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Abstract

This thesis contributes to two theories which approximate free probability

by finitary combinatorial structures. The first is finite free probability, which

is concerned with expected characteristic polynomials of various random ma-

trices and was initiated by Marcus, Spielman, and Srivastava in 2015. An

alternate approach to some of their results for sums and products of ran-

domly rotated matrices is presented, using techniques from combinatorial

representation theory. Those techniques are then applied to the commuta-

tors of such matrices, uncovering the non-trivial but tractable combinatorics

of immanants and Schur polynomials.

The second is the connection between symmetric groups and random

matrices, specifically the asymptotics of star-transpositions in the infinite

symmetric group and the gaussian unitary ensemble (GUE). For a continu-

ous family of factor representations of S∞, a central limit theorem for the

star-transpositions (1, n) is derived from the insight of Gohm-Köstler that

they form an exchangeable sequence of noncommutative random variables.

Then, the central limit law is described by a random matrix model which

continuously deforms the well-known traceless GUE by taking its gaussian

entries from noncommutative operator algebras with canonical commutation

relations (CCR). This random matrix model generalizes results of Köstler

and Nica from 2021, which in turn generalized a result of Biane from 1995.
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Introduction

The theory of free probability was initiated in the 1980s by D.-V. Voiculescu,

motivated by the problem of distinguishing certain von Neumann algebras,

the so-called free group factors. He isolated a notion of free independence or

freeness, which essentially captures the lack of algebraic relations among the

generators of a free group in terms of the group algebra and its trace.

In the following years, it was confirmed that freeness behaves in many

ways like a form of probabilistic independence for variables which are “maxi-

mally noncommutative”: there are free analogues of the classical central and

Poisson limit theorems, the characteristic function, the moment-cumulant

formula, the Lévy-Khinchin formula for infinitely divisible distributions, and

so on.

One of the most basic facts about freeness is that it is inherently infinite-

dimensional: it does not exist in any non-trivial finite-dimensional setting.

For an analogy, one might think of the non-finiteness of any free product of

groups. Furthermore, the operator algebras studied using free-probabilistic

techniques typically fall outside the purview of any standard finite-dimensi-

onal approximation, i.e. the von Neumann algebras are not hyperfinite and

the C∗-algebras are not nuclear.

It was a major breakthrough, then, around 1990, when it was discovered

that random matrices are a rich source of freeness: for some natural and

basic models, the asymptotics of their average eigenvalue distributions are

described neatly by free probability. Conversely, one could say that large

random matrices asymptotically approximate free products of operator alge-

bras.

There are various approximations of free probability which are somehow

related to the basic random matrix models, and this thesis contributes to

two of them. The first is the new theory of finite free probability, initiated by

A. Marcus, D. Spielman, and N. Srivastava, motivated by their 2013–2015

breakthroughs related to roots of polynomials and consequent solutions of

major open problems in graph theory (existence of Ramanujan graphs) and

functional analysis (Kadison-Singer problem).

To be specific: let A and B be d×d matrices, and let U be a random d×d
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unitary matrix. Voiculescu showed in 1990 that A and UBU∗ are asymptot-

ically free as d→ ∞, with the consequence that A+UBU∗ and AUBU∗ are

described in that limit by some operations on probability measures called free

additive and multiplicative convolution, denoted by ⊞ and ⊠ respectively.

In [29], it was shown that for fixed d, the expected characteristic polyno-

mials of these random matrices behave like “finite” versions of ⊞ and ⊠. In

particular, there are simple formulas for

EUcx(A+ UBU∗) and EUcx(AUBU
∗)

in terms of the individual characteristic polynomials cx(A) and cx(B).

In Chapter 2, based on [13, 11], an alternate approach to this result

is presented, using tools from combinatorial representation theory, namely

Weingarten calculus [15, 17, 16]. Moreover, this approach is applied to the

problem of the commutator, i.e. the description of

EUcx(AUBU
∗ − UBU∗A)

in terms of cx(A) and cx(B). This is the next natural question after addition

and multiplication, especially knowing the development of free probability, in

which its answer [35] was an important demonstration of the power of combi-

natorial methods. The key insight of the solution in the finite setting is that

after using Weingarten calculus, the problem is reduced to the computation

of a non-trivial immanant, which can be handled using a 1992 result of I.

Goulden and D. Jackson.

The second part of this thesis, in Chapter 3, develops another approxi-

mation of free probability, which goes back to P. Biane’s work on the asymp-

totics of symmetric groups in the 1990s. In [3], he showed that the star-

transpositions (1, n) in the infinite symmetric group algebra C[S∞], in the

regular representation, satisfy a central limit theorem in which the limit law

is semicircular. There is also a multivariate version with free semicircular

elements in the limit. More recently, in [26], this result was extended to a

wider class of characters of S∞, which are labeled by d ∈ N. For each d, the
central limit law found in [26] is the average eigenvalue distribution of a well-

known random matrix model called the d × d traceless GUE. This recovers

Biane’s result in the d→ ∞ limit.
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In Chapter 3, based on [12], this line of investigation is extended further,

with a novel random matrix model whose entries come from noncommuta-

tive operator algebras. On the representation-theoretic side, we continuously

deform the family of characters considered in [26]: the ones under consider-

ation in this thesis are labeled by certain finite sequences (α1, . . . , αd) in the

unit interval, and the case (1/d, . . . , 1/d) recovers the results of [26]. On the

random matrix side, the deformation corresponds to replacing the classical

gaussian variables in the GUE matrix with gaussian variables in noncommu-

tative algebras with “canonical commutation relations” (a.k.a. CCR).

The final chapter of this thesis, Chapter 4, outlines various directions

forward in relation to both of the preceding parts. The main themes are

the further combinatorial development of finite free probability, and the con-

nection of the results of Chapter 3 with random Young diagrams and the

asymptotics of characters of the finite symmetric groups Sn.
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Chapter 1

Background

1.1 Partitions and permutations

Notation 1.1 (Permutations). For n ∈ N, write Sn for the group of permu-

tations of [n] := {1, . . . , n}. For σ ∈ Sn, we use the following notation:

• Cyc(σ) is the set of disjoint cycles in σ;

• #(σ) := |Cyc(σ)|;

• t(σ) is the non-increasing sequence of sizes of the disjoint cycles in σ,

called the cycle type;

• c(n, k) is the number of σ ∈ Sn with #(σ) = k, called the (n, k)-th

unsigned Stirling number of the first kind.

At one point, we will use the following generating function:

Proposition 1.2 ([39, Proposition 1.3.7]). We have

n∑
k=0

c(n, k)xk = x(n)

where x(n) := x(x+ 1) · · · (x+ n− 1) is the rising factorial.
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Notation 1.3 (Young diagrams). For n ∈ N, write Yn for the set of Young

diagrams λ with n boxes, or equivalently the set of (integer) partitions λ ⊢ n.
For example, for σ ∈ Sn, we have t(σ) ∈ Yn.

Define a graph Y by taking
⊔

n∈NYn as the vertex set and placing an edge

λ→ µ if and only if µ can be obtained from λ by adding a box. In this case

we may also write λ↗ µ.

For λ ∈ Y, say λ = (λ1, . . . , λl) as an integer partition, we use the follow-

ing notation:

• ℓ(λ) = l, i.e. the number of rows;

• mi(λ) for the number of times i appears in (λ1, . . . , λl);

• zλ :=
∏l

i=1 i
mi(λ)mi(λ)!, so the number of permutations σ ∈ Sn with

t(σ) = λ is n!
zλ
;

• λT is the “conjugate” or “transpose” of λ, i.e. the (i, j)-th box of λT

is the (j, i)-th box of λ;

• 2λ := (2λ1, . . . , 2λl).

Example 1.4. Some specific partitions which will play an outsize role in

this thesis are

1d = (1, . . . , 1︸ ︷︷ ︸
d

) ⊢ d

and

2pk = (k − p, p)T = (2, . . . , 2︸ ︷︷ ︸
p

, 1, . . . , 1︸ ︷︷ ︸
k−2p

) ⊢ k.

The Young diagrams of these partitions:

1d (k − p, p) 2pk

...

 d

k−p︷ ︸︸ ︷
· · · · · ·
· · · k−p



...
...

...

5



Notation 1.5 (Compositions). A weak composition of n is a sequence I =

(I1, . . . , Il) of non-negative integers with I1 + · · · + Il = n. A composition

is a weak composition whose parts are all positive. We will use the nota-

tion WComp(n) and Comp(n) for the weak compositions and compositions,

respectively, of n.

For I = (I1, . . . , Il) ∈ WComp(n), write Orb(I) for the set of distinct

permutations of I, i.e.

Orb(I) = {(Iσ(1), . . . , Iσ(l)) : σ ∈ Sl}.

On the other hand, write

Stab(I) := {σ ∈ Sl : (Iσ(1), . . . , Iσ(l)) = (I1, . . . , Il)}

for the subgroup of permutations which fix I.

Example 1.6. Let I = (2, 1, 2, 0) ∈ WComp(5). Then

Orb(I) = {(2, 1, 2, 0), (2, 1, 0, 2), (2, 0, 1, 2), (0, 2, 1, 2),
(1, 2, 2, 0), (1, 2, 0, 2), (1, 0, 2, 2), (0, 1, 2, 2),

(2, 2, 1, 0), (2, 2, 0, 1), (2, 0, 2, 1), (0, 2, 2, 1)}

and Stab(I) = {e, (1, 3)} ≤ S4.

Notation 1.7 (Set partitions). For n ∈ N, write P (n) for the lattice of set

partitions of [n]. We will make more notation when it is needed in Chapter 3,

but here are some pieces to start with:

• For π ∈ P (n), write t(π) for the non-increasing sequence of sizes of the

blocks in π, which we might call the block type. Again, this can be seen

as an element of Yn.

• For a map r : [n] → N, define ker(r) ∈ P (n) as follows: for i, j ∈ [n], i

and j are in the same block of ker(r) if and only if r(i) = r(j).

• Write P2(k) := {π ∈ P (k) : |V | = 2∀V ∈ π} for the set of pair-

partitions or pairings of [k].
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1.2 Finite symmetric groups and symmetric

functions

We will assume some basic familiarity with the representation theory of finite

groups, especially the finite symmetric groups and the description of their

representation theory by the Young graph. Our main reference on this topic

is [14]. In this section, we will review some particular parts of the theory

which play a significant role in this thesis.

Notation 1.8. For λ ∈ Yn, we use the notation ρλ : Sn → GL(V λ) for the

irreducible representation of Sn labeled by λ, and χλ for the character of ρλ.

We will often write dim(λ) as shorthand for the dimension of V λ.

An important combinatorial property of ρλ is the description of its di-

mension in terms of so-called hook lengths.

Notation 1.9. For λ = (λ1, . . . , λl) ∈ Yn and a box (i, j) ∈ λ, the hook

length at (i, j) is

hλ(i, j) := (λi − j) + (λTj − i) + 1.

In the expression above, λi−j is the number of boxes below (i, j) and (λTj −i)
is the number of boxes to the right of (i, j).

Proposition 1.10 (Hook-length formula [14, Theorem 4.2.14]). For λ ∈ Yn,

we have

dim(λ) =
n!∏

(i,j)∈λ hλ(i, j)
.

Example 1.11. Let λ = (5, 3, 2) ⊢ 10. The hook lengths, illustrated in their

respective boxes, are
7 6 4 2 1

4 3 1

2 1

so

dim(λ) =
10!

7 · 6 · 4 · 2 · 1 · 4 · 3 · 1 · 2 · 1
= 450.

7



1.2.1 Bases of symmetric functions

Notation 1.12. Write Sym for the algebra of symmetric functions in an

alphabet x = (x1, x2, . . .); see e.g. [27, 40, 14] for details on its construction

by various approaches. For f ∈ Sym and variables y1, . . . , yn, we will use the

shorthand f(y1, . . . , yn) for the evaluation f(y1, . . . , yn, 0, 0, . . .).

Notation 1.13 (Power sums). For k ≥ 1, write

pk(x) :=
∑
i≥1

xki .

This is called the k-th power-sum symmetric function, and {pk : k ≥ 1}
generates Sym.

Notation 1.14 (Monomial and elementary). For λ ⊢ n, consider it as an

infinite sequence (λ1, . . . , λl, 0, 0, . . .) and write

mλ(x) :=
∑

I distinct permutation
of λ

xI

where the product xI :=
∏

i≥1 x
Ii
i makes sense because each I has finitely

many non-zero entries. The special cases m(1n), where (1n) := (1, . . . , 1) ∈
Yn, are denoted by en, and these are called the elementary symmetric func-

tions. The symmetric functions eλ, for λ ⊢ n, are defined multiplicatively.

Example 1.15. Let λ = (2, 2, 1) ⊢ 5. Then

mλ(x1, x2, x3) = x21x
2
2x3 + x21x2x

2
3 + x1x

2
2x

2
3

and

eλ(x1, x2, x3) = e2(x1, x2, x3)
2e1(x1, x2, x3)

= (x1x2 + x1x3 + x2x3)
2(x1 + x2 + x3)

= (x21x
2
2 + x21x

2
3 + x22x

2
3 + 2x21x2x3 + 2x1x

2
2x3 + 2x1x2x

2
3)

(x1 + x2 + x3)

= x31x
2
2 + x21x

3
2 + x31x

2
3 + x21x

3
3 + x32x

2
3 + x22x

3
3
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+ 2x31x2x3 + 2x1x
3
2x3 + 2x1x2x

3
3

+ 5x21x
2
2x3 + 5x21x2x

2
3 + 5x1x

2
2x

2
3.

The latter is

m(3,2)(x1, x2, x3) + 2m(3,1,1)(x1, x2, x3) + 5m(2,2,1)(x1, x2, x3)

which is a special case of the more general relationship between the elemen-

tary and monomial bases of the algebra of symmetric functions. This will be

explained in a forthcoming subsection and used in Section 2.4.2.

Notation 1.16. For I = (I1, . . . , Il) ∈ Comp(n), write

MI(x) =
∑

s1<···<sl

xI1s1 · · ·x
Il
sl
.

This is a sort of refinement of mµ, in the sense that

mµ =
∑

I∈Orb(µ)

MI .

Furthermore, in the case I = (I1, . . . , Il) ∈ WComp(n), we will use the

notation

MI(x1, . . . , xd) =
∑

1≤s1<···<sl≤d

xI1s1 · · ·x
Il
sl

with a finite alphabet, while taking extra care to account for the difference

between compositions and weak compositions.

Example 1.17. Let I = (1, 2, 1) ∈ Comp(4). Then

MI(x1, x2, x3, x4) = x11x
2
2x

1
3 + x11x

2
2x

1
4 + x11x

2
3x

1
4 + x12x

2
3x

1
4

and

m(2,1,1)(x1, x2, x3, x4) = x21x
1
2x

1
3x

0
4 + x21x

1
2x

0
3x

1
4 + x21x

0
2x

1
3x

1
4 + x01x

2
2x

1
3x

1
4

+ x11x
2
2x

1
3x

0
4 + x11x

2
2x

0
3x

1
4 + x11x

0
2x

2
3x

1
4 + x01x

1
2x

2
3x

1
4

+ x11x
1
2x

2
3x

0
4 + x11x

1
2x

0
3x

2
4 + x11x

0
2x

1
3x

2
4 + x01x

1
2x

1
3x

2
4

= x21x2x3 + x21x2x4 + x21x3x4 + x22x3x4

9



+ x1x
2
2x3 + x1x

2
2x4 + x1x

2
3x4 + x2x

2
3x4

+ x1x2x
2
3 + x1x2x

2
4 + x1x3x

2
4 + x2x3x

2
4

= M(2,1,1)(x1, x2, x3, x4) +M(1,2,1)(x1, x2, x3, x4)

+M(1,1,2)(x1, x2, x3, x4).

Terminology 1.18. A semistandard tableau of shape λ ∈ Y is a filling of

the Young diagram with positive integers, such that the rows are weakly

increasing and the columns are strictly increasing.

Notation 1.19 (Schur). Write SST(λ) for the set of semistandard tableaux

of shape λ. For T ∈ SST(λ), the weight of T is defined by

ω(T ) := (ω1(T ), ω2(T ), . . .)

where ωi(T ) is the number of entries of T which are equal to i. The Schur

function labeled by λ is given by

sλ(x) =
∑

T∈SST(λ)

xω(T ).

Example 1.20. Let λ = (2, 1) ⊢ 3. Then sλ(x1, x2, x3) has contributions

from the following semistandard tableaux:

1 1

2

1 1

3

1 2

2

1 2

3

1 3

2

1 3

3

2 2

3

2 3

3

x21x2 x21x3 x1x
2
2 x1x2x3 x1x2x3 x1x

2
3 x22x3 x2x

2
3

.

An important point illustrated here is that in the definition

sλ(x1, x2, x3) = sλ(x1, x2, x3, 0, 0, . . .)

=
∑

T∈SST(λ)

x
ω1(T )
1 x

ω2(T )
2 x

ω3(T )
3 0ω4(T )0ω5(T ) · · · ,

the only tableaux T which can contribute non-zero monomials are the ones

with ωi(T ) = 0 for all i ≥ 4, i.e. the entries are at most 3. Adding up the

contributions, we have

s(2,1)(x1, x2, x3) = x21x2 + x21x3 + x1x
2
2 + 2x1x2x3 + x1x

2
3 + x22x3 + x2x

2
3.
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Notation 1.21. For λ ∈ Yn and a box (i, j) ∈ λ, the content at (i, j) is

cλ(i, j) := j − i,

i.e. the distance of (i, j) from the diagonal.

Proposition 1.22 (Hook-content formula [14, Theorem 4.3.3]). For λ ∈ Yn

and d ≥ ℓ(λ), we have

sλ(1, . . . , 1︸ ︷︷ ︸
d

, 0, 0, . . .) =
dim(λ)

n!

∏
(i,j)∈λ

(d+ cλ(i, j)).

Example 1.23. Let us return to Example 1.11, with λ = (5, 3, 2) ⊢ 10. The

contents, illustrated in their respective boxes, are

0 1 2 3 4

−1 0 1

−2 −1

so using the result of Example 1.11, we have

sλ(1
d) =

450

10!
d(d+ 1)(d+ 2)(d+ 3)(d+ 4)(d− 1)d(d+ 1)(d− 2)(d− 1)

=
1

8064
d2(d2 − 1)2(d2 − 4)(d+ 3)(d+ 4).

1.2.2 Gelfand pairs and zonal functions

At one point we will require a variation of the theory of irreducible charac-

ters of Sn and Schur functions: the theory of Gelfand pairs, zonal spherical

functions, and zonal polynomials. Our main reference on this topic is [27].

Terminology 1.24. A pair (G,K) of a finite group G and a subgroup

K ≤ G is called a Gelfand pair if the induced representation IndG
K(triv)

is multiplicity-free, in the sense that each irreducible representation of K

appears at most once in IndG
K(triv).

Notation 1.25. Denote by Hn the centralizer of (1, 2) · · · (2n−1, 2n) in S2n.

This is called the hyperoctahedral group, and it turns out to be isomorphic to

the group of signed permutations of n letters, or the wreath product Z2 ≀Sn.
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Theorem 1.26 ([27, VII.2.4]). (S2n, Hn) is a Gelfand pair. The irreducible

representations of S2n which are contained in IndS2n
Hn

(triv) are precisely the

ones labeled by 2λ for λ = (λ1, . . . , λl) ⊢ n.

Associated to any Gelfand pair is its family of zonal spherical functions.

These are defined by taking the characters of the irreducible representations

contained in IndG
K(triv) and averaging them over K:

Definition 1.27 (Zonal spherical functions). For λ ⊢ n, define ωλ : S2n → C
by

ωλ(σ) =
1

|Hn|
∑
ζ∈Hn

χ2λ(σζ)

for σ ∈ S2n. This is called the zonal spherical function of the Gelfand pair

(S2n, Hn) labeled by λ.

We will use the specific form of ω1n :

Proposition 1.28 ([27, Example VII.2.2.b]). We have

ω1n(σ) =

(
−1

2

)n−#(σ)

for σ ∈ S2n.

In the analogy between ωλ and the irreducible characters χλ of Sn, the

relation of χλ with the conjugacy classes of Sn corresponds to the relation of

ωλ with the double cosets HnσHn of Hn in S2n:

Notation 1.29. For σ ∈ S2n, define a graph Γ(σ) as follows:

• the vertices are 1, . . . , 2n;

• the edges connect 2i−1 with 2i and σ(2i−1) with σ(2i) for 1 ≤ i ≤ n.

The connected components of Γ(σ) are cycles of even lengths, and dividing

those lengths by 2, we get an integer partition Ξ(σ) ⊢ n which is called the

coset type of σ.

As explained in [27], the coset type labels the double cosets of Hn in S2n.

Let us illustrate this by example:

12



1 2 3 4 5 6

Figure 1.1: Γ((1, 4, 3))

(4, 6)
1 2 3 4 5 6

(1, 3, 5, 2)(4, 6) 1 2 3 4 5 6

(1, 6, 2, 5, 4) 1 2 3 4 5 6

Figure 1.2: Some permutations with the same coset type as (1, 4, 3)

Example 1.30. Let n = 3 and σ = (1, 4, 3) ∈ S6. The graph Γ(σ) is illus-

trated in Fig. 1.1. The connected components are {1, 2, 3, 4} and {5, 6}. The
double coset H3(1, 4, 3)H3 has 288 elements (can be done with a computer)

so it is too large to reproduce, but some randomly chosen elements are

(4, 6), (1, 3, 5, 2)(4, 6), and (1, 6, 2, 5, 4).

Their graphs are illustrated in Fig. 1.2, and one can clearly see their shared

coset type of (2, 1).

Proposition 1.31 ([27, VII.2.3]). For ρ ⊢ n, write Hρ for the corresponding

double coset. Then S2n =
⊔

ρ⊢nHρ and

|Hρ| =
|Hn|2

z2ρ
=

|Hn|2

2ℓ(ρ)zρ
.

Clearly the zonal spherical functions are constant on double cosets, so we

write ωλ
ρ for the value of ωλ on Hρ. For us, the critical property of the zonal

spherical functions is that they still enjoy the kind of orthogonality relations

familiar from the character theory of Sn:
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Theorem 1.32 (Orthogonality relations [27, VII.2.15’]). For λ, µ ⊢ n, we

have ∑
ρ⊢n

1

z2ρ
ωλ
ρω

µ
ρ =

{
h(2λ)
|Hn|2 if λ = µ

0 otherwise
,

where h(2λ) is the product of the hook lengths in 2λ.

1.2.3 Permutation modules and Kostka numbers

Another somewhat particular bit of representation theory that we will need

is the analysis of certain induced representations. First, a definition:

Notation 1.33. For I = (I1, . . . , Il) ∈ Comp(n), write

SI := SI1 × · · · × SIl

which is viewed as a subgroup of Sn in the obvious way: SI1 acts on {1, . . . , I1},
SI2 acts on {I1+1, . . . , I1+I2}, and so on. This is called the Young subgroup

labeled by I.

Terminology 1.34. For I ∈ Comp(n), the induced representation IndSn
SI
(triv)

is sometimes called the permutation module labeled by I. It turns out that

IndSn
SI
(triv) is independent (up to isomorphism) of the ordering of I, so typi-

cally we will restrict our attention to the case where I is non-increasing, i.e.

it’s an integer partition.

Theorem 1.35 ([14, Theorem 3.6.11]). For λ, µ ⊢ k, the multiplicity of V λ

in the permutation module IndSk
Sµ
(triv) is the number of semistandard tableaux

with shape λ and weight µ.

The combinatorics involved here revolve around the following ordering of

Yn:

Notation 1.36. For λ, µ ∈ Yn, say µ ⊴ λ, or that λ dominates µ, when

µ1 + · · ·+ µi ≤ λ1 + · · ·+ λi

for all i ≥ 1.
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Example 1.37. Recall the notation 2pk := (2p, 1k−2p) ⊢ k from Example 1.4.

The partitions of k which are dominated by 2pk are exactly 2qk for 0 ≤ q ≤ p.

Notation 1.38. Denote by K(λ, µ) the number of semistandard tableaux

with shape λ and weight µ; these are called Kostka numbers. Of course

K(λ, µ) is non-negative, and it is non-zero if and only if µ ⊴ λ. Since the

matrix K := (K(λ, µ))λ,µ⊢k is upper-triangular with 1s along the diagonal,

it is invertible, and K−1(λ, µ) is the (λ, µ)-th entry of its inverse. These so-

called inverse Kostka numbers have a nice combinatorial interpretation [19]

in terms of Young diagrams.

