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Abstract

In combinatorial markets where buyers are self-interested, the buyers may make pur-
chases that lead to suboptimal item allocations. As a central coordinator, our goal is to
impose prices on the items of the market so that its buyers are incentivized to exclusively
make optimal purchases. In this thesis, we study the question of whether dynamic pricing
schemes can achieve the optimal social welfare in multi-demand combinatorial markets.
This well-motivated question has been the topic of some study, but has remained mostly
open, and to date, positive results are only known for extremal cases.

In this thesis, we present the current results for unit-demand, bi-demand and tri-
demand markets. In the context of these results, we discuss the significance of not having
a deficiency of items, which is known as the (OPT) condition. We outline an approach for
handling an item deficiency, and we expose barriers to extending the known techniques to
markets of larger demand.
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Chapter 1

Introduction

Markets are ubiquitous. Individual consumers, corporations, governments and computer
algorithms ceaselessly interact with them. For this reason and others, abstract markets
have been studied extensively for several decades in the fields of mathematics, economics
and beyond. We study the open question of whether dynamic pricing schemes can achieve
the optimal social welfare in combinatorial markets. To date, positive results are only
known for extremal cases. We investigate how to strengthen the known techniques to
answer the question in multi-demand markets and in markets with a deficiency of items.

A combinatorial market consists of a set of buyers and a set of indivisible items. Every
buyer has a valuation function over subsets of items in the market, and this function
indicates the benefit that each subset of items yields them. We refer to subsets of items as
bundles for convenience. An allocation of a market is an assignment of bundles to buyers
such that every item is assigned to at most one buyer. Given an allocation, its social welfare
is the total benefit that it brings to all the buyers. An allocation is said to be optimal if it
achieves the maximum social welfare among all possible allocations of the market.

As a central coordinator, our goal is to compute prices for the items of the market
that force the buyers to make purchases that will ultimately lead to optimal allocations
of the market. In our model, the buyers are self-interested, and are only concerned with
maximizing their own utility. The hope is that, despite this individualistic behaviour, we
may nevertheless be able to cleverly compute prices for the items of the market such that
the buyers will universally be steered towards purchases that lead to optimal allocations of
the market. Given prices for the items of the market, the utility of a bundle with respect
to a buyer is the buyer’s valuation of that bundle minus its total cost. A bundle is said to
be in demand for a buyer if it achieves the maximum utility among all possible bundles
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that the buyer may purchase. In our model, every buyer will always purchase a bundle
that is in demand for them.

In our purchasing model, the buyers arrive sequentially to the market in some unknown
order. Upon arrival, each buyer purchases an arbitrary bundle that is in demand for them.
Then, they exit the market along with their purchased bundle. At the end of this process,
we obtain an allocation of the market. Our goal is then to compute a pricing scheme for
the items of the market such that the resulting allocation of the market is always optimal,
regardless of the order in which the buyers arrive and regardless of the specific bundles in
demand that they purchase. Such a pricing scheme is said to be optimal.

The setting described above is quite general, and it boasts a comparatively small number
of reasonable assumptions pertaining to the behaviour of buyers in a broad, economic
setting. Thus, it should come as little surprise that these aforementioned pricing schemes
in combinatorial markets are anything but a new concept in the field. In fact, the 19th-
century mathematician Léon Walras has studied such problems as far back as 1896 [10]. In
this work, Walras pioneered the notion of aWalrasian equilibrium. AWalrasian equilibrium
in a combinatorial market is an allocation together with an item pricing scheme such that,
for every buyer in the market, the bundle that is assigned to them by the allocation is also
a bundle that is in demand for them with respect to the pricing scheme. If granted tie-
breaking authority ; that is, the ability to decide on the specific bundle that a given buyer
shall purchase when multiple bundles are in demand for them, then a Walrasian pricing
scheme is also an optimal pricing scheme for the market. Moreover, previous work by Kelso
and Crawford in [7] has shown that Walrasian equilibria exist in arbitrary markets that
admit gross substitutes valuation functions. However, in our model, we are not granted
the power to reconcile ties. In [4], Cohen-Addad et al. show that without this tie-breaking
power, Walrasian prices can lead to arbitrarily bad social welfare.

In addition, the work presented in [4] demonstrates that without tie-breaking authority,
any static pricing scheme; that is, a pricing scheme that is computed once and cannot be
updated, cannot yield more than 2/3 of the optimal social welfare in general. To illustrate
this phenomenon, we present a detailed example that exposes the shortcomings of these
static pricing schemes. However, we first need to introduce the concept of a multi-demand
market.

A multi-demand market is a combinatorial market in which each buyer has a demand,
and this demand indicates the maximum number of items that the buyer may purchase
from the market. In addition, each buyer values single items in this setting and, for each
bundle, the buyer’s valuation of that bundle is the sum of their valuations of the individual
items in the bundle. Remark that in this setting, every allocation of the market cannot
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Figure 1.0.1: A market that does not admit an optimal static pricing scheme.

assign more items to a buyer than their demand allows for.

Now, returning to our aforementioned example, we consider a multi-demand combi-
natorial market with buyers {i1, i2, i3}, items {t1, t2, t3} and singleton valuations as given
in Figure 1.0.1. Also, every buyer has demand one. That is, every buyer can purchase
a maximum of one item. It follows that market has exactly two optimal allocations, and
each of them achieves a social welfare of 3. Indeed, one optimal allocation assigns item
tj to buyer ij for all j ∈ [3], and the other optimal allocation assigns item tj+1 to buyer
ij for all j ∈ [3], where t4 := t1. Suppose for a contradiction that p is an optimal static
pricing scheme for this market. Without tie-breaking authority, it follows that we must
have ptj < 1 for all j ∈ [3] to incentivize the buyers to purchase non-empty bundles. With-
out loss of generality, suppose pt1 ≥ pt2 ≥ pt3 . Now, suppose the buyer i3 arrives first to
the market. Then, they may purchase the bundle {t3}, since this bundle is in demand for
them. Similarly, if the buyer i1 arrives next, then they may purchase the bundle {t2}. But
then, regardless of whether the buyer i2 purchases the bundle {t1} or purchases the bundle
∅, it follows that the resulting allocation achieves a sub-optimal social welfare of 2. Hence,
this market does not admit an optimal static pricing scheme.

The above example reveals that, even in very simple markets such as the one presented
above, static pricing schemes may fail to achieve more that 2/3 of the optimal social welfare.
To address this limitation, we instead consider dynamic pricing schemes, in which we may
update the prices of the items after each buyer completes their purchase. In the previous
example, after i3 purchases {t3}, for instance, then we can set pt1 := 0.5 and pt2 := 0.9.
Then, these updated prices will steer the next buyer toward an optimal allocation of the
market. In fact, the market in Figure 1.0.1 does admit an optimal dynamic pricing scheme.

Currently, it is an open question whether dynamic pricing schemes can achieve the
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optimal social welfare in general combinatorial markets that admit gross substitutes val-
uation functions. Informally, we say that a buyer’s valuation function is gross substitutes
if increasing the prices of some of the items does not cause the buyer to lose interest in
purchasing their previously-preferred items whose prices have not been increased. For fur-
ther discussion on gross-substitutes functions, their formal definition and their properties,
we refer the reader to [8]. The restriction to gross substitutes functions is crucial, as Gul
and Stacchetti in [6] and Berger et al. in [3] show that dynamic pricing schemes cannot
be optimal, in general, whenever the market contains a non-gross substitutes valuation
function.

Within the framework of multi-demand markets, positive results are known only for
specific cases: every buyer has demand at most three; there are at most four buyers in
the market; and there are at most two optimal allocations of the market [9]. Furthermore,
these results assume the (OPT) condition, which is the requirement that in every optimal
allocation, no buyer may receive less than their demand. The (OPT) condition is formally
presented in Definition 2.0.2. An open question that our research failed to answer and which
continues to interest us is whether optimal dynamic pricing schemes exist in multi-demand
markets in which every buyer has demand at most four. Another direction to consider is to
remove the (OPT) condition. In [5], Szögi gives a reduction to markets which satisfy the
(OPT) condition for the case where every buyer has demand two. Their algorithm relies on
a specific method of obtaining optimal prices for the reduced (OPT) case. Hence, we refer
to this reduction as a “white-box” reduction. In contrast, a “black-box” reduction does
not rely on any particular method of obtaining optimal prices in the reduced (OPT) case.
The existence of such a black-box reduction to the (OPT) case remains an open problem.

The remainder of this thesis is organized as follows: In Chapter 2, we formally introduce
the setting of our problem, and we present some results from the current literature. Next,
in Chapter 3, we present a simplification of our problem that was first devised by Bérczi
et al. in [1], and we use this reduction to prove the existence of optimal dynamic pricing
schemes in three classes of multi-demand markets that satisfy the (OPT) condition: unit-
demand markets, bi-demand markets and tri-demand markets. The unit-demand case was
first solved by Cohen-Addad et al. in [4], the bi-demand case was first solved by Bérczi
et al. in [1] and the tri-demand case was first solved by Pashkovich and Xie in [9]. Our
aim is to provide a coherent, unified view of these three independent results and to expose
the challenges associated with increasing the buyers’ demands. Then, in Chapter 4, we
investigate the consequences of removing the (OPT) condition. We present some tools that
can help us handle this new setting and we give a black-box reduction for a specific case of
multi-demand markets. Finally, in Chapter 5, we briefly discuss three open problems, and
we present some barriers that naturally arise when trying to extend the known techniques.
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Chapter 2

Preliminaries

In this chapter, we present some results from the current literature on dynamic pricing
schemes. We also lay out our notation and explain the conventions that we will adopt.

Formally, we consider a multi-demand combinatorial marketM with buyers I and items
T. For each buyer i ∈ I, their demand is bi ∈ Z+ and their valuation function over singleton
sets of items is vi : T → R+. Then, for a bundle X ⊆ T, we have vi(X) =

∑
t∈X vi(t). An

allocation A of the market M is an assignment of bundles to buyers A = {Ai ⊆ T : i ∈ I}
such that |Ai| ≤ bi for every buyer i ∈ I and such that Ai ∩ Aj = ∅ for all buyers
i, j ∈ I such that i ̸= j. In other terms, every buyer i ∈ I receives at most bi items,
and every item is assigned to at most one buyer. The social welfare of an allocation is
then SW (A) :=

∑
i∈I vi(Ai). This is the total benefit that the allocation brings to all

the buyers. Given a pricing scheme p : T → R for the items of the market, the utility
of a bundle X ⊆ T with respect to a buyer i ∈ I is ui(X, p) := vi(X) − p(X), where
p(X) :=

∑
t∈X p(t) is the total cost of the bundle X. Then, a bundle X is in demand for

a buyer i if X ∈ argmax Y⊆T
|Y |≤bi

ui(Y, p).

We proceed to present an LP-based approach for computing optimal dynamic pricing
schemes that is used in both [1] and in [9]. To begin, we form themarket graph of the market
M. The market graph of the market M , denoted by H, is the complete bipartite graph
with partition sets I and T and whose edge weights are given by the buyers’ valuations.
That is, wit := vi(t) for every buyer i ∈ I and for every item t ∈ T . Note that Figure
1.0.1 is an example of a market graph. Then, we formulate the problem of maximizing the
social welfare in the market M as the following LP relaxation together with its dual:
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max
∑

i∈I
∑

t∈T witxit min
∑

i∈I biyi +
∑

t∈T yt
s.t.

∑
t∈T xit ≤ bi ∀i ∈ I s.t. yi + yt ≥ wit ∀i ∈ I, t ∈ T∑
i∈I xit ≤ 1 ∀t ∈ T y ≥ 0

0 ≤ x ≤ 1

The above problem is the maximum weight b-matching problem, where we set bt := 1
for all items t ∈ T . The constraints ensure that every buyer i ∈ I receives at most bi items
and that every item is allocated to at most one buyer. Thus, optimal integral solutions to
the above LP are in a one-to-one correspondence with optimal allocations of the market
M. We proceed to introduce the concept of item legality :

Definition 2.0.1. For every buyer i ∈ I and for every item t ∈ T , we say that the edge
it ∈ E(H) is legal if there exists an optimal allocation A = {Aj ⊆ T : j ∈ I} of the market
M such that t ∈ Ai. Moreover, we say that the item t is legal for the buyer i, and we write
LM(i) := {r ∈ T : item r is legal for buyer i} to denote the set of items in the market M
that are legal for the buyer i.

Next, we show how to encode the legality of every buyer-item pair in the market M
with a specific dual solution:

Claim 2.0.1. There exists an optimal solution ỹ to the dual LP presented above such that
the following two conditions hold:

(i) For every buyer i ∈ I and for every item t ∈ T , the edge it ∈ E(H) is legal if and
only if ỹi + ỹt = wit.

(ii) For every vertex v ∈ I ∪ T, we have ỹv = 0 if and only if there exists a maximum-
weight b-matching F of the market graph H such that degF (v) < bv. Equivalently,
if there exists an optimal allocation of the market M such that either the buyer v
receives less than bv items, or such that the item v is not allocated to any buyer.

Proof. The result follows by applying strict complementarity to the above primal-dual
pair of LP’s. The complementary slackness conditions are (xit = 0 or yi + yt = wit) and
(yi = 0 or

∑
t∈T xit = bi) and (yt = 0 or

∑
i∈I xit = 1.) Strict complementarity ensures the

existence of a primal-dual pair of optimal solutions that satisfy the above complementary
slackness conditions where every “or” is replaced with “exclusive or.” This yields the desired
properties.

Next, we define the (OPT) condition:

6



Definition 2.0.2. A multi-demand market M satisfies the (OPT) condition if every buyer
i ∈ I receives exactly bi items in every optimal allocation of the market M.

The (OPT) condition is useful because it implies ỹi > 0 for all buyers i ∈ I, where
ỹ is the dual solution from Claim 2.0.1. The practicality of this will become apparent in
Section 3.1, as it plays a key role in the reduction we present. In Chapter 4, we discuss some
approaches to handling multi-demand markets that do not satisfy the (OPT) condition.

In [1], Bérczi et al. give a polynomial-time algorithm for computing the dual solution ỹ
in Claim 2.0.1. Then, assuming the (OPT) condition, these authors reduce the problem of
finding an optimal dynamic pricing scheme to that of finding an adequate ordering. This
an ordering σ : T → {1, . . . , |T |} of the items of the market M such that, for each buyer
i ∈ I, there exists an optimal allocation which assigns to the buyer i the first bi items
(according to the ordering σ) that are legal for them. We present this reduction in Section
3.1, but with a different perspective that is based on properties of the buyers’ valuation
functions.

In the case where every buyer is unit-demand; that is, when bi = 1 for all buyers i ∈ I,
then the reduction presented in [1] instantly gives an optimal dynamic pricing scheme
for the market M. This is a much simpler proof than the one formerly presented in [4].
Indeed, in the unit-demand case, every ordering of the items is adequate because every
legal edge is contained in an optimal allocation of the market by definition of item legality.
However, when buyers’ demands are increased to two, computing an adequate ordering is
significantly more difficult because not every pair of legal edges is necessarily contained
in an optimal allocation of the market. The authors of [1] still manage to find such an
adequate ordering, and their high-level approach is to use the legality graph of the market
M. The legality graph of the market M , denoted by G, is the bipartite graph with partition
sets I and T and whose edges are precisely the legal edges of the market graphH. Assuming
the (OPT) condition, and assuming that the number of items in the market coincides with
the buyers’ total demand, an assumption that is justified by Claim 2.0.2, it follows that
optimal allocations of the market M are in a one-to-one correspondence with b-factors
of the legality graph G. The authors of [1] proceed to consider structures in the legality
graph G which arise from pairs of legal edges that are not contained in any b-factor of the
graph G. By Hall’s theorem, these edges enable a splitting of the market into two smaller
markets. The authors apply induction on these smaller markets, and then combine the
two smaller adequate orderings into one global adequate ordering of the original market.

The authors of [9] prove the existence of optimal dynamic pricing schemes in the case
where every buyer has demand at most three. Their high-level approach is very similar to
the one used in [1]. However, increasing the buyers’ demands to three requires a stronger
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induction hypothesis: that for any item t ∈ T , there exists an adequate ordering in which
the item t is placed first. Without this strengthening of the induction hypothesis, the
adequate orderings that are obtained from the two smaller markets may not be able to be
combined into a global adequate ordering of the original market.

To continue, we note the following convention that we will adopt: Whenever we prove
the optimality of a dynamic pricing scheme p, we simply prove that for every buyer i ∈ I,
every bundle that is in demand for the buyer i with respect to the prices p extends to an
optimal allocation of the market. This is sufficient because, after the first buyer arrives and
completes their purchase, we obtain a smaller instance of a multi-demand market in which
item prices may be recomputed. Then, induction may be applied to obtain the subsequent
item prices.

Next, we introduce the following notation that will be convenient when we discuss how
to combine two smaller pricing schemes into a larger pricing scheme:

Definition 2.0.3. Given a pricing scheme p : T → R and given two disjoint subsets of
items S1, S2 ⊆ T, we write S1 <p S2 to indicate ps1 < ps2 for all items s1 ∈ S1, s2 ∈ S2.

Next, given an allocation A of the market M, we define two properties that we essen-
tially always want the allocation to have:

Definition 2.0.4. Given an allocation A = {Aj ⊆ T : j ∈ I} of the market M, we say
that the allocation A respects legality if Aj ⊆ LM(j) for all buyers j ∈ I. We say that the
allocation A respects demand if |Aj| ≤ bj for all buyers j ∈ I.

Now, we introduce two definitions that will be referenced throughout the technical
chapters to come. These definitions may seem mysterious at the moment, but they will be
motivated in Chapter 5 when we discuss possible generalizations of the arguments to be
presented:

Definition 2.0.5. A bundle B ⊆ T is said to be flexible in the market M if every partial
assignment of items in B to buyers in I that respects both legality and demand in the
market M extends to an optimal allocation of the market M .

