
Post-Quantum Account Recovery for
Passwordless Authentication

by

Spencer MacLaren Wilson

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2023

© Spencer MacLaren Wilson 2023

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

WebAuthn is a passwordless authentication protocol which allows users to authenticate
to online services using public-key cryptography. Users prove their identity based on pos-
session of a private key, which is stored on a device such as a cell phone or a USB security
token. This approach avoids many of the common security problems with password-based
authentication. The reliance on possession as opposed to knowledge leads to a usability
issue, however: a user who loses access to their authenticator device either loses access
to their accounts or is required to fall back on a weaker authentication mechanism for
recovery. Yubico has proposed a protocol which allows a user to link two tokens in such a
way that one (the primary authenticator) can generate public keys on behalf of the other
(the backup authenticator). This allows users to use WebAuthn with a single token, only
using their backup token if necessary for account recovery. However, Yubico’s protocol
relies on the hardness of the discrete log problem for its security and hence is vulnerable
to an attacker with a powerful enough quantum computer.

We present a WebAuthn backup protocol which can be instantiated with quantum-
safe primitives. We also critique the security model used in previous analysis of Yubico’s
protocol, proposing a new framework which we use to evaluate the security of both the
group-based and the post-quantum protocol. This leads us to uncover a weakness in
Yubico’s proposal which escaped detection in prior work but was revealed by our model.
In our security analysis, we find that a number of novel security properties of cryptographic
primitives underlying the protocols are required; we formalize these and prove that well-
known algorithms satisfy the properties required for analysis of our post-quantum protocol.
For the group-based protocol, we require a novel Diffie–Hellman-like assumption; we leave
further evaluation of this property to future work.

iii

Acknowledgements

A great many people in the C&O department supported me throughout the duration
of my Master’s degree. I would like to single out a few for especial thanks. Carol Seely-
Morrison and Melissa Cambridge patiently dealt with many administrative queries and
requests. Alfred Menezes and David Jao not only took the time to serve on my thesis
committee but also provided me with invaluable academic and career guidance throughout
my time at Waterloo. My official and unofficial grad school mentors, Evelyne Smith-
Roberge and Valerie Gilchrist, showed me the ropes and introduced me to Camryn Steckel,
Jonathan Gold, and Pravek Sharma, who were the best friends and classmates that anyone
could hope for. Finally, none of this would have been possible without the insight, patience,
and generosity of my supervisor, Douglas Stebila.

I am also indebted, as always, to my parents, Ian Wilson and Mary-Jo Rosenquist;
to my brother, Duncan Wilson; and to my girlfriend, Valerie Bustos, for their love and
support.

iv

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 2

1.3 Structure . 3

1.4 Related Work . 3

2 Preliminaries 4

2.1 Pseudorandom Function . 4

2.2 Message Authentication Code . 5

2.3 Asynchronous Remote Key Generation . 5

2.3.1 Public-Key Unlinkability . 6

2.3.2 Private-Key Security . 6

v

2.4 Key Encapsulation Mechanism . 7

2.4.1 Collision Resistance . 8

2.4.2 KEM Unlinkability . 9

2.5 Key-Blinding Signature Scheme . 9

2.6 Key Blinding Scheme . 10

2.6.1 Key-Recovery Security . 11

2.6.2 Unique Blinding . 11

2.6.3 Private-Key Unblinding . 12

2.6.4 Strong Independent Blinding . 12

3 Quantum-Safe ARKG 14

3.1 Description . 14

3.1.1 Comparison to Prior Work . 16

3.2 Security Analysis . 17

3.2.1 Public-Key Unlinkability . 17

3.2.2 Private-Key Security . 19

4 Credential-Based Recovery 22

4.1 Protocol Model . 23

4.1.1 Recovery Authentication . 26

4.1.2 Unlinkability . 28

5 Group-Based and Post-Quantum CBR Protocols 32

5.1 Protocol Descriptions . 32

5.2 Weaknesses in the Group-Based Protocol 33

6 Security Analysis 37

6.1 Recovery Authentication . 37

6.2 Unlinkability . 43

vi

7 Instantiation 52

7.1 Pseudorandom Function . 52

7.2 Key Blinding Scheme . 52

7.3 Key Encapsulation Mechanism . 53

8 Evaluation 59

8.1 Stronger Security Notions . 61

9 Conclusion 62

9.1 Limitations . 62

9.2 Future Work . 63

References 64

vii

List of Figures

2.1 The PK-unlinkability experiment for ARKG 7

2.2 The msKS experiment for ARKG . 8

2.3 The CR-CCA experiment for a KEM Π . 8

2.4 The KEM-UL experiment for a KEM Π. The oracles OE
0 and OD

0 are defined
by Encaps(pk) and Decaps(sk, ·), respectively. 9

2.5 The KR experiment for a key blinding scheme ∆ 12

2.6 The strong independent blinding experiment for a key blinding scheme ∆ . 13

3.1 Yubico’s group-based ARKG construction from [10] 15

3.2 Our post-quantum ARKG construction . 16

3.3 The PK-unlinkability experiment for pqARKG 17

3.4 The msKS experiment for pqARKG . 20

4.1 The rec experiment for CBR . 27

4.2 The UL experiment for CBR. For a description of the oracles NewUser,
NewServer, ORegister, and Action, see Figure 4.1. 30

4.3 The I-UL experiment for CBR. For a description of the oracles NewUser,
NewServer, Action, and Actionb, see Figures 4.1 and 4.2. 31

5.1 Yubico’s credential-based recovery scheme 34

5.2 Our post-quantum credential-based recovery scheme 34

5.3 A generic credential-based recovery protocol 35

7.1 The ciphertext guessing game for KyberPKE 55

viii

List of Tables

8.1 Credential, credential identifier, and response sizes for gCBR and pqCBR . 59

8.2 Comparison of post-quantum blinded and non-blinded signature schemes
using data from [9] . 60

ix

Chapter 1

Introduction

1.1 Motivation

Passwords have provided the dominant method of user authentication on the Internet for
decades. Password-based authentication is easy for users to understand, does not require
significant infrastructure, and is resilient to device loss. However, the apparent simplicity
of password-based authentication masks serious security problems. Some of these arise
from implementation pitfalls: properly storing and verifying passwords is a more difficult
task than it seems at first glance. Moreover, password-based authentication is, without
additional tools such as password managers, inherently non-user-friendly: strong, unique
passwords are difficult to remember.

Passwordless authentication attempts to avoid problems with password-based authen-
tication by simply getting rid of passwords. It has gained traction in recent years, driven
by the efforts of the FIDO Alliance, a consortium of organizational stakeholders with a
shared interest in secure user authentication solutions.

The FIDO Alliance has proposed a number of passwordless authentication solutions.
Some of these are intended as a second factor to strengthen password-based authentication;
others are intended as standalone authentication solutions. The most notable of the latter
class is FIDO2. FIDO2 is the composition of two subprotocols, WebAuthn and CTAP.
The former specifies interactions among servers (referred to as “relying parties”), clients,
and authenticators (for example, USB security keys). The latter specifies communication
between clients and authenticators. Both protocols have been subjected to security analysis
and are beginning to see widespread deployment.

1

WebAuthn introduces new problems of its own, however. One of these is the issue of
account recovery. An individual who loses the device they use to authenticate has no built-
in method for recovering access to their account. This is a major obstacle preventing users
from embracing FIDO2 [18]. The lack of a built-in backup solution can lead to weaker
means of authentication—such as security questions or SMS verification—being used to
enable account recovery, which undermines the protocol’s security. Current advice to users
is to purchase two tokens and register them both at each site: if you lose one, then you can
still log in with the other [12]. Besides making account registration more complicated, this
is lacking as a backup solution: since users must be in physical possession of both tokens
whenever they create an account, they are likely to lose both at the same time.

Yubico, a manufacturer of security tokens, has proposed a solution whereby two tokens
can be linked in such a way that one can generate recovery credentials for the other.
The user can link their two tokens, store the backup in a safe place, and use the primary
authenticator for day-to-day authentications. If the primary token is lost, the user retrieves
the backup and uses it to recover access to accounts. The proposed protocol has undergone
security analysis in [10]. The authors proposed an abstraction for its “cryptographic core”,
which they called Asynchronous Remote Key Generation, and developed a security model
for it, proving security of Yubico’s proposal under this model. However, Yubico’s protocol
relies heavily on elliptic curve cryptography; in particular, its security depends on the
hardness of the Diffie–Hellman problem, which makes it vulnerable to an adversary with
access to a quantum computer.

1.2 Contributions

In this work, we describe and analyze a quantum-safe recovery protocol for WebAuthn.
We also highlight a number of weaknesses in the security analysis of Yubico’s protocol.
Notably, we describe a simple attack which escapes detection under the model in [10]. To
address these weaknesses, we propose a new security model which more accurately captures
the required security properties of a WebAuthn recovery solution. We analyze the security
of both Yubico’s protocol and our post-quantum protocol under this new model. Notably,
our model makes no reference to specific details of WebAuthn. This means that our
recovery protocol can be piggybacked on top of any authentication protocol with a similar
challenge-response structure.

In order to prove security of our protocol, we require the underlying primitives to satisfy
a number of non-standard security properties. For example, we require KEM decapsulation
to be collision resistant or, in some proofs, pseudorandom. We provide formal definitions

2

of these security properties and prove that they are satisfied by notable post-quantum
cryptographic algorithms. We additionally introduce a new Diffie–Hellman-like assumption
required to establish the security of Yubico’s protocol under our new model; however, we
are unable to reduce this new assumption to any standard ones.

1.3 Structure

In Chapter 2, we describe the cryptographic primitives which are used to instantiate Yu-
bico’s and our recovery protocols. Notably, we describe non-standard security properties
which we will require in subsequent security analysis. We describe the basics of our con-
struction and show that it is secure under the model from [10] in Chapter 3. Chapter 4
contains the novel security model for account recovery. In Chapter 5, we give the full details
of the group-based and post-quantum protocols, whose security we analyze in Chapter 6.
In Chapter 7, we provide concrete examples of cryptographic primitives which meet the
non-standard security properties required for analysis of the post-quantum protocol. We
evaluate space requirements and efficiency in Chapter 8 and then provide closing comments
in Chapter 9.

1.4 Related Work

Our contributions are adjacent to a number of recent efforts. Several papers have examined
the provable security of WebAuthn, beginning with [3]. It was expanded upon by [14],
which was the first to analyze the protocol’s privacy properties; [14] also advances a protocol
for revocation which is strikingly similar to Yubico’s recovery proposal. Of particular
relevance to our work is [5], which proposed a provably secure post-quantum version of
WebAuthn. Previous work on WebAuthn account recovery includes [1], which proposes a
solution based on group signatures, and [10], on which our work builds directly.

Our work makes prominent use of signature schemes with key blinding, which are dis-
cussed at length in [9] and [8]. We discuss a novel anonymity property of key encapsulation
mechanisms; related analysis is done in [13], [22], and [19].

After our research was completed, we became aware of [7] and [11], two recent efforts to
solve the WebAuthn backup problem. Our work was done independently from these and
takes a different approach. Notably, neither of the constructions in [7] and [11] is provably
secure under the strictest definitions from [10], while ours is.

3

Chapter 2

Preliminaries

In this chapter, we lay out the cryptographic primitives on which Yubico’s recovery pro-
tocol and our post-quantum version rely. We recall familiar definitions, reintroduce more
specialized concepts on which we build, and describe several novel security properties. We
reserve proofs of these novel properties—when applicable—for Chapter 7.

2.1 Pseudorandom Function

A pseudorandom function (PRF) takes as input a key and a label and outputs a pseu-
dorandom value. The outputs of a PRF with a fixed, uniformly sampled key should be
indistinguishable from those of a random function. In the security analysis of our post-
quantum recovery protocol, we will also require a non-standard (but reasonable) security
property of a PRF: collision resistance, where the key is included in the input.

To analyze the security of Yubico’s protocol under our new model, we introduce a new
security property for PRFs, which we refer to as the “shifted group PRF” assumption,
or sgPRF. Given a finite group G of order q and a finite set S, we say that a function
F : G → Zq × S satisfies the sgPRF property if the function F ′ : Zq × G \ {1} → Zq × S
defined by F ′(s, E) = (F (Es)0 + s, F (Es)1) is a PRF, where s is regarded as the key and
E as the label. Readers will notice similarities between the sgPRF problem and the PRF-
ODH family of problems, introduced in [16] and thoroughly summarized in [6]; however,
we have been unable to reduce sgPRF to any well-studied security assumption.

4

2.2 Message Authentication Code

A message authentication code (MAC) scheme Σ = (MAC,Verify) consists of a pair of
algorithms: MAC, which takes as input a key and a message and (possibly probabilistically)
outputs a tag, and Verify, which takes as input a key, a message, and a tag and outputs a
single bit. The scheme is correct if Verify outputs 1 for all key-message-tag tuples obtained
by calling MAC. A MAC scheme satisfies SUF-CMA security if it is infeasible for an
adversary with access to a MAC oracle to compute a tag on a message for a uniformly
sampled key without receiving the tag from the oracle.

2.3 Asynchronous Remote Key Generation

Previous security analysis of Yubico’s WebAuthn recovery extension in [10] focused on the
“cryptographic core” of the proposed protocol: a means by which a primary authenticator
can generate public keys for which only the backup authenticator can produce signatures
that verify. This mechanism was dubbed asynchronous remote key generation (ARKG).
An ARKG scheme ARKG = (Setup,KeyGen,DerivePK,DeriveSK,Check) consists of five al-
gorithms:

� Setup(1λ): deterministically outputs the parameters pp for the scheme.

� KeyGen(pp): outputs a seed key pair (sk, pk). The public key is shared with the
primary authenticator, while the private key is held by the backup authenticator.

� DerivePK(pp, pk, aux): probabilistically outputs a public key pk′ and a corresponding
credential cred bound to the input aux.

� DeriveSK(pp, sk, cred): deterministically recovers the secret key corresponding to the
credential cred, returning ⊥ if the credential is invalid.

� Check(pp, sk′, pk′): ouputs a bit indicating whether or not the provided sk′ and pk′

form a valid derived keypair.

The scheme is correct if for all inputs aux and pp← Setup(1λ),

Pr

Check(pp, pk′, sk′) = 1 :
(pk, sk)←$ KeyGen(pp)
(pk, cred)←$ DerivePK(pp, pk, aux)
sk′ ← DeriveSK(pp, sk, cred)

 = 1.

5

In Yubico’s protocol, the backup authenticator generates a seed key pair and shares
the public key with the primary authenticator. The primary authenticator uploads derived
public keys and the corresponding recovery credentials to WebAuthn servers. To recover
an account at a server, the backup authenticator receives a recovery credential from the
server, derives the associated secret key, and proves its identity by signing a challenge with
this derived key.

The security of an ARKG scheme as defined in [10] has two components: public-key
unlinkability and private-key security. The former property requires that derived keypairs
should not be linkable to a seed public key. For a scheme to satisfy the latter, it should
be infeasible to create a valid credential and derived keypair for a given seed keypair
without knowledge of the seed private key. These properties are desireable in the context
of WebAuthn, where private key proof-of-posession is used for authentication but user
credentials should not be correlatable.

2.3.1 Public-Key Unlinkability

An adversary for public-key unlinkability is challenged to distinguish between a fixed dis-
tribution D (in [10], the distribution of seed keypairs) and the distribution of derived
keypairs. The adversary is provided with the seed public key and an oracle which outputs
either derived keypairs or samples from the distribution D. This security experiment is
defined formally in Figure 2.1. The adversary’s advantage is defined to be

Advpku,DARKG,A(λ) =

∣∣∣∣Pr[Exppku,DARKG,A(λ) = 1
]
− 1

2

∣∣∣∣.

