
Efficient Implementation of
Parametric Polymorphism using

Reified Types

by

Matt D’Souza

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2023

c© Matthew D’Souza 2023

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Parametric polymorphism is a language feature that lets programmers define code that
behaves independently of the types of values it operates on. Using parametric polymor-
phism enables code reuse and improves the maintainability of software projects.

The approach that a language implementation uses to support parametric polymor-
phism can have important performance implications. One such approach, erasure, con-
verts generic code to non-generic code that uses a uniform representation for generic data.
Erasure is notorious for introducing primitive boxing and other indirections that harm the
performance of generic code. More generally, erasure destroys type information that could
be used by the language implementation to optimize generic code.

This thesis presents TastyTruffle, a new interpreter for the Scala language. Whereas
the standard Scala implementation executes erased Java Virtual Machine (JVM) byte-
code, TastyTruffle interprets TASTy, a different representation that has precise type
information. This thesis explores how the type information present in TASTy empowers
TastyTruffle to implement generic code more effectively. In particular, TASTy’s type
information allows TastyTruffle to reify types as objects that can be passed around
the interpreter. These reified types are used to support heterogeneous box-free represen-
tations of generic values. Reified types also enable TastyTruffle to create specialized,
monomorphic copies of generic code that can be easily and reliably optimized by its just-
in-time (JIT) compiler.

Empirically, TastyTruffle is competitive with the standard JVM implementation.
Both implementations perform similarly on monomorphic workloads, but when generic
code is used with multiple types, TastyTruffle consistently outperforms the JVM.
TASTy’s type information enables TastyTruffle to find additional optimization oppor-
tunities that could not be uncovered with erased JVM bytecode alone.

iii

Acknowledgements

First, I want to thank my mom for her unconditional love and encouragement. She has
supported me earnestly since the very beginning — even if I never could give her a good
explanation of what a “compiler” was.

I especially want to thank my advisor, Ondřej Lhoták, without whom this thesis would
not have been possible. Ondřej’s second-year compilers course was the spark that ignited
my interest in compilers and programming languages. He introduced me to Graal, encour-
aged me to apply to their internship program, and ultimately took me on as a student for
this project. It has been a pleasure learning from him, and I hope we have opportunities
in the future to continue working together.

In the course of my studies, I had the opportunity to learn from a lot of wonderful
people on the Graal team. Thank you to Alex Prokopec for advising this research project.
I’m lucky to have retained maybe half of the ideas he so patiently explained during our
meetings. I am also thankful for Gilles Duboscq, Christian Humer, Roland Schatz, and the
other team members for their support during my internship. Thank you to Chris Seaton
for your generosity and kindness.

Many thanks to Gregor Richards and Peter Buhr for reading this thesis in its entirety
and for the valued feedback. I did not intend to write so much, but I hope that it was at
least interesting to read. I am also grateful to Patrick Lam for his mentorship throughout
my 7+ years at Waterloo.

Though I cannot name them all, I want to thank the people who made grad school
bearable. Thank you to James You for being an excellent research partner, in times of
success and times of stress. Thank you to all of my labmates in PLG for the Tim Hortons
coffees and Grad House beers. Thank you to my friends for putting up with me disappearing
into schoolwork for months on end. Thank you to my roommates for the shared dinners,
board games, and volleyball. Thanks to Will Shortz for the crosswords.

Finally, I want to thank my wonderful partner and best friend, Grace. I cannot imagine
myself finishing this thesis without your love, support, and patience. Thank you for encour-
aging me when I had setbacks, for taking care of me when I couldn’t, and for pretending
to believe me when I said I’d be done writing by December January February March.

This work was supported by the National Sciences and Engineering Research Council
of Canada.

iv

Table of Contents

List of Figures viii

List of Tables xi

1 Introduction 1
1.1 Implementing parametric polymorphism 1
1.2 Parametric polymorphism in Scala . 2
1.3 The problem with erasure . 2
1.4 Scala’s TASTy representation . 4
1.5 Thesis overview . 4
1.6 Contributions . 5

2 Background 7
2.1 Parametric polymorphism . 7

2.1.1 Monomorphization . 8
2.1.2 Type erasure . 10
2.1.3 Parametric polymorphism in Scala 11

2.2 Scala’s TASTy representation . 13
2.3 The Graal compiler . 14

2.3.1 Graal IR . 16
2.3.2 Optimizations . 22

2.4 The Truffle ecosystem . 27
2.4.1 Truffle interpreters . 27
2.4.2 Partial evaluation . 30
2.4.3 Self-optimizing ASTs . 36
2.4.4 Truffle’s object model . 39

3 TastyTruffle: A Truffle interpreter for Scala 42
3.1 The TastyTruffle AST . 42
3.2 Definitions . 43

3.2.1 Referencing definitions in TastyTruffle 46
3.3 Data representation in TastyTruffle . 47

3.3.1 Objects . 47
3.3.2 Shapes . 49
3.3.3 Data representation and the AST 51

v

3.4 Method dispatch . 54
3.4.1 Direct calls . 54
3.4.2 Indirect calls . 56

4 Using reified types in TastyTruffle 60
4.1 Reified types . 60

4.1.1 TypeNodes . 61
4.2 Generic methods . 62

4.2.1 Generic locals . 63
4.2.2 Generic array accesses . 66
4.2.3 Propagating type information . 66

4.3 Generic classes . 66
4.3.1 Modeling applied generic classes . 67
4.3.2 Applying generic classes to type arguments 69
4.3.3 Modeling generic classes in the AST 73
4.3.4 Generic fields . 77
4.3.5 Method dispatch . 77
4.3.6 Generic parent classes . 79

5 Specializing generic code 81
5.1 Motivation . 81
5.2 Specializing generic methods . 84
5.3 Specializing generic class methods . 85
5.4 Static specialization . 87

5.4.1 Statically specializing generic methods 88
5.4.2 Statically specializing generic class methods 88

6 Evaluating TastyTruffle 91
6.1 Benchmarks . 91
6.2 Setup . 91
6.3 Throughput . 93

6.3.1 Polymorphic workloads . 93
6.3.2 Monomorphic workloads . 101
6.3.3 Comparing dynamic and static specialization 105

6.4 Transient behaviour . 106
6.4.1 Warmup . 106
6.4.2 Compilation . 108

7 Related Work 110
7.1 Implementing parametric polymorphism 110
7.2 Working around type erasure on the JVM 111

7.2.1 Static specialization . 111
7.2.2 Reifying Scala types . 112

7.3 Just-In-Time (JIT) compilation of Scala programs 112
7.4 Truffle interpreters . 113

vi

8 Conclusion 114

References 115

APPENDICES 120

A Generic swap AST 121

vii

List of Figures

2.1 Definitions for a generic List structure. 8
2.2 A generic C++ List class before and after monomorphization. 9
2.3 A generic Java List class before and after erasure. 10
2.4 Source code for ScalaRunTime.array_apply. 11
2.5 Code using a ClassTag context bound. 12
2.6 Code using an Ordering type class. 12
2.7 Scala source and TASTy for a simple Box class. 14
2.8 High-level view of Graal and the Java ecosystem. 15
2.9 Source code and IR for a simple addFive method. 17
2.10 Source code and IR for a Counter and its count method. 17
2.11 Source code and IR for a max method that tracks the largest value seen. . . 18
2.12 Source code and IR for an iterative factorial method. 20
2.13 Source code and IR for a recursive factorial method. 21
2.14 Source code and IR for a method with dynamically unreachable code. . . . 22
2.15 Definition of a Point class and a hierarchy of Transforms. 22
2.16 Source code and IR for a method transformed by type-checked inlining. . . 24
2.17 Source code and IR for a method transformed by partial escape analysis. . 25
2.18 Source code and IR for a method transformed by type-checked inlining and

partial escape analysis. 26
2.19 High-level view of the Truffle ecosystem. 28
2.20 An example AST and the source code for its nodes. 29
2.21 Pseudocode for f(x) = x * 2 (from Figure 2.20) after partial evaluation. . 31
2.22 IR for f(x) = x * 2 after partial evaluation and escape analysis. 32
2.23 Source code for a node with a deoptimization directive. 33
2.24 Source code for a Cache node. 34
2.25 Graal IR for a Cache of x * 2. 35
2.26 Graal IR from Figure 2.25 after dead code elimination. 35
2.27 State machine for a self-optimizing Plus node. 36
2.28 Source code for a self-optimizing Plus node. 37
2.29 Source code for a node that caches deterministic computations. 38
2.30 Modeling an Item with the static object model. 40
2.31 The relation between the generated Item class and its static properties. . . 40
2.32 Modeling a SaleItem with the static object model. 41
2.33 The relation between the generated SaleItem class and its static properties. 41

3.1 Source code and TastyTruffle AST for an addOne method. 43

viii

3.2 Source code and TastyTruffle AST for a factorial method. 44
3.3 Source code for Counter and TastyTruffle AST for its increment method. 45
3.4 Source code for the Representation enum. 48
3.5 Data definition for the Field class. 48
3.6 A Rectangle class and its run-time representation in TastyTruffle. . . 48
3.7 A TranslucentRectangle class and its run-time representation in TastyTruf-

fle. 49
3.8 Data definition for the Shape class. 49
3.9 Method declarations and Shapes for the rectangle classes. 50
3.10 Source code for a ReadLocal node before and after partial evaluation. . . . 52
3.11 Source code for a WriteLocal node. 52
3.12 Source code for an ArrayInit node. 54
3.13 Source code for an ArrayApply node. 55
3.14 Example code with a direct call. 55
3.15 Source code for a DirectCall node. 56
3.16 Example code with an indirect call. 57
3.17 Source code for an IndirectCall node. 57
3.18 Pseudocode generated by PE for the indirect call to bar in Figure 3.16. . . 58

4.1 A generic swap method that updates an array and returns the previous value
stored. 61

4.2 Scala pseudocode to construct a TastyTruffle TypeNode from a TASTy
TypeRepr. 62

4.3 Source code for a MethodTypeParam node. 63
4.4 Source code and AST for a generic method foo. 64
4.5 Source code for a GenericReadLocal node. 65
4.6 Pseudocode for a GenericWriteLocal node’s execute method after partial

evaluation. 66
4.7 Source code for a GenericArrayApply node. 67
4.8 Generic Box class. 67
4.9 Data definition for the Shape class (reproduced). 68
4.10 Data definition for the GenericShape class. 68
4.11 Source code for a ClassTypeParam node. 69
4.12 Data definition for the GenericShapeTemplate class. 69
4.13 Data definition for the FieldTemplate class. 70
4.14 Source code and example usage for the TypeNodeSpecializer. 71
4.15 Source code for the GenericShapeTemplate’s apply method. 72
4.16 Source code for the GenericShapeTemplate’s caching mechanism. 74
4.17 Pseudocode for lookup (from Figure 4.16) after partial evaluation. 75
4.18 Source code for an AppliedType node. 76
4.19 Source code for a GenericReadField node. 78
4.20 Example code with generic parent classes. 79

5.1 A generic swap method that updates an array and returns the previous value
stored (reproduced from Figure 4.1). 81

ix

5.2 Part of the control flow graph for swap. 82
5.3 Part of the control flow graph for swap after tail duplication. 83
5.4 Generic AST for swap after specialization. 85
5.5 Source code for the TypeSwitch node. 86
5.6 Generic Box class (reproduced from Figure 4.8). 87
5.7 A List map method with both class and method type parameters. 87
5.8 Source code for the GenericMethodSpecializer class (Scala). 89
5.9 AST for swap specialized over Int. 89
5.10 Source code for the GenericClassSpecializer class (Scala). 90

6.1 Source code for ArrayCopy. 94
6.2 Graal IR subgraph for ArrayCopy on G. 95
6.3 Graal IR subgraph for ArrayCopy on G where the source array is int[]. 97
6.4 Simplified source code for InsertionSort. 98
6.5 Graal IR subgraph for InsertionSort on TU where ord is the Ordering[Int]

instance. 99
6.6 Source code for StdDev. 101
6.7 Graal IR subgraph for ArrayCopy on G when the generic array accessors

are used with other types. 102
6.8 Source code for the put method of HashMap. 103
6.9 Graal IR subgraph for the put method of HashMap[Int,Int] on G. . . . 104
6.10 Average throughput over time for Checksum, HashMap, and QuickSort.107

A.1 Generic AST for swap (from Figure 5.1). 122

x

List of Tables

6.1 Table of benchmarks. 92
6.2 Throughput of each benchmark. 94
6.3 Throughput of each benchmark using static and dynamic specialization). . 105
6.4 Truffle compilation counts and timing for Checksum, HashMap, and

QuickSort. 109
6.5 Truffle compilation size data for Checksum, HashMap, and QuickSort. 109

xi

Chapter 1

Introduction

Parametric polymorphism is a powerful abstraction that allows programmers to describe
algorithms and data structures independently of the types of values they operate on. For
example, an algorithm that copies values from one array into another does not depend
on the type of the values stored in the array: it is generic over the array’s component
type. Parametric polymorphism encourages code reuse and improves the maintainability
of software projects.

1.1 Implementing parametric polymorphism

Though parametric polymorphism is an elegant feature in the abstract, it introduces some
design challenges for the language implementation (i.e., the compiler or interpreter). There
exist a variety of different approaches to support generics in language implementations with
inherent strengths and limitations. Most of these approaches fall broadly into one of two
categories:

Monomorphization (heterogeneous translation) uses different data representations
for each unique set of type parameters (an instantiation). For each instantiation, a
specialized copy of the code that operates on those representations is created. This
approach creates arbitrarily many specializations of generic code, which can increase
the code size, but the resulting code has precise type information and representations
that can be efficiently compiled.

Erasure (homogeneous translation) uses a single uniform data representation. Each
generic method is translated to a single method that treats generic data uniformly.
Erasure produces less code than monomorphization, but forces generic data to con-
form to a single representation, which can introduce inefficiencies like primitive box-
ing. Erasure also loses useful type information that could be used by a just-in-time
(JIT) compiler to produce more efficient code at run time.

Despite a language designer’s best efforts, parametric polymorphism is often a leaky
abstraction. Programmers who care about the run-time characteristics of their programs
(e.g., memory usage or throughput) must take the language’s implementation of parametric
polymorphism into account when writing generic code. For example, in Java programming,

1

it is conventional wisdom to avoid generic collections over primitive types if performance
is important.

1.2 Parametric polymorphism in Scala

The Scala programming language is a statically-typed programming language with a rich
notion of types. It is designed to interoperate with Java, and its standard implemen-
tation compiles Scala source to Java Virtual Machine (JVM) bytecode. JVM bytecode
does not support parametric polymorphism, so generic Scala code is erased to a uniform
representation that does not have type parameters.

Consider the simple Scala method below:

1 def overwrite[T](array: Array[T], i: Int , value: T): T = {

2 val old = array(i)

3 array(i) = value

4 old

5 }

This method overwrites the i-th element of array with value and returns the previous
value stored in the array. Since overwrite should behave the same way regardless of the
types of its arguments (as long as their types agree, of course) it can be written generically
over a type parameter T.

After erasure, the signature becomes:

1 def overwrite(array: Object , i: Int , value: Object): Object = { ... }

The method is translated to a representation that effectively “forgets” that it was generic.
The representation instead treats any value of generic type T as an Object (the universal
reference supertype). In Scala’s implementation of generics, the generic Array[T] type
also gets erased to the Object type.

1.3 The problem with erasure

Erasure can introduce significant overheads at run time. Since generic values use a uniform
representation in an erasure scheme, often a language’s primitives (e.g., a plain integer
value) must be boxed up when used in generic contexts. Boxing and unboxing operations
can significantly increase heap allocations and introduce undesired memory indirection.

Boxing is an issue in the JVM, especially with arrays. In Java, the generic array type
T[] is erased to Object[], which forces all primitive values to be boxed when they are
stored in generic arrays. Scala tries to avoid boxing in generic arrays by defining the
primitive array types like Array[Int] as subtypes of the generic array type Array[T].
Unfortunately, while this approach avoids boxing, it gives generic arrays a heterogeneous
representation, which means that the Scala code must dynamically switch over the array’s
type in order to implement array accesses.

2

Below is the same overwrite method in Scala pseudocode after erasure:1

1 def overwrite(array: Object , i: Int , value: Object): Object = {

2 val old: Object = array match {

3 case intArray: Array[Int] =>

4 java.lang.Integer.valueOf(intArray(i))

5 case dblArray: Array[Double] =>

6 java.lang.Double.valueOf(dblArray(i))

7 ... // other primitive arrays

8 case objArray: Array[Object] =>

9 objArray(i)

10 }

11 array match {

12 case intArray: Array[Int] =>

13 intArray(i) = if (value == null) 0

14 else value.asInstanceOf[java.lang.Integer]

15 .intValue ()

16 case dblArray: Array[Double] =>

17 dblArray(i) = if (value == null) 0.0

18 else value.asInstanceOf[java.lang.Double]

19 .doubleValue ()

20 ... // other primitive arrays

21 case objArray: Array[Object] => objArray(i) = value

22 }

23 old

24 }

Observe in the erased pseudocode how array’s type must be checked before it can
be read from (lines 2-7) or written to (lines 8-17). This indirection introduces additional
overhead to the program. Also observe how accessing array elements still requires primitive
values to be boxed (e.g., line 3) since the only type that encapsulates all possible results of
an array read is Object. While not always the case, optimizing compilers can sometimes
elide this boxing if it is provably redundant.

A core idea put forth in this thesis is that, when generic types are erased from a
language’s representation, the language’s implementation is ill-equipped to optimize generic
code. When types are erased, the resulting code is often highly dynamic and difficult to
optimize. Just-in-time (JIT) compilation can sometimes improve performance, for instance,
by eliding box-unbox sequences and redundant type checks, but even the best JITs are
driven by imperfect heuristics that sometimes fail.

Erasure is fundamentally a lossy conversion that reduces the type information available
to the language implementation. For example, in Scala, Array[T] is erased to Object.
Though the Object is always some sort of array, this invariant is erased from the JVM
bytecode, which makes it difficult for the JVM to efficiently implement array accesses.

Sometimes, dynamic type profiling can help recover this lost type information. However,
when these type profiles are polymorphic, they are not as useful. Type profiles are coarse-
grained measurements that can only capture first-order information about the types seen
at run time. Higher-order information, such as the relationships among generic values,

1Erasure occurs during the translation to JVM bytecode; Scala pseudocode is depicted for the sake of
presentation. Int and Double are primitive types, whereas java.lang.Integer and java.lang.Double

are boxed types.

3

cannot be easily reconstructed by profiling. Consider the following Scala method with two
Array[T] parameters:

1 def copy[T](src: Array[T], dst: Array[T]): Unit = {

2 // copy src array into dst

3 }

At the Scala source level, it is obvious that both parameters have the same element type
for any given invocation. At the JVM bytecode level, things are not so clear. Suppose the
method is called with integer and double arrays. Type profiles record that the parameters
took on types Array[Int] and Array[Double], and the JIT can use this information
during code generation. However, the fact that src is Array[Int] if and only if dst is
Array[Int] is completely opaque. The JVM must often perform additional analysis to
figure out these sorts of relationships, or otherwise generate inefficient code.

1.4 Scala’s TASTy representation

The Scala 3 compiler introduced a new intermediate representation for Scala programs
called TASTy. TASTy is a compact binary representation used by the Scala compiler to
represent Scala programs. In TASTy, each definition and expression is annotated with
precise type information computed by the compiler. The TASTy representation is lossless:
unlike JVM bytecode, wherein generic types from Scala source code are erased, TASTy
preserves all generic type information. The availability of precise types in TASTy makes
it a valuable alternative to JVM bytecode as an interpretation target.

1.5 Thesis overview

The goal of this thesis is to show that making generic type information accessible empow-
ers a language implementation to use more optimal data representations, reduce polymor-
phism, and ultimately generate more efficient code.

To start, this thesis introduces TastyTruffle, an interpreter for TASTy written in
the Truffle framework (Chapter 3). Truffle is a framework that reduces the effort required
to create high-performance language implementations. A language interpreter written in
Truffle is converted to a compiler for the language at run time using partial evaluation and
a JIT compiler.

Since TastyTruffle interprets TASTy instead of JVM bytecode, it has full informa-
tion about generic types. This type information gives TastyTruffle more opportunities
to efficiently implement generic code.

Firstly, TastyTruffle can use the type information in TASTy to reify types at run
time (Chapter 4). Using reified types, TastyTruffle allows generic programs to dynam-
ically switch between different data representations that avoid boxing. TastyTruffle’s
implementation of overwrite directly uses the type parameter T to perform type-sensitive
operations at run time (pseudocode depicted):

1 def overwrite(T: ReifiedType , array: Array[T], i: Int , value: T): T={

4

2 val old = T match {

3 case Int => array.asInstanceOf[Array[Int]](i)

4 case Double => array.asInstanceOf[Array[Double]](i))

5 ...

6 case _ => array(i)

7 }

8 T match {

9 case Int => array.asInstanceOf[Array[Int]](i) = value

10 case Double => array.asInstanceOf[Array[Double]](i) = value

11 ...

12 case _: array(i) = value

13 }

14 old

15 }

Since TastyTruffle has precise type information, when primitives flow into generic
contexts, they can be stored in their natural representations without boxing. For example,
when T is Int, value is stored as an Int and can be copied directly into the Array[Int]

without unboxing (line 9).
When TastyTruffle knows which methods and classes are generic, it can also dy-

namically specialize generic code (Chapter 5). Specialization transforms polymorphic code
to monomorphic code that can be more easily optimized by TastyTruffle’s JIT com-
piler, which allows it to achieve performance more reliably. Since specialization happens
dynamically, TastyTruffle mitigates the static code size penalty often associated with
monomorphization.

Evaluated on a variety of small generic programs, TastyTruffle achieves comparable
and often better peak performance than a regular JVM implementation (Chapter 6). These
gains come with a modest increase in compilation pressure and warm-up time. With
inspection of the compiler graphs, it is apparent that using TASTy as an interpretation
target allows TastyTruffle to find optimization opportunities that could not be inferred
with JVM bytecode.

1.6 Contributions

TastyTruffle was developed in collaboration with James (Jack) You. Both of us con-
tributed substantially to various aspects of its implementation, and as a result, there is
no clean delineation between our work. There are, however, some differences between the
contents of this thesis and Jack’s thesis [50].

Jack’s thesis introduces the TastyTruffle interpreter. It provides significant detail
about the TastyTruffle AST and how the TASTy representation can be converted to
a TastyTruffle AST. Chapter 3 of this thesis also introduces TastyTruffle, but it
does not have the same depth of detail.

Jack’s thesis extends the basic TastyTruffle interpreter to support generic code.
This extension relies both on reified types and static specialization. Chapter 4 of this
thesis extends TastyTruffle to reify types without specialization. This unspecialized
extension serves as a comparison point and helps validate the necessity of specialization.
Support for unspecialized execution also enables TastyTruffle to specialize its ASTs

5

dynamically rather than rely on static transformations. Chapter 5 presents a dynamic
specialization scheme in addition to the static scheme presented in Jack’s thesis.

Finally, Jack’s thesis evaluates TastyTruffle on a series of List and ArrayBuffer

microbenchmarks. Chapter 6 of this thesis evaluates TastyTruffle on a wider range
of larger benchmark programs. A larger portion of the evaluation is spent investigating
patterns in the compiled code.

6

Chapter 2

Background

This chapter provides background information to understand the motivation and imple-
mentation of TastyTruffle. It first discusses how Scala and other languages implement
parametric polymorphism (Section 2.1). Then, it introduces TASTy IR, the intermediate
format interpreted by TastyTruffle (Section 2.2). Finally, it explains how the Graal
compiler and Truffle framework enable high-performance language implementations (Sec-
tions 2.3 and 2.4). These technologies are complex, so this chapter aspires to convey a
thorough but concise understanding of how they work.

2.1 Parametric polymorphism

Static type systems allow programmers to precisely describe the types of values that flow
through their code. However, sometimes code behaves independently of some of its values,
and their concrete types are unimportant to the description of the code. In such scenarios,
the code is generic, and it is desirable for the code to work the same way regardless of the
types of values it encounters.

Programming languages support generic code using parametric polymorphism. With
parametric polymorphism, programmers can annotate values and functions with type pa-
rameters, which serve as placeholder types. Then, when some code instantiates a generic
definition—that is, it uses the definition with concrete type arguments—the compiler can
type-check it by replacing the type parameters with the concrete types.

Consider a List data structure consisting of two fields: a data element, and a possibly-
empty tail list. The code that describes how to manipulate Lists—to create a singleton
List, prepend an element, read data, etc.—does not change whether data is an integer,
string, pointer, or something else. Thus, List can be parameterized over a type parameter
T, (written as List<T>). The type annotations of the fields and functions that operate
on List<T>s use T to indicate that they behave generically. Figure 2.1 provides sample
definitions for a generic List in an imaginary language.

At a call site like makeList<Int>(42), the type-checker understands that T is Int and
thus that the result has the concrete type List<Int>. The types of the functions that
operate on this List<Int> can also be inferred. For example, the type-checker can infer
that calling getData on a List<Int> will yield an Int. Thus, the generic definition allows

7

1 structure List <T> {

2 data: T

3 tail: List <T>

4 }

5 function makeList <T>(data: T): List <T> { ... }

6 function prepend <T>(data: T, list: List <T>): List <T> { ... }

7 function getData <T>(list: List <T>): T { ... }

8 function getTail <T>(list: List <T>): List <T> { ... }

Figure 2.1: Definitions for a generic List structure.

code reuse while preserving the safety guarantees of static typing.
Parametric polymorphism is a valuable language feature, enabling code reuse and a

richer notion of types. However, deciding to support parametric polymorphism in a lan-
guage raises a difficult question: how should it be implemented? Historically there have
been two main strategies to implement parametric polymorphism, monomorphization and
type erasure. These strategies can be seen as two ends of a spectrum that trade off code
size and performance.

2.1.1 Monomorphization

Monomorphization is the process of specializing generic code to concrete types. Each time
a generic definition is instantiated with a new set of concrete types, the compiler creates a
new version of the definition. Each version is called a specialization. A specialization’s type
parameters are replaced with concrete types, and so the new definition is monomorphic
and can be implemented as usual.

Several languages, including C++ and Rust, use monomorphization to implement para-
metric polymorphism. The previous List example, implemented using C++ templates, is
presented in Figure 2.2. The compiler determines that List is instantiated with types int
and char, so it instantiates two specializations with T replaced by int and char respec-
tively. At each use-site of the List definition (e.g., List<int>), the compiler resolves it to
the corresponding specialization (e.g., List_int).

Monomorphization gives a compiler full information about the types of values. It can
accurately determine the layout of objects and local variables, which is important in low-
level languages like C++ and Rust. This extra knowledge enables more optimizations
within the compiler.

Knowing the concrete value of a type parameter also means the compiler can resolve
operations performed on generic values. For example, in C++ it is possible to write x + y

for two values declared with generic type T, because the compiler can statically check for
the appropriate operator+ definition each time a template is instantiated.

The tradeoff of monomorphization is code size. Each unique set of types used to
instantiate a generic definition creates a new specialization. These specializations have
distinct, incompatible representations, so code that operates on generic definitions must
be duplicated.

8

1 template <typename T>

2 class List {

3 T data;

4 List <T>* tail;

5

6 List(T data , List <T>* tail) { ... }

7 List <T>* prepend(T data) { return new List <T>(data , this); }

8 T getData () { return data; }

9 List <T>* getTail () { return tail; }

10 };

11

12 List <int >* intList = (new List <int >(42, nullptr))

13 ->prepend (123);

14 List <char >* charList = (new List <char >(’i’, nullptr))

15 ->prepend(’h’);

(a) Before monomorphization.

1 class List_int {

2 int data;

3 List_int* tail;

4

5 List_int(int data , List_int* tail) { ... }

6 List_int* prepend(int data) {

7 return new List_int(data , this); }

8 int getData () { return data; }

9 List_int* getTail () { return tail; }

10 };

11 class List_char {

12 ...

13 };

14

15 List_int* intList = (new List_int (42, nullptr))->prepend (123);

16 List_char* charList = (new List_char(’i’, nullptr))

17 ->prepend(’h’);

(b) After monomorphization.

Figure 2.2: A generic C++ List class before and after monomorphization.

9

1 class List <T> {

2 T data;

3 List <T> tail;

4

5 List(T data , List <T> tail) { ... }

6 List <T> prepend(T data) { return new List <T>(data , this); }

7 T getData () { return data; }

8 List <T> getTail () { return tail; }

9 }

10

11 List <Foo > fooList = new List <Foo >(new Foo(), null);

12 Foo myFoo = fooList.getData ();

13 List <Integer > intList = new List <Integer >(42, null);

14 int myInt = intList.getData ();

(a) Before erasure.

