
Improved Scalability and Accuracy of
Bayesian Network Structure Learning
in the Score-and-Search Paradigm

by

Charupriya Sharma

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2023

© Charupriya Sharma 2023

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Simon de Givry
Unité de Mathématiques et Informatique Appliquées de Toulouse
Centre de recherches de Toulouse, INRAE

Supervisor: Peter van Beek
David R. Cheriton School of Computer Science
University of Waterloo

Internal Member: Kate Larson
David R. Cheriton School of Computer Science
University of Waterloo

Internal Member: Jesse Hoey
David R. Cheriton School of Computer Science
University of Waterloo

Internal-External Member: Bruce Hellinga
Civil and Environmental Engineering
University of Waterloo

ii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement of
Contributions included in this thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

This thesis is mostly based on the following co-authored published articles. We use
the taxonomy developed and refined by the Consortia Advancing Standards in Research
Administration (CASRAI) and the National Information Standards Organization (NISO)
to specify the individual contributions (see Table 1).

1. Zhenyu A. Liao, Charupriya Sharma, James Cussens, and Peter van Beek. Finding
All Bayesian Network Structures within a Factor of Optimal. Proceedings of the 33rd
AAAI Conference on Artificial Intelligence, Honolulu, Hawaii, January, 2019.

Author Roles
Zhenyu A. Liao Writing − original draft; Conceptualization; Investigation;

Software; Visualization;
Charupriya Sharma Conceptualization; Formal analysis; Software; Visualization;

Writing − review/editing;
James Cussens Software; Writing − review/editing;
Peter van Beek Supervision; Funding acquisition; Conceptualization;

Methodology; Writing − review/editing

Chapter 3 is a revised and extended version of this paper.

2. Charupriya Sharma, Zhenyu A. Liao, James Cussens, and Peter van Beek. A Score-
and-Search Approach to Learning Bayesian Networks with Noisy-OR Relations. Pro-
ceedings of the 10th International Conference on Probabilistic Graphical Models, Aal-
borg, Denmark, September, 2020.

Author Roles
Charupriya Sharma Writing − original draft; Conceptualization; Formal analy-

sis; Investigation; Methodology; Software; Validation; Visu-
alization;

Zhenyu A. Liao Software; Writing − review/editing;
James Cussens Software; Writing − review/editing;
Peter van Beek Supervision; Funding acquisition; Conceptualization;

Methodology; Writing − review/editing

Chapter 4 is a revised and extended version of this paper.

iv

3. Zhenyu A. Liao, Charupriya Sharma, Dongshu Luo, and Peter van Beek. An Empir-
ical Study of Scoring Functions for Learning Bayesian Networks in Model Averaging.
Proceedings of the 35th Canadian Conference on Artificial Intelligence, Toronto, On-
tario, May, 2022.

Author Roles
Zhenyu A. Liao Writing − original draft; Conceptualization; Formal analy-

sis; Investigation; Methodology; Software;
Charupriya Sharma Conceptualization; Investigation; Software; Writing − re-

view/editing;
Dongshu Luo Investigation; Software;
Peter van Beek Supervision; Funding acquisition; Validation; Visualization;

Writing − review/editing

This paper influenced the performance metrics and the presentation of the experi-
ments shown in Chapter 3 and Chapter 5.

4. Charupriya Sharma and Peter van Beek. Scalable Bayesian Network Structure Learn-
ing with Splines. Proceedings of the 11th International Conference on Probabilistic
Graphical Models, Almeŕıa, Spain, October, 2022.

Author Roles
Charupriya Sharma Writing − original draft; Conceptualization; Formal analy-

sis; Investigation; Methodology; Software; Validation; Visu-
alization;

Peter van Beek Supervision; Funding acquisition; Methodology; Software;
Writing − review/editing

Chapter 6 is a revised and extended version of this paper.

v

Table 1: CRediT (Contributor Roles Taxonomy), a high-level taxonomy that can be used to
represent the roles typically played by contributors to research outputs. The roles describe
each contributor’s specific contribution to the scholarly output.

Role Description
Conceptualization Ideas; formulation or evolution of overarching research goals

and aims.
Formal analysis Application of statistical, mathematical, computational, or

other formal techniques to analyze or synthesize study data.
Funding acquisition Acquisition of the financial support for the project leading

to this publication.
Investigation Conducting a research and investigation process, specifically

performing the experiments, or data/evidence collection.
Methodology Development or design of methodology; creation of models.
Software Programming, software development; designing computer

programs; testing of existing code components.
Supervision Oversight and leadership responsibility for the research ac-

tivity planning and execution.
Validation Verification, whether as a part of the activity or sep-

arate, of the overall replication/reproducibility of re-
sults/experiments and other research outputs.

Visualization Preparation, creation and/or presentation of the published
work, specifically visualization/data presentation.

Writing − original draft Preparation, creation and/or presentation of the published
work, specifically writing the initial draft.

Writing − review/editing Preparation, creation and/or presentation of the published
work, specifically critical review, commentary or revision.

vi

Abstract

A Bayesian network is a probabilistic graphical model that consists of a directed acyclic
graph (DAG), where each node is a random variable and attached to each node is a condi-
tional probability distribution (CPD). A Bayesian network (BN) can either be constructed
by a domain expert or learned automatically from data using the well-known score-and-
search approach, a form of unsupervised machine learning. Our interest here is in BNs as a
knowledge discovery or data analysis tool, where the BN is learned automatically from data
and the resulting BN is then studied for the insights that it provides on the domain such
as possible cause-effect relationships, probabilistic dependencies, and conditional indepen-
dence relationships. Previous work has shown that the accuracy of a data analysis can be
improved by (i) incorporating structured representations of the CPDs into the score-and-
search approach for learning the DAG and by (ii) learning a set of DAGs from a dataset,
rather than a single DAG, and performing a technique called model averaging to obtain a
representative DAG.

This thesis focuses on improving the accuracy of the score-and-search approach for
learning a BN and in scaling the approach to datasets with larger numbers of random
variables. We introduce a novel model averaging approach to learning a BN motivated by
performance guarantees in approximation algorithms. Our approach considers all optimal
and all near-optimal networks for model averaging. We provide pruning rules that retain
optimality while enabling our approach to scale to BNs significantly larger than the current
state of the art. We extend our model averaging approach to simultaneously learn the
DAG and the local structure of the CPDs in the form of a noisy-OR representation. We
provide an effective gradient descent algorithm to score a candidate noisy-OR using the
widely used BIC score and we provide pruning rules that allow the search to successfully
scale to medium sized networks. Our empirical results provide evidence for the success
of our approach to learning Bayesian networks that incorporate noisy-OR relations. We
also extend our model averaging approach to simultaneously learn the DAG and the local
structure of the CPD using neural networks representations. Our approach compares
favourably with approaches like decision trees, and performs well in instances with low
amounts of data. Finally, we introduce a score-and-search approach to simultaneously
learn a DAG and model linear and non-linear local probabilistic relationships between
variables using multivariate adaptive regression splines (MARS). MARS are polynomial
regression models represented as piecewise spline functions. We show on a set of discrete
and continuous benchmark instances that our proposed approach can improve the accuracy
of the learned graph while scaling to instances with over 1,000 variables.

vii

Acknowledgements

I would like to thank my supervisor, Prof. Peter van Beek, for all his support and
guidance, without which this thesis would not have been possible. I would also like to
thank my co-authors for all of their work on our projects together, as well as Prof. Kate
Larson, Prof. Jesse Hoey and Prof. Ali Ghodsi for valuable their feedback on my research.

viii

Table of Contents

List of Figures xii

List of Tables xv

List of Acronyms and Abbreviations xviii

1 Introduction 1

1.1 Related Work . 2

1.1.1 Learning a Bayesian Network . 3

1.1.2 Model Averaging . 5

1.1.3 Incorporating Local Structure . 6

1.2 Contributions . 7

2 Background 9

2.1 Bayesian Networks . 9

2.2 Bayesian Network Structure Learning . 10

2.2.1 Scoring Functions . 12

2.3 Model Averaging . 13

2.4 Representing CPDs . 15

2.4.1 Noisy-OR . 15

2.4.2 Decision Trees . 17

ix

2.5 Performance Evaluation Metrics . 18

2.5.1 DAG Performance Metrics: Skeleton 18

2.5.2 DAG Performance Metrics: CPDAG 19

2.5.3 Density Estimation and Inference Metric 21

3 The Credible Set Approach 23

3.1 Overview . 23

3.2 Credible Sets . 25

3.3 Pruning Rules . 28

3.3.1 Pruning with BIC Score . 29

3.3.2 Pruning with BDeu Score . 33

3.4 Experimental Evaluation . 35

3.4.1 The Credible Set Approach . 35

3.4.2 Credible Set vs. K-Best . 40

3.4.3 Credible Set vs. Bootstrapping . 43

3.5 Summary . 44

4 Local Structure: Noisy-OR 47

4.1 Overview . 47

4.2 Score-and-Search with Noisy-OR . 48

4.2.1 BIC Score for Noisy-OR Relations 50

4.2.2 Pruning Rules . 51

4.2.3 Overall Algorithm for Structure Learning 53

4.3 Experimental Evaluation . 53

4.3.1 Recovery of Noisy-ORs in Synthetic Datasets 54

4.3.2 Presence of Noisy-OR Relations in Standard Benchmarks 55

4.3.3 Performance on Ground Truth Networks 57

4.4 Summary . 58

x

5 Local Structure: Neural Networks 59

5.1 Neural Networks to Represent CPDs . 60

5.1.1 Learning CPDs with Neural Networks 60

5.1.2 Learning CPDs with Decision Trees 62

5.1.3 Overall Algorithm for Structure Learning 64

5.2 Experimental Evaluation . 65

5.3 Summary . 69

6 Local Structure: Multivariate Adaptive Regression Splines 74

6.1 MARS: Multivariate Adaptive Regression Splines 75

6.2 Scaling with Feature Selection . 77

6.3 Experimental Evaluation . 79

6.3.1 Implementation Details . 80

6.3.2 Performance on Discrete Variables 81

6.3.3 Performance on Continuous Variables 86

6.3.4 Model Complexity . 87

6.4 Summary . 87

7 Conclusions 88

7.1 Future Work . 89

References 91

xi

List of Figures

1.1 Directed acyclic graph and (partial) specification of the conditional proba-
bility distributions of the example “Cancer” Bayesian network [62]. 2

2.1 A Bayesian network with four variables. Note that P (D = 1 | A,B,C) =
1− P (D = 0 | A,B,C) for all values of A, B, and C. 10

2.2 A sample dataset with four random variables. 11

2.3 Candidate parent sets for variable D with the associated scores. 11

2.4 Model averaging example with learned networks with confidence values in
blue, and the model averaged network in green. Using a threshold of t =
0.5, edge (C,D) is not considered significant and is removed from the final
averaged network. 14

2.5 Causal structure for a Bayesian network with a noisy-OR relation, where
the set of causes Πi := {Vi1, . . . , Vi|Πi|} leads to effect Vi and there is a
noisy-OR relation at node Vi. 16

2.6 Two representations of the same CPD P (D | A,B,C) for a child nodeD and
a parent set {A,B,C}: tabular CPT (left) and decision tree representation
(right). 17

2.7 An example of Markov equivalence classes for a three node network. The
blue network and the green networks are in different Markov equivalence
classes. 20

3.1 The deviation ϵ from the optimal BDeu score by k, where k is the number
of best scoring networks retrieved. The corresponding values of the BF
(ϵ = log(BF)) are presented on the right. For example, if the desired BF
value is 20, then all networks falling below the dash line at 20 are credible. 42

xii

3.2 Comparison of bootstrap and credible set model averaging methods, for
various scoring functions and performance measures for undirected edges
(skeleton): misclassification cost (top, lower values are better); Fβ score
(bottom, higher values are better). All methods used a fixed threshold of 0.5. 45

3.3 Comparison of bootstrap and credible set model averaging methods, for vari-
ous scoring functions and performance measures for directed edges (CPDAGs):
structural Hamming distance (top, lower values are better); multi-class Fβ

score (bottom, higher values are better). All methods used a fixed threshold
of 0.5. 46

4.1 Causal structure for a BN with a noisy-OR relation, where the set of causes
Πi := {Vi1, . . . , Vi|Πi|} leads to effect Vi and there is a noisy-OR relation at
variable Vi. 49

5.1 Comparison of scoring with conditional probability tables (CPT), scoring
with neural networks (NN), and scoring with decision trees (DT) using struc-
tural Hamming distance over CPDAGs (top, lower values are better) and
multi-class Fβ score over CPDAGs (bottom, higher values are better) as the
performance measure. All methods used a fixed threshold of 0.5. 70

5.2 Comparison of scoring with conditional probability tables (CPT), scoring
with neural networks (NN), and scoring with decision trees (DT) using mis-
classification cost α · FN + FP over skeletons (top, lower values are better)
and Fβ score over skeletons (bottom, higher values are better) as the per-
formance measure. All methods used a fixed threshold of 0.5. 71

6.1 MARS (red) and linear regression (blue) models for the same set of points.
MARS places a knot at every change of the slope. 76

6.2 Comparison of structure learning approaches on various networks from Tetrad,
where n is the number of variables and the number of edges in the ground
truth network: our BN-FS-MARS (BFM), tabular CPT with maximum par-
ent set size of two (BIC2), and GES (GES). For each ground truth network,
we report the following for corresponding learned networks for sample sizes
N = 1000 and N = 5000: (a) F1 score, (b) TP (true positives), (c) sum of
TP and WD (wrong direction), and (d) FP (false positives). 82

xiii

6.3 Comparison of structure learning approaches on various networks from bn-
learn: our BN-FS-MARS (BFM), tabular CPT with maximum parent set
size of two (BIC2), and GES (GES). For each ground truth network, we
report the following for corresponding learned networks for sample sizes
N = 1000 and N = 5000: (a) -score, (b) TP (true positives), (c) sum of TP
and WD (wrong direction), and (d) FP (false positives). 83

6.4 Results of BNSL on the benchmark link from bnlearn with N=5000 sam-
ples to show the proportion of TP=true positive , WD=wrong direction ,

FN=false negatives , FP=false positives in the learned DAG. 84

6.5 Results of BNSL on the benchmark munin1 from bnlearn with N=5000
samples to show the proportion of TP=true positive , WD=wrong direction ,

FN=false negatives , FP=false positives in the learned DAG. 84

6.6 Comparison of structure learning approaches on various n = 100 networks
from Dream4: our BN-FS-MARS (BFM), tabular CPT with maximum par-
ent set size of two (BIC2), and GES (GES). For each ground truth network,
we report the following for corresponding learned networks for sample sizes
N = 1000 and N = 5000: (a) F1 score, (b) TP (true positives), (c) sum of
TP and WD (wrong direction), and (d) FP (false positives). 85

xiv

List of Tables

1 CRediT (Contributor Roles Taxonomy), a high-level taxonomy that can
be used to represent the roles typically played by contributors to research
outputs. The roles describe each contributor’s specific contribution to the
scholarly output. vi

1.1 Representative data analyses using Bayesian networks, where n is the num-
ber of random variables and N is the number of instances in the data set.
. 3

3.1 UCI datasets (left, middle) and bnlearn Bayesian networks (right), where n
is the number of variables in the dataset or network, and N is the number
of instances in the original UCI dataset. 36

3.2 The search time T and the number of collected networks |G| for the credible
set method (BF = 3, 20, and 150) on the UCI datasets using BIC scoring,
where n is the number of random variables in the dataset and N is the
number of instances in the dataset. 38

3.3 The search time T and the number of collected networks |G| for the credible
set method (BF = 3, 20, and 150) on the bnlearn networks using BIC scoring,
where n is the number of random variables in the dataset, N is the number
of instances in the dataset, and OM = Out of Memory. 39

3.4 The search time T and the number of collected networks k, |Gk| and |G20|
for KBest, KBestEC, and credible set (BF = 20) methods on the UCI
datasets using BDeu scoring, where n is the number of random variables
in the dataset, N is the number of instances in the dataset, OT = Out of
Time, and ES = Error in Scoring. Note that |Gk| is the number of DAGs
covered by the k-best MECs in KBestEC and |M20| is the number of MECs
for the networks collected by the credible set method. 41

xv

4.1 (Top) Median relative error in noisy-OR parameters and (bottom) median
conditional KL divergence of noisy-OR CPTs learned by our Algorithm 4.1,
denoted KL, and Vomlel’s [108] expectation-maximization algorithm, de-
noted EM, from ground truth for various parent set sizes. 55

4.2 Total number of variables where a noisy-OR relation is selected (m), and
average (ave.) and maximum (max.) percentage of networks in the set of
credible networks that select noisy-OR relations for these nodes, for various
benchmarks, where n is the number of variables in the dataset or network
and N is the number of instances in the dataset. OT indicates a dataset
that could not be solved within the time limit. 56

4.3 Median relative inference error for the best and worst scoring network in the
set of credible networks learned by Algorithm 4.1 and the full CPT against
the ground truth network. The datasets with N instances were generated
from various ground truth BNs with n nodes. 57

5.1 UCI datasets (left, middle) and bnlearn Bayesian networks (right), where n
is the number of variables in the dataset or network, and N is the number
of instances in the original UCI dataset. 66

5.2 Comparison of scoring with conditional probability tables (CPT) and scor-
ing with neural networks (NN) using structural Hamming distance over
CPDAGs as the performance measure. At each row, the 25 percentile (Q1),
median (Q2), and 75 percentile (Q3) of the percentage change is shown
when comparing the methods on a set of ground truth networks and dataset
sample sizes of N = 50, 100, 500, 1000. Positive values favor CPT, negative
values favor NN. N = 1000 omits the soybean and biodeg benchmarks. . . 72

5.3 Comparison of scoring with conditional probability tables (CPT) and scoring
with neural networks (NN) using multi-class F1 score over CPDAGs as the
performance measure. At each row, the 25 percentile (Q1), median (Q2),
and 75 percentile (Q3) of the percentage change is shown when comparing
the methods on a set of ground truth networks and dataset sample sizes
of N = 50, 100, 500, 1000. Negative values favor CPT, positive values favor
NN. N = 1000 omits the soybean and biodeg benchmarks. 72

xvi

5.4 Comparison of scoring with conditional probability tables (CPT) and scor-
ing with neural networks (NN) using misclassification cost FP + FN over
skeletons as the performance measure. At each row, the 25 percentile (Q1),
median (Q2), and 75 percentile (Q3) of the percentage change is shown
when comparing the methods on a set of ground truth networks and dataset
sample sizes of N = 50, 100, 500, 1000. Positive values favor CPT, negative
values favor NN. N = 1000 omits the soybean and biodeg benchmarks. . . 73

5.5 Comparison of scoring with conditional probability tables (CPT) and scor-
ing with neural networks (NN) using F1 score over skeletons as the perfor-
mance measure. At each row, the 25 percentile (Q1), median (Q2), and
75 percentile (Q3) of the percentage change is shown when comparing the
methods on a set of ground truth networks and dataset sample sizes of
N = 50, 100, 500, 1000. Negative values favor CPT, positive values favor
NN. N = 1000 omits the soybean and biodeg benchmarks. 73

6.1 Bayesian networks from bnlearn, where n is the number of variables in the
network and m is the number of edges in the network. 80

xvii

List of Acronyms and Abbreviations

BDeu Bayesian Dirichlet equivalent uniform

BF Bayes factor

BIC Bayesian information criterion

BN Bayesian network

BNSL Bayesian network structure learning

CPD Conditional probability distribution

CPDAG Completed partially directed acyclic graph

DAG Directed acyclic graph

MARS Multivariate adaptive regression splines

MEC Markov equivalence class

SHD Structural Hamming distance

xviii

Chapter 1

Introduction

A Bayesian network is a probabilistic graphical model that consists of a labeled directed
acyclic graph (DAG) in which the vertices correspond to random variables, the edges
represent direct influence of one random variable on another, and each vertex is labeled
with a conditional probability distribution that specifies the dependence of that variable
on its set of parents in the DAG [80]. A Bayesian network can alternatively be viewed as
a factorized representation of the joint probability distribution over the random variables
and as an encoding of conditional independence assertions.

Example 1.1. Consider the well-known “Cancer” Bayesian network over five random
variables shown in Figure 1.1. Whether one is a smoker has a direct influence on whether
one is diagnosed with lung cancer, and whether one has lung cancer has a direct influence on
whether one experiences dyspnoea (shortness of breath). The DAG encodes the conditional
independence assertion that P(X-ray | Cancer) = P(X-ray | Cancer, Pollution, Smoker));
i.e., given whether there is cancer, what may have caused the cancer is irrelevant to whether
the X-ray shows cancer.

Bayesian networks have applications in knowledge discovery, probabilistic density esti-
mation, and prediction [27, 61, 109]. A Bayesian network (BN) can either be constructed
by a domain expert or learned automatically from data, a form of unsupervised machine
learning. Our interest here is in BNs as a knowledge discovery or data analysis tool, where
the BN is learned automatically from data and the resulting BN is then studied for the
insights that it provides on the domain such as possible cause-effect relationships, proba-
bilistic dependencies, and conditional independence relationships. BNs have been shown
to be an important data analysis tool in diverse areas including banking, environment,

1

Pollution Smoker

Cancer

X-ray Dyspnoea

P(X-ray = true | Cancer = true) = 0.90 P(Dyspnoea = true | Cancer = true) = 0.65
P(X-ray = true | Cancer = false) = 0.20 P(Dyspnoea = true | Cancer = false) = 0.30
P(X-ray = false | Cancer = true) = 0.10 P(Dyspnoea = false | Cancer = true) = 0.35
P(X-ray = false | Cancer = false) = 0.80 P(Dyspnoea = false | Cancer = false) = 0.70

Figure 1.1: Directed acyclic graph and (partial) specification of the conditional probability
distributions of the example “Cancer” Bayesian network [62].

medicine, safety, software, and sports (see Table 1.1 for some recent representative exam-
ples from the literature). Accordingly, research on accurate and scalable DAG or structure
learning algorithms for BNs have received significant attention over the last three decades
and continue to be an active area of investigation (e.g., [26, 49, 85, 93, 97, 103, 105, 106]).

1.1 Related Work

In this section, we review relevant related work. First, we review the literature on learning
a DAG from a dataset. Second, we review the literature on improving the learned DAG
by learning a set of DAGs from a single dataset and combining the set into a single DAG,
a technique called model averaging. Finally, we review the literature on improving the
learned DAG by incorporating information from the local structure of the conditional
probability distributions into the learning process.

2

Table 1.1: Representative data analyses using Bayesian networks, where n is the number
of random variables and N is the number of instances in the data set.

Area n N Score Description
Banking 18 1,796 BIC Contagion interactions between credit issuers

following a sovereign default [3].
Environment 12 1,900 BIC Factors that directly impact red tide species oc-

currences and concentrations [36].
Medicine 11 79 BIC† Biophysical interactions of pneumonitis (lung

inflammation) due to radiation therapy in non-
small-cell lung cancer [70].

Medicine 17 637 BIC Impact of adolescent use of cannabis on brain
development [79].

Medicine 26 408 BIC Interactions between symptoms of obsessive-
compulsive disorder and depression [74].

Safety 27 3,640 BIC Interactions between safety ratings of motor
carriers, carrier characteristics and safety per-
formance metrics [55].

Software 21 12,630 BIC Interactions between code review measures and
prevalence of post-release defects [63].

Sports 22 377 BIC† Relationships between psychological features
and team performance in football [41].

† Indicates the scoring function was unspecified and was assumed to use
the default scoring function of the software package used in the analysis.

1.1.1 Learning a Bayesian Network

A Bayesian network can be learned from data using algorithms that are broadly one of
three types: constraint-based, score-and-search, and hybrid algorithms which are a combi-
nation of the constraint-based and score-and-search approaches. Of these three approaches,
the predominant approach in Bayesian network structure learning—and the focus of this
thesis—is the score-and-search approach.

The constraint-based approach to learning the structure of a BN uses conditional in-
dependence tests on the data to determine the conditional independence relationships
between the variables under investigation, and then constructs a graph consistent with

3

the data. Verma and Pearl [107] were the first to provide a constraint-based algorithm.
More recent constraint-based algorithms include the PC [97] and PC-stable [24] algorithms.
The PC algorithm starts with a complete graph and iteratively eliminates edges from the
current graph via conditional independence tests. The PC stable algorithm builds on the
PC algorithm with to goal to make it more resistant to the ordering in which conditional
independence tests are conducted.

The score-and-search approach to learning the structure of a BN uses a scoring function
to evaluate the fit of a proposed BN to the data and the space of directed acyclic graphs
(DAGs) is searched for the best-scoring BN. Unfortunately, learning a BN from data is
NP-hard, even if the number of parents per vertex in the DAG is limited to two [20]. As
well, the problem is unlikely to be efficiently approximable with a good quality guarantee
[59], thus motivating the use of both global (optimal) search algorithms to find better
quality solutions and local (heuristic) search algorithms for scaling to larger datasets.

Global (optimal) search algorithms for learning a BN from data have been studied
extensively over the past several decades and there have been proposals based on dynamic
programming [60, 95, 73], A* search [112, 33, 32], breadth-first BnB search [29, 33, 34,
32], depth-first branch-and-bound (BnB) search [101, 72, 105, 103], and integer linear
programming [56, 6, 25]. Of these algorithms, the current state-of-the-art among optimal
algorithms include the solver GOBNILP, a branch-and-cut solver that solves a mixed-
integer programming formulation of the BN structure learning problem [6, 25], and the
solver ELSA, a constraint-programming based approach [103].