2.3.2 Private-Key Security

Private-key security has four strength levels, categorized as either “honest” or “malicious”
and either “strong” or “weak”. The strongest of these is malicious strong key security,
denoted msKS; it implies the other three security levels. An msKS-adversary is provided
with the seed public key, a DerivePK oracle, and a DeriveSK oracle which can only be
queried with credentials previously output by the DerivePK oracle. The adversary wins if
it can produce a valid public key-private key-credential tuple. This security experiment is
defined formally in Figure 2.2. The “weak” security variants remove the DeriveSK oracle,
and the “honest” variants require that the adversary output a credential obtained from its

6

Exppku,DARKG,A(λ)

1 : pp← Setup(1λ)

2 : (sk0, pk0)←$ KeyGen(pp)

3 : b←$ {0, 1}

4 : b′ ←$AOb
pk′ (pp, pk0)

5 : return Jb = b′K

Oracle O0
pk′(aux)

1 : (pk′, cred)←$ DerivePK(pp, pk, aux)

2 : sk′ ← DeriveSK(pp, sk, cred)

3 : return (sk′, pk′)

Oracle O1
pk′(aux)

1 : (sk′, pk′)←$ D
2 : return (sk′, pk′)

Figure 2.1: The PK-unlinkability experiment for ARKG

DerivePK oracle. The adversary’s advantage is defined to be

AdvmsKS
ARKG,A(λ) = Pr

[
ExpmsKS

ARKG,A(λ) = 1
]
.

2.4 Key Encapsulation Mechanism

A key encapsulation mechanism (KEM) Π = (KeyGen,Encaps,Decaps) consists of three
algorithms: KeyGen, which samples a keypair; Encaps, which takes as input a public key
and (probabilistically) outputs a ciphertext and a key; and Decaps, which takes as input
a private key and a ciphertext and outputs a key. Generally, KEMs fall into two classes,
depending on how they handle invalid decapsulation queries. KEMs of the first type
perform explicit rejection, return a reserved value ⊥ when given invalid input. KEMs
of the second type perform implicit rejection, instead returning a pseudorandom value
(typically the output of a PRF keyed with a portion of the secret key). For the rest of this
document, we will only consider KEMs that perform implicit rejection.

A KEM is correct if

Pr
[
Decaps(sk, c) = k : (pk, sk)←$ KeyGen(1λ), (c, k)←$ Encaps(pk)

]
= 1.

A KEM satisfies IND-CCA security if it is infeasible for an adversary given access to a
public key, a challenge ciphertext-key secret pair, and a decapsulation oracle to determine
whether the key is the decapsulation of the ciphertext or a random value. A related notion
is strong pseudorandomness under chosen ciphertext attack, or SPR-CCA security, where

7

ExpmsKS
ARKG,A(λ)

1 : pp← Setup(1λ)

2 : PKList← ∅
3 : SKList← ∅
4 : (sk, pk)←$ KeyGen(pp)

5 : (sk∗, pk∗, cred∗)←$AOpk′ ,Osk′ (pp, pk)

6 : sk′ ← DeriveSK(pp, sk, cred∗)

7 : return Check(sk∗, pk∗)

8 : ∧ Check(sk′, pk∗)

9 : ∧ Jcred∗ /∈ SKListK

Oracle Opk′(aux)

1 : (pk′, cred)←$ DerivePK(pp, pk, aux)

2 : PKList← PKList ∪
{
(pk′, cred)

}
3 : return (pk′, cred)

Oracle Osk′(cred)

1 : if (·, cred) /∈ PKList then return ⊥
2 : SKList← SKList ∪ {cred}
3 : return DeriveSK(pp, sk, cred)

Figure 2.2: The msKS experiment for ARKG

ExpCR-CCA
Π,A (λ)

1 : (pk, sk)←$ KeyGen(1λ)

2 : (c0, c1)←$ADecaps(pk)

3 : return JDecaps(sk, c0) = Decaps(sk, c1)K

Figure 2.3: The CR-CCA experiment for a KEM Π

both ciphertext and key are sampled independently of the public key, as defined in [22]. For
analysis of our post-quantum protocol, we require two novel security properties of KEMs.
In Chapter 7, we show that these properties are satisfied by CRYSTALS-Kyber.

2.4.1 Collision Resistance

The first property we require is per-key collision resistance: it should be difficult for a
CCA adversary to produce two ciphertexts which decapsulate to the same value. The
corresponding security experiment is described in Figure 2.3. We define the adversary’s
advantage to be

AdvCR-CCA
Π,A (λ) = Pr

[
ExpCR-CCA

Π,A (λ) = 1
]
.

8

ExpKEM-UL
Π,A (λ)

1 : (pk, sk)←$ KeyGen(1λ)

2 : L ← ∅
3 : b←$ {0, 1}

4 : b′ ←$AOE
b ,OD

b ()

5 : return Jb′ = bK

Oracle OE
1 ()

1 : c←$ C
2 : k ←$ K
3 : L ← L ∪ (c, k)

4 : return (c, k)

Oracle OD
1 (c)

1 : if (c, k′) ∈ L then return k′

2 : k ←$ K
3 : L ← L ∪ (c, k)

4 : return (c, k)

Figure 2.4: The KEM-UL experiment for a KEM Π. The oracles OE
0 and OD

0 are defined
by Encaps(pk) and Decaps(sk, ·), respectively.

2.4.2 KEM Unlinkability

The second property is less straightforward: we require that an adversary without knowl-
edge of the public key should learn absolutely no information about the public key. Con-
cretely, it should be unable to distinguish between encapsulations and decapsulations and
random sampling from the ciphertext and key spaces. We refer to this property as KEM
unlinkability. The corresponding security experiment is described in Figure 2.4. We define
the adversary’s advantage to be

AdvKEM-UL
Π,A (λ) =

∣∣∣∣Pr[ExpKEM-UL
Π,A (λ) = 1

]
− 1

2

∣∣∣∣

2.5 Key-Blinding Signature Scheme

As defined in [9], a key-blinding signature scheme ∆ consists of four algorithms defined as
follows:

� KeyGen(1λ): generates an identity or seed key pair (pk, sk) from which blinded keys
will be derived.

� BlindPK(pk, τ): deterministically computes a blinded public key pk′.

� Sign(sk, τ,m): computes (possibly probabilistically) a signature σ on m for τ .

� Verify(pk′,m, σ): outputs 1 if σ is a valid signature on m for a blinded public key pk′.

9

A key-blinding signature scheme is correct if signatures under τ always verify under the
public key blinded with τ . Two security properties are required. The first, existential
unforgeability under chosen message and epoch attack, or EUF-CMEA, stipulates that an
adversary with a key blinding oracle and a signing oracle should not be able to produce a
forgery for any (m, τ) not queried to the signing oracle.1 “Epoch” refers to the blinding
factor τ . The second, unlinkability under chosen message and epoch attack, or UL-CMEA,
stipulates that an adversary with a key blinding oracle and a signing oracle for a fixed
keypair should not be able to distinguish between a blinding with the fixed keypair or a
fresh keypair. We refer to [9] for formalizations of these properties.

2.6 Key Blinding Scheme

The security analysis of Yubico’s protocol in [10] decouples signing from key blinding. In
particular, it allows the adversary to obtain the secret keys corresponding to blinded public
keys—for which no interface is provided in [9]—and makes no reference to their involvement
in a signature scheme. Desiring a compatible abstraction, we define a key blinding scheme
∆ = (KeyGen,BlindPK,BlindSK,Check) to be a collection of four algorithms defined as
follows:

� KeyGen(1λ): generates an identity or seed key pair (pk, sk) from which blinded keys
will be derived.

� BlindPK(pk, τ): deterministically computes a blinded public key pkτ .

� BlindSK(sk, τ): deterministically computes a blinded secret key skτ .

� Check(pk′, sk′): checks if (pk′, sk′) is a valid blinded keypair.

A key blinding scheme is correct if for all blinding factors τ

Pr
[
Check(BlindPK(pk, τ),BlindSK(sk, τ)) : (pk, sk)←$ KeyGen(1λ)

]
= 1.

The group-based key blinding scheme utilized in [10] satisfies a number of additional
properties which facilitate the proofs of ARKG security:

1The definition in [9] provides the adversary with a single oracle which, given (m, τ), outputs both
BlindPK(pk, τ) and Sign(sk, τ,m); however, it is easy to see that there is no difference between this single-
oracle formulation and one in which the adversary receives two separate oracles.

10

1. It is difficult to recover the seed private key given the seed public key. This is the
natural minimum security notion for a public-key cryptosystem.

2. Every blinded public key passes Check with exactly one secret key, and vice versa.
This allows us to refer to “the” corresponding secret key for a public key.

3. It is easy to recover the seed private key given an arbitrary blinding factor and
the corresponding secret key. This typically arises via some sort of homomorphic
relationship between public and private keys, which is present in a number of key
blinding schemes.

4. The distribution of blinded keypairs for any seed keypair is indistinguishable from
the distribution of seed keypairs. This property naturally leads to a strong notion of
unlinkability.

All four of the blinded signature schemes in [9] naturally give rise to key blinding schemes,
although only one satisfies property 4. Two of them—blLegRoast and blPicnic—include
the seed secret key as part of the blinded secret key, and the distribution of blDilithium-
QROM blinded secret keys is dependent on the seed secret key. However, blCSI-FiSh does
satisfy all of these properties, as we will show in Chapter 7. This makes it a suitable
drop-in replacement for the group-based key blinding scheme.

We now give formal definitions of these four properties for subsequent use in proofs.

2.6.1 Key-Recovery Security

We refer to property 1 as key-recovery security, which we denote by KR. We define it with
a game in which the adversary is challenged to compute the seed private key given only
the seed public key, depicted in Figure 2.5. We define the advantage of a KR adversary A
to be

AdvKR
∆,A(λ) = Pr

[
ExpKR

∆,A(λ) = 1
]
.

The KR-security of the key blinding scheme used in Yubico’s proposal is equivalent to
the discrete log assumption on the underlying group.

2.6.2 Unique Blinding

If a key blinding scheme satisfies property 2, we say that it provides unique blinding.
Formally, we say that ∆ provides unique blinding if for every seed keypair (pk, sk) ←$

11

ExpKR
∆,A(λ)

1 : (pk, sk)←$ ∆.KeyGen(1λ)

2 : sk′ ←$A(pk)
3 : return Jsk = sk′K

Figure 2.5: The KR experiment for a key blinding scheme ∆

KeyGen(1λ) and every blinding factor τ ,

Check(BlindPK(pk, τ), sk′) = 1 ⇐⇒ sk′ = BlindSK(sk, τ)

and
Check(pk′,BlindSK(sk, τ)) = 1 ⇐⇒ pk′ = BlindPK(pk, τ).

The key blinding scheme used in [10] provides unique blinding because a derived private
key is the discrete log of the associated public key.

2.6.3 Private-Key Unblinding

If a key blinding scheme satifies property 3, we say that it supports private-key unblinding.
Formally, we require the existence of an efficiently computable function UnblindSK such
that for all blinding factors τ

Pr[UnblindSK(τ, skτ) = sk : (pk, sk)←$ KeyGen, skτ ← BlindSK(sk, τ)] = 1.

At face value, this appears to be a strange (and perhaps even undesirable) security
property. Nonetheless, we will see that private-key unblinding in tandem with unique
blinding allows a straightforward security reduction for our generic ARKG construction.

2.6.4 Strong Independent Blinding

For property 4, we say that a key blinding scheme provides strong independent blinding if
the distribution of randomly blinded keypairs for a seed keypair is indistinguishable from
the distribution of freshly generated keypairs, even to an adversary with access to the seed

12

ExpS-Ind-Blind
∆,A (λ)

(pk, sk)←$ ∆.KeyGen(1λ)

b←$ {0, 1}
b′ ←$AOb(pk)

return Jb = b′K

Oracle O0()

τ ←$ {0, 1}λ

pkτ ← ∆.BlindPK(pk, τ)

skτ ← ∆.BlindSK(sk, τ)

return (pkτ , skτ)

Oracle O1()

return ∆.KeyGen(1λ)

Figure 2.6: The strong independent blinding experiment for a key blinding scheme ∆

public key. This is formally captured by the security experiment given in Figure 2.6. We
define the advantage of a S-Ind-Blind adversary A to be

AdvS-Ind-Blind
∆,A (λ) =

∣∣∣∣Pr[ExpS-Ind-Blind
∆,A (λ) = 1

]
− 1

2

∣∣∣∣.

13

Chapter 3

Quantum-Safe ARKG

We now provide a quantum-safe construction of the ARKG primitive defined in [10] and
prove its security. Our ARKG scheme follows a similar structure as Yubico’s, replacing
ad hoc group-based mechanisms with generic components which can be instantiated from
post-quantum security assumptions.

Group arithmetic is used in Yubico’s scheme first to arrive at a shared secret, using
Diffie–Hellman key exchange, from which a key-blinding factor can be derived; subse-
quently, it is used to perform the blinding itself. However, it is not necessary for shared
secret computation and key blinding to be coupled together using the same key material.
This allows Diffie–Hellman key exchange to be replaced by KEM operations, at the expense
of introducing a second, independent keypair for the KEM. This leaves only the key blind-
ing scheme as a group-based component; the final step is to replace it with a quantum-safe
key blinding scheme. Yubico’s scheme also relies on a handful of other generic primitives,
which only require slight modifications for the quantum-safe version.

To prove security under the model defined in [10], we introduce a number of assumptions
on the key blinding scheme, as described in Section 2.3.

3.1 Description

We present our post-quantum construction (Figure 3.2) alongside the group-based con-
struction (Figure 3.1) from [10], to highlight both common structure and points of differ-
ence. Yubico’s construction is instantiated with

14

Setup(1λ)

return pp = ((G, g, q),Σ,KDF1,KDF2)

Check(pp, sk′ = x, pk′ = X)

return Jgx = XK

DerivePK(pp, pk = S, aux)

1 : (e, E)←$ KeyGen(pp)

2 : ck← KDF1(S
e)

3 : mk← KDF2(S
e)

4 : P ← gck · S
5 : µ← Σ.MAC(mk, (E, aux))

6 : return pk′ = P, cred = (E, aux, µ)

KeyGen(pp)

x←$ Zq

return sk = x, pk = gx

DeriveSK(pp, sk = s, cred = (E, aux, µ))

1 : ck← KDF1(E
s)

2 : mk← KDF2(E
s)

3 : if Σ.Verify(mk, (E, aux), µ) then

4 : return ck+ s

5 : else return ⊥

Figure 3.1: Yubico’s group-based ARKG construction from [10]

� a cyclic group G of order q with generator g,

� a MAC scheme Σ, and

� two key derivation functions, KDF1 : G→ Zq and KDF2 : G→ {0, 1}∗.

Our construction replaces the group with a key blinding scheme ∆ and a KEM Π and
the key derivation functions with a single PRF. Additionally, we do away with the MAC
scheme, instead opting to incorporate the information which would be tagged into PRF
labels; because of this, we can replace the two KDFs with a single PRF. We will assume
that the PRF output binary strings of length at least λ, but we leave this implicit in the
protocol description.

The quantum-safe version follows a pattern similar to the group-based construction.
Public keys and credentials are generated by computing a pseudorandom shared secret
(either the Diffie–Hellman value or the encapsulated key) using the seed public key (either
S or (pk∆, pkΠ)) and deriving a blinding factor (either ck or τ). Information necessary to
recover the shared secret (the ephemeral Diffie–Hellman public key E or the KEM cipher-
text c) is included in the associated credential. Secret keys are derived from credentials
by using this information, along with the seed secret key (s or (sk∆, skΠ)), to recover the
shared secret, from which the blinding factor can be recovered.

15

Setup(1λ)

return pp = (∆,Π,PRF)

Check(pp, sk′, pk′)

return ∆.Check(sk′, pk′)

DerivePK(pp, pk = (pk∆, pkΠ), aux)

1 : (c, k)←$ Π.Encaps(pkΠ)

2 : τ ← PRF(k, aux)

3 : pk′ ← ∆.BlindPK(pk∆, τ)

4 : return pk′, cred = (c, aux)

KeyGen(pp)

1 : (sk∆, pk∆)←$ ∆.KeyGen()

2 : (skΠ, pkΠ)←$ Π.KeyGen()

3 : return sk = (sk∆, skΠ), pk = (pk∆, pkΠ)

DeriveSK(pp, sk = (sk∆, skΠ), cred = (c, aux))

1 : k ← Π.Decaps(skΠ, c)

2 : τ ← PRF(k, aux)

3 : return ∆.BlindSK(sk∆, τ)

Figure 3.2: Our post-quantum ARKG construction

The correctness of our construction is immediate from the correctness of its components.

