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Abstract—Although the compact polarimetric (CP) synthetic
aperture radar (SAR) mode of the RADARSAT Constellation
Mission (RCM) offers new opportunities for oil spill candidate
detection, there has not been an efficient machine learning
model explicitly designed to utilize this new CP SAR data for
improved detection. This paper presents a conditional random
field model based on the Wishart mixture model (CRF-WMM) to
detect oil spill candidates in CP SAR imagery. First, a “Wishart
mixture model” (WMM) is designed as the unary potential in
the CRF-WMM to address the class-dependent information of
oil spill candidates and oil-free water. Second, we introduce a
new similarity measure based on CP statistics designed as a
pairwise potential in the CRF-WMM model so that pixels with
strong spatial connections have the same class label. Finally, we
investigate three different optimization approaches to solve the
resulting maximum a posterior (MAP) problem, namely iterated
conditional modes (ICM), simulated annealing (SA), and graph
cuts (GC). The results show that our proposed CRF-WMM
model can delineate oil spill candidates better than the traditional
CRF approaches and that the GC algorithm provides the best
optimization.

Index Terms—RADARSAT Constellation Mission (RCM), syn-
thetic aperture radar (SAR), compact polarimetry, spatial infor-
mation, oil detection .

I. INTRODUCTION

PROTECTING the environment is an important subject
that has gained significant attention across the world.

One of the most damaging events to the marine ecosystem
is an oil spill which is usually caused by oil tanker accidents,
illegal oily discharges from tank cleaning, or oil pipeline
breakages [1]. As a result, detecting and cleaning up oil spills
play an essential role in the lives of humans and marine life.
The first step to efficiently reduce the destructive effects of oil
spills on the environment is to detect oil spills accurately.

An appropriate choice to detect marine oil spills is to
use synthetic aperture radar (SAR) systems because they can
capture images of large areas, regardless of image acquisition
time and weather conditions. The RADARSAT Constellation
Mission (RCM) is Canada’s newest generation of Earth obser-
vation SAR satellites launched in 2019 and consists of three
satellites. The RCM data can be used for surveillance, disaster
management, and environmental monitoring [2]. The RCM
provides nearly daily coverage of Canada, and each satellite
operates in single-polarization, dual-polarization (DP), and
wide swath coverage compact polarimetric (CP) acquisition
modes, as well as the quad-polarization (QP) mode [3].
The RCM CP SAR data has several benefits over the QP
RADARSAT-2 SAR data, such as wide swath coverage and

halved average transmitted power [4]. The RCM CP system
has many advantages over the DP RADARSAT-2 SAR system
such as minimum sensitivity to noise, cross-channel errors,
self-calibration property, and providing more detailed informa-
tion about objects[5]. However, compared to QP SAR, one of
the main limitations of the CP SAR system is that it provides
less polarimetric information, which might cause restrictions
in complex problems such as oil slick characterization [6].
Furthermore, the number of SAR systems that operate in the
CP mode is limited which may cause availability problems.
Although CP SAR data suffers from these limitations, the
advantages of the RCM CP SAR system over QP and DP
RADARSAT-2 systems encourage researchers to use this type
of SAR data.

Oil spill detection can be done manually by trained opera-
tors. In visual inspection methods, an expert has to examine
the entire scene and identify oil spills [7]. Although a trained
operator can identify oil spill candidates in a SAR image with
sufficient certainty, processing SAR scenes by human analysts
is difficult and time-consuming. Outputs generated from the
visual inspection can vary since these are dependent on the
knowledge and experience of operators. Therefore, designing
automatic models to use SAR data for oil spill detection is
essential for accurately detecting oil spills.

A number of natural phenomena can result in false oil
spill detections such as marine organisms, shear zones, natural
low wind zones (wind speed < 3 m/s), internal waves, rain
cells, grease ice, and microconvective cells, which are known
as oil spill look-alikes [8], [9]. The normalized radar cross
section (NRCS) of look-alikes and oil spills are both low
and similar; therefore, to separate them from each other with
high accuracy, some important features such as wind speed,
geometrical shapes, and backscattering characteristics should
be used [10]. Under low wind conditions, separating oil spills
from the surrounding calm ocean becomes difficult because
each of these has a low backscatter [11]. The coherent interfer-
ence of backscattered waves from many randomly distributed
scatterers within a resolution cell causes bright and dark pixels
in a radar image [12], [13]. This grainy salt-and-pepper noise
is called speckle noise. An essential challenge in SAR oil spill
candidate detection is caused by the speckle noise that creates
low feature space separability between the oil spill and oil-free
water classes. Generally, to reduce the effects of speckle noise,
incoherent averaging using multiple looks or adaptive/non-
adaptive signal processing filters are utilized [14]. Mixed
pixels, containing both an oil spill candidate and water, are
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usually found in SAR images with low spatial resolution, e.g.,
ScanSAR Wide mode with an approximate range × azimuth
100m nominal resolution. The mixed pixels lead to an increase
in oil spill detection error.

