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Abstract

The turnpike phenomenon describes the long time behavior of optimally controlled systems
whose optimal trajectories over a sufficiently large time horizon stay for most of the time close to
a prescribed trajectory of the system. This thesis is devoted to the characterization of the turnpike
property for generalized LQ optimal control problem.

Through our research, we derive both sufficient and necessary conditions for the turnpike
property in infinite dimensional setting. It is shown that the turnpike property is closely related
to certain structural properties of the control system. In particular, we deduce an equivalent
condition of the turnpike property in terms of the exponential stabilizability and detectability
of the system for finite dimensional case and point spectrum case. We also show in our the-
sis that the turnpike property for generalized LQ optimal control problem is equivalent to the
turnpike property for LQ optimal control problem plus an algebraic condition. Next, we inves-
tigate the applications of our results to the generalized LQ optimal control problem subject to
the parabolic equations, wave equations, delay equations and in relation with model predictive
control schemes.
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Chapter 1

Introduction

1.1 Optimal control theory for infinite dimensional systems

Infinite dimensional systems are used to describe many phenomena in the real world, such as
heat conduction, control of elastic structures, chemical processes, fluid dynamics, fusion reac-
tors, metal casting processes, etc., all lie within this area. In this thesis, we focus on infinite
dimensional problems such that the state evolution is described by an abstract evolution equa-
tion. This is a very standard framework with reasonably wide range of applications. A large
amount of Partial Differential Equations (PDEs) and Functional Differential Equations (FDEs),
including Delay differential equations, can all be formulated into this framework.

It is widely recognized that the Pontryagin’s maximum principle, the Bellman’s dynamic
programming method, and the optimal linear regulator theory are three big milestones of mod-
ern optimal control theory for finite dimensional systems. Optimal control theory for infinite-
dimensional systems, on the other hand, dates back to the 1960s, with the main goal of estab-
lishing the infinite-dimensional version of the three fundamental theories. Over the past decades,
many mathematicians and control theorists have made significant contributions in this research
area. Here we refer to the book [29] by Li and Yong, and the book [15] by Fattorini for an
excellent overview of the results in this direction.

In particular, linear-quadratic (LQ) optimal control problem is one of the most (if not the
most) important problem in optimal control theory and has motivated many popular control de-
signs. Since 1960s, the works of Bellman-Glicksberg-Gross [5] and R. Kalman [27] have placed
the LQ optimal control problem at the forefront of control theory. The latter first discovered
the optimal linear state feedback control of LQ optimal control problem, and his work was soon
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generalized to the infinite dimensional context. In the mid 1960s, Lions first considered the LQ
optimal control problem for partial differential equations in his book [30], which is a widely
renowned text in this field whose significance continues to be felt even today. The LQ opti-
mal control problem for general evolution equations with bounded controls was also studied by
Lukes-Russell [31] in 1969 and by Curtain-Pritchard [10] in 1976. In the 1970s, the LQ optimal
control problem with unbounded controls was investigated by Lions [30], Curtain-Pritchard [12]
and Balakrishnan [4]. Since the mid-1980s, Lasiecka and Triggiani systematically investigated
the LQ optimal control problem for parabolic, hyperbolic, and other equations with boundary
controls and point controls. Their book [28] provides a nice survey on the theory of LQ optimal
control problem for PDEs with boundary or point controls in a unified framework.

As the name suggests, generalized LQ optimal control problem is a generalized version of
LQ optimal control problem. The term ’generalized’ here refers to the fact that both quadratic
and linear terms with respect to state and control are contained in the cost functional. Compared
to LQ optimal control problem, generalized LQ optimal control problem is less often considered
in existing literature, but as a special case of generalized LQ optimal control problem, tracking
problem with point reference has received pretty much attention. A simple treatment of such
a problem is discussed in Bensoussan [6, Section 5.1, Chapter 1, Part V] in connection with
the nonhomogeneous state equation. Our thesis is fully devoted to the case for generalized LQ
optimal control problem with bounded control. In our thesis, the quadratic character of the
(generalized) LQ optimal control problem has enabled us to do a more explicit analysis of the
properties of the system and its optimal solution. This will become apparent in the following
sections.

1.2 Turnpike property

The turnpike phenomena have been reported and studied in the context of mathematical eco-
nomics in the early works by Von Neumann [33] in 1945 regarding the approximation property
of optimal growing economy to a balanced equilibrium path. In the book by Dorfman, Samuel-
son and Solow [36] in 1958, the term turnpike property was first coined. In general, the turnpike
property describes the long-time behavior of the optimally controlled systems whose optimal
trajectories and controls over a sufficiently large time horizon stay for most of the time close
to a prescribed steady state of the system. Since 1960s, the turnpike phenomena has received
continuous interest in economy because of the structural insights they allow on the structure of
the optimal solutions. See, e.g., McKenzie [32]. Following these results, turnpike phenomena
also have been widely observed and investigated in the context of mathematical biology [26] and
chemical processes [1] among other applications. In the last decade, various turnpike proper-
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ties have been defined and extensively studied by the mathematical community in the context
of optimal control, also in connection with the stability of Model Predictive Control (MPC)
schemes (see, e.g., [23]) and the qualitative properties of the control systems (see, e.g., [35]).
Roughly speaking, the turnpike property helps to extend the stability results [3] obtained by con-
structing an appropriate Lyapunov function using strict dissipativity for the MPC closed loop to
larger classes of MPC schemes, and on the other hand, the occurrence of turnpike property is
known to be closely linked to the controllability and observability of the system. The turnpike
property can also be used to synthesize long-term optimal trajectories. See, e.g., [2, 24]. The
monographs [47, 48, 49] present a complete overview on turnpike properties in various optimal
control and variational problems.

There is no united definition of the turnpike property, but the measure turnpike and the expo-
nential turnpike are two notions of particular importance since they each correspond to a major
method to the characterization of turnpike property. The kind of method suitable to prove the ex-
ponential turnpike property takes advantage of the hyperbolicity feature around the steady state of
the optimality system resulting from the Pontryagin’s maximum principle. See, e.g., [35, 39, 40].
The method suitable to deduce the measure turnpike property exploits the connection between
turnpike and dissipativity properties of the control system. In most cases, the prescribed trajec-
tory and control which is approximated by the optimal pair is the minimizer of the correspond-
ing optimal steady state problem, i.e., the optimal steady state of the system. However, turnpike
phenomena have been observed towards different target states, for example suitable periodic
orbits [38, 39, 46].

Many interesting sufficient conditions (most are based on detectability and stabilizability) for
turnpike properties have been found in both the linear and nonlinear setting. Good references are,
e.g., [13, 19] for discrete-time systems, [35, 40] for finite dimensional continuous-time systems,
[9] for Delay differential equations, and [8, 39] for infinite dimensional systems with control
inside the domain. However, few necessary conditions for turnpike properties are found in the
past, even for finite dimensional case. In recent years, the necessary conditions for measure
turnpike property have been studied in full details in [20, 21] for finite dimensional generalized
LQ optimal control problems in discrete-time and continuous-time setting respectively. We point
out that our results in section 3.4 which eventually yield a surprising necessary and sufficient
condition for the turnpike property in finite dimensional setting are motivated by their work.

1.3 Organization

Our thesis is organized as follows. In chapter 2, we first introduce all the necessary basics about
strongly continuous semigroups of operators on Hilbert spaces in section 2.1, then we introduce
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the optimal control problem in infinite dimensional setting and formulate the generalized LQ
optimal control problem in section 2.2. The standard results of Pontryagin’s maximum principle
and Riccati equations are recalled in subsection 2.2.1 and subsection 2.2.2, respectively.

In chapter 3, we present all our results on the turnpike property for generalized LQ optimal
control problem. We start with proving the existence and uniqueness of the optimal pair for
generalized LQ optimal control problem in section 3.1. In section 3.2, we introduce two notions
of turnpike of particular interest. In section 3.3 we discuss a well-known sufficient condition
for turnpike property based on the detectability and stabilizablilty of the control system. In sec-
tion 3.4, we prove several necessary conditions of turnpike property in terms of the detectability,
stabilizablilty and the turnpike reference of the control system. Combining the previous results,
we derive a necessary and sufficient condition of the turnpike property for finite dimensional case
and point spectrum case in section 3.5. We also show that the exponential turnpike property for
the generalized LQ optimal control problem is equivalent to the exponential turnpike property
for the LQ optimal control problem plus an algebraic condition. In section 3.6, some illustrative
examples are discussed to show the potential applications of our results.

In chapter 4, we conclude our thesis and discuss several open problems.
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Chapter 2

Mathematical background

In the remaining part of this thesis, we assume that the standard concepts and results of functional
analysis are known to the reader. These includes space completion, Riesz’s representation theo-
rem, uniform boundedness principle, closed range theorem and some properties of non-negative
operators, Bochner integral and Hilbert space valued L2 functions and so on. Good references
are [7, 14, 25, 34, 37, 45, 41]. We use ∥ · ∥ (resp. ⟨·, ·⟩) to denote the norm (resp. inner product)
on all complex Hilbert spaces. However, sometimes we write ∥ · ∥L2 (resp. ⟨·, ·⟩L2) to emphasise
the norm (resp. inner product) is considered on the corresponding L2 space. In the remaining
part of this thesis, unless otherwise stated, we assume H, U and Y are all complex Hilbert spaces.

2.1 Operator semigroups

In this subsection, we collect some standard results on operator semigroups. For more details on
this section, we refer [41, Chapter 1-3].

For A ∈ Rn×n and t ∈ R, the matrix exponential etA is defined by

etA := I + tA+
t2

2!
A2 +

t3

3!
A3 + ...

The absolute convergence of the above series follows easily from basic linear algebra. In finite
dimensional systems, the matrix exponentials are used to describe the evolution of the state of a
linear system in the absence of an input. Considering the following linear dynamics:

dx

dt
= Ax+Bu,

x(0) = x0 ∈ Rn.
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where A ∈ Rn×n, B ∈ Rn×m and u ∈ L2
loc((0,∞),Rm). The formula

x(t) := etAx0 +

∫ t

0

e(t−s)ABu(s)ds

defines the unique absolute continuous function x(t) on [0,∞) that verifies the above equation
almost everywhere. Strongly continuous operator semigroups are the natural generalization of
matrix exponentials to infinite dimensional systems. This section is devoted to introduce the
basics of strongly continuous operator semigroups on (complex) Hilbert spaces.

Definition 2.1.1. We call a family T = (Tt)t≥0 of operators in L(H) a strongly continuous
operator semigroup (or a C0-semigroup) on H if

(a) T0 = I

(b) Tt+s = TtTs for every t, s ≥ 0

(c) limt>0,t→0 Ttx = x for every x ∈ H.

The growth bound w0(T ) of T is defined by

w0(T ) := inf
t∈(0,∞)

1

t
log ∥Tt∥.

Clearly, w0(T ) ∈ [−∞,∞).

The infinitesimal generator (or just the generator) A : D(A) → H of T is defined by

D(A) :=

{
x ∈ H | lim

t>0,t→0

Ttx− x

t
exists

}
,

Ax := lim
t>0,t→0

Ttx− x

t
, ∀x ∈ D(A).

We collect some useful facts about C0-semigroups in the following proposition.

Proposition 2.1.2. For a C0-semigroup T , its growth bound w0(T ) and generator A, the follow-
ing statements hold:

(a) For any w > w0(T ), there exists some Mw > 0 such that

∥Tt∥ ≤Mwe
wt, ∀t ≥ 0.
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(b) The function ψ : [0,∞)×H → H defined by ψ(t, x) := Ttx is continuous with respect to
the induced product topology.

(c) A is a closed operator, i.e., the graph set G(A) of A, defined by

G(A) :=

{[
f
Af

] ∣∣∣∣ f ∈ D(A)

}
is closed in H×H.

(d) D(A) is dense in H.

(e) For any s ∈ C with Re s > w0(T ), s ∈ ρ(A).

(f) For any x ∈ D(A) and t ≥ 0, Ttx ∈ D(A) and

dTtx

dt
= ATtx = TtAx.

Assume A0 : D(A0) → H is a densely defined closed operator on a Hilbert space H, then its
adjoint operator, denoted A∗

0 is defined on the set

D(A∗) =

{
y ∈ H

∣∣∣∣ sup
x∈D(A),x ̸=0

⟨Ax, y⟩
∥x∥

<∞

}
.

By Riesz’s representation theorem, for each y ∈ D(A∗), there exists a unique w ∈ H such that
⟨Ax, y⟩ = ⟨x,w⟩ holds for any x ∈ D(A). Then we define A∗y = w, so that

⟨Ax, y⟩ = ⟨x,A∗y⟩, ∀x ∈ D(A), y ∈ D(A∗).

It can be shown that the adjoint operator A∗
0 as defined above is also densely defined and closed.

Moreover, if s ∈ ρ(A), then s ∈ ρ(A∗). When A is further assumed to be the generator of a
C0-semigroup, we have the following proposition.

Proposition 2.1.3. Let T be a C0-semigroup on H and A be its generator, then T ∗ := (T ∗
t )t≥0

is also a C0-semigroup, with generator A∗. Moreover, w0(T ) = w0(T ∗).

The semigroup T ∗ is called the adjoint semigroup of T .

We now introduce two very important spaces, named H1 and H−1, as well as their dual with
respect to the pivot space H, Hd

−1 and Hd
1.
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Proposition 2.1.4. Let A be the generator of a C0-semigroup T on H and s ∈ ρ(A). The space
D(A) endowed with the inner product

⟨x1, x2⟩H1 := ⟨(sI − A)x1, (sI − A)x2⟩, ∀x1, x2 ∈ D(A),

and the space D(A∗) endowed with the inner product

⟨y1, y2⟩Hd
1
:= ⟨(sI − A∗)y1, (sI − A∗)y2⟩, ∀y1, y2 ∈ D(A∗)

are all Hilbert spaces, denoted H1 and Hd
1, respectively.

Let H−1 be the space completion of H with respect to the inner product

⟨x1, x2⟩H−1 := ⟨(sI − A)−1x1, (sI − A)−1x2⟩, ∀x1, x2 ∈ H,

and Hd
−1 be the space completion of H with respect to the inner product

⟨y1, y2⟩Hd
−1

:= ⟨(sI − A∗)−1y1, (sI − A∗)−1y2⟩, ∀y1, y2 ∈ H,

then H−1 and Hd
−1 are all Hilbert spaces.

In fact, the induced norm on H1, Hd
1, H−1 or Hd

−1 is always equivalent to the corresponding
induced norm of the same space defined with respect to a different s ∈ ρ(A). So from the
topology point of view, there is no need to specific the corresponding s ∈ ρ(A).

Concerning the properties of these spaces, we have following proposition.

Proposition 2.1.5. Under the assumptions of Proposition 2.1.4, the following statements hold:

(a) The space Hd
−1 is isomorphic to the space (H1)

′, i.e., there exists a bijective linear map
J : Hd

−1 → (H1)
′ such that

∥y∥Hd
−1

= sup
x∈H1,∥x∥H1

=1

|Jy(x)|.

(b) The space H−1 is isomorphic to the space (Hd
1)

′.

(c) The identity maps from H1 to H, Hd
1 to H, H to H−1 and H to Hd

−1 are all continuous.

(c) A ∈ L(H1,H), and has a unique extension in L(H,H−1).

(d) A∗ ∈ L(Hd
1,H), and has a unique extension in L(H,Hd

−1).
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In the sequel, we will use A and A∗ again to denote the extension of A and A∗ in L(H,H−1)
and L(H,H−1), respectively. And we will identify Hd

−1 with (H1)
′ by not distinguishing y and

Jy as in Proposition 2.1.5. Concerning the duality relations, we define the pairing ⟨·, ·⟩H1,Hd
−1

by
setting

⟨x, y⟩H1,Hd
−1

:= Jy(x), ∀x ∈ H1, y ∈ Hd
−1,

and the pairing ⟨·, ·⟩Hd
−1,H1

by setting

⟨y, x⟩Hd
−1,H1

:= Jy(x), ∀x ∈ H1, y ∈ Hd
−1.

Similarly, we will also identify H−1 with (Hd
1)

′. The pairings ⟨·, ·⟩Hd
1,H−1

and ⟨·, ·⟩Hd
1,H−1

are
defined analogously.

Our next proposition shows that if A generates a semigroup and P ∈ L(H), then A+ P still
generates a semigroup.

Proposition 2.1.6. IfA generates aC0-semigroup T on H and P ∈ L(H), thenA+P : D(A) →
H is the generator of a C0-semigroup T̃ on H. Moreover, if T satisfies the estimate

∥Tt∥ ≤Mewt, ∀t ≥ 0

for some w ∈ R and M ≥ 1, then T̃ satisfies the estimate

∥T̃t∥ ≤Me(w+M∥P∥)t, ∀t ≥ 0.

From now on, we will assume that A is the generator of some C0-semigroup T on H, B ∈
L(U ,H) and C ∈ L(H,Y). We now introduce the input map and output map.

Definition 2.1.7. For each t ≥ 0, the input map Φt : L
2((0,∞),U) → H is defined by

Φtu :=

∫ t

0

Tt−sBu(s)ds,

and the output map Ψt : H → L2((0,∞),Y) is defined by

(Ψtx)(s) :=

{
CTsx, s ∈ [0, t],

0, s > t.

Obviously Φt ∈ L(L2((0,∞),U),H) and Ψt ∈ L(H, L2((0,∞),Y)) for any t ≥ 0. Now
we complement some properties of the input and output operator.
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Proposition 2.1.8. Let w ∈ R and M ≥ 1 be such that ∥Tt∥ ≤Mewt, for all t ≥ 0.

(a) If w > 0, there exists M̃ ≥ 0 such that ∥Φt∥, ∥Ψt∥ ≤ M̃ewt, ∀t ≥ 0.

(b) If w = 0, there exists M̃ ≥ 0 such that ∥Φt∥, ∥Ψt∥ ≤ M̃(1 + t)
1
2 , ∀t ≥ 0.

(c) If w < 0, there exists M̃ ≥ 0 such that ∥Φt∥, ∥Ψt∥ ≤ M̃ , ∀t ≥ 0.

Proposition 2.1.9. Let the function ψ : [0,∞)× L2((0,∞),U) → H be defined by

ψ(t, u) := Φtu.

