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Highlights: 33 
• Animal and in-vitro cell culture work demonstrate that irisin, leptin, and 34 

adiponectin have the potential to positively regulate skeletal muscle size  35 
• Several discrepancies exist regarding the associations between serum levels of 36 

myokines and adipokines and features of muscle size and function, creating 37 
challenges in interpretation of these cytokines in relation to sarcopenia 38 

• Physical exercise may alter serum profiles and muscle receptor expressions of 39 
myokines and adipokines, however, the implications these changes for muscle 40 
health is unclear in humans.  41 

  42 
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Abstract: 43 
 44 
Detrimental age-associated changes in skeletal muscle and adipose tissue increase the 45 
risk of sarcopenia. Age-related changes in myokines, such as myostatin and irisin, as 46 
well as adipokines, such as leptin and adiponectin, contribute to cross-talk between 47 
muscle and adipose tissue. These age-related changes in myokines and adipokines 48 
have important implications for sarcopenia, however, recent literature highlights 49 
discrepancies in these relationships. Exercise may alter serum profiles and muscle 50 
receptor expression of these factors, but future work is needed to determine whether 51 
these changes in myokines and adipokines relate to improvements in muscle mass and 52 
function. Here, we describe myokine- and adipokine-mediated interactions between 53 
muscle and adipose tissue, and discuss the fundamental importance of these cytokines 54 
to understanding the development of sarcopenia.  55 
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Introduction 56 
 57 
Sarcopenia is an age-related condition characterized by muscle atrophy, muscle 58 
weakness, and poor functional capacity [1]. These features give way to substantial 59 
health risks, including increased risk of falls and fractures [2], insulin resistance and 60 
diabetes [3] as well as cardiovascular disease [4]. The debilitative outcomes of age-61 
associated sarcopenia are further complicated by increased adiposity, particularly in the 62 
abdominal region [5]. Relative increases in visceral and intramuscular adipose tissue 63 
together with activation of proinflammatory macrophages, and necrosis of adipocytes 64 
occur with aging [5], and may exacerbate the risk deleterious clinical outcomes [3]. 65 
While the underlying pathophysiology of these shifts in body composition is complex 66 
and multifactorial, a better understanding of the cross-talk between skeletal muscle and 67 
adipose tissue is fundamental towards developing targeted approaches to effectively 68 
counter or attenuate the progression of sarcopenia. 69 
 70 
Myokines and adipokines are instrumental in cross-talk between skeletal muscle and 71 
adipose tissue. Secretions of these two broad classes of cytokines partly regulate 72 
anabolic and catabolic responses in muscle, and are deleteriously altered with 73 
increased adiposity and age-associated muscle atrophy. Here, we will discuss the 74 
myokines, myostatin and irisin, as well as the adipokines, leptin and adiponectin, in 75 
relation to aging and sarcopenia. These cytokines are of interest in the field of 76 
sarcopenia and will be discussed in this review because of their potential cross-talk 77 
roles between muscle and adipose tissue. We will also highlight inconsistencies and 78 
gaps within our current understanding, with an emphasis on the role of exercise.   79 
 80 
A role for myostatin and irisin in sarcopenia: cross-talk between muscle and adipose 81 
tissue 82 
 83 
Myostatin is mainly expressed in skeletal muscle and is a negative regulator of muscle 84 
mass [6,7]. Myostatin downregulates skeletal muscle protein synthesis via activation of 85 
Smad2 and Smad3, which are thought to inhibit the insulin-like growth factor-1(IGF-86 
1)/Akt/mammalian target of rapamycin (mTOR) pathway [7,8]. In addition to inhibiting 87 
protein synthesis, myostatin also facilitates FOXO-mediated muscle atrophy and 88 
reduces muscle glucose uptake via inhibition of GLUT4 and AMPK (Figure 1A). With 89 
increasing age, myostatin may be upregulated [9], and may partly explain age-related 90 
muscle atrophy and decreased strength. For each 1ng/mL increase in serum myostatin, 91 
the odds of older males presenting with sarcopenia increased by 11% [10]. Similarly, 92 
