near the horizon of a black hole [10, 122, 140, 99, 100, 64,
137, 152, 59, 58].

In this chapter, we explored the potential connection between the echo and fast scram-
bling time scales. We began by defining the echo time scale and explored whether it was
capable of reproducing the scrambling time scale in various regimes for AdS black holes. In
non-extremal regimes, we found agreement between the echo and scrambling time scales.

For near extremal black holes, we showed that the echo and scrambling time agree with
each other for perturbations that shift the horizon by a proper Planck length. We argued
in in Section 2.5.2 that the usual choice of setting δS = 1 in Eq. (2.59) as the smallest
perturbation to a black hole is too restrictive. In light of this, we proposed that the
smallest semi-classical perturbation should shift the horizon by a proper Planck length.
The consequences of this alternate proposal is explored in depth in Appendix A.4 and
Appendix A.5. Depending on the exact value of the ratios Rext/RH and RH/L, one will
see a proper Planck shift results in different changes in the entropy (details in Appendix
A.4). In general, the farther one is from the extremal regime, the larger the entropy change
is for a proper Planck shift in the horizon. Furthermore, in the limit where RH/L becomes
arbitrarily large, one can get arbitrarily close to an extremal black hole before δS < 1.

In Section 2.6, we speculated on how echoes might manifest themselves in the context of
AdS/CFT. We postulated the existence of a state |ψ⟩ whose dual geometry, Mψ, resembled
the bulk depicted in Fig. 2.5. With this correspondence we argued that the echo time
represented the amount of time it takes to determine whether a bulk geometry has a smooth
or modified horizon based on the time evolution of the expectation value of some operator
on the boundary. We then conjectured that the phenomena of fast scrambling and echoes
are related to each other in the sense that one is a precursor for the other. More specifically
we argued that fast scrambling would provide a mechanism by which black holes would
develop modified horizons when perturbed. The development of modified horizons would
be accompanied by echoes in the thermalization behaviour of certain CFT observables.
We went further and speculated that echoes may actually be found in non-perturbative
calculations of quantities similar to the ones explored in [94] given by Eq. (2.65). It would
be interesting to see if it is possible to perform such non-perturbative calculations.

As interesting as the proposals in Section 2.6 are there is one major problem. The
problem lies in our assumption that states that resemble black holes with modified horizons
actually exist. Such an assumption is critical for the discussions in Section 2.6 to be
valid. In order for our arguments to be convincing one should try to explicitly find or
construct a CFT state and show it exhibits echoes when perturbed. At the moment we do
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not have a concrete way of constructing such a state. However, it is interesting to draw
upon the work of Shenker and Stanford [136] which discusses the holographic dual of the
thermofield double state begin perturbed by strings of operators referred to as “thermal-
scale operators.” The bulk interpretation of such a state is that of a two sided black hole
with a smooth horizon connected by a very long wormhole. Perhaps in a similar way if
one acts with more generic operators on the thermofield double one might transition from
a black hole with a smooth horizon to a black hole with a modified horizon. If so, such
states may exhibit echoes in the way we discussed in Section 2.6.

A recent paper [114], investigating the reflectivity of modified black hole horizons, was
able to show that Boltzmann reflectivity21 can be derived by considering perturbations on
an RP 3 geon. This is interesting because it provides a connection between the Boltzmann
reflectivity of a modified black hole to the RP n geons which have also been discussed in
the context holography. In particular, work done in [63] which discussed the construction
CFT2 states dual to the RP 2 geon may provide ways to construct CFT states that have
horizons with Boltzmann reflectivity.

Finally, it is worth noting that not all notions of scrambling give a time scale comparable
to Eq. (2.2). A recent paper by Shor [137] suggests that in order for scrambling to occur as
fast as the time scale given by Eq. (2.2), via causal processes outside the stretched horizon,
one needs information to leave the stretched horizon at a rate greater than what would
be allowed by conventional Hawking radiation. To arrive at this conclusion, Shor used a
definition of scrambling which is stronger than the definitions used in [134, 86, 136, 91, 29].
In particular, Shor identifies the scrambling time scale as the amount of time it takes for
two unentangled hemispheres of a black hole to become maximally entangled. Naively, it
seems that echoes would allow for information to escape the stretched horizon at a non-
conventional rate and provide a mechanism to speed up the generation of entanglement
between the two hemispheres. Therefore, it would be interesting to see if echoes can be
used to speed up scrambling and make Shor’s scrambling time scale consistent with Eq.
(2.2).

21This model assumes that the reflectivity of a modified black hole horizon depends on the frequencies of
perturbations. In particular, different frequencies are weighted by a Boltzmann factor e−βω. This means
that for very high frequencies the modified horizon behaves very similar to a smooth horizon (reflectivity
is approximately zero).
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Chapter 3

Spacing Statistics of Energy Spectra:
Random Matrices, Black Hole
Thermalization, and Echoes

Recent advances in AdS/CFT holography have suggested that the near-horizon dynamics
of black holes can be described by random matrix systems. We study how the energy
spectrum of a system with a generic random Hamiltonian matrix affects its early and
late time thermalization behaviour using the spectral form factor (which captures the
time-dependence of two-point correlation functions). We introduce a simple statistical
framework for generating random spectra in terms of the nearest neighbor spacing statistics
of energy eigenvalues, enabling us to compute the averaged spectral form factor in a closed
form. This helps to easily illustrate how the spectral form factor changes with different
choices of nearest neighbor statistics ranging from the Poisson to Wigner surmise statistics.
We suggest that it is possible to have late time oscillations in random matrix models
involving β-ensembles (generalizing classical Gaussian ensembles). We also study the form
factor of randomly coupled oscillator systems and show that at weak coupling, such systems
exhibit regular decaying oscillations in the spectral form factor making them interesting toy
models for gravitational wave echoes. We speculate on the holographic interpretation of a
system of coupled oscillators, and suggest that they describe the thermalization behaviour
of a black hole geometry with a membrane that cuts off the geometry at the stretched
horizon.
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3.1 Introduction

3.1.1 Background and Context

Black holes serve as an important testing ground and challenge for our understanding of
the quantum nature of gravity. The application of quantum field theory on black hole
backgrounds leads to the conclusion that pure states can evolve into mixed states through
the mechanism of Hawking radiation [68, 69]. On the other hand, theoretical developments
in string theory and AdS/CFT suggest that quantum gravity should be a unitary theory.
The conflict with the expectation that quantum gravity should be a unitary theory and the
apparent violation of unitarity by Hawking’s calculation has given rise to the black hole
information problem [99, 65, 140]. Explorations into the information problem have led to
the idea of quantum gravity effects modifying the near horizon description of black holes,
most notably in the form of some kind of microstructure near the horizon (e.g. fuzzballs,
firewalls, non-locality etc.) [10, 122, 140, 99, 100, 72, 107, 60].

The idea of quantum effects modifying the near horizon physics of a black hole have
recently also been considered from an experimental perspective. If quantum effects near the
horizon give rise to the possibility of partial reflection rather than complete absorption of
a perturbation then it could give rise to “echoes” in the ringdown behaviour of a black hole
after being perturbed. In particular, such echoes may be detected by LIGO in gravitational
waves emitted during black hole binary merger events [4, 32, 31, 40, 156, 113, 5, 1, 35, 3, 2].
In most studies, these modifications are modelled by cutting off the black hole geometry
near the horizon. At the cutoff, semi-reflective boundary conditions are enforced and
perturbations on the cutoff background are studied1 [98, 155, 133, 45, 44, 124]. Studies
that do this make an implicit assumption that the quantum effects that encode the unitary
nature of black holes are “localized” near the horizon and that they effectively manifest
themselves as a cutoff near the horizon with non-standard boundary conditions. Although
such models are completely classical, they highlight the interesting possibility of finding
observable imprints of horizon scale quantum gravity effects in the ringdown behaviour of
black holes.

In this chapter, we will explore the idea of echoes in the context of the thermalization
behaviour of quantum chaotic systems. The motivation behind this study is the idea that

1In these studies the time scale over which the echoes manifest after the black hole is perturbed is
called the “echo time scale.” It depends on how close the cutoff is placed relative to the horizon. For a
cutoff placed a proper radial Planck length from a Schwarzschild black hole it can be shown the echo time
takes the form of the scrambling time β ln(SBH) [133] (e.g. for a 10 solar mass Schwarzschild black hole
the scrambling or echo time is of the order of 0.2 secs.).
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the near horizon dynamics of a black hole is generally captured by quantum chaotic degrees
of freedom. When a perturbation begins to probe and excite the microstructure near the
horizon, it could lead to observable deviations from the standard ringdown as predicted
by quasi-normal mode decay. If the microstructure effectively behaves as a semi-reflective
cutoff near the horizon, then one would get echoes in the unitary description of the black
hole. The goal of this chapter is to explore the properties a quantum chaotic system, if it
were to exhibit echoes in its thermalization behaviour. To aid in this exploration, we will
make use of recent advances and tools in AdS/CFT that have placed interesting constraints
on the energy spectrum of black holes. In the next subsection, we will give a brief overview
of these developments and tools.

3.1.2 Black Holes as Quantum Chaotic Systems

The AdS/CFT correspondence, which was first formulated by Maldacena [96] suggests that
(quantum) gravitational systems in AdS have a non-perturbative formulation in terms of
a strongly coupled CFT [121, 125, 153]. This in turn provides a way to explore various
aspects of the quantum nature of black holes from the perspective of a thermal CFT
[97, 75, 99, 140, 122].

One of the earliest explorations into the quantum spectrum of a black hole from the
perspective of AdS/CFT involved the thermofield double (TFD) state [97]. The TFD is a
state which is conjectured to describe a two sided eternal black hole in AdS and is written
as:

|TFD⟩ = 1√
Z(β)

∑
n

e−βEn/2 |n⟩L ⊗ |n⟩R , (3.1)

the state above describes two identical systems (one living on the left boundary and the
other on the right) which are entangled. The states |n⟩L,R are eigenstates of a Hamiltonian
with eigenvalues En, and the quantity Z(β) is the partition function. Using this, one
should expect the decay of quasi-normal modes of the dual black hole to be consistent with
the decay of two-point thermal correlators.

It was noted in [97], that the spectrum of a CFT which is dual to a black hole (with a
spherical horizon) lives on a compact space and as a result its spectrum will be discrete.
The discreteness of the spectrum implies that correlation functions cannot decay to zero
which is an indication of unitary evolution in the bulk [97, 65, 17, 138]. The inability for
correlators to decay to zero comes as a surprise from the bulk perspective because quasi-
normal modes for an AdS black hole decay exponentially to zero [75]. It was argued in
[97] that correlators will decay in a manner consistent with the semi-classical calculation of
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quasi-normal modes of the black hole until the correlator roughly becomes of the order e−S,
where S is the entropy. Afterwards, the discreteness of the spectrum will become important
and the semi-classical calculation will no longer agree with the boundary calculation of the
two-point function. In a semi-classical context, it was shown that to prevent the continual
decay in the bulk, one can include other saddle point geometries in the Euclidean path
integral approach [97]. It was also demonstrated that one can avoid continual decay of the
two-point function and make the spectrum discrete by cutting off the spacetime near the
horizon [147, 17, 138].

Quantum chaos is another important feature of thermal CFT systems that are dual to
black holes. In particular, CFT systems that are dual to black holes are conjectured to
be maximally chaotic2 [94]. Quantum chaos manifests itself in the spectrum of a quantum
system through nearest neighbor eigenvalue “repulsion.” In particular, it is conjectured
that many statistical properties of the spectrum of a quantum chaotic system follow the
spectrum statistics of random matrices drawn from a suitably chosen ensemble [27, 49, 93].
The connection between gravity and random matrix theory has been further explored in
the context of 2D Jackiw-Teitelboim (JT) gravity by showing the partition function of JT
gravity can be expressed as a random matrix integral [130, 131, 139, 26]. These recent
results corroborate the conjecture that random matrix theories are capable of describing
the statistical properties of the spectrum of quantum chaotic systems such as black holes.

A particularly useful observable that has been computed in the context of quantum
chaos, is the normalized spectral form factor which is defined by:

Z(β + it)Z(β − it)

Z(β)2
=

∑
n,m e

−β(Em+En)ei(En−Em)t∑
n,m e

−β(Em+En)
, (3.2)

where Z(β) is the partition function in the canonical ensemble with inverse temperature
β. It is a useful quantity since it can be used to diagnose the discreteness of a spectrum.
In the context of the TFD state, if one considers the two point function of a Hermitian
operator of the form IR ⊗ A (where IR is the identity on the right boundary and A is a
Hermitian operator living on the left boundary) we have:

⟨TFD|[IR ⊗ A(t)][IR ⊗ A(0)]|TFD⟩ = 1

Z(β)

∑
n,m

e−βEnei(En−Em)t |⟨n|A|m⟩|2

=
1

Z(β)

[∑
n

e−βEn |⟨n|A|n⟩|2 +
∑

n,m;n ̸=m

e−βEnei(En−Em)t |⟨n|A|m⟩|2
]
,

(3.3)

2The SYK model is an example of a maximally chaotic system which has been of recent interest
[123, 55, 56, 145].

77



we can see the time dependence (up to matrix elements which will depend on the energy)
of the form factor and the two point function are governed by the details in the energy
differences in the spectrum. If the matrix elements are smooth functions of energy that
vary slowly, we can use the form factor as a proxy for understanding how a perturbation
thermalizes for a TFD state. This is interesting because by identifying a Hamiltonian and
its spectrum of states we can construct the associated TFD state. If we conjecture that
the TFD is dual to a two-sided black hole geometry, then we can roughly interpret the
early time behaviour of the spectral form factor as a description of the ringdown of the
black hole after being perturbed (i.e. the quasi-normal modes). From this perspective,
different choices of Hamiltonian give different types of ringdowns of the conjectured dual
black hole. Usually, at early times, the discrete spectrum can be replaced by a coarse
grained smooth density - and one initially sees decay in the form factor (controlled by the
decay of quasi-normal modes of the black hole). At very late times, the behaviour of the
spectral form factor is governed primarily by the small energy differences between nearby
eigenvalues - and in general it produces very erratic oscillations which never decay to zero.

In the context of a random matrix ensemble (RME), one is interested in the normalized
averaged spectral form factor (throughout this chapter we shorten the name and call it the
“form factor” unless otherwise stated) given by:

⟨Z(β + it)Z(β − it)⟩RME

⟨Z(β)2⟩RME

, (3.4)

where ⟨·⟩RME is an average over a random matrix ensemble3. One can compute this nu-
merically, by taking an average over many samples of the form factor which is constructed
using the eigenvalues of sample matrices drawn from the ensemble. In the context of a
random spectrum, the early time behaviour of the form factor has the property of being
“self-averaging” which means that the form factor of a single sample is close to the average
over many samples. However, at late times the form factor of a single sample will deviate
significantly from the average and will no longer be self-averaging. In the case of classical
Gaussian ensembles whose averaged form factor was studied in [42], it was shown that the
averaged late time behaviour after the initial decay took the form of a ramp followed by
a plateau(e.g., see Figure 3.1). The existence of the ramp can be attributed to the near-
est neighbor spacing statistics of the eigenvalues of the matrices drawn from the classical
Gaussian ensembles. Furthermore, the spectrum of the SYK model (which is a toy model

3Note that we are taking the average over the numerator and denominator separately. This particular
way of averaging is called “annelled” disorder averaging and this is in contrast to “quench” disorder average
which is obtained by doing an average of the entire normalized expression for the form factor. At infinite
temperature annealed and quenched averages are the same.
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Figure 3.1: We plot the infinite temperature form factor for a spectrum generated by
100×100 matrices pulled from the Gaussian unitary ensemble (GUE). The blue line is the
form factor for a single sample matrix from the GUE and the yellow line is the 500 sample
average. One can see that at late times, the averaged form factor exhibits a linear ramp
followed by a plateau.

for near extremal black hole physics) had similar features to the spectrum of random ma-
trices belonging to classical Gaussian ensembles4. These findings led to the idea that large
AdS black holes are described by theories that have a spectrum resembling the spectrum
of random matrix theories.

In particular, the results reviewed in this subsection suggest that black holes are dual
to quantum systems that have a discrete and chaotic energy spectrum5. In light of this,
it is natural to ask if it is possible for a quantum chaotic system to exhibit echoes in its
thermalization behaviour. If the answer is yes, then one might view such a system as

4In Section 3.3.3 we will discuss how the SYK model form factor is differs in certain details with the
form factor associated with matrices pulled from classical Gaussian ensembles.

5It should also be noted that there is an additional constraint that the system should saturate the
Lyapunov bound discussed in [94]. We will address this point in the discussion of echoes in quantum
chaotic systems at the end of the chapter.
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potential candidate for describing black holes with microstructure near the horizon6. In
our exploration we will primarily be interested in how various aspects of the spectrum of
a system manifest in the early and late time behaviour of the form factor and use this as a
way to understand how perturbations to such systems thermalize. In the context of black
hole echoes, we will be interested in finding a system with a quantum chaotic spectrum that
gives rise to regular but decaying oscillations in the form factor which might be interpreted
as echoes being generated by some microstructure near the horizon of a black hole in the
bulk.

3.1.3 Overview

In Section 3.2, we will introduce a model for a random spectrum and derive closed form
expressions for the averaged spectral form factor in terms of the nearest neighbor spacing
statistics. In particular, Section 3.2.1, will go over the details of the model we adopt to
describe a random spectrum and also go over the basics of computing various averaged
quantities in such a model. In Section 3.2.2, we use our model to derive a closed form
expression for the averaged spectral form factor in terms of integrals which involve the
nearest neighbor spacing (NNS) distribution.

In Section 3.3, we consider various common NNS distributions and compute the asso-
ciated averaged form factor using the formulas we derived in Section 3.2. In Section 3.3.1,
we analyze the form factor of a non-random evenly spaced spectrum and show the form
factor is periodic with a period that is inversely proportional to the spacing between the
energy levels. In Section 3.3.2, we analyze the form factor associated with having a Poisson
NNS distribution (which would serve as a model for the spectrum of a generic quantum
integrable system). We show that the averaged form factor monotonically decreases and
saturates to a non-zero value at late times. In Section 3.3.3, we compute the averaged
form factor of a system which has NNS statistics following the Wigner surmise (which
serve as a model for the spectrum of a quantum chaotic system that follows the statistics
of classical Gaussian ensembles). We find that the form factor has an initial dip followed
by a ramp and plateau, which is consistent with expectations from the studies of classical
Gaussian ensembles, as shown in Figure 3.1. In Section 3.3.4, we introduce the gamma
distribution as a simpler alternative to the Wigner surmise NNS distribution. We show
that, in the appropriate regimes, the form factor associated with the gamma distribution

6Here we are specifically referring to microstructure that gives rise to echoes. It is possible that a black
hole could have microstructure near its horizon but not exhibit echoes when perturbed. We will discuss
this possibility in more detail at the end of the chapter.
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will still have a ramp and plateau. We also show that there are other regimes in which
the NNS distribution contains a large “gap.” We show the existence of the gap results in
regular decaying oscillations in the averaged form factor after the initial dip. We argue
that similar oscillations in the form factor will occur for large values of the Dyson index in
the Wigner surmise distribution (Equation 3.30). These larger values of the Dyson index
can be obtained from generalizations of classical Gaussian ensembles and are commonly
refereed to as “β-ensembles,” which are know to arise from tri-diagonal random matrices
[46].

In Section 3.4, we study the spectrum of a many-body system composed of identical
oscillators coupled to each other by a matrix belonging to a classical Gaussian ensemble. In
the weak coupling regime, we study the role the chaotic interactions play in the splitting of
degenerate energy states. We show that within each degenerate sector, the splitting of the
energy levels will generally give rise to chaotic spectrum statistics within each sector. We
verify this by numerically studying the form factor and spectral density in the weak and
strongly coupled regime. We show that the averaged spectral form factor of such systems
at weak coupling exhibit regular decaying oscillations at early times followed by a ramp
and plateau at late times - which is consistent with random matrix theory models that
describe black holes. We then propose such systems of weakly coupled oscillators as toy
models for describing a membrane which gives rise to decaying echoes. The echoes repeat
at approximately the fundamental frequency of the oscillators. We identify the parameters
in the oscillator system with those of the bulk geometry+membrane system. Through this
identification, we show that the question of whether the oscillator system is strongly or
weakly coupled depends on how far the membrane is placed from the horizon.

In Section 3.5, we conclude by summarizing the major findings and discuss future
research directions.

3.2 A Simple Model for Random Spectra

As stated in the introduction, quantum chaotic systems are generally conjectured to have
spectrums that follow the statistics of random matrix theories (most notably Gaussian
ensembles). One of the most important pieces of statistical data in the spectrum of a
random matrix ensemble is the NNS statistics between eigenvalues. The NNS statistics
encode non-trivial correlations between eigenvalues that give rise to quantum chaotic or
integrable dynamics. In the following subsections, we will introduce a simple model for
a random spectrum which allows us to specify the NNS statistics of the system we are
trying to model. Such an approach is unorthodox from the perspective of random matrix
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theory. Usually, one specifies an ensemble of random matrices and then derives the spectral
statistics of the ensemble. Here, we take a different approach and generate a random
spectrum by specifying the NNS statistics. The choice of NNS statistics is then assumed
to correspond to some choice of random matrix ensemble (for example, by using the Wigner
surmise for the NNS distribution, our model should approximately describe the statistical
behaviour of eigenvalues pulled from a Gaussian ensemble). In Section 3.3 we will address
the issue of how well these models reproduce various aspects of the spectral form factor of
certain matrix ensembles.

3.2.1 Random Spectrum with Fixed NNS (“i.i.d Model”)

We begin the construction of our random spectrum model by expressing its energy levels
as follows:

En = Egs +
n∑
k=1

δEk, (3.5)

where Egs is the ground state energy, which we assume is fixed to a constant Egs = E0,
and δEk are independent-identically-distributed (i.i.d) random variables which follow a
probability distribution P . By assuming that P is a distribution with non-zero support for
δEk ∈ R+ we get an ordered set of energy levels in the spectrum E0 ≤ E1 ≤ E2 ≤ ··· ≤ EN .
Throughout the rest of this chapter we will refer to this model as the i.i.d model.

Since we choose δEk to be i.i.d random variables we can express the joint probability
density of the energy levels {Ek}Nk=1 of the spectrum as7:

P (E1, E2, ..., EN) =
N∏
k=1

P(Ek − Ek−1). (3.6)

Using this, we can define the average of some function, f(E1, .., EN), associated with the
random spectrum:

⟨f⟩ =
∫ ∞

−∞
dE1 · · · dENf(E1, .., EN)P (E1, .., EN). (3.7)

For example, the spacing distribution between two eigenvalues Ei and Ej in terms of the
joint probability distribution function is given by the following integral expression:

pi,j(s) =

∫ ∞

−∞
dE1 · · · dENP (E1, .., EN)δ (s− |Ei − Ej−1|) . (3.8)

7Note that under the change of variables δEk = Ek − Ek−1 we have the equivalence of probability
measures dE1 · · · dEN = dδE1 · · · dδEN . This is due to the Jacobian being a lower(or upper) triangular
matrix filled with 1’s.
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Using the formula for the spectrum defined by Eq. (3.5), we can see that the spacing
distribution between the adjacent energy levels Em and Em+1 is8:

pm,m−1(s) =

∫ ∞

−∞
dE1 · · · dENP (E1, .., EN)δ (s− (Em − Em−1))

=

∫ ∞

−∞
dδE1 · · · dδEN

N∏
k=1

P(δEk)δ(s− δEm) = P(δEm).

(3.9)

This proves that the NNS distribution between any nearest neighbor pair is given by P in
the i.i.d model.

We can also define the average spectral density by doing the following integral:

⟨ρ(E)⟩ =
∫ ∞

−∞
dE1 · · · dENP (E1, .., EN)

N∑
m=0

δ(E − Em)

= δ(E − E0) +
N∑
m=1

∫ ∞

−∞
dE1 · · · dEN

N∏
k=1

P(Ek − Ek−1)δ(E − Em).

(3.10)

The averaged double spectral density is also another useful quantity defined by:

⟨ρ(E)ρ(E ′)⟩ =
N∑
m=0

N∑
p=0

∫ ∞

−∞
dE1 · · · dENP (E1, .., EN)δ(E − Em)δ(E

′ − Ep)

= δ(E − E0)δ(E
′ − E0) + δ(E − E0)

N∑
p=1

∫ ∞

−∞
dE1 · · · dENP (E1, ..., EN)δ(E

′ − Ep)

+ δ(E ′ − E0)
N∑
m=1

∫ ∞

−∞
dE1 · · · dENP (E1, ..., EN)δ(E − Em)

+
N∑
m=1

N∑
p=1

∫ ∞

−∞
dE1 · · · dENP (E1, ..., EN)δ(E − Em)δ(E

′ − Ep).

(3.11)

8The result that the NNS distribution is equal to P relies on the assumption that P(x) = Θ(x)P(x)
i.e. the probability distribution can only have non-zero support for non-negative x values, this allows us
to know the ordering of the variables E0 ≤ E1 ≤ · · · ≤ EN .
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Using this we can also define the connected double spectral density given by:

⟨ρ(E)ρ(E ′)⟩conn. = ⟨ρ(E)ρ(E ′)⟩ − ⟨ρ(E)⟩ ⟨ρ(E ′)⟩

=
N∑

m,p=1

∫ ∞

−∞
dE1 · · · dENP (E1, .., EN)δ(E − Em)δ(E

′ − Ep)

−

[
N∑
m=1

∫ ∞

−∞
dE1 · · · dENP (E1, .., EN)δ(E − Em)

][
N∑
p=1

∫ ∞

−∞
dE1 · · · dENP (E1, .., EN)δ(E

′ − Ep)

]
.

(3.12)

3.2.2 Averaged Spectral Form Factor in the i.i.d Model

In this subsection, we will derive a closed form expression for the annealed averaged normal-
ized spectral form factor associated with the type of spectrum we discussed in subsection
3.2.1. The normalized annealed averaged spectral form factor is given by the following
expression:

g(β, t) =
⟨Z(β + it)Z(β − it)⟩

⟨Z(β)2⟩

Z(β ± it) =
N∑
n=0

e−(β±it)En .

(3.13)
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Following the derivation provided in Appendix B.1, we will find the following expression
for the averaged spectral form factor9:

⟨Z(β + it)Z(β − it)⟩ = e−2βE0

(
1 +

b(1− bN)

1− b
+
b∗(1− (b∗)N)

1− b∗
+B1

)
= e−2βE0

(
1− aN+1

1− a
+

b

1− b

[
a− b+ aN+1(b− 1) + bN+1(1− a)

(1− a)(a− b)

])
+ e−2βE0

b∗

1− b∗

[
a− b∗ + aN+1(b∗ − 1) + (b∗)N+1(1− a)

(1− a)(a− b∗)

]
a = ⟨e−2βδE⟩ =

∫ ∞

0

P(x)e−2βxdx

b = ⟨e−(β+it)δE⟩ =
∫ ∞

0

P(x)e−(β+it)xdx

b∗ = ⟨e−(β−it)δE⟩ =
∫ ∞

0

P(x)e−(β−it)xdx.

(3.14)

We can simplify the complicated expression under the assumption that |a| < 1, |b| < 1,
and N ≫ 1 (thermodynamic regime). In this case, at leading order, we ignore terms of
the order O(aN) and O(bN) to obtain the following approximation for the normalized form
factor:

g(β, t) ≈
1 + b

1−b +
b∗

1−b∗

1 + 2b0
1−b0

b =

∫ ∞

0

P(x)e−(β+it)xdx

b0 =

∫ ∞

0

P(x)e−βx.

(3.15)

Note that the approximation given in Eq. (3.15) is only expected to be useful at finite
temperatures for sufficiently large values of N . It is expected to fail when β = 0. When
β = 0 we formally take the limit of Eq. (3.14) above as a → 1 to get the following

9Note, the expression for the form factor does not rely on the assumption of P begin zero for negative
arguments. So in principle one could actually have P with support at negative values (you will just
extend the lower limit of integration to −∞ for the expressions describing the form factor) but then the
interpretation of P being the NNS distribution is not as transparent. Although, we suspect that as long as
P is an even function then it can still roughly be interpreted as the NNS distribution between eigenvalues
in this model.
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normalized average form factor at β = 0:

g(β = 0, t) =
N + 1 +

[
b

(1−b)2
(
bN+1 +N − b(N + 1)

)
+ b∗

(1−b∗)2
(
(b∗)N+1 +N − b∗(N + 1)

)]
(N + 1)2

b =

∫ ∞

0

P(x)e−itxdx

b∗ =

∫ ∞

0

P(x)eitxdx.

(3.16)

In cases where b and b∗ go to zero as t→ ∞ it is easy to see that10:

lim
t→∞

g(β = 0, t) =
1

N + 1
. (3.17)

At infinite temperature we identify the entropy as S = ln(N + 1) and conclude that after
a sufficiently long time, the infinite temperature averaged form factor will plateau toward
a value e−S. In a similar manner, we can approximate the expression for the large time
value of the form factor (again we assume b and b∗ vanish in the t → ∞ limit) at finite
temperature for large values of N using the approximation given in Eq. (3.15):

lim
t,N→∞

g(β, t) ≈ 1− b0
1 + b0

=
1−

∫∞
0

P(x)e−βxdx

1 +
∫∞
0

P(x)e−βxdx
. (3.18)

3.3 Spectral Form Factor of Common NNS Distribu-

tions

Thus far, we have proposed the i.i.d model for a random spectrum which involves specifying
the NNS statistics of the system we are interested in modelling. In the following sections we
will use the i.i.d model to compute the averaged spectral form factor associated with various
choices of NNS statistics. In particular, we will investigate how well the i.i.d model (with
a Wigner surmise NNS distribution) reproduces the features of the spectral form factor for
Gaussian ensembles in Section 3.3.3. Aside from the more common NNS statistics that
are found in integrable and quantum chaotic systems, we will also study generalizations of
these statistics in Section 3.3.4 and explore how the behaviour of the form factor changes.

10In many of the examples we consider the assumption that b and b∗ vanish in the large t limit will be
valid. However, there are examples where the assumption fails. In Sec. 3.3.1 we have P(x) equal to a
delta function, which results in an oscillating form factor that does not settle any particular value in the
large t limit.
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3.3.1 Delta Function (Non-Random Evenly Spaced Spectrum)

The most trivial spectrum that one can generate using the i.i.d model is an evenly spaced
spectrum (with no degeneracy) where the NNS distribution is given by the Dirac delta
distribution below:

P(x = δE) = δ(x−∆E), (3.19)

where ∆E ≥ 0, in this case the integrals in Eq. (3.14) are simply given by11:

a = e−2β∆E

b = e−∆E(β+it)

b∗ = e−∆E(β−it).

(3.20)

The normalized averaged spectral form factor equals:

g(β, t) = N
[
e2β∆E + e−2Nβ∆E − 2e−β(N−1)∆E cos((N + 1)∆Et)

1 + e2β∆E − 2eβ∆E cos(∆Et)

]
N =

1 + e2β∆E − 2eβ∆E

e2β∆E + e−2Nβ∆E − 2e−β(N−1)∆E
.

(3.21)

In this case we can see from the expression above that the form factor is periodic with a
period:

τ =
2π

∆E
. (3.22)

3.3.2 Poisson Distribution (Quantum Integrable Systems)

For sufficiently large diagonal matrices whose diagonal elements are i.i.d random variables,
it is known that the NNS distribution of eigenvalues follows a Poisson distribution [6,
93]. Furthermore, the Poisson distribution also appears when studying the energy spacing
statistics of a wide variety of integrable systems [22, 62, 16]. This gives us reason to
consider the spectral form factor of a spectrum generated by the i.i.d model whose NNS
distribution is given by the Poisson distribution12:

P(x = δE) = Θ(x)
e−x/σ

σ
. (3.23)

11It is clear from this that b and b∗ do not go to zero in the large t limit this is an example in which the
form factor does not plateau towards a fixed value.

12Usually one defines a dimensionless spacing s = δE/σ and discusses NNS in terms of s rather than
δE, but here we will work directly with δE and σ.
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The average spacing between adjacent eigenvalues is given by ⟨δE⟩ = σ.

We compute the integral expressions for a, b, b∗, they are given by:

a =
1

1 + 2βσ

b =
1

1 + σ (β + it)

b∗ =
1

1 + σ (β − it)
.

(3.24)

Notice that, in this case b and b∗ do go to zero in the limit as t → ∞, this means that
the normalized average spectral form factor at infinite temperature goes to (N + 1)−1. At
infinite temperature the form factor is given as:

g(β = 0, t) =
1

N + 1
+

2− (1 + ix)−N − (1− ix)−N

(1 +N)2x2

x = tσ.

(3.25)

For finite temperature, the expression for the form factor is not as simple - so we will not
explicitly write it here. However, because |b| < 1 and |a| < 1 we can use the approximated
form factor in the large N regime given by Eq. (3.15) to give a simple approximation for
the form factor:

g(β, t) ≈
1 + 2βσ

σ2(β2+t2)

1 + 2
βσ

. (3.26)

We compare the approximated expression for the form factor given in Eq. (3.26) to the
full expression we have in Eq. (3.14) in Figure 3.2. We can see that for sufficiently large
N the approximated expression converges toward the exact expression for the form factor.
At lower temperatures, convergence will occur at smaller values of N . We also consider
the averaged spectral form factor at various temperatures for a fixed value of N = 100 in
Figure 3.3 13. The expression for the asymptotic value of the form factor is given by the

13One can check that similar looking plots can be made for higher and lower values of N .
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Time Dependence of Averaged Spectral Form Factor for βσ = 0.1 (Poisson Spacing)

Figure 3.2: Above is a Log-Log plot of the averaged spectral form factor of a spectrum
generated by the i.i.d model with Poisson NNS distribution given by Eq. (3.23). The
temperature is fixed at βσ = 0.1 and we vary N . The plot illustrates how the form factors
for larger values of N converge towards the thermodynamic approximation given in Eq.
(3.26).

following expression:

lim
t→∞

g(β, t) = lim
t→∞

⟨Z(β + it)Z(β − it)⟩
⟨Z(β)2⟩

=

β̃(1 + β̃)N
((

1 + 2β̃
)N+1

− 1

)
(
1 + β̃

)N (
2 + 3β̃

)
+
(
1 + 2β̃

)N+1
[(

1 + β̃
)N (

2 + β̃
)
− 4

]
β̃ = βσ.

(3.27)

We can see that the form factor decays from its initial normalized value towards a non-zero
value given by Eq. (3.27). Another interesting point to make based on the plots we made
is that the plateau phase occurs at a time scale t ≳ σ−1 = ⟨δE⟩−1, where ⟨δE⟩ is the
average spacing between eigenvalues.
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Figure 3.3: Above is a Log-Log plot of the averaged spectral form factor of a spectrum
generated by the i.i.d model with Poisson NNS distribution given by Eq. (3.23). The value
of N is fixed at N = 100 and the form factor is plotted for different temperatures ranging
from βσ = 0 to βσ = 1.

At infinite temperature, we see oscillations, these are similar to the oscillations in the
form factor discussed in [42] they arise at high temperatures due to the spectral edges of
the spectral density14.

It is possible to explicitly calculate the averaged spectral density in the i.i.d model with
Poisson NNS statistics (details are given in Appendix B.2) it is given by the following
expression:

⟨ρ(E)⟩ = δ(E − E0) +
N∑
m=1

[
(E − E0)

m−1

σm−1(m− 1)!

]
Θ(E − E0)

e−(E−E0)/σ

σ
. (3.28)

14One might wonder if these oscillations can be interpreted as “echoes.” The answer to this is no because
echoes should persist at lower temperatures as well.
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We can rewrite the sum in terms of the incomplete gamma function as follows:

⟨ρ(E)⟩ = δ(E − E0) +
Θ(E − E0)

σ

Γ
(
N, E−E0

σ

)
Γ (N, 0)

Γ(N, x) =

∫ ∞

x

tN−1e−tdt.

(3.29)

By taking the derivatives of incomplete gamma function we can show that the function is
monotonically decreasing and has an inflection point at E − E0 = (N − 1)σ. We expect
the function to very slowly decrease up until one gets close to the inflection point. Then
after the inflection point we expect the spectral density to be very small. In Figure 3.4 we
plot the spectral density and verify this.

N = 10

N = 20

N = 50

N = 100

20 40 60 80 100 120 140
E

0.2

0.4

0.6

0.8

1.0

<ρ>
Average Spectral Density (Poisson Spacing)

Figure 3.4: Above we plot the average spectral density of a random spectrum generated
from the i.i.d. model using the Poisson NNS distribution defined in Eq. (3.23) (setting
σ = 1 and E0 = 0 and changing N). The averaged spectral density is given by Eq. (3.28).
The width roughly scales with N .

Ignoring the delta function at E = 0, we can see the spectral density is approximately
constant then quickly goes to zero near the inflection point. We can also see that as N
increases the nearly constant phase is extended. The nearly constant phase can be regarded
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as a natural consequence of the i.i.d spacing assumption in our model. We will generally
expect that spectral densities generated by the i.i.d model will have an approximately
constant portion far from the edges of the spectrum. We can also see that width of the
density scales with N .

3.3.3 Wigner Surmise (Quantum Chaotic Systems)

In this section we will compute the spectral form factor in the i.i.d model when the NNS
distribution is given by the Wigner surmise. The Wigner surmise is known to be a good
approximation to the NNS distribution for classical Gaussian ensembles [62, 48, 93]. The
Wigner surmise NNS distribution is defined below15:

Pc(x = δE) = Θ(x)
2xc

Γ
(
1+c
2

) e−x2/σ2

σc+1
. (3.30)

The value of c (sometimes called the Dyson index) depends on the type of Gaussian en-
semble one wants to consider. In particular, the three main classical Gaussian ensembles
are orthogonal (c = 1), unitary (c = 2), and symplectic (c = 4). In Figure 3.5 we plot the
distributions for the three ensembles for σ = 1.

For the sake of simplicity we will mainly focus on the Gaussian unitary ensemble,
c = 216. In this case we will have the following NNS distribution:

P2(x = δE) = Θ(x)
4x2

σ3
√
π
e−x

2/σ2

. (3.31)

The average spacing between adjacent eigenvalues is given by ⟨δE⟩ = 2σ√
π
∼ 1.1σ.

The expressions for a, b, and b∗ in this case are given by:

a = −2βσ√
π

+ eβ
2σ2

(1 + 2β2σ2) (1− erf(βσ))

b = − 1

2
√
π

[
2σ(β + it) +

√
πe−

−σ2(t−iβ)2

4

(
−2 + (t− iβ)2σ2

)(
1− erf

(
1

2
(β + it)σ

))]
b∗ = − 1

2
√
π

[
2σ(β − it) +

√
πe−

−σ2(t+iβ)2

4

(
−2 + (t+ iβ)2σ2

)(
1− erf

(
1

2
(β − it)σ

))]
.

(3.32)

15The value of σ fixes the average spacing between eigenvalues and is usually chosen so that the spacing
is unity. Just as in the Poisson spacing case we will not make assumptions on the value of σ and simply
keep σ in our expressions.

16One can also easily do similar calculations for the other ensembles and get similar results.
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Figure 3.5: The Wigner surmise NNS distribution for three ensembles. The Gaussian
orthogonal ensemble (GOE) occurs when c = 1. The Gaussian unitary ensemble (GUE)
occurs when c = 2. The Gaussian symplectic ensemble (GSE) occurs when c = 4.

One can easily check that for β > 0 we have |a| < 1 and |b| < 1. This means that the
thermodynamic approximation given by Eq. (3.15) will be valid for sufficiently large N
at finite temperatures. Also, we can check that limt→∞ b = 0, which tells us that the
asymptotic value of the form factor at infinite temperature is (N + 1)−1. We can plot
the form factor to get a sense of the general features that appear for various choices of
parameters.

In Figure 3.6, we compare the thermodynamic approximation given by Eq. (3.15)
with the exact result given by Eq. (3.14). As expected, for sufficiently large N the
thermodynamic approximation converges to the exact result, and one can further verify
that for lower temperatures the convergence will occur more quickly at lower values of N .

In Figure 3.7, we plot the exact form factor for fixed N at different temperatures. We
can see that the form factor initially decreases and eventually reaches a minimum value17.
After reaching the minimum, in a time scale roughly given by t ∼ ⟨δE⟩−1, the form factor

17At high temperatures we see oscillations similar to what we saw for Poisson spacing, this is again due
to the spectral edges being probed at high temperatures (not to be interpreted as “echoes”).
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Figure 3.6: Above is a Log-Log plot of the averaged spectral form factor of a spectrum
generated by the i.i.d model with Wigner surmise NNS distribution for the GUE given by
Eq. (3.31). The temperature is fixed at βσ = 0.01 and we vary N .

increases along a “ramp” and finally plateaus toward an asymptotic value that is given by
taking the t→ ∞ limit.

The ramp and plateau also appears in numerical calculations of the averaged form factor
of the SYK model discussed in [42]. This occurs since the spectrum spacing statistics of
the SYK model can be understood in terms of the spacing statistics of random matrices
pulled from Gaussian ensembles. Although it is true that the form factors of the SYK and
the classical Gaussian ensembles have many features in common, it is important to note
that there are differences. One important distinction to make is the time scale over which
the “ramp” begins to manifest in the form factor. In the case of the form factor generated
by random matrices pulled from the GUE (and also our i.i.d. model see Appendix B.3)
the beginning of the ramp occurs on time scales comparable to the Heisenberg time, which
is O(⟨δE⟩−1). This is in stark contrast to the SYK model where the ramp phase begins on
time scales which are much shorter than the Heisenberg time18.

18[13] estimates the ramp in the SYK form factor to start at times scales of the order O(N1/2 ln(N)).
This is much shorter than the Heisenberg time for the SYK model which is of the order O(eN ) [14].
For more physical quantum chaotic theories, the time scale after which the universal ramp and plateau
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Figure 3.7: Above is a Log-Log plot of the averaged spectral form factor of a spectrum
generated by the i.i.d model with Wigner surmise NNS distribution for the GUE given by
Eq. (3.31). We fixed the value of N = 100 and plot the averaged form factor for different
temperatures.

In Appendix B.3, we do a numerical study which compares the form factor generated
by eigenvalues from a Hermitian random matrix to the form factor of a random spectrum
generated by the i.i.d model with Wigner surmise NNS distribution. We show that if one
focuses on the eigenvalues near the centre of the spectrum then our model is in reasonable
agreement with actual numerical computations of the form factor associated with the
truncated spectrum near the centre of the spectral density.

It is not possible to get a closed form expression for the spectral density when we have
Wigner surmise spacings. However, we can numerically compute the averaged spectral
density by generating a large number of eigenvalues from the i.i.d model for Wigner surmise
spacing. As an example, in Figure 3.8, we generate a histogram from the eigenvalues
generated by the i.i.d model for 104 samples with each sample having 100 eigenvalues (for
simplicity we set σ = 1 and E0 = 0). Unsurprisingly, we find that the density away
from the edges is approximately constant and similar to the Poisson case. However, it

manifest , the so-called “Thouless time”, is not universal (i.e. it changes depending on the model and the
observable. We thank Julian Sonner for pointing this out).
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Figure 3.8: Above is a histogram of eigenvalues generated by the i.i.d model for 100 eigen-
values (excluding the ground state at E = 0) defined in Eq. (3.5). The NNS distribution
is given by Eq. (3.31) with σ = 1. We expect the width of the spectral density to scale
with N .

will differ from the Poisson density near the ground state where it will be zero due to
the repulsion between the ground state and the rest of the excited states (Poisson case
exhibits “attraction toward the ground state”). Another important point to make is that
the averaged spectral density of the spectrum generated by the i.i.d model is not the semi-
circle as it is for classical Guassian ensembles (e.g., see Figure B.1). This is not surprising
since our model only captures correlations between nearest neighbors and not the longer
range correlations that conspire to give the semi-circle. Nonetheless, the i.i.d model still
captures the general features of the ramp and plateau in the averaged form factor.