Another important interpretation of the Kostka numbers is that they

describe transitions between different bases of the symmetric functions. The

general principle can be read from e.g. [27, Section I.6]:

Proposition 1.39. We have

1. eλ =
∑

µ⊢k
(∑

ν⊢kK(ν, λ)K(νT , µ)
)
mµ and

2. mλ =
∑

µ⊢k
(∑

ν⊢kK
−1(λ, νT )K−1(µ, ν)

)
eµ

for λ ⊢ k.

Here is the special case which will be used in this thesis:

Corollary 1.40. For 0 ≤ p ≤ k/2, we have

e(k−p,p) =
∑

0≤q≤p

(
k − 2q

p− q

)
m2qk

. (1.1)

In the other direction, we have

m2qk
= (−1)q

∑
0≤r≤q

(−1)re(k−r,r)

((
k − q − r

k − 2q

)
+

(
k − q − r − 1

k − 2q

))
(1.2)

for 0 ≤ q ≤ k/2− 1 and

m
2
k/2
k

= e(k/2,k/2) + 2 · (−1)k/2
∑

0≤r≤k/2−1

(−1)re(k−r,r)

= (−1)k/2
∑
i+j=k

(−1)ieiej.
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Proof. For Eq. (1.1), recall the interpretation of K(λ, µ) as the number of

semistandard tableaux with shape λ and weight µ. For λ = 2rk and µ = 2qk,

any such tableau must begin
1 1

2 2
...

...
q q

...
...

...

so

K(2rk, 2
q
k) = dim(2r−q

k−2q) =
(k − 2q)!(k − 2p+ 1)

(p− q)!(k − p− q + 1)!

by the hook-length formula. On the other hand, a semistandard tableau of

shape (k − r, r) with weight (k − p, p) must be of the form

· · · · · · · · ·
· · · 2 · · · 2

since the 2s cannot go anywhere else if the other boxes are supposed to be

filled with 1s. So K((k− r, r), (k− p, p)) = 1 if r ≤ p, otherwise it is 0. Now,

what remains is to show that∑
q≤r≤p

(k − 2q)!(k − 2r + 1)

(r − q)!(k − r − q + 1)!
=

(
k − 2q

p− q

)
. (1.3)

To this end, observe that(
k − 2q

r − q

)
−
(

k − 2q

r − q − 1

)
=

(k − 2q)!

(r − q)!(k − r − q)!
− (k − 2q)!

(r − q − 1)!(k − r − q + 1)!

=
(k − 2q)!(k − r − q + 1)− (k − 2q)!(r − q)

(r − q)!(k − r − q + 1)!
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=
(k − 2q)!(k − 2r + 1)

(r − q)!(k − r − q + 1)!

so the only summand which is not cancelled out on the left-hand side of

Eq. (1.3) is
(
k−2q
p−q

)
.

For Eq. (1.2), one can refer to [19] to find that

K−1(2qk, 2
s
k) = (−1)q−s

(
k − q − s

k − 2q

)
for 0 ≤ s ≤ q ≤ k/2, and

K−1((k − r, r), (k − s, s)) =


1 if s = r

−1 if s = r + 1

0 otherwise

for 0 ≤ r, s ≤ k/2.

1.3 Determinants and immanants

Notation 1.41. For a d× d matrix X, we will use the notation

cx(X) := det(xI −X)

for the characteristic polynomial of X. The coefficients can be arranged as

follows:

cx(X) =
d∑

k=0

xd−k(−1)kek(X)

where ek(X) is the k-th elementary symmetric function in the eigenvalues of

X.

Notation 1.42. For an m×n matrix X = (xij)i,j and S ⊆ [m] and T ⊆ [n],

write

X(S, T ) := (xij)i∈S
j∈T

for the submatrix of X with the rows and columns specified by S and T

respectively.
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Proposition 1.43 (Vieta’s formula [25, Theorem 1.2.16]). For a d×d matrix

X, we have

ek(X) =
∑
S⊆[d]
|S|=k

det(X(S, S))

for 0 ≤ k ≤ d.

Proposition 1.44 (Cauchy-Binet theorem [25, Section 0.8.7]). Let A be a

m × n matrix and let B be a n × p matrix. Then for S ⊆ [m] and T ⊆ [p]

with |S| = |T | = k, we have

det((AB)(S, T )) =
∑
U⊆[n]
|U |=k

det(A(S, U)) det(B(U, T )).

Notation 1.45. For a k× k matrix Y = (yij)i,j, the immanant of Y labeled

by λ ∈ Yn is

Immλ(Y ) =
∑
σ∈Sk

χλ(σ)
k∏

i=1

yiσ(i).

The case λ = 1k is the determinant, and the case λ = (k) is the permanent.

For the latter, we will use the notation Per(Y ).

Theorem 1.46 ([23, Equation (9)]). Let Y be a k × k matrix, let z1, . . . , zk
be commuting formal variables, and write Z := diag(z1, . . . , zk). Then for

λ ⊢ k, we have

Immλ(Y ) = [z1 · · · zk]sλ(ZY )

where the Schur function sλ is evaluated in the eigenvalues of ZY .

1.4 Infinite symmetric group and Thoma’s the-

orem

In this section we will establish some commonly used notation related to the

infinite symmetric group S∞ and its characters.
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Notation 1.47. Write

S∞ := {σ ∈ Sym(N) : ∃ finite A ⊆ N s.t. σ(i) = i ∀ i ∈ N \ A}

for the group of finitely-supported permutations of N, called the infinite

symmetric group. Alternatively, S∞ can be described as direct limit of the

finite symmetric groups Sn with respect to the embeddings Sn ↪→ Sn+1 in

which Sn acts on {1, . . . , n} and fixes n+ 1.

Notation 1.48. Among the various generating sets of S∞, we will mostly

be concerned with the star-transpositions, defined by

γn := (1, n+ 1)

for n ≥ 1.

The analogue for S∞ to the parameterization of irreducible representa-

tions of Sn is the parameterization of extreme points in the convex set of char-

acters of G. Here, characters are positive-definite class functions χ : S∞ → C
with χ(e) = 1; all of these notions will be reviewed in Section 3.1. The space

of parameters is continuous and infinite-dimensional, but still rather simple:

Notation 1.49 (Thoma simplex). Write

Ω := {(α, β) ∈ [0, 1]N × [0, 1]N :α1 ≥ α2 ≥ · · · ≥ 0

β1 ≥ β2 ≥ · · · ≥ 0∑
i≥1

αi +
∑
j≥1

βj ≤ 1}.

This is called the Thoma simplex, and it is compact in the topology inherited

from the product [0, 1]N × [0, 1]N.

To simplify the presentation and application of the main result on char-

acters of S∞, let us borrow some notation from [7]:

Proposition 1.50. There is a unique morphism Sym → C(Ω) : f 7→ f ◦ of

algebras such that p◦1 = 1 and

p◦k(ω) =
∑
i≥1

αk
i + (−1)k−1

∑
j≥1

βk
j

for ω = (α, β) ∈ Ω, for k ≥ 2.
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Finally, here is the main theorem:

Theorem 1.51 ([43]). The extremal characters of S∞ are labeled as χω for

ω = (α, β) ∈ Ω, with

χω(σ) =
∏

c∈Cyc(σ)
|c|>1

p◦|c|(ω)

for σ ∈ S∞.

1.5 Random matrices, genus expansion, and

Weingarten calculus

1.5.1 Gaussian self-adjoint matrices

The first random matrix model relevant to this thesis is the gaussian unitary

ensemble, or GUE for short. This is a self-adjoint matrix of gaussian random

variables with no dependence beyond that imposed by the self-adjointness.

We will loosely follow the introduction to this model in [36, Lecture 22],

which focuses on its relevance to free probability.

Terminology 1.52. The d × d gaussian unitary ensemble, or GUE, is the

following random matrix A = (aij)i,j: the family

{a11, . . . , add} ∪ {Re(aij) : 1 ≤ i < j ≤ d} ∪ {Im(aij) : 1 ≤ i < j ≤ d}

is independent and has a centered gaussian joint distribution. The variances

of the (real) diagonal entries are normalized to 1
d
and the variances of the

(complex) off-diagonal entries are normalized to 1
d
by normalizing the real

and imaginary parts by 1
2d
.

The average eigenvalue distribution of a GUE is described by the combi-

natorics of pair partitions. First, the way pairings come into play is through

a well-known formula for mixed moments of gaussian families:

Proposition 1.53 (Wick formula). Let (X1, . . . , Xn) be real random vari-

ables with a centered gaussian joint distribution. Then for k ≥ 1 and r :
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[k] → [n], we have

E(Xr(1) · · ·Xr(k)) =
∑

π∈P2(k)

∏
(p,q)∈π

E(Xr(p)Xr(q)).

Corollary 1.54. Let (a1, . . . , an) be complex random variables such that

{Re(a1), Im(a1), . . . ,Re(an), Im(an)}

has a centered gaussian joint distribution. Then for k ≥ 1, r : [k] → [n], and

ϵ1, . . . , ϵk ∈ {1, ∗}, we have

E(aϵ1r(1) · · · a
ϵk
r(k)) =

∑
π∈P2(k)

∏
(p,q)∈π

E(aϵpr(p)a
ϵq
r(q)).

Let us show a simple example of how these Wick formulas work:

Example 1.55. In the case k = 4, the Wick formula reads as

E(a1a2a3a4) = E(a1a2)E(a3a4) + E(a1a3)E(a2a4) + E(a1a4)E(a2a3).

a1 a2 a3 a4 a1 a2 a3 a4 a1 a2 a3 a4

The combinatorial description of the average eigenvalue distribution of a

d × d GUE is through its moments, which can be written in terms of some

very interesting combinatorial polynomials in 1/d:

Notation 1.56. For even k and π ∈ P2(k), write

σπ :=
∏

(a,b)∈π

(a, b) ∈ Sk.

Theorem 1.57 (Genus expansion). Let (A1, . . . , Am) be independent d × d

GUEs. Then for k ≥ 1 and p : [k] → [m], we have

E trd(Ap(1) · · ·Ap(k)) =
∑

π∈P2(k)
π≤ker(p)

(
1

d

)k/2+1−#(ckσπ)

when k is even, and the above is 0 when k is odd.
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The reason for the phrase “genus expansion” is that the powers k/2+1−
#(ckσπ) are counting the genera of certain surfaces:

Remark 1.58. Given π ∈ P2(k), one can arrange {1, . . . , k} in a clockwise

circle and try to draw the arcs of π on a surface with the circle as its boundary.

As explained in e.g. [31, Section 1.9], if gπ is the smallest possible genus of

a surface on which this can be done, then

k/2 + 1−#(ckσπ) = 2gπ.

The case gπ = 0, i.e. #(ckσπ) = k+1, corresponds exactly to the non-crossing

pair partitions.

A few examples in the single-matrix case should be helpful to understand

what the polynomial in 1/d looks like:

Example 1.59. First, let k = 4 and π = {{1, 4}, {2, 3}. Then

c4σπ = (1, 2, 3, 4)(1, 4)(2, 3) = (2, 4)(1)(3)

and

k/2 + 1−#(ckσπ) = 4/2 + 1− 3 = 2 · 0.

The 0 reflects the fact that π is non-crossing, i.e. the relevant surface has

genus 0. Similarly, if k = 6 and π = {{1, 3}, {2, 5}, {4, 6}}, then

c6σπ = (1, 2, 3, 4, 5, 6)(1, 3)(2, 5)(4, 6) = (1, 4)(2, 6, 5, 3)

and

k/2 + 1−#(ckσπ) = 6/2 + 1− 2 = 2 · 1.

In this case, one can see that the genus – 1 in this case – is not actually

counting crossings as one might naively guess, but depends on π in a more

subtle way.

1.5.2 Unitary and orthogonal matrix integrals

The other random matrices which play a central role in this thesis are the ones

coming from compact matrix groups with respect to their Haar measures. For

these, our main tool is Weingarten calculus, which reduces Haar integration

in certain cases to combinatorial representation theory.
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Unitary case

Theorem 1.60 ([15]). There is a sequence of functions (WgUk,d)k≥1 on Sk

with the following property: for k, k′ ≥ 1 and i, j : [k] → [d] and i′, j′ : [k′] →
[d], the integral ∫

Ud

ui(1)j(1) · · ·ui(k)j(k)ui′(1)j′(1) · · ·ui′(k′)j′(k′) dU

is ∑
π,σ∈Sk
i=i′◦π
j=j′◦σ

WgUk,d(π
−1σ)

when k = k′, and it is 0 otherwise.

Theorem 1.61 ([15]). We have

WgUk,d =
1

(k!)2

∑
λ⊢k

ℓ(λ)≤d

dim(λ)2

sλ(1d)
χλ

for k ≥ 1. In particular, WgUk,d is a class function, in the sense that it only

depends on the conjugacy class (i.e. cycle type) of its argument.

Example 1.62. For the sake of concreteness, let us evaluate the integral∫
Ud

u11u22u12u21 dU

using Theorem 1.60 and Theorem 1.61. In this case, we have

i = (1, 2), j = (1, 2), i′ = (1, 2), and j′ = (2, 1).

Then the constraints i = i′◦π and j = j′◦σ on pairs of permutations π, σ ∈ Sk

amount to

1 = i(1) = i′(π(1)), 2 = i(2) = i′(π(2)),

1 = j(1) = j′(σ(1)), and 2 = j(2) = j′(σ(2)).
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The first pair forces π(1) ∈ {1} and π(2) ∈ {2}, i.e. π = e, and the second

pair forces σ(1) ∈ {2} and σ(2) ∈ {1}, i.e. σ = (1, 2). So Theorem 1.60 says∫
Ud

u11u22u12u21 dU = WgU2,d((1, 2))

and Theorem 1.61 says

WgU2,d((1, 2)) =
1

4

∑
λ⊢2

ℓ(λ)≤d

dim(λ)2

sλ(1d)
χλ((1, 2)).

There are only two λ ⊢ 2: λ = (2) and λ = (1, 1). They are both one-

dimensional, and they label the representations triv and sgn respectively. By

Proposition 1.22,

s(2)(1
d) =

1

2
d(d+ 1) and s(1,1)(1

d) =
1

2
d(d− 1),

and sgn((1, 2)) = −1, so

WgU2,d((1, 2)) =
1

4

(
2

d(d+ 1)
· 1 + 2

d(d− 1)
· (−1)

)
= − 1

d(d+ 1)(d− 1)

and ∫
Ud

u11u22u12u21 dU = − 1

d(d2 − 1)
.

Orthogonal case

There is also an orthogonal version of Weingarten calculus, where the role of

Sk is played by the pair partitions:

Theorem 1.63 ([17]). There is a sequence (WgOk,d)k≥1 of functions WgOk,d on

P2(2k) × P2(2k) with the following property: for k ≥ 1 and i, j : [2k] → [d],

we have ∫
Od

ui(1)j(1) · · ·ui(2k)j(2k) dU =
∑

π,σ∈P2(2k)
π≤ker(i)
σ≤ker(j)

WgOk,d(π, σ).
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For the orthogonal analogue of Theorem 1.61, it turns out that the right

representation-theoretic object is the Gelfand pair (S2k, Hk). We need to set

some notation relating P2(2k) and (S2k, Hk):

Notation 1.64. There is an embedding of P2(2k) in S2k defined as follows:

for π ∈ P2(2k), write

π = {{a1, b1}, . . . , {ak, bk}}

with ai < bi for all 1 ≤ i ≤ k and a1 < · · · < ak. Then the embedding is

π 7→
(
1 2 · · · 2k − 1 2k

a1 b1 · · · ak bk

)
∈ S2k.

We also need a particular normalization constant, which conceptually

comes from the theory of zonal functions:

Notation 1.65. For λ ⊢ k, write

Zλ,d :=
∏

(i,j)∈λ

(d+ 2j − i− 1)

for d ≥ k.

This notation is a special case of a certain type of symmetric function:

the so-called zonal polynomial labeled by λ evaluated at the partition 1d.

This is the Gelfand-pair analogue of the Schur function and its evaluation

sλ(1
d) which appears in the unitary case.

Theorem 1.66 ([16, Theorem 3.1]). For π, σ ∈ P2(2k), we have

WgOk,d(π, σ) =
2kk!

(2k)!

∑
λ⊢k

ℓ(λ)≤d

dim(2λ)

Zλ,d

ωλ(π−1σ)

where P2(2k) is embedded into S2k as in (1.64). In particular, WgOk,d(π, σ)

only depends on the coset type Ξ(π−1σ) of π−1σ.
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1.6 Operator algebras and free probability

1.6.1 Weak and strong topologies

Terminology 1.67. A net (Ti)i∈I in B(H) converges to T ∈ B(H) in the

weak operator topology if limi⟨Tiξ, η⟩ = ⟨Tξ, η⟩ for all ξ, η ∈ H, and in the

strong operator topology if limi ∥Tiξ − Tξ∥ = 0 for all ξ ∈ H.

Terminology 1.68. A state ϕ on a von Neumann algebra M ⊆ B(H),

a.k.a. a positive unital linear functional, is said to be normal if it satisfies

the following equivalent [6, Theorem III.2.1.4] conditions:

• ϕ is WOT-continuous on the closed unit ball in M;

• ϕ is SOT-continuous on the closed unit ball in M;

For our purposes, the main example of a normal state is one of the form

ϕ(T ) = ⟨Tξ, ξ⟩ for a unit vector ξ ∈ H.

Proposition 1.69. Let M ⊆ B(H) be a von Neumann algebra and suppose

that τ is a tracial state on M with a unit vector ξ0 ∈ H such that

• τ(T ) = ⟨Tξ0, ξ0⟩ for T ∈ M, and

• span{Tξ0 : T ∈ M} = H.

Let (Ti)i∈I be a net of self-adjoint contractions in M and suppose that there is

a self-adjoint contraction T ∈ M such that limi Tiξ0 = Tξ0. Then limSOT
i Ti =

T .

Claims to this effect, usually stated in terms of metrizability of the closed

unit ball, can be found in various references such as [42], hence the following

notation:

Notation 1.70. Let M, H, τ , and ξ0 be as in Proposition 1.69. For T ∈ M,

write ∥T∥2 := ∥Tξ0∥.

Let us give a concrete proof of Proposition 1.69 which makes convenient

use of self-adjointness and traciality:
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Proof of Proposition 1.69. Fix ξ ∈ H and ε > 0, so

• there is some η ∈ span{Sξ0 : S ∈ M} such that ∥ξ − η∥ < ε, say

η =
∑

j αjSjξ0, and

• there is some i0 ∈ I such that

∥Tiξ0 − Tξ0∥ <
ε∑

j |αj|∥Sj∥

for i ≥ i0.

Then

∥Ti(ξ)− T (ξ)∥ ≤ ∥Ti(ξ)− Ti(η)∥+ ∥Ti(η)− T (η)∥+ ∥T (η)− T (ξ)∥
≤ (∥Ti∥+ ∥T∥)∥ξ − η∥+ ∥Ti(η)− T (η)∥

< 2ε+
∑
j

|αj|∥(Ti − T )Sjξ0∥.

We have

∥(Ti − T )Sjξ0∥2 = ⟨(Ti − T )Sjξ0, (Ti − T )Sjξ0⟩
= ⟨(Sj)

∗(Ti − T )∗(Ti − T )Sjξ0, ξ0⟩
= τ((Sj)

∗(Ti − T )∗(Ti − T )Sj)

= τ((Ti − T )Sj(Sj)
∗(Ti − T )∗)

= ⟨(Ti − T )Sj(Sj)
∗(Ti − T )∗ξ0, ξ0⟩

= ⟨(Sj)
∗(Ti − T )∗ξ0, (Sj)

∗(Ti − T )∗ξ0⟩
= ∥(Sj)

∗(Ti − T )∗ξ0∥2

so

∥(Ti − T )Sjξ0∥ = ∥(Sj)
∗(Ti − T )∗ξ0∥ ≤ ∥Sj∥∥(Ti − T )∗ξ0∥

and

∥Ti(η)− T (η)∥ ≤
∑
j

|αj|∥(Ti − T )Sjξ0∥

≤
∑
j

|αj|∥Sj∥∥(Ti − T )∗ξ0∥
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=
∑
j

|αj|∥Sj∥∥Tiξ0 − Tξ0∥.

This makes

∥Ti(ξ)− T (ξ)∥ < 2ε+
∑
j

|αj|∥Sj∥∥Tiξ0 − Tξ0∥

< 2ε+
∑
j

|αj|∥Sj∥
ε∑

j |αj|∥Sj∥
= 3ε

for i ≥ i0, hence the claim.

1.6.2 Noncommutative probability

Terminology 1.71. A ∗-probability space is a pair (A, φ) where A is a

∗-algebra and φ is a state on A. If A is a C∗-algebra, then (A, φ) is a C∗-

probability space. IfA is a von Neumann algebra and φ is faithful and normal,

then (A, φ) is called a W ∗-probability space. Of course, this is a decreasing

chain of generality, and most basic notions in this area can be formulated in

the purely algebraic setting.

Terminology 1.72 (Commuting independence). Let (A, φ) be a ∗-probabil-
ity space. A family {Ai : i ∈ I} of ∗-subalgebras of A is said to be commuting

independent if

• ab = ba for all a ∈ Ai and b ∈ Aj with i ̸= j, and

• for distinct i1, . . . , ik ∈ I and ar ∈ Air for 1 ≤ r ≤ k, we have

φ(a1 · · · ak) = φ(a1) · · ·φ(ak).

The prototypical example of commuting independence is components in

tensor products:

Example 1.73. Let (A, φ) and (B, ψ) be ∗-probability spaces. Then in the

∗-probability space (A⊗alg B, φ⊗ψ), the ∗-subalgebras A⊗ 1 and 1⊗B are

commuting independent.
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The notion of free independence parallels commuting independence, the

main example being free products instead of tensor products:

Terminology 1.74. Let (A, φ) be a ∗-probability space and let {Ai : i ∈ I}
be a family of ∗-subalgebras of A. The family {Ai : i ∈ I} is said to be freely

independent or free if for all k ≥ 1 and i1, . . . , ik ∈ I with ir ̸= ir+1 for all

1 ≤ r ≤ k − 1, if ar ∈ Air and φ(ar) = 0 for all 1 ≤ r ≤ k − 1, one has

φ(a1 · · · ak) = 0.

Furthermore, this definition applies to elements of A: {ai : i ∈ I} is free

if {Ai : i ∈ I} is free, where Ai is the ∗-algebra generated by ai.

Historically, the motivation for the study of free independence came from

free groups:

Proposition 1.75 ([36, Proposition 5.11]). Let G be a group, let A := C[G]
be the group algebra, and let φ(x) = ⟨xδe, δe⟩ be the canonical trace. For

a family {Gi : i ∈ I} of subgroups of G, with Ai := C[Gi] for i ∈ I, the

following are equivalent:

• the subgroups {Gi : i ∈ I} are free, in the sense that for all k ≥ 1 and

i1, . . . , ik ∈ I with ir ̸= ir+1 for all 1 ≤ r ≤ k−1, if gr ∈ Gir and gr ̸= e

for all 1 ≤ r ≤ k − 1, one has g1 · · · gk ̸= e;

• the subalgebras {Ai : i ∈ I} are freely independent, in the sense that

for all k ≥ 1 and i1, . . . , ik ∈ I with ir ̸= ir+1 for all 1 ≤ r ≤ k − 1, if

ar ∈ Air and φ(ar) = 0 for all 1 ≤ r ≤ k− 1, one has φ(a1 · · · ak) = 0.

Remark 1.76. If a and b are free, then the moments of a + b or ab only

depend on the individual moments of a and b [36, Lemma 5.13], and there is

a theory of free cumulants for systematically computing either of the former

in terms of the latter.

Remark 1.76 allows addition and multiplication of free variables to pass

to well-defined operations on probability measures:

Remark 1.77. For probability measures µ, ν ∈ Prob(R) with compact sup-

port, it is easy to come up with C∗-probability spaces (A, φ) and (B, ψ) and
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self-adjoint elements a ∈ A and b ∈ B such that∫
R
tk dµ(t) = φ(ak) and

∫
R
tk dν(t) = ψ(bk)

for k ≥ 1. For example, one could let X = supp(µ) and A = C(X), let φ be

the positive linear functional on A defined by integrating against µ, and let

a be the identity function on X. (Similarly for ν.)