Local (heuristic) search algorithms for learning a BN from data have also been studied
extensively including hill-climbing [19, 18, 42], tabu search [8, 5], genetic algorithms [94],
and simulated annealing [84]. The local search algorithms operate over different search
spaces including the space of DAGs, where an arc is added, deleted, or parents are swapped
[18, 106]; the space of equivalence classes of DAGs [1]; and topological orderings over the
variables [65, 100, 54, 83, 88, 66]. Recently, neural networks have also been used to solve a
continuous formulation of the DAG learning problem [111, 114] but with limited success.
Of note among local search algorithms, Chickering [18] proposes an algorithm called greedy
equivalent search (GES) that constructs the parent set of node in the BN in a greedy fashion
using a set of operators. Ordering-based local search algorithms are also an efficient and
accurate approach for structure learning [100, 88, 66].

Hybrid approaches to learning the structure of a BN combine techniques from the
constraint-based and the score-and-search approaches, first using statistical tests to iden-
tify a reduced set of candidate parents for all nodes, and then using score-and-search on
the reduced search space. Algorithms using hybrid learning include the Max-Min Hill

4

Climbing algorithm (MMHC) [104]. The MMHC algorithm first employs statistical con-
ditional independence tests to find the skeleton of the BN, similar to the constraint-based
PC algorithm; second, it then orients the skeleton using a greedy hill-climbing search. Scu-
tari et al. [91] show in an extensive empirical evaluation that a score-and-search approach
based on tabu search is both faster and more accurate overall than constraint-based and
hybrid-based approaches.

1.1.2 Model Averaging

The learning algorithms discussed thus far all learn a single DAG from a dataset. When
one is using BNs for knowledge discovery with limited data, learning a single model may
be misleading as there may be several BNs with scores that are very close to optimal and
the posterior probability of even the best-scoring BN is often close to zero.

An alternative to committing to a single model is to learn a set of DAGs from a
single dataset and perform some form of Bayesian or frequentist model averaging [23,
53, 61]. In the context of knowledge discovery, Bayesian model averaging allows one to
estimate, for example, the posterior probability that an edge is present, rather than just
knowing whether the edge is present in the best-scoring network. A widely used data
analysis methodology is to: (i) learn a set of networks from the data, (ii) perform model
averaging to obtain a confidence measure for each edge, and (iii) select a threshold and
retain all edges with confidence higher than the threshold. In this manner, a representative
network can be constructed from the edges that are deemed significant. Previous work
has proposed Bayesian and frequentist model averaging approaches to network structure
learning including sampling [50, 71], enumerating [60] from the space of all possible DAGs,
considering the space of all DAGs consistent with a given ordering of the random variables
[12, 28], considering the space of tree-structured or other restricted DAGs [71, 75], and
considering only the k-best scoring DAGs for some given value of k [13, 14, 15, 16, 50, 102].
Unfortunately, these existing approaches either severely constrain the structure of the
Bayesian network, such as considering a single ordering or by allowing just tree-structured
networks, or have only been shown to scale to small Bayesian networks with fewer than 30
random variables.

In addition to the above algorithms, any one of the local (heuristic) search algorithms
for learning a BN would be fast enough that it could be turned into a model averaging
approach using a technique called bootstrapping [40]. In bootstrapping, one samples the
original dataset with replacement and then learns a network using the re-sampled data.
This process is repeated many times to attain a set of DAGs that can then be model
averaged.

5

1.1.3 Incorporating Local Structure

The learning algorithms discussed thus far all learn a Bayesian network from a dataset by
first learning the DAG and then learning the conditional probability distributions (CPDs)
associated with the DAG. The algorithms most often assume simple conditional proba-
bility tables are used to represent the CPDs for each variable. A conditional probability
table (CPT) contains a row for each possible combination of values the variables in its
parent set can take; i.e., the CPT is exponential in the size of the domains of the parent
variables. While learning the DAG is NP-hard [20], learning the CPTs given the DAG
is straightforward and can be accomplished efficiently. However, in settings with limited
data or larger parent sets, using CPTs can result in over-fitting and lead to unreliable
parameters. This observation has led to proposals for representing CPDs more succinctly
by capturing local structure using decision trees [12], logistic regression [12], linear com-
binations of Boolean functions [115], non-impeding noisy-AND trees [110], and noisy-OR
relations [80, 12, 77, 78, 113, 108].

In more recent work that learns a representation of the CPDs given the DAG, Bengio
and Bengio [7] propose neural networks. They focused on discrete random variables, and
model CPDs with neural networks with a single dense hidden layer, where the discrete
inputs and output were encoded using one-hot/unary encodings, and the output layer
uses a softmax. Shen et al. [92] show experimentally that a multi-layer perceptron model
consistently estimates a CPD more accurately than a decision tree model.

There have also been a limited number of proposals for simultaneously learning the
DAG and the local structure of the CPDs, rather than first learning the DAG and then
learning the CPDs. Buntine [12] was the first to propose incorporating local structures in
BN learning within the score-and-search approach but did not provide any empirical or
theoretical evidence for the benefits. The absence of an edge in the DAG of a BN rep-
resents a conditional independence relation; i.e., an independence relation that holds for
all possible values of the variables. Boutilier et al. [9] formalized the concept of context-
specific conditional independence that only holds given a certain assignment of a subset of
the variables. While such an independence relation cannot be captured by the underlying
DAG, they show that the associated CPD can be more succinctly represented using de-
cision trees rather than as a CPT. Friedman and Goldszmidt [38, 39] provide algorithms,
theoretical foundations, and an empirical evaluation of using decision trees as structured
representations in a score-and-search approach for discrete data. They show that simul-
taneously learning the DAG and the CPDs represented as decision trees can improve the
overall Bayesian network as measured by inference error against ground truth. Chicker-
ing et al. [19] extend the score-and-search approach to simultaneously learn decision trees

6

with equality constraints for succinctly representing common sub-trees. However, the par-
titioning algorithms used to split the feature space become computationally infeasible for
discrete variables with large domains.

In more recent work that simultaneously learns the DAG and the local structure of the
CPDs, Talvitie et al. [99] introduce a score that is based on classification and regression
trees (CARTs) to find the optimal BN in a score-and-search approach that handles datasets
with mixed discrete and continuous variables. Their experiments with structured CPDs
show an improvement over a tabular representation in the ability of the search algorithm
to find correct BNs with less data on some real-world datasets. Pensar et al. [82] introduce
partial conditional independence (PCI) as a generalization of context-specific independence
and introduce PCI-trees as a generalization of decision trees, where an edge in the tree
may now represent several outcomes. They propose greedy local search algorithms for both
structure learning and for finding a PCI-tree representation. An empirical comparison
confirms the results of Friedman and Goldszmidt [38, 39] that simultaneously learning
decision trees improves over CPTs as measured by inference error. The empirical results for
PCI-trees versus decision trees are mixed, with no representation having a clear advantage.

1.2 Contributions

This thesis focuses on improving the accuracy of the score-and-search approach for BN
structure learning and in scaling the approach to datasets with larger numbers of random
variables.

• We introduce a novel model averaging approach to BN structure learning motivated
by performance guarantees in approximation algorithms. Our approach considers
optimal and all near-optimal networks for model averaging. We provide pruning rules
generalized to be used within this model averaging framework, enabling our approach
to scale to BNs significantly larger than the current state of the art (Chapter 3).

• We extend our novel score-and-search approach with model averaging to simultane-
ously learn the DAG and the local structure of the CPDs in the form of a noisy-OR
representation. Our approach is able to choose between CPTs and noisy-OR rep-
resentations automatically. We provide an effective gradient descent algorithm to
score a candidate noisy-OR using the widely used BIC score and we provide pruning
rules that allow the search to successfully scale to medium-sized networks. Our em-
pirical results provide evidence for the success of our approach to learning BNs that
incorporate noisy-OR relations (Chapter 4).

7

• We extend our score-and-search approach with model averaging to simultaneously
learn the DAG and the local structure of the CPD using neural networks representa-
tions. The use of neural networks allows modeling of high-order interactions without
needing an exponential number of parameters as in the CPT. Our approach compares
favourably with approaches like decision trees, and performs well in instances with
low amounts of data (Chapter 5).

• We introduce a novel score-and-search approach to simultaneously learn a single
DAG and model linear and non-linear local probabilistic relationships between vari-
ables. We achieve this by a combination of feature selection to reduce the search
space for local relationships and extending the score-and-search approach to incor-
porate modeling the CPDs over variables as multivariate adaptive regression splines
(MARS). MARS are polynomial regression models represented as piecewise spline
functions. We show on a set of discrete and continuous benchmark instances that
our proposed approach can improve the accuracy of the learned graph while scaling
to instances with over 1,000 variables. Our method is fast enough that it can be used
in a bootstrapping model averaging approach in many instances (Chapter 6).

8

Chapter 2

Background

In this chapter, we review the necessary background in Bayesian network structure learning
and the performance evaluation metrics used in this thesis. For more background on these
topics see, for example, Darwiche [27], Koller and Friedman [61], and Witten et al. [109].

2.1 Bayesian Networks

A Bayesian network (BN) is a probabilistic graphical model that consists of a labeled di-
rected acyclic graph (DAG), G = (V ,E) in which the nodes V = {V1, . . . , Vn} correspond
to random variables, the edges E represent direct influence of one random variable on
another, and each node Vi is labeled with a conditional probability distribution (CPD)
P (Vi | Πi) that specifies the dependence of the variable Vi on its set of parents Πi in the
DAG. A BN can alternatively be viewed as a factorized representation of the joint probabil-
ity distribution over the random variables and as an encoding of conditional independence
assertions, where the absence of an edge in a BN indicates a conditional or unconditional
independence assertion.

Definition 2.1 (Conditional and unconditional independence). Let A, B, and C be ran-
dom variables. A is conditionally independent of B given C if P (A | B,C) = P (A | C)
holds for all values that the variables can take from their associated domains. A and B are
unconditionally independent if P (A | B) = P (A) holds.

For the discrete case, each random variable Vi has domain Ωi = {vi1, . . . , viri}, where ri
is the cardinality of Ωi and typically ri ≥ 2. Each set of parents Πi has set of instantiations

9

ΩΠi
= {πi1, . . . , πirΠi

}, where rΠi
is the number of possible instantiations of the parent set

Πi of Vi. The set θ = {θijk} for all i = {1, . . . , n}, j = {1, . . . , rΠi
} and k = {1, . . . , ri}

represents parameter estimates in G obtained either from expert knowledge or from a
dataset, where each θijk estimates the conditional probability P (Vi = vik | Πi = πij).

A B C

D

P (A = 0) = . . .
P (A = 1) = . . .

P (B = 0) = . . .
P (B = 1) = . . .
P (B = 2) = . . .

P (C = 0) = . . .
P (C = 1) = . . .

P (D = 0 | A = 0, B = 0, C = 0) = . . .
P (D = 0 | A = 0, B = 0, C = 1) = . . .
P (D = 0 | A = 0, B = 1, C = 0) = . . .
P (D = 0 | A = 0, B = 1, C = 1) = . . .
P (D = 0 | A = 0, B = 2, C = 0) = . . .
P (D = 0 | A = 0, B = 2, C = 1) = . . .

P (D = 0 | A = 1, B = 0, C = 0) = . . .
P (D = 0 | A = 1, B = 0, C = 1) = . . .
P (D = 0 | A = 1, B = 1, C = 0) = . . .
P (D = 0 | A = 1, B = 1, C = 1) = . . .
P (D = 0 | A = 1, B = 2, C = 0) = . . .
P (D = 0 | A = 1, B = 2, C = 1) = . . .

Figure 2.1: A Bayesian network with four variables. Note that P (D = 1 | A,B,C) =
1− P (D = 0 | A,B,C) for all values of A, B, and C.

Example 2.1. Consider the example Bayesian network over four random variables shown
in Figure 2.1. The domains are ΩA,ΩC ,ΩD = {0, 1} with rA, rc, rD = 2 and ΩB = {0, 1, 2}
with rB = 3. The parent set of variable D is {A,B,C} with r{A,B,C} = 12. The absence of
an edge from B to A indicates that P (A | B) = P (A) holds.

2.2 Bayesian Network Structure Learning

Let G be a DAG over random variables V and let I = {I1, . . . , IN} be a dataset, where each
instance Ii is an n-tuple that is a complete instantiation of the variables in V . A scoring

10

A B C D
0 1 1 1
1 0 1 1
0 2 0 0
1 2 0 0
0 0 1 0
0 1 0 0
1 0 0 1
.

Figure 2.2: A sample dataset with four random variables.

function σ(G | I) assigns a real value measuring the quality of G given the dataset I.
Without loss of generality, we assume that a lower score represents a better quality network
structure. To simplify notation, we use σ(G) in place of σ(G | I) when the dataset is clear
from context. We focus on decomposable scoring functions, where σ(G) =

∑n
i σ(Πi) and

Πi is the parent set of variable Vi in the DAG G.

A

D

10.5

A B

D

11.5

B C

D

6.5

Figure 2.3: Candidate parent sets for variable D with the associated scores.

Example 2.2. Figure 2.2 shows an example dataset over four random variables. Consider
the variable D. There are eight candidate parent sets for D: the empty parent set, the
singleton parent sets A, B, and C, and so on. Three of the possible candidate parent sets
and their associated scores for variable D are shown in Figure 2.3.

The Bayesian network structure learning problem is defined as follows.

Definition 2.2 (Bayesian network structure learning). Given a dataset I = {I1, . . . , IN}
over random variables V = {V1, . . . , Vn} and a scoring function σ, the Bayesian network
structure learning (BNSL) problem is to find the directed acyclic graph G∗ := argminG σ(G).

11

The predominant method for Bayesian network structure learning (BNSL) from data
is the score-and-search method. In score-and-search, a scoring function is used to indicate
how well a network fits the data and a search algorithm is used to find a DAG which
achieves the best possible score by choosing a parent set for each variable. Finding such a
network is known to be NP-hard [21]. Here we give the overall score-and-search algorithm
for BNSL given a dataset I and a scoring function σ.

• Step 1 (Score). For each variable Vi, i ∈ 1, . . . , n, determine the σ scores for all
candidate parent sets that could not be pruned with pruning rules for σ.

Step 2 (Search). The scores obtained in Step 1 are used to learn the optimal
scoring network; i.e., the network with the smallest sum of scores of the parent sets
argminG

∑n
i σ(Πi).

Pruning techniques that preserve optimality can be used to reduce the number of candi-
date parent sets that need to be considered, but in the worst-case the number of candidate
parent sets for each variable Vi is exponential in n, where n is the number of vertices in
the DAG. Another approach to reduce the number of candidate parent sets is to limit the
maximum in-degree of each node to a small constant.

2.2.1 Scoring Functions

Scoring functions usually balance goodness of fit to the data with a penalty term for model
complexity to avoid overfitting. Common scoring functions include AIC [2], BIC/MDL [89,
64, 87], BDeu [12, 51] qBDJ [98], and qNML [96] for the discrete case, and BGe [43] for
the continuous case. An important property of these (and most) scoring functions is
decomposability, where the score of the entire network σ(G) can be rewritten as the sum
of local scores associated to each vertex

∑n
i=1 σ(Vi,Πi) that only depends on Vi and its

parent set Πi in G . The local score is abbreviated below as σ(Πi) when the local node Vi

is clear from context.

In this work, we focus on the Bayesian Information Criterion (BIC) score and the
Bayesian Dirichlet score, specifically BDeu. In what follows, the parameter θijk is an
estimate of the conditional probability P (Vi = vik | Πi = πij), nijk is the number of
instances in a dataset I where vik and πij co-occur, and nij is the number of instances in
I where πij occurs.

12

The BIC scoring function is defined as,

σBIC(G) = −max
θ

LG,I(θ) + t(G) · w = −
n∑

i=1

rΠi∑
j=1

ri∑
k=1

nijk log
nijk

nij

+
n∑

i=1

rΠi
(ri − 1)

logN

2
.

Here, w = logN
2

, t(G) is a penalty term, and LG,I(θ) is the log likelihood given by,

LG,I(θ) =
n∑

i=1

rΠi∑
j=1

ri∑
k=1

log θ
nijk

ijk .

As the BIC function is decomposable, we can associate a score to Πi, a candidate parent
set of Vi as follows,

σBIC(Πi) = −max
θi

L(θi) + t(Πi) · w = −
rΠi∑
j=1

ri∑
k=1

nijk log
nijk

nij

+ rΠi
(ri − 1)

logN

2
. (2.1)

Here, L(θi) =
∑rΠi

j=1

∑ri
k=1 log θ

nijk

ijk and t(Πi) = rΠi
(ri − 1).

The BDeu scoring function is defined as,

σBDeu(G) = −
n∑

i=1

 rΠi∑
j=1

log
Γ
(

α
rΠi

)
Γ
(

α
rΠi

+ nij

) +

ri∑
k=1

log
Γ
(

α
rirΠi

+ nijk

)
Γ
(

α
rirΠi

)
 ,

where Γ is the Gamma fucntion, α is called the equivalent sample size, and nij =
∑

k nijk.
As the BDeu function is decomposable, we can associate a score to Πi, a candidate parent
set of Vi as follows,

σBDeu(Πi) = −
rΠi∑
j=1

log
Γ
(

α
rΠi

)
Γ
(

α
rΠi

+ nij

) +

ri∑
k=1

log
Γ
(

α
rirΠi

+ nijk

)
Γ
(

α
rirΠi

)
 . (2.2)

2.3 Model Averaging

The objective of BNSL is finding a single best scoring BN. This has been often found to be
problematic. Insufficient data can lead to many networks with scores close to optimal but
with small posterior probabilities, and selecting a single model with the best score can thus

13

A

D

A B

D

B C

D

A B C

D

2
3

2
3

1
3

Figure 2.4: Model averaging example with learned networks with confidence values in blue,
and the model averaged network in green. Using a threshold of t = 0.5, edge (C,D) is not
considered significant and is removed from the final averaged network.

be misleading and inaccurate for prediction and knowledge discovery. Instead of learning
one best-scoring network, an alternative method is some form of Bayesian or frequentist
model averaging [23, 53, 61], where we enumerate or sample from the space of possible
BNs. This has advantages in knowledge discovery where Bayesian model averaging can
allow estimation of measures like the posterior probability that an edge is present.

We can use model averaging in structure learning for Bayesian networks in the following
way: (i) learn a set of networks with good scores that fit the given data, (ii) perform model
averaging over the set of networks and compute a real-valued confidence value P (e | I) for
each edge e in the learned set of networks , and (iii) set a minimum threshold value t and
report all significant edges, which are edges e such that their confidence values exceed the
threshold P (e | I) > t. In this manner, a model-averaged network can be constructed from
the significant edges, and used to analyze causal and probabilistic dependencies.

Example 2.3. Figure 2.4 shows the learned networks with confidence values in blue, and
the model averaged network in green. As the threshold is set to t = 0.5, edge (C,D) is not
significant and is removed from the final averaged network.

One popular method to compute the confidence values uses bootstrapping, which is the
process of random sampling with replacement. Bootstrapping assigns measures of accuracy

14

(or any performance measure or statistic) to sample estimates. In the context of structure
learning in Bayesian networks Friedman et al. [40] proposed bootstrapping with thresholds
to determine the existence of edges and other features. In particular, the non-parametric
approach samples the original dataset with replacement and then learns a network using
the re-sampled data. After performing the resampling procedure many times, we can get
the empirical probabilities of all edges by averaging on the learned networks. Finally, a
threshold is applied to get the averaged network.

Another method to compute the confidence values is the k-best approach, which con-
siders only the k best scoring DAGs for some given value of k [13, 14, 15, 16, 50, 102],
though these methods suffer from a rigorous method to set k and do not scale to larger
numbers of variables. In Chapter 3 we propose a novel method that compares favourably
to bootstrapping in terms of accuracy and to k-best in terms of scaling.

2.4 Representing CPDs

Implementations of score-and-search usually employ simple conditional probability tables
(CPTs) to represent the CPD; i.e., the function P (Vi | Πi) over discrete variables (e.g.,
[6, 18, 105]). CPTs are tables that contain an entry for each possible combination of
values for Vi and Πi. In settings with a large number of variables, or with variables having
large domains, such a representation might not be efficient as CPTs grow exponentially
with the size of the parent set. Additionally, CPTs can ignore underlying structure within
CPDs and result in overfitting. These two disadvantages have led to research of structured
representations for CPDs that can model complex relationships between a child and its
parents without exponential size and overfitting risks. We discuss two alternative CPD
representations used in Bayesian networks: noisy-OR and decision trees.

2.4.1 Noisy-OR

An alternative to tabular CPTs is using a deterministic function to represent the relation-
ship between a variable and its parents. One such model is the noisy-OR [45, 80]. This
models the CPD over causes (parents) and effects (children). The noisy-OR assumes a
form of causal independence (CI) and allows one to specify a CPT with just n parameters
instead of 2n+1.

With the noisy-OR relation one assumes that there are a set of causes Πi := {Vi1, . . . ,
Vi|Πi|} leading to an effect Vi, where Vi, Vij ∈ V for all j ∈ {1, ...|Πi|} and Vi /∈ Πi (see

15

Vi1 Vi2
. . . Vi|Πi|

Vi

qi2qi1 qi|Πi|

Figure 2.5: Causal structure for a Bayesian network with a noisy-OR relation, where the
set of causes Πi := {Vi1, . . . , Vi|Πi|} leads to effect Vi and there is a noisy-OR relation at
node Vi.

Figure 2.5). Each cause Vij ∈ Πi is either present or absent, and each Vij in isolation is
likely to cause Vi and the likelihood is not diminished if more than one cause is present.
Further, one assumes that all possible causes are given and when all causes are absent,
the effect is absent. Finally, one assumes that the mechanism or reason that inhibits a Vij

from causing Vi is independent of the mechanism or reason that inhibits a Vij′ , j
′ ̸= j, from

causing Vi.

For a node Vi and parent set Πi, a noisy-OR relation specifies a CPT using |Πi| param-
eters, qi = qi1, . . . , qi|Πi|, one for each parent, where qij is the probability that Vi is false
given that Vij is true and all of the other parents are false,

P (Vi = 0 | Vij = 1, Vij′ = 0[∀j′,j′ ̸=j]) = qij.

From these parameters, the full CPT representation of size 2n+1 can be generated using,

ϕij0 =

{∏
j∈Tx

qij if Tx ̸= {}
1 otherwise,

(2.3)

where Tx = {j | Vij = 1}. The last condition (when Tx = {}) corresponds to the assump-
tions that all possible causes are given and that when all causes are absent, the effect is
absent; i.e., P (Vi = 0 | Vi1 = 0, . . . , Vi|Πi| = 0) = 1. Of course, ϕij1 = 1 − ϕij0. The set
ϕi :=

{
ϕijk | j ∈ {1, . . . , rΠi

}, k ∈ {0, 1}
}
is referred to as the noisy-OR CPT of node Vi.

The above assumptions are not as restrictive as may first appear. One can always
introduce an additional random variable Vi0 that is a parent of Vi but itself has no parents.
The variable Vi0 represents all of the other reasons that could cause Vi to occur. The
node Vi0 and the prior probability P (Vi0) are referred to as a leak node and the leak
probability [52], respectively. In this work we assume that all the causes are known.

16

2.4.2 Decision Trees

Boutilier et al. [9] formalized the concept of context-specific conditional independence that
only holds given a certain assignment of a subset of the variables.

Definition 2.3 (Context-specific conditional independence). Let A, B, and C be random
variables. A is context-specific conditionally independent of B given C = c if P (A | B,C =
c) = P (A | C = c) holds for all values that the variables A and B can take from their
associated domains.

While such an independence relation cannot be captured by the underlying DAG, a
natural representation for capturing common elements in such a CPD is via a decision
tree, where the leaves of the tree represent different possible conditional distributions over
a variable Vi, and where the path to each leaf dictates the context in which this distribution
is used.

A B C D P (D | A,B,C)
0 0 0 0 0.8
0 0 0 1 0.2
0 0 1 0 0.8
0 0 1 1 0.2
0 1 0 0 0.8
0 1 0 1 0.2
0 1 1 0 0.8
0 1 1 1 0.2
1 0 0 0 0.9
1 0 0 1 0.1
1 0 1 0 0.4
1 0 1 1 0.6
1 1 0 0 0.1
1 1 0 1 0.9
1 1 1 0 0.1
1 1 1 1 0.9

A

(0.8, 0.2) B

(0.1, 0.9)C

(0.9, 0.1) (0.4, 0.6)

10

10

0 1

Figure 2.6: Two representations of the same CPD P (D | A,B,C) for a child node D and
a parent set {A,B,C}: tabular CPT (left) and decision tree representation (right).

A decision tree representation of a CPD for variable Vi is a rooted tree; each tree-node
in the tree is either a leaf tree-node or an interior tree-node. Each leaf is labeled with a
distribution P (Vi). Each interior tree-node is labeled with some variable Vj ∈ Πi, j ̸= i.
Each interior tree-node has a set of outgoing arcs to its children, each one associated with

17

a unique variable assignment Vj = vjl for j ̸= i and vjl ∈ Ωj, l ∈ [1, . . . , rj]. A branch
through a decision tree is a path beginning at the root and proceeding to a leaf node.
We assume that no branch contains two interior nodes labeled by the same variable. The
parent context induced by a branch is the set of variable assignments Vj = vjl encountered
on the arcs along the branch.

Example 2.4. Figure 2.6 shows a comparison of a CPD represented by a CPT and a deci-
sion tree. The branch A = 0 in the decision tree encodes the context-specific independence
relation P (D | A = 0, B, C) = P (D | A = 0). The branch A = 1, B = 1 in the decision
tree encodes the context-specific independence relation P (D | A = 1, B = 1, C) = P (D |
A = 0, B = 1).

2.5 Performance Evaluation Metrics

As previously noted, our interest in this thesis is in BNs as a knowledge discovery or data
analysis tool, where the BN is learned automatically from data and the resulting BN is
then studied for the insights that it provides on the domain such as possible cause-effect
relationships, probabilistic dependencies, and conditional independence relationships. In
this section, we discuss the performance metrics we use to evaluate our proposals to show
that our proposals improve the state of the art.

