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Abstract

In this Master’s thesis, we investigate the Langevin dynamics on the spherical Sherrington-
Kirkpatrick (SSK) model, a classical mean-field spin glass model. The first contribution
of this thesis is the asymptotic limit of energy function of the SSK model, a critical prop-
erty linked to the model’s equilibrium state. The thermodynamic limit of energy of the
system is characterized in terms of a system of integro-differential equations as the size of
the system goes to infinity. Then we look at the behavior of the limiting dynamics as the
time goes to infinity. This long time behavior of the energy has a phase transition. In the
regime of below the critical inverse temperature, the limiting result is zero. In the regime
of above the critical inverse temperature, the limiting result is a constant depending on
the temperature.

The second contribution of this thesis is that we analyze the complexity of the zero-
temperature Langevin dynamics (a.k.a. the gradient descent algorithm) on the SSK model.
We establish lower and upper bound for the hitting time, defined as the first time required
for the output of the algorithm to achieve a small overlap with the eigenvector correspond-
ing to the smallest eigenvalue of the Wigner matrix.
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Chapter 1

Introduction

The Sherrington-Kirkpatrick (SK) model is a widely studied mathematical model in sta-
tistical mechanics. It has drawn considerable interest from physicists, mathematicians,
and computer scientists. This model was first introduced by Sherrington and Kirkpatrick
in their seminal paper [SK75]. Since then, it has become a prominent tool for analyzing
the behavior of spin glasses, which are disordered magnetic systems that exhibit complex
behavior making them as a topic of great interest in physics [EA75].

This thesis focuses on several aspects of the SK model and related problems. We will
first review the SK model and its basic properties in Section 1.1. In Section 1.2, we review
the phenomenon of aging in the SK model. Finally, we discussed the complexity of gradient
descent related to zero-temperature Langevin dynamics on SK model in linear algebra in
Section 1.3. Specifically, we will focused on the problem of computing eigenvectors of
symmetric Wigner matrices using gradient descent.

1.1 Sherrington-Kirkpatrick (SK) model

We begin by introducing the spin glass model. For dimension N Ê 1, we consider the state
space {−1,+1}N . In this model, there are N classical spins labeled as [N] := {1,2, . . . , N},
which can take the values of either −1 or +1. The spins interact with each other through
pairwise couplings Ji j, which are independent standard Gaussian random variables mod-
eling the quality of interaction between agents i and j. Let HJ : {−1,+1}N → R be the
Hamiltonian. The interpretation of HJ(X ) is the internal magnetic energy of each possi-
ble state X ∈ {−1,+1}N . In order to understand the material in thermal equilibrium, one
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would like to describe the proportion of time spent in different states is given by the Gibbs
measure on {−1,+1}N at inverse temperature β ∈R:

GN(X ) := exp(βHJ(X ))
Zβ

, (1.1)

where
Zβ := ∑

X∈{−1,+1}N
eβHJ(X ) (1.2)

is called the partition function and µ is the probability measure defined on {−1,+1}.

A natural question in the spin glass model is the asymptotic behavior of the maximum
of HJ, for example the Dean’s problem [Pan13b, Section 1.1]. In realistic models, the key
feature of a spin glass is that different pairs of spins interact in very different ways which
is known as the Edwards-Anderson spin glass model introduced by [SZ82].

The Sherrington-Kirkpatrick (SK) model is a mean-field simplification of the Edwards-
Anderson spin glass model, in which one ignores the spatial locations of the spins. The SK
model is motivated by the optimization problem called Dean’s problem: given N agents
labeled [N]= {1, . . . , N} in which the like or dislike between individuals i and j is given by
g i j. Then Dean would like to maximize the "happiness" of the N-agent system defined by

Hg(X )= 1p
N

N∑
i, j=1

g i j 1{X i=X j}, (1.3)

where g i j = g ji for 1 ≤ i < j ≤ N are independent identically distributed (i.i.d.) random
variables with mean 0 and variance 1, and g ii for i = 1, . . . , N are i.i.d. random variables
with mean 0 and variance 2. Note that the system (1.3) is equivalently as

Hg(X )= 1p
N

N∑
i, j=1

g i j X i X j, (1.4)

which is the sum of the pairwise couplings multiplied by the product of the spins.

This is a non-trivial maximization problem, even in the case where N = 3 (see Figure
1.1 for a illustration). The presence of conflicting interactions between agents can lead to
frustration and the inability to reconcile all intuitive assignments of the agents into two
groups.

The SK model is associated with a free energy of the model defined via

FN(β)= 1
N
E
(
log ZN(β)

)
, (1.5)
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Figure 1.1: A simple example of the SK model used to illustrate the non-triviality of the
problem, even in the case N = 3. Suppose there are three agents labeled i, j and k, where
Ji j < 0, J jk > 0 but Jik > 0.

where ZN(β) is the partition function defined by

ZN(β) := ∑
X∈{−1,+1}N

exp
(
βp
N

Hg(X )
)

(1.6)

and inverse temperature parameter β ∈ R is tunable. The large N asymptotics of this
free energy have been of interest to mathematicians studying the SK model. In 1979,
[Par79] proposed a formula for this limit called the replica symmetric breaking solution.
This formula was later confirmed by the work of [Tal06]. [Pan13a] generalized these re-
sults, providing a comprehensive understanding of the free energy and the thermodynamic
properties of the SK model in the large N limit. Indeed, if we have a formula for the free
energy, then this will give a formula for the leading order behavior of the Dean’s problem
[Pan13b, Section 1.1]. These mathematical advances have greatly enhanced our under-
standing of the behavior of spin glasses and have contributed to the development of new
algorithms for solving optimization problems in statistics and machine learning (see e.g.,
[Cha07, DMM09, ZK16]).

Originally, the SK model considered the case where the spins are Ising spins and the
probability measure follows the Bernoulli law µ(dx) = 1

2 (δ−1 + δ+1) defined on {−1,+1}.
One natural dynamics associated with such dynamics are Glauber dynamics (see e.g.,
[Gru96, KMP01]).

One generalization of the Ising spins to a continuous configuration space M (e.g., a
sphere instead of a hypercube) called spherical spin glasses. Let SN−1(

p
N) be N −1 di-

mensional sphere of radius
p

N in RN :

SN−1(
p

N) := {X ∈RN : ∥X∥2 = N}, (1.7)

3



where ∥ ·∥ is the ℓ2 norm.

The spherical Sherrington-Kirkpatrick (SSK) model [KTJ76] is defined by the Hamil-
tonian

HSSK
g (X )=− 1p

N

N∑
i, j=1

g i j X i X j, (1.8)

where the spin variables X = (X1, . . . , XN) ∈RN lie on the sphere SN−1(
p

N). The Hamilto-
nian of the SSK model is same as the SK model but with the constraint of spin variables
on the sphere.

The associated Langevin dynamics of the SSK model (see (3.2) in Chapter 3) were
considered by [SZ81, AG97, ADG01, BA03].

1.2 The phenomenon of aging in the SK model

In Section 1.1, we introduced the basic definition of the SK model, which is one of the
most widely studied models of spin glasses. One of the main problems in the study of spin
glasses is understanding the equilibrium phase transition (see e.g., [Geo11, GHM01]),
which is a fundamental change in the system’s properties that occurs as temperature is
lowered and it can reveal information about the natural of the ground state of the system.

However, in some cases, the system may relax to equilibrium so slowly that it never
actually reaches it. This phenomenon is known as “aging”, and it is integral to the study of
spin glasses dynamics, both experimentally and theoretically. Aging is a phenomenon that
affects the system’s decorrelation properties over time. According to [BA03], this means
that the longer the system exists, the longer it takes to forget its past. This phenomenon
has been studied extensively by various authors (see e.g., [CK93, CK94, VHO+07]). The
study of aging and its effect on spin glass dynamics is an active area of research in physics,
with important implications for the understanding of the low-temperature behavior of
these systems.

In [ADG01], the authors focus on such systems and study the phenomenon of “aging”
in spherical spin glasses to characterize the low-temperature behavior of the dynamics.
They studied the Langevin dynamics for the SK model using correlation functions that
satisfy a system of integro-differential equations known as the Crisanti-Horner-Sommers-
Cugliandolo-Kurchan (CHSCK) equations [CS92, CK93]. This was the first mathematical
literature on aging in spin glasses, and it opened the door for further research on this
topic.

4



Our work in Chapter 3 aims to understand the asymptotic limit of the energy and focus
on the long-time behavior of the energy of the system. The energy of the spherical spin
glasses model is described by the Hamiltonian function, which describes the interactions
between the spin variables on the surface of a high-dimensional sphere. The energy func-
tion is a key quantity in the spherical spin glasses model, as it determines the equilibrium
properties of the system and governs its dynamical behavior (see e.g., [SN13, AC18]). By
studying the long-time behavior of the energy function, we can gain insight into the way
the energy of the system evolves over time and how it is affected by the dynamics of the
spin variables. In particular, the long-time behavior of the energy function can reveal
information about the aging behavior of the system.

1.3 The complexity of the gradient descent

In this section, we discuss the potential connection of our results on aging in spin glasses
to linear algebra problems, and we review some background and previous results on the
complexity of power method.

The study of aging in spin glasses model as discussed in Section 1.2 provides important
insights into the dynamics of the energy function in the SK model, which is the focus of
our work in Chapter 3. This insight can be used to develop more efficient algorithms for
solving difficult linear algebra problems, such as computing the eigenvectors of Wigner
random matrices. However, to achieve this goal, we need to understand the complexity of
iterative methods, which have received less attention in complexity theory [Sma97].

