
Prediction of AL Amyloidosis Using Deep Learning

by

Anupa Murali

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2023

© Anupa Murali 2023





Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including

any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii



Abstract

AL amyloidosis (amyloid light chain or primary amyloidosis) is a rare protein disorder that can

be potentially fatal or can cause permanent damage to the organs in the body, especially in cases

where the diagnosis does not arrive early enough or where the treatment does not begin on time.

It is a type of amyloidosis, which occurs when abnormal immunoglobulin light chain (LC) proteins

in the body misfold and accumulate on the heart, the kidneys, and the other organs. In order to

facilitate timely diagnosis of the disease before the symptoms start fully exhibiting themselves and

before the damage to the organs becomes significant, we present a computational solution in this

thesis, called “DALAD”, which is based on (convolutional) deep learning networks and takes in an

LC sequence from a patient as the input, and determines with high confidence whether the patient

has the disease or not. We develop and test multiple versions of DALAD, which are characterized

by the type of sequences they have been trained on and by the types of features they incorporate

to make the predictions, in order to have high performance in each of these scenarios. We establish

the following for DALAD.

• DALAD is the first computational learning model to be able to accurately predict the onset

of AL amyloidosis on both λ and κ LC sequences.

• DALAD comfortably beats the state-of-the-art for λ sequences in terms of accuracy measures,

such as AUC score, sensitivity, and specificity. Our numbers for these three metrics are 0.89,

0.81, and 0.83, respectively, while for LICTOR, they are 0.87, 0.76, and 0.82, respectively.

• DALAD is able to utilize the features from both V and J gene segments of the LC sequences

to make more accurate predictions. We additionally show via the pairwise t-test that the J

gene segments do improve our performance against both λ and κ sequences.

• We provide aggregate statistics over multiple runs for each version of DALAD, along with the

accuracy results for the best trained model corresponding to each version. All our findings

indicate high prediction accuracy for both λ and κ sequences.
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Chapter 1

Introduction

AL amyloidosis is a rare protein disorder that can be often fatal if it is not diagnosed and managed

early enough. Amyloidosis, the broader group of protein disorders, which includes AL amyloidosis,

is caused by misfolding of proteins, which clump together and form amyloid fibril deposits in major

body organs. Immunoglobulin AL amyloidosis, the disorder under the current investigation, is

specifically caused by small plasma cell antibodies produced in excess in the bone marrow that

misfold, aggregate and deposit in the form of amyloid fibrils, leading to irreversible multi-organ

dysfunction, typically the heart and the kidneys, and eventually to death. Here, the misfolding

proteins in question are the light chain (LC) proteins in the body.

There are several options available for the treatment of the disease, which could either slow down

or completely stop the process that causes the body to produce too many amyloids. They include

medications and other types of treatments, such as chemotherapy, immunotherapy, or steroids,

which work together to annihilate the plasma cells that manufacture these light chain proteins.

However, these treatments still cannot reverse the damage that the organs in the body have already

suffered, so it is imperative to be able to diagnose the disease in its early stages, and begin the

treatment to curb the processes that cause such irreparable harm, before it becomes lethal. That

said, the diagnosis of AL amyloidosis is often not easy as the signs and symptoms can be mistaken

for those of other common diseases. When AL amyloidosis is suspected, in addition to blood

and urine analysis for amyloid proteins, imaging of affected organs using MRI, echocardiogram,
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and nuclear imaging, and often even invasive biopsies of bone marrow and the affected organs are

necessary. It is known that the median survival rate after the diagnosis is received is less than six

months when the underlying plasma cell dyscrasia is left untreated in AL amyloidosis patients [19,

22]. Hence, it is paramount to develop novel diagnostic methodologies that are not just based on the

signs and the symptoms of AL amyloidosis, but are based on the underlying molecular mechanisms

of the amyloidogenic clone, which can provide evidences for predisposition much before the disease

sets its course on the body. The existing literature suggests that some mutations in the light chain

sequence can affect the stability of its protein structure, and can potentially lead to aggregation

and deposit of the light chain on certain organs in the body [3, 13], leading to AL amyloidosis.

This opens up the possibility of detecting the onset of the disease just by studying the light chain

samples from the patients. Therefore, the problem of predicting AL amyloidosis based on the

aforementioned strategy reduces to a problem of predicting what sequences of amino acids would

result in the kind of proteins that are prone to misfolding, thereby forming amyloid fibrils.

Light Chain

Computational 
Learning Model

Healthy

Diseased

Input
PredictionSYEVT. . .LTVL

Light Chain

Sequence

Parsing

Figure 1.1: The goal is to create a computational learning model, which takes a light chain sequence
from a patient as its input, and outputs a prediction saying whether the patient has AL amyloidosis
or not.1

Our goal in this thesis is to create computational models that use LC sequences to learn about

the behaviours of these sequences, and use that information to accurately predict whether a patient

is suffering from the disease or not by looking at a sample of LC sequences from their body (see

Figure 1.1). However, the LC sequences that lead to AL amyloidosis exhibit a high degree of

1“File:Thioredoxin-fold-1ert.png” by Opabinia regalis is licensed under CC BY-SA 3.0.
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diversity, posing a major challenge to developing any efficient and accurate computational prediction

model. This is because the large number of unique rearrangement of the variable (V) and the

joining (J) region genes, compounded with a unique set of somatic mutations during the B-cell

affinity maturations, makes it extremely difficult to identify the set of LC sequences that are likely

to lead to AL amyloidosis. Therefore, the development of a novel computational biology method

to predict AL amyloidosis from LC sequences would be a very significant achievement, both from a

humanitarian perspective and also from a technical standpoint. It would also have the potential for

other far-reaching implications in treating patients with AL amyloidosis, including the emergence

of new drugs that can target specific mutations in the LC sequences.

In this work, we develop one such computational model, called “DALAD”, which efficiently and

accurately predicts the onset of the disease in patients by processing their samples of LC sequences.

The novelty of our work lies in that: (1) we are able to predict whether a given LC amino acid

sequence would result in misfolding proteins that eventually lead to AL amyloidosis by potentially

using the combination of both the V and the J gene segments of the primary amino acid LC

sequences and their corresponding germline sequences as input to a (convolutional) deep learning

model, and in that (2) we can do that on both λ and κ LC sequences accurately.

1.1 Overview of Our Model and Results

Our model is a convolutional deep neural network (CNN), which uses information from LC se-

quences and their corresponding germline sequences to learn what mutations in the sequence tend

to lead to the disease. We provide different versions of DALAD that are trained and designed for

either just λ sequences or just κ sequences, or for a combination of both, and either just use the

features from the V gene segment of the LC sequences (DALADV models) or the features from both

the V and the J gene segments (DALADVJ models).

An AL patient usually has only one clone of abnormal free light chains that is associated with

the disease. Depending on the patients, this clone can be either λ or κ. Since our work is the first

one with the ability to classify both λ and κ sequences accurately, we benchmark DALAD against

the state-of-the-art model (LICTOR [11]) that is designed solely for λ sequences, and provide
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independent results for κ sequences. In a nutshell, our results on λ sequences show remarkable on

those of the state-of-the-art. For example, LICTOR has the AUC score of 0.87, the sensitivity of

0.76, and the specificity of 0.82 on λ sequences, but our best models have the AUC score of over

0.92, the sensitivity of over 0.86, and the specificity of over 0.85. The important improvement is

that we are able to classify the positive sequences much more accurately, since it would be most

useful for a patient having the disease to have the correct diagnosis as soon as possible.

In this thesis, we provide the experimental results for all our versions of DALAD in two forms

after selecting a set of appropriate hyperparameters for each one of them.

1. We train and run each version of DALAD 100 times, and provide the aggregate statistics for

different accuracy metrics, such as the AUC score, the sensitivity, the specificity, and the

overall accuracy from each run.

2. We select the best trained model for each of these versions from these runs, and evaluate

them on larger datasets than the ones they were previously tested on (which do not contain

their respective original training datasets).

1.2 Related Work

Nearly all of the prior work in prediction of AL amyloidosis, which employs computational biology,

either using mathematical or machine learning approaches, can be divided into two main categories:

empirical and structure-based. Empirical approaches interpret experimental results and make pre-

dictions by identifying and considering the appropriate factors of the properties of the constituent

amino acids. These properties include hydrophobicity, β-propensity and other physical properties

such as solubility [22]. On the other hand, the models based on structure detect the factors re-

sponsible for amyloid aggregation by observing the existing three-dimensional (3D) structures of

peptides that adopt a known fibrillar structure or native proteins that belong to distinct structural

classes.

An algorithm called TANGO developed by Fernandez-Escamilla et al. predicts protein aggre-

gation using the physico-chemical principles of beta-sheet formation, extended by the assumption
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that the core regions of an aggregate are fully buried [9]. Using statistical mechanics, TANGO pre-

dicts pathogenic as well as protective mutations of the Alzheimer beta-peptide, human lysozyme

and transthyretin, and discriminates between beta-sheet propensity and aggregation, and therefore

has the potential to predict amyloidosis [9].

There is evidence that the conversion from soluble states into cross-β fibrillar aggregates is a

property shared by many different proteins, and that such fibrillar assemblies are generally char-

acterized by a parallel in-register alignment of β-strands contributed by distinct protein molecules

[23]. Therefore, assuming that a universal mechanism is responsible for β-structure formation,

the algorithm PASTA (Prediction of Amyloid Structure Aggregation) developed by Trovato et al

predicts amyloid structure aggregation [23].

Using the expected probability of hydrogen bond formation and expected packing density of

residues, Garbuzynskiy et al developed an algorithm called FoldAmyloid, which can predict both

amyloidogenic and disordered regions in protein chains [10]. FoldAmyloid exploits the fact that

regions with strong expected packing density are responsible for amyloid formation. The predictions

generated by FoldAmyloid are consistent with known disease-related amyloidogenic regions for eight

of 12 amyloid-forming proteins and peptides in which the positions of amyloidogenic regions have

been revealed experimentally [10].

The algorithm, AGGRESCAN, is based on an aggregation-propensity scale for natural amino

acids derived from in vivo experiments and on the assumption that short and specific sequence

stretches modulate protein aggregation [5]. This algorithm was originally developed for investigat-

ing diseases such as Alzheimer’s and Parkinson’s, and is not therefore specifically tested against

amyloidosis. It is shown to identify a series of protein fragments involved in the aggregation of

disease-related proteins and to predict the effect of genetic mutations on their deposition propen-

sities [5].

Based on the accumulated amyloid data, it is widely accepted that protein aggregation results

in beta-sheet-like assemblies that adopt either a variety of amorphous morphologies or ordered

amyloid-like structures [16]. Amyloid beta-sheet aggregates have different chaperone affinities than

the amorphous beta-sheet aggregates and therefore accumulate in different cellular locations and
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are degraded by different mechanisms. Waltz is a web-based tool that uses a position-specific

scoring matrix to predict sequences that are prone to forming amyloid fibrils [16].

The hidden β-strand propensity of an amino acid sequence can be quantitatively determined by

analyzing sequence-structure relationships in terms of tertiary contact. This is achieved by using

the secondary structure preferences of template sequences of known secondary structure found

in regions of high tertiary contact [26, 14]. The web-based tool, NetCSSP, uses a computational

algorithm to detect hidden non-native sequence propensity for amyloid fibril formation and outputs

a quantitative predictive value [26, 14].

A predictive algorithm called RFAmyloid that uses random forest to identify amyloid forming

amino acid sequences was proposed by Mengting Niu [18]. The algorithm uses SVMProt 188-

D feature extraction method based on protein composition and physicochemical properties and

pse-in-one feature extraction method based on amino acid composition, autocorrelation pseudo

acid composition, profile-based features and predicted structures features. The study includes

experimental results on amyloid data and claims an accuracy rate of 89.19.

A machine learning method called VLAmy-Pred explores different features that can be extracted

from the Variable (V) region of immunoglobulin light chain sequences and their impact on AL

amyloidosis. It considers the hydrophobicity of the complementary determining region (CDR),

presence of gatekeeper residues in the FR’s (framework regions) and disorderdness of the VL region.

Making use of Shannon entropy, this work establishes that VL regions of κ light chains have lower

aggregation propensity but greater sequence conservation among amyloidogenic sequences than in

non-amyloidogenic sequences. On the other hand, VL regions of λ regions have higher aggregation

propensity but similar levels of sequence conservation between amyloidogenic sequences as opposed

to non-amyloidogenic sequences [21]. Using these features, VLAmy-Pred obtains 83% AUC on

unseen data.