2.5.1 DAG Performance Metrics: Skeleton

We first define performance metrics over the skeleton of the learned DAG, where we consider
the edges undirected.

Definition 2.4 (Skeleton of a DAG). The skeleton of a DAG G is the undirected graph
with the same vertices and edges as G, regardless of their directions.

Let G∗ be the skeleton of the ground truth DAG—i.e., the correct answer—and G be
the skeleton of the learned DAG. A true positive is the case where an edge occurs in G∗

and also occurs in G, a false positive is the case where an edge is missing from G∗ but
occurs in G, and a false negative is the case where an edge occurs in G∗ but is missing from
G. We use two performance measures over skeletons of the learned DAG: misclassification
cost (see, e.g., [68]) and Fβ score (see, e.g., [4]).

18

Definition 2.5 (Misclassification cost). The weighted misclassification cost over the skele-
ton of a ground truth DAG and the skeleton of a learned DAG is defined as, α×FN+FP,
where α > 0, FN is the number of false negatives, and FP is the number of false positives.

Definition 2.6 (Fβ score). The Fβ score over the skeleton of a ground truth DAG and the
skeleton of a learned DAG is defined as,

Fβ = (1 + β2) · precision · recall
(β2 · precision) + recall

where β > 0, precision is TP/(TP+ FP) and recall is TP/(TP+ FN).

The Fβ score is between 0 and 1, with 1 being the best value. Common values of α and
β are 1

4
, 1
2
, 1, 2, and 4. When α > 1, the misclassification cost gives more weight to FN and

thus penalizes missing edges over extra edges; vice-versa when α < 1. When β > 1, the
Fβ score gives more weight to recall over precision; vice-versa when β < 1. The Fβ score
and the weighted misclassification cost allow us to evaluate the performance on a spectrum
with different tradeoffs between precision and recall and between FP and FN.

2.5.2 DAG Performance Metrics: CPDAG

We now define performance metrics over the CPDAG representation of the learned DAG.
Comparing two DAGs directly is problematic as BNs fall into equivalence classes where
some edges in the DAG have their direction compelled—they are oriented in that di-
rection in all DAGs in the equivalence class—and some edges can be “flipped” and the
resulting DAG is equivalent to the original DAG. The concept of CPDAG captures this
intuition [104].

Definition 2.7 (Markov equivalence class (MEC)). Two DAGs over a set of random vari-
ables V belong to the same Markov equivalence class (MEC) if and only if they encode the
same set of conditional independence assertions. The set of all DAGs over V is partitioned
into a set of mutually exclusive and exhaustive MECs.

Definition 2.8 (Completed partially directed acyclic graph (CPDAG)). All DAGs in the
same MEC can be uniquely represented by a partially completed directed acyclic graph
(CPDAG), which is the graph with directed and undirected edges such that an edge is
directed if all DAGs in the equivalence class agree on the direction and undirected otherwise.

Chickering [17, 18] provides a local graph transformation characterization of Markov
equivalence that can be used to determine the CPDAG representation of a DAG.

19

Example 2.5. Consider the BNs shown in Figure 2.7. The blue network on the left encodes
the assertion that A and C, for example, are independent. In the green networks on the
right, this assertion does not hold indicating that they belong to different MECs. All of
the green networks belong to the same MEC as they encode the same set of conditional
independence assertions: {P (A | C,B) = P (A | B), P (C | A,B) = P (C | B)}.

A C

B A C

B

A CB

A CB

Figure 2.7: An example of Markov equivalence classes for a three node network. The blue
network and the green networks are in different Markov equivalence classes.

Let G∗ be the CPDAG representation of the ground truth DAG and G be the CPDAG
representation of the learned DAG. A true positive is the case where an edge occurs in
G∗ and also occurs in G with the correct orientation (either it is undirected in both or
the direction of the edge is the same in both), a false positive is the case where an edge
is missing from G∗ but occurs in G, a false negative is the case where an edge occurs in
G∗ but is missing from G, and a wrong direction is the case where an edge occurs in G∗

and also occurs in G but with the incorrect orientation. We use two performance measures
over CPDAG representations of the learned DAG: structural Hamming distance [104] and
multi-class Fβ score (see, e.g., [4]).

Definition 2.9 (Structural Hamming distance (SHD)). The structural Hamming distance
(SHD) over the CPDAG representation of a ground truth DAG and the CPDAG repre-
sentation of a learned DAG is defined as FN + FP + WD, where FN is the number of
false negatives, and FP is the number of false positives, and WD is the number of wrong
directions.

Although widely used in the BN literature, the SHD has some significant limitations. As
each of summands for SHD are weighted equally, a low SHD does not necessarily indicate

20

that the learned network is useful. For example, it is possible for two learned networks to
have the same SHD, but one network could have learned few or none of the edges present
in the ground truth, while the other network could have learned all or nearly all of the
ground truth edges. Depending on the application, the former network might not be a
desirable outcome, even if it has a low SHD.

The multi-class Fβ score generalizes the binary Fβ score to the case where the number of
classes is greater than two. In the context of CPDAGS, rather than just a binary prediction
as in the skeleton—the edge is either present or not present—there are now four possible
class labels to predict: ←, →, −, and no edge. In the multi-class Fβ score, the weighted
average of the binary Fβ score of each class is determined, where the binary Fβ scores are
weighted by the number of edges in each class.

Definition 2.10 (multi-class Fβ score). Let y be the set of true (edge, class-label) pairs
and ŷ be the set of predicted (edge, class-label) pairs. Let yl and ŷl be y and ŷ restricted
to class label l, respectively. The multi-class Fβ score over the CPDAG representation of a
ground truth DAG and the CPDAG representation of a learned DAG is defined as,

multi-class Fβ =
1∑

l∈L |yl|
∑
l∈L

|yl|Fβ(yl, ŷl),

where Fβ(yl, ŷl) is the binary Fβ score for the class label l.

The multi-class Fβ score is between 0 and 1, with 1 being the best value.

2.5.3 Density Estimation and Inference Metric

To measure the difference between two probability distributions over the same set of ran-
dom variables, we adopt a widely-used measure called the Kullback-Leibler divergence.

Definition 2.11 (KL-divergence). The KL divergence between two conditional probability
distributions, P (A | B) and Q(A | B) is given by,

DKL(P (A | B) || Q(A | B)) =
∑
b∈B

P (B = b)
∑
a∈A

P (A = a | B = b) log
P (A = a | B = b)

Q(A = a | B = b)
.

The KL-divergence is a measure of the information lost when Q(A | B) is used to
approximate P (A | B). Note that when P (A = a | B = b) ̸= 0 and Q(A | B) = 0, the

21

KL divergence is defined to be ∞; i.e., absolutely different. This is undesirable. Given
that Q(A | B) is approximated from data, it is not reasonable to predict that an event is
impossible since the data is by necessity incomplete and the event may be rare. We thus
use a smoothed version of KL-divergence where Q(A | B) = 0 is replaced by Q(A | B) = δ,
for some small δ > 0, when P (A = a | B = b) ̸= 0.

22

Chapter 3

The Credible Set Approach

When one is using BNs for knowledge discovery with limited data, learning a single model
may be misleading as there may be several BNs with scores that are very close to optimal
and the posterior probability of even the best-scoring BN is often close to zero. An alter-
native to committing to a single model is to perform some form of Bayesian or frequentist
model averaging [23, 53]. In the context of knowledge discovery, Bayesian model averaging
allows one to estimate, for example, the posterior probability that an edge is present, rather
than just knowing whether the edge is present in the best-scoring DAG. Previous work has
proposed Bayesian and frequentist model averaging approaches to BN structure learning
based on score-and-search. Unfortunately, existing global (optimal) approaches for model
averaging either severely restrict the structure of the BN, or have only been shown to
scale to networks with fewer than 30 random variables (see the review of related work and
discussion in Section 1.1). In this chapter, we propose a novel global approach to model
averaging inspired by performance guarantees in approximation algorithms. Our approach
only considers credible models in that they are optimal or near-optimal in score. We show
empirically that our approach improves on the accuracy of a widely used local (heuristic)
search approach and is more efficient and scales to significantly larger Bayesian networks
than existing state-of-the-art global search approaches. The keys to the scalability of our
approach are generalized pruning rules that retain optimality.

3.1 Overview

Let OPT be the score of an optimal BN and assume that the optimization problem that
we want to approximate is to find the minimum-score BN structure. Instead of finding an

23

optimal network or the k-best networks for some fixed value of k, we propose to find all
Bayesian networks G that are within a factor ρ of optimal; i.e.,

OPT ≤ score(G) ≤ ρ ·OPT ,

for some given value of ρ ≥ 1, or equivalently,

OPT ≤ score(G) ≤ OPT + ϵ, (3.1)

for ϵ = (ρ− 1) ·OPT . For the two commonly used scoring functions BIC and BDeu, it can
be shown that a good choice for the value of ϵ is closely related to the Bayes factor [67], a
model selection criterion summarized in [58] and discussed below.

The idea is to learn only credible models that have optimal or near-optimal scores.
This is in contrast to approaches that enumerate or sample from the space of all feasible
DAGs, which can learn networks with scores that can be far from optimal; for example,
for the BIC scoring function the ratio of worst-scoring to best-scoring network can be four
or five orders of magnitude1. A similar but more restricted concern arises with the k-best
approaches since there is no a priori method to set the parameter k to learn only the
credible networks. Importantly, our approach is significantly more scalable, allowing us to
learn BNs with around 70 random variables without restricting the structure of the BN. We
leverage the significant body of pruning rules from previous methods for finding a single
optimal BN structure. These pruning rules remove from consideration many candidate
parent sets both before and during the search and we show that many of these pruning
rules can be naturally generalized to preserve the Bayesian networks that are within a
factor of optimal. We modify GOBNILP [6, 26], a state-of-the-art algorithm for finding an
optimal BN, to implement our generalized pruning rules and to find all credible networks.
Empirically, we show that the modified GOBNILP scales to significantly larger networks
without any structural constraints on the learned BNs.

The remainder of this chapter proceeds as follows.

• We formalize the concept of credible networks for a dataset; i.e., networks that are
close to optimal for a given scoring function, and define the problem of learning all
credible networks for model averaging purposes. We discuss how the distance from
the optimum that should be considered is closely related to the Bayes factor for the
BIC and BDeu scoring functions (Section 3.2).

1Madigan and Raftery [71] deem such models discredited when they make a similar argument for not
considering models whose probability is greater than a factor from the most probable.

24

• As finding all credible networks is computationally expensive, it is important to
reduce the search space as much as possible without discarding credible networks.
We generalize existing pruning rules to the problem of learning all credible networks
(Section 3.3).

• We describe how learning all credible networks can be used for model averaging.
We provide implementation details of solving the problem of learning all credible
networks with an ϵ based on the Bayes factor approach, and evaluate and compare
its performance with published k-best solvers [102, 16] as well as the bootstrapping
method from the widely used bnlearn library [90] (Section 3.4).

3.2 Credible Sets

In this section, we formalize the concept of a credible network—a network that is optimal
or near-optimal—and define the problem of learning all credible networks, a problem we
refer to as the ϵ-Bayesian Network Structure Learning problem (ϵBNSL). Furthermore, we
discuss what a good value for ϵ is in order to use credible networks for model averaging
purposes.

We begin by defining the concept of a credible network, given a dataset and a scoring
function.

Definition 3.1 (Credible network). Given a dataset I = {I1, . . . , IN}, scoring function σ,
and a constant ϵ ≥ 0, a credible network G is a network that has a score σ(G) such that
OPT ≤ σ(G) ≤ OPT + ϵ, where OPT is the score of an optimal Bayesian network. A
network that is not credible is discredited.

We are interested in finding the set of all credible networks for a dataset, in order to
use model averaging on the set.

Definition 3.2 (ϵBNSL). For a dataset I = {I1, . . . , IN}, a scoring function σ, and a
constant ϵ ≥ 0, the ϵ-Bayesian Network Structure Learning (ϵBNSL) problem is to find all
credible networks.

The problem of finding all optimal networks is the special case of ϵBNSL with ϵ = 0.

It is important to use a good value for ϵ in the ϵBNSL problem. Liao et al. [67] showed
that the Bayes factor (BF), a model selection criterion proposed by Jeffreys [57] as an
alternative to significance tests, can guide the choice of ϵ. The Bayes factor was rigorously

25

evaluated and examined by Kass and Raftery [58] as a model selection tool, and can be
defined in our context as follows.

Definition 3.3 (Bayes factor). Let G0 and G1 be DAGs of BNs that are defined over the
same set of random variables V and let I = {I1, . . . , IN} be a dataset. The Bayes factor
BF (G0,G1) is defined by,

BF (G0,G1) =
P (I | G0)

P (I | G1)
.

Thus, the Bayes factor BF (G0,G1) is the quotient of the probability of the data pre-
dicted by network G0 and G1, respectively. Using Bayes’ theorem, the posteriors of the
DAGs can be obtained by,

P (G0 | I)
P (G1 | I)

=
P (I | G0)

P (I | G1)
· P (G0)

P (G1)
= BF (G0,G1) ·

P (G0)

P (G1)
.

Assuming that the prior over DAGs is uniform (a typical assumption), the BF can then
be used to directly assess the ratio of the structure posteriors.

Next, we show how the Bayes factor relates to comparisons of two networks via BIC or
BDeu scores.

BIC score. The difference of the BIC scores for the DAGs G0 and G1, both over the
same set of variables, can be used as a rough approximation to logBF . The difference of
two BIC scores converges for N →∞ against the true value of logBF ,

σBIC(G1)− σBIC(G0)− logBF (G0,G1)

logBF (G0,G1)
→ 0,

as described by Kass and Raftery [58]. To see this, consider the following. The logarithm
of the marginal likelihood for a network G can be approximated as follows [86] (a similar
derivation can be found in [23]),

logP (I | G) =LG,I(θ̂)− t(G) · logN
2

+ t(G) · log 2π
2
− 1

2
log |JG,I(θ̂)|+ logP (θ̂ | G),

with JG,I(θ̂) being the evaluation of the Hessian matrix at the maximum likelihood estimate

θ̂. It follows that,
logP (I | G) = −σBIC(G) +O(1),

26

showing that the BIC score was designed to approximate the log marginal likelihood.
Dropping the O(1) term yields,

σBIC(G1)− σBIC(G0) = log
P (I | G0)

P (I | G1)
= logBF (G0,G1).

Some papers define the BIC score to be twice as large as the BIC defined here, but this
does not affect the above relationship.

BDeu score. The difference of the BDeu scores for the DAGs G0 and G1, both over
the same set of variables, can be expressed in terms of the logarithm of the Bayes factor as
well. The BDeu score is the log marginal likelihood where there are Dirichlet distributions
over the parameters [12, 51],

logP (I | G) = −σBDeu(G).

It follows that,

σBDeu(G1)− σBDeu(G0) = log
P (I | G0)

P (I | G1)
= logBF (G0,G1).

The observations on BIC and BDeu scores are consistent with the results of Kass and
Raftery [58], who note that the logarithm of the Bayes factor logBF can be seen as a
measure for the relative success of two models at predicting data. This is sometimes
referred to as “weight of evidence” without the assumption that either model is true.

However, how far from the optimal model we should consider networks is often depen-
dent on the study and subject in question, and thus requires domain knowledge; e.g., a
BF of 1,000 is more appropriate in forensic science. Heckerman et al. [51] proposed the
following scale to interpret BF values: a BF of 1 to 3 bears only anecdotal evidence that G0

is better, a BF of 3 to 20 suggests some positive evidence in favor of G0 being better, a BF
of 20 to 150 suggests strong evidence in favor of G0, and a BF greater than 150 indicates
very strong evidence. Let G∗ be an optimal network. If we choose 150 to be the desired
BF in ϵBNSL, e.g., G0 = G∗ and ϵ = log(150), then any network with a score less than
or equal to log(150) away from the optimal score would be credible; otherwise it would be
discredited. Note that the ratio of posterior probabilities was defined as λ in [102, 16] and
was used as a metric to assess arbitrary values of k in finding the k-best networks.

Finally, given a desired Bayes factor, we can rewrite the score criterion of the ϵBNSL
problem using the BIC or BDeu scoring function as,

OPT ≤ score(G) ≤ OPT + logBF. (3.2)

27

3.3 Pruning Rules

To find all optimal and near-optimal BNs given a BF, the local score σ(Πi) for each
candidate parent set Πi ⊆ 2V−{Vi} and each random variable Vi must be considered. As
this is very cost prohibitive, it is important that the search space of candidate parent sets
be pruned, provided that global optimality constraints are not violated. In this section, we
generalize existing pruning rules from the literature such that the generalized rules hold
when solving the ϵBNSL problem.

Without loss of generality, we assume in stating the rules and the generalized rules that
a lower score represents a better-quality network structure. A subtle but important point
is that the statements of the pruning rules in the literature sometimes assume that one
wishes to only preserve an optimal network and other times that one wishes to preserve all
optimal networks. We state the pruning rules such that all optimal networks are preserved.
In this way, when the pruning rules are generalized to ϵBNSL, the original rule and the
generalized rule coincide when ϵ = 0.

Definition 3.4 (Safely pruned). Given a vertex variable Vi and a non-negative constant
ϵ ∈ R+, a candidate parent set Πi for Vi can be safely pruned if Πi cannot be the parent set
of Vi in any network in the set of credible networks.

We discuss the original rules and their generalization below along with proofs for each
of the results.

Teyssier and Koller [100] give a pruning rule for all decomposable scoring functions.
This rule compares the score of a candidate parent set to those of its subsets.

Theorem 3.1 (Teyssier and Koller [100]). Given a vertex variable Vj, and candidate par-
ent sets Πj and Π′

j, if Πj ⊂ Π′
j and σ(Πj) < σ(Π′

j), Π′
j can be safely pruned if σ is a

decomposable scoring function.

We relax this pruning rule below.

Lemma 3.1. Given a vertex variable Vj, candidate parent sets Πj and Π′
j, and some

ϵ ∈ R+, if Πj ⊂ Π′
j and σ(Πj) + ϵ < σ(Π′

j), Π
′
j can be safely pruned if σ is a decomposable

scoring function.

Proof. (Lemma 3.1) Consider networks G and G ′ that are the same except for the parent

28

set of Vj, where G has the parent set Πj for Vj and G ′ has the parent set Π′
j for Vj.

σ(G ′) = σ(Π′
j) +

∑
i ̸=j

σ(Πj) [σ() is decomposable]

> σ(Πj) + ϵ+
∑
i ̸=j

σ(Πj) [given]

= σ(G) + ϵ

≥ OPT + ϵ.

Thus, G ′ cannot be in the set of credible networks.

Besides this generic pruning rule, there are also specific rules for BIC and BDeu scoring
with discrete data for finding the optimal structure. We generalize these pruning rules to
the ϵBNSL problem below.

3.3.1 Pruning with BIC Score

A pruning rule comparing the BIC score and the penalty associated with a candidate
parent set to those of its subsets was introduced by de Campos and Ji [29]. Recall that
t(Πi) is the penalty term, w = logN/2, and maxθi L(Πi) is the log likelihood term in the
BIC scoring function (see Section 2.2.1).

Theorem 3.2 (de Campos and Ji [29]). Given a vertex variable Vi, and candidate parent
sets Πi and Π′

i, if Πi ⊂ Π′
i and σ(Πi) − t(Π′

i) · w < 0, Π′
i and all supersets of Π′

i can be
safely pruned if σ is the BIC scoring function.

The following theorem gives a relaxed version of that pruning rule.

Theorem 3.3. Given a vertex variable Vi, candidate parent sets Πi and Π′
i, and some

ϵ ∈ R+, if Πi ⊂ Π′
i and σ(Πi)− t(Π′

i) · w + ϵ < 0, Π′
i and all supersets of Π′

i can be safely
pruned if σ is the BIC scoring function.

29

Proof. (Theorem 3.3)

σ(Πi)− t(Π′
i) · w + ϵ < 0 [given]

⇒ −σ(Πi) + t(Π′
i) · w − ϵ > 0

⇒ −σ(Πi) + t(Π′
i) · w −max

θi
L(Π′

i)− ϵ > 0 [max
θi

L(Π′
i) < 0]

⇒ −max
θi

L(Π′
i) + t(Π′

i) · w > σ(Πi) + ϵ

⇒ σ(Π′
i) > σ(Πi) + ϵ.

By Lemma 3.1, Π′
i cannot be in the set of credible networks. Using the fact that penalties

increase with increase in parent set size, supersets of Π′
i also cannot be in the set of credible

networks.

Another pruning rule for BIC is given by de Campos and Ji [29]. This provides a
bound on the number of possible instantiations of subsets of a candidate parent set. Recall
that ri is the cardinality of the domain of variable Vi and rΠi

is the number of possible
instantiations of the parent set Πi of Vi (see Section 2.1).

Theorem 3.4 (de Campos and Ji [29]). Given a vertex variable Vi and candidate parent
set Πi such that rΠi

> N
w

log ri
ri−1

, if Πi ⊂ Π′
i, then Π′

i can be safely pruned if σ is the BIC
scoring function.

The following theorem gives a relaxed version of that pruning rule.

Theorem 3.5. Given a vertex variable Vi, and a candidate parent set Πi such that rΠi
>

N
w

log ri
ri−1

+ ϵ, for some ϵ ∈ R+, if Πi ⊂ Π′
i, then Π′

i can be safely pruned if σ is the BIC
scoring function.

Proof. (Theorem 3.5) The parent set Π′
i contains at least one additional variable; denote

30

this variable as a. The difference in the scores σ(Π′
i)− σ(Πi) is given by,

σ(Π′
i)− σ(Πi)

0
=−max

θi
L(Π′

i) + t(Π′
i) · w +max

θi
L(Πi)− t(Πi) · w

1

≥max
θi

L(Πi) + t(Π′
i) · w − t(Πi) · w

2
=

rΠi∑
j=1

nij

(
ri∑

k=1

nijk

nij

log
nijk

nij

)
+ t(Π′

i) · w − t(Πi) · w

3
=−

rΠi∑
j=1

nijH(θij) + t(Π′
i) · w − t(Πi) · w

4

≥−
rΠi∑
j=1

nij log ri + rΠ′
i
· (ri − 1) · w − rΠi

· (ri − 1) · w

5

≥−
rΠi∑
j=1

nij log ri + rΠi
· (ra − 1) · (ri − 1) · w

6

≥−
rΠi∑
j=1

nij log ri + rΠi
· (ri − 1) · w

7

≥−N · log ri + rΠi
· (ri − 1) · w

8
> ϵ.

Step 0 uses the definition of BIC. Step 1 uses that maxθi L(Π
′
i) is negative. Step 2 uses the

definition of the maximum likelihood estimate (see Equation 2.1) and algebra (multiplying
by nij/nij). Step 3 uses the definition of (the sample estimate of) entropy, H(X) =
−
∑

x∈X P (X = x) logP (X = x). Step 4 uses that H(X) ≤ log |X| and the definition of
the penalty function t. Step 5 uses that rΠ′

i
≥ rΠi

· ra, as Π′
i extends Πi by at least one

variable a, and algebra to simplify the expression. Step 6 uses that ra ≥ 2. Step 7 follows
from the definition of nij. Step 8 uses the assumption of the theorem. By Lemma 3.1, Π′

i

cannot be in the set of credible networks.

The following corollary of Theorem 3.4 gives a useful upper bound on the size of a
candidate parent set, where N is the number of instances in the dataset I.

31

Corollary 3.1 (de Campos and Ji [29]). Given a vertex variable Vi and candidate parent
set Πi, if Πi has more than log2N variables, Πi can be safely pruned if σ is the BIC scoring
function.

Using Theorem 3.5, we generalize Corollary 3.1 to Corollary 3.2 and prove it below.

Corollary 3.2. Given a vertex variable Vi and candidate parent set Πi, if Πi has more
than ⌈log2(N + ϵ)⌉ variables, for some ϵ ∈ R+, Πi can be safely pruned if σ is the BIC
scoring function.

Proof. (Corollary 3.2) Take a variable Vi and a parent set Πi with |Πi| = ⌈log2(N + ϵ)⌉
variables. Because every variable has at least two states, we know that rΠi

≥ 2|Πi| ≥
N + ϵ > N

w
log ri
ri−1

+ ϵ, because w = log N
2
gives us log ri

w(ri−1)
< 1. By Theorem 3.5 no proper

superset of Πi can be in the set of credible networks.

Corollary 3.2 provides an upper-bound on the size of parent sets based solely on the
dataset size N . The following table summarizes such an upper-bound given different
amounts of data N and a BF of 20.

N 100 500 103 5× 103 104 5× 104 105

|Π| 7 9 10 13 14 16 17

The entropy of a candidate parent set is also a useful measure for pruning. A pruning
rule, given by de Campos et al. [30], provides an upper bound on the conditional entropy of
candidate parent sets and their subsets. First, we note that the sample estimate of entropy
for a variable Vi is given by,

H(Vi) = −
ri∑

k=1

nik

N
log

nik

N
,

where nik represents how many instances in the dataset contain vik, where vik is an element
in the domain Ωi of Vi. Similarly, the sample estimate of entropy for a candidate parent
set Πi is given by,

H(Πi) = −
rΠi∑
j=1

nij

N
log

nij

N
.

Conditional entropy is given by,

H(X | Y) = H(X ∪ Y)−H(Y).

32

Lemma 3.2 (de Campos et al. [30]). Given a vertex variable Vi, and candidate parent sets
Πi, Π′

i such that Π′
i = Πi ∪ {Vj} for some variable Vj /∈ Πi, we have L(Π′

i) − L(Πi) ≤
N ·min{H(Vi | Πi), H(Vj | Πi)}.

