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Abstract

Rod-shaped bacteria such as E. coli reproduce by expanding along their long axis
and splitting into pairs of daughter cells. If conditions are favourable for growth, they
will continue in this way, doubling repeatedly until they hit some limiting factor, such
as a lack of nutrients or a buildup of toxic waste products. Long before they reach this
stage, however, they must contend with another limited resource: space. As these bacteria
lengthen, they push their neighbours aside to make room for their added volume. The result
is a constantly shifting mass of tightly packed cells, each one rotating and reorienting itself
in an ongoing competition for space.

In the past decade and a half, the physics governing this behaviour has garnered consid-
erable attention, and a robust literature has developed, drawing on hydrodynamic theories
of liquid crystals and their active matter counterparts (so-called “active nematics”). How-
ever, these models have relied exclusively on gradient effects to drive the dynamics of the
system, and these are insufficient to describe the behaviour of real microcolonies, which
exhibit asymmetric growth dynamics even in the absence of spatial gradients.

This thesis seeks to address this shortcoming. We do so by developing a novel model
of microcolony dynamics, based in part on earlier models from the literature on nutrient-
limited growth. We begin by showing that the physics in these models can be recast as a
variational problem: minimizing the total kinetic energy. We then modify this variational
problem to account for cell morphology, biasing the direction of a cell’s motion based on
its orientation. The result is a new model of microcolony growth that exhibits asymmet-
ric spreading. Next, we develop numerical schemes to simulate our system, combining
techniques from finite difference methods, level set methods, and unfitted finite element
methods. These schemes are validated against analytical solutions. Finally, we use these
numerical implementations to explore the behaviour of our model in more complex sce-
narios where exact solutions are lacking. Our findings suggest that this novel mechanism
can reproduce several behaviours observed in real microcolonies, such as spontaneous align-
ment in semi-confined domains, as well as fingering and defect generation at a microcolony’s
boundary. We conclude by proposing some strategies to incorporate our model into other
models in the active nematic literature.
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Chapter 1

Introduction

Rod-shaped bacteria such as E. coli reproduce by expanding along their long axis and
splitting into pairs of daughter cells. If conditions are favourable for growth, they will
continue in this way, doubling repeatedly until they hit some limiting factor, such as
a lack of nutrients or a buildup of toxic waste products. Long before they reach this
stage, however, they must contend with another limited resource: space. As these bacteria
lengthen, they push their neighbours aside to make room for their added volume. The result
is a constantly shifting mass of tightly packed cells, each one rotating and reorienting itself
in an ongoing competition for space. This thesis seeks to investigate these early stages of
colony formation using partial differential equation (PDE) models.

1.1 Bacteria

Bacteria are ubiquitous throughout both natural and man-made environments. The vast
majority are beneficial, such as those responsible for soil health [37], the fermentation of
food and drink [14], or the many species that make up our microbiome [31]. Others are
responsible for disease, from minor irritants like dental plaque to life-threatening illnesses
like tuberculosis.

As a bacterium grows from a single cell to a population, it will exhibit a diverse range
of behaviours. Even restricting ourselves to biophysics, we find rich and unique modeling
challenges at all stages of colony development, from the motion of daughter cells after the
first cell division [65], to the early stages of microcolony formation when a 2-dimensional
layer of cells begins to colonize a surface (the subject of this thesis), to the buckling of said
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layer into the third dimension [9][36][73][48], all the way up to the material properties of
biofilms [10]. Of course, bacterial colonies also exhibit interesting behaviour beyond their
basic physical behaviour, from chemotaxis [66], to quorum sensing [57], to the collective
dynamics of biofilms [43] and microbial communities [34].

Our work falls under the purview of active matter research, an interdisciplinary field
drawing on mathematics, physics, chemistry, biology, and engineering. Active matter
distinguishes itself from conventional matter by the fact that its constituent particles are
governed not just by external energy sources, but also internal ones. Active particles can
use energy to direct their own behaviour e.g. by propelling themselves. Examples include
swarming fish, vibrating rods, microtubules, and growing bacteria.

From a purely mathematical perspective, active matter is interesting due to its propen-
sity to exhibit emergent collective behaviour. Large collections of active particles will often
perform coherent, large-scale behaviour that is not readily predictable from the microscopic
behaviour of its individual constituent particles. Much of active matter research is to de-
voted to teasing out how these macroscopic behaviours emerge from the interactions of
active particles.

The physical dynamics of growing microcolonies also poses interesting biological ques-
tions, both from an evolutionary perspective and for laboratory experiments. Regarding
the first point, biologists have long observed that bacteria come in a dazzling array of cell
morphologies, and these differences in shape impact the way bacteria interact when they
come into physical contact. In the past few decades researchers have begun investigating
what fitness advantage these various morphologies might confer [74].

Volfson et al. [69] and Cho et al. [15] have hypothesized that E. coli ’s rod shape might
facilitate growth in semi-confined spaces, such as pores and cracks on surfaces. Their
experiments show that microcolonies spontaneously self-organize when grown in such envi-
ronments. Cho et al. observed that E. coli appear to have an aspect ratio just large enough
to facilitate collective motion, without being so large as to cause “traffic jam” effects. They
further hypothesize that this organization may aid in waste elimination and nutrient flow.
Cell orientation may also impact the efficiency of certain cell-cell interactions. For instance,
experiments done by Seoane et al. [62] show that conjugation efficiency is affected by the
relative orientation of the donor/recipient pair. Moving beyond bacteria, the same motion-
by-growth mechanism that governs the dynamics of bacterial microcolonies has been shown
to impact the evolutionary fitness of yeast cells growing in crowded environments [40].

The dynamics of cell orientation may also bear on the results of laboratory experiments.
In recent years, microfluidic devices have emerged as an important experimental technology
[7]. These devices can function as microchemostats, allowing researchers to grow cells in a
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controlled environment, potentially indefinitely [70], all while exerting precise control over
their growth environment and performing continuous observations of the growing cells.
However, as they are currently used, these devices have a limited capacity, holding no
more than a few hundred to a few thousand cells. At this scale, the physics of cell growth
could dramatically impact the outcome of experiments.

For example, the outcome of conjugation experiments performed in our lab appeared
to depend, at least in part, on the initial physical orientation of the donor cells (see figure
1.1). In these experiments, donor cells (the red cells in figure 1.1) pass on their genetic ma-
terial to recipient cells (green) via conjugation, creating transconjugants (yellow/orange).
The total conjugation efficiency, measured as the fraction of recipient cells that became
transconjugants, varied significantly between experiments. Based on our initial observa-
tions, it appears that the ultimate fate of any given experiment depends not only on the
conjugation rate, but also on the physical motion of the cells themselves. When design-
ing such experiments, it is therefore crucial to consider how the physics of cell growth
might impact the ultimate outcome. Understanding these physical processes could help
researchers design more robust microfluidic studies.

3



Figure 1.1: Despite starting with similar cell concentrations, the final results of conjugation
experiments exhibit a wide range of conjugation efficiency (unpublished data, produced by
Aaron Yip). The images on the left are snapshots of conjugation experiments, while the
plot on the right shows the conjugation efficiency over time for multiple experiments.
We conjecture that these differences could be explained by the physical dynamics of the
underlying system.

The remainder of this thesis splits into four main sections. The rest of Chapter 1 will be
devoted to reviewing liquid crystal theory and the previously published models that have
applied this theory to the physics of bacterial growth. In Chapter 2, we derive the models
that lie at the core of our work. Chapter 3 is devoted to the numerical implementation of
these models, while Chapter 4 explores both the exact analytical solutions, as well as some
results from numerical experiments. Avenues for future work are discussed in Chapter 5.

1.2 Liquid Crystals

This thesis seeks to apply hydrodynamic models of liquid crystals to study the microcolony
dynamics of rod-shaped bacteria.
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Liquid crystals are an intermediate state of matter, sharing, as the name suggests,
qualities of both liquids and crystals. Whereas a liquid is a state of matter where the
positions and orientations of its constituent particles have no long-range correlations, and
a crystal is a state of matter where the positions and orientations of its constituent particles
have strong long-range correlations, a liquid crystal is a state of matter which exhibits no
correlation in particle position, but which can exhibit strong long-range correlation in
particle orientation. For our purposes, we may think of a liquid crystal as a fluid composed
of asymmetrically shaped particles (e.g. rods or disks).

Hydrodynamic models of liquid crystals are a class of PDE models that generalize the
traditional Navier–Stokes equations. In addition to the usual quantities associated with
fluid dynamics—density, velocity, pressure, etc.—liquid crystal models introduce new field
variables that characterize the liquid crystal’s micro-structure, such as particle orientation.

Bacteria such as E. coli are also asymmetrically shaped and can be treated as particles
in a fluid. Liquid crystal models are therefore well-suited to describe the behaviour of
bacterial colonies. We review the relevant liquid crystal theory below.

1.2.1 Order Parameters

Liquid crystals exhibit phase transitions. When density is low, the particles making up
the crystal have enough space to move freely, and can assume any orientation. However,
once they reach some critical density, the particles are forced to become aligned.1 This
alignment is quantified using order parameters [51], the simplest of which is the director

d⃗, the unit vector that measures the average orientation in some small volume of space.

I.e. d⃗ =

[
cos(θ)
sin(θ)

]
, where θ is the average angle. We may extend this measurement by

introducing the scalar order parameter, S, which in two dimensions is defined to be:

S = ⟨2 cos2(θ̄) − 1⟩

where θ̄ = θ− θi is the angle of the ith cell w.r.t. the director and ⟨·⟩ denotes a statistical

average.2 Whereas d⃗ measures the mean orientation, S is a measure of orientation vari-

1Liquid crystals can also exhibit phase transitions based on the temperature of the system. Temperature
can also impact the behaviour of bacteria (e.g. by changing their growth rate). We will avoid that particular
can of worm, and focus here only on the effects of density.

2This average can be calculated in a number of different ways. If one knows the precise position and
orientation of all the particles, we can calculate S = 1

N

∑N
i=1 2 cos

2(θ̄i)− 1 where θ̄i is the angle w.r.t. the
director of the ith particle in some small ball, B, containing N ≫ 1 particles. This works well when the
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ability, roughly analogous to the standard deviation. S takes the value 0 when the system
is disordered, and 1 when it is completely ordered (see figure 1.2).

Figure 1.2: Behaviour of the scalar order parameter, S = ⟨2 cos2(θ̄) − 1⟩.

Combining d⃗ and S, we obtain the tensor order parameter, Q, which in 2D is defined
by:

Qαβ = 2S

(
dαdβ −

1

2
δαβ

)
where Qαβ denotes the αβ’th component of the matrix Q. Similarly, dα is the α’th com-

ponent of d⃗. δ is the Kronecker delta:

δαβ =

{
1 if α = β

0 otherwise

Alternatively, we may write Q = 2S
(
d⃗⊗ d⃗− 1

2
I
)

.3

number of particles is large.

Alternatively, we may calculate S =
∫
B

∫ π
2

0
(cos2(θ̄)−1)f(θ̄) dθ̄ dA where f(θ̄) is the statistical distribution

of θ̄. This measurement is more robust, especially when the number of particles is small and the discrete
sum has a large variance, but it requires us to estimate f(θ̄).

3A note of caution to the reader: some authors choose to omit the factor of two in the definition of Q.
We adopt the convention above because it eliminates several factors of 1

2 from quantities related to Q.
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Q is a symmetric, traceless matrix. When written in terms of θ, Q takes the form

Q = S

(
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

)
.

Furthermore Q has S as its largest eigenvalue, with corresponding eigenvector d⃗, and
det(Q) = −S2. Note also that Q is invariant under the symmetry d⃗ → −d⃗.

Admittedly, combining d⃗ and S in this way may seem like an odd thing to do. The
director, d⃗, and scalar order parameter, S, have clear physical interpretations, whereas
Q is less transparent. Indeed, as we will discuss below, this lack of transparency may
have contributed to several authors creating mathematical models in which S can exceed
one, which conflicts with its definition. In truth, the advantages of using the Q-tensor
are most apparent when working in three dimensions. There, liquid crystals can exhibit
orientational order along multiple axes. These complex physical configurations, and the
transitions between them, are not easy to describe using directors. As such, a great deal
of the liquid crystal literature has been developed using the Q-tensor description. So while
the Q-tensor formalism is perhaps overkill for two-dimensional systems, there is nothing
to be gained by developing a separate formalism.

For more information about liquid crystals and the order parameters discussed above,
see [51] and [3].

1.2.2 Static Theory

Having defined the tensor order parameter, we can use it to derive a description of a
liquid crystal’s equilibrium state. Our derivation follows [35]. We will generalize this to a
dynamical theory in the next section.

A liquid crystal’s equilibrium can be derived from a quantity called the Landau-de
Gennes free energy.4 Landau theories are phenomenological descriptions of thermodynamic
systems that are derived using a top-down approach. Rather than seeking to coarse-grain
a detailed description of the microstates, they rest on three assumptions:

• There exists a scalar function, F , called the Landau free energy, which can fully char-
acterize the macroscopic behaviour of the system for states near a phase transition.

4Named after Lev Landau, who introduced the general methodology, now called Landau theory, used
to describe phase transitions, and Pierre-Gilles de Gennes, who applied this theory to the case of liquid
crystals.
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The value of this function depends on the system’s order parameter (in our case,
Q). The equilibrium value of the order parameter is obtained by minimizing the free
energy.

• F is analytic.

• F respects all the symmetries of the system.5

When applied to 2D liquid crystals, we obtain the Landau-de Gennes free energy. Expand-
ing the free energy in terms of a power series and truncating higher order terms, we obtain
the following (equivalent) approximations:

F (Q) ≈ F0 +
1

2
AQαβQαβ +

1

4
C(QαβQαβ)2 (1.1)

= F0 +
1

2
ATr(Q2) +

1

4
CTr(Q2)2 (1.2)

= F0 + AS2 +
1

2
CS4 (1.3)

The series coefficients A and C are to be determined. Note that in equation 1.1 we are
summing over repeated indices. I.e.:

QαβQαβ =
2∑

α=1

2∑
β=1

QαβQαβ

This is a convention we will use throughout this thesis.

Per the symmetry assumption, all terms in the power series that are not invariant under
rotation must vanish. The series expansion of a general function of Q would also include,
e.g., a term of the form BQ11, but such terms cannot appear in the expansion of F . We can
also notice that Q has only two degrees of freedom: S and θ. Of these, only S is invariant
under rotations, so it should come as no surprise that F can be written as a function of S
alone.

The unknown coefficients A and C are functions of the other thermodynamic parame-
ters of our system, and in general it is difficult to determine which coefficient functions best

5One typically assumes that F respects the symmetries of the system’s Hamiltonian, but this is itself
predicated on the assumption that we can describe the microscopic dynamics of our system using Hamil-
tonian mechanics. This is not at all obvious in our case of growing bacteria given that neither mass nor
energy are conserved.
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model any given thermodynamic system. The assumptions of Landau theory can only take
us so far; to make further progress, one would have to appeal to the microscopic description
of the system. However, we can make several simplifying assumptions that reproduce the
qualitative behaviour we expect of our system, namely that the system undergoes a phase
transition at some critical density, b∗. Specifically, S should be identically zero when the
density, b, is below b∗, and positive when b > b∗. Assuming that A takes the form A0(b

∗−b)
and that C is constant (or at the very least positive, to ensure the function is concave up)
is enough to enforce the desired behaviour.6 The fact that A changes sign allows the phase
transition to occur, and a linear form is the simplest expression that allows for a sign
change. The behaviour of this function is illustrated in Figure 1.3.

6Recall that Landau theory only assumes that F characterizes the states near a phase transition.
Because the phase transition occurs when A = 0, taking A to be linear can be interpreted as a linearization
of A, valid for densities close to the critical density.
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Figure 1.3: A plot of F (S) = A0(b
∗− b)S2 + 1

2
CS4. When b < b∗, in red, F has a minimum

at S = 0. When b > b∗, in blue, F has a minimum at S > 0.

If we expect that spatial gradients should impact the behaviour of our system, equation
1.1 is extended to:

F (Q) = F0 +
1

2
AQαβQαβ +

1

4
C(QαβQαβ)2 +

1

2
K∂iQαβ∂iQαβ (1.4)

where i = x, y. This last term is sometimes called the Frank elastic free energy, after
Frederick Charles Frank.

The free energy function we have described thus far does produce the described phase
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transition, but we require additional assumptions to guarantee that it predicts an equilib-
rium values for S between 0 and 1. (Recall that the predicted equilibrium value for S is
the value that minimizes F .) In the absence of any spatial gradients, F takes the form:

F = F0 + AS2 +
1

2
CS4

= F0 + A0(b
∗ − b)S2 + CS4

This functions has two non-negative critical points: Seq = 0, and Seq =
√

−2A0(b∗ − b)/C.
Following [72] and [32], we further assume that C = 2A0b, so the non-zero solution reduces

to Seq =
√

1 − b∗

b
, guaranteeing that Seq will remain in the desired range. See figure 1.4.

Figure 1.4: The non-zero Seq value as a function of the density, b, with b∗ = 0.5. Seq = 0
when b < b∗, but when b > b∗ the system undergoes a phase transition, trending towards
Seq = 1 as b → ∞.

Having derived the Landau-de Gennes free energy, we are almost ready to describe the
hydrodynamic theory of liquid crystals that underlies the core of this thesis. Before we do
so, we need to introduce one final quantity, H, called the molecular field/molecular tensor.
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H is given by the functional derivative of the free energy, i.e.:

Hαβ = − δ

δQαβ

∫
FdA

= −
(
A +

1

2
S2C

)
Qαβ + K∆Qαβ

= A0b

(
1 − b∗

b
− S2

)
Qαβ + K∆Qαβ

= A0b
(
S2
eq − S2

)
Qαβ + K∆Qαβ

H will enter our model as a gradient flow term. Where F tells us, by means of its minimum,
the location of the equilibrium state, H tells us what direction we need to travel in order
to reach it.

1.2.3 Dynamic Theory

Dynamical theories for liquid crystals split into two broad categories: director-based the-
ories, epitomized by the Ericksen-Leslie equations [29, 30, 47], and Q-tensor theories. In
contrast to Ericksen-Leslie theory, which to our knowledge has no real competitors, several
competing Q-tensor formulations exist in the literature. (See [53] for a survey.) Among the
existing Q-tensor models, the two most widely used in the context of bacterial dynamics
are the Beris-Edwards equations [8] and the Olmsted-Goldbart equations [54].

The Beris-Edwards equations, developed in 1994 by Antony Beris and Brian Edwards
in [8], were derived using a generalization of the Poisson-bracket method, suitably modified
to account for dissipative forces. The Q-tensor component of the equations reads:

(∂t + v⃗ · ∇)Qαβ = (ξuαγ + ωαγ)(Qγβ + δγβ) + (Qαγ + δαγ)(ξuγβ − ωγβ)

− 2ξ

d
(Qαβ + δαβ)tr(Qu) + ΓHαβ

(1.5)

In the above, d = 2, 3 is the dimension of the system, v⃗ is the velocity field, and Hαβ is
the molecular field introduced in the previous section. The parameter Γ is the rotational
viscosity, which controls the rate at which the system tends towards thermodynamic equi-
librium, and ξ is an alignment parameter that depends on the aspect ratio of the liquid
crystal particles.