Definition 2.0.6. We write kM := minB⊆T{|B| : B is not flexible in the market M} to
denote the smallest size of a bundle that is not flexible in the market M . Note that kM ≥ 2.
Also, note that it is possible to have kM = ∞.

Next, we show that for a multi-demand market M, we may assume every item is allo-
cated to some buyer in each of its optimal allocations:

8



Claim 2.0.2. Let M be a multi-demand market. If there exist optimal dynamic pricing
schemes for multi-demand markets where all items are allocated in every optimal allocation,
then there exists an optimal dynamic pricing scheme for the market M.

Proof. Let A be an optimal allocation of the market M, and let T ∗ denote the set of items
which are not assigned by the allocation A to any buyer in the market M. Let M ′ be
the market with buyers I, items T \ T ∗ and the same demands b and valuations v as the
original market M. Observe that every optimal allocation of the market M ′ is an optimal
allocation of the market M. We iterate this process as many times as necessary until we
obtain a market M ′′, say with items T \ T †, which satisfies the requirement that each of
its items is allocated to some buyer in each of its optimal allocations. Then, we again
have that every optimal allocation of the market M ′′ is an optimal allocation of the market
M. Now, suppose p′′ is an optimal dynamic pricing scheme for the market M ′′. Then, we
construct a pricing scheme p for the original market M as follows:

pt :=

{
p′′t if t ∈ T \ T †

max i∈I
t∈T

{vi(t)}+ 1 if t ∈ T † ∀t ∈ T.

By construction, we have ui(t, p) < 0 for every buyer i ∈ I and for every item t ∈ T †.
Hence, for every buyer i ∈ I, the bundles that are in demand for the buyer i with respect
to the prices p are precisely the bundles that are in demand for the buyer i with respect to
the prices p′′. Thus, if we impose the prices p on the market M and the buyer i arrives first,
then they will purchase a bundle which, by optimality of the dynamic pricing scheme p′′,
extends to an optimal allocation of the market M ′′. Since every optimal allocation of the
market M ′′ is an optimal allocation of the market M, it follows that the dynamic pricing
scheme p is an optimal dynamic pricing scheme for the original market M, as desired.
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Chapter 3

Dynamic Pricing in Multi-Demand
Markets With (OPT)

In this chapter, we investigate the existence of optimal dynamic pricing schemes in multi-
demand markets which satisfy the (OPT) condition. Recall that the (OPT) condition is
the requirement that every optimal allocation of the market M assigns exactly bi items
to every buyer i ∈ I. Remark that if a market M satisfies the (OPT) condition, then it
follows that |T | ≥ b(I), where b(I) :=

∑
i∈I bi is the total demand of all the buyers. By

Claim 2.0.2, we may further assume |T | = b(I). In Section 3.1, we present a reduction
to multi-demand markets which have very specific valuation functions. This reduction
enables us to link buyers’ valuations to optimal allocations of the market, which will prove
to be quite useful in our task of proving the existence of optimal dynamic pricing schemes.
A version of this reduction was first shown by Bérczi et al. in [1]. After proving the
correctness of this reduction, in Section 3.2, we proceed to prove the existence of optimal
dynamic pricing schemes in “unit-demand” markets, i.e. multi-demand markets in which
every buyer’s demand is equal to one. This result was first proved by Cohen-Addad et al.
in [9] using a different method. The result follows immediately from the aforementioned
reduction in Section 3.1. Next, in section 3.3, we prove the existence of optimal dynamic
pricing schemes in “bi-demand” markets, i.e. multi-demand markets in which every buyer’s
demand is at most two. This result was first proved by Bérczi et al. in [1]. This case is more
intricate, and it involves subdividing the market into two smaller submarkets which admit
optimal dynamic pricing schemes by induction, and then combining these two smaller
pricing schemes in a suitable way to obtain an optimal dynamic pricing scheme for the
original market. Finally, in Section 3.4, we prove the existence of optimal dynamic pricing
schemes in “tri-demand” markets, i.e. multi-markets in which every buyer’s demand is at
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most three. This result was first proved by Pashkovich and Xie in [9]. This case is more
complicated than the bi-demand case because it admits two distinct scenarios that lead
to the aforementioned splitting of the market. In addition, the tri-demand case requires
a stronger induction hypothesis. Although more complicated than the bi-demand case,
almost all of the proofs of the intermediate results that we present in the tri-demand
case are natural extensions of their analogues in the bi-demand case. Hopefully, these
parallelisms succeed at illustrating how one could hope to generalize the method we will
present to allow for arbitrary buyer demands in multi-demand markets. However, our
method also exposes some barriers to such a generalization.

3.1 Reduction to Markets With the (∗) Condition

In this section, we present a reduction of the problem of finding optimal dynamic pricing
schemes in multi-demand markets satisfying the (OPT) condition to multi-demand markets
which have very specific valuation functions. This criterion, which we will refer to as the
(∗) condition, is presented below:

Definition 3.1.1. A market M satisfies the (∗) condition if its valuations are as follows:

vi(t) =

{
1 if t ∈ LM(i)

0 if t /∈ LM(i)
∀i ∈ I, t ∈ T.

Intuitively, these values correspond to the support of the legality graph G. As a pre-
liminary step to the reduction, we prove the following claim:

Claim 3.1.1. If there exists an optimal dynamic pricing scheme for a multi-demand market
M satisfying the (OPT) condition, then there exists an optimal dynamic pricing scheme
for the market M such that every item has a unique price.

Proof. Let p be an optimal dynamic pricing scheme for the market M , and suppose there
exist items x, y ∈ T such that x ̸= y and px = py. The idea of our proof is to slightly
increase the value of px so that it becomes unique, but also to increase px by a small enough
value so that we preserve the optimality of the pricing scheme p.

Next, we define the following quantity:

ϵ := min i∈I
t∈T

{ui(x, p)− ui(t, p) : ui(x, p) > ui(t, p)}.

11



Intuitively, the value of ϵ is the minimum amount by which a buyer i ∈ I strictly prefers
the item x to another item in the market M with respect to the prices p.

We also define the following quantity:

δ :=

{
1 if px ∈ argmaxt∈T{pt}
mint∈T{pt − px : pt > px} otherwise

.

Intuitively, the value of δ is the minimum amount by which an item t ∈ T is priced higher
than the item x, if such a value exists, and it is equal to one otherwise. Note that ϵ, δ > 0.
We proceed to consider two cases:

Case 1 ϵ = ∞. That is, no buyer in the market M strictly prefers the item x to another
item in the market M. In this case, we define the following modified pricing scheme:

pnewt :=

{
pt if t ̸= x

pt + δ/2 if t = x
∀t ∈ T.

Let i ∈ I be a buyer. We may assume |T | > bi, as otherwise, we have I = {i}, and
computing an optimal dynamic pricing scheme with unique prices is trivial in this case.
Next, since ϵ = ∞, it follows by the (OPT) condition that there exist bi distinct items
{t1, . . . , tbi} ⊆ T \ {x} such that ui(tj, p) ≥ u(x, p) for all j ∈ [bi]. To prove that this new
pricing scheme pnew is optimal for the market M, we show that every bundle in demand for
the buyer i with respect to the new prices pnew is also a bundle in demand for the buyer i
with respect to the original (optimal) prices p. The optimality of the pricing scheme pnew

follows.

Let B ⊆ T be a bundle in demand for the buyer i with respect to the prices pnew.
Recall that for every index j ∈ [bi], we have:

ui(tj, p
new) = ui(tj, p) ≥ ui(x, p) > ui(x, p

new).

Hence, we have x /∈ B. It follows that ui(B, pnew) = ui(B, p). Suppose for a contradiction
that the bundle B is not in demand for the buyer i with respect to the original prices p.
Then, there exists a bundle C ⊆ T such that ui(C, p) > ui(B, p). For every index j ∈ [bi]
we have ui(tj, p) ≥ ui(x, p), so we may assume x /∈ C. Thus, we have:

ui(B, pnew) = ui(B, p) < ui(C, p) = ui(C, p
new).

This contradicts our assumption that the bundle B is in demand for the buyer i with

12



respect to the new prices pnew. In conclusion, the bundle B is in demand for the buyer i
with respect to the original prices p. Hence, the modified pricing scheme pnew is an optimal
dynamic pricing scheme for the market M . Moreover, the modified pricing scheme pnew

has exactly one more item with a unique price than the original pricing scheme p does
because the value of pnewx is unique by our choice of δ.

Case 2 0 < ϵ < ∞. In this case, we define the following modified pricing scheme:

pnewt :=

{
pt if t ̸= x

pt +min{ϵ/2, δ/2} if t = x
∀t ∈ T.

Let i ∈ I be a buyer. We proceed as in the previous case, and we again show the corre-
spondence between bundles in demand for the buyer i with respect to the original prices p
and bundles in demand for the buyer i with respect to the new prices pnew.

Let B ⊆ T be a bundle in demand for the buyer i with respect to the new prices pnew.
Suppose for a contradiction that the bundle B is not in demand for the buyer i with respect
to the original prices p. Then, there exists a bundle C ⊆ T such that ui(C, p) > ui(B, p).
Suppose first that x ∈ B. Then, we have:

ui(B, pnew) = ui(B, p)−min{ϵ/2, δ/2}
< ui(C, p)−min{ϵ/2, δ/2}
≤ ui(C, p

new).

This contradicts our assumption that the bundle B is in demand for the buyer i with
respect to the new prices pnew. Thus, we have x /∈ B. It follows that there exist bi distinct
items {t1, . . . , tbi} ⊆ T \ {x} such that ui(tj, p

new) ≥ ui(x, p
new) for all j ∈ [bi]. Moreover,

for each index j ∈ [bi], we have:

ui(tj, p) = ui(tj, p
new)

≥ ui(x, p
new)

= ui(x, p)−min{ϵ/2, δ/2}
> ui(x, p)− ϵ.

Thus, we have ui(x, p) − ui(tj, p) < ϵ. If ui(x, p) > ui(tj, p), then by definition of the
quantity ϵ, we have ui(x, p)− ui(tj, p) ≥ ϵ. Hence, we must have ui(x, p) ≤ ui(tj, p). Since
this inequality holds for each index j ∈ [bi], we may assume x /∈ C. Then, we obtain:

ui(B, pnew) = ui(B, p) < ui(C, p) = ui(C, p
new).

13



This again contradicts our assumption that the bundle B is in demand for the buyer i with
respect to the new prices pnew. In conclusion, the bundle B is in demand for the buyer i
with respect to the original prices p. Hence, the modified pricing scheme pnew is an optimal
dynamic pricing scheme for the market M . Moreover, the modified pricing scheme pnew

again has exactly one more item with a unique price than the original pricing scheme p
does because the value of pnewx is again unique by our choice of δ.

In each of the above cases, we may update the initial optimal dynamic pricing scheme
p to obtain a new optimal dynamic pricing scheme pnew that has exactly one more item
with a unique price than the original pricing scheme p does. Repeating this process as
many times as necessary, we ultimately obtain an optimal dynamic pricing scheme for the
market M such that every item has a unique price, completing the proof of the claim.

Next, we proceed to reduce the problem of finding optimal dynamic pricing schemes in
multi-demand markets satisfying the (OPT) condition to the problem of finding optimal
dynamic pricing schemes in markets that satisfy the (∗) condition:

Lemma 3.1.1. Let M be a multi-demand market satisfying the (OPT) condition. If there
exist optimal dynamic pricing schemes for markets satisfying the (∗) condition, then there
exists an optimal dynamic pricing scheme for the market M .

Proof. Let M be a multi-demand market satisfying the (OPT) condition. By Claim 2.0.2,
we may assume |T | = b(I). Let ỹ be a dual solution for the market graph H as provided
by Claim 2.0.1. Then, we form an auxiliary market M ′ with the same buyers I, the same
items T, the same demands b and the following valuations v′ :

v′i(t) =

{
1 if t ∈ LM(i)

0 if t /∈ LM(i)
∀i ∈ I, t ∈ T.

Recall that the legality of every buyer-item pair can be computed via ỹ. Note that optimal
allocations of the auxiliary market M ′ are precisely optimal allocations of the original
market M. Thus, the auxiliary market M ′ satisfies both the (OPT) condition and the (∗)
condition.

Now, suppose p′ is an optimal dynamic pricing scheme for the auxiliary market M ′. By
Claim 3.1.1, we may assume the pricing scheme p′ has unique values, so we can order
the items of our market in increasing order of their prices. Let us call this ordering
σ : T → {1, . . . , |T |}. That is, σ(x) > σ(y) if and only if p′x > p′y. Now, we define
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the following quantity:

α := min
{
min i∈I

t∈T
{ỹi + ỹt − wit : it is not legal},minv∈I∪T{ỹv : ỹv > 0}

}
.

Recall that ỹv ̸= 0 for all v ∈ I ∪ T by the (OPT) condition, so the requirement ỹ > 0
is not necessary in the above definition of the quantity α. However, this requirement will
become relevant in Chapter 4 when we no longer assume the (OPT) condition. Note also
that α > 0. Next, we define prices p for the market M as follows:

pt := ỹt +
α

|T |+ 1
σ(t) ∀t ∈ T.

For the remainder of the proof of Lemma 3.1.1, we write u for the utility with respect
to the market M and we write u′ for the utility with respect to the auxiliary market M ′. In
the following claim, we show that legal items have strictly positive utility for every buyer
i ∈ I:

Claim 3.1.2. Let i ∈ I be a buyer and let t ∈ T be an item such that t ∈ LM(i). Then,
we have ui(t, p) > 0.

Proof.

ui(t, p) = wit −
(
ỹt +

α

|T |+ 1
σ(t)

)
= ỹi −

α

|T |+ 1
σ(t) by Claim 2.0.1 (i)

≥ ỹi − α
|T |

|T |+ 1
since σ(t) ≤ |T |

> ỹi − α since α > 0

≥ 0 by (OPT), Claim 2.0.1 (ii) and our choice of α.

In conclusion, we have ui(t, p) > 0, as desired.

Next, we show that every buyer i ∈ I strictly prefers legal items to non-legal items in
the market M :

Claim 3.1.3. Let i ∈ I be a buyer and let t1, t2 ∈ T be items such that t1 ∈ LM(i) and
t2 /∈ LM(i). Then, we have ui(t1, p) > ui(t2, p).
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Proof.

ui(t1, p)− ui(t2, p)

=

[
wit1 −

(
ỹt1 +

α

|T |+ 1
σ(t1)

)]
−
[
wit2 −

(
ỹt2 +

α

|T |+ 1
σ(t2)

)]
= (ỹi + ỹt2 − wit2) +

α

|T |+ 1
(σ(t2)− σ(t1)) by Claim 2.0.1 (i)

≥ α +
α

|T |+ 1
(σ(t2)− σ(t1)) by definition of α

> α− α
|T |

|T |+ 1
since σ(t2) ≥ 1 and σ(t1) < |T |+ 1

> 0 since α > 0.

In conclusion, we have ui(t1, p) > ui(t2, p), as desired.

Lastly, we show that the preferences between legal items for every buyer i ∈ I are the
same in both the market M and the market M ′ :

Claim 3.1.4. Let i ∈ I be a buyer and let t1, t2 ∈ T be distinct items such that t1, t2 ∈
LM(i). Then, we have ui(t1, p) > ui(t2, p) if and only if u′

i(t1, p
′) > u′

i(t2, p
′).

Proof. Consider:

ui(t1, p) > ui(t2, p)

⇐⇒ wit1 −
(
ỹt1 +

α

|T |+ 1
σ(t1)

)
> wit2 −

(
ỹt2 +

α

|T |+ 1
σ(t2)

)
⇐⇒ ỹi −

α

|T |+ 1
σ(t1) > ỹi −

α

|T |+ 1
σ(t2) by Claim 2.0.1 (i)

⇐⇒ σ(t1) < σ(t2)

⇐⇒ p′t1 < p′t2
⇐⇒ v′i(t1)− p′t1 > v′i(t2)− p′t2 since v′i(t1) = v′i(t2) = 1

⇐⇒ u′
i(t1, p

′) > u′
i(t2, p

′).
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Thus, we have ui(t1, p) > ui(t2, p) if and only if u′
i(t1, p

′) > u′
i(t2, p

′), as desired.

Now, let B ⊆ T be a bundle in demand for the buyer i with respect to the prices p.
By the previous three claims, it follows that the bundle B consists of the first bi items
(with respect to the ordering σ) that are legal for the buyer i. Since the auxiliary market
M ′ satisfies the (OPT) condition, it follows that the bundle B is the unique bundle in
demand for the buyer i with respect to the prices p′. By optimality of the pricing scheme
p′, it follows that the assignment of the bundle B to the buyer i extends to an optimal
allocation A of the auxiliary market M ′. Moreover, the allocation A is also an optimal
allocation of the original market M. Hence, the pricing scheme p is an optimal pricing
scheme for the original market M, completing the proof of the lemma.

To close Section 3.1, we present a specific example of a multi-demand market, and we
apply the reduction in Lemma 3.1.1 to it. Consider the multi-demand market M1 shown in
Figure 3.1.1. In this instance, every buyer has demand two. An optimal dual solution, as
provided by Claim 2.0.1, is given in Figure 3.1.2. Here, every node’s label is replaced by its
dual value and the tight edges of the market graph are thickened. One can verify that the
market M1 has exactly two optimal allocations, and these are both shown in Figure 3.1.3.
Each optimal allocation achieves a social welfare of 31, and this is equal to the objective
value of the aforementioned dual solution. Finally, the auxiliary market M ′

1 for the market
M1 is shown in Figure 3.1.4.