Then ψ is continuous with respect to the product topology on [0,∞)× L2((0,∞),U).

The next two proposition provides the regularity result of the solution of certain systems.

Proposition 2.1.10. For any x0 ∈ H and u ∈ L2
loc((0,∞),U), the problem{

ẋ = Ax+Bu,

x(0) = x0

admits a unique solution x ∈ C([0,∞),H) ∩H1
loc((0,∞),H−1) in the sense that

x(t)− x0 =

∫ t

0

Ax(s) +Bu(s)ds, ∀t ≥ 0

with the integration carried out in H−1. Moreover, this solution x is given by

x(t) = Ttx0 + Φtu, ∀t ≥ 0.

If, in addition, u ∈ H1
loc((0,∞),U) and x0 ∈ D(A), then the solution is in fact a strict one,

i.e., x ∈ C1([0,∞),H) ∩ C([0,∞),H1).

Proposition 2.1.11. Let x0 ∈ H, F ∈ Cs([0,∞),L(H)) and f ∈ L2
loc((0,∞),H). The problem

ẋ(t) = Ax(t) + F (t)x(t) + f(t), x(0) = x0 ∈ H

admits a unique solution x ∈ C([0,∞),H) ∩H1
loc((0,∞),H−1) in the sense that

x(t)− x0 =

∫ t

0

Ax(s) + F (s)x(s) + f(s)ds, ∀t ≥ 0

with the integration carried out in H−1.

If, in addition, F ∈ C1
s ([0,∞),L(H)), f ∈ H1

loc((0,∞),H) and x0 ∈ D(A), then the
solution is in fact a strict one, i.e., x ∈ C1([0,∞),H) ∩ C([0,∞),H1).
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2.2 Optimal control

Roughly speaking, the (unconstrained) optimal control problem for infinite dimensional systems
aims to find the optimal pair (x∗(·), u∗(·)) which minimizes a functional in a form of

JT (x(·), u(·)) :=
∫ T

0

f0(t, x(t), u(t))dt,

among all admissible pairs (x(·), u(·)).
Here x is considered to be the (mild) solution of the evolution system{

ẋ(t) = Ax(t) + f(t, x(t), u(t)), t ∈ [0, T ],

x(0) = x0.

In this thesis, we are concerned with the following generalized LQ optimal control problem
corresponding to time horizon T > 0:

The generalized LQ optimal control problem (GLQ)T . Find the optimal pair

(x∗(·), u∗(·)) ∈ L2((0, T ),H)× L2((0, T ),U)
which minimizes the cost functional

JT (x0, u) :=

∫ T

0

ℓ(x(t), u(t))dt, (2.1)

where the running cost ℓ : H× U → R is defined by

ℓ(x, u) := ∥Cx∥2 + ∥Ku∥2 + 2Re⟨z, x⟩+ 2Re⟨v, u⟩, (2.2)

and the associated dynamical system is{
ẋ(t) = Ax(t) +Bu(t),

x(0) = x0 ∈ H.
(2.3)

Here, we assume that C ∈ L(H,Y), K ∈ L(U), z ∈ H and v ∈ U . K is further assumed to
be coercive, i.e., there exists a constant m > 0 such that ⟨K∗Ku, u⟩ ≥ m∥u∥2 for any u ∈ U .
Regarding the dynamical system, we assume that A is the generator of a strongly continuous
semigroup T = (Tt)t≥0 on H and B ∈ L(U ,H).

In particular, if z = 0 and v = 0, we shall call it the LQ optimal control problem, which is
abbreviated to (LQ)T .

In the following subsections, we will introduce the necessary background about Pontryagin’s
maximum principle and the Riccati equations. The maximum principle gives necessary condition
for the optimality system, and the Riccati equations help to establish the optimal linear state
feedback control of LQ optimal control problem.
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2.2.1 Maximum principle

Consider the general optimal control problem mentioned at the beginning of this section.

Now assume that H,U ,Y are all finite dimensional Hilbert spaces and A = 0. Define the
Hamiltonian H : [0, T ]×H× U ×H× R by

H(t, x, u, p, p0) := p0f0(t, x, u) + ⟨p, f(t, x, u)⟩.

Pontryagin’s maximum principle claims that, under some regularity conditions, if (x∗(·), u∗(·))
is an optimal pair for the above optimal control problem, then there exists a nontrivial pair
(p0, p(·)) ∈ R× C([0, T ],H) such that

p0 ≤ 0,

ẋ∗(t) = f(t, x∗(t), u∗(t)), a.e. t ∈ [0, T ],

x∗(0) = x0,

ṗ(t) = −fx(t, x∗(t), u∗(t))∗p(t)− (f0)x(t, x
∗(t), u∗(t))p0, a.e. t ∈ [0, T ],

p(T ) = 0,

H(t, x∗(t), u∗(t), p(t), p0) = max
u∈U

H(t, x∗(t), u, p(t), p0), a.e. t ∈ [0, T ].

In the above, we refer to p as the adjoint state. Several generalizations of Pontryagin’s maximum
principle to infinite dimensional case are available. See, e.g., [29, 15] for more details.

In particular, Pontryagin’s maximum principle has been extensively studied in [29] for LQ
optimal control problem, considering both bounded and unbounded input. Roughly speaking,
Pontryagin’s maximum principle holds at x0 ∈ H if and only if the LQ optimal control problem
(possibily with unbounded input) is solvable at x0 ∈ H, i.e., an optimal pair exists. In fact, we
will prove in section 3.1 that the optimal pair exists and is unique for our optimal control problem
(GLQ)T (thus also (LQ)T ) with any initial condition x0 ∈ H. This explains the motivation of
the Hamiltonian systems appearing in our proof.

However, to the sake of simplicity, we will directly verify these Hamiltonian systems in our
proof instead of explaining in details the statement (which is a little bit technical) of Pontrya-
gin’s maximum principle in infinite dimensional setting and deriving these Hamiltonian systems.
Based on our result, we can eventually show that if turnpike property is satisfied for (GLQ)T ,
then Pontryagin’s maximum principle holds with p0 = −1 (by the linearity of the Hamiltonian
system, this is equivalent to p0 ̸= 0).
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2.2.2 Riccati equations

In this subsection, we introduce some well-known results on differential and algebraic Riccati
equations. This material can be found in many books, of which we mention [6, Part IV, Section 1]
and [6, Part V, Section 1]. In this subsection, we assume that all the assumptions of (GLQ)T are
verified.

Consider the differential Riccati equation:
dP

dt
− A∗P − PA+ PB(K∗K)−1B∗P − C∗C = 0

P (0) = P0 ∈ Σ+(H).

(2.4)

Since A is unbounded, it is not clear at this moment what we mean by a solution of (2.4). We
now define the notion of mild solution and weak solution.

Definition 2.2.1. A function P ∈ Cs([0,∞),Σ(H)) is called a mild solution of problem (2.4) if
it verifies

P (t)x0 = T ∗
t P0Ttx0 +

∫ t

0

T ∗
s C

∗CTsx0ds−
∫ t

0

T ∗
t−sP (s)B(K∗K)−1B∗P (s)Tt−sx0ds,

for any x0 ∈ H and t ≥ 0.

A function P ∈ Cs([0,∞),Σ(H)) is called a weak solution of problem (2.4) if P (0) = P0,
and for any x, y ∈ D(A), ⟨P (·)x, y⟩ is a differentiable function such that

d⟨P (t)x, y⟩
dt

= ⟨P (t)x,Ay⟩+ ⟨P (t)Ax, y⟩

− ⟨(K∗K)−1B∗P (t)x,B∗P (t)y⟩+ ⟨Cx,Cy⟩, ∀t ≥ 0.

Concerning the mild and weak solution of (2.4), we have the following result.

Proposition 2.2.2. P is a mild solution of problem (2.4) if and only if P is a weak solution of
problem (2.4). For any P0 ∈ Σ+(H), there exists a unique mild solution P ∈ Cs([0,∞),Σ+(H))
of the differential Riccati equation (2.4).

The following well-known transform (see, e.g., [6, Part IV, Chapter 1, Proposition 6.2]) shows
the cost functional JT from (GLQ)T can be rewritten as:

JT (x0, u) =

∫ T

0

∥K(u(t) + (K∗K)−1B∗P (T − t)x(t))∥2dt+ ⟨P (T )x0, x0⟩, (2.5)

13



where x is the solution of (2.3). So, the optimal control for the LQ optimal control problem can
be given in a feedback form:

u(t) = −(K∗K)−1B∗P (T − t)x(t), t ∈ [0, T ].

By imposing some restriction on P0, we can ensure P to have stronger regularity. Now for any
F ∈ Σ(H), we introduce the bilinear map

φF (x, y) := ⟨Fx,Ay⟩+ ⟨Ax, Fy⟩, ∀x, y ∈ D(A).

Let D(A) := {F ∈ Σ(H) |φF has a continuous extension toH ×H}, then for any F ∈ D(A),
there exists a unique bounded linear operator A(F ) : H → H satisfying

⟨A(F )x, y⟩ = ⟨Fx,Ay⟩+ ⟨Ax, Fy⟩, ∀x, y ∈ D(A).

Definition 2.2.3. A strict solution of (2.4) is a function P ∈ Cs([0,∞),Σ(H)) such that

(a) P (·) ∈ C1
s ([0,∞),Σ(H)).

(b) P (t) ∈ D(A), ∀ t ≥ 0 and P (0) = P0.

(c) A(P (·)) ∈ Cs([0,∞),Σ(H)) and P ′ = A(P )− PB(K∗K)−1B∗P + C∗C.

Concerning the strict solutions of problem (2.4), we have the following result.

Proposition 2.2.4. If P is a strict solution of problem (2.4), then P is also a mild solution of
problem (2.4). Moreover, if P0 ∈ Σ+(H) and P0 ∈ D(A), then there exists a unique strict
solution P ∈ Cs([0,∞),Σ+(H)) of the differential Riccati equation (2.4).

Notice that 0 ∈ D(A), so the unique solution P of problem (2.4) with initial condition P0 = 0
is actually a strict one.

Now let us consider the algebraic Riccati equation:

A∗P + PA− PB(K∗K)−1B∗P + C∗C = 0. (2.6)

Definition 2.2.5. A solution of the algebraic Riccati equation (2.6) is a function P ∈ Σ(H) such
that

⟨Px,Ay⟩+ ⟨PAx, y⟩ − ⟨(K∗K)−1B∗Px,B∗Py⟩+ ⟨Cx,Cy⟩ = 0, ∀x, y ∈ D(A).

The next proposition collects some facts about the solution of (2.6).
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Proposition 2.2.6. Define the cost functional J∞ : H× L2((0,∞),U) → R by

J∞(x0, u) :=

∫ ∞

0

∥Cx(t)∥2 + ∥Ku(t)∥2dt,

where x is the solution of (2.3). Then the following statements hold:

(a) A non-negative solution of the algebraic Riccati equation (2.6) exists if and only if the pair
(A,B) is C-stabilizable, i.e., for any x0 ∈ H,

inf
u∈L2((0,∞),H)

J∞(x0, u) <∞. (2.7)

Notice (2.7) does not rely on the selection of coercive K ∈ L(U).

(b) If (A,B) is C-stabilizable, then there exists a minimal non-negative solution of the alge-
braic Riccati equation (2.6), denoted Pmin, i.e., Pmin is a non-negative solution of (2.6),
and for any non-negative solution P of (2.6),

⟨Pminx, x⟩ ≤ ⟨Px, x⟩, ∀x ∈ H.

(c) If (A,B) is C-stabilizable, then for any x0 ∈ H, the optimal control to minimize J∞(x0, ·)
is given in a feedback form

u(t) = −(K∗K)−1B∗Pminx(t), ∀t ≥ 0.

Moreover,
inf

u∈L2((0,∞),U)
J∞(x0, u) = ⟨Pminx0, x0⟩.

(d) If (A,B) is C-stabilizable and (A,C) is exponentially detectable, i.e., the pair (A∗, C∗)
is I-stabilizable, then the C0-semigroup generated by A−B(K∗K)−1B∗Pmin is exponen-
tially stable.

In the remaining part of this thesis, we will use Pmin to denote the minimal non-negative
solution of the algebraic Riccati equation (2.6).

The next proposition concerns the convergence property of P to Pmin. In section 3.3 we
will generalize the exponential convergence result to infinite dimensional setting based on our
stabilizability and detectability assumptions.

15



Proposition 2.2.7. Suppose (A,B) is C-stabilizable. Let P (·) be the solution of (2.4) with
initial condition P0 ∈ Σ+(H) and Pmin be the minimal non-negative solution of (2.6), then P (·)
converges to Pmin in strong operator topology.

Additionally, if H, U and Y are all finite dimensional spaces, then P (·) converges to Pmin

exponentially in norm topology, i.e., there exist constants M,k > 0 such that

∥P (t)− Pmin∥ ≤Me−kt, ∀t ≥ 0.

Remark 2.2.8. The initial condition P0 ∈ Σ+(H) is linked to the terminal cost of the LQ op-
timal control problem. In our setting, the terminal term is 0, so in the reminder of this thesis,
unless otherwise stated, we will use P to denote the unique solution of problem (2.4) with initial
condition P0 = 0.
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Chapter 3

Turnpike property for generalized
linear-quadratic optimal control problem

3.1 Existence and uniqueness of the optimal control

In this section, we prove that for any T > 0, the optimal pair of the optimal control problem
(GLQ)T exists and is unique.

Theorem 3.1.1. For any T > 0, there exists a unique optimal pair

(x∗(·), u∗(·)) ∈ L2((0, T ),H)× L2((0, T ),U)

of the optimal control problem (GLQ)T .

Proof. Fix some T > 0 and x0 ∈ H. Define

m := inf
u∈L2((0,T ),H)

JT (x0, u).

Obviously m > −∞. Now let (un)n∈N be a sequence of controls in L2((0, T ),U) such that

lim
n→∞

JT (x0, un) = m. (3.1)

We claim that (un)n∈N is a bounded sequence. In fact, since K is coercive, there exists mK > 0
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such that K∗K ≥ mKI . Notice that for any u ∈ L2((0, T ),U),

JT (x0, u) =

∫ T

0

∥Cx(t)∥2 + ∥Ku(t)∥2 + 2Re⟨z, x(t)⟩+ 2Re⟨v, u(t)⟩dt

≥ mK∥u∥2L2 −
∫ T

0

2∥z∥∥x(t)∥+ 2∥v∥∥u(t)∥dt.

Since x(t) = Ttx0 + Φtu, there exists m1,m2 > 0 such that∫ T

0

2∥z∥∥x(t)∥dt ≤
∫ T

0

m1 +m2∥u∥L2dt = T (m1 +m2∥u∥L2).

By Hölder’s inequality, there exists m3 > 0 such that∫ T

0

2∥v∥∥u(t)∥dt = T∥v∥∥u∥L1 ≤ m3∥u∥L2 .

Combining the above estimates, we obtain that

JT (u, x0) ≥ mK∥u∥2L2 − (m2T +m3)∥u∥L2 −m1T, ∀u ∈ L2((0, T ),U).

This, together with (3.1) implies that the sequence (un)n∈N is bounded. So, there exists a subse-
quence, denoted again (un)n∈N and u∗ ∈ L2((0, T ),H) such that un ⇀ u∗ as n→ ∞.

Denote by xn, n ∈ N the trajectory corresponding to initial condition x0 and input un and x∗

the trajectory corresponding to initial condition x0 and input u∗. Notice that, for any n ∈ N,

∥Ku∗∥2L2 = ∥K(u∗ − un)∥2L2 + 2Re⟨K∗Ku∗, un⟩L2 − ∥Kun∥2L2 .

Since un ⇀ u∗ as n→ ∞, we obtain that, for any n ∈ N,

∥Ku∗∥2L2 ≥ lim sup
n→∞

(2Re⟨K∗Ku∗, un⟩L2 − ∥Kun∥2L2) = 2∥Ku∗∥2L2 − lim inf
n→∞

∥Kun∥2L2 .

A simple calculation shows that for any n ∈ N,

∥Ku∗∥2L2 + 2Re⟨v, u∗⟩L2 ≤ lim inf
n→∞

(∥Kun∥2L2 + 2Re⟨v, un⟩L2). (3.2)

Besides, since Φ· ∈ L(L2((0, T ),U), L2((0, T ),H)), Φ· is a weak-weak continuous linear oper-
ator (this follows easily from the definition of weak convergence), which implies that

xn(·) = T·x0 + Φ·un ⇀ T·x0 + Φ·u
∗ = x∗(·) in L2((0, T ),H).
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Now following the same manner as the proof of (3.2), we deduce that

∥Cx∗∥2L2 + 2Re⟨z, x∗⟩L2 ≤ lim inf
n→∞

(∥Cxn∥2L2 + 2Re⟨z, xn⟩L2). (3.3)

This, together with (3.2) implies that

JT (x0, u
∗) ≤ lim

n→∞
JT (x0, un) = inf

u∈L2((0,T ),H)
JT (x0, u).

So, (x∗, u∗) is an optimal pair of the problem (GLQ)T .

It only remains to prove the uniqueness of the optimal pair. Assume that (x∗1, u
∗
1) and (x∗2, u

∗
2)

are two distinct optimal pairs of the problem (GLQ)T . Simple calculations show that

J(x0, u
∗
1) + J(x0, u

∗
2)

2
−J

(
x0,

u∗1 + u∗2
2

)
=

1

4

∫ T

0

∥C(x∗1(t)−x∗2(t))∥2+∥K(u∗1(t)−u∗2(t))∥dt.

Since obiviously u∗1 ̸= u∗2 in L2((0, T ),U) and K is coercive, we obtain that

J

(
u∗1 + u∗2

2
, x0

)
<
J(u∗1, x0) + J(u∗2, x0)

2
= inf

u∈L2((0,T ),H)
JT (u, x0),

which gives a contradiction.

3.2 Some notions of turnpike

In the remaining part of this thesis, we denote by x∗T (·, x0) and u∗T (·, x0), or simply by x∗ and u∗

when x0 and T are clear from the context, the optimal trajectory and optimal control of problem
(GLQ)T (or (LQ)T ) corresponding to initial condition x0 ∈ H and time horizon T > 0.

Now, we are well-prepared to define the measure turnpike property and the exponential turn-
pike property at some steady state (xe, ue). We recall that a steady state of system (2.3) is a pair
(xe, ue) ∈ H × U such that Axe +Bue = 0.

