
Using Crowd-Based Software
Repositories to Better Understand

Developer-User Interactions

by

Wenhan Zhu

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2023

© Wenhan Zhu 2023

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Massimiliano Di Penta
Professor, Department of Engineering
University of Sannio

Supervisor(s): Michael W. Godfrey
Professor, David R. Cheriton School of Computer Science
University of Waterloo

Internal Member: Shane McIntosh
Associate Professor, David R. Cheriton School of Computer Science
University of Waterloo

Chengnian Sun
Assistant Professor, David R. Cheriton School of Computer Science
University of Waterloo

Internal-External Member: Derek Rayside
Associate Professor, Electrical and Computer Engineering
University of Waterloo

ii

Author’s declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

Throughout this thesis, I served as the primary author for all the research presented.
My responsibilities include (1) developing the concept of the study (2) collecting data
and performing analysis (3) writing the draft manuscript. My co-authors helped me with
refining the research ideas, providing feedback at each step of the research process and
improving the manuscript.

In the research presented in Chapter 4, Haoxiang Zhang mentored me on how to perform
an empirical study. He helped with the data collection and analysis design of the project.
Ahmed E. Hassan and Michael W. Godfrey provided feedback and supervision in all parts
of the research.

In the research presented in Chapter 5, Michael W. Godfrey provided feedback and su-
pervision in all parts of the research. He also helped with the qualitative part of the
study.

In the research presented in Chapter 6, Sebastian Proksch, Daniel M. German, Michael
W. Godfrey, Li Li, Shane McIntosh participated in the qualitative part of the study and
provided feedback in all parts of the research. Sebastian Proksch helped with the data
collection and labeling process. Daniel M. German helped with improving the structure
and coherence of the manuscript. Michael W. Godfrey, Sebastian Proksch, and Daniel M.
German provided supervision in all parts of the research.

iv

Abstract

Software development is a complex process. To serve the final software product to
the end user, developers need to rely on a variety of software artifacts throughout the
development process. The term software repository used to denote only containers of
source code such as version control systems; more recent usage has generalized the concept
to include a plethora of software development artifact kinds and their related meta-data.

Broadly speaking, software repositories include version control systems, technical doc-
umentation, issue trackers, question and answer sites, distribution information, etc. The
software repositories can be based on a specific project (e.g., bug tracker for Firefox), or
be crowd-sourced (e.g., questions and answers on technical Q&A websites). Crowd-based
software artifacts are created as by-products of developer-user interactions which are some-
times referred to as communication channels. In this thesis, we investigate three distinct
crowd-based software repositories that follow different models of developer-user interac-
tions. We believe through a better understanding of the crowd-based software repositories,
we can identify challenges in software development and provide insights to improve the
software development process.

In our first study, we investigate Stack Overflow. It is the largest collection of program-
ming related questions and answers. On Stack Overflow, developers interact with other
developers to create crowd-sourced knowledge in the form of questions and answers. The
results of the interactions (i.e., the question threads) become valuable information to the
entire developer community. Prior research on Stack Overflow tacitly assume that ques-
tions receives answers directly on the platform and no need of interaction is required during
the process. Meanwhile, the platform allows attaching comments to questions which forms
discussions of the question. Our study found that question discussions occur for 59.2% of
questions on Stack Overflow. For discussed and solved questions on Stack Overflow, 80.6%
of the questions have the discussion begin before the accepted answer is submitted. The
results of our study show the importance and nuances of interactions in technical Q&A.

We then study dotfiles , a set of publicly shared user-specific configuration files for soft-
ware tools. There is a culture of sharing dotfiles within the developer community, where
the idea is to learn from other developers’ dotfiles and share your variants. The interaction
of dotfiles sharing can be viewed as developers sources information from other developers,
adapt the information to their own needs, and share their adaptations back to the com-
munity. Our study on dotfiles suggests that is a common practice among developers to
share dotfiles where 25.8% of the most stared users on GitHub have a dotfiles repository.
We provide a taxonomy of the commonly tracked dotfiles and a qualitative study on the

v

commits in dotfiles repositories. We also leveraged the state-of-the-art time-series cluster-
ing technique (K-shape) to identify code churn pattern for dotfile edits. This study is the
first step towards understanding the practices of maintaining and sharing dotfiles .

Finally, we study app stores, the platforms that distribute software products and con-
tain many non-technical attributes (e.g., ratings and reviews) of software products. Three
major stakeholders interacts with each other in app stores: the app store owner who gov-
erns the operation of the app store; developers who publish applications on the app store;
and users who browse and download applications in the app store. App stores often provide
means of interaction between all three actors (e.g., app reviews, store policy) and some-
times interactions with in the same actor (e.g., developer forum). We surveyed existing
app stores to extract key features from app store operation. We then labeled a represen-
tative set of app store collected by web queries. K-means is applied to the labeled app
stores to detect natural groupings of app stores. We observed a diverse set of app stores
through the process. Instead of a single model that describes all app stores, fundamentally,
our observations show that app stores operates differently. This study provide insights in
understanding how app stores can affect software development.

In summary, we investigated software repositories containing software artifacts created
from different developer-user interactions. These software repositories are essential for
software development in providing referencing information (i.e., Stack Overflow), improving
development productivity (i.e., dotfiles), and help distributing the software products to end
users (i.e., app stores).

vi

Acknowledgements

I am deeply grateful to all the individuals who have supported me throughout my PhD
studies. Their guidance and encouragement have been instrumental in my journey as a
researcher in the field of software engineering.

First and foremost, I would like to express my sincere appreciation to my supervisor,
Michael W. Godfrey. He took me in as his student when I was unsure of my fate as a PhD
student, and guided me towards becoming a proficient researcher. Mike has been incredibly
supportive throughout the process, providing me with the freedom to explore my interests
and offering insightful feedback on my work. I am also thankful to Meiyappan Nagappan,
who stepped in and acted as my supervisor when Mike was dealing with personal issues. I
appreciated the thought-provoking discussions we had during this period.

Furthermore, I would like to thank Krzystof Czarnecki for accepting me as a PhD
student at the University of Waterloo. Despite our mismatched research interests, I am
grateful for the opportunity to work in his lab and learn about the cutting-edge develop-
ments in the field of autonomous vehicles.

I would like to express my gratitude to my examination committee members — Shane
McIntosh, Chengnian Sun, Derek Rayside, and Massimiliano Di Penta — for their time
and effort in providing feedback on this thesis.

In addition, I am fortunate to have worked with many collaborators, including Haoxiang
Zhang, Ahmed E. Hassan, Sebastian Proksch, Daniel M. German, Li Li, and Shane
McIntosh. They provided valuable feedback on my research and helped me improve in
the process. I am especially grateful to Haoxiang Zhang for his hands-on mentoring to
finish my first research paper and for offering me an opportunity for an internship that
exposed me to industrial research.

I would also like to thank the members of the Waterloo Intelligent Systems Engineer-
ing Lab (WISE) and the Software Analytics Group (SWAG), where I had the privilege
of staying during my PhD studies. In particular, I would like to thank Changjian Li,
Jaeyoung Lee, Edward Chao, Weitao (Tommy) Chen, Jian Deng from WISE, and Yiwen
Dong, Yongqiang Tian, Daniel J. Watson, Kilby Baaron, Davood Anbarnam, Kirsten (Ten)
Bradley, Reza Nadri, Achyudh Ram, Lakshmanan Arumugam, Arman Naeimian, Aaron
Sarson, Bushra Aloraini, Farshad Kazemi, Zhenyang Xu, Yaxin Cheng, Xueyao (Eve) Yu,
Zhili Zeng, and Gengyi Sun from SWAG. I apologize if I have missed anyone’s name due
to the length of my PhD study and the number of people I have met.

I would like to express my sincere gratitude to my friends and roommates, Yusen Su
and Xizi (Lucy) Wang, who generously added a pair of chopsticks during meals to feed me.

vii

Lastly, I would like to thank my parents — Weijun Zhu and Yi Lian — for their
unconditional love and support. Especially for the year and a half of remote work due to
the COVID-19 pandemic, where I returned home and lived with them, I am grateful for
the time we spent together. Their unwavering encouragement and belief in me has been a
source of motivation and strength throughout my PhD journey.

viii

Dedication

This thesis is dedicated to those who look up into the sky.

ix

Table of Contents

List of Figures xiv

List of Tables xvi

1 Introduction 1

1.1 Five Types of Software Repositories . 2

1.2 Software Repositories from Developer-User Interactions 4

1.3 Thesis Statement . 6

1.4 Thesis Contributions . 7

1.5 Organization . 8

2 Background 10

2.1 Knowledge Creation on Stack Overflow . 10

2.1.1 Question and Answer (Q&A) Process 10

2.1.2 Discussions on Stack Overflow . 11

2.2 User-Specific Configuration Files — dotfiles 12

2.2.1 Culture of Sharing dotfiles . 13

2.3 App Stores . 13

2.3.1 App Store Operation . 14

x

3 Related Work 15

3.1 Exploring and Understanding Stack Overflow 15

3.1.1 Discussion Activities on Stack Overflow 15

3.1.2 Leveraging Discussions in Software Engineering 16

3.1.3 Understanding and Improving Stack Overflow 18

3.2 Configuration Files . 19

3.2.1 Software Configurations . 19

3.2.2 Developer Workflow . 20

3.3 App Stores in Software Engineering Research 22

3.3.1 Overview of App Store Research . 22

3.3.2 Involvement of App Stores in Software Engineering Research 23

3.3.3 Store-focused research . 24

4 Understanding Question Discussions on Stack Overflow 25

4.1 Introduction . 25

4.2 Data Collection . 30

4.3 Study Results . 31

4.3.1 RQ1: How prevalent are question discussions on Stack Overflow? . 31

4.3.2 RQ2: To what extent do users participate in question discussions? 37

4.3.3 RQ3: How do question discussions affect the question answering
process on Stack Overflow? . 40

4.4 Implications and Discussions . 44

4.4.1 Feedback From the Community . 44

4.4.2 Suggestions for Researchers . 45

4.4.3 Suggestions for Q&A Platform Designers 46

4.5 Threats to Validity . 48

4.6 Conclusions . 49

xi

5 Understanding the Practice of Maintaining User-Specific Configuration
Files 50

5.1 Introduction . 50

5.2 Data collection . 53

5.3 Results . 54

5.3.1 RQ1: Who are the owners of dotfiles repositories? 54

5.3.2 RQ2: What kind of user-specific configuration files do users track
in their dotfiles repositories? . 57

5.3.3 RQ3: How do developers update their dotfiles? 62

5.4 Discussions and Implications . 66

5.4.1 Challenges in Managing dotfiles . 68

5.4.2 Leveraging dotfiles as a Software Repository 69

5.5 Threats to Validity . 70

5.6 Summary . 71

6 Understanding App Stores the Software Engineering Perspective 72

6.1 Introduction . 72

6.2 Working Definition of an App Store . 75

6.3 Research Methodology . 77

6.3.1 RQ1: What fundamental features describe the space of app stores? 79

6.3.2 RQ2: Are there groups of stores that share similar features? 82

6.4 Results . 83

6.5 Discussion . 92

6.5.1 What Is an App Store? . 92

6.5.2 Research Opportunities Involving App Stores 97

6.6 Threats to Validity . 100

6.7 Summary . 101

xii

7 Conclusions 103

7.1 Summary of Contributions . 104

7.1.1 Enhanced Understanding of Developer-User Interactions 105

7.1.2 Identified Challenges . 106

7.2 Avenues for Future Research . 107

References 109

APPENDICES 128

A Literature Overview of Recent Research Involving App Stores 129

xiii

List of Figures

1.1 Software repositories and the agile development cycle 2

1.2 Three types of developer-user interaction 5

2.1 Stack Overflow question thread with discussion in comments and chat room
messages . 12

4.1 An example of the Q&A process involving discussions: (A) a user (the
“asker”) asked a question; (B) another user (the “answerer”) started dis-
cussing with the asker in the comment thread; (C) the question was further
clarified then resolved in the chat room; (D) the content of the comments
and chat messages that led to the resolution of the question were summa-
rized as an answer, which was marked as the accepted answer by the asker.
. 27

4.2 An overview for the creation of Qchat (questions with chat rooms) 30

4.3 Timeline of question thread events. Question discussions can occur at any
time since the creation of a question. 32

4.4 The number and proportion of questions with comments 34

4.5 Question discussion with respect to answering events during the Q&A pro-
cess. The blue bands represent questions with discussions and the red bands
represent questions without discussions. 35

4.6 The number of users who participate in different types of activities on Stack
Overflow, and the number and proportion of users who participate in ques-
tion discussions. 38

4.7 The proportion of question discussions with the participation of askers and
answerers . 39

xiv

4.8 The distribution of the number of questions to the change in question body
character length after the question is posted at different levels of question
discussion activity . 42

4.9 Median answer-receiving-time with respect to the number of comments that
are posted before the answer. The median is only calculated for questions
with answers and questions with accepted answers respectively. 43

5.1 Simple configuration for toggling comments in Vim 51

5.2 Number of top users by total repo stars on GitHub with dotfiles repositories 56

5.3 Content size of dotfiles repositories . 58

5.4 Taxonomy of the top 50 most common dotfiles 60

5.5 Information on commits for dotfiles repositories 64

5.6 K-Shape clustering (k = 4) results on time-series modeled by code-churn
history. Top: Mean-variance normalized. Bottom: Min-max normalized. . . 65

6.1 Three major stakeholders of most app stores 76

6.2 Methodology overview: There are three main stages, further broken down
into six steps. 78

6.3 Stores may offer optional extensions to the runtime environment for appli-
cations . 94

xv

List of Tables

5.1 Sampled 100 dotfiles repositories owners by occupation 57

5.2 20 most tracked dotfiles by popularity . 59

5.3 Type of dotfiles commits . 64

5.4 Distribution of frequently edited dotfiles across clusters 67

6.1 Investigated stores for feature extraction 80

6.2 Features for describing app stores . 84

6.3 First three identified stores for each Google query 88

6.4 The 8 clusters found by the K-means algorithm, with top deviated features
from the centroid of centroids (C) . 90

6.5 List of stores and descriptions by cluster, with the example store that is
closest to cluster centroid . 91

A.1 Recent papers on app stores . 130

xvi

Chapter 1

Introduction

The process of developing software products is complex and requires a variety of resources.
These resources, as well as the by-products of the software development process, are com-
monly referred to as software artifacts. A collection of software artifacts will form a software
repository. While the term “software repository” was originally used to describe contain-
ers of source code exclusively, more recent usage has generalized the concept to include
information contained in different kinds of software artifacts and their related meta-data.

Software repositories include datasets and information related to artifacts created dur-
ing the software development process. These artifacts may include API documentation,
bug reports, release notes, and user reviews. Increasingly, researchers recognize that these
sources of information are known to be crucial to the success of software development. For
example, the quality of comments in code can directly impact the effort required to main-
tain it [44]. With the creation and adoption of new tools; the establishment of common
practices, and the standardization of approaches, we have seen a plethora of new software
repositories derived and formed through developer activities.

Software repositories can also arise from interactions between developers and users.
Despite the source code being the end product of software development, the development
process relies on teams of developers who are often influenced by social activities in software
engineering. The information generated from social interactions provides rich data for both
developers and researchers, making it a valuable resource for understanding and improving
the development process. For example, issue trackers have been shown to be essential in
fixing bugs and tracking feature implementation [17, 19]. Through studying the existing
data in issue trackers, researchers have been able to identify key challenges and provide
insights on how to improve the process [16, 87, 15].

1

1.1 Five Types of Software Repositories

The software development process involves various types of software artifacts that develop-
ers encounter. We categorize these artifacts into five types, which are presented in Fig. 1.1.

Distribution and social artifacts

User Forum

User ManualApp Store

Software Homepage

Reddit

Twitter

Usage artifacts

Runtime system log

Performance profile log

User configurations

Requirements

Deploy

Develop

Test

Design

Software Artifacts
In the example agile development cycle, many
software artifacts are involved in creating the
software product.

Source code artifacts

Source code

Build configurations

Test suite

Infrastructure artifacts

Issue tracker

Version control system

Development mailing list

Component ecosystem

Technical documentation

Tutorial blog post

Reference artifacts

IRC help channel

Stack Overflow

Figure 1.1: Software repositories and the agile development cycle

Specifically, the five types of software artifacts is described as follows.

• Source code artifacts — These artifacts directly contribute to the production of
the final software product, including source code, building scripts, test suites, and
deployment and configuration tools.

• Infrastructure artifacts — These artifacts are relate to or by-products of the on-
going software development processes, such as issue tracking systems, version control

2

systems, and project-specific development mailing lists. They provide a record of the
design decisions and evolution history of the source code.

• Reference artifacts — These artifacts contain general information that developers
need during software development, such as technical documentation, tutorial blog
post, user forums, and Stack Overflow. Developers consult these software repositories
to resolve their issues during software development.

• Usage artifacts — These artifacts contain system usage information, such as user
configuration files, diagnostic, system logs, performance data, and other instrumenta-
tion information that can be used to infer user behavioural patterns. These artifacts
reflect how the software systems run in real world scenarios.

• Deployment and social artifacts — These artifacts contribute to the final dis-
tribution of the software system to its designated users. Examples include software
homepage and app store. Software systems are often designed to solve real-world
problems, and the deployment artifacts connects the software systems to their po-
tential users.

The same artifact may belong to different types, depending on the perspective and
platform. For example, when a user requests help debugging a specific configuration for a
software tool on a social platform like Reddit, the content could fall under three different
types of software artifacts. Specifically, the configuration is a usage artifact, the ensuing
thread becomes a reference artifact for future viewers, and the interaction between the
asker and respondents forms part of the distribution and social artifact where end users
discuss the software.

The software artifacts are created to satisfy the requirements of both developers and
users in software development. This process is also dynamic, with rudimentary forms
emerging initially and being improved over time, based on practical evidence, to better
serve developers’ needs. For example, the Linux kernel development team identified the
need for an enhanced version control system and created git, which eventually became
the most widely used version control tool. Prior to git, different tools and ideologies were
used in maintaining version control information, reflecting the evolving nature of software
artifacts over time.

3

1.2 Software Repositories from Developer-User Interac-
tions

Among the broad spectrum of software repositories, software artifacts from developer-user
interactions are often distinct in how they are created and leveraged. This is especially
true when the software artifacts are created as the by-products of the interactions instead
of being created intentionally. For example, let us take as an example question threads,
which are software artifacts on Stack Overflow. The interaction between various users aims
to provide an answer to the question that has been posed by the asker. The interaction
is finished when the asker judges that an answer has answered the question satisfacto-
rily. Both the asker and answerer conclude the interaction at this moment. However, the
resulting knowledge created from the interactions remains beneficial to all viewers who
may encounter a similar question in the future. Programming-related Q&A has a long
history even before Stack Overflow; however, the structure of preserving the Q&A session
in question threads contributed to the success of Stack Overflow. In crowd-based software
repositories, the by-products are often beneficial to a broader audience in addition to the
people involved in the original interaction that generated the software artifact.

In this thesis, we study three software repositories crucial to the software development
process that are created from crowd developer-user interactions. These three software
repositories represent different patterns of interaction models. Through exploring the dis-
tinct model of interactions, we can gain a better understanding of the software development
process, and how to better leverage the information contained in the resulting software ar-
tifacts. Specifically, we focus on Stack Overflow: a collection of programming question and
answers; dotfiles : a collection of user-specific configuration files; and app stores: the target
distribution platform for software products which contains many non-technical attributes
that cannot be directly derived from the software products.

The three software repositories we examine represents three different developer-user
interaction models, as illustrated in Fig. 1.2.

Stack Overflow is a technical Q&A website that has become the largest knowledge base
for programming related questions and answers. There are two main type of interactions
involved on Stack Overflow: the process of creating the unit of knowledge (i.e., a ques-
tion thread), and users viewing the website for its existing knowledge. This relationship
is shown in Fig. 1.2a. As direct contributions to online information are rare on many
platforms [161, 103], understanding the creation and maintenance of knowledge on Stack
Overflow is crucial. In this thesis, we focus on the question discussions that occur on the
platform to better understand the Q&A process.

4

Asker

Answerer

Ask
questions

Stack Overflow

"How do I ..." "Why is ..."

"What is the difference
between ..."

Answer
questions

Viewer

Browse for
information

(a) Stack Overflow developer-user interaction model

Developer

Backup,
share dotfiles

dofiles repository

.vimrc

.bashrc

setup.sh

README

.gitconfigPublic dotfiles
repositories

Developer blogs

Documentation

Social Media

Source
information

(b) dotfiles developer-user interaction model

App creator End user

App store manager

App2
App1

App3
Develop + submit apps,

update apps

Curate apps,
provide store functionality (e.g, browsing),

coordinate app installation/updating,
coordinate payment

Browse apps,
purchase/order apps,

review apps,
update apps

App store

(c) App store developer-user interaction model

Figure 1.2: Three types of developer-user interaction

5

dotfiles are software artifacts that represents real-world configurations for user-specific
software tools. The process of how developers create and share dotfiles is a great example of
“one for all, all for one”. When developers first write their configurations, they source from
various resources. Then, after absorbing the information and creating their own adaptions,
developers share back their own additions, benefiting the community as a whole. This
process is shown in Fig. 1.2b. In this thesis, we study a collection of dotfiles repositories
from GitHub to understand how developers maintain their dotfiles .

App stores serve as distribution platforms where developers can submit their applica-
tions. The successful operation of these stores involves three major stakeholders: store
owners who oversee the app store, developers who contribute applications, and users who
browse and download them. Fig. 1.2c illustrates the interactions between these parties
within the app store platform, which offers ample opportunities for interactions. For ex-
ample, app stores often feature product-specific homepages for developers to showcase
their applications to potential users, as well as review sections where users can share their
experiences of the app with other users and the developers. In this thesis, we explore
the broader landscape of app stores beyond the mobile-focused scene, aiming to under-
stand their functionality, diversity, and how their existence affects software development
practices.

1.3 Thesis Statement

Thesis Statement: Studying crowd-based software repositories can enhance our under-
standing of developer-user interactions during the creation of software artifacts. With this
deeper understanding, we can identify challenges in software development and provide valu-
able insights to improve the software development process.

The thesis statement is supported by three studies on different software repositories,
each of which contributes to our understanding of developer-user interactions in software
development. The three studies are as follows:

• Understanding question discussions on Stack Overflow

Developers consults a variety of resources for information during software develop-
ment, including technical Q&A websites like Stack Overflow. Most previous research
assumed that questions received answers directly on the platform and that no in-
teraction was required during the process. However, recent research have suggested
that answer comments can provide valuable information for users seeking answers on

6

the platform. In this research, we studied the commenting activities for questions on
Stack Overflow and gained insights into the Q&A process on the platform. We find
that participation in question discussions is common among askers and answerers on
the platform, and that the interactive nature of Q&A sessions is an important aspect
of technical Q&A.

• Understanding user-specific configuration files

Developers often use tools to simplify their jobs and boost productivity. These tools
provide high customizability, allowing developers to create configurations for the soft-
ware that match their preferences. These configurations are often stored in plain-text
files known as dotfiles, which are shared publicly in the developer community. In this
study, we examined publicly shared dotfiles on GitHub to understand the developer
interactions in maintaining dotfiles . We find that the practice is popular among pro-
lific developers on GitHub, and we identified a taxonomy of common dotfile types to
understand the types of configurations developers manage in their dotfiles . We also
identified the intents of commits in dotfiles repositories, which include both tweaking
user-specific configuration and managing the dotfiles repository’s documentation and
deployment.

• Understanding the role of app stores in the perspective of software engi-
neering

App stores have become the primary destination for software distribution. Software
products are developed and submitted to app stores, where users can browse and
install them with ease. While the concept of app stores is popularized by the two
major mobile stores (i.e., Apple’s App Store and Google Play), many other app
stores exist, each offering different features. In this study, we performed an empirical
study on app stores to understand the concept of app stores and the commonalities
and differences between them. We provide a working definition of app stores and
identified a set of features that can be used to describe app stores. We used these
features to label a set of app stores collected from web queries and demonstrated the
existence of natural groupings based on the features offered by the app stores.

1.4 Thesis Contributions

This dissertation has seven main contributions:

7

• We provide an extended view of the process of creating answers on Stack Overflow
with the inclusion of question discussions (Chapter 4). In most of the answered ques-
tions that undertake discussion, the discussion began before any answer was provided.
Participation in question discussions is common among askers and answerers on the
platform.

• We highlight the importance of interactions during technical Q&A (Chapter 4).
While in ideal cases, questions should have direct answers, in practice, users often
need to go through an interactive session to solve the question.

• We explored the concept of sharing user-specific configuration files among developers
(Chapter 5). We show that the practice is popular among prolific developers on
GitHub, and checked the occupations of shared dotfiles repository owners.

• We provide a taxonomy on the type of common dotfiles (Chapter 5). From common
dotfiles in dotfiles repositories, we group the dotfiles by their associated software
and functionality. The taxonomy allows us to understand the type of configurations
developer manage in their dotfiles repositories.

• We identified intents of commits in dotfiles repositories (Chapter 5). While most of
the commits directly focus on tweaking user-specific configuration, we also observed
a significant amount of commits focusing on managing the dotfiles repository in its
documentation and deployment.

• We provide a working definition of app stores, expanding upon existing understand-
ings on the concept of app stores (Chapter 6). While the concept of app stores is
popularized by the two mobile stores (i.e., Apple’s App Store and Google Play),
there exists a diverse set of app stores following different practices.

• We identified a set of features that can be used to describe app stores (Chapter 6).
We use the features to label a set of app stores collected from web queries. We then
demonstrate the existence of a natural grouping based on the features offered by app
stores.

1.5 Organization

The rest of the thesis is organized as the following: Chapter 2 covers the background
information of the software artifacts studied in this thesis. Chapter 3 discusses the related

8

work on topic of this thesis and provides a overview of the existing understanding of
the studied software repositories. Chapter 4 describes our study on question discussions
on Stack Overflow. Chapter 5 shows our exploration on how developers manage their
dotfiles . Chapter 6 presents our study to understanding the concept of app stores in
software engineering. Chapter 7 summarized the results of this thesis and discusses some
possible future research directions.

9

Chapter 2

Background

In this chapter, we summarize and discuss previous research that relates to our work in
the three software repositories.

2.1 Knowledge Creation on Stack Overflow

Stack Overflow is a website dedicated to programming related questions and answers. Users
can ask questions and provide answers on the platform. As a Q&A platform, it has become
a primary communication channel for developers seeking programming-related assistance.
The success of Stack Overflow can largely be attributed to its gamification system, whereby
users earn reputation points when their questions or answers receive endorsement from
other users via a voting system. The website has been widely embraced by the software
engineering community, and has grown to become the largest public knowledge base for
programming-related questions, featuring 21.9 million questions and 32.7 million answers
as of December 2021.

2.1.1 Question and Answer (Q&A) Process

At the core of Stack Overflow is the individual questions and answers that contribute to the
large collection of crowdsourced knowledge. The starting point for accessing this knowledge
is a question post, in which a user submits a question pertaining to programming or a
similar technical topic. At that point, other users can start to engage either by proposing
an answer, or by taking part in a discussion in the form of a comment or a chat room.

10

Discussions can be attached to either the original question (i.e., a question discussion) or
one of the proposed answers (i.e., an answer discussion). If a proposed answer successfully
resolves the question, the user who asked the original question (i.e., the asker) may at their
discretion choose to designate that answer as the accepted answer. In other words, the
accepted answer is what the asker considered as the answer that solved the question. Once
an accepted answer has been selected, users may continue to contribute to the question
thread by adding new answers or editing existing content; in practice, however, user activity
related to that question and its answers tends to diminish sharply at that point [14]. In
practice, as shown both by community wisdom1, and research effort [51], the accepted
answer may not be the best answer for the specific question. We note that the Stack
Overflow uses the term post internally to refer to either a question or answer, but not a
discussion.

2.1.2 Discussions on Stack Overflow

Stack Overflow offers two different forms of communication channels for users to discuss
on questions and answers, that is, commenting as an asynchronous communication channel
and chatting as a synchronous communication channel. When users are commenting, they
may not expect an immediate reply. Meanwhile, when users are chatting, a live session
is formed where information flows freely within the group in real-time [139]. On Stack
Overflow, users begin discussions in comments. When extended discussions occur in com-
ments, users are proposed with continuing the discussions in dedicated chat rooms. While
commenting is the dominating communication channel on the Stack Overflow for question
discussions, whenever possible, we take special notice of the existence of chat rooms since
they represent a different form of communication channel compared to comments.

As previously mentioned, users can attach comments to a post (i.e., a question or an-
swer). Stack Overflow considers comments as “temporary ‘Post-It’ notes left on a question
or answer.2” Stack Overflow users are encouraged to post comments “to request clarifica-
tion from the author; leave constructive criticism to guide the author in improving the post,
and add relevant but minor or transient information to a post.” When multiple comments
are present in the same post, they form a comment thread.

Stack Overflow offers real-time, persistent collaborative chat for the community3 with
chat rooms. Stack Overflow promotes users to continue the discussions in a chat room

1https://meta.stackoverflow.com/questions/283456
2https://stackoverflow.com/help/privileges/comment
3https://chat.stackoverflow.com/faq

11

https://meta.stackoverflow.com/questions/283456
https://stackoverflow.com/help/privileges/comment
https://chat.stackoverflow.com/faq

when there are more than three back-and-forth comments between two users (i.e., at least
6 in total). Users are prompted with a message before a chat room can be created: “Please
avoid extended discussions in comments. Would you like to automatically move this dis-
cussion to chat?” When the user agrees to create the chat room, an automated comment
is posted and contains a link to the newly created chat room. In the newly created chat
room, automated messages are posted indicating the associated question and the comments
leading to the chat room. Users can also create chat rooms directly that are not associated
with questions or answers. Figure 2.1 shows an example question discussion session that
started in comments and concluded in a chat room. The question discussion eventually led
to the creation of an answer that was later marked by the asker as the accepted answer.

Figure 2.1: Stack Overflow question thread with discussion in comments and chat room
messages

2.2 User-Specific Configuration Files — dotfiles

We use to the term “dotfiles” to refer to a collection of user-specific configuration files [160].
The term dotfiles in its original meaning refers to the hidden files in UNIX-like (*NIX)
operating systems. The concept originates from a bug in an early implementation of the
command ls [108], which produces a listing of the files in a given directory. The bug
occurred when the code — correctly — ignored the two special files that represent the
current and parent directory (i.e., "." and ".."), but also — incorrectly — ignored all
other files that started with a dot. Subsequently, a convention arose within the *NIX

12

community to prepend a period onto the beginning of file names that store application
settings in users’ home directories; these files would be “hidden” by default from the user’s
view unless they explicitly asked to see the dotfiles , via the -a option to ls. “Hiding”
the configuration files in this way reduces visible clutter in the user’s home directory,
and reduces the risk of new users accidentally changing or removing settings files that
they may not understand well. With the wide spread adoption of storing configurations in
dotfiles , the meaning of the term have since evolved to refer to the collection of user-specific
configuration files.