In the next subsection, we will introduce a new NNS distribution which retains the
interesting features of the Wigner surmise (i.e. repulsion in NNS statistics) but will be
easier to analytically handle in our model when computing the averaged spectral density
in the i.i.d model. We will also discuss generalizations of classical Gaussian ensembles and
how the late time behaviour of the form factor of such ensembles differ from the usual
ramp and plateau behaviour of the form factor of classical Gaussian ensembles.
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3.3.4 Form Factor of Gamma NNS Distribution and β-Ensembles

In the previous subsection, we looked at the Wigner surmise as a canonical example of
what the NNS distribution of eigenvalues of a chaotic system looks like. Although we are
able to compute the form factor, many other quantities of interest such as the spectral
density are difficult to compute in closed form. This is primarily due to the e−x

2
in the

NNS density makes the integrals in Eq. (3.10) difficult to compute. To facilitate more
explicit calculations - while still retaining the essential repulsion between eigenvalues - we
will consider a slightly different NNS distribution. We define the gamma distribution for
NNS:

Pq(x = δE) = Θ(x)
xqe−x/σ

Γ(1 + q)σ1+q
. (3.33)

The value of q (plays the role of the Dyson index in the Wigner surmise) fixes the degree of
repulsion between eigenvalues. For a fixed value of q, σ fixes the average spacing between
nearest neighbor pairs to ⟨δE⟩ = (1 + q)σ.

At leading order, it is clear that such a distribution will contain the same repulsion
behaviour near zero spacing as the Wigner surmise with c in Eq. (3.30) identified with
q in Eq. (3.33). The major difference being the tail; the Wigner surmise has a Gaussian
tail whereas the gamma distribution has an exponentially decaying tail. The advantage to
using this is that it still contains the important repulsion of a chaotic system for any q > 0.
Furthermore, due to the exponential tail of the gamma function the spectral density can
be computed exactly.

We begin by computing the necessary integrals that define the averaged form factor in
the i.i.d model:

a = (1 + 2βσ)−(1+q)

b = (1 + σ(β + it))−(1+q)

b∗ = (1 + σ(β − it))−(1+q) .

(3.34)

We can clearly see that |a|, |b| < 1 at finite temperature for q ≥ 0, therefore in the large N
regime we can use the thermodynamic expression of the form factor given in Eq. (3.15).
We find:

g(t, β) ≈ (1 + βσ)q+1 − 1

(1 + βσ)q+1 + 1

[
1 +

1

[1 + σ(β + it)]q+1 − 1
+

1

([1 + σ(β − it)]q+1 − 1

]
. (3.35)

The plateau at sufficiently large N and finite temperature regime has an approximate
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height equal to:

lim
t→∞

g(t, β) ≈ (1 + βσ)q+1 − 1

(1 + βσ)q+1 + 1
. (3.36)

We plot the averaged form factor in the i.i.d model using Eq. (3.14) for various choices
of parameters.
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Time Dependence of Averaged Spectral Form Factor N = 100, βσ = 0 (Gamma Spacing)

Figure 3.9: Above is a Log-Log plot of the averaged spectral form factor at, infinite tem-
perature, for a spectrum generated by the i.i.d model with a NNS distribution given by
the gamma distribution defined in Eq. (3.33). The value of N is fixed and the form
factor is plotted for different values of q. The energy scale, σ, is related to the average
energy spacing between nearest neighbor eigenvalues, ⟨δE⟩, through the following relation
⟨δE⟩ = (q + 1)σ.

In Figure 3.9, we plot the averaged form factor at infinite temperature with N = 100
and vary q. At lower values of q > 1, we still see that ramp and plateau (like the Wigner
surmise), however as we increase the value of q we start to see oscillations after the initial dip
before saturation to the plateau. In Figure 3.10, we verify that these late time oscillations,
at large q persist at lower temperatures with the period roughly being the same as the
temperature varies.
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Figure 3.10: Above is a Log-Log plot of the averaged spectral form factor at, for a spectrum
generated by the i.i.d model with a NNS distribution given by the gamma distribution
defined in Eq. (3.33). In this plot q = 50 and N = 100 are fixed and the temperature
is varied. The energy scale, σ, is related to the average energy spacing between nearest
neighbor eigenvalues, ⟨δE⟩, through the following relation ⟨δE⟩ = (q + 1)σ.

The existence of these oscillations for larger values of q can be attributed to the NNS
distribution localizing far from the origin and forming a substantial “gap” between the
origin and the main distribution. One can check that the form factor of any system that
has NNS density with a large gap will exhibit oscillations (although depending on the details
of the NNS distribution the shape of the oscillations as well has how long they persist will
vary). In particular, if one allows the Dyson index, c, in Eq. (3.30) to be sufficiently large
one can also check that similar oscillations will arise for the Wigner surmise.

It is also useful to compare the averaged form factor with the form factor of a single
sample in our model. In Figure 3.11, we can see that the regular late time oscillations are
not self averaging. This is similar to the nature of the ramp and plateau behaviour studied
in form factors of Gaussian ensembles [42]. The ramp and plateau manifest most clearly
after averaging over many samples but is more difficult to ascertain when one analyzes
only a single sample.

Due to the simple expression of the form factor in the large N and finite temperature
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Figure 3.11: Above is a Log-Log plot that compares the spectral form factor of a single
sample (blue curve), and the averaged form factor (yellow curve) from the i.i.d model with
gamma distribution spacing defined in Eq. (3.33), with q = 50, N = 100, and βσ = 0.

regime it is possible to get a sense of where the oscillations occur by finding local extrema.
By taking the first derivative of the expression in Eq. (3.35) and setting it to zero we find
the following condition:

zq

[zq+1 − 1]2
=

(z∗)q

[(z∗)q+1 − 1]2

z = 1 + σ(β + it)

z∗ = 1 + σ(β − it).

(3.37)

In general, the solution to this equation cannot be found exactly (in Appendix B.4 we
discuss the special cases when q = 1, 2, 4 where exact solutions can be found). In the
q ≫ 1 regime it can be argued (see Appendix B.4 for the argument) that the period of the
visible oscillations in the form factor will roughly be given by:

τ ≈ 2π(1 + βσ)

qσ
≈ 2π(1 + βσ)

⟨δE⟩
≈

{
2π
⟨δE⟩ , βσ ≪ 1
2πβσ
⟨δE⟩ , βσ ≫ 1

. (3.38)
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Above, we used that the average spacing between adjacent energy levels in our model is
⟨δE⟩ = (q + 1)σ ≈ qσ.

Now that we have discussed the general features of the form factor we consider the
averaged spectral density - which is given by (see Appendix B.5 for details of the calcula-
tion):

⟨ρ(E)⟩ = δ(E − E0) +
1

σ

N∑
m=1

[
(E − E0)

mq+m−1

Γ [m(1 + q)]σm(1+q)−1

]
Θ(E − E0)e

−(E−E0)/σ. (3.39)

Ignoring the delta function at the ground state, we can see the left most edge of the spectral
density near E = E0 is dominated by the first term in the sum over m and vanishes at
zero. To get an estimate for how wide the spectral density is, we analyze the m = N term
in the sum. This will give us a rough sense of what the tail of the spectral density looks
like:

⟨ρtail(E)⟩ ≈
e−(E−E0)/σ

σΓ(N(1 + q))

(
E − E0

σ

)N(1+q)−1

. (3.40)

This function will give a bell shaped curve. We will be interested in the right most inflection
point of the bell curve to give us an idea of where the edge of the spectral density is. This
involves solving d2

dE2ρtail(E) = 0 which yields a simple quadratic equation. The larger root
gives us an estimate for where the right edge of the spectral density is:

Eedge − E0

σ
= N(1 + q)− 1 +

√
N(1 + q)− 1. (3.41)

So, for N ≫ 1 and q ≥ 1, the width of the spectral density roughly scales as N(q + 1). In
Figure 3.12 we can verify these findings by a simple plot of the spectral density with σ = 1
and N = 20 for various values of q. We can see that for larger values of q the low energy
part of the spectrum exhibits visible oscillations. This is due to the fact that there is little
overlap between the lower m terms that make up the spectral density. A straightforward
calculation of the local maximum of each term reveals that the distance between the visible
local maxima is roughly q + 1.

It is interesting to ask what type of random matrix ensembles give rise to NNS statistics
with a more general Dyson index. One answer to this question can be found in the study
of “β-ensembles” which are discussed in [46]. These ensembles have been shown to arise
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Figure 3.12: The above plot depicts the averaged spectral density in Eq. (3.39). We fix
N = 20 and plot the density at various values of q (we set σ = 1 and E0 = 0). The width
the spectrum roughly scales as N(q + 1) for N ≫ 1.

from N ×N tri-diagonal random matrices of the form19:

Hβ =
1√
2



N(0, 2) χ(N−1)β 0 0 · · · 0

χ(N−1)β N(0, 2) χ(N−2)β 0
. . .

...

0 χ(N−2)β N(0, 2)
. . . . . . 0

0 0
. . . . . . χ2β 0

...
. . . . . . χ2β N(0, 2) χβ

0 · · · 0 0 χβ N(0, 2)


, (3.42)

where N(0, 2) denotes random real variables pulled from a normal distribution with vari-
ance of 2 and mean of 0. The χm denotes positive real random variables pulled from the
Chi-distribution with m degrees of freedom20. It can be proved that the joint eigenvalue

19Note: β is not the temperature in this context. It is a parameter that plays the role of the Dyson
index in the usual classical Gaussian ensembles.

20A random variable y following the Chi-distribution withm degrees of freedom has a probability density
function given by χm(y) = Θ(y) 2

Γ(m/2)y
m−1e−y2

.
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density (up to a normalization constant) of these matrices is given by:

Pβ(λ) ∼
∏
i<j

|λi − λj|β e−
∑

i λ
2
i /2. (3.43)

The joint eigenvalue density for the classical Gaussian ensembles are reproduced when
β = 1, 2, 4 - but more general values of β can also occur21. Since β controls the degree
of repulsion between eigenvalues, it seems reasonable to identify it with the Dyson index,
c, in the Wigner surmise for NNS distribution. This conjecture was explored numerically
in [89], where it was found that a (generalized) gamma distribution provided reasonable
approximation to the NNS distribution of β-ensembles. Based on the results we obtained
using the i.i.d model in this section, we suggest that with sufficiently large values of β (here
β is not inverse temperature it is the Dyson index which labels the β-ensemble) the form
factor of β-ensembles will have late time oscillations in the ensemble averaged form factor.

In the next subsection, we briefly explore a class of simple oscillator systems that
demonstrate sharp gaps in the NNS statistics. In these systems one can also see regular
decaying oscillations in the late time behaviour similar to the ones we studied here.

3.3.5 Chaotic Perturbation of a Harmonic Oscillator

One concrete example of a class of systems that have large gaps in the NNS distribution
are interacting oscillator systems whose Hamiltonian may be written in the form:

H = H0 + λHchaos, (3.44)

where H0 is a Hamiltonian with a regularly spaced spectrum. Hchaos is a chaotic Hamilto-
nian in the sense that the NNS statistics of the eigenvalues of Hchaos obey a Wigner surmise
type distribution. The parameter λ controls the relative strength of the two terms.

One familiar example of a system that has an evenly spaced spectrum is the one dimen-
sional Harmonic oscillator vibrating at a frequency ω0. The introduction of the a chaotic
term in such a scenario would be analogous to adding an additional potential term in the
Hamiltonian which generates chaotic dynamics. Concretely, we write:

H = ω0H0 + ϵHchaos, (3.45)

21It was shown in [46] that the matrices in the classical Gaussian ensembles can be written in the tri-
diagonal form. For example, a matrix pulled from the GOE ensemble can be tridiagonalized and the
matrix will belong to a “β = 1-ensemble.”

103



where ω0 is some characteristic energy scale of the unperturbed oscillator and ϵ is a char-
acteristic energy scale for the chaotic Hamiltonian. In terms of matrices we let H0 be an
N ×N diagonal matrix with entries (H0)ij = N−1(i− 1)δij (we choose to normalize by N
so that the width of the unperturbed spectrum does not change). We model Hchaos using
a random matrix. Roughly speaking, the NNS distribution between adjacent eigenvalues
will be delta functions when ϵ = 0 once the chaotic term is turned on we will expect the
delta functions to broaden and look similar to a kind of translated Wigner surmise. This
results in a large gap in the NNS distribution which would lead to oscillations in the form
factor. To get approximation for what the NNS distribution might look like, it is useful to
compute the NNS distribution for 2× 2 matrices. This is a straightforward exercise which
is done explicitly in Appendix B.6, the final result is given by:

P(s) =
s√
πϵω0

(
e

ω0s

2ϵ2 − 1
)
e−(

2s+ω0
4ϵ )

2

. (3.46)

Using the i.i.d model with the NNS distribution given by Eq. (3.46) we can compute the
form factor. Figure 3.13 plots the form factor at infinite temperature for various choices
of ϵ/ω0.

ϵ/ω0 = 0.01

ϵ/ω0 = 0.05

ϵ/ω0 = 0.1
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10-4
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0.100

1

ω0t

Averaged Form Factor for N = 100, βω0 = 0 (Modifed Wigner Spacing)

Figure 3.13: Above is a plot of the infinite temperature average form factor of a spectrum
generated by our i.i.d model (N = 100) with the NNS distribution (modified Wigner
surmise) given in Eq. (3.46) for various choices of the dimensionless ratio ϵ/ω0.
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We can see that oscillations appear for smaller values of ϵ/ω0 and begin to go away as
the chaotic term becomes larger. The decay of the oscillations occur due to the random
chaotic term in the Hamiltonian. In this scenario the parameter ω0/ϵ characterizes the
sharpness and size of the gap in the NNS distribution. Using the results we found in the
previous subsection for gamma NNS statistics, we expect the period of the oscillations in
the form factor in the ϵ/ω0 ≪ 1 regime to be approximated by:

τ ≈ 2π(1 + βω0)

⟨δE⟩
≈ 4π(1 + βω0)

ω0

, (3.47)

where we used the fact that ⟨δE⟩ ≈ ω0/2 when ϵ/ω0 ≪ 1.

3.4 Systems with Self-Averaging Oscillations in the

Form Factor (Echoes)

In the previous section, we studied features of the averaged form factor and spectral den-
sities associated with different choices of NNS distributions using the i.i.d model. For the
i.i.d. model of random spectra we generally found that the spectral form factor decays
until a time scale roughly given by t ∼ ⟨δE⟩−1, where ⟨δE⟩ is the average nearest neighbor
spacing between eigenvalues. At time scales t ≪ ⟨δE⟩−1 the spectral density can be ap-
proximated as smooth and gives rise to self averaging behaviour at early times. After this
time scale, the discreteness of the system manifests and the form factor is no longer self
averaging. The averaged late time behaviour over many samples depends on the details of
the NNS distribution for the eigenvalues of the system. From the examples we studied, we
had three classes of behaviour after the initial dip:

1. Continues to decrease and plateaus to a value (e.g., Poisson NNS where eigenvalues
exhibit “attraction”).

2. Increases for a duration of time along a “ramp” followed by a plateau (e.g., Wigner
surmise NNS where eigenvalues exhibit “repulsion”).

3. Increases and exhibits damped oscillations toward a plateau value (e.g., large q
gamma NNS where the eigenvalues exhibit “enhanced” repulsion resulting in large/sharp
gaps between adjacent eigenvalues).
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Case 1 describes the NNS statistics of generic quantum integrable systems and has no
“ramp” in the form factor 22. Case 2 describes NNS statistics of quantum chaotic systems
whose spectral form factors contain a “ramp.” In both these cases, we can see that there
are no regular oscillations. In Case 3, there are oscillations in the averaged spectral form
factor. These oscillations, however, occur in the late time behaviour of the form factor when
it is no longer self-averaging (e.g., Figure 3.11). Furthermore, the time scale over which
these oscillations manifest are of the order of the Heisenberg time, ⟨δE⟩−1. In the context
of black holes one usually regards the energy spacing between black hole microstates to be
of the order e−S. This gives a Heisenberg time of the order eS. So if we want to interpret
the late time oscillations as echoes then we would have to wait a time scale of the order of
the Heisenberg time which is extremely long for a macroscopic black hole and for practical
purposes unobservable23.

In this section, we shall revisit one of the key assumption of Sections 3.2 and 3.3, i.e.
that the NNS distribution are independent identically distributed (i.i.d). As an example,
the i.i.d assumption can be significantly violated if there are approximate degeneracies in
the spectrum - causing many states to cluster around the same value while also being
widely separated from other clusters of states. An example of this phenomenon is the
hydrogen atom, where the splitting of degenerate states is controlled by the fine structure
constant, α. We can see that the assumption of “independent-identically-distributed”
is not valid anymore, as the energy spacing is different by a factor of α, depending on
whether states belong to the same, or a different degenerate sub-sector. We shall see that
this structure can also lead to self-averaging oscillations in the spectral form factor. What
one needs is to have an averaged spectral density that contains regularly spaced “spikes”
(or near-degenerate sub-sectors). The introduction of random interactions (regardless of
how small) will generally lead to chaotic level splittings (a broadening of the “spikes”)
within each degenerate sub-sector. We will discuss one simple but explicit example in the
following subsection which illustrates this.

22Systems with constant energy spacings, such as harmonic oscillator are exceptions. Such systems have
form factors that oscillate forever and never saturate to a particular value.

23There might be a “caveat” to these findings. In particular, we only discussed the late time oscillations
in the context of the i.i.d. model. If we decided to use the i.i.d. model (with Wigner surmise spacing) to
describe the spectrum of the SYK model we would correctly predict the existence of a ramp and plateau
at late times. However, we would fail in predicting the time scale when the ramp would start, i.e. the
Thouless time. In the same manner, just because the i.i.d. model predicts late time oscillations to manifest
on time scales of the order of the Heisenberg time, it does not rule out the possibility of having a theory
where the form factor exhibits late time oscillations on much shorter time scales which could potentially
be observable in experiments.
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3.4.1 Randomly Coupled Identical Fermionic Oscillators

In this subsection, we will analyze a system of N/2 Fermionic oscillators (N is even) which
are coupled by a random matrix pulled from the GUE 24.

The Hamiltonian describing N/2 uncoupled Fermionic oscillators, which we denote as
HFHO, can be written as:

HFHO =
1

2

N/2∑
k=1

ωk[b
†
k, bk], (3.48)

where bk and b†k are operators which satisfy the anti-commutation relations, {bk, b†l} = δkl,

{bk, bl} = {b†k, b
†
l} = 0, and ωk is the frequency of oscillation of the k-th oscillator (set

ℏ = 1). Before analyzing the effect of the GUE coupling we review the eigenstates of
HFHO.

We denote the ground state of the FHO Hamiltonian as |0⟩, it satisfies the following
identity:

bk |0⟩ = 0. (3.49)

The operators bk and b†k play the role of annihilation and creation operators respectively.
We can check that the following identities are true:[

HFHO, b
†
k

]
= ωkb

†
k

[HFHO, bk] = −ωkbk.
(3.50)

We can create any state in the Fock space by starting with the ground state and acting
with the creation and annihilation operators. There are exactly 2N/2 distinct states in the
Hilbert space since we can only act once on the ground state using b†k for a particular k.
These states (by convention) can be written as:

|n⃗⟩ = |n1, n2, ..., nN/2⟩ =
(
b†1

)n1
(
b†2

)n2

· · ·
(
b†N/2

)nN/2

|0⟩ , (3.51)

where n1, .., nN/2 = 0 or 1 (we define
(
b†k

)0
= I, the identity operator). When we act with

24Although we choose to work with fermionic oscillators, similar techniques can also be used to model a
system of bosonic oscillators. We primarily choose fermionic degrees of freedom since they can be discussed
in the context of the SYK model (a toy model describing the near horizon dynamics of extremal black holes)
where the eigenstates of fermionic oscillator are the pure states studied in [81]. Furthermore, eigenstates
can also be mapped to binary strings making this an interesting “qubit” model.
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a creation operator we find that:

b†k |n1, n2, ..nk.., nN/2⟩ = b†k

(
b†1

)n1
(
b†2

)n2

· ·
(
b†k

)nk

· ·
(
b†N/2

)nN/2

|0⟩

= (−1)σkδ0,nk
|n1, n2, .., nk + 1, .., nN/2⟩ ,

(3.52)

where σk =
∑k−1

i=1 ni. Similarly acting with an annihilation operator gives:

bk |n1, n2, ..nk.., nN/2⟩ = bk

(
b†1

)n1
(
b†2

)n2

· ·
(
b†k

)nk

· ·
(
b†N/2

)nN/2

|0⟩

= (−1)σkδ1,nk
|n1, n2, .., nk − 1, .., nN/2⟩ .

(3.53)

We define the k-th number operator Nk as:

Nk = b†kbk

Nk |n⃗⟩ = nk |n⃗⟩ .
(3.54)

This means the Fock states are eigenstates of the number operator and since the Hamilto-
nian can also be written in terms of the number operator the Fock states diagonalize the
Hamiltonian. In particular, we have:

HFHO =
1

2

N/2∑
k=1

ωk (2Nk − 1)

⇒ HFHO |n⃗⟩ = 1

2

N/2∑
k=1

ωk(2nk − 1) |n⃗⟩ .

(3.55)

To simplify our considerations we will set ωk = ω0 for all k - sometimes referred to as a
mass term. In this case, we will have a regularly spaced spectrum which is easy to analyze.
We define p = 0, 1, 2, .., N/2 as the number of “occupied” sites for a particular state (i.e.
the number of 1s in the ket). Then the energy of such a state is given by:

E(p) = ω0

(
p− N

4

)
. (3.56)

The number of microstates with the energy E(p) is given by:

Ω(p) =
(N/2)!

p!(N/2− p)!
. (3.57)
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Using these results we can find the canonical partition function for the system given by:

Z(β) =

N/2∑
p=0

Ω(p)e−βE(p) = e
Nβω0

4

[
1 + e−βω0

]N/2
=

[
2 cosh

(
βω0

2

)]N/2
. (3.58)

The spectral form factor for this system will oscillate with a period given by:

τ =
2π

ω0

. (3.59)

Now that we have discussed the details of the FHO, we address what happens when we
add a random chaotic coupling. In particular, we will consider:

H = HFHO + ϵHchaos. (3.60)

We know that the unperturbed energies are given by Eq. (3.56) and we know that these
energies are degenerate. We will label each degenerate sector by p, which is equal to the
number of occupied sites. We define the degenerate eigenstates in the p-th degenerate
sector as {|n⃗p⟩}Ω(p)

p=1 . Within the p-th degenerate sector we would go about computing the
matrix elements:

⟨m⃗p|Hchaos|n⃗p⟩ . (3.61)

Diagonalizing a matrix with the matrix elements given above would tell us the information
about how the degenerate energies within the p-th sector split. At leading order in de-
generate perturbation theory, the splitting of the energy levels only depend on the details
of the sub-block in the degenerate sector. This means that first order theory will contain
no information about correlations between different degenerate energy sectors. In other
words, at leading order we can treat our random matrix as block diagonal with each block
having the same size as the particular degenerate sector. More specifically, we can write:

H =

N/2⊕
p=0

[E(p)I(p) + ϵHchaos(p)] , (3.62)

where I(p) is an identity matrix of dimension Ω(p)×Ω(p) and Hchaos(p) is a sub-block of
the chaotic interaction Hamiltonian of dimension Ω(p)× Ω(p).

To simplify our considerations, we will assume that the Hchaos is given by a random
matrix pulled from the GUE25. If Hchaos is a random matrix from the GUE, then we know

25The elements of the GUE are Hermitian matrices. The off-diagonal elements will be of the form x+ iy
where x and y are random variables pulled from a Gaussian distribution with a mean of zero and variance
of 1/2. The diagonal elements are real random variables pulled from a Gaussian with mean of zero and
variance of 1. In this case it is well known that the width of the semi-circle spectral density goes as 4

√
N

[93]. This width of the semi-circle can be scaled by multiplying the matrices in the ensemble by a factor
c then the new width is 4c

√
N .
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the splitting of degenerate states within a sector will occur so that the NNS statistics are
consistent with the GUE (i.e. you will have Wigner surmise spacing). Furthermore, we
expect the spectral density to spread out from a delta function at the degenerate energies
to “semi-circles” centered around the degenerate energies. The width of the spread for the
p-th degenerate sector will roughly go as:

W (p) ≈ 4ϵ
√

Ω(p). (3.63)

This allows us to define a rough criterion in which we expect perturbation theory to hold:

maxpW (p)

ω0

=
4ϵ
√
maxpΩ(p)

ω0

≪ 1. (3.64)

This essentially states we want to work in a regime where the spread has a width much
smaller than the spacing between energy levels of the unperturbed oscillator. Figure 3.14
depicts numerically generated spectral density at N = 22 for different choices of the pa-
rameter ϵ/ω0. One can check that in the specific case we plotted the condition given in Eq.
(3.64) for being in the perturbative regime translates to ϵ/ω0 ≪ 10−2. We can see that
the average spectral densities on the top row of Figure 3.14 satisfy the condition and the
spread within the degenerate sectors is much smaller than the spacing between different
degenerate sectors. In contrast, the plots on the bottom row do not satisfy the perturbative
condition and we can see that at ϵ/ω0 = 10−2, the spread within the degenerate sectors
start to become comparable to the spacing between them. The spread will increase as we
increase ϵ/ω0 and there will be substantial overlap between sectors, eventually leading to
a point where the overall density simply looks like that of the GUE at ϵ/ω0 = 10−1. In
Appendix B.7, we do a numerical analysis of the exact width of the spread within the de-
generate sectors and compare to what we expect from first order degenerate perturbation
theory, finding reasonable agreement for ϵ/ω0 ≤ 10−2.

Now that we have discussed the spectral density, we can turn our attention to the
spectral form factor. Within the perturbative regime, there are two distinct time scales.
One is given by the oscillator frequency ω−1

0 and the other scale is given by ϵ−1 which
gives the strength of the chaotic perturbation (roughly related to the average spacing of
eigenvalues within a degenerate sector). At time scales t ≪ ϵ−1, the form factor will
be dominated by the coarse grained spectrum which is a sharply spiked spectrum with
regular spacing. Due to this we expect to see oscillations in the form factor with a period
that is well described by the unperturbed form factor, τ = 2πω−1

0 . We will also expect
these oscillations to gradually decay due to the repulsion of adjacent eigenvalues within a
degenerate sector. For time scales t ≳ ϵ−1, the form factor will become sensitive to fine
structure of the degenerate sectors. In this regime, the form factor should contain a ramp
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Figure 3.14: Above is depiction of the averaged spectral density (histogram of eigenvalues)
of a system of 11 identical fermionic oscillators coupled together with random interactions
represented by a matrix pulled from a GUE for various values of ϵ/ω0. The top two plots
labelled by ϵ/ω0 = 10−4, 10−3 depict the spectral density at weak coupling. The bottom
two plots labelled by ϵ/ω0 = 10−2, 10−1 depict the spectral density at intermediate coupling
(ϵ/ω0 = 10−2) and strong coupling (ϵ/ω0 = 10−1).

and a plateau consistent with the late time behaviour of a form factor in the GUE, as we
have seen before.

In Figures 3.15 and 3.16, we numerically plot the form factor (averaged over 100 sam-
ples) for different values of ϵ/ω0 at βω0 = 0. The the perturbative regimes (weakly coupled)
occurs when ϵ/ω0 = 10−4, 10−3 and the non-perturbative regimes (strongly coupled) occur
at ϵ/ω0 = 10−2, 10−1. Figure 3.15 depicts the early time behaviour of the form factor
and it shows that the form factor oscillates at early times with a frequency 2πω−1

0 (the
red dots indicate the value of the form factor at regular time steps given by the period
τ = 2πω−1

0 ). The oscillations have a decaying amplitude bounded by an envelope which
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Figure 3.15: The plots in the figure above depicts the self averaging early time behaviour
in the infinite temperature form factor computed numerically for a system of 11 fermionic
oscillators coupled together by a (211×211) random GUE matrix for various values of ϵ/ω0

ranging from 10−4 to 10−1. The blue line depicts the numerical calculation of the form
factor for a single sample (due to the self averaging behaviour at early times one can check
the single sample will agree with the numerical average to high precision). The red dots
indicate the value of the form factor at regularly spaced time intervals given by ω0tk = 2πk.
The yellow line is a numeric fit of the red data points to a function given by Eq. (3.65)
with fitting parameters n0, n (shown in the legend of the plots). For the bottom right plot
we compare the numeric early time behaviour to the behaviour predicted by Eq. (3.66),
which is the form factor of a semi-circle spectral density.

can be numerically fit by:

A(t) =
1

1 +
(

ω0t
2πn0

)n , (3.65)
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where n0 and n are fit parameters. We can see from the legend in Figure 3.15 that the
amplitude of the oscillations in the weakly coupled regime decays through a power law
with a power n ∼ 3, furthermore we can see that n0 ∼ Cω0/ϵ where C is a proportionality
constant that will depend on N26.

In the non-perturbative regime (the bottom two plots of Figure 3.15), we can see that
the regular oscillations start to disappear and give way to the more familiar features present
in the early time behaviour of the form factor for the GUE. The early time behaviour of
the form factor in the case when ϵ/ω0 = 10−1 is well approximated by the form factor
associated with a semi-circle density (SCD) given by:∣∣∣∣Z(β + it)

Z(β)

∣∣∣∣2
SCD

=

∣∣∣∣∣
∫ 1

−1

√
1− x2e−ixE0(t−iβ)dx∫ 1

−1

√
1− x2e−ixE0(−iβ)dx

∣∣∣∣∣
2

=
β2

β2 + t2
J1 [E0(t− iβ)] J1 [−E0(t+ iβ)]

[J1(−iβE0)]
2 ,

(3.66)
where E0 is the half the width of the semi-circle density (in our case we used E0/ω0 =√
213/10 ≈ 9.05).

In Figure 3.16, we depict the averaged form factor on a Log-Log scale at longer time
scales (averaged over 100 samples). The early time behaviour contains oscillations in the
weakly coupled regime which we already described in our discussion of Figure 3.15. The
averaged late time behaviour in all coupling regimes contains the ramp and plateau. This
late time behaviour occurs due to the manner in which each degenerate sector of the
uncoupled oscillator theory splits in the presence of the GUE matrix coupling.

26In this case it is well approximated by C ≈ 1

7
√

maxp Ω(p)
≈ 0.00665. More generally, we expect

C ∼ 1√
maxp Ωp

with some numerical pre-factor.
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Figure 3.16: The plots above depict the numerically averaged form factor on a Log-Log
scale (averaged over 100 samples) at infinite temperature for a system of 11 fermionic
oscillators coupled together by a (211×211) random GUE matrix for various values of ϵ/ω0

ranging from 10−4 to 10−1.

3.4.2 Randomly Coupled Oscillators as a Toy Model for the
Membrane

Let us now see how our system of chaotically coupled oscillators, can act as a quantum
mechanical toy model to describe gravitational waves echoes (e.g., [3]).

To do this, we recall that gravitational wave echoes are thought to arise due to quantum
gravity effects near the horizon which result in the partial reflection of perturbations. These
reflections are usually modelled by cutting off the semi-classical black hole geometry close
to the horizon and then placing semi-reflective boundary conditions at the cutoff. In the
context of large AdS black holes, one can also place a cutoff near the horizon and echoes
will arise due to the reflection of perturbations near the horizon and also at the conformal
boundary [133]. In this chapter, we adopt the view that the cutoff with modified boundary
conditions describe some kind of dynamical membrane deep in the bulk near the horizon.
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This membrane has its own internal spectrum which should resemble the chaotic and
discrete spectrum of a black hole.

If one begins with a perfectly reflective membrane, then perturbations to the geometry
will not decay and the geometry will have normal modes (rather than quasi-normal modes).
The dynamics of the perturbations on the spacetime may be roughly modelled by some kind
of oscillator system similar to the one discussed in the previous section. The characteristic
frequency of the oscillators in the previous subsection would be identified with the spacing
between normal modes in the cutoff spacetime. For example, for a spherical Schwarzschild
AdS black hole (with rH/L ≫ 1), if the cutoff is a proper radial length, lprop, from the
horizon, then we expect massless scalar perturbations to make a round trip (from the cutoff
to the conformal boundary and back) in a time scale roughly given by [133]:

τ ∼ β ln

(
L2

l2prop

)
∼ L2

rH
ln

(
L2

l2prop

)
, (3.67)

where rH and L is the horizon and AdS radii, respectively. We identify ω0 = 2πτ−1 with
the characteristic oscillator frequencies27. This will give rise to a periodic form factor with
oscillations that have a period equal to τ . To introduce dissipation into the system, we
can further add chaotic interactions between the oscillators. In the weak coupling regime,
these interactions are responsible for the decay of the regular oscillations at early times in
the form factor and also will be responsible for the ramp and plateau at late times making
late time thermalization similar to SYK theory.

To interpret the energy scale ϵ in Eq. (3.60), we turn off the oscillator term by sending
the cutoff to the horizon (i.e. lprop = 0 in Eq. (3.67)) so that ω0 = 0, and we are left
with the chaotic term. This gives rise to the usual semi-circle spectral density and gives a
standard SYK/JT gravity type model for a black hole - where no oscillations are present at
early times. In this case, the energy scale, ϵ, controls the average spacing between adjacent
energy levels which is of the order δE ∼ ϵe−S/2 where S is the entropy of the black hole28.
At the same time, if we consider the first law of black hole thermodynamics it suggests
that the average spacing between adjacent levels is of the order δEmin = δSmin/β. We will
be agnostic about what δSmin should be. We know the smallest possible value of δSmin is
of the order e−S but there might also be other choices (for example, δSmin ∼ 1 might also
be sensible when discussing entropy changes by emission of a single Hawking quanta).

27Notice that the frequencies have a linear temperature dependence, this could arise as a thermally
induced mass from a renormalization procedure in QFT at finite temperature [12, 82].

28We obtain ϵe−S/2 by recalling that the width of the semi-circle scales with the size of the matrix
ϵ
√
2N/2. Then we take the width of the semi-circle and divide by the total number of states which is 2N/2,

to get an average spacing δE ∼ ϵ2−N/4. Finally we identify S ∼ ln
(
2N/2

)
to obtain δE ∼ ϵe−S/2.
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Identifying the δE expression from the random matrix model to the δEmin from the
first law gives ϵ ∼ β−1δSmine

S/2. When we do this and consider the dimensionless ratio
between ϵ and ω0 we have:

ϵ

ω0

∼ eS/2 ln

(
L2

l2prop

)
δSmin. (3.68)

If δSmin ∼ e−S (the smallest possible change in entropy) and lprop ∼ ℓp, where ℓp is the
Planck length, then our oscillator system is in the weakly coupled regime and will exhibit
echoes that manifest after a scrambling time scale. Such echoes would be observable within
a reasonable window of time for astrophysical black holes, making this model interesting
in the discussion of gravitational wave echoes.

3.5 Discussion and Conclusion

The AdS/CFT correspondence formulates quantum gravitational systems in AdS in terms
of CFT systems on the boundary. In such a scenario, the statement that a black hole is a
quantum chaotic system is understood in terms of the high energy eignestates of the CFT.
In the context of spacing statistics of the CFT spectrum, one could imagine diagonalizing
the Hamiltonian H to find a complete orthogonal basis of eigenstates |n⟩ and eigenvalues
En. Any state can then be written in terms of the eigenstates of the Hamiltonian including
the black hole. As one goes to “very high” energies, one should expect the spectrum of the
CFT to exhibit chaotic spacing statistics (i.e. eigenvalue repulsion). If one assumes that
the a black hole is a thermal ensemble of such microstates, then how the black hole relaxes
after being perturbed should be described by thermal correlation functions. The question
of how quantum aspects of a black hole manifest in the ringdown and whether they are
potentially observable could be addressed using this picture.

In this chapter, we explored the concept of echoes due the black hole microstructure
from the perspective of the thermalization behaviour of quantum chaotic systems. The
form factor served as a convenient proxy to study this behaviour for systems with varying
spectral statistics. We employed a simple model for a random spectrum that involved sum-
ming a set of independent-identically-distributed (i.i.d) random variables which represent
the spacing between adjacent eigenvalues in the spectrum. By defining a random spectrum
in this manner, we were able to specify the resulting spectrum’s Nearest Neighbor Spacing
(NNS) statistics. Despite the simplicity of the i.i.d model, we demonstrated that it could
reproduce various important late time features seen in the spectral form factor of strongly
coupled chaotic systems. Most notably, by using Wigner surmise NNS statistics we were
able to obtain the ramp and plateau behaviour. We also used the i.i.d model to study
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more general NNS distributions where the “Dyson index” is allowed to be any real positive
number, rather than the canonical values of 1, 2, and 4 (corresponding to the GOE, GUE,
and GSE ensembles respectively).

We briefly discussed how more general choices of the Dyson index could correspond to
more general random matrix ensembles called “β-ensembles,” which are constructed from
certain types of tri-diagonal matrices. We also argued that for a large Dyson index, the
averaged form factor of a β-ensemble would have damped oscillations at late times before
approaching a plateau. The origin of these oscillations are the large regularly spaced “gaps”
in NNS distribution which are expected to arise when the Dyson index becomes large. We
further showed that such gaps could be realized in systems with an evenly spaced spectrum
- like a harmonic oscillator with an additional chaotic potential. Although such oscillations
might be thought of as “echoes” in the black hole context, such echoes would manifest on
extremely long time scales of the order eS, disqualifying them as being observable in the
context of astrophysical black hole microstructure. Although, the late time oscillations
found in Section 3.3.4 may not be interesting in the astrophysical context, they may be
connected to the discussion of form factors in more exotic theories of gravity. In particular,
in the work [39], the form factor of Narain’s family of free boson CFTs (which is dual to
“U(1) gravity” in AdS3) has been shown to have a form factor that contains oscillations
at late time similar to the ones we found in Section 3.3.4. Our results suggest that such
oscillations occur due to enhanced “repulsion” between eigenvalues in the spectrum. It
would be interesting to investigate if the late time oscillations showing up in the form
factor of Narain ensemble CFTs can also be traced back to enhanced repulsion statistics
in the spectrum.

Studies using the i.i.d. model in Sections 3.2 and 3.3 suggested that the quantum
aspects of the thermalization behaviour of black holes usually manifest at very late times
which are unobservable in the astrophysical context. A common aspect of the spectra
generated by the i.i.d. model was that there was a single large cluster of microstates with
very little coarse-grained structure. To get non-trivial behaviour on observable time scales,
we thus proposed that there must be additional structure in the coarse grained density of
states. In particular, for echoes to manifest, we showed that the coarse-grained density
had to have large clusters of states widely separated from other clusters. In Section 3.4, we
considered a many body system of identical fermionic oscillators coupled by an interaction
term modelled by a random matrix in the GUE. In the weakly coupled regime, we used
degenerate perturbation theory to argue that degenerate sectors of HFHO would split in a
way consistent to the random matrix statistics of the GUE. This naturally led to regularly
spaced decaying oscillations at early times followed by a ramp and plateau in the averaged
form factor. We then discussed the possibility of using our model of coupled oscillators as
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a toy model that describe near horizon modifications that give rise to gravitational wave
echoes.

Although we were able to show that one can construct quantum chaotic systems with
echoes, there are still a number of issues that need to be addressed before we can view
them as reasonable models for describing black holes with microstructure near the horizon.
Aside from the condition that a black hole has a quantum chaotic energy spectrum, it must
also satisfy additional constraints which are usually discussed in the context of out-of-time-
order correlators (OTOCs) [94, 67, 41]. In particular, quantum chaotic systems describing
black holes are expected to also saturate the Lyapunov bound discussed in [94]. We did
not demonstrate that the coupled oscillator systems introduced in Section 3.4 satisfy this
constraint. A good place to start exploring the issue of OTOCs (and also other types of
correlators) is with the following concrete oscillator model29:

H = −iω0

N/2∑
k=1

χ2k−1χ2k + ϵ
∑

1≤α<β<µ<ν≤N

jαβµνχ
αχβχµχν , (3.69)

where χ’s are Majorana fermions: {χα, χβ} = δαβ, and jαβµν is a completely anti-symmetric
coupling tensor where each component is an independent random Gaussian variable with
a mean of zero. The quadratic term in Eq. (3.69) describes N/2 free identical fermionic
oscillators expressed in the Majorana basis30 and the quartic interaction is the standard
SYK model Hamiltonian. As before, the quantity ϵ/ω0, would control the strength of the
interactions between the oscillators. One would then have a family of theories labeled by
ϵ/ω0. In the limit when ϵ/ω0 → ∞ we should recover the SYK model with no echoes which
saturates the Lyapunov bound (i.e. the Lyapunov exponent λL = 2π

β
). In the opposite

limit, when ϵ/ω0 → 0, we would have free fermionic oscillators (non-decaying periodic
behaviour in form factor) and the Lyapunov exponent will be zero. In the intermediate
regime, we should have regular decaying oscillations; similar to the ones discussed in Section
3.4.1. We expect the Lyapunov exponent in intermediate regimes to interpolate between
the values of 0 and 2π/β (perhaps even in a discontinuous manner). The central question is
what the Lyapunov exponent is when echoes manifest in the form factor. If we are able to
show that in the regime where echoes exist the Lyapunov bound is nearly saturated31 then

29It is interesting to point out that a coupled oscillator system is similar to the kinds of models studied
in [56], although the quadratic term is random in those models and of a more general form.

30The transformation between the creation and annihilation operators defined in Eq. (3.48) and the

Majorana fermions χ is bk =
(
χ2k−1 − iχ2k

)
/
√
2 and b†k =

(
χ2k−1 + iχ2k

)
/
√
2.

31The reason we say the Lyapunov bound is nearly saturated is due to results of a work that computes
the Lyapunov exponent in a fuzzball geometry by analyzing geodesic motion in the vicinity of the fuzzball

118



it might be plausible that the quantum chaotic system described by a Hamiltonian given
in Eq. (3.69) describes a black hole with microstructure near the horizon which exhibits
echoes when perturbed. If we find that echoes only exist in coupled oscillator models when
the Lyapunov exponent is nearly zero then the modified black hole interpretation is not
plausible, we will likely have to consider more complicated models where we can tune the
value of the Lyapunov exponent. We leave this exploration to future work.

An important point to make in the discussion of modifications to the near horizon
description of black holes and their imprints on the ringdown is that they may not manifest
as dramatically as described by the models discussed in Section 3.4. In particular, the
model of identical oscillators coupled by a random interaction can give sharp echoes like
the ones shown in Figure 3.15 at weak coupling. These models have evenly spaced clusters
of states. If the clusters were not evenly spaced one might get less dramatic echoes or no
discernible echoes at all. Presumably, a completely random placement of these clusters
would completely “wash out” a clear echo signal in the form factor. It would be interesting
to explore where on the spectrum between evenly spaced clusters and randomly spaced
clusters echoes persist. This might give a sense of how “resilient” the “echo” phenomenon
may be to deviations from the ideal evenly-spaced clusters scenario.

Although we expect the high energy sector of a holographic CFT to exhibit chaos,
the exact structure of the spectrum is unknown. The results in this chapter suggest a
wide variety of deviations can occur at early times before the universal ergodic behaviour
manifests (i.e. ramp and plateau). The origin of possible deviations at intermediate and
early times may be additional coarse-grained structure in the spectrum of states that
give rise to clustering effects on energy separations ≫ β−1e−S. In our randomly coupled
oscillator models, degenerate states were responsible for this clustering. This is interesting
because degeneracies arise due to “symmetries” in a system. The symmetries thus act as
“seeds” for additional structure at intermediate energy spacings. If there are symmetries
in a holographic CFT that have the same effect, then this may also give rise to additional
structure in the spectrum which would imprint itself in the thermalization behaviour of a
black hole and potentially be detected as echoes (or other deviations from GR predictions)
that could be searched for in future gravitational wave experiments. The i.i.d. model
might serve as a useful phenomenological tool to model the wave-forms for unitary black
hole ringdowns.