Next, we give the following optimal dynamic pricing scheme p′ for the auxiliary market
M ′

1 in Figure 3.1.4:

p′t1 = 0.4 < p′t5 = 0.5 < p′t2 = 0.6 < p′t6 = 0.7 < p′t3 = 0.8 < p′t4 = 0.9.

One can verify the optimality of the above pricing scheme p′ for the market M ′
1. Then,

using the dual solution from Figure 3.1.2, we have α = 1. Finally, employing the formula
pt := ỹt+

α
|T |+1

σ(t), we compute the corresponding dynamic pricing scheme p for the market
M1 :

pt1 =
15

7
< pt5 =

16

7
< pt2 =

24

7
< pt6 =

25

7
< pt4 =

27

7
< pt3 =

33

7
.

One can verify the optimality of the above pricing scheme p for the market M1.
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Figure 3.1.1: A multi-demand market M1 with bi1 = bi2 = bi3 = 2.
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Figure 3.1.2: An optimal dual solution for the market M1 as provided by Claim 2.0.1.
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Figure 3.1.3: Optimal allocations of the market M1.
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Figure 3.1.4: The auxiliary market M ′
1 for the market M1.
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3.2 Unit-Demand Markets

In this section, we show that optimal dynamic pricing schemes exist in unit-demand mar-
kets.

Lemma 3.2.1. Let M be a multi-demand market satisfying the (OPT) condition and
suppose bi = 1 for all buyers i ∈ I. Then, there exists an optimal dynamic pricing scheme
for the market M.

Proof. First, we may assume the market M satisfies the (∗) condition by Lemma 3.1.1.
Then, we define the following pricing scheme p for the market M :

pt := 0.5 ∀t ∈ T.

Suppose the buyer i ∈ I arrives first to the market. Then, we have:

ui(t, p) =

{
0.5 if t ∈ LM(i)

−0.5 if t /∈ LM(i)
∀t ∈ T.

Since bi = 1, it follows that the buyer i will purchase an arbitrary item t ∈ T that is legal
for them. Note that such an item exists by the (OPT) condition. Moreover, the assignment
of the item t to the buyer i extends to an optimal allocation of the market M by definition
of legality. Thus, the pricing scheme p is optimal, as desired.

3.3 Bi-Demand Markets

In this section, we show that optimal dynamic pricing schemes exist in bi-demand markets.

Lemma 3.3.1. Let M be a multi-demand market satisfying the (OPT) condition and
suppose bi ≤ 2 for all buyers i ∈ I. Then, there exists an optimal dynamic pricing scheme
for the market M .

Proof. To begin, we may assume |T | = b(I) and that the market M satisfies the (∗)
condition by the previous results.

Suppose first that kM ≥ 3. Then, we define the following pricing scheme:

pt := 0.5 ∀t ∈ T.

20



As in the unit-demand case, if the buyer i ∈ I arrives first to the market, then they will
purchase an arbitrary bundle B ⊆ T such that |B| = bi and such that B ⊆ LM(i). Again,
note that such a bundle B exists by the (OPT) condition. Moreover, since kM > 2, it
follows that every bundle of size at most two is flexible in the market M. As bi ≤ 2, it
follows that the assignment of the items in the bundle B to the buyer i extends to an
optimal allocation of the market M . Hence, p is an optimal dynamic pricing scheme for
the market M, completing the proof of Lemma 3.3.1.

Thus, we may assume kM = 2. In this case, we proceed by induction on the number of
buyers in the market and, subject to this quantity, we proceed by induction on the number
of items in the market.

Since kM = 2, it follows that there exists a bundle of size two that is not flexible in
the market M . Let {t∗1, t∗2} ⊆ T be such a bundle, and let i∗1, i

∗
2 ∈ I be buyers such that

the assignment of item t∗1 to buyer i∗1 and item t∗2 to buyer i∗2 respects both legality and
demand in the market M but does not extend to an optimal allocation of the market M .
Note that it may be the case that i∗1 = i∗2. Let G

′ be the graph obtained from the legality
graph G by decreasing the b-values of each of the vertices i∗1, i

∗
2, t

∗
1, t

∗
2 by one and removing

them if their updated b-value is equal to zero. Let b′ denote the updated b-values of the
vertices in the graph G′. Recall that optimal allocations of the market M are precisely
b-factors of the graph G by the (OPT) condition. Since the above assignment does not
extend to an optimal allocation of the market M , it follows that the graph G′ does not
have a b′-factor. Then, by Hall’s theorem, there exists a set of buyers S ⊆ I such that
|NG′(S)| < b′(S). Among all possible choices of bundles B of size two that are not flexible
in the market M, assignments of the items in the bundle B to buyers in the set I that
do not extend to an optimal allocation of the market M, and sets S satisfying the above
inequality in the resulting graph G′; we select a triple such that the set NG(S) is maximal.
This last condition will be used in the proof of Claim 3.3.4.

At a high level, the above assignment of items to buyers that does not extend to an
optimal allocation of the market M enables a “splitting” of the market M, as portrayed in
Figure 3.3.1. This splitting yields an “upper” market MU (see Figure 3.3.2) and one of two
“lower” markets ML′

(see Figure 3.3.3) or ML (see Figure 3.3.4.) As we will demonstrate,
these smaller markets are useful because they preserve the structure of the initial market
M. Moreover, since these submarkets are strictly smaller than the original market M, we
may apply induction on them to obtain their respective optimal dynamic pricing schemes.
Finally, we combine the smaller pricing schemes into a global pricing scheme for the original
market M.

Next, we proceed to establish some useful properties of the set S :
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Figure 3.3.1: The splitting of the market M .

Claim 3.3.1. We have |NG(S)| = b(S) + 1 and {t∗1, t∗2} ⊆ NG(S). Furthermore, we have
i∗1, i

∗
2 /∈ S.

Proof. Since the graph G has a b-factor, it follows by Hall’s theorem that |NG(S)| ≥ b(S).
Suppose for a contradiction that i∗1, i

∗
2 ∈ S. Then, we have:

|NG′(S)| ≥ |NG(S)| − 2 ≥ b(S)− 2 = b′(S).

This contradicts our assumption that |NG′(S)| < b′(S). Hence, we have i∗1 /∈ S or i∗2 /∈ S.
Without loss of generality, suppose i∗1 /∈ S.

Suppose for a contradiction that t∗1 /∈ NG(S). If i
∗
2 ∈ S, then we have:

|NG′(S)| ≥ |NG(S)| − 1 ≥ b(S)− 1 = b′(S).

This contradicts our assumption that |NG′(S)| < b′(S). Hence, we have i∗2 /∈ S. Then,
the inequality |NG′(S)| < b′(S) implies t∗2 ∈ NG(S) and |NG(S)| = b(S). However, if
|NG(S)| = b(S), then it follows by the (OPT) condition that every optimal allocation of
the market M assigns every item in NG(S) to buyers in S. This contradicts our assumption
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Figure 3.3.2: The upper market MU .

that the item t∗2 ∈ NG(S) is legal for the buyer i∗2 /∈ S. Hence, we have t∗1 ∈ NG(S).

Next, since i∗1 /∈ S and since the item t∗1 ∈ NG(S) is legal for the buyer i∗1, we have
|NG(S)| > b(S). If |NG(S)| ≥ b(S) + 2, then we have:

|NG′(S)| ≥ |NG(S)| − 2 ≥ b(S) ≥ b′(S).

This contradicts our assumption that |NG′(S)| < b′(S). Thus, we have |NG(S)| = b(S)+1.
Finally, the inequality |NG′(S)| < b′(S) implies i∗2 /∈ S and t∗2 ∈ NG(S), completing the
proof of the claim.

Our next step is to define an auxiliary buyer i′ with demand bi′ := 1 and valuations
vi′(t) := 1 if t ∈ NG(S) ∩NG(I \ S) and vi′(t) := 0 otherwise, for all items t ∈ T.

Then, we form the “upper” market MU with buyers S ∪ {i′}, items NG(S), and the
same demands b and valuations v as in the original market M , albeit with an additional
entry for the auxiliary buyer i′. Note that b(S∪{i′}) = b(S)+1 = |NG(S)|, i.e. the number
of items in the upper market MU coincides with its total demand. A schema for the upper
market MU is shown in Figure 3.3.2.

We proceed to show that the legality of every buyer-item pair for each buyer i ̸= i′ in
the upper market MU is the same as its legality in the original market M :

Claim 3.3.2. For every buyer i ∈ S and for every item t ∈ NG(S), we have t ∈ LM(i) if
and only if t ∈ LMU (i).
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Proof. (=⇒) Suppose t ∈ LM(i). Then, there exists an optimal allocation A = {Aj ⊆ T :
j ∈ I} of the market M such that t ∈ Ai. Since |NG(S)| = b(S) + 1, it follows that the
allocation A assigns exactly one item in the set NG(S) ∩ NG(I \ S) to a buyer in the set
I \S. Let x be this item. Then, we define an allocation AU := {AU

j ⊆ NG(S) : j ∈ S∪{i′}}
of the upper market MU as follows:

AU
j :=

{
Aj if j ∈ S

{x} if j = i′
∀j ∈ S ∪ {i′}

Then, we have SW (AU) = b(S) + 1, which is equal to the total demand of the buyers in
the upper market MU . Since every valuation in the upper market MU is at most one, it
follows that the allocation AU is an optimal allocation of the upper market MU . Note
that this also implies that the upper market MU satisfies the (OPT) condition. Moreover,
we have t ∈ AU

i , so it follows that t ∈ LMU (i), as required.

(⇐=) Suppose t ∈ LMU (i). Then, there exists an optimal allocation AU = {AU
j ⊆

NG(S) : j ∈ S ∪ {i′}} of the upper market MU such that t ∈ AU
i . By the proof of the

forward direction, we have SW (AU) = b(S) + 1, which is equal to the total demand of
the upper market MU . Since every valuation in the upper market MU is at most one, it
follows that vi(t) = 1. Moreover, since the market M satisfies the (∗) condition, it follows
that t ∈ LM(i), completing the proof of the claim.

Next, we show that the upper market MU satisfies the (∗) condition:

Claim 3.3.3. The upper market MU satisfies the (∗) condition.

Proof. Let i ∈ S and let t ∈ NG(S). Then, by the previous claim, we have t ∈ LMU (i) ⇐⇒
t ∈ LM(i) ⇐⇒ vi(t) = 1, as required. It remains to show that for the auxiliary buyer i′,
we also have t ∈ LMU (i′) ⇐⇒ vi′(t) = 1.

(=⇒) If t ∈ LMU (i′), then there exists an optimal allocation AU = {AU
j ⊆ NG(S) : j ∈

S∪{i′}} of the upper marketMU such that AU
i′ = {t}. Again, we have SW (AU) = b(S)+1,

which is equal to the total demand of the upper market MU . It follows that vi′(t) = 1, as
required.

(⇐=) Suppose vi′(t) = 1. Then, t ∈ NG(S)∩NG(I \S) by definition. As t ∈ NG(I \S),
there exists a buyer h ∈ I \ S such that t ∈ LM(h). Furthermore, there exists an optimal
allocation A = {Aj ⊆ T : j ∈ I} of the original market M such that t ∈ Ah. Since
|NG(S)| = b(S) + 1, it follows that the item t is the unique item in the set NG(S) that is
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assigned by the allocation A to a buyer in the set I \ S. Thus, we define an allocation
AU := {AU

j ⊆ NG(S) : j ∈ S ∪ {i′}} of the upper market MU as follows:

AU
j :=

{
Aj if j ∈ S

{t} if j = i′
∀j ∈ I.

Then, SW (AU) = b(S) + 1, so the allocation AU is an optimal allocation of the upper
market MU . Moreover, we have t ∈ AU

i′ , so it follows that t ∈ LMU (i′), completing the
proof of the claim.

Next, given that the upper market MU satisfies both the (OPT) condition and the (∗)
condition and preserves the buyer-item legalities from the original market M, we proceed
to show that we may apply induction to obtain an optimal dynamic pricing scheme for the
upper market MU . Since i∗1, i

∗
2 ∈ I \ S, it follows that |I \ S| ≥ 1. If |I \ S| > 1, then

the upper market MU has fewer buyers than the original market M , and we may apply
induction. Otherwise, if |I \ S| = 1, then we have i∗1 = i∗2 and I \ S = {i∗1}. Moreover, we
have bi∗1 = 2. Consider the assignment of item t∗1 to buyer i∗1. This assignment extends to
an optimal allocation A = {Ai ⊆ T : i ∈ I} of the market M , and |Ai∗1

| = bi∗ = 2 by the
(OPT) condition. Also, the item t∗1 is the unique item in the set NG(S) ∩NG(I \ S) that
is assigned by the allocation A to a buyer in the set I \ S, so there must exist an item
x ∈ NG(I \ S) \NG(S) to fulfill the demand of the buyer i∗1. Hence, the upper market MU

has the same number of buyers as the original market M , but it has fewer items than the
original market M , as it does not include the item x. Thus, we may again apply induction.

By induction, there exists an optimal dynamic pricing scheme pU for the upper market
MU . By Claim 3.1.1, we may assume the pricing scheme pU has unique values. Next, let
{x} := argmin{pUt : t ∈ NG(S) ∩ NG(I \ S)}, i.e. the item x is the lowest-priced item
according to the pricing scheme pU that is legal for both a buyer in the set S and a buyer
in the set I \ S.

Claim 3.3.4. For every item y ∈ NG(I \S) \NG(S), every assignment of the items {x, y}
to buyers in the set I \ S that respects both legality and demand in the market M extends
to an optimal allocation of the market M .

Proof. Suppose for a contradiction that there is such an assignment that is not extendable.
Suppose item x is assigned to buyer i and item y is assigned to buyer j, where i, j ∈ I \S.
Let G′′ be the graph obtained from G by decreasing the b-values of each of the vertices
i, j, x, y by one and removing them if their b-value is equal to one. Let b′′ denote the
b-values of the vertices in G′′. By Hall’s theorem, it follows that there exists a subset of
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buyers S ′ ⊆ I such that |NG′′(S ′)| < b′′(S ′). By the same argument that is presented in
the proof of Claim 3.3.1, we have |NG(S

′)| = b(S ′) + 1 and {x, y} ⊆ NG(S
′). Also, we

have i, j /∈ S ′. We proceed to show that |NG(S ∪ S ′)| = b(S ∪ S ′) + 1, contradicting the
maximality of the set NG(S).

First, by Hall’s theorem, we have |NG(S∪S ′)| ≥ b(S∪S ′). If equality holds, then every
optimal allocation of the market M assigns every item in the set NG(S ∪ S ′) to buyers in
the set S ∪ S ′. However, this contradicts our assumption that the item x ∈ NG(S ∪ S ′) is
legal for the buyer i /∈ S ∪ S ′. Hence, we have |NG(S ∪ S ′)| ≥ b(S ∪ S ′) + 1.

Next, we show the reverse inequality. Observe that |NG(S)∩NG(S
′)| ≥ |NG(S ∩S ′)| ≥

b(S ∩ S ′), where the second inequality follows by Hall’s theorem. Moreover, we have
x ∈ NG(S)∩NG(S

′). If x /∈ NG(S∩S ′), then we obtain |NG(S)∩NG(S
′)| ≥ |NG(S∩S ′)|+

1 ≥ b(S ∩ S ′) + 1 (†). Otherwise, if x ∈ NG(S ∩ S ′), then suppose for a contradiction that
|NG(S ∩ S ′)| = b(S ∩ S ′). It follows that every optimal allocation of the market M assigns
every item in the set NG(S ∩S ′) to buyers in the set S ∩S ′. However, this contradicts our
assumption that the item x ∈ NG(S ∩ S ′) is legal for the buyer i /∈ S ∩ S ′. Thus, we again
have |NG(S) ∩NG(S

′)| ≥ |NG(S ∩ S ′)| ≥ b(S ∩ S ′) + 1 (†). Now, consider:

|NG(S ∪ S ′)| = |NG(S) ∪NG(S
′)|

= |NG(S)| ∪ |NG(S
′)| − |NG(S) ∩NG(S

′)|
= (b(S) + 1) + (b(S ′) + 1)− |NG(S) ∩NG(S

′)|
= b(S ∪ S ′) + b(S ∩ S ′) + 2− |NG(S) ∩NG(S

′)|
≤ b(S ∪ S ′) + b(S ∩ S ′) + 2− b(S ∩ S ′)− 1 by (†)
= b(S ∪ S ′) + 1.

In conclusion, we have |NG(S ∪S ′)| = b(S ∪S ′)+1. Moreover, since i, j /∈ S ∪S ′ and since
{x, y} ⊆ NG(S ∪ S ′), it follows that |NG′′(S ∪ S ′)| < b′′(S ∪ S ′). Furthermore, we have
NG(S) ⊆ NG(S ∪ S ′) and y ∈ NG(S ∪ S ′) \NG(S). Now, consider our three choices of the
bundle {x, y} that is not flexible in the market M ; of the assignment of item x to buyer i
and item y to buyer j that does not extend to an optimal allocation of the market M ; and
of the set S ∪ S ′ satisfying the above inequality in the resulting graph G′′. Together, they
contradict the maximality of NG(S). In conclusion, every assignment of the items {x, y}
to buyers in the set I \S that respects both legality and demand in the market M extends
to an optimal allocation of the market M , as desired.

We proceed to consider two cases based on the legality of the item x with respect to
buyers in the set I \ S; each leading to the construction of a slightly different “lower”
market:
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Figure 3.3.3: The lower market ML′
.