Theorem 3.6 (de Campos et al. [30]). Given a vertex variable Vi, and candidate parent
set Πi, let Vj /∈ Πi such that N ·min{H(Vi | Πi), H(Vj | Πi)} < (1 − rj) · t(Πi) · w. Then
the candidate parent set Π′

i = Πi ∪ {Vj} and all its supersets can be safely pruned if σ is
the BIC scoring function.

We relax Theorem 3.6 and prove its generalization below.

Theorem 3.7. Given a vertex variable Vi, and candidate parent set Πi, let Vj /∈ Πi such
that N ·min{H(Vi | Πi), H(Vj | Πi)} < (1− rj) · t(Πi) · w + ϵ, for some ϵ ∈ R+. Then the
candidate parent set Π′

i = Πi ∪ {Vj} and all its supersets can be safely pruned if σ is the
BIC scoring function.

Proof. (Theorem 3.7)

σ(Π′
i)

0
=−L(Π′

i) + t(Π′
i) · w

1

≥−L(Πi) +N ·min{H(Vi | Πi), H(Vj | Πi)}+ t(Π′
i) · w

2
>−L(Πi) + (1− rj) · t(Πi) · w + ϵ+ t(Π′

i) · w
3
=−L(Πi) + t(Πi) · w − rj · t(Πi) · w + ϵ+ t(Π′

i) · w
4
=−L(Πi) + t(Πi)− t(Π′

i) + ϵ+ t(Π′
i)

5
= σ(Πi) + ϵ.

Step 1 uses Lemma 3.2. Step 2 uses the assumptions of the theorem. Step 4 uses Π′
i =

Πi ∪ {Vj}. By Lemma 3.1, Π′
i cannot be in the set of credible networks. Using the fact

that penalties increase with increase in parent set size, supersets of Π′
i also cannot be in

the set of credible networks.

3.3.2 Pruning with BDeu Score

A pruning rule for the BDeu scoring function is given by de Campos et al. [30] and a more
general version is given by Cussens and Bartlett [26].

33

Lemma 3.3 (Cussens and Bartlett [26]). Let nij be a positive integer and α′ be a positive
real number. Then,

log
Γ(nij + α′)

Γ(α′)
=

nij−1∑
i=0

log(i+ α′).

Lemma 3.4 (Cussens and Bartlett [26]). Let {nijk}, k = 1, ...ri, be non-negative integers
with a positive sum, nij =

∑ri
k=1 nijk, and α′′ be a positive real number. Then,

ri∑
k=1

log
Γ(nijk + α′′)

Γ(α′′)
≤ log

Γ(nij + α′′)

Γ(α′′)
.

Theorem 3.8 (Cussens and Bartlett [26]).

rΠi∑
j=1

(
Γ(α′)

Γ(nij + α′)
+

ri∑
k=1

log
Γ(nijk +

α′

ri
)

Γ(α
′

ri
)

)
≤

∑
{j:nij>0}

nij−1∑
i=0

log
(i+ a′/ri

i+ α′

)
.

Corollary 3.3 (Cussens and Bartlett [26]). Define r+i := |{j : nij > 0}|. Then,

rΠi∑
j=1

log
Γ(α′)

Γ(nij + α′)
+

ri∑
k=1

log
Γ(nijk +

α′

ri
)

Γ(α
′

ri
)

≤ −r+i log ri.

Corollary 3.4 (Cussens and Bartlett [26]). Given a vertex variable Vi and candidate parent
sets Πi and Π′

i such that Πi ⊂ Π′
i and Πi ̸= Π′

i, let r
+
i (Π

′
i) := |{j : nij > 0, j ∈ ΩΠ′

i
}| be

the total number of instantiations of Π′
i that appear in the dataset. If σ(Πi) < r+i (Π

′
i) log ri

then Π′
i and the supersets of Π′

i can be safely pruned.

We generalize Corollary 3.4 to Theorem 3.9 and prove it below.

Theorem 3.9. Given a vertex variable Vi and candidate parent sets Πi and Π′
i such that

Πi ⊂ Π′
i and Πi ̸= Π′

i, let r+i (Π
′
i) := |{j : nij > 0, j ∈ ΩΠ′

i
}| be the total number of

instantiations of Π′
i that appear in the dataset. If σ(Πi) + ϵ < r+i (Π

′
i) log ri, for some

ϵ ∈ R+, then Π′
i and the supersets of Π′

i can be safely pruned if σ is the BDeu scoring
function.

34

Proof. (Theorem 3.9) Let G′ be a Bayesian network where Π′
i or one of its supersets is a

parent set for Vi. Let G be another Bayesian network where Πi is the parent set for Vi.

Consider the LHS of Corollary 3.3. It is the local BDeu score for a parent set Π′
i which

has rΠi
counts nij in its contingency table and counts nijk in the contingency table for

Π′
i ∪ {Vi}, where α′ = α/rΠi

for some equivalent sample size α (see Equation 2.2). If
r+i (Π

′
i) log ri > σ(Πi) + ϵ then σ(Πi) + ϵ is lower than the local BDeu score for Π′

i due to
Corollary 3.3. Take a candidate parent set Π′′

i . If Π′
i ⊂ Π′′

i then r+i (Π
′′
i) ≤ r+i (Π

′
i) and so

r+i (Π
′′
i) log ri ≤ r+i (Π

′
i) log ri, as ri ≥ 2. From this it follows that the local score for Π′′

i

must also be more than σ(Πi) + ϵ. Using Lemma 3.1, the result follows as desired.

3.4 Experimental Evaluation

In this section, we provide implementation details of the BF approach, as well as evaluate
and compare its performance with published k-best solvers and the bootstrapping method
from the widely used bnlearn library [90].

Our experiments show that the ϵBNSL approach is more memory efficient compared
to the k-best based solvers in BDeu scoring and often collects more networks in less time.
Used with the pruning rules generalized above, our ϵBNSL method can scale up to datasets
with around 70 variables in BIC scoring, providing a significant improvement to the earlier
state of the art results reported on a network of 29 variables using the k-best approach
with score pruning [15].

The scoring computations were conducted on the Graham cluster of SHARCNET2

and the structure learning experiments were conducted on either SHARCNET, a shared
server with 346 GB RAM and Intel Xeon Gold 6148 CPUs at 2.4 GHz, or dedicated
machines with 128 GB RAM and Intel Xeon Silver 4214R CPUs at 2.4 GHz. For scoring
the datasets memory usage was limited to 64 GB and for structure learning a limit of 128
GB was imposed. For both scoring and learning, a computation time limit of 24 hours was
imposed for each instance.

3.4.1 The Credible Set Approach

In this section, we study the scaling of our ϵBNSL approach and the effect of the BF when
using the BIC scoring function. To evaluate our credible set approach, we considered a

2https://www.sharcnet.ca

35

https://www.sharcnet.ca

wide selection of datasets from the UCI repository3 and networks from the bnlearn Bayesian
network repository4 (see Table 3.1). We preprocessed the UCI datasets using a k-nearest
neighbor imputation algorithm, with k = 5, to fill in missing values and a supervised
discretization method [35] based on the MDL principle to discretize continuous variables.
For the BN from the bnlearn repository, we used the logic sampling function rbn from the
bnlearn R package [90] to generate datasets of sizes N = 50, 100, 500, 1,000, 5,000, and
10,000 from the bif files. The number of variables n used in these experiments, ranging
from 10 to 76, pushes the limits of the ϵBNSL approach, especially when using the BDeu
scoring that does not have effective pruning rules compared to BIC.

Table 3.1: UCI datasets (left, middle) and bnlearn Bayesian networks (right), where n is
the number of variables in the dataset or network, and N is the number of instances in the
original UCI dataset.

UCI dataset n N

shuttle 10 58,000
census income 14 48,842
letter 17 20,000
online shopping 18 12,330

lymphography 19 148
hepatitis 20 155
parkinsons 23 195
credit card 24 30,000

UCI dataset n N

robot navigation 25 5,456
horse colic 27 368
steel 28 1,941
flags 29 194

breast cancer 31 569
soybean 36 683
biodeg 42 1,055
spectf heart 45 267

network n

sachs 11
child 20
insurance 27
water 32
mildew 35

alarm 37
barley 48
hailfinder 56
heparII 70
win95pts 76

We modified the development version (version denoted 9c9f3e6) of GOBNILP, denoted
hereafter as GOBNILP dev, to apply the pruning rules presented above and supplied appro-
priate parameter settings for collecting near-optimal networks5. This version of GOBNILP
is compiled with SCIP 6.0.0 and CPLEX 12.8.0. GOBNILP handles the acyclicity con-
straint for DAGs by extending the SCIP Optimization Suite [44] with the addition of a
constraint handler. To learn multiple BNs, GOBNILP dev uses SCIP calls for collecting
feasible solutions. In this mode, when SCIP finds a solution, the solution is stored, a con-
straint is added to render that solution infeasible and the search continues. This differs

3https://archive.ics.uci.edu/ml
4https://www.bnlearn.com/bnrepository/
5Codebase is available at: https://www.cs.york.ac.uk/aig/sw/gobnilp/

36

https://archive.ics.uci.edu/ml
https://www.bnlearn.com/bnrepository/
https://www.cs.york.ac.uk/aig/sw/gobnilp/

from (and is much more efficient than) the method used in the current stable version of
GOBNILP for finding k-best BNs where an entirely new search is started each time a new
BN is found. By default when SCIP is asked to collect solutions it turns off all cutting
plane algorithms. This led to very poor GOBNILP performance since GOBNILP relies on
cutting plane generation. Therefore, this default setting is overridden in GOBNILP dev
to allow cutting planes when collecting solutions. To find only solutions with objective no
worse than (OPT + ϵ), SCIP’s SCIPsetObjlimit function is used.

Since GOBNILP dev uses an objective limit OPT + ϵ to enumerate possible networks,
we start by utilizing it to determine the optimal score OPT . For BDeu, no limit was placed
on the possible parent set sizes when scoring the datasets. For BIC, we set the limit on
the size of the parent set based on Corollary 3.2 that assures optimality. Then, with a
250,000-counting limit, all networks within the limit are collected.

Table 3.2 reports the search time T and the number of collected networks |G| for BF
of 3, 20 and 150 using BIC, where n is the number of random variables in the dataset, N
is the number of instances in the dataset, and the datasets are from the UCI repository.
Table 3.3 reports the same metrics for the bnlearn repository. The three thresholds were
determined using the interpretation scale from Heckerman et al. [51], where 3 denotes
the transition between anecdotal and positive evidence, 20 between positive and strong
evidence, and 150 between strong and very strong evidence. The network size, sample size,
and the number of networks at a particular BF all together have an impact on how long it
takes to complete a search. Smaller networks with a big sample size, such as shuttle and
census, are solved considerably more quickly than other relatively large networks, such as
soybean and spectf-heart.

The findings also show that there are significant differences between different datasets
in the number of collected networks at the three BF levels. Since near-optimal networks
have similar posterior probabilities to the optimal network, datasets with fewer instances
typically have more networks collected at a particular BF. Despite the fact that the required
level of BF for a study, like the p-value, is frequently determined by domain knowledge, the
proposed approach will, given enough samples, yield significant results that may be used
for further analysis. One methodology that we can recommend is to set the BF as large
as possible such that the number of networks can still be reasonably handled. We found
that a BF of 1000 was often feasible for larger datasets, which is large enough to provide
exceedingly strong guarantees on the final model averaged network and the resulting data
analysis.

37

Table 3.2: The search time T and the number of collected networks |G| for the credible
set method (BF = 3, 20, and 150) on the UCI datasets using BIC scoring, where n is the
number of random variables in the dataset and N is the number of instances in the dataset.

BF = 3 BF = 20 BF = 150
UCI dataset n N T3 (s) |G3| T20 (s) |G20| T150 (s) |G150|
shuttle 10 58,000 0.3 6 0.3 6 0.3 6
census 14 48,842 6.1 26 5.6 26 5.5 26
letter 17 20,000 0.9 68 0.9 68 0.9 68
online-shopping 18 12,330 11.6 10 8.0 10 8.3 30

lymphography 19 148 0.9 140 4.1 1,682 50.9 16,624
hepatitis 20 155 4.8 564 126.8 29,378 1,023.8 250,000
parkinsons 23 195 220.2 15,776 3,717.7 250,000 3,823.7 250,000
credit-card 24 30,000 224.0 42 183.6 42 231.7 84

robot 25 5,456 2.4 25 2.4 25 2.3 25
horse-colic 27 368 2.7 32 5.7 366 15.5 2,017
steel 28 1,941 19.0 1,152 34.6 2,304 81.2 4,608
flags 29 194 3.7 295 58.4 10,325 874.0 199,541

breast-cancer 31 569 8.7 40 22.5 294 65.7 1,437
soybean 36 683 33.8 73 91.6 488 392.3 3,200
biodeg 42 1,055 118.5 6 130.1 15 156.3 72
spectf-heart 45 267 15.4 207 125.7 4,350 1,920.2 86,275

38

Table 3.3: The search time T and the number of collected networks |G| for the credible set
method (BF = 3, 20, and 150) on the bnlearn networks using BIC scoring, where n is the
number of random variables in the dataset, N is the number of instances in the dataset,
and OM = Out of Memory.

BF = 3 BF = 20 BF = 150
network n N T3 (s) |G3| T20 (s) |G20| T150 (s) |G150|

sachs 11
50 0.3 84 0.7 404 2.4 2,343

500 0.4 168 0.7 336 1.8 796
5000 1.9 336 1.7 336 1.8 336

child 20
50 1.2 821 20.6 20,840 419.4 250,000

500 0.5 48 0.8 257 3.1 1,156
5000 3.0 24 2.7 24 2.6 24

insurance 27
50 29.8 21,104 281.7 250,000 370.5 250,000

500 1.7 42 3.1 272 7.7 1,489
5000 6.2 50 9.2 50 10.0 200

water 32
50 0.3 840 1.8 5,004 7.2 19,810

500 4.0 4,050 7.6 8,991 20.8 23,409
5000 1.0 48 1.0 48 1.4 87

mildew 35
50 0.0 16 0.0 66 0.1 106

500 0.6 729 0.7 972 0.9 1,620
5000 2.4 513 2.4 513 3.4 1,026

alarm 37
50 225.8 165,072 296.0 250,000 586.2 250,000

500 3.8 238 26.6 6,468 428.1 110,398
5000 32.4 16 34.9 148 48.8 2,428

barley 48
50 0.0 3 0.0 3 0.0 17

500 3.0 2,244 7.7 8,784 14.9 11,364
5000 5.5 12 4.9 12 3.0 24

hailfinder 56
50 122.2 250,000 146.5 250,000 171.4 250,000

500 452.6 250,000 372.8 250,000 473.9 250,000
5000 OM — OM — OM —

heparII 70
50 1,087.9 250,000 4,349.4 250,000 OM —

500 422.8 250,000 815.0 250,000 2,981.9 250,000
5000 OM — OM — OM —

win95pts 76
50 870.5 250,000 4,006.2 250,000 OM —

500 OM — OM — OM —
5000 OM — OM — OM —

39

3.4.2 Credible Set vs. K-Best

In this section, we compare our credible set approach to published solvers that find a subset
of top k scoring networks for a given parameter k. The solvers under consideration are
KBest (KBest 12b)6 from [102] and KBestEC7 from [16], which are based on the dynamic
programming approach introduced in [95]. KBest finds the k best networks and KBestEC
finds the k best MECs (see Definition 2.7). KBest and KBestEC lack support for BIC,
thus only results using BDeu with an equivalent sample size of one are shown in the
corresponding experiments.

The experimental results of KBest, KBestEC, and GOBNILP dev (our implementation
of our credible set approach) using the BDeu scoring function are reported in Table 3.4,
where n is the number of random variables in the dataset, N is the number of instances in
the dataset, and k is the number of top scoring networks. The search time is reported for
KBest, KBestEC, and GOBNILP dev. The number of DAGs within the k MECs |Gk| is
reported for KBestEC. The last two columns are the number of found networks |G20| and
the number of MECs |M20| using the BF approach with a BF of 20.

The search times for KBest and KBestEC both increase exponentially with the number
of requested networks k. The KBest and KBestEC do not perform well with larger datasets
as they are built to solve instances with an n under 208. Additionally, KBestEC fails to
produce accurate scoring files for the datasets shuttle, census, letter, robot, and horse-colic.
While KBestEC incurs some overhead for equivalence class checking, it seems to be able
to increase the coverage of DAGs. For some cases, such as online-shopping and credit-
card, KBestEC takes substantially longer than KBest, and the number of DAGs covered
by the discovered MECs is inconsistent. The credible set approach is consistently much
faster than the k-best approaches, which is due to the generalized pruning rules being very
effective in reducing the search space and allowing GOBNILP dev to solve the problem.
Comparing to the results in [13, 14], our approach can scale to larger networks if the set
of pruned scores can be computed for a given BF9.

6http://web.cs.iastate.edu/~jtian/Software/UAI-10/KBest.htm
7http://web.cs.iastate.edu/~jtian/Software/AAAI-14-yetian/KBestEC.htm
8Obtained through correspondence with the author.
9We are unable to generate BDeu score files for datasets with 30 or more variables within our experi-

mental constraints.

40

http://web.cs.iastate.edu/~jtian/Software/UAI-10/KBest.htm
http://web.cs.iastate.edu/~jtian/Software/AAAI-14-yetian/KBestEC.htm

Table 3.4: The search time T and the number of collected networks k, |Gk| and |G20| for
KBest, KBestEC, and credible set (BF = 20) methods on the UCI datasets using BDeu
scoring, where n is the number of random variables in the dataset, N is the number of
instances in the dataset, OT = Out of Time, and ES = Error in Scoring. Note that |Gk| is
the number of DAGs covered by the k-best MECs in KBestEC and |M20| is the number
of MECs for the networks collected by the credible set method.

KBest KBestEC Credible set
UCI dataset n N Tk (s) k TEC (s) |Gk| T20 (s) |G20| |M20|

shuttle 10 58,000
1.8 10 ES —

17.5 44 13.7 100 ES —
60.1 1,000 ES —

census 14 48,842
3.6 10 ES —

3.5 52 173.3 100 ES —
1,549.8 1,000 ES —

letter 17 20,000
16.1 10 ES —

5.5 47 1477.5 100 ES —
21,480.2 1,000 ES —

online-shopping 18 12,330
18.3 10 43.3 11

12.9 30 2468.3 100 86,406.7 112
18,533.0 1,000 OT —

lymphography 19 148
147.6 10 383.2 42

126.5 17,909 3,5315,812.1 100 8,397.2 464
OT 1,000 OT —

hepatitis 20 155
38.4 10 96.2 42

87.6 13,984 2,5251,045.7 100 1,169.4 446
34,374.8 1,000 50,592.0 5,309

parkinsons 23 195
4,171.5 10 OT —

8,925.2 250,000 46,156OT 100 OT —
OT 1,000 OT —

credit-card 24 30,000
133.5 10 4,507.7 10

263.2 6 16,724.6 100 OT —
OT 1,000 OT —

robot 25 5,456
OT 10 ES —

6.6 5 1OT 100 ES —
OT 1,000 ES —

horse-colic 27 368
935.2 10 ES —

15.4 1,143 15439,097.0 100 ES —
OT 1,000 ES —

41

Figure 3.1: The deviation ϵ from the optimal BDeu score by k, where k is the number of
best scoring networks retrieved. The corresponding values of the BF (ϵ = log(BF)) are
presented on the right. For example, if the desired BF value is 20, then all networks falling
below the dash line at 20 are credible.

Figure 3.1 shows score patterns within the 1,000 best networks for some datasets in the
KBest experiment. A plot for a dataset indicates the deviation ϵ from the optimal BDeu
score by the kth-best network learned from that dataset and for reference the black dashed
lines represent different levels of BFs calculated by ϵ = logBF (See Equation 3.2). The
plots show that it is difficult to pick a value for k a priori to capture the appropriate set
of top scoring networks. For datasets like shuttle and online-shopping, it takes fewer than
50 networks to reach a BF of 20, whereas hepatitis needs almost 14,000 networks. In cases
with limited data, several BNs with identical probabilities can be learned at a given BF,
indicating that the sample size significantly affects the number of networks learned. When
there is a lack of data, it would be a reasonable choice to use a high value for k in the
model, and vice versa. However, only our credible set can automatically identify a suitable
and reliable set of networks for additional study.

42

3.4.3 Credible Set vs. Bootstrapping

In this section, we compare our global (optimal) credible set approach for model averaging
to a local (heuristic) solver for model averaging. We compare against the bootstrapping
approach from bnlearn [90] with the tabu search algorithm, as it is known to be among
the best local solvers [91] and it is widely popular (the R implementation of the bnlearn
package has been downloaded more than 56.4k times). The number of bootstrap replicates
is the default value of 200. When comparing our credible set approach against the KBest
approaches, we compared on solving time, as these approaches are all optimal (see Sec-
tion 3.4.2). Now when comparing against a non-optimal solver, we wish to quantify the
improvement in accuracy gained by using our optimal approach.

Model averaging in structure learning for BNs is used in the following way: (i) learn
a set of networks with good scores that fit the given data, (ii) perform model averaging
over the set of networks and compute a real-valued confidence value P (e | I) for each
edge e in the learned set of networks , and (iii) set a minimum threshold value, t and
report all significant edges, which are edges e such that their confidence values exceed the
threshold P (e | I) > t. In this manner, a model-averaged network can be constructed from
the significant edges, and used to analyze causal and probabilistic dependencies. Two
methods are available to form a confidence value P (e | I): each network in the set of
networks is equally weighted and each network is weighted by its score, where networks
closer to optimal receive more weight than those further from optimal. Here we use equal
weighting and a fixed threshold of t = 0.5. In our experiments, we found that the difference
between the two methods was negligible.

For evaluating the two model averaging approaches on the task of BN structure learning,
we used a total of 90 ground truth BNs: 10 ground truth BNs came from the bnlearn
repository and a further 80 ground truth BNs were constructed following a similar approach
to Liu et al. [69] by (i) scoring each of the 16 UCI datasets using each of the five scoring
functions AIC, BDeu, BIC, qBDJ, and qNML (ii) learning an optimal network structure
from each scored dataset, and (iii) and fitting the parameters to each structure to give
a final Bayesian network. Given these ground truth BNs, we used the logic sampling
function rbn from the bnlearn R package [90] to generate random samples of sizes N = 50,
100, 500, 1,000, 5,000, and 10,000 from the bif files. We collected three samples for each
dataset size N , for a total of 18 samples for each ground truth BN. Thus, there are 90×18
instances all together, each associated with a ground truth DAG. Having ground truth
DAGs allows us to measure the accuracy of each approach. The number of variables n
used in our experiments, ranging from 11 to 76, pushes the limits of both the bootstrap
and the credible set approaches, especially when using the BDeu scoring that does not

43

have effective pruning rules compared to BIC.

We compare the results of knowledge discovery using the credible set approach against
the bootstrap approach in Figures 3.2 & 3.3. For each method, we plot results for the BIC
and BDeu scoring functions. Each “performance curve” is obtained by solving each of the
90×18 instances, evaluating the learned DAG against ground truth using the performance
measure, and sorting the results into ascending order. For the performance measures (e.g.,
Fβ) that take an additional parameter, we use α, β = 1

4
, 1
2
, 1, 2, and 4. The performance

curves can then be compared and we look for whether one method dominates another for
a given scoring function.

Figure 3.2 compares the credible set and bootstrap methods using the misclassification
cost and Fβ score performance measures over the skeletons. For the misclassification cost,
the credible set method dominates the bootstrap method for the BIC score, always being
better or equal in performance, while the results for the BDeu score are more mixed (note
the log scale). For the Fβ score, the credible set method again dominates the bootstrap
method for the BIC score, while again the results for the BDeu are more mixed.

Figure 3.3 compares the credible set and bootstrap methods using the SHD and multi-
class Fβ score performance measures over CPDAGs. For the SHD, the credible set method
offers significant accuracy improvements over the bootstrap method for both the BIC score
and the BDeu score (note the log scale). For the multi-class Fβ score, the credible set
method dominates and again offers significant accuracy improvements over the bootstrap
method for both the BIC score and the BDeu score.

3.5 Summary

Existing optimal methods to apply model averaging in Bayesian network structure learning
are limited by constraints on the Bayesian network structure, or do not scale to networks
with more than 30 random variables. In this chapter, we provided a novel model averaging
method for learning all networks within a factor of optimal in Bayesian network structure
learning. Our method improves on the existing methods in three ways. First, only credible
models—those whose scores are optimal or close to optimal—are learned by our method.
Second, our method is substantially more efficient and scales to far larger Bayesian net-
works. Empirically, our results demonstrate that the modified GOBNILP scales to signifi-
cantly larger networks without restricting the structure of the learned Bayesian networks.
Finally, our empirical results demonstrate that our credible set method can offer significant
accuracy improvements over a bootstrapping model averaging method that is far and away
the most widely used model averaging method in practice.

44

Figure 3.2: Comparison of bootstrap and credible set model averaging methods, for various
scoring functions and performance measures for undirected edges (skeleton): misclassifica-
tion cost (top, lower values are better); Fβ score (bottom, higher values are better). All
methods used a fixed threshold of 0.5.

45

Figure 3.3: Comparison of bootstrap and credible set model averaging methods, for vari-
ous scoring functions and performance measures for directed edges (CPDAGs): structural
Hamming distance (top, lower values are better); multi-class Fβ score (bottom, higher val-
ues are better). All methods used a fixed threshold of 0.5.