A recent method called LICTOR (λ-LIght-Chain TOxicity predictoR) uses machine learn-

ing to predict toxicity of immunoglobulin light chain sequences for AL amyloidosis. In an initial

exploration, LICTOR uses the Fisher exact test to assess frequencies of mutations at residue po-

sitions, numbered using the Kabat-Chothia scheme, to establish that there is significant difference
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(p < 0.05) between AL and healthy light chain sequences, and hence that somatic mutations are

critical in prediction of light chain toxicity. LICTOR makes use of various combinations of fea-

tures extracted from the ALBase dataset in order to make the prediction. The first set of features,

AMP (amino acid at each mutated position), is generated by extracting the presence or absence of

germline gene mutations from each residue in the Variable and Joining regions of the light chain

sequences. The second set of features, MAP (monomeric amino acid pairs) identifies whether there

are mutations in residues that are in close contact (< 7.5Å) in the same monomeric 3D structure.

Finally, the third set of features, DAP (dimeric amino acid pairs) identifies whether or not there

are mutations in residues that are close in contact in 3D space but from different chains. This work

explores a number of machine learning algorithms as well as different combinations of the above

three sets of features, and concludes that Random Forest using AMP, MAP and DAP has the best

performance in prediction of toxicity of Immunoglobulin LC sequences. Using Random Forest and

this set of features, LICTOR achieves a 0.87 AUC score (area under the receiver operating char-

acteristic curve), specificity of 0.82 and sensitivity of 0.76 [11]. Further, LICTOR concludes that,

based on their experiments, J region has no impact on prediction of AL amyloidosis. Experimental

validation of the results is conducted first in silico and next in a C. elegans model in vivo, by

reverting two somatic mutations identified by LICTOR as contributing to AL amyloidosis [11].

The novelty of our work lies in that we are able to predict whether a given LC amino acid

sequence will result in misfolded proteins that eventually lead to AL amyloidosis using deep learning.

We have already seen some progress by using the combination of the germline mutations in the

amino acid LC sequences and their corresponding secondary structures as input to some machine

learning models. Deep learning has been shown to have the capability to learn many hidden features

from rich, high dimensional data and has proven effective in complex image recognition tasks such

as interpretation of satellite images and self-driving cars. As AlphaFold and some other recent

techniques have had tremendous success in protein structure prediction [12, 24], we investigate

whether similar techniques could be used to predict the propensity a given amino acid LC sequence

has to forming amyloid fibrils in AL amyloidosis.
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1.3 Organization of the Thesis

Since the computational complexity of predicting AL amyloidosis is directly related to how the light

chain (LC) amino acid sequences are synthesized, we first discuss the relevant biological processes

that are responsible for the antibody diversity or specifically the diversity of the LC sequences in

Chapter 2. Next, in Chapter 3, we provide the technical details of our models in terms of the

structure of the neural networks and the way the training and testing inputs get passed to our

models. We also describe the structure of the input and the lay out the various versions of DALAD

that we use in this work in the same chapter. We then move on to Chapter 4, where we elaborately

state the entire process of hyperparameter selection, followed by the experimental setup and the

compositions of datasets for each version, and then the complete list of experimental results for

different types of testing for each version. We end the chapter with a comprehensive discussion

on our findings. Finally, we provide our concluding remarks in Chapter 5, where we summarize

our methods, results, and accomplishments in this work, and finish this thesis by discussing the

limitations of our work, but more importantly, by laying out a few promising future directions that

could assist with designing better predictive models for AL amyloidosis.
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Chapter 2

The Biology of Light Chain Diversity

The light chains (LC) are an important component of antibodies or immunoglobulins, which provide

the crucial defense against millions of different pathogens. An antibody molecule, shown in Figure

2.1, consists of two light chains and two heavy chains forming a “Y” shaped structure. Together,

both light and heavy chains are responsible for providing an immunoglobulin repertoire of more

than 1011 unique antibodies that constitute an impressive adaptive immune system. Since only the

light chains are involved in the pathogenesis of AL amyloidosis, we will ignore the heavy chains

and solely focus on the light chains in this discussion.

Figure 2.1: The structure of an immunoglobulin molecule.
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2.1 The Synthesis of Light Chains

Since the light chains are polypeptide chains or proteins, according to the central dogma of biology,

their synthesis is governed by the transcription of their coding DNA and the translation of the

resulting mRNA. Therefore the understanding of the transcription of the coding DNA and the

translation of the resulting mRNA is essential to the understanding of how and why AL amyloidosis

occurs. For nearly all the genes found in humans, a completely ordered DNA sequences is present

in the germline. However, in contrast, the encoding DNA sequence for the variable region of a

light (or a heavy) chain polypeptide comes from two separate DNA segments, namely the V gene

segment and the J gene segment, which are later spliced together to form the final encoding DNA

sequence during the B cell maturation in the bone marrow. The V gene segment of the V region

encodes approximately the first 95 to 101 amino acids of the light chain and the J gene segment of

the V region encodes the remaining approximately 13 amino acids of the light chain. The V gene

segments and the J gene segments are initially separated in the germline genome. The splicing

of the V and J gene segments in the precursor B cells, known as the somatic V-J recombination

process, is shown in Figure 2.2.

Figure 2.2: The somatic V-J recombination

There are two distinct types of light chains found in humans, namely λ and κ, which are encoded

in chromosomes 22 and 2 respectively. Gene cloning and genomic sequencing have identified that

there are multiple distinct gene segments for both V and J gene segments in the germline DNA. The

number of V and J gene segments and the genes for the constant region that have been identified

as of July, 2022 for both κ and λ light chains are listed in Table 2.1 [15].

The κ light chains are produced from nearly 39 functional V gene segments, a cluster of five J

gene segments as well as a single C gene, all are located on chromosome 2. Specifically, the V and
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J gene segments are arranged on chromosome 2 such that the entire cluster of V gene segments

is followed by a cluster of J gene segments, which in turn is followed by a single C gene, which is

responsible for the synthesis of the C region of the light chain.

Figure 2.3: The κ genes on chromosome 2

The λ light chains are produced from nearly 32 functional V gene segments, five functional J

gene segments and five C genes located on chromosome 22. Specifically, the V and J gene segments

are arranged on chromosome 22 such that the entire cluster of V gene segments is followed by five

sets of J gene segments. Each of the five J gene segments in turn is connected to a single C gene,

which is responsible for the synthesis of the C region of the light chain.

Figure 2.4: The λ genes on chromosome 22

Note that in a healthy individual, the ratio of the whole and intact κ to λ light chains is roughly

2 : 1, and the ratio of the free κ to λ light chains is around 1 : 1.5, or something that varies between

0.26 and 1.65. That said, among the polyclonal free light chains, usually only one clone becomes

abnormal and causes AL amyloidosis within a patient. The abnormal AL clone can be either κ or

λ. In patients with amyloidosis, however, the AL type has a κ to λ ratio of about 1 : 3.

2.2 Origin of Light Chain Diversity

The diversity of the human light chains is due to the following three main combinatorial processes.

1. The random selection and recombination of the V and the J gene segments.

2. The junctional diversity.

3. The somatic hypermutations.
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Segment No of κ genes No of λ genes

V gene segment 39 32

J gene segment 5 5

C gene 1 5

Table 2.1: The count of various gene segments contributing to an LC sequence [15].

The first two of these processes take place in the precursor B cells and the last one takes place only

in B cells in the already rearranged V-region genes due to the triggering of an immune response

upon encountering an antigen.

2.2.1 Random Selection and Recombination of V and J Gene Segments

A germline LC sequence consists of one V region and one C region, where the V region is coded

together by a single V gene segment and a single J gene segment, while the C region is coded by a

C gene. Since there are multiple distinct gene segments for each type, and only one gene segment

of each type is required for the complete assembly of the light chain, a random selection of a V

and a J gene segment takes place in the precursor B cells. There are 32 distinct V gene segments

and five distinct J gene segments on chromosome 22. The 32 V gene segments are clustered next

to each other, while the five J gene segments are separated from each other by a C gene as shown

in Figure 2.4. Therefore, a λ LC sequence can be generated in 32 × 5 = 160 distinct ways by the

random selection of one V gene segment from out of the 32 possible ones, and one J gene segment

from out of the 5 possible ones. In an analogous manner, we find that a κ LC sequence can be

generated in 39× 5 = 195 distinct ways. The first source of the light chain diversity is due to the

recombination that takes place at the joining of the V and J gene segments. Specifically, the third

hypervariable region or the CDR3 region is generated by the recombination of the V and J gene

segments. The genome responsible for the generation of the first two hypervariable regions, namely

CDR1 and CDR2, are found entirely within the V gene segment and therefore do not participate

in the V-J recombination.
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Figure 2.5: The synthesis of an LC chain from DNA. Germline DNA contains multiple copies of
the V and J segment genes. Somatic recombination of the V and J gene segments produces a V-J
rearranged DNA. The transcription of the V-J rearranged DNA results in a primary transcript
RNA, which will have a poly-A tail added for stability. Next, during splicing, introns are removed
and anmRNA will be produced. The translation of thismRNA results in an LC sequence containing
a V and a C region, which in turn pairs with a heavy chain.
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2.2.2 Junctional Diversity

The diversity of the CDR3 region is further increased by addition and deletion of P (or palindromic)

and N (or non-template-encoded) nucleotides during the recombination process [17]. This can be

observed in the LC amino acid variability plot shown in Figure 2.6. This diversity is also known

as the junctional diversity as the process takes place at the joining of the V and J gene segments.

Figure 2.6: The LC amino acid variability [17]

2.2.3 Somatic Hypermutations

The third source of the light chain diversity is due to the single-point mutations that occur in mature

B cells, which take place only on the re-arranged DNA that encodes the V regions. Known as the

somatic hypermutations – because they only occur on the somatic B-lymphocytes as opposed to

the meiotic recombination that occurs during the gametogenesis – they generally provide diversity

that are selected for improved antigen binding. The somatic mutations, which are much needed for

increasing the antibody diversity and, therefore, generally lead to healthy light chains, are suspected

to be the likely culprits causing fibril formation in AL amyloidosis.
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Chapter 3

DALAD

The medical community so far has not been able to make any inroads into the diagnosis, the

treatment, or the management of AL amyloidosis because of the well-known difficulty in diagnosing

the disease from the signs and symptoms alone as they are often mistaken for common diseases.

Therefore, we wish to explore developing new diagnostic techniques that are not based on the

signs and symptoms of AL amyloidosis, but are based on the underlying molecular mechanisms of

amyloidogenic clone that could predict the disease well before it sets its course on the body.

In this work, we present a (convolutional) neural network based deep learning approach, called

“Detector for AL Amyloidosis via Deep Learning” or “DALAD”, for predicting whether a patient

has AL amyloidosis or not. The theoretical foundation for our approach is based on the biology of

light chain synthesis that we discussed in the introduction. Specifically, our work is based on the

hypothesis that aberrations in one or a combination of the three biological processes responsible

for the diversity of the light chains is the causative factor for the formation of amyloid fibrils. How

each of the three biological processes can lead to AL amyloidosis is summarized in Table 3.1.

Biological Process How it Causes AL amyloidosis

Random selection of V and J segments Incompatible V and J segments

V-J recombination Amylodogenic prone V-J recombination

Single point mutations Amylodogenic prone mutations

Table 3.1: How natural biological processes lead to AL amyloidosis [15].

15



3.1 Overview of our Model

DALAD predicts the propensity of a given LC sequence leading to AL amyloidosis by discovering

anomalies in each of the above three biological processes. Unlike the previous prediction methods

discussed in the literature such as TANGO [9], PASTA [23], AGGRESCAN [5], WALTZ [16],

RFAmyloid [18] and LICTOR [11], which solely rely on the V region of the LC sequences, DALAD

uses both the V and J regions of the LC sequences for training as well as prediction. Our hypothesis,

supported by the experimental results presented in this paper, is based on the fact that each of the

three biological processes, whose aberrations contribute to AL amyloidosis (indicated in Table 3.1),

involves not only the V region, but also the J region in one way or another.

In addition to using both the V and J regions as its input, DALAD also uses a custom germline

database, which combines both the V and J regions. For Homo sapiens, the total number of λ and

κ genes and therefore the total number of germline sequences representing the possible V regions

is, 32 + 39 = 71, according to the current IMGT database [15]. When we consider both the V

and the J regions and the V-J recombination, the total number of possible germline sequences

increases by five-fold to 355 distinct LC sequences. Therefore, the custom germline database used

by DALAD includes a total of 355 distinct sequences as opposed to the 71 sequences that were

generally considered in the prior research work in this area.

Finally, as illustrated in Figure 3.1, DALAD employs a 1-dimensional convolutional neural net-

work learning model (or “1-D CNN”), which considers one feature to be a location in the amino

acid sequence that contains the information of the germline sequence for that location and that

of the LC sequence for that location. So, each feature essentially contains the information about

the mutation at that location, and the CNN uses that feature of two pieces of information as a

whole. In our model, after the convolutional module, lie the hidden layers of the neural network,

followed by the output layer. The additional details about the model’s architecture are provided in

Figure 3.2. DALAD has different versions, as we will outline later, which use this entire structure

in different ways. One way, in particular, is having two separate sub-models like the one shown in

Figure 3.1 – one each for λ and κ sequences – which is one of our novel ideas behind creating our

classification models that work on both types of sequences that we focus on in this manuscript.
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Figure 3.1: Structure of DALAD’s (convolutional) deep neural network.