There are a limited number of published papers on the
subject of oil spill detection using CP SAR data [15–18].
Previous studies have not used the statistical distribution of
CP SAR data in oil spill detection applications. Therefore, one
of the main contributions of this paper lies in incorporating
statistical properties of CP SAR data to identify oil spill
candidates. Context is an important information source in ana-
lyzing SAR data. In this paper, the spatial context information
in SAR imagery is used to improve class separability. We
introduce a model based on a conditional random field (CRF)
which reduces the destructive effects of speckle noise and
highlights the difference between oil spills and oil-free water
by effectively modeling the spatial contextual information.
The CRF consists of the unary and pairwise potentials. The
unary potential utilizes the statistical properties of individual
pixels, while the pairwise potential represents relationships
between neighboring pixels [19], [20]. Nevertheless, a CRF
is traditionally built upon SAR intensity images, and we are
not aware of a CRF model designed to address the statistical
properties of the complex CP SAR data. The second aim
of this paper is to introduce a similarity measure based on
CP SAR data to better model spatial contextual information.
Since solving the CRF is an ill-posed problem, an optimization
algorithm needs to be used to obtain the optimum result.
Therefore, the third and last aim of this paper is to assess the
performance of optimization algorithms so that the resulting
CRF model can be tailored to the characteristics of the CP
SAR data for dealing with the future RCM CP SAR data in
oil spill candidate detection applications.

In summary, the contributions of this paper lie in the
following aspects. First, a Wishart mixture model (WMM)
based on the complex Wishart distribution is designed to
implement the CRF-WMM’s unary potential to accommodate
the discriminative class statistics in the CP SAR data. Second,
the pairwise potential in CRF-WMM is implemented using
a similarity measure based on the CP statistics to leverage
spatial correlation. Finally, we identify the best approach for
solving the resulting CRF-WMM model of the three popular
optimization approaches.

The remainder of this paper is organized as follows: Sec-
tion II reviews related work and Section III describes the
structure of CP SAR data. Section IV explains the details of
the methodology. Then, after introducing the study area in
Section V, Section VI presents the results. The last section
concludes the study.

II. RELATED WORK

Early research on SAR oil spill detection was con-
ducted using single-polarization SAR data, generally using
the VV(vertical transmit, vertical receive) polarization [21].
Elachi [22] is recognized as the first to use SAR data to
monitor oil spills using data from the Seasat satellite. The
enhanced capabilities of the second generation of satellite

SAR sensors such as ENVISAT, RADARSAT-1, and ERS-2
attracted further attention for oil spill monitoring [23–25].
Xu et al [26] performed a comprehensive study of different
classification techniques to detect oil spills using ninety-
three RADARSAT-1 ScanSAR Narrow Beam images. They
utilized fifteen features and different classification methods to
distinguish oil spills from look-alike phenomena.

The third generation of SAR sensors, such as the Cana-
dian RADARSAT-2 and German TerraSAR-X, offer QP SAR
modes, higher spatial resolution and shorter revisit times than
previous SAR missions [27], [28]. With the availability of
QP SAR data, researchers have also explored QP SAR data
for oil spill selection [17], [29], [30]. Minchew et al [11]
investigated H/A/α eigenvector decomposition parameters
extracted from QP UAVSAR (uninhabited aerial vehicle SAR)
data to analyze the backscattering of the Deepwater Horizon
(DWH) oil spill and determined that the major eigenvalue of
the coherency matrix was the most promising indicator for oil
slick detection. Genovez et al [31] proposed a multi-source
approach to utilize optical, single-channel SAR, and QP SAR
data to distinguish oil from water and classify oil into two
thick and thin layers. Espeseth et al [6] used a series of short
time revisit SAR images to identify areas with relatively thick
oil slicks. Their results showed that multiple SAR images
with short repeat times could provide new information to
identify short term oil slick drifts, which is important for clean
up efforts. Skrunes et al [32] investigated the discrimination
potential of the eight well-known multipolarization features by
measuring between-region contrast and within-region variance
and concluded that the pair of geometric intensity and the real
part of the copolarization cross product features could be used
to determine the most promising results.

Several approaches have been proposed for oil spill can-
didate detection by taking advantage of spatial contextual
information. One method is to employ a graphical model.
Xu et al [33] introduced a stochastic fully connected CRF
based on a Gaussian mixture model (GMM) to detect dark
spots on RADARSAT-1 images, demonstrating that incorporat-
ing spatial information can improve results. Morales et al [34]
utilized a hierarchical Markov random field (MRF) to segment
SAR images into oil classes (denser and thinner) and sea
water. Pelizzari and Bioucas-Dias [35] used an MRF based
on graph cuts to detect oil spills in SAR intensity images.
Martinis [36] used a hybrid Markov image model by integrat-
ing scale-dependent and spatial context information into the
labeling process for near real-time oil spill detections in high-
resolution TerraSAR-X ScanSAR data. Parmiggiani et al [37]
used a threshold GMM-MRF model to segment oil spills in
a SAR image. Other mathematical tools which utilize spatial
relationships among pixels are convolution neural networks
(CNNs). De Laurentiis et al [9] utilized a CNN to separate
mineral films from biogenic slicks and the oil-free sea surface.
Guo et al [38] employed a CNN to discriminate oil spills
from look-alikes, while Yaohua and Xudong [39] used a dense
connected CNN for the same task.