To conclude our discussion, it is worth clarifying a few points. In this chapter, we
explored the possibility of echoes from black hole microstructure in the context of unitary

[24]. The work suggests that fuzzballs tend to have a slightly smaller Lyapunov exponent when compared
to their black hole counter parts. This may also be true more generally for highly compact objects that
resemble black holes far away but deviate near the horizon.
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quantum chaotic systems. Our primary conclusion is that echoes may appear, either due
to enhanced repulsion between individual microstates, or the occurrence of regular spacing
between clusters of microstates. Appearance of echoes in the unitary quantum description
on time scales comparable to the scrambling time suggests the existence of Planck-scale
microstructure near the horizon. The reason we asserted this was because the echo time
scale found in the classical models with a cutoff depends on how close the cutoff is placed
from the horizon. In particular, cutoffs placed a proper-radial Planck length from the
horizon (i.e. rcutoff ∼ rh+ ℓ

2
p/β) give echoes around a scrambling time scale β ln(S),32[133].

The randomly coupled oscillator example in Section 3.4 served as a simple toy model to
illustrate how self-averaging echoes can arise due to non-trivial clustering of microstates.
The oscillations found in Section 3.3.4, however, are of a different type. They are not
self-averaging and arose from enhanced repulsion statistics between individual adjacent
microstates. Furthermore, in the context of the i.i.d. model, these non-self averaging
oscillations occur on time scales of the order of the Heisenberg timeO(eS), which is typically
much longer than the scrambling time33. The physical interpretation of non-self averaging
echoes that occur on the Heisenberg time scale is more subtle and might require a more
careful understanding in terms various saddles (or even off-shell effects) that occur in the
Euclidean path integral. While the time scale of eS is what one may expect from quantum
tunneling from structure behind the horizon, this is more likely an upper limit, given that
black hole evaporation happens on polynomial times. We hope to explore these ideas in
more detail in future work.

32Note that the S ∼ L/ℓp ∼ N for large AdS black holes.
33Assuming the average spacing between adjacent microstates was of the order e−S .
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Part II

Aspects of Evaporating Black Holes,
Islands, and Entanglement Wedge
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Chapter 4

Extracting Hawking Radiation Near
the Horizon of AdS Black Holes

We study how the evaporation rate of spherically symmetric black holes is affected through
the extraction of radiation close to the horizon. We adopt a model of extraction that
involves a perfectly absorptive screen placed close to the horizon and show that the evapo-
ration rate can be changed depending on how close to the horizon the screen is placed. We
apply our results to show that the scrambling time defined by the Hayden-Preskill decoding
criterion, which is derived in Pennington’s work (arXiv:1905.08255) through entanglement
wedge reconstruction is modified. The modifications appear as logarithmic corrections to
Pennington’s time scale which depend on where the absorptive screen is placed. By fixing
the proper distance between the horizon and screen we show that for small AdS black holes
the leading order term in the scrambling time is consistent with Pennington’s scrambling
time. However, for large AdS black holes the leading order Log contains the Bekenstein-
Hawking entropy of a cell of characteristic length equal to the AdS radius rather than the
entropy of the full horizon. Furthermore, using the correspondence between the radial null
energy condition (NEC) and the holographic c-theorem, we argue that the screen cannot
be arbitrarily close to the horizon. This leads to a holographic argument that black hole
mining using a screen cannot significantly alter the lifetime of a black hole.

4.1 Introduction

The AdS/CFT correspondence is a conjecture that relates gravitational systems in asymp-
totically AdS spacetimes to conformal field theories in one fewer spatial dimension [96,
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125, 153]. This provides an ideal setting to resolve the black hole information paradox
[70, 99, 122, 140]. In particular, it suggests that information thrown into a black hole is
not lost. The reason for this is that the AdS black hole undergoing evaporation is dual
to unitary time evolution of a thermal state on the CFT side of the duality, which does
not allow for information loss. The information thrown into a black hole is thus argued to
be scrambled by some kind of unitary dynamics and then remitted via Hawking radiation
[73, 134, 86]. The question of how long one needs to wait for information thrown into
a black hole to emerge in the subsequent Hawking radiation was first addressed in [73].
It stated that information thrown into a black hole after the Page time would re-emerge
within a scrambling time scale which is given by:

tscr ∼ β ln(S), (4.1)

where β is the inverse Hawking temperature and S is the number of degrees of freedom in
the black hole which take part in scrambling.

Usually in the context of AdS/CFT one considers black holes well beyond the Hawking-
Page transition. These black holes, often referred to as large AdS black holes, are dual to
large N gauge theories [157, 97]. They have a horizon radius, rs, that satisfies rs ≫ L where
L is the AdS radius. A peculiar property of large AdS black holes is that they are thermally
stable. This is due to the confining potential which comes from the asymptotics of AdS
spacetimes. In such a case any Hawking radiation that the black hole emits reaches the
conformal boundary and bounces back, being reabsorbed into the black hole. Eventually
the black holes reaches stable equilibrium with the surrounding Hawking radiation and
will not evaporate [71, 76]. This makes large AdS black holes ill-suited to discuss the
information paradox. To remedy this issue, it has been suggested to start with a large AdS
black hole and then couple the bulk fields to an auxiliary field (called the evaporon) which
carries energy away from the AdS black hole into an auxiliary system thereby allowing the
black hole to evaporate [127, 128].

In such constructions, it is the joint system of the reservoir and black hole which satisfy
unitarity. Such constructions have been of recent interest in explorations of the information
paradox. For example, [117, 7] rely on such setups to show how information from the black
hole gets released in the Hawking radiation (see [8] for a recent overview of the literature).
They use entanglement wedge reconstruction to show how information inside a black hole
after the Page time scale is encoded in the subsequent Hawking radiation. In particular,
Pennington showed that a small amount of information thrown into a black hole (after the
Page time) will re-emerge in Hawking radiation after a time scale given by:

temerge =
β

2π
ln

(
2πC

β
∣∣drs
dt

∣∣
)
, (4.2)
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where C can be thought of as the radial distance away from the horizon that one expects the
Rindler description to hold, drs/dt is the average rate of change of the horizon radius during
evaporation, and β is the inverse Hawking temperature. Moreover, as we shall review in
Section 4.3, temerge is the scrambling time scale discussed in [73]. A key assumption that
was made in the calculation was that radiation was being extracted close to the horizon by
some type of “super-observer” in a non-local manner. Since the radiation was extracted
sufficiently close to the horizon it was assumed that greybody factors can be ignored and
the 2D Stefan-Boltzmann law was used for the evaporation rate:

dM

dt
=
cevapπ

12β2
, (4.3)

where cevap represents the number of modes being extracted near the horizon. Using this
evaporation rate in conjunction with the first law of black hole thermodynamics (dM =
TdS) gave an information emergence time of the form1:

temerge ∼
β

2π
ln

(
S − Sext
cevap

)
. (4.4)

A similar result is also derived for 2D black holes in Jackiw-Teitelboim (JT) gravity studied
in [7]. Which is given by:

temerge ∼
β

2π
ln

(
S − Sext

c

)
, (4.5)

where c is the central charge (a measure of the degrees of freedom of a CFT) of a CFT that
describes bulk matter in the 2D gravity theory. In light of the two results in Eqs. (4.4 -
4.5) for the emergence time, it is tempting to make a rough identification of c ∼ cevap. The
central charge, c, in Eq. (4.5) seems to be a fixed parameter which does not appear to have
any kind of dependence on quantities that characterize the black hole such as temperature.

However, it is clear that in Pennington’s setup cevap depends on details of where and
how radiation is extracted near the horizon. For example, cevap should depend on how
close one is extracting radiation near the horizon. The closer we are, the larger cevap can
get. Furthermore, cevap will depend on the means by which one extracts radiation from
the horizon; if we choose to place a surface at a radial distance δr from the horizon with
perfectly absorbing boundary conditions then cevap would be larger than if we chose some
kind of semi-reflective boundary conditions. All these details will have some effect on the
value of cevap and therefore on the evaporation rate.

1We will review some of the details of the calculation in Section 4.3
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In light of these observations, we explore how the evaporation rate of a black hole de-
pends on how close we extract radiation from the horizon. In this chapter, we will model the
“super-observer” using an absorptive screen placed close to the horizon. Roughly speak-
ing, we assume that the screen can be understood from the prospective of the holographic
renormalization group in AdS/CFT [51, 43]. At infinity we have a full UV complete (local)
theory. The degrees of freedom on the screen and their dynamics are going to be viewed as
a lower energy coarse grained version of the UV theory. We expect that the lower energy
theory will become increasingly non-local as we push the screen closer to the horizon2.

To simplify considerations, we assume that the screen will absorb any radiation that
reaches it 3. In Section 4.2.1, we review how to calculate the average evaporation rate of
a black hole and discuss how greybody factors affect this rate. By doing this we are able
to clearly identify Pennington’s cevap in terms of an infinite sum over angular momentum
modes. We discuss how in two dimensions cevap in Eq. (4.4) can be reasonably identified
with c in Eq. (4.5) with no further dependence on parameters that characterize the black
hole. However, in higher dimensions we find that such a naive identification is not valid.
We introduce the notion of a generalized greybody factor which quantifies the fraction
of radiation that gets to a point at a radial distance δr away from the horizon. At this
distance away we introduce a perfectly absorbing screen which will absorb any radiation
that hits it. We then write down an expression for the evaporation rate in terms of
the generalized greybody factor. After doing this we restrict ourselves to massless scalar
perturbations and write down a model for the generalized greybody factor which treats the
effective potential as a “hard wall.” In Section 4.2.2, we apply the hard wall model to AdS
Schwarzschild black holes and find the evaporation rate. In Section 4.2.3, we discuss why
the hard wall model for the generalized greybody factor is not sufficient for near extremal
AdS Reissner–Nordstrom (RN) black holes. We motivate a correction that “softens” the
wall and accounts for radiation being able to tunnel into the classically forbidden region.
We then provide an estimate using this modified model for the evaporation rate of near
extremal AdS RN black holes. In Section 4.3, we review Pennington’s calculation of temerge
and then use the modified evaporation rates that we calculated in Sec. 4.2 and find
temerge. In particular, for AdS black holes with rs/L ≪ 1 we find results that agree with
Pennington’s calculation up to some logarithmic correction which depends on how far we

2We will evaluate this interpretation of the screen in more detail in Section 4.4.2 when we discuss the
null energy condition for the screen and connections to the holographic c-theorem.

3By doing this we are not actually defining the effective theory living on the screen that is consistent
with some UV completed theory on the boundary. If we did make the effective theory on the screen
consistent with a UV completed theory, we should not expect a perfectly absorptive screen. However, we
still believe that a perfectly absorptive screen near the horizon is a reasonable approximation. In Section
4.4.1, we propose a more rigorous way of defining how the screen should absorb radiation.
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choose to extract radiation. However, in the case of rs/L ≫ 1 we find a slightly different
result; the argument that goes into the Log is not the entropy of the entire horizon, but
rather the entropy of a cell of size L controlled by the AdS radius (in addition to the
usual logarithmic correction which depends on the extraction radius). In Section 4.3.4,
we discuss the subtleties involved in choosing the β dependence of the subleading Log
correction for near extremal black holes. By fixing the proper distance between the screen
and horizon we find that temerge is consistent with the scrambling time for near extremal
black holes (up to a sub-leading Log correction that has no further dependence on the
temperature of the black hole). We speculate that fixing the proper radial distance of the
screen from the horizon to corresponds to fixing the energy scale of the effective holographic
theory on the screen. In Section 4.4.1 we formulate a more rigorous framework to calculate
how the screen will absorb Hawking radiation. This is done by viewing the screen as
an interface which patches the interior black hole spacetime to an exterior “reservoir”
spacetime. By doing this we reduce the problem of finding how the screen absorbs the
radiation to a calculation of finding the transmission amplitude of scalar perturbations
through an effective potential. We argue that by using this approach one should recover
the results in reasonable agreement with the toy models discussed in this chapter. In
Section 4.4.2 we briefly review the holographic c-function and the role that the null energy
condition (NEC) plays in its formulation. We then consider the radial NEC for the matter
that makes up the screen and show that it satisfies the radial NEC a finite distance from
the horizon as long as the AdS radius of the spacetime enclosed by the screen is smaller
than the AdS radius of the exterior spacetime. This provides a heuristic way to quantify
the effective coarse-grained degrees of freedom as the screen is moved toward the horizon.
In Section 4.4.3 we discuss how extracting Hawking radiation near the horizon of an AdS
black hole can be tied in with discussions of black hole mining. We show that the radial
NEC places non-trivial constraints on how close the screen is allowed to be to the horizon.
The constraints show that small AdS black holes cannot be mined by placing a screen very
close to the horizon. However, mining for very large AdS black holes is possible since the
screen can be placed very close to the horizon without violations of the radial NEC. We
compute how long it takes for a very large AdS black hole to transition to a small AdS
black hole through screen mining. We estimate that to leading order a the transition time
(in units of the AdS radius) is given by the Bekenstein-Hawking entropy of an AdS radius
sized cell.

We then conclude this work by summarizing the major results of this chapter as well
as some outstanding questions and issues which can be explored further.

126



4.2 Changing Evaporation Rates via Near Horizon

Extraction

4.2.1 Modelling Hawking Radiation Extraction Through Gener-
alized Greybody Factors

It is well known that close to the horizon, a black hole will emit radiation as a black body.
However, by the time this radiation reaches an observer very far away from the black
hole the spectrum of the radiation is modified. This is because the black hole generates a
non-trivial potential that perturbations travelling through the background will experience,
resulting in partial reflection and transmission of perturbations. These effects are contained
in greybody factors and they have a non-trivial effect on the evaporation rate of a black
hole. We will review the basics of how greybody factors affect the the evaporation rate.
We will then introduce the notion of a generalized greybody factor which will depend on
how far one is extracting radiation from the horizon.

We begin with the well known result which describes the occupation number distribu-
tion of Hawking quanta emitted by a black hole (not accounting for greybody factors):

⟨n(ω)⟩± =
1

eβω ± 1
. (4.6)

The plus is for fermionic Hawking quanta and the minus is for bosonic Hawking quanta.
For the sake of simplicity we will restrict ourselves to bosonic quanta in this chapter. The
total evaporation rate (ignoring greybody factors) of the black hole is given by:

dM

dt
=

1

2π

∑
ℓ

Nℓ

∫ ∞

0

Nbω ⟨n(ω)⟩− dω =
1

2π

∑
ℓ

Nℓ

∫ ∞

0

Nbω

eβω − 1
dω =

Nbπ

12β2

∑
ℓ

Nℓ, (4.7)

where Nb is the number of different bosonic species and Nℓ is the degeneracy of the ℓ-th
hyper-spherical harmonic4. Note that we recover the 2D Stefan-Boltzmann law used by
Pennington with the identification, cevap = Nb

∑
ℓNℓ. This is only finite in 2D where the

sum over ℓ disappears and we are left with cevap = Nb which does not depend on the
parameters that characterize the black hole (or even the exact position of the screen) this
is similar to the behaviour of c in Eq. (4.5) which we discussed in Section 4.1.

4To understand why Nℓ is present recall that the solution to the massless scalar wave equation in a
spherically symmetric background can be decomposed as a product Ψ(t, r, ϕ⃗) = e−iωtr(1−d)/2ψ(r)Φℓ(ϕ⃗)
where Φℓ are hyper-spherical harmonics for a given ℓ angular momentum mode there are Nℓ degenerate
eigenfunctions. In particular, we identify Pennington’s cevap = Nb

∑
ℓNℓ.

127



In higher dimensions the sum persists and will be divergent resulting in an infinite
evaporation rate. The effective potential near the horizon is essential for understanding
how the divergence is regulated in higher dimensions. Generally speaking, if we extract
Hawking radiation a finite radial distance δr from the horizon we should expect some
fraction of the total radiation emitted by the black hole to to reach r = rs + δr. This
is due to the fact that the effective potential is only zero at the horizon and strictly
increases (at least in some neighborhood of the horizon). The larger ℓ is the more quickly
it increases, this causes the higher angular momentum modes to reflect back into the black
hole, effectively placing a cutoff over the sum of angular momentum modes which result in
a finite evaporation rate.

We define the generalized greybody factor, γℓ(ω, δr), for each ℓ. It quantifies the frac-
tion of radiation that gets to some surface a finite distance δr from the horizon5. If the
absorptive surface is sitting at r = rs+ δr then, the generalized greybody factor represents
the fraction of energy absorbed by the screen from the ℓ-th mode. Then the total rate at
which the black hole losses mass is given by:

dM

dt
=

1

2π

∑
ℓ

∫ ∞

0

NℓNbγℓ(ω, δr)ω

eβω − 1
dω. (4.8)

The generalized greybody factor will be essential in regulating the infinite sum over ℓ.
In general, we can compute γℓ(ω, δr) by considering the wave equation on the black hole
background. However, doing this analytically is difficult. To circumvent this issue we
will introduce models for the generalized greybody factor which will capture the essential
physics of the situation near the horizon.

For the sake of concreteness we will consider the massless scalar wave equation for a
spherically symmetric black hole background in d + 1-dimensions 6. We are interested in
the radial part of the solution which can be shown to obey the Regge-Wheeler equation:

d2ψ

dr2∗
+ (ω2 − Vℓ)ψ = 0, (4.9)

where r∗ is the tortoise coordinate defined by the relation dr∗ =
dr
f(r)

, and Vℓ is the effective
potential given by:

Vℓ(r) = f(r)

[
d− 1

2r

df

dr
+

(d− 1)(d− 3)

4r2
f(r) +

ℓ(ℓ+ d− 2)

r2

]
. (4.10)

5In particular limδr→∞ γℓ(ω, δr) will reproduce the greybody factors that are usually discussed in the
context of an observer sitting at asymptotic infinity.

6These black hole spacetimes will generally have a metric of the following form ds2 = −f(r)dt2 +
dr2/f(r) + r2dΩ2

d−1.
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If we choose to extract radiation close to the horizon (i.e. r−rs ≪ rs) we can approximate
Vℓ to linear order as:

Vℓ(r) ≃
4π

β

[
(d− 1)2π

βrs
+
ℓ(ℓ+ d− 2)

r2s

]
(r − rs) + ..., (4.11)

where β is the inverse Hawking temperature. We place a perfectly absorbing surface at
r − rs = δr where δr/rs ≪ 1. Now consider the quantity:

ω2 − Vℓ(r) ≃ ω2 − 4π

β

[
(d− 1)2π

βrs
+
ℓ(ℓ+ d− 2)

r2s

]
(r − rs) + ... (4.12)

As long as ω2 ≫ Vℓ we should be able to ignore the effects of Vℓ; the radiation will
experience little to no hindrance to get to the absorbing screen we place near the horizon
(i.e. γℓ(ω, δr) ∼ 1). However, once ω2 ≤ Vℓ we should expect most of the radiation to
be reflected back into the black hole and reabsorbed (i.e. γℓ(ω, δr) ∼ 0). We depict the
scenario in Figure. 4.1. We model this sort of “hard wall” potential by introducing the
following generalized greybody factor:

γℓ(ω, δr) = Θ
[
ω2 − Vℓ(rs + δr)

]
, (4.13)

where Θ is the Heaviside step function. Using this model the evaporation rate using Eq.
(4.8) is given by:

dM

dt
=
Nb

2π

∞∑
ℓ=0

∫ ∞

ωmin,ℓ

Nℓω

eβω − 1
dω =

Nb

2πβ2

∞∑
ℓ=0

(
Nℓ

∫ ∞

xmin,ℓ

x

ex − 1
dx

)
, (4.14)

where ωmin,ℓ satisfies:
ω2
min,ℓ − Vℓ(rs + δr) = 0. (4.15)

In the next section, we use this model to find the evaporation rate of AdS Schwarzschild
black holes. We will also use a similar model with some adjustments to calculate the
evaporation rate of near extremal AdS RN black holes.
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Figure 4.1: Above is a depiction of how perturbations behave near the horizon with a
generalized greybody factor given in Eq. (4.13). Near the horizon the Potential Vℓ(r) is
linear and is depicted by the solid blue line. The slope of the blue line increases with ℓ.
The absorptive boundary is depicted by the vertical red line at r = rs+δr. The thick black
line is a lower bound for the frequency of radiation that gets absorbed. Everything below
the thick line has frequency ω < ωmin,ℓ =

√
Vℓ(rs + δr) and cannot get to the absorbing

surface, it bounces off the potential and gets reabsorbed. Everything above the thick line
has frequency ω > ωmin,ℓ and is able to reach the absorptive surface and gets completely
absorbed.

4.2.2 AdS Schwarzschild Black Holes

In this section we will estimate the evaporation rate of a d+1 - dimensional AdS Schwarzschild
black hole7. We start by doing the integral in Eq. (4.14) and obtain the following result:

dM

dt
=

Nb

2πβ2

∞∑
ℓ=0

Nℓ

[
Li2
(
e−xmin,ℓ

)
− xmin,ℓ ln

(
1− e−xmin,ℓ

)]
, (4.16)

7The AdS Schwarzschild black hole has the following line element ds2 = −f(r)dt2 + dr2

f(r) + r2dΩ2
d−1,

where f(r) = 1 + r2

L2 −
(
rs
r

)d−2
(
1 +

r2s
L2

)
. The Hawking temperature of these black holes are given by

TH =
dr2s+(d−2)L2

4πrsL2
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where the xmin,ℓ is given by:

xmin,ℓ = βωmin,ℓ =

√
4π

(
2π(d− 1) +

βℓ(ℓ+ d− 2)

rs

)
δr

rs
, (4.17)

and Lim(x) is the m-th order polylog function in x. We estimate the value of the series
as follows. We note that xmin,ℓ increases with ℓ. So for sufficiently large ℓ we have the
following leading order approximation for the evaporation rate:

Li2
(
e−xmin,ℓ

)
− xmin,ℓ ln

(
1− e−xmin,ℓ

)
≃ (1 + xmin,ℓ)e

−xmin,ℓ +O
(
e−2xmin,ℓ

)
. (4.18)

We expect the approximation used above is accurate for very large values of ℓ. In Figure
4.2 we plot the exact function and the approximation. If we use the approximated function

Exact

Approximation

1 2 3 4 5
x

0.5

1.0

1.5

Figure 4.2: The solid blue line labeled “Exact” is the left hand side of Eq. (4.18) and the
dotted yellow line labeled “Approximation” is the right hand side of Eq. (4.18).

for any ℓ ≥ 1 we expect to get a reasonable estimate for the series (accurate within an
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order of magnitude). We approximate the degeneracy of angular momentum modes as
Nℓ ∼ ℓd−2 so we have:

dM

dt
≈ Nb

2πβ2

[
π2

6
+

∞∑
ℓ=1

[
ℓd−2 (1 + xmin,ℓ) e

−xmin,ℓ
]]
, (4.19)

where the π2/6 term comes from the ℓ = 0 mode in the limit where δr/rs → 0. To do the
sum over modes with ℓ ≥ 1 in closed form we need to make an additional approximation
that simplifies the functional form of xmin,ℓ:

xmin,ℓ ≈ αℓ

α =

√
4πβδr

r2s
≪ 1.

(4.20)

This approximation comes from the leading order expansion of xmin,ℓ for large ℓ. We can
then do the sum in closed form and get:

dM

dt
≈ Nb

2πβ2

[
π2

6
+

∞∑
ℓ=1

ℓd−2 (1 + αℓ) e−αℓ

]

=
Nb

2πβ2

[
π2

6
+ αLi1−d

(
e−α
)
+ Li2−d

(
e−α
)]
.

(4.21)

If δr/rs is sufficiently small (i.e. the screen is sufficiently close to the horizon) we can do
a series expansion in α near zero. The leading order contribution to the estimate for the
evaporation rate is given by:

dM

dt
≈ Nb

2πβ2

[
d(d− 2)!

(
r2s

4πβδr

) d−1
2

+O(1)

]
. (4.22)

In Appendix C.1 we do a detailed comparison of our leading order estimate for the evapora-
tion rate given in Eq. (4.22) with numerical calculations. We find that our estimate for the
series agrees with numerical results up to a pre-factor of order 1 (see Tables C.1 - C.3). No-
tice that the ℓ = 0 mode is a order one correction to the leading order term which is much
larger if δr/rs is sufficiently small (i.e. the screen is placed sufficiently close). To avoid
clutter in our leading order expression we will define a dimension dependent coefficient Ad

and write the evaporation rate as:

132



dM

dt
≈ AdNb

β2

(
r2s
βδr

) d−1
2

Ad =
d(d− 2)! (4π)

1−d
2

2π
.

(4.23)

4.2.3 Near Extremal AdS RN Black Holes

Now lets consider d + 1 - dimensional near extremal AdS RN black holes8. We analyze
how the evaporation rate depends on where we extract radiation near the horizon. In this
case we should expand Vℓ to second order. This is because the first order expansion of Vℓ is
proportional the temperature which will go to zero in the extremal limit. Sufficiently close
to the extremal regime the second order term will dictate the leading order behaviour of
the potential close to the horizon.

Vℓ(r) ≃ V1(r − rs) +
V2
2
(r − rs)

2 + ...

V1 =
4π

β

[
(d− 1)2π

βrs
+
ℓ(ℓ+ d− 2)

r2s

]
V2 = f ′′(rs)

ℓ(ℓ+ d− 2)

r2s

+
4π

β

[
2
d

dr

(
d− 1

2r

df

dr
+

(d− 1)(d− 3)f(r)

4r2
+
ℓ(ℓ+ d− 2)

r2

)
+ f ′′(r)

d− 1

2r

] ∣∣∣∣
r=rs

.

(4.24)

The expansion above will be valid if r− rs ≪ rs. Sufficiently close to the extremal regime
we will have the leading order contribution equal to:

Vℓ(r) =
f ′′
ext(rs)

2

ℓ(ℓ+ d− 2)

r2s
(r − rs)

2. (4.25)

As before, we can consider placing a perfectly absorbing surface a radial distance δr from
the horizon. If we decide to use the Heaviside step model in Eq. (4.13) then we will need

8The d + 1 - dimensional AdS RN black hole has a line element of the form ds2 = −f(r)dt2 + dr2

f(r) +

r2dΩ2
d−1, where f(r) =

(
1− rd−2

s

rd−2

)(
1− Q2

rd−2rd−2
s

)
+ r2

L2

(
1− rds

rd

)
, where rs is the radius of the horizon

and Q is the charge of the black hole. The black hole is extremal when the charge and horizon radius

satisfy the following relation, Q2 = r
2(d−2)
s

(
1 + d

d−2
r2s
L2

)
, this occurs when TH = f ′(rs)

4π = 0.
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to do the integral in Eq. (4.14) with the lower bound:

xmin,ℓ = βωmin,ℓ =
βδr

rs

√
f ′′
ext(rs)ℓ(ℓ+ d− 2)

2
. (4.26)

Unlike the non-extremal case we discussed previously the lower bound is much larger
than unity sufficiently close to the extremal regime. This means that we are well into the
exponentially decaying tail of the integrand. Recall that the Heaviside step function model
was used to simulate the effective potential as a “hard” wall. In reality we know that the
waves can actually enter the classically forbidden region. The amplitude of the solution will
decay through some power law in the classically forbidden region. By the time a wave with
ω < ωmin,ℓ reaches the absorptive surface its amplitude would be power law suppressed as
depicted in Fig 4.3. The Heaviside model completely disregards these effects. This would

Figure 4.3: Above is a depiction of how perturbations behave near the horizon with a
generalized greybody factor given in Eq. (4.28). For ωmin,ℓ the model is unchanged and
everything is absorbed. However, for ω < ωmin,ℓ we account for the wave-like behaviour of
the solution which allows for the solution to tunnel into the classically forbidden region.
The amplitude the the solution would decay as some power law after the classical turning
point. We estimate the amount of energy that tunnels to the absorptive surface by taking
the ratio between the amplitude of the solution at the turning point and the amplitude
at the absorptive surface. Doing this gives a power law suppression of the generalized
greybody factor for ω < ωmin,ℓ in Eq. (4.28).
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be okay if the contribution of modes with ω ≥ ωmin,ℓ was not exponentially suppressed,
but since it is suppressed in the near extremal regime we need to consider the effects of
ω < ωmin,ℓ. Therefore, for a near extremal black hole we need a generalized greybody
factor of the form:

γℓ(ω, δr) = Θ(ω − ωmin,ℓ) +

(
ω

ωmin,ℓ

)q(ℓ)
Θ(ωmin,ℓ − ω) , (4.27)

where q(ℓ) is some function of ℓ which will be determined by analyzing the dynamics of
the perturbations near the horizon and gives us the power law decay we need. The details
of how to obtain a reasonable model for q(ℓ) for scalar wave perturbations is detailed in
Appendix C.2. The result for ℓ ≥ 1 is:

γℓ(ω, δr) = Θ(ω − ωmin,ℓ) +

(
ω

ωmin,ℓ

)2νℓ+1

Θ(ωmin,ℓ − ω)

νℓ =

√
1

4
+ α2

ℓ

α2
ℓ =

2ℓ(ℓ+ d− 2)

r2sf
′′
ext(rs)

,

(4.28)

where f ′′
ext(rs) is the second derivative of f(r) evaluated at the horizon radius rs, in the

limit where the Hawking temperature goes to zero. Using this, the expression for the
contribution to the evaporation rate for ℓ ≥ 1 is given by9:

dM

dt
=
Nb

2π

∞∑
ℓ=1

[∫ ωmin,ℓ

0

Nℓω

eβω − 1

(
ω

ωmin,ℓ

)2νℓ+1

dω +

∫ ∞

ωmin,ℓ

Nℓω

eβω − 1
dω

]

=
Nb

2π

∞∑
ℓ=1

ω2
min,ℓNℓ

[∫ 1

0

ϵ2(νℓ+1)

eβωmin,ℓϵ − 1
dϵ+

∫ ∞

1

ϵ

eβωmin,ℓϵ − 1
dϵ

]
.

(4.29)

With some work detailed in Appendix C.3 we can do the integrals in closed form and write
the total evaporation rate as the following series over ℓ:

9We are not including the ℓ = 0 mode in this section, in Appendix C.6 we treat the ℓ = 0 mode. We
show that for very large AdS black holes sufficiently close to the extremal regime the ℓ = 0 contribution
is sub-leading compared to the contribution of modes with ℓ ≥ 1. For very small AdS black holes and
asymptotically flat black holes the ℓ = 0 mode has a leading order effect on the evaporation rate when d ≤ 8
in the near extremal regime, we discuss this point and also discuss its consequences on the information
re-emergence time. Overall we find that including the ℓ = 0 results in minor changes in the expressions
for information re-emergence time which are consistent with the usual scrambling time scales for nearly
extremal AdS RN black holes.
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dM

dt
=

Nb

2πβ2

∞∑
ℓ=1

[Stun,ℓ + Sntun,ℓ]

Stun,ℓ = Nℓ

Γ
(
3 +

√
1 + 4α2

ℓ

)
Li

3+
√

1+4α2
ℓ

(1)

x
1+
√

1+4α2
ℓ

min,ℓ


Sntun,ℓ = Nℓ

[
Li2
(
e−xmin,ℓ

)
− xmin,ℓ ln

(
1− e−xmin,ℓ

)]
xmin,ℓ = βωmin,ℓ =

βδrf ′′
ext(rs)αℓ
2

=
βδr

rs

√
f ′′
ext(rs)ℓ(ℓ+ d− 2)

2
.

(4.30)

The terms Stun,ℓ in Eq. (4.30) represents the contribution of to the evaporation rate of
modes that tunnel through the effective potential. The terms Sntun,ℓ in Eq. (4.30) represent
the contribution to the evaporation rate of modes that do not need to tunnel through the
barrier to reach the screen. When we are sufficiently close to the extremal regime we can
show that Stun,ℓ ≫ Sntun,ℓ (this point is discussed in Appendix C.4). This means that
sufficiently close to the extremal regime we can ignore Sntun,ℓ and write:

dM

dt
≈ Nb

2πβ2

∞∑
ℓ=1

Stun,ℓ =
Nb

2πβ2

∞∑
ℓ=1

ℓd−2

Γ
(
3 +

√
1 + 4α2

ℓ

)
Li

3+
√

1+4α2
ℓ

(1)

x
1+
√

1+4α2
ℓ

min,ℓ

 , (4.31)

where we used Nℓ ∼ ℓd−2. We cannot evaluate the series in closed form so we resort to
additional approximations.

We begin by considering the case of very large AdS black holes where rs/L ≫ 1. In
this case we have:

αℓ+1 − αℓ =

√
2ℓ(ℓ+ d− 2)−

√
2(ℓ+ 1)(ℓ+ d− 1)√

d(d− 1)

L

rs
∼
(rs
L

)−1

≪ 1. (4.32)

The spacing between consecutive αℓ becomes smaller as the AdS black holes we are con-
sidering become larger relative to the AdS radius. In this case, we estimate the sum using
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an integral as follows:

dM

dt
≈ Nb

2πβ2

∫ ∞

1

ℓd−2

Γ
(
3 +

√
1 + 4α2

ℓ

)
Li

3+
√

1+4α2
ℓ

(1)

x
1+
√

1+4α2
ℓ

min,ℓ

 dℓ
=

Nb

2πβ2

∫ ∞

α1

(
d− 2

2

[
−1 +

√
1 +

2r2sf
′′
ext(rs)α

2
ℓ

(d− 2)2

])d−2

×

Γ
(
3 +

√
1 + 4α2

ℓ

)
Li

3+
√

1+4α2
ℓ

(1)(
βδrf ′′ext(rs)αℓ

2

)1+√1+4α2
ℓ


 αℓr

2
sf

′′
ext(rs)

(d− 2)
√
1 +

2r2sf
′′
ext(rs)α

2
ℓ

(d−2)2

 dαℓ,

(4.33)

where in the last line we simply changed the variables of integration from ℓ to αℓ using the
definition of αℓ in Eq. (4.28). The lower bound of integration is α1, equal to:

α1 =

√
d− 1

(d− 2)2 + d(d− 1) r
2
s

L2

≈

√
L2

dr2s
≪ 1. (4.34)

For very large AdS black holes (d ≥ 4) we use the following approximation for the integrand:
(The steps to arrive at this approximation are described in Appendix C.5 we also make
plots to show that the the approximation will become more accurate as rs/L becomes
larger.):

dM

dt

∣∣∣∣
d≥4

≈ Nb

2πβ2

∫ ∞

0

π4

15

(
r2sf

′′
ext(rs)

2

) d−1
2
(
βδrf ′′

ext(rs)

2

)−2−2α2
ℓ

αd−4
ℓ dαℓ

=
Nb

2πβ2

π4

15

(
r2sf

′′
ext(rs)

4

) d−1
2
[
ln

(
βδrf ′′

ext(rs)

2

)] 3−d
2
(

2

βδrf ′′
ext(rs)

)2

Γ

(
d− 3

2

)
≈ Nb

2πβ2

π4

15

(
2d(d− 1)r2s

4L2

) d−1
2
[
ln

(
d(d− 1)βδr

L2

)] 3−d
2
(

L2

d(d− 1)βδr

)2

Γ

(
d− 3

2

)
.

(4.35)

Note that the expression above is ill defined for d = 3. This is because we approximated
the lower bound of the integral using 0. If we instead use α1 for the lower bound we will
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get a well defined result for d = 3 given by:

dM

dt

∣∣∣∣
d=3

≈ Nb

2πβ2

π4

15

(
r2sf

′′
ext(rs)

2

)∫ ∞

α1

(
βδrf ′′

ext(rs)

2

)−2−2α2
ℓ

α−1
ℓ dαℓ

=
Nb

2πβ2

π4

15

(
r2sf

′′
ext(rs)

2

)−Ei
[
−2α2

1 ln
(
βδrf ′′ext(rs)

2

)]
2
(
βδrf ′′ext(rs)

2

)2
 , (4.36)

where Ei(x) is the exponential integral function. The leading order contribution for α1 ≪ 1
expansion gives the following evaporation rate:

dM

dt

∣∣∣∣
d=3

≈ Nb

2πβ2

π4

15

(
r2sf

′′
ext(rs)

2

)−γ − ln
[
2α2

1 ln
(
βδrf ′′ext(rs)

2

)]
2
(
βδrf ′′ext(rs)

2

)2
 , (4.37)

where γ ≈ 0.577 is the Euler–Mascheroni constant. Note that for this expansion to make
sense α2

1 ln (βδrf
′′
ext(rs)) ≪ 1, this will be true if rs/L is sufficiently large (i.e. for very large

AdS black holes):

dM

dt

∣∣∣∣
d=3

≈ − Nb

2πβ2

π4

15

6r2s
L2

 ln
[
2L2

3r2s
ln
(
6βδr
L2

)]
+ γ

2
(
6βδr
L2

)2
 . (4.38)

We compare the estimated evaporation rate to a numerical calculation of the full evap-
oration rate in Table 4.1. We find that the approximated result differs from the numerical
result by a order one pre-factor, one can also check that the approximations will get better
as rs/L becomes larger (we can see this graphically by comparing Figures (C.1 - C.2)).

For very small AdS black holes (or asymptotically flat black holes) in the near extremal
regime we will not need to sum all the modes to infinity. We can get a rough estimate by
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d 3 4 6 8 10
Numerical 3.48× 10−8 2.87× 10−7 1.03× 10−3 4.02× 101 6.25× 106

Approximation 3.40× 10−8 2.91× 10−7 7.80× 10−4 2.38× 101 2.79× 106

Cext = Numerical
Approximation

1.02 0.99 1.32 1.69 2.24

Table 4.1: We fix βδr
r2s

= 100 and rs/L = 100. For different d we numerically calculate the

series defined in Eq. (4.30) and compare to the approximated evaporation rate we found
in Eq. (4.35) and Eq. (4.38) for d ≥ 4 and d = 3 respectively. We can see that in higher
dimensions the approximation is not as good as it is in lower dimension but the results
differ by an order one factor given by Cext. Furthermore, if one does similar calculations
for larger values of rs/L we will find better agreement between the numerical result and
approximated result.

simply computing the first term in the limit where rs/L→ 0 we have10:

dM

dt
≈ Nb

2πβ2

Γ
(
3 +

√
1 + 4α2

1

)
Li

3+
√

1+4α2
1
(1)

x
1+
√

1+4α2
1

min,1



=
Nb

2πβ2

 Γ
(

2(2d−3)
d−2

)
Li 2(2d−3)

(d−2)

(1)(
(d− 1)(d− 2)2

(
βδr
r2s

)2) d−1
d−2

 =
Nb

2πβ2

Γ
(

2(2d−3)
d−2

)
Li 2(2d−3)

(d−2)

(1)

((d− 1)(d− 2)2)
d−1
d−2

( r2s
βδr

) 2(d−1)
d−2

.

(4.39)

In Table 4.2 we numerically verify that our estimation is valid when sufficiently close to
the extremal regime.

Now that we have derived estimates for the evaporation rate it is useful to keep in mind
that all the calculations we did in this subsection made the assumption that βωmin,ℓ ≫ 1.

10One can check that the ratio between the first and and second term in the series in the near extremal

regime for very small AdS black holes will go as, Stun,1/Stun,2 ∼
(

βδr
r2s

) 2
d−2 ≫ 1. So the closer we are

to the extremal regime smaller the sub-leading terms are compared to the first term. Furthermore, in
higher dimensions we need to be closer to the extremal regime to similar errors as we might have in lower
dimensions. We verify these statements with the results given in Table 4.2.
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βδr/r2s 102 104 108 1016 1032

Cd=3 1.00 1.00 1.00 1.00 1.00
Cd=4 1.01 1.00 1.00 1.00 1.00
Cd=5 1.07 1.00 1.00 1.00 1.00
Cd=6 1.33 1.03 1.00 1.00 1.00
Cd=7 2.32 1.16 1.00 1.00 1.00
Cd=8 6.40 1.70 1.03 1.00 1.00
Cd=9 26.6 3.82 1.15 1.00 1.00
Cd=10 153 13.0 1.64 1.01 1.00

Table 4.2: We are setting rs/L = 0 (asymptotically flat black holes or very small AdS black
holes). We are computing Cd which is the ratio between the numerical calculation of Eq.
(4.30) divided by the approximated result given by Eq. (4.39) for spacetime dimension
d + 1. We can see that for larger values of β the estimate for the evaporation rate using
only ℓ = 1 mode becomes more precise. This is because of the for larger β the ℓ = 1 mode
is dominant compared to all the ℓ > 1 modes.

this implies that δr
rs

≫ (β2f ′′
ext(rs))

−1/2
. We define the parameter Λ as follows:

δr

rs
=

Λ

β
√
f ′′
ext(rs)

=


ΛL

β
√

2d(d−1)
, for very large AdS BH in planar limit (rs/L→ ∞)

Λrs

β
√

2(d−2)2
, for very small AdS (or asymptotically flat) BH,

(4.40)
where we require, 1 ≪ Λ ≪ β

√
f ′′
ext(rs). In terms of Λ we express the evaporation rates of

very large AdS black holes for d ≥ 4 as:

dM

dt

∣∣∣∣
d≥4

≈ Alarge
d≥4

[
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(√
d(d− 1)

2

rs
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β2Λ2
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d≥4 =

π3
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(
d(d− 1)

2

) d−3
2

Γ

(
d− 3

2

)
.

(4.41)

For very large AdS black holes for d = 3 we have:

dM

dt

∣∣∣∣
d=3

≈ π3

30

Nb

β2Λ2

[
ln

(
3r2s
2L2

)
− ln

(
ln

(√
3rsΛ

L

))
− γ

]
∼ π3
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Nb

β2Λ2
ln

(
3r2s
2L2

)
. (4.42)
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For very small AdS black holes (or asymptotically flat ones) we have:

dM

dt
≈ Asmall

d Nb

β2Λ
2(d−1)
d−2

Asmall
d =

(√
2(d− 2)

) 2(d−1)
d−2

2π

Γ
(

2(2d−3)
d−2

)
Li 2(2d−3)

(d−2)

(1)

((d− 1)(d− 2)2)
d−1
d−2

 . (4.43)

We will come back to the physical relevance of Λ when discussing the ambiguities of “fixing”
the screen a certain distance from the horizon in Section 4.3.4.

4.3 Hayden-Preskill Decoding Criterion from Entan-

glement Wedge Reconstruction

4.3.1 Review of Pennington’s Calculation

As we discussed in the introduction, it was shown in [73] that after the Page time a small
amount of information thrown into a black hole could be reconstructed from subsequent
Hawking radiation after the scrambling time scale. The works [117, 7] are able to reproduce
this result in a holographic setting. The setup is to have the usual black hole in AdS
which is dual to some CFT on the boundary. This is then supplemented by some type of
absorbing boundary condition at the boundary which allows the radiation emitted by the
black hole to be absorbed and stored. The radiation in the reservoir purifies the the black
hole CFT state. There are two entanglement wedges in this scenario, one corresponds to
the entanglement wedge of the black hole and the other is the entanglement wedge of the
reservoir where radiation is absorbed. As the black hole evaporates these entanglement
wedges have time dependence and it can be shown that information that is initially sitting
in the entanglement wedge of the black hole a scrambling time in the past (assuming we
are considering a time after the Page time) will end up in the entanglement wedge of the
reservoir. This is equivalent to saying that information thrown into a black hole, after a
Page time has elapsed, will re-emerge in the subsequent radiation after a scrambling time
as is claimed in the Hayden-Preskill decoding protocol [73].

