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Abstract

In this thesis, we detail the following work: (i) the design and development of graph-based cloud
management software with multiple microservices, including one that provides easy connectivity
provisioning in the multi-cloud environment, and (ii) a detailed analysis of security attributes in
the multi-cloud environment.
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Chapter 1

Introduction

1.1 Background
Recent years have witnessed exponential growth in the adoption of cloud services. From SMEs
to tech giants and governments, cloud service has become an integral part of supporting organi-
zations’ daily operations. Among all the cloud service providers (CSPs), Amazon Web Service
(AWS), Google Cloud Platform (GCP), and Microsoft Azure (Azure) are some of the biggest
players in the cloud computing market.

The idea of multi-cloud is associated with utilizing services from multiple CSPs simultaneously
for a system or an application. It is estimated that more than 85% of the organizations have
shifted their operations in multi-cloud environments [15]. Multi-cloud paradigm offers extra
benefits to users and enterprises such as mitigating the risk of vendor lock-in, optimizing per-
formances and costs, ensuring high availability, ensuring data sovereignty, and offering services
that are particular to one CSP but not offered elsewhere [27][17][26][30].

Due to these reasons, given a distributed application, an enterprise may want some of its compo-
nents on one cloud and some other components on other clouds as a result of business decisions
such as maximizing the benefits of services provided by different clouds. In this scenario, provi-
sioning connectivity to interconnect these clouds, which requires expert knowledge of multiple
clouds involved, becomes an essential part of managing and maintaining such distributed appli-
cations. Also, under certain scenarios, enterprises may want to migrate applications from one
cloud to another cloud due to economical or compliance reasons. One of the biggest challenges
of managing multi-cloud applications or cloud migrations is to achieve consistent security objec-
tives across all clouds involved, but this is often difficult to achieve because the security features
offered by different CSPs differ in their syntax and semantics.
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This research work aims at exploring the provision of connectivity with security attributes in the
multi-cloud setting. Specifically, in chapter 2, we formalize the syntax and semantics of security
features offered by each CSP and try to address the following questions:

1. Understand the expressive power of the portion of the security configuration that pertains
to connectivity, i.e., given multiple CSPs, does one CSP’s security language syntax offer
more than that of other CSPs’?

2. Given a security configuration for one CSP, does there exist an equivalent security config-
uration in another CSP? If not, what is the tightest/best security configuration in another
CSP?

3. What is an efficient algorithm to translate one CSP’s security configuration to the best
security configuration in another CSP?

In chapter 3, we describe the design and development of graph-based software that helps the
management of multi-cloud applications and the provision of connectivity in multi-cloud envi-
ronments.

1.2 Definition
Definition 1 A cloud is one of the cloud service providers (CSPs), namely Amazon Web Service
(AWS), Google Cloud Platform (GCP), or Microsoft Azure (Azure).

Definition 2 A subnet is a segmented piece of a larger network, i.e., a network inside a larger
network.

Definition 3 A private network is a computer network that uses a private address space of IP
addresses.

A private address space is a subset of the following address ranges:

• 10.0.0.0 - 10.255.255.255

• 172.16.0.0 - 172.31.255.255

• 192.168.0.0 - 192.168.255.255

Resources such as computers inside a private network will be assigned private IP addresses.

Definition 4 A private IP address is an IP address that is within the private address space.

Definition 5 A CIDR (Classless Inter-Domain Routing) Block defines a range of consecutive
IPv4 addresses. A CIDR block is of the form a.b.c.d/n such that a, b, c, d each is a number of up
to three digits, 0-255, and n is a number from 0-32 which represents the network mask.
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Definition 6 Two CIDR blocks, a.b.c.d/n and e.f.g.h/m are Non-overlapping if and only if the
conjunction of two sets of IP addresses defined by the two CIDR blocks is an empty set.

Definition 7 A Virtual Private Cloud (VPC) is a private network that is hosted on a cloud.
Formally, a VPC is defined as a 2-tuple:

VPC = ⟨cloud, cidrBlock⟩

A VPC resembles a private network whose CIDR block defines the private address space within
the VPC. A VPC may be partitioned into smaller non-overlapping subnets.

Definition 8 A Virtual Machine (VM) is a computer resource that is defined by a 3-tuple, namely

⟨ipAddress, subnet, securityAttribute?⟩, where ipAddress ∈ subnet and ? means op-
tional.

A VM may be deployed in a cloud. What this means is that an instance of a computing resource
is reserved within a cloud. A deployed VM can also be attached to a subnet of a VPC and
therefore, a VM that is attached to a VPC can have a private IP address that is within the VPC
CIDR block. A VM is sometimes referred as an instance in the cloud.

Definition 9 An IP Packet, pkip, is a 7-tuple:

(ipsrc, ipdest, protocol, portsrc?, portdest?, typeicmp?, codeicmp?)

where ? signifies optional component.

Definition 10 An instance of connectivity between two VPCs is a function of exactly two VPCs,
which may not be distinct from one another. We say that there exists an instance of connectivity
between two VPCs if and only if, without additional security attributes, any VMs in one VPC is
able to send and receive ip packet to and from any VMs in the other VPC.

Definition 11 An instance of connectivity between two VMs is a function of exactly two VMs,
which may not be distinct from one another. There exists an instance of connectivity between two
VMs if and only if one VM is able to send and receive ip packet to and from the other VM via the
private IP address of the other VM.

Definition 12 A stateful security configuration is one such that if an ip packet pkip is allowed or
denied by the stateful security configuration in one direction, then the packet pkres generated in
response to pkip is allowed in the opposite direction regardless of the security configuration in
the opposite direction.