Remark 3.2.1. Since B is bounded, if (xe, ue) is a steady state, then Axe = −Bue ∈ H. This
implies xe must be an element of D(A).

Definition 3.2.2. We say that the optimal control problem (GLQ)T satisfies the measure turnpike
property at some steady state (xe, ue) if, for any bounded neighborhood N of xe and ε > 0,
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there exists a constant MN ,ε > 0 such that for all x0 ∈ N and time horizon T > 0, the optimal
trajectory x∗T (·, x0) and optimal control u∗T (·, x0) of problem (GLQ)T satisfy that

µ
{
t ∈ [0, T ]

∣∣ ∥x∗T (t, x0)− xe∥+ ∥u∗T (t, x0)− ue∥ > ε
}
≤MN ,ε,

where µ denotes the Lebesgue measure on R.

We say that the optimal control problem (GLQ)T satisfies the exponential turnpike property
at some steady state (xe, ue) if, for any bounded neighborhood N of xe, there exists some positive
constants MN and k such that for all x0 ∈ N and time horizon T > 0, the optimal trajectory
x∗T (·, x0) and optimal control u∗T (·, x0) of problem (GLQ)T satisfy that

∥x∗T (t, x0)− xe∥+ ∥u∗T (t, x0)− ue∥ ≤MN (e−kt + e−k(T−t)), ∀t ∈ [0, T ].

Remark 3.2.3. It is clear that exponential turnpike property is stronger than the measure turn-
pike property. So, any sufficient condition for exponential turnpike property is automatically a
sufficient condition for measure turnpike property, and conversely, any necessary condition for
measure turnpike property is also a necessary condition for exponential turnpike property.

To study the turnpike property, it is useful to analyse the optimal steady state corresponding
to the running cost ℓ. The optimal steady state problem is defined as:

inf
x∈D(A), u∈U

ℓ(x, u) s.t. Ax+Bu = 0. (3.4)

If (xe, ue) is a minimizer of equation (3.4), we say (xe, ue) is an optimal steady state.

We will also need several structural-theoretical properties of the control system under con-
sideration, which we introduce in the following.

Definition 3.2.4. The pair (A,B) is called exponentially stabilizable if (A,B) is I-stabilizable.
The pair (A,C) is called exponentially detectable if (A∗, C∗) is I-stabilizable.

Remark 3.2.5. It can be proved that (A,B) is exponentially stabilizable if and only if there exists
some F ∈ L(Y ,H) such that A + BF generates an exponentially stable semigroup. Similarly,
(A,C) is exponentially detectable if and only if there exists some L ∈ L(H,U) such thatA+LC
generates an exponentially stable semigroup. See, e.g., [6, Part V, Chapter 1, Remark 3.2].

Let the operator [A B] : D(A)× U → H be defined by

[A B]

[
x
u

]
:= Ax+Bu.
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Notice that, since A and B are both closed operators, ker[A B] is closed in H× U .

We denote by
[
A∗

B∗

]
the adjoint operator of [A B]. It’s easy to check that the domain of

[
A∗

B∗

]
is D(A∗) and we have [

A∗

B∗

]
w =

[
A∗w
B∗w

]
∈ H × U , ∀w ∈ D(A∗).

3.3 Sufficient condition for the turnpike property

Our main result of this section is the following one:

Theorem 3.3.1. If the pair (A,B) is exponentially stabilizable and the pair (A,C) is exponen-
tially detectable, then problem (GLQ)T shows exponential turnpike property (thus also measure
turnpike property) at some steady state (xe, ue).

The proof is lengthy and thus divided into several steps.

Step 1: Exponential convergence of P to Pmin.

As the first step, we will show that P (·) converges exponentially to Pmin in norm based on our
stabilizability and detectability assumption.

Step 2: Range condition and existence of the optimal adjoint state

In this step, we will prove that ran[A B] = H, which helps us to establish the existence and
uniqueness of the optimal steady state and the corresponding optimal adjoint state.

Step 3: Several estimates

In this step, we will make some simplifications to (GLQ)T and prove two crucial estimates
regarding the optimally controlled system of (LQ)T .

Step 4: Explicit solution of the optimal control

We will derive the optimal control of (GLQ)T in a closed form. The optimal trajectory can then
be solved as the solution of a corresponding evolution problem.

Step 5: Main proof

Finally, we will complete the proof of Theorem 3.3.1 by means of a comparison between the cost
corresponding to the optimal control and a perturbed control.

Each of the subsections that follow corresponds to one step in the proof. Until the end of
this section, we assume that the pair (A,B) is exponentially stabilizable and the pair (A,C) is
exponentially detectable.
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3.3.1 Exponential convergence of P to Pmin

The proof of our main result crucially relies on the exponential convergence in norm of P (·)
to Pmin. Different from the finite dimensional case, this convergence result turns out to be a
consequence of both the stabilizability and detectability of the system. This section is devoted to
the proof of this result, preceded by two preliminaries lemmas.

Lemma 3.3.2. There exists a constant M > 0 such that for every T > 0, u ∈ L2((0, T ),U) and
x0 ∈ H, we have

∥x(T )∥2 ≤M

(∫ T

0

∥Cx(t)∥2 + ∥u(t)∥2dt+ ∥x0∥2
)
, (3.5)

where x is the solution of system (2.3).

Proof. Since the pair (A,C) is exponentially detectable, there exists some F ∈ L(Y ,H) such
that A+ FC is exponentially stable. Let ϕ0 ∈ D(A∗) and ϕ be the solution of problem

dϕ

dt
= (A∗ + C∗F ∗)ϕ,

ϕ(0) = ϕ0.

Owing to the exponential stability of A∗ + C∗F ∗, there exists some constant M0 > 0 such that
for any T > 0, we have

∥ϕ(T )∥ ≤M0∥ϕ0∥
and

∥ϕ(·)∥L2((0,T ),H) ≤M0∥ϕ0∥.
Notice that
d ⟨x(t), ϕ(T − t)⟩

dt
= ⟨x(t),−(A∗ + C∗F ∗)ϕ(T − t)⟩+ ⟨Ax(t) +Bu(t), ϕ(T − t)⟩H−1,Hd

1

= −⟨Cx(t), F ∗ϕ(T − t)⟩+ ⟨Bu(t), ϕ(T − t)⟩.

Applying Hölder’s inequality, we obtain

⟨x(T ), ϕ0⟩ =⟨x0, ϕ(T )⟩+
∫ T

0

−⟨Cx(t), F ∗ϕ(T − t)⟩+ ⟨Bu(t), ϕ(T − t)⟩ dt

≤∥x0∥ ∥ϕ(T )∥+ ∥Cx∥L2 ∥F ∗ϕ∥L2 + ∥Bu∥L2∥ϕ∥L2

≤M1∥x0∥∥ϕ0∥+M2∥Cx∥L2∥ϕ0∥+M3∥u∥L2∥ϕ0∥

≤
√
M∥ϕ0∥

(
∥Cx∥2L2 + ∥u∥2L2 + ∥x0∥2

) 1
2
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for some constants M1,M2,M3 and M > 0.

Now, by letting ϕ0 → x(T ) in H, we get the estimate (3.5).

Lemma 3.3.3. There exists a constant M > 0 such that for every T > 0, f ∈ L2((0, T ),Y) and
p0 ∈ H, we have

∥p(T )∥2 ≤M

(∫ T

0

∥B∗p(t)∥2 + ∥f(t)∥2dt+ ∥p0∥2
)
, (3.6)

where p is the solution of 
dp

dt
= A∗p+ C∗f,

p(0) = p0.

This is just the dual version of Lemma 3.3.2, so we skip the proof.

Lemma 3.3.4 (Exponential convergence rate of P ). There exist constants M,β > 0 such that

∥Pmin − P (t)∥ ≤Me−βt, ∀t ≥ 0. (3.7)

Proof. Fix some T > 0 and x0 ∈ H. We denote by x the solution of
dx

dt
= (A−BB∗Pmin)x in [0, T ],

x(0) = x0.

(3.8)

Define p(t) := Pminx(T − t) on [0, T ]. We claim that p coincides with the solution of
dy(t)

dt
= A∗y(t) + C∗Cx(T − t) in [0, T ],

y(0) = Pminx(T ).

(3.9)

In fact, suppose x0 ∈ D(A), then for any w ∈ D(A), we have

d⟨p(t), w⟩
dt

=− ⟨PminAx(T − t), w⟩+ ⟨PminBB
∗Pminx(T − t), w⟩

=⟨A∗Pminx(T − t) + C∗Cx(T − t), w⟩Hd
−1,H1

=⟨A∗p(t) + C∗Cx(T − t), w⟩Hd
−1,H1

.
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This implies that

⟨p(t)− p(0), w⟩Hd
−1,H1

=

∫ t

0

⟨A∗p(s) + C∗Cx(T − s), w⟩Hd
−1,H1

ds

=

〈∫ t

0

A∗p(s) + C∗Cx(T − s)ds, w

〉
Hd

−1,H1

holds for any t ∈ [0, T ] and w ∈ H1. So,

p(t)− p(0) =

∫ t

0

A∗p(s) + C∗Cx(T − s)ds in Hd
−1, ∀t ∈ [0, T ].

By the continuity of A∗p(·) + C∗Cx(T − ·) in Hd
−1, we have

dp(t)

dt
= A∗p(t) + C∗Cx(T − t) in Hd

−1, ∀t ∈ [0, T ].

Since p(0) = y(0), we conclude that p = y on [0, T ].

Now, for any x0 ∈ H, we let (zn)n∈N ⊂ D(A) be a sequence such that limn→∞ zn = x0 in
H. Let xn and yn denote the solution of (3.8) and (3.9) with x0 replaced by zn, then xn → x in
L2 norm and Pminxn(T ) → Pminx(T ) as n → ∞. So, yn(·) converges to y(·) pointwisely on
[0, T ]. It is also clear that yn(·) = Pminxn(T − ·) → Pminx(T − ·) = p(·) pointwisely on [0, T ].
So, we must have that p = y on [0, T ].

Consider the following evolution problem
dx̃(t)

dt
= (A−BB∗P (T − t))x̃(t) in [0, T ],

x̃(0) = x0.

(3.10)

Notice that P (T − ·) ∈ Cs([0, T ], L(H)). Thanks to Proposition 2.1.11, problem (3.10) admits
a unique solution x̃ ∈ H1((0, T ),H−1) ∩ C([0, T ],H). Define p̃(t) := P (t)x̃(T − t) on [0, T ].
Similarly, we claim that p̃ coincides with the solution of

dỹ(t)

dt
= A∗ỹ(t) + C∗Cx̃(T − t) in [0, T ],

ỹ(0) = 0.

(3.11)

In fact, if x0 ∈ D(A), then by Proposition 2.1.11 and Proposition 2.2.4, we have

x̃ ∈ C1([0, T ],H) ∩ C([0, T ], D(A)). (3.12)
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Let t ∈ [0, T ] and h ∈ R be sufficiently small. Observe that

p̃(t+ h)− p̃(t)

h
= P (t+ h)

(
x̃ (T − (t+ h))− x̃(T − t)

h
+ (A−BB∗P (T − t))x̃(T − t)

)
−P (t+ h)(A−BB∗P (T − t))x̃(T − t) +

P (t+ h)− P (t)

h
x̃(T − t).

By uniform boundedness principle applied to P , (3.10), (3.12) and Proposition 2.2.4, taking
h→ 0, we then obtain that

dp̃(t)

dt
= −P (t)(A−BB∗P (t))x̃(T − t)

+ (A(P (t))− P (t)BB∗P (t) + C∗C)x̃(T − t)

= (A(P (t))− P (t)A)x̃(T − t) + C∗Cx̃(T − t)

= A∗P (t)x̃(T − t) + C∗Cx̃(T − t)

= A∗p̃(t) + C∗Cx̃(T − t)

holds in H−1
d . Since p̃(0) = 0, this proves our claim for the case x0 ∈ D(A).

Now, for any x0 ∈ H, we let (z̃n)n∈N ⊂ D(A) be a sequence such that z̃n → x0 in H as
n → ∞. We use x̃n and ỹn to denote the solution of (3.10) and (3.11) with x0 replaced by
z̃n. By [6, Proposition 3.6], x̃n → x̃ both uniformly and in L2 norm, so ỹn(·) converges to y(·)
pointwisely on [0, T ]. On the other hand, it is also clear that ỹn(·) converges to p̃(·) pointwisely
on [0, T ]. So we conclude that ỹ = p̃ on [0, T ].

Now we claim that the following inequality holds with any x0 ∈ H:∫ T

0

∥B∗(p(t)− p̃(t))∥2 + ∥C(x(t)− x̃(t))∥2dt ≤ ∥p(0)∥∥x̃(T )− x(T )∥ , (3.13)

where x, p, x̃ and p̃ is the solution of (3.8), (3.9), (3.10) and (3.11), respectively. To prove this,
we first assume that x0 ∈ D(A). Since x, x̃ ∈ C1([0, T ],H) ∩ C([0, T ], D(A)), we have

d⟨p̃(t)− p(t), x̃(T − t)− x(T − t)⟩
dt

= −⟨p̃(t)− p(t), A(x̃(T − t)− x(T − t))⟩+ ⟨p̃(t)− p(t), BB∗(p̃(t)− p(t))⟩
+ ⟨A∗(p̃(t)− p(t)), x̃(T − t)− x(T − t)⟩Hd

−1,H1

+ ⟨C∗C(x̃(T − t)− x(T − t)), x̃(T − t)− x(T − t)⟩
= ∥C(x(T − t)− x̃(T − t))∥2 + ∥B∗(p(t)− p̃(t))∥2, ∀t ∈ [0, T ].
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So, we deduce that∫ T

0

∥B∗(p(t)− p̃(t))∥2 + ∥C(x(t)− x̃(t))∥2dt

= ⟨p̃(T )− p(T ), x̃(0)− x(0)⟩ − ⟨p̃(0)− p(0), x̃(T )− x(T )⟩
= ⟨p(0), x̃(T )− x(T )⟩
≤ ∥p(0)∥∥x̃(T )− x(T )∥ .

(3.14)

Since for any x0 ∈ H, there exists a sequence (zn)n∈N ⊂ D(A) such that zn → x0 in H as
n → ∞, and the resulting trajectories xn, pn, x̃n and p̃n will converge to x, p, x̃ and p̃ both
pointwisely and in L2 norm, we conclude that equation (3.13) holds for any x0 ∈ H.

Notice that
d(x̃(t)− x(t))

dt
= A(x̃(t)− x(t))−BB∗(p̃(T − t)− p(T − t)) ∀t ∈ [0, T ].

By Lemma 3.3.2, there exists some constant M1 > 0 such that

∥x̃(T )− x(T )∥2 ≤M1

∫ T

0

∥B∗(p(t)− p̃(t))∥2 + ∥C(x(t)− x̃(t))∥2dt.

Combining this with (3.14), we obtain∫ T

0

∥B∗(p(t)− p̃(t))∥2 + ∥C(x(t)− x̃(t))∥2dt ≤M∥p(0)∥2. (3.15)

Similarly, notice that

d(p̃(t)− p(t))

dt
= A∗(p̃(t)− p(t))− C∗C(x̃(T − t)− x(T − t)), ∀t ∈ [0, T ].

By Lemma 3.3.3 there exists some M2 > 0 such that

∥p̃(T )− p(T )∥2 ≤M2

(∫ T

0

∥B∗(p(t)− p̃(t))∥2 + ∥C(x(t)− x̃(t))∥2dt+ ∥p(0)∥2
)
. (3.16)

Since (A,C) is exponentially detectable, A − BB∗Pmin generates an exponentially stable
semigroup. So, there exists M3, β > 0 such that

∥p(0)∥ = ∥Pminx(T )∥ ≤M3e
−βT∥x0∥. (3.17)

Substituting (3.15) and (3.17) into (3.16), it follows that there exists some M > 0 (independent
of T ) such that

∥p̃(T )− p(T )∥2 ≤Me−2βT∥x0∥2, ∀x0 ∈ H, T > 0.

Finally, since ∥p̃(T )− p(T )∥ = ∥ (Pmin − P (T ))x0∥, this lemma then follows.
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3.3.2 Range condition and existence of the optimal adjoint state

In this subsection, we introduce a closed range condition to show the existence and uniqueness
of the optimal steady state and its corresponding optimal adjoint state.

Lemma 3.3.5 (Range condition). ran[A B] = H.

Proof. Since the pair (A,B) is exponentially stabilizable, there exists F ∈ L(H,U) such that
A+BF generates an exponentially stabilizable semigroup T̃ with D(A+BF ) = D(A). Notice
that for any x0 ∈ H and t ∈ [0,∞),

T̃tx0 − x0 = (A+BF )

∫ t

0

T̃sx0ds.

Taking t→ ∞, we obtain

−x0 = (A+BF )

∫ ∞

0

T̃sx0ds = A

∫ ∞

0

T̃sx0ds+B

∫ ∞

0

F T̃sx0ds.

Notice that since T̃ is exponentially stable, the term
∫∞
0

T̃sx0ds is well defined. From the above
equation, we easily deduce that −x0 ∈ ran[A B]. Now, since x0 ∈ H can be chosen arbitrarily,
we conclude that ran[A B] = H.

Lemma 3.3.6 (Existence of the optimal steady state and adjoint state). The optimal steady state
problem (3.4) admits a unique minimizer (xe, ue). Moreover, there exists a w ∈ D(A∗) such that[

A∗

B∗

]
w =

[
z + C∗Cxe
v +K∗Kue

]
. (3.18)

Proof. Let V = ker[A,B]. Since A and B are both closed operator, V is a closed subspace of
H× U . Observe that if (x, u) ∈ V , then

ℓ (x, u) =

〈
PV

[
C∗C 0
0 K∗K

] ∣∣∣∣
V

[
x
u

]
+ 2PV

[
z
v

]
,

[
x
u

]〉
.

We claim that the non-negative operator P ∈ L(V ) defined by

P := PV

[
C∗C 0
0 K∗K

] ∣∣∣∣
V
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is strictly positive. In fact, if P is not strictly positive, then there exists a sequence([
xn
un

])
n∈N

⊂ V

such that ∥xn∥2 + ∥un∥2 = 1 for all n ∈ N and〈
P
[
xn
un

]
,

[
xn
un

]〉
= ∥Cxn∥2 + ∥Kun∥2 → 0 as n→ ∞.