12



The quantities u and ω are defined by:

uαβ =
∂βvα + ∂αvβ

2
− 1

d
∂γvγδαβ (1.6)

ωαβ =
∂βvα − ∂αvβ

2
(1.7)

Again, we highlight the differing conventions in the liquid crystal literature. We are
here using the definition Q = dS(d⃗ ⊗ d⃗ − 1

d
I). If we omit the initial factor of d, equation

1.5 would contain several additional factors of 1
d
.

Strictly speaking, equation 1.5 is a generalization of the classical Beris-Edwards equa-
tions, which were originally formulated for incompressible flows. In that case, the definition
of u simplifies to uαβ = (∂βvα + ∂αvβ)/2, thus u and ω are respectively the symmetric and
skew-symmetric components of the strain-rate tensor. However, when ∇ · v⃗ ̸= 0, this def-
inition of u is not trace-free, and therefore equation 1.5 would not preserve the trace-free
nature of Q. Following [21], [72], and [59], we apply the correction defined in equation 1.7.

When d = 2, equation 1.5 can be simplified significantly. Expanding, we obtain:

(∂t + v⃗ · ∇)Qαβ = 2ξuαβ + ωαγQγβ −Qαγωγβ + (uαγQγβ + Qαγuγβ − tr(Qu)δαβ)

− ξQαβtr(Qu) + ΓHαβ

This can be simplified further using the following lemma.

Lemma 1.2.1. Given any two 2x2 symmetric trace-free matrices A and B, the following
identity holds:

AB + BA = tr(AB)I

Proof. A direct computation yields:

AB + BA =

(
a11 a12
a12 −a11

)(
b11 b12
b12 −b11

)
+

(
b11 b12
b12 −b11

)(
a11 a12
a12 −a11

)
=

(
2a11b11 + 2a12b12 0

0 2a11b11 + 2a12b12

)
= tr(AB)

(
1 0
0 1

)
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Thus, because u and Q are both symmetric and trace-free, it follows that uαγQγβ +
Qαγuγβ − tr(Qu)δαβ = 0, and so 1.5 simplifies to:

(∂t + v⃗ · ∇)Qαβ = 2ξuαβ + ωαγQγβ −Qαγωγβ − ξtr(Qu)Qαβ + ΓHαβ
7 (1.8)

In contrast to the Beris-Edwards equations, which require an involved derivation based
on their novel Poisson bracket formalism,8 the Olmsted-Goldbart equation can be derived
in just a few lines. The derivation, which may be found in [54] or [32], proceeds in much
the same way as the derivation of Landau-de Gennes free energy seen in section 1.2.2.
I.e.: we truncate a series expansion and discard all terms that are not of the correct form.
Specifically, we posit that the interaction terms between the flow, v⃗, and the Q-tensor
can be represented by an analytic function, f , of the relevant field variables (u, ω, and
Q), which we expand to second order and discard all terms that are not symmetric and
trace-free. In two dimensions, this procedure yields:

(∂t + v⃗ · ∇)Qαβ = f(u,ω,Q) + ΓHαβ

= Auαβ + B (ωαγQγβ −Qαγωγβ) + ΓHαβ

Comparing this equation to the Eriksen-Leslie theory, we find that B = 1. After
relabeling A = 2ξ, we obtain:

(∂t + v⃗ · ∇)Qαβ = 2ξuαβ + ωαγQγβ −Qαγωγβ + ΓHαβ (1.9)

This equation is almost identical to equation 1.8. The only difference is the absence of
the third-order term, ξtr(Qu)Qαβ. Unfortunately, this term is required to ensure that S
remains bounded between 0 and 1. Without it, S can take on unphysical values, as we will
now show.

We now return to the problem we foreshadowed in section 1.2.1. It is not initially
obvious that there should be anything wrong with equation 1.9, and this is in part due to

7If we rewrite the equation in the form

(∂t + v⃗ · ∇)Qαβ +Qαγωγβ − ωαγQγβ = 2ξuαβ − ξtr(Qu)Qαβ + ΓHαβ

then the LHS of this equation is the corotational time derivative, a generalization of the material
derivative that accounts for both translation and rotation. The first two terms on the RHS represent the
effects of shear while the last term represents relaxation to thermodynamic equilibrium.

8In their book, Thermodynamics of Flowing System with Internal Microstructure, Beris and Edwards
take up the subject of liquid crystals after roughly 450 pages, at which point they state: “LC dynamics
are the perfect test of the thesis of this book, and, in a sense, a mild climax, since in order to describe LCs
we shall have to use nearly everything that we have learned thus far.” [8]
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the fact that Q has no obvious physical interpretation. It is difficult to tell at a glance
what values Q can take, or how to interpret those values. Fortunately, there is a relatively
straightforward procedure that allows us to decouple a dynamical equation for Q into
dynamical equations for θ, the angle of the director, and S, the scalar order parameter.
This procedure is found in an appendix to [32], a paper commonly cited by those using the
Olmsted-Goldbart equation to model bacterial dynamics. We reproduce it below.

Recall that Q = S

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
. We define the following matrices:

σp =

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
=

1

S
Q

π =

(
− sin 2θ cos 2θ
cos 2θ sin 2θ

)
=

1

2

d

dθ
σp

Differentiating Q, we obtain: dQ
dt

= d
dt

(Sσp) = dS
dt
σp + 2S dθ

dt
π. If we multiply this

equation by σp and take the trace, we can isolate dS
dt

.9

tr

[
σp

dQ

dt

]
= tr

[
σp

dS

dt
σp + σp2S

dθ

dt
π

]
=

dS

dt
tr [σpσp] + 2S

dθ

dt
tr [σpπ]

= 2
dS

dt

Applying this identity to equation 1.9 yields

2(∂t + v⃗ · ∇)S = tr (2ξσpu + σpωQ− σpQω + ΓσpH)

= tr

(
2ξ

1

S
Qu +

1

S
QωQ− 1

S
QQω + Γ

1

S
QH

)
=

2ξ

S
tr(Qu) +

1

S
tr(QωQ) − 1

S
tr(QQω) +

Γ

S
tr(QH)

=
2ξ

S
tr(Qu) +

Γ

S
tr(QH) (1.10)

Notice that the thermodynamic term, Γ
S

tr(QH), does not depend explicitly on v⃗. More-

over, it is possible to construct velocity fields that cause the shear term, 2ξ
S

tr(Qu), to grow

9Similarly, we can isolate dθ
dt by multiplying by π.
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arbitrarily large. In such a case, there is nothing to guarantee that S will remain bounded.
The S in the denominator does not help in this regard, as it cancels with the factor of S
in the definition of Q. Expanding the shear term, we obtain:

2ξ

S
tr[Qu] = 2ξ cos(2θ)(∂xvx − ∂yvy) + 2ξ sin(2θ)(∂xvy + ∂yvx)

For completeness, let us construct an explicit example. Consider a horizontally aligned
liquid crystal, θ = 0, that fills the xy-plane, subject to the velocity field v⃗ = [Ax, 0]T.
It is easy to verify that such a liquid crystal will remain horizontally aligned. However,
substituting v⃗ into the expression above yields:

2ξ

S
tr[Qu] = 2ξ cos(0)(∂x(Ax) − ∂y0) + 2ξ sin(0)(∂x0 + ∂yAx)

= 2ξA

Thus, S will become larger than one provided that A is large enough to overcome the
effects of the thermodynamic terms. Restricting ourselves to divergence-free velocity fields
does not help; we observe the same behaviour with v⃗ = [Ax,−Ay]T provided we drop the
diffusion terms.

We can see hints of this problem throughout the literature. In [69], Volson et al. apply
the Olmsted-Goldbart equations to study bacterial dynamics, but note in their supplemen-
tary material that dropping the thermodynamic terms causes S to exceed one.

By contrast, when we apply the same decoupling procedure to the Beris-Edwards equa-
tion, 1.8, we obtain the following:

2(∂t + v⃗ · ∇)S = tr (2ξσpu + σpωQ− σpQω − σpξtr(Qu)Q + ΓσpH)

= tr

(
2ξ

1

S
Qu +

1

S
QωQ− 1

S
QQω − 1

S
Qξtr(Qu)Q + Γ

1

S
QH

)
=

2ξ

S
tr(Qu) +

1

S
tr(QωQ) − 1

S
tr(QQω) − ξ

S
tr(Qu)tr(QQ) +

Γ

S
tr(QH)

=
2ξ

S
(1 − S2)tr(Qu) +

Γ

S
tr(QH)

Unlike in Equation 1.10, the factor of 1 − S2 causes the shear terms to vanish as S
approaches 1, as desired.
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1.2.4 Defects and Charge Density

We conclude this section with a brief discussion of topological defects. Topological defects
are points of discontinuity in the director field of a liquid crystal. From a purely math-
ematical perspective, these defects are important because they cannot be removed using
continuous deformations, and thus they serve to characterize the qualitative/topological
properties of a given liquid crystal configuration. In effect, they reduce the continuum
description of a liquid crystal (the description in terms of field variables) into a discrete
description characterizing the liquid crystal using a finite number of points. Studying the
behaviour of topological defects acts as a convenient proxy for studying liquid crystals as
a whole. We will adopt this approach in sections 4.3.1 and 4.3.2.

Given a Q-tensor, we may calculate the location of topological defects by finding peaks
in the charge density [11]:

∂x(Q11/S)∂y(Q12/S) − ∂x(Q12/S)∂y(Q11/S) (1.11)

See Figure 1.5 for an example.

(a) Angle (b) Charge density

Figure 1.5: Plot (a) depicts the director field for a (simulated) microcolony, using colour
to visualize the angle of the director. Plot (b) depicts the corresponding charge density,
as calculated by Equation 1.11. (The details of the underlying simulation will by given in
Chapter 3.)
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1.3 Previous Models

This thesis attempts to combine two families of mathematical models: incompressible
models, where cell motion is driven entirely by growth, and liquid crystal models, where
cell motion is driven by gradients in the relevant field variables.

Incompressibility is routinely assumed throughout the microcolony/biofilm modeling
literature, not only in fluid-inspired models, but also in diffusion models such as [28].10 As
such, there is no coherent or self-contained literature on the subject, and a comprehensive
review would be quite impossible. Instead, we will point to one line of research that has
served as important inspiration for our work: the study of fingering instabilities in bacterial
colonies undergoing nutrient-limited growth [42][27][38][33].

Very briefly (we will unpack this derivation in more detail in Chapter 2), these models
begin with a (sometimes implicit, as in [42]) continuity equation for bacterial density:

∂tb + ∇ · (bv⃗) = g (1.12)

The term g in the above is a growth term, and v⃗ is the average velocity of the bacteria.
Assuming incompressibility, i.e. ∂tb + v⃗ · ∇b = 0, equation 1.12 simplifies to ∇ · v⃗ = g/b.

These models then assume that v⃗ satisfies Darcy’s law, v⃗ = −A∇p, which, when com-
bined with the incompressibility condition above, yields −A∆p = g/b. It is this equation
that determines the velocity of the bacteria.

This core model is then extended by making g depend on a nutrient field, which is
governed by its own set of equations. This line of research then proceeds to study the
interplay between bacterial motion and nutrient depletion. We will not be pursuing such
questions in this thesis.

In contrast to the sprawling zoo of incompressible models, there is self-contained lit-
erature on Beris-Edwards-type models for bacterial growth. These models are typically
variations on the following system of PDEs:

∂tb + ∇ · (bv⃗) = λb (1.13)

b(∂t + v⃗ · ∇)v⃗ = ∇ · σ − µbv⃗ (1.14)

(∂t + v⃗ · ∇)Qαβ = 2ξuαβ − ξtr(uQ)Qαβ + ωαγQγβ −Qαγωγβ + ΓHαβ (1.15)

10It was shown in [41] that this diffusion model can be derived as the continuum limit of a discrete model
in which one assumes that each point in space can contain only a finite amount of biomass.
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From equation 1.14, we see that the only body force acting on the system is friction.
The rest of the motion is governed by stress, which appears under a gradient. In particular,
this means that only gradients of Q, and not Q itself, will impact the colony’s morphology.

In the following sections, we will summarize some foundational models from the current
literature. In what follows, we have changed the notation used by the original authors
(renaming constants and variables) for ease of readability and so that comparisons may be
draw more easily.

1.3.1 Volfson et al.

The earliest example we are aware of for hydrodynamic Q-tensor models being applied to
bacterial growth is the the 2008 paper by Volfson et al. [69]. In this paper, Volfson et al.
demonstrate that monolayers of E. coli grown in semi-confined environments underwent
a transition from a disordered state to one where all the cells were oriented in the same
direction, and they investigate this behaviour with a PDE model.

They begin their model development with the Olmsted and Goldbart equation, 1.9,
reviewed above, and a Cauchy momentum equation for velocity.

(∂t + v⃗ · ∇)Qαβ = ξuαβ + ωαγQγβ −Qαγωγβ + ΓHαβ

(∂t + v⃗ · ∇)(bvα) = ∂βσαβ − µbvα

Volfson et al. extend this by adding a third equation to model the evolution of density,
including a growth term:

∂tb + ∇ · (bv⃗) = λb

So far, this model appears largely identical to equations 1.13-1.15, minus the trace
term in the Beris-Edwards equation. There is another important difference: the u in their
equations is not the trace-free version we have described previously, but rather the more
traditional uαβ = (∂βvα + ∂αvβ)/2, which does not preserve the trace-free property of Q.

From this starting point, Volfson et al. apply a number of simplifications. They drop
all thermodynamic terms (i.e. they drop all terms which depend on the free energy),
and they set σαβ = −pδαβ, where p is a pressure. Moreover, they assume p takes the form
p = p0exp(s(b−bp)), where bp is the packing density and s is a model parameter controlling
the steepness of p.
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At this point in the derivation, they note that there is nothing in the equations that
guarantees that S < 1.11 They address this by multiplying the RHS of their Q-tensor
equation by 1 − S2.

Thus, their model reads:

∂tb + ∇ · (bv⃗) = λb

(∂t + v⃗ · ∇)(bvα) = −∂αp− µbvα

(∂t + v⃗ · ∇)Qαβ = (1 − S2) (ξuαβ + ωαγQγβ −Qαγωγβ)

Ultimately, Volfson et al. go on to simplify these equations further to obtain a 1-
dimensional model representing growth in a straight open channel. They confirm that this
model exhibits the same self-organizing behaviour that they observed in experiments.

1.3.2 Dell’Arciprete et al. and You et al.

In 2018, a pair of papers were published by Dell’Arciprete et al. [21] and You et al. [72]
which expanded on the model proposed by Volfson et al. in several important ways.

Both papers model density using 1.13, though You et al. introduce a small diffusion
term for regularization, ∂tb+∇·(bv⃗) = λb+D∆b. Like Volfson et al., the starting point for
velocity evolution in Dell’Arciprete et al.’s and You et al.’s models is a Cauchy momentum
equation with friction, as in 1.14. The specifics of the two models, however, are slightly
different.

Dell’Arciprete et al. drop the inertial terms, which results in ∂βσαβ = µbvα. Much like
Volfson et al., they ignore potential thermodynamic contributions and impose a relatively
simple constitutive relation to close the system, though theirs is slightly more general:

σαβ = −pδαβ − aQαβ

Here, p = p0max[(b/bp − 1), 0] is a pressure term, and a = a0b is proportional to density.
Unlike Volfson et al., the addition of the second term on the RHS introduces a coupling to
the order parameter.

By contrast, You et al. keep the inertial terms12 and introduce a much more general
constitutive relation:

σαβ = −pδαβ + aQαβ − ξSHαβ + QαγHγβ −HαγQγβ

11They attribute this to the lack of thermodynamic terms, though, as we have seen, this problem occurred
much earlier.

12They do examine the non-inertial case in a later section of their paper.
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You et al. choose p = p0

(
b
bp
− 1
)

and a = −a0

(
b
bp
− 1
)

, continuing with the assump-

tion that pressure is driven by density gradients.

Note that, despite their superficial differences, the pressure terms in these three models
are very similar in spirit. They all assume that pressure will be low when density is below
the packing density, bp, and will rise above it.

When it comes to the Q-tensor dynamics, both Dell’Arciprete et al. and You et al. use
the Olmstead-Goldbart equation, though they do improve over Volfson et al.’s model by
using the trace-free version of u.

Dell’Arciprete et al. and You et al. also differ significantly from Volfson et al. in
terms of the behaviour they study. Whereas Volfson et al. was concerned with bacterial
monolayers growing in a confined environment, Dell’Arciprete et al. and You et al. examine
the dynamics of a freely expanding monolayer.

You et al. analyze the dynamics of expanding microcolonies by observing that cells tend
to cluster into distinct patches with a well-defined local orientation. They observed that
the size of these patches is distributed exponentially, and they identify K, the diffusion
constant in the Q-tensor equation, as a key parameter controlling this size distribution.

Dell’Arciprete et al. focus not on ordered patches, but on the topological defects that
form when such patches meet. They find that these topological defects are produced at a
constant rate, and that they are produced within the bulk of the microcolony, not at its
boundary.

Dell’Arciprete et al. plays a particularly important role in the context of this thesis
because they were the first to single out growth-induced expansion as the key mechanism
driving the physics of microcolonies. They analogized this to the expansion of space-time,
and dubbed their system a “Hubble active nematic.” Indeed, in the first section of their
paper, they even consider an incompressible growth model that would center this Hubble
mechanism, though they eventually discard it in favour of the model described above. This
thesis can be seen as a continuation of that initial premise.

1.3.3 Doostmohammadi et al.

No discussion of this field would be complete without mentioning the work of Amin Doost-
mohammadi, who has published, along with his many collaborators, extensive and diverse
papers in this area, including several review articles [23] [24] [4]. This work is too vast to
describe in its entirety, but we will highlight some key results and modelling choices.
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The first notable difference is that, in contrast to the models we have described so far,
Doostmohammadi et al.’s models typically track the total density, including the surround-
ing fluid, nutrients, etc. and the velocity in their models represents the average velocity
of the total fluid mass, which they typically assume to be conserved and incompressible.
They represent the cell density as a fraction of the total density.

For example, in [25], their model reads:

∂tb + ∇ · (bv⃗) = λb + κ∆b

∂tρ + ∇ · (ρv⃗) = 0

ρ(∂t + v⃗ · ∇)v⃗ = ∇ · σ
(∂t + v⃗ · ∇)Qαβ = (ξuαγ + ωαγ)(Qγβ + δγβ/3) + (Qαγ + δαγ/3)(ξuγβ − ωγβ)

− 2ξ(Qαβ + δαβ/3)tr(Qu) + ΓHαβ

Here, ρ is the total density. The cell density, b, is coupled to the rest of the system via
their definition of H, which they take to be Hαβ = A0S

2(1 − b)Qαβ + K∆Qαβ.