Definition 13 A stateless security configuration is one such that the packets pkres generated in
response to an allowed ip packet pkip in one direction are subject to the security configuration
for pkres in the opposite direction.
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1.3 Related Work
Over the last decade, many studies explored the multi-cloud paradigm and proposed applications
based on multiple clouds, especially for the ones that pertain to using multiple clouds to preserve
network or data security and privacy. For example, DepSky is a multi-cloud storage system
that addresses the risks that are otherwise common in single-cloud storage, namely, the loss of
availability of data, data loss, data corruption, and the loss of privacy [14]. It achieves these
by combining Byzantine quorum system protocols, cryptography, secret sharing, and erasure
code. In addition, it reduces the coupling between users and CSPs so that vendor lock-in can
be eliminated. To prevent the loss of data availability, DepSky replicates data and stores them
in multiple clouds such that in the event of a subset of CSPs’ service outage, the data remains
accessible. DepSky also uses erasure codes to reduce the amount of replication needed, thus
reducing storage costs. By using a set of efficient Byzantine quorum system protocols, DepSky
offers protection against data loss and the corruption of data [14].

Stefanov & Shi proposed a multi-cloud protocol named Multi-Cloud Oblivious Storage (MCOS)
which aimed at leveraging multiple clouds to protect data confidentiality and anonymity in the
public cloud computing setting [28]. This protocol utilizes 2 non-colluding clouds, but it can be
further expanded to include more CSPs [28]. In the 2-cloud oblivious storage implementation,
the client shares a symmetric secret key with each cloud which will be used for encryption
and decryption. The client initializes the storage by partitioning the original Oblivious Random
Access Memory (ORAM) of size N into O(

√
N) partitions that are themselves ORAMs [28].

Each partition contains log N levels in a way that is similar to a binary tree data structure. Each
level can contain data blocks or dummy (empty) blocks, and which level resides in which cloud
can change as partitions are shuffled between clouds during a read or a write operation later
on. Each data block is then placed randomly into a partition and assigned a random offset from
the top level, i.e., the largest level, of that partition. To keep track the exact location of each
data block, the client stores locally a position map that contains a tuple (partition, level, offset)
for each data block. The tuple reveals information about the data block’s exact location in a
particular partition [28].

Another multi-cloud paradigm, Prio, proposed by Gibbs and Boneh, is a privacy-preserving sys-
tem for collecting aggregate statistics [16]. Prio is proven to be robust, scalable, and can be
deployed in the multi-cloud setting. Prio achieves the goal of correctness, privacy, robustness,
and efficiency. Using Prio, if all clouds are honest, then the clouds collectively compute the cor-
rect aggregate statistics (correctness). If at least one cloud is honest, then Prio protects users’
privacy. Malformed data from malicious clients have limited impact only (robustness). Further-
more, Prio is able to handle a high volume of user data (efficiency) [16].

We notice that these studies mainly focused on leveraging the multi-cloud paradigm to enforce
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data confidentiality and preserve data privacy, while little attention was directed to achieving
multi-cloud connectivity in general. Furthermore, these studies did not consider cloud-managed
security solutions either, while this research work focuses on multi-cloud connectivity and secu-
rity.

Recently, Yeganeh et al. conducted a comprehensive study on the characterization of multi-cloud
connectivity involving major public cloud vendors. In this study, they compare three major multi-
cloud connectivity paradigm, namely (1) transit provider-based best-effort public Internet (BEP),
(2) third-party provider-based private (TPP) connectivity, and (3) CP-based private (CPP) con-
nectivity [30]. The study found that CPP-based multi-cloud connectivity has low network latency
and is more stable compared to BEP and TPP-based multi-cloud connectivity. It also showed that
CPP-based connectivity has higher throughput and less variation [30]. These findings encouraged
this research as it backed up the fact that cloud-managed multi-cloud connectivity provisioning,
which will be covered in chapter 2, is indeed a feasible solution and exhibits certain benefits
compared to other multi-cloud connectivity provisioning paradigms.
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Chapter 2

Multi-cloud Security Attributes

Security is at the core of any cloud application, be it a single-cloud or a multi-cloud application.
Even though VPCs provide network isolation, the need for Internet access for resources inside
VPCs/VNets might expose the resources to malicious network traffic. Furthermore, poorly im-
plemented security configurations might also impose a false sense of protection. It is therefore of
paramount importance to leverage the cloud-managed security solution of each cloud properly to
provide confidentiality, integrity, and availability for VPC networks in multi-cloud environments.

In this chapter, we examine the security attributes of clouds that pertain to connectivity. In sec-
tion 2.1, we give an overview of various connectivity-related network security features offered
by different cloud service providers (CSPs) Based on these features, section 2.2 formally defines
the syntax and semantics of cloud security pertaining to connectivity that set the tone for the
following sections. Section 2.3 presents formal proofs of equivalence for connectivity security
attributes between clouds. In section 2.4, we explore and expand our understanding of the ex-
pressive power problem for the portion of the security configuration that pertains to connectivity.
Finally, in section 2.5, we provide efficient algorithms that facilitate the migration from one cloud
to another.

2.1 Cloud Securities for Connectivity
In this section, we give an overview of the kinds of security features offered by CSPs, namely
AWS, GCP, and Azure.
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Table 2.1: AWS Security Group Configuration Example

Inbound rules
Type Protocol Port range Source Description (optional)
SSH TCP 22 1.1.1.1/32 Allow SSH connections

from IPv4 address 1.1.1.1
only.