3.1.1 Comparison with State-of-the-Art

For comparison purposes, the performance of our model was benchmarked against the performance

of LICTOR [11], a machine learning prediction model considered to be the current state-of-the-art

in the literature for predicting AL amyloidosis. LICTOR, using the Random Forest algorithm,

achieves a specificity and a sensitivity of 0.82 and 0.76 respectively with an AUC score of 0.87.

LICTOR’s prediction model is based on the prevailing hypothesis that somatic mutations in the

light chains increase the likelihood of fibril formation, leading to AL amyloidosis [11, 2, 20, 6],

and, therefore, it uses the differences between the light chain and the germ line sequences as the

primary input in their prediction model. There are two major differences between LICTOR and

our method.

1. The first is that LICTOR restricts its input to only the λ LC sequences, whereas DALAD

considers both the λ and κ LC sequences. The rationale LICTOR for considering only the

λ LC sequences is that the λ LC sequences are more prevalent in AL amyloidosis patients
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Metadata

Type

(λ/κ)

V Gene

Class

V Gene

Sub-Class

J Gene

Class

J Gene

Sub-Class

Carbohydrate

Type

Input LC/GL 
Sequence

LC

Residues

GL

Residues

MLP Branch 

Width: 4 
Activation function: ReLU 

Initializer: Uniform

CNN Branch 

Filters: HP 
Dropout: HP 

Kernel Size: 2 
Stride: 2 

Input Shape: V — 107x2; V+J — 119x2

Hidden Layers 

Number: HP 
Widths: HP 

Activation function: ReLU

Output Layer 

Activation function: Sigmoid

DALAD 

Loss function: Binary cross-entropy 
Optimizer: Adam 

Metrics: AUC, Accuracy

Figure 3.2: The low-level details of DALAD’s architecture are stated here. “HP” indicates that
those quantities are hyperparameters, and their selection is described in detail in Section 4.1. We
used Google Colab to train and test our models.

than the κ LC sequences compared to that of healthy individuals, which is based on studies

that show that the ratio of λ : κ in patients with AL amyloidosis is 3 : 1, while the ratio of

λ : κ in healthy individuals is 1 : 2 [7]. However, given that one in every four AL amyloidosis

patients has κ LC sequences, excluding the κ sequences from analysis will lead to reduced

prediction accuracy on random test sequences. Consequently, LICTOR’s model, trained only

on λ LC sequences, lacks the ability to predict the toxicity of a κ LC sequence, which will

invariably result in reduced prediction accuracy when used as a prediction tool in clinical

settings. Hence the ability of DALAD to predict the propensity of developing AL amyloidosis

using both the λ and κ sequences markedly distinguishes itself from LICTOR.
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2. The second difference is that LICTOR restricts their analysis to the V region of the light

chains, while our method considers both the V and J regions. We hypothesize that the

random selection of V and J segments, random V-J recombination as well as any mutations

occurring on the J region to influence the fibril formation as the CDR3 region is essentially

formed as a result of a randomized V-J recombination. If the somatic mutations on the V

region has statistical correlation to AL amyloidosis, as shown by the authors of LICTOR

using Fischer’s exact test [11], then based on the reason stated in the previous sentence, it is

likely that the somatic mutations on the J region would have similar influence on the disease.

3.2 Input Dataset

There are two key features of DALAD that distinguish it from all of the previous machine learning

approaches for predicting AL amyloidosis to-date. (1) Unlike most other works (including LICTOR,

the state-of-the-art), our model can process both λ and κ sequences. (2) One set of our versions of

DALAD (i.e., DALADVJ) uses both the V and the J gene segments of the LC sequences, including

both the λ and κ varieties.

Our primary source of input data comes from AL Base [4], which is a curated database of light

chain sequences available from the Amyloidosis Center at Boston University Medical Center and

the Department of Medicine. The dataset is a collection of Ig LC sequences from patients with

AL amyloidosis that was collected with the goal of enabling researchers to study their differences

as well as their predicted protein sequences between those LC sequences from non-amyloidogenic

patients. The AL Base dataset contains 4364 LC nucleotide and amino acid sequences, of which

808 encode monoclonal proteins that were reported to form fibrillar deposits in patients with AL

amyloidosis. In addition, the dataset contains over 248 control LC sequences from patients with

other plasma cell disorders without known amyloidosis, and 295 control LC sequences from healthy

subjects. The last two types of sequences can be treated as noise in the data.
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3.2.1 Structuring the Input

As mentioned above, DALAD uses the J regions of both the λ and κ light chains in addition to

the V regions. Therefore, unlike the previous works, such as LICTOR, we needed to construct an

expanded germline database, which includes not only the V region sequences, but also the J region

sequences. Our hypothesis is that using an alignment tool, such as BLAST [1], against such an

expanded database against light chain sequences containing both the V and J regions will defintely

identify a larger set of responsible mutations. We also hypothesize that certain mutations in the V

regions are likely to culminate in AL amyloidosis only in the presence of some mutations in the J

regions. In other words, the fibril formation is due to the presence of a set of correlated mutations

in both the V and J regions, and not just due to the mutations in the V region alone.

IMGT
V and J

segments
createDBwithV+J.py convertToFASTA.py Custom DB

Figure 3.3: Creating the expanded custom germline database from IMGT

As a result of the availability of the additional features corresponding to the J regions, DALAD

is able to use a custom 355-sequence germline database that contains all the possible combinations

of the V and J regions for both the λ and the κ sequences from the IMGT repository in order to

identify the potential mutations that can likely lead to AL amyloidosis. The 355 sequence custom

germline database was constructed as follows. From the IMGT repository, we downloaded both

the λ and κ germline sequences corresponding to the V gene segment. As of July, 2022, the IMGT

repository listed 32 λ genes and 39 κ genes for the V gene segment. Further, from the IMGT

repository, we also downloaded both the λ and κ germline sequences corresponding to the J gene

segment. As of July, 2022, the IMGT repository listed five λ genes and five κ genes for the J gene

segment. This allowed us to create our expanded custom germline database containing 32×5 = 160

germline sequences containing both the V and J regions of the λ type, and 39× 5 = 195 germline

sequences containing both the V and the three regions of the κ type, for a total of 355 germline

sequences.

Then the light chain sequences were aligned to the corresponding germline sequence using the
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expanded custom germline database consisting of 355 sequences generated in the workflow shown in

Figure 3.3. The custom germline database (called GL VJ Lambda Kappa.fasta) was uploaded to the

BLAST website at https://blast.ncbi.nlm.nih.gov/Blast.cgi. We numbered the light chain

sequences using the Kabat-Chothia scheme and ran BLAST against the custom database. Using

the results, we updated the input LC sequences to differentiate between the mutated positions and

the non-mutated positions.

SYEVTQSP-SVSVSPGQTATITCSGD-----KLGDKYVSWYQQKAGQSPILVIYQDDKR----PS  
SYELTQPP-SVSVSPGQTASITCSGD———--KLGDKYACWYQQKPGQSPVLVIYQDSKR----PS

LC

GL

GIPGHFSGSN--SGNTATLTISGTQAMDEADYFCLAWDSGT-----ALFGGGTSLTVL 
GIPERFSGSN--SGNTATLTISGTQAMDEADYYCQAWDSST-----AVFGGGTQLTVL

LC

GL

65

65

125

125

FR1 CDR1 FR2 CDR2

FR3 CDR3 FR4

Figure 3.4: We use IgBLAST to align the LC sequences from AL Base with the GL sequences from
IMGT. This is an example of what the alignment would look like.

Figure 3.5: Aligned input sequences containing the V region. Each input sequence contains con-
secutive pairs of residues, side-by-side, such that each pair represents the LC residue and the
corresponding GL residue at that location in the sequence (e.g., the first pair, labelled “L1/G1”,
shows the LC residue and the GL residue, respectively, at the first position). This construction
was made possible due to the alignment imposed by IgBLAST, as shown in Figure 3.4. The CNN’s
in all the DALADV and the DALADVJ versions consider each of these pairs as a single feature, and
end up using information from 107 such features.

We elaborate on the above process further using an example. The first line in Figure 3.4, titled
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Figure 3.6: Aligned input sequences containing the J region. The idea behind this representation
is the same as in Figure 3.5. There are 12 such pairs or features, which are utilized by the CNN’s
in all the DALADVJ versions.

“LC”, contains the light chain sequence from ALBase, and the second line titled “GL” contains

the residues in the germline sequence found in IMGT using the IgBLAST alignment tool [25]

and ANARCI (Antigen receptor Numbering And Receptor ClassificatIon – a tool for numbering

amino-acid sequences of antibody and T-cell receptor variable domains) [8] for annotating the

alignment. Wherever there is a mutation in the light chain sequence from the database, we capture

that information.

We hypothesized that both the LC and GL residues could be of use to our neural network

model, as it is possible that the nature of the mutation (e.g. a mutation from a hydrophilic residue

to a hydrophobic one) could contribute to a light chain sequence being amyloidogenic. So, we

augmented our input to show both the light chain and germline residues. Figure 3.5 shows the

structure of the sequence data for the V region that is used in our 1-D CNN. Figure 3.6 shows

what the input looks like for the J region. The V and J region sequence data are concatenated for

our V-J models, and the GL and the LC residues together for each locations in the sequences are

parsed as a two dimensional feature by our CNN.

Remark 3.2.1. For the purpose of both training and hyperparameter selection, we balanced the

datasets that we used, that is, we ensured that the ratio of the number of positives and negatives

from each type of sequence was maintained within [0.74, 0.88], similar to what LICTOR did for their

purpose. We did this so that our trained model would not get biased towards any one particular

category, especially since the number of negatives for each type of sequence was significantly more

than the number of positives for that sequence in the main dataset. In real life, there are way more

negative cases than the positive ones, so by balancing our dataset, we are admittedly changing the

distribution of the data, too. That said, in order to have any sort of non-trivial accuracy on the
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positive sequences, we had to balance the dataset so as to not blur out the signal coming from those

positive sequences, especially given that the overall size of the dataset we used (AL Base) was very

small (close to 4000 data points).

3.2.2 Motivation for Studying κ Sequences

While our experiments with DALAD on λ-only datasets were used as a benchmark for our model

against the published results of LICTOR, which uses only the λ sequences, we claim that learning

to classify the κ sequences correctly is also very useful for demonstrating the power of DALAD in

an actual clinical setting. This is because any random sample of individuals in a clinical setting

will contain a significantly larger percentage of κ sequences than the λ sequences, and, thus, we

cannot afford to ignore the κ sequences.

Type of Sequence Healthy Diseased Total

λ 992 525 1517

κ 1757 166 1923

Table 3.2: Composition of the main dataset (AL Base) that we used.

In Table 3.2, we see that a major fraction of the dataset is composed of κ sequences. Given

that issues with κ sequences also lead to AL amyloidosis, it is very important to be able to make

accurate predictions on them, otherwise we would (1) ignore a large portion of the patients, who

might have otherwise benefited from computational models, and (2) waste a big section of our data,

hence, lose our prospects of achieving higher accuracy.

To provide another perspective, if we are unable to make correct predictions on the κ sequences

with high confidence (say, accurate less than 50% of the times), then even if we are 90% accurate

on all the λ sequences, then our overall accuracy comes out to be

(0.90× 1517) + (0.50× 1923)

1517 + 1923
≈ 68%.

This means that in order to get more representative accuracy numbers, we would want to be able

to classify on both types of sequences accurately.
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3.3 Versions of DALAD

We developed various versions of DALAD for different types of datasets, incorporating different

kinds of features and types of sequences. The two types based on the types of features are those

that use the information or features corresponding to the J regions of the light chain sequences, and

those model that do not. Within those types of models, we had versions that worked with λ-only

datasets, κ-only datasets, or with datasets containing a mixture of λ and κ sequences. We identify

each version of DALAD through the use of superscripts and subscripts for its target datasets and

to denote whether it used the features corresponding to the J regions, respectively. In the next

chapter though, we will describe how these models were trained, and how their hyperparameters

were selected.

3.3.1 DALADV Models

The models described in this section do not use any features or information coming from the J

regions.

DALADλ
V. This version of DALADV is simply trained and tested on datasets that are solely com-

posed of λ sequences. We use this model to compare our performance against that of LICTOR’s

best model.

DALADκ
V. This version is trained and tested on datasets that are only composed of κ sequences.

This is a major contribution of our work, since this now enables us to classify both types of light

chain sequences.

DALADJoint
V . This version is trained and tested on datasets that are composed of both λ and κ

sequences. This comprises a single model that gets trained on a mix of both types of sequences

and gets tested on a mixture of the two types of sequences, as well.