1 class List {

2 Object data;

3 List tail;

4

5 List(Object data , List tail) { ... }

6 List prepend(Object data) { return new List(data , this); }

7 Object getData () { return data; }

8 List getTail () { return tail; }

9 }

10

11 List fooList = new List(new Foo(), null);

12 Foo myFoo = (Foo) fooList.getData ();

13 List intList = new List(Integer.valueOf (42), null);

14 int myInt = ((Integer) intList.getData ()).intValue ();

(b) After erasure.

Figure 2.3: A generic Java List class before and after erasure.

2.1.2 Type erasure

Type erasure is another approach to implement parametric polymorphism. Instead of
creating different specializations for each generic instantiation, the compiler produces a
single implementation with a uniform representation. In this representation, each type
parameter is replaced with some universal supertype; the genericity gets erased from the
generated code. All client code uses the same erased representation.

Erasure is the approach taken by languages like Java and TypeScript. A generic Java
List is depicted in Figure 2.3. During compilation, the type parameters inside the generic
definition are replaced with Object, the supertype for all heap-allocated values, and the
definition itself becomes non-generic (i.e., List<T> becomes List).

The compiler inserts type casts to ensure client code is still compatible with the erased
representation. For example, suppose List is applied to some type Foo. The erased return
type of getData is Object, so the compiler must cast the result to Foo to ensure the correct

10

1 def array_apply(xs: AnyRef , idx: Int): Any = {

2 xs match {

3 case x: Array[AnyRef] => x(idx).asInstanceOf[Any]

4 case x: Array[Int] => x(idx).asInstanceOf[Any]

5 case x: Array[Double] => x(idx).asInstanceOf[Any]

6 case x: Array[Long] => x(idx).asInstanceOf[Any]

7 ... // other primitive array cases

8 case null => throw new NullPointerException

9 }

10 }

Figure 2.4: Source code for ScalaRunTime.array_apply.

type is returned (line 12).
The situation for primitive values is more problematic. Primitive types like int or

double are not subtypes of Object, so they cannot be used in generic contexts. In-
stead, Java inserts code to convert primitives to their boxed equivalents; for example, 42 is
auto-boxed with the function Integer.valueOf(42) (line 13). When primitive values are
obtained from generic contexts, they must also be unboxed by calling the boxed accessor
(e.g., intValue on line 14).

Erasure was chosen for Java to maintain backward-compatibility. Using an erased
representation allowed generic Java code to interface safely with older pre-generic Java code
and the Java Virtual Machine (JVM), but today it serves as a pain point for performance.
In aggregate, autoboxing introduces a lot of heap-allocation and indirection that can be
avoided if primitives are type-compatible with erased representations.

2.1.3 Parametric polymorphism in Scala

Scala is designed to interface with Java code and run on the Java Virtual Machine (JVM).
As a consequence, it uses the same erasure semantics to implement parametric polymor-
phism. Scala tries to work around the limitations of erasure in a few ways.

Arrays

Scala uses a different approach from Java to support generic arrays. Rather than re-
quire a single erased representation for Array[T], Scala allows arrays of primitives (e.g.,
Array[Int]) to be passed into generic contexts. To support these different representa-
tions uniformly, the compiler replaces generic array accesses with calls to runtime accessor
methods that handle all possible representations. For example, generic array reads are
replaced with calls to ScalaRunTime.array_apply (Figure 2.4), which switches over the
concrete type of the array to implement the access. This indirection has a cost: generic
array accesses can be “three to four times slower” than concrete array accesses [2].

Once an array is created, the generic accessor approach is possible because primitive
arrays have different types that can be differentiated at run time. However, creating a
generic array (e.g., new Array[T](size)) is a different story, because Scala has no run-
time notion of T; the code cannot know whether to allocate an integer array, an object

11

1 def main(args: Array[String]): Unit = {

2 val intArr = makeArray[Int]

3 }

4 def makeArray[T: ClassTag]: Array[T] = {

5 new Array[T](10)

6 }

Figure 2.5: Code using a ClassTag context bound.

1 trait Ordering[T] {

2 def compare(a: T, b: T): Boolean // true if a is "less than" b

3 }

4 given Ordering[Int] with {

5 def compare(a: Int , b: Int): Boolean = a < b

6 }

7 ... // more given instances

8

9 def main(args: Array[String]): Unit = {

10 max[Int](41, 42)

11 }

12 def max[T: Ordering](a: T, b: T): T = {

13 val ord: Ordering[T] = summon[Ordering[T]]

14 if (ord.compare(a, b)) b else a

15 }

Figure 2.6: Code using an Ordering type class.

array, or something else. To support generic array creation requires a ClassTag, a kind of
context parameter.

Context bounds

Type parameters in Scala can be annotated with context bounds, written as T: Bound,
which indicate that the definition has an implicit context parameter of type Bound[T] at
run time. At the use site of a generic definition, where the concrete type of the parameter
is known, the compiler automatically creates context arguments and passes them around.

Take ClassTag as an example. A ClassTag[T] is a reified (run-time) representation
of a type T. It can be used to instantiate an array of type T. ClassTag is often used
as a context bound when the code needs to allocate arrays or perform other reflective
operations.

In Figure 2.5, the makeArray function creates a generic Array[T], so it requires a
context bound T : ClassTag. At the use site makeArray[Int], the compiler knows T is
Int for the call. It creates a ClassTag[Int] object and passes it as an implicit argument
to the call. Then, inside makeArray, the compiler implicitly invokes an array creation
method on the ClassTag to instantiate an Array[T] (i.e., an Array[Int]).

ClassTags are used throughout Scala’s standard library to overcome the limitations of
erasure. A recent survey of over 7,000 Scala projects [30] found that as much as 90% of

12

large applications that use the standard library rely on ClassTags1.
Type classes [17] are another common use case for context bounds. A type class ef-

fectively extends a type T with additional capabilities. An example is the Ordering[T]

type class in Figure 2.6, which imposes an ordering on T using a compare method. The
method max defines an Ordering context bound. At call sites (e.g., max[Int](41, 42))
the compiler searches for an appropriate Ordering definition (e.g., Ordering[Int]) and
supplies it to the call. Inside the call, max summons the context parameter and invokes its
compare method to compare the two generic parameters.

2.2 Scala’s TASTy representation

Scala’s traditional execution platform is the Java Virtual Machine (JVM). The Scala com-
piler takes Scala source code and compiles it to JVM bytecode, which the JVM can execute.
The conversion to JVM bytecode loses information about the original Scala program be-
cause it erases type information (Section 2.1.3).

Scala 3 introduced a new representation for Scala programs, TASTy2. TASTy is a
binary encoding with “complete information” about the program [1]. It consists mostly of
definitions, terms (expressions that produce a value), and types. The compiler generates
TASTy after parsing and type-checking, but before type erasure, so all definitions and terms
are tagged with precise types. These type trees are expressive: beyond simple named types
(e.g., a class name), they can model type constructors, type parameters, type bounds, and
more.

Consider the Box class in Figure 2.7a as an example. It is parametrized on type T,
wrapping a value of type T with getter and setter methods. In Figure 2.7b is an abridged
textual version of the TASTy for Box. The specific details about TASTy are beyond the
scope of this thesis, but the reader should note the similarities between TASTy and Scala
source.

The tree contains a type definition of the Box class (offset 5), which contains a type
parameter T (offset 11) and regular parameter initial (offset 26). TASTy trees are typed,
so the initial parameter is tagged with the type T (via a type reference to offset 11).
The tree also contains a field definition for value (offset 74), which is also of type T (note
the SHAREDtype reference at offset 77); it gets initialized to the value of initial (via a
term reference to offset 26).

The tree contains method definitions as well. For brevity, only get is presented (offset
86). This method has result type T (offset 89). Its body is a term that selects value (offset
93) from this (offset 95); this “select” corresponds to a read of the value field from the
receiver.

1This percentage includes TypeTags and Manifests, which are similar to ClassTags.
2The name TASTy is an acronym for typed abstract syntax trees.

13

1 class Box[T](initial: T) {

2 private var value: T =

initial

3 def get: T = value

4 def set(x: T): Unit = {

5 value = x

6 }

7 }

(a) Scala source

0: PACKAGE

...

5: TYPEDEF 2 [Box]

9: TEMPLATE

11: TYPEPARAM 3 [T]

...

26: PARAM 7 [initial]

29: TYPEREFsymbol 11

...

74: VALDEF 16 [value]

77: SHAREDtype 29

79: TERMREFsymbol 26

...

86: DEFDEF 17 [get]

89: IDENTtpt 3 [T]

91: SHAREDtype 29

93: SELECT 16 [value]

95: QUALTHIS

96: IDENTtpt 2 [Box]

...

(b) TASTy (abridged)

Figure 2.7: Scala source and TASTy for a simple Box class.

2.3 The Graal compiler

Graal is a relatively new just-in-time (JIT) compiler for the Java Virtual Machine (JVM) [48].
Java source code is compiled ahead-of-time to JVM bytecode, and the JVM executes this
bytecode. When the JVM determines a method is “hot” (i.e., frequently executed), it
invokes a JIT compiler (like Graal) to generate optimized code for the method. The JIT
compiles the method from JVM bytecode to machine language; then, instead of interpret-
ing the method, the JVM executes its optimized machine code. The whole compilation
and execution process is depicted in Figure 2.8.

At the core of Graal’s design is speculation [21]. The JVM provides profiling data
(about types seen, branches taken, etc.), which Graal uses to make educated guesses about
the future behaviour of a method that it needs to support. For example, if an if-statement
condition has only evaluated to true during profiling, Graal may speculate that it will
always be true and eliminate the else branch. Of course, these guesses can be wrong, in
which case the compiled code must transfer control back to the interpreted version of the
method so that the unexpected case can be handled. This process, called deoptimization,
is complicated and expensive. Nevertheless, when these speculations pay off, they allow
Graal to eke out performance gains that could not be obtained by a more conservative JIT.

Of specific interest in this thesis is the intermediate representation (IR) [21] that Graal
uses to represent programs. Examining a compiled program’s IR is one of the best ways
to understand its performance on Graal, but IR graphs can be difficult to decipher. This
section introduces the IR by example. The goal is not to be exhaustive, but to equip
the reader with the background knowledge to interpret the IR graphs that appear in this

14

compiled by

Java source

generates

javac

executed by

JVM
bytecode

JVM

Graal

invokes

(with bytecode)

Machine code

installed into

generates

Figure 2.8: High-level view of Graal and the Java ecosystem.

15

thesis. This section also examines some of the important optimizations Graal performs to
aggressively optimize the code it compiles.

2.3.1 Graal IR

When Graal compiles a method, it first parses its bytecode into Graal IR [21]. Then, each
of Graal’s optimization phases transforms this IR. After an extensive set of optimizations,
the IR is lowered to platform-specific machine code that can be executed by the JVM.

It is valuable for readers to have a surface-level understanding of the IR: this thesis
examines IR graphs to discuss the implications of various design decisions on the compiled
code. Compiler graphs are rendered using the Seafoam visualizer3. Graphs are generated at
specific stages of optimization in order to support the discussion—they are not necessarily
taken from the same point in compilation. Also, for non-trivial programs, the IR graph
can be large and unwieldy, so simplified graphs may be shown for the sake of presentation.

Graal IR follows the “sea-of-nodes” design [13, 14] popularized in the HotSpot Server
compiler [36]. The IR is a directed graph where each node corresponds to a single operation.
An example graph is depicted in Figure 2.9. Most edges in the graph model a control flow
dependency (shown in red) or a data flow dependency (shown in teal). Nodes with control
flow dependencies are fixed and define a “backbone” for the structure of the program. In
contrast, nodes with data flow dependencies are floating and can be moved around as long
as their dependencies are preserved. Thus, one can usually understand a graph by following
the control flow edges and then looking at each node’s data dependencies.

The IR is in static single assignment (SSA) form [16]. Each node can produce at
most one value, and data flow dependencies ensure each use of a value is preceded by its
definition. The IR contains phi (φ) nodes to represent values computed on different control
flow paths.

Every value has a stamp that tracks its type as well as other properties like its nullity.
For primitive values, these stamps retain more precise information. For example, the IR
tracks the range and bit masks of an integer value.

This section introduces the IR by example, starting with Figure 2.9. The addFive

method adds 5 to its parameter and returns the result. The flow of control in this method
is simple: control begins at Start and flows to Return. The data flow edge pointing to
Return indicates that this method returns the result computed by the + node. This + node
(which adds two integers) itself depends on two other values: P(1), the parameter at index
1, i.e., x4, and C(5), the constant 5.

Notice that the local variable sum is not present in the graph. Since Graal IR uses
SSA, local variables disappear. Instead, a variable’s value at any given time is modeled
by a node in the graph; reads are then replaced by data flow edges from these nodes. In
this example, Graal determines that the value of sum at the return statement is the value
produced by +.

A second example is presented in Figure 2.10. The Counter class has a count method
that returns how many times it has been called. It uses a state field to count previous

3https://github.com/Shopify/seafoam/
4P(0) is the method receiver.

16

https://github.com/Shopify/seafoam/

1 int addFive(int x) {

2 int sum = x + 5;

3 return sum;

4 }

(a) Source code

0 Start

6 Return

5 +

result

2 P(1)

x

4 C(5)

y

(b) Graal IR

Figure 2.9: Source code and IR for a simple addFive method.

1 class Counter {

2 int state = 0;

3 int count() {

4 state = state + 1;

5 return state;

6 }

7 }

(a) Source code

0 Start

3 LoadField Counter.state

5 +

x

6 StoreField Counter.state

value

8 LoadField Counter.state

9 Return

result

1 P(0)

object

4 C(1)

y

1 P(0)

object

1 P(0)

object

(b) Graal IR

Figure 2.10: Source code and IR for a Counter and its count method.

17

1 class MaxTracker {

2 int maxSeen = 0;

3 int max(int x) {

4 int result = 0;

5 if (x > maxSeen) {

6 maxSeen = x;

7 result = x;

8 } else {

9 result = maxSeen;

10 }

11 return result;

12 }

13 }

(a) Source code

0 Start

5 LoadField MaxTracker.maxSeen

6 <

x

9 If

?

10 StoreField MaxTracker.maxSeen

T

13 LoadField MaxTracker.maxSeen

F

15 Merge

17 ϕ

from 13

19 Return

result

1 P(0)

object

2 P(1)

y

1 P(0)

object

2 P(1)

value

1 P(0)

object

2 P(1)

from 10

(b) Graal IR

Figure 2.11: Source code and IR for a max method that tracks the largest value seen.

invocations. The graph starts with a LoadField, which reads the state field from the
receiver (P(0)). Then, the StoreField stores state + 1 back into the state field of the
receiver. Finally, another LoadField reads the new value of state and returns it.

The examples so far have had simple control flow with no branches. The example in
Figure 2.11 contains a control flow split and merge. The MaxTracker class tracks the
largest value passed to its max method in a maxSeen field. The max method returns the
larger value between its parameter x and maxSeen.

The IR in Figure 2.11 represents the max method. Since the method starts with an
if-statement, it must first evaluate the condition. The program reads maxSeen from the
receiver (P(0)) and compares it against x (P(1)). The result of this comparison is passed
to the If, at which point there is a control flow split. If the condition is true, control
flows through the T edge, where the maxSeen field is updated to the value of x and result

is assigned the value of x. If the condition is false, control flows through the F edge, and
result is assigned the value of maxSeen. Then, in either case, control flows into the Merge

node and a value is returned.

18

Recall that local variables are not present in the Graal IR; instead, the value of a variable
at a particular point in time is represented by a node in the graph. This presents a problem:
after control flow merges, the variable result takes on different values depending on which
branch was taken. Graal IR (and SSA in general) models such a variable with a phi node
(φ). When unambiguous, this section uses φx to denote the phi node that represents a
variable x.

A φ is always associated with a control flow merge point. It has data inputs for the
value of a variable on each path that flows to the merge point. The labels on the edges
(e.g., “from 10”) indicate the association between data edges and control flow paths. For
example, when the condition in Figure 2.11 is true, control flows to the merge from the
StoreField (node 10); in this case, φresult takes on the value of x (P(1)). When the
condition is false, control flows to the merge from the LoadField (node 13), and φresult

takes on the value of maxSeen.
Phi nodes are common when a code has loops. A loop can run for an indeterminate

number of iterations, or even no iterations at all, so the value of a variable depends on
the control flow path taken. Graal IR models loops with a few nodes: LoopBegin denotes
the beginning of the loop, LoopEnd denotes a back-edge to the beginning of the loop, and
LoopExit denotes a point where control exits the loop.

Consider the iterative factorial function in Figure 2.12. Given that two variables
are modified in the loop, it contains two φs: φx (node 14) and φresult (node 15). When
control first reaches the loop (via the If, node 8), φx takes on the initial value of x (P(1)),
and φresult takes on the value 1.

At the start of the loop, the condition is checked. Note that x > 1 has been canoni-
calized to !(x < 2), so when x < 2 is false the loop body executes, and when it is true
the loop is exited. In this case, executing the loop involves simply jumping back to the
beginning of the loop (via the back-edge from LoopEnd to LoopBegin). However, that does
not mean nothing is executed: every time control flows into LoopBegin, its φs are updated.
This time, control flows in from node 28, so φresult is updated to result * x and φx is
updated to x + (-1).

The loop continues iterating this way until LoopExit is hit. After the loop exit, the
computed value of result is returned5.

The Graal IR must also support method calls. It uses a Call node and an associated
MethodCallTarget to represent each call. These nodes contain metadata about the call,
such as the name, signature, and invoke kind. The arguments to the call are indicated by
data flow edges into the MethodCallTarget. The call itself can produce a value.

Another implementation of factorial that uses recursion is depicted in Figure 2.13.
The call in this method takes two arguments: the receiver (P(0)) and the value of x-1. It
produces a value (the result of factorial(x-1)), which is multiplied by x to obtain the
return value.

One limitation of method calls is that they are opaque: the compiler cannot perform
optimization across a method call. This restriction is especially limiting in a language like
Java where method-based abstractions (interfaces, template methods, adapters, etc.) are

5The ValueProxy forwards a value computed inside a loop to a point outside of it. The technical
reasons for this node are not relevant to us.

19

1 int factorial(int x) {

2 if (x == 0) return 1;

3 int result = 1;

4 while (x > 1) {

5 result *= x;

6 x -= 1;

7 }

8 return result;

9 }

(a) Source code

0 Start

8 If

5 ==

?

10 Return

T

13 LoopBegin

F

14 ϕ

15 ϕ

21 LoopExit

24 If

28 LoopEnd

18 <

x

25 *

x

27 +

x

22 ValueProxy(15)

value

y ?

loopExit

29 Return

result

TF

from 28

from 28

2 P(1)

x

4 C(0)

y

9 C(1)

result

2 P(1)

from 8

9 C(1)

from 8

17 C(2)

y

26 C(-1)

y

(b) Graal IR

Figure 2.12: Source code and IR for an iterative factorial method.

20

1 int factorial(int x) {

2 if (x == 0) return 1;

3 else return x *

factorial(x-1);

4 }

(a) Source code

0 Start

8 If

5 ==

?

10 Return

T

14 Call FactorialRecursive.factorial

F

12 +

13 MethodCallTarget

arg[1]

16 *

y

17 Return

result

2 P(1)

x

4 C(0)

y

9 C(1)

result

2 P(1)

x

11 C(-1)

y

1 P(0)

arg[0]

2 P(1)

x

(b) Graal IR

Figure 2.13: Source code and IR for a recursive factorial method.

abundant. Graal attempts to inline method calls when possible (Section 2.3.2). Recursive
methods are one case where inlining is not possible.

Graal makes extensive use of speculation. This speculation is modeled by Guard nodes
in the IR. Graal creates guards to assert certain program properties; for example, that a
branch is unreachable, that a value has a particular type, or that an exception is never
thrown. By inserting these guards, Graal can simplify the graph and produce more efficient
code.

For example, consider the compute method in Figure 2.14, which optionally logs in-
formation depending on its shouldLog parameter. If the run-time profiling indicates that
shouldLog is rarely true, Graal may speculate that the logging branch is unlikely. It
inserts a Guard asserting that shouldLog is false6, and then completely removes the call
to log. As long as the guard condition continues to hold, the compiled code remains valid.

Of course, guards do fail. When this happens, the code deoptimizes, transferring control
from the compiled code back to the JVM’s interpreter. Deoptimization is a complicated
process: in order to resume execution in the interpreter, the compiled code must reconstruct
the state of the interpreter at the deoptimization point. The IR contains FrameState

nodes that track this data. FrameState nodes are omitted from the graphs in this thesis
for simplicity, but they are nevertheless an essential aspect of Graal’s speculative IR.

6Booleans can be 0 (false) or 1 (true).

21

1 int compute(int x, boolean

shouldLog) {

2 if (shouldLog) log(x);

3 return x + 5;

4 }

5 void log(int x) { ... }

(a) Source code

0 Start

7 Guard, else UnreachedCode

6 ==

?

10 Return

9 +

result

3 P(2)

x

5 C(0)

y

2 P(1)

x

8 C(5)

y

(b) Graal IR

Figure 2.14: Source code and IR for a method with dynamically unreachable code.

1 class Point { double x, y; }

2 interface Transform {

3 Point apply(Point p);

4 }

5 class Translate implements Transform {

6 double dx , dy;

7 Point apply(Point p) {

8 return new Point(p.x + dx , p.y + dy);

9 }

10 }

11 // more Transforms

Figure 2.15: Definition of a Point class and a hierarchy of Transforms.

2.3.2 Optimizations

Graal contains an extensive suite of compiler optimizations [41]. Two of them are par-
ticularly important: type-checked inlining and partial escape analysis. The definitions in
Figure 2.15 are used in the discussion that follows. There is a Point class comprising
two double fields, and a Transform interface, which takes an input Point and produces a
transformed Point.

Type-checked inlining: Virtual method calls are prevalent throughout Java code. The
target of these virtual calls changes depending on the run-time type of the receiver,
so the compiler cannot easily inline such a call. If the type profile for a call site has
only a few concrete types, Graal may assume that compiled code only encounters
these types and inline the method targets for those types. It inserts type guards
to validate the assumption. Then, the compiled code avoids the dynamic method
dispatch, and Graal can optimize across the call.

For example, in Figure 2.16, suppose applyTransform is compiled, and the profile

22

for t only ever observes the type Translate. Graal may use this profile to speculate
that t is only ever a Translate instance. If so, it can insert a guard to check this
assumption, and then inline the apply implementation for Translate directly into
applyTransform. In the IR, the guard has been lowered to an If (node 21) with
an InstanceOf check (node 19). If the check fails, the code deoptimizes (node 22);
otherwise, it executes the body of Translate.apply, which allocates a new Point

with coordinates translated by t’s dx and dy fields. The compiled code is used for
each call as long as t continues to be a Translate instance.

Partial escape analysis: Another significant source of overhead in Java is object allo-
cations. Escape analysis is a technique to address this [12]: if an object does not
“escape” the method that allocates it (e.g., by being returned, passed to another
method, or stored in a field), certain optimizations can be performed. One impor-
tant optimization is scalar replacement of aggregates, whereby the compiler elides an
object allocation and stores the object’s fields as locals7.

Graal has its own concept of partial escape analysis [43] which is flow-sensitive. When
an object escapes only on certain branches, Graal can still perform scalar replacement
in the non-escaping branches.

For example, in the method in Figure 2.17, local p contains a newly-allocated Point

object. This object escapes in the true branch of the if-statement since it is stored in
a static escapedPoint field; however, in the false branch, the point does not escape
the method. Graal’s escape analysis detects this and performs scalar replacement.
The Point is not allocated immediately; instead, Graal tracks that p.x has the value
of x (P(1)), and p.y has the value of x * 2 (node 7), and the field read in the
false case can return the value of x * 2 directly. An object allocation (represented
by Alloc) is still required in the true branch, but it can be deferred until control
actually enters the branch.

Compiler optimizations can have an enabling effect on other optimizations. For ex-
ample, in Figure 2.18, suppose again that t is always an instance of Translate. If the
call to apply does not get inlined, the object escapes its allocation site (since it is created
and returned by apply) and must be allocated. However, after Graal inlines apply using
type-checked inlining, the allocated Point does not escape this method, and the allocation
can be elided. Note the lack of Alloc nodes in the IR. Since these optimizations can have
such a compounding effect on performance, it is important for performance-critical code
to be written in a way that is amenable to Graal’s optimizations. This rquirement has
important implications for Truffle interpreters, which are discussed in the next section.

7If any of the fields are unused, the compiler can also optimize the corresponding locals away.

23

1 Point applyTransform(Point p, Transform t) {

2 return t.apply(p);

3 }

(a) Source code

0 Start

21 If

8 Return

16 Begin

24 LoadField Point.x

19 InstanceOf a!# org.tastytruffle.thesis.examples.point.Translate

?

T

22 Deopt TypeCheckedInliningViolated

F

25 LoadField Translate.dx

26 +

x

y

27 LoadField Point.y

44 Alloc

values

28 LoadField Translate.dy

29 +

x

y

values

43 VirtualInstance(0) org.tastytruffle.thesis.examples.point.Point

virtualObjects

45 AllocatedObject

virtualObject

commit

result

3 P(2)

value

2 P(1)

object

2 P(1)

object

3 P(2)

object

3 P(2)

object

(b) Graal IR

Figure 2.16: Source code and IR for a method transformed by type-checked inlining.

24

1 double doSomething(double x) {

2 Point p = new Point(x, x * 2);

3 if (p.x < 0.2) {

4 Point.escapedPoint = p;

5 return -p.x;

6 } else return p.y;

7 }

(a) Source code

0 Start

17 If7 *

45 Return

result

46 Alloc

values

14 <

?

F T

18 StoreField Point.escapedPoint

28 Return

20 Negate

result

37 VirtualInstance(0) org.tastytruffle.thesis.examples.point.Point

virtualObjects

47 AllocatedObject

virtualObject

commit

value

2 P(1)

x

6 C(2.0)

y

2 P(1)

x

11 C(0.2)

y

2 P(1)

value

2 P(1)

values

(b) Graal IR

Figure 2.17: Source code and IR for a method transformed by partial escape analysis.

25

1 double doSomething(Point p, Transform t) {

2 Point result = t.apply(p, t);

3 return result.x - result.y

4 }

(a) Source code

0 Start

24 If

10 -

11 Return

result

19 Begin

27 LoadField Point.x

22 InstanceOf a!# org.tastytruffle.thesis.examples.point.Translate

?

T

25 Deopt TypeCheckedInliningViolated

F

28 LoadField Translate.dx

29 +

x

y

30 LoadField Point.y

x

31 LoadField Translate.dy

32 +

x

y

y

3 P(2)

value

2 P(1)

object

2 P(1)

object

3 P(2)

object

3 P(2)

object

(b) Graal IR

Figure 2.18: Source code and IR for a method transformed by type-checked inlining and
partial escape analysis.

26

2.4 The Truffle ecosystem

Implementing a programming language is a complicated endeavour requiring significant
engineering effort. It is even more challenging to make the implementation performant. The
Truffle framework [48] aims to make high-performance language implementations possible
with “modest effort”.

This section introduce the basics of the Truffle framework. The Truffle ecosystem
comprises several components, including (but not limited to) a domain-specific language
(DSL) for writing interpreters, a set of general-purpose libraries, and a custom front-end
to the Graal compiler, which plays an important role in Truffle’s performance. The goal
in this section is to introduce Truffle and disentangle the complexity. Figure 2.8 from
the previous section depicts the relation between Java programs and Graal; Figure 2.19
extends this diagram to incorporate Truffle.

The discussion begins with Truffle interpreters, which take the form of abstract syntax
trees (ASTs) written in Java. AST interpreters are relatively intuitive to implement,
since a node’s semantics often follow from its syntax. Next, an overview of Truffle’s partial
evaluation (PE) [47] is given. Truffle compiles hot ASTs using Graal, but ASTs are difficult
to optimize due to their indirection. Partial evaluation removes this indirection (and
performs other optimizations), which allows Graal to generate much more efficient code.
The self-optimizing design of Truffle interpreters [49] is also discussed. Truffle interpreters
can change their behaviour depending on the run-time characteristics of the interpreted
program, for example, by specializing a node when it only receives specific types of inputs.
Truffle defines a domain-specific language (DSL) [26] and an accompanying processor that
runs at compile-time to generate these self-optimizing interpreters. Finally, Truffle’s object
model is briefly discussed. This model allows interpreters to support guest language objects
(class instances, structs, etc.) efficiently; furthermore, it plays well with Graal’s escape
analysis so that guest object allocations can be elided.