HTTPS TCP 443 0.0.0.0/0 Allow all incoming traffic
to port 443

Custom TCP TCP 5432 10.0.0.0/24 Allow traffic from private
subnet with CIDR block
10.0.0.0/24 to port 5432

Outbound rules
Type Protocol Port range Destination Description (optional)
All traffic All All 0.0.0.0/0 All outbound traffic

2.1.1 Security features in AWS VPCs
Security groups in AWS VPC allow ingress or egress traffic specified by the inbound and out-
bound rules at the resource level [4]. An EC2 instance1, for example, can be associated with
one or more security groups, and the inbound and outbound network traffic of the EC2 instance
is controlled by the rules defined within these security groups. Every resource in an AWS VPC
must be associated with one or more security groups. The security group supports allow rules
only, i.e., the security group employs a default deny strategy. Table 2.1 presents an example of
a security group configuration in AWS which allows SSH connection from IP address 1.1.1.1,
port 443 that opens to the public internet, and connections to port 5432 over TCP protocol from
any resource within the private subnet 10.0.0.0/24. This security group also allows any outbound
traffic.

Each VPC in AWS has a default security group with the following security rules:

• Allow all inbound traffic from resources that are assigned to the same security group

• Allow all outbound IPv4 and IPv6 traffic.

Security groups in AWS are stateful 12.

Network access control lists (NACL) allow or deny ingress or egress traffic specified by the
inbound and outbound rules at the subnet level, i.e., NACL rules apply to all resources inside the
subnet to which NACL is attached. Table 2.2 shows an example of an NACL configuration in

1Amazon Elastic Compute Cloud, also known as EC2, is AWS’s version of the VM8
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Table 2.2: AWS Network Access Control List (NACL) Configuration Example

Inbound rules
Rule number Type Protocol Port range Source Allow/Deny
100 HTTPS TCP 443 0.0.0.0/0 Allow
* All traffic All All 0.0.0.0/0 Deny

Outbound rules
Rule number Type Protocol Port range Destination Allow/Deny
100 All traffic All All 0.0.0.0/0 Allow
* All traffic All All 0.0.0.0/0 Deny

Table 2.3: AWS VPC Security Group and Network Access Control List Comparison

Security Groups Network ACL
Scope Instance-level Subnet-level
Filtering
mechanism

Stateful Stateless

Rule type Supports allow only (default deny) Supports allow rules and deny rules
Precedence Evaluate all rules before deciding whether

to allow traffic
Rules are evaluated in order, starting with
the lowest numbered rule.

Occurance One or more security group can be applied
to an instance

One and only one NACL can be applied to
a subnet

AWS which allows inbound traffic to port 443 from any IPv4 source and all outbound traffic to
any IPv4 destination. Rule numbers in each NACL is a unique number from 1 to 32766. The
rules are evaluated in order, starting from the lowest numbered rule [2]. If the traffic match a rule
during the evaluation, the rule is applied to the traffic and the evaluation stops. Note that the rule
for which the rule number is represented by an asterisk means that if a packet does not match
any of the other numbered rule, then this rule gets applied.

Each VPC in AWS has a default NACL that is configured as follows [2]:

• Allow all inbound traffic to flow into the subnets with which it is associated.

• Allow all outbound traffic to flow out of the subnets with which it is associated.

It is worth noting that a customized NACL, i.e., a NACL that is not a default NACL in a VPC,
denies all inbound and outbound traffic by default [2].

NACLs in AWS are stateless.

Table 2.3 explains the difference between security groups and NACLs. A stateful packet filter-
ing mechanism implies that traffic generated in response to allowed traffic in one direction is
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allowed to flow in the opposite direction, regardless of the rules. For instance, a security group
with an inbound rule that allows incoming traffic to port 80 also allows the return traffic even if
the outbound rules does not explicitly specify the corresponding rule entry. In contrast, a NACL,
which adopts a stateless filtering mechanism, requires that the return traffic be explicitly spec-
ified by the inbound/outbound rules, e.g., if the inbound rule for a given NACL specifies that
ICMP traffic is allowed from an IP range, the outbound rule must also specify that the ICMP
traffic destined for that IP range is allowed. It is suggested by the AWS technical documentation
that security groups should be used as the primary measure for network access to VPCs for its
versatility such as being stateful and the ability to be referenced by other security group rules [3].
It is worth noting that, with the presence of security groups, network ACL can be properly con-
figured to provide an additional layer of defense if security group rules are too permissive. The
use of a combination of properly configured security groups and NACL offers defense-in-depth
protection against malicious network traffic [3].

2.1.2 Security features in Azure VPCs
Network security groups (NSGs) in Azure allow or deny ingress or egress traffic specified by
the inbound or outbound rules. Differing from the security group in AWS which applies only
at the instance level, network security groups in Azure offer the capability to be applied to both
instances and subnets.

Rules in the NSG are defined by the priority which determines the order of evaluation and the
five-tuple, i.e., (Source, Source Port, Destination, Destination Port, Protocol), and the rules are
stateful [8]. Table 2.4 shows an example of the NSG configuration such that inbound traffic to any
resources within CIDR block 10.0.0.0/24 over HTTPS is allowed. This NSG is also configured
to allow internal communication between resources inside the virtual network. Metadata such as
VirtualNetwork and Internet are service tags that essentially represent a group of resources, e.g.,
the Internet represents all IP addresses while VirtualNetwork represents all resources within the
virtual network to which the NSG is attached [8].

Both a VM and a subnet in Azure can be associated with zero or one NSG. A NSG can be
associated with as many subnets and VMs as possible [13].

NSGs in Azure are stateful 12.