46

Chapter 4

Local Structure: Noisy-OR

A Bayesian network can be learned from data using the well-known score-and-search ap-
proach, and within this approach a key consideration is how to simultaneously learn the
global structure in the form of the underlying DAG and the local structure in the CPDs.
Several useful forms of local structure have been identified in the literature but thus far the
score-and-search approach has only been extended to handle simultaneously local structure
in the form of context-specific independence (see the review of related work and discussion
in Section 1.1.3). In this chapter, we show how to extend the score-and-search approach
to the important and widely useful case of noisy-OR relations. We provide an effective
gradient descent algorithm to score a candidate noisy-OR using the widely used BIC score
and we provide pruning rules that allow the search to successfully scale to medium sized
networks. Our empirical results provide evidence for the success of our approach to learning
Bayesian networks that incorporate noisy-OR relations.

4.1 Overview

A widely used local structure is the noisy-OR relation [45, 80], which models the CPD over
causes (parents) and effects (children). The noisy-OR assumes a form of causal indepen-
dence and allows one to specify a CPT with parameters linear in the number of parents.
Given the DAG, previous work has shown how to learn the parameters of a noisy-OR
relation from data or from a CPT [113, 108]. Here, we propose the first score-and-search
approach to simultaneously learn the DAG and learn both CPT and noisy-OR relations as
possible representations for the CPDs. Importantly, we place no a priori constraints on the
global structure and we exactly determine all networks within a given factor of optimal.

47

Our approach has two primary advantages. First, our approach only replaces a CPT with
a noisy-OR relation when it is appropriate. Converting an arbitrary proportion of CPTs
to structured representations can lead to significant degradation of the expressive power of
the model, and it is difficult to determine the optimal proportion a priori. We control the
degradation by specifying an approximation factor that measures how far a BN can deviate
from the optimal network, and so only near-optimal networks with both CPTs and noisy-
OR relations are learned in a principled manner. Second, our approach provides pruning
rules that can scale to BNs of moderate sizes in contrast to the state of the art using other
structured representations. We empirically demonstrate that our approach can learn these
mixed BNs in a principled manner that takes advantage of a reduced complexity.

The remainder of this chapter proceeds as follows.

• We provide an algorithm to learn the parameters of a noisy-OR relation for a candi-
date parent set, as well as score the noisy-OR parent set simultaneously (Section 4.2).

• We provide pruning rules for noisy-OR parent sets that retain optimality while re-
ducing the search space (Section 4.2).

• We extend our credible set score-and-search approach with model averaging to choose
between noisy-OR and CPTs automatically. Our approach controls the degradation
by specifying a Bayes factor (BF) [58] that measures how far a BN can deviate
from the optimal network, and so only near-optimal networks with both CPTs and
noisy-OR relations are learned in a principled manner (Section 4.2).

• We show empirically that our approach to learning parameters of noisy-OR relations
is more accurate than the state-of-the-art, and the structure learning with our pruning
rules can scale to BNs of moderate sizes (Section 4.3).

4.2 Score-and-Search with Noisy-OR

In this section, we present our credible set score-and-search approach for learning all BNs
given local scores that are within a given factor of optimal, where the networks can contain
both full CPT and noisy-OR relations as possible representations for the CPDs. For ease
of reference, we begin by recalling the notation and definition for the noisy-OR structured
representation (Section 2.4).

Recall that with the noisy-OR relation, one assumes that there are a set of causes
Πi := {Vi1, . . . , Vi|Πi|} leading to an effect Vi, where Vi, Vij ∈ V for all j ∈ {1, ...|Πi|} and

48

Vi1 Vi2
. . . Vi|Πi|

Vi

qi2qi1 qi|Πi|

Figure 4.1: Causal structure for a BN with a noisy-OR relation, where the set of causes
Πi := {Vi1, . . . , Vi|Πi|} leads to effect Vi and there is a noisy-OR relation at variable Vi.

Vi /∈ Πi (see Figure 4.1). Each cause Vij ∈ Πi is either present or absent, and each Vij in
isolation is likely to cause Vi and the likelihood is not diminished if more than one cause
is present. Further, one assumes that all possible causes are given and when all causes
are absent, the effect is absent. Finally, one assumes that the mechanism or reason that
inhibits a Vij from causing Vi is independent of the mechanism or reason that inhibits a
Vij′ , j

′ ̸= j, from causing Vi.

For a binary variable Vi and parent set Πi, a noisy-OR relation specifies a CPT using
|Πi| parameters, qi = qi1, . . . , qi|Πi|, one for each parent, where qij is the probability that
Vi is false given that Vij is true and all of the other parents are false,

P (Vi = 0 | Vij = 1, Vij′ = 0[∀j′,j′ ̸=j]) = qij.

From these parameters, the full CPT representation of size 2n+1 can be generated using,

ϕij0 =

{∏
j∈Tx

qij if Tx ̸= {}
1 otherwise,

(4.1)

where Tx = {j | Vij = 1}. The last condition (when Tx = {}) corresponds to the assump-
tions that all possible causes are given and that when all causes are absent, the effect is
absent; i.e., P (Vi = 0 | Vi1 = 0, . . . , Vi|Πi| = 0) = 1. Of course, ϕij1 = 1 − ϕij0. The set
ϕi :=

{
ϕijk | j ∈ {1, . . . , rΠi

}, k ∈ {0, 1}
}
is referred to as the noisy-OR CPT of variable

Vi.

In general, a score-and-search approach scores candidate parent sets for the variables
in the network and searches for the choice of a parent set, one for each variable, that leads
to the best overall score while ensuring that the network is acyclic. In what follows, we
present our overall approach for solving ϵBNSL (our credible-set model-averaging approach)
extended to noisy-OR relations. We first describe an effective gradient descent algorithm
to score a candidate noisy-OR relation using the widely used BIC score and pruning rules
that allow the search to scale to larger networks.

49

4.2.1 BIC Score for Noisy-OR Relations

The BIC score consists of a maximum likelihood term and a penalty term (see Equa-
tion 2.2.1). We present a gradient descent algorithm that is based on minimizing a KL
divergence as it is known that minimizing the KL divergence results in maximizing the
likelihood (see, e.g., [76]). Recall that the elements of θi in the log likelihood term of the
BIC score are conditional probabilities computed from the dataset I. Given a variable
Vi, we must compute maximum likelihood estimates for the noisy-OR CPT ϕi for every
candidate parent set Πi, such that the conditional KL divergence between the full CPT θi
and the resulting noisy-OR CPT ϕi that is determined by the qi (see Equation 4.1), is min-
imized. The KL divergence between two conditional probability distributions, P (A | B)
and Q(A | B) is given by,

DKL(P (A|B) || Q(A|B)) =
∑
b∈B

P (B = b)
∑
a∈A

P (A = a|B = b) log
P (A = a|B = b)

Q(A = a|B = b)
.

We note that an alternative approach to estimate noisy-OR parameters is to maximize the
log-likelihood using the expectation-maximization (EM) technique, which was derived in
[31] and applied to noisy-OR in [108]. We perform an experimental comparison of the two
alternative approaches in Section 4.3.

To derive our gradient descent algorithm, we begin with the definition of KL divergence
for the two conditional probability distributions, θi and ϕi, and rewrite it into a more
convenient form:

DKL(θi || ϕi)
0
=

rΠi∑
j=1

P (πij)
∑

k∈{0,1}

θijk log
θijk
ϕijk

1
=

rΠi∑
j=1

nij

N

∑
k∈{0,1}

θijk log
θijk
ϕijk

2
=

1

N

rΠi∑
j=1

∑
k∈{0,1}

nijk · θijk log
θijk
ϕijk

3
=

1

N

rΠi∑
j=1

∑
k∈{0,1}

nijk · θijk log θijk −
1

N

rΠi∑
j=1

∑
k∈{0,1}

nijk · θijk log ϕijk,

where N is the number of instances in our dataset. To find ϕi such that DKL(θi || ϕi) is

50

minimized, note that the first term in Step 3 is constant. So, we must determine,

argmin
qi

DKL(θi || ϕi) = −
rΠi∑
j=1

∑
k∈{0,1}

nijk · θijk log ϕijk,

where the qi that minimizes the KL divergence are the maximum likelihood estimates for
ϕi that are determined by the qi (Equation 4.1). The penalty term in the BIC score can
be computed in constant time; specifically, the number of parents in the candidate parent
set. Thus, fitting these noisy-OR parameters gives us the BIC score for the noisy-OR for a
candidate parent set. To find these noisy-OR parameters, we propose Algorithm 4.1 which
performs gradient descent for the derivative,

∆qi

KL =
d

dqi

rΠi∑
j=1

∑
k∈{0,1}

nijk · log ϕijk. (4.2)

We start with an initial guess for the set of noisy-OR parameters qi and evaluate term ∆qi

KL

for these values (Equation 4.2). The initial guess uses hot starts in that the solution for a
smaller candidate parent set is used as the starting point when estimating the parameters
for a candidate parent set that is a superset. We perform gradient descent over qi, where
each step update is found by a simple geometric line search algorithm (see Step 5, Algo-
rithm 4.1). Geometric line search is a backtracking line search procedure, where we first
choose a descent direction and then determine the maximum amount to move along that
direction.

4.2.2 Pruning Rules

To find all near-optimal BNs given an approximating factor ϵ for a dataset I, we propose
to compute two different sets of local scores for each variable. The first set is the BIC
scores when the conditional probability distributions for the candidate parents sets are
represented by full CPTs. The second set is the BIC scores when the conditional probability
distributions for the candidate parent sets are represented by noisy-OR relations. However,
computing the local scores for all variables is quite cost prohibitive—we would need a set of
n · 2n−1 local scores for each of the two BIC scores. A solution is to prune the search space
of candidate parent sets, provided that global optimality constraints of the full network
structure are not violated. Recall that we say that a candidate parent set Πi can be safely
pruned given a non-negative constant ϵ ∈ R+ if Πi cannot be the parent set of Vi in any
network in the set of credible networks (see Definition 3.4).

51

Algorithm 4.1 Computing Noisy-OR Parameters for a Candidate Parent Set

Input: Variable Vi, candidate parent set Πi, a dataset I of N instances.
Parameter: Threshold t, maximum iterations maxIter
Output: A set of noisy-OR parameters : qi = qi1, . . . , qi|Πi|

1: Initialize qi = qi1, . . . , qi|Πi| = hotstarts()
2: Initialize l = 0,mqi = qi, δ =∞
3: while l < maxIter do
4: q′

i = qi

5: step = GeometricLineSearch(q′
i,∆

q′
i

KL)

6: qi = q′
i − step ∗∆q′

i
KL

7: δqi = ∆qi

KL −∆
q′
i

KL

8: if δqi < δ then
9: mqi = qi

10: δ = δqi
11: end if
12: if δqi < t then
13: break
14: end if
15: l = l + 1
16: end while
17: return mqi

For computing BIC scores for full CPTs, we employ the pruning rules given in Sec-
tion 3.3 to find all near-optimal BNs given an approximating factor ϵ. For computing BIC
scores for noisy-OR relations, we introduce new pruning rules.

Lemma 4.1. A candidate parent set Πi of a variable Vi such that Πi is consistently in-
stantiated to (0, . . . , 0) throughout the dataset whenever the variable Vi is set to one can be
safely pruned.

Proof. The candidate parent set Πi cannot explain Vi in this configuration as there is no
instance in the dataset to indicate that Πi affects the values of Vi.

Theorem 4.1. Given a vertex variable Vi, a candidate parent set Πi, and some ϵ ∈ R+, if
t(Πi) · w > σi({}) + ϵ, Πi can be safely pruned.

Proof. The null parent set is a subset of all candidate parent sets and by Lemma 3.1
any candidate parent set with a score exceeding the score of the null parent set plus ϵ

52

can be safely pruned. Consider the definition of BIC for a parent set Πi for variable Vi,
σ(Πi) = −L(θi)+t(Πi)·w. Let us have a candidate parent set such that t(Πi)·w > σi({})+ϵ.
Then, since log-likelihood is negative, t(Πi) · w > σi({}) + ϵ ⇒ −L(θi) + t(Πi) · w >
σi({}) + ϵ⇒ σ(Πi) > σi({}) + ϵ.

Theorem 4.2. Given a vertex variable Vi, a candidate parent set Πi can be safely pruned
if there exists an instance Ij = (v1, . . . , vn) ∈ I, such that vi = 1 and vk = 0 for all Vk ∈ Πi.

Proof. By Equation (4.1), we must have P (Vi = 1 | Vk = 0 ∀k ∈ Πi) = 0 for a noisy-OR
node, which the existence of instance Ij contradicts.

This theorem has particular applications for sparse instances, as the following corollaries
show.

Corollary 4.1. For a vertex variable Vi with an instance Ij = (v1, . . . , vn) ∈ I, such that
vi = 1 and vk = 0 for all Vk ∈ V \ {Vi}, all candidate parent sets except the empty set can
be safely pruned.

Corollary 4.2. For a vertex variable Vi with an instance Ij = (v1, . . . , vn) ∈ I, such that
vi = vk = 1 for some vertex variable Vk and vℓ = 0 for all Vℓ ∈ V \ {Vi, Vk}, all candidate
parent sets can be safely pruned that are not the empty set and do not contain Vk.

4.2.3 Overall Algorithm for Structure Learning

Algorithm 4.2 shows our overall algorithm for ϵBNSL, a principled way to automatically
select between full CPTs and noisy-OR relations, given a dataset and an approximation
factor ϵ. Note that Step 1 and 2 can be performed in parallel.

4.3 Experimental Evaluation

In this section, we show the accuracy of Algorithm 4.11 in computing the noisy-OR pa-
rameters for synthetic BNs with embedded noisy-OR relations. We also show significant
presence of noisy-OR relations in standard benchmark networks. Finally, we test the per-
formance of our learned networks against ground truth networks. All experiments are
conducted on computers with 2.2 GHz Intel E7-4850V3 CPUs. Each experiment is limited
to 64 GB of memory and 24 hours of CPU time.

1Code available at https://github.com/CharupriyaSharma/eBNSLNoisyOR

53

https://github.com/CharupriyaSharma/eBNSLNoisyOR

Algorithm 4.2 Noisy-OR BN Structure Learning

Input: A dataset I over a set of random variables V with N instances, and an ϵ ∈ R+.
Output: Set of credible networks.

1: Step 1: Full CPT representations. Determine the BIC scores when fitting a full
CPT for all candidate parent sets that could not be pruned with pruning rules from
Section 3.3 using Equation 2.2.1.

2: Step 2: Noisy-OR Representations. Determine the BIC scores when fitting a
noisy-OR relation for all candidate parent sets that could not be pruned using our
pruning rules in Section 4.2.2. Here, the noisy-OR parameters are fit using Algorithm
4.1, which minimizes the KL divergence between the full-CPT and the noisy-OR CPT.
These parameters are used to compute the noisy-OR BIC score.

3: Step 3: Merge. Merge the sets of scores from Step 1 and Step 2, using pruning rules
Lemma 3.1 and Theorem 3.3, into a set of scores for candidate parent sets for each
variable in the dataset. During merging scores of a variable Vj, we have to examine
only cases where a candidate parent set Πj belongs to the set of BIC scores and its
superset Π′

j belongs to the noisy-OR BIC scores and vice versa.
4: Step 4: Find credible networks. The scores obtained in Step 3 are used to learn the

set of credible networks using a developmental version of GOBNILP [26], gobnilp dev
(see Section 3.4.1), which can be used to solve the ϵBNSL problem and collect all the
networks in the credible set for the given approximation factor ϵ.

4.3.1 Recovery of Noisy-ORs in Synthetic Datasets

To evaluate the accuracy of Algorithm 4.1 in finding the noisy-OR parameters and minimiz-
ing conditional KL divergence, we used synthetic BNs which consisted of a single noisy-OR.
The parent set sizes were in the range {2, . . . , 7}, all parent nodes had priors of 0.5, and
the noisy-OR parameters q = q1, . . . , q|Π| in the ground truth were uniformly sampled from
the set {0.01, 0.02, . . . , 0.99}. Thirty tests were performed at each parent set size.

We randomly generated datasets from the synthetic BNs with 100, 500 and 1000 in-
stances, respectively. Algorithm 4.1 was applied to a dataset and the noisy-OR parameters
estimated by the algorithm were compared against the parameters in the ground truth net-
work (see Table 4.1). As well, the conditional KL divergence was computed between the
noisy-OR CPT for the estimated parameters and the noisy-OR CPT for the ground truth
parameters (see Equation 4.1). We also compared our results against the expectation-
maximization algorithm for noisy-OR proposed by [108], the code for which was supplied
by the author. As shown in Table 4.1, Algorithm 4.1 estimated the ground truth param-

54

Table 4.1: (Top) Median relative error in noisy-OR parameters and (bottom) median
conditional KL divergence of noisy-OR CPTs learned by our Algorithm 4.1, denoted KL,
and Vomlel’s [108] expectation-maximization algorithm, denoted EM, from ground truth
for various parent set sizes.

Parent N = 100 N = 500 N = 1000
Size KL EM KL EM KL EM
2 0.16 1.07 0.07 1.07 0.05 1.00
3 0.21 1.18 0.09 1.11 0.07 1.07
4 0.27 1.04 0.11 1.27 0.07 1.26
5 0.25 1.50 0.11 1.54 0.08 1.57
6 0.34 1.99 0.16 2.04 0.10 2.06
7 0.41 2.09 0.24 2.03 0.16 1.99

Parent N = 100 N = 500 N = 1000
Size KL EM KL EM KL EM
2 0.04 0.05 0.01 0.01 0.00 0.01
3 0.13 0.32 0.02 0.05 0.01 0.03
4 0.33 1.32 0.06 0.24 0.03 0.12
5 1.02 4.91 0.18 1.20 0.07 0.55
6 1.33 9.02 0.33 3.48 0.16 2.06
7 2.54 12.08 1.07 11.68 0.60 6.55

eters with significantly higher accuracy than the EM algorithm. Algorithm 4.1 also had
much lower conditional KL divergence.

4.3.2 Presence of Noisy-OR Relations in Standard Benchmarks

To evaluate the ability of our overall algorithm for ϵBNSL (Algorithm 4.2) to learn net-
works with noisy-OR relations, we used standard datasets from the UCI Machine Learning
Repository (https://archive.ics.uci.edu/). The datasets used were all binary or made
binary.

The overall algorithm for ϵBNSL was applied to a dataset to learn the set of credible
networks using a Bayes factor, BF, of 20. Out of the 13 (in a total of 16) benchmarks
the algorithm was able to solve, nine benchmarks showed a presence of noisy-OR relations

55

https://archive.ics.uci.edu/

Table 4.2: Total number of variables where a noisy-OR relation is selected (m), and average
(ave.) and maximum (max.) percentage of networks in the set of credible networks that
select noisy-OR relations for these nodes, for various benchmarks, where n is the number
of variables in the dataset or network and N is the number of instances in the dataset. OT
indicates a dataset that could not be solved within the time limit.

Dataset n N m ave. max.
adult 14 32,561 0 0.0 0.0
nltcs 16 3,236 0 0.0 0.0
msnbc 17 58,265 0 0.0 0.0
zoo 17 101 7 41.9 99.4
letter 17 20,000 OT OT OT
hepatitis 20 155 10 76.9 100.0
parkinsons 23 195 11 51.2 100.0
sensors 25 5,456 OT OT OT
autos 26 159 13 76.0 100.0
horse 28 300 3 97.4 100.0
flag 29 194 10 77.6 100.0
wdbc 31 569 OT OT OT
soybean 36 266 9 86.1 100.0
alarm 37 1,000 2 28.8 56.4
bands 37 277 8 63.4 100.0
spectf 45 267 0 0.0 0.0

(see Table 4.2). Specifically, these nine benchmarks had two or more nodes that were
assigned noisy-OR relations in at least 28.8% of the networks in the credible set. Also,
seven benchmarks had at least one node that was assigned a noisy-OR relation in all
of the networks in the credible set. Note that some benchmarks, such as hepatitis and
parkinsons, select noisy-OR relations for around half of their nodes, which shows that
using only full CPTs could have resulted in overfitting. Further, optimal BNs containing
noisy-OR relations were consistently found to have better scores than that of optimal
networks found using only full CPTs. We also examined the effectiveness of the pruning
rules (Steps 2 and 3 of the algorithm). On these benchmarks, the rules safely pruned away
from 89.17% to 99.99% of the candidate parent sets, showing that the pruning rules are
highly effective.

56

4.3.3 Performance on Ground Truth Networks

To further evaluate our overall algorithm for ϵBNSL (Algorithm 4.2), we used real-world
BNs from the Bayesian Network Repository2. The variables in the networks were made
binary and their corresponding CPTs compressed by combining similar categories. For
example, for a variable taking one of {LOW, MEDIUM, HIGH}, the MEDIUM category
was combined with LOW, and the variable could now take one of {LOW, HIGH} (see Ta-
ble 4.3; BNs without a b suffix were already binary). From each ground truth network, we
randomly generated datasets with 100, 500, and 1000 samples. We then ran our structure
learning algorithm on the datasets to learn the set of credible networks, fixed the CPT
parameters using maximum likelihood estimation and measured relative inference error
against the ground truth network.

Table 4.3 shows the median relative inference error of the best scoring and the worst
scoring networks in the set of credible networks, as well as that of the best-scoring network
with full CPTs (i.e., not containing noisy-OR relations), against that of the ground truth
network. Overall the inference error of the best scoring network is comparable to that
of the full CPT. Somewhat surprisingly, the error for the worst scoring network can be
smaller than for the best scoring network or the full CPT.

Table 4.3: Median relative inference error for the best and worst scoring network in the set
of credible networks learned by Algorithm 4.1 and the full CPT against the ground truth
network. The datasets with N instances were generated from various ground truth BNs
with n nodes.

Bayesian N = 100 N = 500 N = 1, 000
network n best worst CPT best worst CPT best worst CPT
earthquake 5 0.03 0.91 0.00 0.02 0.98 0.00 0.26 0.53 1.00
survey b 6 0.05 0.69 0.00 0.02 0.74 0.00 0.01 0.75 0.00
asia 8 0.04 0.13 0.92 0.04 0.92 0.02 0.02 0.90 0.08
sachs b 11 0.43 0.68 0.18 0.70 0.60 0.21 0.68 0.62 0.01
child b 20 0.05 0.91 0.01 0.05 0.88 0.07 0.05 0.85 0.04
insurance b 27 0.67 0.72 0.70 0.65 0.71 0.68 0.65 0.68 0.68
alarm b 37 0.04 0.99 0.01 0.08 0.99 0.05 0.05 OT 0.06

To perform inference on our learned set of credible networks, we generated evidence

2www.bnlearn.com/bnrepository

57

www.bnlearn.com/bnrepository

for 10% of the variables in the network. The variables were randomly selected. For one
trial, we selected a state of every variable in the evidence, which was set according to
the variable’s posterior probability distribution in the model, conditional on the evidence
observed up till this point. Then, we computed the posterior probability distributions
over the non-evidence variables for our learned network and for the ground truth network.
The inference errors were the differences between these values. We repeated the described
procedure 1000 times for each of the networks. Inference was performed using JavaBayes3,
which was extended to take in an evidence file and two BNs for comparison. Our results
are consistent with [113], who show that in three real-world Bayesian networks, noisy-
OR/MAX relations were a good fit for up to 50% of the CPTs in these networks and
that converting some CPTs to noisy-OR/MAX relations gave good approximations when
answering probabilistic queries.

4.4 Summary

Existing successful approaches for learning Bayesian networks from data use the well-known
score-and-search approach. In this chapter, we extended the score-and-search approach to
simultaneously learn the best global structure and the best local structure when the choice
is either a full CPT or a noisy-OR relation for a candidate parent set of a variable in the
network. We showed how to score a causal noisy-OR relation for a candidate parent set
by fitting the best possible noisy-OR to the data, and we showed how to effectively prune
the search space while maintaining the optimality of the networks that are learned. Our
experimental results provide evidence of the effectiveness of our approach. In particular,
it was found that noisy-OR relations appeared in a significant proportion of the learned
networks, for well known datasets.

3www.cs.cmu.edu/~javabayes

58

www.cs.cmu.edu/~javabayes

Chapter 5

Local Structure: Neural Networks

Previous work has shown that incorporating structured representations of CPDs into the
score-and-search approach can improve the accuracy of the learned graph. Several useful
forms of local structure have been identified in the literature but thus far the score-and-
search approach has only been extended to handle variations of decision-tree representa-
tions of local structure (see the review of related work and discussion in Section 1.1.3). In
the previous chapter, we showed how to learn CPDs with a widely used local structure,
noisy-OR, within the score-and-search framework and showed that these relations can ap-
pear often in standard benchmarks (Section 4.3). However, linear models like noisy-OR can
fail to model non-linear relationships between variables. In this chapter, we propose the
first score-and-search approach for learning Bayesian networks with neural network rela-
tions as possible representations for CPDs, which enable us to learn non-linear relationships
without imposing any rigid constraints on the structure. Importantly, we simultaneously
learn both the global structure in the form of the underlying DAG and the local structure
in the CPDs, we place no a priori constraints on the global structure, and we exactly
determine all networks within a given factor of optimal.

The remainder of this chapter proceeds as follows.

• We provide an algorithm to learn neural network relations for candidate parent sets,
as well as score them simultaneously (Section 5.1).

• We extend our credible set score-and-search approach to include neural-network rela-
tions. Our approach controls the degradation by specifying a Bayes factor (BF) [58]
that measures how far a BN can deviate from the optimal network, and so only near-
optimal networks with neural-network relations are learned in a principled manner
(Section 5.1).

59

• We show empirically that our approach to learning parameters of neural networks
to represent CPDs compares favourably with approaches based on decision trees and
performs particularly well in instances with low amounts of data (Section 5.2).