The next thing to note is that Doostmohammadi et al. have in various papers used
the Beris-Edwards equation, and not the Olmstead-Goldbart equation, to model Q-tensor
dynamics (e.g. in [23]). However, this usage has not been consistent (e.g. [26] uses the
Olmstead-Goldbart equation), and in some cases, they have cited the 3-dimensional Beris-
Edwards equation when studying a 2-dimensional system, as in the model from [25] which
we reproduced above.

Also noteworthy is the fact that Doostmohammadi et al. have demonstrated that Q-
tensor theories can usefully describe the dynamics of mammalian cells [25][60]. This is
because mammalian cells, despite their relatively symmetric shape, exert asymmetric forces
on the surrounding tissue when they undergo cell division. Such work extends the potential
scope of this research beyond microbiology and into such areas as wound healing and tumor
growth.

Restricting our attention to bacterial cells, Doostmohammadi et al. have used insights
from liquid crystal theory to arrive at several interesting and surprising results. In [49],
they showed that, in crowded environments, slow-moving bacteria can out-compete their
faster counterparts because excessive motility is a barrier to collective motion. In [26]
they showed that topological defects interact with the boundary of a growing microcolony,
resulting in changes in the microcolony’s morphology.
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1.3.4 Shortcomings

The work of Volfson et al., Dell’Arciprete et al., You et al., and Doostmohammadi et al.
have helped inspire a flurry of research. At time of writing, Doostmohammadi et al.’s
2018 review article on active nematics [23] has amassed some 400+ citations. Much of this
work has been devoted to studying the behaviour of the models we have already discussed.
See, for example, the work of Basaran et al. [5] studying the growth of annulus-shaped
microcolonies, or the wide-ranging investigation of active nematics given in a recent PhD
thesis by Prashant Mishra [50].

However, it seems to us that these models are not sufficient to describe the behaviour of
growing bacteria. When we consider the dynamics of v⃗, we see that these models only differ
from the traditional hydrodynamic models of passive liquid crystals by the presence of an
active stress term, aQ, which appears in σ. In Equation 1.14, this term appears under a
gradient, which means that a spatially homogeneous microcolony will not experience any
forces due to growth.

As a thought experiment, consider a microcolony of uniform density where all the cells
are aligned horizontally. What kind of motion should we expect from such a microcolony?
Clearly, there ought to be a contribution from the Q-tensor. As the cells grow, they will
push on their neighbours, exerting their influence most strongly in the horizontal direction.
However, the models above predict no such effect. In the absence of any spatial gradients,
the only force acting on the system is friction.

In this thesis, we will propose an alternative to the active stress term employed by
previous models, an alternative that does not rely on spatial gradients. To this end, we
will revisit the Hubble analogy proposed by Dell’Arciprete et al. If a microcolony is like
a miniature expanding universe, what happens if this expansion is not uniform in space?
How would we model this, and what behaviours would such a microcolony exhibit? These
are the questions we seek to answer.
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Chapter 2

Model Formulation

Our goal in this chapter is to develop an alternative description of active nematics that
does not rely on gradients in the field variables to drive the dynamics of the system. To
this end, we will focus only on the expansive forces that result from the interplay between
growth and incompressibility, temporarily setting aside all other forces that could be acting
on the system.

2.1 Uniform Spread

We would like to obtain a model of microcolony dynamics in which cell motion results
directly from growth. To simplify matters, we first consider the case where cells spread
uniformly, independent of their orientation.

We return to Equation 1.13, the continuity equation for bacterial density undergoing
exponential growth. We wish to solve this equation on a bounded domain, D ⊂ Rd with
d = 1, 2.1 The boundary of the domain is divided into two sections, ∂D = ΓD,w ∪ ΓD,o,
where ΓD,w represents solid walls, and ΓD,o represents open boundaries. We assume that
matter can leave the domain through the open boundary, but not enter it.2

Equation 1.13 can be rewritten as follows:

(∂t + v⃗ · ∇)b = (λ−∇ · v⃗) b (2.1)

1The case d = 3 is significantly more complicated. For one thing, we must consider how gravity
impacts the dynamics. Moreover, much of the relevant physics, such as those governing the planar-to-bulk
transition, are driven by elastic forces which our incompressible model neglects. See, e.g., [9][36][73][48].

2This replicates the behaviour of an idealized microchemostat as in, e.g., Figure 1.1.
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The LHS of this equation is the material derivative of density, which represents the
rate of change we would observe using a frame of reference that moves with velocity v⃗ (in
contrast to ∂tb, which represents the rate of change at a fixed point).

We reason as follows: cell density at a point represents the average cell volume over some
suitably small region of space (large enough to capture many cells, but not so large as to
lose all spatial information). When the cells are not densely packed, the only motion comes
from cells nudging their neighbours as they grow. This motion will be on a much smaller
scale than the region over which we are averaging. Moreover, we have no a priori reason
to expect this small-scale motion to have any preferred direction. For these reasons, we
expect the macroscopic, averaged motion to be zero when cell density is below the packing
density, bp.

3 Conversely, when the packing density is reached, we expect the colony to act
as an incompressible fluid; once the cells reach the packing density, they will remain at
packing density. In this case, the material derivative is zero. This gives, from equation 2.1,
(∂t + v⃗ · ∇)b = 0 =⇒ ∇ · v⃗ = λ, which leads to the system:

∂tb + ∇ · (bv⃗) = λb

∇ · v⃗ = λ when b = bp

v⃗ = 0 when b < bp

We are now faced with a problem. The equations above do not specify a unique velocity
profile.

We can make some headway towards addressing this issue by imposing boundary con-
ditions. Let Ω ⊂ D be the subset of the domain where b = bp (we will refer to this as the
close-packed region). We split the boundary of Ω into two disjoint subsets, ∂Ω = ΓΩ,w∪ΓΩ,f ,
where ΓΩ,w = ∂Ω∩ΓD,w are walls and ΓΩ,f are open/free boundaries. We will require that
ΓΩ,f be non-empty.4 There is no flow through walls, i.e. v⃗ · n̂ = 0, where n̂ is the outward-
pointing vector normal to ΓD,w. In other words, we expect the velocity field to solve the

3The packing density is the density at which no more bacteria can be added to a region without
compressing the cells. In general, this is a function of cell shape, and it will fluctuate slightly as cells grow
and divide, but for simplicity we will take it to be a constant.

4If the close-packed region is bounded on all sides by walls, there is nowhere for new cell matter to go.
Mathematically, this manifests as a contradiction when we try to apply the divergence theorem:

λ|Ω| =
∫
Ω

λdA =

∫
Ω

∇ · v⃗dA =

∫
∂Ω

v⃗ · n̂ds =
∫
ΓΩ,w

v⃗ · n̂ds = 0

In the real world, this would be resolved by, e.g., a cessation of growth or by buckling into the third
dimension.
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following Poisson problem:

∇ · v⃗ = λ on Ω

v⃗ · n̂ = 0 on ΓΩ,w

(2.2)

Unfortunately, this is not enough to specify a unique solution. For any v⃗ satisfying 2.2, we
can add a divergence-free vector field (provided it also has no flux on the walls) and obtain
another solution. Moreover, there is no simple boundary condition we can impose on the
open boundary, ΓΩ,f . We must look elsewhere for additional constraints.

In one dimension, we can argue by symmetry. Here, close-packed regions are intervals,
and the equation for velocity reduces to ∂xv = λ =⇒ v = λx + v0. If the close-packed
region is bounded on one side by a wall, that boundary condition is enough to uniquely
determine v0. If the close-packed region has two free boundaries, then by symmetry the
velocity must have equal magnitude at both boundaries (equivalently, the velocity is zero
in the middle of the interval), which is again enough to specify a unique solution.

The two dimensional case is more complicated,5 and requires assumptions stronger than
simple symmetry. In Duddu et al.’s incompressible model of nutrient-limited growth [27], a
unique solution is obtained by assuming that the velocity field is irrotational. This implies
the velocity has a scalar potential, v⃗ = −∇p. They further assume that p = 0 on ΓΩ,f , so
that setting p = 0 on the rest of the domain yields a continuous function. This is enough
to guarantee that the velocity, if one exists, is unique. However, these assumptions do not
suggest any way to modify the system to account for cell orientation, and it is not clear
why the boundary condition on p is physically appropriate.

We propose an alternative: choose the velocity that minimizes the total kinetic energy,
K(v⃗) = 1

2
bp
∫
Ω
v⃗ · v⃗ dA. To avoid having to qualify all future statements, we will restrict

K to be defined on the set of solutions to 2.2. Thus, when we talk about, e.g., stationary
points of K, we refer to stationary points on the set of solutions to 2.2.

We will show in Proposition 2.1.4 that minimizing K is equivalent to the choice made
by [27]. Crucially, this formulation will later allow us to modify the system to account for
the effects of cell orientation.

We begin by characterizing the stationary points of K. We add a divergence free vector

5Indeed, this is precisely where Dell’Arciprete et al. [21] pivot away from their “Hubble flow” mechanism
and adopt an elastic model.
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field, u⃗, with u⃗ · n̂ = 0 on ΓΩ,w.

Kϵ ≡ K(v⃗ + ϵu⃗)

=
1

2
bp

∫
Ω

(v⃗ + ϵu⃗) · (v⃗ + ϵu⃗)dA

=
1

2
bp

∫
Ω

(v⃗ · v⃗ + 2ϵv⃗ · u⃗ + ϵ2u⃗ · u⃗)dA

Therefore the functional derivative of K is given by:

lim
ϵ→0

(Kϵ −K(v⃗)) /ϵ = bp

∫
Ω

v⃗ · u⃗dA

Thus, we have the following:

Proposition 2.1.1. The vector field v⃗ is a stationary point of K iff
∫
Ω
v⃗ · u⃗dA = 0 for

every divergence-free vector field u⃗ with u⃗ · n̂ = 0 on ΓΩ,w.

However, we can make a stronger claim: any solution satisfying the condition in Propo-
sition 2.1.1 is a global minimum of K. To show this, we will prove that K is a strictly
convex functional evaluated on a convex set. We begin with the latter claim.

Proposition 2.1.2. The set of vector fields satisfying 2.2 is convex.

Proof. Suppose v⃗1 and v⃗2 are two solutions to 2.2. Then their difference, w⃗ = v⃗1 − v⃗2,
satisfies:

∇ · w⃗ = 0 on Ω

w⃗ · n̂ = 0 on ΓΩ,w

(2.3)

In other words, all solutions of 2.2 can be written in the form v⃗1 + w⃗, where v⃗1 is a
particular solution and w⃗ satisfies (2.3). To see that this set is convex, we will take a
convex combination and show that it remains within the set. Let v⃗2 = v⃗1 + w⃗2 and
v⃗3 = v⃗1 + w⃗3 be two solutions to 2.2, and let t be a real number with 0 < t < 1.

tv⃗2 + (1 − t)v⃗3 = tv⃗1 + tw⃗2 + (1 − t)v⃗1 + (1 − t)w⃗3

= v⃗1 + (tw⃗2 + (1 − t)w⃗3)

By the linearity of ∇ and the bilinearity of the dot product, the vector field tw⃗2 + (1−
t)w⃗3 satisfies (2.3), and therefore tv⃗2 + (1 − t)v⃗3 satisfies 2.2, as desired.

27



Proposition 2.1.3. The functional K is strictly convex.

Proof. We let v⃗ and u⃗ be two vector fields, and let t again be a real number satisfying
0 ≤ t ≤ 1. We wish to show that

tK (v⃗) + (1 − t)K (u⃗) ≥ K (tv⃗ + (1 − t)u⃗) .

with equality iff t = 0 or t = 1.

To simplify the argument, we will instead prove the equivalent statement:

tK (v⃗) + (1 − t)K (u⃗) −K (tv⃗ + (1 − t)u⃗) ≥ 0.

We expand K (tv⃗ + (1 − t)u⃗) using the definition of K, and rearrange.

tK (v⃗) + (1 − t)K (u⃗) −K (tv⃗ + (1 − t)u⃗) = tK (v⃗) + (1 − t)K (u⃗)

− t2K (v⃗) − (1 − t)2K (u⃗)

− 2t(1 − t)bp

∫
Ω

v⃗ · u⃗dA

= t(1 − t)

(
K (v⃗) − 2bp

∫
Ω

v⃗ · u⃗dA + K (u⃗)

)
= t(1 − t)K (v⃗ − u⃗)

Because the dot product satisfies (v⃗ − u⃗) · (v⃗ − u⃗) ≥ 0, and only vanishes when v⃗ = u⃗, and
because 0 ≤ t ≤ 1, the result follows.

Thus, because K is a strictly convex functional evaluated on a convex set, it has a
single stationary point, and that stationary point is a global minimum.

So far we have shown that if solutions exists to equations (2.2), then minimizing K
is enough to specify a unique velocity field. Moreover, the velocity field in question will
satisfy

∫
Ω
v⃗ · u⃗dA = 0 for every divergence-free vector field u⃗ that satisfies equations (2.3).

We will now show that this condition is equivalent to the conditions defined by Duddu et
al. in [27].

Proposition 2.1.4. Suppose there exists6 a function p that solves the following Poisson
problem:

∆p = −λ on Ω

p = 0 on ΓΩ,f

∇p · n̂ = 0 on ΓΩ,w

(2.4)

6Existence is addressed at the end of section 2.3.
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Then the velocity field v⃗ = −∇p satisfies 2.2. Moreover, this choice of v⃗ is the unique
solution of 2.2 that minimizes the kinetic energy.

Proof. It is clear that v⃗ satisfies 2.2. Recall that v⃗ is a minimum of K if
∫
Ω
v⃗ · u⃗dA = 0 for

every vector field u⃗ satisfying 2.3. A direct computation using 2.4 yields:∫
Ω

v⃗ · u⃗ dA = −
∫
Ω

∇p · u⃗ dA

= −
∫
Ω

(∇ · (pu⃗) − p∇ · u⃗) dA

= −
∫
∂Ω

pu⃗ · n̂ ds +

∫
Ω

p∇ · u⃗ dA by the divergence theorem

= −
∫
ΓΩ,w

pu⃗ · n̂ ds−
∫
ΓΩ,f

pu⃗ · n̂ ds +

∫
Ω

p∇ · u⃗ dA

= 0

The first integral vanishes because u⃗ · n̂ = 0 on walls, the second because p = 0 on
free/open boundaries, and the third because u⃗ is divergence-free.

Combining Equation 1.13 with Proposition 2.1.4, we arrive at the following system:

∂tb + ∇ · (bv⃗) = λb

v⃗ =

{
−∇p
0

on Ω
on D \ Ω

∆p = −λ on Ω

p = 0 on ΓΩ,f

∇p · n̂ = 0 on ΓΩ,w

(2.5)

We can interpret the function p as a pressure. If we were to model the velocity using
a Cauchy momentum equation where the only forces are pressure and friction, we might
obtain an equation like: bDv⃗

Dt
= −∇p̃ − µv⃗, where µ is a coefficient of friction. Dropping

the inertial terms, we obtain a balance of forces between friction and pressure: µv⃗ =
−∇p̃. Incompressibility fixes µλ = −∆p̃. Finally, rescaling the pressure using p = p̃

µ
, we

recover the formulation of v⃗ above (though further assumptions are required to derive the
associated boundary conditions).
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Again, we wish to emphasize that Equations 2.5 are not themselves novel. As we
discussed in the introduction, [27] and others have extended this basic model by making
the growth rate, λ, a function of nutrient. At this point, it may appear that we have done
nothing but complicated the derivation. The advantages of the kinetic energy formulation
will become clearer in Section 2.3, when we use it to derive a model that couples velocity
to cell orientation. Before we do so, we will briefly examine how Equations 2.5 behave in
one dimension.

2.2 The 1D Model

To better understand the behaviour of equations 2.5, we return to the 1-dimensional case
we briefly discussed early in Section 2.1. In this case, we can fully describe the solutions
of the system.

The close-packed region, Ω, consists of disjoint intervals. Outside of these intervals,
the evolution equation for density reduces to ∂tb = λb, which has the closed-form solution
b(x, t) = b(x, 0)eλt. In these regions, the velocity is zero, and pressure is left undefined by
Equations 2.5.7

On the interior of the close-packed intervals, the material derivative of density is zero,
and thus the density remains constant, b = bp.

8 On each of these close-packed intervals,
say [x1, x2], the pressure is p = −λ

2
(x − x1)(x − x2), therefore the velocity is v = λ

2
(x −

x1) + λ
2
(x− x2).

The only part of the solution left to characterize is the evolution of the boundary
that separates the close-packed region from the rest of the domain. In one dimension,
this boundary is a collection of isolated points, the boundary points of the close-packed
intervals.

Without loss of generality, let [x0, x1] be an interval containing a single such boundary
point, x0 < xb(t) < x1, such that b(x, t) < bp for x0 < x < xb(t) and b(x, t) = bp for

7If we want the pressure to be a continuous function defined on the entire domain, we may define
pressure to be 0 outside the close-packed region. This, however, is not required.

8While it is possible to contrive initial conditions where b > bp, such solutions are non-physical. Any
solution where density begins at or below the packing density will remain at or below the packing density.
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Figure 2.1: A portion of a solution, b(x, t), containing a boundary point, xb(t), that sepa-
rates the close-packed region on the right from the rest of the domain.

xb(t) < x < x1 (see Figure 2.1). By conservation of mass, the following holds:

d

dt

∫ x1

x0

b(x, t) dx = λ

∫ x1

x0

b(x, t) dx + v(x0, t)b(x0, t) − v(x1, t)b(x1, t)

= λ

∫ x1

x0

b(x, t) dx− v(x1, t)bp (2.6)

We have used the fact that the velocity is zero outside the close-packed region, so v(x0) = 0.

We can rewrite the LHS by splitting it into two integrals and applying the Leibniz
integral rule to each:
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d

dt

∫ x1

x0

b(x, t) dx =
d

dt

∫ xb(t)

x0

b(x, t) dx +
d

dt

∫ x1

xb(t)

b(x, t) dx

= b(xb(t)
−, t)

d

dt
xb(t) +

∫ xb(t)

x0

∂tb(x, t) dx

− b(xb(t)
+, t)

d

dt
xb(t) +

∫ x1

xb(t)

∂tb(x, t) dx

=
(
b(xb(t)

−, t) − bp
) d

dt
xb(t) +

∫ xb(t)

x0

∂tb(x, t) dx

=
(
b(xb(t)

−, t) − bp
) d

dt
xb(t) + λ

∫ xb(t)

x0

b(x, t) dx (2.7)

Where b(xb(t)
−, t) = lim

x→xb(t)−
b(x, t), likewise for the right limit, b(xb(t)

+, t), which in

this case is equal to bp. In the above, we have used the fact that ∂tb = 0 on [xb(t), x1] and
∂tb = λb on [x0, xb(t)].