DALADSep
V . Just like DALADJoint

V , this “separating” model also gets trained and tested on a mix

of both λ and κ sequences, but in a different way. It is composed of two sub-models – one that
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is simply trained on λ sequences, and the other one that is trained just on κ sequences. When

a test sequence arrives, depending on whether it is a λ or a κ sequence, it gets passed on to the

appropriate sub-model to get classified.

3.3.2 DALADVJ Models

Unlike in the case of the DALADV models, the models in this section do incorporate the features

corresponding to the J regions. DALADλ
VJ, DALAD

κ
VJ, DALAD

Joint
VJ , and DALADSep

VJ are the DALADVJ

analogues of DALADλ
V, DALAD

κ
V, DALAD

Joint
V , and DALADSep

V , respectively.

3.3.3 Understanding the Sep Models

DALAD, in a nutshell, is a (convolutional) deep learning neural network. The Sep model architec-

ture, depicted in Figure 3.7 consists of one preprocessing units and two individual deep learning

units, one for the λ LC sequences and the other for the κ LC sequences.

 

DALAD l (CNN) 

DALAD k (CNN) 
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Figure 3.7: Sep model overview.

The preprocessing unit separates the λ sequences from the κ sequences and sends them to the

appropriate λ or κ models for training. An identical process takes place during the prediction on

random LC sequences on a previously trained Sep model. The rationale behind employing two

separate neural nets for the λ and the κ sequences is that their germline sequences have distinct

constituent amino acids, and, thus, the mutations occurring on a λ LC sequence cannot be aligned
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against a κ germline sequence, and vice versa. Note that for a fixed version, say the DALADSep
V

version, the number of features for both its λ and its κ modules would be the same. We will

compare the performance of the Sep models with that of the Joint models later in Chapter 4.
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Chapter 4

Experiments and Discussion

In this chapter, we describe in detail the processes of hyperparameter selection, model training,

and testing, along with the results of all our experiments. As mentioned in the previous chapter,

we evaluate our deep learning approach on multiple kinds of datasets, and define our models using

different sets of features. To recapitulate, DALADV models only use the features from the V regions,

whereas the DALADVJ models use the features from both the V and the J regions of the sequences.

Each type of model has separate versions designed for three settings: (1) for λ-only datasets; (2) for

κ-only datasets; and (3) for datasets containing a mix of both λ and κ sequences (in this setting,

we present two versions – Joint and Sep – as defined in Section 3.3). At the end of this chapter, we

compare all the results for these versions, and provide an elaborate discussion on their consequences.

4.1 Hyperparameter Selection

For each of the aforementioned versions of DALAD, we select the set of the best hyperparameters

via a search over a list of 216 candidates. Each of those candidates is defined by the number of

filters (or “kernels”) used in the convolutional layer, the dropout rate in the convolutional layer (a

layer that nullifies the contribution of some features towards the next layer, and leaves the others

unmodified), and the number and the widths of the hidden layers (if any) between the output and

the convolutional layers.
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General Methodology. The high-level idea was to run a set of 40 experiments each for DALADλ
V,

DALADκ
V, DALAD

Joint
V , DALADλ

VJ, DALAD
κ
VJ, and DALADJoint

VJ , for every choice of the hyperparam-

eters, and chose the best model in each case, which worked the best “on an average”. The rationale

was to choose the model that would reliably give us the best outcome consistently. For example,

for DALADλ
V, for a fixed set of hyperparameters, 40 experiments were performed, such that in each

experiment, the model was completely reset, and different datasets was selected for the purpose of

training and testing (we describe the sampling process below). Then the choice of hyperparame-

ters, for which we got the best results on an average over the 40 runs, became our final choice for

DALADλ
V. The same process was performed for the other versions of DALAD, as well.

Dataset Compositions. As mentioned above, we chose different datasets in each experimental

run of all the versions of DALAD. We specify the sampling process for every version in the following.

As mentioned earlier, just like in LICTOR, in each case, we balance the number of positives and

negatives in every dataset to maintain approximately the same positives-to-negatives ratio in the

range [0.74, 0.88].

• For DALADλ
V and DALADλ

VJ, in each experiment, we randomly selected a set of 210 positive λ

sequences and 240 negative λ sequences, and performed a 9 : 1 split of each type, and merged

to create datasets to train and test.

• For DALADκ
V and DALADκ

VJ, in each experiment, we randomly selected a set of 166 positive κ

sequences and 225 negative κ sequences, and performed a 9 : 1 split of each type, and merged

to create datasets to train and test.

• For DALADJoint
V and DALADJoint

VJ , in each experiment, we randomly selected a set of 83 positive

κ sequences and 112 negative κ sequences, and performed a 9 : 1 split of each type, and merged

to create datasets to train and test, and did the same for a randomly chosen set of 140 positive

λ sequences and 160 negative λ sequences. The training datasets from both λ and κ sequences

were merged to create one large training set, and the same was done to create a large test

dataset.
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Note that we did not have to select the hyperparameters for DALADSep
V or for DALADSep

VJ because

they essentially rely on the accuracy of their respective λ and κ sub-models.

Hyperparameter Set. For each version of DALAD, we chose from the following set of hyperpa-

rameters. We chose the dropout value for the dropout layer inside our CNN module from the set

HD := {0.5, 0.7, 0.8, 1.0} (the dropout value r indicates that a random r fraction of the features in

the previous layer of the module would be used in the layers that lie ahead). The number of filters

in that module were chosen from the set HF := {32, 64}. Finally, the number and the widths of

the hidden layers between the CNN module and the output layer were chosen from the set

HL :={[], [64], [32], [16], [8], [64, 32], [64, 16], [64, 8],

[32, 16], [32, 8], [64, 32, 16], [64, 32, 32], [64, 16, 16],

[64, 32, 8], [64, 16, 8], [32, 16, 8], [32, 32, 16], [32, 32, 8],

[32, 16, 16], [32, 16, 8], [16, 16, 8], [16, 8, 8], [8, 8, 8],

[64, 32, 16, 8], [64, 32, 32, 16], [64, 32, 32, 8], [64, 32, 16, 16]},

where [] indicates that there are no hidden layers in the neural network, and for each ℓ ∈ HL, such

that ℓ ̸= [], the length of ℓ denotes the number of hidden layers in the network, ℓ[i] denotes the

width of the i-th hidden layer in the network. For example, [64, 32, 8] indicates that the width of

the first hidden layer after the combined convolutional and multilayer perceptron branch is 64, and

the following hidden layer has a width of 32, and the next (also the final layer before the output

layer) layer has a width of 8. Therefore, our set of candidate hyperparameters was

H := HD ×HF ×HL.

As an example, a set of hyperparameters denoted by (0.7, 32, [64, 32, 8]) refers to a set of models,

where the dropout rate in the convolutional module is 0.7, the number of filters in the convolutional

module is 32, and the hidden layers between the first layer of our neural network (the combined

multilayer perceptron and the convolutional module) and the output layer have width 64, 32, and
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Version Dropout Number of Filters Hidden Layers

DALADλ
V 1.0 64 [32]

DALADκ
V 0.5 32 [64, 32, 16]

DALADJoint
V 0.5 32 [64, 32]

DALADλ
VJ 0.7 64 [64]

DALADκ
VJ 0.8 64 [64]

DALADJoint
VJ 0.5 32 [64, 32]

Table 4.1: Hyperparameter choices for different versions of DALAD.

8, respectively. We refer the reader back to Figure 3.1 for a visualization of our model.

Best Hyperparameters. Table 4.1 summarises the final choice of hyperparameters for each of

the aforementioned versions of DALAD.

4.2 Experimental Setup

Here, we describe our experimental setup in terms of the high-level ideas behind the process, the

number of experiments performed after the hyperparameter selection for each version, the accuracy

measures and the statistics used to anaylyze these experiments, and the dataset compositions for

every set of experiments.

General Methodology. For each version of DALAD, after fixing its hyperparameters (as de-

scribed in Table 4.1), we run 100 experiments with fresh choices of datasets each, and compare the

aggregate statistics with those for the other DALAD versions. The purpose of looking at the aggre-

gate statistics is just to see how the model would fare in general, in case it has to be retrained, and

to get more confidence in its performance. In this set of 100 experiments, we also choose the best

model (weights), and use that as a benchmark for our efficiency. That choice is made on the basis

of the results for that model being above certain thresholds for different statistics. We describe the

statistics briefly below. Finally, we test that model on the entire dataset that is relevant to that

model (for example, the entire λ dataset for DALADλ
V and DALADλ

VJ).
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Other Specifics. In each version of DALADV, the input layer consisted of 220 input nodes, while

in each version of DALADVJ, the input layer was composed of 244 input nodes. In all versions

of DALAD, the hidden layers (if any) used the ReLU activation function, while the output layer

always used the Sigmoid activation function. For the purpose of compilation, we utilized the Adam

optimizer under the Binary Cross Entropy loss function, and used AUC and Accuracy as the

learning metrics for the process.

Accuracy Measures and Statistics Used. For each experimental run, we use the following

accuracy measures for the performance of the model.

• Sensitivity or True Positive Rate (TPR). Let nT be the number of positives, and mT be

the number of correctly classified positives. Then the TPR simply equals the fraction of the

correctly classified positives, or mT
nT

.

• Specificity or True Negative Rate (TNR). Let nF be the number of negatives, and mF be

the number of correctly classified negatives. Then the TNR simply equals the fraction of the

correctly classified negatives, or mF
nF

.

• Accuracy (ACC). Let nT be the number of positives, and mT be the number of correctly

classified positives. Let nF be the number of negatives, and mF be the number of correctly

classified negatives. Then the ACC simply equals the fraction of the correctly classified

examples, or mT+mF
nT+nF

.

• AUC-ROC (or simply, AUC) score. Let FPR be the fraction of the negative samples that

are incorrectly classified. Then the Receiver Operating Characteristic (or ROC) curve is a

TPR-vs-FPR graph, and the corresponding AUC (Area Under the Curve) score is just the

area under the ROC curve.

Once we have a sequence of each of the above accuracy measures (100 of each, that is) for each

version, we use the following aggregate statistics to evaluate its general performance: mean, median,

standard deviation, minimum, and maximum.
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Dataset Compositions. As mentioned earlier (even for the process of hyperparameter selection),

we chose different datasets in each of the 100 experimental runs of every version of DALAD. We

specify the sampling process for each version in the following.

• For DALADλ
V and DALADλ

VJ, in each run, we chose all the 525 positive λ sequences in the

dataset, along with a set of 600 randomly sampled negative λ sequences, and randomly split

each of them in a 9 : 1 ratio for the purpose of training and testing, respectively. In other

words, our training dataset consisted of 90% of those 525 positive and 90% of those 600

negative λ sequences, and the remainder of the sequences formed our training dataset.

• For DALADκ
V and DALADκ

VJ, in each experiment, we chose all of the 166 positive κ sequences,

and randomly selected a subset of 225 negative κ sequences, and performed the same kind of

splitting as in the λ case for the purpose of training and testing.

• For DALADJoint
V and DALADJoint

VJ , we performed the same kind of splitting as we had described

in the case of hyperparameter selection, but this time, by choosing all of the 525 positive λ

and 166 positive κ sequences, and random subsets of 600 negative λ and 225 negative κ

sequences.

• For DALADSep
V and DALADSep

VJ , we performed the same sampling process as in the aforemen-

tioned cases of the Joint models.

We would like to remind the reader that in each of the above cases, we balance the number of

positives and negatives in every dataset to maintain approximately the same positives-to-negatives

ratio in the range [0.74, 0.88]. This helps achieving better accuracy guarantees while classifying

the positive cases. Also, after we select the best model from each of the version, we test them on

the entire dataset that is relevant to them, for example, we test the best trained DALADλ
V and

DALADλ
VJ models on the full λ dataset.
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4.3 Experimental Results

In this section, we state the results of our experiments for all of our versions of DALAD. We start

with the aggregate results for each version over 100 runs, and then move on to the results for the

best trained model for each version.

4.3.1 Aggregate Results

As mentioned earlier, for each version of DALAD, we study the statistics (mean, median, stan-

dard deviation, minimum, and maximum) on all the accuracy measures (AUC score, Sensitivity,

Specificity, and Accuracy) over 100 runs in order to be certain about the utility of our models.

4.3.1.1 DALADV Models

We first provide our findings for all the DALADV versions first. As a reminder, these models do not

use any features corresponding to the J regions.

DALADλ
V. We first state our results that we could use to directly compare with the performance

of LICTOR, since their work focused only on the λ sequences. Our detailed aggregate statistics

are stated in Table 4.2. The mean AUC score of over 87.2% already is on par with LICTOR’s

best model, and with a small standard deviation of 3.7%, we don’t expect the performance of our

model to vary too much if we are to retrain our model for some reason. The average sensitivity of

over 77.7% beats that of LICTOR’s best model, and so does our average specificity of over 82.8%.