2.4.1 Truffle interpreters

For clarity, it is worth introducing some terminology. The language implemented by an
interpreter is the guest language. In contrast, the language the interpreter is written
in is the host language. For Truffle interpreters, the host language is Java. Since Truffle
interpreters are Java programs, they can leverage many features of the Java runtime rather
than implement them from scratch: automatic memory management, exceptions, and just-
in-time (JIT) compilation, to name a few.

Truffle is designed around abstract syntax tree (AST) interpreters. Each AST’s root
node usually represents a function in the guest language. An example AST is shown in
Figure 2.20a. This tree represents the function f(x) = x * 2.

Figure 2.20b depicts the source code for these nodes. Each node defines an execute

method describing how it should be executed8. For example, the Constant node simply
returns the value of its constant field.

8To fit Truffle’s API, RootNodes must return an Object, but other nodes are free to define their own
return type.

27

compiled by

processed byJava source

generates

javac

executed by

JVM
bytecode

JVM

invokes

(with bytecode)

Machine code

installed into

generates

Truffle DSL Processor

compiled by
Generated

Java source

generates

Bytecode Parser

optimized by

Graal IR

Compiler Phases

PE

invokes

(with bytecode

+ AST)

Graal

generates

Figure 2.19: High-level view of the Truffle ecosystem.

28

UnaryFunction

Times

Read(x) Constant(2)

(a) AST for a function f(x) = x * 2

1 class Constant extends Node {

2 int constant;

3 int execute(VirtualFrame frame) {

4 return constant;

5 }

6 }

7 class Read extends Node {

8 String name;

9 int index;

10 int execute(VirtualFrame frame) {

11 return frame.getInt(index);

12 }

13 }

14 class Times extends Node {

15 @Child Node left;

16 @Child Node right;

17 int execute(VirtualFrame frame) {

18 return left.execute(frame) *

19 right.execute(frame);

20 }

21 }

22 class UnaryFunction extends RootNode {

23 @Child Node body;

24 Object execute(VirtualFrame frame) {

25 frame.setInt(0, (int) args [0]);

26 return body.execute(frame);

27 }

28 }

(b) Source code

Figure 2.20: An example AST and the source code for its nodes.

29

A node may access local state through the frame parameter, which stores all of the
local variables of a guest method. During AST construction, each local is assigned a unique
index in the frame. When a RootNode like UnaryFunction is called, Truffle allocates a
frame with an array to store its locals. Then, nodes can access locals by reading from and
writing to specific indices in the frame. The function in Figure 2.20 has a single local x, so
its frame would have an array of length 1. The UnaryFunction node stores the parameter
x into index 0 of the frame; later, the Read node reads it.

A node’s behaviour may depend on the behaviour of other nodes. It stores these
nodes as fields with the @Child annotation. When the UnaryFunction node is executed,
it invokes its body’s execute method. This node is a Times node that also invokes the
execute methods of its left and right children. The frame gets passed along through
each execute call so children can access local state.

2.4.2 Partial evaluation

The primary limitation of AST interpreters is poor performance. ASTs contain significant
indirection: chiefly, executing an AST requires many calls to different execute methods.
Each of these calls requires a virtual method dispatch, and these calls are expensive in
aggregate.

An obvious solution might be to compile ASTs with a just-in-time compiler (JIT), but it
would be ineffective. Since every node overrides the same execute method, each execute

call site is highly polymorphic, and a JIT would have a difficult time performing any
optimizations. For example, every UnaryFunction can have a different body, and so the
call to body.execute can resolve to arbitrarily many different execute implementations.
So, it would not be effective to compile UnaryFunction’s execute method.

The important insight is that, for a particular AST, these call sites are usually stable.
The UnaryFunction for f(x) = x * 2 always has the Times node as its body, and the Times
node always has the Read and Constant nodes as its children. Assuming an AST stays
constant, many of the virtual calls (to execute or otherwise) actually resolve to statically
known implementations, and each call can be devirtualized by inlining the implementation
at the call site.

This approach is the essence of Truffle’s partial evaluation [22, 47]. Partial evaluation
(PE) is a general technique to specialize a program with respect to its statically determined
inputs. For Truffle, PE assumes a particular AST is stable (with help from directives like
@Child) and devirtualizes as many calls as it can. For this reason, the original Truffle
paper describes partial evaluation as “compilation with aggressive method inlining” [48].

Of course, it is possible for PE’s assumptions to be wrong, in which case any partially-
evaluated code becomes invalid. A Truffle AST undergoes partial evaluation when it is
parsed into Graal IR, immediately before being compiled, so PE can leverage Graal’s
existing support for deoptimization (Section 2.3). When control reaches an invalid code
path, the code deoptimizes and resumes execution in the Truffle interpreter.

30

1 Object execute(VirtualFrame frame) {

2 frame.setInt(0, (int) args [0]);

3 return body.execute(frame);

4 }

(a) Before partial evaluation.

1 Object execute(VirtualFrame frame) {

2 frame.setInt(0, (int) args [0]);

3 return body.left.execute(frame) *

4 body.right.execute(frame);

5 }

(b) After body.execute is inlined.

1 Object execute(VirtualFrame frame) {

2 frame.setInt(0, (int) args [0]);

3 return frame.getInt(body.left.index) *

4 body.right.constant;

5 }

(c) After body’s child methods are inlined.

1 Object execute(VirtualFrame frame) {

2 frame.setInt(0, (int) args [0]);

3 return frame.getInt (0) * 2;

4 }

(d) After constant folding.

Figure 2.21: Pseudocode for f(x) = x * 2 (from Figure 2.20) after partial evaluation.

Example: Partial evaluation of f(x) = x * 2

Consider the example in Figure 2.20. The UnaryFunction calls execute on its body, a
Times node, and the Times node calls execute on its left and right children. The
children are effectively constant, but partial evaluation cannot conservatively assume this.
Truffle interpreters communicate these sorts of invariants to PE using directives. In this
case, the @Child annotations tell PE that the nodes do not change. This information
allows PE to inline the implementations.

Figure 2.21 demonstrates how UnaryFunction’s execute method gets partially eval-
uated. Partial evaluation is a monolithic process during the conversion from bytecode to
Graal IR (Section 2.3.1), so the figure instead uses pseudocode to incrementally illustrate
how PE works.

Before partial evaluation, the code is as shown in Figure 2.21a. The inlining process
first sees body.execute, and since body is a @Child, the method is inlined (Figure 2.21b).
For the same reasons, PE can then inline the calls on body.left and body.right (Fig-
ure 2.21c). Inlining is applied to all calls that can be devirtualized—not just execute

methods—so helper methods can be inlined as well if they are used. The resultant code
has no execute indirection: the interpreter has been specialized for the AST.

31

0 Start

113 Unbox

46 BoxNode$TrustedBoxedValue

value

145 <<

x

181 BoxNode$AllocatingBox

value

174 Return

result

22 C(1)

y

183 T(0)

value

Figure 2.22: IR for f(x) = x * 2 after partial evaluation and escape analysis.

Partial evaluation also performs constant folding. If a field is constant, PE can replace
field reads with the value stored in the field. Suppose Constant’s constant field and Read’s
index fields were marked final. Partial evaluation could further simplify the code, replac-
ing the field reads with constants (Figure 2.21d). Sometimes, fields are mutable but effec-
tively immutable (e.g., due to lazy initialization); Truffle provides a @CompilationFinal

annotation for such cases.
Partial evaluation has an important effect on frames: since each execute call that passes

the frame to a child node gets inlined, the frame usually does not escape the compiled code.
Graal can perform scalar replacement (Section 2.3.2) on these frames, and then frame
accesses have the same overhead as regular variable accesses. This is another important
source of indirection that PE allows the compiler to remove.9

Figure 2.22 depicts the IR for f(x) = x * 2 after Graal’s escape analysis phase. The
single argument to the Truffle AST, T(0), represents x. T(0) is a boxed Integer (since
an int is automatically boxed where an Object is expected), so it is first unboxed. Then,
it is multiplied by 2, which is canonicalized by Graal into a single left bit-shift. Finally, it
is re-boxed (since an Object is expected), and returned.

Partial evaluation makes ASTs much more amenable to optimization by Graal. Ex-

9Scalar replacement of frames is so important to performance that the partial evaluator actually aborts
compilations if the frame escapes. Developers must invoke a materialize method to explicitly declare
their intention to let the frame escape.

32

1 class LazyLoadedConstant extends Node {

2 @CompilationFinal int constant;

3 @CompilationFinal boolean loaded = false;

4

5 int execute(VirtualFrame frame) {

6 if (! loaded) {

7 CompilerDirectives.transferToInterpreterAndInvalidate ();

8 constant = compute ();

9 loaded = true;

10 }

11 return constant;

12 }

13

14 int compute () { ... }

15 }

Figure 2.23: Source code for a node with a deoptimization directive.

cluding the boxing, this compiled code is practically free of indirection. Even the boxing
can be removed when RootNodes are inlined into each other. For example, if f(x) = x * 2

gets inlined into another AST, Graal can eliminate the redundant box-unbox sequences
that occur at the beginning and end of the function.

Compilation boundaries

Sometimes, a @Child or @CompilationFinal field needs to be modified10. However, if an
AST has been compiled with the assumption that the field does not change, changing the
field could affect the correctness of the program. In this situation, the AST can use a
compiler directive to deoptimize to the interpreter and invalidate any compiled code.

For example, the node in Figure 2.23 returns a lazily-computed constant. The constant
is marked @CompilationFinal so that it can be constant-folded by PE. If it is loaded,
PE folds the if-statement away as dead code and the code simplifies to a return of the
constant. However, if the node does not get executed before compilation, it must compute
the constant the first time it runs. This operation invalidates the @CompilationFinal

guarantee, so a transferToInterpreterAndInvalidate directive is inserted at the top of
the block. When executing in the interpreter, this directive is a no-op; in compiled code, it
is replaced by a deoptimization point. Code after the deoptimization point is not included
in compilation. If the deoptimization point is reached, any compiled code that executes
the node is invalidated, and the current invocation resumes execution in the interpreter
where it can compute the constant. The node can later be recompiled with the loaded
constant.

Truffle interpreters must also be careful about what code gets inlined by partial eval-
uation. Code that calls into complex library code should not be inlined, lest a significant
amount of code (too much to properly optimize) get included in the compilation. A good ex-
ample is HashMap accesses, which invoke the key’s hashCode method and search a table us-

10Compilation-constant fields are often modified during self-optimization (Section 2.4.3).

33

1 class Cache extends Node {

2 @Child Node arg;

3 @Child Node body;

4 @CompilationFinal int size;

5 @CompilationFinal(dimensions = 1) int[] cacheKeys;

6 @CompilationFinal(dimensions = 1) int[] cacheValues;

7

8 @ExplodeLoop

9 int execute(VirtualFrame frame) {

10 int argument = arg.execute(frame);

11 for (int i = 0; i < size; i++) {

12 if (cacheKeys[i] == argument) return cacheValues[i];

13 }

14 int result = body.execute(frame);

15 if (CompilerDirectives.inInterpreter () &&

16 size < cacheKeys.length) {

17 cacheKeys[size] = argument;

18 cacheValues[size] = result;

19 size ++;

20 }

21 return result;

22 }

23 }

Figure 2.24: Source code for a Cache node.

ing chaining. A method that performs such calls can be annotated with @TruffleBoundary

to get excluded from partial evaluation.

Loop unrolling and dead code elimination

Constant folding can sometimes allow PE to eliminate dead branches of code altogether.
For example, if PE determines an if condition is always true, it can omit the else branch
from the IR entirely. The Truffle inInterpreter directive is useful for guarding branches
that should not be compiled, because it is always false to PE.

Truffle also supports loop unrolling. When a node has loops that run for a compilation-
final number of iterations, it can use an @ExplodeLoop directive to instruct the bytecode
parser to unroll the loop.

Take, for instance, the Cache node in Figure 2.24. This node wraps a body node,
caching its results to avoid repeated computations. It uses arrays to cache arguments
and results, and loops through the arrays to search for previously-computed results. The
execute method is annotated with @ExplodeLoop.

Suppose Cache has x * 2 as its body, and it gets compiled with cache entries for 2

and 4. The resultant IR is shown in Figure 2.25. The loop gets unrolled because of the
@ExplodeLoop annotation. Now, the IR contains two If nodes which compare the input
argument against the keys in the cache. If there is a match, a cached value is returned,
otherwise a result is computed. The CompilationFinal(dimensions=1) annotations cause
PE to treat the array contents as compilation constants, so the array reads are replaced

34

0 Start

113 Unbox

46 BoxNode$TrustedBoxedValue

value

146 If

147 ==

x

161 ==

x

196 <<

x

160 If

F

252 BoxNode$AllocatingBox

T

?

247 BoxNode$AllocatingBox

F

256 BoxNode$AllocatingBox

T

?

value

235 Return

result

250 Return

result

254 Return

result

78 C(2)

y

80 C(4)

y

22 C(1)

y

80 C(4)

value

84 C(8)

value

260 T(0)

value

Figure 2.25: Graal IR for a Cache of x * 2.

0 Start

302 BoxNode$AllocatingBox

212 Return

result

237 C(4)

value

Figure 2.26: Graal IR from Figure 2.25 after dead code elimination.

35

arguments fit

in int uninitialized

arguments don't

fit in int

overflow occurs

addInts addBigInts

arguments don't

fit in int

Figure 2.27: State machine for a self-optimizing Plus node.

by the cache keys and values directly. The cache update is guarded by the inInterpreter

directive, so it does not get compiled.
Loop unrolling is especially effective in combination with dead code elimination. Sup-

pose PE determines from some outside context that the argument to the Cache is always
2. It can determine that the first comparison in Figure 2.25 (node 147) always yields true
and eliminate the checks entirely. The resulting IR, in Figure 2.26, immediately returns
the value 4 from the cache11. By leveraging loop unrolling and dead code elimination, PE
effectively converts a linear search to a constant-time access in the compiled code.

2.4.3 Self-optimizing ASTs

A challenge with implementing languages efficiently is that they can be highly dynamic.
An interpreter may theoretically need to support a wide range of (potentially expensive)
operations, but if only certain cases are observed during execution, it is more efficient to
only handle the cases that actually occur. Truffle nodes are self-optimizing [49]: a node
can have multiple specializations12, each defining a different way to execute the node. By
profiling the behaviour they observe during execution, nodes can automatically select which
specialization should run. Self-optimization is tedious to implement manually, so Truffle
provides a DSL to generate these nodes automatically. Truffle’s DSL processor generates
these nodes during regular Java source compilation.

Example: A self-optimizing Plus node

A simple example is a Plus node for a language with arbitrary precision integers (i.e., Java
BigIntegers). BigInteger arithmetic is more expensive than arithmetic over 32-bit ints,
so if a Plus node’s operands and results fit into an int, it is preferable to perform the
arithmetic using ints.

Abstractly, the Plus node should implement the state machine in Figure 2.27. On first
execution, it is uninitialized. If its arguments fit into int, it specializes itself to add ints;

11Since the expression to compute is just x * 2, PE could have trivially produced 4 using constant
folding, but this caching technique generalizes for any deterministic computation.

12A Truffle specialization is conceptually different from a generic specialization (Section 2.1.1).

36

1 @NodeChild("left")

2 @NodeChild("right")

3 abstract class Plus extends Node {

4

5 @Specialization(rewriteOn = ArithmeticException.class)

6 int addInts(int leftValue , int rightValue) {

7 return Math.addExact(leftValue , rightValue);

8 }

9

10 @Specialization(replaces = "addInts")

11 BigInteger addBigInts(BigInteger leftValue , BigInteger rightValue){

12 return leftValue.add(rightValue);

13 }

14 }

Figure 2.28: Source code for a self-optimizing Plus node.

otherwise, it specializes itself to add BigIntegers. If the node is specialized to ints and
the addition overflows or its arguments suddenly do not fit into int, it should re-specialize
itself to add BigIntegers. If the arguments continue to fit in int and the addition does
not overflow, it can stay in the addInts specialization.

This behaviour can be implemented in Truffle as shown in Figure 2.28. The node defines
two implementations addInts and addBigInts that operate on ints and BigIntegers
respectively. Each version is annotated as a @Specialization. Plus also declares its two
children as @NodeChild, which indicates that their results should be computed and passed
as arguments to the specializations (unlike @Child).

Specializations define guards that determine when they are applicable or need to be
replaced. The specializations’ parameter types serve as type guards to decide which spe-
cialization to use. For example, addInts can only be used when the child nodes return
int values, and addBigInts can only be used when the child nodes return BigInteger

values13. Another example is the event guard in the annotation for addInts. Integer arith-
metic has the potential to overflow, in which case it throws an ArithmeticException14.
The rewriteOn field indicates that the node should re-specialize itself if such an exception
is thrown.

Truffle uses these specializations and their guards to generate an execute method with
some internal state fields to track which specialization is enabled. The generated code is
complicated, so it is not presented here, but it effectively implements the state machine
in Figure 2.27. The execute method is made up of different branches that inspect the
node’s internal state to determine which specialization to invoke. The internal state fields
are marked @CompilationFinal, which allows PE to simplify execute to just the active
specialization and its guards.

13Truffle supports implicit conversions, so if one child returns a BigInteger and the other an int, the
interpreter can coerce the int to a BigInteger so that addBigInts applies.

14Math.addExact detects overflow and throws ArithmeticException, but the standard + operator does
not.

37

1 @NodeChild("argument")

2 class DeterministicComputation extends Node {

3

4 @Specialization(guards = "argument == cacheKey")

5 int computeCached(

6 int argument ,

7 @Cached("argument") int cacheKey

8 @Cached("compute(cacheKey)") int cacheValue

9) {

10 return cacheValue;

11 }

12

13 @Specialization(replaces = "computeCached")

14 int computeUncached(int argument) {

15 return compute(name);

16 }

17

18 int compute(int argument) { ... }

19 }

Figure 2.29: Source code for a node that caches deterministic computations.

Caching

Another useful feature of Truffle specializations is caching. A specialization can declare
@Cached parameters whose values are computed once and reused for subsequent invocations
of the specialization. In combination with expression guards, caches can avoid repeating
computations when the results are stable.

An example is presented in Figure 2.29. The DeterministicComputation node per-
forms a potentially-expensive computation. Since it is deterministic, its results can be
cached to avoid recomputation15.

When the node is first executed, it selects the computeCached specialization. The
computeCached specialization declares two @Cached parameters which get initialized using
the expressions in the annotations. It initializes cacheKey to the value of argument, the
parameter obtained by executing the child node. Then, it initializes cacheValue to the
result of compute(cacheKey); that is, the node performs the computation and caches
the result. The body of the specialization simply returns cacheValue. On subsequent
executions, this specialization can be used as long as the expression guard does not fail. In
this case, as long as the input argument is equal to cacheKey, DeterministicComputation
can return the same constant without recomputing it.

There can be multiple cache entries. If DeterministicComputation encounters a dif-
ferent value for argument, it can compute and cache this second result as well. The
code generated for the computeCached specialization loops through the cached values for
cacheKey and cacheValue until it finds a match. If there is no match, it can continue to
add to the cache, until a preset cache limit is reached, at which point it re-specializes to

15DeterministicComputation fulfills a similar role to the Cache from Figure 2.24, but the code is much
simpler.

38

the computeUncached specialization and performs the computation every time.
The generated code for DeterministicComputation plays well with partial evaluation.

As with Cache (Figure 2.24), execute is annotated with @ExplodeLoop and the cache en-
tries are @CompilationFinal. Thus, PE replaces cache lookups with comparisons against
each cacheKey; if the comparison succeeds, the corresponding cacheValue is returned
directly.

This @Cache idiom is especially useful for implementing polymorphic inline caches [25].
Virtual call nodes can cache the result of a virtual dispatch (i.e., a call target), using the
receiver type as the cache key. If such a call site is monomorphic, PE can replace the call
with the call target’s body guarded by a simple type check (usually a pointer comparison).

2.4.4 Truffle’s object model

Interpreters often need to support guest-language objects (structures, class instances, etc.).
An object is logically a collection of named properties. Accessing these properties should
be efficient, and it should be easy for the compiler to optimize the objects—for example,
using scalar replacement (Section 2.3.2).

Truffle offers two object models: a dynamic model for objects whose properties (and
their types) can change during execution [46], and a newer static model for objects with
a fixed set of properties [7]. This discussion focuses on the static object model since it is
the one used by TastyTruffle. The static object model is suitable for languages where
objects have a statically known set of properties, such as C, Java, or Scala.

Example: Receipt items

Consider modeling items on a receipt. Each Item has an id and a price. Figure 2.30
demonstrates how to model these items using the static object model. The interpreter first
declares a StaticProperty for each property; this happens during run time, usually when
parsing a guest language definition (for example, a struct). It passes these properties to
a StaticShape builder. The properties are assigned a type and can be marked final.

When the StaticShape is built, Truffle synthesizes and loads a new JVM class with
a field to store each property. Each field is stored at a specific offset in the class’s object
layout; Truffle updates each StaticProperty with its corresponding offset. Truffle also
synthesizes a factory to construct these objects. Interpreters use the factory to create

instances.
Since the storage class is synthesized at run time, an interpreter cannot access its fields

using regular field syntax (e.g., myItem.price). Instead, it can use the StaticProperty

instances to perform accesses. The relationship between a generated class and its static
properties is depicted in Figure 2.31. A StaticProperty points to a specific offset in the
generated class instance. Its accessor methods read from/write to the data at that offset
using Java’s Unsafe API. These accesses are fast and incur minimal overhead.

39

1 StaticProperty id = new DefaultStaticProperty("id");

2 StaticProperty price = new DefaultStaticProperty("price");

3

4 StaticShape.Builder builder = StaticShape.newBuilder (...);

5 builder.property(id , int.class , /*final = */ true);

6 builder.property(price , double.class , /* final = */ false);

7 StaticShape itemShape = builder.build (...);

8

9 Object myItem = itemShape.getFactory ().create ();

10 id.setInt(myItem , 42);

11 price.getDouble(myItem);

Figure 2.30: Modeling an Item with the static object model.

instance of
myItem

01234567 89ABCDEF
00000000 0000002A
3FFFD70A 3D70A3D7

id: StaticProperty

price: StaticProperty

GeneratedClass(Item)

Figure 2.31: The relation between the generated Item class and its static properties.

Shape inheritance

StaticShapes can be built from a parent shape. This ability is convenient for implement-
ing inheritance—the resultant shape contains all of its parent’s properties. Figure 2.32
demonstrates how Item can be extended to model a SaleItem with a discount field.
When building saleItemShape, the parent itemShape is supplied to the builder, and the
class it synthesizes is a subclass of the generated Item class.

Parent properties have the same offsets in child objects, so a StaticProperty can be
reused for shapes that inherit it. In this example, the id and price properties still point
to the correct data in mySaleItem (Figure 2.33).

Interactions with the compiler

Guest language objects work well with the compiler because of the design of the static
object model. Some of the benefits are a direct consequence of modeling guest objects
with synthesized JVM classes: the compiler can optimize around guest objects in much
the same way it optimizes around regular Java objects.

Constant offsets: Properties always have the same offset even when they are inherited.
This guarantee is important for compiled performance: if a field access is compiled,
it can use a single offset regardless of the receiver’s type (e.g., whether the receiver
is a parent or child object).

Scalar replacement: When a static object does not escape its allocating context, it can
be decomposed into the fields that it comprises (Section 2.3.2). The compiler un-
derstands the StaticProperty accessors and can replace them with the appropriate
local accesses.

40

1 StaticProperty discount = new DefaultStaticProperty("discount");

2

3 StaticShape.Builder builder = StaticShape.newBuilder (...);

4 builder.property(discount , double.class , false);

5 StaticShape saleItemShape = builder.build(itemShape);

6

7 Object mySaleItem = saleItemShape.getFactory ().create ();

8 discount.setDouble(mySaleItem , 0.5d);

9 id.setInt(mySaleItem , 43);

Figure 2.32: Modeling a SaleItem with the static object model.

GeneratedClass(Item)

instance of

mySaleItem

01234567 89ABCDEF
00000000 0000002B
3FFFD70A 3D70A3D7
3FE00000 00000000

id: StaticProperty

price: StaticProperty

subclass of

GeneratedClass(SaleItem)

discount: StaticProperty

Figure 2.33: The relation between the generated SaleItem class and its static properties.

Final properties: When a property is marked final, partial evaluation (Section 2.4.2) can
treat it as constant.

41

Chapter 3

TastyTruffle: A Truffle interpreter
for Scala

TastyTruffle is an interpreter built using the Truffle framework [48]. It is a research
project (rather than a full-fledged implementation) that implements a subset of the Scala
language. In particular, TastyTruffle supports: primitives, singleton objects, and
classes with single inheritance; if-statements, while loops, and early returns; and both
direct and indirect method dispatch.

This chapter provides a brief overview of how TastyTruffle interprets Scala code.
Whereas [50] describes the interpreter internals in great depth, this chapter presents only
the high-level details necessary to understand the subsequent chapters. It discusses the
design of TastyTruffle’s abstract syntax tree (AST), the way it models definitions, the
run-time data representation, and method dispatch. The discussion of reified types—a key
aspect of TastyTruffle—is deferred until Chapter 4.

While interpreter performance is important for an industry-grade implementation, the
primary goal of TastyTruffle is to generate efficient compiled code. Thus, it uses in-
directions and abstractions that are sometimes inefficient to interpret but become much
simpler after compilation—in particular, after partial evaluation (Section 2.4.2). The dis-
cussion throughout this chapter emphasizes how such abstractions get simplified in com-
piled code.

3.1 The TastyTruffle AST

TastyTruffle’s AST hierarchy defines a variety of nodes to implement expressions (e.g.,
ReadLocal, Constant, Call) and control flow (e.g., IfStmt, WhileLoop). This hierarchy
includes intrinsic nodes to support arithmetic, comparisons, and arrays, among other op-
erations. Most nodes are self-explanatory, so the AST is introduced with a few examples.

The basic unit of execution in the interpreter (i.e., the Truffle RootNode) is a Method.
When a Method is called, it copies arguments into its frame and executes its body. The
body is an AST that evaluates to a value, using the frame to resolve local variables.

A simple example is the Scala addOne method depicted in Figure 3.1. This method
reads its integer parameter x and adds the constant value 1 to it. In the AST, the body

42

1 def addOne(x: Int) = x + 1

0 Method(addOne)

1 IntAdd

2 ReadLocal(x) 3 Constant(1)

Figure 3.1: Source code and TastyTruffle AST for an addOne method.

of addOne is an IntAdd node that has children for its two operands. The first operand,
ReadLocal(x), reads the value of x from the frame. The second operand, Constant(1),
simply returns the value 1. The IntAdd node evaluates both children and adds their results
together.

Another example is presented in Figure 3.2. This example contains an if-statement and
a method call. In the AST, the body of factorial is an If node with subtrees for the
condition, then case, and else case. When the condition is true, i.e., x == 0, it executes
the then case, which returns the simple constant 1. In the else case, it performs a recursive
call using the Call(factorial) node. This node calls the factorial method on the object
computed by its receiver subtree, passing its arguments along. In this case, the receiver is
the singleton Factorial object that has been stored in a local named Factorial$. The
only argument to this call is x - 1. The result of the call is multiplied by x and returned.

Figure 3.3 presents a third example. The Counter class uses a count field to count the
number of times increment is called. In Scala, field accesses are proxied through accessor
methods that read from or write to the field1. TastyTruffle synthesizes these accessors
during parsing, and then uses CallFieldRead and CallFieldWrite nodes to invoke the
accessors. Like regular Calls, these nodes have a receiver subtree to compute the object
containing the field.

The body of increment is a Block that executes a list of statements sequentially. The
first statement computes count + 1, reading count using the CallFieldRead node, and
then assigns it to the newCount local. The second statement writes newCount back into
the count field using a CallFieldWrite. Finally, the third statement reads and returns
the value of newCount.

3.2 Definitions

Scala code contains different kinds of definitions. TastyTruffle creates Java objects
during parsing to model definitions in the input Scala program. There are five kinds of
definitions in TastyTruffle:

1Private fields do not use accessor methods and are instead accessed directly (Section 3.3.3).

43

1 object Factorial {

2 def factorial(x: Int): Int = {

3 if (x == 0) 1 else x * factorial(x - 1)

4 }

5 }

0 Method(factorial)

1 If

2 IntEq

cond

5 Constant(1)

then

6 IntMul

else

3 ReadLocal(x) 4 Constant(0) 7 ReadLocal(x) 8 Call(factorial)

9 IntSub

arg0

12 ReadLocal(Factorial$)

receiver

10 ReadLocal(x) 11 Constant(1)

Figure 3.2: Source code and TastyTruffle AST for a factorial method.