2.2.1 Culture of Sharing dotfiles

As suggested by a community website dedicated to dotfiles hosted on GitHub [42], users
backup their dotfiles online, learn from the existing dotfiles from community, and share
back what they have learned to the community. While it is unlikely that there is enough
evidence to trace the first occurrence of dotfiles sharing, the activity can be observed at
least as far back as the early 1980s, when USENET and e-mailing lists served as proto-social
media for developers [131]. Users often share their personal configuration and wisdom for
a program where others can benefit from; this culture of sharing has fostered a vibrant
user community. One blog post stood out that brought the idea to a larger community:
Holman, one of the first engineers at GitHub, wrote a impactful blog entry titled “Dotfiles
are meant to be forked” [64]. His dotfiles repository [64] is also one of the most starred
dotfiles repository on GitHub. With GitHub gaining more popularity and becoming the
largest source code hosting platform, many developers have hosted their dotfiles repository
on GitHub.

2.3 App Stores

Wikipedia recognizes Electronic AppWrapper [162] as the first true platform-specific elec-
tronic marketplace for software applications, but the term became popular when Apple
introduced its App Store along with the iPhone 3G in 2008 [10]. Today Apple’s App
Store and Google Play are the two biggest app stores and both of them serve the mo-
bile market. At its essence, app store is a type of digital distribution platform for software
products. Despite app stores often tacitly refers to the two mobile stores, in practice, a
variety of app stores exists and serve different users.

13

2.3.1 App Store Operation

The operation of the app store involves three major stakeholders. The app store owner
who manages the app store; the developers who submit applications to the store; and the
users who browse and install applications from the app store.

To ensure the successful operation of the app store, many features exist within the app
store to support each major stakeholder. For example, a developer portal where developers
can view marketing feedback from their applications and user reviews where users can share
their experience with the application with other users and the developer.

14

Chapter 3

Related Work

In this chapter, we discuss about the related work to the topics included in this thesis.
Specifically, we discuss how the related work increases our understanding of the studied
software repositories, and how prior research were able to leverage the software repositories
to improve the software development process.

3.1 Exploring and Understanding Stack Overflow

Since the introduction of Stack Overflow to the developer community, it has become the
de facto source for programming related Q&A. Stack Overflow has a friendly license1 for
information reuse. Moreover, Stack Exchange (Stack Overflow’s parent company) releases
a site data dump periodically. The conveniences allow researchers to study the information
contained on the website easily. A large amount of effort has been spent by researchers
on Stack Overflow to understand its success in sharing knowledge and also to leverage its
large corpus of data to aid the software development process.

3.1.1 Discussion Activities on Stack Overflow

While Stack Overflow is mainly a Q&A platform, in addition to question and answering,
it also has many other mechanisms to help with the Q&A process (e.g., the gamification
system through reputation points and commenting). In this thesis, we consider comments

1https://stackoverflow.com/help/licensing

15

https://stackoverflow.com/help/licensing

associated with questions as question discussions. However, in many other works, a discus-
sion on Stack Overflow can have different meanings. For example, some studies [81, 128]
have considered the question as a discussion (e.g., the question, all its associated answers,
and any comment associated with the question or its answers). In Chapter 4, we use dis-
cussions to describe commenting activities associated with a specific post (i.e., a question
or an answer).

Most previous works on Stack Overflow discussions have a primary focus on answer
discussions. Their aim is to better understand the community efforts in improving the
crowdsourced knowledge on Stack Overflow. Zhang et al. [179] conducted an empirical
study to understand answer obsolescence on Stack Overflow. In their study, comments
are used as an indicator of obsolescence for their associated answer. A follow up study
by Zhang et al. [178] examined answer comments and highlighted that the information
contained in the comments should not be overlooked when reading their associated answers.
After acknowledging the importance of answers, Zhang et al. [180] focused on the current
commenting mechanism on Stack Overflow and observed that the current presentation
of comment information is not optimal for readers. The comment hiding mechanism on
Stack Overflow only displays the top five comments with the most upvotes. However, due
to most comments never receiving any upvotes, later comments, which are likely to be
more informative, are hidden from readers by default.

Comments are also viewed as triggers for post updates. Baltes et al. [14] observed that
post edits often occur shortly after comment posts and suggests that comments and post
edits are closely related. Based on this observation, a study by Soni et al. [135] further
analyzed how comments affect answer updates on Stack Overflow. Their observation echoes
the finding by Zhang et al. [179] that unfortunately users do not update their answers even
with comments directly suggesting so.

Compared to existing studies on Stack Overflow which mostly focus on answers from the
perspective of knowledge maintenance, in this thesis, we focus on the question discussions
that mainly begin and occur during the Q&A process. In other words, previous works have
focused on preserving the knowledge while our work tends to focus more on the creation
of the knowledge.

3.1.2 Leveraging Discussions in Software Engineering

During software development, communication between members of the team is important
for the long-term success of the project [139]. Online discussions are a core part of the
process, especially in open source projects where developers may be scattered around the

16

world and rely on a variety of channels to communicate with each other [139]. Di Sorbo
et al. [37] proposed an NLP based approach to mine developer communication channels and
automatically classify the type of information (e.g., feature request, bug). Since the advent
of ubiquitous e-mail in the 1980s, developers have used mailing lists for discussions about
the projects they are working on and interested in. Studies show that the use of mailing lists
facilitates the gathering of people with similar interests, and many open source projects
still run mailing lists today [129] (e.g., the Gnome mailing list2). The mailing list archive
is an informative resource for researchers to understand the development of the project.
Rigby et al. [118] studied the Apache developer mailing list to learn about the personality
traits of developers and how the traits shift during the development of the project. Sowe
et al. [136] studied three Debian mailing lists and constructed social networks of the mailing
list to investigate how knowledge is shared between expert to novice participants.

In addition to the asynchronous email exchanges, developers also use real-time com-
munication channels such as IRC for discussions. IRC channels are often used by open
source projects as a complement to their mailing list operations (e.g., the #emacs channel
on Freenode exists in addition to the project’s mailing list). Shihab et al. investigated
GNOME GTK+ [129, 130] and Evolution [130] IRC channels to better understand how
developers discuss in IRC. Although e-mail and IRC are still in use today, newer and more
efficient platforms have also emerged to better support the need for communication. For
example, developers report bugs and feature requests on issue trackers (e.g., Jira3), and ask
questions on Stack Overflow [150]. Vasilescu et al. [150] observed that in the R community,
developers are moving away from the r-help mailing list to sites like Stack Overflow in the
Stack Exchange network since questions are answered faster there. Prior studies examined
different communication channels aiming to better understand and improve the communi-
cation among developers. Alkadhi et al. [4] applied content analysis and machine learning
techniques to extract the rationale from chat messages to better understand the develop-
ers’ intent and the decision making process during software development. Lin et al. [79]
studied the usage of Slack by developers and noticed that bots are in discussions to help
software developers.

Storey et al. [139] surveyed how developers leveraged communication channels and
observed that real-time messaging tools and Q&A platforms such as Stack Overflow are
essential for developing software. Dittrich et al. [38] studied developers’ communication
across different platforms and observed that real-time messaging plays a role in the com-
munication of developers. Their study shows that real-time messaging tools can support
the usage of other communication channels (e.g., Skype calls) and provide a means for de-

2https://mail.gnome.org/mailman/listinfo
3https://www.atlassian.com/software/jira

17

https://mail.gnome.org/mailman/listinfo
https://www.atlassian.com/software/jira

velopers to form social and trust relationships with their colleagues. Chatterjee et al. [24]
analyzed characteristics of Q&A sessions in Slack and observed that they cover the same
topics as Stack Overflow. Wei et al. [184] applied neural networks techniques on real-time
messages to automatically capture Q&A sessions. Ford et al. [49] experimented with using
real-time chat rooms for the mentoring of asking questions on Stack Overflow for novice
users. Chowdhury et al. [31] leveraged information from Stack Overflow to create a content
filter to effectively filter irrelevant discussions in IRC channels.

3.1.3 Understanding and Improving Stack Overflow

Prior research investigated how developers leverage Stack Overflow and studied differ-
ent mechanisms aiming to improve the design of Stack Overflow [166, 25, 186, 156, 49].
Treude et al. [145] categorized the types of questions on Stack Overflow, and observed
that Stack Overflow can be useful for code review and learning the concepts of program-
ming. Wang et al. [156] studied the edits of answers and observed that users leverage
the gamification system on Stack Overflow to gain more reputation points. Prior stud-
ies also aimed to understand the quality of the crowdsourced knowledge on Stack Over-
flow. Ponzanelli et al. [109] proposed a method to classify questions according to their
quality-based features extracted from question body. Srba et al. [138] observed that an
increasing amount of content with relatively lower quality is affecting the Stack Overflow
community. Lower quality content on Stack Overflow may also affect how questions are
answered. Asaduzszaman et al. [12] showed that the quality of questions plays an im-
portant role in whether a question receives an answer by studying unanswered questions
on Stack Overflow. An automated system to identify the quality of posts and filter low-
quality content was proposed by Ponzanelli et al. [110]. To improve the quality of the
crowdsourced knowledge on Stack Overflow, prior studies aimed to identify artifacts with
different properties [157, 111, 30, 144, 150, 172, 186]. For example, Nasehi et al. [96] ex-
amined code examples on Stack Overflow and identified characteristics of effective code
examples. Their study shows that explanations for code examples have the same impor-
tance as code examples. Yang et al. [170] analyzed code snippets of popular languages
(C#, Java, JavaScript, and Python) on Stack Overflow and examined their usability by
compiling or running them.

Prior studies also examined various supporting processes on Stack Overflow to better
understand its operation and improve its efficiency of the crowdsourced knowledge sharing
process. Chen et al. [25] used a convolutional neural network (CNN) based approach to
predict the need for post revisions to improve the overall quality of Stack Overflow posts.
Several studies proposed approaches to automatically predict tags on Stack Overflow [166,

18

122, 18]. Wang et al. [158, 159] proposed an automatic recommender for tags based on
historical tag assignments to improve the accuracy of the labeling of tags for questions.

3.2 Configuration Files

Most of existing research in this broad area focuses on studying software configurations
either during the build process (e.g., enabling different features for different configurations
of software), or on the configuration of essential production software (e.g., database sys-
tems, web servers). In this thesis, our focus is on the user-specific configuration files that
users keep to configure the software they use. Since they are both configuration files, and
more focused on the scene of developer life, in this section, we provide a overview of related
work in both software configuration, and improving developer workflow.

3.2.1 Software Configurations

While many studies have looked at configurations, the main focus has been on software
build configurations and software run-time configurations [94, 187, 95, 167, 168, 185]. These
studies often focus on production software and the aim is to improve the build process or
optimize production software performance. This includes studying the build configuration
files. Nadi et al. [94] proposed a static analysis approach to extract configuration con-
straints from software build files (e.g., Makefiles). Their methods are able to provide
insight from creating a variability model from the constraints and reason about the build
configuration. Zhou et al. [187] proposed a symbolic based extraction method to parse
build files such as Makefiles and detect potential problems in the configuration space
for software. Other research focuses on run-time configurations. Many software systems
that are run in production are highly customizable with many parameters to fit different
needs. Unlike build-time configurations which cannot be changed after the software is
built, run-time configurations are more flexible. Databases are a class of software that
fits the description well, and it is no surprise that they are also one of the most studied
systems for run-time configurations [43]. One goal of tweaking run-time configurations
is to have the software system running at optimal settings. Nair et al. [95] proposed a
sequential model-based method that explores the configuration space and try to determine
the next best configuration. Mühlbauer et al. [90] showed that Gaussian Process models
can accurately estimate the performance-evolution history of real-world software systems.
Kaltenecker et al. [73] showed that from empirical evaluation, distance-based sampling

19

on configuration space can yield more accurate performance models for medium to large
sample sets.

Studies have also shown that the design of configuration “knobs” are suboptimal. Xu
et al. [167] investigated on the complexity of configuration settings on multiple software
systems. Their study shows that only a small percentage of configurations are altered by
users while a significant percentage of the configurations are never changed. The com-
plexity of configurations can also cause problems on the user side, where users do not fully
understand the functionalities of the configurations. Based on their results, a simple guide-
line that limits the configuration space — such as hiding/removing unused parameters and
highlighting commonly used ones — were proposed. Based on the simple guideline, the
authors illustrated that in one of the studied projects, the configurations can be greatly re-
duced with minimal impact on the users side. Sayagh et al. [124] interviewed and surveyed
developers on the design of run-time software configuration options. Accompanied by a
detailed survey on the current literature on the subject. Their interview and survey sug-
gests that additions of software configurations are often unplanned and by any developer.
This practice can sometimes make configurations hard to maintain as the responsibility
is unclear. Meanwhile, removing options can also be risky as it can break the software
system unintentionally. A side effect by this is that software systems can have a high
percentage of options that rarely change. Xu et al. [168] proposed a tool to support users
through inferring configuration requirements automatically. Through mining constraints
from the configuration space, their tool can expose misconfiguration vulnerabilities and
identify error-prone configuration design and handling.

Unlike previous research which heavily focuses on configurations for production soft-
ware, in this thesis we focus on dotfiles from the user space. Compared to production
software, many configurations in the user space do not have high focus on performance or
have a definitive approach to configuration. User-specific configurations are often tailored
to the specific developers need and often change over time.

3.2.2 Developer Workflow

Developers’ time and interest is a valuable resource. Many studies have focused on how
to develop or improve tools to increase developer productivity. More importantly, studies
have shown that tool choice does matter for developers [74]. And researchers have also
found surprising ways (e.g., on the toilet) of how developers discover new tools [92].

Current research often focuses on one particular tool or a specific set of tools, yet do not
look at the dynamics between the tools. For example, Schröder et al. [125] performed an

20

empirical study on aliases used during command-line customization. Their study suggests
that developers mainly use aliases for shortcuts, modifications, and scripting. Johnson
et al. [69] investigated the reasons why developers look away from existing static anal-
ysis tools hoping to gain insight on how to improve them. In another study, Damevski
et al. [36] studied developer interactions in Visual Studio to detect potential usage prob-
lems. These efforts have the same goal to improve the developer efficiency, however choosing
and adopting the best practices and tools is a challenging task for developers [132]. Some
attempts have been performed to tackle this issue, for example, in a follow up study, Snipes
et al. [133] explored the possibility to gamify the process and received dividing feedback
from a pre-study survey.

Another heavily studied aspect of improving developer workflow is to provide improved
code completion. Tools and new implementations emerge on the topic often; they are highly
impactful and often causes excitement within the developer community. While these are
not directly related to the current research, given the prevalence and high amount of ac-
tivity related to text editors, we believe they could be relevant to the configuration of the
text editors. Noticeable recent events includes the introduction of entire line completion
by tabnine [142], language servers protocol by Microsoft [88] and GitHub Copilot [52].
Code completion research started from better recommendations from parsing source code
and API information [65] to leveraging statistical models [113] and machine learning tech-
niques [141] to provide better candidates. This feature can help developers write code
more quickly instead of continually referencing API documentation [102]. Such a system
often accompanies the basic AST parsing technique on IDEs and aims to provide a more
accurate prediction to developers. However, a recent study by Hellendoorn et al. [62] on
the real-word usage of completion have shown that despite many of the techniques works
particularly well on synthetic datasets, their performance can drop to only 20% accuracy
on hard tasks. In their study, they also find that most developers see the feature of code
completion as saving the number of keystrokes typed and do not worry too much about
the absolute accuracy of the prediction (i.e., the candidate showing up as first choice is not
as important as the candidate showing up in the selection).

In this thesis, we focused on dotfiles management by developers. Since dotfiles is a
collection of user-specific configurations, instead of focusing on a specific aspect and on
a specific purpose, our study is a high-level view of how these configuration are managed
and maintained over time.

21

3.3 App Stores in Software Engineering Research

Overall most research do not directly study app stores, but instead either study the appli-
cations offered in the app store or specific non-technical attributes of an app store. We go
into detail discussing the differences and argue why in both cases the app store entity can
have an affect on the associated research.

3.3.1 Overview of App Store Research

Since the idea of an app store have only been popularized in the mobile age, To date,
research in this area has concentrated on a narrow set of app stores that primarily involves
mobile platforms. In both of the earliest work focusing on app stores, they have selected a
mobile app store as the investigation target. Harman et al. [61] proposed app stores as a
valid kind of software repository worthy of formal study within the broader research area
of mining software repositories; while their work was not specific to mobile app stores,
they used BlackBerry App World as their canonical example. Ruiz et al. [121] studied
the topic of reuse within app stores, focusing their work on Android Marketplace.4
In addition to them both tacitly used only mobile app stores, in both cases, no formal
definition of an “app store” was provided.

The heavy focus on the mobile scene, and the lack of treating stores as a proper platform,
can be universally observed across all app store research as suggested by a survey in 2016
focusing app store research. In the survey, Martin et al. [85] observed that studies have
often focused on only a few specific app stores, and have ignored comparisons between
app stores. The same results can be suggested from a more recent survey focusing on app
reviews, Dąbrowski et al. [35] found the median number of app stores studied to be 1, with
the maximum being 3.

In practice, we can observe situations where similar app stores would have different
impact on both users and developers. For example, in web extension stores, we can ob-
serve cases where the same extension is accepted in one store but rejected in another.5
Sometimes, even the same features from different app stores can behave differently, for
example, Lin et al. [80] found that reviews of games from Steam is dramatically different
from reviews of apps in mobile app stores.

4Android Marketplace has since been re-branded as Google Play.
5https://github.com/FastForwardTeam/FastForward/issues/704

22

https://github.com/FastForwardTeam/FastForward/issues/704

3.3.2 Involvement of App Stores in Software Engineering Research

To better understand app stores’ involvement in software engineering research, we re-
viewed relevant papers from the two flagship software engineering research conferences:
the ACM/IEEE International Conference on Software Engineering (“ICSE”) and the ACM
SIGSOFT International Symposium on the Foundations of Software Engineering (“FSE”).
We used Google Scholar to find papers containing the keyword “app store” between January
2020 and April 2022 for the two conferences. We found a total of 34 such papers (listed in
Appendix A). We note that our efforts do not constitute a comprehensive literature survey;
instead, our goal was to gain an overview of how app stores are involved in recent research,
and why app stores matter in their context.

» Mining software applications — App stores have been extensively used as a mining
source of software applications. It can be observed in 20 of the 34 papers found. In these
papers, the major focus is often on another subject and app stores provide a source where
they can collect applications for either a data source or verification dataset. For example,
Zhan et al. [177] proposed an approach to detect software vulnerabilities in third-party
libraries of android applications. They leveraged the app store to collect a dataset to verify
the effectiveness of their approach. In these studies, the app store is both a convenient
and practical source of data collection. However, the involvement of app stores may not be
necessary since the purpose is to gather a dataset of application. In Yang et al.’s work [169],
they leveraged android applications from an existing dataset without the need to collect
from an app store. We argue that the importance of app stores in these types of studies is
the selection criteria performed by the researchers to collect applications from app stores.
These features can include star ratings, total downloads, app category.

» Mining app store artifacts — In these studies, researchers focused on unique software
artifacts that come from the operation of the app stores. App stores have a much heavier
involvement in these studies compared to the previous. App reviews is the major software
artifact the researchers focused on, where they leverage the data to identify features of
applications [165], locating bug reports [59], and detect undesired app behaviors [66]. One
interesting data we have observed is where van der Linden et al. [149] have leveraged the
developer contact information shared on app stores to send out surveys related to security
practices.

23

3.3.3 Store-focused research

As stated above, we found that most recent research involving app stores focuses on the
applications they offer rather than on studying the app stores themselves; in particular,
most research in the domain focuses on the development of mobile applications. Meanwhile,
a few work have specifically considered app stores and their effects on software engineering,
but again these works focus heavily on mobile app stores.

In a recent paper, Al-Subaihin et al. [3] interviewed developers about how app stores
affect their software engineering tasks. They found that developers often leverage the
review section from similar applications to help with understanding the expected user
experience and anticipated features. App stores also provides a playground for releasing
beta version of apps to receive feedback from users. The built-in communication channels
also play a large role in informing development. The interviews suggest that developers pay
attention to viewing user requests in app store via channels such as reviews and forums.
The approval period of app stores affects how developers plan their release. App stores
introduce non-technical challenges in the development process. Given the app store model
of release, app store-specific metrics, such as total number of downloads, are considered
highly important to developers.

Running an app store presents both technical and non-technical challenges to the store
owner. Technical challenges include verifying that each app will install correctly, while
non-technical challenges include ensuring that the promotional information in the app’s
product page adheres to store guidelines. Wang et al. [153] investigated several Android
app stores in China and compared them to Google Play. Their study showed that these
stores were much less diligent in screening the apps they offered, with a significantly higher
presence of fake, cloned, and malicious apps than Google Play.

24

Chapter 4

Understanding Question Discussions on
Stack Overflow

While Stack Overflow has become the largest knowledge base of Q&A content, it follows
a question and answer centric view of Q&A. Prior research on Stack Overflow also often
adopt a model of Q&A on the website as a two step process, where one user ask the
question and the other user provides an answer directly. However, upon investigating
Stack Overflow, we noticed a large amount of comments directly associated with questions
on the platform. In this chapter, our primary goal is to understand the user interactions
in question associated comments as question discussions.

Related publication An earlier version of the work described in this chapter has been
published in the following paper:

Wenhan Zhu, Haoxiang Zhang, Ahmed E. Hassan, Michael W. Godfrey. 2022.
An empirical study of question discussions on Stack Overflow. Empirical Soft-
ware Engineering.

4.1 Introduction

Stack Overflow is a technical question answering (Q&A) website widely used by developers
to exchange programming-related knowledge through asking, discussing, and answering
questions. The Q&A process on Stack Overflow creates a crowdsourced knowledge base
that provides a means for developers across the globe to collectively build and improve their

25

knowledge on programming and its related technologies. Stack Overflow has become one
of the largest public knowledge bases for developers with more than 21.9 million questions
as of December 2021 [45]. A survey shows that retrieving information from Stack Overflow
is an essential daily activity for many software developers [139].

On Stack Overflow, users can ask, answer, and discuss questions, and each question can
receive multiple proposed answers. The user who asked the question (i.e., the “asker”) can
decide to mark one answer as accepted, indicating that it resolves their question authorita-
tively. While ultimately Q&A is the most important activity on Stack Overflow, users can
also post comments and/or start chat rooms that are tied to a specific post (i.e., question
or answer). In this chapter, we refer to comments and chat rooms messages on Stack
Overflow as discussions ; each discussion is associated with a single question (a question
discussion) or proposed answer (an answer discussion).

Researchers have extensively studied the questions and answers on Stack Overflow.
These studies ranged from finding out common question types [5] to predicting the best
answers [144]. The Q&A processes on Stack Overflow are commonly viewed as two inde-
pendent events by the studies. The first event is asking the question; this occurs when a
user posts a question on the platform. The second event is answering the question; this
normally occurs when another user posts an answer to a question. However, comment-
ing as a communication channel allows for user interactions beyond simple asking and
answering. A recent study has shown that comments can be helpful in the Q&A pro-
cess by providing support knowledge, such as code examples, references, and alternative
suggestions [126], whereas previous research has focused primarily on answer comments.
Some studies leverage answer comments to study the quality of answers on Stack Overflow.
For example, Zhang et al. [179] leveraged comments highlighting obsolete information re-
garding their associated answers. As a Q&A platform, most content on the platform is
consumed by viewers long after the question is answered. If misleading information exists
on the platform, it can convey false information within the community. Another study [28]
used comments as a sign of whether the community is aware of the security vulnerabilities
contained in the answer. Meanwhile, some studies have also focused on the presentation
of knowledge on Stack Overflow. These studies also approach the issue from the answer
perspective. One study [178] highlights that while users are reading answers on Stack
Overflow, they should not ignore the information contained in their associated comments.
In Zhang et al.’s next study [180], they showed that the current mechanisms on Stack
Overflow to display comments is not ideal and can hurt the users when they are reading
answers.

In this chapter, we focus on question comments. More specifically, we theorize that the
commenting activities form a discussion and our focus is to understand how the discussions

26

affects the Q&A process on Stack Overflow. Unlike previous studies that mostly focus on
answer comments which occur after a question has been answered, in this chapter we focus
on question comments which can occur before the question is answered.

To help understand why it is important to study how question discussions integrate with
the Q&A process, we now consider a motivating example. Fig. 4.1 shows a question titled
“Unable to set the NumberFormat property of the Range class.”1.” Four minutes after the
question was asked, another user posted a comment — attached to the question — asking
for clarification on the problematic code snippet. A chat room was then created for the
asker and the user to continue the discussion in real-time. A consensus was reached in the
chat, and the results were summarized and posted as a proposed answer by the user, which
the asker designated as accepted. This example highlights how the process of asking and
answering questions is enabled by the discussion mechanisms of commenting and chatting,
allowing a resolution to be reached quickly. That is, the question discussion can serve as a
simple and effective socio-technical means to achieving closure on the question.

Figure 4.1: An example of the Q&A process involving discussions: (A) a user (the “asker”)
asked a question; (B) another user (the “answerer”) started discussing with the asker in the
comment thread; (C) the question was further clarified then resolved in the chat room; (D)
the content of the comments and chat messages that led to the resolution of the question
were summarized as an answer, which was marked as the accepted answer by the asker.

In this chapter, we use the Stack Overflow data dump from December 2021 [45] as our
dataset; this dataset contains 43.6 million comments and 1.5 million chat messages. We

1https://stackoverflow.com/questions/10801537/

27

https://stackoverflow.com/questions/10801537/

use this data to explore the nature of question discussions and how they integrate with
the crowdsourced Q&A process on Stack Overflow. To make this study easy to follow, we
use the following notations to refer to different groups of questions observed within the
dataset:

Symbol Meaning # in dataset

Qdisc Questions with comments 13.0 M
Qchat Questions with chat rooms (and comments) 27,146
Qnd Questions with no discussions 9.0 M
Qa Questions with answers 18.8 M
Qd/a Questions with both discussions and answers 10.5 M
Qd/aa Questions with both discussions and accepted answers 6.1 M
Qhd/a Questions with both discussions with “hidden comments”2 and

answers
1.6 M

Specifically, we investigate and answer three research questions (RQs):

RQ1: How prevalent are question discussions on Stack Overflow?

We found that question discussions occur in 59.2% of the questions on Stack Over-
flow. More specifically, 13.0 million questions have comments (i.e., Qdisc) with a
median of 3 comments, and 27,146 questions have chat rooms (i.e., Qchat). The pop-
ularity of question discussions is also increasing, with the proportion of questions
with discussions nearly doubling from 32.3% in 2008 to 59.3% in 2018. Question
discussions exist in all phases of the Q&A process on Stack Overflow. In questions
that are both discussed and have an accepted answer (i.e., Qd/aa), discussions in
80.6% of the questions begin before the accepted answer was posted. We found that
the duration of question discussions can extend beyond the Q&A process: In 28.5%
of Qd/aa , question discussions begin before the first answer and continue after the
accepted answer is posted; and in 19.4% of Qd/aa , question discussions begin after
the question receives its accepted answer.

RQ2: To what extent do users participate in question discussions?

We found that 16.0% (i.e., 2.6 million) of registered users on Stack Overflow have
2In Stack Overflow, comments are “hidden” (i.e., elided from view) by default when there are six or

more attached to the same question.

28

participated in question discussions, which is comparable to the number of users
who have answered questions (i.e., 16.7%). Question discussions allow askers and
answerers to communicate with each other directly, enabling fast exchanges on the
issues of concern. For questions that have both discussions and answers (i.e., Qd/a),
we found that as the number of comments increases, both askers and answerers were
more likely to participate in the question discussions. Also, we found that when there
are six or more comments present (i.e., Qhd/a), then there is a high likelihood of both
askers (90.3%) and answerers (51.9%) participating in the discussions.

RQ3: How do question discussions affect the question answering process on
Stack Overflow?

Question discussions tend to lead to more substantial updates to the body of the
original question. For example, a median of 114 characters are added to the question
body when the question discussion has a chat room instance (i.e., Qchat). While most
other questions have no change in their question body length, a larger proportion of
questions with comments are revised, with an increase in the question body length
compared to questions with no discussion. Questions with more comments receive
answers more slowly, with a Spearman correlation of ρ = 0.709 between the number
of comments and the answer-receiving-time for the first answer.

The main contribution of this chapter is to highlight that discussions are an integral
part of the Q&A process on Stack Overflow. Compared to the common assumptions that
asking and answering questions are separate events in many studies, our work suggests
that a large proportion of questions on Stack Overflow are answered after interactions
between askers and answerers in question discussions. Our study suggests that question
discussions is a very common activity comparable to answering activity on Stack Overflow.
Question discussions have a high active user base (i.e., 16.0% of active users), and are
also comparable to answering (i.e., 16.7% of active users). We also observed a strong
correlation between the number of comments and the question answering speed, suggesting
that question discussions have an impact on creating answers. Our findings suggest that
question discussions can facilitate the Q&A process since they provide a means for askers
and potential answerers to communicate throughout the Q&A process.

29

4.2 Data Collection

We use the Stack Overflow data dump from December 2021 [45]. The data dump is a
snapshot of the underlying database used by Stack Overflow; it contains all meta-data for
each comment, such as which user posted the comment and which question the comment is
associated with. We mainly used the Posts and Comments table from the dataset to extract
the required information. The data dump also contains the history of each question, via
the PostHistory table. We analyze the history of each question to reconstruct the timeline
of when the question was created, edited, commented, and answered.

Data about chat rooms is not contained in the Stack Overflow data dump; instead,
we collected it manually by crawling the Stack Overflow website itself.3 We also labeled
the chat room instances based on whether they are general4, attached to a question, or
attached to an answer based on the structure of the crawled data. After cross-referencing
their associated question IDs with the Stack Overflow data dump, we removed chat room
discussions that are unrelated to programming, such as those on Meta Stack Overflow
which focuses on the operation of Stack Overflow itself. This left us with a total of 27,312
chat rooms comprising 1.5 million messages that are associated with 27,146 questions as of
December 2021. Fig. 4.2 shows the detailed extraction process of chat rooms from Stack
Overflow.

Stack Overflow
Datadump
(Dec. 2021)

Stack Overflow
(Dec. 2021)

Cross
Reference

Question related
chat rooms

Data
Cleaning

Chat rooms associated
with questions

(27,312)

Figure 4.2: An overview for the creation of Qchat (questions with chat rooms)

3We’ve made our dataset open access on Zenodo: https://zenodo.org/record/5516190
4General chat rooms are standard chat rooms on Stack Overflow that are not associated with a question

or an answer.

30

https://zenodo.org/record/5516190

4.3 Study Results

In this section, we explore the underlying motivation, the approach taken, and the results
of our three research questions (RQs) concerning question discussions on Stack Overflow.

4.3.1 RQ1: How prevalent are question discussions on Stack Over-
flow?

Motivation: As a technical Q&A platform related to programming, Stack Overflow hosts
a large number of questions [145]. From the user’s point of view, creating an answer can
be challenging since the initial version of a question is often incomplete or ambiguous. For
this reason, potential answerers may first wish to engage the asker in a discussion to clarify
their intent and possibly seek additional context, which is typically done using comments
attached to the question. If the discussion proves to be fruitful, the user may then post
an answer based on the discussion; also, the asker may decide to edit the original question
to clarify the intent for other readers. Example 4.3.1 shows a comment pointing out a
confounding issue in the original question. After the discussions, the asker acknowledged
the issue and edited the original question for clarity.

A prior study showed that active tutoring through discussions in chat rooms can sub-
stantially improve the quality of newly posted questions by novice users [49]. However, it is
labor intensive to provide such tutoring with an average of more than 7,000 new questions
posted per day on Stack Overflow in 2019. At the same time, there has been no detailed
study of question discussions as yet; in this RQ, we explicitly study question discussions
to gain a better understanding of their prevalence in the Q&A process.