Then, by Remark 1.76, the distribution of a+ b in the free product (A ∗
B, φ ∗ ψ) only depends on µ and ν. This probability measure is denoted by

µ⊞ ν and called the free additive convolution of µ and ν.

The free multiplicative convolution, defined for µ and ν with compact

positive support and denoted by µ⊠ν, is similar, modulo a small technicality

related to ab not necessarily being self-adjoint. (This issue is fixed by looking

at
√
ab
√
a instead, which has the same moments as ab and is also self-adjoint.)
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Chapter 2

Finite free probability

As explained in the introduction, the new theory of finite free probability

starts from the observation [29] that there are simple formulas, in terms of

cx(A) and cx(B), for

EUcx(A+ UBU∗) and EUcx(AUBU
∗),

where A and B are d × d matrices and U is a random d × d unitary ma-

trix. This defines operations on polynomials called finite free convolutions

which are denoted by ⊞d and ⊠d respectively. After a small section setting

up some more specifics concerning such random rotations and polynomials,

we will see how one can use techniques from combinatorial representation

theory to recover these results in manner different from [29]. The main tool

is Weingarten calculus, which reduces the unitary matrix integrals to the

combinatorics of permutations and irreducible characters of Sn.

Then, we apply these techniques to slightly more general polynomials in

A and UBU∗, extracting an interesting combinatorial lead: we show that the

computation of

EUcx(y1AUBU
∗ + y2UBU

∗A),

where y1 and y2 are commuting formal variables, amounts in principle to the

computation of the immanants

Immλ(y1xi + y2xj)1≤i,j≤k

for commuting formal variables (x1, . . . , xk) and k ≤ d.
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Finally, motivated by the prominent role of the commutator in the his-

torical combinatorial development of free probability, we take y1 = 1 and

y2 = −1 in the last paragraph and compute the relevant immanants, which

turn out to be tractable in this case due to a formula of Goulden-Jackson

which describes them in terms of certain Schur polynomials. The main result,

Theorem 2.27, is a formula for

EUcx(AUBU
∗ − UBU∗A)

in terms of cx(A) and cx(B).

2.1 Expected characteristic polynomials

In finite free probability, the main objects of study are expected characteristic

polynomials of random matrices. In the case of randomly rotated matrices,

it is very convenient to work with diagonal matrices, and we should justify

why this is enough:

Lemma 2.1. Let Q(z1, z2) be a polynomial in two non-commuting variables

and let A and B be normal d×d matrices, with diagonalizations A = VADAV
∗
A

and B = VBDBV
∗
B. Then

EUcx(Q(A,UBU
∗)) = EUcx(Q(DA, UDBU

∗))

where U is a d× d random unitary matrix.

Proof. Write

Q(z1, z2) =
∑

w word
in {z1,z2}

qww.

For each w, write w = zp11 z
q1
2 · · · zpk1 z

qk
2 where p1, . . . , pk ≥ 0 and q1, . . . , qk ≥

0, and observe that

(A)p1(UBU∗)q1 · · · (A)pk(UBU∗)qk

= (VAD
p1
A V

∗
A)(UVBD

q1
B V

∗
BU

∗) · · · (VADpk
A V

∗
A)(UVBD

qk
B V

∗
BU

∗)

= VAD
p1
A (V ∗

AUVB)D
q1
B (V ∗

AUVB)
∗Dp2

A · · ·Dpk
A (V ∗

AUVB)D
qk
B (V ∗

BU
∗).
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Then, conjugate the above by V ∗
A(·)VA to get

Dp1
A (V ∗

AUVB)D
q1
B (V ∗

AUVB)
∗ · · ·Dpk

A (V ∗
AUVB)D

qk
B (V ∗

AUVB)
∗.

This conjugation does not depend on w, so it can be applied uniformly to

the summands in

EUcx(Q(A,UBU
∗)) = EUcx

 ∑
w word

in {z1,z2}

qww(A,UBU
∗)


to make the right-hand side equal to

EUcx(Q(DA, (V
∗
AUVB)DB(V

∗
AUVB)

∗))

since unitary conjugation does not change the characteristic polynomial. Fi-

nally, the invariance of Haar measure shows the above is equal to

EUcx(Q(DA, UDBU
∗)),

hence the claim.

2.2 Finite free addition and multiplication

The following operations appear, perhaps not quite obviously, in the work

[45, 41] of Walsh and Szegö on the locations of roots of polynomials.

Definition 2.2. For polynomials p(x) and q(x) with degree at most d, say

p(x) =
d∑

k=0

xd−k(−1)kpk and q(x) =
d∑

k=0

xd−k(−1)kqk,

define

p(x)⊞d q(x) :=
d∑

k=0

xd−k(−1)k

(∑
i+j=k

(d− i)!(d− j)!

d!(d− k)!
piqj

)
and

p(x)⊠d q(x) :=
d∑

k=0

xd−k(−1)k
(
k!(d− k)!

d!
pkqk

)
.
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These were rediscovered [29] by Marcus, Spielman, and Srivastava as

the expected characteristic polynomials of sums and products of randomly

rotated matrices.

Theorem 2.3 ([29]). Let p(x) and q(x) be monic polynomials with degree d,

and let A and B be d × d diagonal matrices with p(x) = cx(A) and q(x) =

cx(B). Then

p(x)⊞d q(x) = EUcx(A+ UBU∗)

and

p(x)⊠d q(x) = EUcx(AUBU
∗)

where U is a random d× d unitary matrix.

The proofs in [29] use a notion of minor-orthogonality and a so-called

quadrature phenomenon, replacing the continuous integrals over Ud with

sums over certain finite subgroups of Ud. In this section, this theorem is

proved using techniques from combinatorial representation theory: we use

Weingarten calculus to reduce the continuous integrals to the combinatorics

of permutations, partitions, and representations of Sn. The key point in this

approach will be to show that various subgroups of Ud have the following

property:

Definition 2.4. A compact subgroup G of Ud has the quadrature property

if

∑
σ∈Sk

sgn(σ)

∫
G

u1p(1) · · ·ukp(k)uσ(1)p(i) · · ·uσ(k)p(k) =

{
d!

(d−k)!
if p injective

0 otherwise

for all p : [k] → [d], for all 0 ≤ k ≤ d.

Theorem 2.5. The following groups have the quadrature property:

• the group Ud of d× d unitary matrices;

• the group Od of d× d orthogonal matrices;

• the group Hd of d× d signed permutation matrices.
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This quadrature property is just enough to recover the convolution for-

mulas of Theorem 2.3:

Theorem 2.6. Let A and B be diagonal matrices and let G be a compact

subgroup of Ud with the quadrature property. Then∫
G

ek(A+ UBU∗) dU =
∑
i+j=k

(d− i)!(d− j)!

d!(d− k)!
ei(A)ej(B)

and ∫
G

ek(AUBU
∗) dU =

1(
d
k

)ek(A)ek(B)

for 0 ≤ k ≤ d.

2.2.1 Quadrature property

To get a sense of where to begin proving Theorem 2.3, the way to go is to

simply dive into the case of A+UBU∗ and see what Haar integrals must be

handled.

Remark 2.7. We will assume that A and B are diagonal, with

A = diag(a1, . . . , ad) and B = diag(b1, . . . , bd).

In the case G = Ud, Lemma 2.1 shows there is no loss of generality.

To ease notation, let us temporarily write W := A+ UBU∗; by Proposi-

tion 1.43 we have

EUek(A+ UBU∗) =
∑
S⊆[d]
|S|=k

det(W (S, S))

so it suffices to work with EU det(W (S, S)) for a fixed choice of S.

Lemma 2.8. We have

EU det(W (S, S)) =
∑
R⊆S

(∏
i∈R

ai

) ∑
p:S\R→[d]

 ∏
i∈S\R

bp(i)


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∑
σ∈Sym(S\R)

sgn(σ)EU

 ∏
i∈S\R

uip(i)uσ(i)p(i)


for S ⊆ [d] with |S| = k, for 0 ≤ k ≤ d.

Proof. We have

det(W (S, S))

=
∑

σ∈Sym(S)

sgn(σ)
∏
i∈S

(
aiδi,σ(i) +

d∑
p=1

uipbpuσ(i)p

)

=
∑

σ∈Sym(S)

sgn(σ)
∑
R⊆S

(∏
i∈R

aiδi,σ(i)

) ∏
i∈S\R

(
d∑

p=1

uipbpuσ(i)p

)
=
∑
R⊆S

∑
σ∈Sym(S\R)

sgn(σ)

(∏
i∈R

ai

) ∏
i∈S\R

(
d∑

p=1

uipbpuσ(i)p

) .

Switching the product and sum, we have

EU

 ∏
i∈S\R

(
d∑

p=1

uipbpuσ(i)p

)
=

∑
p:S\R→[d]

EU

 ∏
i∈S\R

uip(i)uσ(i)p(i)

 ∏
i∈S\R

bp(i)


and putting this back into the sum above, we get the desired formula.

So we want to work with

∑
σ∈Sk

sgn(σ)EU

(
k∏

i=1

uip(i)uσ(i)p(i)

)

for p : [k] → [d], for 0 ≤ k ≤ d, and the quadrature property does exactly

this.
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Proof of (1) in Theorem 2.6. We have already done a large portion of the

proof; let us pick back up from the computations above. Notice that since

we assume A = diag(a1, . . . , ad) and B = diag(b1, . . . , bd), we have

ei(A) =
1

i!

∑
p:[i]→[d]
injective

ap(1) · · · ap(i) =
∑

p:[i]→[d]
p(1)<···<p(i)

ap(1) · · · ap(i)

and similarly for ej(B). So we have

EU det(W (S, S))

=
∑
R⊆S

(∏
i∈R

ai

) ∑
p:S\R→[d]

 ∏
i∈S\R

bp(i)


∑

σ∈Sym(S\R)

sgn(σ)EU

 ∏
i∈S\R

uip(i)uσ(i)p(i)


=
∑
R⊆S

(d− |S \R|)!
d!

(∏
i∈R

ai

) ∑
p:S\R→[d]
injective

 ∏
i∈S\R

bp(i)


=
∑
R⊆S

|S \R|!(d− |S \R|)!
d!

det(A(R,R))e|S\R|(B)

and then

EU(ek(W )) =
∑
|S|=k

EU(det(W (S, S)))

=
∑
|S|=k

∑
R⊆S

|S \R|!(d− |S \R|)!
d!

det(A(R,R))e|S\R|(B)

=
∑
i+j=k

(d− i)!(d− j)!

d!(d− k)!
ej(B)

∑
|R|=i

det(A(R,R))

=
∑
i+j=k

(d− i)!(d− j)!

d!(d− k)!
ei(A)ej(B)

so we are done.
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Proof of (2) in Theorem 2.6. Write W = AUBU∗ and U = (uij)i,j, so the

(i, j)-th entry of W is

ai

d∑
p=1

uipbpujp

and for a subset S ⊆ [d] with |S| = k, we have

det(W (S, S)) =
∑

σ∈Sym(S)

sgn(σ)
∏
i∈S

(
ai

d∑
p=1

uipbpuσ(i)p

)

= det(A(S, S))
∑

σ∈Sym(S)

sgn(σ)
∏
i∈S

(
d∑

p=1

uipbpuσ(i)p

)
.

Switching the product and sum, we have

EU(det(W (S, S))) = det(A(S, S))
∑

p:S→[d]

(∏
i∈S

bp(i)

)
∑

σ∈Sym(S)

sgn(σ)EU

(∏
i∈S

uip(i)uσ(i)p(i)

)

= det(A(S, S))
∑

p:S→[d]
injective

(∏
i∈S

bp(i)

)
(d− |S|)!

d!

= det(A(S, S))
k!(d− k)!

d!
ek(B),

thus

EUek(AUBU
∗) =

k!(d− k)!

d!

∑
|S|=k

det(A(S, S))ek(B) =
k!(d− k)!

d!
ek(A)ek(B)

and we are done.

2.2.2 Unitary rotations

Theorem 2.9. Ud has the quadrature property.
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To prove Theorem 2.9, we use Theorem 1.61 to reduce the computation

to the following simple lemma:

Lemma 2.10. We have

∑
σ∈Sk

sgn(σ)χλ(σ) =

{
k! if λ = 1k

0 otherwise

for λ ⊢ k.

Proof. Recall that χ1k is just the sign character of Sk. So if λ = 1k, we have∑
σ∈Sk

sgn(σ)χ1k(σ) =
∑
σ∈Sk

1 = k!

and otherwise, if λ ̸= 1k, the orthogonality relations for irreducible characters

of finite groups give∑
σ∈Sk

sgn(σ)χλ(σ) =
∑
σ∈Sk

χ1k(σ)χλ(σ) = 0

as claimed.

Proof Theorem 2.9. By Theorem 1.60 we have

∑
σ∈Sk

sgn(σ)

∫
Ud

k∏
i=1

uip(i)uσ(i)p(i) dU =
∑
σ∈Sk

sgn(σ)
∑

π,τ∈Sk
1=σ◦π
p=p◦τ

WgUk,d(π, τ)

=
∑
σ∈Sk

sgn(σ)
∑
τ∈Sk
p=p◦τ

WgUk,d(σ
−1, τ). (2.1)

If p is not injective, say there are some i, j ∈ [k] with i ̸= j and p(i) = p(j),

we want to identify pairs of summands which cancel each other out, i.e. for

each σ ∈ Sk we want a corresponding σ′ ∈ Sk with sgn(σ′) = −sgn(σ) and∑
τ∈Sk
p=p◦τ

WgUk,d(σ
−1, τ) =

∑
τ∈Sk
p=p◦τ

WgUk,d((σ
′)−1, τ).
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To this end let σ′ = σ · (i, j), so that sgn(σ′) = −sgn(σ). Moreover, since

WgUk,d(σ
−1, τ) only depends on the cycle type of στ , we have∑

τ∈Sk
p=p◦τ

WgUk,d((σ
′)−1, τ) =

∑
τ∈Sk
p=p◦τ

WgUk,d((i, j)σ
−1, τ)

=
∑
τ∈Sk
p=p◦τ

WgUk,d(σ
−1, (i, j)τ)

=
∑
τ∈Sk
p=p◦τ

WgUk,d(σ
−1, τ)

as the condition p = p ◦ τ is invariant under translation of τ by (i, j). This

shows that the summands in Eq. (2.1) cancel each other out and the sum is

0.

If p is injective, then the only τ ∈ Sk with p = p ◦ τ is τ = 1 so by

Theorem 1.61 we have∑
σ∈Sk

sgn(σ)
∑
τ∈Sk
p=p◦τ

WgUk,d(σ
−1, τ)

=
∑
σ∈Sk

sgn(σ)WgUk,d(σ
−1, 1)

=
∑
σ∈Sk

sgn(σ)
1

(k!)2

∑
λ⊢k

ℓ(λ)≤d

χλ(1)2

sλ(1d)
χλ(σ)

=
1

(k!)2

∑
λ⊢k

ℓ(λ)≤d

(
k!χλ(1)2

χλ(1)
∏

(i,j)∈λ(d+ j − i)

)(∑
σ∈Sk

sgn(σ)χλ(σ)

)

=

(
χ1k(1)

k!
∏

1≤i≤k(d+ 1− i)

)
k!

=
1∏

1≤i≤k(d− i+ 1)
=

(d− k)!

d!
.
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2.2.3 Orthogonal rotations

We can use a similar argument to handle the case of orthogonal rotations:

Theorem 2.11. Od has the quadrature property.

Similar to the unitary case, we use Theorem 1.66 to reduce the computa-

tion to the following lemma:

Lemma 2.12. We have

∑
σ∈Sk

sgn(σ)ωλ(σ) =

{
(k+1)!
2k

if λ = 1k

0 otherwise
.

for λ ⊢ k.

Proof. If λ = 1k, then∑
σ∈Sk

sgn(σ)ω1k(σ) =
∑
σ∈Sk

(−1)k−#(σ) (−1)k−#(σ)

2k−#(σ)
(Proposition 1.28)

=
1

2k

∑
σ∈Sk

2#(σ)

=
1

2k

k∑
i=1

2ic(k, i)

=
2(k)

2k
(Proposition 1.2)

=
(k + 1)!

2k
.

On the other hand, for any λ ̸= 1k we have

0 =
∑
ρ⊢k

1

z2ρ
ωλ
ρω

1k

ρ (Theorem 1.32)

=
∑
ρ⊢k

1

z2ρ
ωλ
ρ

(−1)k−ℓ(ρ)

2k−ℓ(ρ)
(Proposition 1.28)

=
1

2k

∑
ρ⊢k

(−1)k−ℓ(ρ)2ℓ(ρ)
1

z2ρ
ωλ
ρ
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=
1

2kk!

∑
ρ⊢k

(−1)k−ℓ(ρ) k!

zρ
ωλ
ρ

=
1

2kk!

∑
σ∈Sk

sgn(σ)ωλ(σ)

thus
∑

σ∈Sk
sgn(σ)ωλ

µσ
= 0.

Proof of Theorem 2.11. By Theorem 1.63, with iσ := (1, σ(1), . . . , k, σ(k))

and

pp := (p(1),p(1), . . . ,p(k),p(k)),

we have

∑
σ∈Sk

∫
Od

k∏
i=1

uip(i)uσ(i)p(i) dU =
∑
σ∈Sk

sgn(σ)
∑

π,τ∈P2(2k)
π≤ker(iσ)
τ≤ker(pp)

WgOk,d(π, τ)

=
∑
σ∈Sk

sgn(σ)
∑

τ∈P2(2k)
τ≤ker(pp)

WgOk,d(ker(iσ), τ) (2.2)

since the condition π ≤ ker(iσ) forces equality. If p is not injective, say there

are some i ̸= j with p(i) = p(j), we want to identify pairs of summands

which cancel each other out, i.e. for each σ ∈ Sk we want a corresponding

σ′ ∈ Sk with sgn(σ′) = −sgn(σ) and∑
τ∈P2(2k)
τ≤ker(pp)

WgOk,d(ker(iσ), τ) =
∑

τ∈P2(2k)
τ≤ker(pp)

WgOk,d(ker(iσ′), τ).

To this end let σ′ = (i, j)σ, which obviously satisfies sgn(σ′) = −sgn(σ).

Moreover, we have ker(jσ′) = (i, j) ker(jσ) in the embedding from Nota-

tion 1.64, so with τ ′ = (i, j)τ , τ−1 ker(jσ′) and (τ ′)−1 ker(jσ) have the same

coset type. Since the condition τ ≤ ker(pp) is invariant under translation of

τ by (i, j), by Theorem 1.66 we have∑
τ∈P22k

τ≤ker(pp)

WgOk,d(ker(iσ′), τ) =
∑

τ∈P2(2k)
τ≤ker(pp)

WgOk,d(ker(iσ), τ
′)
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=
∑

τ∈P2(2k)
τ≤ker(pp)

WgOk,d(ker(iσ), τ).

Thus we have shown that when p is not injective, the summands in (2.2)

cancel each other out and the sum is 0.

If p is injective, then the condition τ ≤ ker(pp) forces equality, so since

χ2(1k)(1) =
(2k)!

k!(k + 1)!

and Z1k(1
d) = (d)k, we have∑

σ∈Sk

sgn(σ)
∑

τ∈P2(2k)
τ≤ker(pp)

WgOk,d(ker(iσ), τ)

=
∑
σ∈Sk

sgn(σ)WgOk,d(ker(iσ), ker(pp))

=
∑
σ∈Sk

sgn(σ)
2kk!

(2k)!

∑
λ⊢k

χ2λ(1)

Zλ(1d)
ωλ
µσ

(Theorem 1.66)

=
∑
σ∈Sk

sgn(σ)
2kk!

(2k)!

χ2(1k)(1)

Z1k(1d)
ω1k

µσ
+
∑
σ∈Sk

sgn(σ)
2kk!

(2k)!

∑
λ⊢k
λ ̸=1k

χ2λ(1)

Zλ(1d)
ωλ
µσ

=
2k

(k + 1)!(d)k

∑
σ∈Sk

sgn(σ)ω1k

µσ
+
∑
λ⊢k
λ ̸=1k

2kk!χ2λ(1)

(2k)!Zλ(1d)

∑
σ∈Sk

sgn(σ)ωλ
µσ

=
1

(d)k
=

(d− k)!

d!
(Lemma 2.12)

and we are done.

2.2.4 Some finite groups

This brief section is dedicated to the elementary proof that the hyperocta-

hedral series of groups Hs
d = Ẑs ≀ Sd for 2 ≤ s ≤ ∞, which consist of d × d

“signed” permutation matrices where the “signs” are s-th roots of unity (or

in the case s = ∞, the entire circle), have the quadrature property. It is

known from [29, 24] that these groups are well-behaved in this context.
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What we want to show is that∑
σ∈Sk

sgn(σ)

∫
Hs

d

k∏
i=1

uip(i)uσ(i)p(i) dU =

{
(d−k)!

d!
if p is injective

0 otherwise

for p : [k] → [d], for 0 ≤ k ≤ d. For s <∞, we have∑
σ∈Sk

sgn(σ)

∫
Hs

d

k∏
i=1

uip(i)uσ(i)p(i) dU

=
∑
σ∈Sk

sgn(σ)
1

sdd!

∑
ϵ1,...,ϵd∈Ẑs

∑
τ∈Sd

k∏
i=1

(ϵiδp(i)=τ(i))(ϵσ(i)δp(i)=τ(σ(i)))

and the non-zero summands are the ones with p(i) = τ(i) and p(i) = τ(σ(i))

for 1 ≤ i ≤ k. If p is not injective, then there is no τ ∈ Sd with p(i) = τ(i)

for 1 ≤ i ≤ k, so the sum is 0. On the other hand, if p is injective, there are

(d − k)! permutations τ ∈ Sd with p(i) = τ(i) for 1 ≤ i ≤ k, i.e. τ ∈ Sd−k;

similarly the condition p(i) = τ(σ(i)) forces σ(i) = i for 1 ≤ i ≤ k, i.e.

σ = 1. So the sum above becomes

1

sdd!

∑
ϵ1,...,ϵd∈Ẑs

∑
τ∈Sd−k

k∏
i=1

|ϵi|2 =
(d− k)!

sdd!

∑
ϵ1,...,ϵd∈Ẑs

k∏
i=1

1

=
(d− k)!

d!

since the last sum gives sd summands, which are copies of 1. The case s = ∞
is similar, except with an integral over the d-torus Td instead of a sum over

d copies of Ẑs.

2.3 Non-self-adjoint multiplication and imm-

anants

In free probability, self-adjoint variables are generally the simplest to work

with: if a is non-self-adjoint, one must keep track of mixed moments of a and

a∗, not just a. In other words, this is the difference between

{φ(aϵ1 · · · aϵk) : k ≥ 1, ϵ1, . . . , ϵk ∈ {1, ∗}} and {φ(ak) : k ≥ 1}.
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While the basic convolution formulas of finite free probability (presented

in this thesis as Definition 2.2 and Theorem 2.3) apply just as well to any

polynomials and normal matrices, the theory (in its current form) really

shines when one realizes that ⊞d preserves real-rootedness and ⊠d preserves

positive-rootedness.

That said, there is still a great interest in developing finite free probability

to include non-self-adjoint variables, or more generally multiple variables. It

is not clear a priori what the right objects even are for this, but the recent

PhD thesis of B. Mirabelli [32] has started down this road by defining a

certain “multivariate characteristic polynomial” and showing some of the

single-variable theory carries over smoothly. This section has two purposes:

to point out a potential approach to one of the main problems left open

by [32], and to contextualize a related result of the author which will be

presented in Section 2.4.

Here, we will just be concerned with the case of a single not-necessarily-

self-adjoint variable and its adjoint:

Notation 2.13 ([32]). For a d× d matrix X, write

cx,y1,y2(X) = det(xI − y1X − y2X
∗)

which is a polynomial in three commuting formal variables x, y1, y2. Of

course, this is just the characteristic polynomial of y1X + y2X
∗.

Remark 2.14. Let A and B be d× d matrices and let U be a random d× d

unitary matrix. Then one might ask to describe

EUcx,y1,y2(A+ UBU∗, (A+ UBU∗)∗) or EUcx,y1,y2(AUBU
∗, (AUBU∗)∗)

in terms of cx,y1,y2(A) and cx,y1,y2(B). As observed in [32], addition turns out

to be easy, since

y1(A+ UBU∗) + y2(A+ UBU∗)∗ = y1(A+ UBU∗) + y2(A
∗ + UB∗U∗)

= (y1A+ y2A
∗) + U(y1B + y2B

∗)U∗

and the formula for ⊞d from Theorem 2.3 still applies. Multiplication, how-

ever, is not clear, and was left open in [32]. In case A and B are self-adjoint,
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this amounts to describing

EUcx(y1AUBU
∗ + y2UBU

∗A)

in terms of cx(A) and cx(B).