The study of the complexity of algorithms in linear algebra has been a topic of interest
for many years by [Sma97]. While direct algorithms that solve problems in a finite number
of steps have been extensively studied, iterative methods such as those required for the
matrix eigenvalue problem have received less attention in complexity theory in [Sma97].

The power method is a well-known iterative algorithm that approximates the eigenvec-
tor corresponding to the dominant eigenvalue, which is the largest in absolute value. How-
ever, for Hermitian random matrices, the complexity of the power method for obtaining a
dominant eigenvector is infinite by [Kos88]. [Kos88] showed that the upper bound of the
complexity is O(N2 log N), conditioned on all the eigenvalues being positive. Another algo-
rithm for calculating the dominant vector was investigated by [Kos91], who showed that,
under certain conditions, the average number of iterations required is O(log N+log | logϵ|).
[DT17] studied the performance of three algorithms for computing the eigenvalues of sam-
ple covariance matrices and showed that the complexity is about O

((
logϵ−2

log N − 3
2

)
N2/3 log N

)
,
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regardless of the specific distribution of the entries.

In our work presented in Chapter 4, we investigate the complexity of an algorithm
that uses spherical gradient descent inside aging to study the equilibrium of the spherical
SK model based on the zero-temperature dynamics, i.e., taking β = ∞ in the Langevin
dynamics defined in (3.2). The spherical gradient descent is an optimization method that
updates the spin variables in the direction of the negative gradient of the energy function
on a unit sphere. This algorithm can be understood as the continuous analogue version of
the power method. To ensure that our algorithm achieves its goal, we consider the hitting
time when the overlap between the output and the eigenvector is positive, where overlap
is a measure of similarity between two spin configurations. Our work represents an im-
provement over previous studies, as we provide a lower bound of O(N2/3) and upper bound
of O(N2/3 log N) for computing eigenvectors of Wigner random matrices whose entries are
independent and identically distributed Gaussian variables. This insight may prove use-
ful in developing more efficient algorithms for solving difficult linear algebra problems in
the future.

1.4 Organization of the thesis

In Chapter 2, we review a variety of classical mathematical results that we will use in
this thesis. The main contribution of the thesis begins in Chapter 3. The main results
include the integro-differential equation of the energy of the SK model and an explicit
formula for the limiting of the energy. In Chapter 4, we analyze the complexity of the zero-
temperature dynamics for finding the eigenvectors corresponding to extreme eigenvalues
of Wigner matrices.
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Chapter 2

Preliminaries

In this chapter, we collect some results that were used in the proof of the main results
presented in Chapter 3 and Chapter 4 in random matrix theory and probability theory.
In Section 2.1, we provide a brief review of the Wigner matrix, semicircle law, and Tracy-
Widom law. In Section 2.2, we review some basic tools from stochastic analysis, including
stochastic differential equations and Itô’s formula. Finally, in Section 2.3, we review the
definition and basic properties of the Bessel function. These results are key components
in the proof of our main results.

2.1 Random matrix theory results

Random matrix theory is a branch of mathematics that studies the behavior of large matri-
ces with random entries. While the idea and motivation of studying random matrices dates
back to 1950s with the pioneering works of Wigner, Dyson, and others [Wig55, Dys70].
There are already several textbooks that describe in detail the theory and work related
to random matrices (see e.g., [AGZ10, Tao12, TV14]). We will review some facts about
semicircle law and edge universality in this section.

Let us start with the definition of the (symmetric) Winger matrix ensemble.

Definition 2.1.1. [Tao12, Section 2.3] Let N Ê 1 be an integer. Consider a symmetric
N ×N matrix Y = {Yi j}1≤i, j≤N , which hence has N eigenvalues. Assume that the following
conditions hold:

• {Yi j}1≤i≤ j≤N are independent random variables;
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• The diagonal entries {Yii}1≤i≤N are identically distributed with finite variance, and
the off-diagonal entries {Yi j}1≤i≤ j are identically distributed with mean zero and unit
variance.

The matrix Y is known as a symmetric Wigner matrix.

When the random variables Yi j and Yii are real Gaussian with E|Yii|2 = 2, the Wigner
matrix Y will be called Gaussian Orthogonal Ensemble (GOE). Similarly, when the
strictly upper triangular entries Yi j are complex and Yii are real Gaussian with E|Yii|2 = 1,
the Wigner matrix Y will be called Gaussian Unitary Ensemble (GUE).

By [Tao12, Corollary 2.3.6], we have ∥Y ∥op = O(
p

N). We always consider the normal-
ized Wigner matrix J= 1p

N
Y in the following results.

Let (X ,d) be a metric space. Let µn (n Ê 1) and µ be Borel probability measures on X .
Let Cb(X ) be a collection of all bounded and continuous functions defined on X . We say
that µn converges in weakly to µ if∫

f dµn →
∫

f dµ, as n →∞, for all f ∈ Cb(X ). (2.1)

One of the fundamental universality results in random matrix theory is the Wigner
semicircle law. This describes the limiting distribution of eigenvalues of a Wigner matrix
converges weakly to the semicircle law as the size of the matrix goes to infinity. The
precise distribution of entries does not affect the conclusion of the law as long as the
matrix satisfies conditions of the Wigner matrix as in Definition 2.1.1.

Given any N×N normalized Wigner matrix J, we consider the empirical spectral mea-
sure of J:

µJ := 1
N

N∑
i=1

δσi , (2.2)

where σ1 ≤ ·· · ≤σN are eigenvalues of J and δ· is the Dirac measure.

Theorem 2.1.2. [Tao12, Theorem 2.4.2] Let J be the N ×N normalized symmetric Wigner
matrix. Then the empirical spectral distribution µJ converges weakly to the (Wigner) semi-
circle law almost surely (hence also in probability)

µsc := 1
2π

√
4− x21|x|≤2dx. (2.3)
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There are several methods to prove the semicircle law. One of the methods to prove this
result is the moment method. The idea of this method is to compare the moments of the
empirical spectral measure of the random matrix with the moments of the semicircular
law, and show that the convergence as the matrix size tends to infinity. Another method
to prove the semicircle law is the Stieltjes transform method, which is a similar technique
to Fourier method. The Stieltjes transform of a probability measure is a complex-valued
function. More precisely, given any probability measure µ on the real line, we can form its
Stieltjes transform: for any z ∈R\supp(µ)

m(z) :=
∫
R

1
x− z

dµ(x). (2.4)

1 2
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Figure 2.1: Semicircle law of GOE: plot of empirical spectral distribution of 10000×10000
matrix from GOE converging weakly to semicircle law.

Except for the semicircle law, there are two universal phenomenon about the local
statics of eigenvalues of random matrices called the bulk universality and the edge uni-
versality (see e.g. [DKM+99, ESY11, TV11, LY14]).

This thesis will focus on the edge universality. The two endpoints −2 and +2 of the
semicircle law are called the edge of spectrum. Note that the typical or average spacing
between eigenvalues is of order O(N−1) (i.e., they are roughly equally spaced with [−2,2]).
However, for the Gaussian ensembles, Tracy and Widom [TW94, TW96] give more pre-
cise information about the rescaling of the largest eigenvalue around the edge, which is
described as follows.

Lemma 2.1.3. [AGZ10, Theorem 3.1.5] Let σ1 ≤ ·· · ≤σN be the eigenvalues of a normalized
Wigner matrix J. Then we have

lim
N→∞

P
(
N2/3(σN −2)≤ x

)
= Fβ(x) (2.5)
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where Fβ(x) is the Tracy-Widom distribution functions described by the Painlevé equations
for β= 1,2,4 corresponding to orthogonal, unitary, symplectic ensemble, respectively. This
result also holds for the smallest eigenvalues σ1.

See [BBD08] for the definition of the Painlevé equations.

[For93] proved the joint distribution of the k largest eigenvalues can be expressed in
terms of the Airy kernel.

Lemma 2.1.4. [For93] Let σ1 ≤ ·· · ≤σN be the eigenvalues of a Wigner matrix J. Then the
limiting joint distribution of the k largest eigenvalue for Gaussian ensembles

lim
N→∞

P(N2/3(σN −2)≤ x1, . . . , N2/3(σN−k+1 −2)≤ xk)= Fβ,k(x1, . . . , xk), (2.6)

where Fβ,k(x1, . . . , xk) is still called the Tracy-Widom distribution. This result also holds for
the smallest eigenvalues σ1, . . . ,σk.

Definition 2.1.5. [TV14] We say that the Wigner matrix ensemble J = {Yi j}1≤i, j≤N obeys
condition C1 with constant C0 [TV14] if one has

E|Yi j|C0 ≤ C, 1≤ i, j ≤ N (2.7)

for some constant C (independent of N).

It was conjectured that the Tracy-Widom law holds for general Wigner matrices if the
Wigner matrix J = {Yi j}1≤i, j≤N obeying condition C1 with C0 = 4 by the numerical results
in [BBP07]. This fourth moment is the optimal value of the moment [TV14]. There has
been a lot of partial progress on this conjecture [Sos99, Joh01, LY14].

[LY14] proved a simple necessary and sufficient criterion for Tracy-Widom law. Here
we just list the sufficient condition as follows.

Theorem 2.1.6. [LY14, Theorem 1.2] Let J be the normalized Wigner matrix defined in
Definition 2.1.1. We denote by σ1 ≤ σ2 ≤ . . .σN the eigenvalues of J. If the off-diagonal
entry of the Wigner matrix satisfies

lim
s→∞ s4P(|Y12| Ê s)= 0, (2.8)

then the joint distribution function of k rescaled the largest eigenvalues

P(N2/3(σN −2)≤ s1, N2/3(σN−1 −2)≤ s2, . . . , N2/3(σN−k+1 −2)≤ sk) (2.9)

has a limit as N →∞, which coincides with that in the GUE and GOE cases, i.e., it weakly
converges to the Tracy-Widom distribution. This result also holds for the smallest eigenval-
ues σ1, . . . ,σk.
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Note that any distribution with a finite fourth moment satisfies the criterion (2.8),
however, the converse statement does not hold. See [LY14] for a counterexample.