31

Example 1

In a comment linked to a question titled: “Write to Excel — Reading CSV with
Pandas & Openpyxl - Python.”5, a user observed that the example CSV file given
in the question did not follow the CSV standard, and suggested the asker to double
check the input format.

Comment:

The structure of the first three lines doesn’t match the structure of lines 5
onwards so you cannot read this file with a CSV library. Please check the
provenance of the file and what it should look like. I suspect you probably
want to skip the first four lines.

Approach: We begin our study of the prevalence of question discussions by investigating
the trend in the number and proportion of question discussions over the years. We dis-
tinguish between answered questions with and without an accepted answer to investigate
whether there exists a difference between the two groups of questions.

Figure 4.3: Timeline of question thread events. Question discussions can occur at any time
since the creation of a question.

We then study when question discussions occur relative to key events in the Q&A
process. After a question is posted on Stack Overflow, several different types of follow-up
events may occur, as illustrated by Fig. 4.3. For example, after a question is posted any
of the following can occur:

5https://stackoverflow.com/questions/48956597/

32

https://stackoverflow.com/questions/48956597/

• other users can propose answers to the question;

• users can post comments to discuss either the question or the associated answers;

• the asker can mark one of the answers as accepted ; and

• the question (and proposed answers) can be edited for clarity.

For each question, we construct the timeline consisting of each event, and we analyze
the prevalence of question discussions with respect to other Q&A activities. Here, we focus
mainly on two key events: when the question receives its first answer, and when it receives
the accepted answer.

Results: Stack Overflow questions are discussed by 43.6 million comments and
1.5 million chat messages, forming a large dataset of community question dis-
cussions, in addition to the 22.0 million questions and 32.7 million answers. The
proportion of questions with discussions also nearly doubled from 32.3% in 2008 to 59.3%
in 2013, and has remained roughly stable since then. Fig. 4.4a shows the number and
proportion of questions with discussions per year, and Fig. 4.4b suggests a similar trend
for questions with an accepted answer. Since a question may receive its first comment
several years later, it is likely that the proportion of recent years will increase slightly in
the future.

Question discussions occur throughout the Q&A process, ranging from be-
fore the first answering event to after the accepted answer is posted. Fig. 4.5
shows the proportion of question discussions relative to answering events in the Q&A pro-
cess. The height of the band across each vertical line indicates the proportion of questions
with a specific activity occurring in that phases of a question thread’s life cycle. For ex-
ample, from the left-most bar, all questions can be split into two groups: questions with
discussions (Qdisc) and questions without discussions (Qnd). The top band (with strata
in blue) represents 59.2% of the questions with discussions and the bottom band (with
strata in red) represents 40.8% of the questions without any discussions. Flowing from left
to right, the strata in blue and red continue to represent the questions with and without
discussions until the right most band where it represent the final answering status of the
question.

In Qd/a , 76.2% (i.e., 8.0 million) of the question discussions begin before
the first answer is posted, suggesting an influence of question discussions on
answering activities. Furthermore, 80.6% (i.e., 4.9 million) of the question discussions
begin before the accepted answer is posted, indicating a slightly more active involvement

33

(a) All questions

(b) Questions with the accepted answer

Figure 4.4: The number and proportion of questions with comments

of question discussions in Qd/aa . In answered and solved questions of Qchat , 59.1% (i.e.,
12,507) of the chat activities begin before the first answer is received, and 72.9% (i.e.,
10,172) of the chat activities begin before the accepted answer is posted.

The early occurrence of question discussions in the Q&A process suggests that they
enable interested users to engage with the asker informally, to allow for clarification. In
Example 4.3.1, 13 minutes after the question was initially posted, a user asked for a concrete
example that can demonstrate the problem the asker had. The asker then updated the
question with the requested information. The question was answered 15 minutes later,
incorporating the newly added information based on the discussions.

34

Figure 4.5: Question discussion with respect to answering events during the Q&A process.
The blue bands represent questions with discussions and the red bands represent questions
without discussions.

Example 2

A user comments to ask for information in a question titled “Can I modify the text
within a beautiful soup tag without converting it into a string?”6

Comment:

UserB: Please give an example html that demonstrates the problem.
Thanks. [2014-09-16 13:15]
UserA (the asker): Just added some example html, sorry about that.
[2014-09-16 13:20]

In 28.5% (i.e., 1.7 million) of Qd/aa , the discussions begin before the accepted
answer has been received, and continue after the accepted answer is posted.
Furthermore, 19.4% (i.e., 1.2 million) of the question discussions begin after
the accepted answer is posted. These findings indicate that the community may

6https://stackoverflow.com/questions/25869533/

35

https://stackoverflow.com/questions/25869533/

continue to discuss questions even after the asker has designated a “best” answer that solves
their problem [9]. This may be due to the fact that software development technologies
tend to evolve rapidly; old “truths” may need to be updated over time, and additional
discussions may provide new insights despite the asker considering the question to be
solved. Example 4.3.1 shows a comment that pointed out a potential security vulnerability
in the code snippet 5 years after the initial question is posted.

Example 3

A user posted a comment to warn about a potential security vulnerability 5 years
after a question was posted.”7

Comment:

Beware. If you’ve configured your Struts application in this particu-
lar way (setting ‘alwaysSelectFullNamespace’ to ‘true’), your applica-
tion is very likely vulnerable to CVE-2018-11776: semmle. com/ news/
apache-struts-CVE-2018-11776

RQ1 Summary:

There are 44.6 million comments and 1.5 million chat room messages in our dataset,
which forms a large corpus of question discussion activities on Stack Overflow. Since
the introduction of comments, the popularity of question discussions has nearly doubled
from 32.3% in 2008 to 59.3% in 2013 and has remained stable since. The occurrence of
question discussions is prevalent throughout the Q&A process. While question discus-
sions in most questions (76.2% in Qd/a and 80.6% in Qd/aa) begin before the answering
activities, question discussions can continue or even begin after the accepted answer is
posted.

7https://stackoverflow.com/questions/17690956/

36

semmle.com/news/apache-struts-CVE-2018-11776
semmle.com/news/apache-struts-CVE-2018-11776
https://stackoverflow.com/questions/17690956/

4.3.2 RQ2: To what extent do users participate in question dis-
cussions?

Motivation: The crowdsourced Q&A process on Stack Overflow is driven by user par-
ticipation. In addition to the questions and answers, question discussions are also part
of the user-contributed content on Stack Overflow. In this RQ, we explore how different
users participate in question discussions, to better understand how question discussions
facilitate the Q&A process.

We focus on two aspects of user participation. First, we investigate the overall user
participation in question discussions on Stack Overflow. We note that in RQ1, we observed
a high proportion of questions with discussions; here, we focus on the users who partici-
pate in question discussions. Second, we change the scope to focus on the question-level
discussion participation. We are interested in what other activities that the participating
users join in on. For example, did the user ask the question in the first place, or did the
user post an answer for the question.

Approach: To study user participation in question discussions and gain an overall idea of
the popularity of discussion activities compared to other activities on Stack Overflow, we
extract from the data dump the list of all users who contributed content to Stack Overflow.
In particular, we sought users who asked, answered, or discussed questions; we note that
while other activities, such as voting, may help the community, we do not consider these
activities in our study as they do not directly contribute content. We also ignored activity
related to answer discussions, as it was outside of the scope of our investigations.

We extracted the unique UserIDs from all questions, answers, and question comments
to build the groups of users who participated in each of those activities. We then compared
the intersection between the different sets of users to determine which of them participated
in multiple types of activities on Stack Overflow.

Results: 2.6 million (i.e., 16.0%) users on Stack Overflow have participated in
question discussions. Fig. 4.6 shows the overlap of the number of users participating in
different activities on Stack Overflow. We observe that 95.7% of users who participated in
question discussions also asked questions on Stack Overflow, and 50.9% of them answered
questions.

In 60.0% of Qd/a (i.e., 7.8 million), askers participate in the question dis-
cussions and in 34.1% of Qd/a (i.e., 3.6 million), an answerer participated in

37

Askers who discussed
questions
2,498,877

Answerers who
discussed questions

1,328,902

Askers
4,388,544

Answerers
2,037,005

All Users
16,279,655

Users with Q&A
1,599,958

Users with Q&A and
discussed questions

1,227,601

56.9% 65.2%

76.7%

Users without Q&A
10,768,861

Users without Q&A who
discussed questions

9,316*

0.1%

58.8%36.5%

27.0% 16.7% 66.1%

*This situation is technically not possible according to Stack Overflow's rules. However, due to untracked deletions, users may appear
to have never participated in Q&A

Figure 4.6: The number of users who participate in different types of activities on Stack
Overflow, and the number and proportion of users who participate in question discussions.

the question discussion. The involvement of askers and answerers suggest that the two
parties often leverage question discussions as a collaboration medium.

We further investigate the trend of the proportion of questions with askers and answer-
ers in question discussions as the number of comments increases. When the number of
comments increases, a higher proportion of questions have askers and answer-
ers participating. Fig. 4.7 shows the trend of the proportion of askers and answerers
participating in question discussions as the number of comments increases. When there
are at least 6 comments associated with a question (i.e., when Stack Overflow starts to
hide additional comments), askers are present in at least 90.3% of the question discus-
sions and answerers are present in at least 51.9% of the question discussions. Moreover,
when answerers are present in a question discussion, 79.3% (i.e., 2.8 million)
of the answerers and 81.1% (i.e., 1.5 million) of the accepted answerers joined
the question’s discussions before posting the answers. The increasing proportion
and early engagements of answerers in question discussions suggest that users are actively

38

leveraging the question discussions as a communication channel to facilitate the answering
of questions.

Figure 4.7: The proportion of question discussions with the participation of askers and
answerers

39

RQ2 Summary:

2.6 million (i.e., 16.0%) users on Stack Overflow have participated in question discus-
sions. These users overlap heavily with users who asked and answered questions on
Stack Overflow. In Qd/a , 60.0% of the questions have the asker participating in the
question discussion and 34.1% of the questions have an answerer participating in the
question discussion. The proportion of questions with askers and answerers participat-
ing in question discussions increases as the number of comments increases. When at
least 6 comments are present, more than 90.3% of the discussions have askers partici-
pating and more than 51.9% have answerers participating. In 79.3% of Qd/a (81.1% of
Qd/aa), the answerer (accepted answerer) participated in the question discussion before
they posted the answer (accepted answer).

4.3.3 RQ3: How do question discussions affect the question an-
swering process on Stack Overflow?

Motivation: On Stack Overflow, questions serve as a starting point for curating crowd-
sourced knowledge. Devising a good question can also be a challenging task [22]. To
encourage users to ask high-quality questions, in late 2019 Stack Overflow modified its
reputation system to reward more reputation points on upvotes for questions, increasing
the points rewarded from 5 to 10.8 As noted previously, a question can have several follow-
up answers; also, discussions can be associated with either the question or its answers.
Questions (and answers) may be edited and revised by their original author, and this hap-
pens commonly.9 This may be done to reflect new knowledge learned though the Q&A
process, and to improve the quality of the posts themselves. In practice, some revisions
are editorial or presentational in nature, such as fixing typos and formatting content for
readability; however, questions are also edited to improve the quality of the crowdsourced
knowledge [68]. Baltes et al. [14] observed that comments have a closer temporal rela-
tionship with edits than posts (i.e., a question or an answer), that is, the time difference
between comments and post edits are smaller compared to comments and post creations.
Typically, this happens for clarification purposes as answers and discussions shed new light
on the original problem. For example, sometimes the asker’s question may not include
enough technical detail to be easily answered; similarly, the asker may conflate several
issues into one posting. In these cases, the asker may seek to clarify the content of their

8https://stackoverflow.blog/2019/11/13/were-rewarding-the-question-askers/
9Comments may be deleted by their author, but they may not be edited in place.

40

https://stackoverflow.blog/2019/11/13/were-rewarding-the-question-askers/

question by adding new context or editing out extraneous details. Also, sometimes new
answers emerge to older questions as the accompanying technologies evolve. Thus, it is
important to recognize that the question discussions can affect the evolution of the ques-
tion itself; the question version that appears to a casual reader may have evolved since its
original posting.

In this RQ, we study how question discussions are associated with the evolution of
questions. More specifically, we study the association between the number of comments
and question revisions; we do so to better understand how question discussions affect the
evolution of the question content. We also study the association between the number of
comments and the answer-receiving-time to explore how question discussions affect the
Q&A process.

Approach: To understand how question discussions affect the evolution of questions,
we first study the correlation between question discussions and question revisions. Here,
we are mainly interested in the scale of question edits in terms of the size of question
content change in the question body. Specifically, we calculate the change in the number
of characters in the question body between its initial version and the current version. We
also categorize all questions into three groups, i.e., questions with no discussions (Qnd),
questions with comments (Qdisc), and questions with chat rooms (Qchat). For each question
from any category, we calculate the character length difference between the current version
of the question and its initial version to investigate how question discussions are associated
with the changes in the question content over a question’s lifetime.

To understand how question discussions associate with the speed of question answer-
ing, we study the correlation between the number of received comments before answering
activities and the answer-receiving-time. Similar to RQ1, here we investigate the answer-
receiving-time of two different answering events: the answer-receiving-time for the first
answer (i.e., tFA) and the answer-receiving-time for the accepted answer (i.e., tAA). For
each question, we compute both tFA and tAA. We then group the questions by the number
of received comments before the first answer and accepted answer respectively. Finally, we
measure the Spearman correlation [137] between the number of comments and the median
tFA (tAA) for questions with the same number of received comments before the first answer
(accepted answer) is posted.

Results: Questions with chat rooms are more likely to be revised than ques-
tions without chat rooms, with a median size increase of 114 characters. Ques-
tions without chat rooms, on the other hand, do not exhibit a net change in size, although
such questions may still receive edits. Thus, the existence of a chat room attached to a

41

question makes it more likely that the question will undergo significant revision. Fig. 4.8
shows the distribution of questions by the change in question body length after the question
is posted, according to different levels of question discussion activities. From the figure, we
can observe that while Qnd and Qchat share the same median and modal of zero characters
change in question body length, a higher proportion of questions with comments receive
revisions that lead to an increase in the question body length.

Figure 4.8: The distribution of the number of questions to the change in question body
character length after the question is posted at different levels of question discussion activity

Overall, the number of comments is strongly correlated with both tFA (i.e.,
ρ = 0.709, p ≪ 0.05) and tAA (i.e., ρ = 0.806, p ≪ 0.05). Fig. 4.9 shows the median tFA

and tAA of questions with respect to the number of received comments before their respected
answering events. Questions with many discussions also take a longer time to answer. One
possibility is that the difficulty of these questions is also higher, therefore requiring more
effort by the users to have an extended discussion before the question can be answered.
At the same time, for the answer-receiving-time of Qchat , we find that it takes a median
of 5,935 secs (i.e., 1.6 hrs) and 8,438.5 secs (i.e., 2.3 hrs) to receive the first answer and

42

the accepted answer. The answering time follows the same trend of more discussions, i.e.,
a longer answering time. The strong correlation between the number of comments that
a question receives and the answer-receiving-time suggests a close relationship between
question discussions and creating answers. Our findings suggest that after a question is
asked, interested users may offer help first in comments when an answer can’t be created
immediately. Therefore, they begin the Q&A process by discussing with the asker through
commenting. This is also supported by our observations in RQ1 and RQ2 where discussions
mainly begin before answering and a high proportion of answerers participate in question
discussions.

Figure 4.9: Median answer-receiving-time with respect to the number of comments that
are posted before the answer. The median is only calculated for questions with answers
and questions with accepted answers respectively.

43

RQ3 Summary:

Question revisions for Qchat are more likely to lead to larger edits in the question body,
with a median increase of 114 characters to the question body. A strong correlation
exists between the answer-receiving-time and number of comments before the answer,
suggesting its close relationship with answering activities.

4.4 Implications and Discussions

4.4.1 Feedback From the Community

We shared our empirical observations on Meta Stack Overflow10, where users share ideas
and discuss the operation of Stack Overflow. We are glad that the users from the commu-
nity find our observations align with their personal experiences with question discussions
on Stack Overflow.

Some users also shared their personal experiences of leveraging question discussions.
For example, one user stated “Many questions are very localized (i.e. help only the OP
(Original Poster)) and very easy to answer (i.e. obvious to anyone who has any experience).
For these, writing a proper answer, with explanations, seems like a waste of time.” It
supports our theory that question discussions provide a means for alternative response
than an answer. For questions with no answers, users may still find enough information in
the question discussion that can be helpful.

Other users also noticed that question discussions may be a sign of new users not
realizing the edit feature for questions, “One thing I’ve noticed is that new users don’t
seem to realize they can edit their questions. When asked for clarity, they often (attempt
to) dump great chunks of information in a comment.” The observation is supported by
another user who stated “I always add a suggestion to [edit] the question unless I am sure
the user knows how to do it. Such a suggestion is not offensive, and provides the user a
convenient button to edit.” These observations also aligns with our findings that discussed
questions are often edited more in RQ3.

Some users observed that comments can be deleted on Stack Overflow; future studies
may wish to investigate this practice. Since Stack Overflow data dumps capture only a
static copy of the website, researchers could monitor newly posted questions in real-time
to capture deleted comments.

10https://meta.stackoverflow.com/questions/416059/

44

https://meta.stackoverflow.com/questions/416059/

Another observation the community raised is that “easy questions are often answered
in comments”. Users indicate that they find writing a quick comment can often help the
asker quickly. However, this also introduces noise to the platform, and the reader may be
uncertain where to look for such information.

4.4.2 Suggestions for Researchers

While Stack Overflow is the dominating platform for Q&A activities for developers, Q&A
also exists in other platforms and often in other forms. Future research can focus on
the differences between Q&A platforms to better understand the developer’s preferences
when asking questions. A better understanding of developer’s Q&A needs can help us
build better platforms and tools to preserve the information from the Q&A sessions across
platforms and improve the knowledge retrieval of the information for future users.

Include discussions when modeling Stack Overflow. Many current studies have
considered asking and answering questions as isolated events. After a question is posted,
other users will read the question and try to answer it. However, our study suggests a
different story for many questions. Discussions in the form of comments occur at large
scale for questions on Stack Overflow. The prevalence of question discussions with askers
and answerers participating significantly in them suggests that they play a key role in
the overall Q&A process; consequently, any empirical study of the Stack Overflow Q&A
process has much to gain by explicitly considering question discussions in their modeling.
For example, many tools have been proposed by researchers to support developers by
leveraging Stack Overflow as a knowledge base [21, 147, 176]. While, these tools mined
the content of questions and answers to retrieve relevant information for developers, they
do not leverage the information that is contained in question discussions. By considering
question discussion in their modeling, we believe the effectiveness of these tools can be
further improved with more information.

Design automated tools to highlight information in question discussions.
Stack Overflow’s overwhelming success with the international software development com-
munity is due largely to the high quality of its content, in the form of questions and answers
with accompanying discussions. However, maintaining the quality and relevance of such a
large knowledge base is a challenging task; a recent study found that low quality posts hurt
the reputation of Stack Overflow [110]. Because programming technologies evolve quickly,
the detailed information in the questions and answers can become obsolete [179] and re-
quires continual updating. Therefore maintaining a high quality and up to date knowledge
base is very important for its users. For this reason, Stack Overflow allows users to edit

45

questions and answers even after a clear consensus has arisen. Stack Overflow, as a major
source of information for developers, currently does not have any mechanisms that are
dedicated to the maintenance of knowledge on the platform. Since knowledge maintenance
is essential to the community, our study shows that users leverage question discussion to
aid the maintenance of knowledge in the question content. Previous studies have also ob-
served similar phenomena in answers [179, 135]. We suggest future research to focus on
the evolution of knowledge on Stack Overflow via commenting behavior to extract best
practices of the process. By understanding the evolution of knowledge content on Stack
Overflow, we can design better mechanisms on the platform to better support the com-
munity effort in maintaining knowledge. For example, there could be report buttons for
questions and answers that can raise flags regarding false information, legacy information,
or potential security flaws. Questions with such flags can be then examined by other users
and therefore maintaining a knowledge base that is up to date.

4.4.3 Suggestions for Q&A Platform Designers

Stack Overflow uses a gamification system based on reputation and badges to reward users
who participate in the Q&A process; for example, upvotes on questions and answers re-
ward the original poster with reputation points. However, at present upvotes for comments
do not boost the reputation of the commenter, so their system does not currently reward
participation in discussions.11 Since so much effort is put into discussions — as evidenced
by the presence of 43.6 million comments and 1.5 million chat messages in the 2021 data
dump — this seems like a missed opportunity. Stack Overflow could reward those users
who, through their participation in discussions, help to clarify, explore, and otherwise
improve the questions and answers themselves; our studies here have shown just how influ-
ential question discussions can be on improving the quality of the questions and answers.
Rewarding participation in discussions would create a positive feedback loop in the Stack
Overflow gamification system, which would in turn encourage more users to engage in
discussions.

Acknowledge discussions as essential in the Q&A, and design systems that
incorporate the users’ need for discussions. A good piece of shareable knowledge
starts with a good question, and Stack Overflow has practices to help ensure high quality
questions. For example, when novice users (i.e., users with newly registered accounts) first
ask questions, they are led through an interactive guide on how to ask a good question.
The guide includes both conventions (e.g., tag the question) and best practices for asking

11https://meta.stackexchange.com/questions/17364/

46

https://meta.stackexchange.com/questions/17364/

questions (e.g., include what has been attempted to solve the question). Although Stack
Overflow already has a detailed walk-through on how to ask a good question, we observed
that in practice, discussing and revising questions remains commonplace. At the same time,
crowdsourced Q&A is a labor intensive process; for example, a question may take time to
attract the “right” answerers or a question may be hard to understand without clarification.
In exploring RQ3, we observed that questions with extended discussions — especially those
that continue into a chat room — tend to receive more edits to the question body. We
conjecture that question discussions can serve as a feedback loop for the asker, resulting
in improvements to the questions through subsequent edits. Our observation also echoes a
previous study which shows that tutoring novice users before they post their questions can
improve the quality of their question [49]. We wonder if a question quality assurance “bot”
might be able to leverage the question discussion data and mining the discussion patterns
to further support askers in efficiently getting answers through crowdsourced Q&A.

Offer real-time Q&A for urgent question asking, and encourage users to or-
ganize the information for future reading. Question discussions offer a means for
askers and answerers to communicate with each other during the Q&A process. Currently,
chat rooms are triggered automatically once three back-and-forth comments occur between
two users. However, there are cases where two users may wish to start a live conversation
immediately. For example, traditionally in the open source community, it is suggested to
ask urgent questions in an IRC channel to receive an immediate response [115]. However,
when users do so, the information during the Q&A session will be buried in the IRC chat
log. On the other hand, if a user were to ask the question on Stack Overflow, in exchange
for not having an instant response, the Q&A information will remain easily accessible by
the public. While Stack Overflow already offers chat rooms as a means for instant and
real-time communication, currently the chat room triggering mechanism in posting com-
ments is an inefficient communication channel for such need. There exists a potential for
users to choose between a synchronous or asynchronous discussion through chat rooms or
comments, respectively. For example, Stack Overflow could build in a feature that allows
users to indicate if they are available online, and are waiting for an answer. When other
users see the indicator, they could directly start discussions in chat rooms, and later update
the content of the question based on the discussion. An intelligent communication channel
selection bot could be designed to help users seek an effective type of communication by
mining the historical data of communication preferences. Furthermore, a content summa-
rization tool could be designed to extract pertinent information from both comments and
chat rooms, for future users to better understand the context of the evolution of a question.

47

4.5 Threats to Validity

» External Validity — Threats to external validity relate to the generalizability of our find-
ings. In our study, we focus on question discussions on technical Q&A on Stack Overflow,
which is the largest and most popular Q&A platform for programming related questions.
As a result our results may not generalize to other Q&A platforms (e.g., CodeProject12

and Coderanch13). To mitigate this threat, future work can consider studying more Q&A
platforms.

Another threat is that the studied Stack Overflow data dump only the current copy of
Stack Overflow’s website data. For example, users are allowed to delete their comments,
answers, and questions. This means that when users delete their comments, they are
expunged from the dataset, and we are unaware of how those comments might have affected
the rest of the discussion. This concern is also shared by community members as one user
stated “the majority of the comments ever posted on Stack Overflow are probably deleted.”
Meanwhile, since there is always a valid reason for a comment to be removed, another users
suggested that “it’s actually good that deleted comments are not public and Stack Overflow
data dumps only capture the snapshot at the time it was taken. We don’t want this kind
of comments (i.e., rude/abusive comments14) to linger for more than a quarter. . . ” Since
Stack Overflow releases their data dump quarterly, we perform a comparison between the
data dump from Dec. 2019 and the data dump from Dec. 2021. From the 32.9 million
question comments in 2019, only 2.1% (i.e., 689,476) comments have been deleted in the
newer data dump. So in other words, we are unable to monitor comments that were posted
and deleted within the releases of two data dumps. But if the comment survived initially,
it’ll likely last.

» Internal Validity — Threats to interval validity relate to experimental errors and bias.
Our analysis is based on the data dump of Stack Overflow from December 2021 (the
comment dataset) and web crawling in December 2021 (the chat room dataset). While the
difference between the data dump and chat room crawling is only a month, Stack Overflow
as a dynamic platform is subject to change and the data itself can evolve. Future work can
assess our observations on new data and evaluate whether our findings continue to hold
over time.

» Construct Validity — Since the Stack Overflow data dump not include chat room-related
data, we mined that data directly from the Stack Overflow website. This means that our

12https://www.codeproject.com/
13https://coderanch.com/
14https://meta.stackoverflow.com/questions/326494/

48

https://www.codeproject.com/
https://coderanch.com/
https://meta.stackoverflow.com/questions/326494/

crawler and the collected data may be subject to errors (e.g., crawler timeout). We mitigate
this issue by manually checking a subset of the collected data and verified the correctness
of the scripts.

4.6 Conclusions

Question discussions are an integral part of the Q&A process on Stack Overflow, serving
as an auxiliary communication channel for many developers whose technical information
needs are not fully met within their nominal work environment. Question discussions occur
throughout all phases of the Q&A process, especially before questions are answered. In
76.2% of Qd/a and 80.6% of Qd/aa , the question discussions begin before the first answer
and the accepted answer is posted; furthermore, 19.4% of the question discussions begin
even after the accepted answer is posted. Question discussions allow askers and potential
answerers to interact and solve the question before posting an answer. In Qd/a , askers
participate in 60.0% (i.e., 7.8 million) of the questions discussions and answerers participate
in 34.1% (i.e., 3.6 million) of question discussions. When the number of comments increases,
a higher proportion of questions are participated by askers and answerers. The answer-
receiving-time of a question is strongly correlated (i.e., with a Spearman correlation of
ρ = 0.709) with the number of comments a question receives before its first answer. We
believe that our study of question discussions can be leveraged in several ways to improve
the Q&A process. For example, an automated triaging system could suggest an appropriate
communication channel; also, bots could be designed to warn about questions that seem
unclear and might require further clarification.

49

Chapter 5

Understanding the Practice of
Maintaining User-Specific Configuration
Files

Software developers leverage tools in the software development process to increase their
productivity. Developers often customize the tools they use to suit their preference. The
customizations are often stored in hidden plain-text files following the UNIX tradition.
As a convention, these files are often referred to as dotfiles . There has been a lack of
research in understanding how developers manage their dotfiles . Some studies have looked
at specific customizations for specific tools, such as for shell aliases and bash scripts. In
this chapter, we perform an empirical study to understand the practices of maintaining
user-specific configuration files through the analysis of publicly shared dotfiles repositories.

Related publication An earlier version of the work is currently in the process of
submission.

Wenhan Zhu, Michael W. Godfrey. An empirical study on dotfile repositories
containing user-specific configuration files

5.1 Introduction

Tools are essential in software development. Studies have shown that familiarity with
tools can significantly increase developer productivity [70]. Given the complexity and

50

diversity of software development tasks, software tools are often designed to be highly
versatile, with a huge selection of configuration options; some also support scripting, which
enables developers to construct complex customized usage scenarios. Furthermore, some
configuration options are based purely on user preferences (e.g., shell aliases, editor color
scheme), thus no optimal configuration exists for all usage scenarios. As a convention,
user-configuration files are often referred to as dotfiles . Detailed information regarding the
history of the name dotfile can be find in Section 2.2.

To illustrate the importance of dotfiles in software development, we present a motivat-
ing example of configuring “hotkey” commenting/decommenting in the text editor Vim.
Fig. 5.1 presents a simple configuration that defines two “hotkeys” to allow Vim users to
add or remove C -style comments in source code with a single key-press.

1 nnoremap <F2> :norm ^i// <C-[>
2 nnoremap <F3> :norm ^3x<C-[>

Figure 5.1: Simple configuration for toggling comments in Vim

While this short configuration is functional, there is room for customization. When the
configuration is publicly available, through GitHub or a community wiki, other users may
leverage the configuration as a base point and adapt the configuration for improvement
or personal use. For example, another user may wish to change the configuration to use
different hotkeys that they prefer; or, they may improve the script to support commenting
in additional programming languages (e.g., # in Bash). If these changes are shared back
to the community, the author of the original configuration may adapt their own script to
add the improvements.

This process of sharing dotfiles is similar to what Eric Raymond described as the bazaar
type [114] of open source development. In current days, most users of Vim will likely use
a plugin manager, and leverage a plugin to take care of commenting functionality. We
want to highlight that the customizability of software tools enable users to adapt the
tool to their own use case. Meanwhile, with a collection of user customizations, we can
understand the usage of the tools in real-world scenarios and in turn help improve the
tools. For example, it is now very hard to find a text editor without the feature of hotkey
commenting already built-in. We believe this is due to later tools learning from earlier
tools in user customizations.

Although there is a vast body of empirical research on how software developers use their
tools [69, 36, 133, 92, 74], at the same time there has been little study of how developer

51

manage their dotfiles over the long term. In practice, we believe that dotfile owners want
their files to be copied and adapted by others, so they will often store them in a dotfiles
repository under a version control system (VCS) such as Git , and host the repository
publicly on code hosting platforms such as GitHub.

In this work, we study dotfiles that have been publicly shared on GitHub to better
understand the practice of maintaining user-configuration files. We collect the dotfiles
repositories from GitHub using popularity and activity metrics with the help of GHTor-
rent [57]. Specifically, our study investigates three research questions:

RQ1: Who are the owners of dotfiles repositories?

Here, we study the prevalence of sharing dotfiles among developers to understand how
widespread the practice is. We wish to confirm if it is software developers — rather
than casual users — who are doing the sharing, since dotfiles can also be used for more
general-purpose software used by the broader public. To answer this RQ, we first traced
the occupation of the owners of dotfiles repositories collected by their public profile; we
observed that the majority of them appear to work in a field that involves programming
activities. We then checked the top 500 most-starred users on GitHub, and we found that
129 (i.e., 25.8%) of these top users own a variant of a dotfiles repository on GitHub.

RQ2: What kind of user-specific configuration files do users track in their
dotfiles repositories?

In this RQ, we hope to build an understanding of which specific configuration files
developers manage and track with dotfiles repositories. We extracted the dotfiles by their
normalized names (e.g., adjusted for different folder structures) from the dotfiles reposito-
ries, and created a taxonomy of the top fifty most common dotfiles in our dataset. We find
that configurations for text editors and *NIX shells are most common in dotfiles repos-
itories. Meanwhile, meta-files such as README files, software license information, and
deployment scripts (e.g., setup.sh, Makefile) are also common.