5.1 Neural Networks to Represent CPDs

Let us consider the definition of the BIC score for a candidate parent set Πi of Vi in a
discrete Bayesian network. We can associate a score to a candidate parent set Πi of Vi,
when the associated full CPT θi is given, as follows,

σBIC(Πi) = −L(θi) + t(Πi) · w (5.1)

where the L(θi) term measures the log likelihood of the data given the candidate parent
set and the term t(Πi) = rΠi

(ri− 1) is the number of parameters needed to specify the full
CPT for the candidate parent set. As the size of the parent set and the number of free
parameters grow, BIC places heavy penalties on the local scores, which can prevent finding
the ground truth for networks with larger parent sets. As has been previously shown, there
may be structure in the CPDs and this structure might be representable with far fewer
parameters than the exponential number of parameters needed for the full CPT.

5.1.1 Learning CPDs with Neural Networks

For modeling CPDs, we will use multilayer perceptrons (MLPs) (see, e.g., [46]). MLPs are
a fully connected class of feedforward neural networks where the mapping between inputs
and output is non-linear. An MLP consists of at least three layers of nodes: an input
layer, a hidden layer and an output layer. Except for the input nodes, each node is a
neuron that uses a non-linear activation function, which defines the output of that node
given its inputs. Data moves forward through the layers, and the modeling of the input
instance within the MLP involves changing connection weights after each instance of data
is processed, based on the error in the output compared to the expected result using a loss
function. The ability of MLPs to model data that is not linearly separable can be leveraged
to find complex structures within a CPD for a candidate parent set Πi of Vi. Note that in
an MLP representation of a CPD, the input layer and the output layer are determined by
the parent set Πi and the child Vi variable, respectively.

60

Let N be the set of all MLPs over a variable Vi and a candidate parent set Πi. The
goal is to find the best scoring neural network model of the data; i.e.,

σBIC(Πi) = min
nn∈N

(−L(nn,Πi) + t(nn,Πi) · w), (5.2)

where L(nn,Πi) is the log likelihood of the data given the neural network model nn and
t(nn,Πi) is the number of parameters (weights) in nn. There are both practical and
theoretical issues with determining Equation 5.2, all the more so as some of the pruning
rules no longer apply as they depend on the assumption that the CPD is represented as a
full CPT. We discuss this further in Section 5.2 below.

Algorithm 5.1 Neural Network Fit

Input: Node Vi, candidate parent set Πi, and a one-hot encoded dataset I of instances.
Parameter: Accuracy threshold δ.
Output: Size of the best fitting neural network.

1: CPTSize = size of a full CPT representation
2: baseline = mean accuracy of a classifier that predicts the most frequent child value
3: nnSize = 0
4: nnNodes = 1
5: accuracy = 0
6: while nnSize < CPTSize do
7: train an MLP nn with a single hidden layer of nnNodes neurons
8: prevAccuracy = accuracy
9: accuracy = mean score of nn on training data
10: nnSize = number of parameters in nn
11: if accuracy > baseline and |accuracy − prevAccuracy| < δ then
12: break
13: end if
14: nnNodes = nnNodes+ 1
15: end while
16: return min(CPTSize, nnSize)

The alternative that we pursue here is to approximate Equation 5.2 by first fixing the
L(θi) term in Equation 5.1 to the maximum likelihood estimation given by the full CPT
and then minimizing the t(Πi) term by fitting the smallest neural network to represent the
CPT. If we reduce the number of free parameters with our neural network, the penalty
term reduces, making the candidate parent sets score better, as well as enabling us to find
more structured representations of the CPTs. Here, given a parent set for a child variable

61

that we wish to score and associated data, we attempt to fit a neural network to the data
such that the network is as small as possible yet the parent set predicts the child variable
with maximum accuracy. The minimum of the number of entries in the CPT and the
number of weights in the neural network is then used as the number of free parameters in
the t(Πi) term of the BIC score.

We propose a simple greedy algorithm (see Algorithm 5.1) to find the size of the neural
network that best fits the data in that the network is as small as possible yet the parent set
predicts the child variable with maximum accuracy. Given a node Vi and candidate parent
set Πi, and a one-hot encoded dataset I, we train a simple neural network. The neural
networks is constructed as an MLP with a single hidden layer where each node uses the
logistic function, and a softmax is placed on the output layer. Starting with zero nodes,
we keep on adding nodes to the hidden layer of the neural network while we can improve
the mean accuracy of the neural network and the total number of weights needed for the
neural network CPT does not exceed the number of parameters needed by the full CPT.

5.1.2 Learning CPDs with Decision Trees

Decision trees have been used to represent context specific conditional independence in
CPDs (see the discussion in Section 1.1.3 and Section 2.4). Let T be the set of all decision
trees over a variable Vi and a candidate parent set Πi. The goal is to find the best scoring
decision tree model of the data; i.e.,

σBIC(Πi) = min
dt∈T

(−L(dt,Πi) + t(dt,Πi) · w), (5.3)

where L(dt,Πi) is the log likelihood of the data given the decision tree model dt and
t(dt,Πi) is the number of probabilities specified by dt (see, for example, Figure 2.6, where
the decision tree there specifies eight probabilities) [39].

Algorithm 5.2 describes a decision tree algorithm that is closely similar to the algorithm
given above for neural networks: the algorithm approximates Equation 5.3 by first fixing
the L(θi) term in Equation 5.1 and then minimizing the t(Πi) term by fitting the smallest
decision tree to represent the CPT. Given a node Vi and candidate parent set Πi, and a
one-hot encoded dataset I, we learn a decision tree. Starting with a decision tree consisting
of a single leaf, we keep on adding leaf nodes to the decision tree while we can improve the
mean accuracy of the decision tree. The minimum of the number of entries in the CPT
and the number of probabilities specified by the decision tree is then used as the number
of free parameters in the t(Πi) term of the BIC score.

62

Algorithm 5.2 Decision Tree Fit

Input: Node Vi, candidate parent set Πi, and a one-hot encoded dataset I of instances.
Parameter: Accuracy threshold δ.
Output: Size of the best fitting decision tree.

1: CPTSize = size of a full CPT representation
2: baseline = mean accuracy of a classifier that predicts the most frequent child value
3: dtSize = 0
4: dtNodes = 1
5: accuracy = 0
6: while dtSize < CPTSize do
7: learn a decision tree T with dtNodes leaf nodes from I
8: prevAccuracy = accuracy
9: accuracy = mean score of dt on training data
10: dtSize = number of probabilities specified by dt
11: if accuracy > baseline and |accuracy − prevAccuracy| < δ then
12: break
13: end if
14: dtNodes = dtNodes+ 1
15: end while
16: return min(CPTSize, dtSize)

Algorithm 5.3 describes the algorithm [39] that we use to more directly approximate the
best possible BIC score of a decision tree representation for a given node and candidate
parent set. We build a decision tree by branching on the values of the variables in the
candidate parent set. The leaf nodes in the tree will contain a mixture of child values,
which give the probabilities for each value of the child. We fit decision trees with increasing
numbers of leaf nodes to the given dataset, until the BIC score no longer improves with
additional child nodes.

63

Algorithm 5.3 Decision Tree Score

Input: Node Vi, candidate parent set Πi, and a one-hot encoded dataset I of instances.
Output: The best BIC score of a decision tree representation

1: parentInstances = number of parent set instantiations
2: CPTSize = size of a full CPT representation
3: treeLeaves = 0
4: bestScore = +∞
5: for ℓ ∈ {1, . . . , parentInstances} do
6: learn a decision tree Tℓ with ≤ ℓ leaf nodes from I
7: prevTreeLeaves = treeLeaves
8: treeLeaves =number of leaves of Tℓ

9: if treeLeaves = prevTreeLeaves then
10: break
11: end if
12: score = BIC(Tℓ, I)
13: if bestScore > score then
14: bestScore = score
15: end if
16: end for
17: return bestScore

5.1.3 Overall Algorithm for Structure Learning

Algorithm 5.4 shows our overall credible set algorithm for ϵBNSL, a principled way to
automatically determine the BIC penalty accurately using neural networks or decision
trees given a dataset and an approximation factor ϵ. The same algorithm can also be used
for CPTs represented with other structures, for example, decision trees.

Note that here, we use pruning rules for BIC introduced in Section 3.3, which includes
an effective pruning rule using an upper bound on the size of possible parent sets (The-
orem 3.5). However, this pruning rule assumes that the CPD is represented as a CPT.
Nevertheless, we can use these pruning rules in a heuristic manner. In Section 5.2 we show
that this does not have a significant impact on accuracy in comparison to the performance
of full CPTs.

64

Algorithm 5.4 BN Structure Learning with Neural Networks/Decision Trees

Inputs: A choice of structured CPT learning algorithm Alg ∈{Algorithm 5.1, Algo-
rithm 5.2}, a dataset I over a set of random variables V, and an ϵ ∈ R+.
Outputs: Set of credible networks.

1: Step 1: Full CPT representations. Determine the BIC scores when using the best
fitting CPT learned by Alg for all candidate parent sets that could not be pruned with
pruning rules from Section 3.3.

2: Step 2: Find credible networks. The scores obtained in Step 1 are used to learn the
set of credible networks using a developmental version of GOBNILP [26], gobnilp dev
[67], which can be used to solve the ϵBNSL problem and collect all the networks in the
credible set for the given approximation factor ϵ.

5.2 Experimental Evaluation

In this section we compare our neural network representation algorithm to a full CPT
representation and a decision tree representation.

We considered a wide selection of datasets from the UCI repository1 and networks
from the bnlearn Bayesian network repository2 (see Table 5.1). We preprocessed the UCI
datasets using a k-nearest neighbor imputation algorithm, with k = 5, to fill in missing
values and a supervised discretization method [35] based on the MDL principle to discretize
continuous variables.

For evaluating the neural network method on the task of structure learning using BIC,
we used a total of 87 ground truth BNs: 7 ground truth BNs came from the bnlearn
repository and a further 80 ground truth BNs were constructed following a similar approach
to Liu et al. [69] by (i) scoring each of the 16 UCI datasets using each of the five scoring
functions AIC, BDeu, BIC, qBDJ, and qNML (ii) learning an optimal network structure
from each scored dataset, and (iii) and fitting the parameters to each structure to give a
final Bayesian network. Given these ground truth BNs, we used the logic sampling function
rbn from the bnlearn R package [90] to generate random samples of sizes N = 50, 100, 500,
and 1,000 from the bif files. We collected three samples for each dataset size N , for a total
of 12 samples for each ground truth BN. Thus, there are 87 × 12 instances all together,
each associated with a ground truth DAG. Having ground truth DAGs allows us to measure
the accuracy of each approach. The number of variables n used in our experiments ranged

1https://archive.ics.uci.edu/ml
2https://www.bnlearn.com/bnrepository/

65

https://archive.ics.uci.edu/ml
https://www.bnlearn.com/bnrepository/

from 10 to 48. Structure learning was done to solve ϵBNSL using a fixed threshold of 0.5
using gobnilp dev (See Section 3.4).

Table 5.1: UCI datasets (left, middle) and bnlearn Bayesian networks (right), where n is
the number of variables in the dataset or network, and N is the number of instances in the
original UCI dataset.

UCI dataset n N

shuttle 10 58,000
census income 14 48,842
letter 17 20,000
online shopping 18 12,330

lymphography 19 148
hepatitis 20 155
parkinsons 23 195
credit card 24 30,000

UCI dataset n N

robot navigation 25 5,456
horse colic 27 368
steel 28 1,941
flags 29 194

breast cancer 31 569
soybean 36 683
biodeg 42 1,055
spectf heart 45 267

network n

sachs 11
child 20
insurance 27
water 32

mildew 35
alarm 37
barley 48

The scoring computations were conducted on the Graham cluster of SHARCNET3

and the structure learning experiments were conducted on either SHARCNET, a shared
server with 346 GB RAM and Intel Xeon Gold 6148 CPUs at 2.4 GHz, or dedicated
machines with 128 GB RAM and Intel Xeon Silver 4214R CPUs at 2.4 GHz. For scoring
the datasets memory usage was limited to 64 GB and for structure learning a limit of 128
GB was imposed. For both scoring and learning, a computation time limit of 24 hours was
imposed for each instance.

Algorithm 5.1 for finding the best fitting neural network, Algorithm 5.2 for finding the
best fitting decision tree, and Algorithm 5.3 for finding the best scoring decision tree were
implemented using scikit-learn [81] as a basis. For neural networks, the activation function
was set as logistic, as experimentation with other activation functions led to poorer or sim-
ilar results. The network predicts the probabilities of each value of the child variable and
the loss function to minimize in learning was the cross entropy (logarithmic loss) function,
which minimizes the difference between the predicted probability distribution and the dis-
tribution of probabilities in the training dataset; i.e., the maximum likelihood estimate [46].
We found that the regularization term did not affect the performance significantly, and we
used the default α = 0.0001. As well, we used the default of 200 as the maximum number
of epochs. For our experiments, we approximated the size of the neural network as follows

3https://www.sharcnet.ca

66

https://www.sharcnet.ca

(Algorithm 5.1, Line 10). Let m be the number of nodes in the single hidden layer. Let
dXi

be the domain size of the ith parent node Xi and let dY be the domain size of the child
node. The size of the neural network is approximated to be m ·

∑
i=1 dXi

+ (dY − 1). For
decision trees, we used the default gini splitting criterion and scikit learn’s ability to grow
a decision tree with a given number of leaf nodes in a best-first fashion.

We begin by discussing what did not work. Our implementation of Algorithm 5.3,
which directly approximates Equation 5.3 and most closely corresponds to the proposal
by Friedman and Goldszmidt [39], did not scale and was unable to score most of our
datasets within the memory (64 GB) and time limits (24 hours) we imposed. Friedman
and Goldszmidt [39] used the method within a greedy hill-climbing search; i.e., only select
parent sets were scored. In our credible set approach, we must score all possible parent
sets, a much more costly endeavour. Nevertheless, the limited experimentation that we
were able to perform identified an important issue that did not arise in previous work.
Given a parent set Πi and a variable Vj ̸∈ Πi, σBIC(Πi) = σBIC(Πi ∪ {Vj}) when using
Equation 5.3, whenever Vj is irrelevant; i.e., adding irrelevant variables to a parent set
does not change its score. This is problematic when doing knowledge discovery as it
leads to many extra edges or false positives. For the decision tree, we also implemented a
version of Algorithm 5.2 that used minimal cost-complexity pruning [11] to avoid overfitting
but this did not lead to improved performance. Finally, we also attempted to directly
approximate Equation 5.2 using an algorithm closely similar to Algorithm 5.3 that used
the Keras/Tensorflow implementation of weight pruning to approximate the neural network
with the minimal number of parameters. However, this too did not scale to most of our
datasets within the memory and time limits we imposed.

We compare the results of knowledge discovery using the credible set approach given
in Algorithm 5.4 when using (i) Algorithm 5.1 for finding the best fitting neural network,
(ii) Algorithm 5.2 for finding the best fitting decision tree, and (iii) the full CPT, in
Figures 5.1 & 5.2. For each method, we plot results for the BIC scoring function. Each
“performance curve” is obtained by solving each of the 87 × 12 instances, evaluating the
learned DAG against ground truth using the performance measure, and sorting the results
into ascending order. For the performance measures (e.g., Fβ) that take an additional
parameter, we use α, β = 1

4
, 1
2
, 1, 2, and 4. The performance curves can then be compared

and we look for whether one method dominates another method.

Figure 5.1 compares the performance of the neural network and the decision tree meth-
ods in approximating the BIC penalty against the penalty computed using the full CPT
when using the metrics SHD and multi-class Fβ score over CPDAGs. For the SHD, the
neural network and the CPT methods have similar results, with the neural network method
showing a small degradation over the CPT method. However, the decision tree method

67

performs poorly under this metric and the neural network and CPT methods dominate the
decision tree method. A more fine-grained analysis (not shown) shows that for the SHD
metric the performance of the decision tree method worsens as the size N of the dataset
grows. For the multi-class Fβ score, the neural network improves over the CPT method
more often than it degrades performance, with the degree of improvement offered by the
neural network method being on average larger than the degree of loss in performance.
However, the performance of the decision tree method is mixed on this metric, with the
improvements and the losses in performance being about equally matched. A more fine-
grained analysis (not shown) shows that for the multi-class Fβ score the performance of
the decision tree method worsens as the size N of the dataset grows.

Figure 5.2 compares the performance of the neural network and the decision tree meth-
ods in approximating the BIC penalty against the penalty computed using the full CPT
when using the metrics misclassification cost and Fβ score over skeletons. A similar anal-
ysis holds. For the misclassification cost, the neural network and the CPT methods have
similar results, with the neural network method showing a small degradation over the
CPT method. However, the decision tree method performs poorly under this metric and
is dominated by both the CPT and neural network methods. A more fine-grained analysis
(not shown) again shows that for the misclassification cost metric the performance of the
decision tree method worsens as the size N of the dataset grows. For the Fβ score, the
neural network improves over the CPT method considerably more often than it degrades
performance, with the degree of improvement offered by the neural network method being
on average larger than the degree of loss in performance. However, the performance of
the decision tree method is once again mixed on this metric, with the improvements and
the losses in performance being about equally matched. A more fine-grained analysis (not
shown) again shows that for the multi-class Fβ score the performance of the decision tree
method worsens as the size N of the dataset grows.

To summarize, over the four performance metrics, two for CPDAGs and two for skele-
tons, the performance of the decision tree method is mixed on two of the metrics and is
dominated by both the neural network method and the CPT method on the other two
metrics. Comparing the neural network method and the CPT method, the neural network
method slightly degrades performance on two of the metrics and offers advantages on the
other two metrics. To quantify the advantage, we next do a more fine-grained comparison
of the CPT and neural network methods. Tables 5.2–5.5 break down the results for the full
CPT and neural network methods by size N of the dataset and by the different types of
ground truth instances, with the UCI instances being separated by type of scoring function
used to construct the ground truth. The tables show the quartile percentage change when
comparing the two methods.

68

Table 5.2 compares the full CPT to the neural network method for SHD, and shows
the 25th percentile (Q1), median (Q2) and 75th (Q3) percentile of the percentage change.
Here, positive values favour the full CPTs method, while negative values favour the neural
network method. We see the neural network method is more competitive with full CPTs in
the low data case—i.e., N = 50 andN = 100—and we see a reduced overall competitiveness
of the neural network method as the amount of data increases.

Table 5.3 compares the full CPT to the neural network method for the multi-class F1

score. Here, negative values favour the full CPTs method, while positive values favour
the neural network method. In cases of low data, i.e. N = 50 and N = 100, we see the
overall results being significantly skewed in the favour of our neural network method. The
advantage is somewhat reduced when we add more data, although we still see the neural
network method perform well with some sets of instances.

Table 5.4 compares the full CPT to the neural network method for misclassification
cost FP+FN. Here, positive values favour the full CPTs method, while negative values
favour the neural network method. We see the neural network method is more competitive
with full CPTs in the low data case—i.e., N = 50 and N = 100—and we see a reduced
overall competitiveness of the neural network method as the amount of data increases.

Table 5.5 compares the full CPT to the neural network method for F1 score. Here,
negative values favour the full CPTs method, while positive values favour the neural net-
work method. In cases of low data, i.e. N = 50 and N = 100, we see the overall results
being significantly skewed in the favour of our neural network method. The advantage
is somewhat reduced when we add more data, although we still see the neural network
method perform well with some sets of instances.

5.3 Summary

In this chapter, we extended our score-and-search approach with model averaging to si-
multaneously learn the DAG and the local structure of the CPD using neural network
representations. The use of neural networks allows modeling of high-order interactions
without needing an exponential number of parameters as in the CPT. Empirically, we
show that our approach compares favourably with decision tree and full CPT approaches,
and performs well on instances with low amounts of data while scaling to medium sized
networks.

69

Figure 5.1: Comparison of scoring with conditional probability tables (CPT), scoring with
neural networks (NN), and scoring with decision trees (DT) using structural Hamming
distance over CPDAGs (top, lower values are better) and multi-class Fβ score over CPDAGs
(bottom, higher values are better) as the performance measure. All methods used a fixed
threshold of 0.5.

70

Figure 5.2: Comparison of scoring with conditional probability tables (CPT), scoring with
neural networks (NN), and scoring with decision trees (DT) using misclassification cost
α · FN + FP over skeletons (top, lower values are better) and Fβ score over skeletons
(bottom, higher values are better) as the performance measure. All methods used a fixed
threshold of 0.5.

71

Table 5.2: Comparison of scoring with conditional probability tables (CPT) and scoring
with neural networks (NN) using structural Hamming distance over CPDAGs as the per-
formance measure. At each row, the 25 percentile (Q1), median (Q2), and 75 percentile
(Q3) of the percentage change is shown when comparing the methods on a set of ground
truth networks and dataset sample sizes of N = 50, 100, 500, 1000. Positive values favor
CPT, negative values favor NN. N = 1000 omits the soybean and biodeg benchmarks.

Ground N = 50 N = 100 N = 500 N = 1000
truth Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

UCI-AIC −2.7 0.0 5.0 −6.8 0.0 3.8 −4.1 0.0 5.1 0.0 3.4 43.8
UCI-BDeu −4.5 0.0 6.1 −5.0 0.0 0.0 −5.9 0.0 14.1 −14.3 0.0 0.0
UCI-BIC −4.5 0.0 12.4 −5.8 0.0 14.7 0.0 0.0 121.4 0.0 0.0 411.7
UCI-qBDJ −3.9 0.0 3.7 −6.6 0.0 1.9 −7.3 0.0 3.2 −8.2 0.0 3.2
UCI-qNML −4.5 0.0 4.5 −7.3 −1.1 3.3 −4.7 0.0 14.9 −4.5 0.0 18.6
bnlearn 0.0 11.3 22.0 3.0 9.6 18.2 9.0 22.9 28.9 14.7 29.5 95.0

Global −4.2 0.0 6.4 −5.6 0.0 4.0 −2.8 0.0 16.7 −4.0 0.0 23.4

Table 5.3: Comparison of scoring with conditional probability tables (CPT) and scoring
with neural networks (NN) using multi-class F1 score over CPDAGs as the performance
measure. At each row, the 25 percentile (Q1), median (Q2), and 75 percentile (Q3) of
the percentage change is shown when comparing the methods on a set of ground truth
networks and dataset sample sizes of N = 50, 100, 500, 1000. Negative values favor CPT,
positive values favor NN. N = 1000 omits the soybean and biodeg benchmarks.

Ground N = 50 N = 100 N = 500 N = 1000
truth Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

UCI-AIC 0.0 4.8 77.9 −0.9 9.6 337.7 −6.3 0.5 79.9 −10.6 −0.5 2.6
UCI-BDeu 0.0 11.5 243.7 0.0 30.5 146.5 −9.9 0.0 44.8 −1.2 1.6 63.4
UCI-BIC −6.0 7.4 115.3 −7.1 1.9 90.1 −9.9 −2.0 0.0 −7.6 0.0 0.0
UCI-qBDJ 0.0 25.2 118.0 0.0 18.5 319.2 −1.4 0.0 33.7 −1.9 0.0 44.4
UCI-qNML 0.0 31.3 379.4 0.0 81.3 395.9 −4.8 0.0 75.3 −1.9 0.0 70.9
bnlearn −28.3 19.3 384.3 −3.9 28.2 763.6 −33.9 0.0 254.1 −57.0 −17.6 145.5

Global 0.0 19.2 161.0 0.0 18.9 189.8 −7.7 0.0 31.3 −5.2 0.0 30.3

72

Table 5.4: Comparison of scoring with conditional probability tables (CPT) and scoring
with neural networks (NN) using misclassification cost FP + FN over skeletons as the
performance measure. At each row, the 25 percentile (Q1), median (Q2), and 75 percentile
(Q3) of the percentage change is shown when comparing the methods on a set of ground
truth networks and dataset sample sizes of N = 50, 100, 500, 1000. Positive values favor
CPT, negative values favor NN. N = 1000 omits the soybean and biodeg benchmarks.

Ground N = 50 N = 100 N = 500 N = 1000
truth Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

UCI-AIC −5.6 0.0 3.1 −3.9 0.0 3.7 −5.4 0.0 6.5 0.0 2.0 22.6
UCI-BDeu −2.9 0.0 6.2 −3.7 0.0 6.7 −7.9 0.0 13.2 −7.9 0.0 0.0
UCI-BIC −8.2 0.0 4.8 −2.2 0.0 19.2 0.0 0.0 91.7 0.0 0.0 137.5
UCI-qBDJ −6.5 −1.6 2.3 −4.1 0.0 2.0 −3.7 0.0 8.5 −8.7 0.0 8.2
UCI-qNML −6.4 0.0 2.0 −4.2 0.0 5.0 −4.0 0.0 9.3 −6.9 0.0 11.0
bnlearn −3.3 4.7 17.2 0.0 7.5 11.4 −3.9 16.7 36.6 0.0 25.9 36.7

Global −5.5 0.0 4.5 −3.7 0.0 6.7 −4.0 0.0 13.8 −4.1 0.0 19.4

Table 5.5: Comparison of scoring with conditional probability tables (CPT) and scoring
with neural networks (NN) using F1 score over skeletons as the performance measure. At
each row, the 25 percentile (Q1), median (Q2), and 75 percentile (Q3) of the percentage
change is shown when comparing the methods on a set of ground truth networks and
dataset sample sizes of N = 50, 100, 500, 1000. Negative values favor CPT, positive values
favor NN. N = 1000 omits the soybean and biodeg benchmarks.