This implies that Cxn → 0 and Kun → 0. Since K is coercive, we obtain un → 0, and thus
Axn = −Bun → 0.

Recall that if (A,C) is exponentially detectable, then there exists F ∈ L(Y ,U) such that
A + FC generates an exponentially stable semigroup. By [11, Theorem 5.1.3], there exists a
P ∈ Σ+(H) such that

2Re⟨(A+ FC)x, Px⟩ ≤ −∥x∥2, ∀x ∈ D(A).

Substituting xn into the above estimate, simple calculation shows

∥xn∥ ≤ 2∥P∥∥(A+ FC)xn∥, ∀n ∈ N.

Letting n → ∞, since (A + FC)xn → 0, we obtain that xn → 0. However, this contradicts the
fact that un → 0 and ∥xn∥2 + ∥un∥2 = 1.

On the other hand, since P is strictly positive, it follows that for any (x, u) ∈ V ,

ℓ (x, u) =

〈
P
[
x
u

]
+ 2PV

[
z
v

]
,

[
x
u

]〉
=

∥∥∥∥P− 1
2

(
P
[
x
u

]
+ PV

[
z
v

])∥∥∥∥2

−
∥∥∥∥P− 1

2PV

[
z
v

]∥∥∥∥2

.

So, the unique minimizer (xe, ue) of the optimal steady state problem (3.4) is characterized by

P
[
xe
ue

]
+ PV

[
z
v

]
= PV

([
C∗C 0
0 K∗K

] ∣∣∣∣
V

[
xe
ue

]
+

[
z
v

])
= 0.

This is further equivalent to[
z + C∗Cxe
v +K∗Kue

]
=

[
C∗C 0
0 K∗K

] ∣∣∣∣
V

[
xe
ue

]
+

[
z
v

]
∈ V ⊥ = ran

[
A∗

B∗

]
.

Finally, by Lemma 3.3.5 and closed range theorem,[
z + C∗Cxe
v +K∗Kue

]
∈ ran

[
A∗

B∗

]
= ran

[
A∗

B∗

]
, ker

[
A∗

B∗

]
= ran[A B]⊥ = {0}.
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Hence we conclude that there exists a unique w ∈ D(A∗) such that[
A∗

B∗

]
w =

[
z + C∗Cxe
v +K∗Kue

]
.

Remark 3.3.7. The vector w defined in the above lemma is called the optimal adjoint state
of problem (GLQ)T since it can be seen as the infinite dimensional analogy of the Lagrange
multiplier of the optimal steady state problem (3.4). This vector can be utilized to obtain the
following transform: Recall if x is the solution of (2.3) corresponding to input u ∈ L2((0, T ),U)
and initial condition x0 ∈ H, then∫ T

0

⟨z, x(t)⟩+ ⟨v, u(t)⟩dt

=

∫ T

0

⟨w,Ax(t) +B∗u(t)⟩Hd
1,H−1

− ⟨Cxe, Cx(t)⟩ − ⟨Kue, Ku(t)⟩dt

= ⟨w, x(T )− x0⟩+
∫ T

0

−⟨Cxe, Cx(t)⟩ − ⟨Kue, Ku⟩dt.

Now combining this with (2.5) gives that

JT (x0, u) =

∫ T

0

∥K{(u(t)− ue) + (K∗K)−1B∗P (T − t)(x(t)− xe)}∥2dt

− JT (xe, ue) + ⟨P (T )(x0 − xe), (x0 − xe)⟩+ 2Re⟨w, x(T )− x0⟩.
(3.19)

3.3.3 Several estimates

This subsection is mainly devoted to the proof of two crucial estimates. However, before we
introduce the estimates, we will first make some simplifications to problem (GLQ)T , and these
simplifications will be adopted in the remaining part of section 3.3.

First, observe that, without loss of generality, we can assume that K = I . Otherwise, we
may define a new inner product ⟨·, ·⟩new on U by

⟨u1, u2⟩new = ⟨(K∗K)
1
2u1, (K

∗K)
1
2u2⟩, ∀u1, u2 ∈ U .

We now endow U with the new inner product ⟨·, ·⟩new. Since the norm induced by this inner
product is equivalent to the standard norm in U , we still have that B ∈ L(U ,H) and the pair
(A,B) is exponentially stabilizable. The running cost ℓ : H× U → R shall now be recast as

ℓ(x, u) := ∥Cx∥2 + ∥u∥2new + 2Re⟨z, x⟩+ 2Re⟨(K∗K)−1v, u⟩new
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where ∥ · ∥new is the norm on U induced by ⟨·, ·⟩new.

We will also assume that the unique optimal steady state (xe, ue) = (0, 0) in the following
subsections, thanks to the next result.

Proposition 3.3.8. (xe, ue) ∈ D(A)×U is the unique optimal steady state of the optimal steady
state problem (3.4) if and only if (0, 0) is the unique optimal steady state of the modified optimal
steady state problem

min
x∈D(A), u∈U

ℓ̃(x, u) s.t. Ax+Bu = 0, (3.20)

where ℓ̃ : H× U → R is defined by

ℓ̃(x, u) := ∥Cx∥2 + ∥Ku∥2 + 2Re⟨z + C∗Cxe, x⟩+ 2Re⟨v +K∗Kue, u⟩ .

In this case, problem (GLQ)T satisfies the (measure or exponential) turnpike property at (xe, ue)
if and only if the problem

min
u∈L2((0,T ),U)

∫ T

0

ℓ̃(x(t), u(t)) dt s.t. ẋ = Ax+Bu, x(0) = x0 ∈ H

satisfies the (measure or exponential) turnpike property at (0, 0).

Proof. For any x ∈ H and u ∈ U , set x̃ := x − xe and ũ := u − ue. If (xe, ue) is the unique
minimizer of the optimal steady state problem (3.4), we easily see that (0, 0) is the minimizer of

min
x̃∈D(A), ũ∈U

ℓ(x̃+ xe, ũ+ ue) s.t. Ax̃+Bũ = 0

and vice versa. Besides, it’s not hard to see that ℓ(x̃ + xe, ũ + ue) only differs from ℓ̃(x̃, ũ) by a
constant term. So, (0, 0) is the unique minimizer of problem (3.20).

Now, let (x∗, u∗) denote the optimal pair for problem (GLQ)T . Observe that

dx̃

dt
=
d(x− xe)

dt
= Ax+Bu = Ax̃+Bũ.

So, (x̃∗, ũ∗) := (x∗ − xe, u
∗ − ue) is the unique optimal pair of problem

min
ũ∈L2((0,T ),U)

∫ T

0

ℓ(x̃(t) + xe, ũ(t) + ue) dt s.t. ˙̃x = Ax̃+Bũ, x̃(0) = x̃0 := x0 − xe. (3.21)

As mentioned before, ℓ(x̃ + xe, ũ + ue) only differs from ℓ̃(x̃, ũ) by a constant term. So, if
(x∗, u∗) is the optimal pair for problem (GLQ)T , then (x∗ − xe, u

∗ − ue) is the optimal pair
for problem (3.21) and vice versa. Therefore, we deduce that problem (GLQ)T satisfies the
(measure or exponential) turnpike property at (xe, ue) if and only if problem (3.21) satisfies the
(measure or exponential) turnpike property at (0, 0).
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We now introduce a class of evolution operators that is of particular interest.

Assume that τ and T satisfies 0 ≤ τ < T . Let UT (·, τ) : [τ, T ] → L(H) denote the evolution
operator of the following problem:

ẋ(t) = (A−BB∗P (T − t))x(t), x(τ) = x0 ∈ H, t ∈ [τ, T ].

That is, UT (·, τ) is defined by setting

UT (t, τ)x0 := x(t), ∀x0 ∈ H, t ∈ [τ, T ],

where x is the solution of the above evolution problem.

Next, we prove two crucial properties of the evolution operator UT .

Lemma 3.3.9 (Exponential convergence of UT ). There exist some positive constants M and k
such that

∥UT (t, τ)∥ ≤Me−k(t−τ), ∀t ∈ [τ, T ] (3.22)

holds for any τ and T satisfying 0 ≤ τ < T .

Proof. Suppose τ, T ∈ R satisfies that 0 ≤ τ < T . By Proposition 2.2.7, there exist some
positive constants M0 and k0 such that

∥P (t)− Pmin∥ ≤M0e
−k0t, ∀t ∈ [0,∞).

Fix some x0 ∈ H. Let y : [τ,∞) → H be defined by

y(t) := ek1(t−τ)UT (t, τ)x0, t ∈ [τ,∞)

with some sufficiently small k1 > 0 so that A−BB∗Pmin + k1I still generates an exponentially
stable semigroup, denoted T̃ .

For any t ∈ [τ, T ], a straightforward computation leads to

ẏ(t) = (A−BB∗Pmin + k1I)y(t) + (BB∗Pmin −BB∗P (T − t))y(t)

y(t) = T̃t−τy(τ) +

∫ t

τ

T̃t−s(BB
∗Pmin −BB∗P (T − s))y(s)ds.

So, there exist constants M1 and M2 > 0 such that,

∥y(t)∥ ≤M1∥y(τ)∥+
∫ t

τ

M2e
−k0(T−s)∥y(s)∥ds

≤M1∥x0∥+M2e
−k0(T−t)

∫ t

τ

∥y(s)∥ds.
(3.23)
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Now fix some constant S > 0 such that M2e
−k0S < k1.

We first discuss the case τ ≥ T − S. Referring to (3.23), we obtain that

∥y(t)∥ ≤M1∥x0∥+M2

∫ t

τ

∥y(s)∥ds.

Since t− τ ≤ S, applying Grönwall’s inequality to the above equation, we get

∥y(t)∥ ≤M1∥x0∥eM2(t−τ) ≤M1e
M2S∥x0∥.

It follows that
∥UT (t, τ)x0∥ ≤ ∥y(t)∥ ≤M1e

(M2+1)Se−(t−τ)∥x0∥,
which proves condition (3.22) with suitable coefficients.

We now consider the case τ < T − S and t ∈ [τ, T − S]. From (3.23) we obtain

∥y(t)∥ ≤M1∥x0∥+M2e
−k0S

∫ t

τ

∥y(s)∥ds.

Applying Grönwall’s inequality to the above equation, we get

∥y(t)∥ ≤M1∥x0∥eM2e−k0S(t−τ).

Thus
∥UT (t, τ)x0∥ = e−k1(t−τ)∥y(t)∥ ≤M1∥x0∥e(M2e−k0S−k1)(t−τ),

where M2e
−k0S − k1 < 0. Hence we conclude (3.22) is satisfied with suitable coefficients also

in this case.

It remains to prove (3.22) for the case τ < T − S and t ∈ (T − S, T ]. From the definition of
UT , we have

UT (t, τ) = UT−τ (t− τ, 0) = US(S − T + t, 0)UT−τ (T − S − τ, 0). (3.24)

Notice that US(S − T + t, 0) satisfies the estimate for the first case, so we have

∥US(S − T + t, 0)∥ ≤M1e
(M2+1)Se−(S−T+t)∥x0∥ ≤M1e

(M2+1)S∥x0∥.

It is also clear UT−τ (T − S − τ, 0) satisfies the estimate for the second case, so

∥UT−τ (T − S − τ, 0)∥ ≤M1e
(M2e−k0S−k1)(T−S−τ)∥x0∥ ≤M1e

(M2e−k0S−k1)(t−S−τ)∥x0∥.

Combining the above two estimates with (3.24), we deduce that (3.22) is satisfied also in this
case with suitable coefficients M and k (independent of T ).

Since t ∈ [τ, T ] is arbitrary, this lemma follows by choosing the largest M and the smallest
k among all the three cases.
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Let the operator Φ̃T
t : L2((0, t),U) → H be defined by

Φ̃T
t ũ :=

∫ t

0

UT (t, s)Bũ(s)ds, ∀T > 0, 0 ≤ t < T.

It is clear Φ̃T
t ∈ L(L2((0, t),U),H).

Lemma 3.3.10 (Uniform boundedness of Φ̃T
t ). The operator Φ̃T

t is uniformly bounded in norm
for all any t and T satisfying 0 ≤ t < T .

Proof. By Lemma 3.3.9 and Hölder’s inequality, we obtain

∥Φ̃T
t ũ∥ ≤

∫ t

0

∥UT (t, s)∥ ∥Bũ(s)∥ ds

≤
(∫ t

0

M2e−2k(t−s)ds

) 1
2
(∫ t

0

∥B∥2∥ũ(s)∥2ds
) 1

2

≤M∥B∥
(
1− e−2kt

2k

) 1
2

∥ũ∥ ≤M∥B∥
(

1

2k

) 1
2

∥ũ∥

where M and k are the coefficients in Lemma 3.3.9. Simple considerations to this equation show
that Φ̃T

t is uniformly bounded in norm for any t and T satisfying 0 ≤ t ≤ T .

3.3.4 Explicit solution of the optimal control

In this subsection, the optimal control of problem (GLQ)T is solved in a closed form.

Lemma 3.3.11. For any T > 0 and x0 ∈ H, the optimal pair (x∗T (·, x0), u∗T (·, x0)) of problem
(GLQ)T satisfies

u∗T (t, x0)− ue = −(K∗K)−1B∗P (T − t)(x∗T (t, x0)− xe)

− (K∗K)−1B∗(UT−t(T − t, 0))∗w, ∀t ∈ [0, T ],
(3.25)

where w is the optimal adjoint state.

Proof. For any T > 0, we claim that (UT (T, 0))
∗ is the evolution operator at time T of the

following evolution system:
dp(t)

dt
= (A∗ − P (t)B(K∗K)−1B∗)p(t),

p(0) = p0 ∈ H.

33



In other words, we have (UT (T, 0))
∗p0 = p(T ).

The proof is through Yosida approximation. Let An := nA(nI − A)−1 ∈ L(H) denote the
Yosida approximation of A for sufficiently large n ∈ N. Assume that x0, p0 ∈ H. For each n,
we let xn denote the solution of problem

dxn(t)

dt
= (An −B(K∗K)−1B∗P (T − t))xn(t), t ∈ [0, T ]

xn(0) = x0,

and pn denote the solution of problem
dpn(t)

dt
= (A∗

n − P (t)B(K∗K)−1B∗)pn(t), t ∈ [0, T ]

pn(0) = p0.

Since An is bounded, we can easily verify (by showing the derivative is 0) that

⟨x0, pn(T )⟩ = ⟨xn(T ), p0⟩.

By [6, Part II, Chapter 1, Proposition 3.4], pn(T ) → p(T ) and xn(T ) → UT (T, 0)x0 as n → ∞.
This further implies

⟨x0, p(T )⟩ = ⟨UT (T, 0)x0, p0⟩ = ⟨x0, (UT (T, 0))
∗p0⟩.

Since x0, p0 ∈ H can be chosen arbitrarily, our claim then follows.

Now fix some T > 0 and define p(·) = (U·(·, 0))∗w on [0, T ]. Notice that w ∈ D(A∗), so by
Proposition 2.1.11,

p(·) ∈ C([0, T ], D(A∗)) ∩ C1([0, T ],H).

We then deduce that

dp(T − t)

dt
= −(A∗ − P (T − t)B(K∗K)−1B∗)p(T − t) in H, ∀t ∈ [0, T ].

Let x be the solution of problem (2.3) corresponding to input u ∈ L2((0, T ),U) and initial
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condition x0 ∈ H, then

2Re⟨x(T ), w⟩ − 2Re ⟨x0, p(T )⟩

= Re

∫ T

0

2 ⟨Ax(t) +Bu(t), p(T − t)⟩H−1,Hd
1

+ 2
〈
x(t),−(A∗ − P (T − t)B(K∗K)−1B∗)p(T − t)

〉
dt

= Re

∫ T

0

2 ⟨u(t), B∗p(T − t)⟩

+ 2
〈
(K∗K)−1B∗P (T − t)x(t), B∗p(T − t)

〉
dt.

Combining the above equation with (3.19), we obtain

JT (x0, u) =

∫ T

0

∥K{(u(t)− ue) + (K∗K)−1B∗P (T − t)(x(t)− xe)}∥2dt

+ 2Re⟨w, x(T )⟩+M0

=

∫ T

0

∥K{(u(t)− ue) + (K∗K)−1B∗P (T − t)(x(t)− xe)}∥2

+ 2Re
〈
(K∗K)−1B∗P (T − t)(x(t)− xe), B

∗p(T − t)
〉

+ 2Re ⟨(u(t)− ue), B
∗p(T − t)⟩ dt+M1

=

∫ T

0

∥∥K {
(u(t)− ue) + (K∗K)−1B∗ [P (T − t)(x(t)− xe) + p(T − t)]

}∥∥2
dt

+M2

where M0, M1 and M2 ∈ R are constants independent of u.

This implies that, if the feedback law

u(t)− ue = −(K∗K)−1B∗P (T − t)(x(t)− xe)

− (K∗K)−1B∗(UT−t(T − t, 0))∗w, ∀t ∈ [0, T ],

admits a solution in L2((0, T ),H), then this solution is optimal.

By Proposition 2.1.11, this problem does admit such a solution x ∈ L2((0, T ),H). So, the
optimal pair verifies equation (3.25).

Remark 3.3.12. If K = I and the optimal steady state (xe, ue) = (0, 0), then equation (3.25)
can be simplified to

u∗T (t, x0) = −B∗P (T − t)x∗T (t, x0)−B∗(UT−t(T − t, 0))∗w, ∀t ∈ [0, T ].
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3.3.5 Main proof

We are now in position to prove Theorem 3.3.1.

Proof. Without loss of generality, we assume that K = I and the unique optimal steady state
(xe, ue) = (0, 0). By Lemma 3.3.6, there exists some w ∈ D(A) such that[

A∗

B∗

]
w =

[
z
v

]
.

Fix N ⊂ H to be some bounded neighborhood of xe = 0, x0 ∈ N and T > 0.

For any T0 ∈ [0, T ), consider the input function defined by:

uT0(t) :=

{
−B∗P (T − t)xT0(t), t ∈ [0, T0),

−B∗P (T − t)xT0(t)− (B∗UT−t(T − t, 0))∗w, t ∈ [T0, T ],

where xT0 is the solution of problem (2.3) corresponding to input uT0 and initial condition x0.
Clearly the above definition gives a unique uT0 ∈ L2((0, T ),U).