3.1.1 Comparison to Prior Work

Our construction is very similar to the one proposed in [7]. In that construction, fresh
keypairs are generated using the pseudorandom value τ (see lines 2 and 2) in place of true
randomness. This approach has the advantage of not requiring a key-blinding signature
scheme, which allows more mainstream algorithms to be used. However, our approach
ensures that derived private keys are never computed (and indeed are infeasible to compute)
on the primary token, one of the stated goals of Yubico’s proposal [15]. Furthermore, the
construction in [7] is not proven to be secure under the original definitions from [10], instead
working with a modified security model.

The approach taken by [11] differs from ours more significantly, as it is primarily based
on a different primitive: a split KEM. As with [7], it is not proven to be securely instantiable
under the strongest definitions from [10]. Hence, our work is the first (and to date, only)
construction to have a provably secure instantiation using the strongest model from [10].
However, we will argue in Chapter 4 that this model does not accurately capture the
security requirements; hence, this is not necessarily a strong argument for preferring our
approach.

16

ExppkupqARKG,A(λ)

1 : pp← Setup(1λ)

2 : (sk, pk)←$ KeyGen(pp)

3 : b←$ {0, 1}

4 : b′ ←$AOb
pk′ (pp, pk)

5 : return Jb = b′K

Oracle O0
pk′(aux)

1 : (c, k)←$ Π.Encaps(pkΠ)

2 : τ ←$ PRF(k, aux)

3 : pk′ ← ∆.BlindPK(pk∆, ck)

4 : sk′ ← ∆.BlindSK(sk∆, ck)

5 : return (sk′, pk′)

Oracle O1
pk′(aux)

return ∆.KeyGen()

Figure 3.3: The PK-unlinkability experiment for pqARKG

3.2 Security Analysis

3.2.1 Public-Key Unlinkability

We now prove that the post-quantum ARKG construction described in Figure 3.2 satifies
PK-unlinkability with the base distribution D equal to the distribution of identity keypairs
in the blinded signature scheme used, that is, the distribution of outputs of ∆.KeyGen.

As a reference, in Figure 3.3 we repeat the PK-unlinkability security experiment de-
scribed in Figure 2.1 with our scheme, denoted by pqARKG, and the distribution D inlined.
Since DeriveSK is only called immediately after DerivePK and in the same oracle, we omit
the line which performs decapsulation of the just-encapsulated value.

Theorem 3.1. Let pqARKG denote the ARKG construction in Figure 3.2, and let D be
the distribution of outputs of ∆.KeyGen. For any efficient adversary A making at most n
queries to oracle Ob

pk′, there exist efficient algorithms B0, B1, and B2 such that

Advpku,DpqARKG,A(λ) ≤ n · AdvIND-CCA
Π,B0 (λ) + n · AdvprfPRF,B1(λ) + AdvS-Ind-Blind

∆,B2 (λ).

Proof. We proceed by a sequence of games, beginning with the original security experiment
as Game 0. We define the adversary’s advantage in Game 0 in the same fashion as its
advantage in the original experiment; its advantages in subsequent games are similar. We
will follow this same method in subsequent proofs.

Game 0. This game is precisely the security experiment ExppkupqARKG,A, as described in
Figure 3.3. Hence

Advpku,DpqARKG,A(λ) = AdvG0pqARKG,A(λ).

17

Hybrid games. In order to reduce to the strong independent blinding property of
∆, we must replace the derived τ -values with truly random values. We first replace the
encapsulated keys k with truly random values (relying on the IND-CCA security of Π),
then the derived keys τ (relying on the pseudorandomness of PRF). We accomplish this
via a sequence of hybrid games Hi, beginning with H0 = G0. For i ≥ 1, we define

� H2i−1 to be identical to H2i−2 except that in the ith iteration of O0
pk′ the call to

Π.Encaps on line 1 is replaced by taking a random sample from the key space of Π.

� H2i to be identical to H2i−1 except that in the ith iteration of O0
pk′ the output τ of

PRF on line 2 is replaced by a truly random value.

We now bound the increase in advantage between games H2i−2 and H2i−1 and the
increase in advantage between gamesH2i−1 andH2i. For the former, consider an IND-CCA
adversary Bi for Π which challenges A in H2i−2, replacing the generated Π public key with
the one received from its IND-CCA challenger and inserting its challenge ciphertext-key
pair at line 1 in the ith iteration of O0

pk′ , returning the value returned by A. The adversary
Bi faithfully simulates gameH2i−2 if its challenge key is a valid decapsulation and faithfully
simulates game H2i−1 if its challenge key is a random sample. Then

Adv
H2i−2

pqARKG,A(λ) ≤ AdvIND-CCA
Π,Bi (λ) + Adv

H2i−1

pqARKG,A(λ).

For the latter, an adversary Ci for PRF can similarly challenge A in H2i−1, using its oracle
at line 2 in the ith iteration of O0

pk′ and returning 1 if and only if A wins the game. This
gives the bound

Adv
H2i−1

pqARKG,A(λ) ≤ AdvprfPRF,Ci(λ) + AdvH2i
pqARKG,A(λ).

Combining the previous two inequalities, we obtain

AdvH0
pqARKG,A(λ) ≤ n · AdvIND-CCA

Π,B0 (λ) + n · AdvprfPRF,B1(λ) + AdvH2n
pqARKG,A(λ),

where B0 is the most successful of the adversaries Bi and B1 is the most successful of the
adversaries Ci for 1 ≤ i ≤ n.

Game 1. This game is identical to Game 0 except that all PRF outputs τ on line 2 of
the O0

pk′ oracle are replaced by truly random values. Since A makes at most n queries to

Ob
pk′ , Game 1 is identical to game H2n, so

AdvG1pqARKG,A(λ) = AdvH2n
pqARKG,A(λ).

18

We now reduce Game 1 to the S-Ind-Blind experiment for ∆, described in Figure 2.6. Let
B2 be a S-Ind-Blind adversary for ∆, challenged to guess a bit b. From its challenger, it
receives a ∆-public key and oracle which either (when b = 0) samples a random blinding
factor τ and outputs the associated blinded keypair or (when b = 1) outputs a fresh ∆
keypair. The S-Ind-Blind adversary B2 acts as the challenger for Game 1 with A, using
its oracle to answer A’s queries to Ob

pk′ . Since the blinding factor τ in O0
pk′ is now sampled

randomly, B2 faithfully simulates Game 1 for A, providing the oracle O0
pk′ when b = 0 and

O1
pk′ when b = 1. It follows that B2 wins precisely when A does, implying that

AdvG1pqARKG,A(λ) = AdvS-Ind-Blind
∆,B2 (λ).

The desired security statement is given by combining these bounds.

3.2.2 Private-Key Security

We will show that the post-quantum ARKG construction satisfies msKS-security, from
which it follows that it also satisfies the other three security levels.

As before, in Figure 3.4 we repeat the msKS security experiment from Figure 2.2 with
pqARKG inlined.

Theorem 3.2. Let pqARKG denote the ARKG construction in Figure 3.2, and suppose that
the key blinding scheme ∆ provides unique blinding and supports private-key unblinding.
For any efficient adversary A making at most n queries to oracle Opk′, there exist efficient
algorithms B0, B1, B2, and B3 such that

AdvmsKS
pqARKG,A(λ) ≤ n · AdvIND-CCA

Π,B0 (λ) + n · AdvprfPRF,B1(λ) + AdvS-Ind-Blind
∆,B2 (λ) + AdvKR

∆,B3(λ).

Proof. We proceed by a sequence of games.

Game 0. This game is precisely the security experiment ExpmsKS
pqARKG,A as described in

Figure 3.4. Hence
AdvmsKS

pqARKG,A(λ) = AdvG0pqARKG,A(λ).

Game 1. This game is identical to Game 0 except for the following changes:

� The encapsulated key k on line 1 of Opk′ is replaced by a truly random value.

� The output τ of PRF on line 2 of Opk′ is replaced by a truly random value. The
challenger stores this value alongside (c, aux).

19

ExpmsKS
pqARKG,A

1 : pp← Setup(1λ)

2 : PKList← ∅
3 : SKList← ∅
4 : (sk, pk)←$ KeyGen()

5 : (sk∗, pk∗, cred∗)←$AOpk′ ,Osk′ (pp, pk)

6 : sk′ ← DeriveSK(pp, sk, cred∗)

7 : return Check(sk∗, pk∗)

8 : ∧ Check(sk′, pk∗)

9 : ∧ J(c∗, aux∗) /∈ SKListK

Oracle Opk′(aux)

1 : (c, k)←$ Π.Encaps(pkΠ)

2 : τ ← PRF(k, aux)

3 : pk′ ← ∆.BlindPK(pk∆, τ)

4 : PKList← PKList ∪
{
(pk′, (c, aux))

}
5 : return (pk′, (c, aux))

Oracle Osk′(c, aux)

1 : if (·, (c, aux)) /∈ PKList then return ⊥
2 : SKList← SKList ∪ {(c, aux)}
3 : τ ← Π.Decaps(skΠ, c)

4 : ck← PRF(k, aux)

5 : return ∆.BlindSK(sk∆, ck)

Figure 3.4: The msKS experiment for pqARKG

� The call to PRF on line 4 of Osk′ is replaced by looking up the value of τ that was
sampled and stored alongside the given credential (c, aux).

A similar hybrid argument to the one given in the proof of Theorem 3.1 shows that there
exist efficient algorithms B0 and B1 such that

AdvG0pqARKG,A(λ) ≤ n · AdvIND-CCA
Π,B0 (λ) + n · AdvprfPRF,B1(λ) + AdvG1pqARKG,A(λ).

Game 2. This game is identical to Game 1 except for the following changes:

� The call to ∆.BlindPK on line 3 of Opk′ is replaced by a call to ∆.KeyGen. The
challenger stores the generated secret key as sk′ alongside (c, aux) and τ .

� The call to ∆.BlindSK on line 5 of Osk′ is replaced by looking up the value of sk′ that
was generated and stored alongside (c, aux) and τ .

A S-Ind-Blind adversary for ∆ which uses its key generation oracle in place of ∆.BlindPK
and ∆.BlindSK faithfully simulates Game 1 when its challenge bit is 0 and Game 2 when

20

its challenge bit is 1. Hence, the increase in advantage introduced by these changes is
bounded by the S-Ind-Blind security of ∆:

AdvG1pqARKG,A(λ) ≤ AdvS-Ind-Blind
∆,B2 (λ) + AdvG2pqARKG,A(λ).

We now define a KR adversary B3 for ∆ which calls A as an oracle, reducing Game
2 to the KR experiment for ∆. From the KR challenger, B3 receives a freshly generated
∆-public key. The KR-adversary B3 acts as the challenger for Game 2, substituting this
public key for the ∆-public key provided to A. Both Opk′ and Osk′ are independent of
the ∆-secret key, so B3 simulates Game 2 faithfully. When A returns (sk∗, pk∗, cred∗), the
algorithm B3 computes the blinding factor τ ∗ corresponding to cred∗. Since ∆ supports
private-key unblinding, B3 then computes sk ← UnblindSK(τ ∗, sk∗) and returns sk to the
KR challenger.

We claim that B3 wins the KR experiment whenever A wins Game 2. If A submits a
winning tuple, then the value sk′ that would be computed on line 6 must be the blinding
of the unknown seed private key with τ ∗. By unique blinding, sk∗ = sk′, so UnblindSK does
indeed recover the unknown seed private key. It follows that

AdvG2pqARKG,A(λ) ≤ AdvKR
∆,B3(λ).

The desired security statement is given by combining these bounds.

21

Chapter 4

Credential-Based Recovery

While the ARKG abstraction models the so-called “cryptographic core” of Yubico’s pro-
posed standard, we argue that it does not capture the practical security properties required
of the protocol or a post-quantum replacement. Some of this is due to focusing on the core
and ignoring real-world details like server and token policy—for instance, the unlinka-
bility definition considers only the adversary’s ability to distinguish two distributions of
keypairs, ignoring non-mathematical sources of information. At times, however, even the
cryptographic details seem out of step with reality. In particular, the ARKG adversary is
given at once too much power and not enough.

Consider the msKS security model, presented in Figure 2.2. In this experiment, the
adversary can obtain derived secret keys corresponding to public keys that have already
been generated. In reality, these keys never leave the backup token; an adversary who
can retrieve them has powers that would render WebAuthn insecure. Of course, granting
the adversary more power than is realistic doesn’t inherently constitute a weakness in
analysis. However, this is the only way in which it can interact with the derived secret
keys. Notably, the adversary cannot obtain signatures made with the derived keys—which
is a more natural interface available in the real world.

The lack of a signature oracle could be explained by the composability result obtained
in [10]: an ARKG scheme which satisfies PK-unlinkability with some distribution (see
Figure 2.1) can be securely composed with protocols using keypairs distributed according
to this distribution. According to this result, using derived keypairs to produce signatures
in WebAuthn should not weaken the protocol’s security. However, the process by which
keypairs are derived reveals more information to a potential attacker than is given to
the PK-unlinkability adversary. The adversary’s powers are limited to observing freshly

22

derived keypairs. In particular, it is not given the ability to view the recovery credentials
which enable the backup token to derive these secret keys, nor may it interact either the
primary token or the backup token in any other way.1 These values are computed and sent
to servers alongside derived public keys before the derived secret keys are used to provide
signatures for WebAuthn.

These points are all theoretical, but they have a practical impact. The key-revealing
power given to the adversary in PK-unlinkability and msKS security precludes the use of
cryptographic primitives which do not guarantee security under such compromises, such as
all but one of the blinded signatures from [9], even though such primitives may be secure for
practical use in the recovery extension. At the same time, the PK-unlinkability adversary
is too underpowered to model a real-world attacker. This can be illustrated concretely:
in Chapter 5 we highlight an attack on the unlinkability of recovery credentials which the
ARKG security model fails to capture.

For these reasons, we argue that security analysis of the WebAuthn recovery extension
under a new model more aligned with real-world use is required before the protocol’s
security can be assured. We attempt to provide such a security model here.

4.1 Protocol Model

We propose an abstraction which captures both the credential generation scheme and the
associated protocol, which we call credential-based recovery. To simplify security analysis
we make the simplifying assumption that each user has exactly one primary token and
exactly one backup token, and that these tokens are not shared among users. In contrast,
Yubico’s protocol allows users not only to have multiple backup tokens for a single primary
token but also to link a single backup token with multiple primary tokens. Our model does
not capture the full functionality of Yubico’s protocol; however, it does provide guarantees
for users who use only a single primary token and a single backup token.

Our model considers client, human user, and token to be a single entity, which we
simply call a user. This amalgamation assumes that the client and the token have a secure
connection. In the FIDO2 passwordless authentication protocol, of which WebAuthn is one

1There is some room for doubt about the PK-unlinkability security definition in [10]. The definition
of the Ob

pk′ oracle indicates that it only returns a keypair and not a credential; however, the proof of
PK-unlinkability seems to include some steps which attempt to prove the unlinkability of credentials. The
oracle’s pseudocode is never provided in full. We have chosen to take the interpretation that only a keypair
is returned, as this is compatible with the way the PK-unlinkability security definition is used later, and
to do otherwise would be to speculate about undefined security properties.

23

component, this connection is provided by the Client To Authenticator Protocol, or CTAP.
Yubico’s proposed recovery standard additionally specifies extensions to CTAP, which we
do not consider as part of this model. We additionally assume that registration of recovery
credentials occurs over an authenticated channel. This is a reasonable assumption: the
recovery protocol is intended to back up a secure authentication protocol, which should
allow for such a transaction to take place. We make no such assumptions during the
recovery phase.

A credential-based recovery protocol CBR defines an interaction between a user U and
a server S. The protocol has two components: a interface of stateless algorithms for
performing operations on credentials and keys, and a set of protocol actions which consume
and manipulate state and which make calls to the interface. We refer to an execution of
the protocol at a party (either a user or a server) as a session. Each party maintains some
long-term state as well as short-term state associated with individual sessions.

The stateless interface consists of the following algorithms:

� KeyGen(1λ): outputs a seed keypair (pk, bk). The primary key pk will be used by the
primary authenticator to generate recovery credentials for the backup authenticator,
which retains the backup key bk.