Ground N = 50 N = 100 N = 500 N = 1000
truth Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

UCI-AIC 0.0 10.6 28.1 −1.1 2.7 15.7 −1.7 0.0 10.0 −3.3 0.0 1.3
UCI-BDeu −2.8 0.2 14.1 −2.6 0.0 6.4 −3.5 0.0 6.3 0.0 0.0 5.5
UCI-BIC −0.6 3.3 24.7 −4.3 0.0 6.8 −3.0 0.0 1.5 −2.4 0.0 0.0
UCI-qBDJ 0.0 10.1 29.1 0.0 2.0 11.9 −2.1 0.0 4.8 −1.0 0.0 7.8
UCI-qNML 0.0 9.4 27.7 0.0 2.6 14.9 −1.6 0.0 4.9 −1.3 0.0 3.8
bnlearn 10.6 23.3 42.2 −3.5 3.6 31.7 −7.8 −2.1 4.7 −7.6 −3.8 0.0

Global 0.0 8.8 25.9 −1.4 1.0 11.2 −2.2 0.0 4.8 −2.0 0.0 2.6

73

Chapter 6

Local Structure: Multivariate
Adaptive Regression Splines

The graph structure of a BN can be learned from data using the well-known score-and-
search approach. Previous work has shown that incorporating structured representations
of the CPDs into the score-and-search approach can improve the accuracy of the learned
graph (see the review of related work and discussion in Section 1.1.3). In this chapter, we
present a novel approach capable of learning the DAG of a BN and simultaneously mod-
eling linear and non-linear local probabilistic relationships between variables. We achieve
this by a combination of feature selection to reduce the search space for local relation-
ships and extending the score-and-search approach to incorporate modeling the CPDs over
variables as multivariate adaptive regression splines (MARS). MARS are polynomial re-
gression models represented as piecewise spline functions. Our approach can effectively
prune most candidate parent sets of a variable by leveraging feature learning algorithms
without making any a priori assumptions on the structure of the DAG. We show on a set of
discrete and continuous benchmark instances that our proposed approach can improve the
accuracy of the learned graph while scaling to instances with a large number of variables.

The remainder of this chapter proceeds as follows.

• We introduce a scoring method that can model both linear and non-linear inter-
actions between variables while scoring them simultaneously. The scoring algorithm
identifies high-degree variable interactions without a limit on the number of variables
or terms in the model and can compute structured representations for both discrete
and continuous valued variables (Section 6.1).

74

• We provide a feature selection method to identify the most promising parents for a
node, and scale our score-and-search approach to very large networks with more than
1000 nodes (Section 6.2).

• We show empirically on a set of discrete and continuous benchmark instances that
our proposed approach can improve the accuracy of the learned DAG (Section 6.3).

6.1 MARS: Multivariate Adaptive Regression Splines

Linear models like linear and logistic regression are a simple, intuitive and fast to compute
way to represent data. However, they impose linear relations on the data which limits
their accuracy if the ground truth contains non-linear relationships. Multivariate adaptive
regression splines (MARS) [37] are an extension of linear models that combines linear basis
functions to model non-linearities and variable interactions. MARS models are of the form,

M(x) = c0 +
k∑

j=1

cjBj(x), (6.1)

where each model coefficient cj for j ∈ [0, k] is a constant, and each Bj is a basis function.
Basis functions take one of the two forms:

1. A hinge function of the form (x− t)+ = max(0, x− t) or (t− x)+ = max(0, t− x),
where t is a constant, called a knot.

2. A product of two or more unique hinge functions. This prevents terms of higher
degree which are approximated by the hinge functions instead.

Hinge functions are zero over part of their range, and their product is nonzero only over
the region where each of the component hinge functions have nonzero values. Thus, data
can be partitioned into disjoint regions and processed independently, enabling processing of
high dimensional inputs while still being able to capture complex non-linear relationships
with high order interactions (see Figure 6.1).

We next show how we use MARS in Bayesian network structure learning. For a variable
Vi and a candidate parent set Πi we write the MARS model for Vi and Πi as,

M(Πi) := c0 +
k∑

j=1

cjBj(Πi). (6.2)

75

Figure 6.1: MARS (red) and linear regression (blue) models for the same set of points.
MARS places a knot at every change of the slope.

For the computation of the model, we are given a dataset of N instantiations I =
{I1, . . . , IN} for Vi and Πi; i.e., each Ij = (v, π1, . . . , π|Πi|) with v ∈ Ωi, πk ∈ ΩΠi

. To
compute the basis functions in M(Πi), the MARS algorithm operates in two phases.

1. A forward stage which starts with the intercept c0 and proceeds to generate many
candidate basis functions in pairs [(t − x)+, (x − t)+] with x ∈ Πi. The model
coefficients are estimated by minimizing the residual sum-of-squares (RSS),

RSS(M(Πi)) =
N∑
j=1

(yj −M(Ij))
2 .

A candidate pair of basis functions is added to the model M(Πi) if it reduces the
training error of M(Πi); i.e., if RSS(Mnew(Πi)) − RSS(Mold(Πi)) < 0. This process
continues until there is no significant enough improvement.

2. A backward stage that is used to address overfitting in M(Πi). The backward stage
iterates over functions in M(Πi) and prunes terms until the subset of the terms
that provide the best score remains. The subsets are scored by using a generalized
cross-validation (GCV) score,

GCV(M(Πi)) =
RSS(M(Πi))

((1− λ)/N)2
, (6.3)

where λ is the number of terms in M(Πi).

76

We call GCV (M(Πi)) the local score of Vi in a BN which assigns Πi as the parent set of
Vi. GCV provides a computationally fast approximation to leave-one out cross-validation,
for linear fitting under squared-error loss. The GCV score can be shown to be similar to the
Akaike information criterion (AIC) score, which is frequently used for model selection [48].
GCV scores are decomposable, meaning for a BN G with parent set Π1, . . . ,Πi assigned to
variables V1, . . . , Vn, the total GCV score can be calculated by,

GCV(G) =
n∑

i=1

GCV(M(Πi)),

where M(Πi) is the model computed for representing Vi with candidate parent set Πi.

6.2 Scaling with Feature Selection

MARS provides a fast way to score a candidate parent set for a child. However, there are
an exponential number of candidate parent sets for each node. To scale the search to large
networks, it is crucial to score a small subset of candidate parent sets. In this section, we
describe our algorithm BN-FS-MARS (Algorithm 6.1) for BNSL, which is based on MARS
and a feature selection mechanism.

BN-FS-MARS operates in two phases.

1. Compute candidate MARS models and their GCV scores for all variables and candi-
date parent sets. We prune candidate parents for a child Vi by using feature selection:
we compute an ordering for the set of candidate parents V \ {Vi} which ranks their
importance and use the candidate parent importance rankings to create candidate
parent sets.

2. The first phase provides multiple possible parent sets for each variable with an asso-
ciated score for each parent set. This gives an optimization problem of finding the
DAG G that minimizes the total score. We feed the candidate parent sets and scores
from the MARS models of phase 1 into a search algorithm to construct a DAG of
minimum GCV score. Algorithm 6.1 shows the pseudocode of the algorithm.

The performance of BN-FS-MARS has significant dependence on the quality of the
variable importance ranking used in Step 3 of Algorithm 6.1. There are a number of feature
selection methods such as random forests [10], decision trees, and the Pearson correlation

77

coefficient that can generate such a ranking (see, e.g., [47] and references therein). The
accuracy of the feature selection method used to generate this ranking depends significantly
on the amount and type of data we have available. In the next section, we will show the
performance of BN-FS-MARS with random forests.

Algorithm 6.1 BN-FS-MARS

Inputs: A set of random variables V and a dataset I over V .
Outputs: A DAG G minimizing GCV(G).

Phase 1: Compute MARS models and GCV scores for all variables guided by feature
selection

1: R = ∅, where R is used to collect the scores for Phase 2
2: for each variable Vi ∈ V do
3: Πi := FilterCandidatesFS(Vi)

4: for ℓ = 0, . . . , |Πi| do
5: for parent sets Πi ⊆ Πi, |Πi| = ℓ do
6: compute MARS model M(Πi) (see Equation 6.2)
7: compute GCV(M(Πi)) (see Equation 6.3)
8: R = R ∪ {(Vi,Πi,GCV(M(Πi)))}
9: if time limit for Vi reached then
10: continue for-loop in line 2
11: end if
12: end for
13: end for
14: end for

Phase 2: Choose a MARS model for each variable to create a DAG that minimizes
GCV (G)

15: Run a search algorithm on R to compute a DAG G minimizing GCV (G)

Algorithm 6.2 FilterCandidatesFS

Inputs: A random variable Vi ∈ V , a constant ℓ < n.
Outputs: A candidate parent set Πi.

1: Compute a variable importance ranking for Vi using V \ {Vi}
2: Return Πi := ℓ-most important variables based on feature selection.

78

6.3 Experimental Evaluation

In this section, we show the performance of our algorithm in computing a DAG for a given
dataset.

We tested the performance of our algorithm on synthetic networks generated using the
software Tetrad1. In addition, we show results on real-world Bayesian networks from the
Bayesian Network Repository2 for large and very large network sizes. We also show results
on 100 node networks in the DREAM 4 challenge benchmarks, which are gene regulation
networks using the genenetweaver software3. Gene regulation networks are a collection of
biological regulators that interact with each other, and this interaction can be modeled as
a directed graph.

We ran our structure learning algorithm, BN-FS-MARS, on the datasets to learn the
DAG and compared the results obtained with tabular CPT using BIC scoring and Greedy
Equivalent Search [22] using BIC scoring, where Greedy Equivalent Search is a score-
based local search algorithm that searches over the space of equivalence classes of BNs.
The tabular CPT results are computed using GOBNILP[6] with standard pruning rules
applied, and the GES results are reported using the R package pcalg (v2.7-4)4 with the
score as BIC. For tabular BIC, the parent set size was limited to 2, as scoring with larger
parent set sizes led to the vast majority of the experiments failing with an out of memory
error. We refer to this variant of tabular CPT as BIC2. We also experimented with
the neural network based DAG-GNN, however as observed in [111], we noted that the
performance was weaker than that of GOBNILP, so in our experiments, we have reported
the GOBNILP results. In addition, we experimented with WINASOBS from [88], however
within our experimental setup it was outperformed by GES, and thus we have not reported
the results in detail.

We compare the performance of BN-FS-MARS using the metrics structural Hamming
distance (SHD) and F1 score. The experiments were conducted on computers with 2.2
GHz Intel E7-4850V3 CPUs with a memory limit of 32 GB, and each score-and-search
experiment is limited to a total of 24 hours.

1https://github.com/cmu-phil/Tetrad
2www.bnlearn.com/bnrepository
3http://gnw.sourceforge.net
4https://cran.r-project.org/web/packages/pcalg/

79

https://github.com/cmu-phil/Tetrad
www.bnlearn.com/bnrepository
http://gnw.sourceforge.net
https://cran.r-project.org/web/packages/pcalg/

Table 6.1: Bayesian networks from bnlearn, where n is the number of variables in the
network and m is the number of edges in the network.

network n m
pathfinder 109 195
munin1 186 273
andes 223 338
diabetes 413 602
pigs 441 592
link 724 1125
munin2 1003 1244
munin4 1038 1306
munin3 1041 1388
munin 1041 1397

6.3.1 Implementation Details

MARS models for representing parent-child relationships were computed using the earth
package (v5.3.1)5 in R. This package builds regression models using the techniques proposed
by [37]. The earth package limits every term in the model to have at most ten hinge
functions in one product. However, for our experiments, we did not find this to be a
limitation, as the models we learned did not exceed five hinge functions in a product.

To process discrete data for generating a MARS model, earth splits a categorical vari-
able into l indicator columns of 1s and 0s, where l is the number of unique values the
variable can take. For categorical response variables with l values, earth computes l mod-
els simultaneously. While the basis functions remain constant across these models, the
coefficients can differ. The forward and backward phases are performed with the GCVs
and RSSs summed across all l to minimize the sum of the GCV scores across all l models.

To determine variable importance rankings required by BN-FS-MARS, we use random
forests. Random forests are an ensemble learning method that operate by constructing a
set of decision trees at training time and outputting the class that is the average prediction
of the individual trees for regression problems. Training random forests involves applying
bagging to tree learners. Given a training set, bagging repeatedly selects a random sample
of the training data and fits a decision tree to that sample. Random forests can rank

5https://cran.r-project.org/web/packages/earth

80

https://cran.r-project.org/web/packages/earth

variables by importance in a regression problem as follows: 1) Fit a random forest to the
data set and record the out-of-bag error for each observation (averaged over the trees in
the forest). 2) The importance of the variable Vi is then determined by perturbing the
values of variable Vi in the training data and computing the out-of-bag error again on the
perturbed data set. The importance score for variable Vi is then determined by averaging
the difference of the out-of-bag error before and after the perturbation over all trees in the
random forest and normalizing it by the standard deviation of the differences. Random
forests were computed using H2O (v3.32.0.5)6 in Python.

To solve the optimization problem of finding the DAGs with the minimum total GCV
score, we use GOBNILP, which is a state-of-the-art integer programming method for finding
an optimal Bayesian network given a list of candidate parent sets and local scores for each
variable Vi, with the objective of solving BNSL to find a DAG G that minimizes the total
score, σ(G). GOBNILP is an anytime algorithm, and it will return the best network at a
given time.

6.3.2 Performance on Discrete Variables

To compare the performance of Algorithm 6.1 on discrete data, we generated synthetic
networks of 100–900 nodes with Tetrad, with the maximum in-degree and out-degree of
each node set as 3. We also used real world networks from bnlearn, with sizes between 100–
1000+ nodes (see Table 6.1). From both these sets of networks, we randomly generated
datasets with 1000 and 5000 samples, and scored candidate parent sets of all nodes with
BN-FS-MARS using the top 5 features ranked by random forests in Step 3 of Algorithm
6.1. Finally, we computed the DAG structures using GOBNILP (Step 11) and compared
the performance of BN-FS-MARS with BIC2 and GES, where BIC2 and GES both use
the BIC score. Due to the anytime nature of the algorithm, we are able to obtain the best
network found at any given time, and we use this property to report results on the network
found within the time limit of 24 hours for score-and-search.

Performance on F1 scores: Figure 6.2 reports the F1 score of the synthetic Tetrad
networks learned by each of the three methods in column (a). We observe that BN-FS-
MARS (BFM) has the highest F1 scores, followed by GES. Figure 6.3 reports the F1 score of
the bnlearn networks learned by each of the three methods in column (a). BN-FS-MARS
usually has the best F1 scores, especially as n increases, and the second best F1 scores
are from GES. For both Tetrad and bnlearn, we observe that increasing sample size from
N = 1000 to N = 5000 improves F1 scores of BN-FS-MARS and GES, and BN-FS-MARS

6https://docs.h2o.ai

81

https://docs.h2o.ai

Figure 6.2: Comparison of structure learning approaches on various networks from Tetrad,
where n is the number of variables and the number of edges in the ground truth network:
our BN-FS-MARS (BFM), tabular CPT with maximum parent set size of two (BIC2), and
GES (GES). For each ground truth network, we report the following for corresponding
learned networks for sample sizes N = 1000 and N = 5000: (a) F1 score, (b) TP (true
positives), (c) sum of TP and WD (wrong direction), and (d) FP (false positives).

continues to have the highest scores. However, adding more data does not improve the F1

scores for BIC2.

Performance on SHD: Figure 6.2 shows results for Tetrad on networks learned by
each of the three methods in columns (b)-(d), and the numbers are normalized by the total
number of edgesm of the corresponding dataset. We see that BN-FS-MARS (BFM) almost
always has the highest number of TPs as well as the highest sums of TP and WD. GES
reports the second highest numbers and BIC2 reports the lowest numbers, which are close
to 0. This is in line with what we observed in F1 scores, showing that networks learned by
BN-FS-MARS have a higher portion of edges present in the ground truth network, though
some edges may not have the correct orientation. Note that FNs would correspond to the
complement of the TP+WD plot, as they would show the number of edges that were not
discovered at all.

Figure 6.2(d) shows numbers for FP. GES almost always has the highest number of
FPs, indicating a tendency to learn extra edges not present in the ground truth. BN-FS-
MARS has the second highest FP, but these are usually significantly lower than those for

82

Figure 6.3: Comparison of structure learning approaches on various networks from bnlearn:
our BN-FS-MARS (BFM), tabular CPT with maximum parent set size of two (BIC2), and
GES (GES). For each ground truth network, we report the following for corresponding
learned networks for sample sizes N = 1000 and N = 5000: (a) -score, (b) TP (true
positives), (c) sum of TP and WD (wrong direction), and (d) FP (false positives).

GES. We observe that increasing sample size from N = 1000 to N = 5000 reduces the
false positives significantly for both these methods. BIC2 has close to zero FPs. However,
we can see that BIC2 had also failed to learn most of the edges in the network.

Figure 6.3 shows SHD results for bnlearn networks. It reports the SHD of the networks
learned by each of the three methods in columns (b)-(d), and the numbers are normalized
by the total number of edges m of the corresponding dataset. Here we see that GES almost
always has the highest number of TPs as well as the highest sums of TP and WD. BN-
FS-MARS reports the second highest numbers, which are close to the GES numbers, and
BIC2 reports the lowest numbers, which are often close to 0.

For both Tetrad and bnlearn, we observe that increasing sample size from N = 1000 to
N = 5000 usually improves TP and WD of networks learned using BN-FS-MARS and GES,
and BN-FS-MARS is able to recover almost all of the edges in one of the instances (pigs).
However, adding more data does not improve results for BIC2. For bnlearn benchmarks
exceeding 1003 nodes—i.e., some of the munin sub-networks—GES and BIC2 did not
converge at the end of the time limit. GES stopped with an out of time error, and BIC2
ran out of memory.

83

BN-FS-MARS

GES

BIC2

Figure 6.4: Results of BNSL on the benchmark link from bnlearn with N=5000 samples to
show the proportion of TP=true positive , WD=wrong direction , FN=false negatives ,

FP=false positives in the learned DAG.

BN-FS-MARS

GES

BIC2

Figure 6.5: Results of BNSL on the benchmark munin1 from bnlearn with
N=5000 samples to show the proportion of TP=true positive , WD=wrong direction ,

FN=false negatives , FP=false positives in the learned DAG.

Figure 6.3(d) shows numbers for FP for bnlearn. As with Tetrad networks, GES almost
always has the highest number of FPs, indicating a tendency to learn extra edges not
present in the ground truth. BN-FS-MARS has the second highest FP, but these are
usually significantly lower than those for GES. We observe that increasing sample size
from N = 1000 to N = 5000 sometimes leads to an increase in FPs for GES, but almost
always a reduction for BN-FS-MARS. BIC2 has the close to zero FPs. However, as with
Tetrad, BIC2 also failed to recover most ground truth edges.

We show detailed results on two bnlearn benchmarks for SHD in Figure 6.4 and 6.5.
For both benchamrks, we see that BIC2 has a very small number of ground truth edges,
both for TP and WD. We also see that GES tends to learn a very high number of FPs. In
both benchmarks, we see that BN-FS-MARS learns the largest number of TPs and WDs
combined, and as a result the least number of FNs, which also leads to strong performance
for F1-scores as observed in Figure 6.3.

As noted in the discussion about performance metrics in Section 2.5.2, the SHD can
have some significant limitations. As each of the summands for SHD are weighted equally,
a low SHD does not necessarily indicate that the learned network is useful. As our results
show, it is possible for two learned networks to have the same SHD, but one network
could have learned few or none of the edges present in the ground truth, while the other

84

Figure 6.6: Comparison of structure learning approaches on various n = 100 networks
from Dream4: our BN-FS-MARS (BFM), tabular CPT with maximum parent set size of
two (BIC2), and GES (GES). For each ground truth network, we report the following for
corresponding learned networks for sample sizes N = 1000 and N = 5000: (a) F1 score, (b)
TP (true positives), (c) sum of TP and WD (wrong direction), and (d) FP (false positives).

network could have learned all or nearly all of the ground truth edges. Depending on the
application, the former network might not be a desirable outcome, even if it has a low
SHD. This is the reason why we have chosen to represent our results by analyzing each of
the summands for SHD, instead of simply showing the sum, i.e. the SHD itself.

We note that for one of the benchmarks (diabetes), BN-FS-MARS has decreased F1

scores and TPs with N = 5000. A limitation of using the MARS method on discrete
values is that it attempts to optimize the set of basis functions for all models for the child
variable. If the child’s domain is of large size, the results for the overall aggregated model
will suffer in performance. Random forests are also known to perform poorly for such
variables. The benchmark diabetes has several variables with domains of size 20+, leading
to the observed degradation of performance of BN-FS-MARS. The more erratic nature of
the plots for bnlearn is also because of the very different ranges of variable domain sizes
across the benchmarks.

85

6.3.3 Performance on Continuous Variables

To test the performance of Algorithm 6.1 on continuous data, we used the five Dream4
networks, each of which have 100 nodes and between 176–249 edges. We generated datasets
using simulated steady-state measurements with the genenetweaver software, with 1000
and 5000 samples. We scored candidate parent sets of all nodes with BN-FS-MARS with
random forests as the feature selection method. For scoring, we used the top 5 scoring
candidate parent sets in Step 3 of Algorithm 6.1. Once the scoring was complete, we
computed the DAG structures using GOBNILP (Step 11). Due to the anytime nature
of the algorithm, we are able to obtain the best network found at any given time, and
we use this property to report results on the network found within the time limit of 24
hours for score-and-search. We compare the performance of BN-FS-MARS with tabular
CPT (denoted BIC2 but computed using pyGOBNILP because of its ability to handle
continuous variables) and GES, where both BIC2 and GES use the BIC score.

Performance on F1 scores: Figure 6.6 reports the F1 score of networks learned by
each of the three methods in column (a). For sample size N = 1000, the methods have
similar scores. Increasing sample size to N = 5000 improves F1 scores of all methods
slightly, and BN-FS-MARS shows the best scores.

Performance on SHD: Figure 6.6 shows SHD results for the networks learned by
each of the three methods in columns (b)-(d), and the numbers are normalized by the
total number of edges m of the corresponding dataset. GES almost always has the highest
number of TPs, but it is close to BN-FS-MARS in sums of TP and WD. BIC2 reports
the lowest numbers for both of these cases, but unlike with the discrete benchmarks, the
numbers are not close to zero. For both Tetrad and bnlearn increasing sample size to
N = 5000 improves TP and WD of networks learned by all methods, and BN-FS-MARS
has the highest numbers for TP+WD.

The final column (d) shows numbers for FP. As with Tetrad and bnlearn networks,
GES almost always has the highest number of FPs, indicating a tendency to learn extra
edges not present in the ground truth. BN-FS-MARS has the second highest FP. We
observe that increasing sample size to N = 5000 sometimes leads to an increase in FPs for
GES, but always a reduction for BN-FS-MARS. BIC2 has the lowest number of FPs. A
change in the behaviour of these three methods can be because of the smaller network size
(n = 100). With a much smaller search space, BIC2 gives competitive results for F1 scores,
in part because of its ability to learn fewer FPs. However, the strength of BN-FS-MARS
comes from its feature selection mechanism, which is harder to solve for continuous data
[47].

86

6.3.4 Model Complexity

One of the strengths of BN-FS-MARS is its ability to identify large parent sets. Consider
a variable in the benchmark pathfinder with a domain of size 4. It has five parents of
domains sizes between 2–3. Tabular BIC would need almost 300 parameters to represent
it in CPT form, and this would give it a large penalty, making it difficult to be able to
detect it with score-and-search. BN-FS-MARS assigns it a model with 32 terms, with
none of the basis functions having a product of more than two terms. The lowered penalty
makes such a parent set more likely to be selected, especially if it has a good score. In our
experiments we found that modeling parent sets with BN-FS-MARS enabled us to score
very large parent sets easily.

6.4 Summary

In this chapter, we proposed a novel approach to score-and-search for learning a BN with
MARS relations as possible representations for CPDs. This algorithm lets us model non-
linear relationships between nodes with low complexity, enabling us to learn large parent
set sizes, and it does not place any constraints on the global network structure. Our
approach can effectively prune most candidate parent sets of a variable by leveraging
variable importance results from feature learning algorithms. We show empirically that
this algorithm can solve both discrete and continuous instances with a very large number
of nodes.

87

Chapter 7

Conclusions

This thesis focused on improving the accuracy of the score-and-search approach for Bayesian
network structure learning (BNSL) and in scaling the approach to datasets with larger
numbers of random variables. Existing exact approaches to score-and-search for BNSL
either severely restrict the structure of the Bayesian network or have only been shown
to scale to networks with fewer than 30 random variables. In addition, most approaches
learn only a single, optimal network, leading to poor accuracy in cases of low amounts of
data. In Chapter 3, we provided a novel model averaging method for learning all networks
within a factor of optimal in Bayesian network structure learning. Our method learns only
credible models—those whose scores are optimal or close to optimal. We supplement our
method with pruning rules, making it substantially more efficient and allowing scaling to
far larger Bayesian networks without restricting their structure. Our empirical results also
demonstrate that our credible set method can offer significant accuracy improvements over
a bootstrapping model averaging method that is far and away the most widely used model
averaging method in practice.

Previous work has shown that the accuracy of a data analysis can be improved by
incorporating structured representations of the CPDs into the score-and-search approach
for learning the DAG, although approaches to do this have not been shown to scale well and
generally do not provide a principled way to incorporate these local structures within the
score-and-search algorithm. In Chapter 4, we extend our novel score-and-search approach
with model averaging to simultaneously learn the DAG and the local structure of the CPDs
in the form of a noisy-OR representation, which is a linear model used to represent causality.
Our approach is able to choose between CPTs and noisy-OR representations automatically.
We provide an effective gradient descent algorithm to score a candidate noisy-OR using the
widely used BIC score and we provide pruning rules that allow the search to successfully

88

scale to medium sized networks while maintaining the optimality of the networks that are
learned. Our experimental results provide evidence of the effectiveness of our approach.
In particular, it was found that noisy-OR relations appeared in a significant proportion of
the learned networks, for well known datasets.