The average accuracy of over 80.4% indicates that in each run, our model tends to have both good

sensitivity and good specificity simultaneously, which implies that if we are to select a trained

model from those 100 runs, we are expected to have model that does both positive and negative

classifications accurately. The low standard deviation numbers also confirm the high concentration

of our accuracy measurements.

DALADκ
V. Next, we discuss our results on κ datasets. Note that, however, we do not have a good

baseline to compare them with, since our work appears to be the first one to have the ability to
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Statistic Mean Median Std. Dev. Minimum Maximum

AUC 0.8726 0.8753 0.0371 0.7726 0.9424

Sensitivity 0.7774 0.7924 0.0640 0.5094 0.8868

Specificity 0.8285 0.8333 0.0690 0.5833 0.9500

Accuracy 0.8045 0.8142 0.0422 0.7090 0.8938

Table 4.2: Results over 100 experiments for DALADλ
V.

Statistic Mean Median Std. Dev. Minimum Maximum

AUC 0.9204 0.9284 0.0366 0.8286 0.9872

Sensitivity 0.8335 0.8235 0.0942 0.5294 1.0000

Specificity 0.8535 0.8696 0.0673 0.6522 1.0000

Accuracy 0.8450 0.8500 0.0505 0.7250 0.9750

Table 4.3: Results over 100 experiments for DALADκ
V.

tackle both λ and κ sequences efficiently and accurately. We refer the reader to Table 4.3 for the

aggregate statistics over 100 runs for this version of DALADV. The aggregate numbers of DALADκ
V

appear to be significantly better than those of DALADλ
V, which means that if we are to classify a κ

sequence, we are more likely to be correct. The average AUC score is over 92%, while the average

sensitivity and the average specificity are over 83.3% and 85.3%, respectively. As with DALADλ
V,

our average accuracy is very high (over 84.5% in this case), indicating that our DALADκ
V models

generally tend to classify both the negative and the positive sequences accurately. Our standard

deviation numbers are also low again (except for that for sensitivity, where it is just marginally

higher than that of DALADλ
V), implying high accuracy concentration of our models around the

means, which are very high already.

DALADJoint
V . We move on to the case, where our models may receive a dataset that contains a mix

of both λ and κ sequences. We ask the reader to see Table 4.4 for details on the aggregate statistics

of our overall accuracy numbers for DALADJoint
V . As described earlier in Section 3.3, DALADJoint

V

does not train separately on the λ and the κ sequences, but simply consumes them together for the

purpose of training. The averages of the overall AUC scores, the overall sensitivity, and the overall

specificity are over 89%, 79.4%, and 82.4%, respectively, which are all very high, and much better

than the respective numbers for LICTOR’s best model. The high overall accuracy of DALADJoint
V
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Test Sequence Statistic Mean Median Std. Dev. Minimum Maximum

λ+ κ

AUC 0.8905 0.8948 0.0281 0.8277 0.9534
Sensitivity 0.7944 0.7929 0.0606 0.6000 0.9429
Specificity 0.8243 0.8193 0.0549 0.6265 0.9518
Accuracy 0.8106 0.8137 0.0340 0.7190 0.9085

λ

AUC 0.8826 0.8807 0.0333 0.7808 0.9676
Sensitivity 0.7885 0.7924 0.0667 0.5849 0.9623
Specificity 0.8155 0.8167 0.0660 0.5500 0.9833
Accuracy 0.8028 0.8053 0.0387 0.6814 0.9380

κ

AUC 0.9124 0.9143 0.0428 0.7724 0.9898
Sensitivity 0.8129 0.8235 0.0984 0.5882 1.0000
Specificity 0.8474 0.8697 0.0785 0.6522 1.0000
Accuracy 0.8328 0.8250 0.0543 0.6750 0.9500

Table 4.4: Results over 100 experiments for DALADJoint
V .

(over 83.2%) indicates the consistency in classifying both the positive and the negative sequences

correctly, that is, the model is very likely to be accurate on both types of sequences simultaneously.

We also computed the average of all these statistics in the same runs for λ and κ sequences, as

well, and here are the interesting observations.

• As we can see in Table 4.4, the statistics on the λ-only datasets are marginally better than

those for DALADλ
V. The average AUC in the case of DALADJoint

V for λ sequences is over 88.2%,

which is higher than that in the case of DALADλ
V (over 87.2%). The same could be said about

the average sensitivity for DALADJoint
V (over 78.8%), which is better than that for DALADλ

V

(over 77.7%). However, the average specificity in this case is lower than that for DALADλ
V,

resulting in similar accuracy scores for both DALADJoint
V and DALADλ

V.

• From Table 4.4, we can see that the average AUC score of over 91.2% for DALADJoint
V for

κ-only datasets is lower than that of DALADκ
V (over 92%). The same is true for the average

sensitivity, the average specificity, and the average accuracy, as well.

In other words, the statistics of DALADJoint
V on the λ sequences appear better than the ones for

DALADλ
V, showing that introducing a new type of sequences (κ sequences) in the training dataset

does not hurt the general accuracy of the model on λ sequences, but improves it instead. On the

other hand, the general accuracy of DALADJoint
V on κ-only datasets looks worse than if we were to
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Statistic Mean Median Std. Dev. Minimum Maximum

AUC 0.8846 0.8882 0.0251 0.8277 0.9616

Sensitivity 0.7887 0.8000 0.0635 0.6000 0.9286

Specificity 0.8328 0.8313 0.0534 0.6626 0.9398

Accuracy 0.8126 0.8137 0.0304 0.7320 0.9085

Table 4.5: Results over 100 experiments for DALADSep
V .

just train on κ-only datasets, implying that the model gets misled on κ sequences when a new type

of sequences (λ sequences) are introduced in the training dataset.

DALADSep
V . We now discuss the final version of DALADV that also takes a mixture of λ and

κ sequences in both training and testing datasets, but trains a separate model on each type of

sequence, and uses that model to classify the respective type of sequence. Table 4.5 contains

the detailed statistics for all the accuracy measures. We compare the performance of DALADSep
V

with that of DALADJoint
V . First, in terms of the average of the overall AUC scores, DALADSep

V

(over 88.4%) gets marginally beaten by DALADJoint
V (over 89%). The average overall sensitivity of

DALADSep
V (over 78.8%) is also slightly lower than that of DALADJoint

V (over 79.4%). The average

overall specificity of DALADSep
V (over 83.2%), however, is better than that for DALADJoint

V (over

82.4%). Finally, both DALADSep
V and DALADJoint

V have similar average overall accuracy scores.

Since DALADSep
V contains two models (one each for λ and κ sequences), we do not compare its

accuracy on the individual types of sequences again, since the discussion about DALADJoint
V covers

that comprehensively. That said, we would like to remark that the overall statistics of DALADSep
V

may appear marginally worse than those of DALADJoint
V because DALADJoint

V does slightly better on

λ-only datasets than DALADSep
V (but slightly worse on κ-only datasets), and since there are many

more λ sequences in both training and testing datasets than κ sequences, the overall accuracy gets

affected accordingly.

4.3.1.2 DALADVJ Models

We finally state our numbers for all the DALADVJ versions (which are essentially the VJ analogues

of their respective DALADV versions). As a reminder, these models do incorporate the features
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Statistic Mean Median Std. Dev. Minimum Maximum

AUC 0.8856 0.8873 0.0262 0.8075 0.9557

Sensitivity 0.8040 0.8113 0.0668 0.5849 0.9623

Specificity 0.7943 0.8000 0.0772 0.6167 0.9667

Accuracy 0.7988 0.7965 0.0355 0.7168 0.8850

Table 4.6: Results over 100 experiments for DALADλ
VJ.

Statistic Mean Median Std. Dev. Minimum Maximum

AUC 0.9237 0.9271 0.0391 0.8261 1.000

Sensitivity 0.8518 0.8824 0.0973 0.4706 1.0000

Specificity 0.8487 0.8696 0.0842 0.6522 1.0000

Accuracy 0.8500 0.8500 0.0526 0.7000 0.9750

Table 4.7: Results over 100 experiments for DALADκ
VJ.

corresponding to the J regions.

DALADλ
VJ. We again begin by discussing our results for just the λ models and datasets. This

time, we can compare the results with those of both LICTOR and DALADλ
V. We refer the reader

to Table 4.6 for all the statistical details of our experiments for DALADλ
VJ. The average AUC score

for DALADλ
VJ is over 88.5%, which beats both LICTOR’s best model (87%) and our average for

DALADλ
V (over 87.2%). Our average sensitivity here of over 80.4% is significantly better than that

of LICTOR’s best model (76%) and than the average sensitivity of DALADλ
V (over 77.7%). Our

average specificity for DALADVJ of over 79.4%, however, is lower than both LICTOR’s best model’s

(82%) and than our average specificity of DALADλ
V (over 82.8%). Our average accuracy of over

79.8% is slightly lower than that of DALADλ
V, but that is mostly because of the lower specificity.

That said, given that it is still quite high, we can again expect our model to be accurate with both

positive and negative λ sequences with high probability. The low standard deviation numbers for

all these metrics confirm their high concentration around their very promising averages.

DALADκ
VJ. Next, we talk about our results for κ-only datasets. We state the exact details of our

aggregate statistics on all the metrics over the 100 runs of DALADκ
VJ in Table 4.7. We mostly

compare these results with those for DALADκ
V. The average AUC score of over 92.3% in the case of
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Test Sequence Statistic Mean Median Std. Dev. Minimum Maximum

λ+ κ

AUC 0.8930 0.8915 0.0274 0.8217 0.9525
Sensitivity 0.8079 0.8143 0.0576 0.6429 0.9429
Specificity 0.8249 0.8313 0.0540 0.6747 0.9277
Accuracy 0.8171 0.8170 0.0346 0.7255 0.9020

λ

AUC 0.8820 0.8836 0.0358 0.7931 0.9519
Sensitivity 0.7991 0.7924 0.0615 0.6226 0.9434
Specificity 0.8155 0.8167 0.0617 0.6500 0.9500
Accuracy 0.8078 0.8053 0.0405 0.6991 0.9115

κ

AUC 0.9229 0.9284 0.0418 0.8031 0.9974
Sensitivity 0.8353 0.8235 0.0964 0.5294 1.0000
Specificity 0.8497 0.8696 0.0816 0.6087 1.0000
Accuracy 0.8435 0.8500 0.0578 0.7000 0.9500

Table 4.8: Results over 100 experiments for DALADJoint
VJ .

DALADκ
VJ is slightly better than that of DALADκ

V (over 92%). The average sensitivity of over 85.1%

for DALADκ
VJ, however, is notably better than that of DALADκ

V (over 83.3%). Additionally, the

median sensitivity in case of DALADκ
VJ (over 88.2%) is significantly higher than that for DALADκ

V

(over 82.3%), which implies that DALADκ
VJ is much more likely to be accurate on positive sequences

than DALADκ
V. That said, the average specificity here of over 84.8% is marginally worse than that

of DALADκ
V (over 85.3%). The average accuracy of 85% for DALADκ

VJ though is marginally better

than that for DALADκ
V (over 84.5%). As before, the high average accuracy number does indicate

that DALADκ
VJ is expected to perform really well on both positive and negative κ sequences, and

it is unlikely that its performance would be high on either just the positives or just the negatives.

Finally, the low standard deviation numbers for each statistic (and similar to those for DALADκ
V)

imply high concentration of these statistics around the high average performances, implying the

high stability and reliability of our model.

DALADJoint
VJ . We proceed to the case, where our models may receive a dataset that contains a

mix of both λ and κ sequences again. We refer reader to Table 4.8 for details on the aggregate

statistics of our overall accuracy numbers for DALADJoint
VJ . Just like DALADJoint

V , DALADJoint
VJ does

not train separately on the λ and the κ sequences, but simply takes them all together as inputs for

training. The averages of the overall AUC scores, the overall sensitivity, and the overall specificity
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are over 89.3%, 80.7%, and 82.4%, respectively, which are all very high, and much better than

the respective numbers for LICTOR’s best model. The high overall accuracy of DALADJoint
VJ (over

81.7%) indicates the consistency and high utility in classifying both the positive and the negative

sequences correctly, that is, the model is very likely to be accurate on both types of sequences

simultaneously. We also computed the average of all these statistics in the same runs for λ and κ

sequences, as well, and just like in the case of DALADJoint
V , we list a few interesting observations.

• As we can see in Table 4.8, most of the statistics for DALADJoint
VJ on the λ-only datasets are

marginally better than those for DALADλ
VJ. The average AUC in the case of DALADJoint

VJ for

λ sequences is over 88.2%, which is lower than that in the case of DALADλ
VJ (over 88.5%).