Case 1: The item x is legal for a unique buyer h∗ ∈ I \S and bh∗ = 1. In this case, we
form the lower marketML′

with buyers IL
′
:= I\(S∪{h∗}), items TL′

:= NG(I\S)\NG(S)
and the same demands b and valuations v as in the original market M . Note that |TL′ | =
b(IL

′
). A schema for the lower market ML′

is given in Figure 3.3.3, where the red buyer
h∗ is to be deleted.

We proceed to show that the legality of every buyer-item pair in the lower market ML′

is the same as its legality in the original market M :

Claim 3.3.5. For every buyer i ∈ IL
′
and for every item t ∈ TL′

, we have t ∈ LM(i) if
and only if t ∈ LML′ (i).

Proof. (=⇒) Suppose t ∈ LM(i). Consider the assignment of item t to buyer i and
item x to buyer h∗. By Claim 3.3.4, this assignment extends to an optimal allocation
A = {Aj : j ∈ I} of the market M. Furthermore, as |NG(S)| = b(S) + 1, it follows that
the item x is the unique item in the set NG(S) that is assigned to a buyer in the set I \ S.
Hence, we define an allocation AL′

:= {AL′
j ⊆ TL′

: j ∈ IL
′} of the lower market ML′

as
follows:

AL′

j := Aj ∀j ∈ IL
′
.

Then, we have SW (AL′
) = b(IL

′
), so the allocation AL′

is an optimal allocation of the
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marketML′
. Note that this also implies that the marketML′

satisfies the (OPT) condition.
Moreover, we have t ∈ AL′

i , so it follows that t ∈ LML′ (i), as required.

(⇐=) Suppose t ∈ LML′ (i). Then, there exists an optimal allocation AL′
= {AL′

j ⊆
TL′

: j ∈ IL
′} of the lower market ML′

such that t ∈ AL′
i . By the proof of the forward

direction, we have SW (AL′
) = b(IL

′
). Since every valuation in the lower market ML′

is
at most one, it follows that vi(t) = 1. Moreover, since the market M satisfies the (∗)
condition, it follows that t ∈ LM(i), completing the proof of the claim.

Next, note that it follows immediately that the market ML′
satisfies the (∗) condition.

Indeed, by the previous claim, for every buyer i ∈ IL
′
and for every item t ∈ TL′

, we have
t ∈ LML′ (i) ⇐⇒ t ∈ LM(i) ⇐⇒ vi(t) = 1, as required. Moreover, since h∗ /∈ IL

′
, it

follows that the market ML′
has fewer buyers than the original market M , so we may apply

induction to obtain an optimal dynamic pricing scheme pL
′
for the lower market ML′

.

Now, we construct a pricing scheme p for the original market M with prices in the
following order:

{0} <p T
L′

<p NG(S) <p {1}.

The prices of the items in the set NG(S) are ordered according to the pricing scheme pU

and the prices of the items in the set TL′
are ordered according to the pricing scheme pL

′
.

We proceed prove the optimality of this pricing scheme:

Claim 3.3.6. The pricing scheme p defined above is an optimal dynamic pricing scheme
for the market M.

Proof. By Claim 3.1.1, we may assume the pricing schemes pU and pL
′
each have unique

values. We proceed to consider cases based on which buyer arrives first to the market M :

Case 1.1: A buyer i ∈ S arrives first to the market M. Then, the bundle in demand
for the buyer i with respect to the prices p is the bundle in demand for the buyer i with
respect to the prices pU . Let R be this bundle. By optimality of the pricing scheme pU ,
it follows that there exists an optimal allocation AU := {AU

j ⊆ NG(S) : j ∈ S ∪ {i′}} of
the upper market MU such that R = AU

i . By the proof of Claim 3.3.2, we have that the
market MU satisfies the (OPT) condition. Thus, let {z} := AU

i′ be the singleton bundle
that is assigned by the allocation AU to the artificial buyer i′. By Claim 3.3.3, we have
z ∈ NG(S)∩NG(I \S), so there exists a buyer f ∈ I \S such that z ∈ LM(f). Thus, there
exists an optimal allocation A = {Aj ⊆ T : j ∈ I} of the original market M such that

28



z ∈ Af . Now, we define an allocation A′ := {A′
j ⊆ T : j ∈ I} of the original market M as

follows:

A′
j :=

{
AU

j if j ∈ S

Aj if j ∈ I \ S
∀j ∈ I.

Remark that the item z is the unique item in the set NG(S) that is assigned by the
allocation A to a buyer in the set I \ S. Thus, the allocation A′ indeed assigns every item
to exactly one buyer. Moreover, by Claim 3.3.2, it follows that SW (A′) = SW (A), so the
allocation A′ is an optimal allocation of the market M. Furthermore, we have R = A′

i.
Hence, the assignment of the bundle R to the buyer i extends to an optimal allocation A′

of the market M, as required.

Case 1.2: A buyer i ∈ IL
′
arrives first to the market M. Then, the bundle in demand

for the buyer i with respect to the prices p is the bundle in demand for the buyer i with
respect to the prices pL

′
. Let R be this bundle. By optimality of the pricing scheme pL

′
,

it follows that there exists an optimal allocation AL′
= {AL′

j ⊆ TL′
: j ∈ IL

′} of the lower

market ML′
such that R = AL′

i . Moreover, since x ∈ LM(h∗), it follows that there exists an
optimal allocation A = {Aj ⊆ T : j ∈ I} of the original market M such that {x} = Ah∗ .
Now, we define an allocation A′ := {A′

j ⊆ T : j ∈ I} of the original market M as follows:

A′
j :=

{
AL′

j if j ∈ IL
′

Aj if j ∈ I \ IL′ ∀j ∈ I.

Remark that the item x is the unique item in the set NG(S) that is assigned by the
allocation A to a buyer in the set I \ S. Thus, the allocation A′ indeed assigns every item
to exactly one buyer. Moreover, by Claim 3.3.5, it follows that SW (A′) = SW (A), so the
allocation A′ is an optimal allocation of the market M. Furthermore, we have R = A′

i.
Hence, the assignment of the bundle R to the buyer i extends to an optimal allocation A′

of the market M, as desired.

Case 1.3: The buyer h∗ arrives first to the market M. Since we have bh∗ = 1 by
assumption, it follows that the bundle in demand for the buyer h∗ with respect to the
prices p is a singleton set, say {z}, such that z ∈ LM(h∗). Thus, the assignment of the
item z to the buyer h∗ extends to an optimal allocation of the market M by definition of
legality. Overall, the pricing scheme p is an optimal dynamic pricing scheme for the market
M , completing the proof of the claim.

Case 2: The item x is legal for a unique buyer in the set I \ S whose demand is at
least two, or the item x is legal for at least two distinct buyers in the set I \S. In this case,
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Figure 3.3.4: The lower market ML.

we form the lower market ML with buyers I \ S, items TL := (NG(I \ S) \NG(S)) ∪ {x},
and the same demands b and valuations v as in the original market M . A schema for the
lower market ML is shown in Figure 3.3.4.

We proceed to show that the legality of every buyer-item pair in the lower market ML

is the same as its legality in the original market M :

Claim 3.3.7. For every buyer i ∈ I \ S and for every item t ∈ TL, we have t ∈ LM(i) if
and only if t ∈ LML(i).

Proof. (=⇒) Suppose t ∈ LM(i). First, suppose t = x. Then, there exists an optimal
allocation A = {Aj ⊆ T : j ∈ I} of the market M such that x ∈ Ai. Furthermore, the
item x is the unique item in the set NG(S) that is assigned by the allocation A to a buyer
in the set I \ S. Hence, we define an allocation AL := {AL

j ⊆ TL : j ∈ I \ S} of the lower
market ML as follows:

AL
j := Aj ∀j ∈ I \ S.

Then, we have SW (AL) = b(I \ S), so the allocation AL is an optimal allocation of the
market ML. Note that this also implies that the market ML satisfies the (OPT) condition.
Moreover, we have x ∈ AL

i , so it follows that x ∈ LML(i), as required.

Next, suppose t ̸= x. Then, since x ∈ NG(I \ S), it follows that there exists a buyer
h ∈ I \ S such that x ∈ LM(h). By the assumption of Case 2, we can select such a buyer
h so that the assignment of item t to buyer i and item x to buyer h respects demand.
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Note that it may be the case that h = i. By Claim 3.3.4, it follows that the above
assignment extends to an optimal allocation A = {Aj : j ∈ I} of the market M such that
t ∈ Ai and x ∈ Ah. Moreover, the item x is the unique item in the set NG(S) that is
assigned by the allocation A to a buyer in the set I \ S. Hence, we define an allocation
AL := {AL

j ⊆ TL : j ∈ I \ S} of the lower market ML as follows:

AL
j := Aj ∀j ∈ I \ S.

Then, we have SW (AL) = b(I \ S), so the allocation AL is an optimal allocation of the
market ML. Note that this also implies that the market ML satisfies the (OPT) condition.
Moreover, we have t ∈ AL

i , so it follows that t ∈ LML(i), as required.

(⇐=) The proof is analogous to the proof of the backward direction of Claim 3.3.5.

As in Case 1, it follows immediately that the market ML satisfies the (∗) condition.
Moreover, since |NG(S)| = b(S) + 1, we have S ̸= ∅. Hence, the market ML, which has
buyers I \ S, has fewer buyers than the original market M. Thus, we may apply induction
to obtain an optimal dynamic pricing scheme pL for the lower market ML.

Next, we define the following bipartition of the set NG(S) \ {x} :

N<x
G (S) := {t ∈ NG(S) : p

U
t < pUx }

N>x
G (S) := {t ∈ NG(S) : p

U
t > pUx }

Then, we construct a pricing scheme p for the original marketM with prices in the following
order:

{0} <p N
<x
G (S) <p T

L <p N
>x
G (S) <p {1}

The prices of the items in the set N<x
G (S) ∪ N>x

G (S) are ordered according to the pricing
scheme pU and the prices of the items in the set TL are ordered according to pricing scheme
pL. By Claim 3.1.1, we may assume the pricing schemes pU and pL each have unique values.
Then, for a buyer i ∈ S, the bundle in demand for the buyer i with respect to the prices
p is the bundle in demand for the buyer i with respect to the prices pU . In addition, for a
buyer i ∈ I \ S, the bundle in demand for the buyer i with respect to the prices p is the
bundle in demand for the buyer i with respect to the prices pL. By an argument that is
analogous to the proof of Claim 3.3.6, we conclude that the pricing scheme p is an optimal
dynamic pricing scheme for the market M , completing the proof of Lemma 3.3.1.

To close Section 3.3, we revisit the example of the multi-demand market M1 from
Figure 3.1.1, and we apply the methods from the proof of Lemma 3.3.1 to the auxiliary
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Figure 3.3.5: The legality graph of the market M ′
1.

market M ′
1 of the market M1, as given in Figure 3.1.4. In Figure 3.3.5, we present the

legality graph of the market M ′
1. Observe that kM ′

1
= 2. Moreover, the assignment of the

items {t2, t4} to the buyer i3 does not extend to an optimal allocation of the market M ′
1.

In addition, selecting the set S := {i1, i2} results in the maximality of the set NGM′
1
(S).

This particular splitting of the market M ′
1 is shown in Figure 3.3.6, where the thick edges

represent the non-extendable assignment of size two. Note that the items in Figure 3.3.6
are presented in a different order to improve readability.

We present the upper market M ′U
1 obtained from this splitting in Figure 3.3.7.

Next, we give the following optimal dynamic pricing scheme for its upper market M ′U
1

in Figure 3.3.7:

pUt1 = 0.5 < pUt5 = 0.6 < pUt2 = 0.7 < pUt3 = 0.8 < pUt4 = 0.9.

One can verify the optimality of the above pricing scheme pU for the upper market M ′U
1 .

Using the optimal pricing scheme pU above, we have {x} = argmin{pUt : t ∈ NG(S) ∩
NG(I \S)} = {t2}. We present the lower market M ′L

1 obtained from this splitting and this
pricing scheme in Figure 3.3.8.
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Figure 3.3.6: The splitting of the market M ′
1.

i1
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1
1
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1
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0
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1
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0
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1

1

Figure 3.3.7: The upper market M ′U
1 obtained from the splitting in Figure 3.3.6.
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i3

t2

t6

1

1

Figure 3.3.8: The lower market M ′L
1 obtained from the splitting in Figure 3.3.6.

Recall the optimal pricing scheme pU for the upper market M ′U
1 , and observe that

N<x
G (S) = {t1, t5} and N>x

G (S) = {t3, t4}. Moreover, an optimal dynamic pricing scheme
pL for the lower market M ′L

1 is given by pLt2 = 0.5 < pLt6 = 0.6. Finally, we combine these
two pricing schemes into a pricing scheme p′ for the market M ′

1 as follows:

p′t1 = 0.4 < p′t5 = 0.5 < p′t2 = 0.6 < p′t6 = 0.7 < p′t3 = 0.8 < p′t4 = 0.9.

Note that this is the same optimal pricing scheme that we gave for the market M ′
1 in

Section 3.1.

3.4 Tri-Demand Markets

In this section, we show that optimal dynamic pricing schemes exist in tri-demand markets.
The high-level approach is the same as the one used in the previous section: If kM ≥ 4, then
any buyer’s purchase of any legal bundle is guaranteed to extend to an optimal allocation
of the market. If kM = 2, then the splitting of the market M into the two smaller “upper”
and “lower” markets MU and ML′

or ML that was employed in the previous section can
again be used in this new setting. Finally, if kM = 3, then we first show that unit-demand
buyers can be eliminated from the market, which will prove to be crucial in the proof of
optimality of the combined pricing schemes. Next, observe that in the case where kM = 2,
the lower market ML requires just one item x ∈ NG(S)∩NG(I \S) to be added to its item
set to fulfill its demand. However, in the case where kM = 3, the lower market ML requires
two items x, y ∈ NG(S) ∩NG(I \ S) to fulfill its demand. This poses a potential problem:
If the pricing scheme pU for the upper market MU satisfies pUx < pUy and if the pricing
scheme pL for the lower market ML satisfies pLx > pLy , then it is not possible to combine the
pricing schemes pU and pL into an optimal pricing scheme for the original market M , as
was done in the case where kM = 2. To resolve this issue, we prove a stronger result than
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that of the existence of optimal dynamic pricing schemes. In fact, we show that for any
item t∗ of the market M, there exists an optimal dynamic pricing scheme for the market
M in which the item t∗ is the lowest-priced item:

Lemma 3.4.1. Let M be a multi-demand market satisfying the (OPT) condition and
suppose bi ≤ 3 for all buyers i ∈ I. Then, for every item t∗ ∈ T, there exists an optimal
dynamic pricing scheme p for the market M such that {t∗} = argmin{pt : t ∈ T}.

The proof of Lemma 3.4.1 is organized as follows:

• First, we prove that such a pricing scheme exists if kM ≥ 4.

• Next, in Claim 3.4.1, we prove that such a pricing scheme exists if kM = 2. We use
the same splitting of the market as in Section 3.3. There are three cases, each with
two subcases as follows:

– 1.1: t∗ ∈ NG(S) ∩NG(I \ S) and we form the lower market ML′
.

– 1.2: t∗ ∈ NG(S) ∩NG(I \ S) and we form the lower market ML.

– 2.1: t∗ ∈ NG(S) \NG(I \ S) and we form the lower market ML′
.

– 2.2: t∗ ∈ NG(S) \NG(I \ S) and we form the lower market ML.

– 3.1: t∗ ∈ NG(I \ S) \NG(S) and we form the lower market ML′
.

– 3.2: t∗ ∈ NG(I \ S) \NG(S) and we form the lower market ML.

• Next, assuming kM = 3, we prove that such a pricing scheme exists if there is a
unit-demand buyer i∗ ∈ I in the market M. This is Claim 3.4.2. There are two cases
as follows:

– 1: LM(i∗) = {t∗}.
– 2: There exists an item x ∈ LM(i∗) \ {t∗}.

• Next, assuming kM = 3 and bi ≥ 2 for all buyers i ∈ I, we prove that such a pricing
scheme exists if the item t∗ is not contained in any 3-subset of items that is not
flexible in the market M.

• Finally, assuming kM = 3, bi ≥ 2 for all buyers i ∈ I and the item t∗ is contained in
some 3-subset of items {t∗, r∗1, r∗2} that is not flexible in the market M, the remainder
of the proof of Lemma 3.4.1 is analogous to the proof of Lemma 3.3.1 in the case
where kM = 2.
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Proof. Let t∗ ∈ T be an arbitrary item of the market M that we desire to price the lowest.
To begin, we may assume |T | = b(I) by Claim 2.0.2 and that the market M satisfies the
(∗) condition by Lemma 3.1.1.

First, suppose kM ≥ 4. Then, we define the following pricing scheme:

pt :=

{
0.4 if t = t∗

0.5 otherwise
∀t ∈ T.

As in the bi-demand case, if the buyer i ∈ I arrives first to the market, then they will
purchase a bundle B ⊆ T such that |B| = bi and such that B ⊆ LM(i). Note that such a
bundle B exists by the (OPT) condition. As kM > 3, it follows that every bundle of size
at most three is flexible in the market M . Since bi ≤ 3, we conclude that the assignment
of the items in the bundle B to the buyer i extends to an optimal allocation of the market
M . Hence, the pricing scheme p is an optimal dynamic pricing scheme for the market M.
Moreover, {t∗} = argmin{pt : t ∈ T}, as desired.

Thus, we may assume kM ≤ 3. We again proceed by induction on the number of
buyers in the market and, subject to this quantity, we proceed by induction on the number
of items in the market.

Claim 3.4.1. Suppose kM = 2. Then, there exists an optimal dynamic pricing scheme p
for the market M such that {t∗} = argmin{pt : t ∈ T}.