44

1 class Counter {

2 var count = 0

3 def increment (): Int = {

4 val newCount = count + 1

5 count = newCount

6 newCount

7 }

8 }

0 Method(increment)

1 Block

3 WriteLocal(newCount) 17 ReadLocal(newCount)19 CallFieldWrite(count)

4 IntAdd

10 Constant(1)18 CallFieldRead(count)

7 ReadLocal(Counter)

13 ReadLocal(newCount)14 ReadLocal(Counter)

receiver

receiver

Figure 3.3: Source code for Counter and TastyTruffle AST for its increment method.

45

1. Local models a local variable.

2. Field models a field.

3. Method models a method.

4. Shape models a class.

5. Singleton models a singleton object.

The AST uses these definitions to execute the program. For example, a ReadLocal

node contains a Local definition that it uses to perform read operations.

3.2.1 Referencing definitions in TastyTruffle

When Scala code references definitions, the interpreter must connect each reference in a
program to its referent (the actual definition) in order to execute the program.

Local references can be resolved at parse-time. When a method body is parsed, all of
its locals are known, and actual Local instances can be stored in the AST.

In other cases, TastyTruffle may not have loaded/parsed the referent yet, or the
referent may not be known until run time, so the parser stores a symbolic reference in the
AST. This reference can be used at run time to resolve the actual definition. TastyTruf-
fle uses two kinds of symbolic references:

Symbols: For Fields, Shapes, and Singletons, the referent is statically determined from
the textual name and the context of the reference. For example, new C refers to the
Shape for a class C imported in the current scope, and a field access f refers to the
Field named f defined in the receiver’s Shape. In such cases, the parser models the
reference with a Symbol.2

Each Symbol contains a textual name (e.g., "C"). When a definition is nested within
another definition, its Symbol is qualified by a parent Symbol. For example, if C is
declared inside a package p, C’s Symbol would have p’s Symbol as its parent, and its
fully-qualified name would be "p.C". Similarly, the symbol of a field f defined inside
C would have C’s Symbol as a parent; its fully-qualified name would be "p.C.f".
Symbols are interned to enable efficient hashing and comparison.

Shapes and Singletons are stored in global tables, so a node can resolve these
definitions at run time by indexing into the appropriate table with a Symbol. Fields
are not stored in a global table, but on each Shape. A node resolves a Field by first
obtaining the Shape using the symbol’s parent and then using the symbol itself to
look up the Field from the Shape (Section 3.3.2).

Since Scala does not support redefinition of classes, objects, or fields, resolving these
definitions is an idempotent operation. Nodes resolve definitions during their first
invocation and then cache the results for future invocations. The definitions are
marked @CompilationFinal so that partial evaluation can treat them as constants.

2TastyTruffle’s Symbols closely mirror the symbols used in TASTy.

46

Signatures: Scala methods calls are usually virtual. Virtual method calls do not ref-
erence specific definitions because the call target depends on the run-time type of
the receiver. For example, a call foo.bar(42) references some method bar with
a single Int parameter, but the concrete implementation depends on the run-time
type of foo. Symbols are inapt for method references because they reference specific
definitions.

Instead, TastyTruffle uses a Signature, which describes a call target using both
its textual name and the types of its parameters.3 The call to foo.bar(42), for
instance, has the signature with name "bar" and parameter type Int—written as
bar(Int) for brevity. Parameters are included in signatures in order to support
overloading: bar(Int) and bar(Int, Int) describe different methods altogether.

TastyTruffle’s method call nodes use a Signature to dispatch to the appropriate
Method (Section 3.4).

3.3 Data representation in TastyTruffle

An important design consideration is how to represent program data in TastyTruffle.
Scala’s type system is similar to Java’s, so many Scala values can be represented in Truf-
fle with minimal friction. Primitive values (Int, Double, etc.) are represented by their
corresponding Java primitives. Representing primitives this way avoids the overhead of
boxing. Arrays of primitives (Array[Int], Array[Double], etc.) are also represented
using their corresponding Java arrays. Arrays of reference types are represented using
Object[]. What remains are class instances (i.e., objects), which contain fields and can
have methods invoked on them.

The set of data representations is defined by a Representation enum, presented in
Figure 3.4. TastyTruffle nodes store a Representation when their implementation
depends on the representation.

3.3.1 Objects

TastyTruffle uses Truffle’s static object model (see Section 2.4.4) to implement Scala
objects. The parser creates a StaticShape for each Scala class, mapping each field to a
Field (a subclass of StaticProperty) that gets registered on the StaticShape. Each
Field stores the Representation that is used for the field (Figure 3.5). Truffle uses these
Fields to synthesize a JVM class with storage for each field. Each Scala object is an
instance of this synthetic class, which is a subclass of a base class, ClassInstance.

Consider the Rectangle class in Figure 3.6. The Rectangle class defines two Int fields,
length and width. In the interpreter (during parsing), two Fields are created and used to
build a StaticShape. Truffle generates a class GeneratedClass(Rectangle) to represent
Rectangle instances4.

3The parameter types are also symbolic references.
4The actual class name is mangled, but it is presented this way for clarity.

47

1 enum Representation {

2 OBJECT ,

3 BOOL ,

4 INT ,

5 LONG ,

6 DOUBLE ,

7 ...

8 OBJECT_ARRAY ,

9 BOOL_ARRAY ,

10 INT_ARRAY ,

11 LONG_ARRAY ,

12 DOUBLE_ARRAY ,

13 ...

14 }

Figure 3.4: Source code for the Representation enum.

1 class Field extends StaticProperty {

2 Symbol name;

3 Representation repr;

4 }

Figure 3.5: Data definition for the Field class.

The interpreter uses the generated class to represent Rectangle objects. It can use the
Fields to access the fields of the objects. For example, the Field object named length

can be used to read from/write to the length field of a Rectangle object. The field layout
in the generated class is fixed, so each Field is assigned a fixed offset. This offset is used
to access the field of a given object instance.

The static object model supports inheritance, which TastyTruffle uses to imple-
ment single inheritance.5 For example, in Figure 3.7, TranslucentRectangle extends
Rectangle with an opacity field. The class generated for TranslucentRectangle ex-
tends the generated class for Rectangle. It inherits all of Rectangle’s fields at the same
offsets, and the opacity field appears after the inherited fields in the layout.

5TastyTruffle does not yet support traits.

1 class Rectangle(val length: Int , val width: Int) { ... }

2 myRect = new Rectangle(6, 7)

instance of
myRect

01234567 89ABCDEF
00000000 00000006
00000007

length: Field(int)

width: Field(int) GeneratedClass(Rectangle)

ClassInstance

subclass of

Figure 3.6: A Rectangle class and its run-time representation in TastyTruffle.

48

1 class TranslucentRectangle(length: Int , width: Int , val opacity:

Float) extends Rectangle(length , width) { ... }

2 myTRect = new TranslucentRectangle (2, 21, 0.5)

instance of
myTRect

01234567 89ABCDEF
00000000 00000002
00000015 3F000000

length: Field(int)

width: Field(int)

GeneratedClass(TranslucentRectangle)

GeneratedClass(Rectangle)

subclass of

opacity: Field(float)

ClassInstance

subclass of

Figure 3.7: A TranslucentRectangle class and its run-time representation in
TastyTruffle.

1 class Shape {

2 Map <Symbol , Field > fields;

3 Map <MethodSignature , Method > methods;

4 Map <MethodSignature , Symbol > vtable;

5 Symbol parent;

6 StaticShape staticShape;

7 }

Figure 3.8: Data definition for the Shape class.

3.3.2 Shapes

TastyTruffle uses its own Shape abstraction to represent all of the information about a
Scala class (Figure 3.8). A Shape has tables for its declared fields and methods, a virtual
method table (vtable), a symbolic reference to its parent, and a staticShape to create
object instances (Section 3.3.1).

Shape properties can be computed during parsing. The fields and methods declared
inside the class are used to contruct the fields and methods tables. To construct the
vtable, the parser uses Scala compiler APIs to determine a class’s declared and inherited
methods, and then creates a table mapping each method Signature to the Symbol of its
implementing class. A symbolic reference to the parent class can also be obtained from
the AST. To simplify the class loading process, the parent Shape is lazily resolved during
interpretation. The staticShape, which itself depends on the parent’s staticShape, is
also computed lazily.

Every object has a shape field referencing its Shape. The interpreter uses an object’s
shape to execute type-specific operations, such as looking up fields, performing method
dispatch, and checking the type of the object.

The Shape for Rectangle is presented in Figure 3.9. Its fields list stores the length

and width fields. Its methods table contains entries for the area and draw methods it
declares, as well as the initializer method (<init>) that gets invoked when a Rectangle is
created. The vtable maps a method signature to the shape that implements each virtual

49

1 class Rectangle(val length: Int , val width: Int) {

2 // ...

3 def area: Int = length * width

4 def draw: Unit = ...

5 }

6

7 class TranslucentRectangle(length: Int , width: Int , val opacity:

Float) extends Rectangle(length , width) {

8 // ...

9 override def draw: Unit = ...

10 }

length: Field(int)

width: Field(int)

opacity: Field(float)

parent

<init>(Int, Int) Method(<init>)

area() Method(area)

draw() Method(draw)

<init>(Int, Int, Float) Method(<init>)

draw() Method(draw)

area() Rectangle

draw() Rectangle

area() Rectangle

draw() TranslucentRectangle

Shape(Rectangle)

staticShape

fields

methods

vtable

Shape(TranslucentRectangle)

staticShape

fields

methods

vtable

Figure 3.9: Method declarations and Shapes for the rectangle classes.

50

method; in this case, both area and draw are implemented by Rectangle.
A Shape can have a parent. In Figure 3.9, the TranslucentRectangle class ex-

tends Rectangle. Its fields and methods store the fields and methods newly declared in
TranslucentRectangle. The vtable reflects the fact that draw has been overridden by
TranslucentRectangle and that the area implementation has not changed. The parent

pointer allows TastyTruffle to search the parent Shape for fields and methods not
declared by the current Shape.

3.3.3 Data representation and the AST

Since values in TastyTruffle are represented in different ways, the AST must know
a value’s representation in order to interpret it correctly. For example, to read a local
from the frame, TastyTruffle needs to know whether the value is an int, a double, an
object, or something else. In such situations, nodes store a Representation (Figure 3.4)
and use it in their implementation.

Locals

TastyTruffle’s ReadLocal and WriteLocal nodes implement local accesses. Each of
these nodes contains a Local object that stores the frame index and Representation of a
local. Local accessor nodes use Locals to access local variables at the correct frame index
and with the correct representation.

A simplified version of ReadLocal is depicted in Figure 3.10a. To read a local from the
frame, ReadLocal first switches over the local’s representation to determine how to access
it. Once the representation is known, ReadLocal reads the local from the frame using the
appropriate type and the index specified by the local.

This design interacts well with partial evaluation. Since local is annotated with
@CompilationFinal, the compiler treats it as a constant and can replace the calls to
local.getRepresentation() and local.getIndex() with the constant values of those
fields. Then, seeing a constant argument to the switch, the compiler can remove the
branching, replacing it with only the matching branch. For example, suppose ReadLocal

is partially evaluated and its Local has index 2 and type INT. The code after partial
evaluation is significantly simpler (Figure 3.10b).6 The branching and indirect calls in the
original code are eliminated, and what remains is a single frame read frame.getInt(2).
When Graal performs scalar replacement (Section 2.3.2), the frame read further simplifies
to a regular local variable read.

The source code for WriteLocal is depicted in Figure 3.11. The implementation is
similar to ReadLocal, with a couple of differences worth noting:

• First, WriteLocal evaluates a rhsNode to compute a value to assign to the local.
Since rhsNode returns an Object, the value may need to be unboxed depending
on the local representation. For example, when the representation is INT, rhsNode
returns an int, which it boxes up as an Integer; then, (int) rhs casts the rhs back

6Partial evaluation happens during bytecode parsing (Section 2.4.2); source code is presented for the
sake of illustration.

51

1 class ReadLocal extends Node {

2 @CompilationFinal Local local;

3

4 Object execute(VirtualFrame frame) {

5 return switch(local.getRepresentation ()) {

6 case BOOL -> frame.getBoolean(local.getIndex ());

7 case INT -> frame.getInt(local.getIndex ());

8 case LONG -> frame.getLong(local.getIndex ());

9 ... // other primitives

10 default -> frame.getObject(local.getIndex ());

11 }

12 }

13 }

(a) Source code for a ReadLocal node before partial evaluation.

1 class ReadLocal extends Node {

2 @CompilationFinal Local local;

3

4 Object execute(VirtualFrame frame) {

5 return frame.getInt (2);

6 }

7 }

(b) Source code for a ReadLocal node after partial evaluation (when local

has type INT and index 2).

Figure 3.10: Source code for a ReadLocal node before and after partial evaluation.

1 class WriteLocal extends Node {

2 @CompilationFinal Local local;

3 @Child Node rhsNode;

4

5 Object execute(VirtualFrame frame) {

6 Object rhs = rhsNode.execute(frame);

7 switch(local.getRepresentation ()) {

8 case BOOL -> frame.setBoolean(local.getIndex (), (boolean) rhs);

9 case INT -> frame.setInt(local.getIndex (), (int) rhs);

10 case LONG -> frame.setLong(local.getIndex (), (long) rhs);

11 ... // other primitives

12 case /* array representation */ ->

13 frame.setObject(

14 local.getIndex (),

15 CompilerDirectives.castExact(rhs , /* array class */)

16)

17 default -> frame.getObject(local.getIndex ());

18 }

19 return UNIT;

20 }

21 }

Figure 3.11: Source code for a WriteLocal node.

52

to Integer and extracts the primitive int value. This boxing and unboxing may
seem inefficient, but when partial evaluation inlines rhsNode into WriteLocal, Graal
can easily detect and remove the box-unbox chain.

• Secondly, WriteLocal has a special case to handle array representations. Unlike
primitives, Truffle frames store all reference-type values, including arrays, in slots
that are statically of type Object. As a consequence, when an array is stored in
a local variable, sometimes Graal cannot infer the actual type of it (e.g., int[]).
WriteLocal uses the castExact directive to indicate the precise type of an array
local to Graal. Since all locals are written to before they are read, Graal propagates
the type information through the program; when a subsequent ReadLocal loads the
array from an Object index, Graal already knows the value is an array—ReadLocal

does not need to insert its own directive.

Fields

TastyTruffle has ReadField and WriteField nodes to implement direct field accesses.7

These nodes work analogously to local accessors, except they use Field objects. Each
Field has a fixed Representation and points to a fixed offset in the receiver object,
so each access compiles to a simple raw memory read/write. If Graal performs scalar
replacement on the receiver, field accesses also simplify to local variable accesses.

Arrays

TastyTruffle has several kinds of array nodes that create and operate over arrays. The
array nodes need to support each array representation used in TastyTruffle: namely,
they should work with each primitive array type (int[], boolean[], and so on) and
Object[]. One implementation strategy would be to create new nodes for each represen-
tation, but this leads to a lot of duplicated code. Instead, TastyTruffle’s array nodes
store the Representation of the array’s component type and use it to implement each
operation.

The ArrayInit node instantiates a new array with a given length (Figure 3.12). It de-
termines what representation to create by switching over the component’s Representation.
The component type is @CompilationFinal, so partial evaluation can fold away the type
switch and Graal can infer a precise array type for the result.

The ArrayApply, ArrayUpdate, and ArrayLength nodes operate on existing arrays.
In Java bytecode, primitive arrays are accessed using a unique set of operations, so these
nodes must cast arrays to their corresponding types before they can operate on them.8

The array nodes switch over the component Representation to determine how to cast the
array object.

7Recall that non-private field accesses are indirect accesses proxied through accessor methods (Sec-
tion 3.1). Private field accesses and the accessor methods themselves are implemented using ReadField

and WriteField.
8For example, array application (as in array[i]) is a different Java operation for int[], double[],

boolean[] and so on. Reference-type arrays use a different set of operations that is shared across reference
types.

53

1 class ArrayInit extends Node {

2 @Child Node length;

3 @CompilationFinal Representation componentRepr;

4

5 Object execute(VirtualFrame frame) {

6 int size = (int) length.execute(frame);

7 return switch(componentRepr) {

8 case BOOL -> new boolean[size];

9 case INT -> new int[size];

10 case LONG -> new long[size];

11 case DOUBLE -> new double[size];

12 ...

13 default -> new Object[size];

14 };

15 }

16 }

Figure 3.12: Source code for an ArrayInit node.

To illustrate, consider the implementation of ArrayApply in Figure 3.13. When the
componentRepr is INT, ArrayApply knows the array is an int[], so it casts it to int[]

before reading index i. Again, since the component type is @CompilationFinal, partial
evaluation can fold away the switch. Graal can usually infer the array’s type from context,
so the cast can often be removed during compilation.9

3.4 Method dispatch

To execute a Call, TastyTruffle must perform method dispatch to identify the call
target (i.e., the concrete method that should be invoked). TastyTruffle supports two
kinds of calls, which use different approaches for method dispatch.

3.4.1 Direct calls

Sometimes, a call target is statically known. These calls are direct calls. For example,
in Figure 3.14, a call to foo can only ever resolve to the implementation in C because
foo is marked final. TastyTruffle uses direct calls when the call target cannot be
overridden, which is the case for final methods, private methods, and constructors.

The code to implement a DirectCall is depicted in Figure 3.15. The node has a
symbolic reference to the class that implements the method (owner) and a method signature
(sig). To dispatch the method, getCallTarget obtains the Shape of the owner class from
a global registry. Then, it uses the signature sig to look up the appropriate Method from
the shape’s table of declared methods.

9An array can either flow into the current method or be created inside the method (possibly by a
callee). In the former case, WriteLocal casts parameters to precise array types; in the latter case, the
array allocation is usually inlined into the graph.

54

1 class ArrayApply extends Node {

2 @Child Node self;

3 @Child Node index;

4 @CompilationFinal Representation componentRepr;

5

6 @Override

7 Object execute(VirtualFrame frame) {

8 Object array = self.execute(frame);

9 int i = (int) index.execute(frame);

10

11 return switch(componentRepr) {

12 case BOOL -> ((boolean []) array)[i];

13 case INT -> ((int []) array)[i];

14 case LONG -> ((long []) array)[i];

15 case DOUBLE -> ((double []) array)[i];

16 ...

17 default -> ((Object []) array)[i];

18 };

19 }

20 }

Figure 3.13: Source code for an ArrayApply node.

1 class C {

2 final def foo(x: Int) = ???

3 }

4

5 val x: C = ???

6 x.foo (42)

Figure 3.14: Example code with a direct call.

55

1 @NodeChild("receiver")

2 class DirectCall extends Node {

3 @Children Node[] args;

4 @CompilationFinal Symbol owner;

5 @CompilationFinal Signature sig;

6

7 @Specialization

8 Object execute(VirtualFrame frame , ClassInstance receiver ,

9 @Cached("getCallTarget ()") Method callTarget) {

10 Object [] args = ... // evaluate arguments

11 return callTarget.call(args);

12 }

13

14 Method getCallTarget () {

15 Shape shape = Globals.lookup(owner);

16 return shape.methods.get(sig);

17 }

18 }

Figure 3.15: Source code for a DirectCall node.

The direct call dispatch requires two hash-table lookups, which can be expensive, but
since the call target never changes, it only needs to be performed once. During its first
invocation, a DirectCall computes and caches the call target, and then subsequent invo-
cations reuse it. Since the cached target is a partial evaluation constant, the method can
be inlined directly into the call site during compilation.

Because most methods can be overridden, direct calls occur infrequently in TastyTruf-
fle outside of the three cases mentioned. There are techniques that could potentially
increase the number of direct call sites, like class hierarchy analysis [18] or Truffle’s specu-
lative Assumptions. However, in TastyTruffle, monomorphic indirect calls enjoy sim-
ilar compiled performance to direct calls, so such a transformation would likely have a
negligible effect on performance.

3.4.2 Indirect calls

In Scala, most methods defined by a class can be redefined by subclasses. For example, in
Figure 3.16, class D overrides method bar. As a result of overriding, dispatching the call to
bar is not as simple as a direct call dispatch. The call could dispatch to C’s implementation,
D’s implementation, or some other arbitrary subclass’s implementation, depending on the
concrete type of the receiver. These kinds of calls are indirect calls.

The code to implement an IndirectCall is presented in Figure 3.17. For a DirectCall,
the implementing class is statically known, but for an indirectCall, getCallTarget must
determine the implementing class using the receiver’s virtual method table (vtable) stored
on its Shape. Once the implementing class is known, DirectCall looks up its Shape and
then looks up the implementation from the Shape’s methods table.

Indirect calls are difficult to optimize. In the worst case, an indirect call must perform a
virtual dispatch for each invocation, since the receiver type can change each time. However,

56

1 class C {

2 def bar() = ???

3 def baz() = ???

4 }

5 class D extends C {

6 override def bar() = ???

7 }

8

9 val x: C = ???

10 x.bar()

Figure 3.16: Example code with an indirect call.

1 @NodeChild("receiver")

2 class IndirectCall extends Node {

3 @CompilationFinal Signature sig;

4

5 @Specialization(guards = "receiver.shape==cachedShape", limit="5")

6 Object executeCached(VirtualFrame frame , ClassInstance receiver ,

7 @Cached("receiver.shape") Shape cachedShape ,

8 @Cached("getCallTarget(receiver)") Method callTarget) {

9 Object [] args = ... // evaluate arguments

10 return callTarget.call(args);

11 }

12

13 @Specialization(replaces = "executeCached")

14 Object executeUncached(VirtualFrame frame , ClassInstance receiver){

15 Object [] args = ... // evaluate arguments

16 Method callTarget = getCallTarget(receiver);

17 return callTarget.call(args);

18 }

19

20 Method getCallTarget(ClassInstance receiver) {

21 Symbol implementer = receiver.shape.vtable.lookup(sig);

22 Shape implShape = Globals.lookup(implementer);

23 return implShape.methods.get(sig);

24 }

25 }

Figure 3.17: Source code for an IndirectCall node.

57

1 shape = receiver.shape

2 if (shape == C) {

3 // body of C.bar

4 } else if (shape == D) {

5 // body of D.bar

6 } else {

7 // deoptimize

8 }

(a) Polymorphic case: the cache contains C

and D.

1 shape = receiver.shape

2 if (shape == C) {

3 // body of C.bar

4 } else {

5 // deoptimize

6 }

(b) Monomorphic case: the cache contains
only C.

Figure 3.18: Pseudocode generated by PE for the indirect call to bar in Figure 3.16.

in realistic workloads, the vast majority of call sites observe just a few receiver types [6],
and polymorphic inline caches [25] can be used to improve performance.

IndirectCall uses Truffle’s caching to implement a polymorphic inline cache. On first
invocation, it starts in the executeCached specialization. The node performs the virtual
dispatch, caching the receiver’s shape (cachedShape) and the result (callTarget), and
then calls the method. On subsequent invocations, the specialization guard is checked:
the same callTarget is reused as long as receiver.shape is equal to cachedShape. If
the receiver has a different Shape, IndirectCall performs the same process to add new
cache entries. The execute method generated by Truffle’s DSL processor loops through
the cache entries to search for a match. Eventually, if the cache limit is exceeded, the
executeUncached replaces executeCached.10 This specialization performs the virtual dis-
patch each time.

Indirect calls pose a problem for JIT compilation: when Graal cannot determine the
call target, it cannot inline the method and optimize across the call boundary. The call is
effectively a black box: it returns an arbitrary value, and can modify arbitrary program
state (e.g., globals, fields, etc.). The opaqueness of an indirect call can prevent the compiler
from reasoning about the state of the program after the call.

However, if an indirect call is not megamorphic (i.e., it encounters few actual receiver
types), using inline caches mitigates the compilation problem. Graal unrolls the cache
loop into a series of if-statements that check whether the receiver Shape matches each
cachedShape. Inside these if-statement bodies, the call targets are statically known, and
Graal can inline them into the body of IndirectCall.

Consider the call to bar in Figure 3.16. If the call does not hit the cache limit, PE unrolls
the cache lookup loop and inlines the cached implementations of bar. The pseudocode for
the call after PE is depicted in Figure 3.18.11 The figure demonstrates two cases: a
polymorphic call site and a monomorphic call site.

Suppose the IndirectCall observes two receiver types during execution, C and D.
The call site is polymorphic and its inline cache has two entries. The code generated by
PE (Figure 3.18a) performs a pointer comparison between the receiver’s shape and each

10TastyTruffle uses a cache limit of 5, which is used by [6] to describe a megamorphic call site.
11Again, recall that partial evaluation happens during bytecode parsing (Section 2.4.2); source code is

presented for illustrative purposes.

58

cached shape until it finds a match. If it finds a match, the code executes the body of the
inlined call target. Otherwise, the cache lookup fails, and the code deoptimizes back to
the interpreter to handle the call (before possibly recompiling later).

Now, suppose the IndirectCall only observes a single receiver type C. The call site
is monomorphic and its inline cache has a single entry. The code generated by PE (Fig-
ure 3.18b) is similar to the polymorphic case. However, with just a single cache entry, the
indirect call is effectively a direct call guarded by a single pointer comparison. Graal can
optimize the call just as effectively as it can optimize direct calls.

59

Chapter 4

Using reified types in TastyTruffle

TASTy was chosen as the interpretation target for TastyTruffle because, unlike JVM
bytecode, TASTy has complete type information, which can be used to reify types. This
chapter discusses TastyTruffle’s implementation of reified types, and in turn describes
how reified types are used to implement parametric polymorphism. These details are also
described in [50] as one monolithic extension. This chapter contributes an intermediate
implementation that supports parametric polymorphism without specialization.

4.1 Reified types

The high-level idea behind reifying types is to pass around type information into generic
contexts. When generic code understands the types of values that flow into generic con-
texts, it can support heterogeneous representations for those values.

Consider the example code in Figure 4.1. When compiled to JVM bytecode, the type
parameter T of swap is erased. The bytecode does not “remember” that swap is generic, and
it has no knowledge about the actual types of its arguments. Both array and value are
given type Object, and the implementation of swap operates on the values in a uniform
way, independently of the actual values provided to it. Forcing values into a uniform
representation when they flow into generic contexts—for example, by boxing primitives—
introduces run-time overhead and makes it harder for a compiler to produce efficient code.

If types are reified, generic code can avoid these performance penalties, instead support-
ing heterogeneous representations of generic values. In a reified scheme, swap knows about
its type parameter T, and swap’s caller knows that it invokes the generic swap method
with T being Int. The caller can pass the run-time representation of the Int type as an
argument to the call, and then swap can inspect the value of T to determine that array

is an Array[Int], value is actually an Int, and that the array operations in the method
body operate over integer arrays. If it also performed generic calls, swap could propagate
the value of T to its callees. Having precise knowledge about the types used in generic
contexts enables heterogeneous representations for generic values in TastyTruffle.

60

1 def swap[T](array: Array[T], i: Int , value: T): T = {

2 val oldValue: T = array(i)

3 array(i) = value

4 oldValue

5 }

6

7 val array = new Array[Int](1,2,3,4)

8 swap(array , 0, 5)

Figure 4.1: A generic swap method that updates an array and returns the previous value
stored.

4.1.1 TypeNodes

To reify types in TastyTruffle, the AST must be augmented with additional meta-
data. This metadata takes the form of a TypeNode. A TypeNode is a Truffle tree that
can be executed to obtain a Shape, TastyTruffle’s run-time representation of a type
(Section 3.3.2). This Shape is the “type” passed around the interpreter; TypeNodes are not
passed around, but merely augment the TastyTruffle AST so that it can compute the
types being passed around.

TypeNodes model:

• Type parameters (e.g., T) with MethodTypeParam and ClassTypeParam.

• Primitive types (e.g., Int) with IntType, DoubleType, etc.

• Class types (e.g., Foo) with NamedType.

• Generic type applications (e.g., List[Int]) with AppliedType.

The first three kinds of nodes are simple symbolic references to a type. The AppliedType

node represents a generic type with concrete type arguments. Each of its type arguments
is itself a TypeNode.

Type reification is possible in TastyTruffle because every expression and definition
in TASTy is annotated with type information. This information is modeled by TASTy’s
TypeRepr hierarchy. The TypeRepr hierarchy includes a variety of classes to model Scala’s
rich type system, but in practice only a couple of these classes are relevant for the simple
kinds of programs supported by TastyTruffle: TypeRef, which is a symbolic reference
to a type (e.g., the name of a class), and AppliedType, which models a generic type with
a set of supplied type arguments.

During parsing, TastyTruffle can obtain TypeReprs for definitions and expressions
from the TASTy representation. For any TastyTruffle node that needs a TypeNode,
the parser takes the corresponding TypeRepr and converts it to a TypeNode using the
algorithm in Figure 4.2.