There are a limited number of published papers on oil spill
detection using CP SAR data. Zhang et al [15] extracted the
conformity coefficient from simulated hybrid-polarity (HP) CP
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SAR data [5] from QP RADARSAT-2. They applied it along
with entropy and the average alpha angle to detect oil spills.
Salberg et al [18] proposed a coherence measure, which relies
on the Bragg scattering assumption, to detect oil spills in
simulated HP SAR data obtained from RADARSAT-2 data.
They compared the performance of their proposed measure
with the degree of polarization (DoP), the conformity coeffi-
cient, and the correlation coefficient. According to their results,
the coherence measure suppresses some look-alikes caused by
low wind. Nunziata et al [17] investigated features extracted
from HP SAR data based on sea surface scattering with or
without oil spills. Moreover, they proposed a new measure
called the standard deviation of the phase difference (σ ), where
the value of σ for oil-covered surfaces is larger than that for
slick-free regions. Li et al [40] proposed a new method to
retrieve the mixture ratio of oil and water in CP SAR data
by using the diagonal elements of the covariance matrix of
CP SAR data. In [41], an iterative reconstruction QP SAR
image method using CP SAR data based on the different
statistical behavior between oil spills and open sea surface
was proposed. Shirvany et al [16] investigated the potential
use of DoP calculated for CP and DP SAR data to detect
ships and oil spills. Their experiment showed that using the HP
CP mode and DP (HH, VV) modes result in better detection
performance. Espeseth et al [42] compared the performance of
a set of features extracted from QP UAVSAR and simulated
HP SAR data under a high wind situation, and concluded that
the capability of the HP data to distinguish different slicks
from each other as well as from oil-free water is comparable
with that of the QP data. Collins et al [21] investigated
the potential of the reconstructed QP SAR data based on
CP SAR data to create the oil/water mixing index called
Mdex [43]. According to their results, pseudo-QP SAR and
QP SAR data resulted in similar Mdex maps. Chaudhary and
Kumar [44] investigated the potential of using decomposition
parameters extracted from QP UAVSAR (uninhabited aerial
vehicle SAR) and CP RISAT-1 SAR images for detecting oil
slicks. Here, using Van Zyl parameters [45] achieved the best
results for the UAVSAR dataset, and utilizing compact-pol
decomposition parameters [46] achieved the best results for
the RISAT-1 dataset. A study by Chaudhary and Kumar [47]
investigated the capability of using features measured from QP
and simulated HP imagery to distinguish oil spills from oil-free
water. Classification using HP features achieved an accuracy
of more than 98%. Li et al [48] analyzed the polarimetric
properties of oil-covered ocean surface water in CP SAR data
using the polarimetric degree m and the Poincar ellipticity
χ parameters [5], [49] They concluded that the sign of χ

is opposite for the oil spills from oil-free water. Moreover,
compared to oil-free water, oil spills reduce the value of m.

Most of the methods described above have been applied to
detect oil spills by utilizing pixel-based features. However,
single-pixel measurements are strongly affected by speckle
noise resulting in noisy outputs [50], [51]. In this paper,
we consider spatial context information to reduce speckle
effects and the impact of intra-class variations to increase class
separability for the oil spill detection problem. Moreover, in
contrast to previous studies such as [33], [52], we investigate

the use of a more appropriate statistical model to include in
a CRF model that is better able to more accurately detect oil
spill candidates in CP SAR data.

III. COMPACT POLARIMETRIC SAR BASICS

The architectures of CP SAR can be classified into three
modes [53]: (i) π

4 , (ii) circular-circular (CC), and (iii) HP. The
RCM consists of three identical SAR satellites that operate in
C-band and HP mode. In the HP mode, a circular polarization
is transmitted, and both H and V polarizations are received.

The coherency matrix of CP SAR data is a 2×2 semi-
positive definite Hermitian matrix. For an HP mode in which a
right circular polarized wave (R) is transmitted, and coherent
dual linear H and V polarizations are received, known as the
CTLR mode, the coherency matrix CCT LR is given as:

CCT LR =

[
⟨| S2

RH |⟩ ⟨SRHS∗RV ⟩
⟨SRV S∗RH⟩ ⟨| S2

RV |⟩

]
(1)

where Si j indicates a complex element of the scattering matrix.
⟨...⟩ defines spatial ensemble averaging and ∗ indicates the
conjugate transpose. The diagonal elements (real numbers) de-
scribe the intensities and the non-diagonal (complex numbers)
describe the intensities and phase between polarizations. Due
to the limited CP SAR data available, a popular method to
obtain CCT LR is to simulate it from given QP data [54]. The
covariance matrix for the CTLR mode can be written as [55–
57]:

CCT LR =
1
2

[
⟨| SHH |2⟩ j⟨SHHS∗VV ⟩

− j⟨SVV S∗HH⟩ ⟨| SVV |2⟩

]
+

⟨| SHV |2⟩
2

[
1 − j
j 1

]
+

1
2

[
−2Im⟨SHHS∗HV ⟩ ⟨SHHS∗HV +S∗VV SHV ⟩

⟨S∗HHSHV +SVV S∗HV ⟩ 2Im⟨SVV S∗HV ⟩

]
=

[
C11 C12

C21 C22

]
(2)

where Im indicates the imaginary part of a complex number.
In some studies, such as [58], it has been assumed that

the intensities of pixels follow a Gaussian mixture distribu-
tion. Multi-look processing is performed by averaging several
single-look images to reduce speckle noise and compress SAR
data [59], [60]. An L-look SAR intensity image, in which L
indicates the number of looks, is known to have a gamma
distribution [61]. The coherency matrix follows a complex
Wishart distribution [62]. This property of the coherency
matrix is used by other machine learning methods which are
applied to polarimetric SAR data [44], [63], [64]

IV. METHODOLOGY

A. CRF-WMM framework

Let S represent the discrete two-dimensional rectangular
lattice and i ∈ S be a site in the lattice (i.e., a pixel in the
image). A CP SAR image is represented by Y = {yi|i ∈ S},
where Y is a random field on S. Moreover, X = {xi|i ∈ S} is
a set of binary-valued random variables which form a random
field on S. For oil spill candidates xi = 1, oil free water
xi = 0. Based on this formulation, the task of oil spill candidate
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detection from CP SAR imagery aims to estimate X bases on
Y , which is achieved using a novel CRF-WMM model that
addresses both the backscattered information and the spatial
context information in the CP image.

The proposed CRF-WMM model addresses the posterior
probability distribution of the label map X given the CP SAR
imagery observation Y by [33]:

p(X |Y ) = 1
Z(X)

exp{−∑
i∈S

ψu(xi,yi)−β ∑
i∈S

∑
j∈Ni

ψp(xi,x j,yi,y j)}

(3)
in which Z(X) is a normalization factor called the partition
function. ψu and ψp are the unary potential and the pairwise
potential, respectively, and β dictates the relative weight of
the two potentials. Ni denotes a set of 4 neighbors of pixel i.
Given this formulation, the estimation of X is achieved by
maximizing p(X |Y ) under the maximum a posterior (MAP)
framework. The CRF-WMM model can be solved by address-
ing the following MAP problem:

X̂ = argmax
X

(p(X |Y )) (4)

To identify the most appropriate optimization method to solve
Equation (4), three well-known methods, i.e., iterated condi-
tional modes (ICM) [65], simulated annealing (SA) [66], and
graph cuts (GC) [67] are compared.

B. CP Unary Potential via WMM

The unary potential ψu in CRF-WMM is calculated by
taking into consideration the statistical distribution of the CP
SAR data. The unary potential in the CRF model is used to
address the class-dependent information of different classes
and is defined as:

ψu(xi,yi) =−ln(p(xi|yi)) (5)

where p(xi|yi) is designed based on the statistical characteris-
tics of the data. To achieve this, a GMM is typically used [33],
[52]. However, because the coherency matrix in Equation (2)
follows a complex Wishart distribution [68], a new mixture
model based on the Wishart distribution is proposed.

The ith pixel in CP SAR imagery is represented by a
complex matrix Ai = LCi. Because Ci follows a complex
Wishart distribution, the class-dependent distribution of Ai
given Cxi has the following expression:

p(Ai|Cxi) =
| Ai |L−q exp(−tr(C−1

xi
Ai))

K(L,q) |Cxi |L
(6)

where Cxi is the average of the covariance matrices of pixels
from class xi. The symbols | . | and tr denote the determinant
and trace operations, respectively. Moreover K(L,q) is defined
as:

K(L,q) = π
1
2 q(q−1)

q

∏
r=1

Γ(L− r−1) (7)

in which q is the number of elements in the complex scattering
vector and Γ is the Gamma function. By substituting Equa-
tion (6) into Equation (3), the unary potential for the complex

Wishart distribution is represented as:

ψu(xi,yi) = Lln |Cxi |+ln(K(L,q))+

tr(C−1
xi

Ai)− (L−q)ln(| Ai |)
(8)

After substituting Ai = LCi into Equation (8) and eliminating
elements that are not a function of xi, the unary potential in
CRF-WMM will be:

ψu(xi,yi) = ln |Cxi |+tr(C−1
xi

Ci) (9)

C. CP pairwise potential

The pairwise potential ψp in Equation (3) represents the
relationships between the labels and the features of neighbour-
ing pixels. ψp in CRF-WMM is defined by a new similarity
measure designed based on the properties of CP SAR data.
ψp has been implemented using the following expression:

ψp(xi,x j,yi,y j) = λ (yi,y j).µ(xi,x j) (10)

where µ(xi,x j) is considered as the multi-level logistic (MLL)
model [69], and λ (yi,y j) is a measure of feature similarity.
Designing a λ (yi,y j) in ψp for CP data is necessary to achieve
the best performance since doing so can more effectively
constrain pixels with a strong spatial correlation to have the
same class label while also reducing the effects of noise and
spatial heterogeneity in SAR imagery leading to more accurate
predictions.