Thus, in the limit x1 → xb(t)
+, combining 2.6 and 2.7, we find that

(
b(xb(t)

−, t) − bp
) d

dt
xb(t) + λ

∫ xb(t)

x0

b(x, t) dx = λ

∫ xb(t)

x0

b(x, t) dx− v(xb(t)
+, t)bp(

bp − b(xb(t)
−, t)

) d

dt
xb(t) = v(xb(t)

+, t)bp

d

dt
xb(t) =

bp
bp − b(xb(t)−, t)

v(xb(t)
+, t)

In other words, the velocity of the front separating the close-packed region from the
rest of the domain is proportional to the velocity on the interior of the close-packed region,
and inversely proportional to the jump in density at the boundary.9

This inverse proportionality to the jump in density has a straightforward physical in-
terpretation. When the external density is zero, bp

bp−b(xb(t)−,t)
= 1, so we find that the front

9Note that a very similar derivation can be done in the two-dimensional case by integrating over a thin
rectangle perpendicular to the boundary of the close-packed region. In the limit as the rectangle becomes
infinitely thin, the fluxes on the long sides of the rectangle cancel and we recover the same result. We omit
the details of the calculation, as they do not meaningfully differ from the 1-dimensional case.
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advances with the same velocity as the advective velocity of the close-packed region. When
b(xb(t)

−, t) ̸= 0, the biomass outside the close-packed region gets added to the advancing
front, causing it to expand faster. In the limit when the external density approaches the
packing density, the amount of new biomass required to advance the front shrinks to zero,
and thus the front velocity diverges.

Example: Suppose we solve the 1-D system 2.5 on the interval [0, L] where x = 0 is a
wall and x = L is an open boundary. Let bp = λ = 1, and take the following as the initial
condition:

b(x, 0) =

{
1 if x ∈ [0, xb(0)]

0.1 if x ∈ (xb(0), L]

Outside the close-packed region, i.e. when x ∈ (xb(t), L], the density is given by b(x, t) =
0.1et. The velocity inside the close-packed region is v = λx = x, and therefore the close-
packed region expands with a front velocity determined by x′

b(t) = 1
1−0.1et

xb(t). This can
be solved exactly, yielding the solution:

b(x, t) =

{
1 if x ∈ [0, xb(t)]

0.1et if x ∈ (xb(t), L]

xb(t) = xb(0)
9et

10 − et

At first glance, it might appear that this solution allows for densities above the packing
density. However, 0.1et > 1 only when t > ln(10), and xb(t) has a vertical asymptote at
t = ln(10). Thus, the close-packed region will always grow to encompass the entire domain
before the density in any other part can exceed the packing density.

2.3 Non-uniform Spread: Coupling Velocity to Cell

Orientation

We now turn to the task of coupling the velocity to cell order and orientation. Recall
from Section 1.2.1 that we characterize the order of a colony using two quantities: the
director, d⃗, which measures the average local orientation, and the scalar order parameter,
S, which measures the degree of alignment between neighbouring cells. These quantities

are combined to form the Q-tensor, Q = 2S
(
d⃗⊗ d⃗− 1

2
I
)

.
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In Section 2.1, we specified a unique velocity field solving 2.2 by minimizing the total
kinetic energy, K(v⃗) = 1

2
bp
∫
Ω
v⃗·v⃗ dA , which we showed to be equivalent to the pressure for-

mulation by Duddu et al.. This choice did not treat any direction of motion preferentially,
and the resulting solutions have bacteria spreading uniformly in space.

To incorporate the effects of cell orientation, instead of seeking a v⃗ to minimize kinetic
energy, we will seek a vector field to minimize the following.

K⊥(v⃗) =
1

2
bp

∫
Ω

v⃗ · v⃗ + 2γS(v⃗⊥ · v⃗⊥) dA (2.8)

Here, we have adopted the notation v⃗∥ = (v⃗ · d⃗)d⃗ for the component of the velocity parallel

to d⃗, and v⃗⊥ = v⃗− v⃗∥ for the perpendicular component. The parameter γ is a non-negative
constant that controls the coupling of the flow to cell orientation.10

In other words, we impose a further penalty for motion perpendicular to d⃗. This
penalty is proportional to S. When S = 0, the colony is completely disordered, so there
should be no effect from cell orientation. When S = 1, the colony is maximally ordered,
so the effect of orientation should be at its strongest. We will show in Section 2.3.1 and
throughout Chapter 4 that the addition of this penalty term will cause microcolonies to
spread preferentially in the direction the cells are pointing.

Recall from Proposition 2.1.4 that we could find the velocity field minimizing the ki-
netic energy by solving a PDE. We will apply the same approach to K⊥, and turn this
minimization condition into an equivalent PDE (see Proposition 2.3.3). To this end, we
begin by rewriting K⊥, which in 2.8 depends on v⃗⊥, in terms of Q. This will make it easier
to derive results analogous to those in Section 2.1.

Q is a matrix, so we can ask how it acts as a linear transformation.

Qv⃗ = 2S

(
d⃗⊗ d⃗− 1

2
I

)
v⃗

= 2S(d⃗⊗ d⃗)v⃗ − Sv⃗

= 2S(d⃗ · v⃗)d⃗− Sv⃗

10The factor of 2 is added to simplify the algebra later on.
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Taking the dot product of the above with v⃗, we obtain the following:

(Qv⃗) · v⃗ = 2S(d⃗ · v⃗)(d⃗ · v⃗) − Sv⃗ · v⃗
= 2S(d⃗ · v⃗)(d⃗ · v⃗)(d⃗ · d⃗) − Sv⃗ · v⃗

= 2S
(

(d⃗ · v⃗)d⃗
)
·
(

(d⃗ · v⃗)d⃗
)
− Sv⃗ · v⃗

= 2Sv⃗∥ · v⃗∥ − Sv⃗ · v⃗

Finally, starting with the Pythagorean Theorem (in vector form), we obtain:

v⃗ · v⃗ = v⃗∥ · v⃗∥ + v⃗⊥ · v⃗⊥
2Sv⃗ · v⃗ = 2Sv⃗∥ · v⃗∥ + 2Sv⃗⊥ · v⃗⊥

Sv⃗ · v⃗ − 2Sv⃗⊥ · v⃗⊥ = 2Sv⃗∥ · v⃗∥ − Sv⃗ · v⃗
Sv⃗ · v⃗ − 2Sv⃗⊥ · v⃗⊥ = (Qv⃗) · v⃗

Sv⃗⊥ · v⃗⊥ =
1

2
Sv⃗ · v⃗ − 1

2
(Qv⃗) · v⃗

Using the identity above, we can rewrite K⊥ as follows:

K⊥(v⃗) =
1

2
bp

∫
Ω

v⃗ · v⃗ + 2Sγv⃗⊥ · v⃗⊥ dA

=
1

2
bp

∫
Ω

v⃗ · v⃗ + γ (Sv⃗ · v⃗ − (Qv⃗) · v⃗) dA

=
1

2
bp

∫
Ω

(1 + γS) v⃗ · v⃗ − γ (Qv⃗) · v⃗ dA

=
1

2
bp

∫
Ω

([(1 + γS) I− γQ] v⃗) · v⃗ dA

For notational convenience, let M−1 = (1 + γS) I − γQ.11 This allows us to write
K⊥(v⃗) = 1

2
bp
∫
Ω

(M−1v⃗) · v⃗ dA.

Having rewritten K⊥ in this form, we can now follow the same procedure we followed
in Section 2.1 to obtain analogous results for K⊥. We begin by characterizing the extrema
of K⊥, much as we did for K in Proposition 2.1.1.

11The reason for the inverse will become apparent towards the end of this section.
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Let u⃗ be a divergence free vector field on Ω with u⃗ · n̂ = 0 on ΓΩ,w. To arrive at the
functional derivative of K⊥, we begin by evaluating Kϵ = K⊥(v⃗ + ϵu⃗).

Kϵ =
1

2
bp

∫
Ω

(
M−1(v⃗ + ϵu⃗)

)
· (v⃗ + ϵu⃗) dA

=
1

2
bp

∫
Ω

(
M−1v⃗

)
· v⃗ + ϵ

(
M−1v⃗

)
· u⃗ + ϵ

(
M−1u⃗

)
· v⃗ + o(ϵ2) dA

=K⊥(v⃗) + ϵbp

∫
Ω

(
M−1v⃗

)
· u⃗ dA + o(ϵ2)

Note, we have used the fact (M−1u⃗) · v⃗ = (M−1v⃗) · u⃗, which follows from the symmetry of
M−1.

We then calculate the functional derivative of K⊥.

lim
ϵ→0

(Kϵ −K⊥(v⃗)) /ϵ = bp

∫
Ω

(
M−1v⃗

)
· u⃗ dA

This provides us with the following characterization:

Proposition 2.3.1. The vector field v⃗ is a stationary point of K⊥ iff
∫
Ω

(M−1v⃗) · u⃗ dA = 0
for all u⃗ satisfying 2.3.

We would like a result analogous to proposition 2.1.3, showing that K⊥ is strictly
convex.

Proposition 2.3.2. K⊥ is strictly convex.

Proof. Following the same proof as 2.1.3, we obtain:

tK⊥(v⃗) + (1 − t)K⊥(u⃗) −K⊥(tv⃗ + (1 − t)u⃗) = t(1 − t)K⊥(v⃗ − u⃗)

Notice from the definition of K⊥ (Equation 2.8) that K⊥(v⃗) ≥ K(v⃗). Applying this
inequality, we obtain:

tK⊥(v⃗) + (1 − t)K⊥(u⃗) −K⊥(tv⃗ + (1 − t)u⃗) ≥ t(1 − t)K(v⃗ − u⃗)

The result then follows using the same argument as proposition 2.1.3.

Combining the results from Propositions 2.3.2, 2.1.2, and 2.3.1, we have shown that K⊥
has a unique minimum, and that this minimum is the unique solution to 2.3 that satisfies∫
Ω

(M−1v⃗) · u⃗ dA = 0 for all u⃗ satisfying 2.3. We can now prove the analogue of proposition
2.1.4.
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Proposition 2.3.3. Suppose there exists a function p that solves the following Poisson
problem:

∇ · (M∇p) = −λ on Ω

p = 0 on ΓΩ,f

(M∇p) · n̂ = 0 on ΓΩ,w

(2.9)

Then the velocity field v⃗ = −M∇p satisfies 2.2. Moreover, this v⃗ is the velocity that
minimizes K⊥ over all solutions of 2.2.

Proof. It is clear that v⃗ satisfies 2.2. Recall that v⃗ is a minimum of K⊥ if
∫
Ω

(M−1v⃗)·u⃗ dA =
0 for every vector field u⃗ satisfying 2.3. A direct computation yields:∫

Ω

(
M−1v⃗

)
· u⃗ d = −

∫
Ω

∇p · u⃗ dA

= −
∫
Ω

(∇ · (pu⃗) − p∇ · u⃗) dA

= −
∫
∂Ω

pu⃗ · n̂ ds +

∫
Ω

p∇ · u⃗ dA by the divergence theorem

= −
∫
ΓΩ,w

pu⃗ · n̂ ds−
∫
ΓΩ,f

pu⃗ · n̂ ds +

∫
Ω

p∇ · u⃗ dA

= 0

The first integral vanishes because u⃗·n̂ = 0 on walls, the second because p = 0 on free/open
boundaries, and the third because u⃗ is divergence-free.

The only remaining concern is the existence of solutions to 2.9 (and, by extension, 2.4).
We begin by computing M explicitly.

M = ((1 + Sγ) I− γQ)−1

=

[
1 + Sγ − γQ11 −γQ12

−γQ21 1 + Sγ − γQ22

]−1

=
1

det (M−1)

[
1 + Sγ − γQ22 γQ12

γQ21 1 + Sγ − γQ11

]
=

1

det (M−1)
((1 + Sγ) I + γQ)
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where

det
(
M−1

)
= (1 + Sγ − γQ11) (1 + Sγ − γQ22) − γ2Q12Q21

= (1 + Sγ − γQ11) (1 + Sγ + γQ11) − γ2Q2
12

= (1 + Sγ)2 − γ2Q2
11 − γ2Q2

12

= (1 + Sγ)2 − γ2
(
Q2

11 + Q2
12

)
= (1 + Sγ)2 − γ2S2

= 1 + 2Sγ

Note in particular that because S ∈ [0, 1] and γ is non-negative, it follows that M is
always well-defined.

Next, notice that M is symmetric and satisfies the uniform ellipticity condition [67],
i.e.:

Lemma 2.3.4. There exists a constant c > 0 s.t. for all ξ ∈ R2, Mijξiξj ≥ c(ξ21 + ξ22).

Proof.

Mijξiξj =

(
1 + Sγ

1 + 2Sγ
+

Sγ

1 + 2Sγ
cos(2θ)

)
ξ21 +

2Sγ

1 + 2Sγ
sin(2θ)ξ1ξ2

+

(
1 + Sγ

1 + 2Sγ
− Sγ

1 + 2Sγ
cos(2θ)

)
ξ22

=
1 + Sγ

1 + 2Sγ
(ξ21 + ξ22) +

Sγ

1 + 2Sγ

(
(ξ21 − ξ22) cos(2θ) + 2ξ1ξ2 sin(2θ)

)
=

1 + Sγ

1 + 2Sγ
(ξ21 + ξ22) +

Sγ

1 + 2Sγ
(ξ21 + ξ22) cos(2θ + ω)

≥ 1 + Sγ

1 + 2Sγ
(ξ21 + ξ22) +

Sγ

1 + 2Sγ
(ξ21 + ξ22)(−1)

=
1

1 + 2Sγ
(ξ21 + ξ22)

≥ 1

1 + 2γ
(ξ21 + ξ22)

The first equality follows from the definition of M, using the fact that Q = S

[
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

]
where θ is the angle of the director, q⃗.
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Thus, we can apply Theorem 2.7 from [67]. The following is a restatement of the
Theorem, simplified to match our specific problem.

Theorem 2.3.5. Consider the following boundary value problem:

−∇ · (M∇p) = f on Ω

n̂ · (M∇p) = g on Γ1

p = 0 on Γ0

where Ω ⊂ Rn is a bounded Lipschitz domain with boundary ∂Ω = Γ1∪Γ0, s.t. |Γ0| > 0, and
where M is symmetric and defines a uniformly elliptic operator. Then for all f ∈ L2(Ω) and
g ∈ L2(Γ1), the boundary value problem has a unique weak solution p ∈ {y ∈ H1(Ω) | y|Γ0 =
0}. Moreover, the following inequality holds:

||p||H1(Ω) ≤ cM
(
||f ||L2(Ω) + ||g||L2(Γ1)

)
where cM > 0 is a constant which does not depend on f or g.12

In our case, f = λ and g = 0, so every condition is satisfied except for the requirement
that Ω be a Lipschitz domain. This is not a very strong constraint, but proving that the
close-packed region remains a Lipschitz domain is beyond the scope of this thesis.

Combining Proposition 2.3.3 with equations 1.13 and 1.15, we obtain the following
system of equations:

∂tb + ∇ · (bv⃗) = λb

v⃗ =

{
−M∇p
0

on Ω
on D \ Ω

∇ · (M∇p) = −λ on Ω

p = 0 on ΓΩ,f

M∇p · n̂ = 0 on ΓΩ,w

M =
1 + Sγ

1 + 2Sγ
I +

γ

1 + 2Sγ
Q

(2.10)

Where Q evolves according to the Beris-Edwards equation:

(∂t + v⃗ · ∇)Qαβ = 2ξuαβ + ωαηQηβ −Qαηωηβ − ξtr(uQ)Qαβ + Hαβ

12We will not use this latter inequality, except to note here that it constrains the magnitude of v⃗.

39



W.l.o.g. we will rescale b and t such that bp = λ = 1.

This model is our main contribution to the literature. In particular, note that the
matrix M (which is a function of Q) appears outside the gradient in v⃗ = −M∇p. This
will allow cell orientation to have an impact on the microcolony dynamics even in the
absence of gradients in the Q-tensor.

The rest of this thesis will be devoted to studying this model.

2.3.1 Effect of γ on v⃗

Notice that the governing equations for v⃗ in 2.10 do not depend explicitly on time. If
we choose values for Q and Ω at some time t, we can solve the equations for v⃗ at that
time point. In this section, we perform one such calculation to demonstrate how the
perpendicular penalty impacts the velocity.

Consider an elliptical microcolony, Ω =
{

(x, y) ∈ R2
∣∣x2

a21
+ y2

a22
≤ 1
}

, where the cells are

aligned horizontally and where S is constant throughout the domain, i.e. Q = S

[
1 0
0 −1

]
.

We wish to solve the following Poisson problem:

∇ ·M∇p = −λ on Ω

p = 0 on ∂Ω

Note that in this case M simplifies as follows,

M =
1 + Sγ

1 + 2Sγ
I +

γ

1 + 2Sγ
Q

=
1 + Sγ

1 + 2Sγ
I +

Sγ

1 + 2Sγ

[
1 0
0 −1

]
=

[
1 0
0 1

1+2Sγ

]

The Poisson equation reduces to ∂2
xp + 1

1+2Sγ
∂2
yp = −λ, which admits the unique solu-

tion:

p = −λ

2

a21a
2
2(1 + 2Sγ)

a21 + a22(1 + 2Sγ)

(
x2

a21
+

y2

a22
− 1

)
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The corresponding velocity field is:

v⃗ = −M∇p =
λ

a21 + a22(1 + 2Sγ)

[
a22(1 + 2Sγ)x

a21y

]
(2.11)

When γ = 0 and a1 = a2, the solution corresponds to uniform radial spread. As γ → ∞,

the solution converges to

[
λx
0

]
, i.e. the velocity field aligns with the cells. In other words,

increasing γ causes new biomass to spread preferentially in the direction of the director.

We will extend this to a full analytic solution to 2.10 in Chapter 4.

2.4 Near-incompressible Formulation

We noted at the end of Section 2.1 that the uniform spread model, 2.5, could be interpreted
as the non-inertial limit of a system governed by a Cauchy momentum equation. The same
is true of the model of non-uniform spread, 2.10.

Suppose we start from a momentum equation of the form:

D(bv⃗)

Dt
= −∇p− µbM−1v⃗

As we did in Section 2.1, we drop the inertial term to obtain an equation balancing
friction against pressure: µbM−1v⃗ = −∇p. Rescaling pressure, p

µbp
→ p, yields M−1v⃗ =

− bp
b
∇p. The incompressibility constraint then recovers the equation ∇ · bp

b
M∇p = −λ,

which when b = bp is identical to the pressure equation in 2.10.

This suggests an alternative formulation of 2.10. Instead of applying the incompress-
ibility constraint, we could follow [69], [21], and [72], and posit an explicit form for p, e.g.
p = max (A (b− bp) , 0). For sufficiently large values of A, this approximates incompress-
ibility: pressure is zero unless the density exceeds the packing density, in which case it
rises rapidly.

This leads to an inertial formulation that converges to 2.10 in the non-inertial, incom-
pressible limit:

∂tb + ∇ · (bv⃗) = λb

(∂t + v⃗ · ∇)(bv⃗) = −∇p− µbM−1v⃗ (2.12)

(∂t + v⃗ · ∇)Qαβ = 2ξuαβ + ωαγQγβ −Qαγωγβ − ξtr(uQ)Qαβ + ΓHαβ
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where p = max (A (b− bp) , 0) or, slightly more generally, p =

{
A (b− bp)

k if b ≥ bp

0 if b < bp
.