As mentioned earlier, TypeNodes are Truffle trees that can be executed to produce a
Shape, TastyTruffle’s run-time representation of a type. The TypeNodes for primi-
tives and classes are simple: they look up a Shape by name from the Globals registry.

61

1 def parseType(tpe: TypeRepr): TypeNode = tpe match {

2 case TypeRef if tpe.isTypeParameter => {

3 if (tpe.isMethodTypeParameter)

4 new MethodTypeParam (...)

5 else

6 new ClassTypeParam (...)

7 }

8 case TypeRef if tpe.isPrimitiveType => {

9 if (tpe.isInt)

10 new IntType

11 else if (tpe.isDouble)

12 new DoubleType

13 ...

14 }

15 case TypeRef => new NamedType(symbolOf(tpe))

16 case AppliedType(template , typeArgs) =>

17 new tastytruffle.AppliedType(

18 symbolOf(template),

19 typeArgs.map(parseType)

20)

21 }

Figure 4.2: Scala pseudocode to construct a TastyTruffle TypeNode from a TASTy
TypeRepr.

The implementations for type parameter and type application nodes are discussed in the
subsequent sections.

Reifying types in TastyTruffle means extra information must be computed and
passed around the interpreter, but partial evaluation can reduce the performance impact.
If a TypeNode evaluates to a fixed Shape, PE can detect that its result is a compilation
constant and elide code that executes it. Further, when code performs run-time type tests
over a constant TypeNode, PE can remove the type tests and fold away any unreachable
branches.

4.2 Generic methods

A generic method behaves independently of the specific types of (some of) the values it
operates on. It uses type parameters to model the types of its generic values. In a reified
system, callers can compute and pass concrete values for these type parameters into generic
methods.

In TastyTruffle’s calling convention, type arguments are passed just like regular
arguments, appearing after the receiver but before the regular arguments in the argument
list. When the parser encounters a generic call, it creates a Call node with additional
TypeNodes to compute the type arguments. In the callee, the type parameters get copied
into its frame; then, the callee can read its type parameters using a MethodTypeParam

node (Figure 4.3). This node loads a type parameter directly from the frame just like a
ReadLocal node.

62

1 class MethodTypeParam extends TypeNode {

2 final Local typeParam;

3

4 Object execute(VirtualFrame frame) {

5 return frame.getObjectStatic(typeParam.getIndex ());

6 }

7 }

Figure 4.3: Source code for a MethodTypeParam node.

Consider the foo method in Figure 4.4a. This method reads from its generic array
parameter x, stores the generic result in a local y, and then calls another generic method
bar with y. In TastyTruffle, a Call to foo takes three arguments: the GenericMethods
receiver, a type argument for T, and a value for x. The AST for foo is depicted in
Figure 4.4b.

Whereas generic methods in an erasure scheme use a single data representation regard-
less of the type arguments they are invoked with, reified types enable the implementation
to vary its representation. For example, when T is Int, TastyTruffle can represent
a value of type T with a primitive int rather than Object; similarly, it can represent
an Array[T] with int[] rather than Object[]. This representation is more precise and
avoids boxing. Generic methods in TastyTruffle use type parameters to dynamically
support these different data representations.

4.2.1 Generic locals

When a local variable is generic, its representation changes dynamically; consequently,
the way that it should be accessed from the frame changes dynamically. TastyTruf-
fle defines GenericReadLocal and GenericWriteLocal nodes that use reified types to
implement generic accesses.

Consider the locals in the foo method (Figure 4.4a). Both x and y are generic over
T. When T is Int, y contains an int and is stored in the primitives section of the frame;
conversely, when T is a reference type, y is stored in the Object section. In either case, x
is an array stored in the Object section, but the reified types are still useful for hinting at
the underlying type with compiler directives (as in Section 3.3.3).

The implementation of GenericReadLocal is depicted in Figure 4.5. It defines a sep-
arate specialization for each possible representation. Whereas a ReadLocal is annotated
with a static Representation (Figure 3.10a), a GenericReadLocal is annotated with
a TypeNode to dynamically compute the representation. The generated execute method
evaluates the TypeNode to compute the local’s Shape. Then, it compares the shape against
each specialization’s type guard to select an appropriate specialization.

Consider the GenericReadLocal(y) node in Figure 4.4b. The local y is of type T.
When T is Int, the TypeNode for y evaluates to an IntShape, so the generated code
selects and executes the readInt specialization. If T is a reference type, none of the
primitive specializations apply, and ReadLocalNode uses the @Fallback specialization,
which accesses the local from the Object section of the frame.

63

1 object GenericMethods {

2 def foo[T](x: Array[T]): T = {

3 val y: T = x(0)

4 bar[T](y)

5 }

6 def bar[U](x: U): U = ???

7 }

(a) Generic methods foo and its callee bar.

0 Method(foo)

10 Block

12 GenericWriteLocal(y) 20 Call(bar)

13 GenericArrayApply34 MethodTypeParam(T)

14 GenericReadLocal(x)15 Constant(0) 16 MethodTypeParam(T)

37 ArrayType

21 MethodTypeParam(T)

arg0

23 GenericReadLocal(y)

arg1

24 ReadLocal(GenericMethods$)

receiver

44 MethodTypeParam(T)

38 MethodTypeParam(T)

(b) Generic AST for foo.

Figure 4.4: Source code and AST for a generic method foo.

64

1 @NodeChild("typeNode")

2 class GenericReadLocal extends Node {

3 final int index;

4

5 @Specialization

6 Object readInt(VirtualFrame frame , IntShape shape) {

7 return frame.getIntStatic(index + INT.ordinal ());

8 }

9

10 @Specialization

11 Object readDouble(VirtualFrame frame , DoubleShape shape) {

12 return frame.getDoubleStatic(index + DOUBLE.ordinal ());

13 }

14

15 ...

16

17 @Fallback

18 Object readObject(VirtualFrame frame , Shape shape) {

19 return frame.getObjectStatic(index + OBJECT.ordinal ());

20 }

21 }

Figure 4.5: Source code for a GenericReadLocal node.

Dynamically changing the representation of locals has subtle consequences for compiled
code. In generic nodes like GenericReadLocal, multiple specializations can be active at
once depending on which types flow into the node at run time. In the compiled code, if the
TypeNode is not a compilation constant, each active specialization appears in a different
branch of control flow. For example, after partial evaluation, a GenericWriteLocal that
has seen int and Object representations during interpretation compiles to something like
Figure 4.6. Control flow branches based on the type of shape and then merges afterwards.

These kinds of control flow splits and merges are challenging for Graal to optimize.
Consider the type of the value in the frame after the store. Since the types differ on the
two branches, the value can be either an int or a reference type. The compiler models the
value using a φ with an imprecise type, and subsequent accesses in the compiled code may
require boxing or dynamic type checks.

TastyTruffle works around this problem by allocating a unique index in the frame
for each possible representation of a local. For example, a given index n may be used for
reference types, n+1 for ints, n+2 for doubles, and so on. In Figure 4.5, each specialization
accesses a different index by adding the Representation’s enum ordinal to the base index;
GenericWriteLocal works the same way.

Using multiple indices for generic locals can cause the interpreter to allocate more
frame space than necessary. For example, if a generic local is only ever represented with
int, the extra frame space is wasted memory. However, compiled code does not have this
problem. When partial evaluation processes GenericWriteLocal and GenericReadLocal

nodes, it only includes the specializations (i.e., representations) that the nodes used during
interpretation. In the resulting code, if only a subset of the indices are actually used, Graal

65

1 Object execute(VirtualFrame frame) {

2 Object value = /* evaluate rhs */;

3 Object shape = /* evaluate typeNode */;

4 if (shape instanceof IntShape) {

5 // store value as an int

6 } else if (shape instanceof Shape) {

7 // store value as an Object

8 } else {

9 // deopt

10 }

11 return UNIT;

12 }

Figure 4.6: Pseudocode for a GenericWriteLocal node’s execute method after partial
evaluation.

can elide storage for the unused indices.

4.2.2 Generic array accesses

Since TastyTruffle has multiple underlying representations for arrays, code that oper-
ates on generic arrays must dynamically support different representations at run time. For
example, the foo method in Figure 4.4a takes a parameter of type Array[T]. When T is
Int, the array is represented with an int[], but when T is something else, the array uses
a different representation.

TastyTruffle defines generic variants of the array accessor nodes described in Sec-
tion 3.3.3. The implementation of GenericArrayApply is given in Figure 4.7. Like with
generic local accessors, generic array nodes execute a TypeNode and use its result to deter-
mine the representation of the given array.

4.2.3 Propagating type information

Type parameters can also transitively flow into other call sites. When foo calls bar in
Figure 4.4a, it evaluates its type parameter T and passes it as an argument. In this way,
bar can also use the value of T to dynamically change its own behaviour.

4.3 Generic classes

Scala classes can also be generic. Like with generic methods, a generic class has type
parameters that can indicate the types of values used in its methods. A generic class can
also define generic fields whose types are described by its class type parameters. Since fields
are stored in class instances, the representation of a generic class instance itself depends
on the values of its type parameters. The code that operates on a generic class instance
needs to account for the heterogeneous ways it may be represented.

66

1 @NodeChild("self")

2 @NodeChild("index")

3 @NodeChild("typeNode")

4 class GenericArrayApplyNode extends Node {

5

6 @Specialization

7 Object applyInt(Object array , int i, IntShape shape) {

8 return ((int []) array)[i];

9 }

10

11 @Specialization

12 Object applyDouble(Object array , int i, DoubleShape shape) {

13 return ((double []) array)[i];

14 }

15

16 ...

17

18 @Fallback

19 Object applyObject(Object array , int i, Shape shape) {

20 return ((Object []) array)[i];

21 }

22 }

Figure 4.7: Source code for a GenericArrayApply node.

1 class Box[T](initial: T) {

2 private var value: T = initial

3 def get: T = value

4 def set(x: T): Unit = value = x

5 }

Figure 4.8: Generic Box class.

Consider the Box class in Figure 4.8. Box[T] wraps a generic value of type T, storing
it in a field and manipulating it with get and set methods. In a reified system like
TastyTruffle, the concrete value of T determines the field representation: when T is
Int, the value should be stored in an int field, when it is Double, the value should be
stored in a double field, and so on. The concrete value of T thus affects the object layout
of a Box[T].

This section discusses TastyTruffle’s implementation of generic classes. Generic
classes build on the implementation from Section 4.2. They use the same AST nodes to
support generic locals and arrays—however, now the TypeNodes stored on those nodes may
contain ClassTypeParams as well.

4.3.1 Modeling applied generic classes

To support generic classes, the interpreter needs a way to model a generic class applied
to concrete type arguments, or applied generic class, for short. This section discusses how

67

TastyTruffle models applied generic classes. The mechanism by which a generic class
is actually applied to concrete types is discussed in the following section.

Recall that TastyTruffle uses Shapes to model non-generic classes in the guest
program; the definition of a Shape from Chapter 3 is reproduced in Figure 4.9. The
StaticShape synthesized by Truffle defines the layout of each class instance, and the
fields mapping contains the Fields used to access fields from a class instance.

1 class Shape {

2 Map <Symbol , Field > fields;

3 Map <MethodSignature , Method > methods;

4 Map <MethodSignature , Symbol > vtable;

5 Symbol parent;

6 StaticShape staticShape;

7 }

Figure 4.9: Data definition for the Shape class (reproduced).

TastyTruffle models an applied generic class with a GenericShape (Figure 4.10).
The GenericShape class extends the base Shape, introducing an additional typeArgMap
field to map type parameters to the concrete type arguments applied to the class.

1 class GenericShape extends Shape {

2 Map <Symbol , Shape > typeArgMap;

3 }

Figure 4.10: Data definition for the GenericShape class.

For a given generic class, each unique set of type arguments corresponds to a unique
GenericShape. Using different shapes for different applications of a generic class is neces-
sary because the type arguments can impose different object layouts. Each GenericShape

has its own layout with fields that use an appropriate representation; for example, the
GenericShape created to model the Box[Int] class has a value field that uses an int

representation.
Like with method type parameters, class type parameters can be directly referenced

in method bodies. The TastyTruffle parser creates ClassTypeParams when parsing
TypeNodes. When a generic node (e.g., a generic local accessor) executes, it can evalu-
ate ClassTypeParams to determine the concrete type arguments used when applying the
generic class. For example, in Figure 4.8, set computes the value of T to determine how
the argument for x should be stored in the frame.

The implementation of ClassTypeParam is given in Figure 4.11. The node obtains the
receiver’s GenericShape and looks up the type argument from its typeArgMap. Since Map

operations cannot be partially evaluated, ClassTypeParam caches the computed result as a
compiler constant. Further, since a generic class method observes a different GenericShape
for each unique application of the class, the cache is polymorphic over the receiver’s shape.
The node falls back on uncached access when it observes too many different GenericShapes.

68

1 @NodeChild("receiver")

2 class ClassTypeParam extends TypeNode {

3 final Symbol symbol;

4

5 @Specialization(guards = "receiver.shape==cachedShape", limit="5")

6 Shape resolveCached(

7 ClassInstance receiver ,

8 @Cached("receiver.shape") Shape cachedShape ,

9 @Cached("getTypeArgument(cachedShape)") Shape typeArgument) {

10 return typeArgument;

11 }

12

13 @Specialization(replaces = "resolveCached")

14 Shape resolveUncached(ClassInstance receiver) {

15 return getTypeArgument(receiver.shape);

16 }

17

18 Shape getTypeArgument(Shape shape) {

19 GenericShape gShape = (GenericShape) shape;

20 return gShape.typeArgMap.get(symbol);

21 }

22 }

Figure 4.11: Source code for a ClassTypeParam node.

1 class GenericShapeTemplate {

2 FieldTemplate [] fields;

3 Map <MethodSignature , Method > methods;

4 Map <MethodSignature , Symbol > vtable;

5 Symbol parent;

6 Symbol [] typeParams;

7 }

Figure 4.12: Data definition for the GenericShapeTemplate class.

4.3.2 Applying generic classes to type arguments

The interpreter needs a mechanism to apply a generic class to concrete type arguments.
TastyTruffle uses the GenericShapeTemplate class for this purpose (Figure 4.12). The
TastyTruffle parser creates a GenericShapeTemplate when it encounters a generic
class. The parser stores shape templates in a global table indexed by Symbols.

A shape template is conceptually a Shape waiting to have concrete type arguments
supplied to it. It retains all of the metadata necessary to construct a Shape at a later
time. Namely, since a Field’s representation is not known until a generic class is applied
to concrete types, GenericShapeTemplate stores FieldTemplates (Figure 4.13). A field
template models a field’s type with a TypeNode. If the field is generic, the type node
contains ClassTypeParams.

69

1 class FieldTemplate {

2 Symbol name;

3 TypeNode type;

4 }

Figure 4.13: Data definition for the FieldTemplate class.

Specializing TypeNodes

A critical aspect of the generic application algorithm is TastyTruffle’s technique for
transforming TypeNodes in the AST. Truffle ASTs support the visitor pattern, whereby a
function is applied to each node in the AST in a top-down traversal. Visitors can be used
to transform ASTs.

TastyTruffle defines a TypeNodeSpecializer that “fills in” type parameters in
a TypeNode tree with concrete types (Figure 4.14a).1 The specializer searches the AST
for ClassTypeParams. For each ClassTypeParam it finds, it replaces the node with a
ConstType node containing the concrete type of the parameter.

The TypeNodeSpecializer transforms generic TypeNodes into nodes with concrete
types that have fixed representations. Figure 4.14b provides some examples. Impor-
tantly, since TypeNodeSpecializer visits subtrees, it can fill in type parameters nested in
AppliedType nodes.

The application algorithm

To apply a generic class to type arguments, GenericShapeTemplate follows the algorithm
in Figure 4.15:

1. First, create a typeArgMap mapping each type parameter to its concrete type argu-
ment.

2. Then, construct the Fields. Use the TypeNodeSpecializer to fill in type parameters
in each field template’s TypeNode. The resultant TypeNode is not generic and can
be executed to obtain a Shape. Use the Shape’s repr to create a Field with a
specialized representation.

3. Use the Fields to synthesize a StaticShape.

4. Create a new GenericShape with the computed fields, shape, and type argument
mapping. Use the same methods and parent information.2

The resulting GenericShape, like any other Shape, can be used to instantiate instances
of the generic class. Any generic fields on the class are specialized and use a precise
representation.

1Some of TastyTruffle’s implementation is written in Scala, including TypeNodeSpecializer.
Scala’s pattern matching is especially useful for tree visitors.

2Methods are shared among different generic applications. Inheritance with generic classes is discussed
in a later section.

70

1 class TypeNodeSpecializer(typeArgMap: Map[Symbol , Shape])

2 extends NodeTransformer {

3 def visit(node: Node): Node = node match {

4 case param: ClassTypeParam =>

5 val typeArg = typeArgMap(param.symbol)

6 new ConstType(typeArg)

7 case _ => node

8 }

9 }

(a) Source code (Scala).

1 Symbol T = symbolOf("T");

2 TypeNodeSpecializer specializer = new TypeNodeSpecializer(

3 Map.of(T, IntShape)

4);

5

6 TypeNode simple = new ClassTypeParam(T);

7 specializer.visit(simple); //-> ConstType(IntShape)

8

9 TypeNode box = new AppliedType(symbolOf("Box"),

10 new ClassTypeParam(T));

11 specializer.visit(box); //-> AppliedType ("Box", ConstType(

12 // IntShape))

13

14 Symbol U = symbolOf("U");

15 specializer = new TypeNodeSpecializer(

16 Map.of(

17 T, IntShape ,

18 U, DoubleShape

19)

20);

21

22 TypeNode pair = new AppliedType(

23 symbolOf("Pair"), new ClassTypeParam(T), new ClassTypeParam(U)

24);

25 specializer.visit(pair); //-> AppliedType ("Pair",ConstType(IntShape),

26 // ConstType(DoubleShape))

(b) Example usage (Java).

Figure 4.14: Source code and example usage for the TypeNodeSpecializer.

71

1 class GenericShapeTemplate {

2 ...

3 GenericShape apply(Shape[] typeArgs) {

4 // Create a mapping from type parameter to argument

5 Map <Symbol , Shape > typeArgMap = new HashMap <>();

6 for (int i = 0; i < typeArgs.length; i++) {

7 typeArgMap.put(this.typeParams[i], typeArgs[i]);

8 }

9

10 // Build the fields

11 TypeNodeSpecializer specializer = new TypeNodeSpecializer(

12 typeArgMap);

13 Map <Symbol , Field > specializedFields = new HashMap <>();

14 for (FieldTemplate template : this.fields) {

15 // Specialize the field’s type

16 TypeNode concreteType = specializer.visit(template.type);

17

18 // Compute the field’s Shape

19 Shape concreteShape = concreteType.execute(null);

20

21 // Create a new Field

22 specializedFields.put(

23 field.name ,

24 new Field(field.name , concreteShape.repr)

25);

26 }

27

28 // Create a new StaticShape

29 StaticShape.Builder builder = StaticShape.newBuilder (...);

30 for (Field field : specializedFields.values ()) {

31 builder.property(field , classOf(field.getRepresentation ()));

32 }

33 StaticShape staticShape = builder.build (...);

34

35 return new GenericShape(

36 specializedFields ,

37 this.methods ,

38 this.vtable ,

39 this.parent ,

40 staticShape ,

41 typeArgMap

42)

43 }

44 }

Figure 4.15: Source code for the GenericShapeTemplate’s apply method.

72

Caching GenericShapes

When a GenericShapeTemplate is applied to type arguments, if the type arguments have
been seen before, it should reuse the previously-computed GenericShape. Not only is it
unnecessary to recompute the shape each time, but two different generic class instances
with the same type arguments should have the same shape. For example, two Box[Int] in-
stances created at different times during execution should both use the same GenericShape.
Shape uniqueness is especially important for performance, since TastyTruffle’s inline
caches (e.g., on an IndirectCall node) use Shapes as cache keys.

Thus, GenericShapeTemplate caches the GenericShapes it creates. The caching code,
which is omitted from Figure 4.15 for simplicity, is presented in Figure 4.16. For each appli-
cation, it caches the list of concrete type arguments in keys and the resulting GenericShape

in values. The lookup method compares the input type arguments against the cached
arguments in keys; if there is a match, it returns the corresponding cached GenericShape.
Otherwise, GenericShapeTemplate creates a new GenericShape and adds the result to
the cache.

Partial evaluation

The caching code is written carefully to be amenable to partial evaluation. The keys

and values arrays are both @CompilationFinal, including the array elements inside the
arrays, so when PE encounters the @ExplodeLoop annotations in lookup and shapesMatch,
it can unroll all of the loops into comparisons against constant Shapes.

As an example, consider a generic HashMap[K,V] class. Suppose that during inter-
pretation, HashMap[K,V] is applied to [Int,Int], [Int,Double], [Double,Int], and
[Double,Double]. Its GenericShapeTemplate has an entry for each set of arguments in
its cache. Figure 4.17 illustrates how a call to lookup is incrementally transformed by
partial evaluation, starting with the original code in Figure 4.17a.3 First, since keys is
a PE-constant, PE can unroll all four iterations of the loop (Figure 4.17b). Then, the
shapesMatch method can be inlined (Figure 4.17c). Inlining adds new loops to the code,
but each key[i] array is PE-constant, so PE can unroll each loop into two shape compar-
isons. The code in Figure 4.17d depicts the final result after constants have been inlined
(and the control flow rewritten for presentation).

Generic application is complex: among other things, it synthesizes new Java classes,
mutates @CompilationFinal cache fields, and modifies Truffle trees. This code cannot
be included during partial evaluation. Thus, in the apply method, code that creates new
GenericShapes is dominated by a deoptimization directive, so PE does not include it during
compilation. If this code path is reached, compiled code deoptimizes to the interpreter.

4.3.3 Modeling generic classes in the AST

When Scala code instantiates a generic class, the TastyTruffle parser models the type in
the AST using an AppliedType node. The AppliedType node evaluates to a GenericShape

3Partial evaluation happens during bytecode parsing, but source code is useful for illustration. The
exact order in which PE transforms the code is not necessarily accurate, but the end result is the same.

73

1 class GenericShapeTemplate {

2 ...

3 @CompilationFinal(dimensions=2) Shape [][] keys;

4 @CompilationFinal(dimensions=1) GenericShape [] values;

5

6 GenericShape apply(Shape[] typeArgs) {

7 GenericShape cached = lookup(typeArgs);

8 if (cached != null) return cached;

9

10 // deopt; generic application cannot happen in compiled code

11 CompilerDirectives.transferToInterpreterAndInvalidate ();

12

13 // regular application code

14

15 put(typeArgs , result);

16 return result;

17 }

18

19 @ExplodeLoop

20 GenericShape lookup(Shape[] typeArgs) {

21 for (int i = 0; i < keys.length; i++) {

22 if (shapesMatch(keys[i], typeArgs)) return values[i];

23 }

24 return null;

25 }

26

27 @ExplodeLoop

28 boolean shapesMatch(Shape[] expected , Shape[] actual) {

29 if (expected.length != actual.length) return false;

30 for (int i = 0; i < expected.length; i++) {

31 if (expected[i] != actual[i]) return false;

32 }

33 return true;

34 }

35

36 void put(Shape[] typeArgs , GenericShape result) {

37 int index = /* next slot , resizing if necessary */;

38 keys[index] = typeArgs;

39 values[index] = result;

40 }

41 }

Figure 4.16: Source code for the GenericShapeTemplate’s caching mechanism.

74

1 for (int i = 0; i < keys.length; i++) {

2 if (shapesMatch(keys[i], typeArgs)) return values[i];

3 }

4 return null;

(a) Before partial evaluation.

1 if (shapesMatch(keys[0], typeArgs)) return values [0];

2 if (shapesMatch(keys[1], typeArgs)) return values [1];

3 if (shapesMatch(keys[2], typeArgs)) return values [2];

4 if (shapesMatch(keys[3], typeArgs)) return values [3];

5 return null;

(b) After the outer loop is unrolled.

1 INT_INT_CHECK: for (int i = 0; i < keys [0]. length; i++) {

2 if (keys [0][i] != typeArgs[i]) goto INT_DOUBLE_CHECK;

3 }

4 return values [0];

5

6 INT_DOUBLE_CHECK: for (int i = 0; i < keys [1]. length; i++) {

7 if (keys [1][i] != typeArgs[i]) goto DOUBLE_INT_CHECK;

8 }

9 return values [1];

10

11 DOUBLE_INT_CHECK: for (int i = 0; i < keys [2]. length; i++) {

12 if (keys [2][i] != typeArgs[i]) goto DOUBLE_DOUBLE_CHECK;

13 }

14 return values [2];

15

16 DOUBLE_DOUBLE_CHECK: for (int i = 0; i < keys [3]. length; i++) {

17 if (keys [3][i] != typeArgs[i]) goto FAILURE;

18 }

19 return values [3];

20

21 FAILURE: return null;

(c) After shapesMatch is inlined.

1 if (IntShape==typeArgs [0] && IntShape==typeArgs [1])

2 return values [0];

3 if (IntShape==typeArgs [0] && DoubleShape==typeArgs [1])

4 return values [1];

5 if (DoubleShape==typeArgs [0] && IntShape==typeArgs [1])

6 return values [2];

7 if (DoubleShape==typeArgs [0] && DoubleShape==typeArgs [1])

8 return values [3];

9 return null;

(d) After unrolling the inner loops, inlining constants, and normalizing (assuming IntShape and
DoubleShape are singleton shapes).

Figure 4.17: Pseudocode for lookup (from Figure 4.16) after partial evaluation.

75

1 class AppliedType extends TypeNode {

2 final Symbol templateSymbol;

3 @Children TypeNode [] typeArgs;

4

5 @ExplodeLoop

6 Object execute(VirtualFrame frame) {

7 GenericShapeTemplate template = Globals.lookup(templateSymbol);

8

9 Shape[] concreteArgs = new Shape[typeArgs.length];

10 for (int i = 0; i < typeArgs.length; i++) {

11 concreteArgs[i] = typeArgs[i]. execute(frame);

12 }

13

14 return template.apply(concreteArgs);

15 }

16 }

Figure 4.18: Source code for an AppliedType node.

that can be used to create new instances of the applied generic class. The implementation
of AppliedType is given in Figure 4.18. The node looks up a GenericShapeTemplate

from the global template table, evaluates its type arguments, and calls apply to apply the
template to the type arguments. This method returns a GenericShape with the given type
arguments.

Again, consider a generic HashMap[K,V] class. To create a new instance of this class
with specific type arguments, a Scala programmer writes new HashMap[Int,Double](...).
In TastyTruffle, the generic type application is modeled by an AppliedType with a
symbolic reference to HashMap and a typeArgs array containing IntType and DoubleType.
When the AppliedType executes, it obtains a GenericShape with a specialized represen-
tation; this shape can then be used to create new instances.

Partial evaluation

Like the caching mechanism in GenericShapeTemplate, AppliedType is written care-
fully for partial evaluation. Its type arguments are @Children, which means they have
compilation-final semantics. The @ExplodeLoop annotation instructs PE to unroll the
code evaluating the type arguments. After unrolling, concreteArgs is a fixed-size array
that can be statically compared against the entries in the GenericShapeTemplate cache.

To illustrate, consider again the HashMap[K,V] example used in Figure 4.17. Partial
evaluation can already simplify the lookup call to a series of shape comparisons, as in
Figure 4.17d. If TypeApply gets partially evaluated, PE has even more context about the
type arguments and can further simplify Figure 4.17d.

When the i-th type argument is a PE constant, PE can eliminate any cache entries
that have a different i-th key. For example, with the TypeApply for HashMap[Int,T], PE
removes the two entries that do not have IntShape as their first shape (lines 3 and 4). The
first two if-statements can also be simplified, since the condition IntShape == typeArgs[0]

is trivially true.

76

When all of the type arguments are PE constants, such as HashMap[Int,Double],
PE can resolve the exact GenericShape from the cache directly, completely removing the
overhead of the cache lookup.4

4.3.4 Generic fields

Each GenericShape generated for a generic class can have a different layout for its Fields.
These fields may themselves have different representations. The TastyTruffle nodes
that access fields must support these different layouts and representations dynamically.
TastyTruffle defines GenericReadField and GenericWriteField nodes to support
direct field accesses on generic instances.

When a class is generic, the TastyTruffle parser generates generic accessor nodes
for all of its direct field accesses.5 Even though a generic class’s non-generic fields have a
fixed representation, they must also use generic accessor nodes because their position in
the object layout can change.