The similarity measure λ (yi,y j) in Equation (10) returns a
larger value for two pixels with a stronger spatial correlation.
Although a metric defined based on the full CP information
theoretically can better reveal the similarity among pixels,
using all elements in the covariance matrix in Equation (2) will
increase the computational burden. We choose C22 because it
is suitable for oil spill detection due to its higher signal-to-
noise ratio and sensitivity to the sea surface roughness [70].
Therefore, a similarity measure is designed based on the C22

elements given in Equation (2):

λ (C22
i ,C22

j ) = exp(
− |C22

i −C22
j |2

2θ 2 ) (11)

where θ controls the scale of the Gaussian kernel. λ (C22
i ,C22

j )

generates high values if | C22
i −C22

j |2 is small; therefore,
λ (C22

i ,C22
j ) constrains pixels with similar values to each

have the same class label. By substituting Equation (11) in
Equation (10), the pairwise potential in CRF-WMM will be:

ψp(xi,x j,yi,y j) = exp(
− |C22

i −C22
j |2

2θ 2 ).(1−δ (xi,x j)) (12)

D. Optimization approaches

Solving the CRF is an ill-posed problem; therefore, an
optimization algorithm is necessary to solve it. To assess the
variety of optimization algorithms, it is necessary to evaluate
their performance in oil spill candidate detection by using
CP SAR data. The MAP problem in Equation (4) can be
reformulated as:

X̂ = argmin
X

(−ln(p(X |Y ))) (13)
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Fig. 1: The flowchart of the proposed method to detect oil spill candidates from simulated RCM CP SAR data.

By substituting the unary potential (Equation (9)) and the
pairwise potential (Equation (12)) into Equation (13), the MAP
problem can be expressed as:

X̂ = argmin
X

{∑
i∈S

(ln |Cxi |+tr(C−1
xi

Ci))+

β ∑
i∈S

∑
j∈Ni

exp(
− |C22

i −C22
j |2

2θ 2 ).(1−δ (xi,x j))}
(14)

The parameter to be estimated, X̂ , is a binary variable. So,
Equation (14) defines a combinatorial optimization problem,
which can be solved by several techniques. In this study, we
investigate and compare ICM, GC, and SA as optimization
methods to obtain X̂ .

E. Summary of the Proposed Model

Fig. 1 illustrates the flowchart of the proposed model to
detect oil spill candidates. Below we provide a summary of
the CRF-WMM model which is a thresholding guided seg-
mentation approach. Given a CP SAR image Y , the following
steps are performed:

1) Perform binary thresholding on C22 from Y to obtain an
initial estimation of X , and use this estimate to calculate
the class probabilities for oil-free water C0 and oil spills
C1.

2) Calculate the unary potential as per Equation (9).
3) Calculate the pairwise potential based on the similarity

measure as per Equation (12).
4) Calculate the objective function as per Equation (14),

and solve it using each optimization technique (i.e.,
ICM, GC, and SA).

V. STUDY AREA

In this study, the potential of the proposed model in de-
tecting oil spill candidates is investigated by using simulated

RCM CP SAR images. To simulate RCM CP SAR images,
three QP RADARSAT-2 images acquired over Coal Oil Point,
near Santa Barbara, California, USA are used. The details of
the RADARSAT-2 images are represented in Table I. These
images have been provided by the Canadian Ice Service (CIS)
under the Integrated Satellite Tracking of Pollution (ISTOP)
program [71]. To simulate CP SAR data, the RCM CP simula-
tor is used. This simulator was developed at the Canada Centre
for Mapping and Earth Observation (CCMEO) [72]. Data was
simulated for the RCM medium resolution beam mode with
50 m range × 50 m azimuth nominal resolution and -22 dB
noise floor (noise-equivalent sigma zero (NESZ) value). A
9×9 boxcar filter was applied to all the scenes to reduce the
effects of speckle noise. A consequence of NRCS values lower
than the NESZ is the loss of information. Although utilizing
spatial context information and the coherency matrix of CP
SAR data along with an appropriate statistical model make the
proposed model able to distinguish oil spill candidates from
oil-free water with NRCS above the NESZ, characterizing
oil spills for NRCS values lower than -22 dB may not be
possible [42].

Figure 2 shows the location and Pauli color composite
of Scene 20090919. Features of a single pixel are affected
by speckle noise and this makes the automated detection of
oil spills more challenging. Models which only use single-
pixel features without spatial context information as input
cannot classify these types of oil spill candidates effectively.
Therefore, an appropriate statistical model needs to be used, in
which the spatial relationship between pixels should be utilized
to detect boundaries and regions of oil spills. Thus, this paper
uses a CRF model based on the complex Wishart distribution
which takes advantage of the complex terms in the coherency
matrix as well as spatial context information.
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((a)) ((b))

Fig. 2: (a) Location of Scene 20090919, near Santa Barbara, California, USA. (b) The Pauli decomposition of Scene 20090919
with | SHH −SVV |, | SHH +SVV |, and 2| SHV |.