Note, however, that 2.10 can also be recovered in the non-inertial, incompressible limit
if we adopt the following momentum equation:

(∂t + v⃗ · ∇)(bv⃗) = −M∇p− µbv⃗ (2.13)

Equations 2.12 and 2.13 have different physical interpretations. The term µbM−1v⃗
in Equation 2.12 can be interpreted as an anisotropic friction term that depends on cell
orientation. A term of the form M∇p on the other hand, suggests that the system has
a preferred direction along which to resolve pressure/density gradients. This seems to
us to better match our intuitive understanding of the system, namely that it is driven
by asymmetric forces of expansion produced by growth. Fortunately, both 2.12 and 2.13
behave similarly for appropriate parameter values (see Chapter 4).

In any case, 2.12 and 2.13 can be made equivalent by dropping the inertial term,
leading to the following non-inertial, near-incompressible formulation (note that µ has
been absorbed into the A in the definition of p).

∂tb + ∇ · (bv⃗) = λb

bv⃗ = −M∇p

(∂t + v⃗ · ∇)Qαβ = 2ξuαβ + ωαγQγβ −Qαγωγβ − ξtr(uQ)Qαβ + ΓHαβ

(2.14)

These formulations have certain advantages. For one, they are similar in form to the
models of [69], [21], and [72], making a direct comparison easier. Moreover, they admit
much simpler numerical implementations, as we will see in Section 3.3. On the other
hand, positing an explicit form for pressure seems to us to be a much stronger assumption
than incompressibility. And, as we will see in Chapter 4, these near-incompressible models
exhibit behaviours that deviate from those of 2.10 in unexpected ways.
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Chapter 3

Model Implementation

We outline numerical implementations for three models described thus far: the 1-dimensional
model discussed in section 2.2, the incompressible model in two dimensions (Equations
2.10). We will also outline a simple implementation of the near-incompressible approxima-
tion (Equations 2.12-2.13) to compare with the behaviour of the incompressible model.

3.1 Numerical Implementation of the 1D Model

Recall the 1-dimensional system from Section 2.2:

∂tb + ∂x(bv) = λb

v =

{
−∂xp
0

on Ω
on D \ Ω

∂2
xp = −λ on Ω

p = 0 on ΓΩ,f

∂xp = 0 on ΓΩ,w

(3.1)

D ⊂ R is the system’s domain, Ω ⊂ D is the subset of the domain where b ≥ bp, ΓΩ,w ⊂ ∂Ω
is the subset of Ω’s boundary which coincides with any walls bounding D, and ΓΩ,f =
∂Ω \ΓΩ,w is the free portion of Ω’s boundary. In what follows, we will assume D is a finite
domain, which, w.l.o.g., we can take to be D = [0, 1].
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We will simulate the model using a finite difference scheme. Let h > 0 be a scale
parameter characterizing the coarseness of the spatial discretization. Let x0 = 0 be the
leftmost point of the domain, then xi = x0 + ih. We choose h = 1/N for some positive
integer N , such that xN = 1 coincides with the rightmost point of the domain. We
approximate the functions b, v, and p using vectors bh, vh, and ph, where each component
of these vectors approximates the corresponding function’s value at a specific point in
space. E.g. bh = [b0, b1, ..., bN ], bi ≈ b(xi).

We discretize the time derivatives with the forward Euler method, where the timestep
is determined by a CFL condition1 with ∆tmax = 0.01:

∆t = min

(
∆tmax,

h

4||vh||∞

)
.

We discretize the spatial derivatives of p using a central difference scheme that we
complement with a staggered grid representation. The vectors bh = [b0, b1, ..., bN ] and
ph = [p0, p1, ..., pN ] approximate the values of b and p at integer multiples of h, whereas
the vector vh = [v1/2, v1+1/2, ..., vN−1/2] is staggered by a half step.

Concretely, we approximate v = −∂xp using vi+1/2 = −pi+1−pi

h
. We approximate ∂x(bv)

using the following discretization:

∂x(bv)(xi) ≈
b
i+1/2
u vi+1/2 − b

i−1/2
u vi−1/2

h

In the above, bu is the upwind density, b
i+1/2
u ≡

{
bi if vi+1/2 ≥ 0

bi+1 if vi+1/2 < 0
.

It only remains to discretize the equation for pressure, ∂2
xp = −λ. As discussed in

section 2.2, this equation can be solved analytically, provided we know Ω. Unfortunately,
using this pressure with the discretization discussed above does not result in a satisfactory
numerical model, because nothing in the implementation prevents bh from exceeding the
packing density, bp. In the exact model, the divergence constraint on the velocity, ∂xv = λ,
ensures that this never occurs. In the numerical implementation, however, inaccuracies
in the computation, particularly at the boundary of Ω, where ∂xv is discontinuous, cause
bh to exceed the packing density. Once this occurs, there is no mechanism to correct this
error.

1The CFL condition was first introduced by Courant Friedrichs and Lewy in [17], translated in [18].
See [19] for a modern discussion of the topic.
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There are many ways to tackle this issue. We will see alternatives in later sections, but
for the 1D case it is sufficient to relax the incompressibility condition and introduce an
elastic restoring force.

We replace the original pressure equation, ∂2
xp = −λ with the equation ∂2

xp = k
(

1 − b
bp

)
where k is a positive constant. It may not be initially clear that these two equations should
lead to qualitatively similar results, but this is indeed the case. If we rewrite the evolution
equation for density in its material derivative form, we obtain:

∂tb + ∂x(bv) = λb

∂tb + v∂xb = −b∂xv + λb

= b∂2
xp + λb

= kb

(
1 − b

bp

)
+ λb

= kb

(
1 +

λ

k
− b

bp

)

The RHS is a logistic growth term which converges to the steady state b = bp
(
1 + λ

k

)
.

When b is in steady state, we recover the incompressible pressure equation.

∂2
xp = k

(
1 −

bp
(
1 + λ

k

)
bp

)

= k

(
1 − 1 − λ

k

)
= −λ

In the limit as k → ∞, we recover the steady state b = bp in the close-packed region, and
the convergence to this steady state via the logistic term becomes instantaneous. I.e. we
recover the incompressible system.

With this modification to the pressure equation in place, we can describe our numerical
scheme.
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t = Tinitial

while t < Tfinal do
Extract Ω using the threshold bh > bp
Solvea the boundary value problem:

∂2
xp = k

(
1 − b

bp

)
on Ω

p = 0 on ΓΩ,f

∂xp = 0 on ΓΩ,w

for xi+1/2 in D do
if xi+1/2 ∈ Ω then

vi+1/2 = −pi+1−pi

h

else
vi+1/2 = 0

end if
end for
∆t = min

(
∆tmax,

h
4||vh||∞

)
for i in {0, 1, ..., N} do

bi += ∆t
(
λbi − b

i+1/2
u vi+1/2−b

i−1/2
u vi−1/2

h

)
end for
t += ∆t

end while

aWe solve this using the boundary value problem solver solve bvp from the Python library
scipy.integrate.

The results of this scheme are analyzed in Chapter 4, where we will show that the
scheme reproduces the desired behaviour, converging to the true solution at a rate linear
in h.
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3.2 Numerical Implementation of the 2D Model

Recall equations 2.10:

∂tb + ∇ · (bv⃗) = λb

(∂t + v⃗ · ∇)Q = 2ξu + ωQ−Qω − ξtr(uQ)Q + ΓH

v⃗ =

{
−M∇p
0

on Ω
on D \ Ω

∇ · (M∇p) = −λ on Ω

p = 0 on ΓΩ,f

M∇p · n̂ = 0 on ΓΩ,w

M =
1 + Sγ

1 + 2Sγ
I +

γ

1 + 2Sγ
Q

In two spatial dimensions, the close-packed region, Ω, can have irregular boundaries.
This makes the pressure equation, ∇ · (M∇p) = −λ, difficult to solve using a finite-
difference scheme. This motivates us to use finite element methods. However, we will not
seek to recast the whole problem into a finite element framework. Instead, we will use a
hybrid scheme, combining finite difference methods and finite element methods, similar to
[27]. This is primarily because the Beris-Edwards equation is highly non-linear, and does
not easily lend itself to a finite element formulation. We discuss a possible implementation
in Section 5.3.

In a typical solution to 2.10, the bacterial density, b, will have a jump discontinuity
at the boundary of Ω. Inside the close-packed region, it is equal to the packing density,
bp. Outside the close-packed region, it grows exponentially. The interface separating these
regions moves proportionally to the velocity, v⃗, and inversely proportionally to the jump
in density across the interface boundary.

In the 1-dimensional system, we were able to replicate this behaviour using a single
function to describe density and directly solving the evolution equation for density (1.13).
For the 2-dimensional system, we will adopt a different approach.

Instead of using a single vector, bh, to represent density, will directly incorporate the
piecewise nature of the solutions into our numerical scheme. We define two functions,
bout and ϕ. The first, bout, represents the density outside of the closed-packed region,
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bout(x, y, t) = bout(x, y, 0)eλt.2 The second function, ϕ, describes the boundary, Γ ≡ ∂Ω,
via its zero-level set, i.e. {(x, y) ∈ D|ϕ(x, y) = 0} = Γ. It will evolve according to ∂tϕ +
v⃗ext ·∇ϕ = 0, for some velocity, v⃗ext, to be specified later. Representing a boundary in this
way, by means of a level set, is the central tool at the core of a class of numerical schemes
called level set methods which we will briefly review in the next section.

3.2.1 Level Set Methods

Level set methods [55] are a class of numerical methods that use the level sets of scalar func-
tions to describe curves, surfaces, and their higher-dimensional analogues. They find appli-
cations in numerous fields, including image processing [56], optimization [68], and computa-
tional fluid dynamics [64]. One advantage of level set methods over direct parametrization
is the ease with which they can represent changes in a curve’s topology. This is particularly
relevant to our problem, because microcolonies can and do merge together as they grow.

When constructing the level set function, ϕ, we are only constrained by the location of
the zero-level set, so there is a lot of freedom in the choice of function. Any sufficiently
well-behaved function will do, but it is common to require that ϕ be a signed distance
function, that is, a function whose value is the shortest distance to the zero-level set and
whose sign indicates whether a point is inside (positive) or outside (negative) the close-
packed region. From this definition, it follows that signed distance functions satisfy the
eikonal equation:

|∇ϕ| = 1 (3.2)

Maintaining the signed-distance property ensures that ϕ will never be overly shallow or
overly steep. For an overly shallow function, the location of the level set will be susceptible
to small changes in magnitude (e.g. from rounding errors and other inaccuracies in the
numerics), while an overly steep function results in large gradients. Maintaining the signed-
distance property also ensures that no spurious zero-level sets are created, provided that
our velocity is also sufficiently well behaved.

Recall that ϕ evolves according to a continuity equation, which in general will not
guarantee that ϕ maintains the signed-distance property. There are two ways to ensure
that ϕ remains a signed distance function: reinitialization and velocity extension. Our
implementation will make use of both.

Reinitialization entails periodically pausing the main loop of our numerical scheme to
recalculate ϕ, updating its values while preserving the same zero levelset. We perform

2In practice, we will only consider the special case where bout(x, y, 0) = 0, which allows us to ignore the
dynamics of bout.
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reinitialization by solving the eikonal equation 3.2, coupled with the condition ϕnew(x) =
ϕold(x) for x ∈ Γ. This boundary, Γ, is on the interior of the domain, so special techniques
are required to solve the problem. There are several such techniques available, including
methods for FEM schemes, e.g. [6]. We will use the fast marching method, first proposed
by James Sethian in [63].

There is a balance to be struck here. If we reinitialize too infrequently, ϕ may become
distorted enough to introduce spurious level sets. However, we also do not wish to reinitial-
ize too often (e.g. after every time step) because (a) it would be computationally expensive
and (b) each reinitialization introduces small errors in the location of the zero-level set,
which can compound if done too frequently.

Velocity extension entails choosing a velocity field, v⃗ext, such that, when we evolve ϕ
using the continuity equation ∂tϕ+ v⃗ext ·∇ϕ = 0, the signed-distance property is preserved.
In order for the zero-level set to evolve correctly, v⃗ext must have the same value on Γ as
the velocity defined by our original system of PDEs, 2.9.3 Finding this velocity field will
require us to solve a PDE, which we derive as follows.

We seek a velocity that leaves |∇ϕ| unchanged. I.e. a velocity such that ∂t|∇ϕ| = 0,
or, equivalently, ∂t|∇ϕ|2 = 0. Expanding, we obtain:

0 = ∂t|∇ϕ|2

= ∂t(∇ϕ · ∇ϕ)

= 2∇ϕ · ∇∂tϕ

= −2∇ϕ · ∇(v⃗ext · ∇ϕ)

We only care about the evolution of the levelsets of ϕ, so we may neglect any velocity
tangent to the level set. This allows us to write v⃗ext = F∇ϕ for some scalar field, F . This
simplifies the condition above significantly.

0 = −2∇ϕ · ∇(F∇ϕ · ∇ϕ)

= −2∇ϕ · ∇(F |∇ϕ|2)
= −2∇ϕ · ∇F

Thus, if we select a velocity v⃗ext = F∇ϕ such that ∇ϕ · ∇F = 0, and such that v⃗ext
has the correct value on Γ, this will ensure that the evolution of ϕ preserves the signed-
distance property while correctly advancing the zero-level set. We will solve the equation
∇ϕ · ∇F = 0 using a variation of the fast marching method.[1]

3This process of velocity extension has another benefit: it provides a natural way to define the velocity
field outside the close-packed region.
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3.2.2 The Fast Marching Method

The fast marching method is a finite difference method used to solve problems of the
form |∇ϕ| = 1

f(x)
with ϕ(x) = 0 on some boundary x ∈ Γ.4 The method can be seen

as a multi-dimensional extension of the finite difference schemes that are used to solve
1-dimensional initial value problems, such as Euler’s method. The key difference is that
instead of advancing the solution in one dimension—forward in time from a single initial
point—it advances the solution in two (or more) dimensions, radially outward from a set
of initial points.

We will begin by describing the algorithm for velocity extension. We wish to solve the
following PDE:

∇ϕ · ∇F = 0 on D

F = F0 on Γ
(3.3)

Where F0 = bp
bp−bout

(
v⃗ · ∇φ

||∇φ||

)
is the component of v⃗ perpendicular to the level sets of

φ, rescaled to account for jump in density at the boundary, as in Section 2.2. It is this
boundary condition that causes the zero-level set of φ to coincide with the boundary of
the close-packed region.

1-dimensional systems have an important property that makes them easier to solve than
multi-dimensional systems: the underlying space is a totally ordered set. When solving an
ODE using a typical finite difference scheme, each step consists of choosing the smallest
time point for which no value has been computed, and then computing its value using the
values at previous time points. The local geometry at each step looks the same. We know
the values at times ti, ti−1, ti−2, ... and we don’t know the values at times ti+1, ti+2, ti+3, ....
This allows us to use the same finite difference operator at every iteration.

If we attempt to extend this process to two dimensions, we will need to address the
following questions at each step:

• Which value should we calculate next?

• Having chosen the next value to calculate, which finite difference operator should we
use to approximate our PDE?

Signed distance functions provide an elegant way to answer the first question: starting
from a set of initial points (i.e. the zero-level set of our signed distance function), we order

4We are only interested in the case f(x) = 1.
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all the points in our spatial discretization based on their distance to the initial points.
This gives us an easy way to choose the next value to calculate. Unfortunately, the local
geometry will not necessarily be the same for every point, so we cannot approximate ∇F
using a fixed finite difference operator. Fortunately, the signed distance function provides
a way to choose a difference operator on-the-fly.

The algorithm to solve 3.3 is as follows:

Initialization: For points (xi, yj) “on” Γ, let F (xi, yj) = F0 and add the points (xi, yj)
to the set Solved. All other points in the domain are added to the set Unsolved.

while Unsolved ̸= ∅ do
Find the point (xi, yj) ∈ Unsolved closest to Γ, i.e. that minimizes |ϕ(xi, yj)|.

Find the smallest Solved neighbour to (xi, yj) in the x direction (as measured
by ϕ) and use it to approximate ∂xF (xi, yj) and ∂xϕ(xi, yj). If (xi, yj) has no solved
neighbours in the x direction, let ∂xF (xi, yj) = 0. Written explicitly:

∂F

∂x

∣∣∣∣
(xi,yj)

≈


0 ϕ(xi+1, yj) = ϕ(xi−1, yj) = ∞
F (xi+1,yj)−F (xi,yj)

∆x
ϕ(xi+1,j) ≤ ϕ(xi−1,j)

F (xi,yj)−F (xi−1,yj)

∆x
ϕ(xi+1,j) > ϕ(xi−1,j)

Where by convention ϕ(x, y) = ∞ if (x, y) ∈ Unsolved.

Find the smallest Solved neighbour to (xi, yj) in the y direction (as measured
by ϕ) and use it to approximate ∂yF (xi, yj) and ∂yϕ(xi, yj). If (xi, yj) has no solved
neighbours in the y direction, let ∂yF (xi, yj) = 0.

Calculate F (xi, yj) by discretizing ∇ϕ·∇F = 0 using the difference operators defined
above and isolating F (xi, yj).

Remove (xi, yj) from Unsolved and add it to Solved

end while

We can improve the accuracy of this method in a number of ways, for instance by
choosing higher order finite difference operators, or by choosing more accurate initialization
methods, as in [16].
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The method outlined above requires that we already have a signed distance function
available to assist the calculation. This is sufficient for velocity extension, but not for
reinitialization, where constructing the signed distance function is the goal. As we next
show, the fast marching method does not make this assumption. Instead, it builds a
partial and approximate signed distance function, and uses it to construct the “true” signed
distance function. It does this by introducing a third set of points, TentativelySolved,
in addition to Solved and Unsolved, as follows.

Every unsolved point which neighbours a solved point is assigned a tentative ϕ value.
This creates a border between the solved region and the unsolved region. We can take
advantage of this new class of points to revisit the algorithm so that each iteration now
consists of two steps. First, we choose the point with the smallest tentative ϕ value and
move that point to the solved set. Next, we (re)calculate tentative ϕ values for all its
neighbouring points.

The fast marching algorithm for reinitialization proceeds as follows:

For points (xi, yj) “on” Γ, let ϕ(xi, yj) = 0 and add the points (xi, yj) to the set Solved.

For each point adjacent to a Solved point, use its solved neighbours to assign it a
tentative ϕ value by solving |∇ϕ| = 1. Add these points to the set TentativelySolved.

Add all remaining points to the set Unsolved.

while Unsolved ̸= ∅ do
Find the point (xi, yj) ∈ TentativelySolved closest to Γ, i.e. that minimizes

|ϕ(xi, yj)|, and move it to Solved.

For each point adjacent to (xi, yj) not in Solved, use the neighbouring Solved
values to (re)calculate tentative ϕ values and move the points to TentativelySolved
if they were previously in Unsolved

end while

In practice, it is simpler to use the above method to calculate an unsigned distance
function5 and then correct the sign. As before, the method can be made more accurate
by choosing higher order finite difference operators or by improving the accuracy of the
initialization.