In this section, we review some of the details of how this scrambling time scale appears
in Pennington’s calculations [117]. It comes from trying to find the location of a classical
“maximin” surface in the spacetime of a spherically symmetric evaporating black hole
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(which happens to be a good approximation for where the quantum extremal surface is
after a Page time has elapsed11). The determination of the location of the surface eventually
comes down to the following calculation. The first step is to start with a static spherically
symmetric black hole metric of the form:

ds2 = −f(r)dt2 + dr2

f(r)
+ r2dΩ2

d−1. (4.44)

Then one defines ingoing Eddington-Finkelstein coordinates v = t+r∗ where dr = f(r)dr∗.
With some simple manipulations one arrives at the following metric:

ds2 = −f(r)dv2 + 2dvdr + r2dΩ2
d−1. (4.45)

Upon doing this one approximates the metric of an evaporating black hole by introducing
time dependence into f by allowing the Schwarzschild radius rs to become time dependent
(i.e. rs = rs(v)). One then considers radial null geodesics on this evaporating black hole
spacetime. The radial coordinate rlc describing the trajectory of these null geodesics satisfy:

drlc
dv

=
f(rlc)

2
≃ 2π

β
(rlc − rs). (4.46)

The right most expression comes from expanding f(rlc) to first order and β = T−1
H =

4π/f ′(rs). Define a coordinate r′lc = rlc − rs then we will find:

dr′lc
dv

=
2π

β
r′lc −

drs
dv
. (4.47)

Under the assumption that drs/dv < 0 and approximately constant the equation can be
integrated to find:

rlc = rs + Ce2πv/β +
β

2π

drs
dv
, (4.48)

where C is an integration constant. It is clear that when C = 0, then rlc is constant
(up to corrections caused by drs/dv not being constant.) this defines the horizon of the

11It should be noted that we are actually interested in the quantum extremal surface which is found

by applying the maximin prescription to a functional given by A(χ)
4GN

+ Sbulk(χ) . The calculation we are
reviewing here finds the classical maximin surface, which is found by applying the maximin prescription
to the area term ignoring the Sbulk term. In [117], Pennington argues that the classical maximin surface
will only deviate slightly (even when one accounts for greybody factors) when the Sbulk term is included
and the quantum extremal surface will stabilize close to the classical maximin surface which lies on the
lightcone. Throughout this chapter we are going to assume that these arguments are still valid for our
construction.
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evaporating black hole which is given by:

rhor = rs

(
1 +

β

2πrs

drs
dv

)
< rs. (4.49)

Lets compute drhor/dv:

drhor
dv

=
drs
dv

+
dβ/dv

2π

drs
dv

=
drs
dv

+O((drs/dv)
2) ∼ drs

dv
. (4.50)

With this we can compute drlc/dv:

drlc
dv

≃ 2πC

β
e2πv/β

(
1− v

β

dβ

dv

)
+
drs
dv

+O((drs/dv)
2). (4.51)

Assuming that
∣∣∣ vβ dβdv ∣∣∣≪ 1 we can solve for when drlc/dv = 0 this occurs when12:

v = v0 = − β

2π
ln

(
2πC

β
∣∣drs
dv

∣∣
)
. (4.52)

To determine |drs/dv|, Pennington makes the assumption that Hawking quanta emitted
by the black hole is assumed to be extracted sufficiently close to the horizon so that one
can use the 2D Stefan-Boltzman law:

dM

dv
=
cevapπ

12β2
, (4.53)

where cevap = Nb+Nf/2 where Nb and Nf are the number of bosonic and fermionic modes
respectively. Using the first law of black hole thermodynamics the rate of energy loss can
be related to drs/dv the final result is:∣∣∣∣drsdv

∣∣∣∣ = 4βℓd−1
p

Ωd−1(d− 1)rd−2
s

∣∣∣∣dMdv
∣∣∣∣ = cevapπℓ

d−1
p

3β(d− 1)rd−2
s Ωd−1

. (4.54)

This results in:

v0 ≃ − β

2π
ln

(
Crd−2

s Ωd−1

cevapGN

)
∼

− β
2π

ln
(

rd−1
s

cevapℓ
d−1
p

)
, for non-extremal BH

− β
2π

ln
(

rs
cevapβ

rd−1
s

ℓd−1
p

)
, for near extremal BH.

(4.55)

12The length scale of C was chosen by analyzing how far the expansion f(r) near the horizon is valid to
first order. In particular, it is not hard to see that C ∼ 1

βf ′′(rs)
. For small AdS black holes f ′′(rs) ∼ r−2

s

(as noted by Pennington) and for large AdS black holes f ′′(rs) ∼ L−2 (not discussed by Pennington),
where rs and L are the horizon and AdS radius respectively.
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So after the Page time, information thrown into the black hole reemerges after waiting
for the time scale |v0| = temerge in Eq. (4.2). Note that in the near extremal case the
expression written down above is valid for small near extremal AdS black holes. For large
near extremal AdS black holes C ∼ L2/β so there will be some awkward L dependence
inside the Log. As we will see in the following sections, by properly understanding cevap
for large AdS black holes, the length scale in the Log will come out to be L instead of rs.

4.3.2 Information Emergence Time for AdS Schwarzschild Black
Hole

Using our newly derived evaporation rate in Eq. (4.23) along with the first law of black
hole thermodynamics and the area law for entropy of a black hole we will get:∣∣∣∣drsdt

∣∣∣∣ = 4βℓd−1
p

(d− 1)Ωd−1rd−2
s

∣∣∣∣dMdt
∣∣∣∣ = 4Ad

(d− 1)Ωd−1

Nbℓ
d−1
p

βrd−2
s

(
r2s
δrβ

) d−1
2

∼
Nbℓ

d−1
p

βrd−2
s

(
r2s
δrβ

) d−1
2

.

(4.56)

To avoid clutter in our expressions we drop Ωd−1 and other dimensionless factors. Plugging
this into Eq. (4.2) we find for non-extremal black holes:

temerge ∼
β

2π
ln

(
(δrβ)

d−1
2

Nbℓd−1
p

)
. (4.57)

For very large AdS Schwarzschild black holes (rs ≫ L) and the inverse temperature goes
as β ∼ L2/rs. Plugging this into Eq. (4.57) we find that Pennington’s scrambling time
scale results in:

temerge ∼
β

2π

[
ln

(
Ld−1

Nbℓd−1
p

)
− d− 1

2
ln
( rs
δr

)]
, (4.58)

where we assume that L/ℓp ≫ rs/δr. The interesting thing to note here is that the leading
order term is not the the Log of the entropy of the horizon of the black hole. It is actually
the entropy of a small cell on the horizon which has the size of the AdS radius L. We can
do a similar calculation for very small AdS black holes (rs ≪ L) in this case β ∼ rs and we
will obtain a more familiar result that Pennington got up to a Log correction that depends
on where we place our absorptive screen:

temerge ∼
β

2π

[
ln

(
rd−1
s

Nbℓd−1
p

)
− d− 1

2
ln
( rs
δr

)]
. (4.59)
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As we can see from Eq. (4.58), by understanding the explicit dependence of cevap on β
we find that temerge contains the Bekenstein-Hawking entropy of a cell on the horizon of
characteristic length L inside the Log. This reasonable and consistent with the scrambling
time discussed in [134] for large AdS black holes dual to large N gauge theories13.

4.3.3 Information Emergence Time for Near Extremal AdS RN
Black Hole

Now lets consider what happens for near extremal AdS RN black holes. We can compute
|drs/dt| using the first law up to some dimensionless pre-factors we have:∣∣∣∣drsdt

∣∣∣∣ ∼ βℓd−1
p

rd−2
s

∣∣∣∣dMdt
∣∣∣∣ . (4.60)

We can compute |drs/dt| using the evaporation rates in Eqs. (4.41)-(4.43). We then plug
these into Eq. (4.2) and obtain the following results.

Case 1, small AdS black hole: rs ≪ L

In this case we have:

temerge ∼
β

2π
ln

(
r2s

β2
∣∣drs
dt

∣∣
)

∼ β

2π

[
ln

(
rs
β

rd−1
s

Nbℓd−1
p

)
+

2(d− 1)

(d− 2)
ln (Λ)

]
, (4.61)

where 1 ≪ Λ ≪ β/rs.

Case 2, large AdS black hole: rs ≫ L

In this case we have:

2πtemerge
β

∼ ln

(
L2

β2
∣∣drs
dt

∣∣
)

∼


ln
(
rs
β

L2

Nbℓ2p

)
+ ln

(
Λ2

ln(3r2s/L
2)

)
, d = 3

ln
(
rs
β

Ld−1

Nbℓ
d−1
p

)
+ ln

(
Λ2

[
ln

(√
d(d−1)r2sΛ

2

2L2

)] d−3
2

)
, d ≥ 4,

(4.62)
where 1 ≪ Λ ≪ β/L.

13Recall that the ratio (L/ℓp)
d−1 ∼ N2 [126].
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If we make the assumption that Λ has no additional β dependence then we see the for
small AdS black hole the first term matches what Pennington had. For large AdS black
holes we again see that L instead of rs appears in the leading order Log term. In the next
section we will discuss an ambiguity that Λ presents us with for near extremal black holes
which is related to where we place our absorptive screen.

4.3.4 Information Emergence Time as Scrambling Time

In the previous sections we found that the time scale after which information re-emerges
for AdS Schwarzschild black holes is given as:

temerge ∼


β
2π

[
ln
(

rd−1
s

Nbℓ
d−1
p

)
− d−1

2
ln
(
rs
δr

)]
, rs ≪ L

β
2π

[
ln
(

Ld−1

Nbℓ
d−1
p

)
− d−1

2
ln
(
rs
δr

)]
, rs ≫ L.

(4.63)

For near extremal AdS RN black holes (d ≥ 4) we have:

temerge ∼


β
2π

[
ln
(
rs
β

rd−1
s

Nbℓ
d−1
p

)
+ d−1

d−2
ln (Λ2) + ...

]
, rs ≪ L

β
2π

[
ln
(
rs
β

Ld−1

Nbℓ
d−1
p

)
+ ln (Λ2) + ...

]
, rs ≫ L,

(4.64)

where the “...” stand for double Log terms which we did not explicitly write. In the case
of AdS Schwarzschild black holes we should assume the following hierarchy of scales that
ℓp ≪ δr ≪ rs. By doing this it is clear that the dependence on δr for the re-emergence
time is sub-leading to the first term in the limit where ℓp → 0. We can reasonably identify
temerge with the scrambling time scales discussed in [73, 134].

The case of a near extremal AdS RN black holes is more subtle. For near extremal
AdS RN black holes we have an additional length scale that we did not have for the AdS
Schwarzschild case. This length scale is β and it causes problems when we try to decide
on where the screen should be placed. To understand the issue, recall that we introduced
Λ through the following definition which relates it to δr:

Λ =
δr

rs
β
√
f ′′
ext(rs), (4.65)

where we required that 1 ≪ Λ ≪ β
√
f ′′
ext(rs). The issue is that there are a number of

choices we can make for the β-dependence of Λ. In Pennington’s paper it is suggested that
we extract radiation at a fixed distance from the horizon. There are at least two natural
ways to do this.
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The first way is to set the radial coordinate distance from the horizon, δr, to some
constant that does not depend explicitly on β. Then it is clear that Λ ∼ β/rs. In this case
we would have results that look like:

temerge ∼


β
2π

[
ln

((
β
rs

) d
d−2 rd−1

s

Nbℓ
d−1
p

)
+ d−1

d−2
ln
(
δr2

r2s

)]
, rs ≪ L

β
2π

[
ln
(
β
rs

Ld−1

Nbℓ
d−1
p

)
+ ln

(
δr2

L2

)]
, rs ≫ L.

(4.66)

These results are at odds with what Pennington has for near extremal AdS black holes and
also with the literature [91, 29] which discusses the scrambling time for near extremal black
holes. In particular, the main difference is how β appears in the Log. One should expect
β to appear in the denominator rather than the numerator. This suggests that fixing an
absorptive screen at a constant coordinate distance will yield a re-emergence time that is
much longer than the scrambling time, β

2π
ln(S − Sext).

Now consider the second way, which is to fix the proper radial distance from the screen
to the horizon. Then we can show δr ∼ l2prop/β, where lprop is the proper radial distance
between the screen and horizon 14. By doing this, we see that Λ will have no additional
dependence on β and we can write:

temerge ∼


β
2π

[
ln
(
rs
β

rd−1
s

Nbℓ
d−1
p

)
+ 2(d−1)

d−2
ln
(
l2prop
r2s

)]
, rs ≪ L

β
2π

[
ln
(
rs
β

Ld−1

Nbℓ
d−1
p

)
+ ln

(
l2prop
L2

)]
, rs ≫ L,

(4.67)

then we can be reasonably identify the information re-emergence time with the scrambling
time for near extremal black holes. So the question is what we should be fixing, the
coordinate distance or proper distance, or perhaps something else? We believe the answer
lies in the idea of fixing the energy scale of our effective theory on the screen. We know in the
AdS/CFT correspondence the radial direction in the bulk corresponds to the energy scale
of the CFT on the boundary. So by fixing the energy scale we should unambiguously fix
how δr scales with β. However, it is not clear exactly how the energy scale of the boundary
theory depends on the radial distance. If it depends on the proper radial distance then
we should fix the proper length between the horizon and screen. In discussions of the
holographic renormalization group one usually considers metrics written in the form [43]:

ds2 = dz2 + e2z/Lγij(z, x
i)dxidxj, (4.68)

14To see this consider the proper radial length from the horizon to a point δr from the horizon this is

given by the an integral lprop =
∫ rs+δr

rs
dr√
f(r)

, for δr ≪ min{rs, L} we can expand to first order and do

the integral to find δr ∼ l2prop
β
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where z is the radial direction in the bulk and xi are coordinates on the boundary and γij is
the induced metric on a constant z slice. The fixing of energy scales can be interpreted as
the fixing of z. The way the metric is written suggests that z is the proper radial length in
the bulk. Therefore, it seems that fixing the proper length between the screen and horizon
seems like a reasonable way to fix the energy scale, although this may not be valid for
metrics that significantly differ from (4.68).

To summarize our discussion, we found that there are many ways to fix the β depen-
dence of Λ (which is related to where the screen is placed). Depending on how δr depends
on β we can get temerge that may or may not resemble the scrambling time for near extremal
AdS black holes. In particular, we find that by fixing the proper radial distance between
the horizon and absorptive screen we get an information emergence time that is consistent
with the scrambling time for near extremal AdS black holes. We suggested that fixing
the proper radial distance between the screen and horizon can be interpreted as fixing the
energy scale of the theory on the screen. We also find an additional sub-leading Log term
which contains information on exactly where the screen absorbs radiation (which should
not explicitly depend on β). It is interesting to note that for large AdS black holes it is
not the entropy of the entire horizon that goes into the Log but instead the entropy of a
cell on the horizon of characteristic length L. This is reasonable if we recall that large AdS
black holes are dual to large N gauge theories with N2 ∼ Ld−1/ℓd−1

p [126].

4.4 Discussion of the Physics of the Screen

4.4.1 Absorptive Screen as a Thin Shell of Matter

As we have demonstrated, the effect of extracting Hawking radiation near the horizon of a
black hole generally has non-trivial consequences for the evaporation rate. In this work we
adopted a model which extracted radiation close to the horizon using a perfectly absorbing
screen that would absorb any Hawking radiation that gets to it. The rate at which energy
was being absorbed by the screen for each angular momentum mode is captured through
the generalized greybody factor. We did not rigorously compute this factor but instead
proposed models that would capture the essential behaviour of the generalized greybody
factor near the horizon. Here we will discuss a way to calculate the generalized greybody
factor by treating the screen as an interface which patches an interior and exterior solution
to the Einstein equations.

In this picture, the screen is not really literally absorbing radiation, it is acting as an
interface between the interior spacetime containing the black hole and an exterior “reser-
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voir” spacetime which collects and stores the radiation emitted by the interior black hole.
Assuming that the interior and exterior spacetimes are spherically symmetric, the scalar
perturbations that propagate in this spacetime would satisfy the following radial wave
equation:

d2ψ

dr2∗
+
(
ω2 − Vscreen,ℓ

)
ψ = 0, (4.69)

where Vscreen,ℓ is the effective potential defined in a piece-wise manner in terms of the
interior and exterior spacetimes:

Vscreen,ℓ =

{
Vint,ℓ(r), rs ≤ r ≤ rs + δr

Vext,ℓ(r), r > rs + δr.
(4.70)

The basic idea behind this is that we want to keep the spacetime unchanged until we arrive
at the absorptive screen. The process of the screen “absorbing” radiation at r + δr can
be thought of a gluing an asymptotically flat region, just behind the screen and letting
the wave “escape to infinity”15 as depicted in Figure 4.4. To find the fraction of radiation
“absorbed” by the screen (i.e. the generalized greybody factor) we would solve the wave
equation in each region. In the interior region where r ∈ (rs, rs + δr) the general solution
will be some linear combination of two independent solutions:

ψI,ℓ(r∗) = c1,ℓfℓ(r∗) + c2,ℓgℓ(r∗). (4.71)

By analyzing the solution near the horizon we will find that they take on the form of plane
waves and normalize the outgoing wave to unity (i.e. we start with outgoing Hawking
radiation) this will fix some type of relation between c1,ℓ and c2,ℓ. In the exterior region
where the potential goes to zero far from the screen the solution should be purely outgoing
plane wave (i.e. absorptive screen boundary condition):

ψII,ℓ(r∗) = Tℓe
iωr∗ . (4.72)

We have 2 unknowns left now, namely T and one of the coefficients of the solution of the
interior region which will represent how much of the wave is reflected back. We can fix
these by requiring the solution and its first derivative at r = rs + δr be continuous. This

15The region behind the interface that we are gluing does not necessarily have to be an asymptotically
flat space it could be more general. We choose an asymptotically flat space since the wave escaping to
infinity would be the analogue of a purely absorptive boundary condition for the screen. One is also free
to glue another asymptotically AdS space behind the screen. We will discuss this perspective in Section
4.4.2.

149



Figure 4.4: Above is a depiction of the potential that we are considering to emulate an
absorptive screen placed at r = rs + δr depicted by the dotted red line. We keep the
effective potential the same as the black hole up until we get to the screen interface. We
then transition to a potential for a flat space which will act as a reservoir for the extracted
Hawking radiation. Close to the horizon the solution takes on the form of in-going and
out-going plane waves. We normalize the outgoing wave near the horizon to unity and the
amplitude of the in-going plane wave is R. The absorptive screen boundary condition is
enforced by only allowing outgoing plane waves in the flat region with amplitude T . We
patch the solutions and uniquely determine T and R by requiring continuity of the solution
and its derivative at the screen interface. Then the generalized greybody factor is defined
by |T |2.

will fix Tℓ uniquely. The generalized greybody factor is then defined by the the amplitude
square of the transmission coefficient:

γℓ(ω, δr) = |Tℓ(ω, δr)|2. (4.73)

The procedure we outlined above would be a more rigorous way to find the generalized
greybody factor. As one can imagine doing this analytically for any choice of δr would be
difficult, however the procedure we just outlined can be implemented numerically to find
the exact behaviour of the generalized greybody factors. We expect that the generalized
greybody factors to mimic the behaviour of the idealized models we analyzed in this chapter
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at least in the limit where δr ≪ min{rs, L}. It would be interesting to see how this method
of extracting radiation at a finite distance from the horizon compares to other models that
have been proposed to extract radiation from AdS black holes. For example, one could
move the screen further from the horizon and ask how the generalized greybody factor
at infinity (which is really just a greybody factor now) compares to greybody factors of
models that use the evaporon [128, 127] to absorb energy from the black hole.

4.4.2 Null Energy Condition for the Screen and the Holographic
c-Theorem

Recall that in Section 4.1 of this work we wanted to view the absorptive screen near the
horizon as a coarse-grained version of the conformal boundary (with absorbing boundary
conditions). The goal of this discussion is to elaborate on this idea in the context of the
holographic c-theorem and the role that the null energy condition plays in its formulation.

The idea of the radial direction in the bulk being a measure of the energy scale of the
dual boundary theory is formalized by discussing holographic c-theorems [51, 103, 104].
When discussing c-theorems one usually considers two d-dimensional CFTs, one has a
central charge cUV and the other has a central charge cIR where cIR < cUV . These two
CFTs are assumed to be connected by an RG flow which starts from a UV fixed point and
flows towards an IR fixed point. One can define a monotonic c-function which measures the
effective degrees of freedom of the of the coarse-grained theory along the RG flow between
the fixed points. If the two CFTs are holographic, one can make use of the AdS/CFT
duality to construct a holographic c-function in terms of quantities defined in a d + 1-
dimensional gravity theory with matter. A central aspect of the construction relies on
matter in the bulk satisfying the null energy condition (NEC). In particular, if one chooses
appropriate coordinates so that the “radial” direction identifies the energy scales along the
RG flow, then one needs the radial NEC to be satisfied in order to construct a monotonic
c-function. Due to this fact, we will mainly focus on analyzing the radial NEC for the
matter on the screen. Doing this we will provide a heuristic picture of how the effective
degrees of freedom on the screen change as the screen is moved radially in the bulk.

To make things concrete, we will assume the interior spacetime, enclosed by the screen
interface, is that of a d+ 1-dimensional AdS Schwarzschild black hole with a line element
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of the form:

ds− = g−µνdx
µdxν = −f−(r)dt2 +

dr2

f−(r)
+ r2dΩ2

d−1,

f−(r) = 1 +
r2

L2
−
−
(rH
r

)d−2
(
1 +

r2H
L2
−

)
,

(4.74)

where rH is the radial coordinate of the horizon, L− is the AdS radius for the solution.
The “−” subscripts and superscripts mean we are dealing with quantities within the region
enclosed by the screen. The exterior spacetime will be a pure AdS space with an AdS radius
L+ (“+” superscripts and subscripts denote quantities in the exterior). The line element
will be given by:

ds+ = g+µνdx
µdxν = −∆(r0)f+(r)dt

2 +
dr2

f+(r)
+ r2dΩ2

d−1,

f+(r) = 1 +
r2

L2
+

,

(4.75)

where r0 is the radial coordinate where the screen is placed. The lapse function ∆(r0) =
f−(r0)/f+(r0) ensures that the induced metric on either side of the screen is the same.
Using the formalism described in Appendix C.7 it can be shown that the stress energy
tensor of the screen is given by Eq. (C.54) and it resembles the stress energy tensor of
a perfect fluid in d-dimensions with an energy density, ρ, and pressure, p given by the
following expressions:

ρ =
(d− 1)

(
f−(r0)

1/2 − f+(r0)
1/2
)

8πr0
,

p =
1

16πr0

[
2(d− 2)

(
f+(r0)

1/2 − f−(r0)
1/2
)
+ r0

(
f ′
+(r0)

f+(r0)1/2
−

f ′
−(r0)

f−(r0)1/2

)]
.

(4.76)

To summarize, we see that the patching of an interior black hole solution to an exterior
AdS solution requires the screen to have a stress energy tensor of a d-dimensional perfect
fluid with energy density and pressure given in Eq. (4.76). In Appendix C.8 we found the
radial NEC translates to the screen having a positive energy density, ρ ≥ 0. It turns out
that the expression for the energy density of the screen can be positive only if L+ ≥ L−.
Furthermore, the closest the screen can get to the horizon before the radial NEC is violated
is given by:

rc = rH

1 +
L2
−
r2H

1− L2
−

L2
+

1/d

. (4.77)
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For any screen position r0 > rc the screen will have a positive energy density and the radial
NEC is satisfied. Now consider holding rH and L− fixed and define R = L+/L−. We will
allow R to vary by changing the value of L+. When R = 1 we know rc → ∞ so the
screen has to be sitting at the conformal boundary in order to satisfy the radial NEC. If
we increase R the screen is allowed to move deeper into the bulk. Now recall the standard
dictionary in AdS/CFT which states that the AdS radius in Planck units is related to the
effective number of degrees of freedom of the dual CFT [126]:(

L

ℓp

)d−1

∼ ceff . (4.78)

Under the assumption that the screen is holographic we have a way to view the ratio R in
terms of ceff :

Rd−1 ∼
c+eff
c−eff

≥ 1, (4.79)

where we defined Ld−1
± /ℓd−1

p ∼ c±eff . We view R as the ratio between the number of
effective degrees of freedom of the screen and boundary theory. When the number of
effective degrees of freedom of the screen equals the number effective degrees of freedom
the boundary theory the screen must coincide with the boundary. If we coarse-grain the
boundary theory (screen) the number of degrees of freedom on the screen are reduced and
this corresponds to moving the screen deeper into the bulk. From this, we can heuristically
see how satisfying the radial NEC for the screen gives rise to a monotonic decrease in the
effective number of degrees of freedom on the screen as it is moved closer to the horizon of
the black hole.

4.4.3 The Null Energy Condition and Black Hole Mining

The idea of changing the evaporation rate of a black hole by extracting radiation near
the horizon has also been discussed in the context of black hole mining [150, 88, 52]. In
particular, Brown suggests that energy conditions (most notably the null energy condition)
impose constraints on how quickly one can extract radiation from the horizon [28]. In the
previous subsection, we found that satisfying the radial NEC at a finite distance from the
horizon places a constraint on how close the screen is allowed to be to the horizon. The
closest radial coordinate is given by rc in Eq. (4.77). Then δrmin = rc − rH is given by:

δrmin =

[(
1 +

L2
−

r2H

)1/d

− 1

]
rH ≃


(
L−
rH

)2/d
rH , rH ≪ L−

1
d

(
L−
rH

)2
rH , rH ≫ L−,

(4.80)
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where the expression above is taken in the limit that L+ → ∞ so the exterior spacetime is
asymptotically flat. An interesting observation is that δrmin monotonically increases as the
black hole evaporates. Due to this, we can see that for small AdS black holes the screen
cannot be placed very close to the horizon, so we are not really mining very small AdS
black holes with the screen16. However, for very large AdS back holes the screen can be
placed very close to the horizon. In this case it is interesting to ask how long it takes for
a very large AdS black hole to transition to a small AdS black hole via screen mining. We
estimate this time by setting δr = δrmin in Eq. (4.23) to get the following evaporation rate
for very large AdS black holes:

dM

dt
∼ Nb

L2
−

(
rH
L−

) 4d+3
2

, (4.81)

We use the relation between the mass and horizon radius of very large AdS black holes,
given byM ∼ rdH/(L

2
−ℓ

d−1
p ), to replace the derivative of mass with derivative of the horizon

radius. We integrate the equation to estimate the duration of time elapsed for the large
AdS black hole with an initial radius of rH = rs ≫ L− to evaporate to a black hole of
radius L−. We find:

∆t ∼
(
L−

ℓp

)d−1
[
1−

(
L−

rs

)d+ 3
2

]
L−

Nb

≈
(
L−

ℓp

)d−1
L−

Nb

. (4.82)

At leading order we find that the time it takes (in units of AdS radius) for a very large AdS
black hole to transition to the small AdS black hole regime via screen mining is proportional
the Bekenstein-Hawking entropy of an AdS cell. After the black hole enters the small
regime the evaporation rate will mimic that of a black hole evaporating in asymptotically
flat space (i.e. evaporation rate will go as dM/dt ∼ Nbβ

−2). It is difficult to directly
compare our result for the evaporation rate of large AdS black holes with the results of
Brown [28] which are concerned with asymptotically flat black holes. However, we can
see that once the black hole enters the small regime the bounds derived by Brown are
not violated because the screen is far from the horizon (i.e. radial NEC only allows near
horizon screen mining of very large AdS black holes).

It is interesting to mention that the time scale in Eq. (4.82) we found using near horizon
screen mining is agrees with the evaporation time scale found in an earlier work by Page

16The reader may be concerned with the evaporation rate we derived in Eq. (4.23) for the small AdS
black hole regime. The equation was derived assuming the screen is placed close to the horizon, but
respecting the radial NEC does not allow this. This should not be a particularly big issue since, up to
an order one pre-factor, the evaporation rate should go as dM/dt ∼ β−2 [102]. Which is consistent with
Pennington’s results [117] as well as ours.
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[116]. Page’s work considers large AdS black hole evaporation assuming absorptive bound-
ary conditions at infinity. Having absorptive boundary conditions at infinity is analogous
to placing our absorptive screen at infinity. The fact that the lifetimes in either case (i.e.
near or far screen mining) are comparable to each other suggests that the lifetime of very
large AdS black holes does not significantly change when mined by a screen obeying the
radial NEC.

So far, we have restricted ourselves to discussing the NEC for null vectors with only a
radial component. This was primarily because of the connection between the radial NEC
and discussions of the holographic c-theorem. One may ask what kind of constraints the
the NEC gives if the null vectors are tangent to the screen (i.e. no radial component). In
Appendix C.8 we show that the screen violates the tangential NEC at any finite distance
from the horizon. The violations of the tangential NEC become milder the further the
screen is placed from the horizon and is actually saturated in the limit where the screen is
sent to infinity. This is unsurprising as a screen composed of ordinary matter will not sit
at a fixed distance from the horizon, but rather would fall into the black hole. In order for
it not to fall in the matter composing the screen must violate energy conditions. However,
it is worth noting that the calculations we did, did not account for Hawking radiation
being emitted from the black hole. It is well known that Hawking radiation violates energy
conditions, which is why the area of the horizon decreases [50, 92]. An interesting idea
worth considering is whether the screen can be prevented from falling into the black hole
by the pressure generated by the Hawking radiation emitted by the black hole. Naively,
the pressure due to Hawking radiation will become larger the closer the screen gets to the
horizon this may counteract the gravitational pull on the screen generated by the horizon.

4.5 Conclusion and Future Prospects

In this work, we investigated how the evaporation rate of AdS black holes change when
radiation is absorbed near the horizon using an absorptive screen, which is motivated by
the entanglement wedge reconstruction framework described by Pennington [117]. We used
idealized toy models, motivated by physical arguments, which would capture the essential
physics of radiation propagating towards the absorptive screen. We showed that by fixing
the screen at a proper radial distance from the horizon, the re-emergence time for the
information thrown into an AdS black hole is given by the expressions in Eq. (4.63) and
Eq. (4.67). For small AdS black holes (or asymptotically flat black holes) the expressions,
at leading order, contain the Log of the entropy of the whole horizon. This is consistent
with Pennington’s calculations [117]. In contrast, however, for large AdS black holes, we

155



find that the re-emergence time depends on the log of the entropy of an AdS cell on the
horizon (rather than that of the entire horizon). Such a modification is reasonable and
consistent with the scrambling time discussed in the work [134].

In Sections 4.4.1 and 4.4.2, we attempted to provide a more physical description of
what governs wave propagation and internal physics of our putative screen. The interior
spacetime enclosed by the screen contains the black hole, while an exterior asymptoti-
cally flat or AdS spacetime can represent the auxiliary system that could store radiation.
The “absorption” of radiation by the screen would then be equivalent to radiation passing
through the screen interface and escaping to infinity. The calculation of how radiation
would be “absorbed” can be translated to a well-defined computation of greybody factors.
We used Israel junction conditions to compute the stress associated with the screen. The
requirement of the matter on the screen having a positive energy density (which comes
from the radial NEC used to formulate a monotonic c-function in a holographic RG de-
scription) sets a minimum distance for the screen from the black hole horizon if it is the
dual description of a coarse-grained unitary boundary CFT.

The calculations done in this chapter have been done from a gravitational perspective.
In order to explore the ideas discussed in Sections 4.4.1 and 4.4.2 more rigorously it will be
necessary to translate the gravitational picture we proposed to a coupled quantum system
description. The T T̄ formalism described in [101] will likely be an important ingredient
and a good starting point for defining the screen theory. We would then couple the screen
theory defined by the T T̄ deformation to a holographic CFT describing an AdS bulk with
a brick wall. We leave such a formulation to future work.
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Chapter 5

Entanglement Wedge Nesting with
an End-Of-The-World Brane

This chapter will go over some results and findings of an on-going work (in collaboration
with Dominik Neuenfeld) which explores the issue of entanglement wedge nesting in 3D
asymptotically AdS spacetimes which involve an end-of-the-world brane. Although more
work is still needed to properly interpret the results and also determine their limitations1.
The methods discussed provide a useful and concrete starting point toward a much more
broad research program which seeks to explore the issues of how of how one should view
gravity theories living on end-of-the-world branes and the role that non-locality might play
in such setups. Ultimately we hope that such investigations may shed more light into the
nature of non-local effects/maps that appear to be involved in the discussion of the island
formula for Hawking radiation entropy.

5.1 Motivation

A great deal of progress has been made in the past five years in understanding how to obtain
the Page curve of an evaporating black hole. This has been made possible by studying
black hole systems coupled to non-gravitational baths[7, 8, 38, 37]. A particularly useful
formalism to study such systems is double holography[38, 37, 107, 90]. A central ingredient
in such formalisms is the presence of an end-of-the-world brane[149, 53]. Essentially, one
can reproduce the recently discovered island formula for the entropy of Hawking radiation

1At the time of writing this chapter.
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in the bath using double holography[38, 37, 107]. In double holography there are three
descriptions of a gravitational system. We describe them below:

• “The boundary perspective”: this involves a holographic boundary CFT or BCFTd
coupled to a d−1 dimensional quantum mechanical system sometimes called a defect
living on the boundary.

• “The bulk perspective”: this is the holographic gravity dual system in d + 1 di-
mensions, it involves an asymptotically AdS spacetime cutoff by an end-of-the-world
brane.

• “The brane perspective”: this is an intermediate d-dimensional description. In this
description, the quantum defect is replaced by the gravitating region on the end-of-
the-world brane. Essentially we have a non-gravitating CFT coupled to a gravitating
one living on the brane.

The boundary and bulk descriptions are equivalent in much the same way as the CFT is
equivalent to a bulk in standard AdS/CFT. However the brane perspective is not. It is
only a low energy effective description of the higher dimensional bulk theory (see Figure
5.1).

Figure 5.1: We depict the three descriptions that are used in doubly holographic setups.
The top two pictures are descibing the equivalent systems which are the BCFTd and
AdSd+1 cut off by an end-of-the-world brane. The brane perspective is on the bottom
right, the defect is replaced by a gravitating region on the end-of-the-world brane whose
gravitational physics is a low energy effective theory of the more complete UV theory in
the bulk.
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In such setups if we want to compute entanglement entropy of some subregion on
the boundary in the brane perspective then we can use a standard Ryu-Takayanagi (RT)
prescription in the bulk[149, 126, 37]. In general there are two phases the disconnected
phase where the RT surface does not connect a brane and boundary region and the con-
nected/island phase where the RT surface connects a boundary sub region to a brane sub
region. We depict the two cases in Figure 5.2.

Figure 5.2: Depicted above are the two possible choices of RT surfaces which are allowed.
The disconnected phase looks standard and does not connect to the brane. The connected
phase connects a region on the brane to the boundary region. In the low energy brane
description the connected phase corresponds to the appearance of an island in the gravi-
tating system.

In this chapter we will take the perspective that in such a setup we can associate an
“entanglement entropy” to gravitating subregions on the brane and that the entanglement
entropy of these subregions can be computed holographically with an RT prescription.
We will also state that having access to information in the subregion on the brane will
allow one to reconstruct the bulk within the entanglement wedge of the subregion on
the brane (similar to the standard AdS/CFT story). With this we can consider fixing two
subregions. One on the boundary and another on the brane. We suppose that the connected
phase is dominant and then require that the entanglement wedge for the brane subregion
is completely contained inside the entanglement wedge associated to the connected RT
surface which is really a wedge that is associated to both brane and boundary regions.
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The goal of this chapter is to explore when this might fail in 3D AdS spacetimes involving
end-of-the-world branes.

5.2 Conditions for Entanglement Wedge Nesting AdS3

Poincare Patch

In the following subsections we will be consider entanglement wedge nesting in three di-
mensional AdS spacetimes in the presence of an end-of-the-world brane. In the analysis
we will be fixing a spacelike subregion on the boundary denoted A and another spacelike
subregion on the brane denoted B. The types of extremal surfaces we will be considering
in this setup are:

• χdis.(A), is defined as the extremal surface which is anchored to the entangling surface
∂A on the boundary and does not connect to the brane.

• χdis.(B), is defined as the extremal surface which is anchored to the entangling surface
∂B on the brane and does not connect to the boundary.

• χcon.(A∪B), is defined as the extremal surface which is anchored to both the entan-
gling surfaces ∂A on the boundary and ∂B on the brane, and connects the boundary
to the brane.

5.2.1 AdS3 Poincare Patch

In this subsection we will be discussing the Poincare patch of AdS3 cut off by an end-of-
the-world brane and we will precisely define the subregions A and B.

We start by writing down the metric:

ds2 =
L2 (dz2 − dt2 + dx2)

z2
, (5.1)

where L is the AdS radius, z ∈ R+ is the radial bulk coordinate and z = 0 is the conformal
boundary which is parameterized by t, x ∈ R. The end of the world brane is a co-dimension
1 surface in the bulk whose coordinate description is given by:

z = z(x) = cot θ0x

x > 0,
(5.2)
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where θ0 ∈ (0, π/2) is a free parameter that controls the tension of the brane. In these
coordinates we consider the following boundary and brane subregions:

• A = {(t, x, z)|t = ta, x ∈ [−a2,−a1], z = 0}, which is an interval on the conformal
boundary of size a2 − a1 at a constant time slice, where a2 > a1 > 0.

• B = {(t, x, z)|t = tb, x ∈ [b1 sin θ0, b2 sin θ0], z ∈ [b1 cos θ0, b2 cos θ0]}, which is an
interval on the brane of size b2 − b1 at a constant time slice, where b2 > b1 > 0.

5.2.2 Discussion of Candidate RT Surfaces in AdS3

Now that we have defined the subregions A and B we will now consider the different
extremal surfaces which are anchored to the subregions. Since the bulk is three dimensional
co-dimension 2 extremal surfaces are curves. We will parameterize these curves in terms
of the Poincare coordinate x and extremize the following functional:

L

∫
dx

√
1 + ż2 − ṫ2

z(x)
, (5.3)

where ż = dz
dx

and ṫ = dt
dx
. The general solutions to the equations of motion associated with

the functional in Eq. (5.3) are given by (see Appendix D.1.1 for details of the derivation
of the general solution):

t(x) = kx+ c1

z(x) =

√
L2

H2
x(1− k2)

− (1− k2)(x+ c2)2.
(5.4)

The general solution above will have four undetermined constants namely, k,Hx, c1, c2. We
can uniquely fix these by specifying the starting and ending points for the curves which will
lie on the endpoints of the intervals we are interested in. With the general solution we can
find easily fix the undetermined constants to obtain the specific RT curves corresponding
to χdis.(A), χdis.(B), and χcon.(A ∪B).

For χdis.(A) we will obtain:

t(x) = ta

z(x) =
√

−(a1 + x)(a2 + x)

x ∈ [−a2,−a1].
(5.5)
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This is simply a semi-circle of radius a2−a1
2

centred at
(
x = −a1+a2

2
, z = 0

)
on the constant

t = ta plane.

For χdis.(B) we will obtain:

t(x) = tb

z(x) =

√
−x2 + b1 + b2

sin θ0
x− b1b2

x ∈ [b1 sin θ0, b2 sin θ0].

(5.6)

This curve is a section of the semi-circle whose radius is given by Rb =

√
b21+b

2
2+2b1b2 cos(2θ0)

2 sin θ0

centred at
(
x = b1+b2

2 sin θ0
, z = 0

)
on the constant t = tb plane.

For χcon.(A ∪B) the extremal surface is the the union of two separate extremal
line segments which connect the boundary and brane. One segment connects the
following two points (t = ta, x = −a2, z = 0) and (t = tb, x = b2 sin θ0, z = b2 cos θ0) we will
denote this line segment, χ2 and it will have a trajectory through the bulk given by the
following parametric equations:

t2(x) = ta + k2 (x+ a2)

z2(x) =

√
(x+ a2) (b22 cos

2 θ0 − (1− k22)(x− b2 sin θ0)(a2 + b2 sin θ0))

a2 + b2 sin θ0

x ∈ [−a2, b2 sin θ0]

k2 =
tb − ta

a2 + b2 sin θ0
.

(5.7)

The other segment connects the points (t = ta, x = −a1, z = 0) and (t = tb, x =
b1 sin θ0, z = b1 cos θ0) we will denote this line segment, χa, and it will have a trajectory
through the bulk given by the following parametric equations:

t1(x) = ta + k1 (x+ a1)

z1(x) =

√
(x+ a1) (b21 cos

2 θ0 − (1− k21)(x− b1 sin θ0)(a1 + b1 sin θ0))

a1 + b1 sin θ0

x ∈ [−a1, b1 sin θ0]

k1 =
tb − ta

a1 + b1 sin θ0
.

(5.8)
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This completes our explicit characterization of χcon.(A ∪B) = χ1 ∪ χ2. In general, χ1 and
χ2 are conic sections in the z − x plane. In the special case where ta = tb (i.e. when
k1 = k2 = 0) the line segments χ1 and χ2 will be half circles in z − x plane. In the more
general case when ta ̸= tb the line segments will have |k1| ≥ |k2| > 0 and the line segments
will be one of three conic section (ellipse, parabola, hyperbola) in the z − x plane. The
issue of what specific conic section the line segments χ1 and χ2 correspond to depends on
the value of k1 and k2 respectively. We summarize the classification in the table below:

|k| z(x)
0 circle

0 < |k| < 1 ellipse
1 parabola

|k| > 1 hyperbola

Usually in AdS/CFT (i.e. when no end-of-the-world brane is present) we are usually only
interested in RT curves that have |k| < 1 (i.e. circles and ellipses). This is because
when there is no brane, all the extremal surfaces have to end on the z = 0 boundary.
The parabola and hyperbola may start on one boundary point but they will never come
back and end on the boundary which is why they are not usually discussed in standard
AdS/CFT. However, in the presence of the brane we can now attach one endpoint of the
extremal surface to the brane which generally has some z > 0 this allows for the novel
configurations where the RT curve has |k| ≥ 1. An interesting point to make here is that if
we allow for configurations that have |k| > 1 then one might suggest it is possible for the
RT curve to become timelike in the bulk if |k| is sufficiently larger than 1. In Appendix
D.1.2 we explicitly demonstrate that in order to connect the boundary to the brane, with
a single smooth line segment, the value of |k| must be bounded above. It turns out that
the bound we find is equivalent to requiring that the endpoints the boundary and brane
must be spacelike separated. This places a non-trivial constraint on the quantity |tb − ta|
(for a given choice of endpoints for χ1 whose spatial coordinates are fixed):

|tb − ta| <
√
a21 + b21 + 2a1b1 sin θ0. (5.9)

In Fig. 5.3 we give an example of the boundary and brane subregions along with the
associated extremal surfaces in the z − x plane. The shaded grey region is the portion of
AdS which is cut-off by the end of the world brane and is not physically relevant in our
discussion. The blue curve, χdis(A) and the yellow curve, χdis(B) are half circles. The
union of the red line segments form the connected surface, χcon.(A∪B). In this particular
case the two line red line segments correspond to ellipses in the z − x plane.
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Extremal Surfaces Projected in xz-Plane

Figure 5.3: In this particular plot θ0 = π/4 and the shaded region is cut-off by the end of
the world brane which intersects with the conformal boundary at the origin. The intervals
on the boundary and brane are defined by fixing a = ã = 2, b = 6, and b̃ = 8. We also set
|tb− ta| = 0.97(2 +

√
2) ≈ 3.3. The blue curve is χdis.(A) and is anchored to the boundary

and lies on the constant time slice t = ta. The yellow curve is χdis.(B) and is anchored to
the brane and lies on the constant time slice t = tb. Both the blue and yellow curves are
half-circles. The union of two red line segments which connect the brane and boundary
subregions is χcon.(A∪B). Unlike the blue and yellow curves the red curves do not remain
on a constant time slice they interpolates between times tb and ta. For our our particular

choice of parameters we have |ka| = 0.97 and |kb| = 0.97
[
2−

√
2

2

]
≈ 0.28 which implies that

both red line segments are ellipses in the x− z plane.
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5.2.3 Discussion of Entanglement Wedges (AdS3)

Now we will characterize the entanglement wedges associated with the boundary subregions
A, B, and A ∪B.