TABLE I: The details of the Fine Quad (FQ) single look
complex RADARSAT-2 imagery used to simulate CP SAR
data. The first column shows the date of acquisition in the

format YearMonthDay. The first two images are used to
simulate sub-images and the last image is used to simulate a

full scene.

Scene Beam Range (m) Azimuth (m)

20100131 FQ6 4.73 4.70

20100224 FQ6 4.73 4.70

20090919 FQ18 4.73 4.95

VI. EXPERIMENT AND DISCUSSION

This section presents the results obtained by the proposed
method using the simulated RCM CP SAR sub-images of
different sizes and a simulated RCM CP SAR full scene.
Moreover, the performance of the optimization algorithms is
compared in this section.

A. Quantitative Measures

In our experiments, ground truth data is generated based on
visual inspection. To evaluate the performance of the proposed
model, we use the following error metrics [33]:

• Commission error (CE) is defined as the ratio of the
number of false predicted oil spill candidate pixels to the
number of all predicted oil spill candidate pixels. CE is
calculated as follows:

CE =
AE −AT

AE
(15)

where AE denotes the number of all predicted oil spill
candidate pixels and AT denotes the number of pixels
which are correctly classified as oil spill candidates.

• Omission error (OE) is defined as the ratio of the number
of false predicted oil-free water pixels to the number of
all ground truth oil spill candidate pixels. OE is calculated
as follows:

OE =
AR −AT

AR
(16)

where AR indicates the total number of ground truth oil
spill candidate pixels.

• Averaged error (AE) is the average of CE and OE. AE
measures the balanced detection capability of different
methods and it is defined as:

AE =
CE +OE

2
(17)

In this study, we use a grid search on C22 to find the best
values for β and θ in Equation (14). Both parameters are
varied from 0.5 to 5 in increments of 0.5, and the result with
the lowest AE is chosen as the output of each method.

B. Experiment with Sub-images

Since oil spills are rare phenomena and usually appear in
only small sections of a scene, models are usually tested
using a sub-image containing oil spills. Therefore, to evaluate
the performance of the proposed method, we use the two
simulated scenes to extract five sub-images of different sizes
(See Table I).

Because the CRF-WMM model consists of three building
blocks, i.e., the unary potential, the pairwise potential, and
the optimization algorithm, we use ablation experiments to
isolate their roles and test their importance. First, to justify
our unary potential, we compare the proposed WMM with
the GMM model built on a vector of C11, abs(C12), and
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C11 GT ICM-WMM ICM-GMM SA-WMM SA-GMM GC-WMM GC-GMM

(a) h:100,w:170 AE:19.20% AE:33.17% AE:17.50% AE:23.59% AE:13.50% AE:22.16%

(b) h:250,w:420 AE:12.92% AE:12.44% AE:11.37% AE:11.49% AE:7.69% AE:9.48%

(c) h:175,w:160 AE:11.06% AE:19.42% AE:9.87% AE:20.54% AE:8.71% AE:13.53%

(d) h:760,w:340 AE:14.30% AE:16.59% AE:13.86% AE:15.68% AE:10.26% AE:11.22%

(e) h:999,w:420 AE:14.17% AE:17.04% AE:11.16% AE:14.06% AE:9.016% AE:10.16%

Fig. 3: Detected oil spill candidates by using the Wishart mixture model (WMM) and Gaussian mixture model (GMM) as the
unary potential with different optimization methods and the assumption that λ (C22

i ,C22
j ) = 1. The first column shows the five

data sets. The second column shows the ground truth (GT) data generated manually based on visual inspection. The h and
w stand for the number of pixels in height and width of the sub-images, respectively. Numbers in bold indicate the lowest
average error (AE) in each sub-image.

C22. That is a common approach [33], [52], [58]. Second,
to justify the use of the pairwise potential in the CRF-
WMM over the traditional isotropic homogeneous MRF model
commonly used [35], [52], we compare the proposed pairwise
potential with an MRF potential implemented by discarding
the similarity measure λ (yi,y j) in Equation (10) and only
use µ(xi,x j). In this experiment, we also compare different
optimization methods to identify the one which achieves the
highest accuracy.

1) Unary Potential and Optimization Approaches: Figure 3
shows the results of different methods, i.e., the combination
of different unary implementations (GMM vs. WMM) and
the different optimizers (ICM, SA, and GC). Regardless of
the optimization techniques used, the GMM model tends
to incorrectly classify oil spill candidate pixels as oil-free
water. However, WMM is able to reduce the number of false
negatives. This is because the phase information helps the
model more appropriately characterize the statistical behaviour
of RCM CP SAR data. Table II shows the mean values of
CE, OE, and AE of the five sub-images by using the different
methods. The WMM-based methods achieve much lower OE

TABLE II: Mean values of the errors for the sub-images
achieved by WMM and GMM unary potentials using the
different optimization methods.