RQ3: How do developers update their dotfiles?

In this RQ, we aim to understand how developers maintain their dotfiles . We sampled
400 commits uniformly at random in dotfiles repositories, and performed an open card-
sort to infer the intent of the commit. We then selected the most frequently edited dotfiles
in all dotfiles repositories and modeled their code churn history as time-series. We used
the state-of-the-art time-series clustering technique [105] to extract patterns of code churn
history of frequently edited dotfiles . We find that 54.8% of commits directly change the
configuration of software tools, meanwhile, other commits focus on managing the dotfiles
repository such as updating documentation, adjusting deployment scripts. We observe that

52

all types of dotfiles can be found in every code churn history pattern, suggesting developers
play a more important role than the type of dotfiles in the frequency of editing dotfiles .

The key contributions of this work includes (1) collecting a set of quality shared dot-
files repositories (available in replication package); (2) providing empirical evidence in the
prevalence of dotfiles sharing among developers; (3) providing a taxonomy of common dot-
files ; (4) identifying the intent of commits in dotfiles repositories; (5) extracting code churn
history pattern of frequently edited dotfiles .

5.2 Data collection

The corpus of dotfiles repositories used in this study is collected from GitHub. We used
the GHTorrent [57] data from late 2019 to discover dotfiles repositories, and we cloned a
filtered set of dotfiles repositories for analysis in mid-2020.

Managing dotfiles repositories is mostly a convention among developers. There exists
no universal method to manage a dotfiles repository, thus, it is impossible to extract all
dotfiles repositories from GitHub. Upon inspection on common dotfiles repository naming
conventions, we decided to selected all repositories with the project name matching exactly
the string “dotfiles” in the GHTorrent database. We found 167,663 dotfiles repositories from
the query.

Since GitHub is known to be filled with low quality projects (e.g., temporary student
projects that are unmaintained) [72], we performed further filtering with three criteria to
ensure the quality of the collected dotfiles repositories:

1. ≥ 5 stars — to include dotfiles repository with endorsement by other users

2. ≥ 5 commits in the dotfiles repository— to filter out inactive dotfiles repositories

3. ≥ 10 commits in other repositories — to filter out inactive users on GitHub

Our strict filtering is intended to ensure that the dotfiles repositories we collect belong
to software developers. Since some dotfiles do not necessarily correspond to development
tools (e.g., configuration for window managers), we want to avoid dotfiles repositories
that focus on these aspects (e.g., purely aesthetic customizations [116]). Therefore, we
included the third criteria to exclude dotfiles repositories where the owner do not have
other activities on GitHub. We further investigate the owners of dotfiles repositories in

53

RQ1 where we traced the profession of dotfiles repositories owners by their shared public
profile.

After the filtering process, we have 3,757 dotfiles repositories. We then continued to
clone these repositories from GitHub. Due to the time difference between the GHTorrent
dataset (est. late 2019) and the time of cloning (est. mid 2020), a small proportion
repositories are no longer available. Some common reasons includes migrating to another
platform (e.g., GitLab) and DCMA take-down requests.

In the end, we are able to retrieve 3,305 dotfiles repositories from GitHub. In the rest
of the paper, we refer to these dotfiles repositories as the dotfiles dataset .

5.3 Results

In this section, we answer the research questions we proposed, and we make several obser-
vations about the sharing of dotfile repositories.

5.3.1 RQ1: Who are the owners of dotfiles repositories?

Motivation Sharing dotfiles is often endorsed by the community [64] as a best-practice
for software developers. However, the scale of dotfile sharing in practice remains unclear.
Moreover, software development tools are not the only kind of applications that store
configuration information in dotfiles . Many non-development focused tools — such as *NIX
PDF readers — also store their configuration in dotfiles [116]. While these applications are
still important for developers, they do not focus of software development directly. Thus,
in this RQ, we aim to understand the popularity of sharing dotfiles among developers, and
evaluate our dotfiles dataset by verifying whether the dotfiles repositories are owned by
developers.

Methodology To achieve a border understanding, we approach the owners of dotfiles
repositories from two perspectives, the popularity of owning a dotfiles repository among
the most-starred users on GitHub, and whether the selected dotfiles repository owners are
developers.

To understand the popularity of sharing dotfiles among developers, we checked for the
top 500 most-starred users on GitHub to see if they own a variant of a dotfiles repository.

54

In September 2022, we collected the information of the top 500 users by leveraging a
community tracker [71]. With the user ID collected, we used the GitHub API to retrieve
the list of repositories owned by each user in our list. For each user we checked whether
a dotfiles repository exists by performing a fuzzy string match between the repository
name and the term “dotfiles”. The fuzzy algorithm works by calculating the Levenshtein
distance [78] between the substrings. Based on manual inspection, we selected 85 as a cut
off score based on fuzzy matching, where slight variations of “dotfiles” is accepted (e.g.,
“dotfiles-osx”, “dotfiles-local”). To avoid situations where a repository’s name contains only
a few characters and overlaps with “dotfiles” (which would give a perfect score), we set an
extra requirement for the repository name to be at least length of four.

We sampled 100 dotfiles repositories uniformly at random from the dotfiles dataset to
try to infer the profession of the owner. For each repository, we start by visiting the
owner’s GitHub profile homepage. When the user provides additional information such
as a personal profile, personal website links, and LinkedIn profile page, we followed the
publicly available information and took note on the owner’s profession, if we could find it.
When the information was not present, we supplemented the process with a simple web
query based on the their GitHub user name. In these cases, we can sometimes discover
the owner’s information as people tend to use the same user name across platforms. We
restrained ourselves from further investigations (e.g., leveraging the author name and e-
mail) to avoid violating the users’ privacy.

Results We now report the findings we gathered from investigating the most-starred
users on GitHub, and from tracking the public profiles of the owners of dotfiles repositories
contained in the dotfiles dataset . We start by making the following observation:

Observation 1: Developers often share dotfiles. Owning a dotfiles repository is
common among the most prolific developers on GitHub. In 129 (i.e., 25.8%) of the top
500 most-starred users have a dotfiles repository. We note that the actual number may be
higher than the measured one, since the “user” here may represent a organization instead
of a single developer.1 In Fig. 5.2, the solid blue line represents the cumulative number
of users with a dotfiles repository in the top 500 most-starred users. That is, at the 100
mark on the x-axis, it represents the number of users with a dotfiles repository in the top
100 most-starred users. As shown in the figure by the dotted red line, we observe a linear
growth in the number, suggesting the prevalence of sharing dotfiles .

We found that the majority of the owners of dotfiles repositories in the dotfiles dataset
appear to work in a programming-related job. As shown in Table 5.1, 79 dotfiles repositories

1https://docs.github.com/en/get-started/learning-about-github/
types-of-github-accounts

55

https://docs.github.com/en/get-started/learning-about-github/types-of-github-accounts
https://docs.github.com/en/get-started/learning-about-github/types-of-github-accounts

0 100 200 300 400 500

Users

0

100

200

300

400

500

U
se

rs
w

it
h

do
tf

ile
s

re
po

s

Users with dotfiles repos
Linear Regression

Figure 5.2: Number of top users by total repo stars on GitHub with dotfiles repositories

56

owners are software developers, with 3 system admins, 6 students, and 3 researchers.
Unfortunately, we were unable to identify the profession for 9 of the dotfiles repositories
owners. This finding gives us high confidence that the dotfiles contained in the dotfiles
dataset are mostly from developers.

Table 5.1: Sampled 100 dotfiles repositories owners by occupation

Self-declared # of owners of
profession dotfiles repositories

Software developer 79
System admin 3
Student 6
Researcher 3
Unknown 9

We believe the prevalence of sharing dotfiles comes from the familiarity that developers
have during their regular job to use version control systems. Similar to source code, the
plain text property of dotfiles makes tracking them the same as tracking source code. As
a result, developers can easily manage their dotfiles in the same way they manage source
code.

5.3.2 RQ2: What kind of user-specific configuration files do users
track in their dotfiles repositories?

Motivation After confirming the dotfiles dataset from developers, in this RQ we explore
the content contained in dotfiles repositories. Since dotfiles are user-specific configurations,
we first aim to identify which software tools developers are explicitly maintaining configu-
ration settings for. With an idea of what developers track in dotfiles repositories, we can
understand the tools that are likely to be customized.

Methodology We extracted all unique dotfiles from the dotfiles dataset . We represent
each dotfile by its lowercase base name, and remove the leading dot if any. For example,
a file vim/.VIMRC (relative to git base) will be normalized to vimrc. We applied this step
since the structure of each dotfiles repository is unique. Developers may have different ap-
proaches to managing dotfiles (e.g., writing deployment scripts, using dotfiles management

57

0 50 100 150 200 250 300
Size of the repository by number of files

0 62.0

29.0

133.0

Distribution of number of files
in dotfiles repositories

(a) Number of files in dotfiles repositories

0 5000 10000 15000 20000 25000
Size of dotfiles repositories in K bytes

0 2192.0

764.0

10240.0

Distribution of dotfiles repository size

(b) Size of dotfiles repositories

Figure 5.3: Content size of dotfiles repositories

tools), so the normalization step ensures that we are correctly tracking the dotfiles across
different structures. We also ignore the file extension for README files to accommodate
the developers’ choice of format; thus, README files in Markdown, Org, Asciidoc, etc. are
treated uniformly. After we have the normalized dotfiles , we create a taxonomy of dotfiles
based on the top 50 most common dotfiles . The most common dotfiles are determined by
the percentage of presence in dotfiles dataset .

Results Fig. 5.3 provides a overview of the size of dotfiles repositories. The median
number of files in dotfiles repositories is 62, and the median repository size is 2Mb.

In Table 5.2, we list the top 20 with the percentage of dotfiles repositories they are
present in the dotfiles dataset . In addition to project meta files (e.g., README , license),
we found that configuration files for Vim, Git , tmux, zsh, and bash to be the most common.

Observation 2: Configurations for shell and text editors are the most com-
mon. Configurations for shell also contribute to the top 50 list. We observe configuration
files associated with three different shells, namely zsh, bash, and fish. Auxiliary files for
shells such as aliases, profile, and zshenv are also common. These files complement
the shell configurations by splitting the configuration based on functionality (e.g., separate
aliases) and environment (e.g., login and interactive sessions).

58

Table 5.2: 20 most tracked dotfiles by popularity

Filename Associated application Application type #(%)

README meta 2923 (88.4%)
gitignore git version control 2672 (80.8%)
vimrc vim text editor 2113 (63.9%)
gitconfig git version control 2087 (63.1%)
tmux.conf tmux terminal multiplexer 1950 (59.0%)
zshrc zsh shell 1856 (56.2%)
config multi* 1486 (45.0%)
bashrc bash shell 1342 (40.6%)
gitmodules git version control 1131 (34.2%)
bash_profile bash shell 954 (28.9%)
init.vim vim text editor 904 (27.4%)
license meta 844 (25.5%)
inputrc readline text edit 798 (24.1%)
xresources Xorg display server 709 (21.5%)
install.sh meta 698 (21.1%)
gemrc Ruby package manager 625 (18.9%)
xinitrc xinit start Xorg 601 (18.2%)
gitignore_global git version control 537 (16.2%)
zshenv zsh shell 523 (15.8%)
aliases shell shell 510 (15.4%)

*: config is a fairly common name selected by multiple software developers as their
default configuration file name. Some common examples include i3wm a window
manager, /.config/i3/config, and fcitx5 a input method manager,
/.config/fcitx5/config.

59

Figure 5.4: Taxonomy of the top 50 most common dotfiles

60

Another major contributing factor to the top 50 list is the collection of text editor
related configurations. Vim, Emacs , VSCode, and a universal editorconfig can be observed
from the list. Vim allows file type specific setups in separate files, which explains the 6
different .vim files associated with different languages. The remaining 3 files correspond
to variants of Vim, the default (.vimrc), the graphic version of Vim— GVim (gvimrc),
and a major fork of Vim— NeoVim (init.vim). Despite VSCode being the most popular
text editor [103], the popularity of settings.json is overshadowed by Vim in our study.
Our conjecture is that VSCode encourages users to use its builtin synchronization support,
removing the need for managing the configuration through a dotfiles repository.

Observation 3: Meta-files are common in dotfiles repositories. We also want to
highlight the dotfiles repository specific files in the top 50 list. Commonly found in GitHub
projects, README and license are also common in dotfiles repositories. The README
file often contains information about the repository and instructions to deploy the dotfiles
in a new environment. The detailed deployment method can leverage an existing dotfiles
management system, such as Chezmoi2 or GNU stow, or with custom install scripts as
install.sh or Makefile which both show up in the top 50 list.

Observation 4: GUI configurations are rare in dotfiles repositories. In Fig. 5.4,
we show the taxonomy of the 50 most popular dotfiles . We can see immediately that most
dotfiles are for command line applications, while only a few dotfiles are for GUI applica-
tion. For example, iterm2.plist for iTerm on MacOS, and dunstrc for the notification
manager dunst. There are also a couple of files related to the Xorg display server, such
as xinitrc and xinit. The GUI -specific Vim configuration gvimrc is also present in the
list. We suspect the lack of GUI configuration files is because — unlike in the 1980s *NIX
world — modern GUI applications are often configured using a GUI interface, and the
settings are managed and stored differently.

This makes managing the configuration files hard. Some applications also have their
own mechanism for managing configuration (e.g., web browsers). We note that despite
Windows being common for development [103], we did not observe any Windows-specific
software configuration files in the top 50 list. We observed some instances of AutoHotKey
scripts which is a popular Windows application for automation. We suspect the lack of
Windows-specific configuration files is due to Windows prefers using the registry database
in which applications and system components store and retrieve configuration data [89].

2https://github.com/twpayne/chezmoi

61

https://github.com/twpayne/chezmoi

5.3.3 RQ3: How do developers update their dotfiles?

Motivation We theorize that developers often update their dotfiles to adjust the con-
figurations to adapt to both the change in development need (e.g., switching to a new
language) and also the change in personal taste (e.g., testing out alternative tools). The
dotfiles dataset , which contains real-world dotfiles , allows us to investigate the details of
how developers update their dotfiles .

Through studying the change history of dotfiles , we can understanding of how devel-
opers maintain their dotfiles repositories. Also, through studying the frequently edited
dotfiles , we can better grasp the patterns of how developers update the dotfiles . Our the-
ory is that different types of dotfiles may be updated differently. For example, after a
rapid period of changing the README file, the information will stabilize and require only
infrequent updates subsequently. Meanwhile, for other tools such as Emacs , the developers
may fine tune it frequently to adapt the tool to their needs.

In this RQ, we study the intent of dotfiles repository commits and the code churn
history patterns to better understand how developers update their dotfiles .

Methodology We start by sampling 400 commits from the dotfiles dataset . We then
performed open card-sorting on the commits to derive the intent of the commit. We went
through the commits together and grouped similar commits. We iterated on the groupings
until we felt that no commits should be moved to another group. This step allows us to
build an understanding of why dotfiles are updated by developers.

With the next step, we attempt to discover historical patterns in code churn. We
tracked the total number of commits for each dotfile in the dotfiles repository. We extracted
frequently-edited dotfiles that have at least 20 commits and are at least 1 year old. We
modeled each of the frequently updated dotfiles as a time-series using its code churn history.
The time-series is represented by cumulative total code churn summed in each commit (i.e.,
sum of added and deleted lines). Since most time-series analysis techniques require regular
time-series with the same number of timesteps, we limit the time-series from the last step
to only the first year, and normalize the timesteps to 1 day. At this step, each time-series
have 365 data points. We then removed time-series which have less than 20 updates. In
other words, the resulting time-series are from dotfiles that have at least one year of history
and have at least ten commits associated with it from ten different days in the first year.
In the end, we have a total of 12,502 time-series representing 3090 distinct dotfiles in the
frequently updated set of dotfiles .

62

We then leverage a time-series clustering method called K-Shape [105] to extract the
patterns of code churn history. We first normalize the time-series with a mean-variance
filter; this filter allows us to remove the bias from absolute change of the time-series and
focus more on the relative change. For example, when two files share the percentage of
change (e.g., 10%) while one file is 500 lines and the other is 50, the mean-variance filter
is able to normalize the two time-series.

We then leveraged the K-Shape clustering algorithm for time-series clustering. The
K-Shape algorithm uses metrics that focus on the shape of the time-series. This approach
has been found to have similar performance to DTW [123], which, in turn, has been shown
to outperform Euclidean distance, and is more computationally efficient than DTW [56].

K-Shape, which is derived from K-means [84], also suffers from the problem of deter-
mining the proper k value. Since the distance between time-series, and determining the
centroid of a series of time-series is still an on-going challenge in time-series analysis, there
is no universal method to validate the result of the clusters [2]. So we experimented with
different k values ranging from 2 to 10, and selected the best k value (i.e., 4) base on our
interpretations of the clustering results.

Results In Fig. 5.5, we show the distribution of the number of commits, the median
commits by file per dotfiles repository, and the number of commits for the most edited
file per dotfiles repository. As suggested by Fig. 5.5a, the dotfiles repositories are updated
frequently (note that in our filtering process, we only require the dotfiles repository to have
five commits).

Observation 5: The majority of dotfiles receive at most one update. As shown
in Fig. 5.5b, in most dotfiles repositories, the median number of commits per file is only
two. Since the dotfile is introduced to the repository in the first commit, it means that
the dotfile have only received one update since its introduction. This suggests that a large
proportion of the dotfiles repository focuses on “cold storage” where the content rarely gets
updated.

Observation 6: Most dotfiles updates focus on a small set of files. Although
most dotfiles seldom receive updates, the most frequently updated dotfile in each dotfiles
repository receive many updates as shown in Fig. 5.5c. While most dotfiles remain stable,
developers update some dotfiles frequently.

Observation 7: Most dotfiles repository commits relate to tweaking the
behavior of software tools. We found that the majority (i.e., 63.3%) of the dotfiles
repository commits are related to tweaking the behavior of software tools. We also found
that 30.8% of the commits edited configurations in the form of scripting (e.g., improving

63

0 200 400 600 800 1000 1200
Number of commits in each dotfiles repository

0 236.0

93.0

522.0

Distribution of number of commits
in dotfiles repositories

(a) dotfiles repositories com-
mits

1.0 1.5 2.0 2.5 3.0 3.5
Number of commits editing the file

0 2.0

1.0

2.0

Distribution median file edits
in dotfiles repositories

(b) dotfiles repositories median
file updates

0 50 100 150 200 250 300
Number of commits editing the file

0 65.0

32.0

136.0

Distribution most edits for files
in dotfiles repositories

(c) dotfiles repositories most
updated file

Figure 5.5: Information on commits for dotfiles repositories

a shell script), 24.0% of the commits changed parametrized options (i.e., a predefined
configuration option), and 8.5% of the commits are related to creating and modifying
shortcuts (e.g., adding a Git alias). The details of the card-sorting results are shown in
Table 5.3. Scripting is often related to defining custom actions in configuring software. It
can be most commonly found in shell scripts for automation (e.g., swapping the location of
two files) and performing complex functionalities in text editors (e.g., run code formatters
when a file is saved).

Table 5.3: Type of dotfiles commits

Type #(%)

tweaking script behavior 123 (30.8%)
tweaking parametrized options 96 (24.0%)
dotfiles deployment management 41 (10.3%)
fixing bugs in configuration 37 (9.3%)
tweaking shortcuts 34 (8.5%)
refactoring configuration 17 (4.3%)
managing external resources 23 (5.8%)
documentation update 20 (5.0%)
misc 18 (4.5%)

Observation 8: A noticeable amount of commits focus on dotfiles manage-

64

Figure 5.6: K-Shape clustering (k = 4) results on time-series modeled by code-churn
history. Top: Mean-variance normalized. Bottom: Min-max normalized.

ment. We found that a noticeable amount of commits (i.e., 25.4%) focus on dotfiles
management. Documentation updates occur in 5.0% of the commits where developers up-
date the contents of README files. 10.3% of the commits directly involve changing the
files related to dotfiles deployment. These commits modify deployment specific files such
as Makefile and setup.sh. In 4.3% of the commits, developers refactor their dotfiles .
This is often indicated by the commit message such as “clean up”. We also observe 5.8%
of the commits that deal with external resources. For example, some developers manage
their Vim plugins with Git submodules leveraging package managers like pathogen.3)

The rest of the commits (i.e., 4.5%) do not fit in either of the above mentioned cate-
gories. These commits are often aggregations of multiple changes and do not have a single
purpose.

Observation 9: Three types of dotfiles code churn history patterns can be
observed in the 4 clusters. In Fig. 5.6, we show the clustering results from K-Shape
in both mean-variance and min-max normalized form. The figures on the top are the
mean-variance normalized time-series. These time-series are the raw data fed to K-Shape.
The red line is the average of the time-series in each cluster. The slope of the line after

3https://github.com/tpope/vim-pathogen

65

https://github.com/tpope/vim-pathogen

mean-variance normalization represents the change. So when the slope is near zero it
means that there is limited code churn during the period. The figures on the bottom are
min-max normalized between 0 and 1 for better visualize the code churn history. Cluster 1
are dotfiles that receive updates frequently after the dotfile is introduced to the dotfiles
repository, but remain mostly unchanged since then. Clusters 2 and 4 are similar in the
sense that these dotfiles receive updates over time, but differ when the majority of the
updates occur. dotfiles in Cluster 3 are continually updated over time and the modified
size are consistent throughout.

We also report here over observations on the clustering results in different k values.
When we began with k = 2, it is immediately clear that one type of code churn history
pattern is the dotfiles stops receive updates shortly after it has been introduced. As we
gradually increase the value of k, we observe different patterns when do the update occur
over time. Similar to Cluster 2, additional clusters in higher k value will have a sudden
update in different time range. In other words, these clusters will overlap if we shift the
time-series.

The distribution of the top 20 frequently updated files across the clusters is shown in
Table 5.4. It is immediately clear that all types of dotfiles are well represented in each of
the clusters. This suggests that the type of dotfile does not have a large effect on how the
dotfile is maintained. We believe the developers have a larger impact on how the dotfiles
are updated. We checked the frequently updated dotfiles by each developer and observe
a median 57.1% of the developer’s frequently updated dotfiles belong to one pattern. In
other words, if the developer has no impact, this percentage will be around 25%. However,
note that the median number of frequently edited dotfiles by developer is only three, so
the data is likely biased. A developer who enjoys tinkering may constantly update their
dotfiles to change their workflow. At the same time, a goal-oriented developer may spend
some time to configure the tools at first to get it working and stick to the configuration
afterwards.

5.4 Discussions and Implications

Through our study of dotfiles repositories, we have gained insights in how developers con-
figure their software tools and how they manage the configurations in dotfiles repositories.
Based on our observations, we discuss the challenges we perceive in managing dotfiles
repositories. Moreover, we discuss the potential for how shared collections of real-world
user-specific configurations can benefit developers, tool designers, and researchers.

66

Ta
bl

e
5.

4:
D

is
tr

ib
ut

io
n

of
fr

eq
ue

nt
ly

ed
it

ed
do

tfi
le

s
ac

ro
ss

cl
us

te
rs

do
tfi

le
ty

pe
C

lu
st

er
1

#
%

C
lu

st
er

2
#

%
C

lu
st

er
3

#
%

C
lu

st
er

4
#

%
To

ta
l

vi
mr

c
24

3
20

.5
9%

32
5

27
.5

4%
24

5
20

.7
6%

36
7

31
.1

0%
11

80
zs

hr
c

16
5

21
.7

7%
19

4
25

.5
9%

18
4

24
.2

7%
21

5
28

.3
6%

75
8

re
ad

me
63

17
.5

0%
14

5
40

.2
8%

69
19

.1
7%

83
23

.0
6%

36
0

co
nf

ig
95

26
.6

1%
10

2
28

.5
7%

75
21

.0
1%

85
23

.8
1%

35
7

ba
sh

rc
60

17
.8

0%
10

3
30

.5
6%

73
21

.6
6%

10
1

29
.9

7%
33

7
gi

tc
on

fi
g

55
17

.8
0%

73
23

.6
2%

79
25

.5
7%

10
2

33
.0

1%
30

9
tm

ux
.c

on
f

59
19

.6
0%

94
31

.2
3%

65
21

.5
9%

83
27

.5
7%

30
1

gi
tm

od
ul

es
42

14
.6

3%
93

32
.4

0%
70

24
.3

9%
82

28
.5

7%
28

7
al

ia
se

s
37

17
.2

1%
58

26
.9

8%
41

19
.0

7%
79

36
.7

4%
21

5
in

it
.v

im
47

25
.5

4%
49

26
.6

3%
46

25
.0

0%
42

22
.8

3%
18

4
in

st
al

l.
sh

37
26

.8
1%

37
26

.8
1%

27
19

.5
7%

37
26

.8
1%

13
8

in
it

.e
l

34
25

.0
0%

34
25

.0
0%

20
14

.7
1%

48
35

.2
9%

13
6

br
ew

fi
le

29
22

.1
4%

36
27

.4
8%

32
24

.4
3%

34
25

.9
5%

13
1

ba
sh

_p
ro

fi
le

22
17

.1
9%

18
14

.0
6%

23
17

.9
7%

65
50

.7
8%

12
8

gi
ti

gn
or

e
32

25
.2

0%
41

32
.2

8%
15

11
.8

1%
39

30
.7

1%
12

7
pa

ck
ag

e.
js

on
8

7.
14

%
28

25
.0

0%
43

38
.3

9%
33

29
.4

6%
11

2
xi

ni
tr

c
15

15
.9

6%
22

23
.4

0%
29

30
.8

5%
28

29
.7

9%
94

al
ia

se
s.

zs
h

25
27

.4
7%

21
23

.0
8%

24
26

.3
7%

21
23

.0
8%

91
pl

ug
in

s.
vi

m
16

20
.2

5%
19

24
.0

5%
22

27
.8

5%
22

27
.8

5%
79

ma
ke

fi
le

12
15

.3
8%

23
29

.4
9%

20
25

.6
4%

23
29

.4
9%

78

67

5.4.1 Challenges in Managing dotfiles

Challenge 1: Deployment of dotfiles requires effort. For the dotfiles to be read
correctly by their associated software, the dotfiles need to be stored at the correct location.
Common locations include the user’s home directly and the $XDG_CONFIG_HOME (defaults
to $HOME/.config). Users often have some kind automated setup for moving the dotfiles
to the targeted location. The setup can be through a deployment script (e.g., setup.sh),
or through dedicated tools such as GNU Stow [50]. In RQ2, we find many files among the
most popular tracked dotfiles that focus on automating the process of deploying dotfiles .
The deployment process can be either fully automated, where everything is taken care of
by a script, or in documentation that contains the steps for deployment. Moreover, in RQ3,
10.3% of the commits deal managing the deployment of dotfiles . At the current stage, no
universal method or tool exists for developers to manage their dotfiles .

The lack of standard method for managing dotfiles also introduces challenges in sharing
dotfiles . For example, when a developer wish to explore other developers dotfiles , the
developer must consult additional scripting and documentation to understand the setup of
other developers. Future research can investigate this aspect further to better understand
the challenges in deploying dotfiles and develop methodologies and tools to improve the
process.

Challenge 2: dotfiles need to manage external resources. Similar to software
development, we find that in dotfiles , developer also reply on external resources. Devel-
opers leverage git submodules to include external resources in their dotfiles . The external
resources are plugins that extends the functionality of the software tools. The most com-
mon type of external resources we encountered in our study are Vim plugins. We believe
its popularity largely comes from the popular Vim plugin managers Vundle and pathogen.

External resources can also be involved indirectly. Using Vim as another example,
other plugin managers (e.g., vim-plug), instead of using git submodules requires only a
declaration of the external resource by its URL to manage the extension. Unlike using git
submodules, there exists a challenge in replicating the dotfiles . Base on the time of the
deployment, different versions based on different commits will deployed.

Challenge 3: dotfiles can leak privacy information. Some configuration may
need to deal with sensitive information. For example, setting up software with API keys.
As pointed out by a recent study, security leakage can be a huge concern on GitHub due
to accidentally committing confidential information [47]. We observed developers taking
actions to mitigate this issue. For example, using local environment variable to avoid
writing sensitive information in plain text.

68

5.4.2 Leveraging dotfiles as a Software Repository

Configurations can be as simple as a set of key-value pairs (e.g., shell aliases), or as com-
plicated as writing code (e.g., shell scripts). With the complexity and diversity in software
development, tools needs to provide customizability to support different user scenarios.
From our qualitative results in RQ3, we find that the majority of the configuration up-
dates are directly related to modifying the configurations.

One of the challenges of tool developers is to understand the user requirements. How-
ever, given the complexity and customizability of software tools, the requirements may be
complex and not single purpose. One well known example is the concept of a bug becoming
a feature. A tool may be used differently from how it was originally designed. We believe
by leveraging the collection of dotfiles , we can begin to address the challenges.

Challenge 4: Configurations in dotfiles provides user usage data indirectly.
The rich real-world use case information contained in dotfiles repositories provides valuable
information to understand software usage. We have observed many successes in leveraging
telemetry techniques to better understand user behavior and in return improve user expe-
rience in software products [185, 113]. However, telemetry is a highly disliked practice in
open source software. Traditionally, we rely on active members who participate and con-
tribute to discussions to move forward on user experience. And from time to time, we can
observe patters of “scratching an itch” type of contribution made by other users. However,
this means that problems that are not directly faced by the active members and/or the
problems that are not severe enough to attract users with an itch will remain unaddressed.
Dotfiles , while not a silver bullet to solving the need for telemetry, can act as a middle
ground to offer more information in addition to the vocal majority. The additional infor-
mation shared by the community can help with discussions to provide a broader but not
absolute view of how the tools are used in the community. This information can guide the
process of creating a “sane default” setting. However, even if this information is provided,
we may still face a divided community on what constitutes a “sane default”. Some previous
studies have explored the idea of leveraging community configurations to help with creat-
ing better configurations for production software [185, 143]. We believe that are unique
challenges faced in dotfiles . Unlike software deployed in production environments (e.g.,
databases, web servers), user-facing software often does not have an optimal configuration.

Challenge 5: Configurations in dotfiles can help with creating advanced
configuration recipes. Configurations for software tools can get complicated. For exam-
ple, it is common to observe Emacs configurations with thousands of lines of elisp code.
Developers often learn from other developers and gradually add and improve their own
configuration. We believe that by leveraging the corpus of dotfiles , we can help create

69

better documentation to help developers configure their tools.

A similar concept can be observed in many successful open source libraries. A section
called the “cookbook” can be find in the documentation. The section provides recipes on
common use-cases, and serve as a base ground for developers to begin using the library.
However, creating and maintaining the recipes can be a challenging tasks. We believe that
dotfiles , can be a valuable source for creating “cookbook” recipes for software tools. By
extracting common real-world configurations from dotfiles , we can improve the examples
in documentation. For example, by extracting common configurations for editing Python
from Vim configurations, we can provide extended real-world examples to help future
developers to configure the software.

5.5 Threats to Validity

» Internal Validity — When deciding to create the dotfiles dataset , we set strict filters to
the repositories selected. This suggests that we can miss out on repositories that may be
of interest. However, we selected these criteria to ensure that we are looking at the dotfiles
repositories owned by developers, which is confirmed by our results for RQ1. During our
process to determine the occupation of dotfiles repositories owners, we leveraged only the
owner’s public profile as well as a simple user name search; in only a few cases were we
unable to determine the occupation to our satisfaction. It is possible that the owner may as
well work in fields that require developing software. Since a more thorough search, such as
using the owner’s commit email, may violate the privacy of the owner, we decided stopping
at the stage of viewing the public profiles.