Define that p(·) = (U·(·, 0))∗w on [0, T ]. By equation (3.19) and Remark 3.3.12, the cost
functional is given by

JT (x0, uT0) =

∫ T

0

∥uT0(t) +B∗P (T − t)xT0(t)∥2dt+ ⟨P (T )x0, x0⟩+ 2Re⟨w, xT0(T )− x0⟩

=

∫ T

T0

∥B∗p(T − t)∥2dt+ ⟨P (T )x0, x0⟩+ 2Re⟨w, xT0(T )− x0⟩.

Let (x∗, u∗) be the optimal pair of (GLQ)T . Observe that

JT (x0, u
∗) =

∫ T

0

∥B∗p(T − t)∥2dt+ ⟨P (T )x0, x0⟩+ 2Re⟨w, x∗(T )− x0⟩.

Since JT (x0, uT0) > JT (x0, u
∗), the difference of the two equations gives

∥B∗p(T − ·)∥2L2((0,T0),U) =

∫ T0

0

∥B∗p(T − t)∥2dt < 2Re⟨w, xT0(T )− x∗(T )⟩.

Simple considerations about the corresponding evolution systems of xT0 and x∗ show that

xT0(T0)− x∗(T0) = UT (T0, 0)x0 − [UT (T0, 0)x0 + Φ̃T
T0
(−B∗p(T − ·))] = Φ̃T

T0
(B∗p(T − ·)),
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and thus

xT0(T )− x∗(T ) = UT (T, T0)(xT0(T0)− x∗(T0)) = UT (T, T0)Φ̃
T
T0
(B∗p(T − ·)).

Following from Lemma 3.3.9 and Lemma 3.3.10, we deduce that there exist some positive
constants M0 and k such that

∥B∗p(T − ·)∥2L2((0,T0),U) < 2Re
〈
w,UT (T, T0)Φ̃

T
T0
(B∗p(T − ·))

〉
≤M0e

−k(T−T0)∥B∗p(T − ·)∥L2((0,T0),U).

That is, ∥B∗p(T−·)∥L2((0,T0),U) < M0e
−k(T−T0). Since x∗(T0) = UT (T0, 0)x0−Φ̃T

T0
(B∗p(T−·)),

applying Lemma 3.3.9 and Lemma 3.3.10 again, we deduce that there exists some M1 > 0 such
that

∥x∗(T0)∥ ≤M1(e
−kT0∥x0∥+ e−k(T−T0)). (3.26)

Finally, recall from Remark 3.3.12 that

u∗(T0) = −B∗P (T − T0)x
∗(t)−B∗p(T − T0).

Now Lemma 3.3.9 implies there exists M2 > 0 such that

p(T − T0) = (UT0(T0, 0))
∗w ≤M2e

−kT0 .

By uniform boundedness principle and (3.26), a straightforward calculation shows

∥u∗(T0)∥ ≤M3(e
−kT0∥x0∥+ e−k(T−T0)). (3.27)

holds for some M3 > 0 independent of the selection of T, T0.

Since N is bounded and T0 can be arbitrarily chosen in [0, T ], now equation (3.26) and (3.27)
together implies the exponential (and also the measure) turnpike property at (0, 0).

3.4 Necessary condition for the turnpike property

In this section, we deduce several necessary conditions for turnpike property. The following
subsections are devoted to the proof of these results.
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Definition 3.4.1. The unobservable subspace U∞ of a C0-semigroup T is defined as

U∞ := {x ∈ H | CTtx = 0 for any t ∈ [0,∞)}.

Remark 3.4.2. Obviously U∞ is a closed subspace of H and is invariant under T , so the restric-
tion of T to U∞ is a C0-semigroup on U∞, and the corresponding generator is just A|D(A)∩U∞ .
See, e.g., [41, Proposition 2.4.3].

Our first result provides several necessary conditions for the turnpike property in terms of the
turnpike reference, stabilizability and detecability of the system.

Theorem 3.4.3. If the problem (GLQ)T satisfies the measure or exponential turnpike property
at some steady state (xe, ue), then following statements hold:

(a) T is exponentially stable on U∞.

(b) (xe, ue) is the unique optimal steady state of problem (3.4).

(c) The pair (A,B) is exponentially stabilizable.

The next result shows that when the turnpike property holds, the optimal control can be
explicitly solved as in subsection 3.3.4.

Corollary 3.4.4. If problem (GLQ)T satisfies the measure or exponential turnpike property at
some controlled equilibrium (xe, ue), then there exists a unique w ∈ D(A∗) such that[

A∗

B∗

]
w =

[
z + C∗Cxe
v +K∗Kue

]
.

Moreover, the optimal control of problem (GLQ)T is given in a feedback law form by

u∗T (t, x0)− ue = −(K∗K)−1B∗P (T − t)(x∗T (t, x0)− xe)

− (K∗K)−1B∗(UT−t(T − t, 0))∗w, ∀t ∈ [0, T ].

3.4.1 Proof of Theorem 3.4.3 (a)

Lemma 3.4.5. For any time horizon T > 0 and x0 ∈ U∞,

u∗T (·, x0) = u∗T (·, γx0), ∀γ ∈ C.
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Proof. Suppose that T > 0 and x0 ∈ U∞. For any γ ∈ C, let xγ be the solution of system (2.3)
on [0, T ] corresponding to initial condition γx0 and input u ∈ L2((0, T ),U), then

xγ(t) = Ttγx0 + Φt(u), ∀t ∈ [0, T ].

Since x0 ∈ U∞, notice that for any t ∈ [0, T ],

∥Cxγ(t)∥2 = ∥CTtγx0∥2 + 2Re⟨CTtγx0, CΦt(u)⟩+ ∥CΦt(u)∥2 = ∥CΦt(u)∥2,

and
2Re⟨z, xγ(t)⟩ = 2Re⟨z, Ttγx0⟩+ 2Re⟨z,Φt(u)⟩.

So, we have

JT (γx0, u) =

∫ T

0

∥Cxγ(t)∥2 + ∥Ku(t)∥2 + 2Re⟨z, x(t)⟩+ 2Re⟨v, u(t)⟩dt

=

∫ T

0

∥CΦt(u)∥2 + 2Re⟨z, Ttγx0 + Φt(u)⟩+ ∥Ku(t)∥2 + 2Re⟨v, u(t)⟩dt.

Clearly for any γ ∈ C, the terms concerning u in JT (γx0, u) are all the same. Hence we conclude
that u∗T (·, γx0) = u∗T (·, x0) for any γ ∈ C.

Proof of Theorem 3.4.3 (a). Without loss of generality, assume that the measure turnpike prop-
erty is satisfied at (xe, ue) = (0, 0). Let N be the closed unit ball with center 0 in H.

The proof is by contradiction. Observe that there exists a sufficiently large constant M > 0
such that, if x0 ∈ H and t0 ≥ 2MN , ε + 1 whereMN , ε is defined as in Definition 3.2.2, then

∥Tt0x0∥ ≥M =⇒ ∥Ttx0∥ > 2ε, ∀t ∈ [t0 − 2MN , ε − 1, t0].

In fact, by Proposition 2.1.2, there exist positive constants k and Mk such that

M ≤ ∥Tt0x0∥ ≤ ∥Tt0−t∥∥Ttx0∥ ≤Mke
k(t0−t)∥Ttx0∥, ∀t ∈ [t0 − 2MN , ε − 1, t0].

Now it is clear if M > 2εMke
k(2MN , ε+1), then ∥Ttx0∥ > 2ε.

On the other hand, if T is not exponentially stable on U∞, then according to Proposition V1.2
in [14], the restriction of T on U∞ does not converge to 0 in operator norm as t → ∞. In other
words, there exists some ε > 0 such that

lim sup
t≥0

∥Tt|U∞∥ > ε.
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As a consequence, we are able to find some tr > 2MN , ε
4M

+ 2MN , ε + 2 and x0 ∈ H satisfying
∥x0∥ ≤ 1 such that ∥Ttrx0∥ ≥ ε.

By measure turnpike property, there exists a point tl ∈ [0, 2MN , ε
4M

+ 1] such that∥∥∥x∗tr(tl, x0)∥∥∥ ≤ ε

4M
and

∥∥∥x∗tr (tl, x02 )∥∥∥ ≤ ε

4M
.

Since x0 ∈ U∞, following from Lemma 3.4.5, we obtain that

∥Ttlx0∥
2

=
∥∥∥x∗tr(tl, x0)− x∗tr

(
tl,
x0
2

)∥∥∥ ≤
∥∥∥x∗tr(tl, x0)∥∥∥+

∥∥∥x∗tr (tl, x02 )∥∥∥ ≤ ε

2M
.

This implies that ∥M
ε
Ttlx0∥ ≤ 1. Thus M

ε
Ttlx0 ∈ N .

Also notice∥∥∥∥Ttr−tl

M

ε
Ttlx0

∥∥∥∥ =

∥∥∥∥Mε Ttrx0

∥∥∥∥ > M

ε
ε ≥M and tr − tl > 2MN , ε + 1,

so ∥∥∥∥Tt
M

ε
Ttlx0

∥∥∥∥ > 2ε, ∀t ∈ [tr − tl − 2MN , ε
2
− 1, tr − tl].

From Lemma 3.4.5, we obtain that∥∥∥∥x∗tr (t, Mε Ttlx0

)
− x∗tr

(
t,
1

2

M

ε
Ttlx0

)∥∥∥∥ =

∥∥∥∥12Tt
M

ε
Ttlx0

∥∥∥∥ > ε

holds for any t ∈ [tr − tl − 2MN , ε
2
− 1, tr − tl]. However, this gives a contradiction since the

length of this interval is greater than 2MN , ε
2
+ 1, and by the measure turnpike property, there

must exist a t ∈ [tr − rl − 2MN , ε
2
− 1, tr − tl] so that∥∥∥∥x∗tr (t, Mε Ttlx0

)∥∥∥∥ ≤ ε

2
and

∥∥∥∥x∗tr (t, 12Mε Ttlx0

)∥∥∥∥ ≤ ε

2
,

which further implies∥∥∥∥x∗tr (t, Mε Ttlx0

)
− x∗tr

(
t,
1

2

M

ε
Ttlx0

)∥∥∥∥ ≤ ε

2
+
ε

2
≤ ε.
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3.4.2 Proof of Theorem 3.4.3 (b)

We first prove two preliminary lemmas.

Lemma 3.4.6 (Characterization of the optimal steady state). (xe, ue) ∈ D(A)×U is an optimal
steady state of the optimal steady state problem (3.4) if and only if[

z + C∗Cxe
v +K∗Kue

]
∈ ran

[
A∗

B∗

]
.

Moreover, the optimal steady state is unique if and only if

kerA ∩ kerC = {0}.

Proof. Let V = ker[A,B]. Recall that

ℓ (x, u) =

〈
PV

[
C∗C 0
0 K∗K

] ∣∣∣∣
V

[
x
u

]
+ 2PV

[
z
v

]
,

[
x
u

]〉
.

Let the non-negative operator P : V → V be defined by

P := PV

[
C∗C 0
0 K∗K

] ∣∣∣∣
V

.

Notice that P ∈ L(V ) and PV

[
z
v

]
∈ V . So, by [22, Lemma 4], (xe, ue) ∈ V is a minimizer of

problem (3.4) if and only if

PV

[
C∗C 0
0 K∗K

] ∣∣∣∣
V

[
xe
ue

]
= −PV

[
z
v

]
. (3.28)

Equivalently, (xe, ue) ∈ V satisfies[
z + C∗Cxe
v +K∗Kue

]
=

[
C∗C 0
0 K∗K

] ∣∣∣∣
V

[
xe
ue

]
+

[
z
v

]
∈ V ⊥ = ran

[
A∗

B∗

]
.

This proves our first claim.

On the other hand, simple considerations show that the uniqueness of (xe, ue) ∈ V verifying
equation (3.28) is equivalent to kerP = {(0, 0)}. Now let us show that kerP = {(0, 0)} is
further equivalent to kerA ∩ kerC = {0}.
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Suppose that kerA ∩ kerC = {0}. If (x0, u0) ∈ kerP , then we have〈
P
[
x0
u0

]
,

[
x0
u0

]〉
=

〈[
C∗Cx0
K∗Ku0

]
,

[
x0
u0

]〉
= ∥Cx0∥2 + ∥Ku0∥2 = 0.

Since K is coercive, we deduce that u0 = 0 and Cx0 = 0. Besides, since (x0, u0) ∈ V , we have
Ax0 = 0−Bu0 = 0. This implies x0 ∈ kerA ∩ kerC. Thus x0 = 0 and kerP = {(0, 0)}.

Conversely, if there exists some x0 ∈ kerA ∩ kerC and x0 ̸= 0, we can easily verify that
(x0, 0) ∈ kerP ⊂ V . So, kerP ̸= {(0, 0)}.

The following technical lemma provides a very conservative estimate for the lower bound of
the cost functional.

Lemma 3.4.7. Suppose N is a bounded subset of H. Then for any T ∈ (0,∞) and x0 ∈ N ,

min
u∈L2((0,T ),U)

J(x0, u) ≥ −M(e2kT − 1)

for some constants M,k > 0.

Proof. Since K is coercive, K∗K is bounded below and thus invertible. Let u0 := −(K∗K)−1v,
then there exists MK > 0 such that

∥Ku∥2+2Re⟨v, u⟩ = ∥K(u−u0)∥2−∥Ku0∥2 ≥MK∥u−u0∥2−∥Ku0∥2, ∀u ∈ U . (3.29)

Besides, by Proposition 2.1.2 and Proposition 2.1.8, there exist positive constants k, M1 and M2

such that
∥Φt∥ ≤M1e

kt, and ∥Tt∥ ≤M2e
kt, ∀t ≥ 0

Assume that T > 0, u ∈ L2((0, T ),U) and x is the solution of (2.3) corresponding to initial
condition x0 ∈ N and input u, then for any t ∈ [0, T ],

2Re⟨z, x(t)⟩ ≥ −2∥z∥ (∥Ttx0∥+ ∥Φt(u− u0)∥+ ∥Φtu0∥)
≥ −2∥z∥(M2e

kt∥x0∥+M1e
kt∥u− u0∥L2 + ∥Φtu0∥).

(3.30)

Concerning the term Φtu0, we have

∥Φtu0∥ =

∥∥∥∥∫ t

0

Tt−sBu0ds

∥∥∥∥
≤

∫ t

0

M2e
k(t−s)∥Bu0∥ds

≤ ekt

k
M2∥Bu0∥.

(3.31)
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Now (3.29), (3.30) and (3.31) together implies there exist some positive constants M3 and
M4 such that

ℓ(x(t), u(t)) ≥ −M3e
kt −M4e

kt∥u− u0∥L2 +MK∥u(t)− u0∥2 − ∥Ku0∥2, ∀t ∈ [0, T ].

Integrating ℓ over [0, T ], a straightforward calculation gives

JT (x0, u) ≥ −M4

k
(ekT − 1)∥u− u0∥L2 − M3

k
(ekT − 1) +MK∥u− u0∥2L2 − ∥Ku0∥2T.

Also notice, as a quadratic function with respect to ∥u− u0∥L2 ,

MK∥u− u0∥2L2 −
M4

k
(ekT − 1)∥u− u0∥L2 ≥ −M

2
4 (e

kT − 1)2

4M0k2
.

Simple considerations about the above two inequalities show that

JT (x0, u) ≥ −M5(e
2kT − 1)−M6(e

kT − 1)−M7T

holds for some positive constantsM5,M6 andM7. Since the dominant term of the above estimate
is e2kT − 1, there exists some M > 0 (independent of T ) such that

JT (x0, u) ≥ −M(e2kT − 1).

The lemma then follows from the fact that u ∈ L2((0, T ),U) can be arbitrarily chosen.

Now we are in the position to prove Theorem 3.4.3 (b).

Proof of Theorem 3.4.3 (b). We first show that if the measure turnpike property holds at some
steady state (xe, ue), then (xe, ue) is necessarily an optimal steady state.

Otherwise, there exists some steady state (x̃e, ũe) such that ℓ(x̃e, ũe) < ℓ(xe, ue). Define
(dx, de) := (x̃e, ũe)− (xe, ue). Fix some bounded neighborhood N of xe, and some sufficiently
small λ ∈ (0, 1] such that xe + λdx ∈ N , then by the convexity of ℓ,

ℓ(xe + λdx, ue + λdu) < ℓ(xe, ue).

Let us denote the equilibrium point (xe + λdx, ue + λdu) by (x̃e, ũe) again.
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Since ℓ is continuous, there exist some sufficiently small ε and δ > 0 so that, for any
(x0, u0) ∈ H × U ,

∥x0 − xe∥+ ∥u0 − ue∥ ≤ δ =⇒ ℓ(x̃e, ũe) + ε < ℓ(x0, u0).

Now fix some T > 0. Then we know that the set

A := {t ∈ [0, T ]
∣∣ ∥u∗T (t, x̃e)− ue∥+ ∥x∗T (t, x̃e)− xe∥ > δ}

is open, and its Lebesgue measure is smaller than MN ,δ where MN ,δ is defined as in Defini-
tion 3.2.2.

Without loss of generality, assume that A =
⋃∞

j=1(tj,l, tj,r) where ((tj,l, tj,r))j∈N are disjoint
open intervals (the number of such intervals may be finite, and there may be at most two intervals
that contain an endpoint 0 or T , but the proof is basically the same).

Observe that at each left endpoint tj,l, j ∈ N, of these intervals, we must have

∥x∗T (tj,l, x̃e)− x̃e∥ ≤ ∥x∗T (tj,l, x̃e)− x̃e∥+ ∥u∗T (tj,l, x̃e)− ũe∥ = δ.

From Lemma 3.4.7, there exist some M,k > 0 such that

−M(ek(tj,r−tj,l) − 1) ≤
∫ tj,r

tj,l

ℓ(x∗T (t, x̃e), u
∗
T (t, x̃e))dt.

Owning to the countable additivity of Lebesgue integral, we have

−M
∞∑
j=1

(ek(tj,r−tj,l) − 1) ≤
∫
A

ℓ(x∗T (t, x̃e), u
∗
T (t, x̃e))dt.