Next, we will discuss the distribution of eigenvectors of Wigner matrices. For a given
matrix J sampled from the GOE (a special case of Wigner matrices), the eigenvalues of J
are almost surely distinct by [AGZ10, Theorem 2.5.2]. Due to the GOE ensemble’s invari-
ance under orthogonal transformations, we have the following Lemma.

Lemma 2.1.7. [AGZ10, Corollary 2.5.4] Let {v1,v2, . . . ,vN } be the eigenvectors correspond-
ing to the eigenvalues σ1, . . . ,σN of a matrix J drawn from GOE. Each of the eigenvectors
v1, . . . ,vN is distributed uniformly on the unit sphere:

SN−1
+ := {x= (x1, . . . , xN) : xi ∈R,∥x∥2 = 1, x1 > 0}. (2.10)

Note that there would be the sign ambiguity for unit eigenvectors. To resolve this
ambiguity, we randomly and independently choose each eigenvector from the two available
options.

Recall the following fact about the Gaussian random vector in high dimensions.

Lemma 2.1.8. [Ver18, Exercise 3.3.7] For a random vector g ∼ N(0, IN), g/∥g∥2 is uniformly
distributed on the unit sphere SN−1.

Since the direction g/∥g∥2 is uniformly distributed on the unit sphere SN−1. Thus, we
can represent a random vector X ∼Unif(

p
NSN−1) as X =p

N g
∥g∥2

.

Combing the above facts, we can prove the following Lemma that for a unit vector
q ∈SN−1,

p
Nvi · q are asymptotically normally distributed for i = 1, . . . , N.

Lemma 2.1.9. Let J = {Yi j}1≤i, j≤N be a matrix drawn from GOE. Let q ∈ SN−1 be a unit
vector in RN . Let vi ∈SN−1 be chosen randomly among all unit eigenvectors corresponding
to eigenvalue σi of J. Then

p
Nvi · q converges to N(0,1) in distribution as N →∞.

Proof. By Lemma 2.1.7 and Lemma 2.1.8, we write vi = g/∥g∥2 and q = h/∥h∥2 with g =
(g1, . . . , gN) ∼ N(0, IN) and h = (h1, . . . ,hN) ∼ N(0, IN), respectively. By Slutsky’s theorem
[CB21, Theorem 5.5.17], we have

p
Nvi · q =

1p
N

∑N
i=1 g ihi√( 1

N
∑

i g2
i

)( 1
N

∑
i h2

i

) (2.11)

converges to N(0,1) in distribution, where the numerator converges to N(0,1) in distribu-
tion by central limit theorem, and the denominator converges to 1 in probability by the
weak law of large number.
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One can extend the above Lemma to the general Wigner matrix ensembles:

Lemma 2.1.10. [TV12] Let J= {Yi j}1≤i, j≤N be a random real symmetric matrix obeying the
following condition for a sufficiently large constant C0:

E|Yi j|C0 ≤ C (2.12)

for some constants C > 0. Assume that Yi j = −Yi j for 1 ≤ i, j ≤ N. Let q ∈ SN−1 be a
unit vector in RN . For each i = 1, . . . , N, let vi ∈ SN−1 be chosen randomly among all unit
eigenvectors with eigenvalue σi. Then

p
Nvi · q tends to N(0,1) in distribution as N →∞.

2.2 Stochastic differential equations

Most of the concepts and proofs featured in this section were covered in the course STAT
902 by Prof. Yi Shen in Winter 2022. Other notable sources include [Øks03, LG16, Dur19].

Stochastic differential equations (SDEs) are a powerful too for modeling systems that
evolve randomly over time. They are widely used in many fields such as finance and
machine learning (see e.g., [HØS00, LSS22]). Let us start with the definition of Brownian
motion.

Definition 2.2.1. [Dur19, Section 7.1] We say a real-valued process Bt for t Ê 0 is a one-
dimensional Brownian motion if it satisfies the following properties:

• B0 = 0.

• Bt has continuous paths.

• (independent increments) if t0 < t1 < ·· · < tn, then Bt0 ,Bt1 −Bt0 , . . . ,Btn −Btn−1 are
independent.

• (stationary increments) For t > s Ê 0, Bt −Bs ∼ N(0, t− s).

The one-dimensional Brownian motion defined above serves as the basic for the devel-
opment of the theory of the stochastic integrals.

For n > 1, a n-dimensional Brownian motion Bt = (B1
t , . . . ,Bn

t ) starting at x ∈ Rn is
defined as a collection of independent one-dimensional B1

t , . . . ,Bt
n, where Bi

0 = xi for i =
1, . . . ,n.
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The Itô’s formula is a central tool in stochastic calculus. In the following we give the
simplest version of Itô’s formula for one-dimensional Brownian motion from [Dur19, The-
orem 7.6.1]. This formula can be extended to n-dimensional Brownian motion [Dur19,
Theorem 7.6.7] and even to the semimartingale [LG16, Chapter 5].

Theorem 2.2.2 (Itô’s formula). Suppose that f :R→R has two continuous derivatives. The
with probability one, for all t Ê 0,

f (Bt)− f (B0)=
∫ t

0
f ′(Bs)dBs + 1

2

∫ t

0
f ′′(Bs)ds. (2.13)

Lemma 2.2.3 provides an integration by parts formula for stochastic integrals as fol-
lows.

Lemma 2.2.3. [Øks03, Theorem 4.1.5] Let f (t) be a continuous and of bounded variation
with respect to t ∈ [0,T]. Then∫ t

0
f (s)dBs = f (t)Bt −

∫ t

0
Bsd f (s). (2.14)

Recall that a filtration on the probability space (Ω,F ,P) is a non-decreasing family
{Ft}tÊ0 of sub-σ-algebra of F such that Fs ⊂ Ft for s ≤ t ≤ ∞, where we define F∞ :=
σ (∪tÊ0Ft). Recall that a stochastic process {X t}tÊ0 is called adapted to a filtration {Ft}tÊ0
if X t is Ft-measurable for every t Ê 0.

One important result called Itô isometry from [Øks03, Corollary 3.1.7] is as follows.

Lemma 2.2.4 (Itô isometry). Let f (t,ω) : [0,∞)×Ω → R be a B ×F -measurable func-
tion, where B is the Borel σ−algebra on [0,∞). Assume that f (t,ω) is Ft-adapted and
E
[∫ b

a f (t,ω)2dt
]
<∞. Let Bt be a Brownian motion on [0,∞). Then

E

[(∫ b

a
f (t,ω)dBt

)2]
= E

[∫ b

a
f (t,ω)2dt

]
. (2.15)

One of main applications of Itô isometry is to compute the variance for random vari-
ables that are given as Itô integrals.

A stochastic differential equations (SDEs) has the following form [Øks03, Chapter 7]:

dX t = a(t, X t)dt+b(t, X t)dBt, (2.16)
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where X t ∈ Rn is the the solution to the SDEs, a(t, x) ∈ Rn is the drift term that describes
the deterministic evolution of the system, b(t, x) ∈Rn×m is the diffusion term that describes
the random fluctuations, and Bt the is a m-dimensional Brownian motion.

The existence and uniqueness theorem of SDEs provides a theoretical framework for
studying the solutions to SDEs (See e.g., [Øks03, Theorem 5.2.1]). Roughly speaking,
it requires a linear growth upper bound and a Lipschitz condition for functions a(t, x)
and b(t, x). It guarantees the existence of a unique solution to the SDEs under suitable
conditions on the coefficients a(·, ·) and b(·, ·). The solution X t is called a strong solution
if it satisfies the SDEs (2.16) almost surely for all time, given the Brownian motion Bt in
advance.

A classic example of a SDE is the Ornstein-Uhlenbeck (OU) process (see e.g., [Øks03,
Chapter 5]), which is widely used in finance and physics [MMS09]. The OU process is
a mean-reverting process that models the behavior of systems that tend to return to a
fixed equilibrium state. It is described by the following SDE: for two positive parameters
θ,σ> 0,

dX t =−θX tdt+σdBt. (2.17)

By applying Itô’s formula in Theorem 2.2.2 to eθtX t, we get

X t = X0e−θt +σ
∫ t

0
e−(θ−s)dBs. (2.18)

Another example is called the Langevin dynamics [XCZG18], which is a stochastic
process that models the behavior of a particle in a viscous medium subject to a potential
force and thermal fluctuations. It is described as a SDE as follows.

dX t =−∇U(X t)dt+
√

2β−1dBt, (2.19)

where X t represents the position of the particle at time t, U(·) is the potential energy of
the particle, β is the inverse temperature, and Bt is the standard Brownian motion on Rd.

2.3 Bessel function

In this section, we will introduce Bessel function and modfied Bessel function along with
their integral representations, relations, and asymptotic behavior. These results will play
a key role in the proof of our main results.
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Bessel functions, first defined by the mathematician Daniel Bernoulli and then gen-
eralized by Friedrich Bessel, are canonical solutions of Bessel’s differential equation in
[AS48, Section 9.1].

An alternative definition of the (modified) Bessel function, for integer values of n, is
possible using integral representation:

Definition 2.3.1. [AS48, Section 9.1] The Bessel function is given by

Bn(x) := i−n

π

∫ π

0
eixcosθ cos(nθ)dθ. (2.20)

for n ∈N and x ∈R.