The source code for GenericReadField is depicted in Figure 4.19. It looks up the Field
from the shape of the receiver object, and then switches over the field’s representation to
determine how to read the field contents. Since lookup uses a Map, it is not partially-
evaluatable, and so GenericReadField caches these lookups. In compiled code, PE can
treat a cached Field as a compilation constant and simplify the code that switches over its
representation. Since Fields are different for each GenericShape, the cache is polymorphic
over the receiver Shape (not unlike ClassTypeParam or IndirectCall).

4.3.5 Method dispatch

Generic classes affect method dispatch in a couple of ways:

Direct calls: Direct calls should be used for call sites with a single statically-known im-
plementation. If a method’s defining class is generic, then the implementation may
change depending on the concrete type arguments, so direct calls cannot be used.6

Therefore, TastyTruffle does not create DirectCall nodes for methods defined
on generic classes, instead using IndirectCall nodes.

Indirect calls: Each Shape has a vtable mapping method signatures to Symbols of the
Shapes that implement each method. An indirect call obtains a Symbol from the
receiver’s vtable and then looks up the corresponding Shape from a global table.
Unfortunately, for methods defined by generic classes, the Symbol of the generic class
does not correspond to an actual Shape, but instead a GenericShapeTemplate.

4Since TastyTruffle runs in the interpreter before compiling hot methods, it is likely that the
GenericShape is in the cache. If no cache entry is found, the code deoptimizes to the interpreter where
the generic class can be applied to new types.

5Recall that in Scala, indirect accesses are proxied through accessor methods. The accessor methods
use these nodes in their implementations.

6Technically, since different applications of a generic class currently share the same method implemen-
tations, direct calls can be used, but this changes when specialization is introduced in Chapter 5.

77

1 @NodeChild("receiver")

2 class GenericReadField extends Node {

3 final Symbol selector;

4

5 @Specialization(guards = "instance.shape==cachedShape", limit="5")

6 Object readCached(

7 ClassInstance instance ,

8 @Cached("instance.shape") Shape cachedShape ,

9 @Cached("cachedShape.lookup(selector)") Field field) {

10 return getValue(instance , field)

11 }

12

13 @Specialization(replaces = "readCached")

14 Object readUncached(ClassInstance instance) {

15 Field field = instance.shape.lookup(selector);

16 return getValue(instance , field);

17 }

18

19 Object getValue(ClassInstance instance , Field field) {

20 return switch(field.getRepresentation ()) {

21 case BOOL -> field.getBoolean(instance);

22 case INT -> field.getInt(instance);

23 case LONG -> field.getLong(instance);

24 ... // other primitives

25 default -> field.getObject(instance);

26 }

27 }

28 }

Figure 4.19: Source code for a GenericReadField node.

78

1 class Vector[T] {

2 def get(i: Int): T

3 def set(i: Int , value: T): Unit

4 def append(value: T): Unit

5 }

6

7 class IntVector extends Vector[Int] {

8 def sort(): Unit

9 }

10

11 class Stack[T] extends Vector[T] {

12 def push(value: T): Unit

13 def pop(): T

14 }

Figure 4.20: Example code with generic parent classes.

TastyTruffle solves this problem by not looking up the Shape directly. Instead,
IndirectCall searches the receiver’s Shape hierarchy for a Shape with the same
Symbol as the one in the vtable. This search happens in the slow path when a
method is first dispatched; the result is cached for subsequent lookups.

For example, consider the IntVector class in Figure 4.20. If get is invoked on
an IntVector, its vtable indicates that get is defined on Vector. IndirectCall

iterates over the receiver’s Shape hierarchy to search for a Shape with Vector as its
“generic” symbol. It finds a GenericShape for Vector[Int] and dispatches to the
shape’s get method.

4.3.6 Generic parent classes

Scala classes can have generic parent classes, like the IntVector and Stack classes in
Figure 4.20. To support generic parent classes in TastyTruffle, the implementation
must be modified in a few ways:

Parent references: Prior to generic classes, the parent of a Shape was modeled with a
Symbol. However, a symbol cannot precisely model any type arguments supplied to
a generic parent class. For example, IntVector’s parent symbol is simply Vector.
Without the concrete type arguments, TastyTruffle cannot determine the parent
Shape, and thus cannot build the Shape of IntVector itself.

Instead, parent references should be modeled with TypeNodes. The parent TypeNode
can be evaluated to obtain a precise Shape for the parent class.

Generic class application: Sometimes, a generic child supplies type parameters to a
generic parent. For example, in the definition of Stack[T], the parent Vector[T]

obtains its type parameter T from Stack.

When a generic class is applied to a set of types, as described in Section 4.3.2,
the application algorithm should specialize the parent TypeNode over the given set

79

of types. The TypeNodeSpecializer visitor can be used to specialize the parent
TypeNode.

The parent TypeNode must be specialized because of a chicken-and-egg problem. Con-
sider what happens when TastyTruffle tries to create an instance of Stack[Int]:

1. To create a Stack[Int] instance requires a Shape for Stack[Int].

2. To build the Shape for Stack[Int] requires the parent Shape.

3. To resolve the parent Shape requires executing the TypeNode for Vector[T].

4. The TypeNode for Vector[T] contains a ClassTypeParam, which requires a
Stack[T] instance in order to read the concrete type argument for T.

TastyTruffle avoids this circular dependency by specializing the parent TypeNode.
When Stack[T] is applied to Int, TastyTruffle specializes the parent TypeNode
from Vector[T] to Vector[Int]. The specialized TypeNode can then be evaluated
directly without a class instance.

Resolving type parameters: ClassTypeParam’s implementation reads a type argument
from the receiver’s Shape (Figure 4.11). However, when a generic class can be sub-
classed, the type argument is not necessarily stored in the receiver’s Shape. Instead,
ClassTypeParam should search for the type parameters in the receiver’s entire Shape

hierarchy.

For example, a Vector[T] method may take an IntVector instance as its receiver.
The Shape of this receiver is IntVector, which does not store the type argument T.
Any ClassTypeParams in the method’s AST need to search the Shape hierarchy to
find the concrete type of T.

80

Chapter 5

Specializing generic code

Chapter 4 describes a scheme to support generic methods and classes in TastyTruffle
using reified types. The implementation, as presented, can exhibit inconsistent perfor-
mance. This chapter explains the performance problem and extends the scheme with
specialization to achieve more reliable performance. Unlike [50], which presents a static
specialization scheme, this chapter shows how specialization can be done dynamically with-
out any major transformations to the AST. This chapter also presents the aforementioned
static specialization scheme.

5.1 Motivation

The implementation of generic methods and classes presented in Chapter 4 is highly dy-
namic. During interpretation, a variety of different representations can flow through a
generic AST. The AST dynamically changes its behaviour for each representation, but the
type profiles and specialization states of the nodes are shared, which can lead to megamor-
phic code that is poorly optimized by Graal.

Consider the swap method in Figure 5.1. Suppose that during interpretation, the
program invokes swap with T being Double, Int, and a reference type. Each generic node
in the AST specializes itself to handle each representation. When Graal compiles swap, it
generates a control flow split to handle each representation for each generic node. Control
flow merges after each generic node. The resulting control flow graph looks something like
Figure 5.2. These frequent control flow splits inhibit optimization, since Graal cannot infer
a precise state after each merge.

1 def swap[T](array: Array[T], i: Int , value: T): T = {

2 val oldValue: T = array(i)

3 array(i) = value

4 oldValue

5 }

Figure 5.1: A generic swap method that updates an array and returns the previous value
stored (reproduced from Figure 4.1).

81

switch(T)

store value
as double

store value
as int

store value
as Object

Double Int Object

store T, array, i

switch(T)

index into
double[]

index into
int[]

index into
Object[]

Double Int Object

switch(T)

store oldValue
as double

store oldValue
as int

store oldValue
as Object

Double Int Object

...

Figure 5.2: Part of the control flow graph for swap.

82

store value
as double

store value
as int

store value
as Object

switch(T)

Double Int Object

store T, array, i

(copy) (copy)switch(T)

index into
double[]

index into
int[]

index into
Object[]

Double Int Object

switch(T)

store oldValue
as double

store oldValue
as int

store oldValue
as Object

Double Int Object

...

(a) Before optimization

store value
as double

store value
as int

store value
as Object

index into
double[]

index into
int[]

index into
Object[]

store oldValue
as double

store oldValue
as int

store oldValue
as Object

...

switch(T)

Double Int Object

... ...

store T, array, i

(b) After optimization

Figure 5.3: Part of the control flow graph for swap after tail duplication.

Graal can usually eliminate the control flow splits when generic code is inlined into
a non-generic call site. For instance, if swap is inlined into a context where the type
argument is statically Int, Graal eliminates the branches where T is not Int. However,
inlining decisions are complicated, depending on inlining budget, compilation tier, and
other compiler parameters. If (for whatever reason) generic code is not inlined into a
non-generic call site, the compiled code often performs poorly. Ideally, the performance of
generic code should not depend so significantly on whether it gets inlined by the compiler.

The control flow splits in generic code are especially unfortunate because they switch
over the same type parameters. When swap is invoked with T being Int, the second branch
in Figure 5.2 is taken every time. If the result of the first type switch could somehow be
propagated through the tree, the subsequent type switches could be elided.

This approach is the idea behind the replication or tail duplication [35] transformation
performed by optimizing compilers. Instead of merging control flow after a conditional
branch, the compiler duplicates the code after the merge into each branch. Then, since the
outcome of the branch condition (e.g., a type check) is known in each branch, the compiler
can aggressively optimize the code in each branch.

In the case of swap, tail duplication might produce a control flow graph like Figure 5.3a.
After the first type switch, the rest of the graph gets copied into each branch. Then,

83

since the value of T is statically known inside each branch, the compiler can propagate
it through the AST and fold away the redundant type switches. The resulting control
flow graph would look something like Figure 5.3b. After the first type switch, all of the
remaining type switches can be optimized away. Within each branch, the compiler has
precise knowledge about the types of values, which can create further opportunities for
optimization.

The motivation for TastyTruffle’s specialization is to perform a tail-duplication-
like transformation at the AST level. Graal supports tail duplication, but (like inlining)
deciding when to perform it is an imperfect process driven by heuristics; improving Graal’s
tail duplication decisions is an active area of research [32]. If generic ASTs could be
transformed during interpretation to achieve the same effect as tail duplication, generic
code could enjoy more reliable performance that would not depend on Graal performing
the transformation.

5.2 Specializing generic methods

To specialize a generic method, TastyTruffle executes a different copy of the generic
AST (a specialization) for each set of type arguments passed to the method. Since each set
of type arguments uses a different AST, the generic nodes within each AST dynamically
specialize themselves to support only a single representation. When each generic node is
compiled, it only handles one representation, so within each copy of the AST there are no
control flow splits caused by type switches.

Consider the generic swap method from Figure 5.1. When T is Int, swap executes a
copy of the generic AST only used for Int. This AST contains various generic nodes that
self-optimize to a monomorphic state. For example, the AST has a GenericReadLocal to
read the generic value variable. Within the Int specialization, T takes on the value Int,
so the GenericReadLocal specializes itself to read a primitive int from the frame. Since
T is always Int for this AST, it never specializes to any other representations, and when
Graal compiles it, the resulting code does not contain type switches.

To implement method specialization, the TastyTruffle parser replaces a generic
method’s body with a TypeSwitch node (Figure 5.5). This node uses the same dispatch-
ing and caching technique as GenericShapeTemplate (Figure 4.16). At run time, the
TypeSwitch node evaluates the type parameters into typeArgs, and then uses lookup

to search for an existing specialization in its cache. If the method has never been in-
voked with those arguments, it creates a new copy of the AST; otherwise, it reuses the
previously-created specialization. Finally, it calls the specialization. Each copy of the AST
is wrapped in a Method—the compilation unit in TastyTruffle—so that specializations
can be compiled independently from each other.

Figure 5.4 depicts the generic swap method after specialization. The body of swap

consists solely of a TypeSwitch node that dispatches to an appropriate copy of its generic
AST. In this AST, swap has been called with T being Int and Double, so there are two
specializations cached on the TypeSwitch node.

As with GenericShapeTemplate, TypeSwitch is carefully written to work well with
partial evaluation. When some or all of the type parameters are PE-constant, the type

84

0 Method(swap)

16 TypeSwitch

17 MethodTypeParam(T) 24 Call(swap$Int)

Int

25 Call(swap$Double)

Double

Figure 5.4: Generic AST for swap after specialization.

switch can be simplified or even removed, and the specialized ASTs can be inlined directly
into the compiled code. Section 4.3.2 discusses how the type dispatch gets compiled in
greater detail.

5.3 Specializing generic class methods

To specialize the methods in a generic class, different copies of each method’s AST should
be used for each unique set of type arguments supplied to the class.

As it turns out, specializing class methods is rather simple, thanks to two important
facts:

• TastyTruffle uses the receiver’s Shape to dispatch method calls (Section 3.4).

• TastyTruffle creates a unique GenericShape for each unique set of type argu-
ments supplied to a generic class (Section 4.3).

To support class method specialization, TastyTruffle simply needs to make a copy of
each method’s AST when a generic class is applied (as opposed to sharing the ASTs).
When each GenericShape has different copies of its methods, each copy is only invoked
with a fixed set of type arguments. The generic nodes in these methods only specialize
themselves over these type arguments, and the resultant code is monomorphic.

Consider the Box class in Figure 5.6. When Box is applied to Int, TastyTruffle
creates a new GenericShape and duplicates its methods. The generic nodes in these
methods dynamically specialize themselves to only execute with T being Int, since they
are only executed for Box[Int] receivers.

Unlike method specialization, methods specialized over class type parameters do not
use TypeSwitch nodes. In effect, TastyTruffle performs the type switching at class

85

1 class TypeSwitch extends Node {

2 @Children TypeNode [] typeParams;

3 @CompilationFinal(dimensions=2) Shape [][] keys;

4 @CompilationFinal(dimensions=1) Method [] values;

5

6 @ExplodeLoop

7 Object execute(VirtualFrame frame) {

8 Shape[] typeArgs = new Shape[typeParams.length];

9 for (int i = 0; i < typeParams.length; i++)

10 typeArgs[i] = typeParams[i]. resolve(frame);

11

12 Method specialization = lookup(typeArgs)

13 if (specialization == null) {

14 CompilerDirectives.transferToInterpreterAndInvalidate ();

15 specialization = // create new AST and add it to the cache

16 }

17

18 return specialization.call (...);

19 }

20

21 @ExplodeLoop

22 Method lookup(Shape[] typeArgs) {

23 for (int i = 0; i < keys.length; i++) {

24 if (shapesMatch(keys[i], typeArgs)) return values[i];

25 }

26 return null;

27 }

28

29 @ExplodeLoop

30 boolean shapesMatch(Shape[] expected , Shape[] actual) {

31 if (expected.length != actual.length) return false;

32 for (int i = 0; i < expected.length; i++) {

33 if (expected[i] != actual[i]) return false;

34 }

35 return true;

36 }

37 }

Figure 5.5: Source code for the TypeSwitch node.

86

1 class Box[T](initial: T) {

2 private var value: T = initial

3 def get: T = value

4 def set(x: T): Unit = value = x

5 }

Figure 5.6: Generic Box class (reproduced from Figure 4.8).

1 class List[T] {

2 def map[U](fn: T => U): List[U] = ...

3 }

Figure 5.7: A List map method with both class and method type parameters.

application time: the generic ASTs that should be executed are predetermined as soon as
a GenericShape is resolved.

Note that a method can be specialized over both class and method type parameters.
This generalization poses no problem for the specialization scheme. The map method in
Figure 5.7 is generic over the class type parameter T and the method type parameter U.
The map AST is first duplicated when List[T] is applied to a concrete type. Later, when
map is invoked with a concrete type for U, the AST is duplicated again. The net effect is
that TastyTruffle uses a unique AST for each unique combination of class and method
type parameters.

5.4 Static specialization

Sections 5.2 and 5.3 describe a scheme for dynamic specialization, whereby the generic
ASTs are monomorphized during interpretation using Truffle’s self-optimization. Dynamic
specialization requires minimal implementation effort: simply duplicate ASTs, and then
let each AST self-optimize to a monomorphic state. This approach is convenient, but has
a couple of drawbacks:

• Even though the generic nodes are monomorphic, they can still perform unnecessary
computation. For example, the ClassTypeParam (Figure 4.11) uses an inline cache
indexed on the receiver’s shape. Though the receiver’s shape may never change,
ClassTypeParam must still check the shape before yielding the cached type.1

• From an engineering perspective, dynamic specialization is not very robust. Suppose
there is a bug in the interpreter that causes a copy of the AST to specialize itself to
multiple representations. The dynamic specialization approach fails silently, quietly
running with degraded performance without alerting the developer of the bug.

1Usually, Graal can elide any redundant checks, but (as with tail duplication) TastyTruffle tries to
make Graal’s job easier by statically performing optimizations on the AST when it can.

87

For both of these reasons, it is desirable to statically specialize generic ASTs. Since
each copy of a generic AST is only used when type parameters take on specific values,
TastyTruffle can replace generic nodes with non-generic nodes that do not rely on
run-time type checks. As with the TypeNodeSpecializer (Figure 4.14a), TastyTruffle
uses tree visitors to specialize method bodies.

5.4.1 Statically specializing generic methods

TastyTruffle defines a GenericMethodSpecializer visitor to statically transform the
ASTs of generic methods (Figure 5.8). When a generic method creates a new copy of its
AST, it uses GenericMethodSpecializer to transform the generic AST to a non-generic
AST. The visitor handles all of the generic nodes introduced in Chapter 4.2:

Type parameters: MethodTypeParams are replaced with ConstTypes.

Local accessors: GenericReadLocal and GenericWriteLocal nodes are replaced with
non-generic local accessor nodes. After specializing the TypeNode child of a local
accessor, the resulting specType is non-generic, and the local’s representation can be
statically determined.

Array accessors: GenericArrayApply and the other array accessor nodes are replaced
with non-generic array accessors. Again, their TypeNode children are specialized and
the array representation is statically determined.

Recall the swap method from Figure 5.1. Figure 5.9 depicts the AST after it is stati-
cally specialized over type Int. The AST is much simpler than the original generic AST
(provided for comparison in Appendix A) and all of the generic nodes are replaced with
non-generic ones.

5.4.2 Statically specializing generic class methods

Generic class methods can be statically specialized in much the same way as generic meth-
ods. However, since methods can be generic over both class and method type parameters,
the AST produced by specializing over class type parameters can still be generic.

TastyTruffle defines a GenericClassSpecializer visitor that statically transforms
generic class methods (Figure 5.10). It handles the following kinds of nodes:

Type parameters: ClassTypeParams are replaced with ConstTypes.

Field accessors: GenericReadField and GenericWriteField nodes are replaced with
non-generic field accessors. A field cannot be generic over method parameters, so
the field is always non-generic after specialization. The specializer does not need to
specialize any TypeNodes since the field accessors use the receiver’s Shape to resolve
Field objects.

Local and array accessors: If they are only generic over class type parameters, generic
local and array accessors are replaced with their non-generic counterparts. Otherwise,

88

1 class GenericMethodSpecializer(typeArgMap: Map[Symbol , Shape])

2 extends NodeTransformer {

3

4 def visit(node: Node): Node = node match {

5 // Type parameters

6 case param: MethodTypeParam =>

7 new ConstType(typeArgMap(param.symbol))

8

9 // Local accessors

10 case read: GenericReadLocal =>

11 val specType = visit(read.typeNode)

12 new ReadLocal (..., getRepresentation(specType))

13 case write: GenericWriteLocal =>

14 ...

15

16 // Array accessors

17 case apply: GenericArrayApply =>

18 val specType = visit(apply.typeNode)

19 new ArrayApply (..., getRepresentation(specType))

20 ... // other generic array accessors

21

22 case _ => node

23 }

24

25 def getRepresentation(typeNode: Node): Representation = { ... }

26 }

Figure 5.8: Source code for the GenericMethodSpecializer class (Scala).

0 Method(swap$Int)

11 Block

13 WriteLocal(oldValue) 17 ArrayUpdate 21 ReadLocal(oldValue)

14 ArrayApply

15 ReadLocal(array) 16 ReadLocal(i)

18 ReadLocal(array) 19 ReadLocal(i) 20 ReadLocal(value)

Figure 5.9: AST for swap specialized over Int.

89

1 class GenericClassSpecializer(typeArgMap: Map[Symbol , Shape])

2 extends NodeTransformer {

3

4 def visit(node: Node): Node = node match {

5 // Type parameters

6 case param: ClassTypeParam =>

7 new ConstType(typeArgMap(param.symbol))

8

9 // Field accessors

10 case read: GenericReadField => new ReadField (...)

11 case write: GenericWriteField => new WriteField (...)

12

13 // Local and array accessors

14 case read: GenericReadLocal =>

15 val specType = visit(read.typeNode)

16 if (isConstantType(specType))

17 new ReadLocal (..., getRepresentation(specType))

18 else new GenericReadLocal (..., specType)

19 ... // other generic local and array accessors

20

21 case _ => node

22 }

23

24 def isConstantType(typeNode: Node): Boolean = { ... }

25 def getRepresentation(typeNode: Node): Representation = { ... }

26 }

Figure 5.10: Source code for the GenericClassSpecializer class (Scala).

the accessors remain generic, but their TypeNodes may be partially specialized (e.g.,
if they are generic over both class and method type parameters).

If a method is generic over both class and method type parameters, it is specialized
twice: first by class type arguments, then by method type arguments. The resultant AST
is non-generic and can be easily compiled by Graal to monomorphic code.

90

Chapter 6

Evaluating TastyTruffle

This chapter evaluates the implementation of TastyTruffle on a series of small bench-
mark programs. The intention of the evaluation is to validate the design of TastyTruffle
and explore the consequences of specific design choices.

6.1 Benchmarks

The benchmarks are small Scala programs that use generics. Many of the benchmarks were
devised based on existing Scala standard library code. Since the standard library makes
extensive use of generics, and most Scala code relies on the standard library, supporting the
generic idioms used in these benchmarks is a first step toward supporting more complex
generic programs. The standard library uses many features that are not yet supported
by TastyTruffle (traits, anonymous functions, etc.), so most of the benchmarks are
hand-written in the supported subset of Scala.

The full list of benchmarks is in Table 6.1. There are seven benchmarks loosely ordered
by increasing complexity. Later benchmarks often use a superset of the generic idioms used
by earlier ones (e.g., in addition to type classes, StdDev also uses higher-order functions).

Every benchmark relies on generic arrays in some form. Benchmarks that do not use
arrays, such as graph traversals, were considered for the evaluation, but they were deemed
less interesting since their execution time would likely be dominated by pointer chasing.

6.2 Setup

The benchmarks are executed in a few different configurations:

Graal (G): The Scala benchmarks are compiled to JVM bytecode and executed by a
Graal-equipped JVM (a typical execution environment for Scala programs).

Unspecialized TastyTruffle (TU): The Scala benchmarks are compiled to TASTy and
executed by TastyTruffle without specialization.

Specialized TastyTruffle (TS): This configuration is identical to TU , except specializa-
tion is enabled.

91

Benchmark Description

ArrayCopy Copies the contents of one Array[T] to another.
Checksum Computes a checksum of an Array[T], invoking the ## operator to

hash each element.
InsertionSort Performs insertion sort over an Array[T] using an Ordering[T] type

class.
QuickSort Performs quicksort over an Array[T] using an Ordering[T] type

class.
StdDev Computes the standard deviation of an Array[T] where T is a numeric

type. Uses a Fractional[T] to perform mathematical operations,
and uses fold and reduce to compute the result in a functional
programming style.

ArrayDeque Defines a generic ArrayDeque[T] that mirrors the standard library.
Repeatedly appends elements to a dynamically-resizable buffer.

HashMap Defines a generic HashMap[K,V] backed by generic key and value
arrays. Constructs a map from a set of inputs, then looks up and
removes each result.

Table 6.1: Table of benchmarks.

All benchmarks are run on a Ubuntu 22.04.2 system with four 16-core AMD Opteron
6380 processors and 512 GiB of memory. All of the configurations use a Java 17 build of
GraalVM Enterprise Edition 22.2.0 with a fixed heap size of 8 GiB.

G is included in the evaluation to assess how TastyTruffle behaves compared to
a state-of-the-art implementation. It is worth emphasizing that the comparison serves to
validate TastyTruffle’s design, not to make an argument that TastyTruffle is a
“better” implementation. The benchmarks do not represent real workloads, so it is mean-
ingless to extrapolate about real workloads based on the quantitative results. However,
quantitative performance differences between Graal and TastyTruffle usually indicate
differences in the way programs are compiled. These differences are meaningful and are
discussed in the evaluation.

Each benchmark has two different workloads:

Monomorphic: In the monomorphic workload, the benchmark is invoked with a single
concrete type. Such a benchmark workload is denoted with a concrete type, like
ArrayCopy[Int]. The monomorphic workload is intended to measure best-case
performance, where the compiler can often speculatively monomorphize the generic
code over the concrete type.

Polymorphic: In the polymorphic workload, the benchmark is invoked with three differ-
ent concrete types: Int, Double, and a simple BoxedInt class that wraps a primitive
Int. A polymorphic workload is denoted with the benchmark name, like Array-
Copy. Since generic code is written to be used with multiple different concrete types,
the polymorphic workload gives a more realistic assessment of how the compiler op-
timizes generic code.

92

The benchmarks are executed using the Java Microbenchmark Harness (JMH)1. The
harness method that invokes each benchmark is excluded from compilation so that the
generic code is not inlined into a call site with concrete type arguments.

6.3 Throughput

TastyTruffle was designed to enable high performance generic code. To assess whether
TastyTruffle achieves this goal, the evaluation primarily focuses on the peak through-
put of the benchmarks (i.e., performance after the benchmark code reaches a stable just-
in-time compiled state).

Each benchmark is first invoked for several warmup iterations (at least ten iterations
at ten seconds each) to ensure that the benchmarks get compiled by Graal. Dry runs
were performed before the actual evaluation, wherein the compiler logs and graphs were
manually inspected to ensure that benchmarks consistently reached a stable, warmed-
up state during the warmup iterations. After warmup, each benchmark is run for five
measurement iterations at ten seconds each. Since JIT compilation is so dependent on
heuristics and dynamic measurements, warmed-up code can often reach different steady
states, and so this process is repeated for five different forked runs. In total, 25 throughput
measurements are collected for each benchmark.

Table 6.2 depicts the mean throughput for each benchmark. It includes 99.9% confi-
dence intervals for comparison.2 For the TastyTruffle configurations, the throughput
relative to G is included; it is bolded when the confidence intervals do not overlap (i.e.,
they are statistically significant).

The following sections discuss the throughput results on the polymorphic and monomor-
phic workloads. Differences in the throughput can arise for multiple reasons, and the rea-
sons are often interrelated (and challenging to disentangle), so the goal of the discussion is
to identify patterns that likely play a role in the results. Additionally, these patterns can
help to demonstrate the innate limitations or effectiveness of each implementation strategy.

6.3.1 Polymorphic workloads

In general, TS runs faster than G on the polymorphic workloads. The performance of TU

sometimes matches TS, but other times does much worse. There are a few common factors
that likely contribute to the observed differences.

Loop unswitching

Recall that TS avoids polymorphic code by making a copy of the AST for different concrete
generic types. It appears that Graal’s loop unswitching transformation provides similar
benefits for G and TU . If a loop contains a conditional branch, but the branch condition is
loop-invariant, loop unswitching “extracts” the conditional branch outside of the loop and

1https://github.com/openjdk/jmh
2The confidence intervals are constructed using a t-distribution, assuming the measurements are nor-

mally distributed.

93

https://github.com/openjdk/jmh

G TU TS

ops/s ± CI ops/s ± CI rel ops/s ± CI rel

ArrayCopy 48.829 ± 3.527 162.529 ± 42.915 3.33 191.058 ± 1.712 3.91
Checksum 98.055 ± 1.710 141.794 ± 1.796 1.45 143.893 ± 6.382 1.47
InsertionSort 8.139 ± 0.070 23.221 ± 0.347 2.85 23.405 ± 0.130 2.88
QuickSort 81.816 ± 5.976 39.884 ± 3.550 0.49 104.348 ± 3.326 1.28
StdDev 534.339 ± 8.638 60.142 ± 0.972 0.11 829.088 ± 15.951 1.55
ArrayDeque 283.872 ± 6.634 79.583 ± 6.105 0.28 370.483 ± 14.954 1.31
HashMap 45.430 ± 0.599 47.445 ± 1.451 1.04 101.233 ± 2.812 2.23
ArrayCopy[Int] 1105.282 ± 31.261 1030.287 ± 15.655 0.93 999.140 ± 36.414 0.90
Checksum[Int] 2291.861 ± 19.363 2254.107 ± 8.401 0.98 2249.684 ± 6.365 0.98
InsertionSort[Int] 91.153 ± 0.895 94.323 ± 0.585 1.03 90.933 ± 0.756 1.00
QuickSort[Int] 526.492 ± 12.303 504.695 ± 8.985 0.96 490.084 ± 13.127 0.93
StdDev[Double] 3385.695 ± 0.592 3121.858 ± 12.142 0.92 3120.272 ± 12.494 0.92
ArrayDeque[Int] 1516.108 ± 28.420 1523.908 ± 80.445 1.01 1480.079 ± 67.556 0.98
HashMap[Int,Int] 225.298 ± 2.964 568.631 ± 5.306 2.52 567.485 ± 4.819 2.52

Table 6.2: Throughput of each benchmark (in operations per second) with 99.9% confidence
intervals. For TastyTruffle configurations, performance relative to G is also included
(higher is better).