2.1.3 Security features in GCP VPCs
Firewall rules in GCP are stateful rules that apply to a given project and VPC network [20].
While GCP firewall rules are defined at the network level, connections are allowed or denied on
a per-instance basis within the protected network [20]. Even though GCP does not have AWS
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Table 2.4: Azure Network Security Group Configuration Example

Inbound rules
Priority Port Protocol Source Destination Action
100 443 TCP 0.0.0.0/0 10.0.0.0/24 Allow
65000 Any Any VirtualNetwork VirtualNetwork Allow
65500 Any Any Any Any Deny

Outbound rules
Priority Port Protocol Source Destination Action
65000 Any Any VirtualNetwork VirtualNetwork Allow
65001 Any Any Any Internet Allow
65500 Any Any Any Any Deny

security groups equivalent that directly applies to instances and provides instance-level access
control over traffic, the same can be achieved by using a so-called network tags as the target of
the rule in GCP firewalls. A network tag is an optional attribute that is attached to an instance
and thus the instance can be referred to by it. Hence, firewall rules can also be applied at the
instance level by utilizing the network tags. Each firewall rule can either allow or deny ingress
or egress traffic. The rules are defined by the following components [20]:

• Direction: ingress/egress from the perspective of the target

• Priority: a numerical integer number from 0 to 65535 which determines whether the rule is
applied. Low numerical number implies high priority and high numerical number implies
low priority. The default priority is 1000. Unlike AWS NACL and Azure NSG, GCP
Firewalls allow two rules to have the same priority. When this happens, the rule with a
deny action takes precedence with the other with an allow action [20].

• Action: is either allow or deny. An allow action permits connections that match the other
specified components whereas a deny action blocks connections that match the other spec-
ified components.

• Target defines the instance or network to which the rule applies.

• Source or destination filter for packet characteristics

• Protocol and destination port

Table 2.5 shows an example of the GCP firewall configuration. This configuration allows the
incoming traffic from the public internet to establish a connection over HTTP (Port 80 over
TCP) or HTTPS (Port 443 over TCP) It also allow traffic from IPv4 address 1.1.1.1 to establish
an SSH connection (Port 22 over TCP) with VMs whose network tag is host-vm.
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Table 2.5: GCP Firewall Configuration Example

Inbound rules
Type Priority Source

ranges
Action Protocol and

ports
Targets Network

Ingress 1000 0.0.0.0/0 tcp:80, 443 Allow Apply to all default
Ingress 1000 1.1.1.1/32 tcp:22 Allow host-vm default
Ingress 65535 0.0.0.0/0 all Deny Apply to all Default
Egress 65534 0.0.0.0/0 all Allow Apply to all Default
Egress 65535 0.0.0.0/0 all Deny Apply to all Default

2.2 Cloud Security Syntax and Semantics Pertaining to Con-
nectivity

In this section, we formalize the syntax and the semantics of the security features pertaining to
multi-cloud connectivity that we explored in section 2.1. Specifically, we examine the following:
AWS security groups, AWS network access control lists (NACLs), GCP firewall, and Azure
network security groups (NSGs) We discuss the rule configuration in relation to ip packets. We
acknowledge that an ip packet has attributes that are optional, for example, an ip packet whose ip
protocol is icmp contains optional attributes type and code instaed of source port and destination
port. For the purpose of this analysis, we constrain the ip packets of our interest to be ones
that contain the following attributes only: (ipsrc, ipdest, protocol, portsrc, portdest). Consequently,
when we specify the syntax and the semantics of these cloud security features, we include only
attributes pertaining to port numbers, i.e., source port and destination port, and ignore the icmp
type and code attributes.

2.2.1 AWS Security Group Abstract Syntax
We formalize the policy language in a simplified abstract syntax based on the set of APIs for
AWS security groups 23 and NACLs 4. An AWS security group is a set of IpPermissions, an
IpPermission is a 4-tuple as described in Table 2.6, and an IpRange is a set of ip addresses.

In the language we describe in Table 2.6, a security group is formally defined as a set of Ip-
Permissions. Each IpPermission is a 4-tuple ⟨Direction, IpProtocol, PortRange, IpRange⟩. Since

2https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API AuthorizeSecurityGroupIngress.html
3https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API AuthorizeSecurityGroupEgress.html
4https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API CreateNetworkAclEntry.html
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SecurityGroup F a set of IpPermissions
IpPermission F tuple:⟨Direction, IpProtocol,PortRange, IpRanges⟩

Direction F ingress | egress
IpProtocol F int ∈ [0, 255]
PortRange F [FromPort,ToPort] ⊆ [0, 65535]

FromPort F int ∈ [0, 65535]
ToPort F int ∈ [0, 65535]

IpRanges F {a.b.c.d/n : a, b, c, d ∈ [0, 255] and n ∈ [0, 32]}

Table 2.6: AWS Security Group Abstract Syntax

each security group adopts a default-deny strategy, the IpPermission in the security group over-
rides the default deny rules to allow traffic based on the attributes specified in the 4-tuple. The
Direction construct is a constant that states the direction of the traffic on which the ip permis-
sion is enforced. The IpProtocol construct is an integer that specifies the protocol of the traffic
to which the ip permission is applicable. The PortRange constructs is a set defined by the set
[FromPort, ToPort], which is a subset of [0, 65535], that together defines the range of ports that
specific ip permission applies. Finally, the IpRange construct is a set of ip addresses in CIDR
notation 5 that defines the allowed source ip ranges for ingress traffic or the allowed destination
ip ranges for egress traffic.