The same could be said about the average sensitivity for DALADJoint
VJ (over 79.9%), which is

slightly worse than that for DALADλ
VJ (over 80.4%). On the other hand, the average specificity

in this case (over 81.5%) is quite higher than that for DALADλ
VJ (over 79.4%), resulting in a

marginally higher average accuracy score for DALADJoint
VJ than DALADλ

VJ.

• From Table 4.8, we can see that the average AUC score of over 92.2% for DALADJoint
VJ for

κ-only datasets is lower than that of DALADκ
VJ (over 92.3%).The average sensitivity in the

case of DALADJoint
VJ (over 83.5%) is significantly lower than that for DALADκ

VJ (over 85.1%).

The average specificity of DALADJoint
VJ (over 84.9%), however, is very marginally better than

that for DALADκ
VJ. This results in the average overall accuracy of DALADJoint

VJ on κ-only test

datasets being lower than that of DALADκ
VJ.

Unlike in the case of DALADJoint
V , where the model was performing better on λ-only test datasets

than DALADλ
V, but worse on κ-only datasets than DALADκ

V, it is hard to conclude something of

that flavour for DALADJoint
VJ . This is because the performances of DALADJoint

VJ and DALADλ
VJ are

comparable on λ-only test datasets, and the same could be said for the performances of DALADJoint
VJ

and DALADκ
VJ on κ-only test datasets. Finally, to compare the general performance of DALADJoint

VJ

with that of DALADJoint
V , we would like to point out from Tables 4.8 and 4.4 that the average

overall statistics of all the accuracy metrics (except for the sensitivity, where DALADJoint
VJ dominates

slightly) when testing on mixed datasets have similar values for both the models. The same could

be said for the average performance of DALADJoint
VJ and DALADJoint

V on λ-only datasets, as well.
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Statistic Mean Median Std. Dev. Minimum Maximum

AUC 0.8945 0.8940 0.0264 0.8365 0.9573

Sensitivity 0.8073 0.8143 0.0583 0.6428 0.9286

Specificity 0.8130 0.8253 0.0648 0.6386 0.9277

Accuracy 0.8104 0.8105 0.0335 0.7320 0.8889

Table 4.9: Results over 100 experiments for DALADSep
VJ .

DALADSep
VJ . We finally move on to the second version of DALADVJ that also takes a mixture of both

λ and κ sequences in training and test datasets. Just like DALADSep
V though, DALADSep

VJ also has

two sub-models, such that one trains and tests only on λ sequences, and the other trains and tests

only on κ sequences. We state all the relevant aggregate statistics for DALADSep
VJ in Table 4.9. We

compare DALADSep
VJ with DALADJoint

VJ first, but only in terms of the overall performance on the mixed

datasets (since we have already done a full review of the performances of DALADJoint
VJ , DALADλ

VJ,

and DALADκ
VJ on individual types of sequences). As we can see from Tables 4.9 and 4.8, the averages

of all the accuracy metrics (except for specificity, which is a little higher for DALADJoint
VJ ) are quite

similar. This can be justified by our comparisons of DALADJoint
VJ with DALADλ

VJ on λ-only sequences,

and our comparisons of DALADJoint
VJ with DALADκ

VJ on κ-only sequences, because they were almost

as good as each other in their respective cases. We finally compare DALADSep
VJ with DALADSep

V

in terms of the overall performance on mixed datasets only (since the individual sub-models have

already been compared above). The average AUC score and the average sensitivity of DALADSep
VJ

(over 89.4% and over 80.7%, respectively) are higher than those of DALADSep
V (over 88.4% and over

78.8%, respectively), respectively. The average specificity of DALADSep
VJ (over 81.3%), however, is

lower than that of DALADSep
V (over 83.2%), which brings their respective average overall accuracy

scores very close to one another.

4.3.2 Best Individual Results

In this section, we describe the results of the best trained models from each version on the ap-

propriate test datasets. For each of DALADλ
V, DALAD

κ
V, DALAD

Joint
V , DALADλ

VJ, DALAD
κ
VJ, and

DALADJoint
VJ , while executing those 100 experimental runs, we saved their respective “best” (we will

describe what that means below) trained models, and tested them individually.
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Remark 4.3.1. As mentioned earlier, to select each model, we chose a subset of its relevant dataset

(for example, the λ dataset for DALADλ
V), and split that for training and testing. For example,

for DALADλ
V, we had selected all the 525 positive λ sequences and randomly selected 600 of the

negative λ sequences, and had finally used 90% of each for training, and the rest for testing. In

our training and testing of these individual models, not all the available data was used. This was

because there are many more negative sequences than positive sequences in AL Base. To balance

the numbers of positive and negative sequences, many negative sequences were never used in the

training and the testing sets. So, after selecting the best model for DALADλ
V, we tested it on that

original test dataset again to make sure that it is correctly classifying the positive sequences it had

not been trained on because there were no other positive sequences to test on. Then we tested

it again on all the λ sequences in the main dataset, which did not contain any of the training λ

sequences, because there were still over 350 negative λ sequences that the model had not been

either trained or tested on. The same process was repeated for all the other trained models for the

other versions. One of the goals of these experiments was to use these additional negative sequences

to see how much our trained models would generalize.

We first informally define a few notations. When we talk about a “complement” dataset for a

model, we are referring to the complement of the training dataset for that model with respect to

the original relevant dataset. For example, for DALADλ
V, we used 1012 λ sequences out of a total of

1517 λ sequences for training, so the “complement” dataset refers to the set of the remaining 505

λ sequences. By the “original” dataset, we are referring to the original test dataset that was used

to test the model before selecting it (which consists of 113 λ sequences for DALADλ
V). Note that

the complement datasets and the original datasets for DALADλ
V and DALADλ

VJ could be different

because the subset of the negative sequences to test and train on was chosen randomly from the

original λ dataset. The same is true for the other models, as well. Finally, the original and the

complement datasets for any given model would have the same set of positive sequences because we

use all the relevant sequences in the relevant main dataset due to the scarcity of positive sequences.

We describe the test datasets and the process of selection of the trained models for each version

of DALAD below.
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• For DALADλ
V, we chose from the set of models, whose: (1) AUC score was at least 0.91;

(2) sensitivity was at least 0.84; and (3) specificity was at least 0.88. At the same time, we

tried to maximize each accuracy metric. We then tested the selected model on (1) the entire

complement dataset that contained all the λ sequences (that were not used for training), and

(2) the original test dataset it was tested on.

• For DALADκ
V, we chose from the set of models, whose: (1) AUC score was at least 0.93;

(2) sensitivity was at least 0.89; and (3) specificity was at least 0.91. We simultaneously

tried to maximize each accuracy metric. We then tested the selected model on (1) the entire

complement dataset that contained all the κ sequences (that were not used for training), and

(2) the original test dataset it was tested on.

• For DALADJoint
V , we chose from the set of models, whose: (1) AUC score was at least 0.91;

(2) sensitivity was at least 0.84; and (3) specificity was at least 0.88. At the same time, we

attempted to maximize each accuracy metric. We then tested the selected model on (1) the

entire complement dataset that contained all the λ and the κ sequences (that were not used

for training), and (2) the original test dataset it was tested on.

• For DALADλ
VJ, we chose from the set of models, whose: (1) AUC score was at least 0.91;

(2) sensitivity was at least 0.84; and (3) specificity was at least 0.90. At the same time, we

tried to maximize each accuracy metric. We then tested the selected model on (1) the entire

complement dataset that contained all the λ sequences (that were not used for training), and

(2) the original test dataset it was tested on.

• For DALADκ
VJ, we chose from the set of models, whose: (1) AUC score was at least 0.95;

(2) sensitivity was at least 0.90; and (3) specificity was at least 0.91. We simultaneously

tried to maximize each accuracy metric. We then tested the selected model on (1) the entire

complement dataset that contained all the κ sequences (that were not used for training), and

(2) the original test dataset it was tested on.

• For DALADJoint
VJ , we chose from the set of models, whose: (1) AUC score was at least 0.90;

(2) sensitivity was at least 0.83; and (3) specificity was at least 0.85. At the same time, we
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Dataset Version AUC Sensitivity Specificity Accuracy

Complement
DALADλ

V 0.9067 0.8491 0.8142 0.8178

DALADλ
VJ 0.8977 0.8491 0.8628 0.8614

Original
DALADλ

V 0.9377 0.8491 0.9000 0.8761

DALADλ
VJ 0.9308 0.8491 0.9333 0.8938

Table 4.10: Results for the best DALADλ
V and DALADλ

VJ models on λ sequences.

attempted to maximize each accuracy metric. We then tested the selected model on (1) the

entire complement dataset that contained all the λ and the κ sequences (that were not used

for training), and (2) the original test dataset it was tested on.

Remark 4.3.2. We would also like to note that the thresholds we chose to select the best model

for each version of DALAD were higher than the respective average statistics for those accuracy

metrics.

DALADλ
V and DALADλ

VJ. In Table 4.10, we compare the accuracy metrics for DALADλ
V and

DALADλ
VJ with respect to their respective complement and original datasets. As we can see for

their respective complement datasets, both the models beat LICTOR’s best model in terms of the

AUC score (close to 90% in both our versions, compared to the 87% of LICTOR) and the sensitivity

(close to 85% in both versions, compared to the 76% of LICTOR). The specificity of DALADλ
V (over

81.4%) is slightly lower than that of LICTOR’s best model (82%), but the specificity of DALADλ
VJ

(over 86.2%) is much higher than that of both. With respect to their original datasets though, both

our models surpass LICTOR’s best model by huge margins in all accuracy measures. We would

like to mention, however, that the specificity of both these models on their respective complement

datasets was lower than the thresholds chosen for their respective versions while selecting them (0.88

and 0.90, respectively). The reason is that the complement datasets had 392 more unseen negative

λ sequences, so we were bound to lose some accuracy on them, but that said, the specificity numbers

for both these models are not that much lower than they were on their original test datasets, which

shows that our models do generalize. Finally, to compare DALADλ
V and DALADλ

VJ with each other,

both of them have similar performance numbers, except for the specificity, which is significantly
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Dataset Version AUC Sensitivity Specificity Accuracy

Complement
DALADκ

V 0.9425 0.9412 0.8360 0.8372
DALADκ

VJ 0.9652 1.0000 0.8932 0.8944

Original
DALADκ

V 0.9949 0.9412 0.9565 0.9500
DALADκ

VJ 0.9974 1.0000 0.9565 0.9750

Table 4.11: Results for the best DALADκ
V and DALADκ

VJ models on κ sequences.

higher for DALADλ
VJ, which makes us believe that the latter would be a better option in practice.

DALADκ
V and DALADκ

VJ. In Table 4.11, we can see the high very high AUC scores for both these

models on both their respective complement and their respective original datasets. The AUC score

of DALADκ
V is notably lower than that of DALADκ

VJ with respect to their complement datasets

(by over 2%). The sensitivity of DALADκ
VJ is higher than that of DALADκ

V, but that number of

positive test sequences in each test dataset is 17 for both the models, so the difference is just that

DALADκ
V misclassified one positive κ sequence, whereas DALADκ

VJ classified all the 17 positive κ

sequences correctly. The notable difference comes in the specificity though. Both models have

similar numbers for specificity on their respective original datasets, but the specificity of DALADκ
VJ

on its complement dataset (over 89.3%) is significantly higher than that of DALADκ
V on its own

complement dataset (over 83.6%), despite both having a drop in that metric compared to the their

numbers on their respective original test datasets (for the same reason as we had described for

our λ-specific models). The original thresholds for specificity for both these models while choosing

them were the same (0.91). This does show that DALADκ
VJ is a much better model to use in

practice because both models were simply trained on 149 positive κ sequences and 202 negative κ

sequences, but the performance of DALADκ
VJ on the remaining unseen 1555 negative κ sequences

was very noteworthy, also showing that this model was generalizing well with very good accuracy

for both positive and negative κ sequences.

DALADJoint
V and DALADJoint

VJ . In Table 4.12, we compare the performance of DALADJoint
V and

DALADJoint
VJ on their respective original and complement test datasets in terms of the overall results

on the mixture of λ and κ sequences, but also separately on just the λ and just the κ sequences.
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Dataset Version AUC Sensitivity Specificity Accuracy

Complement
DALADJoint

V 0.9096 0.8571 0.8401 0.8406

DALADJoint
VJ 0.9304 0.8857 0.8401 0.8416

Complement-λ
DALADJoint

V 0.8989 0.8679 0.8407 0.8436

DALADJoint
VJ 0.9218 0.8679 0.8496 0.8515

Complement-κ
DALADJoint

V 0.9155 0.8235 0.8399 0.8397

DALADJoint
VJ 0.9281 0.9412 0.8373 0.8384

Original
DALADJoint

V 0.9380 0.8571 0.9036 0.8824

DALADJoint
VJ 0.9468 0.8857 0.9157 0.9020

Original-λ
DALADJoint

V 0.9299 0.8679 0.8833 0.8761

DALADJoint
VJ 0.9456 0.8679 0.9333 0.9027

Original-κ
DALADJoint

V 0.9616 0.8235 0.9565 0.9000

DALADJoint
VJ 0.9514 0.9412 0.8696 0.9000

Table 4.12: Results for the best DALADJoint
V and DALADJoint

VJ models on λ and κ sequences.