The modified Bessel function is given by

In(x) := 1
π

∫ π

0
excosθ cos(nθ)dθ. (2.21)

for n ∈N and x ∈R.

The relation between the Bessel function and the modified Bessel function is given by

In(x)= e−inπ/2Bn(xeiπ/2) (2.22)

as shown in [AS48, Section 9.6].

We will use the following lemma about the recurrence relation and derivatives of mod-
ified Bessel functions.

Lemma 2.3.2. [AS48, Section 9.6] Let In be the modified Bessel function defined as in
Definition 2.3.1. For n ∈N,

I ′n(x)= In+1(x)+ n
x

In(x), (2.23)

and I ′0(x)= I1(x).

By [AS48, Section 9.6], we have the following asymptotic results of modified Bessel
functions.

Lemma 2.3.3. Let In be the modified Bessel function defined as in Definition 2.3.1. For
n ∈N, as x →∞ we have

lim
x→∞

In(x)
x−1/2ex = 1p

2π
. (2.24)
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Chapter 3

The long time behavior of the energy
of the spherical SK model

In this chapter, we will consider the Langevin dynamics for the SSK model. Recall that
the definition of the spherical Sherrington-Kirkpatrick (SSK) model in Section 1.1. The
SSK model is described by the Hamiltonian

HJ(X )=− ∑
1≤i, j≤N

Ji j X i X j =−X ·JX (3.1)

where the spin variables X = (X1, . . . , XN) ∈RN lie on the sphere constraint ∥X∥2 =∑N
i=1 X2

i =
N, and J = {Ji j}1≤i, j≤N is the normalized symmetric Wigner matrix with mean zero and
E
[
J2

i j

]
= 1

N ,E
[
J2

ii
]= 2

N for 1≤ i < j ≤ N.

3.1 Main results

We consider the Langevin dynamics for the Sherrington-Kirkpatrick (SK) model defined
by the following system of stochastic differential equations (SDEs) as in [ADG01]:

dX i
t =

N∑
j=1

Ji j X
j
t dt− f ′

(
1
N

N∑
j=1

(X j
t )2

)
X j

t dt+β−1/2dW i
t , (3.2)

where J= {Ji j}1≤i, j≤N is a symmetric matrix of centered Gaussian random variables such
that E[J2

i j]= 1
N and E[J2

ii]= 2
N for 1≤ i < j ≤ N, f : [0,∞)→R satisfies f ′ to be non-negative
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and Lipschitz, β is a positive constant, and {W i
t }1≤i≤N is an N−dimensional Brownian

motion, independent of {Ji j}1≤i, j≤N and of the initial data {X i
0}1≤i≤N .

For any N Ê 1 and T Ê 0, the SDE (3.2) has a unique strong solution Xt = {X i
t : 1 ≤ i ≤

N, t ∈ [0,T]} on C ([0,T],RN). See [ADG01, Lemma 6.7] for a proof.

The second term in (3.2) is a Lagrange multiplier in order to implement a smooth
spherical constraint [ADG01]. The simplification caused by the SSK model is the invari-
ance under rotation for the SDE (3.2).

We write J = GTDG, where G is an orthogonal matrix with the uniform law on the
sphere and D = diag(σ1, . . . ,σN) is the diagonal matrix of the eigenvalues {σi}1≤i≤N of J.
As N →∞, we have 1

N
∑N

i=1δσi converges weakly to the semicircle law µD with compact
support [−2,2] by Theorem 2.1.2.

To simplify the SDE (3.2), we let both sides of (3.2) be multiplied by the rotation matrix
G which is invariant under rotation. We take Yt := GXt and Bt := GWt. Then the SDE
under the rotation is given by

dY i
t =

(
σi − f ′

(∥Yt∥2/N
))

Y i
t dt+β−1/2dBi

t, (3.3)

where ∥ ·∥ is the ℓ2 norm.

Denote by

KN(t, s) := 1
N

N∑
i=1

X i
t X i

s (3.4)

the empirical correlation function. We use abbreviated notation KN(t) := KN(t, t) for con-
venience. [ADG01] studied the dynamics of the empirical correlation KN and the limiting
point as N →∞ (N is the size of the system), which is the unique solution to a CHSCK
equation as follows.

Theorem 3.1.1. [ADG01, Theorem 2.3] Assume that the initial data {X i
0}1≤i≤N are i.i.d

with law µ0 so that EX∼µ0[eαX ] <∞ for some α > 0. Fix T Ê 0. As N →∞, KN converges
almost surely to deterministic limits K . Moreover, the limit K is the unique solution to the
following integro-differential equation:

K(t, s)= e−
∫ t

0 f ′(K(w))dw−∫ s
0 f ′(K(w))dw E

(σ,X0)∼π∞
[eσ(t+s)X2

0]

+β−1
∫ t∧s

0
e−

∫ t
r f ′(K(w))dw−∫ s

r f ′(K(w))dw E
(σ,X0)∼π∞

[eσ(t+s−2r)]dr,

where π∞ =µD ⊗µ0 and here we write K(s) := K(s.s).
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Remark 3.1.2. As emphasized in [ADG01], the aging is very dependent on initial condi-
tions. In addition to considering i.i.d. initial condition, the author also considers other
three types of initial conditions: the rotated independent initial conditions, the top eigen-
vector initial conditions, and the stationary initial conditions.

Remark 3.1.3. Based on the thermodynamic limit of KN(t, s) as N →∞, [ADG01] study
the long time evaluations of K(t, s) and established a dynamical phase transition in terms
of the asymptotic of K(t, s) in [ADG01, Proposition 3.2]. This is a first mathematical proof
of the aging phenomenon.

Next, we similarly consider how to describe how the energy of the system evolves over
time. Recall that the quadratic Hamiltonian of SSK model is defined by HJ(Xt)=XT

t JXt.
Note that we have HJ(Yt)=Y T

t DYt, where Yt =GX t and J=GTDG.

Let

HN(t) := 1
N

HJ(Yt)= 1
N

N∑
i=1

σi(Y i
t )2 (3.5)

be the energy of the system.

Our first result characterizes the limiting behavior of the energy HN(t) of the SSK
model as N →∞ for t ∈ [0,T] as follows.

Theorem 3.1.4. Assume that the initial data {X i
0}1≤i≤N are i.i.d with law µ0 so that

EX∼µ0[eαX ] < ∞ for some α > 0. Fix T Ê 0. Let K be the solution defined as in Theorem
3.1.1. As N →∞, HN converges almost surely to deterministic limits H. Moreover, the limit
H is the unique solution to the following integro-differential equation:

H(t)= e−2
∫ t

0 f ′(K(w))dw E
(σ,X0)∼π∞

[σe2σtX2
0] (3.6)

+β−1
∫ t

0
e−2

∫ t
s f ′(K(w))dw E

(σ,X0)∼π∞
[σe2σ(t−s)]ds (3.7)

where π∞ =µD ⊗µ0 and here we write K(s) := K(s.s).

Theorem 3.1.4 provides a precise characterization of H(t). However, the expression of
H(t) is unclear because it involves the fixed point equation of K(t) in Theorem 3.1.1. The
key point of this model is that we can exactly study the long time behavior of the energy
H(t) as t →∞.

In order to precisely determine the limit of the energy, we will define K(0,0) to be 1
and take function

f (x)= cx2

2
, (3.8)
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where c is a positive constant. By [Tao12, Theorem 2.4.2], recall that the density function
of semicircle law µD is given by

dµD = 1
2π

√
4− x21{−2≤x≤2}d x. (3.9)

Let m :R\supp(µD)→R be the Stieljes transform of the probability measure µD given
by

m(s)= Eσ∼µD

[
1

s−σ
]
= 2

s+
p

s2 −4
. (3.10)

Let βc be the critical temperature such that

βc = c
4

m(2)= c
4

. (3.11)

Our second result is as follows.

Theorem 3.1.5. Assume that K(0,0) = 1 and f (x) = cx2

2 for some positive constants c > 0.
Let H be the unique solution given in Theorem 3.1.1. Then, for βÉβc, we have

lim
t→∞H(t)= 0. (3.12)

For β>βc, we have

lim
t→∞H(t)= 4β− c

2
5
2
p
πcβ

+ 1
2
β−1. (3.13)

Theorem 3.1.5 describes the limit of energy function H(t) as t → ∞. This concludes
a dynamical phase transition phenomenon. See Figure 3.1 for the existence of a jump
discontinuity in the asymptotic limit of the function H(t), where we set c = 1.

The proof of Theorem 3.1.5 utilizes tools and techniques from the paper [ADG01], with
some modifications made to their results. We borrow the notation from [ADG01] and write

R(t) := exp
(
2

∫ t

0
f ′ (K(w))dw

)
(3.14)

with K(w)= K(w,w).

Then the expression of H(t) in Theorem 3.1.4 becomes

H(t)= R(t)−1
(
E[σe2σt]+β−1

∫ t

0
R(r)E[σe2σ(t−r)]dr

)
(3.15)

Note that the limit of H(t) is governed by the asymptotic of the derivative of the moment
generating function of σ. So it suffices to characteristic the limit of R(t) and E

[
σe2σt].

Similarly, we consider the asymptotic limit of H(t)/K(t) as t →∞.
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Figure 3.1: In this figure, we set c = 1 and plot the limiting behavior of the function H(t)
as t approaches infinity. H(t) exhibits a jump discontinuity in the phase transition at the
critical inverse temperature βc = 0.25.