� CredGen(pk, aux): inputs a primary key pk and some auxiliary information aux, out-
puts a recovery credential rc bound to aux and its identifier rcid.

� Response(bk, rcid, aux, ch, nc): inputs a secret key bk, a recovery credential identifier
rcid, auxiliary information aux, a new credential nc, and a challenge ch; outputs a
response rsp.

� Verify(rc, aux, nc, ch, rsp): inputs a recovery credential rc, auxiliary information aux,
a new credential nc, a challenge ch, and a response rsp; outputs a decision bit b.

We refer to keys as “backup” and “primary” instead of “private” and “public” because
Yubico’s specification indicates that the primary (“public”) key should not be exposed to
the server. Indeed, if this key is made public the unlinkability of the scheme is severely
weakened.

The protocol actions are the following:

� Register: The user generates a recovery credential which the server stores.

� UserBegin: The user requests to initiate the recovery process by providing their user-
name to the server.

24

� ServerBegin: The server initiates the recovery process by returning recovery informa-
tion to the user for identification purposes. The server may also provide data to be
used to establish a new permanent credential.

� UserComplete: The user proves their identity using the provided recovery information.
The user may also provide data to be used to establish a new permanent credential.

� ServerComplete: The server verifies the user’s response. If successful, the parties have
established a new permanent credential, restoring the user’s access to their account
on the server.

Each non-Register action consumes the party’s long-term state st and the session state π,
both of which it may manipulate, and some input data. The format of data is protocol-
specific. The Register action occurs over an authenticated channel; hence, we model it as
a joint action which consumes some input data and the long-term state of each party.

Session state π consists of the following variables, which are common to all protocol
actions:

� selfid: the identifier used by the session owner,

� peerid: the identifier used by the session peer,

� role: the role played by the session owner (one of user or server),

� status: the session status (one of recover, accept, or reject),

� sid: the session identifier, and

� st: additional state for the session, to be used as defined by specific protocols.

We make no assumptions about variables defined in long-term state, but we do assume
that all state is initialized to ⊥ or ∅ as appropriate.

We next formalize two security goals for credential-based recovery. The first, which we
call recovery authentication, stipulates that a server only completes the recovery process
for a registered user if the user also completes the recovery process, and the two parties
agree on each other’s identities, which credential was used for recovery, and information
to be used for future authentication. Additionally, this user should be the only user which
satisfies these requirements: that is, two different users should not both be authenticated
to the same server with the same session transcript. Similarly, the same user should

25

not repeat the same transcript at the same server in two different sessions. The second
security goal, which we call unlinkability, stipulates broadly that an adversary should be
unable to differentiate users based on information obtained via observing (and interfering
with) protocol execution.

4.1.1 Recovery Authentication

We model the recovery authentication security of a credential-based recovery protocol CBR
with the experiment ExprecCBR, formally defined in Figure 4.1. The adversary can make calls
to any of the following oracles, which we denote collectively by O:

� NewUser: inputs a party U . Initializes U as a user.

� NewServer: inputs a party S and a string serverID. Initializes S as a server with the
given ID, if no other server has the same ID.

� ORegister: inputs a user U , a server S, and a username uid. Attempts to register U
at S with the given username, returning the output of Register. If the registration is
successful, (U, S, uid) is added to a list of registered accounts.

� Action: inputs a party P , an index i, and data data. Proceeds with the next action
of the recovery process for session πi

P with data as input, returning the output of
whichever action is called.

Similarly to security analyses of FIDO2 and WebAuthn in [3], [14], and [5], we rely
on the notion of matching sessions to define security. Intuitively, two sessions match if
they represent two different sides of the same protocol interaction. Formally, we say that
sessions π1 and π2 match if

� one of π1.role and π2.role is user and the other is server,

� π1.status = accept = π2.status,

� π1.selfid = π2.peerid and π2.selfid = π2.peerid, and

� π1.sid = π2.sid.

The adversary wins the game if either of the following conditions hold:

26

ExprecCBR,A(λ)

1 : Luser,Lserver,LRegister ← ∅
2 : AO(1λ)
3 : if ∃(P1, i1) ̸= (P2, i2) :

4 : πi1
P1
.sid = πi2

P2
.sid ̸= ⊥

5 : ∧Match(πi1
P1
, πi2

P2
) ̸= 1

6 : then return 1

7 : if ∃(S, i) : πi
S .role = server

8 : ∧ πi
S .status = accept

9 : ∧ ∄(U, j) : Match(πi
S , π

j
U) = 1

10 : ∧ (U, S, πi
S .peerid) ∈ LRegister

11 : then return 1

12 : return 0

Match(π1, π2)

1 : return Jπ1.role ̸= ⊥K
2 : ∧ Jπ2.role ̸= ⊥K
3 : ∧ Jπ1.role ̸= π2.roleK
4 : ∧ Jπ1.status = acceptK
5 : ∧ Jπ2.status = acceptK
6 : ∧ Jπ1.selfid = π2.peeridK
7 : ∧ Jπ1.peerid = π2.selfidK
8 : ∧ Jπ1.sid = π2.sidK

NewUser(U)

1 : if U ∈ Luser ∪ Lserver then return

2 : Luser ← Luser ∪ {U}
3 : return

NewServer(S, serverID)

1 : if S ∈ Luser ∪ Lserver then return

2 : if ∃S′ ∈ Lserver : stS′ .id = serverID then

3 : return

4 : stS .id← serverID

5 : return

ORegister(U, S, uid)

1 : if U /∈ Luser then return ⊥
2 : if S /∈ Lserver then return ⊥
3 : ret←$ Register(uid, stU , stS , λ)

4 : if ret ̸= ⊥ then

5 : LRegister ← LRegister ∪ {(U, S, uid)}
6 : return ret

Action(P, i, data)

1 : ret← ⊥
2 : if πi

P = ⊥ then

3 : if P ∈ Luser then
4 : ret← UserBegin(πi

P , data, stP)

5 : elseif P ∈ Lserver then
6 : ret←$ ServerBegin(πi

P , data, stP)

7 : elseif πi
P .status = recover then

8 : if πi
P .role = user then

9 : ret←$ UserComplete(πi
P , data, stP)

10 : elseif πi
P .role = server then

11 : ret← ServerComplete(πi
P , data, stP)

12 : return ret

Figure 4.1: The rec experiment for CBR

27

� Two distinct non-matching sessions have the same session identifier. In principle,
this means that protocol admits some sort of replay attack.

� A server session π accepts without a matching user session. Moreover, the user session
must belong to a user registered at S under the username π.peerid. In principle, this
means that it is possible for someone (registered or otherwise) to authenticate to a
server by some means other than following the protocol.

Note that two distinct sessions with the same role and the same session identifier will not
match; therefore, the adversary wins if two distinct user sessions (or two distinct server
sessions) have the same session identifier. We define the advantage of an adversary A to
be

AdvrecCBR,A(λ) = Pr
[
ExprecCBR,A = 1

]
.

Unfortunately, Yubico’s proposed standard does not satisfy this security notion, as we
will show in Chapter 5. It does, however, satisfy a slightly modified version, in which a
user may only have a single account at each server. We refer to this notion as single-
account recovery authentication, or 1rec. The security experiment is identical except that
the adversary fails if any user is registered twice at any server.

4.1.2 Unlinkability

In the unlinkability security experiment ExpUL
CBR, depicted in Figure 4.2, the adversary is

challenged to distinguish between two users of their choice—that is, to determine whether
the two users have been switched or not. The adversary is initially provided with the same
set O of oracles as for recovery authentication. Eventually, the adversary selects target
users U0 and U1. The challenger samples a random bit b and chooses new identifiers U∗0
and U∗1 . The game continues with the adversary receiving the set of oracles Ob, consisting
of NewUser, NewServer, ORegisterb, and Actionb, with the latter two defined as follows:

� The oracle ORegisterb is identical to ORegister, except that on a query with U = U∗0 ,
it will use stUb

when calling Register; on a query with U = U1∗ , it will use stU1−b
.

� The oracle Actionb is identical to Action, except that on a query with P = U∗0 , it
will use stUb

instead of stU1
when calling one of the protocol actions; on a query with

P = U∗1 it will use stU1−b
.

28

The adversary is challenged to guess the value of b.

Of course, the adversary could trivially win the game by observing the behaviour of U∗0
given a recovery credential generated by U0. Since the adversary has all the information
available to a server, it must be able to determine whether or not U∗0 and U0 are the same
user based on the response to this query; if not, the recovery protocol would be useless.
We prevent this trivial winning strategy by setting a bit fail if the adversary makes such
a query and returning a random bit in the event that fail is set. Since the experiment
is designed to be opaque with regards to input data for protocol actions, we detect this
condition via session variables, setting fail if at any point one of U∗0 and U∗1 has a session
corresponding to a registration for U0 or U1, and vice versa. Our experiment creates new
identifiers for the challenge users U0 and U1 for a similar reason: it prevents the adversary
from winning by attempting to begin session i with U∗0 for a value i which corresponds to
a session for U0 but not for U1.

We define the advantage of an adversary A to be

AdvUL
CBR,A(λ) =

∣∣∣∣Pr[ExpUL
CBR,A = 1

]
− 1

2

∣∣∣∣.
Yubico’s proposed standard fails to meet this notion of unlinkability due to the same

weakness that prevents it from satisfying our notion of recovery authentication. It does,
however, provide unlinkability under the assumption that a user may have only a single
account at each server. We refer to this weaker notion as inter-domain unlinkability.
We model inter-domain unlinkability with an experiment which is identical to that for
unlinkability except for two changes:

� The fail flag is set in ORegister and ORegisterb if the given user has already registered
at the given server.

� The fail flag is set in ORegister if the adversary attempts to register U∗0 or U∗1 (re-
spectively U0 or U1) at a server where U0 or U1 (respectively U∗0 or U∗1) already has
an account.

This experiment is depicted in Figure 4.3. We define the advantage of an adversary A to
be

AdvI-UL
CBR,A(λ) =

∣∣∣∣Pr[ExpI-UL
CBR,A = 1

]
− 1

2

∣∣∣∣.
Note that the I-UL security experiment is identical to the UL security experiment except for
imposing additional failure conditions on the adversary. Thus, inter-domain unlinkability
is implied by unlinkability.

29

ExpUL
CBR,A(λ)

1 : Luser,Lserver,LRegister ← ∅
2 : fail← 0

3 : (U0, U1)←$AO(1λ)
4 : U∗0 ← U : U /∈ Lserver ∪ Luser
5 : Luser ← Luser ∪ {U∗0 }
6 : U∗1 ← U : U /∈ Lserver ∪ Luser
7 : Luser ← Luser ∪ {U∗1 }
8 : b←$ {0, 1}
9 : b′ ←$AOb(U∗0 , U

∗
1)

10 : if fail then b′ ←$ {0, 1}
11 : return Jb = b′K

CheckFail(U, π)

1 : if U ∈ {U0, U1} then
2 : if ∃(d, S) : stS .id = π.peerid

3 : ∧ (U, S, π.selfid) /∈ LRegister
4 : ∧ (U∗d , S, π.selfid) ∈ LRegister
5 : then return 1

6 : else return 0

7 : elseif U ∈ {U∗0 , U∗1 } then
8 : if ∃(d, S) : stS .id = π.peerid

9 : ∧ (U, S, π.selfid) /∈ LRegister
10 : ∧ (Ud, S, π.selfid) ∈ LRegister
11 : then return 1

12 : else return 0

13 : else return 0

ORegisterb(U, S, uid)

1 : if U /∈ Luser then return ⊥
2 : if S /∈ Lserver then return ⊥
3 : if U = U∗0 then st← stUb

4 : elseif U = U∗1 then st← stU1−b

5 : else st← stU

6 : ret←$ Register(uid, st, stS , λ)

7 : if ret ̸= ⊥ then

8 : LRegister ← LRegister ∪ {(U, S, uid)}
9 : return ret

Actionb(P, i, data)

1 : ret← ⊥
2 : if P = U∗0 then st← stUb

3 : elseif P = U∗1 then st← stU1−b

4 : else st← stP

5 : if πi
P = ⊥ then

6 : if P ∈ Luser then
7 : ret← UserBegin(πi

P , data, st)

8 : fail← fail ∨ CheckFail(P, πi
P)

9 : elseif P ∈ Lserver then
10 : ret←$ ServerBegin(πi

P , data, st)

11 : elseif πi
P .status = recover then

12 : if πi
P .role = user then

13 : ret←$ UserComplete(πi
P , data, st)

14 : elseif πi
P .role = server then

15 : ret← ServerComplete(πi
P , data, st)

16 : return ret

Figure 4.2: The UL experiment for CBR. For a description of the oracles NewUser,
NewServer, ORegister, and Action, see Figure 4.1.

30

ExpI-UL
CBR,A(λ)

1 : Luser,Lserver,LRegister ← ∅
2 : fail← 0

3 : (U0, U1)←$AO(1λ)
4 : U∗0 ← U : U /∈ Lserver ∪ Luser
5 : Luser ← Luser ∪ {U∗0 }
6 : U∗1 ← U : U /∈ Lserver ∪ Luser
7 : Luser ← Luser ∪ {U∗1 }
8 : b←$ {0, 1}
9 : b′ ←$AOb(U∗0 , U

∗
1)

10 : if fail then b′ ←$ {0, 1}
11 : return Jb = b′K

ORegisterb(U, S, uid)

1 : if U /∈ Luser then return ⊥
2 : if S /∈ Lserver then return ⊥
3 : if (U, S, ·) ∈ LRegister then fail← 1

4 : if U = U∗0 then st← stUb

5 : elseif U = U∗1 then st← stU1−b

6 : else st← stU

7 : ret←$ Register(uid, st, stS , λ)

8 : if ret ̸= ⊥ then

9 : LRegister ← LRegister ∪ {(U, S, uid)}
10 : if ∃b1, b2 : (Ub0 , S, ·), (U∗b1 , S, ·) ∈ LRegister
11 : then fail← 1

12 : return ret

ORegister(U, S, uid)

1 : if U /∈ Luser then return ⊥
2 : if S /∈ Lserver then return ⊥
3 : if (U, S, ·) ∈ LRegister then fail← 1

4 : ret←$ Register(uid, stU , stS , λ)

5 : if ret ̸= ⊥ then

6 : LRegister ← LRegister ∪ {(U, S, uid)}
7 : return ret

Figure 4.3: The I-UL experiment for CBR. For a description of the oracles NewUser,
NewServer, Action, and Actionb, see Figures 4.1 and 4.2.

31

Chapter 5

Group-Based and Post-Quantum
CBR Protocols

Now that we have laid out the desired security properties for a credential-based recovery
protocol, we turn our hand to modelling Yubico’s proposal in this framework, describing
our novel quantum-safe credential-based recovery protocol, and analyzing the security of
both. We will denote the group-based CBR protocol by gCBR and the post-quantum
protocol by pqCBR.

5.1 Protocol Descriptions

In Figure 5.1, we describe the credential-based recovery scheme defined by Yubico’s stan-
dard. Readers will note the similarities with the ARKG scheme described in Figure 3.1.
Notably, this formulation includes a hash function H, a digital signature scheme Λ, and
some bookkeeping around the identity point of G, which are absent in the ARKG descrip-
tion; these elements are present in Yubico’s proposal but omitted from the analysis in
[10]. Our post-quantum credential-based recovery scheme is described in Figure 5.2. The
only notable difference from the post-quantum ARKG formulation is that the key blinding
scheme ∆ is treated as a key-blinding signature scheme.

Both the group-based and the post-quantum protocols follow a similar structure with
regards to using the interface provided by the credential-based recovery scheme. We de-
scribe a generic construction in Figure 5.3, with only one point of difference between the
two: the post-quantum version uses both server identifier and username in the derivation of

32

recovery credentials, whereas the group-based version only uses the server identifier. This
lack of binding recovery credentials to usernames leads to a minor weakness in Yubico’s
protocol.

The recovery protocol is intended to be piggy-backed on top of another authentication
protocol: its purpose is to allow the user and server to establish a new credential in the
event of device loss. Hence, we have attempted to make as few assumptions about the
underlying protocol as possible, in order for our results to be more widely applicable. The
following assumptions about the underlying protocol are required:

� Users must retain knowledge of their usernames in the event of device loss.