Proof. We proceed as we did in the bi-demand case, and we select a bundle B of size two
that is not flexible; an assignment of the items in the bundle B to buyers in the set I that
does not extend to an optimal allocation of the market M ; and a set S violating Hall’s
condition in the resulting graph G′ such that the set NG(S) is maximal. Remark that none
of the claims that are presented in Section 3.3 use the fact that bi ≤ 2 for every buyer
i ∈ I. Thus, each of these claims holds in our new setting where bi ≤ 3 for every buyer
i ∈ I. We now consider cases based on the location of the item t∗ with respect to the set
NG(S) and based on whether we form the lower market ML′

or the lower market ML :

Case 1: t∗ ∈ NG(S) ∩NG(I \ S).
We form the upper market MU as in the previous section. By induction, there exists an

optimal dynamic pricing scheme pU for the upper marketMU such that {t∗} = argmin{pUt :
t ∈ NG(S)} = argmin{pUt : t ∈ NG(S) ∩ NG(I \ S)}. We consider two subcases based on
which lower market we form:

Subcase 1.1: The item t∗ is legal for a unique buyer h∗ ∈ I \ S and bh∗ = 1. Then,
we form the lower market ML′

as in the previous section. By induction, there exists an

36



optimal dynamic pricing scheme pL
′
for the lower market ML′

. Now, we construct a pricing
scheme p for the original market M with prices in the following order:

{0} <p {t∗} <p T
L′

<p NG(S) \ {t∗} <p {1}.

The prices of the items in the set NG(S)\{t∗} are ordered according to the pricing scheme
pU and the prices of the items in the set TL′

are ordered according to the pricing scheme
pL

′
. By Claim 3.1.1, we may assume the pricing schemes pU and pL

′
each have unique

values. Then, for a buyer i ∈ S, the bundle in demand for the buyer i with respect to the
prices p is the bundle in demand for the buyer i with respect to the prices pU . Moreover,
for a buyer i ∈ IL

′
= I \ (S∪{h∗}), we have t∗ /∈ LM(i) by assumption. Hence, the bundle

in demand for the buyer i with respect to the prices p is the bundle in demand for the
buyer i with respect to the prices pL

′
. Finally, the bundle in demand for the buyer h∗ is

{t∗}, and this extends to an optimal allocation of the market M. Then, by the proof of
Claim 3.3.6, we have that the pricing scheme p is an optimal dynamic pricing scheme for
the market M and {t∗} = argmin{pt : t ∈ T}, as desired.

Subcase 1.2: The item t∗ is legal for a unique buyer in the set I \ S whose demand is
at least two, or the item t∗ is legal for at least two distinct buyers in the set I \S. Then, we
form the lower market ML as in the previous section. By induction, there exists an optimal
dynamic pricing scheme pL for the lower market ML such that {t∗} = argmin{pLt : t ∈ TL},
where TL = (NG(I \ S) \ NG(S)) ∪ {t∗}. Now, we construct a pricing scheme p for the
original market M with prices in the following order:

{0} <p T
L <p NG(S) \ {t∗} <p {1}.

The prices of the items in the set NG(S)\{t∗} are ordered according to the pricing scheme
pU and the prices of the items in the set TL are ordered according to the pricing scheme pL.
By Claim 3.1.1, we may assume the pricing schemes pU and pL each have unique values.
Then, for a buyer i ∈ S, the bundle in demand for the buyer i with respect to the prices
p is the bundle in demand for the buyer i with respect to the prices pU . Moreover, for a
buyer i ∈ I \ S = IL, the bundle in demand for the buyer i with respect to the prices
p is the bundle in demand for the buyer i with respect to the prices pL. Hence, by an
argument that is analogous to the proof of Claim 3.3.6, we have that the pricing scheme p
is an optimal dynamic pricing scheme for the market M and {t∗} = argmin{pt : t ∈ T}, as
desired.

Case 2: t∗ ∈ NG(S) \NG(I \ S).

We form the upper market MU as in the previous section. By induction, there exists an
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optimal dynamic pricing scheme pU for the upper marketMU such that {t∗} = argmin{pUt :
t ∈ NG(S)}. By Claim 3.1.1, we may assume the pricing scheme pU has unique values. Let
{x} = argmin{pUt : t ∈ NG(S) ∩ NG(I \ S)}. We again consider two subcases based on
which lower market we form:

Subcase 2.1: The item x is legal for a unique buyer h∗ ∈ I \ S and bh∗ = 1. Then,
we form the lower market ML′

as in the previous section. By induction, there exists an
optimal dynamic pricing scheme pL

′
for the lower market ML′

. Now, we construct a pricing
scheme p for the original market M with prices in the following order:

{0} <p {t∗} <p T
L′

<p NG(S) \ {t∗} <p {1}.

The prices of the items in the set NG(S)\{t∗} are ordered according to the pricing scheme
pU and the prices of the items in the set TL′

are ordered according to the pricing scheme
pL

′
. Recall that for every buyer i ∈ IL

′
, we have t∗ /∈ LM(i) by the assumption of Case

2. Hence, one can verify the optimality of the pricing scheme p for the market M and
{t∗} = argmin{pt : t ∈ T}, as desired.

Subcase 2.2: The item x is legal for a unique buyer in the set I \ S whose demand is
at least two, or the item x is legal for at least two distinct buyers in the set I \ S. Then,
we form the lower market ML as in the previous section. By induction, there exists an
optimal dynamic pricing scheme pL for the lower market ML. Define the sets N<x

G (S) and
N>x

G (S) as in the previous section. Now, we construct a pricing scheme p for the original
market M with prices in the following order:

{0} <p N
<x
G (S) <p T

L <p N
>x
G (S) <p {1}.

The prices of the items in the set N<x
G (S) ∪ N>x

G (S) are ordered according to the pricing
scheme pU and the prices of the items in the set TL are ordered according to the pricing
scheme pL. Moreover, the optimality of this pricing scheme p for the market M was proved
in the previous section and {t∗} = argmin{pt : t ∈ T}, as desired.

Case 3: t∗ ∈ NG(I \ S) \NG(S).

We form the upper market MU as in the previous section. By induction, there exists
an optimal dynamic pricing scheme pU for the upper market MU . By Claim 3.1.1, we may
assume the pricing scheme pU has unique values. Let {x} = argmin{pUt : t ∈ NG(S) ∩
NG(I \ S)}. We again consider two cases based on which lower market we form:

Subcase 3.1: The item x is legal for a unique buyer h∗ ∈ I \S and bh∗ = 1. Then, we
form the lower marketML′

as in the previous section. By induction, there exists an optimal
dynamic pricing scheme pL

′
for the lower market ML′

such that {t∗} = argmin{pL′
t : t ∈

38



TL′}. Now, we construct a pricing scheme p for the original market M with prices in the
following order:

{0} <p T
L′

<p NG(S) <p {1}.

The prices of the items in the set NG(S) are ordered according to the pricing scheme pU

and the prices of the items in the set TL′
are ordered according to the pricing scheme

pL
′
. Moreover, the optimality of the pricing scheme p for the market M was proved in the

previous section and {t∗} = argmin{pt : t ∈ T}, as desired.
Subcase 3.2: The item x is legal for a unique buyer in the set I \ S whose demand is

at least two, or the item x is legal for at least two distinct buyers in the set I \S. Then, we
form the lower market ML as in the previous section. By induction, there exists an optimal
dynamic pricing scheme pL for the lower market ML such that {t∗} = argmin{pLt : t ∈ TL}.
Define the sets N<x

G (S) and N>x
G (S) as in Subcase 2.2. Now, we construct a pricing scheme

p for the original market M with prices in the following order:

{0} <p {t∗} <p N
<x
G (S) <p T

L \ {t∗} <p N
>x
G (S) <p {1}.

The prices of the items in the set N<x
G (S) ∪ N>x

G (S) are ordered according to the pricing
scheme pU and the prices of the items in the set TL \ {t∗} are ordered according to the
pricing scheme pL. Recall that for every buyer i ∈ S, we have t∗ /∈ LM(i) by the assumption
of Case 3. Hence, one can verify the optimality of the pricing scheme p for the market M
and {t∗} = argmin{pt : t ∈ T}, completing the proof of the claim.

Thus, we may assume kM = 3. Our next step is to eliminate unit-demand buyers from
the market:

Claim 3.4.2. Suppose there exists a buyer i∗ ∈ I such that bi∗ = 1. Then, there exists an
optimal dynamic pricing scheme p for the market M such that {t∗} = argmin{pt : t ∈ T}.

Proof. We consider two cases based on whether or not the item t∗ is the unique item that
is legal for the buyer i∗. Each case leads to the construction of a submarket that is obtained
by removing the buyer i∗ and by removing one of the items that is legal for them.

Case 1: LM(i∗) = {t∗}.
We form the submarket M ′ with buyers I \ {i∗}, items T \ {t∗} and the same demands

b and valuations v as in the original market M . We proceed to show that the legality of
every buyer-item pair in the submarket M ′ is the same as its legality in the original market
M :

Let i ∈ I \ {i∗} and let t ∈ T \ {t∗}.
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(=⇒) Suppose t ∈ LM(i). Then, there exists an optimal allocation A = {Aj ⊆ T :
j ∈ I} of the market M such that t ∈ Ai. Since t∗ is the only item that is legal for
the buyer i∗, it follows by the (OPT) condition that Ai∗ = {t∗}. Hence, the allocation
A′ := {Aj ⊆ T \{t∗} : j ∈ I \{i∗}} satisfies SW (A′) = b(I \{i∗}), and thus, the allocation
A′ is an optimal allocation of the market M ′. Moreover, we have t ∈ Ai, so t ∈ LM ′(i), as
desired.

(⇐=) Suppose t ∈ LM ′(i). Then, there exists an optimal allocation A′ = {A′
j ⊆

T \ {t∗} : j ∈ I \ {i∗}} of the submarket M ′ such that t ∈ A′
i. Then, let Ai∗ := {t∗} and let

A := A′ ∪ {Ai∗}. It follows that SW (A) = b(I). Thus, A is an optimal allocation of the
market M and t ∈ A′

i, so t ∈ LM(i), as desired.

It follows that the submarket M ′ satisfies both the (OPT) condition and the (∗) condi-
tion. By induction, there exists an optimal dynamic pricing scheme p′ for the submarket
M ′. Now, we construct a pricing scheme p for the original market M with prices in the
following order:

{0} <p {t∗} <p T \ {t∗} <p {1}.

The prices of the items in the set T \ {t∗} are ordered according to the pricing scheme p′.
By Claim 3.1.1, we many assume the pricing scheme p′ has unique values. Moreover, by the
assumption of Case 1 and by the (OPT) condition, it follows that every optimal allocation
of the market M assigns the item t∗ to the buyer i∗. Hence, we have t∗ /∈ LM(i) for every
buyer i ∈ I \{i∗}. Thus, the bundle in demand for the buyer i with respect to the prices p is
the bundle in demand for the buyer i with respect to the prices p′. Thus, the pricing scheme
p is an optimal dynamic pricing scheme for the market M and {t∗} = argmin{pt : t ∈ T},
as required.

Case 2: There exists an item x ∈ LM(i∗) \ {t∗}.

We form the submarket M ′′ with buyers I \ {i∗}, items T \ {x} and the same demands
b and valuations v as in the original market M . Again, we show that the legality of every
buyer-item pair in the submarket M ′′ is the same as its legality in the original market M :

Let i ∈ I \ {i∗} and let t ∈ T \ {x}.

(=⇒) Suppose t ∈ LM(i). Consider the assignment of item t to buyer i and item x to
buyer i∗. This assignment respects both legality and demand in the market M. Moreover,
as kM > 2, it follows that the aforementioned assignment extends to an optimal allocation
A = {Aj ⊆ T : j ∈ I} of the market M with t ∈ Ai and Ai∗ = {x}. Hence, the allocation
A′′ := {Aj ⊆ T \{x} : j ∈ I \{i∗}} satisfies SW (A′′) = b(I \{i∗}), and thus, the allocation
A′′ is an optimal allocation of the market M ′′. Moreover, we have t ∈ Ai, so t ∈ LM ′′(i),
as desired.
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(⇐=) The proof is identical to the proof of the backward direction of Case 1 if we
replace the item t∗ with the item x.

It follows that the submarket M ′′ satisfies both the (OPT) condition and the (∗) condi-
tion. By induction, there exists an optimal dynamic pricing scheme p′′ for the submarket
M ′′ such that {t∗} = argmin{p′′t : t ∈ T \ {x}}. Now, we construct a pricing scheme p for
the original market M with prices in the following order:

{0} <p T \ {x} <p {x} <p {1}.

The prices of the items in the set T \ {x} are ordered according to the pricing scheme
p′′. Then, for a buyer i ∈ I \ {i∗}, the bundle in demand for the buyer i with respect
to the prices p is the bundle in demand for the buyer i with respect to the prices p′′.
Thus, the pricing scheme p is an optimal dynamic pricing scheme for the market M and
{t∗} = argmin{pt : t ∈ T}, completing the proof of the claim.

Thus, we may assume bi > 1 for all buyers i ∈ I. Now, suppose the item t∗ is not
contained in any 3-subset of items that is not flexible in the market M. By Claim 2.0.2,
we may assume every item in the market M is assigned to some buyer in every optimal
allocation of the market M, so it follows that there exists a buyer i∗ ∈ I such that t∗ ∈
LM(i∗). Then, we form the submarket M ′ with buyers I \{i∗}, items T \{t∗} and the same
demands b and valuations v as in the original market M. Using the same argument as in
Case 2 of Claim 3.4.2, we have that the legality of every buyer-item pair in the submarket
M ′ is the same as its legality in the original market M and that the submarket M ′ satisfies
both the (OPT) condition and the (∗) condition. By induction, there exists an optimal
dynamic pricing scheme p′ for the submarket M ′. Then, we construct a pricing scheme p
for the original market M with prices in the following order:

{0} <p {t∗} <p T \ {t∗} <p {1}.

The prices of the items in the set T \ {t∗} are ordered according to the pricing scheme p′.
Let i ∈ I be a buyer. If t∗ ∈ LM(i∗), then the bundle in demand for the buyer i with
respect to the prices p contains the item t∗. By our assumption that the item t∗ is not
contained in any 3-subset of items that is not flexible in the market M, it follows that the
assignment of the aforementioned bundle to the buyer i extends to an optimal allocation of
the market M. Otherwise, if t∗ /∈ LM(i∗), then the bundle in demand for the buyer i with
respect to the prices p is the bundle in demand for the buyer i with respect to the prices
p′. Thus, the pricing scheme p is optimal for the market M and {t∗} = argmin{pt : t ∈ T},
as desired.
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Now, we may assume the item t∗ is contained in some 3-subset of items {t∗, r∗1, r∗2} ⊆ T
that is not flexible in the market M. The remainder of the proof of this lemma is analogous
to the proof of Lemma 3.3.1 in the case where kM = 2. However, we present all of its
details to show how one might hope to generalize the argument, and to expose the areas in
the proof in which barriers to this potential generalization seem to arise naturally. These
ideas are discussed further in Chapter 5.

To begin, we let i∗, h∗
1, h

∗
2 ∈ I be buyers such that the assignment of item t∗ to buyer i∗,

item r∗1 to buyer h∗
1 and item r∗2 to buyer h∗

2 respects both legality and demand but does
not extend to an optimal allocation of the market M. Let G′ be the graph obtained from
the legality graph G by decreasing the b-values of each of the vertices i∗, h∗

1, h
∗
2, t

∗, r∗1, r
∗
2 by

one and removing them if their updated b-value is equal to zero. Let b′ denote the b-values
of the vertices in the graph G′. Since optimal allocations of the market M are precisely
b-factors of the legality graph G, it follows that the graph G′ does not have a b′-factor. By
Hall’s theorem, there exists a set of buyers S ⊆ I such that |NG′(S)| < b′(S). We again
choose to maximize the same quantity as in the proof of Lemma 3.3.1: Among all possible
choices of bundles B of size three containing the item t∗ that are not flexible in the market
M, assignments of the items in the bundle B to buyers in the set I that do not extend to
an optimal allocation of the market M, and sets S satisfying the above inequality in the
resulting graph G′, we select a triple such that the set NG(S) is maximal. We proceed to
prove the analogue of Claim 3.3.1; establishing some useful properties of the set S :

Claim 3.4.3. We have |NG(S)| = b(S) + 2 and {t∗, r∗1, r∗2} ⊆ NG(S). Furthermore, we
have i∗, h∗

1, h
∗
2 /∈ S.

Proof. Since G has a b-factor, it follows by Hall’s theorem that |NG(S)| ≥ b(S). Suppose
for a contradiction that i∗, h∗

1, h
∗
2 ∈ S. Then, we have:

|NG′(S)| ≥ |NG(S)| − 3 ≥ b(S)− 3 = b′(S).

This contradicts our assumption that |NG′(S)| < b′(S). Hence, we have i∗ /∈ S, h∗
1 /∈ S or

h∗
2 /∈ S. Without loss of generality, suppose i∗ /∈ S.

Suppose for a contradiction that t∗ /∈ NG(S). Consider the assignment of item r∗1 to
buyer h∗

1 and item r∗2 to buyer h∗
2. Let G′′ be the graph obtained from the graph G by

decreasing the b-values of each of the vertices h∗
1, h

∗
2, r

∗
1, r

∗
2 by one and removing them if

their updated b-value is equal to zero. Let b′′ denote the b-values of the vertices in the
graph G′′. Since kM > 2, it follows that the above assignment, which respects both legality
and demand in the market M, extends to an optimal allocation of the market M. Thus, the
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resulting graph G′′ has a b′′-factor and by Hall’s condition, it follows that |NG′′(S)| ≥ b′′(S).
Since i∗ /∈ S and since t∗ /∈ NG(S) by assumption, we have:

|NG′(S)| = |NG′′(S)| ≥ b′′(S) = b′(S).