Lets start with A on the boundary, we define ΣA as a partial Cauchy surface with a
boundary, ∂ΣA = A ∪ χdis(A). Using ΣA we define the entanglement wedge of A, denoted
WE(A), as the domain of dependence of ΣA. A convenient prescription which can be used
to explicitly construct the entanglement wedge of the boundary interval A is by considering
the a family of null geodesics beginning on χdis.(A) which are also orthogonal to χdis.(A)
and evolve towards the boundary. The set of these null geodesics enclose a co-dimension 0
region which is exactly WE(A) as shown in Figure 5.4. As we discuss in Appendix D.1.4
the entanglement wedge and causal wedge for a constant time interval on the boundary
are the same in particular we have the following explicit expression for the null surface
that encloses the points inside WE(A) (see Appendix D.1.4 for details of where this comes
from):

|t− ta| =
a2 − a1

2
−

√
z2 +

(
x+

a2 + a1
2

)
. (5.10)

We say that (t, x, z) ∈ WE(A) if the points satisfy the inequality:

a2 − a1
2

− |t− ta| >

√
z2 +

(
x+

a2 + a1
2

)
. (5.11)

In an analogous manner we can define the entanglement wedge associated with the
region B on the brane. We define ΣB as the partial Cauchy slice whose boundary is given
by ∂ΣB = B ∪ χdis.(B). Then the entanglement wedge of B, denoted WE(B), is simply
the domain of dependence of the ΣB. Furthermore a more explicit construction of the of
the wedge can be made by considering the a family of null geodesics beginning on χdis.(B)
which are also orthogonal to χdis.(B) and evolve towards the boundary. The set of these
null geodesics enclose a co-dimension 0 region which is exactly WE(B) as shown in Figure
5.5. Based on the discussion in Appendix D.1.4 we can obtain the following inequality
which characterizes the set of points in WE(B):

Rb − |t− tb| >

√(
x− b1 + b2

2 sin θ0

)
+ z2, (5.12)
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Figure 5.4: Depicted in the figure above is an example of what WE(A) might look like.
The intersection of the past and future cones is the RT surface χdis.(A) shown in green.
The dotted “diamond” is the causal diamond on the boundary associated with the interval
A which horizontally splits the diamond to the future and past of the interval.
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Figure 5.5: Depicted in the figure above is an example of WE(B). There are actually two
entanglement wedges in the figure. The very large wedge is what we called WE(Vir(B))
in Appendix D.1.4. The actual entanglement wedge WE(B) is the small piece that is cut
out of the larger wedge by the slanted plane which is the end-of-the-world brane. We can
see that the intersection of WE(B) with the end-of-the-world brane is not the naive causal
diamond associated with the interval B on the brane.
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where we make the implicit restriction on (t, x, z) to be in Phys(AdS3) which simply denotes
the bulk region that physically exists and not cut off by the brane.

Now we turn to the construction of the entanglement wedge associated with A ∪ B,
denoted, WE(A ∪ B). Lets start by noting there are actually two possible “phases” for
WE(A ∪ B) which we call the “disconnected phase” or the “connected phase”. In the
disconnected phase we have WE(A ∪ B) = WE(A) ∪ WE(B), this is simply the union
of the separate entanglement wedges of A and B which we already discussed. In the
connected phase we define ΣA∪B as the partial Cauchy slice with a boundary given by
∂ΣA∪B = χcon.(A ∪ B) ∪ A ∪ B. Then using this partial Cauchy slice we define the
connected phase entanglement wedge as the domain of dependence of ΣA∪B.

The condition that we are going to explore is when WE(B) ⊂ WE(A ∪ B). It is
clear that in the disconnected phase the WE(B) ⊂ WE(A ∪B) is always satisfied because
WE(A∪B) = WE(A)∪WE(B) in the disconnected phase. Therefore, we will be interested
in the issue of if WE(B) ⊂ WE(A ∪ B) when we are in the connected phase (we will
come back to the issue of when a connected phase might actually exist near the end of the
chapter).

5.2.4 A Sufficient Condition for EWN (AdS3)

In this subsection we will derive constraints on the parameters defining the boundary and
brane subregions such that WE(B) ⊂ WE(A ∪B) in the connected phase.

Lets begin with the special case where ta = tb = t0. In this case χdis.(A), χdis.(B), and
χcon.(A∪B) all lie on the same time slice. In this case, it is clear that since ΣB ⊂ ΣA∪B the
domain of dependence of ΣB will be contained in the domain of dependence of ΣA∪B which
is equivalent to saying that WE(B) ⊂ WE(A ∪ B)2. Now lets take the more general case
where ta ̸= tb. In this case, the strategy will be to ensure that all null geodesics originating
from either χ1 or χ2 are unable to reach WE(B) (i.e. no causal signals originating from
χcon.(A ∪ B) can influence events in WE(B)). As long as such a condition holds we are
guaranteed that WE(B) ⊂ WE(A ∪ B). A simple way to ensure this is to take the causal
future and past of ΣB, which we denote as J+(ΣB) and J

−(ΣB) respectively, and require
that χ1, χ2 /∈ J+(ΣB) ∪ J−(ΣB) ∪ ΣB. This will ensure that no light rays from χ1 or χ2

2To see this suppose we take any p ∈ WE(B) then any causal curve going through the point p must
also go through ΣB . But since ΣB ⊂ ΣA∪B (not too sure if it is important that the partial Cauchy
slices be simply connected) then it also means that that all causal curves going through p also go through
ΣA∪B ⇒ p ∈ WE(A ∪ B) ⇒ WE(B) ⊂ WE(A ∪ B).) We can also see this more explicitly by studying
lightcones/null geodesics.
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will be able to reach points in WE(B) and guarantee that WE(B) ⊂ WE(A∪B). In order
to enforce such a condition we need to get an understanding of J+(ΣB) ∪ J−(ΣB) ∪ ΣB.
This is actually not as simple as it sounds due the the presence of the brane. We might
naively suggest that the condition to use is simply given by requiring that:

|tχ − tb|+Rb ≤

√(
xχ −

b1 + b2
2 sin θ0

)2

+ z2χ, (5.13)

where (tχ, xχ, zχ) are points on either χ1 or χ2. The motivation behind this condition is that
the set of spacelike separated points from WE(Vir(B)) must also be spacelike separated
from WE(B) due to the fact that WE(B) ⊆ WE(Vir(B)). Although this would serve as
a sufficient condition to entanglement wedge nesting it would generally not be equivalent
to saying that the points on χcon.(A ∪ B) are spacelike separated from WE(B). In fact as
we will discuss near the end of this chapter the condition that χcon.(A ∪ B) is spacelike
separated from WE(B) will excude a smaller region than our naive condition. Even so, it
is still interesting to study the naive sufficient condition which we wrote in Eq. (5.13). In
Appendix D.1.5 we study the naive sufficient condition given in Eq. (5.13) to obtain the
following constraint:

|tb − ta| ≤ a1 +
b1 + b2 −

√
b21 + b22 + 2b2b1 cos(2θ0)

2 sin θ0
. (5.14)

5.2.5 Discussion of Constraints for Poincare AdS3

To summarize the previous section we found two distinct constraints. The first was the
constraint we obtained had nothing to do with entanglement wedge nesting. It was obtained
by asking if it was possible to have a single continuous line segment connecting brane and
boundary points for arbitrary values of k. As we showed in Appendix D.1.2 there had to
be an upper bound on k which allowed us to show that in the Poincare setup the following
inequality had to be satisfied even before any considerations of EWN:

|tb − ta| <
√
a21 + b21 + 2a1b1 sin θ0. (5.15)

To better understand this condition it is useful to define the 2D brane-boundary system.
This is simply the 2D system described by the following expression:

z(x) = Θ(x) cot θ0x, (5.16)
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which is simply the system that lives on the conformal boundary for x < 0 and the end-of-
the-world brane for x > 0. In Appendix D.1.6 we study the propagation of null geodesics
which originate on the boundary system (x < 0) and propagate to the brane (x > 0). We
found that an observer restricted to the 2D brane boundary system would define causal
relationships between a point on the boundary at (t = ta, x = −a1, z = 0) and a point on
the brane at (t = tb, x = b1 sin θ0, z = b1 cos θ0) as follows:

• The points are lightlike separated if |tb − ta| = a1 + b1.

• The points are timelike separated if |tb − ta| > a1 + b1.

• The points are spacelike separated if |tb − ta| < a1 + b1.

On the other hand, in Appendix D.1.6, we also studied a notion of “bulk-induced.” In
particular we studied the projection of a bulk lightcone whose apex sits in the boundary
and then computed the intersection of the cone with the 2D brane-boundary system what
we found in was that the right-hand side of Eq. (5.15) defined a new kind of induced causal
structure on the boundary summarized below:

• They are bulk lightlike separated if |tb − ta| =
√
a21 + b21 + 2a1b1 sin θ0.

• They are bulk timelike separated if |tb − ta| >
√
a21 + b21 + 2a1b1 sin θ0.

• They are bulk spacelike separated if |tb − ta| <
√
a21 + b21 + 2a1b1 sin θ0.

We also proved that a1+ b1 ≥
√
a21 + b21 + 2a1b1 sin θ0. This is interesting in the context of

what an observer living solely inside the brane-boundary system. In particular certain local
and causal processes in the bulk perspecive will appear to occur at “superluminal” speeds
(this was also discussed in a recent paper [112]) in a non-local manner according to the
observer that defines causality solely within the brane-boundary system (who is oblivious
to the existence of the bulk). This mismatch between causal notions in the brane-boundary
system will become less pronounced as the brane is deflected less away from the boundary
and will completely disappear once the brane actually coincides with the boundary (i.e. in
the limit when θ0 → π/2).

Now that we have discussed this interesting notion of the emergence of non-locality in
the brane boundary system and the interpretation of the expression on the right-hand side
of 5.15. It is interesting to ask how the sufficient condition for EWN fits into this picture.
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In particular, is the constraint stronger or weaker than what we have discussed thus far?
With some work we can see that we have the following hierarchy between constraints:

a1 + b1 ≥
√
a21 + b21 + 2a1b1 sin θ0 ≥ a1 +

b1 + b2 −
√
b21 + b22 + 2b2b1 cos(2θ0)

2 sin θ0
. (5.17)

This suggests that that requiring that the brane and boundary intervals are bulk spacelike
separated may not be enough to guarantee EWN in the connected phase. However, this
statement must be taken with a grain of salt. As we already eluded to in the previous
subsections the constraint we derived for EWN is sufficient but possibly not necessary.
This is because, the sufficient condition we wrote required that points on the connected
RT curves be spacelike separated from WE(Vir(B)). This is too strong because we can
prove that the set of spacelike separated points from WE(Vir(B)) are not the same as the
set of spacelike separated points fromWE(B). The issue lies at the endpoints of the interval
on the brane and the fact that χdis.(B) does not end at right angles on the brane in general.
If we try to construct the causal development of ΣB the presciption of simply shooting null
geodesics orthogonally outwards from the χdis.(B) will leave a portion of bulk “unfilled.”
We can remedy this by including bulk lightcones at the endpoints of the intervals and then
the causal development must be defined in the following piecewise manner.

We split up the bulk into three distinct regions defined below:

• The “Left Region” denoted RL: This is the set of points in the physical bulk region
which are to the left of the line:

z(x) = − b1 sin(2θ0)x

b2 + b1 cos(2θ0)
+
b1(b1 + b2) cos θ0
b2 + b1 cos(2θ0)

. (5.18)

• The “Right Region” denoted RR: This is the set of points in the physical bulk which
lie to the right of the line:

z(x) = − b2 sin(2θ0)x

b1 + b2 cos(2θ0)
+
b2(b1 + b2) cos θ0
b1 + b2 cos(2θ0)

. (5.19)

• The “Middle Region” denoted RM : This is the set of points in the physical bulk
which lie in between the lines in Eqs. (5.18 - 5.19).

Using these defined regions we have the following piece-wise condition for spacelike sepa-
rated points from WE(B) when θ0 ∈ (0, π/2) for the three regions we described above:

[|t− tb|+Rb]
2 <

[
x− b1 + b2

2 sin θ0

]2
+ z2

(x, z) ∈ RM

(5.20)
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|t− tb|2 < [x− b1 sin θ0]
2 + [z − b1 cos θ0]

2

(x, z) ∈ RL

(5.21)

|t− tb|2 < [x− b2 sin θ0]
2 + [z − b2 cos θ0]

2

(x, z) ∈ RR.
(5.22)

In the limit where θ0 → π/2 we only have RM . In the case where θ0 → 0 the extremal
surface χdis.(B) no longer extends outside the brane (so we will not be interested in this
case when discussing entanglement wedge nesting).

We can see that in RM the statement that we have spacelike separated points from
WE(B) is equivalent to to the condition of having spacelike separated points fromWE(Vir(B)).
Furthermore if we extended the condition in RM past the permitted region we would cut
out a larger portion of the bulk than what is necessary. This therefore suggests the naive
condition we wrote in Eq. (5.14) is likely not necessary it may be weakened and maybe
it would even be weakened enough that the necessary condition for EWN might coincide
with a notion of bulk causality.

5.3 Conditions for Entanglement Wedge Nesting for

Planar BTZ BH

In the following subsections we will be working towards finding sufficient conditions for
entanglement wedge nesting. The setup will involve a two-sided Planar BTZ black hole
which we will discuss in the following.

5.3.1 Two Sided BTZ Black Hole

In this section we will discuss entanglement wedge nesting for a two sided planar BTZ
black hole with one side having an end-of-the-world brane. The line element for the two
sided BTZ black hole can be written in Kruskal-Szekeres coordinates as follows:

ds2 =
1

cos2 y

[
L2
(
−dτ 2 + dy2

)
+
r2+
L2

cos2 τdx2
]
, (5.23)

where τ, y ∈ [−π/2, π/2], x ∈ R, L is the AdS radius, and r+ is the horizon “radius”
in Schwarzschild coordinates (which we will discuss shortly). There are two conformal
boundaries, the right conformal boundary will be at y = π/2 and the left conformal
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boundary will be at y = −π/2. The event horizon of a two-sided black hole in these
coordinates are described by the the lines τ = ±y. The event horizon splits the spacetime
into 4 distinct regions which we describe below:

• The “Right Exterior” this is the set of points in the spacetime that satisfy:

ExtR = {(τ, y, x) : |τ | < y, y ∈ (0, π/2]}. (5.24)

As the name suggests these are points in the right exterior of the spacetime which
lie outside the event horizon (Blue shaded region in Figure 5.6).

• The “Left Exterior” this is the set of points in the spacetime that satisfy:

ExtL = {(τ, y, x) : |τ | < −y, y ∈ [−π/2, 0)}. (5.25)

As the name suggests these are points in the left exterior of the spacetime which lie
outside the event horizon (Orange shaded region in Figure 5.6).

• The “Future Interior” this is the set of points in the spacetime that satisfy:

IntFut. = {(τ, y, x) : |y| < τ, τ ∈ (0, π/2]}. (5.26)

As the name suggests these are points in the interior of the black hole. Future directed
causal curves starting in either the left or right exterior will eventually end up in the
future interior (Green shaded region in Figure 5.6).

• The “Past Interior” this is the set of points in the spacetime that satisfy:

IntPast. = {(τ, y, x) : |y| < −τ, τ ∈ [−π/2, 0)}. (5.27)

As the name suggests these are points in the interior of the black hole. Past directed
causal curves starting in either the left or right exterior will eventually end up in the
past interior (Red shaded region in Figure 5.6).

Now that we have discussed the basics of the two sided BTZ black hole spacetime
in Kruskal coordinates we will discuss the Schwarzschild coordinate description of the
exterior regions, ExtL,R. To do this, we define the following coordinate transformations
from Kruskal coordinates (τ, y, x) to Schwarzschild coordinates (t, r, x̄):

r = r+
cos τ

cos y

t =
L2

2r+
ln

[
−
tan
(
τ+y
2

)
tan
(
τ−y
2

)] =
L2

2r+
ln

[
sin y + sin τ

sin y − sin τ

]
x̄ = x.

(5.28)
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Figure 5.6: Depicted above is a Two-Sided Planar BTZ black hole spacetime in Kruskal
coordinates (with the x coordinate suppressed but one can imagine it coming out/into the
page). The horizon of the black hole are diagonal lines which split up the square into 4
quadrants which we described in the main text.
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Applying these coordinate transformations to the exterior regions ExtR,L the line element
given in Eq. (5.23) takes the form of the familar (planar) BTZ metric line element in
Schwarzschild coordinates:

ds2 = −f(r)dt2 + dr2

f(r)
+
r2

L2
dx2

f(r) =
r2 − r2+
L2

.

(5.29)

Where, t ∈ R, r > r+, and x ∈ R. In these coordinates the metric becomes singular at
the horizon r = r+ and should really only be used when discussing either the left or right
exteriors of the two sided black hole 3. In fact, to be more precise we should actually have
two copies of the the metric given in Eq. (5.29) one for the left exterior which Schwarzschild
coordinates (tL, rL, xL) and one for the right exterior (tR, rR, xR). A simple analysis of the
coordinate transformation defined in Eq. (5.28) shows that if we fix |y| and τ then rR = rL
but tR = −tL. In particular, constant time slices in Schwarzschild coordinates are tilted
planes in Kruskal coordinates which all go through the bifurcate horizon at y = 0, τ = 0.

A particularly useful redefinition of the radial coordinate is r = L2

z
so that the exterior

exists for z ∈ (0, z+). Using this new radial coordinate gives the following expression for
the planar BTZ black hole line element:

ds2 =
L2

z2

[
−f̃(z)dt2 + dz2

f̃(z)
+ dx2

]
f̃(z) = 1− z2

z2+
.

(5.30)

Now that we have reviewed some basic facts of the two sided BTZ black hole in both
Kruskal and Schwarzschild coordinates we will introduce an end-of-the-world brane in our
setup. The end-of-the-world brane will be a time-like co-dimension 1 surface. Which
satisfies the following equations of motion involving the extrinsic curvature and induced
metric:

Kab − hab + T0hab = 0. (5.31)

3One may wonder why bother working in Schwarzschild coordinates when one can simply use the
Kruskal description. The reason for this that it is often easier to look for extremal surfaces in one coordinate
system as opposed to another. In particular, finding the RT surface anchored to the boundary or brane
(i.e. the thermal RT surface) will be much easier in Schwarzschild coordinates. In contrast, finding a RT
surface which goes through the horizon and connects the boundary of the left exterior to the brane in the
right exterior will be more straightforward in Kruskal coordinates.
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One can check that a hypersurface y = yBr = constant, satisfies the equation of motion
above with:

T0 = sin yBr. (5.32)

We will primarily be interested in the case where the end-of-the-world brane is in the right
exterior (i.e. yBr ∈ (0, π/2]). With the help of the coordinate transformations in Eq.
(5.28), we can also express the end-of-the-world brane y = yBr in the right exterior in
Schwarzschild coordinates as follows:

r(t) = r+

√
1− sin2 yBr tanh

2
(
r+t
L2

)
cos2 yBr

. (5.33)

We can see that in Schwarzschild coordinates the brane comes out from the past horizon
at t = −∞ and falls into the future horizon at t = ∞ with some non-trivial profile in r
in the right exterior region. Now that we have described the setup of the two-sided BTZ
black hole with an end-of-the-world brane we can talk about the subregions on the brane
and boundary we want to consider.

For the sake of mathematical simplicity we will restrict ourselves to a very limited
configuration of boundary and brane intervals. In particular, we will consider constant
Schwarzschild time slice intervals of equal length on both the boundary and brane centred
at x = 0. We will only allow for a relative shift in time for the boundary and brane intervals.
We will denote the the constant time interval on the left boundary at Schwarzschild time t =
tbdry as Abdry. The constant time interval on the brane in the right exterior at Schwarzschild
time t = tBr will be denoted by ABr. In the next subsection we will discuss the candidate
RT surfaces that will be anchored to such boundary and brane subregions (intervals).

5.3.2 Discussion of RT Surfaces for Two-Sided Planar BTZ BH

In this subsection we will be dealing with two kinds of RT surfaces in the two sided BTZ
black hole spacetime with an end-of-the-world brane:

• “Thermal RT Surfaces”: These are RT surfaces that are anchored to the endpoints
of constant Schwarzschild time intervals on the brane or boundary centred around
x = 0 of length 2a. Such RT surfaces never cross the horizon and remain in either
the left exterior anchored to a boundary interval or the right exterior anchored to a
brane interval. We will denote the thermal surface in left exterior anchored to the
boundary as χther.(Abdry). We will denote the thermal surface in the right exterior
anchored to the brane as χther.(ABr).
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• “Connected RT Surface”: This is an RT surface that connects the boundary and
brane interval and goes through the horizon to connect the left and right exteriors.
We will denote this RT surface as, χcon.(Abdry ∪ ABr) since these connected surfaces
are associated with both Abdry and ABr.

Thermal RT Surface Anchored to Boundary or Brane:
Lets begin by finding the thermal RT surface using Schwarzschild coordinates (with a slight
redefinition of the radial coordinate r to z = L2

r
so the conformal boundary is at z = 0).

This will be obtained by extremizing the following functional:

A[t, ṫ, z, ż;x]

∫
dx
L

z

√
−f̃(z)ṫ2 + ż2

f̃(z)
+ 1

z+ =
L2

r+

f̃(z) = 1− z2

z2+
.

(5.34)

With some work, detailed in Appendix D.2.1, we can obtain the following expression for a
thermal RT surface anchored to a constant time slice (tL = tbdry) interval in ExtL on the
conformal boundary (i.e. χther.(Abdry)):

t(x) = tbdry

z(x) = z+

√√√√√1−
cosh2

(
x
z+

)
cosh2

(
a
z+

) . (5.35)

Using the expression above for the thermal RT surface anchored to a boundary interval we
can also easily deduce the expression for the thermal RT surface that which is anchored
to a constant time slice interval on the brane at time t = tBr in the right exterior (i.e.
χther.(ABr)). To do this we define the “virtual interval” associated to the interval on the
brane denoted Vir(ABr) which is defined to be an interval which is obtained by continuing
the RT surface anchored to the brane past the brane into the non-physical region. In
particular, we can define this interval as follows:

Vir(ABr) = {(t, x, z)|t = tBr, x ∈ [−a′, a′], z = 0}.

a′ = z+arccosh

 cosh
(

a
z+

)
√

1−
(
zBr

z+

)2
 ≥ a.

(5.36)
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Associated with this boundary interval we can write the following thermal RT surface
χther.(Vir(ABr)):

t(x) = tBr

z(x) = z+

√√√√√1−
cosh2

(
x
z+

)
cosh2

(
a′

z+

) . (5.37)

It it straightforward to see that χther.(ABr) = χther.(Vir(ABr))∩Phys(BTZ), where Phys(BTZ)
is the part of the Planar BTZ spacetime not cut off by the brane. In other words we have
the following expression for χther.(ABr):

z(x) = z+

√√√√√1−
cosh2

(
x
z+

)
cosh2

(
a
z+

) (1− z2Br
z2+

)
.

t(x) = tBr

x ∈ [−a, a].

(5.38)

We can see from the expression above that at x = ±a we have z = zBr which is what we
want.

Now that we have discussed the thermal RT surface in exterior Schwarzschild coordi-
nates we can use our results to rewrite the same thermal RT surface in Kruskal coordinates.
To do this we need to invert the transformation in Eq. (5.28). With a little bit of alge-
bra and a careful distinction between the left and right exteriors we have the following
transformation from Schwarzschild coordinates to Kruskal coordinates:

tan (v) = ±e−
t

z+

√
z+ − z

z+ + z

tan (u) = ∓e
t

z+

√
z+ − z

z+ + z

u =
τ + y

2

v =
τ − y

2
,

(5.39)

where the different choice of signs give us the right and left exteriors. In particular, the
left exterior is given when −u, v > 0 and the right exterior is given when −v, u > 0. With
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some work detailed in Appendix D.2.1 we can express χther.(Abdry) as follows:

sin (τ(x)) = −
cosh

(
x
z+

)
sinh

(
tbdry
z+

)
√

cosh2
(

a
z+

)
+ cosh2

(
x
z+

)
sinh2

(
tbdry
z+

)
sin (y(x)) = −

cosh
(
tbdry
z+

)
cosh

(
x
z+

)
√
cosh2

(
a
z+

)
+ cosh2

(
x
z+

)
sinh2

(
tbdry
z+

) .
(5.40)

In a similar manner χther.(ABr) is given by (see Appendix D.2.1 for details of derivation):

sin (τ(x)) = sin[v(x) + u(x)] =

√
1− z2Br

z2+
cosh

(
x
z+

)
sinh

(
tBr

z+

)
√

cosh2
(

a
z+

)
+
(
1− z2Br

z2+

)
cosh2

(
x
z+

)
sinh2

(
tBr

z+

)

sin(y(x)) = sin[u(x)− v(x)] =

√
1− z2Br

z2+
cosh

(
x
z+

)
cosh

(
tBr

z+

)
√

cosh2
(

a
z+

)
+
(
1− z2Br

z2+

)
cosh2

(
x
z+

)
sinh2

(
tBr

z+

) .
(5.41)

Connected RT Surface Connecting Brane and Boundary:

To find the connected RT surface we will resort to using Kruskal coordinates. In Kruskal
coordinates we need to extremize the following functional:

A[τ, τ̇ , x, ẋ; y] =

∫
dy

√
L2 (−τ̇ 2 + 1) +

r2+
L2 cos2 τ ẋ2

cos y
. (5.42)

For reasons discussed in Appendix D.2.2 we will be interested in connected RT curves in
which ẋ = 0 and we will be left with the task of extremizing a much simpler functional
given by:

A[τ, τ̇ , x, ẋ; y] =

∫
dy

√
L2 (−τ̇ 2 + 1)

cos y
. (5.43)

With the work detailed in Appendix D.2.2. We arrive at the following general expression
for the RT curve(s) that goes through the horizon and connects the brane and boundary
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intervals:

x(y) = ±a

τ(y) = τbdry + arcsin

(
cτ√
1 + c2τ

sin y

)
+ arcsin

(
cτ√
1 + c2τ

)
.

(5.44)

We define τBr = τ(yBr). We can see that for a given a fixed value of τbdry (in the left
exterior) the constant parameter cτ ∈ R will determine what τBr (in the right exterior)
will be and vice-versa. We can see that in the special case where cτ = 0 the connected
surface has a trivial horizontal profile in Kruskal time coordinates. For all values of cτ the
connected RT curve will have a spacelike tangent vector and in the limits where cτ → ±∞
the RT curves become null.

When we do our analysis of entanglement wedge nesting we will find it useful to work
in Schwarzschild coordinates since the expressions for entanglement wedge of the thermal
RT surfaces can be expressed in terms regions enclosed by lightcones. For this reason
it is useful to write down the expressions for the connected RT curves in the exterior
Schwarzschild coordinates. To do this start with the expression in Eq. (5.44) and make
use of the coordinate transformation that takes Exterior regions in Kruskal coordinates
to Schwarzschild coordinates given by Eq. (5.28). With the work detailed in Appendix
D.2.2 we obtain the following expression/description for the connected surface in the right
exterior (where the brane is located) in Schwarzschild coordinates:

x(t) = ±a(
z(t)

z+

)2

= 1−
1− z2Br

z2+[
cosh

(
|∆t|
z+

)
+
∣∣B
A

∣∣ sinh( |∆t|
z+

)]2
∆t = t− tBr

A = cos τ∗ sinh

(
tBr
z+

)
− ct cosh

(
tBr
z+

)
B = cos τ∗ cosh

(
tBr
z+

)
− ct sinh

(
tBr
z+

)
τ∗ = τBr − arcsin(ct sin yBr)

ct =
cτ√
1 + c2τ

.

(5.45)

It should be noted that the appearance of the absolute value signs in the expressions is
a “book-keeping” tool which circumvents the issue of worrying about the specific signs
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we need to use for ∆t for a given ct (see Appendix D.2.2 for a complete treatment and
explanation for the appearance of the absolute values).

5.3.3 Discussion of Entanglement Wedges (Planar BTZ BH)

Now that we have discussed both the thermal and connected RT surfaces we will discuss
the entanglement wedges associated to the regions Abdry, ABr, and Abdry ∪ ABr.

Starting with Abdry, we define ΣAbdry
as a partial Cauchy surface with a boundary,

∂ΣAbdry
= Abdry ∪ χther.(Abdry). Using ΣAbdry

we define the entanglement wedge of Abdry,
denoted WE(Abdry), as the domain of dependence of ΣAbdry

. A convenient prescription
which can be used to explicitly construct the entanglement wedge of the boundary interval
A is by considering the a family of null geodesics beginning on χther.(Abdry) which are also
orthogonal to χther.(Abdry) and evolve towards the boundary. The set of these null geodesics
enclose a co-dimension 0 region which is exactly WE(Abdry) as shown in Figure 5.7.
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Figure 5.7: Depicted in the figure above is an example of what WE(Abdry) might look
like. The intersection of the past and future cones is the RT surface χther.(Abdry) shown in
green. The dotted “diamond” is the causal diamond on the boundary associated with the
interval Abdry which horizontally splits the diamond to the future and past of the interval.
We can see the “flattening” effect on the entanglement wedge deeper in the bulk due to
the horizon of the Planar BTZ black hole.

As we discuss in Appendix D.2.4 the entanglement wedge and causal wedge for a con-
stant time interval on the boundary are the same. We have the following explicit expression
for the null surface that encloses the points inside WE(A) (see Appendix D.2.4 for details
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of where this comes from):

a− |t− tbdry| = z+arctanh


√√√√√1−

1− z2

z2+

cosh2
(
x
z+

)
 . (5.46)

We say that (t, x, z) ∈ WE(Abdry) if the points satisfy the inequality:

a− |t− tbdry| > z+arctanh


√√√√√1−

1− z2

z2+

cosh2
(
x
z+

)
 . (5.47)

In an analogous manner we can define the entanglement wedge associated with the
region ABr on the brane. We define ΣABr

as the partial Cauchy slice whose boundary
is given by ∂ΣABr

= ABr ∪ χther.(ABr). Then the entanglement wedge of ABr, denoted
WE(ABr), is simply the domain of dependence of the ΣABr

. Furthermore a more explicit
construction of the of the wedge can be made by considering the a family of null geodesics
beginning on χther.(ABr) which are also orthogonal to χdis.(B) and evolve towards the
boundary. The set of these null geodesics enclose a co-dimension 0 region which is exactly
WE(ABr) as shown in Figure 5.8.
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Figure 5.8: Depicted in the figure above is an example of WE(ABr). There are actually
two entanglement wedges in the figure. The very large wedge which extends behind the
brane is what we called WE(Vir(ABr)) in Appendix D.2.4. The actual entanglement wedge
WE(ABr) is the small piece that is cut out of the larger wedge by the wrapped plane which
is the end-of-the-world brane.
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Based on the discussion in Appendix D.2.4 we can obtain the following inequality which
characterizes the set of points in WE(ABr):

a′ − |t− tBr| > z+arctanh


√√√√√1−

1− z2

z2+

cosh2
(
x
z+

)


a′ = z+arccosh

cosh
(

a
z+

)
√
1− z2Br

z2+

 .
(5.48)

where we make the implicit restriction on (t, x, z) to be in Phys(BTZ) which simply denotes
the bulk region that physically exists and not cut off by the brane.

Finally we turn to the construction of the entanglement wedge associated with Abdry ∪
ABr, denoted, WE(Abdry ∪ ABr). As in the Poincare case we note there are actually two
possible “phases” for WE(Abdry ∪ ABr) which we call the “disconnected phase” or the
“connected phase”. In the disconnected phase we have WE(Abdry ∪ ABr) = WE(Abdry) ∪
WE(ABr), this is simply the union of the separate entanglement wedges of Abdry and ABr
which we already discussed. In the connected phase we define ΣAbdry∪ABr

as the partial
Cauchy slice with a boundary given by ∂ΣAbdry∪ABr

= χcon.(Abdry ∪ ABr) ∪ Abdry ∪ ABr.
Then using this partial Cauchy slice we define the connected phase entanglement wedge as
the domain of dependence of ΣABr∪Abdry

.

5.3.4 Sufficient Condition for EntanglementWedge Nesting (Pla-
nar BTZ BH)

In this subsection we will derive constraints on the parameters defining the separation of
boundary and brane subregions in Kruskal time such that WE(ABr) ⊂ WE(ABr ∪ Abdry)
in the connected phase.

Just as we did in the Poincare AdS3 analysis in Section 5.2.4 we can argue that a
sufficient condition for EWN is given by requiring that all null geodesics originating from
χcon(Abdry ∪ ABr) are unable to reach WE(ABr) (i.e. no causal signals originating from
χcon.(Abdry∪ABr) can influence events in WE(ABr)). Once again we will consider the naive
(and likely over constraining) condition that the the points on the connected surface be
spacelike separated from WE(Vir(ABr)). Such a condition is relatively straightforward to
explore and manipulate mathematically. In particular, the points (t, z, x) ∈ Phys(BTZ)
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are spacelike (or possibly null) separated from points in WE(Vir(ABr)) if the following
inequality is satisfied:

a′ + |t− tBr| ≤ z+arctanh


√√√√√1−

1− z2

z2+

cosh2
(
x
z+

)
 . (5.49)

Points that satisfy such an inequality cannot influence events inside WE(Vir(ABr)) and,
by extension, cannot influence events inside WE(ABr) either. This will guarantee that
WE(ABr) ⊆ WE(Abdry ∪ ABr). So let (tχ, zχ, xχ = ±a) be points on the connected surface
which are described by the expression we wrote in Eq. (5.45) then EWN is satisfied if:

a′ + |tχ − tBr| ≤ z+arctanh


√√√√√1−

1− z2χ
z2+

cosh2
(

a
z+

)
 . (5.50)

In Appendix D.2.5 we study the sufficient condition given in Eq. (5.50) to obtain the
following inequality: ∣∣∣∣BA

∣∣∣∣ ≥ Ξ(a, zBr) =

√√√√√1−
1− z2Br

z2+

cosh2
(

a
z+

) . (5.51)

So as long as the expression above is satisfied we expect to have EWN. It is actually possible
to go even further and derive a specific constraint on the parameter ct which characterizes
the connected surface. If we fix the parameters yBr, τBr, and a and allow ct to vary (i.e.
we fix the location and size of the brane interval and move the boundary interval up and
down in time) then we can visualize the constraint with the help of the listed facts about
B/A discussed in Appendix D.2.2. The visualization is depicted in Figure 5.9.
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Figure 5.9: Depicted in the figure above is a visualization/sketch of the inequality given
in Eq. (5.51). The green line is |B/A| (it has a singularity at ct = c0 = sin τBr

sin yBr
) and the

red line is Ξ. Entanglement wedge nesting is respected when the green line is above the
red line. This naturally gives an interval of values for ct in which entanglement wedge
nesting is satisfied. The lower and upper bounds of the interval are labeled c− for the
lower bound and c+ for the upper bound whose expressions are generally given by Eq.
(5.52). The smallest interval comes from the limit when a → ∞ (i.e. size of the brane
interval diverges), in that case c± is given by Eq. (5.53).

As we can see the right-hand side of the inequality in Eq. (5.51) is a constant horizontal
line. The left hand side of the inequality as a function of ct has a vertical asymptote at
ct = c0 and is non-zero and well defined everywhere else in the regime ct ∈ (−1, 1). The
inequality tells us keep the values of ct where |B/A| lies above the horizontal line. We can
see that the range of values of ct will lie in the interval ct ∈ [c−, c+] where −1 < c− < c0 <
c+ < 1. The specific values of c± can be obtained by solving the equations discussed in
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Appendix D.2.5:

c− = −
[
1 +

[cos(2τBr)− cos(2yBr)] [Ξ
2 cos2 τBr − cos2 yBr]

2 cos2 τBr (sin yBr − Ξ sin τBr)
2

]− 1
2

c+ =

[
1 +

[cos(2τBr)− cos(2yBr)] [Ξ
2 cos2 τBr − cos2 yBr]

2 cos2 τBr (sin yBr + Ξ sin τBr)
2

]− 1
2

.

(5.52)

The tightest interval occurs when we take the limit of the expressions above as Ξ → 1 to
give:

c− = − 1√
1 +

(
sin τBr+sin yBr

cos τBr

)2
c+ =

1√
1 +

(
sin τBr−sin yBr

cos τBr

)2 . (5.53)

5.3.5 Discussion of Constraints for Planar BTZ Black Hole Re-
sults

Now that we have derived a sufficient condition for having a respect for EWN in the
connected phase we can continue and describe a nice geometric interpretation of what the
tightest constraints given in Eq. (5.53) mean. The answer is quite simple. First lets recall
that a-priori we just required that |ct| < 1 so the connected RT surfaces are spacelike. The
consequences of this is the following. Suppose we have a connected curve which starts on
the left boundary at some Kruskal time |τbdry| < π/2. For ct = 0 the connected surface in
Kruskal coordinates has a trivial horizontal profile and will end on the brane in the right
exterior at the same time Kruskal time as it started with in the boundary. However for
more general values of ct less than unity one can imagine that there are certain values of ct
where the surface would go through the past or future “singularity” (into a new “universe”)
before it hits the brane. It turns out the the condition that EWN hold for intervals on
the brane in the right exterior exactly excludes the configurations that would allow the
connected surface to go through the singularity. In particular, if we fix the location of a
constant time interval in the right exterior on the brane (i.e. fix τBr and yBr) then the
condition that EWN holds translates to:

− 1√
1 +

(
sin τBr+sin yBr

cos τBr

)2 ≤ ct ≤
1√

1 +
(

sin τBr−sin yBr

cos τBr

)2 . (5.54)
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In Figure 5.10 we plot the connected surface in Kruskal coordinates in the τ − y plane for
c = c+, c = c−, and c = c0 and see that the condition prevents the connected surface from
going past the future and past singularities.
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Figure 5.10: Above we fix τBr and yBr for can consider trajectories of the connected surfaces
which correspond to c± given in Eq. (5.53) as well as c0 which we can see goes through
the bifurcate horizon.

5.4 Future Efforts

We have studied/derived the constraints imposed by naive sufficient conditions which en-
sure EWN in 3D AdS spacetimes that are cutoff by an end-of-the-world brane we will
conclude this chapter by discussing some open issues (at the time of writing this chapter).
Perhaps the biggest issue is that we did not address is when the connected phase actually
exists if there is no connected phase no violations can occur. Therefore, in the future we
will be interested in trying to understand if the regimes where we have EWN violations
are actually valid connected phases. The other open issue concerns the conditions them-
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selves. The conditions we obtained are sufficient conditions and it is not entirely clear that
they are necessary conditions for entanglement wedge nesting. We already suggested that
the constraint we got in the Poincare AdS3 analysis is likely too strong and more careful
analysis is needed to understand the necessary condition. The intuition we currently have
for future efforts in formulating a set of necessary conditions is to conjecture that if entan-
glement wedge nesting is violated in the connected phase then the violations should start
in arbitrarily small bulk neighborhoods of the endpoints of the brane interval where the
connected and disconnected RT surfaces meet. If such a conjecture is true then we can
likely find a necessary condition for entanglement wedge violation by simply analyzing the
trajectory of null geodesics in the vicinity of the entangling surface on the brane (this may
also prove to be a useful approach in higher dimensions as well).
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Part III

Concluding Remarks
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Chapter 6

Thesis Conclusion

6.1 Review of Major Results

Now that we have gone through the main works of this thesis it is useful to give a brief
summary.

In Chapter 2, we studied the relation between the scrambling and echo time scale
for AdS black holes that are spherically symmetric. We showed that the integral in the
echo time got most of its contribution near the horizon and it was this piece of the echo
time scale which could be identified with the scrambling time scale. We also suggested
that if one wanted to understand if echoes exist for a particular holographic CFT state
(which resembled a black hole with horizon modifications) we should expect OTOCs at
early times to exhibit exponential decay as they would for a standard black hole but after
the scrambling time scale one might see echoes in the OTOC signalling the existence of
some modifications near the horizon. We concluded the chapter by speculating on possible
future avenues of exploration in Section 2.7.

In Chapter 3, we analyzed the idea of echoes from the perspective of black hole mi-
crostate statistics. We adopted the perspective that the unitary description of a black hole
is given by a thermal ensemble of eSBH microstates. The way by which the black hole ther-
malizes after being perturbed is then determined by correlators in the thermal ensemble
of microstates. We adopted the spectral form factor as a convenient proxy for a two point
function calculation and studied how the time dependence of the form factor depended on
the spectral statistics of the microstates. We adopted the i.i.d. model which assumed the
nearest neighbor spacing between adjacent eigenvalues obeyed the same distribution. With
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this model, we could compute closed form expressions for the form factor. We reproduced
standard behaviour of the form factor with a ramp and plateau for nearest neighbor spac-
ing statistics that are given by the Wigner surmise. We then considered a generalization
of the Wigner surmise statistics and considered a more general Dyson index which would
show up in β ensembles. We showed that for β ensembles the form factor could exhibit late
time “echoes.” In particular, we suggested that the echoes that occur in β ensembles with
a large Dyson index could be attributed to enhanced repulsion between eigenvalues which
is not present in classical Gaussian ensembles. We also showed that it was possible to
obtain early time echoes if one had regularly spaced clusters of microstates. We concluded
the chapter by speculating on possible future avenues of exploration in Section 3.5.

In Chapter 4, we studied how the evaporation rate of black holes was affected by the
extraction of radiation close to the horizon by an absorptive screen. We modelled the screen
as a perfectly absorptive surface and defined the generalized greybody factor to understand
what fraction of Hawking radiation would be able to reach the screen. Unsurprisingly, we
found that the closer we place the screen to the black hole the faster its evaporation rate
will be. We applied our results for Pennington information recovery time and found that
for small AdS black holes the results are the same as what Pennington had in his paper.
However, for large AdS black holes we had an information recovery time that was the
scrambling time associated with a AdS sized cell on the horizon which is reasonable. We
then proceeded to discuss the physics of the screen by viewing it as an interface that glued
an interior spacetime containing the black hole with an exterior spacetime which acted as
a bath to store the radiation. Using junction conditions we determined the stress energy
tensor of the interface and showed that it satisfied a radial NEC but violated the angular
NEC. We concluded the chapter by speculating on possible future avenues of exploration
in Section 4.5.

In Chapter 5, we studied entanglement wedge nesting in 3D AdS spacetimes with an
end-of-the-world branes. We considered a setup in Poincare AdS3 where we defined a
constant time interval on the boundary and another constant time interval on the brane.
We then computed the different candidate RT curves that would be anchored to the sub-
regions on the brane and boundary. Under the assumption that the connected phase
existed for a particular choice of placement of the brane and boundary intervals we wanted
to know when the entanglement wedge associated with the brane interval would be com-
pletely nested inside the connected wedge which formed a “tube” connecting the brane and
boundary subregions. We found a sufficient constraint for EWN in the connected phase
by requiring that the connected RT curves be spacelike separated from the entanglement
wedge associated with the brane. We found that if we were to assume the sufficient con-
dition as necessary then requiring the interval on the brane and boundary to be spacelike
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separated in the bulk would not be enough to ensure entanglement wedge nesting. We
also did a similar computation for entanglement wedge nesting for a two-sided Planar BTZ
black hole. We found that in the limit where the brane and boundary intervals became
infinitely large our sufficient condition for EWN had a nice geometric interpretation that
the connected surface should stay within the allowed bounds of the Kruskal diagram. We
concluded the chapter by speculating on future avenues of exploration in Section 5.4.
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[145] Gábor Sárosi. AdS2 holography and the SYK model. PoS, Modave2017:001, 2018.

[146] Gerard ’t Hooft. Dimensional reduction in quantum gravity. Conf. Proc. C,
930308:284–296, 1993.

[147] Gerard ’t Hooft. The Scattering matrix approach for the quantum black hole: An
Overview. Int. J. Mod. Phys. A, 11:4623–4688, 1996.

[148] Gerard ’t Hooft. The Holographic principle: Opening lecture. Subnucl. Ser., 37:72–
100, 2001.