Figure 3.2: In this figure, we set c = 1 and plot the limiting behavior of the function
H(t)/K(t) as t approaches infinity. There is a jump discontinuity in the phase transition at
the critical inverse temperature βc = 0.25.

Corollary 3.1.6. Assume the same setting as in Theorem 3.1.5. Then for βÉβc, we have

lim
t→∞

H(t)
K(t)

= 0. (3.16)

For β>βc, we have

lim
t→∞

H(t)
K(t)

= 2−3/2(4β− c)+p
πc

2−5/2(4β− c)+p
πc

(3.17)

The proof of Corollary 3.1.6 as β > βc is the same as the proof in Theorem 3.1.5. For
the proof of the case β≤βc, we apply the same idea of proving [LSS22, Theorem 1.2]. See
Figure 3.2 for the plot of the asymptotic limit of H(t)/K(t), where we set c = 1.

Proof. Consider first the regime β> βc. Recall that R(t) is defined as in (3.14) and K(t) is
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given in Theorem 3.1.1. We rewrite K(t) as follows:

K(t)= R−1(t)
(
E[e2tσ]+β−1

∫ t

0
R(r)E[e2(t−r)σ]dr

)
. (3.18)

We apply Lemma 3.2.4 and Lemma 3.2.3, and plug in the asymptotic limit of R(t) and
E[e2tσ], we get

lim
t→∞K(t)= 2− 7

2π− 1
2 (4β+1)

Cβ(4β− c)
+ 1

2
β−1. (3.19)

Combining this result and Theorem 3.1.5, we obtained the desired result.

For β < βc, we will show that limt→∞ K(t) = C for some non-zero constants C. Take
h(t)= R(t)K(t). Note that

R′(t)= 2cK(t)R(t)= 2ch(t). (3.20)

Thus, we have 2cLh(z)= zLR(z)−1.

By Lemma 3.2.5, we have

LR(z)= 1+ cm(z)
2z− cβ−1m(z)

(3.21)

Hence, we get

Lg(z)= 1
2c

(
czm(z)(1+β−1)− z

2z− cβ−1m(z)

)
. (3.22)

Note that Lg(z) has a simple pole at sβ, which is a solution to 2z = cβ−1m(z). Thus there
exists a constant C > 0 such that

lim
z→0

zLg(z+ sβ)= C (3.23)

By [BA03, Lemma 7.2], we have

lim
t→∞ e−2sβth(t)= C (3.24)

Hence, limt→∞ K(t) = C for some non-zero constants C. Hence, the desired follows from
Theorem 3.1.5.

For β = βc, we apply the same proof as β < βc. Note that limt→∞ K(t) = C1 for some
non-zero constants C1. Hence, we still obtain the desired result by Theorem 3.1.5.
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3.2 Proof of Theorem 3.1.5

We will first give the representation of the characteristic function of the semicircle law by
the Bessel function.

Lemma 3.2.1. Let B1(t) be the Bessel function defined as in Definition 2.3.1 for n = 1.
Recall that the eigenvalues σ of N ×N normalized symmetric Wigner matrix J follow the
semicircle law with distribution µD as in (3.9). Then we have

E[eitσ]= B1(2t)
t

(3.25)

Proof. By [Chu01, Theorem 6.2.3], it is enough to calculate the inverse of the characteristic
function of B1(2t)/t is the density of the semicircle law.

Note that by the inversion formula we have

1
2π

∫
R

1
t
B1 (2t) e−itxdt = 1

2iπ2

∫
R

∫ π

0

1
t

e2itcosθ cosθe−itxdθdt

= 1
2iπ2

∫ π

0
cosθ

∫
R

1
t

eit(2cosθ−x)dt︸ ︷︷ ︸
=−iπ·Sign(2cosθ−x)

dθ

=− 1
2π

∫ π

0
cosθ ·Sign(2cosθ− x)dθ,

where Sign(·) is the Sign function.

Clearly, we have Sign(2cosθ− x) = −1 for x > 2, and sgn(2cosθ− x) = 1 for x < −2. For
both cases, the above integral is zero due to

∫ π
0 cosθdθ = 0.

Consider the case that −2≤ x ≤ 2. Set u = 2cosθ− x. The above integral becomes

− 1
2π

∫ 2−x

−2−x

u+ x
2

1√
1− (u+x

2

)2
Sign(u)du = 1

2π

{∫ 0

−2−x

u+ x
2

1√
1− (u+x

2

)2
du−

∫ 2−x

0

u+ x
2

1√
1− (u+x

2

)2
du

}

= 1
2π

(
2

∫ x
2

−1

y√
1− y2

d y−2
∫ 1

x
2

y√
1− y2

d y

)

= 1
2π

√
4− x2,

where we take variable y= (u+ x)/2 in the second line for −2≤ x ≤ 2.
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The following Lemma derives the asymptotic limit of the derivative of the moment
generating function of σ.

Lemma 3.2.2. Recall that the eigenvalues σ of N×N normalized symmetric Wigner matrix
J follow the semicircle law with distribution µD as in (3.9). Then we have:

lim
t→∞

Eσ∼µD [σetσ]
t−3/2e2t = 1

2
p
π

. (3.26)

Proof. Substitute t by it in Lemma 3.2.1, then we have

E[etσ]= B1(−2it)
−2it

(3.27)

where B1(·) is the Bessel function.

By equation (2.22), we get

E[etσ]= I1(2t)
2t

, (3.28)

where I1(2t) is the modified Bessel function.

Thus, the derivative of the moment generating function can be expressed as

E[σetσ]=−t−2I1(2t)+2t−1I ′1(2t) (3.29)

Combine (3.29) and Lemma 2.3.2 we have

E[σetσ]= I2(2t)
t

. (3.30)

By Lemma 2.3.3, it yields the desired result.

Similarly, we have the following result.

Lemma 3.2.3. Assume the same setting holds as in Lemma 3.2.2, we have

lim
t→∞

Eσ∼µD [etσ]
t−3/2e2t = 1

4
p
π

. (3.31)
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Let m(s) be defined as in (3.10). We define

p(s,β) := 2βs
c

−m(s). (3.32)

Recall that βc is the critical temperature defined in (3.11). For any β ∈ (0,βc), there
exists a unique solution of p(s,β) = 0 on the interval (2,∞), denoted by sβ. We can solve
for sβ as sβ = 2(1− (1−β/βc)2)−1/2. For β>βc, we simply define sβ = 2.

We can get the asymptotic limit of R(t) as follows.

Lemma 3.2.4. [ADG01, Lemma 3.3] Recall that sβ = 2(1−(1−β/βc)2)−1/2 for any β ∈ (0,βc),
and sβ = 2 for β Ê βc. Let Ψ = 0 for β < βc, Ψ = 1

2 for β = βc, and Ψ = 3
2 for β > βc. Then

there exists a constant Cβ > 0 such that

lim
x→∞

R(x)
x−Ψe2xsβ

= Cβ. (3.33)

Moreover, we have

Cβ =


β(cm(sβ)+1)
2β−cm′(sβ) , β<βc
β(c+1)

c , β=βc
cβ(4β+1)
(4β−c)2 , β>βc

where c is the coefficient constant defined in (3.8) and m(s) is defined as in (3.10).

Combining Lemma 3.2.2 and Lemma 3.2.4 we can characterize the limit of H(t) as
t →∞. In order to give a precise result of the asymptotic limit, we also need to do Laplace
transformation on both sides of the equation (3.15) to get an identity as follows.

Define the Laplace transform of the function R(t) for z > 2 by

LR(z) :=
∫ ∞

0
e−2ztR(t)dt. (3.34)

Lemma 3.2.5. The Laplace transform LR(z) satisfies the equation

2zLR(z)−1= cm(z)(1+β−1LR(z)), (3.35)

where c is the coefficient constant defined in (3.8) and m(s) is defined as in (3.10).
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Proof. Note that

K(t)R(t)= K(t)e2c
∫ t

0 K(w)dw = 1
2c
∂tR(t).

Then we have the linear Volterra integro-differential equation

R′(t)= 2cK(t)R(t)= 2c
(
E[e2σt]+β−1

∫ t

0
R(r)E[e2σ(t−r)]dr

)
. (3.36)

The Laplace transform of the LHS in (3.36) is

LR′(z)=−R(0)+2zLR(z)=−1+2zLR(z).

Note that the term inside the integral on RHS in (3.36) can be expressed as the con-
volution of R(t) and e2σt. We write it as (e2σ· ∗R)(t) and use the fact that the Laplace
transform of this one is equal to product of the Laplace transform of each function.

Thus, the RHS becomes∫ ∞

0
e−2ztR′(t)dt =

∫ ∞

0
e−2zt

(
2c

(
E[e2σt]+β−1

∫ t

0
R(r)E[e2σ(t−r)]dr

))
dt

= cE
[

1
z−σ

]
+2cβ−1E

[∫ ∞

0
e−2t(z−σ)dt

]
Lg(z)

= cE
[

1
z−σ

]
+ cβ−1E

[
1

z−σ
]
Lg(z)

Hence, combining the Laplace transforms of the left and right sides, we obtain

2zLR(z)= 1+ cm(z)+ cβ−1m(z)LR(z).

We now turn to the proof of Theorem 3.1.5.

Proof of Theorem 3.1.5. (i) We start by considering the case where β>βc.