Notation 2.15. In this section, let A and B be self-adjoint d × d matri-

ces, and let p(x) := cx(A) and q(x) := cx(B) be their characteristic poly-

nomials. By Lemma 2.1 we can assume without loss of generality that

A = diag(a1, . . . , ad) and B = diag(b1, . . . , bd).

In a manner similar to Section 2.2.1, we can very directly untangle the

elementary symmetric function in terms of the entries of the matrix:

Lemma 2.16. We have

EUek(y1AUBU
∗ + y2UBU

∗A)

=
1

(k!)2

∑
λ⊢k

dim(λ)2

sλ(1d)

∑
S⊆[d]
|S|=k

∑
p:S→[d]

(∏
i∈S

bp(i)

)

∑
σ∈Sym(S)

sgn(σ)

 ∑
τ∈Sym(S)
p=p◦τ

χλ(στ)

∏
i∈S

(y1ai + y2aσ(i))

for 0 ≤ k ≤ d.

Proof. The (i, j)-th entry of y1AUBU
∗ + y2UBU

∗A is

y1

d∑
p=1

aiuipbpujp + y2

d∑
p=1

uipbpujpaj

so we have

ek(AUBU
∗ ± UBU∗A)

=
∑
S⊆[d]
|S|=k

∑
σ∈Sym(S)

sgn(σ)
∏
i∈S

d∑
p=1

(y1aiuipbpuσ(i)p + y2uipbpuσ(i)paσ(i))
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=
∑
S⊆[d]
|S|=k

∑
σ∈Sym(S)

sgn(σ)
∑

p:S→[d]∏
i∈S

(y1aiuip(i)bp(i)uσ(i)p(i) + y2uip(i)bp(i)uσ(i)p(i)aσ(i))

=
∑
S⊆[d]
|S|=k

∑
σ∈Sym(S)

sgn(σ)
∑

p:S→[d]

∏
i∈S

(y1ai + y2aσ(i))uip(i)bp(i)uσ(i)p(i)

=
∑
S⊆[d]
|S|=k

∑
p:S→[d]

(∏
i∈S

bp(i)

)
∑

σ∈Sym(S)

sgn(σ)
∏
i∈S

(y1ai + y2aσ(i))
∏
i∈S

uip(i)uσ(i)p(i) (2.3)

and the claim amounts to a straightforward application of Theorem 1.60 and

Theorem 1.61, with the observation that ℓ(λ) ≤ k ≤ d for all λ ⊢ k. Namely,

we have

EU

(∏
i∈S

uip(i)uσ(i)p(i)

)
=

∑
π,τ∈Sym(S)

1=σ◦π
p=p◦τ

WgUk,d(π
−1τ) (Theorem 1.60)

=
∑

τ∈Sym(S)
p=p◦τ

WgUk,d(στ)

=
∑

τ∈Sym(S)
p=p◦τ

1

(k!)2

∑
λ⊢k

dim(λ)2

sλ(1d)
χλ(στ)

(Theorem 1.61, ℓ(λ) ≤ k ≤ d for all λ ⊢ k)

so the expectation of (2.3) is

∑
S⊆[d]
|S|=k

∑
p:S→[d]

(∏
i∈S

bp(i)

) ∑
σ∈Sym(S)

sgn(σ)
∏
i∈S

(y1ai + y2aσ(i))

∑
τ∈Sym(S)
p=p◦τ

1

(k!)2

∑
λ⊢k

dim(λ)2

sλ(1d)
χλ(στ)

47



=
1

(k!)2

∑
λ⊢k

dim(λ)2

sλ(1d)

∑
S⊆[d]
|S|=k

∑
p:S→[d]

(∏
i∈S

bp(i)

)

∑
σ∈Sym(S)

sgn(σ)

 ∑
τ∈Sym(S)
p=p◦τ

χλ(στ)

∏
i∈S

(y1ai + y2aσ(i))

hence the claim.

Remark 2.17. When p is injective, and for the sake of clarity we take

S = {1, . . . , k}, we have

∑
σ∈Sym(S)

sgn(σ)

 ∑
τ∈Sym(S)
p=p◦τ

χλ(στ)

∏
i∈S

(y1ai + y2aσ(i))

=
∑
σ∈Sk

sgn(σ)χλ(σ)
k∏

i=1

(y1ai + y2aσ(i))

=
∑
σ∈Sk

χλT

(σ)
k∏

i=1

(y1ai + y2aσ(i))

which can be immediately recognized as the immanant ImmλT

(y1ai+y2aj)i,j.

To separate the dependence onA from the dependence onB, in Lemma 2.16,

the sum over p can be processed as follows:

1

(k!)2

∑
λ⊢k

dim(λ)2

sλ(1d)

∑
S⊆[d]
|S|=k

∑
p:S→[d]

∑
σ∈Sym(S)

sgn(σ)

 ∑
τ∈Sym(S)
p=p◦τ

χλ(στ)

∏
i∈S

(y1ai + y2aσ(i))

∏
i∈S

bp(i)

=
1

(k!)2

∑
λ⊢k

ℓ(λ)≤d

dim(λ)2

sλ(1d)

∑
S⊆[d]
|S|=k
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∑
π∈P (S)

 ∑
σ∈Sym(S)

∏
i∈S

(y1ai + y2aσ(i))

sgn(σ)
∑

τ∈Sym(S)
τ≤π

χλ(στ)




 ∑
p:S→[d]
ker(p)=π

∏
i∈S

bp(i)


The sum over p in the last line only depends on π through the sizes of its

blocks:

Lemma 2.18. Let µ ⊢ k and pick π ∈ P (k) with t(π) = µ. Then

∑
p:[k]→[d]
ker(p)=π

k∏
i=1

bp(i) =
ℓ(µ)!

|Orb(µ)|
mµ(B)

where |Orb(µ)| is the number of distinct permutations of µ.

Proof. If π = {V1, . . . , Vm}, then

∑
p:[k]→[d]
ker(p)=π

k∏
i=1

bp(i) =
∑

p:π→[d]
injective

∏
V ∈π

b
|V |
p(V )

=
∑
ρ∈Sm

∑
p:[m]→[d]

p(ρ(1))<···<p(ρ(m))

b
|V1|
p(1) · · · b

|Vm|
p(m)

=
∑
ρ∈Sm

∑
p:[m]→[d]

p(1)<···<p(m)

b
|Vρ(1)|
p(1) · · · b|Vρ(m)|

p(m)

and the number of duplicate summands b
|Vρ(1)|
p(1) · · · b|Vρ(m)|

p(m) which accumulate,

for each p, as ρ varies over Sm, is the number of permutations in Sm which

fix µ. So

|Stab(µ)|
∑

I∈Orb(µ)

∑
p:[m]→[d]

p(1)<···<p(m)

bI1p(1) · · · b
Im
p(m) =

m!

|Orb(µ)|
∑

I∈Orb(µ)

MI(B)
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=
ℓ(µ)!

|Orb(µ)|
mµ(B)

by the orbit-stabilizer theorem.

Remark 2.19. The case µ = 2qk will be important later: there are
(
k−q
q

)
distinct permutations of

(

q︷ ︸︸ ︷
2, . . . , 2, 1, . . . , 1︸ ︷︷ ︸

k−q

)

so the multiple in Lemma 2.18 is q!(k − 2q)!.

The above makes

EUek(y1AUBU
∗ + y2UBU

∗A) =
1

(k!)2

∑
λ⊢k

ℓ(λ)≤d

dim(λ)2

sλ(1d)

∑
S⊆[d]
|S|=k

∑
µ⊢k

 ∑
σ∈Sym(S)

∏
i∈S

(y1ai + y2aσ(i))

sgn(σ)
∑

π∈P (k)
t(π)=µ

∑
τ∈Sym(S)

τ≤π

χλ(στ)



(2.4)

ℓ(µ)!

|Orb(µ)|
mµ(B)

and to reach the central point of the argument, one must process the sum

sgn(σ)
∑

π∈P (k)
t(π)=µ

∑
τ∈Sk
τ≤π

χλ(στ)

in a way which makes the bracketed portion of (2.4) into a sum of immanants.

This will be done in Section 2.3.1:

Proposition 2.20. For λ, µ ⊢ k, there is a constant Cλ,µ such that∑
π∈P (k)
t(π)=µ

∑
τ∈Sk
τ≤π

χλ(στ) = Cλ,µχ
λ(σ).

with the following properties:
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1. if µ ̸⊴ λ, then Cλ,µ = 0;

2. if λ = 2pk and µ = 2qk with 0 ≤ q ≤ p ≤ ⌊k/2⌋, then

Cλ,µ =
p!

(p− q)!

(
k − p+ 1

q

)
.

With Proposition 2.20 in hand, the bracketed portion of (2.4) can be

realized as an immanant: it is equal to∑
σ∈Sym(S)

Cλ,µsgn(σ)χ
λ(σ)

∏
i∈S

(y1ai + y2aσ(i)) = Cλ,µImmλT

(y1ai + y2aj)i,j∈S.

Putting all of this together, we have

EUek(y1AUBU
∗ + y2UBU

∗A)

=
1

(k!)2

∑
λ⊢k

dim(λ)2

sλ(1d)∑
S⊆[d]
|S|=k

∑
µ⊢k
µ⊴λ

Cλ,µImmλT

(y1ai + y2aj)i,j∈S

(
ℓ(µ)!

|Orb(µ)|
mµ(B)

)

=
1

(k!)2

∑
λ⊢k

ℓ(λT )≤2

dim(λ)2

sλ(1d)∑
S⊆[d]
|S|=k

ImmλT

(y1ai + y2aj)i,j∈S


∑

µ⊢k
µ⊴λ

Cλ,µ
ℓ(µ)!

|Orb(µ)|
mµ(B)


=

1

(k!)2

∑
0≤p≤⌊k/2⌋

dim(2pk)
2

s2pk(1
d)∑

S⊆[d]
|S|=k

Imm(k−p,p)(y1ai + y2aj)i,j∈S


( ∑

0≤q≤p

C2pk,2
q
k
q!(k − 2q)!m2qk

(B)

)

and the problem is reduced to
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1. the computation of

Immλ(y1xi + y2xj)i,j

for ℓ(λ) ≤ 2, where x1, . . . , xk are some commuting formal variables,

and

2. handling the sum of the above immanants over choices of k diagonal

entries from A.

2.3.1 Conjugates of Young subgroups

In this subsection we will prove Proposition 2.20, which amounts to the

following:

Proposition 2.20′. Let λ, µ ⊢ k. Then∑
π∈P (k)
t(π)=µ

∑
τ∈Sk
τ≤π

ρλ(τ) =
pµ|Sµ|K(λ, µ)

dim(λ)
· 1

where pµ is the number of partitions π ∈ P (k) with t(π) = µ.

The idea is that the sum is averaging over each conjugate of Sµ, and

then adding up all the conjugate-subgroup-sums, yielding a central element

of C[Sk]. Schur’s lemma gives the scalar multiples, and then one can compute

them as needed using the specifics of Sk. An important part of the argument

is clarified by working with finite groups in general:

Notation 2.21. Fix a finite group G and a subgroup H, and let

{gjHg−1
j : 1 ≤ j ≤ n}

be the distinct conjugates of H, writing Hj := gjHg
−1
j . Fix a representa-

tion ρ : G → GL(V ) and write ResGH(ρ) =
⊕m

i=1 ρi where ρ1, . . . , ρm are

irreducible representations of H.

The first general fact is that the restriction functor is invariant, up to

natural isomorphism, under conjugation of subgroups:
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Lemma 2.22. For g ∈ G, there is an isomorphism

ηg : Res
G
H(ρ) ≃ ResGgHg−1(ρ).

Proof. Fix g ∈ G and let ρ : G → GL(V ) be a representation of G. Define

ηg(ρ) : V → V by ηg(ρ)v = ρ(g)v for v ∈ V , which is an isomorphism of

vector spaces. Moreover, for h ∈ H,

ρ(ghg−1)ηg(ρ)v = ρ(ghg−1)ρ(g)v

= ρ(gh)v

= ρ(g)ρ(h)v

= ηg(ρ)ρ(h)v

for v ∈ V , so ηg(ρ) intertwines Res
G
H(ρ) and ResgHg−1(ρ).

The second general fact is that averaging a representation over a subgroup

yields a projection which encodes the occurrence of the trivial representation

in the restriction:

Lemma 2.23. In the block-matrix decomposition with respect to
⊕m

i=1 Vi,

1

|H|
∑
h∈H

ρ(h) =


δρ1=triv · 1 0

. . .

0 δρm=triv · 1

 .

Proof. Clearly
∑

h∈H ρ(h) ∈ EndH(ρ), so in the block-matrix decomposition

∑
h∈H

ρ(h) =

T11 · · · T1m
...

. . .
...

Tm1 · · · Tmm


we have Tij ∈ HomH(ρj, ρi), and then by Schur’s lemma we have

∑
h∈H

ρ(h) =


t1 · 1 0

. . .

0 tm · 1


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for some scalars t1, . . . , tm. Write χi for the character of ρi, so

⟨1, χi⟩ =
1

|H|
∑
h∈H

Tr(ρi(h)) =
1

|H|
Tr(ti · 1) =

1

|H|
ti dim(ρi)

and by the orthogonality relations we have ti = δρi=triv · |H|.

The final general fact combines the previous two:

Lemma 2.24. The element
n∑

j=1

∑
h∈Hj

h ∈ C[G]

of the group algebra is central. If ρ is irreducible, then

n∑
j=1

∑
h∈Hj

ρ(h) =
n|H|mult(triv,ResGH(ρ))

dim(ρ)
· 1.

Proof. The set {H1, . . . , Hn} is permuted by elements of G acting by conju-

gation, so

g

 n∑
j=1

∑
h∈Hj

h

 g−1 =
n∑

j=1

∑
h∈Hj

ghg−1

=
n∑

j=1

∑
h∈gHjg−1

h

=
n∑

j=1

∑
h∈Hj

h

for g ∈ G, which is the first claim. If ρ is irreducible, then by Schur’s lemma,

n∑
j=1

∑
h∈Hj

h = t · 1

for some t ∈ C. To find t, observe that

dim(ρ)t = Tr

 n∑
j=1

∑
h∈Hj

ρ(h)


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=
n∑

j=1

Tr

∑
h∈Hj

ρ(h)


=

n∑
j=1

|Hj|mult(triv,ResGHj
(ρ))

= n|H|mult(triv,ResGH(ρ))

so the claim follows.

Finally, let us specialize to the symmetric group Sk. Our key point in

this argument is that the constraint τ ≤ π in the sum∑
τ∈Sk
τ≤π

χλ(στ)

is actually carving out conjugates of the Young subgroup:

Notation 2.25 (Young subgroup conjugates). For π ∈ P (k), write Sπ for

the subgroup of Sk consisting of the permutations for which the blocks of π

are invariant. Clearly, if π = {V1, . . . , Vm}, then

Sπ ≃ S|V1| × · · · × S|Vm|

and the right-hand side is the Young subgroup corresponding to the composi-

tion (|V1|, . . . , |Vm|) of k, but the notation Sπ retains some more information

about the blocks of π.

Proof of Proposition 2.20. In light of Lemma 2.24, the remaining tasks are

to count

1. {π ∈ P (k) : t(π) = 2qk},

2. the order of S2qk
,

3. the multiplicity of the trivial representation in ResSk
Sπ
(V λ), and

4. the dimension of V 2pk ;
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in particular, we want the multiplicity in (3) to be 0 whenever µ ̸⊴ λ. There is

a well-known formula for (1), reproduced in e.g. [2, Lemma 2.4], and the case

of 2qk comes out as k!
2qq!(k−2q)!

. For (2), we already know S2qk
≃ Zq

2 which has

order 2q. For (3) and (4), we appeal to Theorem 1.35 and Proposition 1.10

respectively.

2.4 Finite free commutator

In this section, we will look at

EUcx(AUBU
∗ − UBU∗A)

which is essentially a special case of the last section: when A and B are

self-adjoint, this is the case y1 = 1 and y2 = −1. We do not actually require

self-adjointness, however, to work with the commutator. To describe our

results we need a bit of notation related to ⊞d:

Notation 2.26. For polynomials p(x) and q(x) with degree d, write

p(x)⊟d q(x) = EUcx(A− UBU∗)

for the operation of “subtraction” with respect to ⊞d.

Here is the main result:

Theorem 2.27. Let A and B be d × d normal matrices with p(x) = cx(A)

and q(x) = cx(B). Then

EUcx(AUBU
∗ − UBU∗A) = (p(x)⊟d p(x))⊠d (q(x)⊟d q(x))⊠d zd(x)

where

zd(x) =

⌊d/2⌋∑
k=0

xd−2k

(
d

2k

)
(d)k

k!

(2k)!

d+ 1− k

d+ 1
.

As shown in Section 2.3, the task of computing

EUcx(AUBU
∗ − UBU∗A)

can be reduced – at least in principle – to the computation of Immλ(xi−xj)i,j
for ℓ(λ) ≤ 2. In this particular case, it turns out to be especially simple:
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Proposition 2.28. Let X = diag(x1, . . . , xk) be a k × k diagonal matrix.

Then

Immλ(xi − xj)i,j =

{
(−1)λ2

∑k
l=0(−1)l(k − l)!l!ek−l(X)el(X) if ℓ(λ) ≤ 2

0 otherwise

for λ ⊢ k.

We will prove this in Section 2.4.1 by observing that the non-zero im-

manants actually all have the same value, modulo a sign, so it suffices to just

compute the permanant.

Then, the computation of

EUek(AUBU
∗ − UBU∗A)

=
1

(k!)2

∑
0≤p≤k/2

dim(2pk)
2

s2pk(1
d)

∑
S⊆[d]
|S|=k

∑
0≤q≤p

C2pk,2
q
k

(
(−1)p

k∑
l=0

(−1)l(k − l)!l!ek−l(AS)el(AS)

)

q!(k − 2q)!m2qk
(B)

=

 k∑
l=0

(−1)l(
k
l

) ∑
S⊆[d]
|S|=k

ek−l(AS)el(AS)

 (2.5)

 1

k!

∑
0≤p≤k/2

(−1)p
dim(2pk)

2

s2pk(1
d)

∑
0≤q≤p

C2pk,2
q
k
q!(k − 2q)!m2qk

(B)

 (2.6)

amounts to some symmetric function computations, to be carried out in

Section 2.4.2:

Proposition 2.29. If k is even, then

1. the expression (2.5) is equal to

(k/2)!

k!

∑
i+j=k

(−1)i
(d− i)!(d− j)!

(d− k)!(d− k/2)!
ei(A)ej(A),

and
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2. the expression (2.6) is equal to

k!
d+ 1− k/2

(d+ 1)!d!

∑
i+j=k

(−1)i(d− i)!(d− j)!ei(B)ej(B).

If k is odd, then the expression (2.5) is 0.

Proof of Theorem 2.27. All the pieces are in place by now:

EUek(AUBU
∗ − UBU∗A)

=

(
(k/2)!

k!

∑
i+j=k

(−1)i
(d− i)!(d− j)!

(d− k)!(d− k/2)!
ei(A)ej(A)

)
(
k!
d+ 1− k/2

(d+ 1)!d!

∑
i+j=k

(−1)i(d− i)!(d− j)!ei(B)ej(B)

)

= (k/2)!
(d− k)!

(d− k/2)!

d+ 1− k/2

d+ 1

(∑
i+j=k

(−1)i
(d− i)!(d− j)!

(d− k)!d!
ei(A)ej(A)

)
(∑

i+j=k

(−1)i
(d− i)!(d− j)!

(d− k)!d!
ei(B)ej(B)

)
for even 0 ≤ k ≤ d. For odd k, we have

EUek(AUBU
∗ − UBU∗A) = 0

since the expression (2.5) is equal to 0.

2.4.1 Reduction of immanants to permanents

We will prove Proposition 2.28 as a special case of the following general

result:

Theorem 2.30. Let Y be a k× k matrix with rank 2, and write α and β for

the non-zero eigenvalues of ZY . If β = −α, then

Immλ(Y ) =

{
(−1)λ2Per(Y ) if ℓ(λ) ≤ 2

0 otherwise

for λ ⊢ k.
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Lemma 2.31. We have

sλ(α, β, 0, . . . , 0) =

αk (
β
α)

λ2−( β
α)

λ1+1

1− β
α

if ℓ(λ) ≤ 2

0 otherwise

for λ ⊢ k.

Proof. If ℓ(λ) > 2, then every semistandard tableau of shape λ has ωi(T ) > 0

for some i > 2, so

sλ(α, β, 0, . . . , 0) =
∑

T∈SST(λ)

αω1(T )βω2(T )0ω3(T ) · · · = 0.

On the other hand, if ℓ(λ) ≤ 2, the only semistandard tableaux of shape λ

with ωi(T ) = 0 for all i > 2 are of the form

1 · · · 1 1 · · · 1 2 · · · 2

2 · · · 2

where the first row has 0 ≤ t ≤ λ1 − λ2 boxes with 2s. So

sλ(α, β, 0, . . . , 0) =
λ1−λ2∑
t=0

αk−(t+λ2)βt+λ2

= αk−λ2βλ2

λ1−λ2∑
t=0

(
β

α

)t

= αk

(
β

α

)λ2 1−
(
β
α

)λ1−λ2+1

1− β
α

which is the non-zero expression in the claim.

Proof of Theorem 2.30. By Theorem 1.46, Immλ(xi − xj)i,j is the coefficient

of z1 · · · zk in

sλ(ZY ) = sλ(α, β, 0, . . . , 0)

=

αk (
β
α)

λ2−( β
α)

λ1+1

1− β
α

if ℓ(λ) ≤ 2

0 otherwise
(Lemma 2.31)
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=

{
(−1)λ2αk if ℓ(λ) ≤ 2

0 otherwise
(β = −α)

and we observe that the expression (−1)λ2αk does not depend on λ except

through the sign. In particular, Per(Y ) is the coefficient of z1 · · · zk in αk, so

Immλ(Y ) = [z1 · · · zk](−1)λ2αk = (−1)λ2 [z1 · · · zk]αk = (−1)λ2Per(Y )

when ℓ(λ) ≤ 2, and Immλ(Y ) = 0 otherwise.

Proof of Proposition 2.28. First, we need to show that Y = (xi−xj)i,j satis-

fies the hypothesis that the two non-zero eigenvalues α, β of ZY have β = −α.
This is clear: since

cx(ZY ) = xk − Tr(ZY )xk−1 + Axk−2 and Tr(ZY ) =
k∑

i=1

zi(xi − xi) = 0

for some constant A, we have

cx(ZY ) = xk−2(x+ i
√
A)(x− i

√
A)

hence the eigenvalues are ±i
√
A. Then, by Theorem 2.30, it suffices to

compute Per(Y ):

Per(xi − xj)i,j

=
∑
σ∈Sk

k∏
i=1

(xi − xσ(i))

=
∑
σ∈Sk

∑
R⊆[k]

(−1)|R|
∏
i∈R

xi
∏
i/∈R

xσ(i)

=
∑
R⊆[k]

(−1)|R| det(X(R,R))

 ∑
σ:[k]→[k]
injective

∏
i∈[k]\R

xσ(i)



=
∑
R⊆[k]

(−1)|R| det(X(R,R))|R|!

 ∑
σ:[k]\R→[k]
injective

∏
i∈[k]\R

xσ(i)


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=
∑
R⊆[k]

(−1)|R| det(X(R,R))|R|!(k − |R|)!

 ∑
σ:[k]\R→[k]
increasing

∏
i∈[k]\R

xσ(i)


=

k∑
l=0

(−1)l
∑
R⊆[k]
|R|=l

det(X(R,R))(k − l)!l!

 ∑
1≤i1<···<ik−l≤k

xi1 · · ·xik−l


=

k∑
l=0

(−1)l(k − l)!l!ek−l(X)el(X).

2.4.2 Basis transitions

This section is dedicated to the proof of Proposition 2.29. First of all, the

claim for odd k is almost trivial: the summands in the expression (2.5) cancel

each other out because

(−1)l(
k
l

) ek−lel = −(−1)k−l(
k

k−l

) elek−l

for 0 ≤ l ≤ k. So for the rest of this section, k is assumed to be even.