[149] Tadashi Takayanagi. Holographic Dual of BCFT. Phys. Rev. Lett., 107:101602, 2011.

205



[150] W. G. Unruh and R. M. Wald. How to mine energy from a black hole. General
Relativity and Gravitation, 15(3):195–199, March 1983.

[151] W.G. Unruh and Robert M. Wald. Acceleration Radiation and Generalized Second
Law of Thermodynamics. Phys. Rev. D, 25:942–958, 1982.

[152] Mark Van Raamsdonk. Evaporating Firewalls. JHEP, 11:038, 2014.

[153] Mark Van Raamsdonk. Lectures on Gravity and Entanglement. In Proceedings,
Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers
in Fields and Strings (TASI 2015): Boulder, CO, USA, June 1-26, 2015, pages
297–351, 2017.

[154] Robert M. Wald. General Relativity. Chicago Univ. Pr., Chicago, USA, 1984.

[155] Qingwen Wang and Niayesh Afshordi. Black hole echology: The observer’s manual.
Phys. Rev., D97(12):124044, 2018.

[156] Julian Westerweck, Alex Nielsen, Ofek Fischer-Birnholtz, Miriam Cabero, Collin
Capano, Thomas Dent, Badri Krishnan, Grant Meadors, and Alexander H. Nitz.
Low significance of evidence for black hole echoes in gravitational wave data. Phys.
Rev., D97(12):124037, 2018.

[157] Edward Witten. Anti-de Sitter space, thermal phase transition, and confinement in
gauge theories. Adv. Theor. Math. Phys., 2:505–532, 1998. [,89(1998)].

[158] Beni Yoshida and Alexei Kitaev. Efficient decoding for the Hayden-Preskill protocol.
2017.

206



APPENDICES

207



Appendix A

Chapter 2 Appendix Materials

A.1 Derivation of Effective Potential for Scalar Per-

turbations

In this appendix, we derive the effective potential and wave equation for a minimally
coupled massless scalar field propagating a spacetime with a metric of the following form:

ds2 = gµνdx
µdxν = −f(r)dt2 + dr2

f(r)
+ r2gΩIJdϕ

IdϕJ , (A.1)

where gΩIJ is the metric on a d− 1 unit sphere and ϕI are angular coordinates on the d− 1
unit sphere. Notice that we made no assumptions of the functional form f(r) so our results
will work for any metric of the form given above. The equation of motion for the scalar
field is a wave equation given by:

□Ψ =
1√
−g

∂µ
(√

−ggµν∂νΨ
)
= 0. (A.2)

Upon expansion of the sums we can write the wave equation in the form:

□Ψ = − 1

f(r)
∂2tΨ+

1

rd−1
∂r
(
rd−1f(r)∂rΨ

)
+

1

r2
√
gΩ
∂I

(√
gΩ
(
gΩ
)IJ

∂JΨ
)
= 0. (A.3)

We make the anzatz Ψ = R(t,r)
r∆

Φl(ϕ
I), where ∆ = d−1

2
and Φl(ϕ

I) are hyper-spherical
harmonics on the unit d− 1 sphere which obeys the eigenvalue equation:
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1√
gΩ
∂I

(√
gΩ
(
gΩ
)IJ

∂JΦl

)
= l(2− d− l)Φl. (A.4)

Using the anzatz outlined above along with the eigenvalue expression for the hyper-
spherical harmonics the wave equation can be written as:

−∂2tR + ∂2r∗R− f(r)

[
∆

r

∂f

∂r
+

∆(d− 2−∆)

r2
f(r) +

l(l + d− 2)

r2

]
R = 0. (A.5)

Where we introduced a simple change of variables in the radial coordinate dr∗ =
dr
f(r)

. The
resulting equation is a simple radial wave equation with an effective potential given by:

− ∂2tR + ∂2r∗R− Veff(r)R = 0

Veff(r) = f(r)

[
d− 1

2r

∂f

∂r
+

(d− 1)(d− 3)

4r2
f(r) +

l(l + d− 2)

r2

]
.

(A.6)

This gives the form of the effective potential. The angular momentum barrier occurs at a
local maxima of the effective potential outside the horizon radius. In general it is not as
clear that such a local maxima will exist until one specifies f(r). In the large l limit we
can approximate the effective potential by:

Veff(r) ≈
l2

r2
f(r). (A.7)

This is only valid in a finite neighborhood of the horizon but it is much easiler to analyze
and find local maxima and minima of the potential in this regime. To conclude, we can
plug in the Anzatz R(t, r) = e−iωtR(r∗) to write down the radial equation as:

d2R
dr2∗

+
(
ω2 − Veff(r)

)
R = 0. (A.8)

The equation above makes it clear why the turning points of the effective potential depend
on the frequency, ω, of the scalar perturbation.

A.2 Near Extremal AdS RN Black Holes

In this section we will go over the AdS RN black hole solution and its extremal regime.
The AdS RN black hole has the metric given by Eq. (4.68) with:
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f(r) = 1− 2M

rd−2
+

Q2

r2(d−2)
+
r2

L2
. (A.9)

The horizon occurs at r = r+ where f(r+) = 0. Using this we can rewrite f in terms of
the horizon radius rH and the charge Q:

f(r) =

(
1− rd−2

+

rd−2

)(
1− Q2

rd−2rd−2
+

)
+
r2

L2

(
1−

rd+
rd

)
. (A.10)

Using this we can compute the temperature of the black hole:

T =
f ′(r+)

4π
=
d− 2

4πr+

(
1− Q2

r
2(d−2)
+

+
d

d− 2

r2+
L2

)
. (A.11)

We set the temperature equal to zero to compute the relation between Q and rext when
the black hole is extremal. We find that:

Q2 = r
2(d−2)
ext

(
1 +

d

d− 2

r2ext
L2

)
. (A.12)

We can plug this back into the expression for f and write:

f(r) =

(
1− rd−2

+

rd−2

)[
1−

(
1 +

d

d− 2

r2ext
L2

)
r
2(d−2)
ext

rd−2rd−2
+

]
+
r2

L2

(
1−

rd+
rd

)
. (A.13)

We get fext(r) by setting r+ = rext. Using this we will find that:

f ′′
ext(r+ = rext) =

2(d− 2)2

r2+
+

2d(d− 1)

L2
. (A.14)

Now we can analyze what happens when r+ ≫ L and r+ ≪ L:

f ′′
ext(r+) =

{
2(d−2)2

r2+
+ ... r+ ≪ L

2d(d−1)
L2 + ... r+ ≫ L.

(A.15)

We can use these results to compute the leading order contribution to the echo time for
AdS RN black holes in the near extremal regime.
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A.3 Calculating t∗ with δR = πℓ2p/β

To calculate t∗ with the choice δR = πℓ2p/β it will be useful to manipulate Eq. (2.59)
as follows. Using the first law of black hole thermodynamics at constant charge we know
δS = βδE. Where δE is the energy of the perturbation. Using the fact that the entropy
of a black hole is proportional to its area (A ∼ Rd−1

H ) we can rewrite everything in terms
of δR, RH , and Rext:

t∗ ∼
β

2π
ln

[
RH

(d− 1)δR

(
1− Rd−1

ext

Rd−1
H

)]
=


β
2π

[
ln
(
RH

δR

)
+O

(
ln
(
1− Rd−1

ext

Rd−1
H

))]
Rext ≪ RH

β
2π

[
ln
(
RH−Rext

δR

)
+O

(
1− Rext

RH

)]
Rext ≈ RH ,

(A.16)
where RH is the radius of the black hole, δR is the change in the radius of the black hole,
and Rext is the radius of an extremal black hole with the same charge as the black hole we
are considering. Now we set δR = πℓ2p/β and then substitute this into the leading order
terms in the two cases in Eq. (A.16) we will find:

t∗ ∼


β
2π

ln
(
βRH

ℓ2p

)
Rext ≪ RH

β
2π

ln
(
β(RH−Rext)

ℓ2p

)
Rext ≈ RH .

(A.17)

From this, we can clearly see that far from the extremal limit, we reproduce the echo time
scale. The second case which corresponds to a near extremal black hole requires a bit more
work.

First we start with:

text∗ ≃ β

2π
ln

(
β(RH −Rext)

ℓ2p

)
. (A.18)

Using Eqs. (A.11-A.12) we can express the temperature in terms of RH and Rext:

T = β−1 =
d− 2

4πRH

[(
1− R

2(d−2)
ext

R
2(d−2)
H

)
+

d

d− 2

R2
H

L2

(
1− R

2(d−1)
ext

R
2(d−1)
H

)]
. (A.19)

Using this this we can do a series expansion for t∗ in the near extremal limit to get:
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t∗ ≃
β

2π
ln

 2πR2
H

ℓ2p

[
(d− 2)2 +

R2
H

L2 d(d− 1)
]
+O

(
1− Rext

RH

)
. (A.20)

Using the result above we will find:

text∗ ∼


β
2π

ln
(
R2

H

ℓ2p

)
RH ≪ L

β
2π

ln
(
L2

ℓ2p

)
RH ≫ L.

(A.21)

Therefore, t∗ with the choice δR = πℓ2pTH , reproduces the echo time scale correctly to
leading order for both large and small black holes in extremal and non-extremal regimes
Eqs. (2.52 - 2.53).

A.4 Entropy Shift corresponding to a Proper Planck

Shift of the Horizon

In this appendix we study how the entropy of an AdS RN black hole changes when its
horizon is shifted by a proper Planck length. We define the the physical shift in the
horizon radius of a spherical black hole through the following integral expression:

δRphys =

∫ RH+δR

RH

dr√
f(r)

. (A.22)

This is simply the proper length between the horizons of the unperturbed black at RH hole
and the perturbed black hole at RH + δR. Therefore, δR is the coordinate change in the
radius of the horizon which goes into the formula for calculating the entropy of a black
hole.

The the semi-classical description of spacetime as a smooth manifold is an effective
description only valid on proper length scales larger than a Planck length. Due to this fact
we impose the constraint, δRphys ≳ ℓp. Essentially, this means that the smallest possible
perturbation to a black hole (which a classical observer can resolve) must shift the horizon
by a proper Planck length1.

1One may object to the way we define the shift in the horizon of a black hole on the grounds that the
perturbed black hole and the unperturbed black hole are not equivalent spacetime manifolds. The integral

212



Now we analyze how a proper Planck shift changes the entropy content of a black hole.
Using Eq. (2.61) and δR = πℓ2pTH we can obtain the following change in the entropy of
the black hole:

δS = πCd(d− 1)RHTH

(
RH

ℓp

)d−3

. (A.23)

Based on the arguments we made, the above expression represents the smallest perturbation
to a black hole which results in a shift in the horizon which is classically measurable. We
see that the entropy shift corresponding to a proper Planck length shift of the horizon
depends on the temperature of the black hole being perturbed. In particular, there is a
critical temperature below which when the change in entropy of the black hole is less than
one. Setting δS ≥ 1 gives us the following constraint on the temperature of the black hole:

TH ≥ 1

Cd(d− 1)πRH

(
ℓp
RH

)d−3

(A.24)

Now we substitute the expression for the temperature of an AdS RN black hole, given in
terms of Rext and RH which is given by combining Eqs. (A.11 - A.12). We will get:

d− 2

4πRH

[
1− R

2(d−2)
ext

R
2(d−2)
H

+
d

d− 2

R2
H

L2

(
1− R

2(d−1)
ext

R
2(d−1)
H

)]
≥ 1

Cd(d− 1)πRH

(
ℓp
RH

)d−3

. (A.25)

Rearranging the terms in the inequality above gives:

[
1− R

2(d−2)
ext

R
2(d−2)
H

+
d

d− 2

R2
H

L2

(
1− R

2(d−1)
ext

R
2(d−1)
H

)]
≥ 4

Cd(d− 1)(d− 2)

(
ℓp
RH

)d−3

. (A.26)

Where RH is the horizon radius, Rext is the radius if the extremal RN black hole with the
same charge, and L is the AdS radius.

For an uncharged AdS Schwarzschild black hole one can set Rext = 0. In this case,
it is easy to see that the constraint is satisfied whenever RH ≫ ℓp. This means that for

we defined is not a good measure of how much the horizon changed because it does not account for the fact
that the perturbed black hole represents a new manifold. To address this concern we show, in Appendix
A.5, that a more reasonable definition that measures the change in the horizon radius essentially gives
back the same result we would get using the naive integral defined in Eq. (A.22)
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any Schwarzschild AdS black hole (RH ≫ ℓp) a proper Planck shift in the horizon always
changes the entropy by an amount larger than one. However, once we consider black holes
sufficiently close to the extremal regime it is clear that the inequality will be violated.
To understand exactly how close we need get to the extremal regime before violating the
inequality. We do a series expansion of the left hand side of Eq. (A.26) near R ≃ Rext and
find to leading order that:

1− Rext

RH

≳
2

C(d− 1)(d− 2)
[
d− 2 + d(d−1)

d−2

R2
H

L2

] ( ℓp
RH

)d−3

. (A.27)

Based on the result above, it is clear that if d ≥ 4 we can get “reasonably” close to an
extremal black hole (i.e. arbitrarily close in limit ℓp/RH → 0) before a proper Planck
length shift changes the entropy by an amount less than 1.

In the case when d = 3 we can show that Eq. (A.26) exactly takes the form of a
quadratic:

−3x2Hy
2 − y +

(
1 + 3x2H − 2

π

)
≥ 0, (A.28)

where y = R2
ext/R

2
H and xH = RH/L. Taking a derivative of the left hand side of the

inequality with respect to y reveals that in the interval y ∈ [0, 1] the function is strictly
decreasing. Furthermore, we know that the y-intercept of the quadratic function is positive.
This means that it will become negative after it achieves its positive root. The location of
the root will tell us how close we can get to the extremal regime before δS < 1. Therefore,
the problem simplifies to finding the positive root of the quadratic on the left hand side of
the inequality. Using the quadratic formula it is easy to see that the positive zero is at:

y = y0 =
−1 +

√
1 + 12x2H

(
1 + 3x2H − 2

π

)
6x2H

. (A.29)

Using the previous arguments it is clear that the the inequality given by Eq. (A.28) is
satisfied as long as y ∈ [0, y0]. This gives us the result in Eq. (A.30).

R2
ext

R2
≤

−1 +

√
1 +

12R2
H

L2

(
1 +

3R2
H

L2 − 2
π

)
6R2

H

L2

. (A.30)

In Fig. A.1 we plot the the square root of the right hand side of the inequality as a
function of RH/L to get an idea of how close we can get to the extremal regime for small
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δS=1 for Planck Shift

Rext /RH=1 (Extremal BH)

0.2 0.4 0.6 0.8 1.0

RH

L

0.7

0.8

0.9

1.0

Rext

RH

δS<1 Region

δS>1 Region

Figure A.1: Above is a plot of Rext/RH as a function of RH/L for d = 3 (plot of the square
root of the right hand side of Eq. (A.30)). The solid line represents the closest one can get
to the extremal regime (i.e. Rext/RH = 1 represented by the dashed line) before a proper
Planck length shift of the horizon results in δS < 1.

AdS black holes in 4D. Any black hole below the solid line whose horizon is shifted by a
proper Planck length will result in δS > 1. Black holes above the solid line whose horizon
is shifted by a proper Planck length will have δS < 1. Analyzing Fig. A.1, we see that
for asymptotically flat black holes in 4D, one cannot get very close to the extremal regime
(i.e. Rext/RH ≲ 0.6) before a proper Planck length shift results in δS < 1. However,
we see that as RH/L becomes larger, one can get asymptotically closer to the extremal
regime. For example, we see that once RH/L = 1 one can get as close as Rext/RH ≈ 0.95.
Based on these results we can conclude that that for very large AdS black holes in 4D (i.e.
RH/L≫ 1) we can get very close to the extremal regime before δS < 1.

A.5 A Semi-Classical Notion of Black Hole Distin-

guishability

In this appendix we will consider a family of spherically symmetric black hole metrics,
labelled by their horizon radius, which can be written in the form:
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ds2 = −fRH
(r)dt2 +

dr2

fRH
(r)

+ r2dΩ2
d−1. (A.31)

Where the subscript RH is the radial coordinate of the horizon. Now consider two black
holes; one with a horizon at RH and another at RH + δR, with δR ≪ RH . In the semi-
classical regime, spacetime is described by a smooth manifold. This is an effective descrip-
tion which is assumed to break down on length scales smaller than a Planck length. Since
there is a limit on the distances we can resolve within a spacetime it also seems reasonable
to suggest that there is a limit on how well we can semi-classically distinguish two nearby
black hole solutions. We propose that the following constraint should be enforced for black
holes described by Eq. (A.31):

δRphys =

∫ ∞

RH

dr√
fRH

(r)
−
∫ ∞

RH+δR

dr√
fRH+δR(r)

≳ ℓp. (A.32)

The constraint above describes the difference between the proper radial lengths between
infinity and the horizon of two black holes. In general, the two integrals on their own will
diverge. However, the difference of the integrals will converge to a finite expression. We
interpret this difference as the “proper” change in the horizon radius and posit that in the
semi-classical regime, the proper change in the radius must be larger than a Planck length.
This places a constraint on the smallest possible δR (and thereby the smallest semi-classical
perturbation to a black hole). Before trying to obtain a result on the smallest δR we will
write the difference in a suggestive manner:

δRphys =

∫ RH+δR

RH

dr√
fRH

(r)
+

∫ ∞

RH+δR

(
1√

fRH
(r)

− 1√
fRH+δR(r)

)
. (A.33)

Notice that the first integral is exactly the integral given in Eq. (A.22). We analyze the
first integral in Eq. (A.33) by expanding fRH

at r = RH to second order:

∫ RH+δR

RH

dr√
fRH

(r)
≈
∫ RH+δR

RH

dr√
c1(r −RH) + c2(r −RH)2

=
2

√
c2

ln

[√
1 +

c2
c1
δR +

√
c2
c1
δR

] (A.34)

Where cn = 1
n!

dnfRH
(RH)

drn
, in particular c1 = 4πTH . We do an expansion in δR to find (for

an AdS RN BH):
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∫ RH+δR

RH

dr√
fRH

(r)
≈
√

δR

πTH

[
1− c2δR

24πTH
+ ...

]
c2 =

1

R2
H

[
(d− 2)2 +

d(d− 1)R2
H

L2
− (2d− 5)2πRHTH

] (A.35)

Now we analyze the second integral in Eq. (A.33). To approximate the value of this
integral we will again take the the example of an AdS RN black hole. We begin by
expanding fRH+δR(r) as a series in δR to second order:

fRH+δR(r) = fRH
(r) + 4πRHTH

(
RH

r

)d−2
δR

RH

− (d− 2)2
[
1 +

d− 1

(d− 2)2

(
dR2

H

L2
− 2πRHTH

)](
RH

r

)d−2(
δR

RH

)2

+ ...

(A.36)

We can plug this expansion into the integrand of the second integral and expand the
integrand order by order in δR. At each order in δR we will need to evaluate integrals of
the form given below:

In =

∫ ∞

RH+δR

dr

(fRH
(r))1/2+n rd−2

. (A.37)

These integrals clearly converge for any n ∈ N due to the fact that fRH
(r) ∼ r2/L2 at

infinity. Since the largest contribution to the integrals will come from the lower limit
of the integration, we should get a good approximation to the value of the integral by
expanding fRH

(r) near r = RH to second order. Then we find the anti-derivative and
evaluate at the lower and upper limits of integration. We then expand the result in δR
and we will find the following result:
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∫ ∞

RH+δR

(
1√

fRH
(r)

− 1√
fRH+δR(r)

)
dr ≈ −5

8

√
δR

πTH
+

Γ
(
d− 3

2

)
2Γ(d− 2)

δR√
RHTH

.− 1

64R2
H

[
5d(d− 1)R2

H

L2
+ 5(d− 2)2 − 2(7d− 9)πRHTH

](
δR

πTH

)3/2

+ ..

=

√
δR

πTH

[
−5

8
+

Γ
(
d− 3

2

)
2Γ(d− 2)

(
πδR

RH

)1/2
]

√
δR

πTH

[
− 1

64

(
5d(d− 1)R2

H

L2
+ 5(d− 2)2 − 2(7d− 9)πRHTH

)(
δR

πTHR2
H

)]
+O(δR2)

(A.38)

Once we factor out an overall factor of
√
δR/(πTH) we can see how the series organizes

itself into two parts. One part will involve terms that are multiplied by powers of δR/RH ,
such terms come from the upper limit of the integral at infinity. The other part of the
series involves powers of δR/(THR

2
H) which come from the lower limit of the integral at

RH + δR. Once we combine the series expansions given in Eq. (A.35) and Eq. (A.38) we
will find the following terms in the expansion for δRphys:

δRphys ≈
√

δR

πTH

[
3

8
+

Γ
(
d− 3

2

)
2Γ(d− 2)

(
πδR

RH

)1/2
]

+

√
δR

πTH

[
− 1

64R2
H

(
5d(d− 1)R2

H

L2
+ 5(d− 2)2 − 2(7d− 9)πRHTH

)
δR

πTHR2
H

]
+ ...

(A.39)

We see that by ignoring the sub-leading terms we will have:

δRphys ≈
3

8

√
δR

πTH
∼ ℓp ⇒ δR ∼ THℓ

2
p. (A.40)

It can be checked that if δRphys ∼ THℓ
2
p, then the sub-leading terms will be negligible as

long as ℓp ≪ min{RH , L}.
Therefore, the leading order behaviour of δRphys is captured, up to an overall constant,

by the first integral in Eq. (A.33). This is why we can safely use the the definition given
in Eq. (A.22) to quantify the horizon shift.
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Appendix B

Chapter 3 Appendix Materials

B.1 Deriving the Spectral Form Factor of the i.i.d

Model

In this section we derive Eq. (3.14). We begin with the expression for the partition function
for a spectrum given by Eq. (3.5). It is given by (in this derivation we will treat β as a
general complex parameter):

Z(β) =
N∑
n=0

e−β(E0+
∑n

k=1 δEk) = e−βE0

(
1 +

N∑
n=1

n∏
k=1

e−βδEk

)
= e−βE0

[
1 + e−βδE1 +

(
e−βδE1e−βδE2

)
+ · · ·+

(
e−βδE1e−βδE2 · · · e−βδEN

)]
.

(B.1)

Now we define the following recursive indexed quantity:

Zm(β) = e−βδEm (1 + Zm+1(β))

ZN+1(β) = 0 ⇒ ZN(β) = e−βδEN ,
(B.2)

where m = 1, 2, ..., N − 1, N . Using these indexed quantities, we may express the partition
function and its complex conjugate as follows:

Z(β) = e−βE0 (1 + Z1(β))

Z(β∗) = e−β
∗E0 (1 + Z1(β

∗)) ,
(B.3)

where β∗ is the complex conjugate of β. We can then write:

⟨Z(β)Z(β∗)⟩ = e−E0(β+β∗) ⟨1 + Z1(β) + Z1(β
∗) + Z1(β)Z(β

∗)⟩
= e−E0(β+β∗) [1 + ⟨Z1(β)⟩+ ⟨Z1(β

∗)⟩+ ⟨Z1(β)Z1(β
∗)⟩] .

(B.4)
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To compute ⟨Z1(β)⟩, we will find a general formula for ⟨Zm(β)⟩. We use the recursion
relation given by Eq. (B.2) to find the following result for ⟨ZN(β)⟩:

⟨ZN(β)⟩ = ⟨e−βδEN ⟩ =
∫ ∞

−∞
dE1 · · · dENP (E1, .., EN)e

−βδEN

=

∫ ∞

−∞
dδE1 · · · dδEN

N∏
k=1

P(δEk)e
−βδEN = b

b =

∫ ∞

−∞
dxP(x)e−βx.

(B.5)

For ⟨ZN−1(β)⟩, we have:

⟨ZN−1(β)⟩ = ⟨e−βδEN−1 (1 + ZN(β))⟩ = ⟨e−βδEN−1 + e−βδEN−1e−βδEN ⟩
= ⟨e−βδEN−1⟩+ ⟨e−βδEN−1e−βδEN ⟩ = b+ b2.

(B.6)

Continuing inductively we can show that:

⟨ZN−k(β)⟩ = ⟨e−βδEN−k +
k∑
ℓ=1

ℓ∏
j=0

e−βδEN−k+j⟩ = b
k∑
p=0

bp =
b
(
1− bk+1

)
1− b

. (B.7)

Using these results we can conclude that:

⟨Zm(β)⟩ =
b(1− bN−m+1)

1− b

⟨Zm(β∗)⟩ = b∗(1− (b∗)N−m+1)

1− b∗
,

(B.8)

where b∗ is the complex conjugate of b. We can immediately conclude that:

⟨Z(β)⟩ = e−βE0

[
1 +

b(1− bN)

1− b

]
⟨Z(β∗)⟩ = e−β

∗E0

[
1 +

b∗(1− (b∗)N)

1− b∗

]
.

(B.9)

In a similar manner, we consider the quantity Bm = ⟨Zm(β)Zm(β∗)⟩:

Bm = ⟨Zm(β)Zm(β∗)⟩ = ⟨e−δEm(β+β∗) (1 + Zm+1(β)) (1 + Zm+1(β
∗))⟩

= ⟨e−δEm(β+β∗)⟩+ ⟨e−δEm(β+β∗)Zm+1(β)⟩+ ⟨e−δEm(β+β∗)Zm+1(β
∗)⟩

+ ⟨e−δEm(β+β∗)Zm+1(β)Zm+1(β
∗)⟩ .

(B.10)
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Using the fact that ZN+1(β) = 0, we obtain the following result for BN :

BN = ⟨e−δEN (β+β∗)⟩ =
∫ ∞

−∞
dxP(x)e−x(β+β

∗) = a. (B.11)

Using the fact that Zm+1 is only a function of {δEi}m+1
i=N , we have the following recursion

relation:

Bm = a (1 + ⟨Zm+1(β)⟩+ ⟨Zm+1(β
∗)⟩+Bm+1)

= a

(
1 +

b(1− bN−m)

1− b
+
b∗(1− (b∗)N−m)

1− b∗
+Bm+1

)
a = ⟨e−δEm(β+β∗)⟩ =

∫ ∞

−∞
dxP(x)e−x(β+β

∗)

BN+1 = 0 ⇒ BN = a.

(B.12)

Using the inductive relation above it is straightforward to show that:

BN−k = a

[
ak +

k−1∑
p=0

apfN−k+p

]

fm = 1 +
b(1− bN−m)

1− b
+
b∗(1− (b∗)N−m)

1− b∗
.

(B.13)

One can then explicitly evaluate the geometric sums involved and arrive at the following
expression for Bm:

Bm =
a− aN−m+2

1− a
+

ab

1− b

[
a(1− aN−m − bN−m+1)− b(1− bN−m − aN−m+1)

(1− a)(a− b)

]
+

ab∗

1− b∗

[
a(1− aN−m − (b∗)N−m+1)− b∗(1− (b∗)N−m − aN−m+1)

(1− a)(a− b∗)

]
.

(B.14)

We can check that this expression satisfies the recursion relation given in Eq. (B.12). By
setting m = 1 we can obtain B1:

B1 =
a

1− a

[
1− aN +

b
(
a− b+ aN(b− 1) + bN(1− a)

)
(1− b)(a− b)

+
b∗
(
a− b∗ + aN(b∗ − 1) + (b∗)N(1− a)

)
(1− b∗)(a− b∗)

]
.

(B.15)
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Now that we have calculated all the necessary averages we can plug them into the Eq.
(B.4) to find the following result:

⟨Z(β)Z(β∗)⟩ = e−(β+β∗)E0

(
1 +

b(1− bN)

1− b
+
b∗(1− (b∗)N)

1− b∗
+B1

)
= e−(β+β∗)E0

(
1− aN+1

1− a
+

b

1− b

[
a− b+ aN+1(b− 1) + bN+1(1− a)

(1− a)(a− b)

])
+ e−(β+β∗)E0

b∗

1− b∗

[
a− b∗ + aN+1(b∗ − 1) + (b∗)N+1(1− a)

(1− a)(a− b∗)

]
a = ⟨e−(β+β∗)δE⟩ =

∫ ∞

−∞
P(x)e−(β+β∗)xdx

b = ⟨e−βδE⟩ =
∫ ∞

−∞
P(x)e−βxdx

b∗ = ⟨e−β∗δE⟩ =
∫ ∞

−∞
P(x)e−β

∗xdx.

(B.16)

Making the replacements β → β + it and β∗ → β − it gives us the expression for spectral
form factor given in Eq. (3.14).

B.2 Average Spectral Density For Poisson Spacing

In this section we go over the details of the computing the integrals involved in computing
expression for the average spectral density for a Poisson spacing distribution. To begin we
can write the JPDF for the energy levels given as:

P (E1, .., EN) =
N∏
k=1

[
Θ(Ek − Ek−1)

e−(Ek−Ek−1)/σ

σ

]

=
e−(EN−E0)/σ

σN

N∏
k=1

Θ(Ek − Ek−1).

(B.17)

Using this we can write the average spectral density as:

⟨ρ(E)⟩ = δ(E − E0) +

∫ ∞

−∞
dE1 · · · dENP (E1, .., EN)

N∑
m=1

δ(E − Em)

= δ(E − E0) +
N∑
m=1

∫ ∞

−∞
dE1 · · · dEN

e−(EN−E0)/σ

σN
δ(E − Em)

N∏
k=1

Θ(Ek − Ek−1).

(B.18)
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With some work we can derive the following identities:∫ ∞

−∞
dE1 · · · dEm−3

m−2∏
k=1

Θ(Ek − Ek−1) = Θ(Em−2 − E0)
(Em−2 − E0)

m−3

(m− 3)!∫ ∞

−∞
dEm+2 · · · dENe−(EN−E0)/σ

N∏
k=m+2

Θ(Ek − Ek−1) = σN−m−1e−(Em+1−E0)/σ.

(B.19)

Using these integral identities we can show that:∫ ∞

−∞
dE1 · · · dEN

e−(EN−E0)/σ

σN
δ(E − Em)

N∏
k=1

Θ(Ek − Ek−1)

= Θ(E − E0)
(E − E0)

m−1

σm(m− 1)!
e−(E−E0)/σ.

(B.20)

We therefore conclude that the average spectral density is given by:

⟨ρ(E)⟩ = δ(E − E0) +
N∑
m=1

[
(E − E0)

m−1

σm(m− 1)!

]
Θ(E − E0)e

−(E−E0)/σ. (B.21)

This gives the averaged spectral density given in Eq. (3.28). By integrating ⟨ρ(E)⟩ over E
we correctly get N + 1 which is the total number of states.

B.3 Form Factor of GUE vs i.i.d Model with Wigner

Spacing

In this section we will do a brief numerical study of how well the Wigner Surmise distri-
bution given by Eq. (3.31) fits the NNS distribution of eigenvalues of a 100× 100 random
Hermitian matrix (i.e. matrices in GUE). We will numerically compute the averaged form
factor of the Gaussian unitary ensemble and compare to the form factor expression given
by Eq. (3.14) with a, b, b∗ given by Eq. (3.32). By doing this, we will get a sense of how
well our naive model can capture certain aspects of the true form factor associated with
matrices in GUE.

The numerical calculation is done by defining 105, 100×100 random Hermitian matrices.
The diagonal entries Mii are real and are pulled from the following Gaussian distribution:

P (Mii) =
1√
2π
e−

1
2
M2

ii . (B.22)
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Figure B.1: Histogram for eigenvalues of a 100×100 random matrix pulled from the GUE.
The histogram is generated from the eigenvalues of 105 random samples.

The off diagonal entries are complex entries of the form x+ iy and the real and imaginary
parts of the entries are pulled from the following Gaussian distribution:

P (x) =
1√
π
e−x

2

P (y) =
1√
π
e−y

2

.
(B.23)

We can diagonalize all 105 matrices to get 107 eigenvalues and we will obtain the histogram
(i.e. averaged spectral density) for the eigenvalues depicted in Figure B.1. From our sample
of eigenvalues we can determine the NNS statistics. An interesting quantity to analyze is
the sample averaged spacing of nearest neighbors, and how this changes between which
nearest neighbor pairs we choose. We order the eigenvalues so that E1 ≤ E2 ≤ · · · ≤ E100,
then we define the average spacing between the i-th pair as:

∆i =
1

105

105∑
n=1

(
E

(n)
i+1 − E

(n)
i

)
, (B.24)

where i = 1, 2, 3, .., 99. This represents the average (over 105 samples) of the spacing
between nearest neighbor pairs throughout the spectrum. We can do a discrete plot of

224



0 20 40 60 80 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

n

Δ
n

Average Spacing of n-th Nearest Neighbor Pair

Figure B.2: We plot the average (over 105 samples) spacing, ∆n, between the n-th nearest
neighbor pairs of eigenvalues in the GUE (100× 100 matrices). We can see that near the
edge of the GUE spectrum, the average spacing between nearest neighbor pairs changes
quickly. Near the centre of the spectral density of the GUE the average spacing changes
slowly.

this as a function of i to obtain Figure B.2. We can see that for eigenvalue pairs located
near the center, the average spacing between nearest neighbor pairs is roughly constant
but as we approach the edges the spacing changes more quickly between one pair and
the next. The range of values which the sample averaged spacings can take roughly lie
in the interval ∆i ∈ [0.32, 0.90]. Based on this, we can see that the spacing statistics of
Gaussian ensembles is not i.i.d (except approximately, near the centre of the spectrum
where the average spacing changes slowly). Therefore, we expect the model introduced
in Section 3.2.1 to give an accurate description of the spectrum of Gaussian ensembles
near the centre of the spectrum and far from the edges1. Although, we do not expect
our model to describe the edges of Gaussian ensembles to a high degree of accuracy it is
still interesting to explore how the form factor of our model spectrum compares to the
form factor of an actual Gaussian ensemble as we include eigenvalues near the edge of the

1More generally we expect our models with the i.i.d assumption to describe the statistics of eigenvalues
located near local the extrema of the spectral density of a random matrix theory.
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spectrum.

To do this we define the following numerically calculated quantity:

⟨Z[a,b](β + it)Z[a,b](β − it)⟩
⟨Z[a,b](0)2⟩

=

∑S
l=1

∑b
n,m=a e

−(β+it)E
(l)
n e−(β−it)E(l)

m∑S
l=1

∑b
n,m=a e

−βE(l)
n e−βE

(l)
m

. (B.25)

This is computing the form factor in the GUE which contains the a-th through b-th eigen-
values anneal averaged over S samples. This is essentially describing a “microcanonical”
anneal averaged form factor which focuses on eigenvalues within a window [a, b]. We want
to compare this numerical result to our model which involves the i.i.d assumption on the
NNS distribution.

We must specify the following two parameters c and σ for the NNS distribution given
in Eq. (3.31). Since we are working with the GUE we should set c = 2 which leaves us
one free parameter σ. Recall that σ controls the average spacing between eigenvalues in
our model. In particular, for our model the with c = 2 the relation between the average
spacing, ∆, and the parameter σ is simply:

σ =

√
π

2
∆. (B.26)

We will fix σ by analyzing the ∆i’s in the numerical simulation of the GUE. As we already
showed in Figure B.2 the average spacing between eigenvalue pairs is roughly constant near
the centre of the spectrum. Motivated by this observation we define following quantity
which involves data of the eigenvalues Ea, Ea+1, ..., Eb−1, Eb:

∆̄[a,b] =
1

b− a

b−1∑
i=a

∆i. (B.27)

In the above equation, a and b label the index of the a-th and b-th eigenvalues (which
are ordered Ea ≤ Eb if a < b). The quantity ∆[a,b] defines the sample averaged spacing,
averaged over pairs within an interval that contains Ea, Ea+1, ..., Eb−1, Eb eigenvalues. We

define the averaged σ over the range of the eigenvalues as, σ̄[a,b] =
√
π
2
∆[a,b]. Then for a

particular set of eigenvalues in the GUE with indices in the closed interval [a, b] we identify
the σ = σ̄[a,b]. This gives the following NNS distribution for our model spectrum:

P[a,b](x) = Θ(x)
4x2√
πσ3

[a,b]

e−x
2/σ2

[a,b] . (B.28)
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We use this NNS distribution along with N = b− a and plug all this into Eq. (3.14) and
plot it along-side the “microcanonical” GUE form factor defined by Eq. (B.25). At infinite
temperature we get the plots given in Figure B.3.
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Figure B.3: Plot depicts a comparison of the infinite temperature form factor of the GUE
computed numerically using Eq. (B.25) and our i.i.d model with NNS distribution given
by Eq. (B.28). The top left plot depicts the a comparison with all eigenvalues in the GUE
spectrum. Top right plot depicts a comparison with GUE form factor for roughly 60% of the
eigenvalues within the centre of the spectrum. Bottom left depicts a comparison with GUE
form factor for roughly 40% of the eigenvalues within the centre of the spectrum. Bottom
right depicts a comparison with GUE form factor for roughly 20% of the eigenvalues within
the centre of the spectrum. We see that as the window focuses on the centre eigenvalues
the deviations between the form factor for the i.i.d model and GUE become smaller at all
time scales.

The top left plot in Figure B.3 depicts the numerically averaged form factor of the
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GUE (blue line) for the entire spectrum (i.e. it includes E1 to E100). We compare with
our i.i.d model form factor (the yellow line) with N = 99 and NNS given by Eq. (B.28)
with σ[1,100] ≈ 0.345. We can see that the plateau of the model matches the plateau of the
model but at earlier times it deviates away from the GUE.

The top right plot depicts the GUE form factor with the edges of the spectrum cut off
- only retaining the eigenvalues E20 to E80. We compare with the i.i.d model form factor
with parameters N = 60 and σ[20,80] ≈ 0.292. We see that the plateaus still match but now
the early time behaviour is matching more closely than before.

The bottom left plot depicts the GUE form factor with the edges of the spectrum cut
off even further than, only retaining the eigenvalues E30 to E70. We compare with the i.i.d
model form factor with parameters N = 40 and σ[30,70] ≈ 0.285.

Finally, the bottom right plot depicts the GUE, retaining the eigenvalues E40 to E60.
We compare with the i.i.d model form factor with parameters N = 20 and σ[40,60] ≈ 0.281.

Together the four plots in Figure B.3 plots of the form factor illustrates our claim that
our model captures the behaviour spectrum of Gaussian ensembles near the centre of the
semi-circle far from the edge. We can see that as we shrink our window of eigenvalues
closer to the centre of the spectrum the form factor of the truncated GUE (blue lines)
matches more closely with the form factor of our model (yellow line).

B.4 Local Extrema of Form Factor for Gamma Dis-

tribution NNS

In this section, we will analyze Eq. (3.37) which is given by:

zq

[zq+1 − 1]2
=

(z∗)q

[(z∗)q+1 − 1]2

z = 1 + σ(β + it)

z∗ = 1 + σ(β − it).

(B.29)

By inspection, it is clear that t = 0 is a valid solution and corresponds to an extremal
point. Furthermore, in the limit that t→ ∞, the equation is also satisfied, this represents
the saturation of the form factor to a constant value (the plateau phase). Aside from these
trivial solutions we should expect at least one other solution in the case when q > 0. This
is because for q > 0 there is repulsion and therefore a ramp after the initial dip downward.
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This will give a local minimum in the form factor. Furthermore for very large values of
q ≫ 1 we also expect oscillations to exist which will give further extremal points in the
form factor.

To understand where these non-trivial extremal points occur it is useful to write the
complex variable z in the polar coordinate representation:

z = Aeiθ

A = (1 + βσ)

√
1 +

(
tσ

1 + βσ

)2

θ = arctan

(
tσ

1 + βσ

)
.

(B.30)

In this representation, Eq. (3.37) can be written in the following form:

−A2(q+1) sin [(q + 2)θ] + 2Aq+1 sin(θ) + sin(qθ) = 0. (B.31)

This is difficult to solve in general so we will consider the special cases when q = 1, 2, 4
where we can solve the equation exactly. We will also make some estimates in the q ≫ 1
regime.

q = 1 Case:
In this case one will find five distinct solutions. One solution is the trivial solution when
t = 0, the other four are non-trivial but only one is real and positive for βσ > 0, it is given
by:

tσ =

√
βσ + (1 + βσ)

[
βσ + 2

√
βσ(2 + βσ)

]
≃

{√
3βσ +O(1), βσ ≫ 1

(8βσ)1/4 +O((βσ)3/4), βσ ≪ 1
.

(B.32)

q = 2 Case:
In this case one will find seven distinct solutions. One solution is the trivial solution when
t = 0, the other six are non-trivial but only one is real and positive for βσ > 0, it is given
by:

tσ = (1 + βσ)

[
1− 1

(1 + βσ)3

]1/4
≃

{
βσ +O(1), βσ ≫ 1

(3βσ)1/4 +O((βσ)3/4), βσ ≪ 1
. (B.33)
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In both cases we can see that up to a pre-factor the local minimum before the ramp at low
temperatures scales with β this is contrast to the high temperature case where it scales as
β1/4.

q = 4 Case:
In this case we will have two non-trivial real solutions which have closed form expressions.
The exact expressions are complicated so we will not write them here, instead we will write
the solutions as series expansion for small and large βσ. We start with the smaller solution
which represents the initial dip in the form factor before the ramp given by:

tσ ≃

{
βσ/

√
3 +O(1), βσ ≫ 1

(βσ)1/4 +O((βσ)3/4), βσ ≪ 1
. (B.34)

The next real solution corresponds to the small “kink” in the form factor that connects
the ramp to the plateau which is also seen in GSE. The expression for the time when the
kink occurs is well approximated in all temperature regimes by the following expression:

tσ ≈
√
3(1 + βσ). (B.35)

Overall, we see that for q = 1, 2, 4 the inital dip before the plateau has the same temper-
ature dependence up to an order one pre-factor. Furthermore, we are able to show that
for the q = 4 case the form factor has an additional local maximum which represents the
“kink” which connects the plateau to the ramp seen in Figure 3.9.

q ≫ 1 Case:
We know that for very large values of q, the form factor exhibits an initial dip followed by
oscillations before saturation to a plateau. In this case, we should expect to find more than
one non-trivial extremal point which describe the peaks and troughs of the oscillations. In
the case when q ≫ 1, Eq. (B.31) at leading order will read:[

Aq − A−q] sin(qθ) = 2 sin(θ). (B.36)

If we define x = tσ/(1 + βσ) we can explicitly write:[
(1 + βσ)q(1 + x2)q/2 − (1 + βσ)−q(1 + x2)−q/2

]
sin [q arctan(x)] =

2x√
1 + x2

. (B.37)

We can clearly see that the left hand side of Eq. (B.37) will diverge like xq sin(qπ/2) as
x→ ∞. The left hand side saturates to a value of 2 in the x→ ∞ limit. This means that
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there are a finite number of solutions for a given q ≫ 1 - which is in agreement with the
plots we have made. Clearly x = 0 is a solution, but we expect there to be more.

To understand how many solutions there are, we start by analyzing the number of
roots (excluding x = 0) to the expression on the left hand side of Eq. (B.37). This is
simply given by the roots of sin[q arctan(x)] which occur when q arctan(x) = mπ where
m ∈ N ∪ {0}. Since 0 ≤ arctan(x) ≤ π/2, the number of zeros is controlled by q. In
particular, we denote Nroot as the number of zeros (excluding the zero at x = 0) we have:

Nroot =

{
q
2
− 1, q/2 ∈ N

⌊ q
2
⌋, otherwise

. (B.38)

Now consider the right hand side of Eq. (B.37). Since the right-hand side is a monotonically
increasing function which takes on values in the interval (0, 2). It is not difficult to see that
for a sufficiently large q there will be at least Nroot−1 non-trivial solutions to Eq. (B.37)2.
Whether there is an additional solution depends on the limits as x → ∞. In particular,
one can argue that the number of solutions (excluding the x = 0 solution) is given by:

Nsol. =

{
Nroot,

Nroot

2
∈ N

Nroot − 1, Nroot

2
∈ (2N+ 1)

. (B.39)

Now that we have quantified the number of solutions we estimate that the solutions for
sufficiently large q occur roughly at:

xn =
tnσ

1 + βσ
=
nπ

q
, n = 0, 1, 2, 3, .., Nsol. (B.40)

To illustrate how accurately this approximation captures the location of the extremal
points of the form factor described by Eq. (3.35). We make Figure B.4, which depicts the
averaged form factor with q = 50 and β = 0.01 with the red dots representing the value of
the form factor at tnσ = (1+βσ)nπ/q = (1.01)πn/50. We can see that our approximation
for the location of local extrema representing the peaks and troughs of the regular decaying
oscillation is not perfect but it does give a reasonable estimate. Similar plots can also be
made at other temperatures as well.