This contradicts our assumption that |NG′(S)| < b′(S). Thus, we have t∗ ∈ NG(S).

Since i∗ /∈ S, t∗ ∈ NG(S) and t∗ ∈ LM(i∗), it follows that |NG(S)| > b(S).

Suppose for a contradiction that |NG(S)| = b(S) + 1. Then, the inequality |NG′(S)| <
b′(S) implies r∗1 ∈ NG(S) or r

∗
2 ∈ NG(S). Without loss of generality, suppose r∗1 ∈ NG(S).

If h∗
1 /∈ S, then the assignment of item r∗1 to buyer h∗

1 and item t∗ to buyer i∗ respects
both legality and demand but does not extend to an optimal allocation of the market M,
contradicting kM > 2. Thus, h∗

1 ∈ S. Consequently, the inequality |NG′(S)| < b′(S) implies
r∗2 ∈ NG(S) and h∗

2 /∈ S. But then, the assignment of item r∗2 to buyer h∗
2 and item t∗ to

buyer i∗ respects both legality and demand but does not extend to an optimal allocation
of the market M, again contradicting kM > 2. Overall, we have |NG(S)| ≠ b(S) + 1.

Suppose for a contradiction that |NG(S)| ≥ b(S) + 3. Then, we have:

|NG′(S)| ≥ |NG(S)| − 3 ≥ b(S) ≥ b′(S).

This contradicts our assumption that |NG′(S)| < b′(S). Hence, we have |NG(S)| ≤ b(S)+2,
and thus, it follows that |NG(S)| = b(S) + 2.

Suppose for a contradiction that h∗
1 ∈ S. Then, we obtain:

|NG′(S)| ≥ |NG(S)| − 3 = b(S)− 1 ≥ b′(S).

This contradicts our assumption that |NG′(S)| < b′(S). Thus, we have h∗
1 /∈ S. This

argument can also be used to show h∗
2 /∈ S.

Finally, suppose for a contradiction that r∗1 /∈ NG(S). Then, we obtain:

|NG′(S)| ≥ |NG(S)| − 2 ≥ b(S) ≥ b′(S).

This contradicts our assumption that |NG′(S)| < b′(S). Thus, we have r∗1 ∈ NG(S). This
argument can also be used to show r∗2 ∈ NG(S), completing the proof of the claim.

Following the proof of Lemma 3.3.1, our next step is to define an auxiliary buyer i′

with demand bi′ = 2 and valuations vi′(t) := 1 if t ∈ NG(S) ∩ NG(I \ S) and vi′(t) := 0
otherwise.
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Then, we for the upper market MU with buyers S ∪ {i′}, items NG(S) and the same
demands b and valuations v as in the original market M, albeit with an additional entry
for the auxiliary buyer i′. Note that b(S ∪ {i′}) = b(S) + 2 = |NG(S)|, i.e. the number of
items in the upper market MU coincides with its total demand.

Next, we prove the analogue of Claim 3.3.2. We show that the legality of every buyer-
item pair for each buyer i ̸= i′ in the upper market MU is the same as its legality in the
original market M :

Claim 3.4.4. For every buyer i ∈ S and for every item t ∈ NG(S), we have t ∈ LM(i) if
and only if t ∈ LMU (i).

Proof. (=⇒) Suppose t ∈ LM(i). Then, there exists an optimal allocation A = {Aj ⊆ T :
j ∈ I} of the market M such that t ∈ Ai. Since |NG(S)| = b(S) + 2, it follows that the
allocation A assigns exactly two items in NG(S) ∩ NG(I \ S) to a buyer in the set I \ S.
Let x1, x2 be these items. Then, define an allocation AU = {AU

j ⊆ NG(S) : j ∈ S ∪ {i′}}
of the upper market MU as follows:

AU
j :=

{
Aj if j ∈ S

{x1, x2} if j = i′
∀j ∈ S ∪ {i′}.

Then, we have SW (AU) = b(S) + 2, so the allocation AU is an optimal allocation of the
market MU . Note that this also implies that the market MU satisfies the (OPT) condition.
Moreover, we have t ∈ AU

i , so it follows that t ∈ LMU (i), as required.

(⇐=) Suppose t ∈ LMU (i). Then, there exists an optimal allocation AU = {AU
j ⊆

NG(S) : j ∈ S ∪ {i′}} of the upper market MU such that t ∈ AU
i . By the proof of the

forward direction, we have SW (AU) = b(S) + 2, which is equal to the total demand of
the upper market MU . Since every valuation in the upper market MU is at most one, it
follows that vi(t) = 1. Moreover, since the market M satisfies the (∗) condition, it follows
that t ∈ LM(i), completing the proof of the claim.

Next, we prove the analogue of Claim 3.3.3. We show that the upper market MU

satisfies the (∗) condition:

Claim 3.4.5. The upper market MU satisfies the (∗) condition.

Proof. Let i ∈ S and let t ∈ NG(S). Then, by the previous claim, we have t ∈ LMU (i) ⇐⇒
t ∈ LM(i) ⇐⇒ vi(t) = 1, as required. It remains to show that for the auxiliary buyer i′,
we also have t ∈ LMU (i′) ⇐⇒ vi′(t) = 1 :

44



(=⇒) If t ∈ LMU (i′), then there exists an optimal allocation AU = {AU
j ⊆ NG(S) : j ∈

S ∪ {i′}} of the upper market MU such that t ∈ AU
i′ . Again, we have SW (AU) = b(S) + 2,

which is equal to the total demand of the upper market MU . It follows that vi′(t) = 1, as
required.

(⇐=) Suppose vi′(t) = 1. Then, t ∈ NG(S)∩NG(I \S) by definition. As t ∈ NG(I \S),
there exists a buyer h1 ∈ I \ S such that t ∈ LM(h1). Let x ∈ NG(S) ∩ NG(I \ S) be
such that x ̸= t. Note that such an item exists by the (OPT) condition. Moreover, since
x ∈ NG(I \ S), there exists a buyer h2 ∈ I \ S such that x ∈ LM(h2). Now, consider the
assignment of item t to buyer h1 and item x to buyer h2. This assignment respects legality
and, by our assumption that there is no unit-demand buyer in the market M, it follows
that this assignment also respects demand. Since kM > 2, it follows that there exists an
optimal allocation A = {Aj ⊆ T : j ∈ I} of the original market M such that t ∈ Ah1 and
x ∈ Ah2 . Since |NG(S)| = b(S)+2, it follows that the items {t, x} are the only items in the
set NG(S) that are assigned by the allocation A to buyers in the set I \S. Thus, we define
an allocation AU := {AU

j ⊆ NG(S) : j ∈ S ∪ {i′}} of the upper market MU as follows:

AU
j :=

{
Aj if j ∈ S

{t, x} if j = i′
∀j ∈ I.

Then, SW (AU) = b(S) + 2, so the allocation AU is an optimal allocation of the upper
market MU . Moreover, we have t ∈ AU

i′ , so it follows that t ∈ LMU (i′), completing the
proof of the claim.

Now, we show that we may apply induction to obtain an optimal dynamic pricing
scheme for the upper market MU . Since i∗, h∗

1, h
∗
2 ∈ I \ S, it follows that |I \ S| ≥ 1. If

|I\S| > 1, then the upper marketMU has fewer buyers than the original marketM, and we
may apply induction. Otherwise, if |I \S| = 1, then we have i∗ = h∗

1 = h∗
2 and I \S = {i∗}.

Moreover, we have bi∗ = 3. Consider the assignment of the items {t∗, r∗1} to the buyer i∗.
This assignment respects both legality and demand in the market M. Moreover, as kM > 2,
it follows that this assignment extends to an optimal allocation A = {Ai ⊆ T : i ∈ I}
of the market M, and |Ai∗| = bi∗ = 3 by the (OPT) condition. Furthermore, the items
{t∗, r∗1} are the only items in the set NG(S)∩NG(I \S) that are assigned by the allocation
A to buyers in the set I \ S, so there must exist an item x ∈ NG(I \ S) \NG(S) to fulfill
the demand of the buyer i∗. Hence, the upper market MU has the same number of buyers
as the original market M, but it has fewer items than the original market M, as it does
not include the item x. Thus, we may again apply induction.

By induction, there exists an optimal dynamic pricing scheme pU for the upper market

45



MU such that {t∗} = argmin{pt : t ∈ T}. By Claim 3.1.1, we may assume the pricing
scheme pU has unique values.

Let {x} := argmin{pUt : t ∈ (NG(S) ∩NG(I \ S)) \ {t∗}}, i.e. the item x is the lowest-
priced item according to the pricing scheme pU that is not the item t∗ and that is legal for
both a buyer in the set S and a buyer in the set I \ S.

Next, we prove the analogue of Claim 3.3.4:

Claim 3.4.6. For every y ∈ NG(I \ S) \ NG(S), every assignment of the items {t∗, x, y}
to buyers in the set I \ S that respects both legality and demand in the market M extends
to an optimal allocation of the market M.

Proof. Suppose for a contradiction that there is such an assignment that is not extendable.
Suppose item t∗ is assigned to buyer i1, item x is assigned to buyer i2 and item y is assigned
to buyer i3, where i1, i2, i3 ∈ I \ S. Let G′′ be the graph obtained from the graph G by
decreasing the b-values of each of the vertices i1, i2, i3, t

∗, x, y by one and removing them
if their updated b-value is equal to one. Let b′′ denote the b-values of the vertices in the
graph G′′. By Hall’s theorem, it follows that there exists a subset of buyers S ′ ⊆ I such
that |NG′′(S ′)| < b′′(S ′). By an argument that is analogous to the proof of Claim 3.4.3, we
have |NG(S

′)| = b(S ′)+ 2 and {t∗, x, y} ⊆ NG(S
′). Also, we have i1, i2, i3 /∈ S ′. We proceed

to show that |NG(S ∪ S ′)| = b(S ∪ S ′) + 2, contradicting the maximality of the set NG(S).

First, consider the assignment of item t∗ to buyer i1 and item x to buyer i2. This
assignment respects both legality and demand in the market M and, as kM > 2, it follows
that this assignment extends to an optimal allocation of the market M. Since t∗, x ∈
NG(S ∪ S ′) and since i1, i2 /∈ S ∪ S ′, it follows that |NG(S ∪ S ′)| ≥ b(S ∪ S ′) + 2.

Next, we show the reverse inequality. Observe that |NG(S)∩NG(S
′)| ≥ |NG(S ∩S ′)| ≥

b(S ∩ S ′), where the second inequality follows by Hall’s theorem. Moreover, we have
t∗, x ∈ NG(S) ∩NG(S

′). We consider four cases based on the locations of the items t∗ and
x with respect to the set NG(S ∩ S ′) :

Case 1: t∗, x /∈ NG(S ∩ S ′).

Then, we have |NG(S) ∩NG(S
′)| ≥ |NG(S ∩ S ′)|+ 2 ≥ b(S ∩ S ′) + 2 (†).

Case 2: t∗, x ∈ NG(S ∩ S ′).

Consider the assignment of item t∗ buyer i1 and item x to buyer i2. Again, this as-
signment extends to an optimal allocation of the market M. Since t∗, x ∈ NG(S ∩ S ′)
and since i1, i2 /∈ S ∩ S ′, it follows that |NG(S ∩ S ′)| ≥ b(S ∩ S ′) + 2. Hence, we have
|NG(S) ∩NG(S

′)| ≥ |NG(S ∩ S ′)|+ 2 ≥ b(S ∩ S ′) + 2 (†).
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Case 3: t∗ ∈ NG(S ∩ S ′) and x /∈ NG(S ∩ S ′).

Consider the assignment of item t∗ to buyer i1. This assignment extends to an optimal
allocation of the market M. Since t∗ ∈ NG(S ∩ S ′) and since i1 /∈ S ∩ S ′, it follows that
NG(S ∩ S ′)| ≥ b(S ∩ S ′) + 1. Moreover, since x ∈ (NG(S)∩NG(S

′)) \NG(S ∩ S ′), we have
|NG(S)∩NG(S

′)| ≥ |NG(S∩S ′)|+1. Overall, we have |NG(S)∩NG(S
′)| ≥ |NG(S∩S ′)|+1 ≥

b(S ∩ S ′) + 2 (†).
Case 4: t∗ /∈ NG(S ∩ S ′) and x ∈ NG(S ∩ S ′).

This case is analogous to Case 3, and we again obtain the chain of inequalities (†).
Now, consider:

|NG(S ∪ S ′)| = |NG(S) ∪NG(S
′)|

= |NG(S)| ∪ |NG(S
′)| − |NG(S) ∩NG(S

′)|
= (b(S) + 2) + (b(S ′) + 2)− |NG(S) ∩NG(S

′)|
= b(S ∪ S ′) + b(S ∩ S ′) + 4− |NG(S) ∩NG(S

′)|
≤ b(S ∪ S ′) + b(S ∩ S ′) + 4− b(S ∩ S ′)− 2 by (†)
= b(S ∪ S ′) + 2.

In conclusion, we have |NG(S ∪ S ′)| = b(S ∪ S ′) + 2. Moreover, since i1, i2, i3 /∈ S ∪ S ′

and since {t∗, x, y} ⊆ NG(S ∪ S ′), it follows that |NG′′(S ∪ S ′)| < b′′(S ∪ S ′). Furthermore,
we have NG(S) ⊆ NG(S ∪ S ′) and y ∈ NG(S ∪ S ′) \NG(S). Consider our three choices of
the bundle {t∗, x, y} that is not flexible; of the assignment of item t∗ to buyer i1, item x
to buyer i2 and item y to buyer i3 that does not extend; and of the set S ∪ S ′ satisfying
the above inequality in the resulting graph G′′. Together, they contradict the maximality
of the set NG(S). In conclusion, every assignment of the items {t∗, x, y} to buyers in the
set I \ S that respects both legality and demand in the market M extends to an optimal
allocation of the market M, as desired.

We proceed, as in the bi-demand case, to consider two cases based on the legalities of
the items t∗ and x; each leading to the construction of a slightly different lower market:

Case 1: The items t∗ and x are both legal for a unique buyer h∗ ∈ I \ S and bh∗ = 2.

As in the bi-demand case, we form the lower market ML′
with buyers IL

′
:= I \ (S ∪

{h∗}), items TL′
:= NG(I \S) \NG(S) and the same demands b and valuations v as in the

original market M . Note that |TL′ | = b(IL
′
). We proceed to show the analogue of Claim

3.3.5: The legality of every buyer-item pair in the lower market ML′
is the same as its

legality in the original market M :
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Claim 3.4.7. For every buyer i ∈ IL
′
and for every item t ∈ TL′

, we have t ∈ LM(i) if
and only if t ∈ LML′ (i).

Proof. (=⇒) Suppose t ∈ LM(i). Consider the assignment of item t to buyer i and items
{t∗, x} to buyer h∗. By Claim 3.4.6, this assignment extends to an optimal allocation A
of the market M . Furthermore, as |NG(S)| = b(S)+ 2, it follows that the items {t∗, x} are
the only items in the NG(S) that are assigned to buyers in the set I \ S. Hence, we define
an allocation AL′

:= {AL′
j ⊆ TL′

: j ∈ IL
′} of the lower market ML′

as follows:

AL′

j := Aj ∀j ∈ IL
′
.

Then, we have SW (AL′
) = b(IL

′
), so the allocation AL′

is an optimal allocation of the
marketML′

. Note that this also implies that the marketML′
satisfies the (OPT) condition.

Moreover, we have t ∈ AL′
i , so it follows that t ∈ LML′ (i), as required.

(⇐=) Suppose t ∈ LML′ (i). Then, there exists an optimal allocation AL′
= {AL′

j ⊆
TL′

: j ∈ IL
′} of the lower market ML′

such that t ∈ AL′
i . By the proof of the forward

direction, we have SW (AL′
) = b(IL

′
). Since every valuation in the lower market ML′

is
at most one, it follows that vi(t) = 1. Moreover, since the market M satisfies the (∗)
condition, it follows that t ∈ LM(i), completing the proof of the claim.

Next, note that it follows immediately that the market ML′
satisfies the (∗) condition.

Indeed, by the previous claim, for every buyer i ∈ IL
′
and for every item t ∈ TL′

, we have
t ∈ LML′ (i) ⇐⇒ t ∈ LM(i) ⇐⇒ vi(t) = 1, as required. Moreover, since h∗ /∈ IL

′
, it

follows that the market ML′
has fewer buyers than the original market M , so we may apply

induction to obtain an optimal dynamic pricing scheme pL
′
for the lower market ML′

.

Now, we construct a pricing scheme p for the original market M with prices in the
following order:

{0} <p {t∗} <p T
L′

<p NG(S) \ {t∗} <p {1}

The prices of the items in the set NG(S)\{t∗} are ordered according to the pricing scheme
pU and the prices of the items in the set TL′

are ordered according to the pricing scheme
pL

′
.