2.2.2 AWS Network Access Control List (NACL) Abstract Syntax

NACL F a sequence of Rules
Rule F tuple:⟨Egress,RuleAction,RuleNumber,CidrBlock,Protocol,PortRange⟩

Egress F true | false
RuleAction F allow | deny

RuleNumber F int ∈ [1, 32766]
CidrBlock F a.b.c.d/n : a, b, c, d ∈ [0, 255] and n ∈ [0, 32]

Protocol F int: ∈ [0, 255]
PortRange F [FromPort,ToPort] ⊆ [0, 65535]

FromPort F int ∈ [0, 65535]
ToPort F int ∈ [0, 65535]

Table 2.7: AWS NACL Abstract Syntax
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Table 2.7 presents the abstract syntax for AWS NACL. A NetworkAccessControlList is defined as
a sequence of Rules. A Rule is a 6-tuple ⟨Egress, RuleAction, RueNumber, CiderBlock, Protocol, PortRange⟩.
The Egress construct is a boolean for which true means the rule targets outbound traffic and false
indicates that the rule is for inbound traffic. The RuleAction construct is a constant that decides
whether the traffic to which the rule is applicable should be allowed or denied. The RuleNumber
construct is an integer that decides the relative order for which the rule will be evaluated. The
rule number in an AWS NACL must be unique. Whenever the subnet receives network traffic,
be it inbound or outbound, the rules in NACL will be evaluated according to the rule number in
ascending order, i.e., the rule with the lowset rule number in the NACL will be evaluated first.
The evaluation stops as soon as there is a match and subsequently the matching rule will be ap-
plied to the traffic. The CidrBlock construct is a set of ip addresses in CIDR notation that defines
the allowed or denied traffic based on the source ip ranges if it is an ingress rule, or, destination
ip ranges if it is an egress rule. The Protocol construct is an integer that specifies the protocol
number 5 of the traffic to which the ip permission is applicable, e.g., 6 is for TCP and 17 is for
UDP etc. The PortRange construct is a set [FromPort, ToPort] which together define the range
of ports that the rule applies.

Formally, the mapping from an AWS subnet to an AWS NACL is a function such that each subnet
must be associated with an NACL. An NACL can be associated with multiple subnets. However,
a subnet can be associated with only one network ACL at a time. When a new network ACL
with is associated with a subnet, the previous association is removed.

2.2.3 AWS Security Semantics
We define the term/phrase “a set of security groups {G1, . . . ,Gk} allows an ip packet to arrive at a
VM 8” as the situation that either (1) there exists an ip permission Pi in {G1, . . . ,Gk} that permits
some egress traffic for which the ip packet matches the statefully-added ingress ip permisson, or,
(2) there is a matching ingress ip permission P j in {G1, . . . ,Gk} for the ip packet, but not both.

Formally, given (i) a set of AWS security groups {G1, . . . ,Gk} for some k ≥ 1, (ii)
a subnet S , (iii) a VM 8, M = ⟨ipm, S , {G1, . . . ,Gk}⟩ (iv) an ip packet pkip whose
destination ip address is pkip.ipdest such that pkip.ipdest = ipm, and (v) a set of Ip-
Permissions {P1, . . . , Pn} for some n ≥ 1 in {G1, . . . ,Gk}, we define the term/phrase
“There exists an ip permission Pi in a set of security groups {G1, . . . ,Gk} that per-
mits some egress traffic for which the ip packet matches the statefully-added ingress
ip permission” as the situation that ((Pi ∈ {P1 . . . Pn}) ∧ (Pi.direction = egress) ∧
(pkip.ipsrc ∈ Pi.I pRanges) ∧ (pkip.protocol = Pi.I pProtocol) ∧ (pkip.portsrc ∈

[Pi.FromPort, Pi.ToPort])) is valid.
5http://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml

13



Given (i) a set of AWS security groups {G1, . . . ,Gk} for some k ≥ 1, (ii) a subnet
S , (iii) a VM 8, M = ⟨ipm, S , {G1, . . . ,Gk}⟩ (iv) an ip packet pkip whose destination
ip address is pkip.ipdest such that pkip.ipdest = ipm, and (v) a set of IpPermissions
{P1, . . . , Pn} for some n ≥ 1 in {G1, . . . ,Gk}, we define the term/phrase “There ex-
ists a matching ingress ip permission P j in a set of security groups {G1, . . . ,Gk} for
the ip packet” as the situation that ((Pi ∈ {P1 . . . Pn}) ∧ (P j.direction = ingress) ∧
(pkip.ipsrc ∈ P j.I pRanges) ∧ (pkip.protocol = P j.I pProtocol) ∧ (pkip.portdest ∈

[P j.FromPort, P j.ToPort])) is valid.

We define the term/phrase “a set of security groups {G1, . . . ,Gk} allows an ip packet to leave a
VM 8” as the situation that either (1) there exists an ip permission Pi in {G1, . . . ,Gk} that permits
some ingress traffic for which the ip packet matches the statefully-added egress ip permission,
or, (2) there is a matching egress ip permission P j in {G1, . . . ,Gk} for the ip packet.

Given (i) a set of AWS security groups {G1, . . . ,Gk} for some k ≥ 1, (ii) a subnet
S , (iii) a VM 8, M = ⟨ipm, S , {G1, . . . ,Gk}⟩, (iv) an ip packet pkip whose source
ip address is pkip.ipsrc such that pkip.ipsrc = ipm, and (v) a set of ip permissions
{P1, . . . , Pn} for some n ≥ 1 in {G1, . . . ,Gk}, we define the term/phrase “There ex-
ists an ip permission Pi in a set of security groups {G1, . . . ,Gk} that permits some
ingress traffic for which the ip packet matches the statefully-added egress ip permis-
sion” as the situation that ((Pi ∈ {P1 . . . Pn})∧(Pi.direction = ingress)∧(pkip.ipdest ∈

Pi.I pRanges)∧(pkip.protocol = Pi.I pProtocol)∧(pkip.portsrc ∈ [Pi.FromPort, Pi.ToPort]))
is valid.