CE(%) OE(%) AE(%)

ICM-WMM 11.46 17.20 14.27
ICM-GMM 1.44 38.02 19.81
SA-WMM 11.32 14.97 12.75
SA-GMM 2.83 31.53 17.18
GC-WMM 14.04 5.63 9.83
GC-GMM 18.09 9.40 13.31

Numbers in bold indicate the lowest error using each of the optimization
methods

than the corresponding GMM-based methods. Low OE is
more important than low CE for oil spill candidate detection
problems because omitted potential oil spills will never be
detected in the further classification of the true oil spills
and the look-alikes. These results demonstrate the importance
and improvements of using the proposed WMM approach for
implementing the unary potential in the CRF model.
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CRF-WMM

(a) (b) (c) (d) (e)

AE:7.65% AE:6.25% AE:7.84% AE:7.91% AE:8.78%

CRF-GMM

AE:17.46% AE:7.25% AE:8.75% AE:8.42% AE:9.62%

Fig. 4: Oil spill candidates detected by using the CRF-WMM and CRF-GMM models using the GC optimizer along with
their AE. The first and second rows show the results obtained by the CRF-WMM and CRF-GMM models, respectively. Each
column shows the sub-images. Numbers in bold indicate the lowest AE in each sub-image

Comparing the performance of the optimization algorithms,
SA outperforms ICM. We hypothesize that this is because
the solution for ICM is known to routinely became trapped
in a local minimum [73]. However, SA employs a random
search scheme to overcome this problem. Although utilizing
GC increases CE, it significantly reduces OE in both WMM
and GMM models. We expect this is due to the fact that GC is
able to preserve relevant sharp discontinuities while enforcing
the piecewise smoothness [74].

2) Pairwise Potential : In Subsection VI-B1, pairwise po-
tentials were considered, which depend only on the labels
of neighboring pixels, while the similarity among features of
pixels was ignored. Moreover, the benefits and improvement
of using the proposed WMM approach over GMM for imple-
menting the unary potential in the CRF model was demon-
strated, and GC was identified as the optimizer that achieved
the highest accuracy. This experiment further demonstrates
the role and importance of the similarity measure λ (yi,y j)
defined in Equation (11) by incorporating it into the previous
GC-GMM and GC-WMM models. Figure 4 shows the results
obtained by the CRF-WMM model and the baseline CRF-
GMM model on the five sub-images using the GC optimizer.
The similarity measurement assists the model in preserving
the boundaries with higher accuracy by removing wrongly
classified pixels. This effect of the similarity measurement
is more noticeable for the first, third, and fourth data sets
(Figure 3 (a, c, d) and Figure 4 (a, c, d)). Moreover, employing
the feature similarity among neighborhood pixels reduces the
number of false positives. For example, some dark areas were
classified wrongly as oil spill candidates by GC-GMM in the
first dataset but applying λ (yi,y j) assigns them to the correct
class label.

Table III illustrates the statistics achieved by CRF-WMM
and CRF-GMM on the five sub-images. As expected, the
performance of the proposed method in all data sets is better
than that of CRF-GMM. Compared to the results presented in
Table II, there is a significant reduction in the mean values of
CE. Specifically, the error is reduced from 14.04% using GC-
WMM to 9.04% using CRF-WMM and from 18.09% using

TABLE III: Mean values of the errors for the sub-images
achieved by CRF-WMM and CRF-GMM using the GC
optimization method.

CE(%) OE(%) AE(%)

CRF-WMM 9.04 6.29 7.68
CRF-GMM 13.46 7.13 10.30

Numbers in bold indicate the lowest error using each of the optimization
methods

GC-GMM to 13.46% using CRF-GMM. This confirms that
using λ (yi,y j) for implementing the pairwise potential in the
CRF model reduces the number of false positives. Moreover,
CRF-GMM improves OE by about 2%, while CRF-WMM
increases OE by about 0.5%. Comparison of the results in
Figure 3 with those in Figure 4 demonstrates consistency with
the quantitative measures presented in Table III.

C. Experiment with a Simulated CP SAR Full Scene

To show that the proposed method can reliably detect oil
slicks, we examined the performance of the proposed model
over a full scene. We used Scene 20090919 to simulate an
RCM CP SAR scene. Figure 5 (a) illustrates the C11 image of
the study area. It contains three classes, namely, open water,
oil spill candidate, and land area. However, since the problem
is a two-class classification, a mask is used to exclude the land
areas from the calculation. Figure 5 (b) shows the manually
generated ground truth oil spill candidate data.

Figure 6 shows the results obtained by the different methods
and optimization algorithms. As expected, the performance
of WMM on the simulated scene of CP SAR data is better
than that of GMM. The results obtained by the GMM-based
methods are less accurate due to more false positive being
detected compared to the WMM-based methods, specially
closer to the coastline. Among WMM-based methods, the
ICM-WMM method tends to blur the boundaries by accepting
pixels close to the boundaries as oil spill candidates. The
SA-WMM and GC-WMM methods effectively identify oil-
free water even when the backscatter of the open water has
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(a) (b)

Fig. 5: (a) 50 m resolution RADARSAT Constellation Mission right-horizontal polarization imagery (C11) of an area near
Santa Barbara simulated from data acquired on 19 September 2009. (b) Ground truth data of oil spill candidates generated
manually based on visual inspection.