older adults with elevated myostatin levels were 7-times more likely to demonstrate low 93 
handgrip strength [10]. However, these findings are not consistent across the literature 94 
where several studies were unable to demonstrate a relationship between serum 95 
myostatin and increasing age or presence of sarcopenia [11,12] (Figure 1B).The cross-96 
sectional nature of the study design in the aforementioned studies [11,12] as well as 97 
challenges in accurately quantifying serum myostatin may contribute to the 98 
discrepancies in the relationship between myostatin and sarcopenia. For example, the 99 
close homology between proteins in the TGF-β superfamily has made it difficult to 100 
design antibodies with a high specificity for myostatin for use in laboratory assays [6]. It 101 
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is also possible that differences in participant characteristics (e.g. age, % body fat) 102 
across studies may contribute to this disparity. Specifically, greater adiposity may 103 
contribute to increased circulating myostatin. This hypothesis is supported by a study 104 
that observed higher serum myostatin in severely obese compared with lean age-105 
matched individuals [13]. Animal work suggests that this may be due to increased 106 
myostatin secretion from inflamed adipose tissue of obese rodents [14,15]. Although 107 
human adipocytes from obese individuals have been shown to induce inflammation and 108 
atrophy in skeletal muscle cells in vitro [16], the specific role played by myostatin 109 
remains to be confirmed in humans. Nevertheless, it possible that increased adiposity 110 
and elevated myostatin may exacerbate the risk of sarcopenia in humans (resulting in 111 
the sarcopenic obese phenotype).  112 
 113 
In contrast to myostatin, irisin is directly associated with muscle mass and strength [17]. 114 
While myostatin inhibits Akt (Figure 1A), which downregulates signaling through the 115 
IGF-1/Akt/mTOR pathway [7,8], irisin may activate Akt and ERK in C2C12 myotubes to 116 
upregulate signaling through the IGF-1/Akt/mTOR pathway [18]. Irisin injections in mice 117 
have also induced muscle hypertrophy via Akt/mTOR stimulated muscle protein 118 
synthesis [18]. It is also purported that irisin activation of ERK along with a concomitant 119 
increase in IGF-1 expression may reduce myostatin expression in skeletal muscle [6], 120 
suggesting a potential role for irisin as a positive regulator of skeletal muscle mass. 121 
There is a lack of studies to confirm these mechanisms in humans (Figure 1B). Park et 122 
al. [*19] demonstrated that postmenopausal women who presented with sarcopenia had 123 
lower circulating irisin concentrations compared with women who were pre-sarcopenic, 124 
and irisin concentrations were positively associated with quadriceps muscle cross-125 
sectional area (CSA) and muscle quality. Given that both myostatin and irisin act on Akt 126 
and influence its downstream signaling, it is possible that they are antagonistic 127 
myokines but this concept necessitates further exploration in humans. 128 
 129 
The role of key adipokines in sarcopenia: leptin and adiponectin 130 
 131 
Leptin is a proinflammatory adipokine that is directly related to whole-body adiposity 132 
[*20] and has a prototypical role in regulating energy balance via the hypothalamus. 133 
Leptin is thought to regulate skeletal muscle through the modulation of AMPK [21] 134 
(Figure 1A). In animal models, leptin infusion leads to increased muscle fibre size, 135 
which may be related to activation of insulin signaling pathways [22]. However, in aged 136 
rats, elevated leptin is associated with ectopic inflammation in muscle, which may 137 
induce muscle atrophy [23].  138 
 139 
While the relationship between muscle mass and leptin may be even more complex in 140 
humans, leptin is inversely related to muscle function and muscle quality in older adults. 141 
For example, negative associations have been observed between serum leptin 142 
concentrations and appendicular lean tissue mass when normalized to weight (to 143 
account for adipose tissue) in older adults [*20]. However, when appendicular lean 144 
mass is not normalized to weight (and thus adipose tissue is not accounted for), this 145 
association is weakened or disappears, which suggests that adiposity may mediate the 146 
relationships between sarcopenia and leptin. Although Vella et al. [**24] observed no 147 