� A server must not repeat a challenge for the same user.

� A user must not generate the same new credential twice for the same account.

Up to the latter two restrictions, we allow challenges and new credentials to be provided
by the adversary. This captures protocols which might generate random challenges (which
repeat with low probability) as well as those which use a counter. Although we describe the
string ch as a challenge, it could also include any data that the server wishes to provide to
be agreed upon with the user, for instance, to be used in credential generation. Similarly,
although we describe nc as a credential, it could also include any data that the user wishes
to agree upon with the server. Concretely, WebAuthn realizes these assumptions by having
human-memorable usernames, randomly generated challenges of sufficient length such that
a collision is highly unlikely, and a high-entropy public key included in user-generated
credentials.

5.2 Weaknesses in the Group-Based Protocol

As previously mentioned, Yubico’s protocol does not satisfy our security requirements when
users are allowed to have multiple accounts at the same server. This is because recovery
credentials are generated independently of account usernames; they are bound only to
server identifiers. Hence, a user with multiple accounts cannot determine which account
a recovery credential belongs to. Practically, this allows a server to determine if any two
registered accounts belong to the same user. During the recovery process for one account,
the server provides a recovery credential identifier for another account. The user will
respond with a valid signature for the recovery public key associated with the other account
if and only if the two accounts both belong to the user. This breaks the unlinkability of

33

KeyGen(1λ)

1 : s←$ Zq

2 : S ← gs

3 : return (pk, bk) = (S, s)

Response(bk = s, rcid = (E, µ), aux, ch, nc)

1 : if E = 1 then return ⊥
2 : (ck,mk)← KDF(Es)

3 : h← H(aux)

4 : if Σ.Verify(mk, (E, h), µ) then

5 : p← ck+ s

6 : return Λ.Sign(p, (ch, h, nc))

7 : else return ⊥

CredGen(pk = S, aux)

1 : e←$ Zq \ {0}
2 : E ← ge

3 : (ck,mk)← KDF(Se)

4 : P ← gck · S
5 : h← H(aux)

6 : µ← Σ.MAC(mk, (E, h))

7 : return rc = P, rcid = (E,µ)

Verify(rc = P, aux, nc, ch, rsp)

h← H(aux)

return Λ.Verify(P, (ch, h, nc), rsp)

Figure 5.1: Yubico’s credential-based recovery scheme

KeyGen(1λ)

1 : (pk∆, sk∆)←$ ∆.KeyGen()

2 : (pkΠ, skΠ)←$ Π.KeyGen()

3 : return pk = (pk∆, pkΠ), bk = (sk∆, skΠ)

Response(bk = (sk∆, skΠ), rcid = c, aux, ch, nc)

1 : k ← Π.Decaps(skΠ, c)

2 : τ ← PRF(k, aux)

3 : return ∆.Sign(sk∆, τ, (ch, nc))

CredGen(pk = (pk∆, pkΠ), aux)

1 : (c, k)←$ Π.Encaps(pkΠ)

2 : τ ← PRF(k, aux)

3 : rc← ∆.BlindPK(pk∆, τ)

4 : return rc, rcid = c

Verify(rc, aux, nc, ch, rsp)

return ∆.Verify(rc, (ch, nc), rsp)

Figure 5.2: Our post-quantum credential-based recovery scheme

34

Register(uid, stU , stS, λ)

1 : if stS .rc[uid] ̸= ⊥ then return ⊥

2 : if (stU .pk, stU .bk) = ⊥ then (stU .pk, stU .bk)←$ KeyGen(1λ)

3 : aux← (stS .id, uid) // pqCBR

4 : aux← stS .id // gCBR

5 : (rc, rcid)←$ CredGen(stU .pk, aux)

6 : stU .uid[stS .id]← stU .uid[stS .id] ∪ {uid}
7 : stS .rc[uid]← (rc, rcid)

8 : return rc, rcid

UserBegin(πi
U , data = (uid, serverID), stU)

1 : πi
U .selfid = uid

2 : πi
U .peerid = serverID

3 : πi
U .role = user

4 : if uid /∈ stU .uid[serverID]

5 : then πi
U .status = reject

6 : else πi
U .status = recover

7 : return

UserComplete(πi
U , data = (rcid, nc, ch), stU)

1 : aux← (πi
U .peerid, πi

U .selfid) // pqCBR

2 : aux← πi
U .peerid // gCBR

3 : if nc ∈ stU .nc[aux] then return ⊥
4 : rsp←$ Response(stU .bk, rcid, aux, nc, ch)

5 : if rsp ̸= ⊥ then

6 : πi
U .status← accept

7 : πi
U .sid← (πi

U .peerid, πi
U .selfid, ch, rcid, nc)

8 : stU .nc[aux]← stU .nc[aux] ∪ {nc}

9 : else πi
U .status← reject

10 : return rsp

ServerBegin(πi
S, data = (uid, ch), stS)

1 : if stS .rc[uid] = ⊥ then return

2 : if ch ∈ stS .ch[uid] then return

3 : πi
S .selfid← stS .id

4 : πi
S .peerid← uid

5 : πi
S .role← server

6 : πi
S .status← recover

7 : πi
S .st← ch

8 : stS .ch[uid]← stS .ch[uid] ∪ {ch}
9 : return

ServerComplete(πi
S, data = (nc, rsp), stS)

1 : (rc, rcid)← stS .rc[π
i
S .peerid]

2 : ch← πi
S .st

3 : aux← (πi
S .selfid, π

i
S .peerid) // pqCBR

4 : aux← πi
S .selfid // gCBR

5 : b← Verify(rc, aux, nc, ch, rsp)

6 : if b then

7 : πi
S .status← accept

8 : πi
S .sid← (πi

S .selfid, π
i
S .peerid, ch, rcid, nc)

9 : else πi
S .status← reject

10 : return b

Figure 5.3: A generic credential-based recovery protocol

35

Yubico’s scheme. An identical approach leads to an attack on recovery authentication in
which a user can “recover” one of their accounts when actually attempting to recover the
other. Fortunately, both of these weaknesses are relatively minor, and the protocol can be
proven secure in our model (albeit under a non-standard assumption) as long as users do
not have multiple accounts at the same server.

We have conveyed these concerns to the authors of Yubico’s proposal. They brought our
attention to the fact that WebAuthn already admits a similar attack on unlinkability, so the
recovery protocol does not introduce a new attack vector. This weakness in WebAuthn is
discussed further in [14]. Regardless, the group-based recovery protocol should be handled
with care if used in conjunction with a non-WebAuthn authentication protocol which does
not admit the same attack.

36

Chapter 6

Security Analysis

We now prove recovery authentication security and unlinkability of both gCBR and pqCBR.

6.1 Recovery Authentication

Theorem 6.1. Let gCBR be the credential-based recovery protocol described in Figures 5.3
and 5.1. For any efficient adversary A making at most nRegister queries to ORegister, there
exist efficient algorithms B0, B1, B2, and B3 such that

Adv1recgCBR,A(λ) ≤ AdvcrH,B0(λ) +

(
nRegister

2

)
· 1

q − 1
+ nuser · Advsg-prfPRF,B1(λ)

+ nRegister ·
(
AdvEUF-CMA

Λ,B2 (λ) + AdvSUF-CMA
Σ,B3 (λ)

)
.

Proof. We begin by arguing that the first winning condition, on line 3 of the recovery
authentication experiment in Figure 4.1, is never met. Suppose that (P1, i1) ̸= (P2, i2) and
πi1
P1
.sid = πi2

P2
.sid ̸= ⊥. Since the session identifier is only set to a non-⊥ value when a session

accepts, and a session in the accept state cannot be modified, πi1
P1
.status = accept = πi2

P2
.

Session identifiers are also only set on sessions with set roles, so both πi1
P1

and πi2
P2

have set
roles.

If πi1
P1
.role = server = πi2

P2
, then πi1

P1
.selfid = πi2

P2
.selfid, πi1

P1
.peerid = πi2

P2
.peerid by session

identifier equality. Since server identifiers are unique, P1 = P2. But servers never issue the
same ch value for the same username in two different sessions, so the ch portions of the two
session identifiers must differ. Since the session identifiers are the same, it follows that at

37

least one of πi1
P1

and πi2
P2

is a user session. Since users never issue the same nc value for the
same server identifier in two different sessions, a similar argument shows that at least one
of πi1

P1
and πi2

P2
is a server session. Therefore πi1

P1
.role ̸= πi2

P2
.role. It follows by equality of

session identifiers that πi1
P1
.selfid = πi2

P2
.peerid and πi1

P1
.peerid = πi2

P2
.selfid. This shows that

πi1
P1

and πi2
P2

do in fact match.

We now bound the adversary’s advantage in triggering the second winning condition,
proceeding by a sequence of games.

Game 0. This game is identical to the security experiment Exp1recgCBR,A. Therefore

Adv1recgCBR,A(λ) = AdvG0gCBR,A(λ).

Game 1. This game is identical to Game 0 except that the game aborts if the challenger
observes a collision for H. With B0 defined to be the adversary which challenges A and
returns this observed collision,

AdvG0gCBR,A(λ) ≤ AdvcrH,B0(λ) + AdvG1gCBR,A(λ).

Game 2. This game is identical to Game 1 except that the game aborts if two E-
values generated by calls to CredGen collide. Since CredGen is only called by ORegister, the
number of E-values generated is at most nRegister. Since these values are sampled uniformly
from a set of size q − 1, the probability of a pair colliding is 1/(q − 1). It follows that the
probability of a collision is bounded above by(

nRegister

2

)
· 1

q − 1
,

whence

AdvG1gCBR,A(λ) ≤
(
nRegister

2

)
· 1

q − 1
+ AdvG2gCBR,A(λ).

Game 3. This game is identical to Game 2 except for the following changes:

� The derived value mk in Response and CredGen is replaced by randomly sampling a
key for Σ.

� The derived value p in Response is replaced by randomly sampling an element of Zq.

� The computation of P in CredGen is replaced by randomly sampling p ←$ Zq and
setting P ← gp.

38

This sampling is done consistently, so that the same mk- and p-values are used if the input
Es to KDF is repeated.

This game can be viewed as the terminal game in a sequence of hybrid games Hi, where
H0 = G2 andHi incorporates these changes for users 1 through i. At each step, the increase
in advantage is bounded by the sg-prf security of KDF; hence,

AdvG2gCBR,A(λ) ≤ nuser · Advsg-prfKDF,B1(λ) + AdvG3gCBR,A(λ).

Game 4. This game is identical to Game 3 except that the game aborts if the adversary
wins in any way except by a mismatched MAC tag µ. Formally, the game aborts if there
exists (S, i) such that πi

S.role = server, πi
S.status = accept and for which there is no (U, j)

such that πj
U matches with πi

S except for the µ-portion of the session identifier. We show
that this abort condition is only triggered if A forges a signature.

Let B2 be an EUF-CMA adversary for Λ. From its challenger, B2 receives a public key
P ∗ and a signing oracle for the corresponding private key. Then B2 acts as the challenger
for Game 2 with A, choosing some call to ORegister and inserting its public key P ∗ in place
of the freshly generated P . Let the E-value for this call to ORegister be E∗; note that by
the previous abort condition this uniquely determines the call to ORegister. Whenever B2
needs to produce a signature for the corresponding private key, it uses its signing oracle.

If A wins Game 4, then the abort condition has not triggered and there exists some
(S∗, i) which satisfies the winning condition on line 7 of the recovery authentication exper-
iment. Hence, the session πi

S∗ must have successfully completed on some input (nc∗, rsp∗)
with previously generated values rc∗ and ch∗. The value rc∗ must have been generated by
a call to ORegister. If this call used the value E∗, then rc∗ = P ∗. In that case, B2 submits
m∗ = (ch∗, h∗, nc∗) and σ∗ = rsp∗ to its EUF-CMA challenger. If B2 uses its oracle for the
correct user, then σ∗ is clearly a valid signature on m∗ under P ∗. It remains to show only
that m∗ was not previously queried to the signing oracle.

Assume that B2 uses its oracle for the correct user U∗, and suppose that m∗ was
previously queried to the signing oracle. This can only occur via a call to UserComplete for
(U∗, j), which calls Response to produce a signature. The signing oracle is only used if E∗

is input to Response, so E∗ must have been provided as input to UserComplete for (U∗, j).

Note that πi
S∗ .sid is equal to the concatenation of

1. the identifer of S∗,

2. the username under which U∗ registered rc∗ at S∗,

39

3. the identifier rcid∗ = (E∗, µ∗) which U∗ registered alongside rc∗,

4. ch∗, and

5. nc∗.

We have just argued that the session identifiers for (S∗, i) and (U∗, j) must agree on E∗.
Since the message (ch∗, h∗, nc∗), where h∗ is the hash of the identifier of S∗, was input to the
signing oracle, it follows that they must also agree on the first component and the last two
components. Finally, they must agree on the username because U∗ has only one account,
and hence only one username, at S∗. It follows that the sessions (S∗, i) and (U∗, j) match
except for the MAC tag µ. But this means that the abort condition was triggered; hence,
m∗ was never queried to the signing oracle.

This shows that B2 wins its EUF-CMA game as long as it correctly guesses the call to
ORegister and A wins Game 4, implying that

AdvG3gCBR,A(λ) ≤ nRegister · AdvEUF-CMA
Λ,B2 (λ) + AdvG4gCBR,A(λ).

Finally, we reduce Game 4 to the SUF-CMA security of Σ. Let B3 be an SUF-CMA
challenger for Σ. From its challenger, B3 receives a tag oracle and a verification oracle. The
B3 acts as the challenger for Game 4 with A, choosing some call to ORegister and using its
tag oracle to produce the value µ∗ for this registration. As before, let the E-value for this
registration be E∗. If B3 needs to perform a verification in some call to UserComplete with
E∗ as input, it uses its verification oracle. Note, however, that since E∗ values are unique
for each call to ORegister, the tag oracle is used only once.

The adversary A only wins Game 4 if there is some accepting server session πi
S for which

there is no matching user session (U, j). Furthermore, the only possible mismatch can be
on the tag µ in the session identifier. The adversary can pick any almost-matching user
session and submit its differing µ-value as a forged tag on the value (E∗, h∗), the unique
message tagged by its oracle. Since the user session successfully completed and must have
verified its µ-value for (E∗, h∗), and the tag oracle is used only once, this indeed a valid
forgery. Hence,

AdvG4gCBR,A(λ) ≤ nRegister · AdvSUF-CMA
Σ,B3 (λ).

The desired security statement is given by combining these bounds.

The proof of security for pqCBR follows a similar structure.

40

Theorem 6.2. Let pqCBR be the credential-based recovery protocol described in Figures 5.3
and 5.2. For any efficient adversary A making at most nuser queries to NewUser, there exist
efficient algorithms B0, B1, and B2 such that

AdvrecpqCBR,A(λ) ≤ nuser · AdvcrΠ,B0(λ) + AdvcrPRF,B1(λ) + nuser · AdvEUF-CMEA
∆,B2 (λ)

Proof. An identical argument to that given in the proof of Theorem 6.1 shows that the
winning condition on line 3 of the recovery authentication experiment in Figure 4.1 is never
met. Hence, we similarly bound the adversary’s advantage in triggering the second winning
condition, proceeding by a sequence of games.

Game 0. This game is identical to the security experiment ExprecpqCBR,A. Therefore

AdvrecpqCBR,A(λ) = AdvG0pqCBR,A(λ).

Game 1. This game is identical to Game 0 except that the game aborts if there are
two calls to Response with the same skΠ-value and different rcid-values which result in the
same k-value being used on line 2. This abort condition is only triggered if the distinct
rcid-values result in a collision for Π.Decaps(skΠ, ·). Since there are nuser distinct KEM keys
skΠ in the game, it follows that

AdvG0pqCBR,A(λ) ≤ nuser · AdvcrΠ,B0(λ) + AdvG1pqCBR,A(λ).

Game 2. This game is identical to Game 1 except that the game aborts if there are two
calls to Response with the same skΠ-value and different rcid-values which result in the same
τ -value being used on line 3. The previous abort condition ensures that different rcid-values
result in different k-values being input to PRF; hence, this condition is only triggered if
the challenger observes a collision for PRF. With B1 defined to be the adversary which
challenges A and returns this collision, it follows that

AdvG1pqCBR,A(λ) ≤ AdvcrPRF,B1(λ) + AdvG2pqCBR,A(λ).