We chose to leverage the K-Shape algorithm to extract the dotfiles maintenance patterns
modeled as a time series based on historical code churn. K-Shape focuses on the shape
attributes of the time-series and is an alternative approach compared to extracting features
from the code commits. Using a shape-based algorithm allows us to avoid the downsides
and potential problems of determining the important features to extract, and also have a
higher focus on the activity trends of the code change alone. Since this is still a fairly new
approach, in future work, research can investigate the differences and effectiveness of the
different approaches for clustering code churn.

» External Validity — We have chosen GitHub as the source to collect the dotfiles reposi-
tories. While GitHub is largely considered as the de facto location for developers to host
their projects, in recent years, many other options have gained popularity. Some options

70

are also centralized hosting a large variety of projects such as GitLab. Meanwhile, self-
hosted options also exist, where an independent GitHub-like instance can be hosted for
a specific developer or organization. One example would be Savannah4, the place where
GNU software is hosted. Due to security reasons, developers are also unlikely to host
their work-related user-specific configuration files on publicly. Therefore, our results likely
generalize only to the use of user-chosen software and have a bias towards open source
applications.

Because they originate in the *NIX world of the 1970s — largely before the advent
of graphical user interface — dotfiles have historically had a heavy focus on the CLI
applications. This can also be observed from the set of common dotfiles across repositories.
Since GUI applications may have different ways of storing configuration (e.g., a binary file),
and have built-in syncing functionality (e.g., VSCode), they may not be captured in the
dotfiles repositories. Storing configurations in plain-text may be replaced by other means
in the future, however, we believe the requirement for customization still exists. Future
research and build specific tools to analyze the user-specific configuration files for GUIs
and compare the results with our work.

5.6 Summary

In this chapter, we study the practice of sharing and maintaining dotfiles based on dotfiles
repositories collected from GitHub. We observe that sharing dotfiles is a common practice
among developers. Configuration files for text editors, shells and Git are the most common.
While developers track many dotfiles , only a small amount of the dotfiles are constantly
updated. We extracted code churn history patterns from frequently updated dotfiles and
find that there is no significant relationship between the code churn history pattern and the
type of dotfiles . We discuss the challenges developers face in managing dotfiles and how we
can leverage the publicly shared dotfiles to help creating “sane defaults” and constructing
“cookbook” recipes for documentation.

4https://savannah.gnu.org/

71

https://savannah.gnu.org/

Chapter 6

Understanding App Stores the Software
Engineering Perspective

App stores serve as the location where end users browse, discover, and manage their appli-
cations for a particular platform. The structure of app store where an organization oversees
the operation, has been a novel way for software distribution with mobile platforms gaining
popularity. App stores have become a rich software repository containing software artifacts
from both the developer and user end. For example, studies have shown that developers
use app store as a source to collect information about competitive apps and improve their
own app through app product homepages and user reviews. While, we have seen app
stores beyond the mobile platform (e.g., Steam), research have mostly focused on mobile
app stores. In this chapter, we present an empirical study to understand the concept of
app stores in the perspective of software engineering.

Related publication An earlier version of the work is currently under major revision
for Empirical Software Engineering.

Wenhan Zhu, Sebastian Proksch, Daniel M. German, Michael W. Godfrey, Li
Li, Shane McIntosh. 2023. What is an App Store? The Software Engineering
Perspective

6.1 Introduction

The widespread proliferation of smartphones and other mobile devices in recent years has
in turn produced an immense demand for applications that run on these platforms. In

72

response, online “app stores” such as Google Play and Apple’s App Store have emerged
to facilitate the discovery, purchasing, installation, and management of apps by users on
their mobile devices. The success of mobile app stores has enabled a new and more direct
relationship between app creators and users. The app store serves as a conduit between
software creators (often, developers) and their users, with some mediation provided by the
app store. The app store provides a “one-stop shopping” experience for users, who can
compare competing products and read reviews of other users. The app store also acts as a
quality gatekeeper for the platform, providing varying levels of guarantees about the apps,
such as easy installation and removal, expected functionality, and malware protection. To
the software creator, the app store provides a centralized marketplace for their app, where
potential users can find, purchase, and acquire the app easily; the app store also relieves
the developer from basic support problems related to distribution and installation, since
apps must be shown to install easily during the required approval process. Indeed, one
of the key side effects of mobile app stores is that it has forced software developers to
streamline their release management practices and ensure hassle-free deployment at the
user’s end.

The success of mobile app stores has also led to the establishment of a plethora of
other kinds of app store, often for non-mobile platforms, serving diverse kinds of user com-
munities, offering different kinds of services, and using a variety of monetization strate-
gies. Many technical platforms now operate in a store-centric way: essential services and
functionality are provided by the platform while access to extensions/add-ons is offered
only through interaction with the app store. When new technical platforms are intro-
duced, an app store is often expected to serve as a means to host and deliver products
to its users [39]. Example technical platforms that use app store-like approaches include
Steam [148], GitHub Marketplace [53], the Chrome Web Store [54], WordPress [164],
AutoDesk [13], DockerHub [40], Amazon Web Services (AWS) [8], Homebrew [117],
or Ubuntu Packages [23].

For platforms that operate in this way, the app store is an essential part of the plat-
form’s design. For example, consider source code editors, such as VSCode Marketplace
and IntelliJ. The tool itself — which we consider to be a technical platform in this context
— offers the essential functionality of a modern source code editor; however, many addi-
tional services are available through the app store that are not included by default. Thus,
extensions that allow for language-specific syntax highlighting or version control integra-
tion must be added manually by the user through interaction with the tool’s app store.
We conjecture that the app store has fundamentally changed how some classes of software
systems are designed, from the overall ecosystem architecture of the technical platform to
the way in which add-ons are engineered to fit within its instances.

73

In this work, we will explore the general space of app stores, and also consider how app
store-centric design can affect software development practices. Previous research involving
app stores has focused mainly on mobile app stores, often concentrating on properties of
the apps rather than properties of the stores. For example, Harman et al. performed one of
the first major studies of app stores in 2012, focusing on the BlackBerry App World [61].
However, concentrating the investigative scope so narrowly may lead to claims that do not
generalize well across the space of all app stores. For example, Lin et al. found that reviews
of games that appeared in mobile app stores differed significantly from the reviews of the
same game that appeared within the Steam platform’s own app store [80]. In our work,
we aim to take a more holistic approach to studying app stores by considering both mobile
and non-mobile variants. In so doing, we hope to create a more general model of app stores
that fits this broader space.

To achieve a holistic view, we start from the definition of an app store. A precise
definition of the term “app store” has been omitted in much of the previous research in
this area. Currently, Google Play and Apple’s App Store dominate the market and are
the main targets of research on app stores; in the past, the BlackBerry App World and
Microsoft’s Windows Phone Store were also important players, but these stores are now
defunct1. Wikipedia recognizes Electronic AppWrapper [162] as the first true platform-
specific electronic marketplace for software applications, but the term became popular
when Apple introduced its App Store along with the iPhone 3G in 2008. Since then, the
term has largely come to refer to any centralized store for mobile applications. We present
our own working definition of the term “app store” in Section 6.2.

The goal of this work is to survey and characterize the broader dimensionality of app
stores, and also to explore how and why they may feed back into software development
practices, such as release management. As a step toward this goal, we focus on two research
questions (RQs) that aim to explore the space of app stores:

RQ1: What fundamental features describe the space of app stores?

To understand app stores, we first need a way to describe them. It would be especially
useful if this description framework would highlight the similarities and differences of app
stores. We start by collecting a set of app store examples, and then extract from them a
set of features that illustrate important differences between them. We then expand this
list of app stores with search queries to derive a larger set of example stores. We explicitly
seek generalized web queries to broaden our search space beyond the common two major

1The Windows Phone Store was absorbed into the broader Windows Store in 2015.

74

mobile app stores of Apple and Google. By combining the web queries and the initial set
of app stores, we selected a representative set of app stores and extracted their features.
At the end, we surveyed app stores and derive a feature-based model to describe them;
expanded the set of app store through web queries; and extracted features based on the
model for representative set of app stores.

RQ2: Are there groups of stores that share similar features?

Despite the ability to describe individual stores, it is also important to understand the
relationships between different stores. Having a understanding of the natural groupings
can help us gain insights into the generalizability of results gathered for app stores. We
perform a K-means [84] clustering based on the extracted features of the expanded set
of app stores collected previously. The optimal k value is determined by the Silhouette
method [120]. The clustering results suggest that there are 8 groups in the expanded set of
app stores. The differences can be observed in the type of application offered, standalone
or extension, and/or type of operation, business or community-oriented.

Our investigations of the groupings formed can be used to further evaluate the general-
izability of app store research from one group to another; furthermore, our work can form
the basis for subsequent study of app stores in general.

6.2 Working Definition of an App Store

Previous researchers have often taken a casual approach to defining the term “app store”,
when a definition has been provided at all. For example, in their survey paper, Martin et
al. define an app store as “A collection of apps that provides, for each app, at least one non-
technical attribute”, with an app defined as “An item of software that anyone with a suitable
platform can install without the need for technical expertise” [85]. However, we feel that
this definition is too generous. For example, consider a static website called Pat’s Apps that
lists of a few of someone’s (Pat’s) favourite applications together with their personalized
ratings and reviews; superficially, this would satisfy Martin et al.’s requirements as it is a
collection of apps together with Pat’s own reviews (which are non-technical attributes). We
feel that this kind of “store” is outside our scope of study for several reasons: Pat’s software
collection is not comprehensive, it is unlikely that Pat provides any technical guarantees
about quality of the apps, and a passive list of apps on a web page does not constitute an
automated “store”.

75

App creator End user

App store manager

App2
App1

App3
Develop + submit apps,

update apps

Curate apps,
provide store functionality (e.g, browsing),

coordinate app installation/updating,
coordinate payment

Browse apps,
purchase/order apps,

review apps,
update apps

App store

Figure 6.1: Three major stakeholders of most app stores

In our work, we seek to broaden the idea of app store beyond the well-known mobile
ones. Because we are focused on exploring the notion of what app stores are, we formulate
a working definition of the term; we did so to provide clear inclusion/exclusion criteria for
the candidate app stores that we discover in Section 6.3.

Our working definition was influenced by considering the three major stakeholders of
the app store model: the app creators who create and submit applications to the store; the
app stores themselves, and the organizations behind their operation who curate the app
collection and coordinate both the store and installation mechanisms; and the end users
who browse, download, review, and update their applications through the app store (see
Fig. 6.1).

We thus arrived at the following working definition for app store as an online
distribution mechanism that:

1. offers access to a comprehensive collection of software or software-based services
(henceforth, “apps”) that augment an existing technical infrastructure (i.e., the run-
time environment),

2. is curated, i.e., provides some level of guarantees about the apps, such as ensuring
basic functionality and freedom from malware, and

3. provides an end-to-end automated “store” experience for end users, where

(a) the user can acquire the app directly through the store,

76

(b) users trigger store events, such as browsing, ordering, selecting options, arrang-
ing payment, etc., and

(c) the installation process is coordinated automatically between the store and the
user’s instance of the technical platform.

We can see that using this working definition, our Pat’s Apps example fails to meet all
three of our main criteria.

We note that our working definition evolved during our investigations, and the above
represents our final consensus on what is or is not an app store for the purposes of doing
the subsequent exploratory study. The steps by which the representation is finalized is
discussed in Section 6.3.1. For example, our working definition implicitly includes package
managers such as the Debian-Linux apt tool and Javascript’s NPM tool. It is true that
package managers are typically non-commercial, and so are “stores” only in a loose sense
of the term; furthermore, they usually lack a mechanism for easy user browsing of apps
and do not provide a facility for user reviews. However, at the same time, they are a good
fit conceptually: they tend to be comprehensive, curated, and offer an automated user
experience for selection and installation. Furthermore, some package managers serve as the
backend to a more traditional store-like experience; for example, the Ubuntu Software
Center builds on a tool aptitude, which interacts with software repositories, to provide a
user experience similar to that of Google Play.

6.3 Research Methodology

To investigate these research questions, we designed a three-stage methodology that is
illustrated in Fig. 6.2. The goal of the first two stages is to answer RQ1, while the third
stage addresses RQ2.

In the first stage (Step 1○ and 2○) we identified our initial list of features using a small
set of well-known app stores (Apple’s App Store, Google Play, Steam etc.) During this
stage, six individuals were involved in conducting the qualitative studies. In the second
stage (Steps 3○, 4○, and 5○) we methodically expanded our store list to a broad selection
of 53 app stores that should represent a wide range of stores in practice. In this stage, two
individuals were involved, unless otherwise specified. We then described these stores using
the features identified in the first stage. A major goal of this stage was to evaluate whether
the set of available features was sufficient to describe the characteristics of all these stores.
This set of features forms the answer to RQ1.

77

Initial seeding of
app stores

Refining attributes

K-means clustering

Manually labeling of
attributes of stores

Extracting attributes
for app stores

Expanding list of
app stores

Original list of
stores

Original list of
stores

Set of stores
labelled by
attributes

Selection of
representative

stores

Attributes
describing app

stores

Groupings of stores

6

5

4

23

1Stage 1

Stage 2

Stage 3

Figure 6.2: Methodology overview: There are three main stages, further broken down into
six steps.

78

In the third stage (Step 6○), we took advantage of the labeling of the 53 stores. We
used K-means clustering analysis to identify groups of stores that shared similar features.
These groupings form the answer to RQ2.

We now describe our methodology in more detail.

6.3.1 RQ1: What fundamental features describe the space of app
stores?

Our basic assumption is that an app store can be categorized based on a finite set of
features. The features would correspond to traits of the app store where they describe
the distinguishing qualities or functional characteristics of the app store. We encode these
features as binary values, i.e., each store has or does not have a feature.

In order to identify such features, we first created a seeding set of representative app
stores. We started by enumerating well-known app stores that we were aware of (Step 1○).
Once this set of representative app stores was created, we used an iterative process to
identify the features that we felt best characterized these stores (Step 2○). We then used
these features to describe each store.

Stage 1: Identifying features

First, we start with identifying representative characteristics of five stores and the possible
features for each. We worked alone in this step; however, to seek better reliability as well as
encourage diverse opinions, each store was assigned to two person. In total 15 stores were
assigned where each store is assigned twice. We list the 15 stores with a short description
in Table 6.1. After that, we met as a group to discuss their findings and further refine the
proposed feature set.

In the subsequent iterations, we worked in pairs, and the pairings were reassigned after
each iteration (Step 2○). In these iterations, each pair was assigned a set of 2–3 app stores
and was asked to describe them using the current set of features; a key concern was to
evaluate whether the existing features were sufficient or needed refinement. For each store,
each pair analyzed both its store-front and its documentation; in some cases, we could
navigate the store as users but not as developers, in these cases, we relied on the store’s
supporting documentation.

After this step, we discuss the findings of each pair as a group and updated the set
of features. The features were discussed in detail to ensure that they were conceptually

79

independent from each other. We also made sure that each feature applied to at least one
store to ensure that it was relevant.

Our process leveraged ideas from the coding process of Grounded theory [152] to extract
the features of app stores; and followed the practice of open card sorting [34] to create the
categorized feature set. Similar to prior work[1, 63, 86], we followed practices of Grounded
theory ’s coding process to extract the features (where we consider codes as a specific feature
of app store operation) and stopped when we reached saturation with no new features added
after a new round of describing app stores. Similar to prior work[151, 26, 155], we applied
card sorting to the collected features so inter-related features are grouped together. We
formed a group in this process and discussed how different features belong to the same
conceptual group and stopped when consensus was reached.

Table 6.1: Investigated stores for feature extraction

Store Description

Google Play Store The flagship app store for Android
Apple App Store The app store for iOS devices
Samsung GalaxyApps App store specifically for Samsung devices
GitHub Marketplace Providing applications and services to integrate with GitHub platform
Atlassian Marketplace Providing applications and services to integrate with various Atlassian prod-

ucts
Homebrew Package manager for MacOS
MacPorts A package manager for MacOS
Ubuntu Packages Software repository for the Ubuntu Linux distribution, with a official front end

Ubuntu Software Center
Steam Gaming focused app store running on multiple operating systems (e.g., Win-

dows, Linux)
Nintendo EShop Provides applications for Nintendo devices (e.g., Nintendo Switch, Nintendo

3DS)
GoG Gaming focused store focusing on providing DRM free games
JetBrains Plugin Store Provides plugins to enhance the behavior of JetBrains IDEs
VSCode Marketplace Provides plugins to enhance the editor
Chrome Web Store Provides extensions to enhance Chromium based web browsers
AWS Marketplace Provides servers and cloud services

Stage 2: Expanding our set of app stores and further evaluation and refinement
the features

Once we had agreed on the features, our next goal was to verify that these features were
capable of describing other app stores that were not part of the initial seed, or if features

80

were missing or needed refinement. We used a common search engine, Google, to expand
our set of app stores in a methodical manner (Step 3○). To achieve the goal of including
a broad range of yet undiscovered app stores, we first derived general search terms by
combining synonyms for "app" and "store". More specifically, we have built all possible
combinations of the following terms to construct our search queries:

First half software , (extension -hair -lash) , (addon OR add-on) , solution ,
plugin OR plug-in , install , app , package

Second half repository , shop, ("app store" OR store), ("market place" OR marketplace)
, manager

For example, a concrete query could be created by combining app and ("app store"
OR store). For some queries, it was necessary to refine the term to avoid noise in the
results; for example, searching for the term extension would mainly return results related
to hair product or eye lashes. In total, with 8 synonyms for app and 5 synonyms for store
we were able to create 40 unique Google search queries. We felt confident that these search
terms were representative when we found that the initial seed list had been exhaustively
covered.

Our Google search was performed in November 2020. We queried and stored the search
results for each search query. We classified each result as to whether or not it corresponded
to an app store. We devised two inclusion criteria for this decision: 1) the store in question
should offer software or software-based services, and 2) the store in question should offer
an end-to-end experience for users (ordering, delivery, installation). We considered only
direct hits to the store (e.g., product page), and we explicitly excluded results that contain
only indirect references to a store, such as blog posts, videos, or news. Any disagreements
were resolved through discussion. However, despite our initial effort of maintaining a
clear set of inclusion criteria for app stores, several corner cases arose during the labeling
process. We discussed these cases as they arose, and continually updated the inclusion
criteria throughout the labeling process. Since this step was conducted by two people, in
a few special cases no agreement could be reached, another person acted as a moderator
and resolved the disagreement by a majority vote. Over time, the inclusion criteria and
features evolved and eventually reached a stable state (by Step 4○). Our final state of the
inclusion/exclusion criteria is presented as the working definition for app stores defined in
Section 6.2.

The classification of search results was stopped when a new results page did not contain
any new links to app stores, or once all 10 retrieved pages were analyzed. Initially, 586

81

URLs were examined until a saturation of agreement was reached (90.7% agreement rate).
I continued to label the rest. In the end, a total of 1,600 URLs were labeled. Multiple
search results can refer to the same store; these duplicates were detected and eliminated
by using the root domain of the URL. The most common duplicate references were found
for the domains google. com (61), apple. com (22), and microsoft. com (18). In the
end, we found 291 stores. We note that the exact number of unique stores may differ since
two root domains can point to the same store, kodi. tv and kodi. wiki , or the same root
domain may contain multiple stores, chrome. google. com and play. google. com .

In the next step (Step 5○), we constructed and labeled a set of app stores based on our
identified features from Step 2○. We began from the URLs labeled in the last step and
selected the first three occurring stores for each search term; this resulted in 104 URLs
pointing to 48 unique stores. Two of the stores were inaccessible by the us (ASRock
App Shop requires physical hardware and PLCnext Store’s website was not responsive
at the time of labeling) and removed from the list. In addition, we discussed several
more stores that we felt deserved explicit investigation: AWS, Flatpak, GoG, MacPorts,
Nintendo eShop, Steam, and Samsung’s Galaxy Store. These are the stores that the
we investigated in Step 2○ but did not show up in the first three occurring results from the
search terms. Meanwhile, the added stores all show up in the list of 291 stores identified
by all labeled URLs.

We thus selected and labeled a total of 53 app stores. This sample is non-exhaustive,
but we believe that our wide range of search queries has created a representative sample
of the population of app stores that enables our experiments.

We proceeded to describe 12 app stores, selected as the first from each search query,
using the set of features. This was done to make sure there was consistency in the inter-
pretation and use of each feature. After that, I labeled the remaining stores.

The outcomes of RQ1 were a list of features that describe the main characteristics of
app stores grouped by dimensions, and a set of 53 App Stores, each labeled using these
features.

6.3.2 RQ2: Are there groups of stores that share similar features?

With the outcomes of RQ1, we next performed a K-means clustering analysis to identify
groups of similar stores.

82

google.com
apple.com
microsoft.com
kodi.tv
kodi.wiki
chrome.google.com
play.google.com

Stage 3: cluster analysis

To identify related app stores, we decided to cluster them using the K-means algorithm
(Step 6○).

To prepare our labels for the K-means clustering process, we converted each label of the
feature to a binary value: 1 if the store has the feature, and 0 if it does not. Having binary-
encoded data ensured that we do not suffer from having categorical values that do not make
sense in the scope of K-means . However, performing K-means on binary data can also be
problematic, since the initial centroids selected will be binary. To mitigate this issue, we
applied Principal Component Analysis (PCA) [163] to both reduce the dimensional space
and to produce a mapping in the continuous range. We kept all principal components
that explained a variance of at least 0.05. Finally, we used the Silhouette method [120] to
determine the best number of clusters within a range of 1 to 20.

As an unsupervised method, the result of K-means provides only the clustering result
with the stores in each cluster. We then further discussed the results of the K-means
process and categorized the clusters by the properties of the contained stores. Following
our discussion and categorization, we assigned groupings and names to each of the clusters.

6.4 Results

In this section, we present the results of each of the research questions. The results are
organized based on the three stages discussed in Section 6.3.

RQ1: What fundamental features describe the space of app stores?

Stage 1: Features Characterizing App Stores

As discussed in Section 6.3.1, we derive a set of features and organizational categories
that describe the set of studied app stores; the results of these efforts are summarized
in Table 6.2. We have modelled the features as a binary representation; thus, each store
either has or does not have this feature. We note that for some categories, the features
are mutually exclusive; for example, in the category Rights Management, a store can have
either Creator managed DRM or Store-enforced DRM, but not both. In other categories,
an app store may have several of the features within a given category; for example, there
may be several kinds of communication channels between users, app creators, and the store
owner for a given app store. We now describe each high-level category in detail.

83

Table 6.2: Features for describing app stores

Feature Description

Monetization The type of payment options directly offered by the app store.
Free Free as in in the product can be directly acquired
One-time payment A single payment needed for the product
Seat-based subscription The subscription is based on the number of products provided
Time-based subscription A payment is needed by a set time interval (e.g.„ monthy, yearly)
Resourced-based subscription A payment is needed by the amount of resource used (e.g., API calls, CPU time)
Micro-transaction Additional payment can be collected based on additional feature offered in a product
Custom pricing (i.e., “Contact us for price”) The actual price is based on a per case situation; this happens mostly in business-focused app stores

Rights Management* How does the store take care of DRM on the product provided.
Creator-managed DRM No DRM is offered by the store and is taken care of by the creator
Store-enforced DRM Store wide DRM for every product offered in the store

Do I need an account?* Whether it is possible to use the app store without registration.
Account required An account is required to use the store
No registration possible The store does not have an account system
Some features requires registration Some content of the store is locked behind an account, but the store can be used without one.

Product type The type of product the store offers.
Standalone apps The product operates by itself
Extension/add-ons to apps/hardware The product acts as a feature extension to another application/hardware
Service/resources The software product is a service
Package/library The product is not an end-user product, but offers functionality to other products

Target audience* The intended users of the app store.
General purpose The app store is intended to be used by everyone.
Domain-specific The app store have a specific focus and is very unlikely to be used by a normal person

Type of product creators The type of creators who submits products to the app store.
Business The creators mostly have a commercial or business focus
Community The creators are from the community (e.g., open source developers)

Intent of app store The reason why the app store exists from the app stores’ perspective.
Community building/support The app store aims to serve a technical community
Profit The app store aims to earn money
Centralization of product delivery The app store aims to provide a way for customer to gather apps in a centralized way
Expanding a platform popularity/usefulness The app store aims to extend functionality from the platform it is based on

Role of intermediary The role app store play between the creator of products and the customer of the app store.
Embedded advertisement API Provides an advertisement method for creators to take advantage of
CI/CD Offers continuous integration/continuous deployment for creators
Checks at run time Provide checks when apps installed from the app store is ran
Checks before making available to the cus-

tomer
Provide checks when an app is submitted to the app store for quality reasons

Composability* The relationship between products provided in the app store.
Independent The products in the app store are unrelated to each other
Vendor internal add-on/extension/unlock Some products can be based on other products from the same creator (e.g., game DLC, app feature

packs)
Package manager type of app relationship A dependency relationship exists between products in the app store

Analytics The type of analytical data provided by the app store.
Sentiment and popularity ratings Information related to the popularity of a product (e.g., downloads, score ratings)
Marketing feedback Information related to marketing for the creator (e.g., sales, conversion, retention)
Product usage data Information related to the usage of the product. (e.g., logging, user profiling)

Communication channels The methods where different parties of the app store can communicate with each other.
Documentation Information related to the operation of the store (e.g., instructions to install applications)
Product homepage A homepage for a specific product in the app store
Ratings Any form of rating customers can give to a product (e.g., star, score, up/down vote)
Written reviews (in text) A written viewer where customers can write their experience to the product.
Community forum A forum like feature offered by the store where people can discuss things related to the store/product.
Support ticket A system where customers can inquiry for support questions related to the product offered by the

store.
Promotion/marketing The store offers a way to provide promotional/marketing feature to the products in the app store

(e.g., featured apps, top downloads of the month).

*: Categorical values are mutually exclusive; one and only one categorical value in the dimension can apply to a given store.

84

» Monetization — describes what, if any, payment options are provided to the user directly
by the store. If a product is offered free within the store, but requires an activation key
obtained elsewhere, we consider that the product is free. While most of the options are
self-explanatory, some may be less obvious. For example, GitHub Marketplace offers
seat-based subscriptions where app pricing is calculated by the number of installations
made to individual machines; usually, this occurs within the context of enterprise purchase.
Also, AWS offers resource-based subscription where the price charged is determined by the
amount of resources — such as cloud storage and CPU time — that are used during the
execution of the service.

» Rights Management — describes the Digital Rights Management (DRM) policy of the
store; the values describe whether the store uses a store-wide DRM feature. For example,
for Steam, all games have DRM encryption, whereas the F-Droid store contains only open
source apps, so there is no need for DRM.

» Do I need an account? — describes whether a user can access and use the store without
being registered with the app store. We find that most stores are either account required
(e.g., Apple’s App Store) or no registration possible (e.g., Snapcraft). However, we also
found that some stores can be used without an account for some purposes, with other
features requiring explicit registration; for example, the Microsoft Store allows users to
download free applications without an account, but to purchase an app or leave a review,
an account is required.

» Product type — describes the kinds of applications that are offered by the store. For
example, Google Play and Steam focus on standalone apps, the VSCode Marketplace
store offers add-ons to an existing tool, and AWS allows users to “rent” web-based resources
and services.

» Target audience — describes the intended user base of the store. General-purpose stores
offer products aimed at the broad general public of everyday technology users; this includes
stores such as Google Play, Steam, and the Chrome Web Store. Domain-specific stores,
on the other hand, have a dedicated focus on a specialized field; for example, Adobe
Magento focuses on building e-commerce platforms.

» Type of product creators — describes the typical focus of creators submitting applications
to the store. We distinguish between two groups of creators: those with a commercial or
business focus, and those with community focus such as open source developers.

» Intent of app store — describes the perceived high-level goals of the app store. The
values are derived from the app stores’ own descriptions of their goals, often found in

85

“About us” web pages. For example, both F-Droid and ApkPure are Android app stores;
however, F-Droid’s focus is to provide a location to download and support FOSS software,
while ApkPure’s goal is to provide a location for users to be able to download Android
apps when Google Play may be unavailable.

» Role of intermediary — describes the roles that the app store plays in mediating between
the users and creators; these are software engineering-related services that are mostly inde-
pendent of each other. For example, checks at run time tracks if the app store ensures that
its products function correctly (e.g., Steam tracking game stats). Also, CI/CD indicates
that the app store provides explicit support for continuous integration and deployment of
the apps, which may be linked to specific development tools used by the creator.

» Composability — describes the relationship between products offered by the store. App
stores of independent composability offer products that have no relationship with each
other, such as Firefox Add-ons. Vendor internal add-on/extension/unlock means that
the products within the app store can be based on each other, but only when they are from
the same vendor, such as game DLC and micro-transaction unlocks. Package managers
contain apps that can have complicated dependency relationships regardless of the creator
of the products, such as the Ubuntu package management tool apt.

» Analytics — describes what kind of diagnostic information is provided by the store.
We distinguish between three kinds: Sentiment and popularity ratings offer user-based
information related to store products, such as number of installs in Home Assistant.
Marketing feedback tracks telemetry information for creators on the performance of their
product, such as GitHub Marketplace tracking retention rate for their products for
creators. Product usage data details the observed usage of the products; for example,
Steam tracks the average number of hours users spend on each product.

» Communication channels — tracks the types of methods the store directly offers for com-
munications between both users and creators. Since most stores offer a product homepage
for each of their products, the app creators are largely free to put any information here.
This means that if a creator wishes, they can put links to other communication methods
external to the store. We do not track such information here since it is product dependent
instead of store dependent. While ratings and reviews/comments are often paired together,
during our exploration, we found cases where user ratings were permitted but user reviews
were not; thus, we have separate values for ratings and reviews.

86

Stage 2: Expanded Collection of App Stores and Labeled Set of Representative
Stores

In stage 1, we identified 53 store candidates. To provide the required data for our ex-
periments, we explored these stores to identify which of the fundamental features of the
previous stage are true for each store. Two individuals carried out the qualitative studies
in this stage, unless stated otherwise. The query results are summarized in Table 6.3.
In Table 6.3, we list the search term construction keywords and the first 3 occurrence
of stores by the search term. For example, in search term constructed from (addon OR
add-on) and ("market place") OR marketplace, the first 3 occurrences are Google
Play, PrestaShop, and CS-Cart. To check the applicability of our dimensions and the
labeling guidelines, we have measured the inter-rater agreement between on the 12 stores.
We used the Cohen’s Kappa [32] as a measurement for our inter-rater agreement. The
Cohen’s Kappa is widely used in software engineering research [107]. We have reached
an agreement of 86.3% with Cohen’s Kappa [32] of 0.711). Our agreement based on the
Cohen’s Kappa is considered as a substantial [77] inter-rater agreement suggesting a high
confidence of agreement between the two raters.

There are many app stores beyond Google Play and Apple’s App Store. These app
stores exhibit a diverse set of features.

RQ2: Are there groups of stores that share similar features?

Using the labeled data of the 53 stores, we were able to perform the K-means cluster
analysis that we have introduced in Section 6.3.2. With the number of clusters guided by
the Silhouette method to choose the best k value for K-means , our clustering resulted in
eight clusters.