First, we compare DALADJoint
V and DALADJoint

VJ with each other in terms of their respective accu-

racy metrics on their respective original and complement datasets containing a mixture of λ and

κ sequences. In terms of the original test datasets, all the metrics of DALADJoint
VJ were higher than

those of DALADJoint
V , especially for the sensitivity (by close to 3%). In terms of the complement test

datasets, DALADJoint
VJ was superior in terms of the AUC score (by over 2%), which suggests that it

would be a better model to use in practice, even though the specificity numbers for both on their

respective complement datasets were less than the thresholds for specificity while choosing them

(0.88 and 0.85, respectively). In terms of classification of just the λ sequences, DALADJoint
VJ was

much superior on its original test dataset than DALADJoint
V was on its own original dataset as far

as the negative sequences were concerned (by close to 5%), but their performances on λ sequences

converged to similar numbers on their respective complement datasets. That said, the AUC score

of DALADJoint
VJ was higher (by over 2%) on its complement dataset than that of DALADJoint

V . Fi-

nally, on just the κ sequences, both had very similar AUC scores for both their respective original

and respective complement datasets, but had very different sensitivity and specificity numbers.

DALADJoint
VJ had a much higher sensitivity for κ sequences than that of DALADJoint

V (by an unbe-

lievable 12%). On the original datasets though, the specificity of DALADJoint
VJ for κ sequences was

lower than that of DALADJoint
V by close to 9%. However, the sensitivity number on κ sequences
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Dataset Version AUC Sensitivity Specificity Accuracy

Complement
DALADSep

V 0.9239 0.8714 0.8311 0.8324

DALADSep
VJ 0.9148 0.8857 0.8864 0.8864

Complement-λ
DALADSep

V 0.9067 0.8491 0.8142 0.8178

DALADSep
VJ 0.8977 0.8491 0.8628 0.8614

Complement-κ
DALADSep

V 0.9425 0.9412 0.8360 0.8372

DALADSep
VJ 0.9652 1.0000 0.8932 0.8944

Original
DALADSep

V 0.9508 0.8714 0.9157 0.8954

DALADSep
VJ 0.9511 0.8857 0.9398 0.9150

Original-λ
DALADSep

V 0.9377 0.8491 0.9000 0.8761

DALADSep
VJ 0.9308 0.8491 0.9333 0.8938

Original-κ
DALADSep

V 0.9949 0.9412 0.9565 0.9500

DALADSep
VJ 0.9974 1.0000 0.9565 0.9750

Table 4.13: Results for the best DALADSep
V and DALADSep

VJ models on λ and κ sequences.

for both the models dropped and converged to values close to 84%, which was not a huge drop for

DALADJoint
VJ , but it was for DALADJoint

V . We would like to make similar observations for both these

models again like we did for their aggregate results.

• On λ sequences in their respective complement datasets, the all the accuracy metrics of both

the Joint models were better than those of DALADλ
V and DALADλ

VJ (except for the specificity

of DALADJoint
VJ , which was lower than that of DALADλ

VJ by close to 2%). This is again a similar

trend that we had noticed earlier in the aggregate results for these models, implying that the

presence of the κ sequences in the training dataset might actually help in classifying the λ

sequences more accurately, which is surprising. As an additional note, one would observe that

both DALADJoint
V and DALADJoint

VJ beat LICTOR on the λ-only datasets.

• For κ sequences, both DALADJoint
V and DALADJoint

VJ suffer loss in all the accuracy metrics,

just as we had observed in their aggregate statistics earlier. This seems consistent with our

conjecture that the presence of λ sequences in the training dataset hurts the performance on

κ sequences.

DALADSep
V and DALADSep

VJ . We finally analyze the results for the best models of DALADSep
V and

DALADSep
VJ by looking at Table 4.13. We essentially just draw comparisons between DALADSep

V and
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DALADSep
VJ , and among the performance of DALADSep

V , DALADSep
VJ , DALAD

Joint
V , and DALADJoint

VJ ,

but only in terms of their performance on datasets having a mixture of λ and κ sequences (since

we have already discussed previously the comparison of both the sub-models of DALADSep
V and

DALADSep
VJ with DALADJoint

V and DALADJoint
VJ on λ-only and κ-only test datasets). We note that the

numbers for the AUC scores for DALADSep
V and DALADSep

VJ on their respective original test datasets

were very similar, and so were their respective numbers for sensitivity on their respective original

datasets. That said, the specificity of DALADSep
VJ on its original test dataset was higher than that of

DALADSep
V on its original test dataset by over 2%. However, these gaps became larger when tested

on their respective complement datasets. The AUC score of DALADSep
V was higher than that of

DALADSep
VJ by close to 1%, but the sensitivity of DALADSep

VJ was higher than that of DALADSep
V by

close to 1.5%. The main difference was noticed in the overall specificity though – the specificity of

DALADSep
VJ was higher than that of DALADSep

V by more than 5.5%. This can be explained by the

difference in the performance of their respective sub-models, which we have already discussed above.

Therefore, it appears that DALADSep
VJ is the better model to use in practice. Now, we compare these

two models with their Joint analogues. On the original test datasets, DALADSep
V beats DALADJoint

V

on all the accuracy measures, and DALADSep
VJ beats DALADJoint

VJ on all the accuracy measures, as

well. On the complement test datasets, DALADSep
V has a higher AUC score than that of DALADJoint

V ,

but with slightly lower specificity than the latter. On the other hand, DALADSep
VJ has a slightly

lower AUC score than that of DALADJoint
VJ , but has a much higher specificity (by over 4.5%). Given

the performance of its sub-models, as well, this indicates that DALADSep
VJ would be the best and

the most stable model to use among these four choices.

4.3.2.1 Additional Graphs and Figures

We provide separation histograms for DALADJoint
V , DALADJoint

VJ , DALADSep
V , and DALADSep

VJ on their

respective orignal test datasets that contained a mixture of λ and κ sequences (Figure 4.1). The

x-axis denotes the log odds ratios (or the logit’s) of the prediction likelihoods, i.e., if the prediction

value is p, then the x-axis contains values of the form log
(

p
1−p

)
. Each of the graph shows a clear

separation between the positive and the negative sequences due to our classifiers, which in another
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Figure 4.1: Separation histograms for DALADJoint
V , DALADJoint

VJ , DALADSep
V , and DALADSep

VJ (from
the top-left, going clockwise).

way, depicts the accuracy of these models.

We finally present the superimposed ROC curves for three different sets of models based on

their respective complement test datasets (Figure 4.2).

• DALADλ
V, DALADλ

VJ, DALADJoint
V (only for λ sequences), and DALADJoint

VJ (only for λ se-

quences).

• DALADκ
V, DALAD

κ
VJ, DALAD

κ
V (only for κ sequences), and DALADJoint

VJ (only for κ sequences).
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Model AUC Sensitivity Specificity

Average Performance
over 100 Runs

DALADλ
V 0.8726 0.7774 0.8285

DALADλ
VJ 0.8856 0.8040 0.7943

DALADJoint
V 0.8826 0.7944 0.8243

DALADJoint
VJ 0.8930 0.8079 0.8249

Performance of Best Model
on Complement Test Set

DALADλ
V 0.9067 0.8491 0.8142

DALADλ
VJ 0.8977 0.8491 0.8628

DALADJoint
V 0.8989 0.8679 0.8407

DALADJoint
VJ 0.9218 0.8679 0.8496

LICTOR 0.8700 0.7600 0.8200

Table 4.14: Comparing the AUC score, the sensitivity, and the specificity of LICTOR with those
of DALADλ

V, DALAD
λ
VJ, DALAD

Joint
V , and DALADJoint

VJ , both in terms of the average performances
of our models and in terms of the performance of our best models on their respective complement
test datasets. This comparison can only be done on λ sequences because of the domain limitation
of LICTOR.

• DALADJoint
V , DALADJoint

VJ , DALADSep
V , and DALADSep

VJ for the performance on test datasets

that contain both λ and κ sequences.

4.4 Discussion

Here, we provide further discussions and a recapitulation of the consequences of our experiments.

We aim to provide a more abstract picture of our findings, and try to bring the attention of the

reader to the main takeaways.

4.4.1 Comparison with LICTOR

We have compared the performance of DALADλ
V, DALADλ

VJ, DALADJoint
V , and DALADJoint

VJ with

that of LICTOR’s best model on λ sequences, both with respect to our aggregate statistics of

the relevant accuracy measures over 100 runs of each of our version, and with respect to the best

choices of models for each of our versions (see Table 4.14). To remind the reader, the AUC score of

LICTOR’s best model was 0.87, and its sensitivity and accuracy were 0.76 and 0.82, respectively.

In the aggregate statistics, the AUC scores of DALADλ
V, DALAD

λ
VJ, DALAD

Joint
V , and DALADJoint

VJ

were 0.8726, 0.8856, 0.8826, and 0.8820, respectively, which show that all these versions were
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Figure 4.2: ROC curves for three different situations. The one on the left in the top row com-
pares the ROC curves of DALADλ

V, DALAD
λ
VJ, DALAD

Joint
V , and DALADJoint

VJ just on their respec-
tive λ-only cmplement test datasets. The ROC curve on the right in the top row correspond to
those of DALADκ

V, DALAD
κ
VJ, DALAD

Joint
V , and DALADJoint

VJ on their respective κ-only complement
test datasets. The figure in the bottom row show the ROC curves corresponding to DALADJoint

V ,
DALADJoint

VJ , DALADSep
V , and DALADSep

VJ on their respective complement test datasets that contained
a mixture of λ and κ sequences.
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definitely better than LICTOR’s best model on an average in terms of the AUC scores. The average

sensitivity on λ sequences of these versions were 0.7774, 0.8040, 0.7885, and 0.7991, respectively,

which are all higher than that of LICTOR’s best model, especially in the case of DALADλ
VJ. The

specificity of these versions were 0.8285, 0.7943, 0.8155, and 0.8155, respectively. In this case,

except for DALADλ
VJ, all the other models had an average specificity that was either very close or

higher than that of LICTOR’s best model. This ultimately shows that on an average, our models

are expected to perform better than LICTOR’s best model.

In terms of the best respective models for the aforementioned versions, DALADλ
V, DALAD

λ
VJ,

DALADJoint
V , and DALADλ

VJ had AUC scores on the λ sequences of 0.9067, 0.8977, 0.8989, and

0.9218, respectively, which are much higher than the 0.87 AUC score of LICTOR’s best model.

The sensitivity of our best models in the same order were 0.8491, 0.8491, 0.8679, and 0.8679,

respectively, which are again very significantly higher than that of LICTOR’s best model (by at

least 9%). Finally, the specificity scores of these four models were 0.8142, 0.8628, 0.8407, and

0.8496, respectively. Even for this metric, all models (except for DALADλ
V) show superior numbers

than LICTOR’s best model. Therefore, as far as the best models are concerned, all our models

perform significantly better than the state-of-the-art.

Hence, in addition to being functional for κ sequences, our methodology is very accurate on λ

sequences, as well, as both the aggregate statistics and the accuracy metrics for our best models

show. Note that our pre-processing scheme of the λ sequences is similar to that of LICTOR, so

our improvements could not have happened just due to pre-processing alone. We were able to use

some additional information, like the GL sequences (which were also utilized by LICTOR, but in

a different way) and the J gene segments (which, as LICTOR concluded, were not useful for their

model), which along with the design of our model, gave the superior performance.

4.4.2 DALADV-vs-DALADVJ

In this part of the discussion, we ask the following question: do the additional features corresponding

to the J regions contribute anything?

From the average statistics, it is difficult to infer what might be better. For example, for the
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λ models, DALADλ
VJ has notably better average AUC score and average sensitivity than DALADλ

V,

but its average specificity is lower. In case of DALADκ
V and DALADκ

VJ, the average AUC scores and

the specificity look similar, but there is a 2% increase in the sensitivity for DALADκ
VJ. For the Joint

models, there isn’t much change in the average statistics for the overall accuracy metrics, which is

mostly because the DALADJoint
VJ had more accurate predictions for κ sequences than DALADJoint

V , but

had less accurate predictions for λ sequences than DALADJoint
V , and this made its overall accuracy

quite similar to that of DALADJoint
V . So, it appears that on an average, the features corresponding

to the J regions make predictions a little more accurate in different cases for different versions of

DALAD, for example, by increasing the sensitivity of the κ models.