Using Lemma 3.2.4, we obtain an asymptotic limit for R(t) as:

R(t)∼t→∞ Cβt−3/2e4t,

where Cβ = cβ(4β+1)
(4β−c)2 .
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Combining the asymptotic limit for R(t) and Lemma 3.2.2, we notice that the limit of
the first term of H(t) defined as in (3.15) is:

lim
t→∞R(t)−1E[σe2σt]= lim

t→∞

E[σe2σt]
(2t)−3/2e4t (2t)−3/2e4t

R(t)
Cβt−3/2e4t Cβt−3/2e4t

= 2−5/2
p
πCβ

. (3.37)

Next, we multiply the integral in equation (3.15) by the asymptotic limit of R(t) and
split it into three parts: for t →∞, x →∞, and x/t → 0,

C−1
β t

3
2 e−4t

∫ t

0
R(r)E[σe2σ(t−r)]dr = C−1

β t
3
2 e−4t

(∫ x

0
R(r)E[σe2σ(t−r)]dr

+
∫ t−x

x
R(r)E[σe2σ(t−r)]dr+

∫ t

t−x
R(r)E[σe2σ(t−r)]dr

)
= C−1

β t
3
2 e−4t

(∫ x

0
R(r)E[σe2σ(t−r)]dr

+
∫ t−x

x
R(r)E[σe2σ(t−r)]dr+

∫ x

0
R(t− r)E[σe2σ(r)]dr

)
=: I1 + I2 + I3.

We now estimate each term separately. For I1, we have:

I1 = C−1
β t

3
2 e−4t

∫ x

0
R(r)E[σe2σ(t−r)]dr

= C−1
β t

3
2 e−4t

∫ x

0
R(r)

E[σe2σ(t−r)]

(2(t− r))−
3
2 e4(t−r)

(2(t− r))−
3
2 e4(t−r)dr

= 2− 3
2 C−1

β

∫ x

0
R(r)e−4r

(
1

2
p
π
+ o(1)

)(
t

t− r

) 3
2

dr

= 2− 3
2 C−1

β

∫ x

0
R(r)e−4r

(
1

2
p
π
+ o(1)

)
(1+ o(1))dr

= 2− 5
2 C−1

β

1p
π

∫ x

0
R(r)e−4rdr

For I2, we can show that it is of smaller order than I1 and I3 and can be neglected.
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Indeed, we have

I2 = C−1
β t

3
2 e−4t

∫ t−x

x
R(r)E[σe2σ(t−r)]dr

= C−1
β t

3
2 e−4t

∫ t−x

x

R(r)

Cβr−
3
2 e4r

Cβr−
3
2 e4r E[σe2σ(t−r)]

(2(t− r))−
3
2 e4(t−r)

(2(t− r))−
3
2 e4(t−r)dr

= C−1
β t

3
2 e−4t

∫ t−x

x
Cβr−

3
2 e4r

(
1

2
p
π
+ o(1)

)
(2(t− r))−

3
2 e4(t−r)dr

= 2− 5
2

1p
π

∫ t−x

x

(
t

r(t− r)

) 3
2

dr

= o(1)

Finally, for I3, we have:

I3 =
∫ x

0
E[σe2σr]e−4rdr.

Note that we have∫ ∞

0
|R(r)|e−4rdr <∞ and

∫ ∞

0
E[σe2σr]e−4rdr <∞.

Then we have

lim
t→∞H(t)= 2− 5

2

Cβ
p
π
+ 2− 5

2β−1

Cβ
p
π

∫ ∞

0
R(r)e−4rdr+β−1

∫ ∞

0
E[σe2σr]e−4rdr. (3.38)

By Lemma 3.2.5, we have∫ ∞

0
e−4rR(r)dr =LR(2)= β(1+ c)

4β− c
(3.39)

Also, note that ∫ ∞

0
E[σe2σr]e−4rdr = E

[
σ

∫ ∞

0
e−2(2−σ)rdr

]
= E

[
σ

2(2−σ)

]
= 1

2

(
−1+E

[
2

2−σ
])

= 1
2

. (3.40)
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Hence, plug (3.39) and (3.40) into (3.38) we have

lim
t→∞H(t)= 2− 5

2

Cβ
p
π
+

(
2− 5

2

Cβ
p
π

)(
1+ c

4β− c

)
+ 1

2
β−1 = 2− 5

2 (4β− c)p
πcβ

+ 1
2
β−1. (3.41)

(ii) As β=βc, by Lemma 3.2.4, we have

R(t)∼t↑∞ Cβt−1/2e4t

where Cβ = β(c+1)
c .

By Lemma 3.2.2 and Lemma 3.2.4, the first term R−1(t)E[σe2σt] in H(t) converges to
0 as t →∞.

Note that we have for x →∞, t →∞, x/t → 0

C−1
β t

1
2 e−4t

∫ t

0
R(r)E[σe2σ(t−r)]dr = C−1

β t
1
2 e−4t

(∫ x

0
R(r)E[σe2σ(t−r)]dr

+
∫ t−x

x
R(r)E[σe2σ(t−r)]dr+

∫ x

0
R(t− r)E[σe2σr]dr

)
=: E1 +E2 +E3

Then we have

E1 = 2− 3
2 C−1

β

∫ x

0
R(r)e−4r t

1
2

(t− r)
3
2

(
1

2
p
π
+ o(1)

)
dr = o(1)

where it follows from t
1
2

(t−r)
3
2
= 1

t (1+ o(1))= o(1).

Similarly, we have E3 = o(1).

Also, we have

E2 = 2− 3
2p
π

∫ t−x

x

(
t
r

) 1
2
(

1
t− r

) 3
2

dr =O(x−
1
2 ).

Hence, we have
lim
t→∞H(t)= 0. (3.42)
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(iii) In the case of β<βc:

By Lemma 3.2.4, we have
R(t)∼t↑∞ Cβe2sβt,

where Cβ = β(cm(sβ)+1)
2β−cm′(sβ) .

By Lemma 3.2.2 and Lemma 3.2.4, the first term R−1(t)E[σe2σt] in H(t) converges to
0 as t →∞.

Note that we have for x →∞, t →∞, x/t → 0

C−1
β e−2sβt

∫ t

0
R(r)E[σe2σ(t−r)]dr = C−1

β e−2sβt
(∫ x

0
R(r)E[σe2σ(t−r)]dr

+
∫ t−x

x
R(r)E[σe2σ(t−r)]dr+

∫ x

0
R(t− r)E[σe2σr]dr

)
=: F1 +F2 +F3

Then we have

F1 = 2− 3
2 C−1

β

∫ x

0
R(r)e−4r 1

(t− r)
3
2

e−2(sβ−2)t
(

1
2
p
π
+ o(1)

)
dr = o(1)

where it follows from t
1
2

(t−r)
3
2
= 1

t (1+ o(1))= o(1) and sβ > 2.

Similarly, we have F3 = o(1).

Also, we have

F2 = 2− 3
2p
π

∫ t−x

x
e−2(sβ−2)(t−r)

(
1

t− r

) 3
2

dr =O(x−
1
2 ).

Hence, we have
lim
t→∞H(t)= 0. (3.43)
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3.3 Proof of Theorem 3.1.4

Recall that f ′ is non-negative and Lipschitz as defined in (3.2). Recall that K = K(t, t) is
defined in (3.4). Define Rθ

τ(K) := e−
∫ θ
τ f ′(K(s))ds and

DRθ
τ(K)= d

dτ
Rθ
τ(K)= f ′(K(τ,τ))e−

∫ θ
τ f ′(K(s))ds (3.44)

We have the following bound on Rθ
τ(K) and DRθ

τ(K).

Lemma 3.3.1. [ADG01, Theorem 5.3] Recall that we define f ′,Rθ
τ(K), and DRθ

τ(K) as
above. Then we have

1. for any 0≤ τ≤ θ ≤ T and K ∈C([0,T]2), we have

0≤ Rθ
τ(K)≤ 1, and

∫ t

0
|Rθ

τ(K)|dτ≤ 1. (3.45)

2. for every θ ≤ T, we have

sup
τ≤θ

|Rθ
τ(K)−Rθ

τ(K̃)| ≤ ∥ f ′∥L

∫ θ

0
|K(s, s)− K̃(s, s)|ds, (3.46)

where ∥ f ′∥L is the Lipschitz norm of f ′.

3. for any 0≤ τ≤ θ ≤ T,

|DRθ
τ(K)−DRθ

τ(K̃)| ≤ ∥ f ′∥L

{
|K(τ,τ)− K̃(τ,τ)|+

(
DRθ

τ(K)+DRθ
τ(K̃)

)∫ θ

0
|K(s, s)− K̃(s, s)|ds

}
.

Consider the following collections of functions with domain space R2×C([0,T]) for T > 0
and range space one of C([0,T] j) for j = 1,2,3:

G1 := {g j, j = 1,2,3 : g1(Y0,σ,B·)(t)=σeσt(Y0)2, g2(·)(t)=σB2
t , g3(·)(t)=σY0Bt}.

G2 := {g j, j = 4,5 : g4(Y0,σ,B·)(s, t)=σY0Bseσt, g5(·)(s, t)=σ2Y0Bseσt}.

G3 := {g j, j = 6,7 : g6(Y0,σ,B·)(u,v, t)=σBuBveσt, g7(·)(u,v, t)=σ2BuBveσt}.
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Then our collection of functions is

G =G1 ∪G2 ∪G3. (3.47)

Define the empirical measure

νN
T := 1

N

N∑
i=1

δY i
0 ,σi ,Bi

[0,T]
. (3.48)

Define for g ∈G

CN :=
∫

g(Y0,σ,B·)dνN
T (Y0,σ,B·)= 1

N

N∑
i=1

g(Y i
0 ,σi,Bi

· ), (3.49)

where note that for g ∈G j,
∫

gdνN
T ∈C([0,T] j) for j = 1,2,3.