 6 

relationship between serum leptin and abdominal muscle CSA in 1 944 older adults, 148 
serum leptin was negatively associated with abdominal muscle density [**24]. These 149 
findings suggest that the degree of fatty infiltration into muscle (i.e. muscle quality) may 150 
be linked to leptin and the subsequent deterioration of metabolic and/or physiological 151 
function of the muscle tissue. This hypothesis is strengthened by a recent 3.5-year 152 
longitudinal study in older adults, which demonstrated that the tertile of participants with 153 
the highest serum leptin concentrations at baseline also had the highest incidence of 154 
frailty and muscle weakness [25]. Taken together, these data support an association 155 
between higher serum leptin levels and poor muscle quality and function – but not size 156 
– in older adults (Figure 1B). 157 
 158 
Leptin is often discussed in concert with the anti-inflammatory adipokine, adiponectin. It 159 
is well established that low circulating adiponectin is directly related to abdominal 160 
obesity [26,27]. Adiponectin may regulate skeletal muscle through fatty acid oxidation 161 
and AMPK-stimulated GLUT4 translocation [28]. Adiponectin may also have a beneficial 162 
role in promoting myogenesis in satellite cells and inhibiting proteolysis to increase or 163 
maintain muscle fibre size with increased age (Figure 1A) [28]. Based on these findings, 164 
adiponectin may aid in the management or prevention of sarcopenia and its metabolic 165 
sequelae. 166 
 167 
However, the role of adiponectin in relation to age-associated sarcopenia is unclear. 168 
Low serum adiponectin levels have been observed in sarcopenic versus non-sarcopenic 169 
older adults [29]. In contrast, there have also been several large epidemiological studies 170 
that observed associations between high serum adiponectin levels and low muscle CSA 171 
[30], low muscle density [**24,30], poor function [30], and high incidence of sarcopenia 172 
[31] (Figure 1B). This adiponectin paradox is further supported by observations that high 173 
adiponectin levels are associated with increased rates of all cause and cardiovascular 174 
mortality [32]. While the reason for these conflicting reports is unclear, it is possible that 175 
the ‘healthy’ range for serum adiponectin may be represented by a U-shaped risk curve 176 
during the aging trajectory [28].  177 
 178 
The expression of specific skeletal muscle adipokine receptors is a critical determinant 179 
of the progression of sarcopenia. Adiponectin receptor 1 (AdipoR1) is the predominant 180 
isoform expressed in skeletal muscle, and appears to be downregulated in obesity, type 181 
2 diabetes, and chronic heart failure [33,34]. The long isoform of the leptin receptor is 182 
responsible for the peripheral effects of leptin in skeletal muscle [35]. Similar to 183 
AdipoR1, the expression of this leptin receptor is reduced in the skeletal muscle of 184 
obese humans [35]. Obesity-related reductions in skeletal muscle AdipoR1 and leptin 185 
receptor expression likely influence the sensitivity of muscle to serum concentrations of 186 
these adipokines. Thus, the expression of these adipokine receptors in skeletal muscle 187 
may be reduced in older adults, similar to obese adults, and may consequently 188 
contribute to sarcopenia.  189 
 190 
Can exercise improve cross-talk between skeletal muscle and adipose tissue in 191 
sarcopenia? 192 
 193 
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Physical exercise represents one of the most potent interventions for attenuating the 194 
progression of sarcopenia in older adults [36], and may exert its effects through the 195 
modulation of myokine and adipokine tissue expression and secretion [17]. However, 196 
investigating the response of myokines and adipokines to exercise interventions aimed 197 
at maintaining or enhancing muscle mass and function in older adults is challenging. 198 
Diverse exercise training models (e.g. resistance vs. aerobic), as well as the 199 
heterogeneity of the aged sarcopenic population (e.g. lean vs. obese vs. frail) result in 200 
several inconsistencies in the literature. Here, we highlight 2 key considerations for 201 
understanding the role of myokines and adipokines in exercise interventions aimed at 202 
increasing muscle mass (or attenuating muscle loss): 203 
 204 

A. Exercise intervention-related changes in adiposity should be considered 205 
concurrently with changes in muscle mass.  206 
 207 
Exercise interventions in sarcopenic individuals aim to preserve or increase 208 
muscle mass and strength. However, concomitant changes in adiposity often 209 
result, and may influence the expression and secretion of myokines and 210 
adipokines. The influence of exercise training on serum concentrations of 211 
myokines and adipokines – in the absence of body composition changes –  is 212 
unclear. Resistance exercise training alone, or in combination with aerobic 213 
exercise training, improves muscle size and strength, and these improvements 214 
coincide with decreases in myostatin [37,38] and increases irisin [39,40] serum 215 
concentrations. However, other studies have observed no changes, or 216 
surprisingly, even increases in serum myostatin following training interventions, 217 
despite improvements in muscle size and function [41–**43].  218 
 219 
Interestingly, Konopka et al  [*44] found that 12 weeks of aerobic training resulted 220 
in decreased intramuscular adipose tissue, which was associated with reduced 221 
skeletal muscle myostatin protein expression [*44]. These findings support the 222 
hypothesis that adipose tissue quantity and/or distribution influences changes in 223 
myokines. Furthermore, longer-term exercise interventions that are associated 224 
with decreases in adipose tissue mass demonstrate increased adiponectin and 225 
decreased leptin serum concentrations [28,**45]. Few have examined changes in 226 
adipokine and myokine concentrations relative to body composition changes, 227 
especially intramuscular adipose tissue improvements following exercise. Thus, it 228 
is important to interpret age- and exercise-associated changes in adipokines and 229 
myokines within the context of changes in both muscle and adipose tissue mass 230 
and distribution.  231 
 232 