Given (i) a set of AWS security groups {G1, . . . ,Gk} for some k ≥ 1, (ii) a sub-
net S , (iii) a VM, M = ⟨ipm, S , {G1, . . . ,Gk}⟩, (iv) an ip packet pkip whose source
ip address is pkip.ipsrc such that pkip.ipsrc = ipm, and (v) a set of ip permissions
{P1, . . . , Pn} for some n ≥ 1 in {G1, . . . ,Gk}, we define the term/phrase “There ex-
ists a matching egress ip permission P j in a set of security groups {G1, . . . ,Gk} for
the ip packet” as the situation that ((P j ∈ {P1 . . . Pn}) ∧ (P j.direction = egress) ∧
(pkip.ipdest ∈ P j.I pRanges) ∧ (pkip.protocol = P j.I pProtocol) ∧ (pkip.portdest ∈

[P j.FromPort, P j.ToPort])) is valid.

We define the term/phrase “NACL allows an ip packet to enter the subnet to which the NACL
is bound” as the situation that there exists an allow-ingress rule Ri in the NACL that matches
the ip packet that is of higher priority than every deny-ingress rule that matches the same ip
packet. Note that there must exist at least one deny-ingress rule that matches the ip packet, i.e.,
the default deny-ingress rule.

Given a subnet S to which a NACL N is bound, an ip packet pkip whose source
ip address is pkip.ipsrc such that pkip.ipsrc ∈ S , the AWS NACL syntax 2.7, and
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a sequence of rules ⟨R1, . . . ,Rn⟩ for some n ≥ 1 in N, we define the term/phrase
“an allow-ingress rule Ri matches the ip packet” as the situation that ¬(Ri.Egress)∧
(Ri.RuleAction = allow)∧(pkip.ipsrc ∈ Ri.CidrBlock)∧(pkip.protocol = Ri.Protocol)∧
(pkip.portdest ∈ Ri.PortRange))

Given a subnet S to which a NACL N is bound, an ip packet pkip whose source ip ad-
dress is pkip.ipsrc such that pkip.ipsrc ∈ S , the AWS NACL syntax 2.7, and a sequence
of rules ⟨R1, . . . ,Rn⟩ for some n ≥ 1 in N, we define the term/phrase “a deny-ingress
rule R j in the NACL that matches the ip packet” as the situation that ¬(R j.Egress)∧
(R j.RuleAction = deny)∧(pkip.ipsrc ∈ Ri.CidrBlock)∧(pkip.protocol = Ri.Protocol)∧
(pkip.portdest ∈ Ri.PortRange)

Given a subnet S to which a NACL N is bound, an ip packet pkip whose source
ip address is pkip.ipsrc such that pkip.ipsrc ∈ S , the AWS NACL syntax 2.7, and a
sequence of rules ⟨R1, . . . ,Rn⟩ for some n ≥ 1 in N, an allow-ingress rule Ri such
that Ri ∈ {R1, . . . ,Rn} that matches the ip packet, and a deny-ingress rule R j such that
R j ∈ {R1, . . . ,Rn} that matches the ip packet, we define the term/phrase “an allow-
ingress rule Ri that matches the ip packet that is of higher priority than any deny-
ingress rule R j that matches the ip pakcet” as the situation that (Ri.RuleNumber) <
R j.RuleNumber)

We define the term/phrase “NACL allows an ip packet to leave the subnet to which the NACL
is bound” as the situation that there exists an allow-egress rule Ri in the NACL that matches the
ip packet that is of higher priority than every deny-egress rule that matches the ip packet. Note
that there must exist at least one deny-egress rule that matches the ip packet, i.e., the default
deny-egress rule.

Given a subnet S to which a NACL N is bound, an ip packet pkip whose source ip ad-
dress is pkip.ipsrc such that pkip.ipsrc ∈ S , the AWS NACL syntax 2.7, and a sequence
of rules ⟨R1, . . . ,Rn⟩ for some n ≥ 1 in N, we define the term/phrase “an allow-egress
rule Ri matches the ip packet” as the situation that (Ri.Egress) ∧ (Ri.RuleAction =
allow)∧(pkip.ipdest ∈ Ri.CidrBlock)∧(pkip.protocol = Ri.Protocol)∧(pkip.portdest ∈

Ri.PortRange)

Given a subnet S to which a NACL N is bound, an ip packet pkip whose source
ip address is pkip.ipsrc such that pkip.ipsrc ∈ S , the AWS NACL syntax 2.7, and a
sequence of rules ⟨R1, . . . ,Rn⟩ for some n ≥ 1 in N, we define the term/phrase “a
deny-egress rule R j in the NACL that matches the ip packet” as the situation that
(1 ≤ j ≤ n) ∧ ¬(i = j) ∧ (R j.Egress) ∧ (R j.RuleAction = deny) ∧ (pkip.ipsrc ∈

S ) ∧ (pkip.ipdest ∈ Ri.CidrBlock) ∧ (pkip.protocol = Ri.Protocol) ∧ (pkip.portdest ∈