(a) ICM-GMM (b) SA-GMM (c) GC-GMM

(e) ICM-WMM (f) SA-WMM (g) GC-WMM

Fig. 6: Oil Spill candidate detection based on the WMM and GMM unary potentials by using the different optimization methods
and assumption that λ (C22

i −C22
j ) = 1.

high variability. This is because, compared to GMM-based
methods, they utilize a more appropriate statistical model.
Table IV indicates the errors obtained by the proposed and
baseline GMM methods. An examination of Table IV shows
that the values of OE obtained by WMM-based methods are
much lower than those obtained by GMM-based ones. A high
rate of CE causes a high computational cost in removing look-
alike candidates. Thus, the capability of a model to produce
a balanced OE and CE error is also important. Compared to
GMM-based methods, WMM-based methods reach lower AE.
This confirms the balanced detection capability of the pro-
posed model. Moreover, as per the results in Subsection VI-B,
the accuracy of the models using GC is higher than that of
the other optimization algorithms. In the next experiment, the
performance of CRF-WMM and CRF-GMM on the simulated
full scene is evaluated. Since GC achieves a higher accuracy
for oil spill detection than the other algorithms, the GC
optimization method is used.

TABLE IV: Mean values of the errors for the sub-images
achieved by WMM and GMM unary potentials using the
different optimization method.

CE(%) OE(%) AE(%)

ICM-WMM 23.15 9.54 16.34
ICM-GMM 4.94 31.87 18.41
SA-WMM 14.34 13.11 13.73
SA-GMM 6.06 24.11 15.07
GC-WMM 13.85 9.08 11.58
GC-GMM 12.72 16.44 14.58

Numbers in bold indicate the lowest error using each of the optimization
methods

Figure 7 illustrates the results obtained by CRF-WMM
and CRF-GMM. Visually, the similarity measure reduces the
number of misclassified pixels in both CRF-WMM and CRF-
GMM. Furthermore, CRF-GMM achieves a smaller number
of false positives. The statistics of the numerical measures
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(a) CRF-WMM (b) CRF-GMM

Fig. 7: Detected oil spill candidates by using (a) the CRF-WMM model with AE = 9.56% and (b) the CRF-GMM with
AE = 11.29%. GC is used as the optimizer.

(a) CRF-WMM (b) CRF-GMM

Fig. 8: Detected oil spill candidates by using (a) the CRF-WMM model with AE = 9.56% and (b) the CRF-GMM with
AE = 11.29%. GC is used as the optimizer.

TABLE V: Values of the errors for the simulated full scene
achieved by CRF-WMM and CRF-GMM using the GC
optimization method.

CE(%) OE(%) AE(%)

CRF-WMM 4.51 14.61 9.56
CRF-GMM 4.55 18.03 11.29

Numbers in bold indicate the lowest error using each of the optimization
methods

achieved by CRF-GMM, and CRF-WMM models are shown in
Table V, which are consistent with the visual detection results.
The values of AE are 9.56% and 11.29% for CRF-WMM and
CRF-GMM, which are almost 2% and 3% lower than those
obtained by GC-WMM and GC-GMM, respectively.

Finally, to show the sensitivity of the proposed model
to the values of β and θ , the grid search results obtained
by CRF-WMM and CRF-GMM methods are illustrated in
Figure 8. As can be seen, converging to the minimum of AE is
straightforward because there are no saddle points and abrupt
changes are not seen on the search surface. In other words,
a small change in the values of β and θ does not result in a
significant change in AE.

VII. CONCLUSION

This paper has presented a CRF-WMM algorithm tailored to
the CP SAR statistics to utilize both the full CP information
and the spatial context information in CP SAR imagery for
enhanced oil spill candidate detection. First, to utilize the
statistical properties of CP SAR data, we designed a unary
potential based on the complex Wishart distribution. Second,
to take advantage of contextual information, we included a
similarity measure based on C22. Theoretically, C22 is sensitive
to the sea surface roughness and has a high signal-to-noise ra-
tio. The empirical results prove that this similarity measure can
improve the accuracy of detecting oil spill candidates. Finally,
to solve the proposed ill-posed CRF model, we utilized three
common optimization algorithms and compared their perfor-
mance to specify the most appropriate optimization algorithm
for detecting oil spill candidates in simulated RCM CP SAR
data. The proposed approach is tested on both the simulated
sub-images and the full scene. The results demonstrate that the
proposed model can better delineate oil spill candidates than
the traditional CRF and MRF approaches that do not consider
the properties of the CP data. Overall, the proposed model
can delineate oil spill candidates without being significantly
affected by oil free water and oil spill heterogeneities. In
addition, the number of false negatives in the CRF-WMM
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model is much lower than that in the other approaches,
meaning that using the proposed model can decrease the risk
of misclassifying oil spill candidate pixels that will not be
detected in oil spill classification methods. Considering that
the four nearest neighbor pixels and C22 intensity image were
used to model spatial context information, future research
directions should investigate using larger spatial scales as
well as other features such as decomposition parameters in
detecting oil spill candidates.
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