Proof of Theorem 3.1.4. 1. Existence and uniqueness of the limit

Apply Ito’s formula described as in Theorem 2.2.2, we have

Y i
t = e

∫ t
0 (σi− f ′(KN (r)))drY i

0 +β−1/2
∫ t

0
e
∫ t

s (σi− f ′(KN (r)))drdBi
s. (3.50)

Define Ft(K ,σ)= f ′((K(t, t))−σ. By Lemma 2.2.3, we have

Y i
t = e−

∫ t
0 Fr(KN ,σi)drY i

0 +β−1/2Bi
t +

(
−β−1/2

∫ t

0
Bi

sFs(KN ,σi)e−
∫ t

s Fr(KN ,σi)drds
)
. (3.51)

Then we have

Y i
t = R t

0(KN)eσ
i tY i

0︸ ︷︷ ︸
=:T i

1(t)

+β−1/2Bi
t︸ ︷︷ ︸

=:T i
2(t)

+
(
−β−1/2

∫ t

0
Bi

seσ
i(t−s)(DR t

s(KN)−σiR t
s(KN))ds

)
︸ ︷︷ ︸

=:T i
3(t)

.

(3.52)

We denote the sum of three terms as T i
1(t), T i

2(t), and T i
3(t), respectively. In this case,

Y i
t = T i

1(t)+T i
2(t)+T i

3(t). (3.53)

Then the energy HN(t) becomes

HN(t)= 1
N

N∑
i=1

σi

(
3∑

j=1
(T i

j(t))
2 +2

∑
j ̸=k

T i
j(t)T

i
k(t)

)
, (3.54)
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Plug into the expression of T i
1(t),T i

2(t),T i
3(t)

HN(t)= 1
N

N∑
i=1

σi(R t
0(KN))2e2σi t(Y i

0 )2 + 1
N

N∑
i=1

σiβ−1(Bi
t)

2

+ β−1

N

N∑
i=1

σi
∫ t

0

∫ t

0
Bi

uBi
veσ

i(2t−u−v)
(
DR t

u(KN)−σiR t
v(KN)

)(
DR t

v(KN)−σiR t
v(KN)

)
dudv

+ 2
N

N∑
i=1

σi
{
β−1/2Y i

0 Bi
tR

t
0(KN)−β−1/2

∫ t

0
Y i

0 Bi
seσ

i(2t−s)R t
0(KN)

(
DR t

s(KN)−σiR t
s(KN)

)
ds

−β−1
∫ t

0
Bi

tB
i
seσ

i(t−s)
(
DR t

s(KN)−σiR t
s(KN)

)
ds

}
Hence, the above equation of HN(t) specifies the function

Φ : C([0,T]2)×C([0,T])|G1|×C([0,T]2)|G2|×C([0,T]3)|G3| →C([0,T])

such that
HN =Φ(KN ,CN).

By Lemma 3.3.1, for any CN defined as in (3.49) and KN , K̃N ∈C([0,T]2), there exists
a constant C1 > 0 so that

sup
0≤t≤T

|Φ(KN ,CN)−Φ(K̃N ,CN)| ≤ C1

∫ t

0
|KN(s, s)− K̃N(s, s)|ds (3.55)

Similarly, we apply Lemma 3.3.1, then for any CN ,C̃N defined as in (3.49) and K̃N ∈
C([0,T]2), there exists a constant C2 > 0 so that

sup
0≤t≤T

|Φ(K̃N ,CN)−Φ(K̃N ,C̃N)| ≤ C2∥CN − C̃N∥∞ (3.56)

By Theorem 3.1.1, we know that KN converges to the deterministic limit K almost
surely and K is unique. By [LSS22, Lemma 3.7], each element in CN converges to
deterministic limits C almost surely under the i.i.d. initial conditions.

Combining (3.55) and (3.56), then we have

∥Φ(KN ,CN)−Φ(K ,C )∥∞ = ∥Φ(KN ,CN)−Φ(KN ,C )+Φ(KN ,C )−Φ(K ,C )∥∞
≤ ∥Φ(KN ,CN)−Φ(KN ,C )∥∞+∥Φ(KN ,C )−Φ(K ,C )∥∞
≤ C1∥KN −K∥∞+C2∥CN −C ∥∞ → 0, as N →∞.
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Hence, HN converges to deterministic function H.

Also, we have H =Φ(K ,C ). Indeed,

|H−Φ(K ,C )| ≤ |H−HN |+ |HN −Φ(K ,C )|→ 0, as N →∞.

2. Equations for the limit points

Next, we characterize the limit H as follows. Recall that Rθ
τ(K)= e−

∫ θ
τ f ′(K(s))ds. Then

Yt can be expressed as

Y i
t = R t

0(KN)eσ
i tY i

0 +β−1/2
∫ t

0
R t

s(KN)eσ
i(t−s)dBi

s.

Substitute the above expression of Y i
t to HN(t) defined as in (3.5), then we have

HN(t)= 1
N

N∑
i=1

σi e2σi t(Y i
0 )2(R t

0(KN))2 + β−1

N

N∑
i=1

σi
(∫ t

0
R t

s(KN)eσ
i(t−s)dBi

s

)2

+ 2β−1/2

N

N∑
i=1

σi
(
R t

0(KN)eσ
i tY i

0

)∫ t

0
R t

s(KN)eσ
i(t−s)dBi

s.

As N →∞, note that the first term is convergence to its expectation as in (3.6) by
strong law of large number (SLLN) [Dur19, Theorem 2.4.1], the limit of the second
term given in (3.7) is obtained by SLLN and Itô isometry [Øks03, Lemma 3.1.5], and
the last term is convergence to zero by SLLN. Note that we take the limit that re-
quires the empirical measure νN

T := 1
N

∑N
i=1δY i

0 ,σi ,Bi
[0,T]

converges to the desired limits
under the i.i.d. initial conditions. Hence, we obtain the desired integro-differential
equation as in Theorem 3.1.4.
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Chapter 4

The complexity of the gradient
descent

4.1 The hitting time of gradient descent

We consider the normalized N×N symmetric Wigner matrix J= {Ji j}1≤i, j≤N defined as in
Definition 2.1.1 (e.g., GOE and GUE are two special cases of Wigner matrix). We denote
N eigenvalues of J in increasing order as

λ1 ≤λ2 ≤ ·· · ≤λN .

We define v1,v2, . . . ,vN be an orthonormal basis of eigenvectors of J so that Jvi = λivi for
i = 1, . . . , N.

It is clear that if the Wigner matrix J obeys condition C1 with constant C0 = 4 as in
Definition 2.1.5, then the criterion 2.8 holds. Our main result needs to ensure that the
Tracy-Widom law holds, so we only need to ensure that the Wigner matrix obeys condition
C1 with constant C0 = 4 by Theorem 2.1.6.

Next, we consider the dynamics of the spin glasses model on the sphere. Recall that
the SK model defined on the unit sphere is described by the Hamiltonian

HJ(X )= X TJX ,

where X = (X1, . . . , XN) with ∥X∥2 = 1 and J is the normalized symmetric Wigner matrix.
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The zero-temperature dynamics (a.k.a., gradient descent algorithm) of the SK model
on the unit sphere is defined as follows:

dX t =−∇SN−1 HJ(X t)dt, (4.1)

where the initial data X0 = {X i
0}1≤i≤N is uniformly distributed on the unit sphere SN−1,

and ∇SN−1 is the gradient on the unit sphere SN−1 and

∇SN−1 f (x) :=∇ f (x)− (∇ f (x) · x)x, x ∈RN

for smooth functions f .

Similarly, the Langevin dynamics of the SK model on the sphere are defined by the
following SDE.

dX t =−∇SN−1 HJ(X t)dt+β−1/2dBt, (4.2)

where the initial condition X0 is uniformly distributed on the unit sphere SN−1, Bt is the
Brownian motion on the unit sphere SN−1, and β is the inverse temperature. Brownian
motion on the unit sphere is a solution of the integral equation [Hsu02, Example 3.3.2].

In this chapter, we mainly study the algorithm complexity of using the gradient descent
algorithm to find the extreme eigenvalues of the Wigner matrix. This is related to our
previous main results about the asymptotic limit of energy in Chapter 3 for the description
of the time to the equilibrium state of the SK model.

Recall that we randomly start with an initial condition X0 uniformly distributed on
the unit sphere SN−1, and consider the zero-temperature dynamics defined in (4.1).

Fix ε ∈ (0,1). Denote by Tε the hitting time of the overlap between the output X t of
the gradient descent and eigenvector v1 corresponding to the smallest eigenvalue of J is
greater than ε, that is

Tε := inf
t>0

{|v1 · X t| Ê ε}.

Our main result is the lower bound and upper bound of the hitting time Tε as follows.

Theorem 4.1.1. Assume that the normalized N × N symmetric Wigner matrix J obeys
condition C1 with constant C0 = 4. Consider the gradient descent described in (4.1) with
the same setting as before. Let the hitting time Tε be defined as before. For every δ> 0, there
exist constants C1 = C1(δ)> 0, C2 = C2(δ)> 0, and C3 = C3(ε,δ)> 0 such that

lim
N→∞

P
(
C1N2/3 < Tε < C2N2/3 log(C3N)

)
> 1−δ.

The upper bound in Theorem 4.1.1 is also proved in [Bra22].
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4.2 Proof of Theorem 4.1.1

Recall that λ1 ≤ ·· · ≤λN are N eigenvalues of the Wigner matrix J in increasing order. Re-
call that vi is the orthonormal basis of eigenvectors of J corresponding to the i-th smallest
eigenvalue λi for i = 1, . . . , N. Define the overlap of the output X t and eigenvectors vi of J
by hi(t) := vi · X t for i = 1, . . . , N. Note that we can solve hi(t) for i = 1, . . . , N as follows.