Left-hand dependence

The goal of this subsection is to show that

k∑
l=0

(−1)l(
k
l

) ∑
S⊆[d]
|S|=k

ek−l(AS)el(AS)

=
(k/2)!

k!

∑
i+j=k

(−1)i
(d− i)!(d− j)!

(d− k)!(d− k/2)!
ei(A)ej(A)

when k is even. Observe that∑
S⊆[d]
|S|=k

ek−l(AS)el(AS) =
∑

1≤s1<···<sk≤d

∑
i:[k]→[k]

i(1)<···<i(k−l)
i(k−l+1)<···<i(k)

asi(1) · · · asi(k)
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=
∑

i:[k]→[k]
i(1)<···<i(k−l)

i(k−l+1)<···<i(k)

∑
1≤s1<···<sk≤d

a|i
−1(1)|

s1
· · · a|i−1(k)|

sk

=
∑

i:[k]→[k]
i(1)<···<i(k−l)

i(k−l+1)<···<i(k)

M|i−1|(a1, . . . , ad)

which leads to the first piece of the proof:

Lemma 2.32. The expression (2.5) is equal to

k/2∑
q=0

m2qk
(A)

((
d−(k−q)

q

)(
k−q
q

) k−q∑
l=q

(−1)l(
k
l

) (k − q

l

)(
l

q

))
.

To prove this, let us set up some more notation:

Notation 2.33. Write

Cm(k, l) := {i : [k] → [m] : i(1) < · · · < i(k− l) and i(k− l+1) < · · · < i(k)}

for 0 ≤ l ≤ k. For i ∈ Cm(k, l), define a weak composition I(i) ∈ WComp(m)

by I(i) := (|i−1(1)|, . . . , |i−1(k)|).

Lemma 2.34. Let 0 ≤ q ≤ k
2
. Then

1. |Orb(2q, 1k−2q, 0q)| =
(
k
q

)(
k−q
q

)
;

2. for 0 ≤ l ≤ k, we have

|{i ∈ Ck(k, l) : I(i) ∈ Orb(2q, 1k−2q, 0q)}|

=

{(
k
l

)(
k−l
q

)(
l
q

)
if q ≤ l ≤ k − q

0 otherwise
.

Proof. For (1), the distinct permutations of

(2, . . . , 2︸ ︷︷ ︸
q

, 1, . . . , 1︸ ︷︷ ︸
k−2q

, 0, . . . , 0︸ ︷︷ ︸
q

)
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are determined by placing q 2s in k available entries, then placing q 0s in

the remaining k − q available entries; the k − 2q 1s are then forced into the

remaining k − 2q entries. There are of course
(
k
q

)(
k−q
q

)
ways of doing this.

For (2), to build a i with I(i) a permutation of (2q, 1k−2q, 0q), one may

proceed as follows:

• start with a chain i(1) < · · · < i(k − l);

• choose q values of the above, which will be duplicated;

• choose which of i(k − l + 1), . . . , i(k) will be used for the duplication.

There are
(
k
l

)
choices for the first,

(
k−l
q

)
choices for the second, and

(
l
q

)
choices

for the third, hence the claim.

Proof of Lemma 2.32. With Notation 2.33, the expression (2.5) is equal to

k∑
l=0

(−1)l(
k
l

) ∑
i∈Ck(k,l)

MI(i)(A)

=
k∑

l=0

(−1)l(
k
l

) k/2∑
q=0

∑
I∈Orb(2q ,1k−2q ,0q)

|{i ∈ Ck(k, l) : I(i) = I}|MI(A)

=

k/2∑
q=0

∑
I∈Orb(2q ,1k−2q ,0q)

(
k∑

l=0

(−1)l(
k
l

) |{i ∈ Ck(k, l) : I(i) = I}|

)
MI(A) (2.7)

=

k/2∑
q=0

∑
I∈Orb(2q ,1k−2q ,0q)

MI(A)(
1(

k
q

)(
k−q
q

) k−q∑
l=q

(−1)l(
k
l

) (k
l

)(
k − l

q

)(
l

q

))
. (Lemma 2.34)

It is easy to see that

1(
k
q

)(
k−q
q

) k−q∑
l=q

(−1)l(
k
l

) (k
l

)(
k − l

q

)(
l

q

)
=

1(
k−q
q

) k−q∑
l=q

(−1)l(
k
l

) (k − q

l

)(
l

q

)
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by pushing around some factorials, so the remaining task is to show that∑
I∈Orb(2q ,1k−2q ,0q)

MI(A) =

(
d− (k − q)

q

)
m2qk

(A).

To this end, recall the definition

m2qk
(A) =

∑
J∈Orb(2q ,1k−2q ,0d−(k−q))

aJ11 · · · aJdd ,

i.e. we add zeros to 2qk as “padding” in case its length is less than d. On the

other hand, we can write∑
I∈Orb(2q ,1k−2q ,0q)

MI(A)

=
∑

I∈Orb(2q ,1k−2q ,0q)

∑
1≤s1<···<sk≤d

aI1s1 · · · a
Ik
sk

=
∑

I∈Orb(2q ,1k−2q ,0q)

∑
1≤s1<···<sk≤d

a01 · · · a0s1−1a
I1
s1
a0s1+1 · · · a0sk−1a

Ik
sk
a0sk+1 · · · a0d

so each summand is of the form aJ11 · · · aJdd with

J = (0, . . . , 0, I1︸︷︷︸
s1

, 0, . . . , 0, Ik︸︷︷︸
sk

, 0, . . . , 0) ∈ Orb(2q, 1k−2q, 0d−(k−q)).

Every J ∈ Orb(2q, 1k−2q, 0d−(k−q)) arises as such, in
(
d−(k−q)

q

)
ways, since an

element of the preimage is the same as a choice of q 0s to keep from the

d− (k − q) 0s in J .

For the remainder of the proof, we will require two identities of binomial

coefficients, which can be found in e.g. [22]. In these identities, y is a formal

variable.

Lemma 2.35 ([22, 4.8]). We have

2n∑
s=0

(−1)s
(
2n
s

)(
2n+2y
s+y

) =

(
2n
n

)(
y+n
n

)(
2y+2n
y+n

)
for n ≥ 1.

64



Lemma 2.36 (Rothe-Hagen identity [22, 3.146]). We have

n∑
s=0

n

n+ s

(
n+ s

s

)(
y − s

n− s

)
=

(
n+ y

n

)
for n ≥ 1.

The right-hand side of Lemma 2.32 can be re-arranged as

k/2∑
q=0

m2qk

((
d−(k−q)

q

)(
k−q
q

) k−q∑
l=q

(−1)l(
k
l

) (k − q

l

)(
l

q

))

=
∑

0≤q≤k/2

m2qk

(
d− k + q

q

)( ∑
q≤l≤k−q

(−1)l

(
k−2q
l−q

)(
k
l

) )

=
∑

0≤q≤k/2

m2qk

(
d− k + q

q

)(
(−1)q

(
k−2q
k/2−q

)(
k/2
q

)(
k

k/2

)) (Lemma 2.35)

=
(k/2)!

k!

∑
0≤q≤k/2

(−1)qm2qk
(d− k + q)q

(k − 2q)!

(k/2− q)!

and one can apply Eq. (1.2): the above is equal to

(k/2)!

k!

∑
0≤r≤k/2−1

(−1)re(k−r,r)
(d− k + r)!

(d− k)!∑
r≤q≤k/2−1

(d− k + q) · · · (d− k + r + 1)
(k − 2r)(k − q − r − 1)!

(q − r)!(k/2− q)!

+
(k/2)!

k!
(d− k/2)k/2

∑
i+j=k

(−1)ieiej

=
(k/2)!

k!

∑
0≤r≤k/2−1

(−1)re(k−r,r)
(d− k + r)!

(d− k)!∑
r≤q≤k/2−1

(
d− k + q

q − r

)
(k − 2r)(k − q − r − 1)!

(k/2− q)!
(2.8)

+
(k/2)!

k!

(d− k/2)!

(d− k)!

∑
i+j=k

(−1)ieiej.
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By Lemma 2.36 with n = k/2 − r and y = d − k/2, the expression (2.8) is

equal to

2
(d− r)!

(d− k/2)!
− 2

(d− k/2)!

(d− k + r)!

so the expression (2.5) is equal to

(k/2)!

k!

2
∑

0≤r≤k/2−1

(−1)re(k−r,r)
(d− r)!(d− k + r)!

(d− k)!(d− k/2)!

−2
(d− k/2)!

(d− k)!

∑
0≤r≤k/2−1

(−1)re(k−r,r) +
(d− k/2)!

(d− k)!

∑
i+j=k

(−1)ieiej


=

(k/2)!

k!

2
∑

0≤r≤k/2−1

(−1)re(k−r,r)
(d− r)!(d− k + r)!

(d− k)!(d− k/2)!

+(−1)k/2
(d− k/2)!

(d− k)!
e(k/2,k/2)

)
=

(k/2)!

k!

∑
i+j=k

(−1)i
(d− i)!(d− j)!

(d− k)!(d− k/2)!
eiej

hence the claim of (1) in Proposition 2.29.

Right-hand dependence

The remaining part of Proposition 2.29 is the basis transition

1

k!

∑
0≤p≤k/2

(−1)p
dim(2pk)

2

s2pk(1
d)

∑
0≤q≤p

C2pk,2
q
k
q!(k − 2q)!m2qk

(B)

= k!
d+ 1− k/2

(d+ 1)!d!

∑
i+j=k

(−1)i(d− i)!(d− j)!ei(B)ej(B)

which is much more straightforward to prove than the previous one. The

left-hand side is

1

k!

∑
0≤q≤p≤k/2

(−1)p
dim(2pk)

2

s2pk(1
d)

p!

(p− q)!

(
k − p+ 1

q

)
q!(k − 2q)!m2qk

(Proposition 2.20)
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= k!
∑

0≤q≤p≤k/2

(−1)p
(d+ 1− p)!(d− (k − p))!

(d+ 1)!d!

(k − 2q)!(k − 2p+ 1)

(p− q)!(k − p− q + 1)!
m2qk

(Proposition 1.10)

= k!
∑

0≤q≤k/2

m2qk

∑
q≤p≤k/2

(−1)p
(d+ 1− p)!(d− (k − p))!

(d+ 1)!d!

((
k − 2q

p− q

)
−
(

k − 2q

p− q − 1

))
(2.9)

and with Qp(d) :=
(d+1−p)!(d−(k−p))!

(d+1)!d!
, the expression (2.9) is equal to

∑
q≤p≤k/2

(−1)p
(
k − 2q

p− q

)
(Qp(d) +Qp+1(d))

where for the sake of notation we say Qk/2+1(d) = 0. Then, for q ≤ p ≤
k/2− 1, we have

Qp(d) +Qp+1(d) = 2
d+ 1− k/2

(d+ 1)!d!
(d− p)!(d− (k − p))!

and

Qk/2(d) =
(d+ 1− k/2)!(d− k/2)!

(d+ 1)!d!
=
d+ 1− k/2

(d+ 1)!d!
(d− k/2)!(d− k/2)!.

Putting this back into (2.9), we get

k!
∑

0≤q≤k/2

m2qk

∑
q≤p≤k/2

(−1)p
(
k − 2q

p− q

)
(Qp(d) +Qp+1(d))

= k!
d+ 1− k/2

(d+ 1)!d!

∑
0≤p≤k/2

(−1)p(d− p)!(d− (k − p))!
∑

0≤q≤p

(
k − 2q

p− q

)
m2qk

= k!
d+ 1− k/2

(d+ 1)!d!

∑
i+j=k

(−1)i(d− i)!(d− j)!eiej (Eq. (1.1))

hence the claim of (2) in Proposition 2.29.
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Chapter 3

Thoma characters,

star-transpositions, and

random matrices

In the last few decades, an important trend in probability and combinatorics

has been the connection between combinatorial structures that grow or decay,

like the Young graph and the irreducible characters of Sn, and probabilistic

models like eigenvalues of random matrices. In a certain sense, the limit of

the representation theory of Sn is the representation theory of S∞; on the

other hand, it is well known that the asymptotics of GUE eigenvalues are

described by free probability.

This context suggests that the representation theory of S∞ should be

connected with free probability, and indeed it was discovered by P. Biane [3]

that one can use certain elements of C[S∞] to approximate free semicircular

families. Specifically, the sequence of star-transpositions γn := (1, n + 1)

satisfies a central limit theorem where the limit law is semicircular, and one

can set up a multivariate version which makes the semicirculars free. In

retrospect, an important point about this result is that everything was done

in the regular representation of S∞, i.e. the noncommutative probability

space was the one defined using the character labeled by 0 in the Thoma

classification.

More recently, this result of Biane was extended by C. Köstler and A.
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Nica [26], using the Thoma characters labeled by

(1/d, . . . , 1/d︸ ︷︷ ︸
d

, 0, 0, . . . ; 0, 0, . . .)

for d ≥ 1. Their central limit law is the average eigenvalue distribution of

the traceless GUE, i.e. the random matrix A−tr(A) where A is a d×d GUE.

This recovers Biane’s result in the limit d→ ∞.

This chapter is an exposition of the author’s joint work [12] with Köstler

and Nica, which extends these results further to include a continuous fam-

ily of Thoma characters. Interestingly, on the random matrix side, we land

on an unexpected type of random matrix model: the entries need to come

from noncommutative operator algebras with canonical commutation rela-

tions (a.k.a. CCR).

3.1 Von Neumann algebras generated by char-

acters

Let G be a countable discrete group and let C[G] be the group algebra. First

let us recall some standard terminology:

Terminology 3.1. A function ϕ : G → C is said to be positive-definite if

for all n ≥ 1, for all g1, . . . , gn ∈ G and c1, . . . , cn ∈ C, we have

n∑
i,j=1

cicjϕ(g
−1
j gi) ≥ 0.

In other words, the matrix (ϕ(g−1
j gi))

n
i,j=1 is positive-semidefinite. Write P

for the set of positive-definite functions in ℓ∞(G), and P1 for the functions

ϕ ∈ P with ϕ(e) = 1; these are both convex sets. A character of G is

a function χ ∈ P1 which is constant on conjugacy classes (a.k.a. a class

function). A positive-definite function ϕ on G extends to a positive linear

functional φ on C[G]; if ϕ(e) = 1, then φ(1) = 1, and if ϕ is a class function,

then φ is tracial.

The GNS construction, which is fundamental to the theory of C∗-algebras,

can also be made for positive definite functions on groups, as in e.g. [18, 20].
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Notation 3.2. For ϕ ∈ P , define ⟨·, ·⟩ϕ on C[G] by

⟨x, y⟩ϕ = φ(y∗x)

for x, y ∈ C[G]. This is a positive-semidefinite symmetric sesquilinear form,

and if Nϕ := {x ∈ C[G] : ⟨x, x⟩ϕ = 0}, then the quotient space C[G]/Nϕ

inherits an inner product. Write Hϕ for the Hilbert space completion of

C[G]/Nϕ, and for x ∈ C[G], write x̂ for the image of x in Hϕ.

Theorem 3.3. For ϕ ∈ P, there is a unitary representation πϕ : G→ B(Hϕ)

such that

1. πϕ(x)ŷ = x̂y for x ∈ G and y ∈ C[G],

2. there is a vector ξϕ ∈ Hϕ such that πϕ(x)ξϕ = x̂ for x ∈ C[G], namely

ξϕ = ê where e is the identity of G, and

3. ϕ(g) = ⟨πϕ(g)ξϕ, ξϕ⟩ for g ∈ G.

Such a πϕ is unique up to unitary equivalence.

Terminology 3.4. The representation πϕ in Theorem 3.3 is called the GNS

representation of ϕ, and ξϕ is called the cyclic vector.

Remark 3.5. We will primarily be interested in the case where χ is extremal,

i.e. an extreme point in the convex set of characters mentioned in Terminol-

ogy 3.1. We should mention, then, that this case corresponds exactly to the

GNS representation being irreducible, which might provide some motivation

for the premise that extremality in this context is analogous to irreducibility

in the context of finite groups.

Notation 3.6. Let χ be a character of G and let π : G→ B(H) be the GNS

representation with cyclic vector ξ. Write

M := W ∗(π(G)) ⊆ B(H)

for the von Neumann algebra generated by the range of π, and define a linear

functional τ on M by τ(T ) = ⟨Tξ, ξ⟩ for T ∈ M. This is a faithful, normal,

tracial state. In Terminology 1.71, this makes (M, τ) a tracialW ∗-probability

space.
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3.2 Star-transpositions as random variables

In this section, let G = S∞, fix a Thoma parameter ω ∈ Ω, write χ for

its extremal character, and let (M, τ) be the tracial W ∗-probability space

constructed in Notation 3.6 using χ. For σ ∈ S∞, we will generally use the

symbol σ to refer to either the permutation σ itself, or to its representation

in M; this will be clear from context and should not cause any confusion.

3.2.1 Law of large numbers

Recall from Notation 1.47 that we use the notation γn := (1, n+1) for the so-

called star-transpositions. This is a very interesting sequence, and they have

a very interesting limit which shows the value of (M, τ) as a “completion”

of C[S∞]:

Theorem 3.7 ([37, 21]). There is a self-adjoint contraction A0 ∈ M such

that

A0 =
WOT

lim
n→∞

γn =
SOT

lim
n→∞

1

n

n∑
i=1

γi.

The limit is determined by

⟨A0σ̂, τ̂⟩ =
p◦|V |+1(ω)

p◦|V |(ω)
⟨σ̂, τ̂⟩

for σ, τ ∈ S∞, where V is the cycle of στ−1 containing 1.

Remark 3.8. An important takeaway from Theorem 3.7 is that A0 has the

Thoma parameter encoded in its spectrum. With some considerable work,

this observation can lead to a proof of Thoma’s theorem [21].

To prove Theorem 3.7, for the weak limit, we naturally want to look at

the bilinear forms ⟨γn·, ·⟩:

Lemma 3.9. Let σ, τ ∈ Sm and let V be the cycle of στ−1 which contains 1.

Then

⟨γnσ̂, τ̂⟩ =
p◦|V |+1(ω)

p◦|V |(ω)
⟨σ̂, τ̂⟩

for n ≥ m.
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Proof. It suffices to show that χ(τ−1γnσ) =
p◦|V |+1

(ω)

p◦|V |(ω)
χ(τ−1σ) or equivalently

that χ(γnστ
−1) =

p◦|V |+1
(ω)

p◦|V |(ω)
χ(στ−1). To this end, observe that if the disjoint

cycles of στ−1 are

στ−1 = (c1, . . . , ci1)(ci1+1, . . . , ci2) · · · (cil−1+1, . . . , cil)

with c1 = 1, then for n ≥ m,

γnστ
−1 = (1, n+ 1)(1, c2, . . . , ci1)(ci1+1, . . . , ci2) · · · (cil−1+1, . . . , cil)

= (1, c2, . . . , ci1 , n+ 1)(ci1+1, . . . , ci2) · · · (cil−1+1, . . . , cil).

The Thoma character formula then gives

χ(γnστ
−1) = p◦i1+1(ω)

∏
c∈Cyc(γnστ−1)

1/∈c

p◦|c|(ω)

= p◦i1+1(ω)
∏

c∈Cyc(στ−1)
1/∈c

p◦|c|(ω)

=
p◦i1+1(ω)

p◦i1(ω)

∏
c∈Cyc(στ−1)

p◦|c|(ω)

=
p◦i1+1(ω)

p◦i1(ω)
χ(στ−1)

hence the claim.

Proof of Theorem 3.7. For the weak limit, we want to show there is a self-

adjoint contraction A0 ∈ M with

lim
n→∞

⟨γnξ, η⟩ = ⟨A0ξ, η⟩

for all ξ, η ∈ H. Since span{σ̂ : σ ∈ S∞} is dense in H and for σ, τ ∈ Sm, we

have

⟨γnσ̂, τ̂⟩ =
p◦|V |+1(ω)

p◦|V |(ω)
⟨σ̂, τ̂⟩

for n ≥ m, the limit limn→∞⟨γnξ, η⟩ exists, and we can define a sesquilinear

form B on H by

B(ξ, η) = lim
n→∞

⟨γnξ, η⟩
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for ξ, η ∈ H. This form is bounded in the sense that

|B(ξ, η)| = lim
n→∞

|⟨γnξ, η⟩| ≤ lim
n→∞

∥γnξ∥∥η∥ = ∥ξ∥∥η∥

so by the well-known correspondence between bounded sesquilinear forms

and bounded linear operators, there is a contractionA0 ∈ B(H) withB(ξ, η) =

⟨A0ξ, η⟩. Since γn ∈ Msa and A0 = limWOT
n→∞ γn, we have A0 ∈ Msa.

For the strong limit, using Notation 1.70 with the cyclic vector ê, we will

show that ∥∥∥∥∥ 1n
n∑

i=1

γi − A0

∥∥∥∥∥
2

2

=
1− p◦3(ω)

n

for n ≥ 1, and then use Proposition 1.69 to reach the conclusion. We have∥∥∥∥∥ 1n
n∑

i=1

γi − A0

∥∥∥∥∥
2

2

=

∥∥∥∥∥ 1n
n∑

i=1

γ̂i − A0(ê)

∥∥∥∥∥
2

=
1

n2

∥∥∥∥∥
n∑

i=1

γ̂i

∥∥∥∥∥
2

− 2Re

〈
1

n

n∑
i=1

γ̂i, A0(ê)

〉
+ ∥A0(ê)∥2.

(3.1)

For the first part of (3.1), we have∥∥∥∥∥
n∑

i=1

γ̂n

∥∥∥∥∥
2

=
n∑

i,j=1

⟨γ̂i, γ̂j⟩ =
n∑

i=1

χ(γ2i ) +
∑
i ̸=j

χ(γiγj) = n+ n(n− 1)p◦3(ω)

since

γ2i = e and (1, i+ 1)(1, j + 1) = (1, j + 1, i+ 1)

for i ̸= j. For the second part of (3.1), we have

⟨γ̂i, A0(ê)⟩ = ⟨A0(γ̂i), ê⟩ = lim
n→∞

⟨γnγ̂i, ê⟩ = lim
n→∞

χ(γnγi) = p◦3(ω)

so

2Re

〈
1

n

n∑
i=1

γ̂i, A0(ê)

〉
=

2

n

n∑
i=1

p◦3(ω) = 2p◦3(ω).

For the third part of (3.1), we have

∥A0(ê)∥2 = lim
n→∞

⟨γnê, A0(ê)⟩ = lim
n→∞

⟨γ̂n, A0(ê)⟩ = p◦3(ω).
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So in total, (3.1) is

1

n2
(n+ n(n− 1)p◦3(ω))− 2p◦3(ω) + p◦3(ω) =

1− p◦3(ω)

n

hence the claim.

Remark 3.10. The perspective that Theorem 3.7 is a “law of large numbers”

is pursued in [21]: among other things, they studied a certain “canonical”

subalgebra related to the star-transpositions, namely the tail algebra

M0 :=
⋂
n≥1

W ∗(γk : k ≥ n) ⊆ M.

This subalgebra admits a unique conditional expectation E0 : M → M0,

and it turns out that M0 = W ∗(A0) and A0 = E0(γn) for any n ≥ 1. So in

this operator-valued setting, A0 really is the “mean” of γn and Theorem 3.7

can be properly described as a noncommutative “law of large numbers”.

3.2.2 Exchangeability and singleton blocks

Terminology 3.11. Let (A, φ) be a ∗-probability space. A sequence (xn)n≥1

in A is said to

• be exchangeable if

φ(xi(1) · · ·xi(k)) = φ(xj(1) · · · xj(k))

for all i, j : [k] → N with ker(i) = ker(j);

• have the singleton-vanishing property if

φ(xi(1) · · ·xi(k)) = 0

for all i : [k] → N such that ker(i) has a singleton block.

Proposition 3.12 ([21]). The sequence (γn)n≥1 is exchangeable.
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Proof. Let i, j : [k] → N and suppose that ker(i) = ker(j), so there is a

permutation σ ∈ S∞ with σ(i(r) + 1) = j(r) + 1 for r ∈ [k] and σ(1) = 1.