Due to the nature of unsupervised methods, K-means is able to identify only the clusters
and their members; no real-world meanings are extracted for why the cluster members
belong together. It is also important to note that the K-means algorithm performs hard
clustering ; that is, it creates a partitioning of the stores into mutually exclusive groups that
together span the whole space. Thus each store will be assigned to the unique cluster that
the algorithm considers to best represent it. For this reason, the raw results from K-means
should not be seen as authoritative, but rather as a vehicle for identifying groups of stores
with similar characteristics. Therefore, we leverage the K-means clustering and further

87

Ta
bl

e
6.

3:
F
ir

st
th

re
e

id
en

ti
fie

d
st

or
es

fo
r

ea
ch

G
oo

gl
e

qu
er

y

("
ap

p
st

or
e"

OR
st

or
e)

("
ma

rk
et

pl
ac

e"
OR

ma
rk

et
pl

ac
e)

sh
op

re
po

si
to

ry
m

an
ag

er

ap
p

A
pp

le
A

pp
St

or
e,

G
oo

gl
e

P
la

y
B

ig
C

om
m

er
ce

,
G

oo
gl

e
P

la
y,

H
ub

Sp
ot

A
pp

le
A

pp
St

or
e

F
-D

ro
id

,
G

ua
rd

ia
n

P
ro

je
ct

,
Iz

zy
O

n-
D

ro
id

G
oo

gl
e

P
la

y

so
ft

wa
re

M
ac

A
pp

St
or

e
M

ar
ke

tP
la

ce
K

it
,

Se
lla

-
ci

ou
s,

C
S-

C
ar

t
ϕ

ϕ
ϕ

(a
dd

on
OR

ad
d-

on
)

M
ac

A
pp

St
or

e,
H

om
e

A
ss

is
ta

nt
,F

ir
ef

ox
A

dd
-

on
s

G
oo

gl
e

P
la

y,
P

re
st

aS
ho

p,
C

S-
C

ar
t

P
re

st
aS

ho
p,

C
hr

om
e

W
eb

St
or

e

K
od

i
C

ur
se

Fo
rg

e,
A

jo
ur

,
M

in
io

n

(p
lu

gi
n

OR
pl

ug
-i

n)
G

oo
gl

e
P

la
y,

Sk
et

ch
U

-
ca

ti
on

,
R

IC
O

H
T

H
E

T
A

W
or

dP
re

ss
,
Je

tB
ra

in
s

B
uk

ki
t,

P
lu

gi
n

B
ou

ti
qu

e
W

or
dP

re
ss

,
Je

t-
B

ra
in

s
Je

nk
in

s,
JM

et
er

,
A

ut
od

es
k

(e
xt

en
si

on
-h

ai
r

-l
as

h)
C

hr
om

e
W

eb
St

or
e,

M
ic

ro
so

ft
E

dg
e

V
SC

od
e

M
ar

ke
tp

la
ce

,
A

do
be

M
ag

en
to

,
C

hr
om

e
W

eb
St

or
e

C
hr

om
e

W
eb

St
or

e
T

Y
P

O
3,

G
N

O
M

E
SH

E
L
L

C
hr

om
e

W
eb

St
or

e

in
st

al
l

G
oo

gl
e

P
la

y,
A

pp
le

A
pp

St
or

e
G

oo
gl

e
P

la
y,

E
cl

ip
se

A
pp

le
A

pp
St

or
e,

G
oo

gl
e

P
la

y,
M

i-
cr

os
of

t
St

or
e

K
od

i,
H

om
e

A
ss

is
-

ta
nt

,
D

oc
ke

rH
ub

G
oo

gl
e

P
la

y,
A

P
-

K
P

ur
e,

D
az

3D

so
lu

ti
on

M
ac

A
pp

St
or

e,
M

i-
cr

os
of

t
St

or
e

C
S-

C
ar

t
ϕ

ϕ
ϕ

(s
of

tw
ar

e
li

br
ar

y
-b

oo
k)

M
ic

ro
so

ft
St

or
e

V
SC

od
e

M
ar

ke
t-

pl
ac

e,
Q

T
E

xt
en

si
on

s,
G

it
H

ub
M

ar
ke

tp
la

ce
ϕ

ϕ
ϕ

pa
ck

ag
e

A
pp

le
A

pp
St

or
e,

G
oo

gl
e

P
la

y,
Sn

ap
cr

af
t

C
S-

C
ar

t,
co

nc
re

te
5

G
oo

gl
e

P
la

y
P
ac

ka
gi

st
,

P
yP

I,
U

bu
nt

u
P
ac

ka
ge

s
C

ho
co

la
te

y,
N

P
M

,
N

uG
et

88

examine the clusters in detail to try to derive a human understandable categorization of
the stores.

We start by analyzing the differences between clusters by analyzing the definitive char-
acteristics of each cluster. To identify the features that best characterize each cluster, we
have calculated the deviation of each cluster centroid (i.e, the center of the cluster) from
the centroid-of-centroids (C) over all clusters. In Table 6.4, we show the details of the
top 10 features that deviates the most from the C. Column C contains the the centroid-of-
centroids with values for each feature. The remaining columns represent each cluster by an
index from 1 to 8. The values in these columns represent the proportion of app stores in the
cluster with a specific feature, the mean, and the background color of each cell represent
the deviation of the particular cluster centroid (i.e., difference between the centroid of this
cluster and the centroid-of-centroids for the feature). Each row corresponds to a feature of
the stores, which makes it easy to understand which features are descriptive of a cluster.

The table only shows the top 10 deviations per cluster (i.e., column) to focus on the
most important contributors to each cluster. Since all features are binary (each store has
or does not have the feature) all values of the centroid-of-centroids are between [0, 1]; thus,
a positive deviation (shown with a green background) implies that the stores in the cluster
are more likely to have the attribute, and a negative deviation (shown with a magenta
background) implies that the stores are less likely to have the attribute.

For example, for cluster 8 the most important contributor is "[Composability] Vendor
internal add-on/extension/unlock where the centroid of the cluster is 1. When comparing
against the centroid-of-centroids (at 0.15), the deviation is at 0.85; this implies that all
stores in this cluster have this feature. On the other hand, an example of negative deviation
for cluster 1 is the feature [Composability] Independent with a centroid of 0 indicating that
no stores in this cluster have this feature. Since the centroid-of-centroids for this features
is at 0.56, this implies the deviation for stores in this cluster is −0.56.

After the top characteristics that make each cluster distinctive had been identified,
we leveraged this information to name and describe each cluster accordingly. Using the
information from Table 6.4 which shows the defining features of each cluster, we derived
an organization of the clusters based on several dimensions. The results are described in
Table 6.5.

One important dimension focuses on the type of application served by stores in the clus-
ter. We identified three major types of applications that differentiate the clusters: General,
where the store offers stand-alone programs that run without the need of specific software
(aside from a specific operating system, e.g., Google Play, AWS, Steam); Extensions,
where the store offers extensions to a specific program or platform e.g., VSCode Market-

89

Table 6.4: The 8 clusters found by the K-means algorithm, with top deviated features from
the centroid of centroids (C)

(Each cell with a value represents one of the ten most influential features of the corresponding cluster. The number
indicates the percentage of stores with the specific feature. The color encodes whether stores in that cluster are less

(magenta) or more (green) likely to have the feature, compared to the centroid.)

Cluster Index

Features C 1 2 3 4 5 6 7 8

Monetization
Free 1.00
One-time payment 0.35 0.00 0.00 0.00 1.00
Seat-based subscription 0.09 0.50
Time-based subscription 0.30 0.75 0.00 0.86
Resource-based subscription 0.05
Micro-transactions 0.11 0.86
Custom Pricing 0.01

Rights Management
Creator managed DRM 0.72 0.25 1.00 0.14
Store-enforced DRM 0.27 0.75 0.86

Do I need an account to use the store
Account Required 0.33 0.00 0.75 1.00 0.86
No registration possible 0.35 1.00 0.00 0.00 0.00 1.00
Some features require registration 0.30 1.00 1.00

Product Type
Standalone apps 0.42 0.00 1.00
Extension/add-ons to apps/hardware 0.68 0.33 0.00
Service/Resources 0.08
Package/Library 0.17 0.89

Target audience
General purpose 0.33 0.00 0.83 0.00 1.00
Domain-specific 0.67 1.00 0.17 1.00 0.00

Type of product creators
Business 0.67 0.22 0.00 1.00
Community 0.67 1.00 0.11

Intent of app store
Community building / support 0.52 1.00 1.00 0.00 0.11
Profit 0.38 0.00 0.00 0.00 0.78 0.00 1.00
Centralization of product delivery 0.84
Expanding the platform 0.76 0.17

Role of intermediary
Embedded Advertisement API 0.16 0.71
CI/CD 0.05
Checks at run time 0.14 0.50
Quality/security checks 0.74 0.25

Composability
Independent 0.56 0.00 1.00 1.00 0.00
Vendor internal 0.15 1.00
Package manager type 0.19 1.00

Analytics
Sentiment and popularity ratings 0.73 0.00 0.33
Marking feedback 0.25
Product Usage data 0.33

Communication channels
Documentation (wikis, FAQs) 0.81 0.25
Product homepage 0.97
Star/Score/Up/Downvote rating 0.57 0.11 1.00 1.00 0.00 1.00 0.00
Written reviews (in text) 0.47 0.00 1.00 0.00 0.89 0.00
Community Forum 0.45 0.75 0.00
Support Ticket 0.35
Promotion/Marketing 0.71 0.25

90

Ta
bl

e
6.

5:
Li

st
of

st
or

es
an

d
de

sc
ri

pt
io

ns
by

cl
us

te
r,

w
it

h
th

e
ex

am
pl

e
st

or
e

th
at

is
cl

os
es

t
to

cl
us

te
r
ce

nt
ro

id

T
yp

e
St

or
es

in
C

lu
st

er
E

xa
m

pl
e

St
or

e
C

lu
st

er
D

es
cr

ip
ti

on
In

de
x

E
xt

en
si

on
s

C
om

m
er

ci
al

sp
ec

ia
liz

ed
A

do
be

M
ag

en
to

,
A

u-
to

D
es

k,
B

ig
C

om
m

er
ce

,
G

oG
,

H
ub

Sp
ot

,
P

lu
gi

n
B

ou
ti

qu
e,

P
re

st
a

Sh
op

,
Sk

et
ch

U
ca

ti
on

,
C

S-
C

ar
t

P
re

st
a

Sh
op

off
er

s
ad

do
ns

to
th

e
ec

om
m

er
ce

so
lu

ti
on

pl
at

fo
rm

.

P
ro

du
ct

s
in

th
e

st
or

es
ar

e
ve

ry
do

m
ai

n
sp

ec
ifi

c.
C

re
-

at
or

s
ar

e
m

os
tl

y
bu

si
ne

ss
an

d
th

ei
r

st
or

e
fr

on
t

off
er

s
ra

ti
ng

sy
st

em
s

an
d

w
ri

tt
en

re
vi

ew
s.

6

C
om

m
un

it
y

sp
ec

ia
liz

ed
B

uk
ki

t,
C

ur
se

Fo
rg

e,
D

oc
k-

er
H

ub
,

H
om

e
A

ss
is

ta
nt

,
Jm

et
er

,
K

od
i,

M
in

io
n,

V
S-

C
od

e
M

ar
ke

tp
la

ce

K
od

i
ad

d-
on

co
m

po
ne

nt
s

off
er

s
ex

te
ns

io
ns

to
th

e
K

od
i

en
te

rt
ai

nm
en

t
ce

nt
er

.

T
he

se
ar

e
co

m
m

un
it
y

fo
cu

se
d

st
or

es
th

at
off

er
s

fr
ee

pr
od

uc
ts

to
us

er
s.

St
or

es
al

so
ta

ilo
r

to
a

sp
ec

ifi
c

do
-

m
ai

n.

3

C
om

m
un

it
y

no
n-

sp
ec

ia
liz

ed
A

pk
pu

re
,

C
hr

om
e

W
eb

St
or

e,
E

cl
ip

se
M

ar
ke

t-
pl

ac
e,

F
ir

ef
ox

A
dd

-o
ns

,
G

no
m

e,
W

or
dp

re
ss

W
or

dp
re

ss
off

er
s

fr
ee

ex
te

ns
io

ns
fo

r
us

er
s

us
in

g
th

e
w

or
dp

re
ss

pl
at

fo
rm

.

P
ro

du
ct

s
in

th
es

e
st

or
es

off
er

s
ex

te
ns

io
ns

to
th

e
pl

at
-

fo
rm

.
E

ss
en

ti
al

op
er

at
io

ns
do

no
t

ne
ed

re
gi

st
ra

ti
on

(e
.g

.,
in

st
al

lin
g

ap
ps

).
P

ro
du

ct
s

off
er

ed
in

th
e

st
or

es
fa

ce
a

ge
ne

ri
c

au
di

en
ce

an
d

ar
e

in
de

pe
nd

en
t
fr

om
ea

ch
ot

he
r.

4

G
en

er
al

C
om

m
er

ci
al

A
W

S,
G

oo
gl

e
P

la
y

St
or

e,
M

ic
ro

so
ft

St
or

e,
N

in
te

nd
o

eS
ho

p,
St

ea
m

,
Sa

m
su

ng
G

al
ax

y
St

or
e,

A
pp

le
A

pp
St

or
e

M
ic

ro
So

ft
St

or
e

off
er

s
ap

pl
ic

at
io

ns
fo

r
th

e
w

in
do

w
s

pl
at

fo
rm

.

T
yp

ic
al

st
or

es
m

an
y

pe
op

le
en

co
un

te
r

ev
er

yd
ay

.
T

he
y

ru
n

fo
r

pr
ofi

t
an

d
off

er
ve

nd
or

in
te

rn
al

pr
od

uc
ts

su
p-

po
rt

in
g

m
os

t
m

on
et

iz
at

io
n

op
ti

on
s.

8

C
om

m
un

it
y

C
ho

co
la

te
y,

F
-D

ro
id

,
F
la

t-
pa

k,
G

ua
rd

ia
n

P
ro

je
ct

R
ep

os
it

or
y,

Iz
zy

O
nD

ro
id

,
Sn

ap
cr

af
t

F
-D

ro
id

is
a

fr
ee

an
d

op
en

so
ur

ce
so

ft
w

ar
e

on
ly

A
nd

ro
id

ap
pl

ic
at

io
n

st
or

e.

T
he

se
st

or
es

co
nt

ai
n

st
an

da
lo

ne
fr

ee
pr

od
uc

ts
on

ly
.

C
re

at
or

s
fo

r
th

e
st

or
es

ar
e

m
os

tl
y

fr
om

th
e

co
m

m
u-

ni
ty

an
d

th
e

pr
od

uc
ts

ar
e

m
aj

or
it
y

op
en

so
ur

ce
.

7

P
ac

ka
ge

M
an

ag
er

A
jo

ur
,

Je
nk

in
s,

M
ac

P
or

ts
,

N
P

M
,

N
uG

et
,

P
ac

ka
gi

st
,

P
yP

I,
T

yp
o3

,
U

bu
nt

u
pa

ck
ag

es

P
ac

ka
gi

st
is

th
e

m
ai

n
re

po
si

to
ry

fo
r

P
H

P
pa

ck
ag

es
.

N
o

ac
co

un
t

sy
st

em
is

in
vo

lv
ed

fo
r

th
es

e
st

or
es

.
P

ro
d-

uc
ts

ar
e

fr
ee

an
d

m
os

t
in

pa
ck

ag
e

st
yl

e
w

it
h

in
te

r-
de

pe
nd

en
cy

re
la

ti
on

sh
ip

s.
C

om
m

un
ic

at
io

n
ch

an
ne

ls
ar

e
al

so
lim

it
ed

w
it

h
ra

ti
ng

s
an

d
re

vi
ew

s
m

is
si

ng
fo

r
m

os
t

st
or

es
.

1

S
u
b
sc

ri
p
ti

on
or

ie
nt

ed
G

it
hu

b
M

ar
ke

tp
la

ce
,

Je
t-

B
ra

in
s,

Q
t

M
ar

ke
tp

la
ce

,
co

nc
re

te
5

m
ar

ke
tp

la
ce

G
it
hu

b
M

ar
ke

tp
la

ce
off

er
s

ap
pl

ic
at

io
ns

an
d

ac
ti

on
s

to
im

pr
ov

e
th

e
w

or
kfl

ow
re

la
te

d
to

gi
t

re
po

si
to

ri
es

ho
st

ed
on

G
it
H

ub

O
ft

en
off

er
s

su
bs

cr
ip

ti
on

se
rv

ic
es

an
d

su
pp

or
ts

D
R

M
m

an
ag

em
en

t
by

th
e

st
or

e.
P

ro
du

ct
s

ar
e

no
t

st
an

-
da

lo
ne

ap
pl

ic
at

io
ns

an
d

ei
th

er
pr

ov
id

e
se

rv
ic

e
or

ex
-

te
nd

s
a

pl
at

fo
rm

.

2

O
th

er
M

ar
ke

tP
la

ce
K

it
,

R
IC

O
H

T
H

E
T
A

,
Se

lla
ci

ou
s,

da
z3

D
Se

lla
ci

ou
s

is
a

ec
om

m
er

ce
pl

at
fo

rm
an

d
pr

ov
id

es
ex

te
ns

io
ns

to
th

e
pl

at
fo

rm
.

T
he

y
do

no
t

ha
ve

m
uc

h
co

m
m

un
ic

at
io

n
ch

an
ne

ls
of

-
fe

re
d.

R
at

in
g

an
d

re
vi

ew
s

do
no

t
ex

is
t

in
th

e
st

or
es

.
T

he
st

or
es

m
os

tl
y

ex
is

ts
to

di
st

ri
bu

te
ex

te
ns

io
ns

ce
n-

tr
al

ly
to

th
e

pl
at

fo
rm

th
ey

ar
e

ba
se

d
on

.

5

91

place for VSCode, Chrome Web Store for Google Chrome; and Package manager, where
the store offers stand-alone programs, but also manages dependency-relationships and re-
quirements between different applications in the store e.g., NPM, MacPorts, Ubuntu
Packages. Another dimension in which these clusters can be organized is whether they
are Commercial (business-oriented) or Community-managed (no money is involved).

App stores are not all alike. Intuitive groupings emerge naturally from the data. Their
differences can be due to the type of application they offer — standalone or extensions —
and their operational model, either business- or community-oriented. We found that app
stores in different groups of our clustering have different properties; it would thus seem
unwise to treat them as all the same when studying them.

6.5 Discussion

In this section, we discuss our findings regarding what we consider app stores to be based
on our clustering results, and we describe various research opportunities involving the
influence of app stores on software engineering practices.

6.5.1 What Is an App Store?

The term app store became popular largely through Apple’s App Store, which launched
in 2008 along with the iPhone 3G [10]. Other online software stores have also appeared
and have had the term applied to them. Originally, the term usually referred to stores of
applications for mobile devices, but we have found that today there is ample diversity of the
type of applications that app stores offer and in the features they provide to app developers
and users. App Stores are also dynamic: features are continually being added, removed, and
altered by store owners in response to changes in their goals and feedback from their socio-
technical environments. For example, the Chrome Web Store initially introduced a built-
in monetization option that provided a mechanism for applications to receive payments
from its users; however, the store later decided to deprecate this monetization option [55]
and suggested developers to switch to alternative payment-handling options.

In our work, we have employed a working definition through our inclusion/exclusion
criteria for app stores to be included in our research. However, due to the complexity,

92

diversity, and constantly evolving nature of app stores, we have decided not to attempt
a firm, prescriptive definition of the term. Instead, in the following paragraphs, we will
discuss each of several aspects of app stores in detail, and hope that in the future, a more
robust definition and operating model can emerge.

Common features of app stores

Although we found significant diversity among the example app stores we studied, we were
able to identify a set of three common features that appear to span the space of app stores.

» Simple installation and updates of apps — An app store facilitates simple installation
of a selected application, and can also enable simple updating. For some stores, apps
are expected to run on the hardware of the client; in others, the app store provides and
manages the hardware where the app runs. In both cases, the app store frees the user from
worrying about the technical details of installation: mainly, if the app will be compatible
with their specific hardware and software configuration; and the installation of the app
and its dependencies (where applicable). Typically, app stores will also automate the
installation of updates to the application, again freeing the user from worrying about if
they have the latest version of the app with the newest features and bug fixes.

» App exploration and discovery — App Stores provide mechanisms that allow users to find
apps they might want to use. In its simple form, this mechanism might be a search engine
that returns a list of apps that match a given set of keywords (such as homebrew, PyPI).
In the labeled app stores, 73% of stores provide some kind of aggregated recommendations
(e.g., advertisement and trends in WordPress), up to personal recommendations that are
based on other apps the user has installed before (e.g., Apple’s App Store). User feedback
via reviews (present in 47% of the labeled app stores) and forums (present in 45% of the
labeled app stores) can provide further information to aid other users in identifying apps
of possible interest to them.

» The app store guarantees the runtime environment — In practice, app stores often ex-
ecute within a runtime environment (RTE), such as an operating system (e.g., Google
Play on Android) or an extensible software application (e.g., Firefox Add-ons on Fire-
fox). Many app stores simply sit on top of the RTE, acting primarily as a gatekeeper for
adding and deleting apps. However, some app stores are more tightly integrated with the
RTE; in extreme cases, the app store can extend the RTE with the app store’s own func-
tionality and together provide an augmented RTE for the applications managed through
the app store. Steam is a good example for extending the RTE with its own features.
Developers can integrate with many services offered by Steam, such as an achievement

93

Runtime Environment

Feature layer provided by App Store X

Product CProduct BProduct A

App Store X App Store Y

Figure 6.3: Stores may offer optional extensions to the runtime environment for applications

system that offers players recognition when they fulfill certain requirements in the game.
Fig. 6.3 illustrates the situation where a product may integrate with additional store-added
features to the RTE, which in turn enriches the user experience of the store users. When
Product B is offered in App Store Y, it will not have the features provided by App Store
X.

The app store ensures that apps are installed only when their runtime requirements
are satisfied. The process is often done through running checks on apps submitted to the
app store, which 74% of the labeled app stores perform specifically. By specifying the
runtime requirements, the assumption (for both the developer and the user) is that if the
application is installed (implying that the requirements are satisfied), it is expected to run
properly. This is usually done by a software layer on top of the RTE (either app store or
user provided). In its simplest form, this software layer is responsible for installing and
updating apps (see “Simple installation and updates of apps” above). In some cases, this
software layer might also include a set of libraries that the apps can use to provide features
specific to the app store thus forming part of the RTE for the applications. These libraries
might range in purpose (domain specific, common GUI, resource management, etc.). In
extreme cases, this layer includes the operating system (as it is the case with Apple’s App
Store). However, checks during runtime is a very rare feature, which on 14% of the labeled
app stores provides.

94

Some hardware platforms have become so tightly integrated to the software layer of
the app store that they can be considered monolithic: the hardware is rendered unusable
without the app store. This is exemplified by the Apple’s App Store, where one cannot
use the hardware without first having an account in the app store; even operating system
upgrades are distributed via the store.

This tight level of integration has clear benefits for all three stakeholders: end users
have fewer installation technical details to worry about; app developers can be assured
that users will be able to install their apps without the need for technical support; and app
store owners can strictly manage who has access to the user’s RTE and how. However, such
tight integration is technically unnecessary and may even be undesirable. From a software
engineering perspective, such tight coupling could be seen as a “design smell”, since the
operating system and the app store layers address fundamentally different concerns. Also,
tight integration can create an artificial barrier to competition, effectively establishing a
quasi-monopoly for the store owner; the store owner may assume the role of gatekeeper
not only for streamlining technical issues, but also for business reasons, requiring a kind
of toll to be paid by app developers for access to the store. A recent initiative in the
European Union [33] aims to enable fair competition by enforcing that ecosystems are
opened up, which will likely also allow the installation of alternative software layers for
other app stores, a term called side-loading. In contrast to the Apple’s tight control of the
operating system as part of its app store, Android allows third-party app store software
(e.g., F-Droid [46]) to be installed in co-existence with the system default (often Google
Play).

As mentioned above, some stores distribute software that runs on hardware owned by
the App Store itself; in these cases, the RTE is fully managed and controlled by the store.
For example GitHub Marketplace and Atlassian Marketplace offer applications that
run on GitHub and Atlassian servers (respectively). In most cases, these applications are
not deployed to the user’s computers.

Different types of app stores

While some features are broadly shared by all app stores, in Section 6.4, we identified
different groups of app stores based on their features. For stores within the same group,
they often share common features, and in different groups, the stores have less in common.
In the following paragraphs, we discuss the differences between the groups in detail.

» Diversity in goals — As a platform focusing on delivering products to customers, the
high-level goal of one app store can be dramatically different from the other. Even app

95

stores providing software for the same underlying RTE can have radically different pur-
poses. For example, consider the app stores that run on Android. Google Play is the de
facto store for Android applications. F-Droid store, on the other hand, offers only free
and open source Android applications, and APKPure offers multiple versions of the same
software so the user can decide which version they would like to install.

Apple’s app store offers applications for all its RTEs: MacOS (laptop and desktops),
iOS (phones and tables), and the Safari browser. In contrast, Google has different stores for
AndroidOS and for its web browser, Chrome, (the latter no longer for profit). Microsoft
Store sells hardware and apps for Windows and XBox. Alexa Skills offers skills that
enhance the voice agent Alexa’s capabilities to do more things. Many language package
systems (e.g., NPM, PyPI) are run by a different organization and extends the functionality
of the core language.

In many program language ecosystems, the core language development (focusing on the
language features) and packaging system (focusing on extending the functionality of the
language) are led by separate organizations (e.g., NPM [100] and JavaScript [67]).

» Diversity in business model — Another important difference we observed is between
business-managed and community-managed stores. In business-managed stores (with few
exceptions), a primary goal is to generate a profit. These stores provide a payment mech-
anism between the app creator and the purchaser (and the store keeps a percentage of any
sales). These stores have to solve three key concerns: first, implementing registration and
authentication of users and developers; second, some type of digital rights management,
so only users who have acquired the software can use it; and third, a payment mechanism
(e.g., subscription, one-time payment, and advertisement).

Community-managed stores, on the other hand, are run by volunteers and their fea-
tures focus on facilitating not-for-profit product delivery from developer to user. Many
community stores offer limited community interactions compared to business stores where
customer feedback is important. For example, in the Kodi store, add-ons have a web page
(e.g., The Movie Database Python [75]). This page provides information regarding instal-
lation of the add-on, e.g., compatibility, download links, and installation requirements.
Meanwhile, most communication channels about the add-on are hosted elsewhere; for ex-
ample, installation and usage instructions, extended descriptions, and screenshots can be
found in the community forum instead.

It is important to note that the products contained in community-oriented stores are
not limited to open source software; some community-managed app store policies often
permit the distribution of proprietary software. In the natural groupings we observed, no
rights management are enforced from the store side for Cluster 3, meanwhile, most stores

96

in Cluster 8 have some form of rights management built-in to the store. For example,
Homebrew permits apps that are not open source if the apps are free to use; these apps
might include in-app purchases (such as an upgrade to a full-feature app) that are handled
outside of Homebrew.

6.5.2 Research Opportunities Involving App Stores

App Stores are becoming the primary channel for software delivery and exert consider-
able influence in many aspects of the software development process. A previous study by
Rosen and Shihab [119] on Stack Overflow questions by mobile developers has shown that
app delivery is one of the biggest challenges developers faced. Our results in Section 6.4
demonstrate that there is a wide variety of types of stores, each with different features and
goals. Today, app stores encompass many kinds of applications, from games running on
the hardware of the user to add-ons for applications that run on corporate servers such
as GitHub. However, existing research often focuses heavily on the applications offered
inside app stores, especially those of the two major mobile app stores. In the following
paragraphs, we discuss several research opportunities to study how app stores can affect
software development.

App Stores as actors in software development

» App Stores affect the software product cycle — Researchers need to consider how and why
app stores can affect the software development life cycle. For example, we know that app
stores can constrain and sometimes even dictate software release processes. Some stores go
beyond this and exert a kind of socio-technical environmental pressure on other software
development practices, becoming a de facto stakeholder in app development. Sometimes
these environmental pressures are technical in nature, where the app store might dictate the
programming language or deployment platform/OS; some app stores go further and create
RTEs, software development kits (SDKs), and user interface (UI) libraries that must be
used by all app developers. Sometimes these environmental pressures are non-technical in
nature, such as when the app store prescribes the kinds of application that is allowed in the
store. For example, Microsoft recently announced that it will not permit app developers
to profit from open source applications.2 When an app store operates in a manner such
that it has control over what kind of application to include, it creates a software ecosystem

2See Update to 10.8.7 https://docs.microsoft.com/en-us/windows/uwp/publish/
store-policies-change-history

97

https://docs.microsoft.com/en-us/windows/uwp/publish/store-policies-change-history
https://docs.microsoft.com/en-us/windows/uwp/publish/store-policies-change-history

and as such, it faces the same challenges that any other ecosystem has: how to thrive.
In particular, stores need to understand the needs of their developers and users to retain
existing ones and attract new ones. However, suggested by what we have observed in
Section 6.4, app stores are diverse with a large number of features that characterize (and
differentiate) them. While stores are experimenting and evolving, each action is likely to
have an effect on the ecosystems they formed (both positively and negatively). Thus, the
impact of app stores in the economy and their markets is worthy of further study.

» An app may be offered in several app stores — Developers want to run their software
on the platform that is provided or supported by the store, and as such they must accept
the requirements and limitations that such a store may impose. This issue is compounded
when the app is being offered in more than one store, as the developers might have to
adapt their processes to different sets of requirements, some of which might be conflicting.
For instance, an app can be both available in F-Droid (in Cluster 7) and Google Play
(in Cluster 8). In Google Play, it is common for applications to collect telemetry data
to better understand typical user behaviour; however, in F-Droid — an open source and
privacy-oriented store — such data collection is highly discouraged. Furthermore, develop-
ers must also adapt to the features and limitations that a store provides regarding software
deployment, communication with users and — when they exist — the mechanism available
to profit from their software and to use digital rights management. This is particularly
interesting if the targeted app stores are in different natural groupings. This introduces
new areas of studies such as how store policies propagate to applications over time, and
how violations of store policies can be detected automatically. Researchers have already
begun to investigate this topic through qualitative approaches to identify how applications
comply with specific policies that concern accessibility [7] and human values [101].

» App stores strongly affect the release engineering process — App Stores are especially
important in release engineering. Specifically, the release process needs to consider how the
application is to be packaged, deployed, and updated. The heterogeneity of the platform
provided by RTEs might also affect the number of versions of the application that need to
be deployed (e.g., variety of target CPUs, screen sizes, screen orientations, and memory
available).

When an application is developed for multiple stores, it must effectively be managed as
a product line; this is because multiple deliverables must be created, one for each platform-
store combination [154]. Multiple deliverables can also help for telemetry reasons such as
tracking the installation source of the application [98]. The differences between packaged
versions might be as significant as requiring the source code to be written in different
programming languages, using different frameworks; also, each store is likely to require

98

different deployment processes.

For example, when cross-releasing browser add-ons, developers may have to rewrite
part of the functionality in Swift/Objective-C for better integration with Safari (in the
Apple’s App Store), while at the same time maintaining a fully JavaScript version for
Chrome Web Store. Also, the scheduling of release activities is often dictated by the
release processes of the stores. A previous study has showed that taking into consideration
of app review times is an important factor when planning releases [3]. The app store
standardizes, and often simplifies, the release engineering processes for its store; but it also
becomes a potential roadblock that might delay (or even reject) a new release.