B. Serum myokine and adipokine concentrations are distinct from skeletal muscle 233 
receptor expression. 234 

 235 
Exercise interventions may improve muscle tissue sensitivity to leptin and 236 
adiponectin by upregulating plasma membrane receptor expression. Older mice 237 
undergoing 4 months of exercise training not only increased serum adiponectin, 238 
but also muscle AdipoR1 expression and subsequent Akt/mTOR mediated 239 
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increases in protein synthesis [46]. Importantly, inhibition of the AdipoR1 receptor 240 
abolished improvements in grip strength and muscle mass in these older mice 241 
[46]. In humans, 4 weeks of aerobic exercise increased skeletal muscle AdipoR1 242 
expression [47]. Regarding leptin sensitivity, severe energy deficit from aerobic 243 
exercise and low caloric intake, as well as chronic loading of skeletal muscle, 244 
upregulates the leptin receptor and its associated downstream signalling cascade 245 
in humans  [48,49]. These findings highlight important gaps in understanding the 246 
exercise effects of AdipoR1 or leptin receptor expression on muscle health (i.e. 247 
muscle mass and strength) as well as the importance evaluating both the serum 248 
and receptor expressions. While the influence of exercise on receptor expression 249 
is important in adipokines, less is known for myokine receptor expression; 250 
clearly, advanced perspectives of tissue sensitivity through adipokine and 251 
myokine receptor modulation is essential to understand the potential benefits of 252 
exercise.  253 

 254 
Conclusions 255 
 256 
Myokines, such as myostatin and irisin, as well as adipokines, such as leptin and 257 
adiponectin, have important cross-talk roles in muscle-adipose interactions throughout 258 
the aging trajectory. Targeted studies that specifically investigate the intricate balance 259 
between serum and receptor expression of these myokines and adipokines in the 260 
context of muscle and adipose tissue distributions are needed to further clarify their role 261 
in the progression of sarcopenia. Advancing our knowledge on how exercise may 262 
manipulate this balance in a positive manner to minimize age-related muscle atrophy 263 
and improve metabolic function of muscle over the course of aging is critical.  264 
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Figure 1B 527 
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Figure legends 557 
 558 
Figure 1A.  Summary of intramuscular myokine and adipokine signaling, based 559 
primarily on animal and cell work. (A) Myostatin binds to its receptor and activates a 560 
signaling cascade that results in reduced muscle protein synthesis, reduced glucose 561 
uptake, and increased muscle atrophy. (B) Irisin counteracts the effects of myostatin by 562 
activating ERK and Akt signaling. Irisin may also act on adipose tissue to facilitate the 563 
browning or “beiging” of white adipose tissue. (C) ADN and leptin are secreted by 564 
adipose tissue, and have favourable effects on skeletal muscle glucose uptake and fatty 565 
acid oxidation. ADN may also inhibit proteolysis and stimulate myogenesis. Blue arrows 566 
represent activation. Red lines represent inhibition. Dashed black arrows represent 567 
cross-talk between skeletal muscle and adipose tissue.  568 
 569 
Figure 1B. Cross-talk between skeletal muscle and adipose tissue in sarcopenia. 570 
In older sarcopenic adults, who tend to present with increased abdominal adiposity, the 571 
actions of these myokines and adipokines on skeletal muscle are less clear. Very little is 572 
known about the intramuscular signaling of these myokines and adipokines in 573 
sarcopenic tissue. A. Skeletal muscle (and adipose tissue) MSTN expression may be 574 
upregulated, which would inhibit muscle growth. B. Conversely, the beneficial actions of 575 
irisin on skeletal muscle and adipose tissue may be inhibited, further exacerbating 576 
muscle atrophy and decrements in muscle quality and strength. C. Circulating ADN 577 
concentrations may be reduced in sarcopenic older adults, and circulating leptin 578 
concentrations may be elevated, possibly due to reduced activation or expression of the 579 
leptin receptor.   580 
 581 