We now reduce winning Game 2 to producing a forgery for ∆. Let B2 be a EUF-CMEA
adversary for ∆. From the EUF-CMEA challenger, B2 receives an oracle which produces
signatures and public keys for any blinding factor τ ; the adversary B2 is challenged to
produce (m∗, σ∗, τ ∗) such that σ∗ verifies on m∗ under the public key produced by the
blinding factor τ ∗. Now, B2 faithfully simulates Game 2 with A, choosing a user at random
and using its oracle to answer BlindPK and Sign queries for that user’s ∆-keypair.

41

If A wins Game 2, then the abort conditions have not triggered and there exists some
(S∗, i) which satisfies the winning condition on line 7 of the recovery authentication exper-
iment. Hence, the session πi

S∗ must have successfully completed on some input (nc∗, rsp∗)
with previously generated values rc∗ and ch∗. The value rc∗ must have been generated
during the registration process with some blinding factor τ ∗, which can be determined by
B2. If rc∗ was generated via B2’s oracle, then B2 submits m∗ = (ch∗, nc∗), σ∗ = rsp∗, and τ ∗

to its EUF-CMEA challenger. If B2 uses its oracle for the correct user, then σ∗ is clearly
a valid signature on m∗ under rc∗, the public key produced by the blinding factor τ ∗. It
remains to show only that (m∗, τ ∗) was not previously queried to the signing oracle.

Assume that B2 uses its oracle for the correct user U∗, and suppose that (m∗, τ ∗) were
previously queried to the signing oracle. This can only occur via a call to UserComplete for
(U∗, j), which calls Response to produce a signature. By the second abort condition, τ ∗ is
only produced in Response if the input rcid- and aux-values are the same as the ones input
when rc∗ was registered. This implies that πj

U∗ .peerid must be the identifier of the server
S∗. Similarly, πj

U∗ .selfid must be the username under which U∗ registered at S∗.

Note that πi
S∗ .sid is equal to the concatenation of

1. the identifer of S∗,

2. the username under which U∗ registered rc∗ at S∗,

3. the identifier rcid∗ which U∗ registered alongside rc∗,

4. ch∗, and

5. nc∗.

We have just argued that the first three components must match with πj
U∗ .sid. Since the

message (ch∗, nc∗) is signed for (U∗, j), πj
U∗ .sid also agrees with πi

S∗ .sid on the final two
components. Therefore πj

U∗ .sid = πi
S∗ .sid. This implies that πi

S∗ and πj
U∗ match. Moreover,

because πi
S.peerid is the username under which U∗ registered rc∗ at S∗, it follows that

(U∗, S∗, πi
S∗ .peerid) ∈ LRegister. Hence, A does not win Game 2 via (S∗, i), which is a

contradiction. It follows that

AdvG2pqCBR,A(λ) ≤ nuser · AdvEUF-CMEA
∆,B2 (λ).

The desired security statement is given by combining these bounds.

42

6.2 Unlinkability

Theorem 6.3. Let gCBR be the credential-based recovery protocol described in Figures 5.1
and 5.3. For any efficient adversary A making at most nuser queries to NewUser, nRegister

total queries to ORegister and ORegisterb, and nAction total queries to Action and Actionb,
there exist efficient algorithms B0, B1, B2, such that

AdvI-UL
gCBR,A(λ) ≤

(
nRegister

2

)
· 1

q − 1
+ AdvcrH,B0(λ) + nuser · Advsg-prfKDF,B1(λ)

+(nRegister + nAction) · AdvSUF-CMA
Σ,B2 (λ).

Proof. First, note that since the fail bit is set based on information available to the adver-
sary, the adversary “knows” when it will trigger the failing conditions. Hence, for every
adversary A which triggers the failing conditions, there exists another adversary with ex-
actly the same advantage and running time which never triggers the failing conditions;
it behaves identically to A except that when A would issue a failure-triggering query, it
returns a random bit. Hence, we may assume that A never causes fail to be set to 1.

We proceed by a sequence of games.

Game 0. This game is identical to the original security experiment ExpI-UL
gCBR,A, so

AdvI-UL
gCBR,A(λ) = AdvG0gCBR,A(λ).

Game 1. This game is identical to Game 0, except that the game aborts if the
challenger observes a collision for H or between E-values at registration. By a similar
argument to the proof of Theorem 6.1,

AdvG0gCBR,A(λ) ≤
(
nRegister

2

)
· 1

q − 1
+ AdvcrH,B0(λ) + AdvG1gCBR,A(λ)

Game 2. This game is identical to Game 1 except for the following changes:

� In CredGen, the computation (ck,mk) ← KDF(Es);P ← gck · S is replaced by p ←$

Zq;mk←$ {0, 1}λ;P ← gp.

� In Response, the computation (ck,mk) ← KDF(Es); p ← ck + s is replaced by p ←$

Zq;mk←$ {0, 1}λ.

43

� A map E 7→ (p,mk) is maintained in stU for each user U . On a call to CredGen or
Response via Register(U, ·), Registerb(U, ·), Actionb(U, ·), or Action(U, ·), this map is
consulted before sampling to ensure that responses are consistent.

This game can be viewed as the terminal game in a sequence of hybrid games Hi, where
H0 = G1 andHi incorporates these changes for users 1 through i. At each step, the increase
in advantage is bounded by the sg-prf security of KDF; hence,

AdvG1gCBR,A(λ) ≤ nuser · Advsg-prfKDF,B1(λ) + AdvG2gCBR,A(λ)

Game 3. This game is identical to Game 2 except that the game aborts, with a random
bit being returned, if there is some (U, i) for which (πi

U .peerid, π
i
U .selfid, π

i
U .sid.rcid) does

not correspond to some call to ORegister for either

� U , if U /∈ {U0, U1, U
∗
0 , U

∗
1};

� U , U∗0 , or U
∗
1 , if U ∈ {U0, U1}; or

� U , U0, or U1, if U ∈ {U∗0 , U∗1}.

That is, πi
U .sid.rcid must have been returned by a call to ORegister which registered U (or

another other user in the special cases) at the server with identifier πi
U .peerid under the

username πi
U .selfid.

We claim that the abort condition only occurs if A has forged a MAC tag. Consider
an adversary B2 for the SUF-CMA security of Σ. This adversary acts as the challenger for
Game 3, randomly choosing some call to either Register or UserComplete which samples a
fresh MAC key mk. Instead of using the fresh key, B2 answers the query, and subsequent
queries using the same E-value, using its MAC and Verify oracles. If the abort condition
is triggered for (U, i), B2 submits (E,H(πi

U .peerid)), µ to its SUF-CMA challenger, where
(E, µ) = πi

U .sid.rcid. Since the session identifier was set, the tag µ must have verified on
(E,H(πi

U .peerid)); hence, if B2 chooses the correct call to Register or UserComplete in which
to insert its MAC oracle, this will be a valid tag for the key used in the SUF-CMA game.
Since the MAC oracle is used only in registration, and E-values for registrations do not
collide, the MAC oracle is queried at most once; the abort condition ensures that it was
not queried on the message-tag pair submitted by B2. It follows that B2 wins its game
whenever the abort condition is triggered and it guesses the correct call to Register or
UserComplete. It follows that

AdvG2gCBR,A(λ) ≤ (nRegister + nAction) · AdvSUF-CMA
Σ,B2 (λ) + AdvG3gCBR,A(λ).

44

The adversary’s advantage in Game 3 is already 0, as we will show. The rest of the
proof is devoted to showing that the behaviour of oracle calls for U0 (and U1) is independent
of the behaviour of oracle calls for U∗b (and U∗1−b), despite their shared state. Our goal is
to eventually partition the shared state such that the non-starred user only accesses values
in one partition and the starred user only access values in the other. At that point, we can
provide the starred users with fresh state variables, making them truly indistinguishable.
The following games achieve this with some careful bookkeeping around the adversary’s
failure conditions.

Game 4. This game is identical to Game 3 except that the game additionally aborts
if there is some i such that (πi

U∗
0
.peerid, πi

U∗
0
.selfid, πi

U∗
0
.sid.rcid) does not correspond to some

call to ORegister for U∗0 .

We claim that this abort condition is never triggered. By the previous abort condition,
this can only occur if (πi

U∗
0
.peerid, πi

U∗
0
.selfid, πi

U∗
0
.sid.rcid) corresponds to a call to ORegister

for either U0 or U1; without loss of generality, say U0. It follows that (U0, S, πU∗
0
.selfid) ∈

LRegister, where S is the server identified by πi
U∗
0
.peerid. Since servers do not register the same

username to different accounts, it follows that (U∗0 , S, πU∗
0
.selfid) /∈ LRegister. It follows that

the failing condition on line 3 of CheckFail is triggered, which contradicts our assumption
that A never triggers a failing condition. Therefore

AdvG3gCBR,A(λ) = AdvG4gCBR,A(λ).

Game 5. This game is identical to Game 4 except that the game additionally aborts
if there is some i such that either

� (πi
U∗
1
.peerid, πi

U∗
1
.selfid, πi

U∗
1
.sid.rcid) does not correspond to some call to ORegister for

U∗1 ,

� (πi
U0
.peerid, πi

U0
.selfid, πi

U0
.sid.rcid) does not correspond to some call to ORegister for

U0, or

� (πi
U1
.peerid, πi

U1
.selfid, πi

U1
.sid.rcid) does not correspond to some call to ORegister for

U1.

A similar argument to the one given for the previous game shows that these abort conditions
are never met, giving

AdvG4gCBR,A(λ) = AdvG5gCBR,A(λ).

45

Since abort conditions from Games 3, 4, and 5 are triggered based on public information,
we may assume that A never makes a query that would trigger one of them; when A would
make such a query, it simply returns a random bit.

Game 6. This game is identical to Game 5, except that stU .uid is no longer updated
or accessed. Instead, UserBegin(πi

U , uid, serverID, stU) rejects if (U, S, uid) /∈ LRegister, where
S is the server with identifier serverID. The previous abort condition ensures that there is
no difference in behaviour from Game 5, so

AdvG5gCBR,A(λ) = AdvG6gCBR,A(λ).

Game 7. This game is identical to Game 6 except for the following changes:

� Data stored in long-term state in calls to any of ORegister(U0, ·), Registerb(U0, ·),
Action(U0, ·), or Actionb(U0, ·) is flagged.

� The game aborts if a call to any of ORegister(U∗0 , ·), Registerb(U∗0 , ·), Action(U∗0 , ·), or
Actionb(U

∗
0 , ·) accesses flagged data.

� The game aborts if a call to any of ORegister(U0, ·), Registerb(U0, ·), Action(U0, ·), or
Actionb(U0, ·) accesses non-flagged data.

We claim that these abort conditions are never triggered. Long-term state stU contains
two types of data:

� a mapping E 7→ (p,mk) for values of E which are either generated in Register or
queried to UserComplete for U ,

� a mapping serverID 7→ {nc}, the set of nc-values previously issued for serverID.

We begin by showing that access of flagged data for U∗0 never occurs. Both mappings are
accessed only in UserComplete.

If E is provided as input to UserComplete for U∗0 , then by the previous abort conditions,
it must have been generated in some call to ORegister for U∗0 . Since E-values do not collide
at registration, it cannot have been generated in some call to ORegister for U0. Hence, it
also cannot have been queried to UserComplete for U0. Therefore E is not flagged. similarly,
if stU .nc[serverID] is looked up in UserComplete for U∗0 , then U∗0 must be registered at the
server with identifier serverID. Since U∗0 and U0 are never registered at the same server,
this value also cannot be flagged.

46

An identical argument shows that U0 never accesses non-flagged data. Therefore

AdvG6gCBR,A(λ) = AdvG7gCBR,A(λ).

Game 8. This game is identical to Game 7 except for the following changes:

� Data stored in long-term state in calls to any of ORegister(U1, ·), Registerb(U1, ·),
Action(U1, ·), or Action(U1, ·) is also flagged.

� The game aborts if a call to any of ORegister(U∗d , ·), Registerb(U∗d , ·), Action(U∗d , ·), or
Action(U∗d , ·) for d ∈ {0, 1} accesses flagged data.

� The game aborts if a call to any of ORegister(Ud, ·), Registerb(Ud, ·), Action(Ud, ·), or
Action(Ud, ·) for d ∈ {0, 1} accesses non-flagged data.

A similar argument to the previous game shows that

AdvG7gCBR,A(λ) = AdvG8gCBR,A(λ).

Game 9. This game is identical to Game 8 except that fresh long-term state variables
are used for U∗0 and U∗1 instead of stUb

and stU1−b
. Since only flagged data are stored in

stUb
and stU1−b

and only non-flagged data is stored in stU∗
0
and stU∗

1
, there is no detectable

difference between Games 8 and Games 9. Therefore

AdvG8gCBR,A(λ) = AdvG9gCBR,A(λ).

Moreover, the behaviour of ORegisterb and Actionb is independent of the value of b, so

AdvG9gCBR,A(λ) = 0.

The desired security statement follows from combining these bounds.

We now turn our attention to the unlinkability of pqCBR, following a similar proof
structure.

Theorem 6.4. Let pqCBR be the credential-based recovery protocol described in Figures 5.2
and 5.3. For any efficient adversary A making at most nuser queries to NewUser and nO

total queries to ORegister, ORegisterb, OAction, and OActionb there exist efficient algorithms
B0, B1, and B2 such that

AdvUL
pqCBR,A(λ) ≤

(
nO

2

)
· 2−λ + nuserAdv

KEM-UL
Π,B0 (λ) + nO

(
AdvprfPRF,B1(λ) + AdvUL-CMEA

∆,B3 (λ)
)
.

47

Proof. As in Theorem 6.3, it suffices to bound the advantage of an adversary which never
triggers the failing conditions. We proceed by a sequence of games.

Game 0. This game is identical to the original security experiment ExpUL
pqCBR,A, so

AdvUL
pqCBR,A(λ) = AdvG0pqCBR,A(λ).

Game 1. This game is identical to Game 0 except for the following changes:

� Users do not generate or store Π keypairs.

� All calls to Π.Encaps are replaced by randomly sampling a ciphertext c and a key
k from the message space and key space of Π, respectively. A mapping c 7→ k
is maintained in the long-term state from which the public key would have been
retrieved.

� All calls to Π.Decaps are replaced by first looking up the provided c-value in the
mapping in the long-term state from which the private key would have been retrieved.
If no match is found, a random key k is sampled and returned, and the value (c, k)
is stored in the list.

This game can be viewed as the final game in a sequence of hybrid games Hi, with H0 and
in which Hi uses its oracles to answer encapsulation and decapsulation queries for public
key i. The loss of advantage at each step is bounded by the KEM-UL security of Π. Thus

AdvG0pqCBR,A(λ) ≤ nuser · AdvKEM-UL
Π,B0 (λ) + AdvG1pqCBR,A(λ).

Game 2. This game is identical to Game 1 except for the following changes:

� All calls to τ ← PRF(k, aux) where k was freshly sampled for a “ciphertext” c are
replaced by sampling τ at random. A mapping (c, aux) 7→ τ is maintained in long-
term state, as in the previous game.

� All calls to τ ← PRF(k, aux) where k was retrieved from long-term state for a “ci-
phertext” c are replaced by

– looking up the value of τ , if (c, aux) 7→ τ is in long-term state, or

– randomly sampling τ and updating the mapping otherwise.

48

This game can be viewed as the final game in a sequence of hybrid games H′i, with H′0 = G1
and in which calls to PRF(k, ·) are successively replaced by random sampling. The loss of
advantage at each step is bounded by AdvprfPRF,Bi(λ), where B

i uses its PRF oracle to answer
queries for the ith sample of k. Since the number of samples of k is bounded by nO, it
follows that

AdvG1pqCBR,A(λ) ≤ nO · AdvprfPRF,B1(λ) + AdvG2pqCBR,A(λ),

where B1 is the most successful of the adversaries Bi.

Game 3. This game is identical to Game 2 except that the game aborts if two samples
of τ collide. Since PRF outputs binary strings of length at least λ, it follows by a similar
argument to the proof of Theorem 6.1 that

AdvG2pqCBR,A(λ) ≤
(
nO

2

)
· 2−λ + AdvG3pqCBR,A(λ).