Now simple calculation shows for any t1 and t2 > 0,

−M(ek(t1+t2) − 1) ≤ −M(ekt1 − 1)−M(ekt2 − 1).

Combining the two inequalities, we obtain that

−M(ekMN ,δ − 1) ≤ −M(ekµ(A) − 1) ≤
∫
A

ℓ(x∗T (t, x̃e), u
∗
T (t, x̃e))dt. (3.32)

Meanwhile, for any t ∈ [0, T ] \ A, since ∥x∗T (t, x̃e)− x̃e∥+ ∥u∗T (t, x̃e)− ũe∥ ≤ δ, we have

ℓ(x̃e, ũe) + ε < ℓ(x∗T (t, x̃e), u
∗
T (t, x̃e)),
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so
(T −MN ,δ)(ℓ(x̃e, ũe) + ε) <

∫
[0,T ]\A

ℓ(x∗T (t, x̃e), u
∗
T (t, x̃e))dt. (3.33)

Finally, since (x̃e, ũe) is a steady state,∫ T

0

ℓ(x∗T (t, x̃e), u
∗
T (t, x̃e))dt ≤ JT (xe, ue) = Tℓ(x̃e, ũe). (3.34)

Combining (3.32), (3.33) and (3.34), simple calculation shows

Tε < M(ekMN ,δ − 1) +MN ,δ(ℓ(x̃e, ũe) + ε).

This leads to a contradiction when T is taken sufficiently large.

Recall from Lemma 3.4.6 that the uniqueness of the optimal steady state is characterized by

kerA ∩ kerC = {0}.

In fact, if x ∈ kerA ∩ kerC, then CTtx = Cx = 0 for any t ≥ 0. So, x belongs to the unob-
servable subspace U∞ of T . Since we have prove in Theorem 3.4.3 (a) that T is exponentially
stable on U∞, we know that ∥Ttx∥ = ∥x∥ → 0 as t→ ∞. Thus x = 0.

3.4.3 Proof of Theorem 3.4.3 (c)

The following lemma provides a conservative estimate on the upper bound of the L2-norm of the
optimal control when the initial point lies in a bounded set.

Lemma 3.4.8. Assume that N is a bounded set in H. Then for any T > 0, there exists some
Mu > 0 (dependent on T ) such that

sup
x0∈N

∥u∗T (·, x0)∥L2 ≤Mu.

Proof. Fix some T > 0. We first prove there exists some M0 > 0 such that

sup
x0∈N

∫ T

0

ℓ(x∗T (t, x0), u
∗
T (t, x0))dt ≤M0. (3.35)

To see this, consider the case for input u ≡ 0, then we obtain∫ T

0

ℓ(x∗T (t, x0), u
∗
T (t, x0))dt ≤

∫ T

0

∥CTtx0∥2 + 2Re⟨z, Ttx0⟩dt, ∀x0 ∈ N .
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Since Ttx0 is bounded in norm on [0, T ] for any x0 ∈ N , simple considerations show that the
positive constant M0 exists.

Now notice, for any x0 ∈ N and t ∈ [0, T ],

2Re⟨z, x∗T (t, x0)⟩ ≥ −2∥z∥∥Ttx0 + Φtu
∗
T (·, x0)∥ ≥ −M1 −M2∥u∗T (·, x0)∥L2 ,

holds with some M1, M2 > 0, and thus∫ T

0

ℓ(x∗T (t, x0), u
∗
T (t, x0))dt ≥

∫ T

0

−M1 −M2∥u∗T (·, x0)∥L2

+MK∥u∗T (t, x0)∥2 − 2∥v∥∥u∗T (t, x0)∥dt
≥ −M1T −M2T∥u∗T (·, x0)∥L2 +MK∥u∗T (·, x0)∥2L2

− 2∥v∥∥u∗T (·, x0)∥L1

holds with some MK ,M3 > 0, where ∥ · ∥L1 denotes the L1-norm on L1((0, T ),U). By Hölder’s
inequality, the L1-norm is dominated by the L2-norm, so there exists M4 > 0 such that∫ T

0

ℓ(x∗T (t, x0), u
∗
T (t, x0))dt ≥ −M1T −M4∥u∗T (·, x0)∥L2 +MK∥u∗T (·, x0)∥2L2 .

Now simple considerations about equation (3.35) and the above two inequalities show that
the L2-norm of u∗T (·, x0) is uniformly bounded above for all x0 ∈ N , i.e., there exists some
positive constant Mu (dependent on T ) such that

sup
x0∈N

∥u∗T (·, x0)∥L2 ≤Mu.

Proof of Theorem 3.4.3 (c). Assume the measure turnpike property is satisfied at (xe, ue). With-
out loss of generality, let N be the closed unit ball in H with center xe.

We claim that, for any x0 ∈ H, there exists some u ∈ L2((0,∞),U) such that the corre-
sponding trajectory x with input u and initial condition x0 is L2-integrable (on (0,∞)). The case
for x0 = 0 is trivial, so let us assume that x0 ̸= 0.

Fix some T > MN , 1
2
+ 2. Define t0 := 0 and x̃0 := x0

∥x0∥ + xe ∈ N . Notice

µ{t ∈ [0, T ] | ∥x∗T (t, x̃0)− xe∥+ ∥u∗T (t, x̃0)− ue∥ > 1/2} ≤MN , 1
2
.
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Since T > MN , 1
2
+ 2, there exists a t1 > 1 satisfying

∥x∗T (t1, x̃0)− xe∥ ≤ 1

2
.

We define u(t) on [t0, t1) by setting

u(t) := ∥x0∥ (u∗T (t, x̃0)− ue) , t ∈ [t0, t1).

We claim that the solution of system (2.3) on [t0, t1] corresponding to initial condition x0 and
input u, denoted x, is given by

x(t) = ∥x0∥ (x∗T (t, x̃0)− xe) , ∀t ∈ [t0, t1].

In fact, we can verify this by noticing that x(0) = x0 and

ẋ(t) = ∥x0∥(Ax∗T (t, x̃0) +Bu∗T (t, x̃0))

= Ax(t) + A∥x0∥xe +Bu(t) +B∥x0∥ue
= Ax(t) +Bu(t).

So, we have

∥x(t1)∥ ≤ 1

2
∥x0∥.

On the other hand, notice∫ t1

t0

∥x(t)∥2 + ∥u(t)∥2dt ≤ ∥x0∥2(T∥x∗T (·, x̃0)∥2L∞ + 2T∥xe∥∥x∗T (·, x̃0)∥L∞ + T∥xe∥2

+ ∥u∗T (·, x̃0)∥2L2 + 2∥ue∥∥u∗T (·, x̃0)∥L1 + T∥u2e∥),

where theL1, L2 andL∞-norms here are considered on the domain [t0, t1]. Recall from Lemma 3.4.8
that there exists some M1 > 0 such that

∥u∗T (·, x̃0)∥L2 < M1, ∀x̃0 ∈ N .

By Hölder’s inequality, the L2-norm dominates the L1-norm, so there exists some M2 > 0 such
that

∥u∗T (·, x̃0)∥L1 ≤M2 ∀x̃0 ∈ N .

Finally, since
∥x∗T (t, x̃0)∥ ≤ ∥Ttx̃0∥+ ∥Φt∥∥u∗T (·, x̃0)∥L2 ,
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x∗T (t, x̃0) is uniformly bounded in norm for any x̃0 ∈ N and t ∈ [t0, t1], i.e., there exists some
positive constant M3 such that

∥x∗T (t, x̃0)∥ ≤M3, ∀x̃0 ∈ N , t ∈ [t0, t1].

Combining all these, we deduce that there exists M > 0 such that∫ t1

t0

∥x(t)∥2 + ∥u(t)∥2dt < ∥x0∥2M, ∀x̃0 ∈ N .

Now we can repeat the above argument with x(t1) in place of x(t0) = x0. By induction, we can
find a sequence (ti)i∈N satisfying ti+1 − ti > 1, and let u be defined inductively on each interval
[ti, ti+1) by setting

u|[ti,ti+1)(t) := ∥x(ti)∥ (u∗T (t, x̃i)− ue)

where x̃i :=
x(ti)

∥x(ti)∥ + xe, i = 0, 1, 2, . . . . In particular, our construction of ti gives

∥x(ti)∥ ≤
(
1

2

)i

∥x0∥, ∀i ∈ N.

Finally, since for each i ∈ N, x̃i belongs to N , we have∫ ti+1

ti

∥x(t)∥2 + ∥u(t)∥2dt < ∥x(ti)∥2M ≤
(
1

4

)i

∥x0∥2M.

So, ∫ ∞

0

∥x(t)∥2 + ∥u(t)∥2dt ≤ 4

3
∥x0∥2M.

Theorem 3.4.3 (c) now follows easily from Definition 3.2.4.

3.4.4 Proof of Corollary 3.4.4

Proof. Assume that problem (GLQ)T satisfies the measure turnpike property at some steady
state (xe, ue), then by Lemma 3.4.6 and Theorem 3.4.3 (b), we have[

z + C∗Cxe
v +K∗Kue

]
∈ ran

[
A∗

B∗

]
.
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Besides, by Theorem 3.4.3 (c) and Lemma 3.3.5, ran
[
A∗

B∗

]
is closed and

ker

[
A∗

B∗

]
= (ran[A B])⊥ = H⊥ = {0}.

So, there exists a unique w ∈ D(A∗) satisfying[
A∗

B∗

]
w =

[
z + C∗Cxe
v +K∗Kue

]
.

Following line by line the proof of Lemma 3.3.11, we can show that the optimal control of
problem (GLQ)T is given in a feedback law form by

u∗T (t, x0)− ue = −(K∗K)−1B∗P (T − t)(x∗T (t, x0)− xe)

− (K∗K)−1B∗(UT−t(T − t, 0))∗w, ∀t ∈ [0, T ].

3.5 If and only if characterization

Based on our previous results, we can further obtain some necessary and sufficient conditions for
the turnpike property. This part includes:

1. The if and only if characterization of both notions of the turnpike property in terms of the
stabilizability and detectability for finite dimensional case and point spectrum case.

2. The equivalence between the exponential turnpike property of problem (GLQ)T and the
exponential turnpike property of problem (LQ)T plus an algebraic condition.

Following subsections are devoted to the proof of these results.

Now let us denote by σ−(A), σ0(A) and σ+(A) the set of all the elements in σ(A) with
negative, zero and positive real part, respectively. In the same manner as [6], we assume

(a) the set σ+(A) consists of a finite set of
eigenvalues of finite algebraic multiplicity,

(b) there exists ε > 0, NA > 0 such that
sup

s∈σ−(A)

Re s < −ε, ∥TtP−
A∥ ≤ NAe

−εt, ∀t ≥ 0.

(PS)
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Here P−
A represents the projector on σ−(A) defined by

P−
A :=

1

2πi

∫
γ−
(sI − A)−1ds

where γ− is a simple Jordan curve around σ−(A). The projectors P0
A and P+

A are defined analo-
gously. Then P−

A(H), P0
A(H) and P+

A(H) are invariant subspace for T .

Remark 3.5.1. By [6, Part V, Chapter 1, Remark 3.5], assumptions (PS) are verified in each of
the following cases:

(a) H is finite dimensional.

(b) Tt is compact for any t > 0.

Our first result provides a complete characterization of the turnpike property in terms of the
stabilizability and detectability of the system in a special case (point spectrum case).

Theorem 3.5.2. If A fulfills assumptions (PS), then the following statements are equivalent:

(a) Problem (GLQ)T satisfies the exponential turnpike property at some steady state.

(b) Problem (GLQ)T satisfies the measure turnpike property at some steady state.

(c) The pair (A,B) is exponentially stabilizable and the pair (A,C) is exponentially de-
tectable.

The following corollary for the finite dimensional case is a direct consequence of the above
theorem.

Corollary 3.5.3. If H, U and Y are all finite dimensional spaces, then the following statements
are equivalent:

(a) Problem (GLQ)T satisfies the exponential turnpike property at some steady state.

(b) Problem (GLQ)T satisfies the measure turnpike property at some steady state.

(c) The pair (A,B) is stabilizable and the pair (A,C) is detectable.

Our last result shows the exponential turnpike property of the generalized LQ optimal control
problem is equivalent to the exponential turnpike property of the LQ optimal control problem
plus an algebraic condition.
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Theorem 3.5.4. Problem (GLQ)T satisfies the exponential turnpike property at some steady
state (xe, ue) if and only if problem (LQ)T satisfies the exponential turnpike property at (0, 0)
and there exists a vector w ∈ D(A∗) such that[

A∗

B∗

]
w =

[
z + C∗Cxe
v +K∗Kue

]
.

3.5.1 Proof of Theorem 3.5.2

The following lemma provides a Hautus type condition for detectability.

Lemma 3.5.5. If A fulfills assumptions (PS), then the following conditions are equivalent:

(a) The pair (A,C) is exponentially detectable.

(b) ker(sI − A) ∩ kerC = {0}, ∀s ∈ σ0(A) ∪ σ+(A).

We refer to [6, Part V, Chapter 1, Proposition 3.3] for a proof of this lemma. Next, let us
provide a proof of Theorem 3.5.2.

Proof of Theorem 3.5.2. (a) ⇒ (b): This is trivial.

(c) ⇒ (a): This has been proved in Theorem 3.3.1.

So, we only need to verify that (b) ⇒ (c). Suppose now problem (GLQ)T satisfies the
measure turnpike property at some steady state, then it follows from Theorem 3.4.3 (a) that T is
exponentially stable on U∞.

Assume that s ∈ σ−(A) ∪ σ0(A) and x ∈ ker(sI − A) ∩ kerC, then CTtx = estCx = 0 for
any t ∈ [0,∞). This implies x ∈ U∞ and Ttx→ 0 as t→ ∞. Moreover, since Re s ≥ 0,

∥Ttx∥ = |est|∥x∥ ≥ ∥x∥, ∀t ∈ [0,∞).

Thus x = 0. This further implies that for any s ∈ σ−(A) ∪ σ0(A), we have

ker(sI − A) ∩ kerC = {0}.

Now (b) ⇒ (c) follows easily from Lemma 3.5.5.
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3.5.2 Proof of Theorem 3.5.4

Proof of Theorem 3.5.4. Suppose problem (GLQ)T satisfies the exponential turnpike property
at some steady state (xe, ue) and N is some bounded neighborhood of 0 in H.

By the exponential turnpike property, there exists some positive constantsM1 and k > 0 such
that for any y ∈ 2N and t ∈ [0, T ],

∥x∗T (t, xe + y)− xe∥+ ∥u∗T (t, xe + y)− ue∥ ≤M1(e
−kt + e−k(T−t)). (3.36)

Observe that for any T > 0 and x0 ∈ H, the trajectory

x̃∗T (·, x0) := x∗T (·, xe + 2x0)− x∗T (·, xe + x0)

defined on [0, T ] satisfies x∗T (0, x0) = x0 and

dx̃∗T (t, x0)

dt
=Ax̃∗T (t, x0) +B(u∗T (t, xe + 2x0)− u∗T (t, xe + x0))

=(A−B(K∗K)−1B∗P (T − t))x̃∗T (t, x0)

for any t ∈ [0, T ] (see Corollary 3.4.4). So, x̃∗T (·, x0) is the optimal trajectory of problem (LQ)T
corresponding to time horizon T and initical condition x0. Similarly, define

ũ∗T (·, x0) := u∗T (·, xe + 2x0)− u∗T (·, xe + x0)

on [0, T ]. Since for any t ∈ [0, T ],

u∗T (t, xe + 2x0)− u∗T (t, xe + x0) = −(K∗K)−1B∗P (T − t)x̃∗T (t, x0),

we deduce that ũ∗T (·, x0) is the optimal control of problem (LQ)T .

Now, notice that for any t ∈ [0, T ],

∥x̃∗T (t, x0)∥ = ∥x∗T (t, xe + 2x0)− x∗T (t, xe + x0)∥
≤ ∥x∗T (t, xe + 2x0)− xe∥+ ∥x∗T (t, xe + x0)− xe∥,

and

∥ũ∗T (t, x0)∥ = ∥u∗T (t, xe + 2x0)− u∗T (t, xe + x0)∥
≤ ∥u∗T (t, xe + 2x0)− ue∥+ ∥u∗T (t, xe + x0)− ue∥.
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Combining these two estimates with equation (3.36), we obtain

∥x̃∗T (t, x0)∥+ ∥ũ∗T (t, x0)∥ ≤ 2M1(e
−kt + e−k(T−t)), ∀t ∈ [0, T ].

Since N , T and x0 can all be arbitrarily chosen, the exponential turnpike property is satisfied for
problem (LQ)T at (0, 0). Now by Corollary 3.4.4, there exists a vector w ∈ D(A∗) satisfying
the algebraic condition [

A∗

B∗

]
w =

[
z + C∗Cxe
v +K∗Kue

]
.

Conversely, assume that problem (LQ)T satisfies the exponential turnpike property at (0, 0)
and there exists a vector w ∈ D(A∗) satisfying the above algebraic condition. Recall the optimal
trajectory x∗ of problem (LQ)T corresponding to time horizon T > 0 and initial condition
x0 ∈ H is given by

x∗(t) = UT (t, 0)x0, ∀t ∈ [0, T ].

Let N be the closed unit ball in H with center 0, then the exponential turnpike property implies
there exist some positive constants M0 and k0 such that

∥UT (t, 0)x0∥ ≤M0(e
−k0t + e−k0(T−t)), ∀x0 ∈ N , T > 0, t ∈ [0, T ].

Equivalently,
∥UT (t, 0)∥ ≤M0(e

−k0t + e−k0(T−t)), ∀T > 0, t ∈ [0, T ]. (3.37)

Also notice, for any T > 0

UT (T, 0) = UT

(
T,
T

2

)
UT

(
T

2
, 0

)
= UT

2

(
T

2
, 0

)
UT

(
T

2
, 0

)
,

so
∥UT (T, 0)∥ ≤M0(e

−k0
T
2 + 1)2M0e

−k0
T
2 ≤ 4M2

0 e
− k0

2
T . (3.38)

On the other hand, Theorem 3.4.3 (c) and Lemma 3.3.5 implies ker
[
A∗

B∗

]
= {0}, so w is the

unique vector in D(A∗) satisfying [
A∗

B∗

]
w =

[
z + C∗Cxe
v +K∗Kue

]
.