The challenge of transferring understanding between stores

As noted above, prior work has examined many aspects of app stores, yet the app store
itself has rarely been the focus of the research. In many studies, the app store serves as a
convenient collection of apps, and the research focuses on mobile development concerns such
as testing and bug localization. Even when research focuses on the app store itself, the scope
rarely extends beyond Google Play and Apple’s App Store. Based on our observations,
the diversity of app stores in their operational goals, business models, delivery channels,
and feature sets can affect the generalizability of research outcomes. For example, there
have recently been many studies [35, 80, 165, 59, 58, 101, 48] that focus on app reviews.
However, for an app store that does not have reviews (e.g., Nintendo eShop) none of the
findings and tools can be leveraged (e.g., stores in Cluster 1, 5, and 7).

» App Stores that have the same features may still differ significantly — Depending on
the problem domain, the details of software development practices can vary dramatically.
For example, game development has been compared to both more traditional industrial
software development [93] and to open source software development [106]; in both cases,
the development processes can differ greatly. We conjecture that the same may also occur
across app stores, where despite the same feature is being offered in the different stores, the
convention of using them could be different. As mentioned above, one specific observation
has been made between the gaming-focused store Steam and mobile stores (e.g., Google
Play) in Cluster 8, where Lin et al. [80] found that reviews across the platforms for the
same app were often quite different in tone. Such uncertainly invites future research to
validate their findings in one store to another to improve the generalizability of the results,
and also encourages replication studies to verify existing results on other stores.

» A feature not in the app store does not mean the functionality is missing — While some
app stores aim to provide a complete experience, where all interactions from the developers

99

and users are expected to be performed with in the store, some app stores export part of
the work to other platforms. This can even occur for common features that one might find
essential. For instance, starred reviews is universal in Cluster 2, 4, and 6 where typical
users leverage this information to decide whether an application is good, starred reviews
do not or rarely exists for other stores in Cluster 1, 5, 7. The specialized store may have
some other metric to indicate popularity or quality, such as total number of downloads,
but the focus of the store is often to offer a managed way of installation. Other features,
such as application support, are left to other platforms (e.g., social media). Research can
further explore the integration between app stores and other platforms.

6.6 Threats to Validity

» Internal Validity — We create our initial seeding of app stores from personal experience.
Personal bias could cause us to miss other types of app stores. However, given the number
of individuals involved in this study and our initial effort to consider as many stores as
possible, we feel that have created a wide, deep, and collaborative “best effort”. When we
labeled app stores by their dimensions, it is a qualitative process. As with any qualitative
process, the results could be biased. We tackled this issue by first labeling a few stores
separately and discussing the results until a consensus was achieved; thus, we started with
a set of “gold standard” labels. Then the labeling task was delegated to two individuals
who continued to label the stores separately with a portion of the store overlapping. The
overlapping labels are then verified by the Cohen’s Kappa between the two individuals to
measure the agreement.

We leveraged the K-means algorithm for the clustering process. We first applied PCA
techniques to reduce the dimensions of the initial labeling and provide an orthogonal basis
to feed the K-means clustering. When using other clustering algorithms (e.g., Mean-
shift, DBSCAN), the clustering result might change; while K-means is widely adopted
for clustering process in SE research, by nature, determining the proper k value is still a
challenge. We followed common best practice to use metrics (i.e., the Silhouette method)
to determine the best value k. Despite our efforts, the output of the K-means clustering is
not perfect. We mainly leveraged the K-means clustering as the first step to illustrate that
app stores forms natural clusters which are different from each other. Base on the K-means
output, we further grouped the clusters into types based on our qualitative understanding
of the app store space.

» External Validity — During the process of expanding app stores, we relied on the Google
Search Engine to find web results based on keywords. The results of this step rely on

100

the capability of Google and are subject to change over time as Google updates its search
algorithms. The order may also be affected by SEO operations. Combining results from
other search engines (e.g., DuckDuckGo, Bing) can help to reduce the bias.

When we applied our inclusion criteria, 1) app stores must contain software products
and 2) should offer an end-to-end experience for users (ordering, delivery, installation), we
excluded stores that focus on digital assets that are not software, such as a pure assets
store that offers cosmetic enhancements to desktop environments; we also excluded stores
that offer software products but in a way such that installation is completely managed by
users. An extreme example, will be the software section of Amazon where software are sold
as activation keys where the users would input to activate the software which they needs
to install themselves. A more general inspection of all means of distribution software can
be performed to gain a broader understanding of software distribution.

We relied on only publicly available information to label each store. So if some function-
ality (e.g., analytics information) is not documented publicly, we were unable to confirm
whether the store has such functionality. We also set a time limit to label each store so in
case we were unable to find information about the store, with each store receives the same
amount of attention.

One of the main challenges for reproducibility and replicability is that the Google Search
results and app stores can change overtime. So in the future, if researchers would like to
repeat our study, the labeling results may differ due to updates in the app store. To mitigate
this issue, we’ve included a snapshot of all Google Search results, and documented how we
would perform the labeling. So while the final labels may differ, by applying the same
process, a replication study would be possible with updated data.

6.7 Summary

In this chapter, we explore on the idea of what an app store is and what features make
app stores unique from each other. We labeled a set of representative stores, curated from
web search queries, by their features to study the natural groupings of the stores. Our
analysis suggests that app stores can differ in the type of product offered in the store, and
whether the store is business oriented or community oriented. These natural groupings
of the stores challenge the manner in which app store research has largely been mobile
focused. Previous studies have already shown empirical differences in activities in mobile
app stores and game stores [80]. Our study further suggests that in the future, when we
study app stores, we would need to consider the generalizability of the results across app

101

stores. Since one type of app store may operate under different constraints than another
kind, results observed in one app store setting may not generalize to others.

102

Chapter 7

Conclusions

Software engineering focuses on delivering software products that solve real-world prob-
lems. Successfully delivering a software product requires many resources, such as external
libraries, issue tracking systems for debugging, etc. Furthermore, recent advancements
encourage in software development have encouraged an agile approach, which involves re-
leasing software products in cycles and continuously improving them until they reach a
desirable state. To achieve this, software developers must work collaboratively and be
knowledgable in various aspects of software development, such as design, implementation,
testing, and maintenance.

The social aspect of software development means that there are frequent interactions
between developers and users throughout the development process. These interactions
can involve estimating the performance of the software or gathering information related to
software development, and they leave traces in the form of software artifacts. Examples
of software artifacts include version control information, technical documentation, runtime
log, etc. These software artifacts contain valuable information that record every aspect of
the software product, from the planning phase of designing the software product to the
implementation phase of developing the software. By analyzing these artifacts, developers
can gain insights into technical design decisions, software quality, and user perception of
the software product. This information can be used to improve the software product and
ensure that it meets the needs of users.

In Chapter 4, we studied artifacts containing Q&A sessions on Stack Overflow and dis-
covered that the technical Q&A is often more complex than simply providing direct answers
to questions. Many questions involve discussions before a satisfactory answer is found. This
presents a challenge for preserving Q&A knowledge, as interactive environments like chat

103

rooms are ideal for Q&A, but not for long-term viewing [115]. Our observations highlight
the need for auto summarization tools that can effectively capture and preserve the infor-
mation contained in Q&A sessions for future reference. By developing such tools, we can
ensure that valuable knowledge is not lost and can be easily accessed by developers in the
future.

In Chapter 5, we studied publicly shared user-specific configuration files and found that
developers often dedicate significant effort to maintaining both the dotfiles repository and
the dotfiles . This suggests that there may be room for a more standardized method of man-
aging configuration files in user space. Additionally, the corpus of real-world configuration
files can provide valuable insights for tool developers, helping them with understanding
how their tools are used in practice and improving them accordingly.

In Chapter 6, we investigate the role of app stores in software distribution and found
that app store have become the intermediary between the developers and users. By provid-
ing a platform that connects developers with users, app stores have created a bridge that
facilitates the distribution of software. Existing research have a primarily focus on mo-
bile app stores, but our findings suggest that a variety of app store exist, offering different
functionalities and serving unique purposes. For example, there are app stores specialize in
distributing software extensions, while other focus on distributing subscriptions to software
services.

In the remainder of the chapter, we outline the contributions of this thesis and explore
future research directions.

7.1 Summary of Contributions

Overall, we explored three different crowd-based software repositories created from distinct
models of developer-user interactions. Despite the difference, the studied software artifacts
are often created by one group of users and beneficial to another group. However, in our
thesis, we find that challenges can arise in both creating and maintaining the information
contained in the software artifacts.

Thesis Statement: Studying crowd-based software repositories can enhance our un-
derstanding of developer-user interactions during the creation of software artifacts. With
this deeper understanding, we can identify challenges in software development and provide
valuable insights to improve the software development process.

104

7.1.1 Enhanced Understanding of Developer-User Interactions

In Chapter 4, we study the user interactions in comments associated with questions on
Stack Overflow. Serving as one of the most essential places for knowledge acquisition, the
quality of content on Stack Overflow is important. Our study highlights that the creation
of answers on the platform is often not a direct process, the question discussions facilitates
the process. Specifically, our contributions are:

• We find that a significant amount of questions on Stack Overflow have associated
comments.

• We observe that when question discussion occur, the majority of the discussion began
before any answer.

• We show that askers and answerers actively participate in question discussions.

• We evaluate the effects of question discussions on facilitating the question answering
process.

In Chapter 5, we investigate user-specific configuration files shared by developers on
GitHub. As a complicated task, software development rely on a plethora of tools to aid the
process. These tools are often highly customizable, and can be adapted to fit different tasks.
dotfiles repositories are a collection of the configuration files to customize the software tools.
Our contributions to understanding dotfiles repositories include:

• We show that sharing dotfiles is a common practice among prolific GitHub users.

• We provide a taxonomy based on common dotfiles . The most common dotfiles are
related to shells, text editors, and dotfiles management.

• We study the intent of dotfiles updates through analyzing commits in dotfiles reposi-
tories. We observe that while most commits are related to tweaking the configuration
files, many commits focus on dotfiles management and documentation.

• We propose a method to model file change history as a time-series based on code
churn history. Based on the time-series model, we illustrate the code churn history
patterns of updating dotfiles , showcasing the evolution of dotfiles .

105

In Chapter 6, we study the concept of app stores in software development. As the
target distribution platform for many software products, our current understanding of app
stores are largely based on the two mobile platforms. The main contributions of this study
is as follows:

• We provide a working definition of app stores base on existing understanding that
captures both its functionality and its role in software distribution.

• We identify a set of features that can describe app stores.

• We provide a labeled set of representative app stores based on the feature derived.

• We show that based on the features of app stores, a natural grouping exists, suggest-
ing a diversity in the operation of app stores.

• We discuss insights on the diversity of app stores and how app stores affects the
software engineering process.

7.1.2 Identified Challenges

With the enhanced understanding gained through studying the three models of developer-
user interactions, we identified four challenges.

• We need to incorporate the users’ needs in technical Q&A. Despite the improvement
Stack Overflow provides over traditional Q&A methods, in practice, canonical an-
swers to canonical questions is not always the case. Users still require some form of
interactions to facilitate the answering process.

• There is room for improvement in distributed knowledge from Q&A sessions. Given
our enhanced understanding, viewers of question threads on Stack Overflow may
need to go through the entire question discussion and answer to find the specific
information that they seek. We can apply new advancements in the field to automate
information summary and reduce the effort required to find information.

• Managing user-specific configurations requires additional setup. From our observa-
tions in common files in dotfiles repositories and the reasons why dotfiles repositories
are updated, we find a large presence of files and updates that are related to the
management of dotfiles instead of the configurations themselves. Moreover, devel-
opers follow different practices to manage dotfiles . This adds complexity for other
developers who wish to learn from the dotfiles .

106

• The Apple’s App Store and Google Play are not the only app stores. With our
exploratory study on the spectral of app stores, we find 8 natural groupings of app
stores. Both the mobile app stores belong to the same grouping, suggesting that our
existing understanding of app stores may not generalize. Moreover, existing research
have already shown differences between Steam and Google Play.

7.2 Avenues for Future Research

With the introduction of new technology and new development practices, new software
repositories will be formed based on the by-product software artifacts. We envision a
forever challenge in this area to understand new and emerging software repositories, and
also leveraging existing software repositories. Specifically, based on our findings, we present
the following possible directions for future research.

» Software engineering specific language models for creating knowledge bases. — One of the
main challenges of knowledge sharing is to to present the relevant information to the users.
This challenge can be repeated find across software repositories. While recent success
on language models such as GPT3.0 [20] has been shown to be successful in providing
information, we believe that by considering the domain specific information in software
engineering, we can provide enhanced user experiences to software developers.

Specifically, we believe that with specialized summary tools, we can provide a universal
platform for Q&A type of knowledge sharing. An ongoing challenge in Q&A is how to
document the result of a Q&A session. As shown in our study on question discussions
(Chapter 4), the need for interaction is essential to answer many questions. However, if
only presented by the question and answer, valuable information from the interactions
that lead to the answer could be overlooked. With next generation language models, an
automatic summary can be created and presented for developers. Along with the sources,
the developers can further trace the information if needed.

Another useful perspective is to create cookbook style documentation using real-world
use cases. The dotfiles repositories offers valuable information on tool configurations.
However, for developers to learn from other developers dotfiles , it requires the developers
to have an overall understanding of the software tool. A domain specific language model
can extract information form the existing dotfiles repositories, and create cookbook style
documentation for the software tools.

» Analyzing software usage information to guide software design. — Receiving user feed-
back is a hard task in software development. Even if feedback is available, it might be

107

biased (e.g., vocal majority, biased sampling). It is especially hard for open source soft-
ware tools since any form of telemetry is often disliked by the community [97]. Future
studies can explore on the idea of leveraging a collection of shared information online to
better understand software usage. Specifically, we believe through analyzing specific con-
figurations in dotfiles , we can understand usage patterns of the software. The usage pattern
will complement user discussion and can serve as a basis for evidence on software design
decisions and help guide the creation of sane defaults.

Analyzing app store artifacts is also an area that is worth exploring. For example,
existing studies have already leveraged app reviews [35, 165] to discover user requirements
in software development.

108

References

[1] Steve Adolph, Wendy Hall, and Philippe Kruchten. Using grounded theory to study
the experience of software development. In Empirical Software Engineering. Springer,
2011.

[2] Saeed Aghabozorgi, Ali Seyed Shirkhorshidi, and Teh Ying Wah. Time-series
clustering–a decade review. Information systems, 2015.

[3] Afnan A. Al-Subaihin, Federica Sarro, Sue Black, Licia Capra, and Mark Harman.
App Store Effects on Software Engineering Practices. In Transactions on Software
Engineering. IEEE, 2021.

[4] Rana Alkadhi, Teodora Lata, Emitza Guzmany, and Bernd Bruegge. Rationale in
development chat messages: an exploratory study. In 2017 IEEE/ACM 14th Inter-
national Conference on Mining Software Repositories (MSR). IEEE, 2017.

[5] Miltiadis Allamanis and Charles Sutton. Why, when, and what: analyzing stack
overflow questions by topic, type, and code. In 2013 10th Working Conference on
Mining Software Repositories, MSR ’13, pages 53–56. IEEE, 2013.

[6] Sumaya Almanee, Arda Ünal, Mathias Payer, and Joshua Garcia. Too Quiet in the
Library: An Empirical Study of Security Updates in Android Apps’ Native Code. In
Int. Conf. on Software Engineering. IEEE, 2021.

[7] Abdulaziz Alshayban, Iftekhar Ahmed, and Sam Malek. Accessibility issues in an-
droid apps: state of affairs, sentiments, and ways forward. In Int. Conf. on Software
Engineering. IEEE, 2020.

[8] Amazon. AWS Marketplace: Homepage. https://aws.amazon.com/marketplace/,
2022. Accessed: Jun. 22, 2022.

109

https://aws.amazon.com/marketplace/

[9] Ashton Anderson, Daniel Huttenlocher, Jon Kleinberg, and Jure Leskovec. Discover-
ing value from community activity on focused question answering sites: a case study
of Stack Overflow. In Proceedings of the 18th ACM SIGKDD international conference
on Knowledge discovery and data mining, KDD ’12, 2012.

[10] Apple. Apple Introduces the New iPhone 3G. https://www.apple.com/
ca/newsroom/2008/06/09Apple-Introduces-the-New-iPhone-3G/, 2008. Ac-
cessed: Jul. 17, 2022.

[11] Steven Arzt. Sustainable Solving: Reducing The Memory Footprint of IFDS-Based
Data Flow Analyses Using Intelligent Garbage Collection. In Int. Conf. on Software
Engineering. IEEE, 2021.

[12] Muhammad Asaduzzaman, Ahmed Shah Mashiyat, Chanchal K Roy, and Kevin A
Schneider. Answering questions about unanswered questions of stack overflow. In
2013 10th Working Conference on Mining Software Repositories (MSR). IEEE, 2013.

[13] Autodesk. Autodesk App Store : Plugins, Add-ons for Autodesk software, Auto-
CAD, Revit, Inventor, 3ds Max, Maya ... https://apps.autodesk.com/, 2022.
Accessed: Jun. 22, 2022.

[14] Sebastian Baltes, Lorik Dumani, Christoph Treude, and Stephan Diehl. SOTorrent:
reconstructing and analyzing the evolution of Stack Overflow posts. In Proceedings of
the 15th International Conference on Mining Software Repositories, MSR ’18, 2018.

[15] Olga Baysal, Reid Holmes, and Michael W Godfrey. Situational awareness: person-
alizing issue tracking systems. In 2013 35th International Conference on Software
Engineering (ICSE). IEEE, 2013.

[16] Dane Bertram, Amy Voida, Saul Greenberg, and Robert Walker. Communication,
Collaboration, and Bugs: The Social Nature of Issue Tracking in Small, Collocated
Teams. In Proceedings of the 2010 ACM Conference on Computer Supported Coop-
erative Work, CSCW ’10. Association for Computing Machinery, 2010.

[17] Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin Weiss, Rahul Premraj,
and Thomas Zimmermann. What makes a good bug report? In Proceedings of the
16th ACM SIGSOFT International Symposium on Foundations of software engineer-
ing, 2008.

110

https://www.apple.com/ca/newsroom/2008/06/09Apple-Introduces-the-New-iPhone-3G/
https://www.apple.com/ca/newsroom/2008/06/09Apple-Introduces-the-New-iPhone-3G/
https://apps.autodesk.com/

[18] Stefanie Beyer and Martin Pinzger. Synonym suggestion for tags on stack overflow.
In Proceedings of the 23rd International Conference on Program Comprehension,
ICPC ’15. IEEE, 2015.

[19] Tegawendé F Bissyandé, David Lo, Lingxiao Jiang, Laurent Réveillere, Jacques Klein,
and Yves Le Traon. Got issues? who cares about it? a large scale investigation of
issue trackers from github. In 2013 IEEE 24th international symposium on software
reliability engineering (ISSRE). IEEE, 2013.

[20] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
et al. Language models are few-shot learners. Advances in neural information pro-
cessing systems, 2020.

[21] Liang Cai, Haoye Wang, Bowen Xu, Qiao Huang, Xin Xia, David Lo, and Zhenchang
Xing. Answerbot: an answer summary generation tool based on stack overflow. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, FSE ’19,
pages 1134–1138, 2019.

[22] Fabio Calefato, Filippo Lanubile, and Nicole Novielli. How to ask for technical help?
Evidence-based guidelines for writing questions on Stack Overflow. Information and
Software Technology, 2018.

[23] Canonical. Ubuntu Software Center in Launchpad. https://launchpad.net/
software-center, 2009. Accessed: Jun. 22, 2022.

[24] Preetha Chatterjee, Kostadin Damevski, Lori Pollock, Vinay Augustine, and
Nicholas A Kraft. Exploratory study of slack q&a chats as a mining source for
software engineering tools. In 2019 IEEE/ACM 16th International Conference on
Mining Software Repositories (MSR). IEEE, 2019.

[25] Chunyang Chen, Xi Chen, Jiamou Sun, Zhenchang Xing, and Guoqiang Li. Data-
Driven Proactive Policy Assurance of Post Quality in Community Q&A Sites. Pro-
ceedings of the 2018 ACM Human-Computer Interaction, 2018.

[26] Jiachi Chen, Xin Xia, David Lo, John Grundy, and Xiaohu Yang. Maintenance-
related concerns for post-deployed Ethereum smart contract development: issues,
techniques, and future challenges. In Empirical Software Engineering. Springer, 2021.

111

https://launchpad.net/software-center
https://launchpad.net/software-center

[27] Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xiwei Xu, Liming Zhut, Guoqiang
Li, and Jinshui Wang. Unblind your apps: Predicting natural-language labels for
mobile gui components by deep learning. In Int. Conf. on Software Engineering.
IEEE, 2020.

[28] Mengsu Chen, Felix Fischer, Na Meng, Xiaoyin Wang, and Jens Grossklags. How reli-
able is the crowdsourced knowledge of security implementation? In 2019 IEEE/ACM
41st International Conference on Software Engineering, ICSE ’19, pages 536–547.
IEEE, 2019.

[29] Sen Chen, Lingling Fan, Guozhu Meng, Ting Su, Minhui Xue, Yinxing Xue, Yang
Liu, and Lihua Xu. An empirical assessment of security risks of global android
banking apps. In Int. Conf. on Software Engineering. IEEE, 2020.

[30] Morakot Choetkiertikul, Daniel Avery, Hoa Khanh Dam, Truyen Tran, and Aditya
Ghose. Who will answer my question on stack overflow? In 2015 24th Australasian
software engineering conference. IEEE, 2015.

[31] Shaiful Alam Chowdhury and Abram Hindle. Mining StackOverflow to Filter out
Off-topic IRC Discussion. In Proceedings of the 12th Working Conference on Mining
Software Repositories, MSR ’15, 2015.

[32] Jacob Cohen. A coefficient of agreement for nominal scales. In Educational and
psychological measurement. Sage, 1960.

[33] Europeon Commission. Digital Markets Act: Commission welcomes political agree-
ment on rules to ensure fair and open digital markets. https://ec.europa.eu/
commission/presscorner/detail/en/IP_22_1978, 2022. Accessed: Jul. 13, 2022.

[34] Anthony Peter Macmillan Coxon et al. Sorting data: Collection and analysis. Sage,
1999.

[35] Jacek Dąbrowski, Emmanuel Letier, Anna Perini, and Angelo Susi. Analysing app re-
views for software engineering: a systematic literature review. In Empirical Software
Engineering. Springer, 2022.

[36] Kostadin Damevski, David C Shepherd, Johannes Schneider, and Lori Pollock. Min-
ing sequences of developer interactions in visual studio for usage smells. IEEE Trans-
actions on Software Engineering, 2016.

112

https://ec.europa.eu/commission/presscorner/detail/en/IP_22_1978
https://ec.europa.eu/commission/presscorner/detail/en/IP_22_1978

[37] Andrea Di Sorbo, Sebastiano Panichella, Corrado A Visaggio, Massimiliano Di Penta,
Gerardo Canfora, and Harald C Gall. Exploiting natural language structures in
software informal documentation. IEEE Transactions on Software Engineering, 2019.

[38] Yvonne Dittrich and Rosalba Giuffrida. Exploring the role of instant messaging in a
global software development project. In 2011 IEEE Sixth International Conference
on Global Software Engineering. IEEE, 2011.

[39] Colin Dixon, Ratul Mahajan, Sharad Agarwal, AJ Brush, Bongshin Lee, Stefan
Saroiu, and Victor Bahl. The home needs an operating system (and an app store).
In SIGCOMM Workshop on Hot Topics in Networks. ACM, 2010.

[40] Docker. Explore Docker’s Container Image Repository | Docker Hub. https://hub.
docker.com/search?q=, 2022. Accessed: Jun. 22, 2022.

[41] Zhen Dong, Marcel Böhme, Lucia Cojocaru, and Abhik Roychoudhury. Time-travel
testing of android apps. In Int. Conf. on Software Engineering. IEEE, 2020.

[42] .dotfiles. GitHub does dotfiles - dotfiles.github.io. https://dotfiles.github.io/,
2022. Accessed: Aug. 16, 2022.

[43] Songyun Duan, Vamsidhar Thummala, and Shivnath Babu. Tuning database con-
figuration parameters with ituned. Proc. VLDB Endow., Aug 2009.

[44] James L Elshoff and Michael Marcotty. Improving computer program readability to
aid modification. Communications of the ACM, 1982.

[45] Stack Exchange. Stack exchange data dump. https://archive.org/details/
stackexchange. Accessed: 2021-12-29.

[46] F-Droid. F-Droid - Free and Open Source Android App Repository. https://
f-droid.org/, 2022. Accessed: Oct. 02, 2022.

[47] Runhan Feng, Ziyang Yan, Shiyan Peng, and Yuanyuan Zhang. Automated detection
of password leakage from public github repositories. In International Conference on
Software Engineering (ICSE’22), 2022.

[48] Ricarda Anna-Lena Fischer, Rita Walczuch, and Emitza Guzman. Does culture
matter? impact of individualism and uncertainty avoidance on app reviews. In Int.
Conf. on Software Engineering: Software Engineering in Society. IEEE, 2021.

113

https://hub.docker.com/search?q=
https://hub.docker.com/search?q=
https://dotfiles.github.io/
https://archive.org/details/stackexchange
https://archive.org/details/stackexchange
https://f-droid.org/
https://f-droid.org/

[49] Denae Ford, Kristina Lustig, Jeremy Banks, and Chris Parnin. “We Don’t Do That
Here”: How collaborative editing with mentors improves engagement in social Q&A
communities. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems, CHI ’18. Association for Computing Machinery, 2018.

[50] Free Software Foundation. Stow - GNU Project -Free Software Foundation. https:
//gnu.org/software/stow/, 2016. Accessed: Mar. 1, 2023.

[51] Neelamadhav Gantayat, Pankaj Dhoolia, Rohan Padhye, Senthil Mani, and
Vibha Singhal Sinha. The synergy between voting and acceptance of answers on
stackoverflow-or the lack thereof. In 2015 IEEE/ACM 12th Working Conference on
Mining Software Repositories. IEEE, 2015.

[52] GitHub. GitHub Copilot · Your AI pair programmer. https://copilot.github.
com/, 2021. Accessed: Nov. 04, 2021.

[53] GitHub. GitHub Marketplace · to improve your workflow · GitHub. https://
github.com/marketplace?type=, 2022. Accessed: Jun. 06 2022.

[54] Google. Chrome Web Store - Extensions. https://chrome.google.com/webstore/
category/extensions, 2022. Accessed: Jun. 22, 2022.

[55] Google. Chrome Web Store payments deprecation. https://developer.chrome.
com/docs/webstore/cws-payments-deprecation/, 2022. Accessed: Mar. 16, 2022.

[56] Tomasz Górecki and Paweł Piasecki. A comprehensive comparison of distance mea-
sures for time series classification. In Workshop on Stochastic Models, Statistics and
their Application, pages 409–428. Springer, 2019.

[57] Georgios Gousios and Diomidis Spinellis. GHTorrent: GitHub’s data from a firehose.
In 2012 9th IEEE Working Conference on Mining Software Repositories (MSR).
IEEE, 2012.

[58] Hui Guo and Munindar P Singh. Caspar: extracting and synthesizing user stories of
problems from app reviews. In Int. Conf. on Software Engineering. IEEE, 2020.

[59] Marlo Haering, Christoph Stanik, and Walid Maalej. Automatically matching bug
reports with related app reviews. In Int. Conf. on Software Engineering. IEEE, 2021.

[60] Omar Haggag, Sherif Haggag, John Grundy, and Mohamed Abdelrazek. COVID-
19 vs social media apps: does privacy really matter? In Int. Conf. on Software
Engineering: Software Engineering in Society. IEEE, 2021.

114

https://gnu.org/software/stow/
https://gnu.org/software/stow/
https://copilot.github.com/
https://copilot.github.com/
https://github.com/marketplace?type=
https://github.com/marketplace?type=
https://chrome.google.com/webstore/category/extensions
https://chrome.google.com/webstore/category/extensions
https://developer.chrome.com/docs/webstore/cws-payments-deprecation/
https://developer.chrome.com/docs/webstore/cws-payments-deprecation/

[61] Mark Harman, Yue Jia, and Yuanyuan Zhang. App store mining and analysis: MSR
for App Stores. In Int. Conf. on Mining Software Repositories. IEEE, 2012.

[62] Vincent J Hellendoorn, Sebastian Proksch, Harald C Gall, and Alberto Bacchelli.
When code completion fails: A case study on real-world completions. In 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE,
2019.

[63] Rashina Hoda, James Noble, and Stuart Marshall. Developing a grounded theory to
explain the practices of self-organizing Agile teams. In Empirical Software Engineer-
ing. Springer, 2012.

[64] Zach Holman. Dotfiles Are Meant to Be Forked. https://zachholman.com/2010/
08/dotfiles-are-meant-to-be-forked/, 2010. Accessed: Aug. 16, 2022.

[65] Daqing Hou and David M Pletcher. An evaluation of the strategies of sorting, filter-
ing, and grouping api methods for code completion. In 2011 27th IEEE International
Conference on Software Maintenance (ICSM). IEEE, 2011.

[66] Yangyu Hu, Haoyu Wang, Tiantong Ji, Xusheng Xiao, Xiapu Luo, Peng Gao, and
Yao Guo. Champ: Characterizing undesired app behaviors from user comments
based on market policies. In Int. Conf. on Software Engineering. IEEE, 2021.

[67] Ecma International. TC39 - Specifying JavaScript. https://tc39.es/, 2022. Ac-
cessed: Oct. 02, 2022.

[68] X. Jin and F. Servant. What Edits are Done on the Highly Answered Questions
in Stack Overflow? An Empirical Study. In 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories, MSR ’19, 2019.

[69] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge. Why
don’t software developers use static analysis tools to find bugs? In 2013 35th Inter-
national Conference on Software Engineering (ICSE). IEEE, 2013.

[70] Capers Jones. Software assessments, benchmarks, and best practices. Addison-Wesley
Longman Publishing Co., Inc., 2000.

[71] @k0kubun. Users Ranking - Gitstar Ranking. https://gitstar-ranking.com/
users, 2014. Accessed: Sept. 28, 2022.

115

https://zachholman.com/2010/08/dotfiles-are-meant-to-be-forked/
https://zachholman.com/2010/08/dotfiles-are-meant-to-be-forked/
https://tc39.es/
https://gitstar-ranking.com/users
https://gitstar-ranking.com/users

[72] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M German,
and Daniela Damian. The promises and perils of mining github. In Proceedings of
the 11th Working Conference on Mining Software Repositories (MSR), 2014.

[73] Christian Kaltenecker, Alexander Grebhahn, Norbert Siegmund, Jianmei Guo, and
Sven Apel. Distance-based sampling of software configuration spaces. In 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE,
2019.

[74] David Kavaler, Asher Trockman, Bogdan Vasilescu, and Vladimir Filkov. Tool choice
matters: Javascript quality assurance tools and usage outcomes in github projects.
In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE),
pages 476–487. IEEE, 2019.

[75] Team Kodi. The Movie Database Python | Matrix | Addons | Kodi. https://
kodi.tv/addons/matrix/metadata.themoviedb.org.python, 2022. Accessed: Jul.
13, 2022.