Game 4. This game is identical to Game 3 except for the following changes:

� All calls to ∆.BlindPK(pk∆, τ) or ∆.Sign(sk∆, τ, ·) where τ was freshly sampled for
(c, aux) are replaced by calling ∆.KeyGen and using the resulting fresh keypair to
perform the operation. A mapping (c, aux) 7→ (pk∆, sk∆) is maintained in long-term
state, as in the previous game.

� All calls to ∆.BlindPK(pk∆, τ) or ∆.Sign(sk∆, τ, ·) where τ was retrieved from long-
term state for (c, aux) are replaced by looking up the corresponding ∆-keypair and
using that keypair to perform the operation.

This game can be viewed as the final game in a sequence of hybrid games Hj
i , with H0 = G3

and where Hj
i replaces the ∆-keypair used to perform operations for the ith user’s jth τ -

value with a freshly sampled keypair. The loss of advantage at each step is bounded by
AdvUL-CMEA

B,Dj
i

(λ), where Bj
i uses its BlindPK and Sign oracles to answer queries for the ith

user, issuing its challenge for the jth τ -value. Since the total number of ∆-operations is
bounded by nO, it follows that

AdvG3pqCBR,A(λ) ≤ nO · AdvUL-CMEA
∆,B2 (λ) + AdvG4pqCBR,A(λ),

where B2 is the most successful of the adversaries Bj
i .

As in the proof of Theorem 6.3, the adversary’s advantage at this point is already 0.
We proceed in a similar fashion, partitioning the starred and non-starred users’ shared
state so that we can eventually provide the starred users with fresh state variables.

49

Game 5. This game is identical to Game 4, except that stU .uid is no longer updated
or accessed. Instead, UserBegin(πi

U , uid, serverID, stU) rejects if (U, S, uid) /∈ LRegister, where
S is the server with identifier serverID.

For users other than Ud or U∗d for d ∈ {0, 1}, there is no difference in behaviour.
Note, however, that UserBegin for U0 will accept on a username-server identifier pair which
corresponds to an account for U∗0 (similarly for U1, U

∗
0 , and U∗1). This would result in the

fail bit being set to 1, however. Hence, no such query to UserBegin is made, and there is
no detectable difference in behaviour. Then

AdvG4gCBR,A(λ) = AdvG5gCBR,A(λ).

Game 6. This game is identical to Game 5 except for the following changes:

� Data stored in long-term state in calls to any of ORegister(U0, ·), Registerb(U0, ·),
Action(U0, ·), or Action(U0, ·) is flagged.

� The game aborts if a call to any of ORegister(U∗0 , ·), Registerb(U∗0 , ·), Action(U∗0 , ·), or
Action(U∗0 , ·) accesses flagged data.

� The game aborts if a call to any of ORegister(U0, ·), Registerb(U0, ·), Action(U0, ·), or
Action(U0, ·) accesses non-flagged data.

We claim that these abort conditions are never triggered. Long-term state stU contains
two types of data:

� a mapping (c, aux) 7→ (pk∆, sk∆) for values of c generated in Register or queried to
UserComplete for U ,

� a mapping aux 7→ {nc}, the set of nc-values previously issued for serverID.

We begin by showing that access of flagged data for U∗0 never occurs. Both mappings are
accessed only in UserComplete.

If (c, aux) is looked up in the mapping in UserComplete for U∗0 , then aux = (serverID, uid),
where U∗0 is registered at the server with identifier serverID under the username uid. Since
U0 and U∗0 are never registered at the same server under the same username, (c, aux) must
not be flagged in the first mapping. Similarly, aux cannot be flagged in the second mapping.

An identical argument shows that U0 never accesses non-flagged data. Therefore

AdvG5gCBR,A(λ) = AdvG6gCBR,A(λ).

Game 7. This game is identical to Game 6 except for the following changes:

50

� Data stored in long-term state in calls to any of ORegister(U1, ·), Registerb(U1, ·),
Action(U1, ·), or Action(U1, ·) is also flagged.

� The game aborts if a call to any of ORegister(U∗d , ·), Registerb(U∗d , ·), Action(U∗d , ·), or
Action(U∗d , ·) for d ∈ {0, 1} accesses flagged data.

� The game aborts if a call to any of ORegister(Ud, ·), Registerb(Ud, ·), Action(Ud, ·), or
Action(Ud, ·) for d ∈ {0, 1} accesses non-flagged data.

A similar argument to the previous game shows that

AdvG6gCBR,A(λ) = AdvG7gCBR,A(λ).

Game 8. This game is identical to Game 8 except that fresh long-term state variables
are used for U∗0 and U∗1 instead of stUb

and stU1−b
. Since only flagged data are stored in

stUb
and stU1−b

and only non-flagged data is stored in stU∗
0
and stU∗

1
, there is no detectable

difference between Games 8 and Games 9. Therefore

AdvG7gCBR,A(λ) = AdvG8gCBR,A(λ).

Moreover, the behaviour of ORegisterb and Actionb is independent of the value of b, so

AdvG8gCBR,A(λ) = 0.

The desired security statement follows from combining these bounds.

51

Chapter 7

Instantiation

We now discuss the instantiation of the primitives used to construct the post-quantum
CBR protocol. In particular, we show that the novel properties which we used to analyze
the protocol’s security are met by existing quantum-safe algorithms.

7.1 Pseudorandom Function

In the proof of Theorem 6.2, we relied on the PRF used in pqCBR being globally collision
resistant. The extendable-output functions SHAKE-128 and SHAKE-256, often used as
PRFs in post-quantum algorithms, are designed to provide collision resistance [20]. Two
other notable candidates, HMAC and HKDF, are constructed from hash functions in such
a way that a collision for the PRF is also a collision for the underlying hash function.

7.2 Key Blinding Scheme

Although we made no additional security assumptions on the key-blinding signature scheme
in our security analysis of pqCBR, we required four extra properties to prove that our
approach yielded a secure ARKG scheme, as outlined in 2.6. These properties were key-
recovery security, unique blinding, private key unblinding, and strong independent blinding.
We now show that the isogeny-based scheme blCSI-FiSh satisfies these four properties. For
a detailed description of blCSI-FiSh and its parent scheme, CSI-FiSh, see [9] and [4].

52

Unique blinding is immediate: blinded public keys are obtained from blinded secret
keys by a free and transitive group action, so there is a one-to-one correspondence between
them. Private key unblinding is also trivial. Blinded secret keys are obtained by adding a
blinding factor to the secret key, so UnblindSK simply subtracts the blinding factor from
the blinded key to obtain the secret key. As for key-recovery security, an adversary who
can retrieve the secret key from the public key can forge a CSI-FiSh signature, giving the
following theorem:

Theorem 7.1. For any efficient adversary A, there exists an efficient algorithm B such
that.

AdvKR
blCSI-FiSh,A(λ) ≤ AdvEUF-CMA

CSI-FiSh,B (λ)

The proof of S-Ind-Blind security is similarly straightforward.

Theorem 7.2. Let KDF be the key derivation function used in blCSI-FiSh. For any efficient
adversary A making at most n oracle queries, there exists an efficient algorithm B such
that

AdvS-Ind-Blind
blCSI-FiSh,A(λ) ≤ n · AdvprfKDF,B(λ).

Proof. When τ is uniformly sampled, the PRF security of KDF ensures that the derived
blinding factor is indistinguishable from a randomly sampled element of ZL

N . Since derived
secret keys are obtained by adding the blinding factor to the secret key, it follows that
derived key pairs are uniformly distributed. The factor of n in the bound arises because
an independent PRF key is sampled for each oracle call.

Remark 7.3. Although blCSI-FiSh is the only one of the key blinding schemes from [9] which
satisfies these four properties, this does not mean that it is the only one which is safe to be
integrated with post-quantum WebAuthn. As discussed in Chapter 4, we do not believe
that the ARKG model accurately captures the security properties required of a recovery
solution.

7.3 Key Encapsulation Mechanism

We required two non-standard properties of the key encapsulation mechanism in pqCBR:
collision resistance and unlinkability, defined in sections 2.4.1 and 2.4.2 respectively. We
focus our attention on proving that these properties are satisfied by CRYSTALS-Kyber,
which has been selected by NIST for standardization. For a detailed description of the

53

algorithm, see [2]. CRYSTALS-Kyber encompasses both a public-key encryption scheme
and a key encapsulation mechanism; we will denote the former by KyberPKE and the latter
by KyberKEM.

We will refer to the following CRYSTALS-Kyber parameters:

� q: the prime 3329.

� n: the bit-length of encapsulated keys. Equal to 256 for all security levels.

� H: a hash function with digest bit-length n, instantiated with SHA3-256,

� G: a hash function with digest bit-length 2n, instantiated with SHA3-512,

� Rq: the ring Zq[X]/(Xn + 1). In particular, Rq has size qn.

� k: the dimension of the public key matrix A. Equal to 2 for NIST Level 1 security,
3 for NIST Level 3 security, and 4 for NIST Level 5 security.

The collision resistance of KyberKEM is immediate: decapsulation outputs on input c
are of the form KDF(K∥H(c), n), where KDF = SHAKE-256 and H = SHA3-256 and K is a
fixed-length variable string. This gives the following result.

Theorem 7.4. For any efficient adversary A, there exists an efficient algorithm B such
that

AdvcrKyberKEM,A(λ) ≤ AdvcrSHA3-256(λ) + AdvcrSHAKE-256(·,n),B(λ).

The proof that Kyber satisfies unlinkability is much more involved. We begin by intro-
ducing a simpler problem, which we refer to as “ciphertext guessing”, and showing that
it is difficult for KyberKEM. We then reduce breaking the unlinkability of KyberKEM to
ciphertext guessing. The ciphertext guessing game challenges an adversary given no infor-
mation about the public key (not even encapsulation or decapsulation oracles) to output
a ciphertext c∗ which is not implicitly rejected by Kyber decapsulation. This is described
formally in Figure 7.1. Although it might seem bizarre to keep a public key private, this
situation arises naturally in the context of unlinkability, where no guarantees can be made
against an active adversary with access to the public key.

We make use of the fact that KyberPKE encryption with truly random coins is pseudo-
random under the Module-LWE assumption. As in [2], we denote this pseudorandomness
property by pr.

54

ExpcguessKyberPKE,A

1 : (pk, sk)←$ KeyGen(1λ)

2 : h← H(pk)

3 : c∗ ← A()
4 : m∗ ← Dec(sk, c∗)

5 : r∗ ← G(m∗, h)

6 : return Jc∗ = Enc(pk,m∗, r∗)K

Figure 7.1: The ciphertext guessing game for KyberPKE

Lemma 7.5. Suppose that H and G are random oracles. For any efficient adversary A
making at most nH queries to H and nG queries to G, there exist efficient algorithms B0
and B1 such that

AdvcguessKyberPKE,A(λ) ≤ nH · AdvIND-CPA
KyberPKE,B0(λ) +

nG

2n
+ AdvprKyberPKE,B1(λ) +

1

qnk
.

Proof. We proceed by a sequence of games.

Game 0. This game is precisely the cguess game for KyberPKE. Therefore

AdvcguessKyberPKE,A(λ) = AdvG0KyberPKE,A(λ).

Game 1. This game is identical to Game 0, except that the return value is 1 if and
only if the first component c∗1 matches the first component of Enc(pk,m∗, r∗). Since this is
a less restrictive winning condition, it is clear that

AdvG0KyberPKE,A(λ) ≤ AdvG1KyberPKE,A(λ).

Game 2. This game is identical to Game 1, except that the game aborts if the
adversary queries pk to the random oracle H. Since the adversary receives no information
about pk, the probability that it guesses pk correctly in a single query is bounded by 2−hpk ,
where hpk is the min-entropy of the public key. We note, as in Corollary 1 of [9], that this
quantity is bounded by the advantage AdvIND-CPA

KyberPKE,B0(λ). Therefore

AdvG1KyberPKE,A(λ) ≤ nH · AdvIND-CPA
KyberPKE,B0(λ) + AdvG2KyberPKE,A(λ).

55

Game 3. This game is identical to Game 2, except that h is sampled uniformly at
random instead of being computed as H(pk). Since the adversary does not query pk to the
H random oracle, there is no change in advantage:

AdvG2KyberPKE,A(λ) = AdvG3KyberPKE,A(λ).

Game 4. This game is identical to Game 3, except that the game aborts if the
adversary queries (m∗,H) to the random oracle. Since the adversary must correctly guess
the randomly sampled value H in order to make such a query,

AdvG3KyberPKE,A(λ) ≤
nG

2n
+ AdvG4KyberPKE,A(λ).

Game 5. This game is identical to Game 4, except that r∗ is sampled uniformly at
random instead of being computed as G(m∗, h). Since the adversary does not query (m∗, h)
to the H random oracle, there is no change in advantage:

AdvG4KyberPKE,A(λ) = AdvG5KyberPKE,A(λ).

Game 6. This game is identical to Game 5, except that the winning condition is
changed to c∗1 = Enc(pk,m′, r∗)1, where m′ is a randomly sampled message. Since the first
component of Enc(pk,m∗, r∗) depends only on pk and r∗, there is no change in advantage:

AdvG5KyberPKE,A(λ) = AdvG6KyberPKE,A(λ).

Game 7. This game is identical to Game 6, except that the value Enc(pk, ·, r∗) is
replaced by a random sample from the ciphertext space. In particular, the first component
is a random sample from Rk

q . The loss in advantage is bounded by the advantage of an
adversary B1 in distinguishing a random Kyber ciphertext from random samples from the
ciphertext space. It follows that

AdvG6KyberPKE,A(λ) ≤ AdvprKyberPKE,B1(λ) + AdvG7KyberPKE,A(λ).

In order to win this game, the adversary must correctly guess a uniformly sampled
value from Rk

q . Since |Rq| = qn,

AdvG7KyberPKE,A(λ) =
1

qnk
.

The desired security statement follows from combining these bounds.

56

We now reduce the KEM-UL experiment for KyberKEM to ciphertext guessing.

Theorem 7.6. For any efficient adversary A making at most nE encapsulation queries
and nD decapsulation queries, there exist efficient algorithms B0, B1, and B2 such that

AdvKEM-UL
KyberKEM,A(λ) ≤ +nE · AdvSPR-CCA

KyberKEM,B0(λ) + AdvprfSHAKE-256,B1(λ) + nD · AdvcguessKyberPKE,B2(λ).

Proof. We proceed by a sequence of games.

Game 0. This game is identical to the experiment ExpKEM-UL
KyberKEM,A. Therefore

AdvKEM-UL
KyberKEM,A(λ) = AdvG0KyberKEM,A(λ).

Game 1. This game is identical to Game 0, except that the encapsulation oracle is
replaced by an oracle which samples and outputs a uniformly random ciphertext and a
uniformly random key, and the decapsulation oracle responds consistently with these out-
puts. This game can be viewed as the final game in a sequence of hybrid games Hi, defined
such that Hi is identical to G0 except that encapsulation queries 1 through i are answered
with such a pair of random samples. At each step, the loss of advantage is bounded by the
SPR-CCA security of KyberKEM: an SPR-CCA adversary Bi who substitutes its challenge
ciphertext-key pair for the ith encapsulation response plays Hi−1 if the pair was honestly
output and Hi if the pair was uniformly sampled. Hence,

AdvG0KyberKEM,A(λ) ≤ nE · AdvSPR-CCA
KyberKEM,B0(λ) + AdvG1KyberKEM,A(λ),

where B0 is the most successful of the adversaries Bis.

Game 2. This game is identical to Game 1, except that all implicit rejection outputs
SHAKE-256(z,H(c)) are replaced by random samples (up to consistency, so that the same
value is output for c if queried multiple times). The loss in advantage is bounded by the
PRF-security of SHAKE-256, where we regard the random prefix z as the key and H(c) as
the label. Therefore

AdvG1KyberKEM,A(λ) ≤ AdvprfSHAKE-256,B1(λ) + AdvG2KyberKEM,A(λ).

Game 3. This game is identical to Game 2, except that the game aborts (returning
a random bit) if A queries a value c∗ to the decapsulation oracle which is not implicitly
rejected.