We proceed to prove the analogue of Claim 3.3.6:

Claim 3.4.8. The pricing scheme p defined above is an optimal dynamic pricing scheme
for the market M and {t∗} = argmin{pt : t ∈ T}.
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Proof. By Claim 3.1.1, we may assume the pricing scheme pL
′
has unique values. We

proceed to consider cases based on which buyer arrives first to the market M :

Case 1.1: A buyer i ∈ S arrives first to the market M. Recall that the pricing scheme
pU satisfies {t∗} = argmin{pUt : t ∈ NG(S)}. Thus, the bundle in demand for the buyer i
with respect to the prices p is the bundle in demand for the buyer i with respect to the
prices pU . Let R be this bundle. By optimality of the pricing scheme pU , it follows that
there exists an optimal allocation AU := {AU

j ⊆ NG(S) : j ∈ S∪{i′}} of the upper market
MU such that R = AU

i . By the proof of Claim 3.4.4, we have that the upper market MU

satisfies the (OPT) condition. Thus, let {w, z} := AU
i′ be the bundle that is assigned by the

allocation AU to the artificial buyer i′. By Claim 3.3.3, we have w, z ∈ NG(S)∩NG(I \S),
so there exist buyers f, g ∈ I \ S such that w ∈ LM(f) and z ∈ LM(g). Consider the
assignment of item w to buyer f and item z to buyer g. This assignment respects legality
and, by our assumption that there is no unit-demand buyer in the market M, we have that
this assignment also respects demand. As kM > 2, it follows that this assignment extends
to an optimal allocation A = {Aj ⊆ T : j ∈ I} of the original market M such that w ∈ Af

and z ∈ Ag. Now, we define an allocation A′ := {A′
j ⊆ T : j ∈ I} of the original market

M as follows:

A′
j :=

{
AU

j if j ∈ S

Aj if j ∈ I \ S
∀j ∈ I.

Remark that the items {w, z} are the unique items in the set NG(S) that are assigned by
the allocation A to buyers in the set I \ S. Thus, the allocation A′ indeed assigns every
item to exactly one buyer. Moreover, by Claim 3.3.2, it follows that SW (A′) = SW (A), so
the allocation A′ is an optimal allocation of the market M. Furthermore, we have R = A′

i.
Hence, the assignment of the bundle R to the buyer i extends to an optimal allocation A′

of the market M, as required.

Case 1.2: A buyer i ∈ IL
′
arrives first to the market M. Recall that t∗ /∈ LM(i), by

the assumption of Case 1. Thus, the bundle in demand for the buyer i with respect to
the prices p is the bundle in demand for the buyer i with respect to the prices pL

′
. Let

R be this bundle. By optimality of the pricing scheme pL
′
, it follows that there exists

an optimal allocation AL′
= {AL′

j ⊆ TL′
: j ∈ IL

′} of the lower market ML′
such that

R = AL′
i . Moreover, since t∗, x ∈ LM(h∗), since bh∗ = 2 and since kM > 2, it follows that

there exists an optimal allocation A = {Aj ⊆ T : j ∈ I} of the original market M such
that {t∗, x} = Ah∗ . Now, we define an allocation A′ := {A′

j ⊆ T : j ∈ I} of the original
market M as follows:

A′
j :=

{
AL′

j if j ∈ IL
′

Aj if j ∈ I \ IL′ ∀j ∈ I.

49



Remark that the items {t∗, x} are the unique items in the set NG(S) that are assigned by
the allocation A to buyers in the set I \ S. Thus, the allocation A′ indeed assigns every
item to exactly one buyer. Moreover, by Claim 3.3.5, it follows that SW (A′) = SW (A), so
the allocation A′ is an optimal allocation of the market M. Furthermore, we have R = A′

i.
Hence, the assignment of the bundle R to the buyer i extends to an optimal allocation A′

of the market M, as desired.

Case 1.3: The buyer h∗ arrives first to the market M. Since we have bh∗ = 2 by
assumption, it follows that the bundle in demand for the buyer h∗ with respect to the
prices p is a set of size two, say {w, z}, such that w, z ∈ LM(h∗). Thus, the assignment of
the items {w, z} to the buyer h∗ extends to an optimal allocation of the market M because
kM > 2. Overall, the pricing scheme p is an optimal dynamic pricing scheme for the market
M and {t∗} = argmin{pt : t ∈ T}, completing the proof of the claim.

Case 2: b((I \ S) ∩NG({t∗, x})) ≥ 3.

As in the bi-demand case, we form the lower market ML with buyers I \ S, items
TL := (NG(I \ S) \ NG(S)) ∪ {t∗, x}, and the same demands b and valuations v as in the
original market M. Note that |TL| = b(I \ S). We proceed to show the analogue of Claim
3.3.7. That is, the legality of every buyer-item pair in the lower market ML is the same as
its legality in the original market M :

Claim 3.4.9. For every buyer i ∈ I \ S and for every item t ∈ TL, we have t ∈ LM(i) if
and only if t ∈ LML(i).

Proof. (=⇒) Suppose t ∈ LM(i). First, suppose t = t∗. Let î ∈ I \ S be such that
x ∈ LM (̂i). Consider the allocation of item t∗ to buyer i and item x to buyer î. This
assignment respects both legality and demand in the market M and, as kM > 2, it follows
that this assignment extends to an optimal allocation A = {Aj ⊆ T : j ∈ I} of the market
M such that t∗ ∈ Ai. Furthermore, the items t∗ and x are the unique items in NG(S) that
are assigned by the allocation A to buyers in the set I \ S. Hence, we define an allocation
AL := {AL

j ⊆ TL : j ∈ I \ S} of the lower market ML as follows:

AL
j := Aj ∀j ∈ I \ S.

Then, we have SW (AL) = b(I \ S), so the allocation AL is an optimal allocation of the
market ML. Note that this also implies that the market ML satisfies the (OPT) condition.
Moreover, we have t∗ ∈ AL

i , so it follows that t∗ ∈ LML(i), as required.

Next, suppose t = x. Then, we select a buyer î ∈ I \ S such that t∗ ∈ LM (̂i) and
proceed analogously to the previous case where t = t∗ to conclude x ∈ LM(i).
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Finally, suppose t /∈ {t∗, x}. Then, since t∗, x ∈ NG(I \ S), it follows that there exist
buyers h1, h2 ∈ I \ S such that t∗ ∈ LM(h1) and x ∈ LM(h2) By the assumption of Case
2, we can select such buyers h1 and h2 so that the assignment of item t to buyer i, item t∗

to buyer h1 and item x to buyer h2 respects demand. By Claim 3.4.6, it follows that this
assignment extends to an optimal allocation A = {Aj : j ∈ I} of the market M such that
t ∈ Ai, t

∗ ∈ Ah1 and x ∈ Ah2 . Moreover, the items {t∗, x} are the only items in the set
NG(S) that are assigned by the allocation A to buyers in the set I \ S. Hence, we define
an allocation AL := {AL

j ⊆ TL : j ∈ I \ S} of the lower market ML as follows:

AL
j := Aj ∀j ∈ I \ S.

Then, we have SW (AL) = b(I \ S), so the allocation AL is an optimal allocation of the
market ML. Moreover, we have t ∈ AL

i , so it follows that t ∈ LML(i), as required.

(⇐=) The proof is analogous to the proof of the backward direction of Claim 3.4.7.

As in Case 1, it follows immediately that the market ML satisfies the (∗) condition.
Moreover, since |NG(S)| = b(S) + 2, we have S ̸= ∅. Hence, the market ML, which
has buyers I \ S, has fewer buyers than the original market M. Thus, we may apply
induction to obtain an optimal dynamic pricing scheme pL for the lower market ML such
that {t∗} = argmin{pt : t ∈ TL}.

Next, we define the following bipartition of the set NG(S) \ {x} :

N<x
G (S) := {t ∈ NG(S) : p

U
t < pUx }.

N>x
G (S) := {t ∈ NG(S) : p

U
t > pUx }.

Then, we construct a pricing scheme p for the original marketM with prices in the following
order:

{0} <p N
<x
G (S) <p T

L \ {t∗} <p N
>x
G (S) <p {1}.

The prices of the items in the set N<x
G (S) ∪ N>x

G (S) are ordered according to the pricing
scheme pU and the prices of the items in the set TL \ {t∗} are ordered according to the
pricing scheme pL. By Claim 3.1.1, we may assume the pricing scheme pL has unique
values. Recall that the pricing scheme pU satisfies {t∗} = argmin{pt : t ∈ NG(S)}. Thus,
for a buyer i ∈ S, the bundle in demand for the buyer i with respect to the prices p is the
bundle in demand for the buyer i with respect to the prices pU . In addition, recall that
the pricing scheme pL satisfies {t∗} = argmin{pt : t ∈ TL}. Thus, for a buyer i ∈ I \ S,
the bundle in demand for the buyer i with respect to the prices p is the bundle in demand
for the buyer i with respect to the prices pL. By an argument that is analogous to the
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proof of Claim 3.4.8, we conclude that the pricing scheme p is an optimal dynamic pricing
scheme for the market M and {t∗} = argmin{pt : t ∈ T}, completing the proof of Lemma
3.4.1.
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Chapter 4

Dynamic Pricing in Multi-Demand
Markets Without (OPT)

In this chapter, we investigate the consequences of removing the (OPT) condition. First,
in Section 4.1, we provide a framework that relates the problem of finding optimal dy-
namic pricing schemes in general multi-demand markets to the problem of finding optimal
dynamic pricing schemes in multi-demand markets that satisfy both the (OPT) condition
and the (∗) condition. In [5], Szögi uses this framework to give a white-box reduction for
the case where every buyer’s demand is equal to two. Next, in Section 4.2, we use provide
a black-box reduction for a specific case of multi-demand markets.

4.1 A Framework for Reducing the Problem to Mar-

kets With (OPT)

Let M be a multi-demand market which does not satisfy the (OPT) condition. By Claim
2.0.2, we may assume every item is allocated to some buyer in every optimal allocation of
the market M. Thus, |T | < b(I). In other words, there is a deficiency of items in the market
M. Let ỹ be the specific dual solution for the market graph H, as provided by Claim 2.0.1.
Then, we define the set Î := {i ∈ I : ỹi = 0}. By 2.0.1 (ii), we have that the set Î is
precisely the set of buyers in the market |M that receive fewer items than their demand in
some optimal allocation of the market M. We refer to these buyers as “dummy” buyers.

Next, we proceed as in Section 3.1, and we form an auxiliary market M ′ with the same
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buyers I, the same items T, the same demands b and the following valuations v′ :

v′i(t) =

{
1 if t ∈ LM(i)

0 otherwise
∀i ∈ I, t ∈ T.

It follows that optimal allocations of the market M ′ are precisely optimal allocations of
the market M.

Next, to compensate for the dearth of items in the market M ′, we artificially introduce
a set T̂ of b(I) − |T | items, which we refer to as “dummy” items. The buyers’ valuations
of these dummy items are as follows:

v′i(t̂) :=

{
1 if i ∈ Î

0 if i ∈ I \ Î
∀i ∈ I, t̂ ∈ T̂ .

Let M̂ be the market with buyers I, items T∪T̂ , the same demands b and the valuations
v′ as defined above. It follows that every optimal allocation of the market M̂ is the disjoint
union of an optimal allocation of the market M ′ and an assignment of the dummy items T̂
to dummy buyers in Î which respects demand. Conversely, every optimal allocation of the
market M ′ can be extended to include an assignment of the dummy items T̂ to dummy
buyers in Î which respects demand, and this is an optimal allocation of the market M̂.
Hence, the modified market M̂ satisfies both the (OPT) condition and the (∗) condition.

Next, we recall the following quantity:

α := min{min i∈I
t∈T

{ỹi + ỹt − wit : it is not legal},minv∈I∪T{ỹv : ỹv > 0}}.

Note that α > 0 by our assumption that every item is allocated to some buyer in every
optimal allocation.

Now, suppose p′ is an optimal dynamic pricing scheme for the modified market M̂. By
Claim 3.1.1, we may assume the pricing scheme p′ has unique values, so we may order
the non-dummy items T in increasing order of their prices as given by p′. Let us call this
ordering σ : T → {1, . . . , |T |}. That is, σ(x) > σ(y) if and only if p′x > p′y.

Remark that the dual solution ỹ for the market graph H is not conducive to defining
prices, as we did for the (OPT) case in Section 3.1. This is because ỹi = 0 for all i ∈ Î ,
so the analogue of Claim 3.1.2 does not hold. To work around this, we define a function
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ŷ : I∪T → R on the vertices of the market graph H ′ of the auxiliary market M ′ as follows:

ŷv :=

{
ỹ + α/2 if v ∈ I

ỹ − α/2 if v ∈ T
∀v ∈ I ∪ T.

We will eventually define prices for the items T using the values of {ŷt : t ∈ T}, but first,
we list a few elementary properties of the function ŷ that will be useful to this end:

Claim 4.1.1. The function ŷ satisfies the following:

(i) For all buyers i ∈ I \ Î , we have ŷi ≥ 3α/2.

(ii) For all buyers i ∈ Î , we have ŷi = α/2.

(iii) For all buyers i ∈ I and for all items t ∈ T, we have ŷi+ ŷt ≥ wit. Moreover, equality
occurs if and only if the edge it ∈ E(H) is legal in the market M.

Proof. Item (i) follows from Claim 2.0.1 (ii) and from the definition of α; item (ii) follows
from Claim 2.0.1 (ii); and item (iii) follows from Claim 2.0.1.

Now, if we attempt to proceed as we did Section 3.1, and we try to define prices for the
items T using the values of {ŷt : t ∈ T} in the analogous way, then we run into a potential
issue with the dummy buyers in the market M. To see why this is the case, let us first
order all of the items T ∪ T̂ of the market M̂ in increasing order of their prices as given
by p′, and let us call this ordering τ : T ∪ T̂ → {1, . . . , |T ∪ T̂ |}. Then, for a dummy buyer
î ∈ T̂ , we have that the assignment of the first bî items (according to τ) that are legal for

the buyer î to the buyer î extends to an optimal allocation of the market M̂. However,
when the buyer î arrives to the market M, they do not consider purchasing any dummy
items because those items do not exist in the market M. Consequently, they will skip over
the dummy items in the ordering τ and they will instead purchase the first bî non-dummy
items (according to the ordering σ) that are legal for them. This assignment is no longer
guaranteed to extend to an optimal allocation of the market M. To remedy this issue, we
seek to “cut off” dummy buyers from purchasing any items past a certain point in the
ordering σ, which we call the “cutoff point.” This can be achieved by increasing the prices
of the items which appear after the cutoff point by a small amount which, as we will show,
is small enough to not change the behaviour of the non-dummy buyers in the market M.
The remainder of this section is dedicated to proving these assertions.

We proceed to select a cutoff point C ∈ {0, 1, . . . , |T |}. Note that selecting C = 0
ensures that no dummy buyer will purchase any item whatsoever, and that selecting C =
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|T | does not prevent the dummy buyers from purchasing any items that they otherwise
would be able to purchase. Then, we define prices p for the market M as follows:

pt :=

{
ŷt +

α/2
|T |+1

σ(t) if σ(t) ≤ C

ŷt +
α/2
|T |+1

σ(t) + α/2 if σ(t) > C

For an item t ∈ T, we say that the item t appears before the cutoff point if σ(t) ≤ C,
and we say that the item t appears after the cutoff point if σ(t) > C. Also, we write u to
denote the utility with respect to the market M and we write u′ to denote the utility with
respect to the modified market M̂.

Now, we show that legal items have strictly positive utility for non-dummy buyers in
the market M, regardless of whether the items appear before or after the cutoff point:

Claim 4.1.2. Let i ∈ I \ Î be a non-dummy buyer and let t ∈ T be an item such that
t ∈ LM(i). Then, we have ui(t, p) > 0.

Proof. Consider:

ui(t, p) ≥ wit −
(
ŷt +

α/2

|T |+ 1
σ(t) + α/2

)
= ŷi −

α/2

|T |+ 1
σ(t)− α/2 by Claim 4.1.1 (iii)

≥ α− α/2

|T |+ 1
σ(t) by Claim 4.1.1 (i)

≥ α− α/2
|T |

|T |+ 1
since σ(t) ≤ |T |

> α/2 since α > 0.

Thus, ui(t, p) > α/2 > 0, as desired.

Next, we show that legal items that appear before the cutoff point have strictly positive
utility for dummy buyers in the market M, and that legal items that appear after the cutoff
point have strictly negative utility for dummy buyers in the market M :

Claim 4.1.3. Let i ∈ Î be a dummy buyer and let t ∈ T be an item such that t ∈ LM(i).
If σ(t) ≤ C, then we have ui(t, p) > 0. Otherwise, if σ(t) > C, then we have ui(t, p) < 0.

56



Proof. First, suppose σ(t) ≤ C and consider:

ui(t, p) = wit −
(
ŷt +

α/2

|T |+ 1
σ(t)

)
= ŷi −

α/2

|T |+ 1
σ(t) since it is legal and by Claim 4.1.1 (iii)

= α/2− α/2

|T |+ 1
σ(t) by Claim 4.1.1 (ii)

≥ α/2− α/2
|T |

|T |+ 1
since σ(t) ≤ |T |

> 0 since α > 0.

Thus, ui(t, p) > 0, as required.

Next, suppose σ(t) > C and consider:

ui(t, p) = wit −
(
ŷt +

α/2

|T |+ 1
σ(t) + α/2

)
= ŷi −

α/2

|T |+ 1
σ(t)− α/2 by Claim 4.1.1 (iii)

= − α/2

|T |+ 1
σ(t) by Claim 4.1.1 (ii)

< 0 since α > 0.

Thus, ui(t, p) < 0, as desired.

Next, we show that every buyer in the market M strictly prefers legal items to non-legal
items:

Claim 4.1.4. Let i ∈ I be a buyer and let t1, t2 ∈ T be items such that t1 ∈ LM(i) and
t2 /∈ LM(i). Then, ui(t1, p) > ui(t2, p).
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Proof. Consider:

ui(t1, p)− ui(t2, p)

≥
[
wit1 −

(
ŷt1 +

α/2

|T |+ 1
σ(t1)

)
+ α/2

]
−

[
wit2 −

(
ŷt2 +

α/2

|T |+ 1
σ(t2)

)]
= (ŷi + ŷt2 − wit2) +

α/2

|T |+ 1
(σ(t2)− σ(t1))− α/2 by Claim 4.1.1 (iii)

= (ỹi + ỹt2 − wit2) +
α/2

|T |+ 1
(σ(t2)− σ(t1))− α/2

≥ α/2 +
α/2

|T |+ 1
(σ(t2)− σ(t1)) by our choice of α

> α/2− α/2
|T |

|T |+ 1
since σ(t2) ≥ 1 and σ(t1) < |T |+ 1

> 0 since α > 0.