1 def copy[T](src: Array[T], dst: Array[T]): Unit = {

2 var idx = 0

3 while (idx < src.length) {

4 dst(idx) = src(idx)

5 idx += 1

6 }

7 }

Figure 6.1: Source code for ArrayCopy.

duplicates the loop for each branch. Since most of the work in each benchmark happens
inside of a loop, loop unswitching can effectively monomorphize polymorphic benchmark
code in the same way as TS’s duplication.

Consider ArrayCopy as an example. The source code for this method is depicted in
Figure 6.1. Recall that on the JVM, Scala supports generic arrays using runtime methods
that switch over the run-time type of the array (for example, Figure 2.4). The type of the
arrays is invariant within the loop, so in theory the loop can be unswitched.

Figure 6.2 depicts a simplified subgraph of the Graal IR produced by the ArrayCopy
benchmark on G. In this graph, it appears that Graal only partially unswitches the loop
with respect to the src argument: the int[] case is extracted out of the loop, but the
conditional jumps for double[] and Object[] remain inside the loop. When ArrayCopy
is invoked with non-integer arrays, it suffers a performance hit because it must check the
argument types on each iteration.

The compiler often has many loop unswitching candidates. Deciding which conditional
branches are worth unswitching is driven by branch profiles and other heuristics, which
can lead to unpredictable and sub-optimal results. On G, all of the benchmarks except
InsertionSort and QuickSort produce graphs with generic array type checks inside

94

0 Start

158 If

8 LoopBegin

int[] ops

123 InstanceOf a!# int[]

?

136 InstanceOf a!# double[]

227 Guard, else UnreachedCode

?

159 Begin

T

160 LoopBegin

F

216 If

173 If

T

213 InstanceOf a! java.lang.Object[]

?

F

Object[] ops

T

double[] ops

2 P(1)

value

2 P(1)

value

2 P(1)

value

Figure 6.2: Graal IR subgraph for ArrayCopy on G.

95

loops; sometimes the loops get partially unswitched, like with ArrayCopy, but in other
cases there is no unswitching at all.

On TU , a benchmark’s throughput tends to correlate with Graal’s ability to unswitch the
benchmark’s generic type checks. For ArrayCopy, Checksum, and InsertionSort, TU

matches the performance of TS. In each case, the generic type switches get unswitched out
of the loops, resulting in loops that are more monomorphic and amenable to optimization.
For the other benchmarks, on which TU performs much worse than TS, the type switches
are either partially unswitched or not unswitched at all.

The duplication performed by TS thus appears to be a significant reason for its per-
formance on the polymorphic workloads. Performing code duplication at the AST level,
in effect, simplifies the compiler’s job: it does not need to guess whether a type check is
worth unswitching from a loop, since the transformation is performed automatically.

Explicit type associations

An interesting consequence of reifying types is that it makes type associations among
different values more apparent to the compiler. Consider two values of type Array[T].
Statically, the Scala type system guarantees that these values have the same type. However,
during translation to JVM bytecode, both values are erased to type Object—the fact that
they have the same concrete type is lost. On G, this leads to code containing redundant
type checks and impossible branches.

Figure 6.3 demonstrates an example of this on the ArrayCopy benchmark (Fig-
ure 6.1). Both src and dst are of type Array[T], but in the unswitched branch where src

is int[] (the T branch of node 158) the compiler does not infer that dst is also int[]. In-
stead, it dynamically checks whether dst (P(2)) is an Object[] (node 50) or int[] (node
299). Not only is the former case impossible, but the code that follows it is nonsensical:
if dst is an instance of Object[], the code then expects it to be a BoxedInt[] (node 54)
and tries to store a boxed java.lang.Integer into it (node 56), which would throw an
ArrayStoreException at run time.

The nonsensical branch is eliminated in later passes (presumably Graal detects the
type mismatch), but the extra polymorphism is still undesirable. Graal uses graph size as
a heuristic for many optimizations including inlining and loop unswitching. Even if Graal
eventually removes the impossible branches, they inflate the graph size and could prevent
Graal from performing important optimizations.

In contrast, on TU and TS, generic array accesses are implemented not by switching over
the array type, but by switching over the reified type parameter. Since both arrays share
the same type parameter T, after switching over T to determine the type of one array, the
type of the other array is immediately inferred, and no further type switches are required.

Implicit type associations

A similar type association problem arises in the benchmarks that use type classes. In Scala,
type classes are implemented with object instances that get implicitly passed around and
can be invoked by client code. All of the benchmarks except ArrayCopy and Checksum
use type classes to perform operations over polymorphic values. For example, the sorting

96

0 Start

158 If

8 LoopBegin

22 ArrayLength

25 LoopExit

23 <

y [0 - 2147483647]

28 If

 [0 - 2147483647]

?

F

130 LoadIndexed

T

45 Guard not, else NullCheckException

50 If

47 InstanceOf a! java.lang.Object[]

?

49 Begin

53 InstanceOf a!# tasty.lang.BoxedInt[]

anchor

54 Guard, else TypeCheckedInliningViolated

T

299 Guard, else ClassCastException

F

?

265 BoxNode$AllocatingBox

56 StoreIndexed

59 InstanceOf a!# int[]

?

69 StoreIndexed

123 InstanceOf a!# int[]

?

value

value

159 Begin

T

160 LoopBegin

F

value

3 P(2)

value

2 P(1)

value

2 P(1)

array

3 P(2)

value

3 P(2)

value

3 P(2)

array

2 P(1)

array

3 P(2)

array

Figure 6.3: Graal IR subgraph for ArrayCopy on G where the source array is int[].

97

1 def insertionSort[T](a: Array[T])(using ord: Ordering[T]): Unit = {

2 var i = 1

3 while (i < a.length) {

4 val next = a(i)

5 // if a(i) < a(i-1), shuffle elements until j s.t. a(j) <= a(i)

6 if (ord.lt(next , a(i - 1))) {

7 var j = i

8 while (j > 0 && ord.lt(next , a(j - 1))) {

9 a(j) = a(j - 1)

10 j -= 1

11 }

12 a(j) = next

13 }

14 i += 1

15 }

16 }

Figure 6.4: Simplified source code for InsertionSort.

benchmarks use an Ordering[T] instance to compare elements. A simplified version of
the InsertionSort benchmark is provided in Figure 6.4.3 Note the calls to lt used to
compare the generic elements.

On the polymorphic workloads, InsertionSort observes multiple different Orderings
during interpretation. When invoked with T being Int, it observes an Ordering[Int];
when invoked with T being Double, it observes an Ordering[Double], and so on. In many
cases, there is an implicit relation between the concrete type argument and the specific
type class instance supplied.

When InsertionSort is compiled on G, the JVM type profiles provide Graal with
a list of possible type class instances. Graal can speculatively check for these instances,
which makes it easier to inline type class code. However, since types are erased on G,
Graal does not understand the correlation between different Ordering instances and T,
which leads to the same sorts of unnecessary type checks as in the previous section.

Though types are reified on TU , it also suffers from this problem. Unlike with array
representations, TastyTruffle does not use type arguments to determine which type
class instance to use. Instead, type class instances are passed as extra parameters; the
Scala compiler resolves a type class instance for each call site during compilation, and then
TastyTruffle uses this information in the TASTy trees to compute and pass type class
instances during calls. The generic callee then invokes methods on the type class instances
using regular virtual dispatch. When the benchmarks that use type classes are compiled,
the inline caches for each virtual method call are used to infer possible types for the type
class instances. On TU , these caches are shared across different type arguments.

A subgraph for InsertionSort on TU is depicted in Figure 6.5. This graph represents
part of an ord.lt method invocation. It first performs a type switch over the shape of the
ord instance (nodes 2592, 2597, and 4597). This type switch comes from the inline cache

3The actual implementation of InsertionSort, taken from the Scala standard library, is more com-
plicated. The simplified version is presented for the sake of discussion.

98

1951 InstanceOf a!# org.tastytruffle.core.types.IntShape

2931 If

?

1959 InstanceOf a# int[]

2935 Guard, else ClassCastException

?

1966 InstanceOf a!# org.tastytruffle.core.types.DoubleShape

2938 If

?

1974 InstanceOf a# double[]

2942 Guard, else ClassCastException

?

2591 LoadField ClassInstance.shape

2592 If

2594 ==

x

2599 ==

x

2603 ==

x

2597 If

F

...

T

?

4597 Guard, else TransferToInterpreter

F

...

T

?

?

T

F

2936 LoadIndexed

15885 BoxNode$AllocatingBox

value

T

...

F

2943 LoadIndexed

15887 BoxNode$AllocatingBox

value

2949 Merge

2952 ϕ...

from 15885from 15587

2593 C(instance:Shape)

y

2598 C(instance:Shape)

y

2602 C(instance:Shape)

y

22 C(1)

index

22 C(1)

index

16203 T(2)

value

16203 T(2)

value

16202 T(1)

value

16204 T(3)

object

16203 T(2)

array

16203 T(2)

array

Figure 6.5: Graal IR subgraph for InsertionSort on TU where ord is the Ordering[Int]
instance.

99

of an IndirectCall node.
In the case where ord is the Ordering[Int] instance (node 4597), the code eventually

reaches a point where it reads from the array a. Another type switch is performed: this
time, over the type parameter T to determine how to access the array. When the parameter
is Int (the T branch of node 2931) it casts a to int[] and loads an element from it.
However, the graph also checks whether T is Double or another type (omitted from the
graph for simplicity) and loads an element from the appropriate array representation. Graal
cannot determine that T must be Int on the branch with an Ordering[Int], which leads
to unnecessary type switch cases.

Observe also that, due to these extra type switches, intermediate values get modeled
by φs (e.g., node 2952). These φs are Object-typed, which forces primitives to be boxed
up unnecessarily (e.g., nodes 15887 and 15885). These boxing operations can introduce
additional performance overhead on the G and TU configurations.

Implicit associations can be automatically inferred on TS. Since TS invokes a different
copy of the AST for each concrete value of T, each copy has its own, separate set of inline
caches. When T is Int, ord is always an Ordering[Int] instance; there is no sharing of the
type profiles, and Graal can often infer the exact type class instance to use (unless multiple
different Ordering[Int]s are used). This separation of type profiles is an especially useful
consequence of TS’s tree duplication.

Inlining

Whether calls are inlined into a call site is another important factor in performance. Each
configuration successfully inlines every method invoked by the ArrayCopy, Check-
sum, InsertionSort, and ArrayDeque benchmarks. With QuickSort, StdDev,
and HashMap, which are more complicated, the configurations have varying degrees of
success with inlining.

The main source of methods not being inlined appears to be type class methods on G.
For example, on QuickSort, the calls to Ordering methods do not always get inlined.
G can successfully inline these methods on the monomorphic workloads (e.g., Quick-
Sort[Int]), so the polymorphic call sites likely pose a challenge for the inliner. TU and
TS are always able to inline type class methods.

Another interesting case where inlining fails is StdDev on TU . The source code for
StdDev is depicted in Figure 6.6. The benchmark is written in a functional programming
style with generic reduce and fold methods. The fold method does not get inlined into
the main benchmark method on TU , but it does on G. This is counter-intuitive because
Truffle’s inlining policy is generally more aggressive than Graal’s. It appears that the size
of generic methods on TU can grow significantly when the type profiles are polymorphic:
on TU , fold’s initial graph from the monomorphic workload has 178 nodes, whereas the
graph from the polymorphic workload has 4351 nodes (a 24× increase). TU may not scale
well with larger programs because of this limitation.

There is a similar code size concern for TS. Since generic methods use type switches
with calls to different specialized versions of the AST, the entire graph for a generic method
may be too big to inline. However, since the type parameter(s) to a generic method call

100

1 def computeStdDev[T](array: Array[T])(using fractional: Fractional[T

]): Double = {

2 val N = fractional.fromInt(array.length)

3 val sum = reduce[T](new Add[T], array)

4 val mean = fractional.div(sum , N)

5 val numerator = fold[T, T](

6 fractional.zero , new AddSquareDistance[T](mean), array)

7 val variance = fractional.div(numerator , N)

8 Math.sqrt(fractional.toDouble(variance))

9 }

Figure 6.6: Source code for StdDev.

are statically known to the inliner4, it can (with the help of partial evaluation) detect that
it only needs to inline one specialization. For example, when T is Int, a call to fold[T]

only needs to inline the fold$Int specialization rather than the entire fold[T] method
and all of its specializations.

6.3.2 Monomorphic workloads

On all of the monomorphic workloads besides HashMap[Int,Int], the three config-
urations perform comparably. Sometimes the TastyTruffle configurations perform
marginally worse than G, but the code produced is structurally similar. In fact, many
of the hot loops are compiled to identical low-level code. It is possible that the way Truffle
code is invoked in the benchmarks—through the polyglot API, which coerces each host
(Java) value to a guest (TastyTruffle) value—introduces an extra overhead on the
Truffle configurations.

The fact that the results are so similar suggests that the presence of type information
in TU and TS does not give them much of an advantage on monomorphic workloads. In G,
though the JVM does not do the same degree of profiling as Truffle interpreters, it does
collect type profiles at virtual method call sites and instanceof checks. On monomorphic
workloads, these profiles observe just a single type, so Graal can speculatively compile the
benchmarks to monomorphic code that handles the single type observed by the profile.
This hypothesis is consistent with the graphs produced on G.

Scala runtime methods

Unlike the other benchmarks, G is not able to monomorphize HashMap[Int,Int], which
leads to polymorphic code that gets poorly optimized. The reason it is not monomorphized
has to do with Scala’s runtime accessor methods.

Recall that operations on generic arrays are proxied through runtime methods like
ScalaRunTime.array_apply. Since the JVM’s type profiling is limited to virtual method

4On TS , type parameters at a call site are always statically known during inlining. Only specializations
of generic code are compiled, so any type parameter T used at a generic call site is replaced by a con-
stant type during specialization. For example, fold[T] is not inlined into computeStdDev[T], but into a
particular specialization like computeStdDev$Int where T is known.

101

0 Start

235 If

8 LoopBegin

int[] ops

49 InstanceOf a!# int[]

?

66 InstanceOf a!# float[]

344 If

?

79 InstanceOf a!# char[]

443 If

?

236 Begin

TF

237 LoopBegin

float[] ops

345 Begin

TF

346 LoopBegin

char[] ops

444 Begin

T

445 LoopBegin

F

boolean[] ops

3 P(2)

value

3 P(2)

value

3 P(2)

value

Figure 6.7: Graal IR subgraph for ArrayCopy on G when the generic array accessors
are used with other types.

calls and instanceof checks—neither of which is performed by the benchmarks—the
benchmarks themselves do not collect any profiles about the types of arrays they en-
counter. It is the type profiles of the runtime methods that get used during compilation
to infer possible types for the generic arrays. These type profiles are shared globally by all
code that accesses generic arrays.

For example, Figure 6.7 depicts a subgraph for the ArrayCopy[Int] workload when it
is run on a JVM where the generic array accessors are also heavily used with Float, Char,
and Boolean arrays. Even though copy is only ever invoked with Int, the polluted type
profiles on the accessor methods lead to extra branches for float[] (node 344), char[],
(node 443) and boolean[] (inside the loop at node 445).

Thus, the performance results on G are somewhat of a fluke. The performance can
degrade arbitrarily depending on how frequently the generic accessors are used with other
types. In the case of HashMap[Int,Int], the type profiles for these accessor methods are

102

1 def put(key: T, value: U): Unit = {

2 ...

3 var idx = hash(key)

4 while (keys(idx) != /* default value */) {

5 // linear probing

6 if (keys(idx) == key) {

7 // overwrite value

8 values(idx) = value

9 return

10 }

11 idx = idx + 1

12 }

13 ...

14 }

Figure 6.8: Source code for the put method of HashMap.

heavily polluted with non-int arrays, so the benchmark code could not be monomorphized.
Even after carefully hand-writing the benchmark harness code in Java to avoid using the
array accessors, the profiles were still polymorphic, so it is unlikely that real programs
would encounter monomorphic profiles for the array accessors.

Instead of runtime accessor methods, TastyTruffle uses intrinsic nodes to implement
generic array accesses. Each node collects its own type profile, which prevents this global
type pollution issue and allows PE to know the precise set of array types that flow into
each generic node.

Case study: HashMap.put

This section explores a specific example from the HashMap[Int,Int] workload on G.
Due to an interesting combination of factors, the compiler is forced to introduce boxing
operations even when it knows that it is working with ints.

The boxing occurs inside a subsection of the put method listed in Figure 6.8. The code
performs linear probing to find an index to store a new table entry. On line 6, it compares
the input key against a value stored in the keys array. Because of Scala’s erasure, key
automatically gets boxed to an Integer. In the other monomorphic benchmarks, Graal is
able to elide the boxing, but it fails on this workload.

The initial part of the graph for this comparison is depicted in Figure 6.9. The compiler
has unswitched the main benchmark loop, so it knows that keys is an int[] and key comes
from an int value. In spite of this knowledge, Graal is unable to remove the automatic
Integer boxing. There are a few factors that introduce this issue:

1. The left-hand side of the comparison, keys(idx), is implemented with a call to
ScalaRunTime.array_apply. The inliner decides, based on its heuristics, to not
inline this call (node 10534), so the result has type Object.

2. In Scala, generic == uses a pointer comparison as a quick check (node 10536) followed
by a slower fallback call to the first operand’s equals method (not depicted). If

103

10534 Call Direct#ScalaRunTime$.array_apply

10536 ==

x

10538 If

?

16471 Begin

16486 Read#Array: Object

guard

16473 End

16474 Merge

16476 ϕ

y

16479 |<|

16497 If

?

from 16473

16491 New java.lang.Integer

from 16491

...

T

F

Figure 6.9: Graal IR subgraph for the put method of HashMap[Int,Int] on G.

104

TS(static) TS(dynamic)

ops/s ± CI ops/s ± CI rel

ArrayCopy 191.058 ± 1.712 190.160 ± 9.040 1.00
Checksum 143.893 ± 6.382 131.556 ± 5.357 0.91
InsertionSort 23.405 ± 0.130 23.046 ± 0.308 0.98
QuickSort 104.348 ± 3.326 97.459 ± 5.561 0.93
StdDev 829.088 ± 15.951 825.759 ± 18.975 1.00
ArrayDeque 370.483 ± 14.954 378.473 ± 16.001 1.02
HashMap 101.233 ± 2.812 101.130 ± 2.365 1.00
ArrayCopy[Int] 999.140 ± 36.414 1021.750 ± 18.477 1.02
Checksum[Int] 2249.684 ± 6.365 2253.436 ± 10.291 1.00
InsertionSort[Int] 90.933 ± 0.756 90.782 ± 1.015 1.00
QuickSort[Int] 490.084 ± 13.127 489.101 ± 18.242 1.00
StdDev[Double] 3120.272 ± 12.494 3118.788 ± 11.106 1.00
ArrayDeque[Int] 1480.079 ± 67.556 1558.046 ± 52.762 1.05
HashMap[Int,Int] 567.485 ± 4.819 566.154 ± 4.556 1.00

Table 6.3: Throughput of each benchmark using static and dynamic specialization (in
operations per second) with 99.9% confidence intervals. The performance of dynamic
specialization relative to static specialization is also included (higher is better).

array_apply were inlined, the compiler could determine that both operands were
ints and hence that the pointer comparison would be unnecessary. It could instead
elide the boxing and perform a simpler integer comparison. Since the call is not
inlined, key on the right-hand side must remain a boxed Integer so that the pointer
comparison can be performed.

3. Normally, a pointer comparison between one object and a freshly-created object
always evaluates to false (since they must be different objects), so there is still
an opportunity for Graal to elide the boxing by completely removing the reference-
equality check (node 10536). However, part of the Java Language Specification (JLS)
requires Integers between -127 and 128 to be interned and reused to reduce the
performance penalty of boxing. Therefore, the boxing operation has two branches:
one where a new Integer is allocated (node 16491), and another where an interned
value is read from a cache (node 16471). Since the resultant value (node 16476) is
not necessarily a fresh object, Graal cannot elide the pointer comparison, and so the
int value that gets boxed in the call to put must remain boxed.

This example demonstrates a limitation of G. Even when Graal can infer the types
of generic values, things can still go awry because of unfortunate inlining decisions and
unexpected interactions between the type system and library code.

6.3.3 Comparing dynamic and static specialization

Two approaches to specialization are presented in Chapter 5. The first, dynamic spe-
cialization, simply duplicates the generic AST for each set of type arguments. The AST
self-optimizes itself to a monomorphic representation during interpretation. The second
approach, static specialization, actually transforms the generic AST to a non-generic AST.

105

Since generic code that uses dynamic specialization must perform the occasional type
check—specifically, to guard on the generic receiver’s shape—it was suggested that the
static approach might be marginally more performant.

Table 6.3 depicts the throughput of the dynamic approach (TS(dynamic)) relative to the
static approach (TS(static)). There appears to be no significant difference in throughput
between the two configurations (the Checksum difference is the result of an unrelated
bug).

Inspecting the graphs for TS(dynamic), the occasional type check does appear in the
graphs for the generic class methods. However, TS’s duplication ensures that each AST
is monomorphic, so the type check only amounts to a single field load and pointer com-
parison. The check is a guard rather than a branch, so if the pointer comparison fails,
the code deoptimizes (type information is not lost by branching). In the graphs for the
actual benchmark methods these type checks often get elided because the receiver’s type
is statically known.

Since there seems to be no significant difference between the two approaches with
respect to throughput, the choice between them is more of a software engineering concern.
Static specialization requires more implementation effort, since the developer must define
a rewrite rule for each generic node in the AST, but it also provides better guarantees that
the AST does not silently enter a polymorphic state.

6.4 Transient behaviour

Though the focus of TastyTruffle’s design is on steady-state performance, it is useful
to understand the transient behaviour as well. This section performs a smaller experiment
with a subset of the benchmarks to assess how TastyTruffle performs as it warms up.

In this experiment, Checksum, HashMap, and QuickSort are used. Both monomor-
phic and polymorphic workloads are tested. Each benchmark is run for 30 seconds, split
across 150 JMH iterations of 200 ms each. This process is repeated for ten different forked
runs.

6.4.1 Warmup

Figure 6.10 plots the average throughput over time for each benchmark. The 99% con-
fidence interval for the throughput in each 200 ms interval is depicted in a translucent
colour. In general, the throughput is highly variable at the start as the benchmarks warm
up. Over time, the throughput tends to stabilize after the JIT compiles the hot code.

Generally, G warms up much faster than either TastyTruffle configuration. For each
benchmark, the first iteration on G has a non-negligible throughput, but the TastyTruf-
fle throughput is nearly zero. The G throughput ramps up earlier than TastyTruffle
as well. This makes sense, because on G the benchmarks are JVM bytecode. The JVM can
achieve at least some performance while interpreting them, and it can compile the byte-
code directly. In contrast, the Scala programs implemented by TastyTruffle are one
layer of abstraction above the JVM. The Truffle interpreters, interpreted on the JVM, are
too slow to achieve much throughput, so the host code (e.g., the nodes and their execute

106

0

100

Checksum

G
TU

TS

0

1000

2000

Checksum[Int]

0

500

1000
HashMap

0

2000

4000

HashMap[Int]

0

50

100
Quicksort

0 2 4 6 8 10 12 14
0

200

400

Quicksort[Int]

time (s)

av
g.

 th
ro

ug
hp

ut
 (o

ps
/s

)

Figure 6.10: Average throughput over time for Checksum, HashMap, and QuickSort
on monomorphic and polymorphic workloads.

107

methods) must usually be compiled first by the JVM. Then, once the host code is fast
enough to interpret the guest code for enough iterations, the guest code can be compiled
by Truffle.

The effect of tiered compilation

Graal uses two tiers of compilation. The tiered compilation is visible in some of the warmup
graphs. For example, HashMap on TS jumps up to around 250 ops/s in the first couple of
seconds, then later jumps up to over 800 ops/s. Since different methods within the system
get compiled concurrently, the separation between these tiers is not always so apparent.

Sometimes, TS seems to reach peak performance before TU . For example, on the Quick-
Sort benchmark, TS reaches peak at around 5 seconds, whereas TU peaks after 7 seconds.
One possible explanation for the difference lies in Graal’s tiered compilation. Since second-
tier compilation cannot occur until the code exceeds an invocation threshold, how long it
takes to execute the first-tier version of a method may affect the time to trigger second-tier
compilation. Since TU is highly polymorphic, Graal may not be able to optimize first-tier
compilations very much. In contrast, on TS each specialized AST can be first-tier com-
piled separately, and each AST is monomorphic, so the compiler may be able to perform
more optimization. The first-tier compiler graphs for QuickSort lend credence to this
hypothesis. On TS, the graph for each specialization loops over a single array type, but on
TU the graph is polymorphic over the three array types used in the benchmark.

Thus, it appears the code duplication of TS may enable better first-tier compilation,
which in turn may lead to faster warmup than TU .

6.4.2 Compilation

One risk in duplicating generic ASTs (as TS does) is that it could put additional pressure
on the compiler: instead of having a single call target to compile, there is one call target
per set of type arguments.

Truffle’s --engine.CompilationStatistics flag was used to collect compiler during
the warmup experiment. A summary of the compilation counts and time spent compiling
averaged across the ten runs is depicted in Table 6.4.5 The counts refer to the number of
guest language Scala methods compiled by Graal. Based on this sample of benchmarks, it
appears that TS does cause a modest increase in Truffle compilations (at worst, 29% more
for Checksum). The compiler also generally spends more time compiling on TS than TU .

Table 6.5 depicts summary statistics about the size of Truffle compilations. For the
polymorphic workloads, TS produces smaller compilations than TU on average. TS also
produces less compiled code overall, despite compiling more methods. Significantly, in the
case of HashMap, the amount of code installed on TS is nearly half that of TU . This
code size reduction is likely a result of the monomorphism of TS’s generic ASTs. Since the
ASTs are monomorphic, the compiler can produce simpler, smaller compilations. On the
monomorphic workloads, there is generally not much of a difference in code size.

An exception to these trends is HashMap. For both the monomorphic and polymor-
phic workloads, the maximum tier-two compilation size is noticeably larger on TS than TU .

5The JVM does not expose compilation statistics, so only Truffle compilations are included.

108

TU TS

tier 1 tier 2 total time (s) tier 1 tier 2 total time (s)

Checksum 8.0 13.0 21.0 1.3 10.0 17.0 27.0 1.1
HashMap 55.1 50.7 105.8 35.4 63.2 61.5 124.7 49.1
QuickSort 26.6 26.3 52.9 9.8 30.1 25.0 55.1 12.7
Checksum[Int] 5.0 8.0 13.0 0.7 6.0 9.0 15.0 0.7
HashMap[Int,Int] 26.3 25.8 52.1 12.3 27.3 26.8 54.1 13.4
QuickSort[Int] 13.4 13.3 26.7 2.6 16.4 16.1 32.5 4.2

Table 6.4: Truffle compilation counts and timing for Checksum, HashMap, and Quick-
Sort averaged over ten forks.

TU TS

t1 avg t1 max t2 avg t2 max total t1 avg t1 max t2 avg t2 max total

Checksum 2.9 9.7 2.7 7.4 58.1 1.9 9.7 1.8 7.4 48.7
HashMap 10.4 65.8 4.6 30.8 806.7 3.0 33.7 4.1 39.4 439.7
QuickSort 7.6 30.6 5.1 27.7 335.6 2.4 15.2 3.8 18.0 166.6
Checksum[Int] 1.6 4.8 1.8 5.9 22.5 1.4 4.8 1.6 5.9 23.2
HashMap[Int,Int] 2.4 11.3 3.1 26.4 144.3 2.3 11.3 3.4 37.0 154.4
QuickSort[Int] 2.2 10.4 3.2 11.2 72.4 2.0 10.4 3.8 10.9 94.1

Table 6.5: Truffle compilation size data (in KiB) for Checksum, HashMap, and Quick-
Sort averaged over ten forks.