Following line by line the proof of Lemma 3.3.11, we deduce that the optimal control of problem
(GLQ)T is given in a feedback law form by

u∗T (t, x0)− ue = −(K∗K)−1B∗P (T − t)(x∗T (t, x0)− xe)

− (K∗K)−1B∗(UT−t(T − t, 0))∗w, ∀t ∈ [0, T ].
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Then it follows for any t ∈ [0, T ],

x∗T (t, x0)− xe =UT (t, 0)(x0 − xe)

−
∫ t

0

UT−s(t− s, 0)B(K∗K)−1B∗(UT−s(T − s, 0))∗wds.

Simple considerations to (3.37), (3.38) and the above equation show that there exists some posi-
tive constant M1 such that for any t ∈ [0, T ],

∥x∗T (t, x0)− xe∥ ≤M0(e
−k0t + e−k0(T−t))∥x0 − xe∥

+

∫ t

0

M1(e
−k0(t−s) + e−k0(T−t))e−

k0
2
(T−s)ds.

A straightforward computation shows

∥x∗T (t, x0)− xe∥ ≤M0(e
−k0t + e−k0(T−t))∥x0 − xe∥+M2e

− k0
2
(T−t), ∀t ∈ [0, T ] (3.39)

holds with some constant M2 > 0 (independent of T ).

Finally, recall

u∗T (t, x0)− ue = −(K∗K)−1B∗P (T − t)(x∗T (t, x0)− xe)

− (K∗K)−1B∗(UT−t(T − t, 0))∗w, ∀t ∈ [0, T ].

By uniform boundedness principle, (3.38) and (3.39), there exist someM3,M4 > 0 (independent
of T ) such that

∥u∗T (t, x0)− ue∥ ≤M3(e
−k0t + e−k0(T−t))∥x0 − xe∥+M4e

− k0
2
(T−t), ∀t ∈ [0, T ]. (3.40)

Now it is trivial to see from (3.39) and (3.40) that problem (GLQ)T satisfies the exponential
turnpike property at (xe, ue).

3.6 Examples

In this section, we will discuss some applications of our results.
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3.6.1 Parabolic equations

Let Ω be a bounded domain in Rn with a boundary ∂Ω of C2. Let H = U = Y = L2(Ω), and
B,C and K be arbitrary operators in L(L2(Ω)). We define A : D(A) → H by

D(A) = H2(Ω) ∩H1
0 (Ω),

Ah = (∆ + cI)h, ∀h ∈ D(A).

where c ∈ R. By [6, Paty IV, Chapter 1, Section 8.1], A generates a strongly continuous (in fact,
analytic) semigroup on H. Now the above functional framework is well suited to describe the
distributed control of the following parabolic equation with Dirichlet boundary conditions:

∂h

∂t
(x, t) = (∆x + c)h(x, t) +B(u(·, t))(x), in Ω× [0, T ],

h(·, 0) = h0 ∈ L2(Ω),

h(t, x) = 0, on ∂Ω× [0, T ].

Let z, v ∈ L2(Ω). Consider the optimal control problem: To minimize

JT (h0, u) =

∫ T

0

∫
Ω

|(Ch(·, t))(x)− z(x)|2 + |(Ku(·, t))(x)− v(x)|2dxdt

over all u ∈ L2((0, T ), L2(Ω)). Obviously this cost functional only differs from the one given in
(GLQ)T by a constant, so our results on turnpike property is valid for this system.

By [41, Remark 3.6.4], −∆ is a strictly positive operator with compact resolvents, so by
spectral theorem, A is diagonalizable with a orthonormal basis (ψk)k∈N of eigenvectors such that
the corresponding sequence of eigenvalues (λk)k∈N ⊂ R is decreasing and satisfies λk → −∞
as k → ∞. Since (see [41, Section 2.6])

Ttx =
∞∑
k=0

eλktψk, ∀x ∈ H, t ∈ [0,∞),

Tt is compact for any t > 0. So by Remark 3.5.1, this problem fulfills assumptions (PS).

If λ0 < 0, then T is exponentially stable, so the pair (A,B) and (A,C) are exponentially
stabilizable and exponentially detectable for any B,C ∈ L(L2(Ω)), respectively. If there exists
m ∈ N such that λm ≥ 0 and λm+1 < 0, then by Lemma 3.5.5, the pair (A,C) (resp. (A,B)) is
exponentially detectable (resp. exponentially stabilizable) if and only if

ker(λiI − A) ∩ kerC = {0} (resp. ker(λiI − A∗) ∩ kerB∗ = {0}), ∀i = 0, 1, . . . ,m.

As a consequence, the exponential turnpike property is equivalent to the measure turnpike
property in this case, and it holds if and only if the above Hautus type conditions hold.
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3.6.2 Wave equations

Let Ω be as in last example. Let H = H1
0 (Ω)×L2(Ω) and U = Y = L2(Ω). Then H is a Hilbert

space endowed with the inner product〈[
f1
g1

]
,

[
f2
g2

]〉
:=

∫
Ω

df1
dx

(s)
df2
dx

(s) + g1(s)g2(s)ds, ∀
[
f1
g1

]
,

[
f2
g2

]
∈ H.

We define A : D(A) → H and B ∈ L(U ,H) by

D(A) :=
(
H2(Ω) ∩H1

0 (Ω)
)
×H1

0 (Ω),

A

[
f
g

]
:=

[
g
∆f

]
, ∀

[
f
g

]
∈ D(A),

Bu :=

[
0
u

]
, ∀u ∈ L2(Ω).

By [41, Proposition 3.7.6] and Stone’s theorem, A generates a unitary semigroup, that is, A
generates a C0-semigroup T satisfying

∥Ttx∥ = ∥x∥, ∀x ∈ H, t ≥ 0.

By [41, Example 11.2.2], the pair (A,B) is exactly controllable, thus also exponentially stabiliz-
able. Next, we let K = I ∈ L(U) and denote

h0(·) =
[
h0,1(·)
h0,2(·)

]
∈ H.

Then the above functional framework is well suited to describe the distributed control of the
following wave equation:

∂2h

∂t2
(x, t) = ∆xh(x, t) + u(x, t), in Ω× [0, T ],

h(·, 0) = h0,1(·) ∈ H1
0 (Ω), ht(·, 0) = h0,2(·) ∈ L2(Ω),

h(x, t) = 0, on ∂Ω× [0, T ].

(3.41)

Now, We denote

z(·) =
[
z1(·)
z2(·)

]
∈ H, v = v(·) ∈ U .
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and define C ∈ L(H,Y) by

C

[
f
g

]
= g, ∀

[
f
g

]
∈ H.

Consider the optimal control problem (GLQ)T : To minimize

JT (h0(·), u) = Re

∫ T

0

∫
Ω

|ht(x, t)|2 + 2∇xh(x, t) · ∇z1(x) + 2ht(x, t)z2(x)

+ |u(x, t)|2 + 2u(x, t)v(x)dxdt.

Thanks to [41, Theorem 7.4.1], the pair (A,C) is exactly observable, thus also exponentially
detectable, so by Theorem 3.3.1, the turnpike property is satisfied for problem (GLQ)T .

Notice for any
[
f
g

]
∈ D(A) and u ∈ U ,

A

[
f
g

]
+Bu = 0 ⇐⇒ g = 0 and ∆f + u = 0.

and if
([
f
g

]
, u

)
is a steady state, g = 0 implies

ℓ

([
f
g

]
, u

)
= Re

∫
Ω

2∇f(x) · ∇z1(x) + |∆f(x)|2 − 2∆f(x)v(x)dx.

Since z1 ∈ H1
0 (Ω), Dz1(·) = 0 on ∂Ω, where Dz1(·) is the Dirichlet trace of z1. So,∫

Ω

∇f(x) · ∇z1(x)dx =

∫
∂Ω

Nf(x)Dz1(x)dx−
∫
Ω

∆f(x)z1(x)dx

=−
∫
Ω

∆f(x)z1(x)dx,

where Nf(·) is the Neumann trace of f on ∂Ω.

Combining the two equations, we easily see that the optimal steady state
([
fe
ge

]
, ue

)
is

uniquely characterized by
ge = 0 and ∆fe = ue = z1 + v.

Let u∗ denote the optimal control and h∗ denote the solution of PDE (3.41) corresponding to
control u∗. In this case, the turnpike property ensures that for sufficiently large T > 0, h∗(·, t),
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∇xh
∗(·, t) h∗t (·, t) and u∗(·, t) will stay, for most of the time horizon, close to fe(·), ∇fe(·), 0 and

(z1 + v)(·) in L2-sense respectively (the argument with respect to h∗(·, t) and fe(·) is a straight
consequence of Poincare’s inequality).

From the definition of exponential turnpike property, it is trivial to show that (under the
setting of Definition 3.2.2) there exist some constants M,w > 0 such that for any t ∈ [0, T ],

∥∇h∗(·, t)− fe(·)∥+ ∥h∗t (·, t)∥+ ∥u∗(·, t)− (z1 + v)(·)∥ ≤M(e−wt + e−w(T−t)).

3.6.3 Delay equations

Consider the retarded differential equations of the following type:
dh

dt
(t) = A0h(t) +

N∑
i=1

Aih(t− ti) +B0u, t ≥ 0

h(0) = h0

h(θ) = f(θ), a.e., θ ∈ [−tN , 0]

where 0 < t1 < t2 < · · · < tN represent the point delays, Ai ∈ L(Cn), i = 0, 1, · · ·, N ,
B0 ∈ L(Cm,Cn), h0 ∈ Cn and f ∈ L2((−tN , 0),Cn).

We are interested in the following optimal control problem: To minimize

JT ((h0, f(·)), u) =
∫ T

0

∥C0h(t)− z0∥2 + ∥Ku(t)− v0∥2dt (3.42)

over all u ∈ L2((0, T ),Cm), where C0 ∈ L(Cn,Cr) and K ∈ L(U).

We refer to [11, Section 3.3] for the following semigroup framework used to analyse the
above system: Let H = Cn × L2((−tN , 0),Cn) and U = Cm. Define A : D(A) → H by

D(A) =

{[
x
g

]
∈ Cn ×H1((−tN , 0),Cn)

∣∣∣ g(0) = x

}
,

A

[
x
g

]
:=

A0x+
∑N

i=1Aig(−ti)
dg

dt

 , ∀
[
x
g

]
∈ D(A),

Bu :=

[
B0u
0

]
, ∀u ∈ U .
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Let Y = Cr, and C ∈ L(H,Y) be defined by

C

[
x
g

]
= C0x, ∀

[
x
g

]
∈ H.

If we denote

z =

[
−C∗

0z0
0

]
, v = −K∗v0,

then it is easy to verify that problem (GLQ)T is equivalent to problem (3.42).

By [11, Theorem 8.2.5], the pair (A,B) is exponentially stabilizable if and only if

ran(sI − A0 −
N∑
i=1

Aie
−sti , B0) = Cn, ∀s ∈ C+,

where C+ is the set of complex numbers with non-negative real part. Similarly, the pair (A,C)
is exponentially stabilizable if and only if

ker

[
sI − A0 −

∑N
i=1Aie

−sti

C0

]
= {0}, ∀s ∈ C+.

So, we have some simple conditions to determine the (exponential) stabilizability and detectabil-
ity, thus also the turnpike property. For this problem, if the (exponential) stabilizability and
detectability are verified, then the turnpike property will be satisfied for problem (OCP )T . In
particular, (under the setting of Definition 3.2.2) the following estimate can be easily derived:

|h∗(t)− xe|+ |u∗(t)− ue| ≤M(e−wt + e−w(T−t)), ∀t ∈ [0, T ],

where u∗ is the optimal control, h∗ is the corresponding solution and
([
xe
fe

]
, ue

)
is the unique

optimal steady state.

3.6.4 Model predictive control (MPC)

MPC is a controller used for infinite time horizon (or very large finite time horizon) optimal
control problems. The idea of MPC is to repeatedly solve the optimal control problem on a
shorter time horizon and then apply the optimal control to a small time slot. Compared to LQR,
the advantage of MPC is that it is more flexible when the system varies with time (e.g. automated
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driving system) since MPC optimizes the current time slot, while also taking future time slots
into account.

In this subsection, we prove that the turnpike property for problem (LQ)T implies the effec-
tiveness of the continuous-time MPC. So if the turnpike property is observed in some real-world
implementation, it is reasonable to consider MPC as a controller which balances the flexibility
of the time varying system and the long-term operating cost. Notice that in practical applica-
tions, the term ’MPC’ is usually referred to the discrete-time MPC because the optimal control
of a continuous-time system is usually not available, especially for nonlinear systems. For a
continuous-time system, people often first discretize the system to a discrete-time one, then use
the optimal control of the corresponding finite time horizon discrete-time problem (which can be
more easily solved) to approximate the optimal control in continuous-time setting.

Theorem 3.6.1. Suppose that all the assumptions of (LQ)T are verified. If the exponential
turnpike property holds, then for any ε > 0 and bounded subset N of H, there exist some T > 0
and τ ∈ (0, T ) such that the trajectory x, with arbitrary initial condition x0 ∈ N , defined
recursively by

x(t) =

{
x0, t = 0,

x∗T (t− nτ, x(nτ)), t ∈ (nτ, (n+ 1)τ ], n ∈ N,
(3.43)

and the corresponding control u, x given by

u(t) = u∗T (t− nτ, x(nτ)), t ∈ [nτ, (n+ 1)τ), n ∈ N (3.44)

satisfies that ∫ ∞

0

ℓ(x(t), u(t))dt < ⟨Pminx0, x0⟩+ ε. (3.45)

If the measure turnpike property holds, then for any ε > 0 and x0 ∈ N and bounded subset N
of H, there exist T > 0 and a sequence (τn)n∈N satisfying τ0 = 0 and 0 < τn+1− τn < T , n ∈ N
such that the trajectory x, with arbitrary initial condition x0 ∈ N , defined recursively by

x(t) =

{
x0, t = 0,

x∗T (t− τn, x(τn)), t ∈ (τn, τn+1], n ∈ N,
(3.46)

and the corresponding control u, given by

u(t) = u∗T (t− τn, x(τn)), t ∈ [τn, τn+1), n ∈ N

satisfies equation (3.45).
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Notice that x in the first (resp. second) case is the trajectory generated by applying the MPC
controller which optimizes the system over a time horizon T at each step and applies the optimal
control to a time slot τ (resp. τn+1 − τn, n ∈ N). Also recall that the term ⟨Pminx0, x0⟩ is the
minimum cost of the infinite time horizon LQ optimal control problem. See Proposition 2.2.6 (c).

Proof. Assume the exponential turnpike property is satisfied. Since for problem (LQ)T ,

x∗T (t, λx0) = λx∗T (t, x0), ∀x0 ∈ H, λ ∈ C, 0 ≤ t ≤ T, (3.47)

simple consideration shows that there exist constants M,w > 0 such that

∥x∗T (t, x0)∥ ≤M∥x0∥(e−wt + e−w(T−t)), ∀x0 ∈ H, 0 ≤ t ≤ T.

Fix some x0 ∈ H and 0 < τ < T . Let x and u be defined as (3.43) and (3.44). By induction,

∥x(nτ)∥ ≤Mn∥x0∥(e−wτ + e−w(T−τ))n, ∀n ∈ N.

Notice that for any n ∈ N,∫ (n+1)τ

nτ

ℓ(x(t), u(t)) = ⟨P (T )x(nτ), x(nτ)⟩ − ⟨P (T − τ)x((n+ 1)τ), x((n+ 1)τ)⟩,

so if M(e−wτ + e−w(T−τ)) < 1,∫ ∞

0

ℓ(x(t), u(t)) = ⟨P (T )x0, x0⟩+
∞∑
n=1

(⟨P (T )x(nτ), x(nτ)⟩ − ⟨P (T − τ)x(nτ), x(nτ)⟩)

≤ ⟨Pminx0, x0⟩+
∞∑
n=1

∥P (T )∥M2n∥x0∥2(e−wτ + e−w(T−τ))2n

= ⟨Pminx0, x0⟩+ ∥P (T )∥∥x0∥2
M2(e−wτ + e−w(T−τ))2

1−M2(e−wτ + e−w(T−τ))2
.

Now it is trivial to see that (3.45) holds for some suitable 0 < τ < T .

Now assume the measure turnpike property is satisfied. Similar to the first case, simple
consideration shows that for any δ > 0, there exists some Mδ > 0 such that for any T > 0,

µ
{
t ∈ [0, T ]

∣∣ ∥x∗T (t, x0)∥+ ∥u∗T (t, x0)∥ > δ∥x0∥
}
≤Mδ, ∀x0 ∈ H, 0 ≤ t ≤ T.

So, if we set τ0 = 0 and T > Mδ, then there exists a point τ1 ∈ [0, T ] such that

∥x∗T (τ1, x0)∥ ≤ δ∥x0∥.
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By repeating this step recursively, we can define x and u as (3.46) and (3.47) on [0,∞) and
obtain a sequence (τn)n∈N such that 0 < τn+1 − τn < T and ∥x(τn+1)∥ ≤ δ∥x(τn)∥, n ∈ N.

Similar to the first case, we have∫ ∞

0

ℓ(x(t), u(t)) = ⟨P (T )x0, x0⟩+
∞∑
n=1

(⟨P (T )x(nτ), x(nτ)⟩ − ⟨P (T − τ)x(nτ), x(nτ)⟩)

≤ ⟨Pminx0, x0⟩+
∞∑
n=1

∥P (T )∥δ2n∥x0∥2

≤ ⟨Pminx0, x0⟩+ ∥P (T )∥∥x0∥2
δ2

1− δ2
.

Now the theorem follows easily by choosing a sufficiently small δ.
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Chapter 4

Conclusions and open problems

In this thesis, we worked on the characterization of turnpike property for infinite dimensional
generalized linear quadratic optimal control problem. Chapter 1 is devoted to the introduction
of this problem. In section 1.1, we presented the history and important results of the optimal
control theory for infinite dimensional systems. The LQ optimal control problem is of particular
interest since it admits a closed form solution of the optimal control, so we briefly discussed the
existing results on LQ optimal control problem in various infinite dimensional settings. Finally,
we introduced the framework of the generalized LQ optimal control problem. In section 1.2, we
recalled the development of the theory of turnpike property. We also gave a list of references
on the existing results of turnpike property in different settings. Section 1.3 is devoted to the
organization of this paper.