Ri.PortRange)
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Given a subnet S to which a NACL N is bound, an ip packet pkip whose source
ip address is pkip.ipsrc such that pkip.ipsrc ∈ S , the AWS NACL syntax 2.7, and a
sequence of rules ⟨R1, . . . ,Rn⟩ for some n ≥ 1 in N, an allow-egress rule Ri such
that Ri ∈ {R1, . . . ,Rn} that matches the ip packet, and a deny-egress rule R j such that
R j ∈ {R1, . . . ,Rn} that matches the ip packet, we define the term/phrase “an allow-
egress rule Ri that matches the ip packet that is of higher priority than any deny-
egress rule R j that matches the ip pakcet” as the situation that (Ri.RuleNumber) <
R j.RuleNumber)

Given the above definitions, and the facts that: (1) every VM has at least one security group
bound to it, and, (2) every subnet has exactly one NACL bound to it, we specify the semantics of
a set of security groups, {G1, . . . ,Gk} for some k ≥ 1 and a NACL N as follows:

Given a subnet S , a set of security groups {G1, . . . ,Gk} for some k ≥ 1, a NACL N
that is bound to S , a VM M such that M = ⟨ipm, S , {G1, . . . ,Gk}⟩. Then, an ip packet
is allowed to arrive at the VM if and only if (i) the NACL N allows the IP packet to
enter the subnet S to which N is bound, and, (ii) G1, . . . ,Gk allow the ip packet to
arrive at M.

And, an ip packet sent by M is allowed to exit AWS if and only if (i) G1, . . . ,Gk

allow the ip packet to leave M, and, (ii) the NACL N allows the ip packet to leave
the S to which the N is bound.

2.2.4 GCP Firewall Abstract Syntax
We formalize the policy language in a simplified abstract syntax based on the set of APIs for
GCP firewalls. In this syntax, ? denotes optional elements and * denotes list-valued elements.

Table 2.8 presents the abstract syntax of the GCP Firewall. A Firewall is a sequence of Rules. A
Rule is a 5-tuple, (Direction, Priority, Action, Target, Source or Destination) Direction is either
‘ingress’ or ‘egress’ which defines the direction of the flow of the traffic. Priority is an integer
from 0 to 65535 that decides whether the rule is applied. Rules are evaluated starting from the
lowest numbered priority. Where two rules have the same priority, the deny rule takes precedence
over the allow rule. The Action construct is a set of Allow constructs or a set of Deny constructs
but not both. Allow is a 2-tuple ⟨Protocol, Range⟩ that defines the ports over a specific protocol
to which the traffics are permitted. Similarly, the Deny construct is a 2-tuple ⟨Protocol, Range⟩
that determines the ports over a specific protocol to which traffic is blocked. The Target construct
is a set of ip addresses in CIDR notation that defines the target instances to which the rules are
applied. The Source construct is a set of ip addresses in CIDR notation that defines the source
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Firewall F a sequence of Rules
Rule F tuple: ⟨Direction,Priority,Action,Target,Source | Destination⟩

Direction F ingress | egress
Priority F int: ∈ [0, 65535]
Action F a set of Allows | a set of Denys
Allow F tuple: ⟨Protocol,PortRanges?⟩
Deny F tuple: ⟨Protocol,PortRanges?⟩

Protocol F int: [0, 255]
PortRanges F set ⊆ [0, 65535]

Target F {a.b.c.d/n : a, b, c, d ∈ [0, 255] and n ∈ [0, 32]}
Source F {a.b.c.d/n : a, b, c, d ∈ [0, 255] and n ∈ [0, 32]}

Destination F {a.b.c.d/n : a, b, c, d ∈ [0, 255] and n ∈ [0, 32]}

Table 2.8: GCP Firewall Abstract Syntax

of the ingress traffic to which the rules are applicable. Similarly, the Destination construct is a
set of ip addresses in CIDR notation that defines the destination of the egress traffic to which the
rules are applicable.

2.2.5 GCP Security Semantics
We define the term/phrase “a GCP firewall F allows an ip packet pkip to arrive at a VM” as
the situation that either (1) there exists an allow-egress rule Ri in F for which the ip packet pkip

matches the statefully-added ingress rule, and such allow-egress rule which matches the ip packet
pkx is of higher priority than every deny-egress rule that matches ip packet pkx, or, (2) there is
a matching allow-ingress rule Ri in F for the ip packet pkip that is of higher priority than every
deny-ingress rule that matches the ip packet pkip, but not both. Note that there must exist at least
one deny-egress rule that matches the ip packet pkx, i.e., the default deny-egress rule.

Given (i) a subnet S to which a GCP firewall F is bound, (ii) a VM 8, M =

⟨ipm, S , F⟩ (iii) an ip packet pkip whose destination ip address is pkip.ipdest such
that pkip.ipdest = ipm, and (iv) a sequence of Rules ⟨R1, . . . ,Rn⟩ for some n ≥ 1 in
F, we define the term/phrase “there exists an allow-egress rule Ri in F for which the
ip packet pkip matches the statefully-added ingress rule” as the situation that (Ri ∈

⟨R1 . . .Rn⟩)∧(Ri.Direction = egress)∧(Ri.Action.Allow.Protocol = pkip.protocol)∧
(pkip.portsrc ∈ Ri.Action.Allow.PortRange) ∧ (pkip.ipsrc ∈ Ri.Destination) is valid.

Given (i) a subnet S to which a GCP firewall F is bound, (ii) a VM 8, M = ⟨ipm, S , F⟩
(iii) an ip packet pkip whose destination ip address is pkip.ipdest such that pkip.ipdest =
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ipm, and (iv) a sequence of Rules ⟨R1, . . . ,Rn⟩ for some n ≥ 1 in F, we define the
term/phrase “an allow-egress rule Ri matches an ip packet pkx is of higher priority
than any deny-egress rule R j that matches the ip packet pkx” as the situation that
(Ri.Priority < R j.Priority) is valid.