Thus, ui(t1, p) > ui(t2, p), as desired.

Next, we show that for a non-dummy buyer in the market M, their preferences between
non-dummy legal items are the same in both markets M and M̂. Moreover, we show that
for a dummy buyer in the market M, their preferences between non-dummy legal items
that appear before the cutoff point are the same in both markets M and M̂. To this end,
we first consider the item prices p∗ : T → R given by p∗t := ŷt +

α/2
|T |+1

σ(t). That is, the
prices p∗ correspond to the prices p, but without increasing the prices of the items that
appear after the cutoff point. We proceed to show that the buyers’ preferences between
legal items are the same in both markets M and M̂ with respect to the prices p∗ and p′,
and our desired result follows:

Claim 4.1.5. Let i ∈ I be a buyer and let t1, t2 ∈ T be distinct items such that t1, t2 ∈
LM(i). Then, ui(t1, p

∗) > ui(t2, p
∗) if and only if u′

i(t1, p
′) > u′

i(t2, p
′).
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Proof. Consider:

ui(t1, p
∗) > ui(t2, p

∗)

⇐⇒ wit1 −
(
ŷt1 +

α/2

|T |+ 1
σ(t1)

)
> wit2 −

(
ŷt2 +

α/2

|T |+ 1
σ(t2)

)
⇐⇒ ŷi −

α/2

|T |+ 1
σ(t1) > ŷi −

α/2

|T |+ 1
σ(t2) by Claim 4.1.1 (iii)

⇐⇒ σ(t1) < σ(t2)

⇐⇒ p′t1 < p′t2
⇐⇒ v′i(t1)− p′t1 > v′i(t2)− p′t2 since v′i(t1) = v′i(t2) = 1

⇐⇒ u′
i(t1, p

′) > u′
i(t2, p

′).

Thus, ui(t1, p
∗) > ui(t2, p

∗) if and only if u′
i(t1, p

′) > u′
i(t2, p

′), as desired.

In conclusion, if our initial market M does not satisfy the (OPT) condition, then we
may first form the auxiliary market M ′, and then we may artificially introduce a set T̂ of
b(I)−|T | dummy items which every dummy buyer values at 1 and which every non-dummy
buyer values at 0. It follows that the resulting market M̂ satisfies both the (OPT) condition
and the (∗) condition. Then, if we manage to compute an optimal dynamic pricing scheme
for the market M̂, then it remains for us to determine the correct point at which to cut
off the dummy buyers. If we are successful in determining such a cutoff point, then we
obtain an optimal dynamic pricing scheme for the original market M. In [5], Szögi uses
this technique to prove the existence of optimal dynamic pricing schemes in multi-demand
markets where bi = 2 for all buyers i ∈ I, without assuming the (OPT) condition. Their
algorithm is a direct extension of the algorithm constructed by Bérczi et al. in [1].

Finally, remark that the so-called dummy items that are employed in this section do
not play a key role in the arguments we have presented. In fact, we just need some way of
relating the original market M to a modified market M̂ that satisfies the (OPT) condition
and that preserves the structure of the original market M in some useful sense. In the
next section, we present a specific case of multi-demand markets in which we obtain a
black-box reduction. However, instead of introducing dummy items into the market M,
we alternatively merge the dummy buyers into a single non-dummy buyer of lower total
demand to obtain our modified market.
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4.2 A Black-Box Reduction to (OPT) for a Specific

Case

In this section, we provide a black-box reduction for the problem of finding optimal dy-
namic pricing schemes in general multi-demand markets to the problem of finding optimal
dynamic pricing schemes in markets that satisfy the (OPT) condition for a specific case.
Loosely speaking, the condition we require on the input market is that its deficiency of
items is large with respect to each of the dummy buyers’ demands. Formally, the statement
is as follows:

Lemma 4.2.1. Let M be a multi-demand market such that b(Î)− (b(I)− |T |) ≤ min{bi :
i ∈ Î}. If there exist optimal dynamic pricing schemes for multi-demand markets satisfying
the (OPT) condition, then there exists an optimal dynamic pricing scheme for the market
M.

Proof. To begin, we may assume by Claim 2.0.2 that every item is allocated to some buyer
in every optimal allocation of the market M. Hence, every optimal allocation of the market
M assigns exactly b(I\Î) items to the buyers in the set I\Î , and it distributes the remaining
|T | − b(I \ Î) = b(Î)− (b(I)− |T |) := q items among the dummy buyers in the set Î . Thus,
the condition that we impose in the statement of this lemma is that the number of items
q that are distributed among the dummy buyers in every optimal allocation of the market
M is at most the demand of each dummy buyer. This condition enables to redistribute
items among the dummy buyers, which we will make use of later in the proof.

To continue, we recall that the first step in constructing the (OPT) framework in the
previous section is to form the auxiliary market M ′, which satisfies the (∗) condition. For
convenience, we bypass this step, and we simply assume that the market M satisfies the
(∗) condition to begin with. Then, we create a merged dummy buyer î with demand bî := q
and with valuations as follows:

v(̂i)t :=

{
1 if t ∈

⋃
i∈Î LM(i)

0 otherwise
∀t ∈ T.

Intuitively, the merged dummy buyer î values every item that is legal for at least one
dummy buyer in the market M at 1, and they value all other items at 0.

Next, we form a modified market M̂ with buyers (I \ Î)∪{̂i}, the same items T, and the
same demands and valuations b and v as in the original marketM, albeit with an additional
entry for the merged dummy buyer î. In other terms, we form the modified market M̂ by
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essentially replacing the set of dummy buyers Î with the single merged dummy buyer î. We
proceed to prove some useful properties about the modified market M̂. First, we show that
the legality of every buyer-item pair for non-dummy buyers in the market M is preserved
in the modified market M̂ :

Claim 4.2.1. For every non-dummy buyer i ∈ I \ Î and for every item t ∈ T, we have
t ∈ LM(i) if and only if t ∈ LM̂(i).

Proof. (=⇒) Suppose t ∈ LM(i). Then, there exists an optimal allocation A = {Aj ⊆ T :
j ∈ I} of the market M such that t ∈ Ai. By our previous discussion, it follows that the
allocation A distributes exactly q items among the dummy buyers in the set Î . Let these
items be {t1, . . . , tq}. By definition of legality, it follows that for every j ∈ [q], we have

tj ∈ LM(k) for some dummy buyer k ∈ Î . Hence, have v(̂i)tj = 1 for all j ∈ [q]. Now,

we define an allocation A′ := {Âj ⊆ T : j ∈ (I \ Î) ∪ {̂i}} of the modified market M̂ as
follows:

Âj :=

{
Aj if j ̸= î

{t1, . . . , tq} if j = î
∀j ∈ (I \ Î) ∪ {̂i}.

It follows that SW (A′) = SW (A) = b(I)− |T | = b(I \ Î) + q = b((I \ Î) ∪ {̂i}), which is
equal to the total demand of the buyers in the modified market M̂. Since every valuation
of the modified market is at most one, it follows that the allocation A′ is an optimal
allocation of the modified market M̂. Moreover, we have t ∈ Âi, so t ∈ LM̂(i), as desired.

Note that this also implies that the modified market M̂ satisfies the (OPT) condition.

(⇐=) Suppose t ∈ LM̂(i). Then, there exists an optimal allocation A′ = {Âj ⊆ T :

j ∈ (I \ Î) ∪ {̂i}} of the modified market M̂ such that t ∈ Âi. By the proof of the forward
direction, we have vi(t) = 1. Since the market M satisfies the (∗) condition, it follows that
t ∈ LM(i), as required. Note that it easily follows, by an argument that is analogous to
the proof of Claim 3.3.3, that the modified market M̂ also satisfies the (∗) condition.

Now, suppose we have an optimal dynamic pricing scheme p̂ for the modified market
M̂. By Claim 3.1.1, we may assume that the pricing scheme p̂ has unique values. Let
t1, . . . , tq be the q lowest-priced items according to the pricing scheme p̂ that are legal for

the merged buyer î. Then, there exists an optimal allocation of the modified market M̂
which assigns the set of items {t1, . . . , tq} to the merged buyer î. Suppose further that
p̂t1 > · · · > p̂tq . Then, we claim that cutting off the dummy buyers after the item tq results
in an optimal dynamic pricing scheme for the original market M. Indeed, suppose tq is the
k-th lowest-priced item according to the prices p̂, and let p be the pricing scheme obtained
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from p̂ by setting C = k as the cutoff point. We proceed to consider two cases based on
whether a dummy buyer or a non-dummy buyer arrives first to the market M :

Case 1: Suppose a non-dummy buyer i ∈ I \ Î arrives first to the market M. By the
results in Section 4.1, it follows that the buyer i will purchase the bi lowest-priced items
according to the pricing scheme p̂ that are legal for them in the market M̂. Let this set of
items be R. By optimality of the pricing scheme p̂, it follows that there exists an optimal
allocation A′ := {Âj ⊆ T : j ∈ (I \ Î) ∪ {̂i}} of the modified market M̂ such that R = Âi.

Let Î := {̂i1, . . . , în} be an arbitrary ordering on the set of dummy buyers in the market M.
Now, we define an allocation A = {Aj ⊆ T : j ∈ I} of the original market M as follows:

Aj :=


Âj if j ∈ I \ Î
Âî ∩ LM (̂i1) if j = î1

(Âî ∩ LM (̂ik)) \
(⋃k−1

l=1 Âî ∩ LM (̂il)
)

if j = îk for some k ∈ {2, . . . , n}
∀i ∈ I.

Intuitively, under the allocation A, every non-dummy buyer is assigned the same bundle
that is assigned to them by the allocation A′, and for each k ∈ [n], the dummy buyer îk is
assigned all of the items that are assigned to the merged dummy buyer î by the allocationA′

that are not legal to each of the previous dummy buyers îk−1, . . . , î1 in our ordering of the set
of dummy buyers Î . Since the modified market M̂ satisfies the (OPT) condition, it follows
that |Âî| = q. Moreover, by our assumption that q ≤ min{bi : i ∈ Î} in the statement of
the lemma, it follows that the allocation A indeed respects the demand of every buyer in
the market M. Finally, by Claim 4.2.1, it follows that SW (A) = b(I \ Î) + q = b(I)− |T |,
so the allocation A is an optimal allocation of the market M. Moreover, we have R = Ai.
Hence, the assignment of the bundle R to the buyer i extends to an optimal allocation A
of the market M, as required.

Case 2: Suppose a dummy buyer arrives first to the market M. Again, we let Î :=
{̂i1, . . . , în} be an arbitrary ordering on the set of dummy buyers in the market M. Without
loss of generality, suppose the dummy buyer î1 arrives first to the market M. Since bî1 ≥ q

by assumption, it follows by the results in Section 4.1 that the buyer î1 will purchase the
bundle {t1, . . . , tq} ∩ LM (̂i1). By optimality of the pricing scheme p̂, it follows that that

there exists an optimal allocation A′ := {Âj ⊆ T : j ∈ (I \ Î) ∪ {̂i}} of the modified

market M̂ such that {t1, . . . , tq} = Âî. Now, we define an optimal allocation A = {Aj ⊆
T : j ∈ I} of the original market M in the same way that we did for Case 1. Thus, it again
follows that A is an optimal allocation of the market M. Moreover, recall that we have
Âî = {t1, . . . , tq}, so it follows that Aî1

= {t1, . . . , tq} ∩ LM (̂i1). Hence, the assignment of

the bundle {t1, . . . , tq} ∩LM (̂i1) to the buyer î1 extends to an optimal allocation A of the
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market M. In conclusion, the pricing scheme p is an optimal dynamic pricing scheme for
the market M, completing the proof of the lemma.
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Chapter 5

Open Problems

In this final chapter, we briefly discuss some unsolved questions pertaining to dynamic pric-
ing schemes in combinatorial markets. We present some natural extensions of the problem
that we have studied, and we outline some of the barriers that arise when attempting to
extend the techniques that we have presented in the previous chapters.

5.1 Larger Demands in Multi-Demand Markets

To begin, the most natural extension of the problem we have considered is to ask whether
optimal dynamic pricing schemes exist in a multi-demand market M satisfying the (OPT)
condition and such that bi ≤ 4 for all buyers i ∈ I. In this new setting, which we refer to as
the “four-demand” case, we are forced to deal with assignments of items to buyers of size
three that do not extend to optimal allocations of the market. Following the techniques
presented in Chapter 3, we infer that these assignments may lead to a splitting of the
market M into an upper market MU and a lower market ML such that the lower market
ML requires three items to be introduced into its base item set to fulfill its demand. In
order for the resulting pricing schemes pU and pL to be able to be combined into an overall
pricing scheme p, we would now require the induction hypothesis that any two items of
the market M may be priced lowest. This may not be possible. For instance, consider
the case where kM = 2 and there exists a buyer i ∈ I and items x, y ∈ T such that the
assignment of the items {x, y} to the buyer i respects both legality and demand in the
market M but does not extend to an optimal allocation of the market M. Then, the items
{x, y} cannot be the two lowest-priced items in any optimal dynamic pricing scheme for
the market M. This is what motivates Definition 4 of flexible items, and it is also what
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motivates us to consider the minimum possible size of a bundle that is not flexible in the
market M. Indeed, the bundle {x, y} presented above is not flexible in the market M, and
it also enables the most useful splitting of the market M : a splitting in which just one item
needs to be introduced into the base item set of the lower market ML. Then, the proof of
Lemma 3.3.1 can be used to show that the two smaller pricing schemes can be combined
into an optimal pricing scheme for the original market M. Thus, one might hope to make
use of the following induction hypothesis: For every bundle B that is flexible in the market
M, there exists an optimal dynamic pricing scheme for the market M in which the items in
B are priced the lowest. Note that we would only need to consider inclusion-wise minimal
non-flexible sets in order to obtain our desired splitting of the market. The aforementioned
induction hypothesis is somewhat consistent with our treatment of tri-demand markets in
Section 3.4, as singleton item sets are always flexible, and we were able to price them the
lowest. However, we were not able to show that any two items of the market M can be
priced the lowest in tri-demand markets in the case where kM = 3. One difficulty that
arises is that a bundle B which is flexible in the market M may not be flexible in the
lower market ML. It is worth noting, however, that the requirement that certain items be
priced the lowest is not strictly necessary to guarantee the compatibility of the two smaller
pricing schemes. Instead, we may alternatively require that certain items may be priced in
any order. This requirement seems more reasonable; however, we were not able to exploit
it in any meaningful way in our research to date.

In addition to the difficulties already outlined when considering the four-demand case,
another complication presents itself in relation to the buyers’ demands. Recall that in
the tri-demand case, we had to eliminate unit-demand buyers from the market in order to
guarantee that we could reassign sets of two items to arbitrary buyers. This was crucial in
the proof of Claim 3.4.8, where we proved the optimality of the combined pricing scheme
p. When allowing for buyers’ demands to attain four, we would analogously need some
method of eliminating bi-demand buyers from the market. We were unable to do so
while also preserving the lowest-price item requirement of the pricing scheme. Overall,
the difficulty of having to keep track of the prices of two arbitrary items together with the
complication of having to eliminate bi-demand buyers from the market resulted in us being
unsuccessful in trying to devise an optimal dynamic pricing scheme for the four-demand
case.
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5.2 Removing the (OPT) Condition in Multi-Demand

Markets

As discussed in Chapter 4, the problem of finding optimal dynamic pricing schemes in
general multi-demand markets is closely related to the problem of finding optimal dynamic
pricing schemes in multi-demand markets which satisfy the (OPT) condition. Ideally, one
hopes to find a black-box reduction in the general case, but we were unable to find such
an algorithm in our research to date. The difficulty is in determining the correct point
at which to cut off the dummy buyers from buying any further legal items, and it is not
clear that such a cutoff point always exists. On the positive side, however, our black-box
reduction in Section 4.2 introduces the potentially useful technique of merging buyers to
obtain a market which satisfies the (OPT) condition. Although we were unable to make
good use of the merging of dummy buyers without the assumption outlined in Lemma 4.2.1,
it is worth noting that any technique -whether it be introducing dummy items, merging
buyers, or otherwise- that relates the original market M to a modified market M̂ that
satisfies the (OPT) condition and that preserves the structure of the original market M in
some useful sense, can potentially be useful in devising such a black-box reduction.

Another closely related problem is that of producing a white-box reduction from general
tri-demand markets to tri-demand markets which satisfy the (OPT) condition. We did not
investigate this question, and it is possible that the proof presented in Section 3.4 can be
modified to accommodate general tri-demand markets.

5.3 Other Classes of Valuation Functions

As mentioned in the introduction, the existence of optimal pricing schemes in combinatorial
markets is primarily of interest when the valuation functions are gross substitutes functions.
In a sense, multi-demand markets admit the simplest class of gross substitutes valuation
functions. In [2], Bérczi et al. investigate combinatorial markets under matroid rank
valuations, which constitute a slightly more complicated class of gross substitutes valuation
functions. In this setting, each buyer of the market has a matroid over the same ground
set of items. Their valuation over subsets of items is then given by the rank of that bundle
with respect to their matroid. These authors show the existence of efficient algorithms
for computing optimal dynamic pricing schemes in the specific case where there are two
buyers in the market and where either one of the matroids is a simple partition matroid or
both matroids are strongly base orderable. In general, the case of matroid rank valuations
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is still open. In addition, there are several other classes of gross substitutes valuation
functions for which it is not known whether optimal dynamic pricing schemes exist in
general combinatorial markets.
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