Then

τ(γj(1) · · · γj(k)) = χ((1, j(1) + 1) · · · (1, j(k) + 1))

= χ((1, σ(i(1) + 1)) · · · (1, σ(i(k) + 1)))

= χ(σ(1, i(1) + 1) · · · (1, i(k) + 1)σ−1)

= χ((1, i(1) + 1) · · · (1, i(k) + 1))

= τ(γi(1) · · · γi(k))

hence the claim.

Proposition 3.13. Fix a map i : [k] → N ∪ {∞} and write

Tp =

{
γi(p) if i(p) ∈ N
A0 if i(p) = ∞

for 1 ≤ p ≤ k. Define j : [k] → N by replacing each value of ∞ in i with a

new, distinct positive integer. Then

τ(T1 · · ·Tk) = τ(γj(1) · · · γj(k)).

Here, we will present the proof of Proposition 3.13 in a way which em-

phasizes the main conceptual point, which is the use of Theorem 3.7, at the

expense of a certain degree of formality. A more formal presentation of the

argument is given in [12].

Proof. For each p ∈ [k] with p(i) = ∞, since multiplication is separately

continuous in the weak operator topology, we have

T1 · · ·Tp−1A0Tp+1 · · ·Tk = (T1 · · ·Tp−1)

(
WOT

lim
n→∞

γn

)
(Tp+1 · · ·Tk)

= (T1 · · ·Tp−1)

(
WOT

lim
n→∞

γnTp+1 · · ·Tk
)

=
WOT

lim
n→∞

T1 · · ·Tp−1γnTp+1 · · ·Tk.
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Since τ is normal and we are in the unit ball, it is continuous with respect

to the weak operator topology, so

τ(T1 · · ·Tk) = lim
n→∞

τ(T1 · · ·Tp−1γnTp+1 · · ·Tk).

In this manner, we can remove the A0s from T1 · · ·Tk and replace them by

limits of γn. Moreover, once this is done, the value of χ on γj(1) · · · γj(k) does
not depend on the ns, as long as they are sufficiently large.

3.2.3 Central limit theorem

Theorem 3.14 ([9]). Let (A, φ) be a ∗-probability space and let (an)n≥1 be a

sequence in A which is exchangeable and has the singleton-vanishing property.

For n ≥ 1, write

sn :=
1√
n

n∑
i=1

ai.

Then

lim
n→∞

φ(skn) =

{∑
π∈P2(k)

φ(ai(1) · · · ai(k)) if k even

0 if k odd

for k ≥ 1, where i : [k] → N is chosen for each π ∈ P2(k) so that π = ker(i).

Idea of proof. The first key point is to realize that when one expands

φ(skn) =
1

nk/2

∑
i:[k]→[n]

φ(ai(1) · · · ai(k)),

the summands only depend on ker(i), so the above can be written as

1

nk/2

∑
π∈P (k)

|{i : [k] → [n] : ker(i) = π}| · φ(π)

where φ(π) is the common value of φ(ai(1) · · · ai(k)) for any i : [k] → [n] with

π = ker(i). By the singleton-vanishing property, φ(π) = 0 for all π with a

singleton block, so the above can be written as

1

nk/2

∑
π∈P (k)

|V |≥2 ∀V ∈π

|{i : [k] → [n] : ker(i) = π}| · φ(π).
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The second important point is that one can easily count

|{i : [k] → [n] : ker(i) = π}| = n!

(n− |π|)!

which is ≈ n|π| as n→ ∞. Then

φ(skn) ≈
∑

π∈P (k)
|V |≥2∀V ∈π

n|π|−k/2φ(π)

as n → ∞, so the π whose summands don’t vanish in the limit are exactly

the ones with |π| ≥ k/2. But since each block of π has at least two elements,

this only leaves the π with |π| = k/2, i.e. π ∈ P2(k). This is exactly the

claim of the theorem:

lim
n→∞

φ(skn) =
∑

π∈P2(k)

φ(π).

Proposition 3.15. The centered sequence (γn −A0)n≥1 is exchangeable and

has the singleton-vanishing property.

This is the first instance in which we will need to convert mixed moments

of (γn−A0)n≥1 into sums of mixed moments of (γn)n≥1. The following lemma

will be used again in a later section to analyze the central limit law.

Lemma 3.16. Let π ∈ P2(k) and pick i : [k] → N such that π = ker(i).

Then

τ((γi(1) − A0) · · · (γi(k) − A0)) =
∑
S⊆[k]

(−1)|S|τ(γj(1) · · · γj(k))

where j : [k] → N is chosen for each S ⊆ [k] such that ker(j) = π ∧ πS.

Proof. We have

τ((γi(1) − A0) · · · (γi(k) − A0)) =
∑
S⊆[k]

(−1)|S|τ(T
(S)
1 · · ·T (S)

k )
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where

T
(S)
j :=

{
A0 if j ∈ S

γi(j) if j /∈ S

for 1 ≤ j ≤ k. By Proposition 3.13, τ(T
(S)
1 · · ·T (S)

k ) = τ(γj(1) · · · γj(k)) where
j : [k] → N is chosen so that ker(j) = π ∧ πS.

Proof of Proposition 3.15. Lemma 3.16 shows clearly that

τ((γi(1) − A0) · · · (γi(k) − A0))

only depends on ker(i), i.e. (γn −A0)n≥1 is exchangeable. For the singleton-

vanishing property, let i : [k] → N be a multi-index such that ker(i) has a

singleton block {b}. Then in the sum

τ((γi(1) − A0) · · · (γi(k) − A0)) =
∑
S⊆[k]

(−1)|S|τ(γj(1) · · · γj(k))

from Lemma 3.16, to show that the right-hand side is 0, it suffices to show

there is a bijection f : 2[k] → 2[k] with π ∧ πS = π ∧ πf(S) and (−1)|S| +

(−1)|f(S)| = 0 for all S ⊆ [k]. For this, simply define

f(S) =

{
S \ {p} if p ∈ S

S ∪ {p} if p /∈ S

for S ⊆ [k]. The property of changing the sign of |S| is obvious, and since p

is not connected to anything in π, π ∧ πS does not depend on whether p is

in S. So

τ((γi(1) − A0) · · · (γi(k) − A0)) = 0,

i.e. (γn − A0)n≥1 has the singleton-vanishing property.

Corollary 3.17. Let

sn =
1√
n

n∑
i=1

(γi − A0)

for n ≥ 1. Then

lim
n→∞

τ(skn) =

{∑
π∈P2(k)

τ((γi(1) − A0) · · · (γi(k) − A0)) if k even

0 if kodd

for k ≥ 1.
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Corollary 3.18. There is a unique probability measure µω on R with the

moments∫
R
tk dµω(t) =

{∑
π∈P2(k)

τ((γi(1) − A0) · · · (γi(k) − A0)) if k even

0 otherwise
,

where i : [k] → N is chosen for each π ∈ P2(k) so that π = ker(i). Moreover,

the distribution of sn converges weakly to µω as n→ ∞.

Proof. As is well-known in probability theory [5, Theorem 30.1], to show a

probability measure on R with finite moments mk is uniquely determined by

those moments, it suffices to show the exponential MGF
∑∞

k=0mk
zk

k!
has a

positive radius of convergence, i.e.

lim sup
k→∞

(mk

k!

) 1
k
<∞.

The even moments are easy to estimate: using Lemma 3.16,

|τ((γi(1) − A0) · · · (γi(k) − A0))| ≤
∑
S⊆[k]

|χ(γj(1) · · · γj(k))|,

and to see that the above is ≤ 2k, observe that∣∣∣∣∣∑
i≥1

αk
i + (−1)k−1

∑
j≥1

βk
j

∣∣∣∣∣ ≤ 1

for k ≥ 2 and use the Thoma formula for χ. Then,

|mk| =

∣∣∣∣∣∣
∑

π∈P2(k)

τ((γi(1) − A0) · · · (γi(k) − A0))

∣∣∣∣∣∣ ≤ 2k|P2(k)| = 2k(k − 1)!!

so

mk

k!
≤ 2k(k − 1)!!

k!
=

2k/2

(k/2)!
and

(
2k/2

(k/2)!

) 1
k

=

√
2

(k/2)!1/k
→ 0

which shows the radius of convergence is ∞. With this uniqueness, it is

well known [5, Theorem 30.2] that convergence in moments implies weak

convergence.
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3.3 Combinatorics of the central limit law

The initial description of the central limit law in Theorem 3.14 is rather

opaque, and we of course want to describe it more concretely. For this pur-

pose, we will make the following assumption for the remainder of the present

chapter: the Thoma parameter ω = (α, β) has α = (α1, . . . , αd),
∑d

i=1 αi = 1,

and β = 0.

The key observation is that

1. each

(γi(1) − A0) · · · (γi(k) − A0)

appearing in the even moments is a sum of words in {γi : i ≥ 1}∪{A0};

2. for any word in (1), we can apply Proposition 3.13 to the trace, which

reduces to words in {γi : i ≥ 1} where each γi appears at most twice.

It thus suffices to understand mixed moments of the form

τ(γi(1) · · · γi(k))

where π = ker(i) has blocks with sizes at most 2.

3.3.1 Permutations and split-pair partitions

Notation 3.19. Write

P≤2(k) := {π ∈ P (k) : |V | ≤ 2 ∀V ∈ π}

for the set of partitions whose blocks are pairs or singletons.

Notation 3.20. Take π ∈ P≤2(k), say with blocks Vi = {ai, bi}, with ai ≤ bi,

for 1 ≤ i ≤ l, ordered such that b1 > · · · > bl. Define a map r : [k] → [l] by

r(ai) = i and r(bi) = i. Then write

σπ :=
∏
1≤i≤l
ai ̸=bi

(ai, bi) ∈ Sk,

which extends and is consistent with the previous Notation 1.56, and

τπ := γr(1) · · · γr(k) ∈ Sl+1.

Write a0 := k + 1 and b0 := k + 1, and Bπ := {b0, b1, . . . , bl} ⊆ [k + 1].
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Example 3.21. Consider the partition

π = ∈ P≤2(7).

Then σπ = (4, 7)(1, 6)(2, 5), and

c7+1σπ = (1, 2, 3, 4, 5, 6, 7, 8)(4, 7)(1, 6)(2, 5) = (1, 7, 5, 3, 4, 8)(2, 6),

while

γ2
(1, 3)

γ3
(1, 4)

γ4
(1, 5)

γ1
(1, 2)

γ3
(1, 4)

γ2
(1, 3)

γ1
(1, 2) = (1, 5, 4, 2)(3)τπ = .

It is not a coincidence that ck+1σπ and τπ have the same number of cycles, nor

is the following refinement: the orbits of c7+1σπ partition Bπ = {3, 5, 6, 7, 8}
into Bπ = {6}∪ {3, 5, 7, 8}, which is conjugate to τπ. The present subsection

is dedicated to this relation.

Theorem 3.22. Let π ∈ P≤2(k), and let R1, . . . , Rp be the orbits of ck+1σπ
which intersect Bπ. Then

1. τπ has exactly p orbits in [l+1], and their sizes are |R1∩Bπ|, . . . , |Rp∩
Bπ|;

2. the orbits of ck+1σπ in [k + 1] are exactly R1, . . . , Rp.

Notation 3.23 (Restriction of permutations). For σ ∈ S∞ and A ⊆ N,
define a permutation σ|A of A by removing the elements of N \ A from the

disjoint cycle notation (not including cycles of size 1).

Lemma 3.24. If 0 ≤ i, j ≤ l and ((σπc
−1
k+1)

∣∣
Bπ
)(bi) = bj, then τπ(i + 1) =

j + 1.

This consists of many cases; we will prove the lemma for i ̸= 0 and then

show that the i = 0 case follows.
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Proof. First of all, fix 0 ≤ i, j ≤ l with i ̸= 0, and suppose that

((σπc
−1
k+1)

∣∣
Bπ
)(bi) = bj.

This means there is some q ≥ 1 such that

(σπc
−1
k+1)

q(bi) = bj and (σπc
−1
k+1)

p(bi) /∈ Bπ

for all 0 ≤ p < q. To show τπ(i+ 1) = j + 1, there are two cases: q = 1 and

q > 1.

For the case q = 1, i.e. σπc
−1
k+1(bi) = bj, we have c−1

k+1(bi) = aj. Here,

there are two sub-cases:

• if bi = 1, then we must have i = l, Vi = {1}, and ai = bi = 1. Then

aj = c−1
k+1(1) = k + 1 so j = 0 and τπ(i + 1) = τπ(l + 1) = 1 = j + 1

since τπ only has one factor of γl.

• if bi > 1, then aj = c−1
k+1(bi) = bi − 1 and

τπ = (γr(1) · · · γr(aj−1))︸ ︷︷ ︸
(1)

(γr(aj)γr(bi))︸ ︷︷ ︸
(2)

(γr(bi+1) · · · γr(k))︸ ︷︷ ︸
(3)

.

The brackets (3) fix i+1 because r(m) ̸= i for all bi+1 ≤ m ≤ k. The

brackets (2) are the important ones:

(γr(aj)γr(bi)) = (γjγi)(i+ 1) = γj(1) = j + 1.

The brackets (1) fix j + 1 because r(m) ̸= j for all 1 ≤ m ≤ aj − 1.

In both of these sub-cases, τπ(i+ 1) = j + 1.

For the case q > 1, the relation (σπc
−1
k+1)

q(bi) = bj can be broken up

as follows: by minimality of q, for all 2 ≤ p < q, we have (σπc
−1
k+1)

p(bi) ∈
[k + 1] \Bπ, i.e. there is a map i : [q − 1] → [k + 1] \Bπ such that

• (σπc
−1
k+1)(bi) = ai(1),

• (σπc
−1
k+1)(ai(p−1)) = ai(p) for 2 ≤ p ≤ q − 1, and

• (σπc
−1
k+1)(ai(q−1)) = bj.

82



These translate to

1. c−1
k+1(bi) = bi(1),

2. c−1
k+1(ai(p−1)) = bi(p) for 2 ≤ p ≤ q − 1, and

3. c−1
k+1(ai(q−1)) = aj.

Since ai(1), . . . , ai(q−1) ∈ [k + 1] \ Bπ, we must have bi(1), . . . , bi(q−1) ̸= k + 1,

so the first two bullet points are bi − 1 = bi(1) and ai(p−1) − 1 = bi(p) for

2 ≤ p ≤ q − 1. For Item 3, there is

• the generic case of ai(q−1) > 1 and j > 0, as well as

• the case of ai(q−1) = 1 and j = 0, meaning i(q − 1) = l.

In the generic case, Item 3 says aj = ai(q−1) − 1. Then

τπ = (γr(1) · · · γr(aj−1)) (γr(aj)γr(ai(q−1)))︸ ︷︷ ︸
(q)

(γr(ai(q−1)+1) · · · γr(bi(q−1)−1))

(γr(bi(q−1))γr(ai(q−2)))︸ ︷︷ ︸
(q−1)

· · · (γr(bi(2))γr(ai(1)))︸ ︷︷ ︸
(2)

(γr(ai(1)+1) · · · γr(bi(1)−1)) (γr(bi(1))γr(bi))︸ ︷︷ ︸
(1)

(γr(bi+1) · · · γr(k))

and the only factors which affect i+1 are the ones in the numbered brackets.

Specifically, (1) sends i + 1 to i(1) + 1, (2) sends i(1) + 1 to i(2) + 1, and

so on, until (q) sends i(q − 1) + 1 to j + 1. In the case of ai(q−1) = 1 and

j = 0, Item 3 is vacuous, saying nothing but c−1
k+1(1) = k + 1. This can be

handled similarly to the generic case, by following i+1 through the product

of star-transpositions which defines τπ.

Finally, let us explain why our initial assumption of i ̸= 0 is sufficient to

prove the full claim of the lemma. Since (σπc
−1
k+1)

∣∣
Bπ

is a permutation of Bπ,

we can write

b0 7→ bj0 , b1 7→ bj1 , . . . , bl 7→ bjl .
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In case i = 0, the lemma is claiming that τπ(1) = j0 + 1. Since we already

know

τπ(1 + 1) = j1 + 1, τπ(2 + 1) = j2 + 1, . . . , τπ(l + 1) = jl + 1,

the only remaining value for τπ(0+1) is j0+1. So we have proved the lemma

in all cases.

Proof of Theorem 3.22. Since ck+1σπ = (σπc
−1
k+1)

−1, the sets Ri ∩ Bπ, for

1 ≤ i ≤ p, are the orbits of the permutation (σπc
−1
k+1)

∣∣
Bπ

of Bπ. Define

f : Bπ → [l + 1] by f(bi) = i+ 1 for 0 ≤ i ≤ l. Then by Lemma 3.24,

f ◦ (σπc
−1
k+1)

∣∣
Bπ

= τπ ◦ f

so the orbits of τπ are f(Ri ∩Bπ) for 1 ≤ i ≤ p, which proves the first claim.

For the second claim, it suffices to show that every orbit of ck+1σπ in-

tersects Bπ. In fact, we claim that for every orbit R of ck+1σπ, we have

(ck+1σπ)
−1(min(R)) ∈ Bπ. The case min(R) = 1 is easy:

(ck+1σπ)
−1(1) = σπ(k + 1) = k + 1 = b0 ∈ Bπ.

Now suppose that min(R) > 1. Observe that min(R) − 1 ̸= max(Vi) for all

1 ≤ i ≤ l: otherwise, if min(R)− 1 = max(Vi) for some 1 ≤ i ≤ l, then

(ck+1σπ)
−1(min(R)) = σπc

−1
k+1(min(R))

= σπ(min(R)− 1)

= σπ(max(Vi))

= min(Vi) ≤ max(Vi)

= min(R)− 1 < min(R)

but (ck+1σπ)
−1 ∈ R, which is a contradiction. This forces min(R) − 1 =

min(Vi) for some 1 ≤ i ≤ l, so

(ck+1σπ)
−1(min(R)) = σπc

−1
k+1(min(Vi) + 1) = σπ(min(Vi)) = max(Vi) ∈ Bπ

hence the claim.
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3.3.2 Coloured Wick formula

Centering

As alluded to in the beginning of the present section, the moments of our

central limit law come down to the values χ(τπ):

Proposition 3.25. For even k, the moments of µα are∫
R
tk dµα(t) =

∑
π∈P≤2(k)

(−1)m1(π)/2(m1(π)− 1)!!χ(τπ)

Proof. By Corollary 3.17, the even moments of µα are∑
π∈P2(k)

τ((γi(1) − A0) · · · (γi(k) − A0))

where i : [k] → N is chosen for each π so that π = ker(i). For each fixed π,

by Lemma 3.16, we can write

τ((γi(1) − A0) · · · (γi(k) − A0)) =
∑
S⊆[k]

(−1)|S|τ(γj(1) · · · γj(k))

where j is chosen so that ker(j) = π ∧ πS. The above can be written as

∑
ρ∈P≤2(k)

ρ≤π

 ∑
S⊆[k]

π∧πS=ρ

(−1)|S|

 τ(γj(1) · · · γj(k)) =
∑

ρ∈P≤2(k)
ρ≤π

 ∑
S⊆[k]

π∧πS=ρ

(−1)|S|

χ(τρ)

where, again, j is chosen so that ker(j) = ρ = π∧πS. Then the even moments

in question are

∑
π∈P2(k)

∑
ρ∈P≤2(k)

ρ≤π

 ∑
S⊆[k]

π∧πS=ρ

(−1)|S|

χ(τρ) =
∑

ρ∈P≤2(k)

∑
π∈P2(k)
ρ≤π

 ∑
S⊆[k]

π∧πS=ρ

(−1)|S|

χ(τρ).

Now, all that remains is to count the portion in brackets: it suffices to

show that ∑
S⊆[k]

π∧πS=ρ

(−1)|S| = (−1)m1(π)/2
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for π ∈ P2(k) and ρ ∈ P≤2(k) with ρ ≤ π. To this end, write V1, . . . , Vp
for the blocks of π which also appear in ρ, and write W1, . . . ,Wq for the

ones which are split into singletons. Then, for S ⊆ [k], the condition that

π ∧ πS = ρ is equivalent to S ∩ Vi = ∅ for 1 ≤ i ≤ p and S ∩Wj ̸= ∅ for

1 ≤ j ≤ q. So a choice of S amounts to the following:

• a choice of 0 ≤ r ≤ q and r elements of {W1, . . . ,Wq}, say the ones

from which only one element will be chosen to be a member of S, and

• a choice of one element from each of the above.

Thus ∑
S⊆[k]

π∨πS=ρ

(−1)|S| =

q∑
r=0

(
q

r

)
2r(−1)r+2(q−r) =

q∑
r=0

(
q

r

)
2r(−1)r

= (1− 2)q = (−1)q = (−1)m1(π)/2

and we are done.

Character values

Now, the goal is to understand χ(τπ) for π ∈ P≤2(k). For this, we use

Theorem 3.22.

Proposition 3.26. We have

χ(τπ) =
∑

i:[k]→[d]
constant on orbits

of ckσπ

αi(1)(αi(b1) · · ·αi(bl))

for π ∈ P≤2(k).

The main part of the argument – the invocation of Theorem 3.22 – is

simpler in a slightly different setup, which is sufficient to deduce Proposi-

tion 3.26:
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Proposition 3.26′. We have

χ(τπ) =
∑

j:[k+1]→[d]
constant on orbits

of ck+1σπ

αj(b0)(αj(b1) · · ·αj(bl))

for π ∈ P≤2(k).

Proof. Let R1, . . . , Rp be the orbits of ck+1σπ in [k + 1], so by Theorem 3.22

the orbits of τπ in [l + 1] can be written as Q1, . . . , Qp with |Qi| = |Ri ∩Bπ|
for 1 ≤ i ≤ p. Then

χ(τπ) =

(∑
j≥1

α
|Q1|
j

)
· · ·

(∑
j≥1

α
|Qp|
j

)

=

(∑
j≥1

α
|R1∩Bπ |
j

)
· · ·

(∑
j≥1

α
|Rp∩Bπ |
j

)
=

∑
j:[p]→[d]

α
|R1∩Bπ |
j(1) · · ·α|Rp∩Bπ |

j(p)

=
∑

j:[k+1]→[d]
constant on orbits

of ck+1σπ

αj(b0)(αi(b1) · · ·αi(bl))

and we are done.

Proof of Proposition 3.26. It suffices to show that the sets

J := {j : [k + 1] → [d] : constant on orbits of ck+1σπ}

and

I := {i : [k] → [d] : constant on orbits of ckσπ}

are in bijection, in such a way that

αi(1)(αi(b1) · · ·αi(bl)) = αj(b0)(αj(b1) · · ·αj(bl))

when i and j are paired. For j ∈ J , define rj : [k] → [d] by rj = j|[k] for
j ∈ J .

To see that rj ∈ I, take r ∈ [k], so there are some cases.
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1. If r = ai for some 1 ≤ i ≤ p, then

rj((ckσπ)(r)) = j(ck(bi))

and there are subcases:

(a) if bi = k, then j(ck(bi)) = j(1)

(b) if bi < k, then

j(ck(bi)) = j(bi + 1) = j(ck+1(bi)) = j(ck+1σπ(ai)) = j(r).

In either subcase, we have rj((ckσπ)(r)) = rj(r).

2. If r = bi for some 1 ≤ i ≤ p, then

rj((ckσπ)(r)) = j(ck(ai)) = j(ai+1) = j(ck+1(ai)) = j((ck+1σπ)(bi)) = j(r)

since ai < bi ≤ k < k + 1. So in this case, we also have rj((ckσπ)(r)) =

rj(r).

In all cases, we have rj ∈ I.
To see that j 7→ rj is injective, suppose that rj = rj′ for some j, j′ ∈ J .

Then of course j(r) = j′(r) for all r ∈ [k]. For r = k + 1, let V be the block

of π which contains k, so V = {ai, k} for some 1 ≤ i ≤ p, and we have

j(k + 1) = j((ck+1σπ)(ai)) = j(ai)

and similarly j′(k + 1) = j′(ai). Since ai ≤ k, j(ai) = j′(ai), and then

j(k + 1) = j′(k + 1).

To show that j 7→ rj is surjective, take i ∈ I and define j : [k + 1] → [d]

by

j(r) =

{
i(r) if r ≤ k

i(1) if r = k + 1

for r ∈ [k + 1]. To see that j ∈ J , i.e. j(ck+1σπ(r)) = j(r) for all r ∈ [k + 1],

there are again some cases.