This requires more investigation, but based on the compiler graphs, it appears that TS is
able to inline more methods directly into these compilations than TU .

109

Chapter 7

Related Work

The design and implementation of TastyTruffle is heavily informed by past work. This
chapter discusses some of this work.

7.1 Implementing parametric polymorphism

Parametric polymorphism, first distinguished from other forms of polymorphism in [44],
can be implemented in a variety of ways. Morrison et al. [34] distinguished among three
main categories of implementations:

• Uniform polymorphism, wherein generic functions operate on generic data using a
single uniform representation. This approach, also known as erasure, was popularized
by Java [9]; mitigating its limitations is a major reason for the TastyTruffle
project.

• Textual polymorphism, wherein the compiler generates specialized functions and rep-
resentations for each set of type arguments a generic definition is used with. The
template system of C++ [5] uses this approach, also known as monomorphization.

• Tagged polymorphism, wherein generic data uses specialized representations, but
generic functions have one implementation. Generic data is tagged with extra meta-
data that allows code to dynamically determine the representation of the data.
Tagged polymorphism fits somewhere in between erasure and monomorphization:
only a single copy of code is generated, but it must dynamically support heteroge-
neous data representations.

Morrison et al. introduce a form of tagged polymorphism that stores tags not on the
generic data itself (which can be inefficient) but alongside generic data as first-class values
in the language. These tags can be used to perform type-sensitive operations on generic
data at run time. This approach is more commonly known today as type reification, which
is at the heart of TastyTruffle’s approach. The type-theoretic basis for reified types,
sometimes called intensional type analysis, is well-studied in works such as [24] and [15].

TastyTruffle’s implementation of parametric polymorphism is similar to the ap-
proach taken by the .NET Common Language Runtime (CLR) [27]. Unlike JVM bytecode,

110

the CLR intermediate language preserves generic type information, so the CLR can reify
generic type arguments at run time. The CLR uses these reified types to dynamically
specialize generic methods and classes, producing efficient, box-free code. The run-time
type information is also accessible to languages hosted on the CLR (e.g., C# or F#);
TastyTruffle does not support type introspection since that would alter the semantics
of Scala programs. TastyTruffle and the CLR also differ in how they handle reference-
type specializations. Since reference types have the same data representation, values with
different reference types can be treated uniformly; the CLR uses a single specialization
for all reference-type instantiations to avoid creating too many specializations. Though
TastyTruffle creates a separate specialization for each reference-type instantiation,
the type profiles from each specialization are independent, so the compiled code has less
polymorphism. This tradeoff between creating additional specializations and producing
less-polymorphic code deserves more investigation in future work.

7.2 Working around type erasure on the JVM

JVM language implementations can suffer from poor performance because of type erasure.
Erasure also limits the expressivity of generic code, since certain operations (like type
comparisons) are impossible. Some existing work aims to address these problems in a few
different ways.

7.2.1 Static specialization

TastyTruffle is not the first project to specialize Scala programs. Dragos and Odersky
[20] extended the compiler to support static specialization. By annotating type parame-
ters with @specialized, programmers can direct the compiler to automatically generate
specializations for each primitive type, leading to more optimized generic code. Since Scala
has nine primitive types, @specialized methods can generate a lot of extra code, which
has been a barrier to the adoption of @specialized in the standard library. Ureche et
al. [45] curb the code size issue using “miniboxing”, which creates a single specialization
for 64-bit Longs. Since other primitive types can fit in a Long, they can use the Long

specialization with the help of additional run-time conversions. Miniboxing was unfor-
tunately never merged into the Scala project, likely due to its complexity. Since Truffle
supports implicit conversions among data types, it is possible that TastyTruffle could
incorporate a miniboxing-like approach into its specialization scheme.

Since Scala classes support separate compilation (i.e., Scala compiles under an open-
world assumption), it is generally impossible for the compiler to know how a generic defi-
nition is instantiated at run time. Some works have found success in using whole-program
static analyses (i.e., analysis under a closed-world assumption) to analyze and optimize
Scala code [19, 37]. For example, [37] presents a context-sensitive call graph analysis that
incorporates static information about type arguments. Including type arguments in the
analysis increases the precision and enables the compiler to perform automatic specializa-
tion of generic methods.

Work has also been done to improve the usability of generics in Java code. Early

111

on in Java’s adoption of generics, Cartwright and Steele [11] proposed NextGen, which
uses an alternative compilation strategy for generics. The code compiled by NextGen
makes generic types accessible at run time for type-related operations like instanceof.
NextGen works by generating type-specialized classes that wrap generic class instances.
This scheme is designed to improve the ergonomics of generics rather than to improve
performance, but it is possible that an optimizing compiler like Graal could use the extra
static type information to produce specialized code.

A major limitation of NextGen is that it does not support primitive type instantiations;
the authors cite the type-incompatibility between primitives and reference types as the
reason. This friction between Java’s primitive and reference types is a long-standing area
of research. Project Valhalla [4] is an ongoing project that aims to evolve the Java language
to “heal the rift between primitives and objects.” In particular, its Universal Generics
proposal allows type parameters to range over both reference and primitive types, which
is intended to enable run-time specialization of generic code in the future.

Some work on Java focuses on ahead-of-time (AOT) transformations to optimize generic
code. Graur et al. [23] developed JCS, a tool to specialize some classes from the Java
Collections library. JCS, invoked before regular Java compilation, can be used to generate
type-specialized copies of Collections classes, like HashMap<String, Int>. These classes
enjoy specialized representations for their generic fields and locals, and can be imported
and referenced directly in Java applications.

A common idea with these static approaches is to circumvent the lack of run-time types
in the JVM by generating specialized code during or before compilation. TastyTruf-
fle avoids erasure altogether, using reified types to defer code specialization until run
time. Whereas most of these approaches require the programmer to choose what code gets
specialized, TastyTruffle performs specialization automatically.

7.2.2 Reifying Scala types

Schinz [39] designed a compilation strategy that reified all Scala types as JVM classes
at run time. The reified types enable Scala code to perform type-specific operations like
pattern matching and isInstanceOf checks over generic types. In an empirical evaluation,
the approach introduces significant overheads with respect to running time and memory
consumption. The overheads are somewhat expected, since the approach incurs the cost of
reification but does not use the reified types for specialization. In contrast, TastyTruffle
models only enough types to enable generic code specialization, and types are modeled
with built-in interpreter intrinsics rather than language-level objects, which can be more
amenable to optimization. The extra overhead of reifying types in TastyTruffle (much
of which can be optimized away during JIT compilation) is outweighed by the performance
gains it enables via specialization.

7.3 Just-In-Time (JIT) compilation of Scala programs

Since Scala typically runs on a JVM, research on its performance focuses primarily on
static compilation strategies that enable the JVM to execute Scala code more effectively.

112

Nevertheless, there has been some work that explores JIT compilation of Scala and the
transformations that are especially useful.

Stadler et al. [42] explored the relative impact of different Graal optimizations on Scala
and Java benchmarks by selectively disabling them and comparing the performance. They
observe that Graal more effectively optimizes the Scala benchmarks than the Java bench-
marks because Scala code “contains more opportunities for optimization.” In particular,
they find profiling types and branches, inlining polymorphic call sites (based on receiver
type profiles), and intrinsifying native methods (like System.arraycopy) to be especially
effective. By virtue of running on top of Graal and being implemented with idiomatic Truf-
fle code, TastyTruffle enjoys many of these optimizations. Interestingly, tail duplica-
tion has no impact on the Scala benchmarks. The authors speculate that the optimization
is not “clever” enough since it only performs a local analysis. In a way, TastyTruffle
circumvents this limitation by performing tail duplication in the interpreter itself.

A related work by Prokopec et al. [38] uses case studies to demonstrate how Graal
optimizations can aggressively simplify Scala collections code. The authors cite the gener-
icity of Scala’s collections library code as a major reason for its performance overhead.
They also remark that, while JITs can be very effective, they are fundamentally limited by
the data representations chosen by the language. The authors encourage further research
to improve data representations. TastyTruffle, which avoids the boxing of primitive
values in generic contexts, aims to be a first step in this direction.

7.4 Truffle interpreters

The Truffle framework [49] is a general framework for writing high-performance language
implementations. There are many well-established Truffle implementations, including Truf-
fleRuby [40], Graal.js [3] and Espresso [31] (a JVM bytecode interpreter). Truffle in-
terpreters make extensive use of type specialization at the AST node granularity, but
TastyTruffle is the first Truffle interpreter (to our knowledge) to specialize entire
generic ASTs using reified types.

Recent work has explored the specialization of data layouts within Truffle interpreters.
Makor et al. [33] designed a technique to dynamically transform a JavaScript array of
objects to a columnar layout (i.e., each object property is stored in a separate array) based
on the access patterns observed at run time. In follow-up work, Kloibhofer et al. [29]
introduced a code duplication transformation that improves the performance of columnar
arrays. Data layout specialization is a possible avenue for future work in TastyTruffle.

113

Chapter 8

Conclusion

Many programming language implementations use erasure to support parametric polymor-
phism. Erasure is inherently limiting to performance: not only does it introduce boxing
overheads and other run-time indirection, but it also destroys type information that could
otherwise be used by the implementation to achieve high performance. Scala’s standard
implementation, which runs on the Java Virtual Machine (JVM), is no exception.

This thesis presented TastyTruffle, a Scala implementation that interprets TASTy
IR instead of JVM bytecode. By taking advantage of the rich type information en-
coded in TASTy, TastyTruffle is able to achieve high performance on generic code.
TastyTruffle uses TASTy’s type information to reify types as first-class objects in
the interpreter. These reified types enable TastyTruffle to dynamically select precise,
box-free representations for generic values. TastyTruffle also uses TASTy’s type in-
formation to determine which methods and classes are generic; it uses this information to
specialize generic code on demand. The specialized code is much less polymorphic, which
makes it significantly easier for the Graal just-in-time compiler (JIT) to reliably generate
optimized generic code.

Through empirical evaluation, this thesis showed that TastyTruffle is competitive
with a state-of-the-art JVM implementation configured to use the Graal compiler. In par-
ticular, while both implementations perform similarly on monomorphic workloads, when
generic code is instantiated with multiple concrete types, TastyTruffle consistently
outperforms the JVM. Performance on the JVM largely depends on the JIT compiler
serendipitously choosing the right optimizations to perform; on large programs, this is
infeasible. TastyTruffle performs these transformations directly in its ASTs, which
reduces the guesswork required by the JIT. TastyTruffle also implicitly captures rela-
tionships among generic values by separating profiling information among specializations.

TastyTruffle demonstrates how generic type information can empower a language
implementation to achieve high performance on generic code. By reifying types and spe-
cializing generic code, TastyTruffle enjoys much of the same performance benefits as
a monomorphization scheme. Unlike monomorphization, TastyTruffle’s specialization
is speculative and performed at run time, which leaves further opportunities to improve
performance in the future; for example, by speculatively changing object layouts, or by
mixing the execution of specialized and unspecialized code.

114

References

[1] An Overview of TASTy, Aug. 2022. URL: https://docs.scala-lang.org/scala3/
guides/tasty-overview.html.

[2] Arrays, Oct. 2022. URL: https://docs.scala-lang.org/overviews/

collections-2.13/arrays.html.

[3] A ECMAScript 2022 compliant JavaScript implementation built on GraalVM, Mar.
2023. URL: https://github.com/oracle/graaljs.

[4] Project Valhalla, Jan. 2023. URL: https://openjdk.org/projects/valhalla/.

[5] Templates, Mar. 2023. URL: https://en.cppreference.com/w/cpp/language/

templates.

[6] Beatrice Åkerblom and Tobias Wrigstad. Measuring polymorphism in Python pro-
grams. In Proceedings of the 11th Symposium on Dynamic Languages, pages 114–128,
2015.

[7] Danilo Ansaloni. Static Object Model, Oct. 2022. URL: https://docs.

oracle.com/en/graalvm/enterprise/22/docs/graalvm-as-a-platform/

language-implementation-framework/StaticObjectModel/.

[8] Hudson Ayers, Evan Laufer, Paul Mure, Jaehyeon Park, Eduardo Rodelo, Thea
Rossman, Andrey Pronin, Philip Levis, and Johnathan Van Why. Tighten Rust’s
belt: shrinking embedded Rust binaries. In Proceedings of the 23rd ACM SIG-
PLAN/SIGBED International Conference on Languages, Compilers, and Tools for
Embedded Systems, pages 121–132, 2022.

[9] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Making the
Future Safe for the Past: Adding Genericity to the Java Programming Language. In
Proceedings of the 13th ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA ’98, page 183–200, New York, NY,
USA, 1998. Association for Computing Machinery. URL: https://doi.org/10.1145/
286936.286957, doi:10.1145/286936.286957.

[10] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Making the fu-
ture safe for the past: Adding genericity to the java programming language. SIGPLAN
Not., 33(10):183–200, oct 1998. URL: https://doi.org/10.1145/286942.286957,
doi:10.1145/286942.286957.

115

https://docs.scala-lang.org/scala3/guides/tasty-overview.html
https://docs.scala-lang.org/scala3/guides/tasty-overview.html
https://docs.scala-lang.org/overviews/collections-2.13/arrays.html
https://docs.scala-lang.org/overviews/collections-2.13/arrays.html
https://github.com/oracle/graaljs
https://openjdk.org/projects/valhalla/
https://en.cppreference.com/w/cpp/language/templates
https://en.cppreference.com/w/cpp/language/templates
https://docs.oracle.com/en/graalvm/enterprise/22/docs/graalvm-as-a-platform/language-implementation-framework/StaticObjectModel/
https://docs.oracle.com/en/graalvm/enterprise/22/docs/graalvm-as-a-platform/language-implementation-framework/StaticObjectModel/
https://docs.oracle.com/en/graalvm/enterprise/22/docs/graalvm-as-a-platform/language-implementation-framework/StaticObjectModel/
https://doi.org/10.1145/286936.286957
https://doi.org/10.1145/286936.286957
http://dx.doi.org/10.1145/286936.286957
https://doi.org/10.1145/286942.286957
http://dx.doi.org/10.1145/286942.286957

[11] Robert Cartwright and Guy L. Steele. Compatible Genericity with Run-Time
Types for the Java Programming Language. In Proceedings of the 13th ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA ’98, page 201–215, New York, NY, USA, 1998. Associa-
tion for Computing Machinery. URL: https://doi.org/10.1145/286936.286958,
doi:10.1145/286936.286958.

[12] Jong-Deok Choi, Manish Gupta, Mauricio J. Serrano, Vugranam C. Sreedhar, and
Samuel P. Midkiff. Escape analysis for Java. In Brent Hailpern, Linda M. Northrop,
and A. Michael Berman, editors, Proceedings of the 1999 ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages & Applications, OOPSLA 1999,
Denver, Colorado, USA, November 1-5, 1999, pages 1–19. ACM, 1999. URL: https:
//doi.org/10.1145/320384.320386, doi:10.1145/320384.320386.

[13] Cliff Click and Keith D Cooper. Combining analyses, combining optimizations. ACM
Transactions on Programming Languages and Systems (TOPLAS), 17(2):181–196,
1995.

[14] Cliff Click and Michael Paleczny. A Simple Graph-Based Intermediate Representa-
tion. In Michael D. Ernst, editor, Proceedings ACM SIGPLAN Workshop on In-
termediate Representations (IR’95), San Francisco, CA, USA, January 22, 1995,
pages 35–49. ACM, 1995. URL: https://doi.org/10.1145/202529.202534, doi:
10.1145/202529.202534.

[15] Karl Crary, Stephanie Weirich, and Greg Morrisett. Intensional Polymorphism in
Type-erasure Semantics. In Proceedings of the Third ACM SIGPLAN International
Conference on Functional Programming, ICFP ’98, page 301–312, New York, NY,
USA, 1998. Association for Computing Machinery. URL: https://doi.org/10.1145/
289423.289459, doi:10.1145/289423.289459.

[16] Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N Wegman, and F Kenneth
Zadeck. Efficiently computing static single assignment form and the control depen-
dence graph. ACM Transactions on Programming Languages and Systems (TOPLAS),
13(4):451–490, 1991.

[17] Bruno C. d. S. Oliveira, Adriaan Moors, and Martin Odersky. Type classes as
objects and implicits. In William R. Cook, Siobhán Clarke, and Martin C. Ri-
nard, editors, Proceedings of the 25th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2010, Oc-
tober 17-21, 2010, Reno/Tahoe, Nevada, USA, pages 341–360. ACM, 2010. URL:
https://doi.org/10.1145/1869459.1869489, doi:10.1145/1869459.1869489.

[18] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-oriented
programs using static class hierarchy analysis. In European Conference on Object-
Oriented Programming, pages 77–101. Springer, 1995.

[19] Sébastien Jean R Doeraene. Cross-platform language design. Technical report, EPFL,
2018.

116

https://doi.org/10.1145/286936.286958
http://dx.doi.org/10.1145/286936.286958
https://doi.org/10.1145/320384.320386
https://doi.org/10.1145/320384.320386
http://dx.doi.org/10.1145/320384.320386
https://doi.org/10.1145/202529.202534
http://dx.doi.org/10.1145/202529.202534
http://dx.doi.org/10.1145/202529.202534
https://doi.org/10.1145/289423.289459
https://doi.org/10.1145/289423.289459
http://dx.doi.org/10.1145/289423.289459
https://doi.org/10.1145/1869459.1869489
http://dx.doi.org/10.1145/1869459.1869489

[20] Iulian Dragos and Martin Odersky. Compiling generics through user-directed type
specialization. In Proceedings of the 4th workshop on the Implementation, Compi-
lation, Optimization of Object-Oriented Languages and Programming Systems, pages
42–47, 2009.

[21] Gilles Duboscq, Thomas Würthinger, Lukas Stadler, Christian Wimmer, Doug Simon,
and Hanspeter Mössenböck. An intermediate representation for speculative optimiza-
tions in a dynamic compiler. In Proceedings of the 7th ACM workshop on Virtual
machines and intermediate languages, pages 1–10, 2013.

[22] Yoshihiko Futamura. Partial evaluation of computation process–an approach to a
compiler-compiler. Higher-Order and Symbolic Computation, 12(4):381–391, 1999.

[23] Dan Graur, Rodrigo Bruno, and Gustavo Alonso. Specializing generic java data struc-
tures. In Proceedings of the 18th ACM SIGPLAN International Conference on Man-
aged Programming Languages and Runtimes, pages 45–53, 2021.

[24] Robert Harper and Greg Morrisett. Compiling polymorphism using intensional type
analysis. In Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages, pages 130–141, 1995.

[25] Urs Hölzle, Craig Chambers, and David Ungar. Optimizing dynamically-typed object-
oriented languages with polymorphic inline caches. In European conference on object-
oriented programming, pages 21–38. Springer, 1991.

[26] Christian Humer, Christian Wimmer, Christian Wirth, Andreas Wöß, and Thomas
Würthinger. A domain-specific language for building self-optimizing AST interpreters.
In Proceedings of the 2014 International Conference on Generative Programming:
Concepts and Experiences, pages 123–132, 2014.

[27] Andrew Kennedy and Don Syme. Design and Implementation of Generics for the
.NET Common Language Runtime. SIGPLAN Not., 36(5):1–12, may 2001. URL:
https://doi.org/10.1145/381694.378797, doi:10.1145/381694.378797.

[28] Andrew Kennedy and Don Syme. Design and implementation of generics for the .net
common language runtime. In Proceedings of the ACM SIGPLAN 2001 Conference
on Programming Language Design and Implementation, PLDI ’01, page 1–12, New
York, NY, USA, 2001. Association for Computing Machinery. URL: https://doi.
org/10.1145/378795.378797, doi:10.1145/378795.378797.

[29] Sebastian Kloibhofer, Lukas Makor, David Leopoldseder, Daniele Bonetta, Lukas
Stadler, and Hanspeter Mössenböck. Control flow duplication for columnar arrays
in a dynamic compiler. arXiv preprint arXiv:2302.10098, 2023.

[30] Filip Křikava, Heather Miller, and Jan Vitek. Scala implicits are everywhere: a large-
scale study of the use of Scala implicits in the wild. Proceedings of the ACM on
Programming Languages, 3(OOPSLA):1–28, 2019.

117

https://doi.org/10.1145/381694.378797
http://dx.doi.org/10.1145/381694.378797
https://doi.org/10.1145/378795.378797
https://doi.org/10.1145/378795.378797
http://dx.doi.org/10.1145/378795.378797

[31] Oracle Labs. Java on Truffle: Introducing a New Way to Run Java, 2023. URL:
https://www.graalvm.org/java-on-truffle/.

[32] David Leopoldseder, Lukas Stadler, Thomas Würthinger, Josef Eisl, Doug Simon,
and Hanspeter Mössenböck. Dominance-based duplication simulation (DBDS): code
duplication to enable compiler optimizations. In Proceedings of the 2018 International
Symposium on Code Generation and Optimization, pages 126–137, 2018.

[33] Lukas Makor, Sebastian Kloibhofer, David Leopoldseder, Daniele Bonetta, Lukas
Stadler, and Hanspeter Mössenböck. Automatic Array Transformation to Colum-
nar Storage at Run Time. In Proceedings of the 19th International Conference on
Managed Programming Languages and Runtimes, pages 16–28, 2022.

[34] Ronald Morrison, Alan Dearle, Richard C. H. Connor, and Alfred L. Brown. An
ad hoc approach to the implementation of polymorphism. ACM Transactions on
Programming Languages and Systems (TOPLAS), 13(3):342–371, 1991.

[35] Frank Mueller and David B Whalley. Avoiding conditional branches by code replica-
tion. In Proceedings of the ACM SIGPLAN 1995 conference on Programming language
design and implementation, pages 56–66, 1995.

[36] Michael Paleczny, Christopher Vick, and Cliff Click. The java HotSpotTM server
compiler. In Java (TM) Virtual Machine Research and Technology Symposium (JVM
01), 2001.

[37] Dmytro Petrashko. Design and implementation of an optimizing type-centric compiler
for a high-level language. Technical report, EPFL, 2017.

[38] Aleksandar Prokopec, David Leopoldseder, Gilles Duboscq, and Thomas Würthinger.
Making collection operations optimal with aggressive JIT compilation. In Proceedings
of the 8th ACM SIGPLAN International Symposium on Scala, pages 29–40, 2017.

[39] Michel Schinz. Compiling Scala for the Java Virtual Machine. PhD thesis, École
polytechnique fédérale de Lausanne, 2005.

[40] Chris Seaton. Specialising dynamic techniques for implementing the Ruby Program-
ming Language. The University of Manchester (United Kingdom), 2015.

[41] Lukas Stadler, Gilles Duboscq, Hanspeter Mössenböck, Thomas Würthinger, and
Doug Simon. An experimental study of the influence of dynamic compiler optimiza-
tions on Scala performance. In Proceedings of the 4th Workshop on Scala, pages 1–8,
2013.

[42] Lukas Stadler, Gilles Duboscq, Hanspeter Mössenböck, Thomas Würthinger, and
Doug Simon. An experimental study of the influence of dynamic compiler optimiza-
tions on Scala performance. In Proceedings of the 4th Workshop on Scala, pages 1–8,
2013.

118

https://www.graalvm.org/java-on-truffle/

[43] Lukas Stadler, Thomas Würthinger, and Hanspeter Mössenböck. Partial escape anal-
ysis and scalar replacement for Java. In Proceedings of Annual IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization, pages 165–174, 2014.

[44] Christopher Strachey. Fundamental concepts in programming languages. Higher-order
and symbolic computation, 13(1):11–49, 2000.

[45] Vlad Ureche, Cristian Talau, and Martin Odersky. Miniboxing: improving the speed to
code size tradeoff in parametric polymorphism translations. In Proceedings of the 2013
ACM SIGPLAN international conference on Object oriented programming systems
languages & applications, pages 73–92, 2013.

[46] Andreas Wöß, Christian Wirth, Daniele Bonetta, Chris Seaton, Christian Humer, and
Hanspeter Mössenböck. An object storage model for the truffle language implemen-
tation framework. In Proceedings of the 2014 International Conference on Principles
and Practices of Programming on the Java platform: Virtual machines, Languages,
and Tools, pages 133–144, 2014.

[47] Thomas Würthinger, Christian Wimmer, Christian Humer, Andreas Wöß, Lukas
Stadler, Chris Seaton, Gilles Duboscq, Doug Simon, and Matthias Grimmer. Practical
partial evaluation for high-performance dynamic language runtimes. In Proceedings
of the 38th ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, pages 662–676, 2017.

[48] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles Du-
boscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko. One
VM to rule them all. In Proceedings of the 2013 ACM international symposium on
New ideas, new paradigms, and reflections on programming & software, pages 187–204,
2013.

[49] Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Duboscq, Doug Simon,
and Christian Wimmer. Self-optimizing AST interpreters. In Proceedings of the 8th
Symposium on Dynamic Languages, pages 73–82, 2012.

[50] James You. Specializing Scala with Truffle. Master’s thesis, University of Waterloo,
2022.

119

APPENDICES

120

Appendix A

Generic swap AST

This appendix presents the generic AST for the swap method used in Chapters 4 and 5.
The AST, depicted in Figure A.1, contains several generic nodes that dynamically change
their behaviour based on type arguments. Chapter 5 describes a technique to statically
specialize this AST to a simpler non-generic AST (Figure 5.9).

121

0
M
et
ho
d(
sw
ap
)

16
 B
lo
ck

18
 G
en
er
ic
W
rit
eL
oc
al
(o
ld
V
al
ue
)

26
 G
en
er
ic
A
rr
ay
U
pd
at
e

32
 G
en
er
ic
R
ea
dL
oc
al
(o
ld
V
al
ue
)

19
 G
en
er
ic
A
rr
ay
A
pp
ly

49
 M
et
ho
dT
yp
eP
ar
am
(T
)

20
 G
en
er
ic
R
ea
dL
oc
al
(a
rr
ay
)

21
 R
ea
dL
oc
al
(i)

22
 M
et
ho
dT
yp
eP
ar
am
(T
)

52
 A
rr
ay
Ty
pe

27
 G
en
er
ic
R
ea
dL
oc
al
(a
rr
ay
)

28
 R
ea
dL
oc
al
(i)

29
 G
en
er
ic
R
ea
dL
oc
al
(v
al
ue
)

30
 M
et
ho
dT
yp
eP
ar
am
(T
)

65
 A
rr
ay
Ty
pe

78
 M
et
ho
dT
yp
eP
ar
am
(T
)

81
 M
et
ho
dT
yp
eP
ar
am
(T
)

53
 M
et
ho
dT
yp
eP
ar
am
(T
)

66
 M
et
ho
dT
yp
eP
ar
am
(T
)

F
ig

u
re

A
.1

:
G

en
er

ic
A

S
T

fo
r
s
w
a
p

(f
ro

m
F

ig
u
re

5.
1)

.

122

	List of Figures
	List of Tables
	Introduction
	Implementing parametric polymorphism
	Parametric polymorphism in Scala
	The problem with erasure
	Scala's TASTy representation
	Thesis overview
	Contributions

	Background
	Parametric polymorphism
	Monomorphization
	Type erasure
	Parametric polymorphism in Scala

	Scala's TASTy representation
	The Graal compiler
	Graal IR
	Optimizations

	The Truffle ecosystem
	Truffle interpreters
	Partial evaluation
	Self-optimizing ASTs
	Truffle's object model

	TastyTruffle: A Truffle interpreter for Scala
	The TastyTruffle AST
	Definitions
	Referencing definitions in TastyTruffle

	Data representation in TastyTruffle
	Objects
	Shapes
	Data representation and the AST

	Method dispatch
	Direct calls
	Indirect calls

	Using reified types in TastyTruffle
	Reified types
	TypeNodes

	Generic methods
	Generic locals
	Generic array accesses
	Propagating type information

	Generic classes
	Modeling applied generic classes
	Applying generic classes to type arguments
	Modeling generic classes in the AST
	Generic fields
	Method dispatch
	Generic parent classes

	Specializing generic code
	Motivation
	Specializing generic methods
	Specializing generic class methods
	Static specialization
	Statically specializing generic methods
	Statically specializing generic class methods

	Evaluating TastyTruffle
	Benchmarks
	Setup
	Throughput
	Polymorphic workloads
	Monomorphic workloads
	Comparing dynamic and static specialization

	Transient behaviour
	Warmup
	Compilation

	Related Work
	Implementing parametric polymorphism
	Working around type erasure on the JVM
	Static specialization
	Reifying Scala types

	Just-In-Time (JIT) compilation of Scala programs
	Truffle interpreters

	Conclusion
	References
	APPENDICES
	Generic swap AST