[76] Konstantin Kuznetsov, Chen Fu, Song Gao, David N Jansen, Lijun Zhang, and An-
dreas Zeller. Frontmatter: mining Android user interfaces at scale. In Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. ACM, 2021.

[77] Charles A Lantz and Elliott Nebenzahl. Behavior and interpretation of the κ statistic:
Resolution of the two paradoxes. In Journal of clinical epidemiology. Elsevier, 1996.

[78] Vladimir I Levenshtein et al. Binary codes capable of correcting deletions, insertions,
and reversals. In Soviet physics doklady. Soviet Union, 1966.

[79] Bin Lin, Alexey Zagalsky, Margaret-Anne Storey, and Alexander Serebrenik. Why
developers are slacking off: Understanding how software teams use slack. In Pro-
ceedings of the 19th ACM Conference on Computer Supported Cooperative Work and
Social Computing Companion, 2016.

[80] Dayi Lin, Cor-Paul Bezemer, Ying Zou, and Ahmed E Hassan. An empirical study
of game reviews on the steam platform. In Empirical Software Engineering. Springer,
2019.

[81] Mario Linares-Vásquez, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Denys Poshyvanyk. How do api changes trigger stack overflow discussions? a study

116

https://kodi.tv/addons/matrix/metadata.themoviedb.org.python
https://kodi.tv/addons/matrix/metadata.themoviedb.org.python

on the android sdk. In proceedings of the 22nd International Conference on Program
Comprehension, pages 83–94, 2014.

[82] Pei Liu, Li Li, Yichun Yan, Mattia Fazzini, and John Grundy. Identifying and
characterizing silently-evolved methods in the android API. In Int. Conf. on Software
Engineering: Software Engineering in Practice. IEEE, 2021.

[83] Siqi Ma, Juanru Li, Hyoungshick Kim, Elisa Bertino, Surya Nepal, Diethelm Os-
try, and Cong Sun. Fine with “1234”? An Analysis of SMS One-Time Password
Randomness in Android Apps. In Int. Conf. on Software Engineering. IEEE, 2021.

[84] James MacQueen et al. Some methods for classification and analysis of multivari-
ate observations. In Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability. Oakland, CA, USA, 1967.

[85] William Martin, Federica Sarro, Yue Jia, Yuanyuan Zhang, and Mark Harman. A
survey of app store analysis for software engineering. In Transactions on Software
Engineering. IEEE, 2016.

[86] Zainab Masood, Rashina Hoda, and Kelly Blincoe. How agile teams make self-
assignment work: a grounded theory study. In Empirical Software Engineering.
Springer, 2020.

[87] Andrew Meneely, Mackenzie Corcoran, and Laurie Williams. Improving developer
activity metrics with issue tracking annotations. In Proceedings of the 2010 ICSE
Workshop on Emerging Trends in Software Metrics, 2010.

[88] Microsoft. Official page for Language Server Protocol. https://microsoft.github.
io/language-server-protocol/, 2021. Accessed: Nov. 04, 2021.

[89] Microsoft. Registry. https://learn.microsoft.com/en-us/windows/win32/
sysinfo/registry, 2021. Accessed: Mar. 4, 2023.

[90] Stefan Mühlbauer, Sven Apel, and Norbert Siegmund. Accurate modeling of perfor-
mance histories for evolving software systems. In 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2019.

[91] Vijayaraghavan Murali, Edward Yao, Umang Mathur, and Satish Chandra. Scalable
statistical root cause analysis on app telemetry. In Int. Conf. on Software Engineer-
ing: Software Engineering in Practice. IEEE, 2021.

117

https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/
https://learn.microsoft.com/en-us/windows/win32/sysinfo/registry
https://learn.microsoft.com/en-us/windows/win32/sysinfo/registry

[92] Emerson Murphy-Hill, Edward K Smith, Caitlin Sadowski, Ciera Jaspan, Collin Win-
ter, Matthew Jorde, Andrea Knight, Andrew Trenk, and Steve Gross. Do developers
discover new tools on the toilet? In 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE), pages 465–475. IEEE, 2019.

[93] Emerson Murphy-Hill, Thomas Zimmermann, and Nachiappan Nagappan. Cowboys,
ankle sprains, and keepers of quality: How is video game development different from
software development? In Int. Conf. on Software Engineering, 2014.

[94] Sarah Nadi, Thorsten Berger, Christian Kästner, and Krzysztof Czarnecki. Where
do configuration constraints stem from? an extraction approach and an empirical
study. IEEE Transactions on Software Engineering (TSE), 2015.

[95] Vivek Nair, Zhe Yu, Tim Menzies, Norbert Siegmund, and Sven Apel. Finding faster
configurations using flash. IEEE Transactions on Software Engineering, 2018.

[96] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns. What makes a good code exam-
ple?: A study of programming Q&A in StackOverflow. In Proceedings of the 28th
International Conference on Software Maintenance, ICSM ’12, 2012.

[97] Hacker News. Transparent telemetry for open-source projects | hacker news. https:
//news.ycombinator.com/item?id=34707583, 2023. Accessed: Apr. 26, 2023.

[98] Yi Ying Ng, Hucheng Zhou, Zhiyuan Ji, Huan Luo, and Yuan Dong. Which An-
droid app store can be trusted in China? In Computer Software and Applications
Conference. IEEE, 2014.

[99] Tam Nguyen, Phong Vu, and Tung Nguyen. Code recommendation for exception
handling. In Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering. ACM, 2020.

[100] npm. npm About. https://www.npmjs.com/about, 2022. Accessed: Oct. 02, 2022.

[101] Humphrey O Obie, Waqar Hussain, Xin Xia, John Grundy, Li Li, Burak Turhan, Jon
Whittle, and Mojtaba Shahin. A first look at human values-violation in app reviews.
In Int. Conf. on Software Engineering: Software Engineering in Society. IEEE, 2021.

[102] Cyrus Omar, Young Seok Yoon, Thomas D LaToza, and Brad A Myers. Active code
completion. In 2012 34th International Conference on Software Engineering (ICSE).
IEEE, 2012.

118

https://news.ycombinator.com/item?id=34707583
https://news.ycombinator.com/item?id=34707583
https://www.npmjs.com/about

[103] Stack Overflow. Stack Overflow Developer Survey 2022. https://survey.
stackoverflow.co/2022/, 2022. Accessed: Jul. 24, 2022.

[104] Linjie Pan, Baoquan Cui, Hao Liu, Jiwei Yan, Siqi Wang, Jun Yan, and Jian Zhang.
Static asynchronous component misuse detection for Android applications. In Joint
Meeting on European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering. ACM, 2020.

[105] John Paparrizos and Luis Gravano. k-shape: Efficient and accurate clustering of
time series. In Proceedings of the 2015 ACM SIGMOD international conference on
management of data, 2015.

[106] Luca Pascarella, Fabio Palomba, Massimiliano Di Penta, and Alberto Bacchelli. How
is video game development different from software development in open source? In
Int. Conf. on Mining Software Repositories. IEEE, 2018.

[107] Jorge Pérez, Jessica Díaz, Javier Garcia-Martin, and Bernardo Tabuenca. System-
atic literature reviews in software engineering—Enhancement of the study selection
process using Cohen’s kappa statistic. In Journal of Systems and Software. Elsevier,
2020.

[108] Rob Pike. A lesson in shortcuts. https://archive.ph/vfXl2, 2012. Accessed: Dec.
13, 2022.

[109] Luca Ponzanelli, Andrea Mocci, Alberto Bacchelli, and Michele Lanza. Understand-
ing and classifying the quality of technical forum questions. In 2014 14th Interna-
tional Conference on Quality Software. IEEE, 2014.

[110] Luca Ponzanelli, Andrea Mocci, Alberto Bacchelli, Michele Lanza, and David Fuller-
ton. Improving low quality stack overflow post detection. In 2014 IEEE international
conference on software maintenance and evolution. IEEE, 2014.

[111] Chaiyong Ragkhitwetsagul, Jens Krinke, Matheus Paixao, Giuseppe Bianco, and
Rocco Oliveto. Toxic code snippets on stack overflow. IEEE Transactions on Software
Engineering, 2019.

[112] Sydur Rahaman, Iulian Neamtiu, and Xin Yin. Algebraic-datatype taint tracking,
with applications to understanding Android identifier leaks. In Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. ACM, 2021.

119

https://survey.stackoverflow.co/2022/
https://survey.stackoverflow.co/2022/
https://archive.ph/vfXl2

[113] Veselin Raychev, Martin Vechev, and Eran Yahav. Code completion with statis-
tical language models. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2014.

[114] Eric Raymond. The cathedral and the bazaar. Knowledge, Technology & Policy,
1999.

[115] Eric S. Raymond. How to ask questions the smart way. http://www.catb.org/
~esr/faqs/smart-questions.html. Accessed: 2019-10-21.

[116] Reddit. r/unixporn - the home for *NIX customization! https://www.reddit.com/
r/unixporn/, 2023. Accessed: Feb. 27, 2023.

[117] Rémi Prévost, Mike McQuaid, and Danielle Lalonde. The Missing Package Manager
for macOS (or Linux) — Homebrew. https://brew.sh/, 2022. Accessed: Jun. 22,
2022.

[118] P. C. Rigby and A. E. Hassan. What Can OSS Mailing Lists Tell Us? A Prelimi-
nary Psychometric Text Analysis of the Apache Developer Mailing List. In Fourth
International Workshop on Mining Software Repositories, MSR ’07, 2007.

[119] Christoffer Rosen and Emad Shihab. What are mobile developers asking about? a
large scale study using stack overflow. In Empirical Software Engineering. Springer,
2016.

[120] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. In Journal of computational and applied mathematics. Elsevier,
1987.

[121] Israel J Mojica Ruiz, Meiyappan Nagappan, Bram Adams, and Ahmed E Hassan.
Understanding reuse in the android market. In Int. Conf. on Program Comprehen-
sion. IEEE, 2012.

[122] Avigit K Saha, Ripon K Saha, and Kevin A Schneider. A discriminative model
approach for suggesting tags automatically for stack overflow questions. In 2013
10th Working Conference on Mining Software Repositories (MSR). IEEE, 2013.

[123] Hiroaki Sakoe. Dynamic-programming approach to continuous speech recognition.
In 1971 Proc. the International Congress of Acoustics, Budapest, 1971.

120

http://www.catb.org/~esr/faqs/smart-questions.html
http://www.catb.org/~esr/faqs/smart-questions.html
https://www.reddit.com/r/unixporn/
https://www.reddit.com/r/unixporn/
https://brew.sh/

[124] Mohammed SAYAGH, Noureddine Kerzazi, Bram Adams, and Fabio Petrillo. Soft-
ware configuration engineering in practice interviews, survey, and systematic litera-
ture review. IEEE Transactions on Software Engineering, 2020.

[125] Michael Schröder and Jürgen Cito. An empirical investigation of command-line cus-
tomization. Empirical Software Engineering, 2022.

[126] Subhasree Sengupta and Caroline Haythornthwaite. Learning with comments: An
analysis of comments and community on Stack Overflow. In Proceedings of the 53rd
Hawaii International Conference on System Sciences, 2020.

[127] Rifat Ara Shams, Waqar Hussain, Gillian Oliver, Arif Nurwidyantoro, Harsha Perera,
and Jon Whittle. Society-oriented applications development: Investigating users’
values from bangladeshi agriculture mobile applications. In Int. Conf. on Software
Engineering: Software Engineering in Society. IEEE, 2020.

[128] Sergei Shcherban, Peng Liang, Amjed Tahir, and Xueying Li. Automatic identifi-
cation of code smell discussions on stack overflow: A preliminary investigation. In
Proceedings of the 14th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), pages 1–6, 2020.

[129] E. Shihab, Zhen Ming Jiang, and A. E. Hassan. On the use of internet relay chat
(irc) meetings by developers of the gnome gtk+ project. In Proceedings of the 6th
International Working Conference on Mining Software Repositories, MSR ’09, 2009.

[130] Emad Shihab, Zhen Ming Jiang, and Ahmed E Hassan. Studying the use of developer
irc meetings in open source projects. In Proceedings of the 25th IEEE International
Conference on Software Maintenance, ICSM ’09, pages 147–156. IEEE, 2009.

[131] Martin Siegumfeldt. emacs +flyspell. https://lists.gnu.org/archive/html/
help-gnu-emacs/2002-09/msg00619.html, 2002. Accessed: Feb. 27, 2023.

[132] Will Snipes, Vinay Augustine, Anil R Nair, and Emerson Murphy-Hill. Towards rec-
ognizing and rewarding efficient developer work patterns. In 2013 35th International
Conference on Software Engineering (ICSE). IEEE, 2013.

[133] Will Snipes, Anil R Nair, and Emerson Murphy-Hill. Experiences gamifying devel-
oper adoption of practices and tools. In Companion Proceedings of the 36th Interna-
tional Conference on Software Engineering, 2014.

121

https://lists.gnu.org/archive/html/help-gnu-emacs/2002-09/msg00619.html
https://lists.gnu.org/archive/html/help-gnu-emacs/2002-09/msg00619.html

[134] Wei Song, Mengqi Han, and Jeff Huang. IMGDroid: Detecting Image Loading De-
fects in Android Applications. In Int. Conf. on Software Engineering. IEEE, 2021.

[135] Abhishek Soni and Sarah Nadi. Analyzing comment-induced updates on stack over-
flow. In 2019 IEEE/ACM 16th International Conference on Mining Software Repos-
itories, MSR ’19, pages 220–224. IEEE, 2019.

[136] Sulayman Sowe, Ioannis Stamelos, and Lefteris Angelis. Identifying knowledge bro-
kers that yield software engineering knowledge in OSS projects. Information and
Software Technology, 2006.

[137] Charles Spearman. The proof and measurement of association between two things.
The American Journal of Psychology (AJP), 1961.

[138] Ivan Srba and Maria Bielikova. Why is stack overflow failing? preserving sustain-
ability in community question answering. IEEE Software, 2016.

[139] Margaret-Anne Storey, Alexey Zagalsky, Fernando Figueira Filho, Leif Singer, and
Daniel M German. How social and communication channels shape and challenge
a participatory culture in software development. IEEE Transactions on Software
Engineering, 2016.

[140] Ruoxi Sun, Wei Wang, Minhui Xue, Gareth Tyson, Seyit Camtepe, and Damith C
Ranasinghe. An empirical assessment of global COVID-19 contact tracing applica-
tions. In Int. Conf. on Software Engineering. IEEE, 2021.

[141] Alexey Svyatkovskiy, Ying Zhao, Shengyu Fu, and Neel Sundaresan. Pythia: Ai-
assisted code completion system. In Proceedings of the 25th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining, 2019.

[142] tabnine. Code Faster with AI Code Completions | Tabnine. https://www.tabnine.
com, 2021. Accesed: Nov. 04, 2021.

[143] Rukma Talwadker and Deepti Aggarwal. Popcon: Mining popular software configu-
rations from community. In 2019 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), pages 1–6. IEEE, 2019.

[144] Qiongjie Tian, Peng Zhang, and Baoxin Li. Towards predicting the best answers in
community-based question-answering services. In Proceedings of the Seventh Inter-
national AAAI Conference on Weblogs and Social Media, 2013.

122

https://www.tabnine.com
https://www.tabnine.com

[145] Christoph Treude, Ohad Barzilay, and Margaret-Anne Storey. How do programmers
ask and answer questions on the web? (NIER Track). In Proceedings of the 33rd
International Conference on Software Engineering, 2011.

[146] Andrew Truelove, Eduardo Santana de Almeida, and Iftekhar Ahmed. We’ll Fix It
in Post: What Do Bug Fixes in Video Game Update Notes Tell Us? In Int. Conf.
on Software Engineering. IEEE, 2021.

[147] Gias Uddin, Foutse Khomh, and Chanchal K Roy. Mining api usage scenarios from
stack overflow. Information and Software Technology, 122:106277, 2020.

[148] Valve. Welcome to Steam. https://store.steampowered.com/, 2022. Ac-
cessed: Jun. 22 2022.

[149] Dirk Van Der Linden, Pauline Anthonysamy, Bashar Nuseibeh, Thein Than Tun,
Marian Petre, Mark Levine, John Towse, and Awais Rashid. Schrödinger’s security:
Opening the box on app developers’ security rationale. In Int. Conf. on Software
Engineering. IEEE, 2020.

[150] Bogdan Vasilescu, Alexander Serebrenik, Prem Devanbu, and Vladimir Filkov. How
Social Q&A Sites Are Changing Knowledge Sharing in Open Source Software Com-
munities. In Proceedings of the 17th ACM Conference on Computer Supported Coop-
erative Work & Social Computing, CSCW ’14. Association for Computing Machinery,
2014.

[151] Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Sebastian Proksch, Har-
ald C Gall, and Andy Zaidman. How developers engage with static analysis tools in
different contexts. In Empirical Software Engineering. Springer, 2020.

[152] Diane Walker and Florence Myrick. Grounded theory: An exploration of process and
procedure. In Qualitative health research. Sage, 2006.

[153] Haoyu Wang, Zhe Liu, Jingyue Liang, Narseo Vallina-Rodriguez, Yao Guo, Li Li,
Juan Tapiador, Jingcun Cao, and Guoai Xu. Beyond google play: A large-scale com-
parative study of chinese android app markets. In Internet Measurement Conference
2018, 2018.

[154] Haoyu Wang, Xupu Wang, and Yao Guo. Characterizing the global mobile app de-
velopers: a large-scale empirical study. In Int. Conf. on Mobile Software Engineering
and Systems. IEEE, 2019.

123

https://store.steampowered.com/

[155] Peipei Wang, Chris Brown, Jamie A Jennings, and Kathryn T Stolee. Demystifying
regular expression bugs. In Empirical Software Engineering. Springer, 2022.

[156] Shaowei Wang, Tse-Hsun Chen, and Ahmed E Hassan. How do users revise answers
on technical Q&A websites? A case study on Stack Overflow. IEEE Transactions
on Software Engineering, 2018.

[157] Shaowei Wang, Tse-Hsun Chen, and Ahmed E Hassan. Understanding the factors
for fast answers in technical Q&A websites. Empirical Software Engineering, 2018.

[158] Shaowei Wang, David Lo, Bogdan Vasilescu, and Alexander Serebrenik. EnTagRec:
An Enhanced Tag Recommendation System for Software Information Sites. In 2014
IEEE International Conference on Software Maintenance and Evolution (ICSME).
IEEE Computer Society, 2014.

[159] Shaowei Wang, David Lo, Bogdan Vasilescu, and Alexander Serebrenik. EnTa-
gRec++: An enhanced tag recommendation system for software information sites.
Empirical Software Engineering, 2018.

[160] ArchLinux Wiki. Dotfiles. https://wiki.archlinux.org/title/Dotfiles, 2023.
Accessed: Feb. 21, 2023.

[161] Wikimedia. Wikimedia users. https://strategy.wikimedia.org/wiki/
Wikimedia_users, 2023. Accessed: Mar. 07, 2023.

[162] Wikipedia. Electronic AppWrapper - Wikipedia. https://en.wikipedia.org/
wiki/Electronic_AppWrapper, 2022. Accessed: Jun. 22, 2022.

[163] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis. In
Chemometrics and intelligent laboratory systems. Elsevier, 1987.

[164] WordPress. WordPress Plugins | WordPress.org. https://wordpress.org/
plugins/, 2022. Accessed: Jun. 22, 2022.

[165] Huayao Wu, Wenjun Deng, Xintao Niu, and Changhai Nie. Identifying key features
from app user reviews. In Int. Conf. on Software Engineering. IEEE, 2021.

[166] Xin Xia, David Lo, Xinyu Wang, and Bo Zhou. Tag recommendation in software
information sites. In 2013 10th Working Conference on Mining Software Repositories
(MSR). IEEE, 2013.

124

https://wiki.archlinux.org/title/Dotfiles
https://strategy.wikimedia.org/wiki/Wikimedia_users
https://strategy.wikimedia.org/wiki/Wikimedia_users
https://en.wikipedia.org/wiki/Electronic_AppWrapper
https://en.wikipedia.org/wiki/Electronic_AppWrapper
https://wordpress.org/plugins/
https://wordpress.org/plugins/

[167] Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasupathy, and
Rukma Talwadker. Hey, you have given me too many knobs!: Understanding and
dealing with over-designed configuration in system software. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE ’15.
Association for Computing Machinery, 2015.

[168] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei Sheng, Ding Yuan,
Yuanyuan Zhou, and Shankar Pasupathy. Do not blame users for misconfigurations.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Prin-
ciples, 2013.

[169] Bo Yang, Zhenchang Xing, Xin Xia, Chunyang Chen, Deheng Ye, and Shanping
Li. Don’t do that! hunting down visual design smells in complex uis against design
guidelines. In Int. Conf. on Software Engineering. IEEE, 2021.

[170] Di Yang, Aftab Hussain, and Cristina Videira Lopes. From query to usable code:
an analysis of stack overflow code snippets. In Proceedings of the 13th International
Conference on Mining Software Repositories, 2016.

[171] Shao Yang1 Yuehan Wang2 Yuan Yao and Haoyu Wang4 Yanfang Fanny
Ye5 Xusheng Xiao. DescribeCtx: Context-Aware Description Synthesis for Sensi-
tive Behaviors in Mobile Apps. In Int. Conf. on Software Engineering. IEEE, 2022.

[172] Deheng Ye, Zhenchang Xing, and Nachiket Kapre. The structure and dynamics
of knowledge network in domain-specific q&a sites: a case study of stack overflow.
Empirical Software Engineering, 2017.

[173] Jiaming Ye, Ke Chen, Xiaofei Xie, Lei Ma, Ruochen Huang, Yingfeng Chen, Yinxing
Xue, and Jianjun Zhao. An empirical study of GUI widget detection for industrial
mobile games. In Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. ACM, 2021.

[174] Shengcheng Yu, Chunrong Fang, Zhenfei Cao, Xu Wang, Tongyu Li, and Zhenyu
Chen. Prioritize crowdsourced test reports via deep screenshot understanding. In
Int. Conf. on Software Engineering. IEEE, 2021.

[175] Shengcheng Yu, Chunrong Fang, Yexiao Yun, and Yang Feng. Layout and image
recognition driving cross-platform automated mobile testing. In Int. Conf. on Soft-
ware Engineering. IEEE, 2021.

125

[176] Alexey Zagalsky, Ohad Barzilay, and Amiram Yehudai. Example overflow: Using
social media for code recommendation. In 2012 Third International Workshop on
Recommendation Systems for Software Engineering, pages 38–42. IEEE, 2012.

[177] Xian Zhan, Lingling Fan, Sen Chen, Feng Wu, Tianming Liu, Xiapu Luo, and Yang
Liu. Atvhunter: Reliable version detection of third-party libraries for vulnerability
identification in android applications. In Int. Conf. on Software Engineering. IEEE,
2021.

[178] H. Zhang, S. Wang, T. Chen, and A. E. Hassan. Reading Answers on Stack Overflow:
Not Enough! IEEE Transactions on Software Engineering, 2019.

[179] H. Zhang, S. Wang, T. P. Chen, Y. Zou, and A. E. Hassan. An empirical study
of obsolete answers on stack overflow. IEEE Transactions on Software Engineering,
2021.

[180] Haoxiang Zhang, Shaowei Wang, Tse-Hsun Chen, and Ahmed E Hassan. Are com-
ments on Stack Overflow well organized for easy retrieval by developers? ACM
Transactions on Software Engineering and Methodology (TOSEM), 2021.

[181] Xueling Zhang, Xiaoyin Wang, Rocky Slavin, Travis Breaux, and Jianwei Niu. How
does misconfiguration of analytic services compromise mobile privacy? In Int. Conf.
on Software Engineering. IEEE, 2020.

[182] Zhen Zhang, Yu Feng, Michael D Ernst, Sebastian Porst, and Isil Dillig. Checking
conformance of applications against GUI policies. In Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM, 2021.

[183] Tianming Zhao, Chunyang Chen, Yuanning Liu, and Xiaodong Zhu. GUIGAN:
Learning to Generate GUI Designs Using Generative Adversarial Networks. In Int.
Conf. on Software Engineering. IEEE, 2021.

[184] Yuan Gao Zhen Wei and Jingqing Zhang. Automating question-and-answer session
capture using neural networks. In 2019 KDD Workshop on Deep Learning for Edu-
cation, DL4Ed, 2019.

[185] Wei Zheng, Ricardo Bianchini, and Thu D Nguyen. Massconf: automatic configu-
ration tuning by leveraging user community information. In Proceedings of the 2nd
ACM/SPEC International Conference on Performance engineering, 2011.

126

[186] Jiayuan Zhou, Shaowei Wang, Cor-Paul Bezemer, and Ahmed E. Hassan. Bounties
on technical q&a sites: A case study of stack overflow bounties. Empirical Software
Engineering, 06 2019.

[187] Shurui Zhou, Jafar Al-Kofahi, Tien N. Nguyen, Christian Kästner, and Sarah Nadi.
Extracting configuration knowledge from build files with symbolic analysis. Pro-
ceedings of the 3rd International Workshop on Release Engineering (RELENG ’15),
2015.

127

APPENDICES

128

Appendix A

Literature Overview of Recent Research
Involving App Stores

We reviewed relevant recent papers from the two flagship software engineering research
conferences: the ACM/IEEE International Conference on Software Engineering (“ICSE”)
and the ACM SIGSOFT International Symposium on the Foundations of Software Engi-
neering (“FSE”). We used Google Scholar to find papers containing the keyword “app store”
between January 2020 and April 2022 for the two conferences. In Table A.1, we list the
papers by how are app store involved and the corresponding app store if applicable.

129

Table A.1: Recent papers on app stores

Loc Paper Store

Mining software applications
ICSE ’21 Atvhunter: Reliable version detection of third-party libraries for vulnerability identification

in android applications [177]
Google Play

ICSE ’20 How does misconfiguration of analytic services compromise mobile privacy? [181] Google Play
FSE ’21 Algebraic-datatype taint tracking, with applications to understanding Android identifier

leaks [112]
Google Play

FSE ’20 Code recommendation for exception handling [99] Google Play
FSE ’20 Static asynchronous component misuse detection for Android applications [104] F-Droid, Google

Play, Wandoujia App
Store

ICSE ’21 Sustainable Solving: Reducing The Memory Footprint of IFDS-Based Data Flow Analyses
Using Intelligent Garbage Collection [11]

Google Play

ICSE ’22 DescribeCtx: Context-Aware Description Synthesis for Sensitive Behaviors in Mobile
Apps [171]

Google Play

ICSE ’20 Time-travel testing of android apps [41] Google Play
ICSE ’20 An empirical assessment of security risks of global android banking apps [29] Google Play, AP-

KMonk, etc.
ICSE ’21 Too Quiet in the Library: An Empirical Study of Security Updates in Android Apps’ Native

Code [6]
Google Play

ICSE ’20 Accessibility issues in android apps: state of affairs, sentiments, and ways forward [7] Google Play
ICSE ’21 Don’t do that! hunting down visual design smells in complex uis against design guide-

lines [169]
Android

ICSE ’21 Identifying and characterizing silently-evolved methods in the android API [82] Google Play
ICSE ’21 Layout and image recognition driving cross-platform automated mobile testing [175] Apple’s App Store,

Google Play
FSE ’21 An empirical study of GUI widget detection for industrial mobile games [173] Android Games
ICSE ’21 Fine with “1234”? An Analysis of SMS One-Time Password Randomness in Android

Apps [83]
Google Play, Tencent
Myapp

ICSE ’21 IMGDroid: Detecting Image Loading Defects in Android Applications [134] Android
ICSE ’21 GUIGAN: Learning to Generate GUI Designs Using Generative Adversarial Networks [183] Android
ICSE ’20 Unblind your apps: Predicting natural-language labels for mobile gui components by deep

learning [27]
Google Play

FSE ’21 Frontmatter: mining Android user interfaces at scale [76] Google Play
Mining app store non-technical attributes
ICSE ’20 Schrödinger’s security: Opening the box on app developers’ security rationale [149] Apple’s App Store,

Google Play
ICSE ’20 Scalable statistical root cause analysis on app telemetry [91] Facebook App
ICSE ’21 An empirical assessment of global COVID-19 contact tracing applications [140] Android
ICSE ’21 We’ll Fix It in Post: What Do Bug Fixes in Video Game Update Notes Tell Us? [146] Steam
ICSE ’21 Automatically matching bug reports with related app reviews [59] Google Play
ICSE ’21 Prioritize crowdsourced test reports via deep screenshot understanding [174] Android
ICSE ’21 A first look at human values-violation in app reviews [101] Google Play
ICSE ’21 Does culture matter? impact of individualism and uncertainty avoidance on app reviews [48] Apple’s App Store
ICSE ’21 COVID-19 vs social media apps: does privacy really matter? [60] Google Play, Apple’s

App Store
ICSE ’20 Society-oriented applications development: Investigating users’ values from bangladeshi agri-

culture mobile applications [127]
Google Play

FSE ’21 Checking conformance of applications against GUI policies [182] Android
ICSE ’21 Identifying key features from app user reviews [165] Apple’s App Store
ICSE ’21 Champ: Characterizing undesired app behaviors from user comments based on market poli-

cies [66]
Google Play, Chinese
android app stores

ICSE ’20 Caspar: extracting and synthesizing user stories of problems from app reviews [58] Apple’s App Store

130

	List of Figures
	List of Tables
	Introduction
	Five Types of Software Repositories
	Software Repositories from Developer-User Interactions
	Thesis Statement
	Thesis Contributions
	Organization

	Background
	Knowledge Creation on Stack Overflow
	Question and Answer (Q&A) Process
	Discussions on Stack Overflow

	User-Specific Configuration Files — dotfiles
	Culture of Sharing dotfiles

	App Stores
	App Store Operation

	Related Work
	Exploring and Understanding Stack Overflow
	Discussion Activities on Stack Overflow
	Leveraging Discussions in Software Engineering
	Understanding and Improving Stack Overflow

	Configuration Files
	Software Configurations
	Developer Workflow

	App Stores in Software Engineering Research
	Overview of App Store Research
	Involvement of App Stores in Software Engineering Research
	Store-focused research

	Understanding Question Discussions on Stack Overflow
	Introduction
	Data Collection
	Study Results
	RQ1: How prevalent are question discussions on Stack Overflow?
	RQ2: To what extent do users participate in question discussions?
	RQ3: How do question discussions affect the question answering process on Stack Overflow?

	Implications and Discussions
	Feedback From the Community
	Suggestions for Researchers
	Suggestions for Q&A Platform Designers

	Threats to Validity
	Conclusions

	Understanding the Practice of Maintaining User-Specific Configuration Files
	Introduction
	Data collection
	Results
	RQ1: Who are the owners of dotfiles repositories?
	RQ2: What kind of user-specific configuration files do users track in their dotfiles repositories?
	RQ3: How do developers update their dotfiles?

	Discussions and Implications
	Challenges in Managing dotfiles
	Leveraging dotfiles as a Software Repository

	Threats to Validity
	Summary

	Understanding App Stores the Software Engineering Perspective
	Introduction
	Working Definition of an App Store
	Research Methodology
	RQ1: What fundamental features describe the space of app stores?
	RQ2: Are there groups of stores that share similar features?

	Results
	Discussion
	What Is an App Store?
	Research Opportunities Involving App Stores

	Threats to Validity
	Summary

	Conclusions
	Summary of Contributions
	Enhanced Understanding of Developer-User Interactions
	Identified Challenges

	Avenues for Future Research

	References
	APPENDICES
	Literature Overview of Recent Research Involving App Stores