• If r = k + 1, then

j(ck+1σπ(r)) = j(1) = i(1) = j(k + 1).
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• If r = ai for some 1 ≤ i ≤ p, then

j(ck+1σπ(r)) = j(ck+1(bi)) = j(bi + 1)

and there are sub-cases:

– if bi + 1 ≤ k, then ai ≤ bi ≤ k − 1 and

j(bi + 1) = i(bi + 1) = i(ckσπ(r)) = i(r) = j(r);

– if bi + 1 = k + 1, then bi = k and

j(bi + 1) = i(1) = i(ck(bi)) = i(ckσπ(r)) = i(r) = j(r).

In either case, j(ck+1σπ(r)) = j(r).

• If r = bi for some 1 ≤ i ≤ p, then

j(ck+1σπ(r)) = j(ck+1(ai)) = j(ai + 1)

and again there are sub-cases:

– if ai + 1 ≤ k, then ai ≤ k − 1 and

j(ai + 1) = i(ai + 1) = i(ckσπ(r)) = i(r) = j(r);

– if ai + 1 = k + 1, then ai = k and

j(ai + 1) = i(1) = i(ck(ai)) = i(ckσπ(r)) = i(r) = j(r).

In either case, again, j(ck+1σπ(r)) = j(r).

Finally, after all these cases, we can see that j is constant on the orbits of

ck+1σπ, i.e. j ∈ J . Of course rj = j|[k] = i, so j 7→ rj is surjective.

Corollary 3.27. If k is even, then the k-th moment of µα is

∑
i:[k]→[d]

 ∑
π∈P≤2(k)
i◦ck=i◦σπ

(−1)m1(π)/2(m1(π)− 1)!!αi(1)

∏
V ∈π

αi(max(V ))


Proof. This is simply the product of using Proposition 3.26 in the centering

formula from Proposition 3.25.
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Coloured partitions

Notation 3.28. Write P ◦•(k) for the set of partitions of [k] with each block

coloured white or black, and make similar notation for subsets of P (k), such

as P ◦•
2 (k). For π ∈ P ◦•(k), write π◦ for the set of white blocks and π• for

the set of black blocks. For π ∈ P ◦•
2 (k), write

σ◦
π :=

∏
(a,b)∈π◦

(a, b) ∈ Sk.

Proposition 3.29. For k ≥ 1, the k-th moment of µα is

∑
i:[k]→[d]

αi(1)

 ∑
π∈P ◦•

2 (k)
i◦ck=i◦σ◦

π

∏
(p,q)∈π◦

αi(q)

∏
(p,q)∈π•

(−αi(p)αi(q))

 .

This is a simple restatement of Corollary 3.27, due to the relation between

P≤2(k) and P
◦•
2 (k):

Lemma 3.30. If k is even, then there is a surjection

P ◦•
2 (k) ↠ P≤2(k)

such that the preimage of each π ∈ P≤2(k) has cardinality (m1(π)− 1)!!.

Proof. For π ∈ P ◦•
2 , define π′ by replacing each black pair (p, q) ∈ π• with

singleton blocks {p} and {q}. This is surjective because for ρ ∈ P≤2(k), the

number of singleton blocks is k−2m2(ρ), which is even. Then one can colour

the pairings white and pick a pairing of the remaining singletons, colouring

the blocks of this pairing black. In this procedure, there are |P2(m1(ρ))|
choices which lead to different elements of P ◦•

2 (k), so the preimage of ρ has

cardinality |P2(m1(ρ))| = (m1(ρ)− 1)!!.

Proof of Proposition 3.29. If k is odd, then P ◦•
2 (k) is empty, so the sum is

empty and the claim is true since the odd moments in Corollary 3.17 are

0. If k is even, then the claim follows immediately from Lemma 3.30 and

Corollary 3.27.
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3.4 CCR deformation of the traceless GUE

Definition 3.31. Let (A, φ) be a ∗-probability space and let (ω(1,∗), ω(∗,1))

be a pair of parameters in (0,∞). An element a ∈ A is centered complex

CCR-gaussian with parameters (ω(1,∗), ω(∗,1)) if

1. a∗a− aa∗ = (ω(∗,1) − ω(1,∗)) · 1, and

2. we have

φ(ap(a∗)q) =

{
p!ωp

(1,∗) if p = q

0 otherwise

for p, q ≥ 0.

Definition 3.32. Let (A, φ) be a ∗-probability space and suppose that there

are some commuting-independent unital ∗-subalgebras A0 ≤ A and Ai,j ≤ A
for 1 ≤ i < j ≤ d, with A0 commutative. For α1, . . . , αd > 0 with

∑d
i=1 αi =

1, a traceless CCR-GUE matrix with parameters (α1, . . . , αd) is a matrix

A = (aij)1≤i,j≤d ∈Md(A) such that

1. a11, . . . , add ∈ A0 are self-adjoint and form a centered gaussian family

with covariance matrix
α1 − α2

1 −αiαj
. . .

−αiαj αd − α2
d

 ,

and

2. for 1 ≤ i < j ≤ d, aij ∈ Ai,j is a centered complex CCR-gaussian

element with parameters (αj, αi), and aji = a∗ij.

The expectation functional φα on Md(A) is defined by

φα(X) =
d∑

i=1

αiφ(xii)

for X = (xij)i,j ∈Md(A).
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The main result of this chapter is the following:

Theorem 3.33. For k ≥ 1, we have∫
R
tk dµα(t) = φα(A

k) (3.2)

where A is a traceless CCR-GUE matrix with parameters (α1, . . . , αd).

Let us briefly outline the proof: a lot of the work has already been done

in Section 3.3, and we have a combinatorial formula for the left-hand side

of Eq. (3.2) in Proposition 3.29. On the other hand, we must work out the

combinatorics on the random matrix side; in Theorem 3.43 we will establish

a Wick formula for CCR-gaussian elements, and use it in Proposition 3.45

to compute the mixed moments of entries of a CCR-GUE matrix. Then,

the proof of Theorem 3.33 will amount to an easy computation of expected

traces, and comparison with Proposition 3.29.

3.4.1 Construction of CCR-gaussian elements

Before studying CCR-GUE matrices, we should take a moment to explain

why they exist. In order to concretely build a traceless CCR-GUE matrix,

it suffices to find a concrete construction of a single CCR-gaussian element:

Remark 3.34. Suppose that we have the following ∗-probability spaces and

elements therein:

1. (Ai,j, φi,j), with centered complex CCR-gaussian elements aij ∈ Ai,j

with parameters (αj, αi), for 1 ≤ i < j ≤ d;

2. (A0, φ0), with A0 commutative, and with a centered self-adjoint gaus-

sian family {a11, . . . , add} with covariance matrix
α1 − α2

1 −αiαj
. . .

−αiαj αd − α2
d

 .
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Let

A := A0 ⊗
⊗

1≤i<j≤d

Ai,j and φ := φ0 ⊗
⊗

1≤i<j≤d

φi,j,

write aji := a∗ij for 1 ≤ i < j ≤ d, and A := (aij)i,j ∈ Md(A). Then A is a

traceless CCR-GUE matrix.

Of course, of the items mentioned above, (1) is the more interesting one;

for (2), we just need to verify that the covariance matrix is positive semidef-

inite.

Proposition 3.35. For 1 ≥ α1 ≥ . . . ≥ αd > 0 with
∑d

i=1 αi = 1, the matrix

C :=


α1 − α2

1 −αiαj
. . .

−αiαj αd − α2
d


is positive semidefinite. Consequently, there is a centered real gaussian family

with this covariance matrix.

Proof. By Sylvester’s criterion (see e.g. [25, Theorem 7.2.5]) it suffices to

show det(C) ≥ 0 and det(C([k], [k])) > 0 for all 1 ≤ k ≤ d − 1. From e.g.

[25, Equation 0.8.5.11], for a vector v and an invertible matrix D, we have

det(D − vvT ) = det(D)− vTadj(D)v = det(D)(1− vTD−1v).

In the case v = (α1, . . . , αk) and D = diag(α1, . . . , αk), the right-hand side is

α1 · · ·αk(1− (α1 + · · ·+ αk))

which is non-negative for k = d and positive for k < d.

As for (1), let us first review a well-known construction: the symmetric

Fock space and its creation and annihilation operators. We will mostly follow

the paper [8], setting q = 1.

Notation 3.36. For a Hilbert space H, write

F := F(H) = CΩ⊕
⊕
n≥1

H⊗n
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for the full Fock space and write

F0 := span({Ω} ∪ {ξ1 ⊗ · · · ⊗ ξn : ξ1, . . . , ξn ∈ H,n ≥ 1})

for the dense subspace of algebraic tensors.

Notation 3.37. For ξ ∈ H, define linear operators c∗(ξ) and c(ξ) on F0,

called creation and annihilation operators respectively, by

c∗(ξ)Ω = ξ and c∗(ξ)(ξ1 ⊗ · · · ⊗ ξn) = ξ ⊗ ξ1 ⊗ · · · ⊗ ξn,

and

c(ξ)Ω = 0 and c(ξ)(ξ1⊗· · ·⊗ ξn) =
n∑

k=1

⟨ξk, ξ⟩ξ1⊗· · ·⊗ ξk−1⊗ ξk+1⊗· · ·⊗ ξn,

for ξ1, . . . , ξn ∈ H.

Proposition 3.38. We have

c(ξ)c∗(η)− c∗(η)c(ξ) = ⟨η, ξ⟩ · 1

for ξ, η ∈ H.

Proof. Fix ξ, η ∈ H. For ξ1, . . . , ξn ∈ H, we have

c(ξ)c∗(η)(ξ1 ⊗ · · · ⊗ ξn) = c(ξ)(η ⊗ ξ1 ⊗ · · · ⊗ ξn)

= ⟨η, ξ⟩ξ1 ⊗ · · · ⊗ ξn

+
n∑

k=1

⟨ξk, ξ⟩η ⊗ ξ1 ⊗ · · · ⊗ ξk−1 ⊗ ξk+1 ⊗ · · · ⊗ ξn

= ⟨η, ξ⟩ξ1 ⊗ · · · ⊗ ξn

η ⊗

(
n∑

k=1

⟨ξk, ξ⟩ξ1 ⊗ · · · ⊗ ξk−1 ⊗ ξk+1 ⊗ · · · ⊗ ξn

)
= ⟨η, ξ⟩ξ1 ⊗ · · · ⊗ ξn + c∗(η)c(ξ)ξ1 ⊗ · · · ⊗ ξn

so

(c(ξ)c∗(η)− c∗(η)c(ξ))(ξ1 ⊗ · · · ⊗ ξn) = ⟨η, ξ⟩ξ1 ⊗ · · · ⊗ ξn

hence the claim.
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Proposition 3.39. There is a unique sesquilinear form ⟨·, ·⟩F on F0 with

⟨ξ1 ⊗ · · · ⊗ ξn, η1 ⊗ · · · ⊗ ηm⟩F

=

{∑n
k=1⟨ξ1, ηk⟩⟨ξ2 ⊗ · · · ⊗ ξn, η1 ⊗ · · · ⊗ ηk−1 ⊗ ηk+1 ⊗ · · · ⊗ ηm⟩F if n = m

0 otherwise

for ξ1, . . . , ξn, η1, . . . , ηm ∈ H, for n,m ≥ 1, and it is symmetric. Moreover,

1. for ξ ∈ H, c∗(ξ) is the adjoint of c(ξ) with respect to ⟨·, ·⟩F ;

2. ⟨·, ·⟩F is positive semidefinite.

Proof. The prescribed values of ⟨·, ·⟩F define a sesquilinear form by recursion

and (conjugate-)linearity. First of all, for ζ ∈ H, we can see that

⟨c∗(ζ)ξ1 ⊗ · · · ⊗ ξn, η1 ⊗ · · · ⊗ ηn+1⟩F = ⟨ζ ⊗ ξ1 ⊗ · · · ⊗ ξn, η1 ⊗ · · · ⊗ ηn+1⟩F

=
n+1∑
k=1

⟨ζ, ηk⟩⟨ξ1 ⊗ · · · ⊗ ξn, η1 ⊗ · · · ⊗ ηk−1 ⊗ ηk+1 ⊗ · · · ⊗ ηn+1⟩F

=

〈
ξ1 ⊗ · · · ⊗ ξn,

n+1∑
k=1

⟨ζ, ηk⟩η1 ⊗ · · · ⊗ ηk−1 ⊗ ηk+1 ⊗ · · · ⊗ ηn+1

〉
F

=

〈
ξ1 ⊗ · · · ⊗ ξn,

n+1∑
k=1

⟨ηk, ζ⟩η1 ⊗ · · · ⊗ ηk−1 ⊗ ηk+1 ⊗ · · · ⊗ ηn+1

〉
F

= ⟨ξ1 ⊗ · · · ⊗ ξn, c(ζ)η1 ⊗ · · · ⊗ ηn+1⟩F

which amounts to (1). To see that ⟨·, ·⟩F is symmetric and positive-semidefinite,

observe that the given definition can be re-written as

⟨ξ1 ⊗ · · · ⊗ ξn, η1 ⊗ · · · ⊗ ηn⟩F =
∑
σ∈Sn

n∏
k=1

⟨ξk, ησ(k)⟩

so in particular, one can re-index the sum and product and use the symmetry

of ⟨·, ·⟩ to recover

⟨η1 ⊗ · · · ⊗ ηn, ξ1 ⊗ · · · ⊗ ξn⟩F .
For positive-semidefiniteness, let {ei(1) ⊗ · · · ⊗ ei(n) : i : [n] → N} be the

canonical orthonormal basis of H⊗n and observe that

⟨η1 ⊗ · · ·⊗ηn, η1 ⊗ · · · ⊗ ηn⟩F =
∑
σ∈Sn

⟨η1 ⊗ · · · ⊗ ηn, ησ(1) ⊗ · · · ⊗ ησ(n)⟩
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=
1

n!

∑
σ,τ∈Sn

⟨ησ(1) ⊗ · · · ⊗ ησ(n), ητ(1) ⊗ · · · ⊗ ητ(n)⟩

=
1

n!

∑
σ,τ∈Sn

〈
ησ(1) ⊗ · · · ⊗ ησ(n),

∑
i:[n]→N

⟨ei(1) ⊗ · · · ⊗ ei(n), ητ(1) ⊗ · · · ⊗ ητ(n)⟩ei(1) ⊗ · · · ⊗ ei(n)

〉

=
1

n!

∑
i:[n]→N

( ∑
σ,τ∈Sn

⟨ησ(1) ⊗ · · · ⊗ ησ(n), ei(1) ⊗ · · · ⊗ ei(n)⟩

⟨ητ(1) ⊗ · · · ⊗ ητ(n), ei(1) ⊗ · · · ⊗ ei(n)⟩

)

=
1

n!

∑
i:[n]→N

∣∣∣∣∣
〈∑

σ∈Sn

ησ(1) ⊗ · · · ⊗ ησ(n), ei(1) ⊗ · · · ⊗ ei(n)

〉∣∣∣∣∣
2

≥ 0

which completes the proof that ⟨·, ·⟩F is a positive-semidefinite symmetric

sesquilinear form on F0.

Notation 3.40. Write F1 for the Hilbert space completion of F0 with respect

to ⟨·, ·⟩F , modulo the kernel of the latter, and let φ be the vector state on

B(F1) corresponding to the vacuum vector Ω, i.e.

φ(T ) = ⟨TΩ,Ω⟩F

for T ∈ B(F1).

Proposition 3.41 (Wick formula). For ξ ∈ H, we have

φ(cϵ1(ξ) · · · cϵk(ξ)) =
∑

π∈P2(k)

∏
(r,s)∈π

φ(cϵr(ξ)cϵs(ξ))

for ϵ1, . . . , ϵk ∈ {1, ∗}, with covariances(
φ(c(ξ)c(ξ)) φ(c(ξ)c∗(ξ))

φ(c∗(ξ)c(ξ)) φ(c∗(ξ)c∗(ξ))

)
=

(
0 ∥ξ∥2
0 0

)
.
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With this construction, we can finally show how to construct a CCR-

gaussian element:

Theorem 3.42. For orthogonal ξ, η ∈ H, c(ξ)+ c∗(η) is CCR-gaussian with

parameters (∥ξ∥2, ∥η∥2).

Proof. Let ξ and η be orthogonal vectors in H, write x := c(ξ), y := c(η),

and a := x+ y∗. Then

a∗a− aa∗ = (x∗ + y)(x+ y∗)− (x+ y∗)(x∗ + y)

= x∗x+ x∗y∗ + yx+ yy∗ − xx∗ − xy − y∗x∗ − y∗y

= (x∗x− xx∗) + (yy∗ − y∗y) + (x∗y∗ − y∗x∗) + (yx− xy)

= −∥ξ∥2 + ∥η∥2 + (x∗y − y∗x∗) + (yx− xy)

and to finish the claimed commutation relation, it suffices to show that x

and y commute. For this, simply observe that for ξ1, . . . , ξn ∈ H, we have

c(ξ)c(η)ξ1 ⊗ · · · ⊗ ξn = c(ξ)
n∑

k=1

⟨ξk, η⟩ξ1 ⊗ · · · ⊗ ξk−1 ⊗ ξk+1 ⊗ · · · ⊗ ξn

=
∑
k ̸=l

⟨ξk, η⟩⟨ξl, ξ⟩
⊗

r∈[n]\{k,l}

ξr

and

c(η)c(ξ)ξ1 ⊗ · · · ⊗ ξn = c(η)
n∑

k=1

⟨ξk, ξ⟩ξ1 ⊗ · · · ⊗ ξk−1 ⊗ ξk+1 ⊗ · · · ⊗ ξn

=
∑
k ̸=l

⟨ξk, ξ⟩⟨ξl, η⟩
⊗

r∈[n]\{k,l}

ξr

which are equal. For the prescribed moments, we have

φ(aa∗) = φ(xx∗) + φ(xy) + φ(y∗x∗) + φ(y∗y)

= φ(c(ξ)c∗(ξ)) + 0 + 0 + 0 = ∥ξ∥2

and

φ(a∗a) = φ(x∗x) + φ(x∗y∗) + φ(yx) + φ(yy∗)
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= 0 + 0 + 0 + φ(yy∗) = ∥η∥2,

since

φ(xy) = ⟨c(ξ)c(η)Ω,Ω⟩F = ⟨c(η)Ω, c∗(ξ)Ω⟩F = ⟨0, ξ⟩F = 0

and then also φ(y∗x∗) = φ((xy)∗) = φ(xy) = 0, and similarly φ(yx) =

φ(x∗y∗) = 0. Then for p, q ≥ 0, we have

φ(ap(a∗)q) = φ((c(ξ) + c∗(η))p(c∗(ξ) + c(η))q)

=

p∑
i=1

q∑
j=1

(
p

i

)(
q

j

)
φ(c(ξ)ic∗(η)p−ic∗(ξ)jc(η)q−j)

=

p∑
i=1

q∑
j=1

(
p

i

)(
q

j

)
φ(c(ξ)ic∗(ξ)jc∗(η)p−ic(η)q−j)

=

p∑
i=1

(
p

i

)
⟨c(ξ)ic∗(ξ)qc∗(η)p−iΩ,Ω⟩F (c(η)Ω = 0)

=

p∑
i=1

(
p

i

)
⟨c(ξ)i ξ ⊗ · · · ⊗ ξ︸ ︷︷ ︸

q

⊗ η ⊗ · · · ⊗ η︸ ︷︷ ︸
p−i

,Ω⟩F

since, again, c(ξ) and c(η) commute.

Notice that

c(ξ) ξ ⊗ · · · ⊗ ξ︸ ︷︷ ︸
q

⊗ η ⊗ · · · ⊗ η︸ ︷︷ ︸
p−i

=

q∑
j=1

⟨ξ, ξ⟩ ξ ⊗ · · · ⊗ ξ︸ ︷︷ ︸
q−1

⊗ η ⊗ · · · ⊗ η︸ ︷︷ ︸
p−i

+

q+p−i∑
j=q+1

⟨η, ξ⟩ ξ ⊗ · · · ⊗ ξ︸ ︷︷ ︸
q

⊗ η ⊗ · · · ⊗ η︸ ︷︷ ︸
p−i−1

=

q∑
j=1

⟨ξ, ξ⟩ ξ ⊗ · · · ⊗ ξ︸ ︷︷ ︸
q−1

⊗ η ⊗ · · · ⊗ η︸ ︷︷ ︸
p−i

since ⟨η, ξ⟩ = 0. Now, if p = q, then

c(ξ)i ξ ⊗ · · · ⊗ ξ︸ ︷︷ ︸
p

⊗ η ⊗ · · · ⊗ η︸ ︷︷ ︸
p−i

=

p∑
j1=1

· · ·
p−i+1∑
ji=1

⟨ξ, ξ⟩i ξ ⊗ · · · ⊗ ξ︸ ︷︷ ︸
p−i

⊗ η ⊗ · · · ⊗ η︸ ︷︷ ︸
p−i
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=
p!

(p− i)!
∥ξ∥2i ξ ⊗ · · · ⊗ ξ︸ ︷︷ ︸

p−i

⊗ η ⊗ · · · ⊗ η︸ ︷︷ ︸
p−i

and

⟨ξ ⊗ · · · ⊗ ξ︸ ︷︷ ︸
p−i

⊗ η ⊗ · · · ⊗ η︸ ︷︷ ︸
p−i

,Ω⟩F =

{
1 if i = p

0 otherwise

so φ(ap(a∗)p) = p!∥ξ∥2p. On the other hand, if p ̸= q, then for

c(ξ)i ξ ⊗ · · · ⊗ ξ︸ ︷︷ ︸
q

⊗ η ⊗ · · · ⊗ η︸ ︷︷ ︸
p−i

(3.3)

there are some cases:

• if p < q, then i < q, so Eq. (3.3) has degree (q− i) + (p− i) > 0 and is

orthogonal to Ω;

• if p > q, then for 1 ≤ i ≤ p, there are two subcases:

– if 1 ≤ i < q, then i < p and

c(ξ)i ξ ⊗ · · · ⊗ ξ︸ ︷︷ ︸
q

⊗ η ⊗ · · · ⊗ η︸ ︷︷ ︸
p−i

has degree (p− i)− (p− q) = q − i > 0 and is orthogonal to Ω;

– if q ≤ i ≤ p, then when we compute

c(ξ)i ξ ⊗ · · · ⊗ ξ︸ ︷︷ ︸
q

⊗ η ⊗ · · · ⊗ η︸ ︷︷ ︸
p−i

,

there will be a factor of ⟨η, ξ⟩ = 0 in each summand.

In any case,

⟨c(ξ)i ξ ⊗ · · · ⊗ ξ︸ ︷︷ ︸
q

⊗ η ⊗ · · · ⊗ η︸ ︷︷ ︸
p−i

Ω,Ω⟩F = 0

so φ(ap(a∗)q) = 0.
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3.4.2 Moments of CCR-gaussian elements

Theorem 3.43 (Wick formula). Let (A, φ) be a ∗-probability space and

let a ∈ A be a centered complex CCR-gaussian element with parameters

(ω(1,∗), ω(∗,1)). Then

φ(aϵ1 · · · aϵk) =
∑

π∈P2(k)

∏
(p,q)∈π

ω(ϵp,ϵq) (3.4)

for ϵ1, . . . , ϵk ∈ {1, ∗}, where for the sake of notation we write ω(1,1) = ω(∗,∗) =

0.

Proof. We will proceed by induction on

inv(ϵ) = |{(p, q) : 1 ≤ p < q ≤ k, ϵ(p) = ∗, ϵ(q) = 1}|.

For the base case inv(ϵ) = 0, we have ϵ = (1, . . . , 1, ∗, . . . , ∗), so

φ(aϵ1 · · · aϵk) = φ(ar(a∗)s)

for some r + s = k. On the right-hand side of Eq. (3.4), the π ∈ P2(k)

whose summands are non-zero are exactly the ones with p ∈ {1, . . . , r} and

q ∈ {r+1, . . . , r+ s} for all (p, q) ∈ π. These summands are ωr
(1,∗), and there

are r! of them, so putting all this together, we have

φ(aϵ1 · · · aϵk) = φ(ar(a∗)s) = r!ωr
(1,∗) =

∑
π∈P (k)

∏
(p,q)∈π

ω(ϵp,ϵq).

Now suppose the claim Eq. (3.4) is true for all ϵ with inv(ϵ) < l, and

take ϵ1, . . . , ϵk ∈ {1, ∗} with inv(ϵ) = l. Pick 1 ≤ j ≤ k − 1 with ϵj = ∗
and ϵj+1 = 1 and define ϵ′ by ϵ′j = 1, ϵ′j+1 = ∗, and ϵ′|[k]\{j,j+1} = ϵ|[k]\{j,j+1}.