In chapter 2, we aimed to introduce all the necessary background on infinite dimensional
generalized LQ optimal control problem. In section 2.1, we recalled the definition and prop-
erties of operator semigroups, which is the basis of infinite dimensional evolution problem. In
section 2.2.1, some results concerning Pontryagin’s Maximum principle for infinite dimensional
systems were given in order to help understand the Hamiltonian systems, optimal adjoint state
and algebraic condition appearing in later literature. In section 2.2.2, we introduced the standard
results on the solution of the differential and algebraic Riccati equation. Riccati equation is a
basic tool in our analysis. It has allowed us to solve the explicit formula for the optimal control
and establish the double-sided exponential estimate of the optimally controlled system.

We presented our main results in chapter 3. In section 3.1, we first proved the existence and
uniqueness of the optimal pair for infinite dimensional generalized LQ optimal control problem.
Then in section 3.2, two important notions of turnpike property, the measure and the exponen-
tial turnpike property, together with the methodologies to deduce them were discussed. In sec-
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tion 3.3, it was proved that the (exponential) stabilizability and detectability of the system is a
sufficient condition for the exponential turnpike property. While the necessary condition for the
turnpike property seems to be multifold. In section 3.4, we proved several necessary conditions
of turnpike property in terms of the detectability, stabilizablilty and the turnpike reference of
the control system. Based on these results, we showed in section 3.5 that the turnpike prop-
erty can be completely characterized by the exponential stabilizability and detectability for the
finite dimensional case and point spectrum case. We also provided an equivalence result on the
turnpike property for generalized LQ optimal control problem and the turnpike property for the
LQ optimal control problem plus an algebraic condition. After this, we discussed several ap-
plications of our theoretical results. The parabolic equations, wave equations, delay equations
and model predictive control (MPC) were investigated in subsection 3.6.1, 3.6.2, 3.6.3 and 3.6.4
respectively.

In the following subsections, we take a glance at some open problems for future research.

4.1 Regarding unbounded input

The motivation behind unbounded input mainly comes from various boundary control systems.
The term ”boundary” here refers to that the actuation and sensing are through the boundary
conditions of the system. This feature is very practical and important in real applications.

Roughly speaking, the systems described by PDEs with non-homogeneous boundary condi-
tions appear in the following form:

dx

dt
(t) = Lx(t), Gz(t) = u(t),

where L is some differential operator and G is some boundary trace operator. With some basic
assumptions, the above equation can be reformulated into an abstract evolution problem de-
scribed by ẋ = Ax+Bu. Though in this thesis we have considered this standard form of infinite
dimensional control systems, the control operator B is always assumed to be bounded. It can be
seen from our PDE examples in section 3.6.1 and 3.6.2 that, as our B is bounded, the control
is distributed and inside the domain. However, the control on the boundary is more realistic in
physical world, and that will often lead us to some unbounded control operator. Here we refer
to [41, Chapter 10] and the references therein for the definition of well-posed boundary control
systems and how to translate such a system into our familiar form ẋ = Ax+Bu.

Unfortunately, systems with an unbounded control operator are often far more technical than
those with a bounded control operator. In fact, unless additional assumptions are introduced,
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the mild solution may not necessarily take value in H, but perhaps in H−1, which sometimes
is not even a real function space, but a space of distributions, or perhaps can only be defined in
L2-sense, and is not continuous in H.

The most popular setting which retains a broad level of generality is to assume B is an
admissible control operator. Unfortunately, to the best of our knowledge, it is not possible to
perfectly extend the theory for LQ optimal control problem with bounded input to unbounded
setting. As noted in [42]: ’In the formula linking the optimal feedback operator to the optimal
cost operator, as well as in the Riccati equation, the weighting operator of the input has to be
replaced by another operator, which can be derived from the spectral factorization of the Popov
function’, ’Despite its simplicity, this is a ”nasty” problem when we want to reconcile it with the
existing LQ optimal control theory: various unbounded operators pop up and their domains do
not match’. Relevant work can be found in, e.g., [16, 42].

The unbounded input case is also studied under another class of assumptions that have re-
ceived wide attention. More precisely, A is assumed to be the generator of some analytic semi-
group, and the unboundedness of B is restricted by the condition

D = (sI − A)−1B, D ∈ L(U , D(Aα)).

Since the same formulas relating Riccati equations to state feedback operator still hold in this
case, it is conceivable that similar results as in our thesis can also be proved in this setting, but
perhaps with suitable extensions or changes. Due to the technical difficulty of this problem, we
have not attempted to provide complete explanation to all the details in this thesis. Instead, we
refer to [6, Part IV and Part V, Chapter 2] and [29, Chapter 9] for further discussions.

4.2 Regarding constrained case

Similar to the unbounded input case, systems with state and input constraints are also more prac-
tical in real applications, especially for finite dimensional systems. However, it is very difficult
from both the mathematics and engineering point of view to seek a closed form solution for a
constrained optimal control problem. To the best of our knowledge, there is no perfect extension
of the Riccati theory for the feedback controls in the constrained case.

However, the method which exploits the connection between turnpike and dissipativity prop-
erties of the control system can be utilized to find the sufficient condition for turnpike property
even with the presence of state and input constraints. As first introduced by Willems in [43, 44],
dissipativity describes the abstract energy balance of a dynamical system in terms of the stored
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and the supplied energy. This kind of method has motivated the definition of measure turnpike
property.

Since the dissipativity-based method does not rely on the structure of the optimality system,
instead of providing a certain quantitative estimate, the measure turnpike property only guaran-
tees that when T is large enough, the distance between the optimal pair and optimal steady state
can be arbitrarily small for all time horizon but on a set with measure no more than a constant.

Strict dissipativity and strict pre-dissipativity are two notions useful in the characterization
of turnpike properties for generalized LQ optimal control problem. The following definition of
strict dissipativity and strict pre-dissipativity is cited from [22].

Definition 4.2.1. Let K denote the set of dissipation rates:

K :=
{
α : [0,∞) → [0,∞) |α is continuous

and strictly increasing with α(0) = 0
}
.

A storage function on H is a continuously (Fréchet) differentiable function V : H → R.

We say that problem (GLQ)T is strictly pre-dissipative at some steady state (xe, ue) if there
exists a storage function V on H and a dissipation rate α ∈ K such that for all x ∈ D(A) and
all u ∈ U we have

V ′(x)(Ax+Bu) ≤ ℓ(x, u)− ℓ(xe, ue)− α(∥x− xe∥).

If the storage function V is bounded from below, we say problem (GLQ)T is strictly dissipative
at (xe, ue).

Their connection between dissipativity notions and the measure turnpike property has been
studied with full details in [17, 18] for finite dimensional generalized LQ optimal control prob-
lems in discrete and continuous time respectively, even in the presence of state and control con-
straints. In particular, in [17, 18], the necessary condition of the measure turnpike property is
first deduced for problem (GLQ)T , which has motivated our results in section 3.4.

Now let us discuss the setting for unconstrained case. We use X and U to denote the set of
state and input constraints, i.e., we require x(t) ∈ X and u(t) ∈ U almost everywhere on [0, T ].
We assume X and U are both closed convex sets. The measure turnpike property for constrained
generalized LQ optimal control problem is still defined in the same way, but now with bounded
N ⊂ X . We illustrate the results in [18] for constrained case by the following block diagram:
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every eigenvalue of A|U∞ has nonzero real part,
and the unique optimal steady state (which

does exist) (xe, ue) ∈ int (X × U)

~ww�
strict dissipativity at (xe, ue) ∈ int (X × U)

(A,B) stabilizable
www�

measure turnpike property at (xe, ue) ∈ int (X × U)

Figure 4.1: Block diagram for unconstrained case

Note that even for finite dimensional case, one does not know if the measure turnpike property
for constrained case implies the real part of any unobservable eigenvalue of A is nonzero (but it
can be verified that the pair (A,B) is stabilizable since (xe, ue) is a steady state in the interior of
X × U). We believe that this statement is true, but currently cannot prove it.

Another interesting question is that: Suppose (A,B) is stabilizable and the real part of any
unobservable eigenvalue of A is nonzero, but the global optimal steady state is not in the interior
of X × U , then if turnpike property will be satisfied at the constrained optimal steady state on
the boundary of X × U , i.e., the unique minimizer of the following problem

inf
x∈X,u∈U

ℓ(x, u) s.t. Ax+Bu = 0.

In fact, it is not hard to verify that ℓ is bounded below and tends to +∞ as ∥x∥+ ∥u∥ → ∞,
so such a minimizer does exist. Moreover, suppose that (x1, u1) and (x2, u2) are two minimizers,
then we can prove ℓ admits a strictly smaller value at the middle point of the two points. This
implies the uniqueness of the minimizer. Besides, the constrained optimal steady state must
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occur at the boundary since if it is an interior point, by the convexity of this problem, it is an
global minimizer, which contradicts to our assumption.

The author believes that if (A,B) is stabilizable and there exists a unique constrained optimal
steady state, then the following alternative for long time behavior of optimally controlled system
will hold: the optimal pair either stays close to the unique constrained optimal steady state, or
a periodic orbit which is nonobservable for most of the time horizon. If we further assume the
real part of any unobservable eigenvalue of A is nonzero, then such orbit does not exist. The
following illustrative example shows the existence of such a periodic orbit.

Example 4.2.2. Let

A =

 0 1 0
−1 0 0
0 0 −1

 , B =

1 0
0 1
0 0

 .
It is easy to verify (A,B) is stabilizable. Let C = 0, K = I , z = 0 and v = 0, then the unique
global optimal steady state is obviously (0, 0). If we letX and U be the closed unit ball in R3 and
R2 respectively, then obviously for any x0 ∈ X and T > 0, the corresponding optimal control is
u ≡ 0, so the optimal trajectory xT (·, x0) will be

xT (t, x0) = Ttx0 =

 cos(t)(x0)1 + sin(t)(x0)2
−sin(t)(x0)1 + cos(t)(x0)2

e−t(x0)3

 , ∀t ∈ [0, T ].

Now it is clear that the optimal pair will stay close to the orbit

[
xp(t)
up(t)

]
:=


cos(t)(x0)1 + sin(t)(x0)2
−sin(t)(x0)1 + cos(t)(x0)2

0
0
0

 , ∀t ≥ 0

for most of the time horizon.

However, instead of letting C = 0, if we assume that

C

1 0
0 1
0 0

 ̸= 0

(equivalently, every nonobservable eigenvalue has a nonzero real part), then by Theorem 8.4
in [18], the measure turnpike property is satisfied at (⃗0, 0⃗), so the optimal pair will stay close to
(⃗0, 0⃗) for most of the time horizon.
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For the case that the global optimal steady state does not belong to the interior of H×U , we
recall [18, Example 8.9] in the following:

Example 4.2.3. Set ẋ(t) = −2x(t) + u(t), ℓ(x, u) = u2, X = [a, b], where 0 < a < b and
U = R. Observe that the unique constrained optimal steady state is (a, 2a), and the optimal
control is made up of two stage: 1. u ≡ 0 and x decreases to a. 2. u ≡ 2a and x ≡ a. So, the
measure turnpike property is satisfied at (a, 2a).

Notice that the turnpike reference of this problem is the constrained optimal steady state.

It is still an open question whether these problems can be addressed by dissipativity-based
method. These questions will be investigated in future research.

4.3 Regarding unbounded observation and terminal cost

In this subsection, we discuss the possibility to extend our results to the case that C is an admis-
sible observation operator and there is some terminal cost P0 ∈ Σ+(H).

Definition 4.3.1. We say that C : D(A) → Y is an admissible observation operator for T if
there exists some T ≥ 0 such that the map ΨT : D(A) → L2((0, T ),Y) defined by

(ΨTx)(·) = CT·x, ∀x ∈ D(A) (4.1)

admits a (unique) bounded extension to H. Equivalently, C is an admissible observation opera-
tor if and only if there exists a T > 0 and MT ≥ 0 such that

∥ΨTx∥ ≤MT∥x∥, ∀x ∈ D(A).

The admissibility is a very standard assumption which restricts the unboundedness of obser-
vation. The following proposition owns to [41, Proposition 4.3.2].

Proposition 4.3.2. If C is an admissible observation operator for T , then there exists a function
M : [0,∞) → R+ such that

∥Ψtx∥ ≤M(t)∥x∥, ∀t ∈ [0,∞), x ∈ D(A).

If C is admissible, then we denote the extension of Ψt, ∀t ≥ 0 to H by the same symbol.
In the following proposition, we let T > 0 and L2((0, T ), D(A)) be endowed with the inner
product of L2((0, T ),H). Then D(A) × L2((0, T ), D(A)) is dense in H × L2((0, T ),H). The
density follows easily from the definition of Bochner integrability. We refer to [41, Section 12.5]
for further details.
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Proposition 4.3.3. Suppose C is an admissible observation operator and T > 0. Let the opera-
tor F : D(A)× L2((0, T ), D(A)) → L2((0, T ),Y) be defined by

F(x0, f)(t) := Ψtx0 +

∫ t

0

CTt−sf(s)ds, ∀t ∈ [0, T ], (x0, f) ∈ D(A)× L2((0, T ), D(A)).

Then F has a continuous extension to H × L2((0, T ),H). In other words, there exists M > 0
such that

∥F(x0, f)∥L2 ≤M(∥x0∥+ ∥f∥L2).

We will still use F to denote the extension of F to H × L2((0, T ),H). Let x denote the
solution of problem (2.3) corresponding to initial condition x0 ∈ H and input u ∈ L2((0, T ),U),
then F(x0, Bu) is the generalization of Cx in L2((0, T ),H). For a proof of this proposition, we
refer to [6, Part IV, Chapter 1, Lemma 6.1].

At this moment, the cost functional JT is not a-priori defined for admissible C since the
term

∫ T

0
∥Cx(t)∥2dt requires x(t) ∈ D(A) for any t, which is generally not true. However, the

above proposition shows that F(x0, Bu) is well-defined for any x0 ∈ H and u ∈ L2((0, T ),U).
So, now we are able to consider the optimal control problem of minimizing the following cost
functional JT defined by

JT (u, x0) := ∥F(x0, Bu)∥2L2 +

∫ T

0

∥Ku(t)∥2 + 2Re⟨z, x(t)⟩

+ 2Re⟨v, u(t)⟩dt+ ⟨P0x(T ) + r, x(T )⟩,

where x0 ∈ H is the initial condition and P0 ∈ Σ+(H), r ∈ H is the quadratic and linear term
of the terminal cost, respectively. In particular, when C is bounded, P0 = 0 and r = 0, this
definition of JT coincides with (2.1).

We believe that all the results in this thesis can be generalized to the case of admissible
observation and terminal cost. In fact, we have already sketched a proof for Theorem 3.3.1
(the sufficient condition for the turnpike property) in this new setting, but since it would be too
lengthy to write a detailed proof here, we will only sketch the idea of some difficult steps.

Basically, to prove Theorem 3.3.1, we only need to generalize the results in each subsection
of section 3.3 to the new case. Most of the steps are pretty straightforward and can be easily
justified. For instance, since the proof of Lemma 3.3.2, Lemma 3.3.3 and Lemma 3.3.5 does
not rely on the boundedness of C and the choice of P (0), we only need to substitute Cx with
F(x0, Bu) and set P (0) = P0.
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The major difficulty is from the proof of Lemma 3.3.4. First, we need to extend the related
notions of the solution of differential and algebraic Riccati equation to the admissible observa-
tion and terminal cost case. Then, we need to prove the convergence of P (t) to Pmin in operator
norm. In this thesis, this convergence is proved by utilizing the property of the strong solution
of differential Riccati equation to verify the Hamiltonian system arising from Pontryagin’s max-
imum principle. More precisely, we need to prove that p(t) := Pminx(T − t) coincides with the
solution of 

dx

dt
= (A−BB∗Pmin)x in [0, T ],

x(0) = x0 ∈ H,

dp(t)

dt
= A∗p(t) + C∗Cx(T − t) in [0, T ],

p(0) = Pminx(T ),

and p̃(t) := P (t)x̃(T − t) coincides with the solution of

dx̃(t)

dt
= (A−BB∗P (T − t))x̃(t) in [0, T ],

x̃(0) = x0,

dp̃(t)

dt
= A∗p̃(t) + C∗Cx̃(T − t) in [0, T ],

p̃(0) = P0x̃(T ).

To show p̃(·) = P (·)x(T − ·), we need to use the property of strict solution (which says x
is differentiable if x0 ∈ D(A)). This is no longer possible since for admissible C, Cx is only
defined in L2 sense, so the differential should be understood as distributional derivative.

To resolve this problem, we first assume P0 = 0 and show that the cost functional JT (B∗·, ·)
as a function of p̃ ∈ L2((0, T ),H) and x0 ∈ H can be written as

JT (B
∗p̃, x0) = ⟨S1p̃, p̃⟩+ 2Re⟨p̃, S2x0⟩+ ⟨S3x0, x0⟩

where S1 is a strictly positive operator in L(L2((0, T ),H)), S2 ∈ L(H, L2((0, T ),H)) and
S3 ∈ Σ+(H). So, when x0 ∈ H is fixed, p̃ = −(S1)

−1S2x0 is the unique minimizer of
JT (B

∗·, x0). Since S1, S2, S3 are known, after some calculation, we can verify that p̃ coincides
with the solution of the second Hamiltonian system.
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On the other hand, we know that P (·)x(T − ·) is also the minimizer of JT (B∗·, x0), by the
uniqueness of the minimizer, p̃(·) = P (·)x(T − ·). Now we can follow the same steps to show
that P (t), with initial condition P0 = 0, converges to Pmin in norm. Then by the monotonicity
and attractivity properties of P (see [6, Part V, Chapter 1, Section 4.2]), P (t) with arbitrary
P0 ∈ Σ+(H) will also converge to Pmin in norm.

An alternative way to prove this is to show the convergence relation as in our Lemma 3.3.4
through Yosida approximation and contraction mapping theorem. The steps will be basically
similar to [6, Part II, Chapter 1, Proposition 3.4].

In general, although the proof for the sufficient condition of the turnpike property will be
more technical and lengthy if C is unbounded and P0 ̸= 0, the idea remains almost the same. The
generalization of the necessary conditions for turnpike property in this setting will be investigated
in our future research.
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