Now, we compare the performance of the best DALADVJ models with that of the best DALADV

models. In case of DALADλ
V and DALADλ

VJ, the sensitivity and the AUC scores are within 1% of

each other, but the specificity of DALADλ
VJ is higher than that of DALADλ

V by close to 5%, which is

a massive improvement. In case of DALADκ
V and DALADκ

VJ, the AUC score of DALADκ
VJ is higher

than that of DALADκ
V by over 2%, which is a big improvement. The sensitivity of DALADκ

VJ is also

much higher, but as we discussed previously, we cannot conclude much from that because there

aren’t that many positive data points available to test on. However, the specificity of DALADκ
VJ

is higher than that of DALADκ
V by almost 6%, which is a huge improvement, especially given that

there are way more negative sequences. In this case, the J regions do seem to provide extra accuracy.

In case of the Joint models, the AUC score of DALADJoint
VJ is higher than that of DALADJoint

V by

over 2%, and the sensitivity of DALADJoint
VJ is also higher than that of DALADJoint

V by close to 3%.

On the λ sequences alone, DALADJoint
V and DALADJoint

VJ seem to have similar performance, but on κ

sequences alone, DALADJoint
VJ has a much better sensitivity than that of DALADJoint

V . Based on all

this information about the best models, the DALADVJ models do exhibit better performance than

their DALADV counterparts.

Finally, we perform additional t-tests over those 100 runs for: (1) DALADλ
V and DALADλ

VJ;

(2) DALADκ
V and DALADκ

VJ; and (3) DALADJoint
V and DALADJoint

VJ . The results are recorded in

Table 4.15. For the λ and κ versions, the negative t-values and the p-values being less than 0.05

indicate clear improvements in the AUC scores when adding the J regions in. This is not true for
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Version p-Value Sign of t-Value

DALADλ 0.000000 Negative

DALADκ 0.017979 Negative

DALADJoint 0.432382 Negative

Table 4.15: For λ, κ, and Joint models, we compute the approximate p-values for the t-paired
sampled tests between the AUC scores of their respective DALADV-vs-DALADVJ versions.

the Joint models though – that said, the average statistics and the metrics for the best models in

this case indicate otherwise.

4.4.3 Comparing Joint and Sep Models

One of our novel ideas in this work was to have a model for classification of both λ and κ se-

quences, which was composed of two sub-models (DALADSep
V and DALADSep

VJ ) – one each for λ and

κ sequences. The goal was to present this idea as a proof-of-concept, and compare it with the

model, which was just composed of one neural network that trained on both types sequences to-

gether without separating them (DALADJoint
V and DALADJoint

VJ ). As we saw in Section 4.3, the Sep

models perform better in different ways than the corresponding Joint models, both on an average

and in the individual runs for our best respective models.

On analyzing Tables 4.12 and 4.13, we concluded that DALADSep
VJ was the best model to use in

practice because of its high and consistent numbers on all the accuracy statistics (which we believe

would generalize well, too).

4.4.3.1 Individual Performance on λ and κ datasets

On λ and κ sequences separately, DALADSep
VJ was performing better than both DALADJoint

V and

DALADJoint
VJ (except for the sensitivity on λ sequences, where it was a little lower for DALADSep

VJ

compared to that of DALADJoint
VJ , but we observed that the availability of κ sequences somehow

seemed to improve the performance of the Joint models on the λ sequences). We believe that while

mixing in both types of sequences worsens the performance of DALADJoint
V and DALADJoint

VJ on the κ

sequences, their performance on the λ sequences gets better because the mutation behaviours in the

λ sequences that lead to the onset of AL amyloidosis also include those similar to the ones in the κ
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sequences, but they happen less frequently in the λ sequences. This way, the mutation behaviours

from the κ sequences add to the information about the λ mutations, and improves the performance

on the λ sequences. At the same time, especially because we had much fewer κ sequences to train

DALADJoint
V and DALADJoint

VJ on, the other mutation behaviours from the λ sequences might have

confused those models when testing on the κ sequences, thereby hurting their performance on the

κ sequences.

Based on this, one suggestion that we could offer to improve the performance of DALADSep
VJ even

further is that while training its λ module, we could mix a certain number of κ sequences, as well,

to improve its numbers on λ sequences. The κ module could still remain the same. With some

additional tweaking to the hyperparameters, and with more data, we could develop a combined

(that works on both λ and κ sequences) model that is even better than DALADSep
VJ .

4.4.4 Better Performance on κ Sequences

One major observation for the keen reader is that the models trained and tested solely on κ

sequences performed significantly better than the models trained and tested on λ sequences. Un-

fortunately, we do not have an answer for this yet, but we do have two plausible explanations for

this.

1. We conjecture that the mutations that happen in κ sequences during the onset of AL amy-

loidosis are probably more significant and prominent than those in case of λ sequences. In

other words, the κ sequences exhibit behaviours in case of the patient having the disease that

are much more identifiable and those that we can more easily categorize. These behaviours

are also what we aim to understand in future from the perspective of biology, too.

2. We also believe that a larger dataset with κ sequences would have made it easier for us to test

our models, and compare them with their performance on the λ sequences. This would have

just given higher-confidence (and even more representative) accuracy numbers for comparison.
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4.4.5 Dataset Size and Composition

Despite the promising and high-quality accuracy numbers of our models of DALAD, we believe that

having more data could have helped improve our models even further. What we had available to

us was a meagre set of about 4000 light chain sequences (or data points), which included both

λ and κ sequences. Given that the two types of sequences behave and mutate differently in the

positive and the negative cases, such a small number of samples for each was very challenging while

attempting to obtain models that could characterize all these behaviours accurately for both these

types of sequences. At the same time, when we’re incorporating more features (like those from

the J regions) into our model, we would ideally like to have more training samples in order for the

models to generalize and start exhibiting their true potential for even more accurate predictions.

In some sense, having more features increases the “dimensionality” of the models, which means

more training samples for reliable training. That said, our DALADVJ models show better accuracy

in many settings than their DALADV counterparts not because of any coincidence, since we also

had aggregate statistics for each of their accuracy metrics over many runs each that confirmed our

hypothesis.

This issue was further exacerbated by the fact that there were many more negative examples

than positive examples, especially in case of the κ sequences, where the number of negative se-

quences was more than 10 times the number of positive sequences. Hence, we could not have

utilized a major fraction of the κ dataset for training because otherwise our models could have

become biased towards classifying any light chain as negative, thereby, significantly lowering the

sensitivity. For instance, the number of positive κ sequences was 166, while the number of negative

κ sequences was 1757. Since we performed a 9 : 1 split for training and testing after balancing the

dataset (which involved using all 166 positive sequences, but just 225 randomly selected negative

sequences), we ended up having to ignore 1532 negative sequences, which was nearly 80% of the

entire κ dataset, and nearly 40% of the main dataset. We had to balance the λ dataset, as well, but

the problem was not as pressing as in the κ case, since the λ dataset had 525 positive sequences

and 992 negative sequences, and by selecting all the positive sequences and 600 random negative

sequences, we were not losing much from the main dataset, as compared to the κ models.
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Chapter 5

Conclusion

We conclude this thesis by summarising: (1) what we managed to achieve through our work; (2)

what the limitations are and what could have helped to improve our performance; (3) what we

conjecture based on our findings; and (4) what a few potential future directions could be.

5.1 Our Accomplishments

We developed a set of new machine learning models (DALAD) to predict the onset of AL amlyloidosis

by looking at the light chain sequences from patients. Our models were based on convoultional

neural networks, which combined the convolutional module with a deep neural network consisting

of multiple hidden layers. We developed multiple versions of DALAD that tackled the prediction

problem on different kinds of datasets – λ-only datasets, κ-only datasets, and datasets containing

a mixture of both λ and κ sequences.

Features of DALAD. There are two key distinguishing features of DALAD. (1) Unlike most other

prior works, our model can tackle both λ and κ sequences. (2) Our DALADVJ versions use both

the V and the three regions of the LC sequences, including both the λ and κ varieties.

Using a Custom Germline Database. DALAD uses a custom 355-sequence GL database that

contains all the possible combinations of the V and J regions for both the λ and the κ sequences
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from the IMGT repository in order to detect the potential mutations that could potentially lead

to AL amyloidosis.

Versions and Experimental Procedures. Our models included: (1) DALADλ
V and DALADλ

VJ,

which were trained and tested solely on λ sequences; (2) DALADκ
V and DALADκ

VJ that were trained

and tested only on κ sequences; (3) DALADJoint
V and DALADJoint

VJ , which had just one model each that

was trained and tested on a mixture of both λ and κ sequences simultaneously; and (4) DALADSep
V

and DALADSep
VJ , which had two sub-models, one each for λ and κ sequences alone, that were trained

and tested on the respective types of sequences separately. We first selected the hyperparameters

for each of these versions through multiple runs of training and testing on smaller datasets than

the ones we finally used to train and test. We then tested the accuracy of our models with their

respective hyperparameter choices by testing each over 100 runs, and computing the aggregate

statistics for each of the accuracy measures that we considered in this work. Finally, we selected

the best trained model for each version of DALAD, and evaluated it on the relevant complement of

its respective training dataset.

Superior Accuracy on λ Sequences. On λ sequences alone, our DALAD models comfortably

beat the state-of-the-art models (like LICTOR’s best model) in terms of different useful accuracy

metrics, such as AUC score, sensitivity, and specificity. This is true both in terms of the average

statistics and the accuracy measures for our best models. The models that we used for this were

DALADλ
V, DALAD

λ
VJ, DALAD

Joint
V , and DALADJoint

VJ .

High Accuracy on κ Sequences. We achieved even higher accuracy on κ sequences than we

did for λ sequences. This is true again both in terms of the aggregate statistics over multiple runs

of each model, and in terms of the individual accuracy numbers for our best trained models for

each relevant version. The versions we used in this process were DALADκ
V, DALAD

κ
VJ, DALAD

Joint
V ,

and DALADJoint
VJ .

Incorporating the J Region. From our experimental results in Chapter 4 and our discussion

in Section 4.4, we concluded that the J regions do appear to help in achieving higher accuracy
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while attempting to classify both the λ and the κ sequences correctly. The improvement happens

in different accuracy metrics for different cases, but we believe that with more data and more in-

depth research, new models could be discovered in future that would utilize the information from

the J regions even further to get better accuracy in their predictions.

Other Conclusions. In Section 4.4, we talked about our conjectures about the behaviours of

λ and κ sequences in case they are truly positive. This was based on our findings that training

jointly on λ and κ sequences together (as in DALADJoint
V and DALADJoint

VJ ) improved the accuracy

while classifying the λ sequences (as opposed to training simply on the λ sequences alone), but at

the same time, decreased the accuracy on the κ sequences (as opposed to training only on the κ

sequences alone).

5.2 Limitations and Future Directions

We finally discuss the limitations of our work, and propose a few future directions to facilitate

better classification models for this problem.

Limitations. As mentioned in Section 4.4, the lack of data did hinder what we could have

potentially done while working on this problem. Incorporating more features helped us, but in

order to see its full potential, we would have liked to have larger datasets available to us for both

λ and κ sequences, which had a larger number of both positive and negative sequences for each.

The other issue we discussed in Section 4.4 was that DALADJoint
V and DALADJoint

VJ seemed to be

performing better than DALADλ
V and DALADλ

VJ on the λ sequences. We proposed a new idea that

in our Sep models, the module for λ sequences could be trained on a small number of κ sequences,

as well, which could increase the accuracy numbers in that case, too. That said, this calls for more

data again. The final concern that we would like to highlight is that the set H of hyperparameters

that we had for each version of DALAD contained 216 choices. With more resources and data,

we could have broadened this universe of hyperparameters even further, and could have possibly

selected even better values for each version.
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Future Directions. We believe that our work has opened up new avenues for research on com-

putational methods for predicting the onset of AL amyloidosis. As discussed above, with more

resources and data, even larger and more accurate deep neural networks (possibly convolutional)

could be constructed with better choices of hyperparameters. Next, incorporating new features

could also help obtaining more accurate predictions. We mentioned earlier that the J region does

have more potential, but at the same time, one could also look into other features that could be

potentially useful for this task, for example, the secondary structures. More features means more

information, but at the same time, as we have remarked a few times already now, having enough

data is important in order to be able to make full use of that information in order to be able to

generalize well and get better accuracy. Another interesting direction, but in terms of just biol-

ogy, comes from our findings from the experiments on DALADJoint
V and DALADJoint

VJ (that these

models tend to perform better on λ test sequences than the models trained simply on λ sequences

alone), which indicate that, despite having different mutations and behaviours in case of positive

sequences, the λ and the κ sequences may exhibit certain similar behaviours, and it could be useful

to understand these similarities to help facilitate more accurate predictions. Finally, our model Sep

structure could be used for prediction in cases of other diseases, as well, where there are multiple

kinds of data exhibiting conflicting or misleading behaviours available, and learning jointly on all

of them together may not be feasible either due to computational or accuracy bottlenecks.
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