5I.e. a distance function that is everywhere positive.
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3.2.3 The Poisson Problem

The velocity extension method we have described in the previous section presumes that
we know the velocity of the boundary. In this section, we describe how we calculate this
velocity.

Recall that the velocity in 2.10 is given by the following Poisson problem:

∇ · (M∇p) = −λ on Ω (3.4)

p = 0 on ΓΩ,f (3.5)

M∇p · n̂ = 0 on ΓΩ,w (3.6)

We will solve this problem using a variation of the fictitious domain finite element scheme
outlined in [45]: the Dirichlet boundary terms are implemented using Nitsche’s method
[52] with ghost penalty stabilization terms added to handle small cuts [13], and a mesh
transformation is used to map Ω to a domain defined by a piecewise linear level set function,
allowing us to simplify the numerical integration without sacrificing higher-order accuracy.
We briefly define each of these terms below.

Finite element methods [12] are a class of numerical methods that discretize the weak
formulation of PDEs. We obtain a weak formulation of the Poisson equation by multiplying
Equation 3.4 by a function, q, and applying the divergence theorem. This yields:∫

Ω

(M∇p) · ∇qdA−
∫
ΓΩ,f

q (M∇p) · n̂dS =

∫
Ω

λqdA (3.7)

Whereas the strong Poisson problem entails finding a twice-differentiable function p that
solves 3.4, the weak version of the Poisson problem entails finding a function p ∈ V such
that Equation 3.7 holds for all q ∈ V , where V is some function space which will typically
depend on the boundary conditions of the PDE (we will explain how below). For the
Poisson problem, we will take V to be some subspace6 of H1(Ω), i.e. the space of weakly
differentiable functions f on Ω such that f , ∂xf , and ∂yf are all square-integrable. Note
that p is not required to be twice-differentiable as it was in the original Poisson problem.
This is a general feature of weak formulations: they admit a larger set of potential solutions.
It is possible that a weak formulation may admit solutions that the original PDE does not.

Finite element methods discretize the weak formulation of a PDE by approximating
V with a finite-dimensional function space. This is done by decomposing the domain Ω

6It is also possible to use functions that are not within a subspace of H1(Ω), but which can approximate
functions in H1(Ω) to arbitrary accuracy. See, e.g., discontinuous Galerkin methods [22].
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into several small subdomains7, usually by triangulating the domain, and approximating
V by a set of functions, Vh, defined piecewise on these subdomains. E.g.: If V is the set
of continuous functions, we might replace V by the set of continuous functions that are
piecewise polynomial on mesh elements. The fact that Vh is a finite-dimensional vector
space means that instead of solving the weak problem for all q ∈ V , it suffices to solve
the problem for all basis functions in Vh. This amounts to solving a large system of linear
equations, i.e. inverting a matrix.

The particular problem we wish to solve involves a subdomain, Ω, embedded in a larger
domain, D. We could, in principle, restrict our attention to Ω, using a fitted finite element
scheme. This would provide us with a simple method to handle the boundary term in
equation 3.7. If we choose V = {y ∈ H1(Ω) : y|

ΓΩ,f
= 0}, the boundary term vanishes and

the Dirichlet boundary conditions are satisfied automatically.

However, because Ω changes over time, this would require us to construct a new tri-
angulation of Ω at every time step. This would be both computationally expensive and
would require a not-inconsiderable amount of coding to define the geometry.8 Instead, we
use an unfitted approach. We construct a single triangulation of D, and solve a modified
version of the Poisson problem on a subset Ωe ⊂ D. Note that a typical subdomain Ω
will partially overlap certain mesh elements. Therefore, instead of solving the problem on
Ω directly, we choose an extended subdomain Ω ⊂ Ωe such that Ωe is composed of whole
elements. The goal is to find a function pe on Ωe such that p = pe on Ω. This approach
(solving a related problem on an extended domain Ωe that restricts to the correct solution
on Ω) is known as a fictitious domain method.

The fictitious domain method allows us to reuse the mesh throughout the dynamics.
Unfortunately, because the boundary ∂Ω lies inside the domain Ωe, we can no longer
enforce the boundary conditions by choosing a suitable function space. Instead, we employ
Nitsche’s method [52]. We modify Equation 3.7, and solve the related problem:∫

Ωe

(M∇p) · ∇qdA−
∫
ΓΩ,f

qn̂ · (M∇p) + pn̂ · (M∇q) + γNpq dS =

∫
Ωe

λqdA (3.8)

Comparing with Equation 3.7, two terms have been added: the term pn̂·(M∇q) ensures
that the bilinear form defined by the LHS symmetric, while the γNpq term guarantees that
it is coercive provided γN is large enough.9 If we can also show that the bilinear form

7These subdomains are the “elements” from which the method gets its name.
8Finite element software typically includes easy-to-use tools to create simple domains like circles, rect-

angles, etc. but irregular domains must be custom-built.
9Choosing a suitable value for γN requires some care. We refer readers to [20].
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is bounded, this is enough to apply the Lax–Milgram theorem and guarantee a unique
solution.10. We may think of the constant γN as a penalty parameter. The intuition is
this: if γN is large, and because q is arbitrary, we require p to be small at the boundary to
ensure that the γNpq term does not dominate.

The method we have described thus far will often produce adequate solutions, but it
can occasionally fail. In particular, if the domain Ω has a very small overlap with one of
the elements in Ωe, the matrix we obtain by discretizing 3.8 can have a large condition
number. To counteract this, we add a ghost penalty stabilization term to the LHS, as
described by [58]. These terms take the form∑

T1∩T2 ̸=∅

γg

∫
T1∪T2

h−2[[p]][[q]]dA

where the Ti are defined as follows. Let Finner be the set of elements strictly contained in
Ω, and let Fbdry the set of elements in Ωe \ Finner (i.e. the set of elements intersected by
∂Ω). We sum and integrate over all (adjacent) pairs T1 ∈ Finner, T2 ∈ Fbdry. [[f ]] denotes
the jump operator obtained by extending the piecewise polynomial components of f to
neighbouring facets and taking the difference between the two, i.e. if fi is a polynomial
(defined on all of D) such that fi = f |Ti

, then [[f ]] = f1 − f2.

Intuitively, the effect of the ghost penalty term is to ensure that the part of the solution
defined on the extended domain (i.e. inside Ωe but outside Ω), is a smooth continuation of
the solution defined on the interior of Ω. I.e. it prevents us from solving the problem by
introducing large deviations in parts of the domain that we ultimately don’t care about.

Finally, we note that the boundary integrals in 3.8 are, in general, defined on curves.
There are not, to our knowledge, any off-the-shelf FEM tools capable of calculating such
integrals. However, ngsolve [61], and in particular, the XFEM addon, ngsxfem [46], pro-
vides a way to approximate these integrals using integrals defined on a piecewise linear
boundary (which is much easier to integrate). It does this by applying a mesh deformation
that curves the piecewise linear boundary into a curved boundary that approximates ∂Ω.
We refer the reader to [44].

3.2.4 2D algorithm

We can now outline the basic 2D scheme to solve 2.10:

10This is a standard technique in the theory of PDEs. See, e.g., [12]
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t = Tinitial

while t < Tfinal do
Convert the finite difference representations of ϕ, Q11, and Q12 to FEM representa-

tions.a

Use the FEM representations of ϕ to partition the FEM domain into sections.
Solveb the boundary value problem:

∇ · (M∇p) = −λ on Ω

p = 0 on ∂Ω

Use p to calculate finite difference representations of v⃗, u and ωωω.

Let ∆t = min
(

∆tmax,
h

4||vh||∞

)
Use a linear upwind differencing scheme to calculate the transport terms for ϕ, Q11,

and Q12.
Advance the transport equation for ϕ and the Beris-Edwards equations for Q11 and

Q12 using a forward Euler scheme.
t += ∆t

end while

aWe use the VoxelCoefficient class from ngsolve [61].
bWe solve this using the ngsolve [61] with the ngsxfem add-on [46], using the scheme described in

3.2.3

3.3 Near-incompressible Model

Recall the near-incompressible model(s), i.e. equations 2.12, 2.13, and 2.14. We will
outline a simple numerical implementation of the following system. The other variations
are treated similarly.

∂tb + ∇ · (bv⃗) = λb

(∂t + v⃗ · ∇)(bv⃗) = −M∇p− µbv⃗

(∂t + v⃗ · ∇)Qαβ = 2ξuαβ + ωαγQγβ −Qαγωγβ − ξtr(uQ)Qαβ + ΓHαβ

where p =

{
A (b− bp)

k if b ≥ bp

0 if b < bp
.

Unlike the incompressible system, this system can be implemented using only elemen-
tary finite difference methods. One could devise a more sophisticated scheme, but as our
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goal is merely to compare/contrast these near-incompressible models to model 2.10, the
following will suffice. We use the forward Euler method to discretize the time derivatives,
and the central difference method to discretize most spatial derivatives. The only exception
to this are the transport terms in the momentum and Beris-Edwards equations, which we
treat using a linear upwind differencing scheme.

For ease of implementation, we treat momentum, bv⃗, as a single variable, rather than
the velocity, v⃗. When the velocity is needed (e.g. for the advection terms), we compute
v⃗ = bv⃗/b, except when b is small (10% of bp), in which case we set v⃗ to zero. We also add a
small diffusion term to the evolution equation for density, which is required for numerical
stability.

The only unusual feature of our discretization are the boundary conditions. The no-
flux boundary conditions on the walls are treated in the standard way, but the absorbing
boundary conditions on the open face(s) require more care. We apply staggered boundary
conditions. Each open boundary is padded with an extra region. At the “true” boundary,
we treat diffusion terms as if there was a wall present, but we allow the advection terms
to extend beyond the true domain into the extended region. At the end of each time step,
we manually set the values of b, bv⃗, and Q to be zero in the padded region.

Define coordinates for the extended domain, Dext = D ∪ Padd, where Padd is a set of
thin regions that extend the original domain beyond the open boundaries.
Initialize b, bv⃗, and Q
t = Tinitial

while t < Tfinal do
Calculate v⃗ = bv⃗/max(b, 0.1)

Calculate ∆t = min
(

∆tmax,
h

4||vh||∞

)
Calculate ∇ · (bv⃗), ∇p, u, and ωωω on the extended domain, Dext using central differ-

ence operators, applying no-flux boundary conditions on all boundaries. Calculate ∆b
and ∆Qαβ using central difference operators on the true domain, D, applying reflecting
boundary conditions to all boundaries.

Calculate v⃗ · ∇(bv⃗) and v⃗ · ∇Q using linear upwind differencing.
Update b, bv⃗, and Q using a forward Euler scheme.
Set b, bv⃗, and Q to zero in Padd.
t += ∆t

end while

Having described numerical implementations for each of the models we have proposed
in this thesis, we are now adequately equipped to investigate their behaviour.
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Chapter 4

Model Behaviour

In this section, we discuss the behaviour of the models we developed in Chapter 2. We first
examine exact solutions, expanding on the observations about moving boundaries made
in Section 2.2 and the effects of γ in Section 2.3.1, and use these to verify the numerical
implementation(s) proposed in Chapter 3. Finally, we will use the numerical models to
explore more complex scenarios where exact solutions are lacking. We find that the model
exhibits several of the phenomena observed in real microcolonies: spontaneous organization
in confined domains, fingering at the boundary, and defect generation.

4.1 1D Dynamics

We begin with an examination of the 1-dimensional incompressible system (i.e. equations
3.1). The dynamics of this model are significantly less rich than its 2-dimensional coun-
terpart, in large part due to the absence of directional dependence. Nevertheless, it can
illustrate one of the key features of our system: cell motion caused by the combination of
growth and incompressibility.

We saw in Section 2.2 that we could find exact solutions to the 1D incompressible
growth system. In general, the domain splits into intervals where the density is either fully
packed (b(x, t) = bp) or growing exponentially (b(x, t) = b(x, 0)eλt). The boundary points
of these intervals obey differential equations of the form

x′
i(t) =

bp
bp − b(x±

i )
v(x∓

i )
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where v(x∓
i ) is the velocity at the boundary of the packed interval, and the denominator,

bp − b(x±
i ), is the density jump at xi.

In particular, we saw that for domain D = [0, L] with a wall at x = 0, an open boundary
at x = L, and bp = 1, given the initial condition

b(x, 0) =

{
1 if x ∈ [0, xb(0)]

0.1 if x ∈ (xb(0), L]

the following solution holds:

b(x, t) =

{
1 if x ∈ [0, xb(t)]

0.1et if x ∈ (xb(t), L]

p(x, t) =

{
−λ

2
x2 if x ∈ [0, xb(t)]

0 if x ∈ (xb(t), L]

v(x, t) =

{
λx if x ∈ [0, xb(t)]

0 if x ∈ (xb(t), L]

xb(t) = xb(0)
9et

10 − et

The top plot in Figure 4.1 shows the numerical solution of the above problem, calculated
using the scheme from Section 3.1, plotted against the exact solution. The bottom plot
of the same figure illustrates the squared difference between the exact and the computed
solution. Table 4.1 compiles the average errors over the duration of the simulation for each
of the three regions of the domain: the close-packed region, the non-packed region, and
the boundary between the two. We define the boundary region to be the interval

[min (xb(t), xb,approx(t)) − 5∆x,max (xb(t), xb,approx(t)) + ∆x]

where xb,approx(t) is the location of the boundary in the simulation.

All regions display the same linear rate of convergence. Notice, however, that in the
close-packed region, the error does not drop significantly between n = 1000 and n = 2000.
This is because our numerical implementation depends on a second parameter that acts as a
bottleneck to further convergence. Recall that in the numerical implementation described
in Section 2.2, we modified the pressure equation by introduced a restoring force that
depended on a parameter k. As a result, the density in the close-packed region converges
to bp(1 + λk), and not to bp as in the exact model. The errors in Table 4.1 were obtained
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using k = 50. In order to achieve further accuracy in the close-packed region, we must
increase k.

Of the three regions, the boundary is the largest source of error. This highlights the
need to treat it with special care. In the following sections, we will turn our attention to
the 2-dimensional system. In our numerical implementation of this system, the density
in the close-packed region is equal to bp by definition (in contrast to the 1-dimensional
implementation where the density in the close-packed region is computed). In addition,
we will restrict our attention to cases where the density outside the close-packed region is
zero. Therefore, the only sources of error we will consider are the location of the boundary,
∂Ω, and the value of the Q-tensor.
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Figure 4.1: (a) Computed vs exact solution for n = 500, k = 50, t = 1.1. (b) Squared
difference in the exact and computed solutions in figure (a) colour coded by region: close-
packed region (blue), the boundary region (orange), and the non-packed region (green).
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n L2 error in packed region L2 error in boundary re-
gion

L2 error in non-packed
region

250 1.4108e-4 ± 2.0125e-4 2.6996e-3 ± 1.6427e-3 2.6517e-5 ± 2.9166e-5
500 4.9053e-5 ± 5.5621e-5 1.2886e-4 ± 7.6738e-4 1.0740e-5 ± 8.7385e-6
1000 2.7828e-5 ± 6.3282e-6 5.8669e-4 ± 2.9562e-4 3.4076e-6 ± 2.0065e-6
2000 2.0998e-5 ± 6.2681e-6 2.4908e-4 ± 8.9798e-5 1.1774e-6 ± 6.9986e-7

Table 4.1: L2 errors between the computed and exact solution in each of the three solution
regions. Errors were averaged over time for a simulation lasting from t = 0 until either
xb(t) or xb,approx(t) leaves the domain, t ≈ 1.5. Errors bars represent the corresponding
standard deviation.

4.2 2D Validation

Before looking at the dynamics of the full 2-dimensional model, we should verify that
our implementation is working as intended, beginning with the pressure calculation, as
described in Section 3.2.3, and moving on to some simple cases where we can describe the
dynamics of the full system exactly.

4.2.1 2D Velocity Calculation

We begin by isolating the velocity calculation from the rest of the model dynamics. The
method we outlined in Section 3.2.3 differs from [45] by the presence of the matrix M, so
we should verify that this does not invalidate the method.

Recall from Section 2.3.1, that when cells are uniformly aligned horizontally (i.e. when

Q = S

[
1 0
0 −1

]
for some constant value of S), the Poisson problem

∇ ·M∇p = −λ on Ω

p = 0 on ∂Ω

Ω =

{
(x, y) ∈ R2

∣∣∣∣x2

a2
+

y2

b2
≤ 1

}
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admits the solution p = −λ
2

a2b2(1+2Sγ)
a2+b2(1+2Sγ)

(
x2

a2
+ y2

b2
− 1
)

. The corresponding velocity field is:

v⃗ =
λ

a2 + b2(1 + 2Sγ)

[
b2(1 + 2Sγ)x

a2y

]

Figure 4.2 shows the computed values for p (panel a) and v⃗ (panel b), calculated on
a circular domain (i.e. a = b in the above) using the method presented in Section 3.2.3.
Figure 4.3 illustrates the L2 error in the computed value of p as a function of the mesh res-
olution. All calculations were performed using continuous, piecewise quadratic functions.
We see from Figure 4.3 that the method displays the same rate of convergence regardless
of the value of γ1, providing evidence that our extension of [45] is sound.

(a) (b)

Figure 4.2: Computed values for (a) p and (b) v⃗ for a circular microcolony of horizon-
tally aligned cells. Model parameters are γ = λ = 1. Note that v⃗ is plotted on the
extended/fictitious domain.

1Recall that M = 1+Sγ
1+2Sγ I +

γ
1+2SγQ, so γ controls the degree to which M deviates from the identity

matrix. In effect, γ measures how much our implementation deviates from the original scheme proposed
in [45].

63



Figure 4.3: L2 difference between the exact solution and the numerical solution for circle of
radius 1 with λ = 1. The x-axis, max h, represents the maximal element size. We observe
the same O(h3) convergence reported in [45].