Based on these results we conclude that the period of the oscillations in the form factor
are roughly given by:

T ≈ 2π(1 + βσ)

qσ
. (B.41)

2By sufficiently large q, we mean that for a given βσ we must have q such that the left hand side of Eq.

(B.37) evaluated at x = tan(π/(2q)) be larger than 2. This roughly gives a condition that q > ln(2)
βσ
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Figure B.4: We plot the expression of the form factor in Eq. (3.35) for q = 50, βσ = 0.01.
The red dots indicate points on the form factor at tnσ = 1.01πn/50. We can see that the
points roughly occur local maxima and minima of the form factor.
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B.5 Average Spectral Density For Gamma Distribu-

tion Spacing

In this section we compute the average spectral density for the Gamma Distribution spacing
distribution given in Eq. (3.33). To begin, we can write the JPDF for the energy levels
given as:

P (E1, .., EN) =
N∏
k=1

[
Θ(Ek − Ek−1)

(Ek − Ek−1)
qe−(Ek−Ek−1)/σ

Γ(1 + q)σ1+q

]

=
e−(EN−E0)/σ

[Γ(1 + q)σ1+q]N

N∏
k=1

Θ(Ek − Ek−1) (Ek − Ek−1)
q .

(B.42)

Using this we can write the average spectral density as:

⟨ρ(E)⟩ =
∫ ∞

−∞
dE1 · · · dENP (E1, .., EN)

N∑
m=0

δ(E − Em)

⟨ρ(E)⟩ = δ(E − E0) +
N∑
m=1

∫ ∞

−∞
dE1 · · · dEN

e−(EN−E0)/σ

[Γ(1 + q)σ1+q]N
δ(E − Em)

N∏
k=1

Θ(Ek − Ek−1)(Ek − Ek−1)
q.

(B.43)

With some work we can derive the following identities:∫ ∞

−∞
dE1 · · · dEm−3

m−2∏
k=1

Θ(Ek − Ek−1)(Ek − Ek−1)
q

=

√
πΓ(1 + q)m−3

22q+1Γ(3/2 + q)

Γ [2(1 + q)]

Γ [(m− 2)(1 + q)]
Θ(Em−2 − E0)(Em−2 − E0)

(m−2)q+(m−3)

=
Γ(1 + q)m−2

Γ [(m− 2)(1 + q)]
Θ(Em−2 − E0)(Em−2 − E0)

(m−2)q+(m−3)

(B.44)

∫ ∞

−∞
dEm+2 · · · dENe−(EN−E0)/σ

N∏
k=m+2

Θ(Ek − Ek−1)(Ek − Ek−1)
q

=
[
Γ(1 + q)σ1+q

]N−m−1
e−(Em+1−E0)/σ.

(B.45)

Using the identities above with some additional work one will find:

⟨ρ(E)⟩ = δ(E − E0) +
N∑
m=1

[
(E − E0)

mq+m−1

Γ [m(1 + q)]σm(1+q)

]
Θ(E − E0)e

−(E−E0)/σ. (B.46)
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This gives us the average spectral density given by Eq. (3.39). Furthermore, setting q = 0
we will recover the spectral density for the Poisson NNS model discussed in Section 3.3.2.

B.6 NNS Distribution for Oscillator with Chaotic In-

teractions 2× 2 Case

We go over the calculation of the NNS distribution for the following matrix:

H =
ω0

2

[
0 0
0 1

]
+ ϵ

[
x1 x3 + ix4

x3 − ix4 x2

]
, (B.47)

where the real entries are drawn from the following distributions: Where x1, x2, x3, and x4
are real random variables which follow the following distributions:

P(x1) =
1√
2π
e−x

2
1/2

P(x2) =
1√
2π
e−x

2
2/2

P(x3) =

√
1

π
e−x

2
3

P(x4) =

√
1

π
e−x

2
4

.

(B.48)

We can compute the spacing distribution between the eigenvalues by evaluating the fol-
lowing integral:

P(s) =

∫ ∞

−∞
dx1···dx4P(x1)P(x2)P(x3)P(x4)δ

s− ω0

2

√(
1 +

2ϵ(x2 − x1)

ω0

)2

+
16ϵ2

ω2
0

(x23 + x24)

 .

(B.49)
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We define the following change of variables:

x1 =
z + r cos θ

2ϵ
+
ω

2ϵ

x2 =
z − r cos θ

2ϵ

x3 =
r sin θ sinϕ

2ϵ

x4 =
r sin θ cosϕ

2ϵ
.

(B.50)

With these variables we have dx1dx2dx3dx4 =
r2 sin θ
8ϵ4

drdzdθdϕ and the integral becomes:

P(s) =
1

16π2ϵ4

∫ ∞

0

dr

∫ ∞

−∞
dz

∫ π

0

dθ

∫ 2π

0

dϕr2 sin θe−
2(r2+z2)+2zω+ω2+2rω cos(θ)

8ϵ2 δ(s− r)

=
s√
πϵω0

(
e

ω0s

2ϵ2 − 1
)
e−

(2s+ω0)
2

16ϵ2 .

(B.51)

This gives the result in Eq. (3.46).

B.7 Numerical Analysis in the Spread of Degenerate

States

In this appendix, we go over numerical results which discuss the statistics of how the
degenerate eigenvalues of the fermionic harmonic oscillator given in Eq. (3.56) split due
to a perturbation by a random matrix in the GUE. The Hamiltonian in the basis of the
unperturbed oscillator can be written as:

H
ω0

=

N/2⊕
p=0

[(
p− N

4

)
I(p)

]
+

ϵ

ω0

HGUE, (B.52)

where I(p) is an identity matrix of size Ω(p)×Ω(p) (recall that Ω(p) is given by Eq. (3.57))
and HGUE is a 2N/2× 2N/2 random matrix pulled from the Gaussian unitary ensemble (see
footnote 25 for details of the variance of the Gaussian used for the matrix elements). We fix
ϵ/ω0 then we numerically compute the eigenvalues over r independent samples and collect
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all these eigenvalues (there are S = 2N/2 × r number of them) and put them in an ordered
set {Ei}Si=1 where E1 ≤ E2 ≤ · · · ≤ ES. We define the following subsets labeled by p:

Ap = {Ek : kmin(p) ≤ k ≤ kmax(p)}

kmin(p) = 1 + r

p−1∑
l=0

Ω(l)

kmax(p) = r

p∑
l=0

Ω(l),

(B.53)

where p = 0, 1, 2, .., N/2. The set Ap simply partitions the original ordered set into subsets
labeled by p which are of the size |Ap| = rΩ(p). The reason this is done can be illustrated
by considering what happens when ϵ = 0. In this case, there is no perturbation and
the Hamiltonian is diagonal. If we took r samples of the exact same diagonal matrix and
ordered all the eigenvalues in a list we would find there are exactly |Ap| = rΩ(p) eigenvalues
with the value E(p). Adding a small perturbation would lead to a small spreading in the
eigenvalues within each degenerate sector so the set Ap is the set of eigenvalues that have
“split” in the p− th degenerate sector. We define the numerical width of the p− th sector
as:

Wnum(p) = max(Ap)−min(Ap)

max(Ap) = Ekmax(p)

min(Ap) = Ekmin(p).

(B.54)

The numerical average energy within the p− th sector is given by:

⟨E(p)⟩num =
1

r

kmax(p)∑
i=kmin(p)

Ei. (B.55)

Applying this numerical procedure we obtain the following plots which compare various
numerical and estimated quantities when r = 100 and N = 22.
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Figure B.5: Above are plots of the average energy within degenerate sectors labelled by p at
various coupling regimes ranging from the weakly coupled regime with ϵ/ω0 = 10−4 to the
strongly coupled regime with ϵ/ω0 = 10−1. The solid circles are numerical computations of
the average and the “+” is the energy of the degeneracy sector in the free oscillator case.

We see that in the weakly coupled regime which is given by the top two plots of Figure
B.5 the numerical average of the energies within the sector p − th sector is close to the
degenerate energy of the free oscillators which is consistent with predictions of first order
degenerate perturbation theory. When ϵ/ω0 = 10−2 we can start to see small deviations
in the average energy from the unperturbed energy. By the time we get to the strongly
coupled regime where degenerate sectors strongly mix there are large deviations.
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Figure B.6: Above are plots of the width in the spread of degenerate energy states within
the p-th degenerate sector at various coupling regimes ranging from the weakly coupled
regime with ϵ/ω0 = 10−4 to the strongly coupled regime with ϵ/ω0 = 10−1. The solid
circles are numerical computations of the width and the “+” is the expectation of the
width (Given by Eq. (3.63)) from first order degenerate perturbation theory.

In the weakly coupled regime which is given by the top two plots of Figure B.6, the
numerical width of the spread in the energies within the p−th sector is close to the estimate
given by Eq. (3.63) which is obtained by applying first order degenerate perturbation
theory. When ϵ/ω0 = 10−2, we can start to see small deviations from the estimate. By the
time we get to the strongly coupled regime where degenerate sectors strongly mix there
are large deviations.
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Appendix C

Chapter 4 Appendix Materials

C.1 Numerical Analysis of Evaporation Rate Series

for AdS Schwarzschild Black Hole

In this appendix we will numerically compute the following series for an AdS Schwarzschild
black hole:

∞∑
ℓ=1

ℓd−2
[
Li2
(
e−xmin,ℓ

)
− xmin,ℓ ln

(
1− e−xmin,ℓ

)]
xmin,ℓ =

√
4π

(
2π(d− 1) +

4πL2ℓ(ℓ+ d− 2)

dr2s + (d− 2)L2

)
δr

rs
.

(C.1)

To evaluate the series numerically we need to fix d, δr/rs, and rs/L. Once we do this we
will compare the result to our approximated expression given by:

∞∑
ℓ=1

ℓd−2
[
Li2
(
e−xmin,ℓ

)
− xmin,ℓ ln

(
1− e−xmin,ℓ

)]
≈ d(d− 2)!

(
r2s

4πβδr

) d−1
2

.

(C.2)
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The approximated expression will differ from the numerical expression by a numerical
pre-factor. In other words the numerical result can be written in the form:

∞∑
ℓ=1

ℓd−2
[
Li2
(
e−xmin,ℓ

)
− xmin,ℓ ln

(
1− e−xmin,ℓ

)]
= Cd

[
d(d− 2)!

(
r2s

4πβδr

) d−1
2

]
,

(C.3)

where Cd is a numerical pre-factor which will change with d, δr, and rs/L. We summarize
our results in tables C.1 - C.3. Each table fixes d and δr/rs to some fixed value (specified
in the caption for each table). Within the table we vary the size of the black hole rs/L
(from 0 corresponding to an asymptotically flat black hole to 1000 corresponding to a very
large AdS black hole) and numerically compute the series in Eq. (C.1). We also compute
the value for series as determined by our approximation given in Eq. (C.2). We divide the
numerical and approximate result to determine the pre-factor Cd that the two results differ
by.

rs/L 0 0.1 1 10 1000
Numerical 1.96× 102 2.02× 102 8.01× 102 6.15× 104 6.14× 108

Approximation 1.89× 102 1.95× 102 7.59× 102 5.72× 104 5.70× 108

C3 = Numerical
Approximation

1.04 1.04 1.06 1.08 1.08

Table C.1: d = 3 and δr/rs = 10−4

rs/L 0 0.1 1 10 1000
Numerical 1.33× 108 1.38× 108 1.37× 109 4.11× 1013 4.07× 1023

Approximation 1.47× 108 1.53× 108 1.45× 109 4.12× 1013 4.05× 1023

C6 = Numerical
Approximation

0.91 0.90 0.95 1.00 1.01

Table C.2: d = 6 and δr/rs = 10−4
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rs/L 0 0.1 1 10 1000
Numerical 5.09× 1017 5.38× 1017 2.06× 1019 1.66× 1027 1.63× 1045

Approximation 5.98× 1017 6.32× 1017 2.30× 1019 1.69× 1027 1.63× 1045

C10 = Numerical
Approximation

0.85 0.85 0.90 0.98 1.00

Table C.3: d = 10 and δr/rs = 10−4

C.2 Power Law Behaviour of Generalized Greybody

Factor for Near Extremal BH

Here we present a way to get the power law behaviour for ω < ωmin,ℓ in Eq. (4.28). We
do this by analyzing the near horizon solution of the wave equation for an extremal black
hole. We will begin by considering modes with ℓ ≥ 1.

The first thing we do is recall that the potential needs to be written in the tortoise
coordinate r∗ which satisfies:

r∗ =

∫
dr

f(r)
≃
∫

dr

f1(r − rs) +
f2
2
(r − rs)2

=
1

f ′(rs)
ln

[
(r − rs)f

′′(rs)

2f ′(rs) + f ′′(rs)(r − rs)

]
≤ 0,

(C.4)
where fn = f (n)(rs). We can easily invert this and find:

r − rs =
2f1

f2(1− exp(f1r∗))
→ − 2

r∗f ′′
ext(rs)

, (C.5)

where in the last expression we take the extremal limit where f1 → 0. Now that we have
an expression for the near horizon tortoise coordinate we can analyze the wave equation
which at leading order will read:

d2ψ

dr2∗
+

[
ω2 − 2ℓ(ℓ+ d− 2)

r2sf
′′
ext(rs)

1

r2∗

]
ψ = 0. (C.6)

We can find the general solution to this equation can be written in terms of Bessel functions:

ψ(r∗) =
√
r∗ [AJνℓ (ωr∗) +BYνℓ (ωr∗)]

νℓ =
1

2

√
1 +

8ℓ(ℓ+ d− 2)

r2sf
′′
ext(rs)

.
(C.7)
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We want a solution that goes to zero at r∗ = 0 this implies that B = 0 and we get the
following solution:

ψ(r∗) = A
√
r∗Jν(ωr∗). (C.8)

One can easily see that this solution for very small r∗ oscillates as a plane wave. However
near the boundary it decays. It is the rate of decay that we are interested in. In particular,
it is reasonable to assume that the shift from an oscillating function to a decaying function
occurs near the classical turning point which is:

rtp∗ (ω) = −
[
2ℓ(ℓ+ d− 2)

ω2r2sf
′′
ext(rs)

]1/2
. (C.9)

Consider the ratio:

T 2 =

∣∣∣∣ ψ(r∗)ψ(rtp∗ )

∣∣∣∣2 = ∣∣∣∣ r∗rtp∗
∣∣∣∣ ∣∣∣∣ Jν(ωr∗)Jν(ωr

tp
∗ )

∣∣∣∣2 , (C.10)

where rtp∗ ≤ r∗ ≤ 0. This gives a measure of how the amplitude of the solution decays in
the non-classical region. We analyze the decay of the solution a distance δr = r − rs from
the horizon in the classically forbidden region. To do this we need to consider ω ≤ ωmin,ℓ.
We parameterize this in terms of 0 ≤ ϵ ≤ 1 and write ω = ϵωmin,ℓ. Then we can express
rtp∗ as:

rtp∗ (ϵ) = − 2

ϵδrf ′′
ext(rs)

. (C.11)

We also set r∗ at the position of interest (i.e. where the absorbing surface is):

r∗ = − 2

δrf ′′
ext(rs)

. (C.12)

Now we can express T 2 in terms of ϵ:
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T 2(ϵ) = ϵ

∣∣∣∣Jνℓ (αℓϵ)Jνℓ (αℓ)

∣∣∣∣2
αℓ =

−2ωmin,ℓ
δrf ′′

ext(rs)
= −

√
2ℓ(ℓ+ d− 2)

r2sf
′′
ext(rs)

νℓ =

√
1

4
+ α2

ℓ .

(C.13)

We can do a series expansion of T 2 in αℓ to understand the power law behaviour we find:

T 2 = ϵ

∣∣∣∣Jνℓ (αℓϵ)Jνℓ (αℓ)

∣∣∣∣2 ≃ ϵ2νℓ+1

[
1 +

α2
ℓ(1− ϵ2)

2(1 + νℓ)
+O

(
α4
ℓ

)]
∼ ϵ2νℓ+1. (C.14)

We will use this behaviour to model the generalized greybody factor for ω < ωmin,ℓ. So
now we have the following for near extremal black holes:

γℓ(ω, δr) = Θ(ω − ωmin,ℓ) +

(
ω

ωmin,ℓ

)2νℓ+1

Θ(ωmin,ℓ − ω) . (C.15)

This gives the result in Eq. (4.28).

Now we will consider the ℓ = 0 mode. In this case the leading order expansion of the
effective potential near the horizon is:

Vℓ=0(r) = V0(r) =
(d− 1) [f ′′

ext(rs)]
2

4rs
(r − rs)

3 +O
(
(r − rs)

4
)
. (C.16)

Note that to capture the leading order behavior of the effective potential for ℓ = 0 one
must expand to third order. This is in contrast to the effective potential for ℓ ≥ 1 modes
which. only required a second order expansion. As we will see this makes the ℓ = 0 modes
distinct from the higher order modes. With some work we can show that the wave equation
near the horizon takes the form:

d2ψ

dr2∗
+

[
ω2 +

2(d− 1)

rsf ′′
ext(rs)

1

r3∗

]
ψ = 0. (C.17)

Unlike the ℓ ≥ 1 case we cannot find the general solution of this equation in a closed form.
We instead opt to solve the equation in two regimes (close to the horizon and close to the
conformal boundary) and then patch the solutions at the turning point of the potential.
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Close to the horizon we have plane wave solutions. The outgoing plane wave normalized
to one is given by:

ψI(r∗) = eiωr∗ . (C.18)

In the classically forbidden region (where the amplitude of the solution will decay) we

will have ω2 ≪ 2(d−1)
rsf ′′ext(rs)

1
r3∗
. So the solution can be roughly found by solving:

d2ψ

dr2∗
+

2(d− 1)

rsf ′′
ext(rs)

1

r3∗
ψ = 0. (C.19)

The general solution will be given by Bessel functions of the first and second kind:

ψII(r∗) =

√
−r∗
α

[
c1J1

(
2iα√
−r∗

)
+ c2Y1

(
2iα√
−r∗

)]
α =

√
2(d− 1)

rsf ′′
ext(rs)

.

(C.20)

Just like for the ℓ ≥ 1 modes we impose the boundary condition that the solution vanish
at the conformal boundary located at r∗ = 0. This gives the following solution the the
forbidden region:

ψII(r∗) =
A
√
−r∗
α

[
J1

(
2iα√
−r∗

)
+ iY1

(
2iα√
−r∗

)]
. (C.21)

Patching the solutions in the two regions at the turning point rtp∗ by requiring ψI(r
tp
∗ ) =

ψII(r
tp
∗ ) allows us to fix the constant A. To find the power law decay we analyze how the

amplitude of the solution decays from the turning point to the screen in a similar manner
to what we did for the ℓ ≥ 1 mode. In particular, the fraction of radiation that gets to the
screen is given by:

T 2
0 =

∣∣∣∣ψII(rscreen∗ )

ψII(r
tp
∗ )

∣∣∣∣2
rscreen∗ =

−2

δrf ′′
ext(rs)

rtp∗ (ω) = −
(

2(d− 1)

ω2rsf ′′
ext(rs)

)1/3

.

(C.22)

244



We define ω = ϵωmin,0 where 0 ≤ ϵ ≤ 1 and:

ωmin,0 = η
δrf ′′

ext(rs)

2

η =

(
(d− 1)δr

rs

)1/2

≪ 1,

(C.23)

ωmin,0 is the minimal frequency in which waves would reach the screen without encountering
the angular momentum barrier for ℓ = 0. We can then write T 2

0 as:

T 2
0 = ϵ2/3

∣∣∣∣ J1 (2iη) + iY1 (2iη)

J1 (2iηϵ1/3) + iY (2iηϵ1/3)

∣∣∣∣2 ≃ ϵ4/3
[
1 +O

(
η2
)]

∼ ϵ4/3. (C.24)

So for the ℓ = 0 mode the generalized greybody factor in our toy model will be:

γ0 (ω, δr) = Θ (ω − ωmin,0) +

(
ω

ωmin,0

)4/3

Θ(ωmin,0 − ω) . (C.25)

C.3 Integrals Describing Evaporation rate in Near Ex-

tremal Regime

In this section we go over the assumptions to arrive at the series expression for the evapo-
ration rate given by Eq. (4.30). We need to compute the integrals in Eq. (4.29).

We approximate the values of these integrals under the assumption that βωmin,ℓ ≫ 1
(i.e. we are sufficiently close to the extremal regime). Lets begin with the first term(s) in
Eq. (4.29) which describes modes with ω ≤ ωmin,ℓ. The term(s) read:

Nb

2π

∞∑
ℓ=1

ω2
min,ℓNℓ

∫ 1

0

ϵ2(νℓ+1)

eβωmin,ℓϵ − 1
dϵ =

Nb

2π

∞∑
ℓ=1

ω2
min,ℓNℓ

∫ 1

0

ϵ2+
√

1+4α2
ℓ

exp
(
βδrf ′′ext(rs)αℓϵ

2

)
− 1

dϵ

=
Nbδr

2 [f ′′
ext(rs)]

2

8π

∞∑
ℓ=1

Nℓ

∫ 1

0

α2
ℓϵ

2+
√

1+4α2
ℓ

exp
(
βδrf ′′ext(rs)αℓϵ

2

)
− 1

dϵ.

(C.26)

Note that the integrand will generally have a local maximum. In particular, as long as
βδrf ′′

ext(rs) is sufficiently large (this is true when we are sufficiently close to extremality) we
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are guaranteed to have a sharply peaked local maximum within the interval of integration.
This means that we can easily extend the range of integration from ϵ ∈ (0, 1) to ϵ ∈ (0,∞)
and still have a good estimate on the value of the integral. Such an integral can be done
in full generality shown below:∫ 1

0

α2
ℓϵ

2+
√

1+4α2
ℓ

exp
(
βδrf ′′ext(rs)αℓϵ

2

)
− 1

dϵ ≈
∫ ∞

0

α2
ℓϵ

2+
√

1+4α2
ℓ

exp
(
βδrf ′′ext(rs)αℓϵ

2

)
− 1

dϵ

= α2
ℓ

(
βδrf ′′

ext(rs)αℓ
2

)−3−
√

1+4α2
ℓ

Γ

(
3 +

√
1 + 4α2

ℓ

)
Li

3+
√

1+4α2
ℓ

(1) .

(C.27)

Now we will deal with the second term(s) in Eq. (4.29) which describes modes with
ω > ωmin,ℓ the terms read:

Nb

2π

∞∑
ℓ=1

ω2
min,ℓNℓ

∫ ∞

1

ϵ

eβωmin,ℓϵ − 1
dϵ

=
Nb

2πβ2

∞∑
ℓ=1

Nℓ

[
Li2
(
e−βωmin,ℓ

)
− βωmin,ℓ ln

(
1− e−βωmin,ℓ

)]
.

(C.28)

Combing these results give us the series representation of the evaporation rate given in Eq.
(4.30).

C.4 The Contribution to Evaporation Rate of Tunnel-

ing vs Non-Tunneling modes in Near Extremal

Regime

In this appendix we will discuss the relative size between the terms Stun,ℓ and Sntun,ℓ which
are used to define the evaporation rate of a near extremal AdS RN black hole. The goal is
to estimate the following ratio:

Sntun,ℓ
Stun,ℓ

=
[Li2 (e

−xmin,ℓ)− xmin,ℓ ln (1− e−xmin,ℓ)]x
1+
√

1+4α2
ℓ

min,ℓ

Γ
(
3 +

√
1 + 4α2

ℓ

)
Li

3+
√

1+4α2
ℓ

(1)

≈
x
2+
√

1+4α2
ℓ

min,ℓ e−xmin,ℓ

Γ
(
3 +

√
1 + 4α2

ℓ

)
Li

3+
√

1+4α2
ℓ

(1)
,

(C.29)
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where in the last line we used xmin,ℓ ≫ 1 since we are in the near extremal regime. For a
fixed ℓ we can see that the ratio Sntun,ℓ/Stun,ℓ ≪ 1 due to the exponential suppression and
it follows that Sntun,ℓ ≪ Stun,ℓ when we are sufficiently close to the extremal regime. This
is why we use the approximation in Eq. (4.31) and ignore the modes that do not tunnel.

C.5 Analysis of the Evaporation Rates of Near Ex-

tremal Very Large AdS RN Black Holes

We discuss approximating the integrand in Eq. (4.33) which is given by:

Iℓ =

 αℓr
2
sf

′′
ext(rs)

(d− 2)
√
1 +

2r2sf
′′
ext(rs)α

2
ℓ

(d−2)2

(d− 2

2

[
−1 +

√
1 +

2r2sf
′′
ext(rs)α

2
ℓ

(d− 2)2

])d−2

×

Γ
(
3 +

√
1 + 4α2

ℓ

)
Li

3+
√

1+4α2
ℓ

(1)(
βδrf ′′ext(rs)αℓ

2

)1+√1+4α2
ℓ

 .
(C.30)

When αℓ is close to zero one will find that the integrand initially grows. This growth will
eventually slow down and stop when αℓ is sufficiently large and the integrand will decay. A
conventional leading order expansion of the integrand in the small or large αℓ regime will
not be able to capture this behavior. We make the following approximations, the product
of the first two terms is approximated in the large αℓ regime to give: αℓr

2
sf

′′
ext(rs)

(d− 2)
√

1 +
2r2sf

′′
ext(rs)α

2
ℓ

(d−2)2

(d− 2

2

[
−1 +

√
1 +

2r2sf
′′
ext(rs)α

2
ℓ

(d− 2)2

])d−2

≈
(
r2sf

′′
ext(rs)

2

) d−1
2

αd−2
ℓ .

(C.31)

Even though this approximation is more accurate for larger αℓ one can plot the approxi-
mation and compare to the exact function and find reasonable agreement at small values
of αℓ.
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We approximate the terms in the second line with:Γ
(
3 +

√
1 + 4α2

ℓ

)
Li

3+
√

1+4α2
ℓ

(1)(
βδrf ′′ext(rs)αℓ

2

)1+√1+4α2
ℓ

 ≈ π4

15

(
βδrf ′′

ext(rs)

2

)−2−2α2
ℓ

α−2
ℓ . (C.32)

Combining these gives:

Iℓ ≈
π4

15

(
r2sf

′′
ext(rs)

2

) d−1
2
(
βδrf ′′

ext(rs)

2

)−2−2α2
ℓ

αd−4
ℓ . (C.33)

To get a sense of how the approximation compares to the full function we make various
plots shown in Figure C.1 by fixing the values of βδr

r2s
, rs
L
, and d. We can see that the

approximation becomes worse as we increase d. However, even for larger values of d doing
the integral of the approximated integrand will give a result that is off by a order one pre-
factor from the exact result. The approximation improves in the limit when rs/L→ ∞ as
we can see in the following plots in Figure C.2 where we increase rs/L from 102 to 1050:

C.6 Treating the ℓ = 0 Mode in the Near Extremal

Regime

Using the generalized greybody factor given by Eq. (C.25) the contribution to the evap-
oration rate of a near extremal AdS RN black hole is given by computing the following
integrals:

dM

dt

∣∣∣∣
ℓ=0

=
Nb

2π

[∫ ωmin,0

0

ω

eβω − 1

(
ω

ωmin,0

)4/3

dω +

∫ ∞

ωmin,0

ω

eβω − 1
dω

]

=
Nbω

2
min,0

2π

[∫ 1

0

ϵ10/3

eβωmin,0ϵ − 1
dϵ+

∫ ∞

1

ϵ

eβωmin,0ϵ − 1
dϵ

]
.

(C.34)

Similar to the ℓ ≥ 1 modes, when βωmin,0 ≫ 1 we can extend the integration limits over
the interval (0, 1) to (0,∞) without changing the value of the result. When we do this we
will obtain the following evaporation rate from the ℓ = 0 channel:

dM

dt

∣∣∣∣
ℓ=0

=
Nb

2πβ2

[
Γ
(
13
3

)
ζ
(
13
3

)
(βωmin,0)

7/3
+ Li2

(
e−βωmin,0

)
− βωmin,0 ln

(
1− eβωmin,0

)]
, (C.35)
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Figure C.1: βδr
r2s

= 100 and rs/L = 100.

where Γ (13/3) ζ(13/3) ≈ 9.84. Close to the extremal regime the primary contribution
comes from the first term just like for modes ℓ ≥ 1. So we have:

dM

dt

∣∣∣∣
ℓ=0

≈ Nb

2πβ2
Γ (13/3) ζ (13/3)

[(
(d− 1)δr

rs

)1/2
βδrf ′′

ext(rs)

2

]−7/3

. (C.36)

Now that we have the ℓ = 0 contribution to the evaporation rate it is interesting to ask
how large of an effect it has on the evaporation rate if we include it.

For large AdS black holes we estimated the evaporation rate contribution from modes
with ℓ ≥ 1. We found that the evaporation rate went as β−4 (perhaps with some ln(β)
dependence which we can ignore if β is sufficiently large.). If we look at the β dependence
of the ℓ = 0 contribution to the evaporation rate is it goes as β−13/3. In the extremal
limit when β → ∞ the ℓ = 0 mode’s contribution to the evaporation rate will decay more
quickly than the total contribution of the modes ℓ ≥ 1. So sufficiently close to the extremal
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Figure C.2: βδr
r2s

= 100 and rs/L = 1050.

regime for very large AdS black holes we can effectively ignore the contribution of the the
ℓ = 0 mode since it will be a sub-leading correction. This is also what happened in the
case of AdS Schwarzschild black holes (assuming we placed the screen sufficiently close to
the horizon).

For very small AdS black holes (or asymptotically flat black holes) we can consider
the ratio between the ℓ = 1 mode evaporation rate (given by Eq. (4.39)) and the ℓ = 0
evaporation rate (given by Eq. (C.36)) which is given by:

dM
dt

∣∣∣∣
ℓ=0

dM
dt

∣∣∣∣
ℓ=1

=
Γ (13/3) ζ (13/3) [(d− 1)(d− 2)2]

d−1
d−2

[(d− 1)1/2(d− 2)2]
7/3

Γ
(

2(2d−3)
d−2

)
Li 2(2d−3)

d−2

(1)

( rs
δr

)7/4( r2s
βδr

) d−8
3(d−2)

∼ β− d−8
3(d−2) .

(C.37)
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We can see that if d < 8 then ℓ = 0 mode will dominate sufficiently close to the extremal
regime and if d > 8 then the ℓ = 1 mode will dominate sufficiently close to the extremal
regime. Lets consider what happens when d < 8. For ℓ = 0 mode we require βωmin,0 ≫

1 ⇒ δr
rs

≫
(
rs
β

)2/3
. We define Λ such that δr

rs
= Λ

(
rs
β

)2/3
then the evaporation rate can

be expressed as:
dM

dt
∼ Nb

β2Λ7/2
. (C.38)

Using this result we can express the information re-emergence time as:

temerge ∼
β

2π
ln

(
Λ7/2 r

d−1
s

ℓd−1
p

)
. (C.39)

We fix the β dependence of Λ by fixing the proper distance (which we denote as lprop)

between the screen and horizon. This means Λ ∼
(
rs
β

)1/3 (
lprop
rs

)2
. Then we find:

temerge ∼
β

2π

[
ln

((
rs
β

)7/6
rd−1
s

ℓd−1
p Nb

)
+ 2 ln

(
lprop
rs

)]
. (C.40)

This shows that the even when ℓ = 0 dominates we still get results for the information
re-emergence time that are comparable to the results we obtained in cases where the ℓ = 1
mode was dominant. The main change is the power that the combination rs/β comes with,
which is 7/6 rather than 1. As before, the sub-leading log term contains information about
how far from the horizon the screen is placed. So we again get results consistent with
known literature on the scrambling time of near extremal black holes.

C.7 Derivation of the Stress Energy Tensor of the

Screen

In Section 4.4.1 we suggested that generalized greybody factors discussed in this paper can
be understood in terms of a transmission coefficient for an effective potential given in Eq.
(4.70). We stated that such a potential would be obtained by cutting off the geometry of
the AdS black hole where the screen would be, we would then glue an exterior space which
acts as a storage system for the radiation. By requiring this gluing to satisfy the Einstein
field equations with some matter distribution, then there will generally be a singular matter
distribution at the interface where the gluing occurs. In our setup the singular matter will
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lie on a spherical shell where the screen would be. The problem of finding the stress
energy tensor of such a shell is a well studied problem whose solution is stated in terms of
Israel junction conditions [77] (see [119] for a review). The starting point is to write down
the metrics both inside and outside the shell. We will utilize a hyperspherical coordinate
system xµ = (t, r, ϕ1, ..., ϕd−1). This coordinate sytem will be used both inside and outside
the shell. In these coordinates the shell is at a fixed at r = r0 = const. The metric inside
the shell will be given by:

g−µν = −f−(r)δtµδtν + f−(r)
−1δrµδ

r
ν + r2gΩIJδ

I
µδ

J
ν , (C.41)

where I, J = 1, 2, ..., d− 1 are angular indices and gΩIJ is the (diagonal) metric on a d− 1
- unit sphere. The “−” sub-indices and super-indices indicate that we are dealing with
tensors inside the shell (r < r0). Analogously, we take the metric outside the shell to be:

g+µν = −∆(r0)f+(r)δ
t
µδ

t
ν + f+(r)

−1δrµδ
r
ν + r2gΩIJδ

I
µδ

J
ν

∆(r0) =
f−(r0)

f+(r0)
,

(C.42)

where the “+” sub-indices and super-indices indicate that we are dealing with tensors
outside the shell (r > r0). The additional time lapse constant ∆(r0) is introduced so that
the induced metric on both sides of the shell is the same in “natural” induced coordinates
ya = (t, ϕ1, ..., ϕd−1). It is given as:

hab =
∂xµ

∂ya
∂xν

∂yb
g±µν

∣∣∣∣
r=r0

= δµaδ
ν
b g

±
µν = −f(r0)δtaδtb + r20g

Ω
IJδ

I
aδ
J
b . (C.43)

The stress energy tensor of the shell denoted Sab is related to the discontinuity in the
extrinsic curvature tensor and its trace on either side of the r = r0 hypersurface. More
specifically, we have1:

Sab = − 1

8π
([Kab]− [K]hab) , (C.44)

above the notation [T ] for any tensor T is defined as:

[T ] = lim
r→r0

T+ − lim
r→r0

T−. (C.45)

1In the formula below we assume that hypersurface is timelike.
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So we need to calculate the extrinsic curvature on either side of the hypersurface, which is
defined in terms of the covariant derivative of the normalized unit vector to the timelike
hypersurface r = r0:

K±
ab = δµaδ

ν
b∇±

µn
±
ν . (C.46)

Here, ∇±
µ is the covariant derivative with respect to the metrics, g±µν , on either side of the

shell. The trace is simply given by:

K± = habK±
ab. (C.47)

The normal vector to a constant r hypersurface outside the shell is:

n+
µ = f+(r)

−1/2δrµ. (C.48)

The normal vector to a constant r hypersurface inside the shell is:

n−
µ = f−(r)

−1/2δrµ. (C.49)

Using these expressions we will find that:

K+
ab = −1

2
f−(r0)f+(r0)

−1/2f ′
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2
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1

2
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−1/2f ′
+(r0) + (d− 1)r−1

0 f+(r0)
1/2

K− =
1

2
f−(r0)

−1/2f ′
−(r0) + (d− 1)r−1

0 f−(r0)
1/2.

(C.50)

Using these expressions and plugging into Eq. (C.44) gives:

16πSab = −
2(d− 1)f−(r0)

(
f+(r0)

1/2 − f−(r0)
1/2
)

r0
δtaδ

t
b

+

[
2(d− 2)

(
f+(r0)

1/2 − f−(r0)
1/2
)
+
r0f

′
+(r0)

f+(r0)1/2
−
r0f

′
−(r0)

f−(r0)1/2

]
r0g

Ω
IJδ

I
aδ
J
b .

(C.51)

It is convenient to define the following basis on the shell:
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êat =
δat√
f−(r0)

êaI =

√
gIIΩ
r0

δaI ,

(C.52)

which allows us to write the inverse induced metric as:

hab = ηcdêac ê
b
d = −êat êbt +

d−1∑
I=1

êaI ê
b
I . (C.53)

Using this basis we can see the stress energy tensor of the shell is that of a d - dimensional
perfect fluid given by:

Sab = ρêat ê
b
t + p

∑
I

êaI ê
b
I = (ρ+ p) êat ê

b
t + phab

ρ =
(d− 1)

(
f−(r0)

1/2 − f+(r0)
1/2
)

8πr0

p =
1

16πr0

[
2(d− 2)

(
f+(r0)

1/2 − f−(r0)
1/2
)
+ r0

(
f ′
+(r0)

f+(r0)1/2
−

f ′
−(r0)

f−(r0)1/2

)]
,

(C.54)

where ρ is the energy density of the shell and p is the principle pressure. This completes
our derivation of the stress energy tensor of a shell that allows for the gluing two spherically
symmetric static spacetimes along the interface r = r0. This will be used in the discussion
of energy conditions of the shell.

C.8 Null Energy Condition of the Screen

In Appendix C.7, we derived a solution to the Einstein equation which represented the
gluing of two different spherically symmetric solutions to the Einstein equation along a
timelike hypersurface r = r0 where our “absorptive” screen would be placed2. To have a
consistent patching it is required that there be a thin shell of matter with a stress energy

2The reason for quotation marks is that the radiation is not actually absorbed by the screen, but rather
leaks into the exterior flat or AdS space.
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tensor given by Eq. (C.54). It is interesting to ask if such a shell will satisfy energy
conditions.

In particular, we are interested in the null energy condition (NEC). The NEC states
that for any future directed null vector kµ one has:

Tµνk
µkν ≥ 0. (C.55)

If we restrict ourselves to null vectors with no radial component then NEC simply becomes:

ρ+ p ≥ 0. (C.56)

On the other hand, considering a purely radial null vector is more subtle since the rr
component of the metric is discontinuous across the shell, and we should consider what
happens on each side separately. The null vector will be given by:

kµ± = c±

[
δµt +

(
−g±tt
g±rr

)1/2

δµr

]
. (C.57)

If the radial null vector is to be future directed then c± ≥ 0. Since the stress energy tensor
of the shell has no radial component we see that the null energy condition for a radial null
vector becomes:

ρ ≥ 0, (C.58)

which is to say that the matter on the shell has a positive energy density. Now let us
consider interior metric to be that of a Schwarzschild AdS black hole:

f−(r) = 1 +
r2

L2
−
−
(rH
r

)d−2
(
1 +

r2H
L2
−

)
. (C.59)

The exterior metric will be chosen to be that of pure AdS3:

f+(r) = 1 +
r2

L2
+

. (C.60)

3The reader might be wondering why we choose pure AdS rather than flat space as we suggested in
Section 4.4.1. The reason is that we want to have a well defined holographic description of the exterior
system where the radiation is stored. The flat space limit can be obtained by sending L+ to infinity. The
advantage of using pure AdS rather than flat space from the beginning is that we can control how much
separation there is between the shell and the exterior conformal boundary, the larger L+ is the further we
push the conformal boundary away from the screen.
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Before analyzing whether it is possible to have ρ ≥ 0 we will consider what happens to the
energy density of the screen as we approach the horizon and the conformal boundary. At
the horizon the the energy density of the screen takes on a negative value given by:

ρ(r0 = rH) = −d− 1

8πrH

√
1 +

r2H
L2
+

. (C.61)

As the screen gets closer to the conformal boundary the energy density will saturate to the
following constant:

lim
r0→∞

ρ =
d− 1

8π

(
1

L−
− 1

L+

)
. (C.62)

From this we see that the radial NEC is always violated at the horizon but if L− ≤ L+

then the radial NEC is satisfied as the screen approaches the conformal boundary. Now
we will discuss the constraint of the energy density being non-negative. It will read:√

1 +
r20
L2
−
−
(
rH
r0

)d−2(
1 +

r2H
L2
−

)
≥

√
1 +

r20
L2
+

. (C.63)

Under the assumption that r0 > rH we can square the expressions on both sides of the
inequality to obtain the following simplified constraint:

1

L2
−
− 1

L2
+

− 1

r2H

(
rH
r0

)d(
1 +

r2H
L2
−

)
≥ 0. (C.64)

We already know the radial NEC will be satisfied for a screen at the conformal boundary
if L+ ≥ L−. Furthermore, we also know that if screen is placed arbitrarily close to the
horizon the radial NEC will be violated. From these considerations there must be a critical
radius where the screen will saturate the radial NEC and the energy density will vanish.
This is easily found and given by:

rc = rH

1 +
L2
−
r2H

1− L2
−

L2
+


1
d

. (C.65)

It is also interesting to consider how the energy density of the screen changes as we
move the screen closer to the conformal boundary by considering dρ/dr0 ≥ 0 for any radial
coordinate outside the horizon. The expression for the derivative is given by:
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dρ

dr0
=
d− 1

8πr20

[
r0f

′
−(r0)

2
√
f−(r0)

−
r0f

′
+(r0)

2
√
f+(r0)

−
√
f−(r0) +

√
f+(r0)

]

=
(d− 1)ξ(r0)

8πr20
√
f−(r0)f+(r0)

ξ(r0) =
√
f+(r0)

(
r0f

′
−(r0)

2
− f−(r0)

)
+
√
f−(r0)

(
f+(r0)−

r0f
′
+(r0)

2

)
.

(C.66)

The sign of the derivative depends on ξ(r0). By plugging in the expressions for f+(r0) and
f−(r0) we will find that:

ξ(r0) =

√
1 +

r20
L2
+

[
−1 +

d

2

(
rH
r0

)d−2(
1 +

r2H
L2
−

)]
+

√
1 +

r20
L2
−
−
(
rH
r0

)d−2(
1 +

r2H
L2
−

)

>

√
1 +

r20
L2
−
−
(
rH
r0

)d−2(
1 +

r2H
L2
−

)
−

√
1 +

r20
L2
+

=
8πr0ρ

d− 1
.

(C.67)

We have a strict inequality since r0 <∞ (saturation occurs in limit as r0 → ∞):

dρ

dr0
>

ρ

r0
√
f+(r0)f−(r0)

. (C.68)

This implies that at any point where the radial NEC is satisfied the energy density must
increase within a neighborhood of that point. This is enough to show that for r0 ≥ rc the
energy density must strictly increase. In Figure C.3 we plot of the energy density of the
screen to illustrate the monotone increase of energy density.

Now that we have explored when the NEC is violated for radial null vectors we can
move on to understanding the NEC for tangent null vectors (i.e. null vectors with no
radial component). In this case we must understand the condition ρ+ p ≥ 0. Before doing
this lets consider what happens to this combination as we approach the horizon and as we
approach infinity. As we approach the horizon we have:

lim
r0→rH

(ρ+ p) = −∞. (C.69)
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Figure C.3: Above is a plot of the energy density of the screen as a function of its placement
for the case when d = 3 and rH/L− = 1. Each solid line is a plot of the energy density of the
screen in units of the interior AdS radius, L− for different choices of the ratio R = L+/L−.
We can see that all the lines start at r0/L− = 1 which is where the horizon of the black
hole is. At r0/L− = 1 the energy density given by Eq. (C.61) and will be negative. All
the lines then increase monotonically and will saturate to a value given by Eq. (C.62) at
infinity. For cases when R < 1 the energy density at the conformal boundary will saturate
to a negative value. When R = 1 the energy density is always negative and saturates to
zero at the conformal boundary. When R > 1 the energy density is positive if r0 > rc
where rc is given by Eq. (C.65). The red curve corresponding to the limit when R = ∞
represents the case when we patch a flat exterior metric at the screen interface and the
dotted line is the value the energy density will saturate to at infinity. The main features of
the energy density as illustrated in this plot remain intact if we consider higher dimensions
and different values of rH/L−.