To extend the scope of structured representation to non-linear models to allow repre-
sentations of more complex relationships between variables, we extend our score-and-search
approach with model averaging to simultaneously learn the DAG and the local structure of
the CPD using neural networks representations in Chapter 5. The use of neural networks
allows modeling of high-order interactions without needing an exponential number of pa-
rameters as in the CPT. Our approach compares favourably with approaches like decision
trees, and performs particularly well in instances with low amounts of data.

While the neural network approach can easily represent high-order interactions between
variables, the computationally intensive nature of neural networks limits scalability. In
Chapter 6, we introduce a novel score-and-search approach to simultaneously learn a single
DAG and model linear and non-linear local probabilistic relationships between variables.
We achieve this by a combination of feature selection to reduce the search space for local
relationships and extending the score-and-search approach to incorporate modeling the
CPDs over variables as piecewise spline functions. We show on a set of discrete and
continuous benchmark instances that our proposed approach can improve the accuracy
of the learned graph while scaling to instances with over 1,000 variables. Our method is
fast enough that it can be used in a bootstrapping model averaging approach in many
instances.

With the combination of performance guarantees and the flexibility of our results, they
can be applied to a large range of datasets to be modeled as BNs. We have seen BNs being
used for analysis of data in various domains including finance [3], medicine [70, 74, 79] and
the environment [36]. With the improvements in scalability and accuracy provided by the
results in this thesis, such work can be extended in a principled manner to larger datasets
with improved performance guarantees.

7.1 Future Work

For representing CPDs with neural networks, we can extend our work to explore pruning
rules specific to the neural network CPDs, as well as analyzing the distribution of our
inputs to investigate any underlying properties that can lead to provable guarantees about
the learned distribution.

89

A natural extension to representing CPDs with MARS is the credible set model averag-
ing approach. This can come from an adjustment in the backward stage of computing the
MARS model. As explained in Section 6.1, the backward addresses overfitting by pruning
terms added to the model in the forward stage. This pruning continues until we have a
subset of terms leading to the best scoring model. We can add an approximation factor to
this pruning step to retain near-optimal models, leading to a set of candidate parent sets
that can be considered for the credible set approach discussed in Chapter 3. One challenge
here would be ensuring optimality and near optimality, as basis functions are added to the
model in a greedy fashion in the standard implementation.

Another alternative for extending our MARS approach to model averaging is the boot-
strapping approach, where we would score using random samples with replacement from
the dataset. Empirically, we observed that our score-and-search algorithm, BN-FS-MARS,
converged in less than 20 minutes for the most of our datasets used in Section 6.3. Due
to the highly scalable nature of our algorithm, we could extend this approach to learn a
model averaged network from multiple bootstrap samples.

90

References

[1] Silvia Acid, Luis M. de Campos, and Javier G. Castellano. Learning Bayesian net-
work classifiers: Searching in a space of partially directed acyclic graphs. Machine
Learning, 59(3):213–235, 2005.

[2] Hirotugu Akaike. Information theory and the maximum likelihood principle. In
Proceedings of the International Symposium on Information Theory, pages 267–281,
1973.

[3] Ioannis Anagnostou, Javier Sanchez, Sumit Sourabh, and Drona Kandhai. Conta-
gious defaults in a credit portfolio: A Bayesian network approach. Journal of Credit
Risk, 16:1–26, 2020.

[4] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval. Ad-
dison Wesley, 2nd edition, 2011.

[5] Xue Bai, Rema Padman, Joseph Ramsey, and Peter Spirtes. Tabu search-enhanced
graphical models for classification in high dimensions. INFORMS Journal on Com-
puting, 20(3):423–437, 2008.

[6] Mark Bartlett and James Cussens. Advances in Bayesian network learning using
integer programming. In Proc. of the 29th Conf. on Uncertainty in AI, pages 182–
191, 2013.

[7] Yoshua Bengio and Samy Bengio. Modeling high-dimensional discrete data with
multi-layer neural networks. In Advances in Neural Information Processing Systems,
pages 400–406, 1999.

[8] Remco Ronaldus Bouckaert. Bayesian belief networks: From construction to infer-
ence. PhD thesis, University of Utrecht, 1995.

91

[9] Craig Boutilier, Nir Friedman, Moises Goldszmidt, and Daphne Koller. Context-
specific independence in Bayesian networks. In Proc. of the 12th Conf. on Uncertainty
in AI, pages 115–123, 1996.

[10] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[11] Leo Breiman, Jerome Friedman, R. A. Olshen, and Charles Stone. Classification and
Regression Trees. Routledge, 1st edition, 1984.

[12] Wray Buntine. Theory refinement of Bayesian networks. In Proc. of the Seventh
Conf. on Uncertainty in AI, pages 52–60, 1991.

[13] Eunice Yuh-Jie Chen, Arthur Choi, and Adnan Darwiche. Learning Bayesian net-
works with non-decomposable scores. In Proc. 4th IJCAI Workshop on Graph Struc-
tures for Knowledge Representation and Reasoning (GKR 2015), pages 50–71, 2015.
Available as: LNAI 9501.

[14] Eunice Yuh-Jie Chen, Arthur Choi, and Adnan Darwiche. Enumerating equivalence
classes of Bayesian networks using EC graphs. In Proc. 19th International Conference
on Artificial Intelligence and Statistics, pages 591–599, 2016.

[15] Eunice Yuh-Jie Chen, Adnan Darwiche, and Arthur Choi. On pruning with the MDL
score. International J. of Approximate Reasoning, 92:363–375, 2018.

[16] Yetian Chen and Jin Tian. Finding the k-best equivalence classes of Bayesian network
structures for model averaging. In Proc. of the 28th Conf. on AI, pages 2431–2438,
2014.

[17] David M. Chickering. A transformational characterization of equivalent Bayesian
network structures. In Proc. of the 11th Conf. on Uncertainty in AI, pages 87–98,
1995.

[18] David M. Chickering. Learning equivalence classes of Bayesian network structures.
J. Mach. Learn. Res., 2:445–498, 2002.

[19] David M. Chickering, David Heckerman, and Christopher Meek. A Bayesian ap-
proach to learning Bayesian networks with local structure. In Proc. of the 13th
Conf. on Uncertainty in AI, pages 80–89, 1997.

[20] David M. Chickering, Christopher Meek, and David Heckerman. Large-sample learn-
ing of Bayesian networks is NP-hard. In Proc. of the 19th Conf. on Uncertainty in
AI, pages 124–133, 2003.

92

[21] David M. Chickering, David Heckerman, and Christopher Meek. Large-sample learn-
ing of Bayesian networks is NP-hard. J. Mach. Learn. Res., 5:1287–1330, 2004.

[22] David Maxwell Chickering. Optimal structure identification with greedy search.
J. Mach. Learn. Res., 3:507–554, 2002.

[23] Gerda Claeskens and Nils Lid Hjort. Model Selection and Model Averaging. Cam-
bridge University Press, 2008.

[24] Diego Colombo and Marloes H. Maathuis. Order-independent constraint-based
causal structure learning. J. Mach. Learn. Res., 15(1):3741–3782, 2014.

[25] James Cussens. Bayesian network learning with cutting planes. In Proc. of the 27th
Conf. on Uncertainty in AI, pages 153–160, 2011.

[26] James Cussens and Mark Bartlett. Gobnilp 1.6. 2 user/developer manual1. University
of York, 2015.

[27] Adnan Darwiche. Modeling and Reasoning with Bayesian Networks. Cambridge
University Press, 2009.

[28] Denver Dash and Gregory F. Cooper. Model averaging for prediction with discrete
Bayesian networks. J. Mach. Learn. Res., 5:1177–1203, 2004.

[29] Cassio P. de Campos and Qiang Ji. Efficient structure learning of Bayesian networks
using constraints. J. Mach. Learn. Res., 12:663–689, 2011.

[30] Cassio P. de Campos, Mauro Scanagatta, Giorgio Corani, and Marco Zaffalon.
Entropy-based pruning for learning Bayesian networks using BIC. Artificial Intelli-
gence, 260:42–50, 2018.

[31] Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. J. of the Royal Statistical Society Series B,
39:1–38, 1977.

[32] Xiannian Fan and Changhe Yuan. An improved lower bound for Bayesian network
structure learning. In Proc. of the 29th Conf. on AI, 2015.

[33] Xiannian Fan, Brandon Malone, and Changhe Yuan. Finding optimal Bayesian
network structures with constraints learned from data. In Proc. of the 30th Conf. on
Uncertainty in AI, pages 200–209, 2014.

93

[34] Xiannian Fan, Changhe Yuan, and Brandon Malone. Tightening bounds for Bayesian
network structure learning. In Proc. of the 28th Conf. on AI, pages 2439–2445, 2014.

[35] Usama Fayyad and Keki Irani. Multi-interval discretization of continuous-valued
attributes for classification learning. In Proceedings of the 13th International Joint
Conference on Artificial Intelligence, pages 1022–1029, 1993.

[36] Wafa Feki-Sahnouna, Asma Hamzaa, Hasna Njahb, Mabrouka Barrajd, Nouha Mah-
foudia, Ahmed Rebaie, and Malika Bel Hassend. A Bayesian network approach
to determine environmental factors controlling Karenia selliformis occurrences and
blooms in the Gulf of Gabès, Tunisia. Harmful Algae, 63:119–132, 2017.

[37] Jerome H. Friedman. Multivariate adaptive regression splines. The Annals of Statis-
tics, pages 1–67, 1991.

[38] Nir Friedman and Moises Goldszmidt. Learning Bayesian networks with local struc-
ture. In Proc. of the 12th Conf. on Uncertainty in AI, pages 252–262, 1996.

[39] Nir Friedman and Moises Goldszmidt. Learning Bayesian networks with local struc-
ture. In Learning in Graphical Models, pages 421–459. Springer, 1998.

[40] Nir Friedman, Moises Goldszmidt, and AbrahamWyner. Data analysis with Bayesian
networks: A bootstrap approach. In Proc. of the 15th Conf. on Uncertainty in AI,
pages 196–205, 1999.

[41] Pilar Fuster-Parra, A. Garćıa-Mas, F. J. Ponseti, and F. M. Leo. Team performance
and collective efficacy in the dynamic psychology of competitive team: A Bayesian
network analysis. Human Movement Science, 40:98–118, 2015.

[42] José A. Gámez, Juan L. Mateo, and José M. Puerta. Learning Bayesian networks by
hill climbing: efficient methods based on progressive restriction of the neighborhood.
Data Mining and Knowledge Discovery, 22(1-2):106–148, 2011.

[43] Dan Geiger and David Heckerman. Learning Gaussian networks. In Proc. of the
Tenth Conf. on Uncertainty in AI, pages 235–243. Elsevier, 1994.

[44] Ambros Gleixner, Michael Bastubbe, Leon Eifler, Tristan Gally, Gerald Gamrath,
Robert Lion Gottwald, Gregor Hendel, Christopher Hojny, Thorsten Koch, Marco E
Lübbecke, et al. The SCIP optimization suite 6.0. Optimization Online, 2018.

[45] Irving J. Good. A causal calculus. The British Journal for the Philosophy of Science,
12(45):43–51, 1961.

94

[46] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016.

[47] Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection.
J. Mach. Learn. Res., 3:1157–1182, 2003.

[48] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer, 2009.

[49] Alain Hauser and Peter Bühlmann. Characterization and greedy learning of interven-
tional markov equivalence classes of directed acyclic graphs. J. Mach. Learn. Res.,
13:2409–2464, 2012.

[50] Ru He, Jin Tian, and Huaiqing Wu. Bayesian learning in Bayesian networks of
moderate size by efficient sampling. J. Mach. Learn. Res., 17:1–54, 2016.

[51] David Heckerman, Dan Geiger, and David M. Chickering. Learning Bayesian net-
works: The combination of knowledge and statistical data. Machine Learning, 20:
197–243, 1995.

[52] Max Henrion. Some practical issues in constructing belief networks. In Proc. of the
Third Conf. on Uncertainty in AI, pages 132–139, 1987.

[53] Jennifer A. Hoeting, David Madigan, Adrian E. Raftery, and Chris T. Volinsky.
Bayesian model averaging: A tutorial. Statistical Science, 14(4):382–401, 1999.

[54] Estevam R. Hruschka Jr. and Nelson F. F. Ebecken. Towards efficient variables
ordering for Bayesian networks classifier. Data & Knowledge Engineering, 63(2):
258–269, 2007.

[55] Steven Hwang, Linda Ng Boyle, and Ashis G. Banerjee. Identifying characteristics
that impact motor carrier safety using Bayesian networks. Accident Analysis and
Prevention, 128:40–45, 2019.

[56] Tommi Jaakkola, David Sontag, Amir Globerson, and Marina Meilă. Learning
Bayesian network structure using LP relaxations. In Proc. International Conf. on
Artificial Intelligence and Statistics, pages 358–365, 2010.

[57] Sir Harold Jeffreys. Theory of Probability: 3d Ed. Clarendon Press, 1967.

[58] Robert E. Kass and Adrian E. Raftery. Bayes factors. J. of the American Statistical
Association, 90(430):773–795, 1995.

95

[59] Mikko Koivisto. Parent assignment is hard for the MDL, AIC, and NML costs. In
J. of COLT, pages 289–303, 2006.

[60] Mikko Koivisto and Kismat Sood. Exact Bayesian structure discovery in Bayesian
networks. J. Mach. Learn. Res., 5:549–573, 2004.

[61] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and
Techniques. The MIT Press, 2009.

[62] Kevin B. Korb and Ann E. Nicholson. Bayesian Artificial Intelligence. CRC press,
2010.

[63] Andrey Krutauz, Tapajit Dey, Peter C. Rigby, and Audris Mockus. Do code re-
view measures explain the incidence of post-release defects? Empirical Software
Engineering, pages 1–34, 2020.

[64] Wai Lam and Fahiem Bacchus. Using new data to refine a Bayesian network. In
Proc. of the Tenth Conf. on Uncertainty in AI, pages 383–390, 1994.

[65] Pedro Larrañaga, Cindy M. H. Kuijpers, Roberto H. Murga, and Yosu Yurramendi.
Learning Bayesian network structures by searching for the best ordering with genetic
algorithms. IEEE Transactions on System, Man and Cybernetics, 26:487–493, 1996.

[66] Colin Lee and Peter van Beek. Metaheuristics for score-and-search Bayesian network
structure learning. In Canadian Conference on Artificial Intelligence, pages 129–141.
Springer, 2017.

[67] Zhenyu A Liao, Charupriya Sharma, James Cussens, and Peter van Beek. Finding all
Bayesian network structures within a factor of optimal. In Proc. of the 33rd Conf. on
AI, volume 33, pages 7892–7899, 2019.

[68] Charles X. Ling and Victor S. Sheng. Cost-sensitive learning. In Claude Sammut
and Geoffrey I. Webb, editors, Encyclopedia of Machine Learning and Data Mining.
Springer, 2016.

[69] Zhifa Liu, Brandon Malone, and Changhe Yuan. Empirical evaluation of scoring
functions for Bayesian network model selection. BMC Bioinformatics, 13(Suppl 15):
S14, 2012.

[70] Yi Luo, Issam El Naqa, Daniel L. McShan, Dipankar Ray, Ines Lohse, Martha M.
Matuszak, Dawn Owen, Shruti Jolly, Theodore S. Lawrence, Feng-Ming Kong, and

96

Randall K. Ten Haken. Unraveling biophysical interactions of radiation pneumoni-
tis in non-small-cell lung cancer via Bayesian network analysis. Radiotherapy and
Onconology, 123:85–92, 2017.

[71] David Madigan and Adrian E. Raftery. Model selection and accounting for uncer-
tainty in graphical models using Occam’s window. J. of the Amercian Statistical
Association, 89:1535–1546, 1994.

[72] Brandon Malone and Changhe Yuan. A depth-first branch and bound algorithm
for learning optimal Bayesian networks. In Graph Structures for Knowledge Repre-
sentation and Reasoning, volume 8323 of Lecture Notes in Computer Science, pages
111–122. Springer, 2014.

[73] Brandon Malone, Changhe Yuan, and Eric A. Hansen. Memory-efficient dynamic
programming for learning optimal Bayesian networks. In Proc. of the 25th Conf. on
AI, pages 1057–1062, 2011.

[74] Richard J. McNally, Patrick Mair, Beth L. Mugno, and Bradley C. Riemann. Co-
morbid obsessive-compulsive disorder and depression: A Bayesian network approach.
Psychological Medicine, 47:1204–1214, 2017.

[75] Marina Meilă and Tommi Jaakkola. Tractable Bayesian learning of tree belief net-
works. In Proc. of the 16th Conf. on Uncertainty in AI, pages 380–388, 2000.

[76] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press,
2012.

[77] Radford M. Neal. Connectionist learning of belief networks. Artificial Intelligence,
567:71–113, 1992.

[78] Agnieszka Onísko, Marek J. Druzdzel, and Hanna Wasyluk. Learning Bayesian net-
work parameters from small data sets: Application of noisy-OR gates. International
Journal of Approximate Reasoning, 27(2):165–182, 2001.

[79] Max M. Owens, Matthew D. Albaugh, Nicholas Allgaier, and (+ 70 others). Bayesian
causal network modeling suggests adolescent cannabis use accelerates prefrontal cor-
tical thinning. Translational Psychiatry, 12, 2022.

[80] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, 1988.

97

[81] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res., 12:
2825–2830, 2011.

[82] Johan Pensar, Henrik Nyman, Jarno Lintusaari, and Jukka Corander. The role of
local partial independence in learning of Bayesian networks. International Journal
of Approximate Reasoning, 69:91–105, 2016.

[83] Franz Pernkopf and Jeff A. Bilmes. Efficient heuristics for discriminative structure
learning of Bayesian network classifiers. J. Mach. Learn. Res., 11(Aug):2323–2360,
2010.

[84] Franz Pernkopf and Michael Wohlmayr. Stochastic margin-based structure learning
of Bayesian network classifiers. Pattern Recognition, 46(2):464–471, 2013.

[85] Jonas Peters, Joris M. Mooij, Dominik Janzing, and Bernhard Schölkopf. Causal
discovery with continuous additive noise models. J. Mach. Learn. Res., 15:2009–
2053, 2014.

[86] Brian D. Ripley. Pattern recognition and neural networks. Cambridge University
Press, 1996.

[87] Jorma Rissanen. Modeling by shortest data description. Automatica, 14:465–471,
1978.

[88] Mauro Scanagatta, Cassio P. de Campos, Giorgio Corani, and Marco Zaffalon. Learn-
ing Bayesian networks with thousands of variables. In Proc. of Conference on Neural
Information Processing Systems, pages 1864–1872, 2015.

[89] Gideon Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6:
461–464, 1978.

[90] Marco Scutari. Learning Bayesian Networks with the bnlearn R Package. Journal of
Statistical Software, 35(3):1–22, 2010.

[91] Marco Scutari, Catharina Elisabeth Graafland, and José Manuel Gutiérrez. Who
learns better Bayesian network structures: Accuracy and speed of structure learning
algorithms. International J. of Approximate Reasoning, 115:235–253, 2019.

98

[92] Yujia Shen, Arthur Choi, and Adnan Darwiche. A new perspective on learning
context-specific independence. In Proceedings of the Tenth International Conference
on Probabilistic Graphical Models, volume 138 of Proceedings of Machine Learning
Research, pages 425–436, 2020.

[93] Shohei Shimizu, Patrik O Hoyer, Aapo Hyvärinen, Antti Kerminen, and Michael
Jordan. A linear non-gaussian acyclic model for causal discovery. J. Mach. Learn.
Res., 7(10), 2006.

[94] Basilio Sierra, Nicolas Serrano, Pedro Larrañaga, Eliseo Plasencia, Iñaki Inza, Juan
Jiménez, Pedro Revuelta, and Melfy Mora. Using Bayesian networks in the construc-
tion of a bi-level multi-classifier. a case study using intensive care unit patients data.
Artificial Intelligence in Medicine, 22:233–48, 07 2001.

[95] Tomi Silander and Petri Myllymäki. A simple approach for finding the globally
optimal Bayesian network structure. In Proc. of the 22nd Conf. on Uncertainty in
AI, pages 445–452, 2006.

[96] Tomi Silander, Janne Leppä-aho, Elias Jääsaari, and Teemu Roos. Quotient nor-
malized maximum likelihood criterion for learning Bayesian network structures. In
Proc. International Conference on Artificial Intelligence and Statistics, 2018.

[97] Peter Spirtes and Clark Glymour. An algorithm for fast recovery of sparse causal
graphs. Social Science Computer Review, 9(1):62–72, 1991.

[98] Joe Suzuki and Jun Kawahara. Branch and bound for regular Bayesian network
structure learning. In Proc. of the 33rd Conf. on Uncertainty in AI, 2017.

[99] Topi Talvitie, Ralf Eggeling, and Mikko Koivisto. Learning Bayesian networks with
local structure, mixed variables, and exact algorithms. International J. of Approxi-
mate Reasoning, 2019.

[100] Marc Teyssier and Daphne Koller. Ordering-based search: A simple and effective
algorithm for learning Bayesian networks. In Proc. of the 21st Conf. on Uncertainty
in AI, pages 548–549, 2005.

[101] Jin Tian. A branch-and-bound algorithm for MDL learning Bayesian networks. In
Proc. of the 16th Conf. on Uncertainty in AI, pages 580–588, 2000.

[102] Jin Tian, Ru He, and Lavanya Ram. Bayesian model averaging using the k-best
Bayesian network structures. In Proc. of the 26th Conf. on Uncertainty in AI, pages
589–597, 2010.

99

[103] Fulya Trösser, Simon de Givry, and George Katsirelos. Improved acyclicity reasoning
for Bayesian network structure learning with constraint programming. In Proceedings
of the Thirtieth International Joint Conference on Artificial Intelligence, pages 4250–
4257, 2021.

[104] Ioannis Tsamardinos, Laura E Brown, and Constantin F Aliferis. The max-min hill-
climbing Bayesian network structure learning algorithm. Machine Learning, 65(1):
31–78, 2006.

[105] Peter van Beek and Hella-Franziska Hoffmann. Machine learning of Bayesian net-
works using constraint programming. In Proc. of International Conf. on Constraint
Programming, pages 428–444, 2015.

[106] Jimmy Vandel, Brigitte Mangin, and Simon de Givry. New local move operators for
Bayesian network structure learning. In Proceedings of the 6th European Workshop
on Probabilistic Graphical Models (PGM 2012), 2012.

[107] Thomas Verma and Judea Pearl. Equivalence and synthesis of causal models. In
Proc. of the Sixth Conf. on Uncertainty in AI, pages 220–227, 1990.

[108] Jǐŕı Vomlel. Noisy-OR classifier. International J. of Intelligent Systems, pages 381–
398, 2006.

[109] Ian. H. Witten, Eibe Frank, and Mark A. Hall. Data Mining. Morgan Kaufmann,
3rd edition, 2011.

[110] Yang Xiang and Wanrong Sun. Learning NAT-modeled Bayesian network structures
with Bayesian approach. In Proceedings of the Thirty-fifth Canadian Conference on
Artificial Intelligence, 2022.

[111] Yue Yu, Jie Chen, Tian Gao, and Mo Yu. DAG-GNN: DAG structure learning with
graph neural networks. In International Conference on Machine Learning, pages
7154–7163. PMLR, 2019.

[112] Changhe Yuan and Brandon Malone. Learning optimal Bayesian networks: A short-
est path perspective. J. of Artifical Intelligence Research, 48:23–65, 2013.

[113] Adam Zagorecki and Marek J Druzdzel. Knowledge engineering for Bayesian net-
works: How common are noisy-MAX distributions in practice? IEEE Transactions
on Systems, Man, and Cybernetics: Systems, 43(1):186–195, 2013.

100

[114] Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. Dags with no
tears: Continuous optimization for structure learning. Proc. of Conference on Neural
Information Processing Systems, 31, 2018.

[115] Yuan Zou, Johan Pensar, and Teemu Roos. Representing local structure in Bayesian
networks by Boolean functions. Pattern Recognition Letters, 95:73–77, 2017.

101

	List of Figures
	List of Tables
	List of Acronyms and Abbreviations
	Introduction
	Related Work
	Learning a Bayesian Network
	Model Averaging
	Incorporating Local Structure

	Contributions

	Background
	Bayesian Networks
	Bayesian Network Structure Learning
	Scoring Functions

	Model Averaging
	Representing CPDs
	Noisy-OR
	Decision Trees

	Performance Evaluation Metrics
	DAG Performance Metrics: Skeleton
	DAG Performance Metrics: CPDAG
	Density Estimation and Inference Metric

	The Credible Set Approach
	Overview
	Credible Sets
	Pruning Rules
	Pruning with BIC Score
	Pruning with BDeu Score

	Experimental Evaluation
	The Credible Set Approach
	Credible Set vs. K-Best
	Credible Set vs. Bootstrapping

	Summary

	Local Structure: Noisy-OR
	Overview
	Score-and-Search with Noisy-OR
	BIC Score for Noisy-OR Relations
	Pruning Rules
	Overall Algorithm for Structure Learning

	Experimental Evaluation
	Recovery of Noisy-ORs in Synthetic Datasets
	Presence of Noisy-OR Relations in Standard Benchmarks
	Performance on Ground Truth Networks

	Summary

	Local Structure: Neural Networks
	Neural Networks to Represent CPDs
	Learning CPDs with Neural Networks
	Learning CPDs with Decision Trees
	Overall Algorithm for Structure Learning

	Experimental Evaluation
	Summary

	Local Structure: Multivariate Adaptive Regression Splines
	MARS: Multivariate Adaptive Regression Splines
	Scaling with Feature Selection
	Experimental Evaluation
	Implementation Details
	Performance on Discrete Variables
	Performance on Continuous Variables
	Model Complexity

	Summary

	Conclusions
	Future Work

	References