4.2.2 Elliptical Solutions

The results from the previous section only concern the calculation of the velocity field at
a single time point. In order to confirm that the full implementation works as expected,
we need a solution to the full system, i.e. Equations 2.10. To this end, we will extend the
velocity profile from Section 2.3.1.
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Proposition 4.2.1. The following

b(x, y, t) =

{
bp (x, y) ∈ Ω

0 otherwise

v⃗ =
λ

a21 + a22(1 + 2Sγ)

[
a22(1 + 2Sγ)x

a21y

]
Q(t, x, y) = S(t)

[
1 0
0 −1

]
Ω(t) =

{
(x, y) ∈ R2

∣∣∣∣ x2

a1(t)2
+

y2

a2(t)2
≤ 1

}
is a solution to Equations 2.10, provided that S(t), a1(t), and a2(t) satisfy the following
system of differential equations:

S ′ = ξλ
a22(1 + 2Sγ) − a21
a22(1 + 2Sγ) + a21

(1 − S2) + A0bp(S
2
eq − S2)S (4.1)

a′1 = λ
a1a

2
2(1 + 2Sγ)

a21 + a22(1 + 2Sγ)
(4.2)

a′2 = λ
a21a2

a21 + a22(1 + 2Sγ)
(4.3)

Proof. It is easy to verify that the first two equations, for b and v⃗, satisfy 2.10 for Q and Ω
stated above, so we need only check that Q satisfies the Beris-Edwards Equation 1.8 and
that the evolution of Ω is compatible with the velocity field v⃗. We begin with Q. Recall
the Beris-Edwards equation:

∂tQ = −v⃗ · ∇Q + 2ξu + ωQ−Qω − ξtr(uQ)Q + A0bp(S
2
eq − S2)Q + K∆Q
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We calculate u, ω, and tr(uQ).

u =

[
λ
2

a22(1+2Sγ)−a21
a22(1+2Sγ)+a21

0

0 λ
2

a21−a22(1+2Sγ)

a21+a22(1+2Sγ)

]

ω =

[
0 0
0 0

]

tr(uQ) = (u11 − u22)Q11 + 2u12Q12

= λ
a22(1 + 2Sγ) − a21
a22(1 + 2Sγ) + a21

S

Substituting the above into the RHS of the Beris-Edwards equation, along with Q =

S(t)

[
1 0
0 −1

]
, we obtain:

RHS = −v⃗ · ∇Q + 2ξu + ωQ−Qω − ξtr(uQ)Q + A0bp(S
2
eq − S2)Q + K∆Q

= 0 + ξλ
a22(1 + 2Sγ) − a21
a22(1 + 2Sγ) + a21

[
1 0
0 −1

]
+ 0 − 0

− ξλ
a22(1 + 2Sγ) − a21
a22(1 + 2Sγ) + a21

S2

[
1 0
0 −1

]
+ A0bp(S

2
eq − S2)S

[
1 0
0 −1

]
+ 0

=

(
ξλ

a22(1 + 2Sγ) − a21
a22(1 + 2Sγ) + a21

(1 − S2) + A0bp(S
2
eq − S2)S

)[
1 0
0 −1

]
Substituting into the LHS of the Beris-Edwards equation yields

LHS = S ′(t)

[
1 0
0 −1

]

Thus, Q = S(t)

[
1 0
0 −1

]
is a solution to the Beris-Edwards equation compatible with

v⃗, provided that S evolves according to 4.1.

It remains to be shown that the evolving elliptical domain is also compatible with v⃗.
Suppose a1(t) and a2(t) are, for now, arbitrary functions of time, and consider the path
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of a point (x(t), y(t)) ∈ R2 subject to a velocity field of the form 2.11. In other words,
suppose x(t) and y(t) satisfy

x′(t) = λ
a22(1 + 2Sγ)

a21 + a22(1 + 2Sγ)
x

y′(t) = λ
a21

a21 + a22(1 + 2Sγ)
y

By separation of variables, we find

x(t) = x(0)e
λ
∫ t
0

a22(1+2Sγ)

a21+a22(1+2Sγ)
dτ

y(t) = y(0)e
λ
∫ t
0

a21
a21+a22(1+2Sγ)

dτ

Or, written in matrix form:

[
x(t)
y(t)

]
=

eλ
∫ t
0

a22(1+2Sγ)

a21+a22(1+2Sγ)
dτ

0

0 e
λ
∫ t
0

a21
a21+a22(1+2Sγ)

dτ

[x(0)
y(0)

]

This linear transformation corresponds to a rescaling of the x and y axes. Applying this
linear transformation to an ellipse of the form x2

A2 + y2

B2 = 1 will yield a new ellipse given
by:

x2(
Ae

λ
∫ t
0

a22(1+2Sγ)

a21+a22(1+2Sγ)
dτ

)2 +
y2(

Be
λ
∫ t
0

a21
a21+a22(1+2Sγ)

dτ

)2 = 1 (4.4)

We showed in Section 2.3.1 that an elliptical domain filled with horizontal cells will
induce a velocity field of the form 2.11, and we have just shown that a velocity field of the
form 2.11 will leave horizontal cells horizontal and elliptical domains elliptical. However,
if we want a valid solution to equations 2.10, we require that Ω and v⃗ be self-consistent.
I.e. we require that the denominators in equation 4.4 correspond to the as yet unspecified
functions a1(t) and a2(t) in v⃗.

In this case we find that a1(t) = a1(0)e
λ
∫ t
0

a22(1+2Sγ)

a21+a22(1+2Sγ)
dτ

and a2(t) = a2(0)e
λ
∫ t
0

a21
a21+a22(1+2Sγ)

dτ
.

Differentiating the equations, we recover equations 4.2 and 4.3, as desired.
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Equations 4.1-4.3 admit a particularly simple solution in the case where the ellipse
maintains a fixed eccentricity. Differentiating a1/a2, we obtain:(

a1
a2

)′

=
a′1a2 − a′2a1

a22

=
λ

a1a22(1+2Sγ)

a21+a22(1+2Sγ)
a2 − λ

a21a2
a21+a22(1+2Sγ)

a1

a22

= λ
a1
a2

a22(1 + 2Sγ) − a21
a22(1 + 2Sγ) + a21

Thus, the eccentricity is constant if a1
a2

=
√

1 + 2Sγ. The RHS of this equation is constant

if and only if S is constant. However, when a1 = a2
√

1 + 2Sγ, equation 4.1 simplifies to
S ′ = A0bp(S

2
eq − S2)S. Therefore, fixed eccentricity solutions will also satisfy either S = 0

(the trivial, circular solution), S = Seq, or A0 = 0.

Notice also that a1 and a2 will, in general, satisfy the following:

(ln(a1a2))
′ =

a′1
a1

+
a′2
a2

= λ
a22(1 + 2Sγ)

a21 + a22(1 + 2Sγ)
+ λ

a21
a21 + a22(1 + 2Sγ)

= λ

Solving this ODE yields a1(t)a2(t) = a1(0)a2(0)eλt. Combining this identity with the
constant eccentricity conditions derived above, we arrive at exact solutions for a1 and a2.

a1(t) = a1(0)e
λ
2
t

a2(t) = a2(0)e
λ
2
t

For the above to be valid we require that the initial condition satisfies a1(0) = a2(0)
√

1 + 2γS.

Figure 4.4a shows simulation results for the evolution of the elliptical solution using
the numerical method outlined in Section 3.2.4. Figure 4.4b shows the values of a1(t),
a2(t), and S(t) extracted from the simulated elliptical solution, plotted against the values
predicted by equations 4.1-4.3.

Table 4.2 shows the error between the exact and computed solution as a function of
the resolution of the finite difference mesh. The rate of convergence is not clear, though
the error in a1 suggests an approximately linear trend for that component. Curiously,
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the error in a2 increases from n = 200 to n = 400. This may be due to more frequent
reinitialization. As in the 1-dimensional case, the analysis is complicated by the presence of
other parameters that can influence the accuracy of the simulation, including the resolution
of the finite element mesh (max h in figure 4.3) and the frequency of level set reinitialization.

(a) (b)

Figure 4.4: (a) General elliptical solution, sampled at intervals of approximately ∆t = 0.25.
Simulation parameters are γ = 4, ξ = 0.5, A0 = 1, Seq = 0.9, bp = 1, and K = 0.001. (b)
a1(t), a2(t), and S(t) in the general case plotted against the values predicted by equations
4.1-4.3. The simulated value of S was measured in the center of the domain.

n Error in a1(0.25) Error in a2(0.25) Error in S(0.25)

100x100 2.0237e-3 3.8488e-4 8.1018e-4
200x200 1.1571e-3 2.1303e-4 4.3664e-4
400x400 2.7887e-4 2.7990e-4 3.9149e-5

n Error in a1(0.5) Error in a2(0.5) Error in S(0.5)

100x100 4.8483e-3 1.1456e-3 1.6076e-3
200x200 2.8167e-3 6.3920e-4 6.5378e-4
400x400 1.3920e-3 6.4778e-4 7.1634e-5

Table 4.2: The values of a1(t), a2(t), and S(t) were extracted from a simulation of the
elliptical solution. This table presents the magnitude of the difference between these ex-
tracted values and the exact solution obtained by solving equations 4.1-4.3.
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These checks provide some confidence that our numerical implementation is sound. All
the basic features—the evolution of the boundary, the dynamics of Q, and the coupling
of velocity to the Q-tensor—behave as expected. The only significant blind spot in our
analysis regards inhomogeneities in the Q-tensor. We have only considered spatially homo-
geneous solutions. Unfortunately, we have no exact solutions in the inhomogeneous case,
so this marks the end of our model validation.

4.3 2D Dynamics

While real microcolonies often display local order, they are seldom globally homogeneous.
In this section, we investigate the evolution of inhomogeneous solutions to 2.10.

4.3.1 Spontaneous Alignment in Semi-confined Domains

Experiments show that rod-shaped bacteria grown in semi-confined environments exhibit
spontaneous global alignment, tending towards a uniform steady-state [69][15]. Volfson et
al. [69] were able to replicate this behaviour with their 1-dimensional model. Our model
also replicates this behaviour, as we will show in this section.

We begin by considering the case γ = 0. In this case, we can obtain an analytic
description of the solution of 2.10 in rectangular domains, as we will now show.2

Proposition 4.3.1. Let D = [0, L] × [0, 1] be a domain of length L with walls at x = 0,
y = 0, and y = 1, and an open boundary at x = L. Suppose γ = 0 (i.e. M = I), and
suppose the domain is fully packed (i.e. Ω = D).

In the absence of thermodynamic terms (i.e. A0 = K = 0), the uniformly horizontal

steady state Q =

[
1 0
0 −1

]
is globally asymptotically stable.

Proof. In this case, v⃗ = [λx, 0]T, from which it follows that

u =

(
λ
2

0
0 −λ

2

)
2We can also interpret these results as descriptions of the local behaviour of solutions in parts of the

domain where the vorticity is small. When ω ≈ 0, cells will tend to align with the flow.
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ω =

(
0 0
0 0

)
and therefore the Beris-Edwards equations simplify to the following.

∂tQ11 + λx∂xQ11 = ξλ(1 −Q2
11)

∂tQ12 + λx∂xQ12 = −ξλQ11Q12

Along streamlines, the Q11 equation ensures that Q11 will tend towards 1 at a rate
determined by ξλ. Once Q11 enters the positive range, the Q12 equation then causes Q12

to exponentially decay at a rate of ξλQ11. (This rate tends towards ξλ as Q11 tends to 1.)
Thus, the system converges towards the uniformly horizontal steady state.

If we add the thermodynamic terms but set the elastic/diffusion terms to zero (K = 0),
the qualitative behaviour is similar, but the steady state value of S is different.

Proposition 4.3.2. Let D = [0, L] × [0, 1] be a domain of length L with walls at x = 0,
y = 0, and y = 1, and an open boundary at x = L. Suppose γ = 0 (i.e. M = I), and
suppose the domain is fully packed (i.e. Ω = D).

If K = 0, the uniformly horizontal steady state Q = Sss

[
1 0
0 −1

]
is the unique locally

stable steady state, for some constant Seq ≤ Sss ≤ 1.

Proof. As before, v⃗ = [λx, 0]T. In this case, the Beris-Edwards equations read:

∂tQ11 + λx∂xQ11 = ξλ(1 −Q2
11) + A0bp(S

2
eq − S2)Q11

∂tQ12 + λx∂xQ12 = −ξλQ11Q12 + A0bp(S
2
eq − S2)Q12

Relabelling A0bp = A and expanding S2 = Q2
11 + Q2

12, we obtain:

∂tQ11 + λx∂xQ11 = ξλ(1 −Q2
11) + A(S2

eq −Q2
11 −Q2

12)Q11

= ξλ +
(
A(S2

eq −Q2
11 −Q2

12) − ξλQ11

)
Q11

∂tQ12 + λx∂xQ12 = −ξλQ11Q12 + A(S2
eq −Q2

11 −Q2
12)Q12

=
(
A(S2

eq −Q2
11 −Q2

12) − ξλQ11

)
Q12
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For clarity, let f(Q) = A(S2
eq − Q2

11 − Q2
12) − ξλQ11. We rewrite the system above as

follows.

∂tQ11 + λx∂xQ11 = ξλ + f(Q)Q11 (4.5)

∂tQ12 + λx∂xQ12 = f(Q)Q12 (4.6)

Again, we look for steady-state solutions following the flow. We see from equation 4.5
that there are no steady state solutions when f(Q) = 0. Thus, from equation 4.6, the
steady-state solutions require that Q12 = 0, i.e. the cells are aligned horizontally.

We could also write equation 4.5 as ∂tQ11 + λx∂xQ11 = g(Q11) − AQ2
12Q11 where

g(x) = ξλ + AS2
eqx − ξλx2 − Ax3. Therefore, finding the steady state Q11 value amounts

to finding the root(s) of g.

We see that g(0) = ξλ > 0 and g(1) = −A(1 − S2
eq). Because 1 > Seq by definition, it

follows that g has at least one root in the interval (0, 1). Moreover, by Descartes’ rule of
signs, this is the only positive root (call it Sss).

We can narrow the location of this root even further. Note that

g(Seq) = ξλ + AS3
eq − ξλS2

eq − AS3
eq

= ξλ(1 − S2
eq)

> 0

so the root of g is between Seq and 1.

The polynomial g may also have negative roots. However, as we will now show, these
(nonphysical) solutions are unstable.

The Jacobian matrix associated to equations 4.5 and 4.6 is[
g′(Q11) − AQ2

12 −2AQ11Q12

Q12
∂f(Q)
∂Q12

g(Q11)−ξλ
Q11

− 3AQ2
12

]
In each of the three possible steady states, Q12 = 0, so the matrix simplifies to[

g′(Q11) 0

0 g(Q11)−ξλ
Q11

]
The fact that Q11 = Sss yields the only locally stable steady state follows from the

properties of g: negative roots of g satisfy g(Q11)−ξλ
Q11

= − ξλ
Q11

> 0.

Therefore, there is exactly one steady-state solution that is locally stable, namely

(Q11, Q12) = (Sss, 0), or, written as a matrix, Q = Sss

[
1 0
0 −1

]
.
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We lack exact solutions when γ ̸= 0, but we can investigate the behaviour of the
system numerically. The system still converges to the uniformly horizontal steady state
(see Figures 4.7b and 4.7c), but the transient behaviour of the system differs depending on
the size of the coupling strength, γ. Figures 4.6a, 4.6b, and 4.6c demonstrate the behaviour
of the model in this transient stage. The coupling of the flow to the Q-tensor has the effect
of splitting the domain into patches of local order.

Figure 4.5: Random initial conditions for figures 4.6a-4.7c. This was generated by selecting
random values for Q11 and Q12 everywhere in the domain and then smoothing. The colour
represents the angle of the director.
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(a) γ = 0 (b) γ = 0.5 (c) γ = 2

Figure 4.6: Simulation results with ξ = 0.5, λ = bp = 1, K = 0.001, A0 = 0, and γ = 0, 0.5,
and 2 at t = 0.2. The colour represents the angle of the director. When γ = 0, the dynamics
are dominated by a combination of diffusion and the convergence described in propositions
4.3.1 and 4.3.2. As γ increases, the domain splits into two types of region: a large region of
horizontally aligned cells with coherent flow (red in the images) and several small islands
of cells aligned perpendicularly to the flow (teal in the images). The typical length scale
of the inhomogeneities decreases as γ increases.

(a) γ = 0 (b) γ = 0.5 (c) γ = 2

Figure 4.7: Continuation of the simulation results in Figure 4.6 to t = 1. In all cases, the
long-term behaviour of the simulation is the same: all inhomogeneities are either ejected
from the domain by the flow or smoothed out by the effects of diffusion and shear alignment.

We may use the number of topological defects as a proxy for the number of regions
observed in the images above. Defects are counted using the charge density (see Section
1.2.4). Peaks in the charge density correspond to topological defects. As we see in figure
4.8, increasing γ causes a corresponding increase in the number of topological defects.
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Figure 4.8: Number of defects as a function of time for microcolonies growing in a square
domain, as in Figure 4.6. As γ increases, the typical length scale of the spatial inho-
mogeneities in Q decreases. This correlates with a rise in the corresponding number of
topological defects.

This observation complements the findings of [72], who observed that the scale of the
spatial patterning in their model could be controlled by the strength of the diffusive forces
(specifically, the magnitude of K). In our model, we see an analogous behaviour, this time
arising from the advective forces.

4.3.2 Inhomogeneous Solutions and Defect Formation

The two special cases treated thus far—expanding microcolonies of uniformly ordered cells
and fully packed domains of disordered cells—exhibit relatively simple behaviour. The
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more general case of an expanding microcolony with mixed cell orientations has much
more complex behaviour, and we lack analytical solutions. We can, however, make some
empirical observations.

The first observation relates to the smoothness of the boundary. Figure 4.9 shows the
evolution of an expanding microcolony (using initial conditions as in 4.5) for different val-
ues of γ. As γ increases, the boundary grows increasingly asymmetric. This observation
complements previous work done on fingering instabilities. In the work on nutrient limited
growth we discussed in Chapter 1 ([42][27][38][33]), the inhomogeneities at the bound-
ary was driven gradients in the nutrient field. Here, we have provided a purely physical
mechanism that could lead to similar behaviour even when nutrient is plentiful.

(a) γ = 0.5 (b) γ = 2 (c) γ = 4

Figure 4.9: The contour plots (a)-(c) represent the boundary of a growing microcolony
sampled at increments of ∆t ≈ 0.25, with ξ = 0.5, λ = 1, bp = 1, Seq = 0.9, A0 = 1,
and K = 0.001. Initial conditions are as in figure 4.5. As the parameter γ increases, the
microcolony boundary becomes increasingly irregular.

The second observation relates to defect formation. In contrast to previous models
where defect generation was primarily a bulk phenomenon (e.g. as in [21]), defects in our
model are generated at the boundary of the colony. In particular, our simulations suggest
that they form at local minima in the signed curvature of ∂Ω, and their ability to persist
is greatly influenced by the magnitude of S.
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(a) A0 = 0 (b) A0 = 1

Figure 4.10: Snapshots of two simulations starting from identical initial conditions (Q as
in figure 4.5, starting with a circular microcolony). The colour represents the angle of the
director. Model parameters are ξ = 0.5, γ = 2, λ = bp = 1, Seq = 0.9, and K = 0.001. In
(a), A0 = 0, and there is persistent defect formation at the boundary, causing boundary
irregularities. In (b), A0 = 1. The corresponding thermodynamic effects increase S (not
shown), which appears to suppress the ability of new defects to persist once formed.

4.4 Near-incompressible Model

We conclude this chapter with an examination of the near-incompressible models we pro-
posed in Section 2.4, specifically equations 2.12 and 2.13, which we reproduce below:

(∂t + v⃗ · ∇)(bv⃗) = −∇p− µbM−1v⃗ (2.12)

(∂t + v⃗ · ∇)(bv⃗) = −M∇p− µbv⃗ (2.13)

where p =

{
A (b− bp)

k if b ≥ bp

0 if b < bp
.

Unless otherwise stated, all simulations in this section use the following parameter
values: λ = 0.2, µ = 25, γ = 2, ξ = 0.5, bp = 1, A = 5, k = 3, A0 = 0, K = 0.001, and
Db = 0.001 where Db is the diffusion rate of b (recall that we added a small diffusion term
to the continuity equation for density to improve the stability of the numerics).
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As we see in Figure 4.11, equations 2.12 and 2.13 yield near-identical results on elliptical
solutions.