We show that if A triggers the abort condition, then we can construct a winning
adversary B2 for the cguess game for KyberPKE. The adversary B2 randomly chooses some

57

index 1 ≤ i ≤ nD. It challengesA to Game 3, answeringA’s first i−1 decapsulation queries
by returning random keys (up to consistency if the same value is queried). Upon receiving
the ith decapsulation query c∗, it halts and returns c∗ to its challenger. (If i = nD + 1,
then B submits A’s return value.) Note that B wins the cguess game whenever whenever
it guesses correctly the index where A first submits a non-rejecting query. It follows that

AdvG2KyberKEM,A(λ) ≤ nD · AdvcguessKyberPKE,B2(λ) + AdvG3KyberKEM,A(λ).

Since implicitly rejected decapsulation queries simply return a random key, the adver-
sary A’s oracles are now independent of the value of b. Therefore

AdvG3KyberKEM,A(λ) = 0.

The desired security statement follows from combining these bounds.

Remark 7.7. The security bound given by combining Theorem 7.6 with Lemma 7.5 is
disturbingly non-tight. However, this is not likely to pose an issue in the context of
WebAuthn recovery. Encapsulations are only performed when the user creates a new
recovery credential, and decapsulations are only performed when the user attempts to
recover an account. Hence, the values nE and nD are likely to be quite small in practice.
Although the value of nH could be significantly larger, the proof of Lemma 7.5 shows that
it is multiplied by the min-entropy of a Kyber public key in the security bound. Not only
are these public keys pseudorandom under the MLWE assumption, they also contain a
pseudorandom 256-bit suffix, obtained via a call to SHAKE-256 on a truly random 256-bit
value [2], meaning that their min-entropy is likely very close to a constant 256 bits.

58

Chapter 8

Evaluation

In Table 8.1, we list the sizes of values which must be communicated between parties in
the recovery protocol. These numbers are based on [17], [2], and [9]. In particular, they
assume that ECDSA on the P-256 curve and HMAC-SHA256 (with output truncated to 16
bytes) are used to instantiate gCBR, and the Level 3 parameter set for KyberKEM is used to
instantiate pqCBR. We do not include blPicnic in the table, as it has not been implemented
and detailed information about signature size is not available. In Table 8.2, we provide
the time costs of blinding, signing, and verifying for blinded signature schemes and com-
pare them with analogous costs for the associated (non-blinded) signature schemes. This
data is copied directly from [9], whose implementations of the blinded signature schemes
are available at http://github.com/tedeaton/pq-key-blinding. Information about the
platform on which the runtimes were collected was not available. The schemes blLegRoast
and blCSI-FiSh were implemented in C, while blDilithium-QROM was implemented in Sage.

As is to be expected, the post-quantum protocol requires significantly more communi-
cation and storage space than its group-based counterpart. However, regardless of which
blinded signature scheme is used, these increases are not as significant when compared to
an instantiation of WebAuthn using the base post-quantum signature scheme. A more

Protocol |rc| |rcid| |rsp|
gCBR[ECDSA-P256, HMAC-SHA256] 64 B 80 B 64 B
pqCBR[KyberKEM, blCSI-FiSh] 16 kB 1.06 kB 0.45 kB
pqCBR[KyberKEM, blDilithium-QROM] 10 kB 1.06 kB 5.7 kB
pqCBR[KyberKEM, blLegRoast] 0.50 kB 1.06 kB 11.22 kB

Table 8.1: Credential, credential identifier, and response sizes for gCBR and pqCBR

59

http://github.com/tedeaton/pq-key-blinding

Scheme |pk| |σ| KeyGen / BlindPK Sign Verify
CSI-FiSh 16 kB 0.45 kB 10800 ms 554 ms 553 ms
blCSI-FiSh 16 kB 0.45 kB 10600 ms 546 ms 540 ms
Dilithium-QROM 7.7 kB 5.7 kB 3810 ms 9360 ms 2890 ms
blDilithium-QROM 10 kB 5.7 kB 1650 ms 28300 ms 717 ms
LegRoast 0.50 kB 7.94 kB 0.9 ms 12.4 ms 11.7 ms
blLegRoast 0.50 kB 11.22 kB 0.9 ms 18.6 ms 17.8 ms

Table 8.2: Comparison of post-quantum blinded and non-blinded signature schemes using
data from [9]

significant efficiency loss is seen when comparing the signing and verifying times of the
blinded schemes with their base schemes, as given in Table 8.2. However, blinding a public
key is always at least as fast as generating a fresh public key. Registration and recovery
additionally require an encapsulation and a decapsulation, respectively, which will intro-
duce an additional overhead over WebAuthn ceremonies which do not involve recovery
credentials. However, we do not attempt to provide an estimate of the total cost of regis-
tration and recovery, as this would require adding the time of a KEM operation and the
time of a blinded signature scheme operation. The implementation of KyberKEM is highly
optimized, while the implementations of the blinded signature schemes are only proofs of
concept—we would not be comparing apples to apples.

An important consideration for use of blDilithium-QROM is the matrix A, which forms
part of public keys. In the base signature scheme, this matrix is freshly generated for each
public key. In the blinded version, the same A is used across all public keys derived from
the same seed keypair. In order to provide unlinkability guarantees, the same A must be
used by all tokens which cannot otherwise be distinguished. In practice, relying parties will
require the backup authenticator’s attestation identifier (AAGUID), which is shared among
a large batch of tokens of the same model [10]. Hence, it suffices to ensure that all tokens
with the same AAGUID also use the same A. The security analysis of blDilithium-QROM
in [9] required a new variant of the learning with errors assumption, “static A module
LWE”, in order to deal with the same matrix being used by multiple public keys.

The blCSI-FiSh signature scheme is especially attractive due to its small signature sizes.
However, its security claim is contested, and there is no clear path to increasing its security
parameters due to the intense class group computation required [21].

60

8.1 Stronger Security Notions

Although the definition of EUF-CMEA security given in [9] does not provide the adversary
with the identity public key, the security proofs of both blDilithium-QROM and blCSI-FiSh
show that they are in fact secure against an adversary who is given this extra information.
This is because both are obtained via the Fiat–Shamir transform from an identification
protocol whose public key includes the identity public key. This allows a stronger notion of
recovery authentication security, in which the adversary is also allowed to obtain primary
keys from lost primary tokens. Unlinkability, however, still requires the public keys to be
kept secret.

As a final note, pqCBR need not be instantiated with quantum-safe primitives in order
to be secure against a classical adversary. Indeed, we believe that two features of the
post-quantum protocol could be incorporated into the group-based protocol with positive
results. Modifying Yubico’s protocol to use independent key pairs for shared secret es-
tablishment and signing could eliminate, or at least weaken, the required non-standard
security assumption. The one-time additional overhead required for the extra keypair
would be more than compensated for by the many-time reduction in recovery credential
size by removing the MAC and incorporating the auxiliary data into the PRF label. We
leave a detailed analysis of these modifications to future work.

61

Chapter 9

Conclusion

In this work, we proposed a quantum-safe protocol for account recovery with passwordless
authentication. In particular, our construction gives a quantum-safe version of Yubico’s
proposed WebAuthn backup standard. We also introduced a novel security model for
account recovery and analyzed both Yubico’s protocol and our own under it, introducing
several novel security properties along the way. This led us to discover a weakness in the
former, which we conveyed to the authors of the proposal. Finally, we provided concrete
instantiations (with proof) of primitives which meet the novel properties required for the
analysis of our post-quantum protocol.

9.1 Limitations

Our security model does not account for users who have more than one backup authentica-
tor. This constitutes a significant gap in our analysis of Yubico’s proposal for WebAuthn
backup, which places no such restriction on the user. Incorporating this feature would in-
crease the complexity of our security model, in which we consider token, client, and human
user to be a single entity with shared memory. In particular, it would make unlinkability
more difficult to reason about. Our model also allows us to consider recovery from a more
general point of view by abstracting away the CTAP subprotocol. However, this means
that our results are conditional on CTAP providing secure communication.

62

9.2 Future Work

Our contributions could be extended or expanded on in several interesting directions.
Perhaps the most important future work is a thorough evaluation of the novel security
assumption on which we based the security proof for Yubico’s protocol. A reduction of this
assumption to one which is well studied—or a security proof that eliminates the need for
a new assumption—would be highly desirable, given that the scheme is being proposed for
standardization. Expanding our security model to account for users with multiple backup
tokens, as Yubico’s proposal allows, would provide security guarantees for a wider range
of use cases in practice. Another interesting approach could be to examine unlinkability
against a passive adversary with access to primary authenticators’ keys. With regards
to protocol instantiation, an examination of KEMs besides CRYSTALS-Kyber—both pre-
and post-quantum—would provide insight into how tightly bound our proposal is to one
particular algorithm. Also of interest would be a comparison of our approach with those
taken by [7] and [11] with regards to security, usability, and ease of implementation. This
could involve evaluating the other constructions under our novel security model and vice
versa.

63

References

[1] Sunpreet S. Arora, Saikrishna Badrinarayanan, Srinivasan Raghuraman, Maliheh Shir-
vanian, Kim Wagner, and Gaven Watson. Avoiding lock outs: Proactive FIDO ac-
count recovery using managerless group signatures. Cryptology ePrint Archive, Paper
2022/1555, 2022. https://eprint.iacr.org/2022/1555.

[2] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé.
CRYSTALS-Kyber: Algorithm specifications and supporting documentation (version
3.02), 2021. https://pq-crystals.org/kyber/resources.shtml.

[3] Manuel Barbosa, Alexandra Boldyreva, Shan Chen, and Bogdan Warinschi. Provable
security analysis of FIDO2. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021,
Part III, volume 12827 of LNCS, pages 125–156, Virtual Event, August 2021. Springer,
Heidelberg.

[4] Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. CSI-FiSh: Efficient
isogeny based signatures through class group computations. In Steven D. Galbraith
and Shiho Moriai, editors, ASIACRYPT 2019, Part I, volume 11921 of LNCS, pages
227–247. Springer, Heidelberg, December 2019.

[5] Nina Bindel, Cas Cremers, and Mang Zhao. FIDO2, CTAP 2.1, and WebAuthn 2:
Provable security and post-quantum instantiation. Cryptology ePrint Archive, Paper
2022/1029, 2022. https://eprint.iacr.org/2022/1029.

[6] Jacqueline Brendel, Marc Fischlin, Felix Günther, and Christian Janson. PRF-ODH:
Relations, instantiations, and impossibility results. In Jonathan Katz and Hovav
Shacham, editors, CRYPTO 2017, Part III, volume 10403 of LNCS, pages 651–681.
Springer, Heidelberg, August 2017.

64

https://eprint.iacr.org/2022/1555
https://pq-crystals.org/kyber/resources.shtml
https://eprint.iacr.org/2022/1029

[7] Sebastian A. Clermont. Post quantum asynchronous remote key generation. Master’s
thesis, Technische Universität Darmstadt, July 2022.

[8] Edward Eaton, Tancrède Lepoint, and Christopher A. Wood. Security analysis of
signature schemes with key blinding. Cryptology ePrint Archive, Paper 2023/380,
2023. https://eprint.iacr.org/2023/380.

[9] Edward Eaton, Douglas Stebila, and Roy Stracovsky. Post-quantum key-blinding for
authentication in anonymity networks. In Patrick Longa and Carla Ràfols, editors,
LATINCRYPT 2021, volume 12912 of LNCS, pages 67–87. Springer, Heidelberg, Oc-
tober 2021.

[10] Nick Frymann, Daniel Gardham, Franziskus Kiefer, Emil Lundberg, Mark Manulis,
and Dain Nilsson. Asynchronous remote key generation: An analysis of Yubico’s
proposal for W3C WebAuthn. In Jay Ligatti, Xinming Ou, Jonathan Katz, and
Giovanni Vigna, editors, ACM CCS 2020, pages 939–954. ACM Press, November
2020.

[11] Nick Frymann, Daniel Gardham, and Mark Manulis. Asynchronous remote key gen-
eration for post-quantum cryptosystems from lattices. Cryptology ePrint Archive,
Paper 2023/419, 2023. https://eprint.iacr.org/2023/419.

[12] Hidehito Gomi, Bill Leddy, and Dean H. Saxe. Recommended account re-
covery practices for FIDO relying parties, 2019. https://fidoalliance.org/

recommended-account-recovery-practices.

[13] Paul Grubbs, Varun Maram, and Kenneth G. Paterson. Anonymous, robust post-
quantum public key encryption. In Orr Dunkelman and Stefan Dziembowski, editors,
EUROCRYPT 2022, Part III, volume 13277 of LNCS, pages 402–432. Springer, Hei-
delberg, May / June 2022.

[14] Lucjan Hanzlik, Julian Loss, and Benedikt Wagner. Token meets wallet: Formalizing
privacy and revocation for FIDO2. Cryptology ePrint Archive, Paper 2022/084, 2022.
https://eprint.iacr.org/2022/084.

[15] Jeff Hodges. Recovering from device loss, 2018. https://github.com/w3c/webauthn/
issues/931.

[16] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the security of
TLS-DHE in the standard model. In Reihaneh Safavi-Naini and Ran Canetti, editors,

65

https://eprint.iacr.org/2023/380
https://eprint.iacr.org/2023/419
https://fidoalliance.org/recommended-account-recovery-practices
https://fidoalliance.org/recommended-account-recovery-practices
https://eprint.iacr.org/2022/084
https://github.com/w3c/webauthn/issues/931
https://github.com/w3c/webauthn/issues/931

CRYPTO 2012, volume 7417 of LNCS, pages 273–293. Springer, Heidelberg, August
2012.

[17] Emil Lundberg and Dain Nilsson. WebAuthn recovery extension, 2019. https://

github.com/Yubico/webauthn-recovery-extension.

[18] Sanam Ghorbani Lyastani, Michael Schilling, Michaela Neumayr, Michael Backes, and
Sven Bugiel. Is FIDO2 the kingslayer of user authentication? A comparative usability
study of FIDO2 passwordless authentication. In 2020 IEEE Symposium on Security
and Privacy, pages 268–285. IEEE Computer Society Press, May 2020.

[19] Varun Maram and Keita Xagawa. Post-quantum anonymity of Kyber. Cryptology
ePrint Archive, Paper 2022/1696, 2022. https://eprint.iacr.org/2022/1696.

[20] National Institute of Standards and Technology. SHA-3 standard: Permutation-based
hash and extendable-output functions, 2015.

[21] Chris Peikert. He gives C-sieves on the CSIDH. In Anne Canteaut and Yuval Ishai,
editors, EUROCRYPT 2020, Part II, volume 12106 of LNCS, pages 463–492. Springer,
Heidelberg, May 2020.

[22] Keita Xagawa. Anonymity of NIST PQC round 3 KEMs. In Orr Dunkelman and
Stefan Dziembowski, editors, EUROCRYPT 2022, Part III, volume 13277 of LNCS,
pages 551–581. Springer, Heidelberg, May / June 2022.

66

https://github.com/Yubico/webauthn-recovery-extension
https://github.com/Yubico/webauthn-recovery-extension
https://eprint.iacr.org/2022/1696

	Author's Declaration
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Motivation
	Contributions
	Structure
	Related Work

	Preliminaries
	Pseudorandom Function
	Message Authentication Code
	Asynchronous Remote Key Generation
	Public-Key Unlinkability
	Private-Key Security

	Key Encapsulation Mechanism
	Collision Resistance
	KEM Unlinkability

	Key-Blinding Signature Scheme
	Key Blinding Scheme
	Key-Recovery Security
	Unique Blinding
	Private-Key Unblinding
	Strong Independent Blinding

	Quantum-Safe ARKG
	Description
	Comparison to Prior Work

	Security Analysis
	Public-Key Unlinkability
	Private-Key Security

	Credential-Based Recovery
	Protocol Model
	Recovery Authentication
	Unlinkability

	Group-Based and Post-Quantum CBR Protocols
	Protocol Descriptions
	Weaknesses in the Group-Based Protocol

	Security Analysis
	Recovery Authentication
	Unlinkability

	Instantiation
	Pseudorandom Function
	Key Blinding Scheme
	Key Encapsulation Mechanism

	Evaluation
	Stronger Security Notions

	Conclusion
	Limitations
	Future Work

	References