Then

aϵ1 · · · aϵk = (aϵ1 · · · aϵj−1)(a∗a)(aϵj+2 · · · aϵk)
= (aϵ1 · · · aϵj−1)(aa∗ + (ω(∗,1) − ω(1,∗)))(a

ϵj+2 · · · aϵk)
= aϵ

′
1 · · · aϵ′k + (ω(∗,1) − ω(1,∗))a

ϵ1 · · · aϵj−1aϵj+2 · · · aϵk

and

φ(aϵ1 · · · aϵk) = φ(aϵ
′
1 · · · aϵ′k) + (ω(∗,1) − ω(1,∗))φ(a

ϵ1 · · · aϵj−1aϵj+2 · · · aϵk).
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Both monomials on the right-hand side have inv < l, so with

ϵ′′ := (ϵ1, . . . , ϵj−1, ϵj+2, . . . , ϵk),

we have

φ(aϵ1 · · · aϵk) =
∑

ρ∈P2(k)

∏
(p,q)∈ρ

ω(ϵ′p,ϵ
′
q)

+ (ω(∗,1) − ω(1,∗))
∑

ρ′∈P2(k−2)

∏
(p,q)∈ρ′

ω(ϵ′′p ,ϵ
′′
q )

and it suffices to observe that∑
π∈P2(k)

∏
(p,q)∈π

ω(ϵp,ϵq) =
∑

ρ∈P2(k)

∏
(p,q)∈ρ

ω(ϵ′p,ϵ
′
q)

+ (ω(∗,1) − ω(1,∗))
∑

ρ′∈P2(k−2)

∏
(p,q)∈ρ′

ω(ϵ′′p ,ϵ
′′
q ).

by the construction of ϵ′ and ϵ′′.

3.4.3 Matrix model

The following notation will be convenient in the proof of the forthcoming

Proposition 3.45:

Notation 3.44. For i, j : [k] → [d], write

P ◦•
2 (i, j) := {π ∈ P ◦•

2 (k) : i(p) = j(q)& i(q) = j(p)∀ (p, q) ∈ π◦

and i(p) = j(p)& i(q) = j(q)∀ (p, q) ∈ π•}.

Proposition 3.45. Let A = (aij)i,j be a d × d traceless CCR-GUE matrix

with parameters (α1, . . . , αd). Then

φ(ai(1)j(1) · · · ai(k)j(k)) =
∑

π∈P ◦•
2 (i,j)

 ∏
(p,q)∈π◦

αi(q)

∏
(p,q)∈π•

(−αi(p)αj(q))


for i, j : [k] → [d].
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Proof. Write

P0 := {p ∈ [k] : i(p) = j(p)} and C0 := φ

(∏
p∈P0

ai(p)j(p)

)
,

and

Pr,s := {p ∈ [k] : {i(p), j(p)} = {r, s}} and Cr,s := φ

 ∏
p∈Pr,s

ai(p)j(p)


for 1 ≤ r < s ≤ d. With this notation, by commuting-independence, we can

write

φ(ai(1)j(1) · · · ai(k)j(k)) = C0

∏
1≤r<s≤d
Pr,s ̸=∅

Cr,s

and apply the various Wick formulas. On the diagonal, we have

C0 = φ

(∏
p∈P0

ai(p)j(p)

)
=

∑
π∈P2(P0)

∏
(p,q)∈π

φ(ai(p)j(p)ai(q)j(q))

=
∑

π∈P2(P0)

∏
(p,q)∈π
i(p)=i(q)

(αi(p) − α2
i(p))

∏
(p,q)∈π
i(p)̸=i(q)

(−αi(p)αi(q))

=
∑

π∈P2(P0)

∏
(p,q)∈π
i(p)=i(q)

(αi(q) − αi(p)αi(q))
∏

(p,q)∈π
i(p)̸=i(q)

(−αi(p)αi(q))

=
∑

π∈P ◦•
2 (P0)

every (p,q)∈π with i(p) ̸=i(q)
is coloured •

∏
(p,q)∈π◦

αi(q)

∏
(p,q)∈π•

(−αi(p)αi(q))

and off the diagonal, we have

Cr,s = φ

 ∏
p∈Pr,s

ai(p)j(p)

 =
∑

π∈P2(Pr,s)

∏
(p,q)∈π

φ(ai(p)j(p)ai(q)j(q))

=
∑

π∈P2(Pr,s)

∏
(p,q)∈π

δj(p)=i(q)δi(p)=j(q)αi(q)
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so

φ(ai(1)j(1) · · · ai(k)j(k))

=


∑

π∈P ◦•
2 (P0)

every (p,q)∈π with i(p)̸=i(q)
is coloured •

∏
(p,q)∈π◦

αi(q)

∏
(p,q)∈π•

(−αi(p)αi(q))

 (3.5)

∏
1≤r<s≤d
Pr,s ̸=∅

 ∑
π∈P2(Pr,s)

∏
(p,q)∈π

δj(p)=i(q)δi(p)=j(q)αi(q)

 . (3.6)

On the right-hand side of the claim, each π ∈ P ◦•
2 (i, j) is forced to have

either p, q ∈ P0, or else p, q ∈ Pr,s for some 1 ≤ r < s ≤ d, and in the latter

case, (p, q) ∈ π◦. (This can be verified by tedious casework.) So we can split

up the sum as ∑
π∈P ◦•

2 (i,j)

∏
(p,q)∈π◦

αi(q)

∏
(p,q)∈π•

(−αi(p)αi(q))

=

 ∑
π∈P (0)(i,j)

∏
(p,q)∈π◦

αi(q)

∏
(p,q)∈π•

(−αi(p)αi(q))

 (3.7)

∏
1≤r<s≤d
Pr,s ̸=∅

 ∑
π∈P (r,s)(i,j)

∏
(p,q)∈π

αi(q)

 (3.8)

where

P (0)(i, j) := {π ∈ P ◦•
2 (P0) : i(p) = j(q)& i(q) = j(p)∀ (p, q) ∈ π◦

and i(p) = j(p)& i(q) = j(q)∀ (p, q) ∈ π•}

and

P (r,s)(i, j) := {π ∈ P2(Pr,s) : i(p) = j(q)& i(q) = j(p)∀ (p, q) ∈ π}.

Clearly (3.8) is identical to (3.6). To show (3.7) is equal to (3.5), it suffices

to show that

{π ∈ P ◦•
2 (P0) : if (p, q) ∈ π and i(p) ̸= i(q) then (p, q) ∈ π•} = P (0)(i, j).
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To this end, take π ∈ P (0)(i, j), and take (p, q) ∈ π with i(p) ̸= i(q). If

(p, q) ∈ π◦, then i(p) = j(q) and i(q) = j(p), but since p, q ∈ P0, we must also

have

i(p) = j(q) = i(q) = j(p)

which is a contradiction. So we must have (p, q) ∈ π•. Conversely, take

π ∈ P ◦•
2 (P0) and suppose that (p, q) ∈ π• whenever (p, q) ∈ π and i(p) ̸= i(q).

Then

• for (p, q) ∈ π◦, we must have i(p) = i(q), so

i(p) = i(q) = j(q) and i(q) = i(p) = j(p),

and

• for (p, q) ∈ π•, we have

i(p) = j(p) and i(q) = j(q)

since p, q ∈ P0,

so π ∈ P (0)(i, j). This finally proves the claim of the proposition.

It may be clarifying to see a concrete example of how (3.5) and (3.7) are

related in the proof of Proposition 3.45:

Example 3.46. Let k = 10 and consider

φ(a11a12a11a33a21a31a12a13a22a21)

so

i = (1, 1, 1, 3, 2, 3, 1, 1, 2, 2) and j = (1, 2, 1, 3, 1, 1, 2, 3, 2, 1).

Then P0 = {1, 3, 4, 9}, P1,2 = {2, 5, 7, 10}, P1,3 = {6, 8}, and Pr,s = ∅ for the

remaining r < s. By commuting independence, we have

φ(a11a12a11a33a21a31a12a13a22a21) = φ(C0)φ(C1,2)φ(C1,3)

where

C0 = a11a11a33a22, C1,2 = a12a21a12a21, and C1,3 = a31a13.
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On the diagonal, we have

φ(C0) = c1,1c3,2 + c1,3c1,2 + c1,2c1,3.

a11 a11 a33 a22 a11 a11 a33 a22 a11 a11 a33 a22

where (ci,j)i,j is the covariance matrix indicated in Definition 3.32, i.e. the

above is equal to

(α1 − α2
1)(−α3α2) + (−α1α3)(−α1α2) + (−α1α2)(−α1α3) = (3α2

1 − α1)α2α3.

Off the diagonal, we have

φ(C1,2) = φ(a12a
∗
12)φ(a12a

∗
12) + φ(a12a12)φ(a

∗
12a

∗
12) + φ(a12a

∗
12)φ(a

∗
12a12)

a12 a∗12 a12 a
∗
12 a12 a∗12 a12 a

∗
12 a12 a∗12 a12 a

∗
12

= α2α2 + 0 · 0 + α2α1

= α2
2 + α1α2

and
φ(C1,3) = φ(a∗13a13) = α1.

a∗13 a13

Then (3.5) and (3.6) are equal to

(3α2
1 − α1)α2α3 and (α2

2 + α1α2)α1

respectively.

For (3.7), we need to work out P (0)(i, j). For the three choices of π ∈
P ◦•
2 (P0), the only one which offers a choice of colour is {{1, 3}, {4, 9}}.

Namely, the block {1, 3} can have either colour. Any other block must be

black. So

P (0)(i, j) = {{{1, 3}◦, {4, 9}•}, {{1, 3}•, {4, 9}•},
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{{1, 4}•, {3, 9}•}, {{1, 9}•, {3, 4}•}}

and (3.7) is equal to

αi(3)(−αi(4)i(9)) + (−αi(1)αi(3))(−αi(4)αi(9))

+ (−αi(1)αi(4))(−αi(3)αi(9)) + (−αi(1)αi(9))(−αi(3)αi(4))

= −α1α3α2 + α1α1α3α2 + α1α3α1α2 + α1α2α1α3

= (3α2
1 − α1)α2α3

which is equal to (3.5). This was the more tricky part of the proof, so we

will omit the off-diagonal in this example.

With Proposition 3.45 in hand, along with Proposition 3.29, it is easy to

prove the main theorem of this section:

Proof of Theorem 3.33. By Proposition 3.45, we have

φα(A
k) =

∑
i:[k]→[d]

αi(1)φ(ai(1)i(2) · · · ai(k)i(1))

=
∑

i:[k]→[d]

αi(1)

∑
π∈P ◦•

2 (k)

∏
(p,q)∈π◦

δi(p)=i(q+1)δi(q)=i(p+1)αi(q)∏
(p,q)∈π•

δi(p)=i(p+1)δi(q)=i(q+1)(−αi(p)αi(q))

=
∑

i:[k]→[d]

αi(1)

∑
π∈P ◦•

2 (k)

∏
(p,q)∈π◦

δi(σ◦
π(p))=i(ck(q+1))δi(σ◦

π(p))=i(ck(p))αi(q)∏
(p,q)∈π•

δi(σ◦
π(p))=i(ck(p))δi(σ◦

π(q))=i(ck(q))(−αi(p)αi(q))

=
∑

i:[k]→[d]

αi(1)

∑
π∈P ◦•

2 (k)
i◦σ◦

π=i◦ck

∏
(p,q)∈π◦

αi(q)

∏
(p,q)∈π•

(−αi(p)αi(q))

which is exactly the expression from Proposition 3.29.
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Chapter 4

Future work

4.1 Finite free commutator

In free probability, to study the commutator, it is most convenient to work

with i(ab− ba) to ensure self-adjointness. In the finite setting, Theorem 2.27

handles this variation as follows:

EUcx(i(AUBU
∗ − UBU∗A)) = (p(x)⊟d p(x))⊠d (q(x)⊟d q(x))⊠ z̃d(x),

where

z̃d(x) :=

⌊d/2⌋∑
k=0

xd−2k(−1)k
(
d

2k

)
(d)k

k!

(2k)!

d+ 1− k

d+ 1
.

This is because

e2k(i(AUBU
∗ − UBU∗A)) = i2ke2k(AUBU

∗ − UBU∗A)

= (−1)ke2k(AUBU
∗ − UBU∗A).

In terms of the wider context of finite free probability, the main question

facilitated by this re-phrasing of Theorem 2.27 is about real-rootedness:

Question 4.1. Suppose that p(x) and q(x) are real-rooted (monic, degree-d)

polynomials. Is

(p(x)⊟d p(x))⊠d (q(x)⊟d q(x))⊠d z̃d(x)

real-rooted?
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With the assumptions above, p(x)⊟dp(x) and q(x)⊟dq(x) are real-rooted

and even, but the known results related to the preservation of real-rootedness

by ⊠d do not apply, since they require positivity. Indeed, with a computer

one will quickly find that for even real-rooted r(x) and s(x), r(x)⊠d s(x) is

not necessarily real-rooted. Nonetheless, with the same computer, one will

find that

r(x)⊠d s(x)⊠d z̃d(x)

does seem to be real-rooted. Proving this would answer Question 4.1, and

one way to approach such a proof would be to find an applicable variation

of the results on roots of polynomials which are cited in [29].

Another approach might be to write

r(x) = R(x2), s(x) = S(x2), and z̃d(x) = Z(x2)

for polynomials R(y), S(y), and Z(y) with degree d/2, to get rid of the

negative roots, and apply the standard results to ⊠d/2. The obstruction in

this latter approach is in recovering a conclusion about the roots of r(x)⊠d

s(x)⊠d z̃d(x) from information about the roots of R(y)⊠d/2 S(y)⊠d/2 Z(y).

Simply substituting x2 back in does not recover the right polynomial, due to

the dependence of the convolution operations on the degrees.

Another important part of an answer to Question 4.1 would be a better

understanding of the nature of zd(x) and z̃d(x).

Question 4.2. What does z̃d(x) represent? Is there some polynomial r(x)

such that z̃d(x) = r(x)⊟d r(x)?

Based on the situation in free probability, one might think to look at

the finite version of the free Poisson distribution, which is essentially an

associated Laguerre polynomial with some normalizations [28, 2]:

Pλ,d(x) =
d∑

k=0

xd−k(−1)k
(
d

k

)
1

dk
(dλ)k.

With λ = 1 + 1
d
, this is not too far off: the coefficient of xd−2k in Pλ,d(x)⊟d

Pλ,d(x) is

(−1)k
1

d2k

(
d

2k

)
(d)k

(2k)!

k!

d+ 1

d+ 1− k
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which primarily differs from z̃d(x) by some reciprocals. It is not clear, how-

ever, what modifications might rectify this discrepancy.

4.2 Combinatorics of finite free probability

4.2.1 Review of finite free cumulants

Since [29] first appeared in 2015, the theory of finite free probability has

grown somewhat in parallel with the development of free probability in the

1990s. In particular, [2] defined a sequence (κ
(d)
n )n≥1 of finite free cumulants

which

• linearize ⊞d, in the sense that κ
(d)
n (A⊞d B) = κ

(d)
n (A) + κ

(d)
n (B);

• are related to the moments mn := 1
d
pn by

mn =
(−1)n−1

dn+1(n− 1)!

∑
α,β∈Sn

⟨α,β⟩≤Sn transitive

(−d)#(α)+#(β)κ(d)α

• converge to free cumulants as d→ ∞.

In free probability the moment-cumulant formula

mn =
∑

π∈NC(n)

κπ

is generalized in a certain sense by the Nica-Speicher formula [33]

κn(a⊠ b) =
∑

π∈NC(n)

κπ(a)κK(π)(b) (4.1)

where K(·) is the so-called Kreweras complement, a special bijection on the

lattice NC(n) of noncrossing partitions. [1] found the finite version of this

formula:

κ(d)n (A⊠d B) =
(−1)n−1

dn+1(n− 1)!

∑
α,β∈Sn

⟨α,β⟩≤Sn transitive

(−d)#(α)+#(β)κ(d)α (A)κ
(d)
β (B).
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Moreover, they found a very nice way of organizing the complicated sum

above, according to the order of 1
d
: for k ≥ 0, the coefficient of 1

dk
is

(−1)k
⌊k/2⌋∑
g=0

∑
ζ⊢n

ℓ(ζ)=k+1−2g

Nζ

∑
α∈S(g)

NC(γζ)

uαvα−1γζ (4.2)

where

• γζ is a choice of permutation with cycle type ζ,

• Nζ is the number of permutations with cycle type ζ, and

• for γ ∈ Sn and g ≥ 0,

S
(g)
NC(γ) := {α ∈ Sn : ⟨α, γ⟩ ≤ Sn transitive, genus wrt γ is g}.

The first-order asymptotics straightforwardly recover the Nica-Speicher for-

mula via the identification (see e.g. [36, Lecture 23]) of NC(n) as a geodesic

in Sn.

4.2.2 Cumulants of commutators

A great demonstration of the power of free cumulants was the description [35]

of the commutator of free variables. The main point is that for interesting

combinatorial reasons, to understand i(ab− ba) for free a, b, one can assume

without loss of generality that a and b are even.

Theorem 4.3 ([35]). Let a and b be self-adjoint, even, and free. Write

αn = κ2n(a) and βn := κ2n(b). Then i(ab− ba) is even and

κ2n(i(ab− ba)) = 2
∑

π,σ∈NC(n)
σ≤K(π)

απβσ. (4.3)

With the observation that it suffices to work with the joint distribution of

ab and ba, it turns out this falls under the general umbrella of R-diagonality.
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Specifically, if a and b are even and free, then ab is R-diagonal, so one can

compute

κ2n(i(ab− ba)) = κ2n(ab, ba, . . . , ab, ba) + κ2n(ba, ab, . . . , ba, ab)

= 2κ2n(ab, ba, . . . , ab, ba)

= 2
∑

π∈NC(4n)
π∨⊓···⊓=14n

κπ(a, b, b, a, . . . , a, b, b, a)

= 2
∑

π,σ∈NC(2n)
σ≤K(π)

απβσ

using some basic properties of multivariate free cumulants (namely, a certain

formula for how they behave with products as arguments).

Question 4.4. The role of

{(π,K(π)) : π ∈ NC(n)}

in Eq. (4.1) is played in Eq. (4.2) by

{(α, α−1γ) : α ∈ S
(g)
NC(γ)}.

Is there a finite version of Eq. (4.3)? If so, what combinatorial indices play

the role of

{(π, σ) : π ∈ NC(n), σ ≤ K(π)}?

4.3 Multivariate finite free probability

The relation of free commutators to R-diagonality and multivariate free cu-

mulants is hard to interpret in a finite context, and points to a general

program of development in finite free probability:

Question 4.5. The description of the free commutator uses the notion of

R-diagonality and multivariate free cumulants, neither of which exist yet in

finite free probability. How can one remedy this?
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The recent PhD thesis [32] of B. Mirabelli has started to develop a mul-

tivariate theory of finite free probability, as alluded to in Section 2.3. With

these ideas in hand, one can think about where R-diagonality came from:

it was conceived in [34] as a way of unifying Haar unitaries and circular el-

ements. Naturally, one would guess the “finite” versions of those elements

should respectively be

EUcx,y1,y2(U,U
∗) and ECcx,y1,y2(C,C

∗),

where U is a random d× d unitary matrix and C is a d× d Ginibre matrix,

and try to read off what they have in common. The latter was studied in

[32], and the former can be naturally approached using the techniques of

this thesis. These observations are a work in progress, with the forthcoming

Question 4.6 pending. On the other hand, one could try to come up with

multivariate finite free cumulants, perhaps using the above examples to get

a sense of how the new variables y1, y2 influence the hypothetical moment-

cumulant relation.

The example of R-diagonality which is really relevant to the commutator

is the product of even elements. Section 2.3 shows that for self-adjoint A and

B, the computation of

EUcx,y1,y2(AUBU
∗, (AUBU∗)∗)

comes down to the computation of

Imm(k−p,p)(y1xi + y2xj)i,j

for commuting formal variables x1, . . . , xk and 0 ≤ p ≤ k/2.

Question 4.6. What is

Imm(k−p,p)(y1xi + y2xj)i,j

as a symmetric function in (x1, . . . , xd)? The answer should be given in terms

of the elementary basis.

In the case of the commutator, there is a key simplification which allows

one to evade the substance of this question: the immanants Imm(k−p,p)(xi −
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xj)i,j do not depend on p except through a sign, so it suffices to simply

compute the permanent. It seems very plausible that the Goulden-Jackson

formula is the way to go here, and computer experiments show that in small

but substantial cases, these immanants are of the form∑
i+j=k

(
?
)
ei(x)ej(x)

where the unknown coefficients are some integers. To pin down what exactly

they are, some new combinatorial insight is needed.

Question 4.7. Is the expression for

EUcx,y1,y2(AUBU
∗, UBU∗A)

in Section 2.3 made any simpler by assuming cx(A) and cx(B) are even poly-

nomials?

4.4 Thoma characters

In Chapter 3, we began by working with any Thoma parameter ω = (α, β) ∈
Ω, before reducing our scope at a convenient point by assuming α is finite

and β = 0. Before the cutoff, we saw that the law of large numbers and

central limit theorem apply just as well to any Thoma parameter.

Beyond the case of α = (α1, . . . , αd) and β = 0 considered in this thesis,

the other simplest case is α = 0 and β = (β1, . . . , βd). This does not seem

to add much complication, except for some signs that would have to be kept

track of.

Question 4.8. How should the central limit law in Corollary 3.18 be inter-

preted for more general Thoma parameters ω = (α, β) ∈ Ω? Specifically,

what if α, β are only assumed to be finite?

Allowing α ̸= 0 and β ̸= 0 adds an immediate new layer of complication

in Section 3.3.2 since expanding the product∏
c∈Cyc(σ)

|c|>1

(∑
i≥1

α
|c|
i + (−1)|c|−1

∑
j≥1

β
|c|
j

)

113



will involve a sum over subsets of Cyc(σ).

Remark 4.9. The motivation for the specific scope of Question 4.8 is that

the Young diagrams have an important natural embedding into Ω by their

so-called Frobenius coordinates. The image of any Young diagram in Ω has

finite α and β, but only in the most trivial cases can one of them be 0.

4.5 Connection with limit shapes

In the traceless CCR-GUE model from Chapter 3, the gaussian family of

diagonal entries is centered and real with the covariance matrix
α1 − α2

1 −αiαj
. . .

−αiαj αd − α2
d

 .

This covariance structure has appeared in the literature [10, 30] in an adjacent

but distinct context. Besides the extremal characters of S∞, the Thoma

parameters label certain probability distributions on Young diagrams, and

one is interested in the asymptotics of various statistics of random Young

diagrams sampled accordingly. If ri(λ) and cj(λ) are the lengths of the i-th

row and j-th column of λ, respectively, then the law of large numbers is a

famous one of Vershik and Kerov [44]:

1

n
ri(λ) → αi and

1

n
cj(λ) → βj

in probability as n→ ∞.

The central limit theorem in this context, from [10, 30], is that in the

case where α and β have finite length, say M and N respectively, and both

are strictly decreasing, the tuple(
r1(λ)− α1n√

n
, . . . ,

rM(λ)− αMn√
n

,
c1(λ)− β1n√

n
, . . . ,

cN(λ)− βNn√
n

)
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converges in joint distribution to a centered real gaussian family with covari-

ance matrix

α1 − α2
1 −αiαj

. . .
−αiαj αM − α2

M

−αiβj

−αiβj

β1 − β2
1 −βiβj

. . .
−βiβj βN − β2

N


.

Question 4.10. If the combinatorial work done in this thesis can be extended

to finite α and β, does the diagonal part of the hypothetical random matrix

model follow the extended covariance matrix displayed above? If so, what is

the common reason for these occurrences?

In a sense, this coincidence should not really be a surprise. Our results

are phrased in terms of “central limits” of star-transpositions, i.e.

1√
n

n∑
i=1

(γi − A0),

but as elements of C[S∞], the sums

γ1 + · · ·+ γm−1 = (1, 2) + · · ·+ (1,m)

are conjugate to the famous Jucys-Murphy elements, defined by

Xm := (1,m) + (2,m) + · · ·+ (m− 1,m)

for m ≥ 1. So our work could also be interpreted as studying their asymp-

totics in different representations. On the other hand, the Jucys-Murphy

elements are often used in the study of random Young diagrams and limit

shapes, for example in [4, 38].
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