(a) Elliptical contours obtained using 2.12 (b) Elliptical contours obtained using 2.13

Figure 4.11: b = 1 contours for simulations of 2.12 and 2.13, starting from uniformly
horizontal initial conditions (Q11 = 0.75, Q12 = 0), sampled at intervals of ∆t = 1.5.
Results are indistinguishable to the naked eye.

At first glance, both methods appear to reproduce the correct qualitative behaviour.
However, further investigation reveals that when S is small, cells near the boundary will
reorient themselves to lie tangent to the boundary (see Figure 4.12). We do not observe
this behaviour in 2.10.
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(a) S = 0.25 (b) S = 0.5 (c) S = 0.75

Figure 4.12: Snapshots of simulations of 2.13 at t = 11.5, after initialization with a horizon-
tal director field (results for 2.12 are similar). Colour represents the angle of the director,
and is only plotted in the close-packed region. The black curve is the contour b = 1. We
observe the formation of a boundary layer, increasing in size as we shrink S.

This boundary layer appears to dramatically reduce the fingering at the microcolony
boundary. Comparing Figure 4.13 with Figure 4.10a, we find that the former microcolony
has a much rounder profile despite starting with similar initial conditions and using ex-
actly the same parameter values where the models had parameters in common (the only
parameter that differs between the two is λ). It appears that the only source of distortion
to the boundary in Figure 4.13 is caused by the incursion of a topological defect near the
bottom left of the microcolony. This behaviour matches the behaviour observed by [26].
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Figure 4.13: Simulation results for 2.13, starting with a circular microcolony with a ran-
domly orientated director field. The boundary b = 1 remains remarkably round despite the
large value of γ. The most noticeable deviation from circularity occurs near the bottom
left, where a topological defect has drifted close to the boundary.
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Chapter 5

Discussion and Conclusion

We began Chapter 2 by narrowing our focus to motion driven by growth, temporarily
bracketing the potential contributions of other forces. In this final chapter, we will discuss
strategies to integrate the mechanism we derived into existing models, and propose some
avenues for future work.

5.1 Model Synthesis

The mechanism we have proposed exhibits a wide range of interesting behaviours, but it
is not rich enough to cover the totality of bacterial dynamics. The question then naturally
arises: How might we incorporate additional mechanisms of action? In particular, is it
possible to combine our mechanism with previously published models, the majority of
which rely on a Cauchy momentum equation to govern velocity?

We have already seen one potential method. The near-incompressible formulation of our
model also expresses our directed expansion mechanism in terms of a Cauchy momentum
equation, namely (∂t + v⃗ · ∇)(bv⃗) = −M∇p − µbv⃗, where p is some explicit function
of density. It is fairly straightforward to substitute the first term on the R.H.S. for the
equivalent pressure term in another model.

For example, combining our model with the model by Dell’Arciprete et al. [21] would
yield the following governing equation for velocity:

µbv⃗ = −M∇p− a∇ ·Q

where p = p0max[(b/bp − 1), 0].
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However, as we observed in Chapter 4, prescribing pressure explicitly in terms of density
does not produce the correct behaviour near the boundary of the microcolony. In the spirit
of the incompressible Navier–Stokes equations, we propose the following model:

∂tb + ∇ · (bv⃗) = λb on D

(∂t + v⃗ · ∇)Q = 2ξu + ωQ−Qω − ξtr(uQ)Q + ΓH on Ω

b(∂t + v⃗ · ∇)v⃗ = M∇p + ∇ · σ − µbv⃗ on Ω

∇ · v⃗ = λ on Ω

v⃗ = 0 on D \ Ω

Where:

M =
1 + Sγ

1 + 2Sγ
I +

γ

1 + 2Sγ
Q

σ = aQ− ξSH + QH−HQ

Ω(t) =
{

(x, y) ∈ D
∣∣ b(x, y, t) ≥ bp

}

(5.1)

This model should, in principle, combine our incompressibile growth mechanism with
the stresses that have been studied in the rest of the active nematic literature. However,
we expect that a numerical implementation of such a model would require techniques more
sophisticated than those we have employed in this thesis.

5.2 Model Extensions

Thus far, we have developed tools to investigate how cell orientation impacts the physics
of microcolony growth. Cell orientation, however, does not have any intrinsic biological
significance. In order to better illustrate the potential usefulness of this model in a biolog-
ical context, we will pose three questions that have biological significance and show how
equations 2.10 may be extended to investigate these questions.

Question 1: Suppose two strains of rod-shaped bacteria are growing in a semi-confined
environment. If both strains have similar growth rates and do not interact except through
physical forces, could cell morphology (aspect ratio) allow one strain to out-compete the
other? (This question is inspired by [49], who answered the question in the affirmative for
bacterial velocity.)

We can investigate this question by turning the model parameters related to morphology
(ξ and γ) into approximately piece-wise constant field variables that evolve according
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to a corresponding transport equation. E.g.: the evolution of ξ would be governed by
∂tξ = −v⃗ · ∇ξ.

Given an initial distribution, say ξ = 0.5 in one part of the domain, ξ = 1 in another
(each value corresponds to a different bacterial strain), we allow the system to evolve
accordingly. If cell morphology impacts survival, we expect one ξ/γ value to come to
dominate in the long term.

Question 2: Suppose rod-shaped bacteria are undergoing nutrient-limited growth. If
cell orientation and alignment impacts the ability of nutrients permeate the microcolony
(e.g. if nutrients diffuse more readily through an ordered colony than a disordered one,
as hypothesized by [15], following observations in [39]), what is the ultimate impact on
microcolony growth?

We would begin by turning one of the model parameters, λ, into a function of nutrient
concentration, N(x, y, t). The nutrient concentration, in turn, should obey an equation of
the form ∂tN = ∇ · (D(Q, b)∇N) − c(b,N), where c is a consumption rate and D is a
diffusion rate which, in general, may depend on Q and b, and which may have directional
dependence (i.e. D is a matrix, not a scalar).

Question 3: Suppose two strains of rod-shaped bacteria interact via a contact-based
mechanism that depends on orientation (e.g. conjugation, as demonstrated in [62]). Should
we expect the average interaction rate to change if the bacteria are grown in a semi-confined
environment, like a microfluidic device, as opposed to an open environment, like an agar
pad?

Unlike in question 1, it is not sufficient to represent the different cell strains by asso-
ciating them to particular values of, e.g. ξ or γ. Instead, we will need to introduce two
bacterial densities, call them b1 and b2. These densities will evolve according to a pair of
equations:

∂tb1 + ∇ · (v⃗b1) = λb1 + f(b1, b2,Q)

∂tb2 + ∇ · (v⃗b2) = λb2 + g(b1, b2,Q)

where f and g are interaction terms.

Because the interaction terms impact the total bacterial growth, we need to revise our
incompressibility condition. When the total density reaches the packing density, b1 + b2 =
bp, and the total bacterial growth is non-negative (i.e. λ(b1 + b2) + f + g ≥ 0), we expect
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the material derivative of b1 + b2 to be zero.

∂t(b1 + b2) + ∇ · (v⃗(b1 + b2)) = λ(b1 + b2) + f + g

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✿0

∂t(b1 + b2) + v⃗ · ∇(b1 + b2) + (b1 + b2)∇ · v⃗ = λ(b1 + b2) + f + g

∇ · v⃗ = λ +
f + g

b1 + b2

In the rest of the domain, where the density is below packing density or the net growth is
negative, the velocity is zero. From here, the rest of the model derivation follows as usual.

5.3 Towards A Full FEM Implementation

The mixed finite element and finite difference scheme we described in Section 3.2.4 allows
for a relatively simple treatment of the Beris-Edwards equation in system 2.10. However,
it suffers from a significant drawback: it requires us to define the Q-tensor in parts of
the domain where bacterial density is zero. This would not be a problem, except for the
presence of the diffusion term in the Beris-Edwards equation, as none of the other terms
in the Beris-Edwards equation allow for communication between the close-packed region,
Ω, and the rest of the domain. In principle, we could define the Q-tensor to take some
arbitrary value (say zero) outside the close-packed region, and the dynamics of the system
would proceed as desired. Unfortunately, the diffusion term allows the values outside the
close-packed region to influence the dynamics inside the close-packed region.

The natural solution is to restrict Q to be defined only inside Ω and impose suitable
boundary conditions on ∂Ω. Unfortunately, finite difference methods are not naturally
suited to deal with such irregular boundaries. This motivates us to move towards a scheme
using only finite element methods. Such a numerical scheme would have the additional
practical benefits. The computational bottlenecks in our mixed implementation are all in
the finite difference portion of the implementation, so a fully FEM implementation has the
potential to be much faster. In addition, translation between the FEM and finite difference
representations could be eliminated, removing a source of error.

We have yet to implement a working FEM implementation, but we propose the following
as one promising avenue of investigation. Notice that we can write the components of u
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and ω in divergence form. E.g., u11 may be written as:

u11 =
1

2
(∂xvx − ∂yvy)

=
1

2
∇ ·
([

1 0
0 −1

]
v⃗

)
=

1

2
∇ ·
([

−1 0
0 1

]
M∇p

)

Similarly, u12 = 1
2
∇ ·
([

0 −1
−1 0

]
M∇p

)
and ω12 = 1

2
∇ ·
([

0 1
−1 0

]
M∇p

)
.

This allows us to apply the divergence theorem to put the Beris-Edwards equation(s)
into weak form. Multiplying the equation for Q11 by a test function ϕ1 and integrating
yields:∫

Ω

(∂tQ11 −M∇p · ∇Q11)ϕ1dA =

∫
Ω

(2ξu11 − ξtr(uQ)Q11 + 2ω12Q12 + H11)ϕ1dA

=

∫
Ω

2u11ξ(1 −Q2
11)ϕ1 − 2u12ξQ12Q11ϕ1

+ 2ω12Q12ϕ1 + H11ϕ1dA

=

∫
Ω

∇ ·
([

−1 0
0 1

]
M∇p

)
ξ(1 −Q2

11)ϕ1dA

−
∫
Ω

∇ ·
([

0 −1
−1 0

]
M∇p

)
ξQ12Q11ϕ1dA

+

∫
Ω

∇ ·
([

0 1
−1 0

]
M∇p

)
Q12ϕ1dA

+

∫
Ω

H11ϕ1dA

The terms on the R.H.S. can then be rewritten using the divergence theorem. For
example, the first term is rewritten as follows:∫
Ω

∇ ·
([

−1 0
0 1

]
M∇p

)
ξ(1 −Q2

11)ϕ1dA =

∫
∂Ω

ξ(1 −Q2
11)ϕ1

([
−1 0
0 1

]
M∇p

)
· n̂dS

−
∫
Ω

([
−1 0
0 1

]
M∇p

)
· ∇
(
ξ(1 −Q2

11)ϕ1

)
dA
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The end result is a system of three coupled equations—nonlinear equations for Q11

and Q12 and a Poisson equation for p—all in weak form, which require no more than first
derivatives for each of the relevant quantities. These equations can, at least in principle,
be linearized and solved using Newton’s method.

We attempted to implement this formulation early on but abandoned the approach
because it produced singularities along the open boundary of the domain. However, at the
time we were using the Olmsted-Goldbart equations, 1.9, not the Beris-Edwards equations,
1.8, so it is unclear whether these singularities were inherent to the above formulation, the
result of incorrect boundary conditions, or because the Olmsted-Goldbart equations have
no restoring force that keeps Q bounded.

5.4 Validation

Finally, a confession. When we first conceived of this project, our goal was threefold:
(a) to develop a continuum model of 2-dimensional microcolony dynamics, (b) to conduct
corresponding microscopy experiments using microfluidic devices, extracting quantitative
data using image processing techniques, and (c) to compare the results of the continuum
model to the experimental data, using simulated results from an agent-based model to
bridge the gap between the two. In this thesis, we have presented the results of (a). Goal
(b) is well underway, and is being pursued by other members of the Ingalls Quantitative Cell
Biology Lab. However, time constraints being what they are, (c) remains almost entirely
unaddressed. As such, the results of this thesis are, for the time being, mathematical in
nature, not scientific.

To give a brief summary of our intentions regarding model validation, our strategy would
have been to extract low-dimensional, quantitative descriptions of the system’s behaviour
(summary statistics), such as the number of topological defects or the roundness of the
boundary, and use these to compare the experimental data to the behaviour of our PDE
model. For a detailed account of our thoughts on model calibration, we refer readers to
[71].

5.5 Conclusion

In this thesis, we have developed a new model for the microcolony dynamics of rod-shaped
bacteria, based on an extension of the Hubble mechanism proposed by Dell’Arciprete et
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al. [21]. We began our investigation by revisiting the incompressible models from the
literature on nutrient-limited growth. We showed that the physics in these models could
be derived from an optimization problem: minimizing the total kinetic energy. Armed
with this insight, we modified the optimization problem to account for cell morphology,
using tools from liquid crystal theory to describe the orientation and orderliness of cells.
The result is a model of microcolony growth where new biomass spreads asymmetrically
based on the orientation of the cells. Using a combination of finite difference methods,
level set methods, and unfitted finite element methods, we developed a numerical scheme
to simulate our model. We validated this scheme against analytic solutions, and used it to
explore the behaviour of our model in more complex scenarios where analytic solutions are
lacking. We find that the model exhibits several of the same behaviours observed in real
microcolonies: spontaneous alignment in confined domains, defect formation, and fingering
at the boundary. It is our hope that this novel Hubble mechanism will be incorporated
into the existing models of microcolony growth, which have thus far failed to account for
non-gradient effects.
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cabas. Large-scale orientational order in bacterial colonies during inward growth. Elife,
11:e72187, 2022.

[6] Christopher Basting and Dmitri Kuzmin. A minimization-based finite element formu-
lation for interface-preserving level set reinitialization. Computing, 95(Suppl 1):13–25,
2013.

[7] David J Beebe, Glennys A Mensing, and Glenn M Walker. Physics and applications of
microfluidics in biology. Annual review of biomedical engineering, 4(1):261–286, 2002.

[8] Antony N Beris, Brian J Edwards, et al. Thermodynamics of flowing systems: with
internal microstructure. Number 36. Oxford University Press on Demand, 1994.

[9] Farzan Beroz, Jing Yan, Yigal Meir, Benedikt Sabass, Howard A Stone, Bonnie L
Bassler, and Ned S Wingreen. Verticalization of bacterial biofilms. Nature physics,
14(9):954–960, 2018.

88



[10] Nicole Billings, Alona Birjiniuk, Tahoura S Samad, Patrick S Doyle, and Katharina
Ribbeck. Material properties of biofilms—a review of methods for understanding
permeability and mechanics. Reports on Progress in Physics, 78(3):036601, 2015.

[11] Matthew L Blow, Sumesh P Thampi, and Julia M Yeomans. Biphasic, lyotropic,
active nematics. Physical review letters, 113(24):248303, 2014.

[12] Susanne C Brenner, L Ridgway Scott, and L Ridgway Scott. The mathematical theory
of finite element methods, volume 3. Springer, 2008.

[13] Erik Burman. Ghost penalty. Comptes Rendus Mathematique, 348(21-22):1217–1220,
2010.

[14] Elizabeth Caplice and Gerald F Fitzgerald. Food fermentations: role of microorgan-
isms in food production and preservation. International journal of food microbiology,
50(1-2):131–149, 1999.

[15] HoJung Cho, Henrik Jönsson, Kyle Campbell, Pontus Melke, Joshua W Williams,
Bruno Jedynak, Ann M Stevens, Alex Groisman, and Andre Levchenko. Self-
organization in high-density bacterial colonies: efficient crowd control. PLoS biology,
5(11):e302, 2007.

[16] David L Chopp. Some improvements of the fast marching method. SIAM Journal on
Scientific Computing, 23(1):230–244, 2001.

[17] Richard Courant, Kurt Friedrichs, and Hans Lewy. Über die partiellen differenzengle-
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[39] Jan Hrabe, Sabina Hrabĕtová, and Karel Segeth. A model of effective diffusion and
tortuosity in the extracellular space of the brain. Biophysical journal, 87(3):1606–1617,
2004.

[40] Jona Kayser, Carl F Schreck, Matti Gralka, Diana Fusco, and Oskar Hallatschek.
Collective motion conceals fitness differences in crowded cellular populations. Nature
ecology & evolution, 3(1):125–134, 2019.

[41] Hassan Khassehkhan, Thomas Hillen, and Hermann J Eberl. A nonlinear master
equation for a degenerate diffusion model of biofilm growth.

[42] Isaac Klapper and Jack Dockery. Finger formation in biofilm layers. SIAM Journal
on Applied Mathematics, 62(3):853–869, 2002.

[43] Isaac Klapper and Jack Dockery. Mathematical description of microbial biofilms.
SIAM review, 52(2):221–265, 2010.

[44] Christoph Lehrenfeld. High order unfitted finite element methods on level set do-
mains using isoparametric mappings. Computer Methods in Applied Mechanics and
Engineering, 300:716–733, 2016.

91



[45] Christoph Lehrenfeld. A higher order isoparametric fictitious domain method for level
set domains. In Geometrically unfitted finite element methods and applications, pages
65–92. Springer, 2017.

[46] Christoph Lehrenfeld, Fabian Heimann, Janosch Preuß, and Henry von Wahl.
ngsxfem: Add-on to ngsolve for geometrically unfitted finite element discretizations.
Journal of Open Source Software, 6(64):3237, 2021.

[47] Frank M Leslie. Some constitutive equations for liquid crystals. Archive for Rational
Mechanics and Analysis, 28(4):265–283, 1968.

[48] Yan Liu, Bo Li, and Xi-Qiao Feng. Buckling of growing bacterial chains. Journal of
the Mechanics and Physics of Solids, 145:104146, 2020.

[49] Oliver J Meacock, Amin Doostmohammadi, Kevin R Foster, Julia M Yeomans, and
William M Durham. Bacteria solve the problem of crowding by moving slowly. Nature
Physics, 17(2):205–210, 2021.

[50] Prashant Mishra. Pattern Formation in Active Nematics. PhD thesis, Syracuse Uni-
versity, 2017.

[51] Nigel J Mottram and Christopher JP Newton. Introduction to q-tensor theory. arXiv
preprint arXiv:1409.3542, 2014.
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verwendung von teilräumen, die keinen randbedingungen unterworfen sind. In Ab-
handlungen aus dem mathematischen Seminar der Universität Hamburg, volume 36,
pages 9–15. Springer, 1971.

[53] Peter D Olmsted. Perspectives on shear banding in complex fluids. Rheologica Acta,
47(3):283–300, 2008.

[54] Peter D Olmsted and Paul Goldbart. Theory of the nonequilibrium phase transition
for nematic liquid crystals under shear flow. Physical Review A, 41(8):4578, 1990.

[55] Stanley Osher, Ronald Fedkiw, and K Piechor. Level set methods and dynamic implicit
surfaces. Appl. Mech. Rev., 57(3):B15–B15, 2004.

[56] Stanley Osher and Nikos Paragios. Geometric level set methods in imaging, vision,
and graphics. Springer Science & Business Media, 2003.

92
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