When we take the screen to infinity it can be shown that ρ + p goes to zero with the
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following leading order behaviour:

ρ+ p =
L− − L+

8πr20
+O

(
1

r40

)
. (C.70)

This means that if L+ > L− then for sufficiently large r0 the sum of the energy density and
pressure is negative. If L+ < L− the for sufficiently large r0 the sum of the energy density
and pressure is positive. Similar to the radial NEC, we see that there is a violation of the
tangent NEC close to the horizon and a saturation at infinity. The divergent violation at
the horizon comes from the pressure given by Eq. (C.54) due to the fact that f−(rH) = 0.
Now that we understand what happens close to the horizon and infinity we will consider
the constraint more generally. In terms of f+ and f−, it is given by the following inequality:

ρ+ p =
1

16πr0

[
2
(
f−(r0)

1/2 − f+(r0)
1/2
)
+ r0

(
f ′
+(r0)

f+(r0)1/2
−

f ′
−(r0)

f−(r0)1/2

)]
≥ 0. (C.71)

It is difficult to make further progress analytically like we did for understanding the
radial NEC. Therefore, we will resort to making plots for ρ + p in Eq. (C.71) and make
some general comments.

From Figure C.4 we can see that if L+ ≥ L− then the tangential NEC is violated for
all r0 ∈ (rH ,∞).
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Figure C.4: Above is a plot of the sum of the energy density and pressure (i.e. ρ+p) of the
screen as a function of its radial placement for the case when d = 3 and rH/L− = 1. Each
solid line is a plot of the energy density of the screen in units of the interior AdS radius,
L−, for different choices of the ratio R = L+/L−. For each line there is a divergence at
r0/L− = 1 where the horizon of the black hole is. All the lines in the graph will saturate to
a value of zero at infinity, however the way by which this is achieved is different depending
on the value of R. Lines with R < 1 (blue and yellow line) actually cross the x-axis
and then decrease and saturate to zero. Lines with R ≥ 1 (green, red, and dotted lines)
stay below the x-axis and saturate to zero at infinity. This is consistent with the simple
expressions we found in Eq. (C.69) and Eq. (C.70). The main features discussed remain
intact in higher dimensions and for more general choices of rH/L−.
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Appendix D

Chapter 5 Appendix Materials

D.1 Supplemental Calculations for Poincare AdS3

D.1.1 Deriving General Solution for Extremal Curves in Poincare
AdS3

In this appendix we will find the general solution to the equations of motion that are obtain
from the Lagrangian:

L =

∫
L

√
1 + ż2 − ṫ2

z
, (D.1)

which we read off from the function given in Eq. (5.3). Since there is no explicit dependence
on x there is a conserved Hamiltonian corresponding to x-translations which can be written
as:

Hx = − L

z
√
1 + ż2 − ṫ2

. (D.2)

Furthermore, since there is no explicit time dependence we get the following equation for
ṫ:

ct = − Lṫ

z
√
1 + ż2 − ṫ2

. (D.3)
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Combining D.2 and D.3 we will obtain the following equations for t(x) and z(x):

ṫ = k

ż2 =
L2

H2
xz

2
+ k2 − 1, (D.4)

where k,Hx are constants. The general solution to the equations above is:

t(x) = kx+ c1

z(x) =

√
L2

H2
x(1− k2)

− (1− k2)(x+ c2)2.
(D.5)

which is what we wrote in Eq. (5.4). In the special case where k = 0 the RT surface
remains on a constant time slice and traces out a half circle in the bulk given by:

t(x) = c1

z(x) =

√
L2

H2
x

− (x+ c2)
2

(D.6)

It is straightforward to see that this is a half circle in the z − x plane. It has a centre at
(t = c1, x = −c2, z = 0) with a radius L

|Hx| .

D.1.2 Analysis Of Extremal Curves in Poincare AdS3

In Section 5.2.2 we wrote down equations for extremal RT curve trajectories that connected
the boundary to the brane. In this subsection we will discuss why it is necessary for the
quantity −∆t2 +∆x2 +∆z2 > 0. We begin by noting that z(x) describes conic sections in
the z − x plane which can be classified by the value of k summarized in the table below:

|k| z(x)
0 circle

0 < |k| < 1 ellipse
1 parabola

|k| > 1 hyperbola
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Lets consider the curve χ1 described by the Eq. 5.8 in such a case we have the following:

∆t = tb − ta

∆x = a1 + b1 sin θ0

∆z = b1 cos θ0

(D.7)

Using this we can write the following expression for z1(x) in terms of the ∆’s as follows:

z1(x) =

√
(x+ a1) [(x+ a1 −∆x)(∆t2 −∆x2) + ∆x∆z2]

∆x2
(D.8)

We fix ∆x and ∆z and analyze χ1 curve near x = −a1 we have the following expansion:

z1(x) =

√
−∆t2 +∆x2 +∆z2

∆x
(x+ a1) +O((x+ a1)

3/2) (D.9)

We can see that when x > −a1 the expression is real only if −∆t2 +∆x2 +∆z2 > 0. We
can rewrite this and obtain the following bound for k1:

|k1| < |kc| =
√

1 +
∆z2

∆x2
=

√
a21 + b21 + 2a1b1 sin θ0
a1 + b1 sin θ0

⇒ |tb − ta| <
√
a21 + b21 + 2a1b1 sin θ0

(D.10)

Geometrically what occurs as |k| → |kc|− is that the hyperbola switches branches and the
resulting branch does not connect to the boundary to the brane. An image would be good.

The condition that −∆t + ∆x2 + ∆z2 > 0 can also be interpreted as saying that the
points on the boundary and brane are spacelike separated1. Furthermore, lets consider the
sign of the norm of a tangent vector along any point on the curve. We have the following
expression for the norm of the tangent vector:

L2

z21

[
−
(
dt21
dx

)
+ 1 +

(
dz21
dx

)]
(D.11)

The sign only depends on the expression in square brackets. With some work we will arrive
at the following result:

−
(
dt1
dx

)2

+ 1 +

(
dz1
dx

)2

=
(−∆t2 +∆x2 +∆z2)2

4(x+ a1) [(x+ a1)∆z2 + (∆x− (x+ a1)) (−∆t2 +∆z2 +∆x2)]
(D.12)

One can check that the signs of the expression above is non-negative as long as:

1Here when we say the two points are spacelike separated we mean that we consider lightcone from
either of the two points. The we say another point is spacelke separated if it lies outside the bulk lightcone.
The causal structure of vacuum AdS is the same as the causal structure of flat Minkowski.
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• −∆t2 +∆x2 +∆z2 > 0

• −a1 < x < −a1 +∆x

The first condition is equivalent to the bound |k1| < |kc| and the second condition is simply
describing the physically allowed region of the bulk. This shows that the condition that the
point on the boundary be spacelike separated from the point on the brane (and vice-versa)
implies that the tangent vector to the curve will also be spacelike.

D.1.3 Null Geodesics and Lightcones in Poincare AdS3

In this subsection we will derive expressions for the trajectories of null geodesics in Poincare
AdS3. We begin with the Lagrangian which will give us the equations of motion that
geodesics will satisfy:

L =
L2

z2
[
−ṫ2 + ż2 + ẋ2

]
. (D.13)

The associated equations of motion are given by:

ẗ =
2ṫż

z

ẍ =
2ẋż

z

z̈ =
ṫ2 + ż2 − ẋ2

z

(D.14)

Since we want to deal with null geodesics this means:

ṫ2 = ż2 + ẋ2 (D.15)

The equation for z becomes:

z̈ =
2ż2

z
= 0 ⇒ z(σ) =

c2
σ + c1

(D.16)

Plugging this into the x equation and solving we get:

x(σ) =
c3

c1 + σ
+ c4 (D.17)

Finally we solve for t to get:

t(σ) =
c5

c1 + σ
+ c6 (D.18)
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The condition that we have null geodesics means that:

c25 = c23 + c22 (D.19)

We redefine σ = σ(λ) =
(
λ+z0
c2

)−1

− c1 and write the following general solution for null

geodesics:

z(λ) = λ+ z0

x(λ) =
c3
c2
λ+ x0

t(λ) =
c5
c2
λ+ t0 =

√
c23 + c22
c2

λ+ t0

(D.20)

These are just straight lines. We can consider an arbitrary point in the bulk (t0, x0, z0)
and find the equation of a lightcone from this point at a surface of the form tl.c. = t(x, z).
We can do this by noting the following:

λ = z − z0

x− x0 =
c3
c2
λ =

c3
c2
(z − z0)

(D.21)

Plugging this into the equation for t(λ) gives:

(t− t0)
2 = λ2 +

(
λ
c3
c2

)2

= (x− x0)
2 + (z − z0)

2 (D.22)

We conclude a light cone centred at (t0, x0, z0) has the equation:

|t(x, z)− t0| =
√

(x− x0)2 + (z − z0)2. (D.23)

This allows us to define causal relationships between points in the bulk.

D.1.4 EntanglementWedges For Constant Time Intervals in Poincare
AdS3

An important fact about RT curves given in Eq. (D.6), which are anchored to constant time
slice intervals on the boundary, is that they can be understood in terms of the intersection of
certain lightcones whose apexes live on certain points on a conformal boundary (recall these
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lightcones are described by the equation given in Eq. (D.23)). In particular, for the general
solution given in Eq. (D.6) we can define two lightcones. One lightcone is generated by
past directed null geodesics originating from from the point (t0 = c1+

L
|Hx| , x0 = −c2, z = 0)

given by:

tp.d.(x, z) = c1 +
L

|Hx|
−
√
(x+ c2)2 + z2 (D.24)

The other lightcone consists of future oriented null geodesics originating from the point
(t0 = c1 − L

|Hx| , x0 = −c2, z = 0) given by:

tf.d.(x, z) = c1 −
L

|Hx|
+
√

(x+ c2)2 + z2 (D.25)

The surfaces will intersect on the t = c1 time slice along a curve we can find this curve by
setting:

tp.d.(x, z) = tf.d.(x, z) ⇒ z =

√
L2

H2
x

− (x+ c2)
2 (D.26)

This is precisely the RT curve anchored to a constant time boundary interval. The region
enclosed by tp.d. and tf.d. is called the causal wedge we can express the null boundary of
the causal wedge in the following compact notation:

L

Hx

− |t− c1| =
√

(x+ c2)2 + z2, (D.27)

where L
Hx

− |t− c1| ≥ 0. Points inside the causal wedge satisfy:

L

Hx

− |t− c1| >
√

(x+ c2)2 + z2 (D.28)

Since the boundary of the causal wedge contains the set of points in the RT curve we can
conclude a well known that fact that in vacuum AdS the causal and entanglement wedges
are the same. In particular for the specific case of the subregion A we have:

L

|Hx|
=
a2 − a1

2

c1 = ta

c2 =
a2 + a1

2
,

(D.29)

which gives Eq. (5.10).
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A similar game can also be played to understand the points contained in WE(B). We
appeal to the fact that, mathematically, there is nothing stopping us from continuing the
section of the half circle describing χdis.(B) behind the brane all the way to the conformal
boundary. Doing this will define a “virtual interval” that lies on a constant time slice
t = tb behind the brane. The virtual interval associated with the brane interval B, denoted
Vir(B), is going to be equal to the following constant time slice interval on the boundary
given by:

Vir(B) = {(t, x, z)|t = tb, x ∈ [
b1 + b2
2 sin θ0

−Rb,
b1 + b2
2 sin θ0

+Rb], z = 0}.

Rb =

√
b21 + b22 + 2b1b2 cos(2θ0)

2 sin θ0

(D.30)

Clearly χdis.(B) ⊆ χdis.(Vir(B)) and we will also conclude that WE(B) ⊆ WE(Vir(B)).
The expression for the null surface that bounds WE(Vir(B)) is given by Eq. (D.27) by
setting:

L

|Hx|
= Rb =

√
b21 + b22 + 2b1b2 cos(2θ0)

2 sin θ0

c1 = tb

c2 = −b1 + b2
2 sin θ0

(D.31)

Finally we define WE(B) = WE(Vir(B))∩Phys(AdS3). Where Phys(AdS3) is the portion
of the bulk spacetime which is not cutoff by the end-of-the-world brane. This essentially
means that we can view WE(B) as the piece cut out of the much larger entanglement
wedge WE(Vir(B)). As shown in Figure 5.5.

D.1.5 Analysis of Naive Sufficient Condition for EWN (AdS3)

In this Appendix we will derive a sufficient condition for entanglement wedge nesting to
hold based on the criteria described in Eq. (5.13). We begin with the condition using χ1

we have:

[|t1(x)− tb|+Rb]
2 −

[
x− b1 + b2

2 sin θ0

]2
− z1(x)

2 ≤ 0 (D.32)

On the χ1 curve there is a relation between |t1(x)− tb| and x given by:

x(δt1) = b1 sin θ0 −
|t1 − tb|
|k1|

= b1 sin θ0 −
|δt1|
|k1|

(D.33)
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We plug this into the inequality and simplify to obtain the following result:

[|δt1|+Rb]
2 −

[
b1 sin θ0 −

|δt1|
|k1|

− b1 + b2
2 sin θ0

]2
− z1

(
b1 sin θ0 −

|δt1|
|k1|

)2

=
|δt1|(a1 + b1 sin θ0)

|k1|

[|k1|+ Rb

a1 + b1 sin θ0

]2
−

(
2a1 +

b1+b2
sin θ0

)2
4(a1 + b1 sin θ0)2

 ≤ 0

(D.34)

So to satisfy the inequality we must require that:

|k1| ≤ − Rb

a1 + b1 sin θ0
+

2a1 +
b1+b2
sin θ0

2(a1 + b1 sin θ0)
(D.35)

Using a similar analysis for χ2 one can also obtain another bound given as:

|k2| ≤ − Rb

a2 + b2 sin θ0
+

2a2 +
b1+b2
sin θ0

2(a2 + b2 sin θ0)
(D.36)

The stronger bound comes from our analysis using χ1 and we are left with the following
sufficient condition for entanglement wedge nesting:

|tb − ta| ≤ a1 +
b1 + b2 −

√
b21 + b22 + 2b1b2 cos(2θ0)

2 sin θ0
, (D.37)

which is what wrote in Eq. (5.14).

D.1.6 A Characterization of Causality in the 2D Boundary-Brane
System

In this appendix we will discuss some basic aspects of causality in the 2D brane boundary
system which we use in our discussion in Section 5.2.5. To begin we recall that the system
we are considering is AdS3 in Poincare coordinates which contains an end-of-the-world-
brane. Recall the metric that we used is:

ds2 =
L2

z2
[
−dt2 + dx2 + dz2

]
(D.38)

The end-of-the-world brane is given by the surface that satisfies:

z = cot θ0x

x > 0,
(D.39)
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where θ0 ∈ (0, π/2]. What we refer to the as the “Boundary-Brane System” is a 2D system
which consists of the union of the conformal boundary for x < 0 and the end-of-the-world
brane for x > 0. We can characterize the system as the set of points in the bulk that
satisfy:

z = Θ(x) cot θ0x. (D.40)

An alternate coordinate system which naturally foliates the bulk in terms of the end-of-
the-world branes consists of a radial coordinate r and a angle θ which can be related to
the (z, x) through the following transformation to polar coordinates:

z = r cos θ

x = r sin θ
(D.41)

The metric now reads:

ds2 =
L2

cos2 θ

[
dθ2 +

−dt2 + dr2

r2

]
(D.42)

Now the end-of-the-world brane is given by surfaces of constant θ. The brane boundary
system is simply given by the union of the θ = −π/2 slice and the θ = θ0 slice. Since the
2D induced metric is conformally flat we know that null geodesics in the brane boundary
system are very simple to analyze. In particular, if we started on the t = ta slice on the
boundary at (r = a1) the null geodesics would get to r = 0 at time t = ta+ a1. Then after
that the time it takes to reach a point r = b1 on the brane is:

t(b1)− ta = a1 + b1 (D.43)

This is interesting because it naturally allows us to define what it means for two points
on the brane boundary system to be timelike. In particular, if we have a point on the
boundary with r = a1, t = ta and another point on the brane at r = b1, t = tb then:

• They are lightlike separated if |tb − ta| = a1 + b1

• They are timelike separated if |tb − ta| > a1 + b1

• They are spacelike separated if |tb − ta| < a1 + b1.

This would represent a natural way to define causal relationships if we are confined to do
causal processes constrained within the 2D Boundary-Brane system.

Now lets consider a slightly different notion of causality which makes use of the signaling
through the bulk. In this case we can consider a bulk light cone which starts at (t = ta, x =
−a1, z = 0). This lightcone is given by:

|t− ta| =
√
z2 + (x+ a1)2 (D.44)
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By projecting the bulk cone onto the 2D Boundary-Brane system we obtain the following
curve:

|t(x)− ta| =
√

Θ(x) cot2 θ0x2 + (x+ a1)2 =

{
x+ a1, −a1 < x < 0√

cot2 θ0x2 + (x+ a1)2, x ≥ 0,

(D.45)
By plugging in x = b1 sin θ0 we obtain the following result:

|t(b1 sin θ0)− ta| =
√
a21 + b21 + 2a1b1 sin θ0. (D.46)

This defines a new causal structure on the 2D Brane-Boundary system. Suppose we choose
a point on the boundary at r = a1 at time t = ta and another point on the brane at r = b1
at time t = tb then:

• They are bulk lightlike separated if |tb − ta| =
√
a21 + b21 + 2a1b1 sin θ0

• They are bulk timelike separated if |tb − ta| >
√
a21 + b21 + 2a1b1 sin θ0

• They are bulk spacelike separated if |tb − ta| <
√
a21 + b21 + 2a1b1 sin θ0.

We can see that:

a1 + b1 ≥
√
a21 + b21 + 2a1b1 sin θ0 (D.47)

This suggests that certain causal (“local”) processes in the bulk when projected onto the 2D
Brane-Boundary system will appear non-causal (“non-local”) when one tries to understand
them solely in terms of causal relationships defined in the 2D Brane-Boundary system.

D.2 Supplemental Calculations for Planar BTZ Black

Hole

D.2.1 Derivation of Thermal RT Surface (Planar BTZ Black
Hole)

In this subsection we will derive the equations of motion to determine the thermal RT
surface. We define the Lagrangian associated to the functional given in Eq. (5.34) below:

L(t, ṫ, z, ż;x) = L

z

√
−f̃(z)ṫ2 + ż2

f̃(z)
+ 1 (D.48)
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Since the Lagrangian no explicit x dependence so we can define a conserved Hamiltonian
associated with x-translations given by:

Hx = ż
∂L
∂ż

+ ṫ
∂L
∂ṫ

− L = − L2

z2L
(D.49)

We have the following equation of motion for t:

∂L
∂ṫ

= ct, (D.50)

where ct is constant. Plugging this into the Lagrangian we obtain the following expression
for ṫ:

ṫ = −ct
Lz2

L2
(
1− z2

z2+

) =
ct

Hx

(
1− z2

z2+

) . (D.51)

Since z < z+ we know that sign of the derivative will not change along the RT curve.
Since we want to anchor the thermal RT surface to a constant time slice interval we must
require that ct = 0. This in turn means ṫ = 0 ⇒ t(x) = tbdry. If we plug this back into the
equation for Hx and rearrange for ż we get:

ż2 =

(
z2+ − z2

)
(L2 −H2

xz
2)

H2
xz

2
+z

2
(D.52)

We can see that ż = 0 when z = ztp = L/|Hx|, this is the turning point for the RT curve
where the derivative ż goes to zero. We want an RT surface that starts at x = −a extends
into the bulk and then returns to the boundary at x = a. Rearranging the expression ż we
obtain the following integral equation for the “left portion” of the RT curve where ż ≥ 0:∫ x

−a
dx =

∫ z(x)

0

z+z√
(z2+ − z2)(z2tp − z2)

dz (D.53)

We can explicitly integrate each side of the expression and with some algebraic/trigonometric
manipulations we arrive at the following result:

zleft(x) =

√
z2+ −

[
z+ cosh

(
x+ a

z+

)
− ztp sinh

(
x+ a

z+

)]2
(D.54)

By requiring that ztp = z(xtp) we obtain the following relation between xtp and ztp:

ztp = z+ tanh

(
a+ xtp
z+

)
(D.55)
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Plugging this back into the expression for zleft(x) gives the following result:

zleft(x) = z+

√√√√√1−
cosh2

(
x−xtp
z+

)
cosh2

(
a+xtp
z+

) (D.56)

For the “right potion” of the RT curve we have to perform the following integrals:∫ a

x

dx = −
∫ 0

z(x)

z+z√
(z2+ − z2)(z2tp − z2)

dz =

∫ z(x)

0

z+z√
(z2+ − z2)(z2tp − z2)

dz (D.57)

Its not hard to see based on our previous work on the left portion that the right portion
of the RT curve will take the form:

zright(x) =

√
z2+ −

[
z+ cosh

(
a− x

z+

)
− ztp sinh

(
a− x

z+

)]2
(D.58)

Once again, the requirement that ztp = z(xtp) gives:

ztp = z+ tanh

(
a− xtp
z+

)
. (D.59)

Using this we can write:

zright(x) = z+

√√√√√1−
cosh2

(
x−xtp
z+

)
cosh2

(
a−xtp
z+

) (D.60)

The condition that the two portions of the RT curves should be smoothly glued at x = xtp
and z = ztp (i.e. zleft(xtp) = zright(xtp)) gives the following equation:√√√√√1−

cosh2
(
x−xtp
z+

)
cosh2

(
a−xtp
z+

) =

√√√√√1−
cosh2

(
x−xtp
z+

)
cosh2

(
a+xtp
z+

) (D.61)

We can see that this requires the setting of xtp = 0 as expected. So our final result for the
thermal RT surface in Schwarzschild coordinates anchored to the endpoints of a constant
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time slice interval on the boundary centred around x = 0 of size 2a is:

t(x) = tbdry

z(x) = z+

√√√√√1−
cosh2

(
x
z+

)
cosh2

(
a
z+

) (D.62)

This gives the result we wrote in Eq. (5.35).

From Schwarzschild to Kruskal Coordinates

Now that we have derived the thermal RT surface in Schwarzschild coordinates we can use
the expression given for the thermal RT surface along with the transformations given in
in Eq. (5.39). Lets begin by computing the thermal surface in the left exterior which is
anchored to an interval on the boundary at time t = tL = tbdry. We have the following
expressions for u and v:

v(x) =
τ(x)− y(x)

2
= arctan

[
e
−

tbdry
z+

√
z+ − zL(x)

z+ + zL(x)

]

u(x) =
τ(x) + y(x)

2
= arctan

[
−e

tbdry
z+

√
z+ − zL(x)

z+ + zL(x)

]

zL(x) = z+

√√√√√1−
cosh2

(
x
z+

)
cosh2

(
a
z+

)
(D.63)

273



With these expressions we can write the following:

sin (τ(x)) = sin [v(x) + u(x)] = −

√√√√√ (z2L − z2+) sinh
2
(
tbdry
z+

)
z2L sinh

2
(
tbdry
z+

)
− z2+ cosh2

(
tbdry
z+

)
= −

cosh
(
x
z+

)
sinh

(
tbdry
z+

)
√
cosh2

(
a
z+

)
+ cosh2

(
x
z+

)
sinh2

(
tbdry
z+

)
sin (y(x)) = sin [u(x)− v(x)] = −

cosh
(
tbdry
z+

)
cosh

(
x
z+

)
√
cosh2

(
a
z+

)
+ cosh2

(
x
z+

)
sinh2

(
tbdry
z+

)

(D.64)

This gives Eq. (5.40).

Next we proceed with writing the thermal RT surface anchored to a constant time slice
interval t = tBr on an end-of-the-world brane in the right exterior. We have the following
expressions for u and v in the right exteriors:

v(x) =
τ(x)− y(x)

2
= arctan

[
−e−

tBr
z+

√
z+ − zR(x)

z+ + zR(x)

]

u(x) =
τ(x) + y(x)

2
= arctan

[
e

tBr
z+

√
z+ − zR(x)

z+ + zR(x)

]

zR(x) = z+

√√√√√1−
cosh2

(
x
z+

)
cosh2

(
a
z+

) (1− z2Br
z2+

)
(D.65)

With similar manipulations as before we find that a thermal RT surface in the right exterior
anchored to a constant time slice interval (t = tBr) centred around x = 0 of length 2a is
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given by:

sin (τ(x)) = sin[v(x) + u(x)] =

√
1− z2Br

z2+
cosh

(
x
z+

)
sinh

(
tBr

z+

)
√
cosh2

(
a
z+

)
+
(
1− z2Br

z2+

)
cosh2

(
x
z+

)
sinh2

(
tBr

z+

)

sin(y(x)) = sin[u(x)− v(x)] =

√
1− z2Br

z2+
cosh

(
x
z+

)
cosh

(
tBr

z+

)
√

cosh2
(

a
z+

)
+
(
1− z2Br

z2+

)
cosh2

(
x
z+

)
sinh2

(
tBr

z+

)
(D.66)

This gives the expressions in Eq. (5.41). We can check that the following identities hold:

cos2 (y(±a))
cos2 (τ(±a))

=
z2Br
z2+

sin(y(x)) + sin(τ(x))

sin(y(x))− sin(τ(x))
= e

2tBr
z+

(D.67)

which is exactly what we would expect from the coordinate transformations given in Eq.
(5.28).

D.2.2 Derivation of Connected RT Surface (Planar BTZ Black
Hole)

Derivation in Kruskal Coordinates:

We will go over the derivation of finding the connected RT surface that connects the brane
and boundary intervals that are placed in the same position in the “x-direction” (i.e. brane
and boundary intervals have endpoints that are located at the same x-coordinate location).
The connected RT surface will consist of two line segments that go through the black hole
horizon and connect the endpoints of the intervals on the brane and boundary which may
exist on different time slices. To obtain such line segments we must extremize the functional
given in Eq. (5.42). The Lagrangian associated to the functional is:

L =

√
L2 (−τ̇ 2 + 1) +

r2+
L2 cos2 τ ẋ2

cos y
. (D.68)
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Since there is no explicit x-dependence we have that:

∂L
∂ẋ

= cx (D.69)

where cx is constant. Plugging in the actual Lagrangian gives the following expression for
ẋ:

ẋ = cx
L2

r2+

cos2 y

cos2 τ
L (D.70)

We can see that within the bulk geometry a spacelike RT surface will have a derivative
that is monotonic for cx ̸= 0. However, we also know that we must require the RT curve
to start and end at the same x-coordinate. This is only possible if cx = 0. Therefore, we
restrict ourselves to the set of RT surfaces with ẋ = 0. This means we need to deal with a
much simpler Lagrangian:

L = L

√
1− τ̇ 2

cos y
, (D.71)

which is what we wrote in Eq. (5.43). Since we no longer have any explicit τ dependence
on the Lagrangian we have another conserved quantity namely:

cτL =
∂L
∂τ̇

(D.72)

The extra factor L is just a convenient normalization. Plugging in the appropriate La-
grangian gives:

τ̇ = ± 1√
1 + 1

c2τ cos2 y

(D.73)

The sign of the solution above is determined by sign(τBr − τbdry). In particular, when
τBr − τbdry > 0 we have that: ∫ τ(y)

τbdry

dτ =

∫ y

−π/2

dy′√
1 + 1

c2τ cos2 y′

(D.74)

The integrals can be done explicitly to obtain:

τ(y)− τbdry = arctan

[
cτ sin y

′√
1 + c2τ cos

2 y′

] ∣∣∣∣y
−π/2

(D.75)
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Using the relation between arcsin and arctan allows us to write:

τ(y)− τbdry = arcsin

[
cτ√
1 + c2τ

sin y

]
+ arcsin

[
cτ√
1 + c2τ

]
(D.76)

This gives us the expression for the connected RT surface in Eq. (5.44). Note that in
general that sign(cτ ) = sign(τBr − τbdry). We can see for a fixed τbdry the value of cτ fixes
where in time the connected surface connects to the brane.

Connected Surface in Schwarzschild Coordinates:

Now that we have obtained an expression for the connected RT curve in Kruskal coordi-
nates we can express it in the right exterior in Schwarzschild coordinates with the help
of the coordinate transformations given in Eq. (5.28). Since we are interested analyzing
entanglement wedge nesting in the right exterior in Schwarzschild coordinates. We will
find it convenient to use the following expression for the connected surface in Kruskal
coordinates:

τ(y) = τBr + arcsin(ct sin y)− arcsin(ct sin yBr) = τ∗ + arcsin(ct sin y)

ct =
cτ√
1 + c2τ

(D.77)

The connected RT surface ends on a brane located at y = yBr where 0 ≤ yBr ≤ π/2
and at τ = τBr where |τBr| ≤ yBr. Recall the following relation between Kruskal and
Schwarzschild coordinates. We have:

t =
L2

2r+
ln

[
sin y + sin τ

sin y − sin τ

]
r = r+

cos τ

cos y

(D.78)

We can invert the relations above to obtain the following:

sin y = ± 1√
1 + 1(

r2

r2+
−1

)
cosh2

(
r+t

L2

)

sin τ = ±
tanh

(
r+t
L2

)√
1 + 1(

r2

r2+
−1

)
cosh2

(
r+t

L2

) ⇒ cos τ =

√
r2

r2−r2+

cosh
(
r+t
L2

)√
1 + 1(

r2

r2+
−1

)
cosh2

(
r+t

L2

)
(D.79)
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where the “+” is for the right exterior, the “−” is for the left exterior. We focus on the
right exterior and take the “+” sign. From the equation of the connected surface we have
that:

ct sin y = sin(τ − τ∗) = cos τ∗ sin τ − sin τ∗ cos τ. (D.80)

Now we plug in the expressions we had for sin τ and sin y in Eq. (D.79) into Eq. (D.80)
to obtain:

ct = ± cos τ∗ tanh

(
r+t

L2

)
− sin τ∗

√
r2

r2−r2+

cosh
(
r+t
L2

)
⇒ ct cosh

(
r+t

L2

)
= ± cos τ∗ sinh

(
r+t

L2

)
− sin τ∗

√
r2

r2 − r2+

(D.81)

Rearranging the expression above and recalling that z = L2/r, we obtain the following
expression for the connected RT surface in the right exterior in Schwarzschild coordinates:(

z

z+

)2

= 1− sin2 τ∗[
cos τ∗ sinh

(
r+t
L2

)
− ct cosh

(
r+t
L2

)]2
= 1− sin2 τ∗[

A cosh
(
r+∆t
L2

)
+B sinh

(
r+∆t
L2

)]2
A = cos τ∗ sinh

(
r+tBr
L2

)
− ct cosh

(
r+tBr
L2

)
B = cos τ∗ cosh

(
r+tBr
L2

)
− ct sinh

(
r+tBr
L2

)
∆t = t− tBr

(D.82)

An important point to note in the expression above is the issue of the sign of ∆t. In
particular, depending on the precise value of ct the surface would extend away from the
brane toward positive t or negative t. For example, if ct was fixed such that the connected
surface moves toward larger t > tBr then we certainly cannot have ∆t < 0 (at least in a
arbitrarily small neighborhood of the brane). So the central question is how to understand
if we should be in the case where ∆t > 0 or ∆t < 0 for a given ct. At first glance this may
appear to be a rather complicated issue due to the expressions we wrote. However, there
is a useful “trick” we can use to circumvent this problem.
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To begin we do an expansion around the ∆t = 0 (near the brane) to get:(
z

z+

)2

=

[
1− sin2 τ∗

A2

]
+

2r+ sin2 τ∗
A2L2

B

A
∆t (D.83)

One can check that the zeroth order term will evaluate to:

1− sin2 τ∗
A2

=
cos2 yBr
cos2 τBr

=
z2Br
z2+

. (D.84)

This makes sense since ∆t = 0 should place us on the brane. Now lets focus on the linear
order term. The linear order term will dictate if the brane is moving above or below the
t = tBr. In particular we want to z to increase so the surface moves outward away from
the brane this means the linear term should have an overall positive sign. This in turn
means that we must require that sign(B/A) = sign(∆t). With the identity we showed for
the zeroth order term we are able to write:(

z

z+

)2

= 1−
1− z2Br

z2+[
cosh

(
r+∆t
L2

)
+ B

A
sinh

(
r+∆t
L2

)]2 (D.85)

Now we have a precise characterization of how the value of ct affects if ∆t > 0 or if
∆t < 0. In particular if B/A > 0 ⇒ ∆t > 0 and if B/A < 0 ⇒ ∆t < 0. We can “auto-
mate/circumvent” these cases by strictly dealing with the following expression involving
absolute values: (

z

z+

)2

= 1−
1− z2Br

z2+[
cosh

(
r+|∆t|
L2

)
+
∣∣B
A

∣∣ sinh( r+|∆t|
L2

)]2 (D.86)

This precisely gives us the expression for the connected surface in Schwarzschild coordinates
in the right exterior given in Eq. (5.45).

Useful Properties of “B/A”:

It is worthwhile to take the time to more carefully understand the properties of the ratio
B/A. We can explicitly write it as follows in terms of ct, yBr, and τBr:

B

A
=

ct cos
2 yBr tan τBr − sin yBr

√
1− c2t sin

2 yBr

cos τBr

(
ct sin yBr − tan τBr

√
1− c2t sin

2 yBr

) (D.87)

Since we want to strictly consider intervals on the brane in the right exterior we must
require that |τBr| < yBr we also note that |ct| < 1. With this we have the following
properties of B/A:
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• limct→−1(B/A) ≥ 0.

• limct→1(B/A) ≤ 0.

• B/A is singular at ct = c0 =
sin τBr

sin yBr
.

• d
dct

(
B
A

)
is non-negative (i.e. monotonically increasing as ct increases) when ct ̸= c0.

With the properties listed above we can easily deduce that B/A ≥ 0 when −1 < ct < c0
and B/A ≤ 0 when c0 < ct < 1. So the sign of B/A swaps at ct = c0. One can easily check
that the point of sign swapping occurs exactly when the connected extremal surface passes
through the bifurcate horizon at τ = y = 0. These facts will become very important when
we discuss sufficient conditions for entanglement wedge nesting.

D.2.3 Null Geodesics and Lightcones for Planar BTZ Background

In this appendix we will derive expressions the null geodesics propagating in the exte-
rior spacetime of a planar BTZ black hole in Schwarzschild coordinates. The equations
of motion for the geodesics will be obtained from the following Lagrangian (where we
parameterize the geodesics trajectories using z = L2

r
):

L =
L2

z2

[
−f̃(z)ṫ2 + 1

f̃(z)
+ ẋ2

]
f̃(z) = 1− z2

z2+
.

(D.88)

Using the fact that the the Lagrangian has no explicit x or t dependence we have the
following conserved quantities:

− f̃(z)

z2
ṫ = at

ẋ

z2
= ax

(D.89)

Dividing one equation by the other and squaring gives:(
f̃(z)ṫ

ẋ

)2

= α2, (D.90)
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where α is some constant. Finally we can use the condition for having a null geodesic (i.e.
L = 0) to obtain the following first order equations that can be easily integrated:

dx

dz
= ± 1√

α2 − f̃(z)
⇒ x− x0 = ±z+arctanh

 z

z+
√
α2 − 1 + z2

z2+

 ∣∣∣∣z
z0

dt

dz
=

±α

f̃(z)
√
α2 − f̃(z)

⇒ t− t0 = ±z+arctanh

 zα

z+
√
α2 − 1 + z2

z2+

 ∣∣∣∣z
z0

(D.91)

In the special case where we choose a point (t0, x0, z0 = 0) we can use the expression above
to obtain we have a fairly simple expression for the lightcone:

(
t(x, z)− t0

z+

)2

= arctanh2


√
z2 + (z2+ − z2) tanh2

(
x−x0
z+

)
z+


= arctanh2


√√√√√1−

1− z2

z2+

cosh2
(
x−x0
z+

)
 .

(D.92)

For more general cases the expression will be much more complicated and we will not
explicitly write it here (nor will we require it in our discussions).

D.2.4 EntanglementWedges For Constant Time Intervals in BTZ
Background

An important fact about the thermal RT curves given in Eq. (5.35), which are anchored
to constant time slice intervals on the boundary, is that they can be understood in terms
of the intersection of certain lightcones whose apexes live on certain points on a conformal
boundary (recall these lightcones are described by the equation given in Eq. (D.92)). In
particular, for the thermal RT surface given in Eq. (5.35) we can define two lightcones.
One lightcone is generated by past directed null geodesics originating from from the point
(t0 = tbdry + a, x0 = 0, z = 0) given by:

tp.d.(x, z) = tbdry + a− z+arctanh


√√√√√1−

1− z2

z2+

cosh2
(
x
z+

)
 (D.93)
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The other lightcone consists of future oriented null geodesics originating from the point
(t0 = tbdry − a, x0 = 0, z = 0) given by:

tf.d.(x, z) = tbdry − a+ z+arctanh


√√√√√1−

1− z2

z2+

cosh2
(
x
z+

)
 (D.94)

The surfaces will intersect along a curve on the constant time slice t = tbdry we can find
this curve by setting:

tp.d.(x, z) = tf.d.(x, z) ⇒ z = z+

√√√√√1−
cosh2

(
x
z+

)
cosh2

(
a
z+

) , (D.95)

This is precisely the RT curve anchored to a constant time boundary interval. The region
enclosed by tp.d. and tf.d. is called the causal wedge we can express the null boundary of
the causal wedge in the following compact notation:

a− |t− tbdry| = z+arctanh


√√√√√1−

1− z2

z2+

cosh2
(
x
z+

)
 (D.96)

where a − |t − tbdry| ≥ 0, which is what we wrote in Eq. (5.46). Points inside the causal
wedge satisfy:

a− |t− tbdry| > z+arctanh


√√√√√1−

1− z2

z2+

cosh2
(
x
z+

)
 (D.97)

Since the boundary of the causal wedge contains the set of points in the RT curve we can
conclude a well known that fact that in the BTZ black hole background the causal and
entanglement wedges are the same. We give an example of what it may look like in Figure
5.7.

For a constant time slice on the Brane in the BTZ background we take a similar
approach to as we did in Appendix D.1.4 for Poincare AdS3. For the interval on the brane
ABr we continue it past the brane and allow it to end on the boundary this defines a new

282



constant time slice interval, the “virtual interval”, denoted Vir(ABr) which is defined as
follows:

Vir(ABr) = {(t, x, z)|t = tBr, x ∈ [−a′, a′], z = 0}

a′ = z+arccosh

cosh
(

a
z+

)
√

1− z2Br

z2+

 . (D.98)

With this we clearly see that WE(ABr) ⊆ WE(Vir(ABr)). In particular, we can see that
WE(ABr) = WE(Vir(ABr)) ∩ Phys(BTZ). Where Phys(BTZ) is the portion of the bulk
BTZ spacetime which is not cut off by the end-of-the-world brane. We can explicitly write
an inequality (which is in Eq. (5.48)) which characterizes the set of points in WE(ABr):

a′ − |t− tBr| > z+arctanh


√√√√√1−

1− z2

z2+

cosh2
(
x
z+

)


a′ = z+arccosh

cosh
(

a
z+

)
√
1− z2Br

z2+

 .
(D.99)

Where it is implicitly understood that we only keep points that are not cutoff by the
end-of-the-world brane. In Figure 5.8 we given an example of what WE(ABr) might look
like.

D.2.5 Analysis of Naive Sufficient Condition for EWN (Planar
BTZ)

In this appendix we will manipulate the constraint given by Eq. (5.50) to obtain the
inequality given in Eq. (5.51).

We begin by defining ∆t = tχ− tBr and then we rearrange the inequality to obtain the
following:

z2χ
z2+

≥ 1−
cosh2

(
a
z+

)
cosh2

(
a′+|∆t|
z+

) (D.100)
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Now we have the following identity which comes from a trig expansion:

cosh

(
a′ + |∆t|

z+

)
=

cosh
(

a
z+

)
cosh

(
|∆t|
z+

)
+ sinh

(
|∆t|
z+

)√
sinh2

(
a
z+

)
+

z2Br

z2+√
1− z2Br

z2+

(D.101)

Using this we obtain the following expression:

z2χ
z2+

≥ 1−
1− z2Br

z2+[
cosh

(
|∆t|
z+

)
+ sinh

(
|∆t|
z+

)√
tanh2

(
a
z+

)
+

z2Br

z2+ cosh2
(

a
z+

)
]2

z2χ
z2+

≥ 1−
1− z2Br

z2+cosh( |∆t|
z+

)
+ sinh

(
|∆t|
z+

)√√√√
1−

1−
z2
Br
z2+

cosh2
(

a
z+

)


2
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Next we plug in the explicit expression for zχ from Eq. (5.45) and with some simple
algebraic manipulations we arrive at the following simple constraint:

∣∣∣∣BA
∣∣∣∣ ≥

√√√√√1−
1− z2Br

z2+

cosh2
(

a
z+

) . (D.103)

This gives us Eq. (5.51). It is useful to note that when ct = 0 we have:

∣∣∣∣BA
∣∣∣∣2 ∣∣∣∣

ct=0

−

1−
1− z2Br

z2+

cosh2
(

a
z+

)
 =

∣∣∣∣sin yBrsin τBr

∣∣∣∣2 −
1−

1− z2Br

z2+

cosh2
(

a
z+

)


≥
∣∣∣∣sin yBrsin τBr

∣∣∣∣2 − 1 ≥ 0,

(D.104)

as long as |τBr| < yBr, which it is. So we can see that EWN is always satisfied in our setup
when ct = 0.
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We argued in Section 5.3.4 that to translate the constraint above to a constraint on ct
simply requires us to find the appropriate solutions to:

∣∣∣∣BA
∣∣∣∣ = Ξ =

√√√√√1−
1− z2Br

z2+

cosh2
(

a
z+

) . (D.105)

The solutions to this equation will determine the endpoints on an interval in the ct pa-
rameter space over which EWN is satisfied. In particular, the parameter space over which
EWN holds will take the form ct ∈ [c−, c+] where c− ≤ 0 and c+ ≥ 0. For c− ≤ 0 we need
to solve:

B

A
= Ξ (D.106)

We can write the equation above as follows:

X cos2 yBr sin τBr −
√
1−X2 sin2 yBr cos τBr

X cos τBr −
√
1−X2 sin τBr

= Ξ sin yBr cos τBr

X = ct sin yBr

(D.107)

The relevant solution is given by:

ct = c− = −
[
1 +

[cos(2τBr)− cos(2yBr)] [Ξ
2 cos2 τBr − cos2 yBr]

2 cos2 τBr (sin yBr − Ξ sin τBr)
2

]− 1
2

(D.108)

and for c+ we need to solve:
B

A
= −Ξ, (D.109)

which is the same equation as Eq. (D.107) with an added minus sign on the right-hand
side. The relevant solution is given by:

ct = c+ =

[
1 +

[cos(2τBr)− cos(2yBr)] [Ξ
2 cos2 τBr − cos2 yBr]

2 cos2 τBr (sin yBr + Ξ sin τBr)
2

]− 1
2

(D.110)

This gives us the bounds given in Eq. (5.52). It is not difficult to see from Figure 5.9 that
to get the tightest bound we need to move the horizontal line representing the value of
Ξ upwards. The highest it will go is when a → ∞ ⇒ Ξ → 1 in that case we obtain the
following results for c±:

c± = ± 1√
1 +

(
sin τBr∓sin yBr

cos τBr

)2 (D.111)
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These are the bounds in Eq. (5.53).
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