Lemma 4.2.1. Assume that the same setting holds as in Theorem 4.1.1. Then we have

|h j(t)| =
|h j(0)|e−2λ j t√∑N

i=1 h2
i (0)e−4λi t

. (4.3)

Proof. Note that the gradient descent (4.1) can be simplified as follows

dX t =− (∇HJ(X t)− (∇HJ(X t) · X t)X t)dt =−2JX tdt+2HJ(X t)X tdt. (4.4)

By spectral decomposition we have

J=∑
i

vivT
i λi,

where v1, . . . ,vN are eigenvectors corresponding to eigenvalues λ1 ≤λ2 ≤ ·· · ≤λN of J.

Note that
HJ(X t)= X t ·JX t =

∑
i
λi(hi(t))2.

Consider the dot product v1 on the both sides of (4.4) and substitute the above equation
of HJ(X t) to get

1
2

h′
1(t)= h1(t)HJ(X t)−v1 · (

∑
i

vivT
i λi)X t

= h(t)HJ(X t)−λ1v1 · X t

= h1(t)HJ(X t)−λ1h1(t).

By the fact that
∑

i hi(t)2 = 1 we have

1
2

h′
1(t)= (HJ(X t)−λ1)h(t)=

N∑
i=1

[(λi −λ1)h2
i ]h1(t). (4.5)
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where we write hi(t)= hi for convenience, i = 1, . . . , N.

Similarly, we have
1
2

h′
j(t)=

N∑
i=1

[(λi −λ j)h2
i ]h j(t). (4.6)

Multiply h j(t) on the both side of (4.6) yields

(h2
j(t))

′ = 4
N∑

i=1

(
(λi −λ j)h2

i
)
h2

j

Denote f (t)=∑
iλih2

i (t) and F(t)= ∫ t
0 f (s)ds.

Both sides of the equation are divided by h2
j yields for j = 1, . . . , N

(logh2
j(t))

′ = 4 f (t)−4λ j

Integrating the two sides with respect to time t yields

h2
j(t)= h j(0)2 exp

(
4F(t)−4λ j t

)
(4.7)

Taking the derivative with respect to both sides of F(t) and substitute (4.7) yields

F ′(t)=∑
i
λih2

i (t)= e4F(t)

(∑
i
λih2

i (0)e−4λt t

)
.

Both sides are divided by the integration factor e4F(t) and integrating with respect to t to
obtain

e−4F(t) −1=∑
h2

i (0)(e−4λi t −1). (4.8)

So we get

F(t)=−1
4

log

(∑
i

h2
i (0)e−4λi t

)
. (4.9)

Substituting (4.9) into equation (4.7) yields for j = 1,2, . . . , N

|h j(t)| =
|h j(0)|e−2λ j t√∑N

i=1 h2
i (0)e−4λi t

. (4.10)
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To prove Theorem 4.1.1, we need the following Lemma.

Lemma 4.2.2. Consider a sequence of i.i.d. positive random variables X1, . . . , Xk. For every
constant C > 0, we have

P

(
X1 + X2 +·· ·+ Xk

X j
> C

)
> 1− C

k
, for j = 1, . . . ,k.

Proof. Note that

0< E
[

X1∑k
i=1 X i

]
= E

[
X2∑k

i=1 X i

]
= ·· · = E

[
Xk∑k

i=1 X i

]
< 1.

Then we have

E

[
X1∑k

i=1 X i

]
= 1

k
.

By Markov’s inequality, we get for every constant C > 0

P

(
X1 + X2 +·· ·+ Xk

X j
≤ C

)
=P

( X j

X1 + X2 +·· ·+ Xk
Ê 1/C

)
≤ C ·E

[ X j∑
i X i

]
= C

k
. (4.11)

Lemma 4.2.3. [Lan22, Lemma 2.3] Let J be the normalized symmetric Wigner matrix.
Assume that J obeys condition C1 with constant C0 = 4. Let λ1 < λ2 be the two smallest
eigenvalues of J. Then for every ε> 0, there exists δ> 0 so that

P
(
N2/3(λ2 −λ1)Ê δ

)
Ê 1−ε (4.12)

for all N large enough. This result also holds for the two largest eigenvalue λN−1 <λN .

This result follows from combining Theorem 2.1.6 and continuous mapping theorem in
[Dur19, Theorem 3.2.10]. Moreover, we have λ2 −λ1 =Op(N−2/3).

We require the following Lemma.

Lemma 4.2.4. Let X be a standard normal random variable. Then for every ϵ > 0, there
exists a constant δ> 0 so that

P(|X | > δ)Ê 1−ϵ. (4.13)
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Proof. For every ϵ> 0, there exists a sufficiently small constant δ ∈
(
0,

√
π
2ε

)
so that

P(|X | ≤ δ)= 1p
2π

∫ δ

−δ
e−x2/2dx ≤ 2p

2π
δ< ϵ, (4.14)

where the above inequality follows from the fact that e−x2/2 ≤ 1 for x ∈R.

Armed with the previous results, we then can prove our main result.

The proof of Theorem 4.1.1. By Lemma 4.2.1, we have

|h1(t)| = |h1(0)|e−2λ1t√∑
i h2

i (0)e−4λi t
= |h1(0)|√

h2
1(0)+∑N

i=2 h2
i (0)e−4(λi−λ1)t

(4.15)

Next, we consider the upper and lower bound of the hitting time Tε, respectively.

1. Lower bound of Tε.

For any δ> 0, we fix the first k terms of the denominator of (4.15) and then we will
find desired k below depending on ϵ and δ (independent of N):

|h1(t)| ≤ |h1(0)|√
h2

1(0)+∑k
i=2 h2

i (0)e−4t(λi−λ1)
. (4.16)

Note that (λi −λ1) ≤ (λk −λ1) for i = 1, . . . ,k− 1. Then we upper bound the above
inequality:

|h1(t)| ≤ |h1(0)|√
h2

1(0)+ e−4t(λk−λ1) ∑k
i=2 h2

i (0)
(4.17)

For t Ê Tϵ, we have

ϵ≤ |h1(t)| ≤ |h1(0)|√
h2

1(0)+ e−4t(λk−λ1) ∑k
i=2 h2

i (0)
(4.18)

and we get

Tϵ Ê 1
4(λk −λ1)

log

(
h2

2(0)+·· ·+h2
k(0)

h2
1(0)(ϵ−2 −1)

)
(4.19)
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For any δ> 0, we apply Lemma 4.2.2 (choose C = 2ε−2 −1):

lim
N→∞

P

(
h2

2(0)+·· ·+h2
k(0)

h2
1(0)(ϵ−2 −1)

> 2

)
= lim

N→∞
P

(
h2

1(0)+h2
2(0)+·· ·+h2

k(0)

h2
1(0)

> 2
ϵ2 −1

)
(4.20)

Ê 1−δ/2, (4.21)

where we take k = [2(2ϵ−2 −1)/δ]+1.

By the similar argument of Lemma 4.2.3, for any δ > 0 there exists a constant c1 =
c1(δ)> 0 so that

lim
N→∞

P(N2/3(λk −λ1)< c1)Ê 1−δ/2 (4.22)

Hence, for any δ> 0 there exists c2 = log2
4c1

so that

lim
N→∞

P(Tε > c2N2/3)Ê 1−δ. (4.23)

2. Upper bound of Tε.

Note that (λ2 −λ1) ≤ (λi −λ1) for i = 3, . . . , N. We upper bound each term of the
denominator in (4.15) by e−4t(λi−λ1) ≤ e−4t(λ2−λ1) for i = 3, . . . , N. Then we have

|h1(t)| Ê |h1(0)|√
h2

1(0)+ e−4(λ2−λ1)t ∑N
i=2 h2

i (0)
= |h1(0)|√

h2
1(0)+ e−4(λ2−λ1)t(1−h2

1(0))
(4.24)

For t ≤ Tε, we get

εÊ |h1(t)| Ê |h1(0)|√
h2

1(0)+ e−4(λ2−λ1)t(1−h2
1(0))

. (4.25)

and this yields

Tε ≤ 1
4(λ2 −λ1)

log

(
h−2

1 (0)−1
ε−2 −1

)
. (4.26)

By Lemma 4.2.3, for any δ> 0 there exists a constant c3 = c3(δ)> 0 so that

lim
N→∞

P
(
N2/3(λ2 −λ1)Ê c3

)
Ê 1−δ/2 (4.27)
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Note that
p

Nh1(0) is asymptotic Gaussian by Lemma 2.1.10. By Lemma 4.2.4, for
every δ> 0, there exists a constant c4 > 0 so that

lim
N→∞

P
(p

N|h1(0)| > c4

)
Ê 1−δ/2. (4.28)

For any δ> 0, we take c5 = 1
c2

4(ε−2−1)
> 0 and then get

P

(
h−2

1 (0)−1
ε−2 −1

< c5N

)
=P

(
|h1(0)| >

√
c4

c2
4 +N

)
=P

√
1+ c2

4

N

p
N|h1(0)| > c4


By inequality (4.28), for every δ> 0 we have

lim
N→∞

P

(
h−2

1 (0)−1
ε−2 −1

< c5N

)
Ê 1−δ/2. (4.29)

Combining the two upper bounds (4.27) and (4.29), for every δ > 0 there exist con-
stants c5 defined as above and c6 = 1

4c3
so that

lim
N→∞

P
(
Tε < c6N2/3 log(c5N)

)
Ê 1−δ. (4.30)
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