Given (i) a subnet S to which a GCP firewall F is bound, (ii) a VM 8, M =

⟨ipm, S , F⟩ (iii) an ip packet pkip whose destination ip address is pkip.ipdest such
that pkip.ipdest = ipm, and (iv) a sequence of Rules ⟨R1, . . . ,Rn⟩ for some n ≥ 1 in
F, we define the term/phrase “there is a matching allow-ingress rule Ri in F for the
ip packet pkip” as the situation that (Ri ∈ ⟨R1 . . .Rn⟩) ∧ (Ri.Direction = ingress) ∧
(Ri.Action.Allow.Protocol = pkip.protocol)∧(pkip.portdest ∈ Ri.Action.Allow.PortRange)∧
(pkip.ipsrc ∈ Ri.S ource) is valid.

We define the term/phrase “a GCP firewall F allows an ip packet pkip to leave the subnet S to
which the firewall is bound” as the situation that either (1) there exists an allow-ingress rule
Ri in F for which the ip packet pkip matches the statefully-added egress rule, and such allow-
ingress rule which matches the ip packet pkx is of higher priority than every deny-ingress rule
that matches ip packet pkx, or, (2) there is a matching allow-egress rule Ri in F for the ip packet
pkip that is of higher priority than every deny-egress rule that matches the ip packet pkip, but not
both. Note that there must exist at least one deny-ingress rule that matches the ip packet pkx, i.e.,
the default deny-ingress rule.

Given (i) a subnet S to which a GCP firewall F is bound, (ii) a VM 8, M = ⟨ipm, S , F⟩
(iii) an ip packet pkip whose source ip address is pkip.ipsrc such that pkip.ipsrc = ipm,
and (iv) a sequence of Rules ⟨R1, . . . ,Rn⟩ for some n ≥ 1 in F, we define the ter-
m/phrase “there exists an allow-ingress rule Ri in F for which the ip packet pkip

matches the statefully-added egress rule” as the situation that (Ri ∈ ⟨R1 . . .Rn⟩) ∧
(Ri.Direction = ingress)∧(Ri.Action.Allow.Protocol = pkip.protocol)∧(pkip.portsrc ∈

Ri.Action.Allow.PortRange) ∧ (pkip.ipdest ∈ Ri.S ource) is valid.

Given (i) a subnet S to which a GCP firewall F is bound, (ii) a VM 8, M = ⟨ipm, S , F⟩
(iii) an ip packet pkip whose source ip address is pkip.ipsrc such that pkip.ipsrc =

ipm, and (iv) a sequence of Rules ⟨R1, . . . ,Rn⟩ for some n ≥ 1 in F, we define the
term/phrase “an allow-ingress rule Ri matches an ip packet pkx is of higher priority
than any deny-ingress rule R j that matches the ip packet pkx” as the situation that
Ri.Priority < R j.Priority is valid.

Given (i) a subnet S to which a GCP firewall F is bound, (ii) a VM 8, M =

⟨ipm, S , F⟩ (iii) an ip packet pkip whose source ip address is pkip.ipsrc such that
pkip.ipsrc = ipm, and (iv) a sequence of Rules ⟨R1, . . . ,Rn⟩ for some n ≥ 1 in F,
we define the term/phrase “there is a matching allow-egress rule Ri in F for the
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ip packet pkip” as the situation that (Ri ∈ ⟨R1 . . .Rn⟩) ∧ (Ri.Direction = egress) ∧
(Ri.Action.Allow.Protocol = pkip.protocol)∧(pkip.portdest ∈ Ri.Action.Allow.PortRange)∧
(pkip.ipdest ∈ Ri.Destination) is valid.

Given the above definitions, we specify the semantics of the GCP firewall as follows:

Given (i) a subnet S in GCP to which a GCP firewall F is bound, (ii) a VM 8,
M = ⟨ipm, S , F⟩ (iii) a sequence of Rules ⟨R1, . . . ,Rn⟩ for some n ≥ 1 in F, an ip
packet pkip is allowed to arrive at the VM M if and only if F allows an ip packet pkip

to arrive at M.

And, an ip packet pkip is allowed to exit GCP if and only if F allows pkip to leave
the subnet S to which F is bound.

2.2.6 Azure Network Security Group Abstract Syntax
We formalize the policy language in a simplified abstract syntax based on the set of APIs for
Azure Network Security Groups 6. In this syntax, * denotes list valued elements. An Azure
network security group is a sequence of Rules, a Rule is an 8-tuple as described in Table 2.9.

NetworkSecurityGroup F a sequence of Rules
Rule F tuple: ⟨Direction,Priority,Access,Protocol,SourceIpRange,

SourcePortRange,DestinationIpRange,DestinationPortRange⟩
Direction F inbound | outbound

Priority F int: ∈ [100, 4096]
Access F allow | deny

Protocol F int: [0, 255]
SourceIpRange F {a.b.c.d/n : a, b, c, d ∈ [0, 255] and n ∈ [0, 32]}

SourcePortRange F set ⊆ [0, 65535]
DestinationIpRange F {a.b.c.d/n : a, b, c, d ∈ [0, 255] and n ∈ [0, 32]}

DestinationPortRange F set ⊆ [0, 65535]

Table 2.9: Azure Network Security Group Abstract Syntax

6https://learn.microsoft.com/en-us/rest/api/virtualnetwork/network-security-groups

19



2.2.7 Azure Security Semantics
We define the term/phrase “an Azure network security group G allows an ip packet pkip to reach
a VM” as the situation that: (1) there exists an allow-egress rule Ri in G that permits some egress
traffic for which pkip matches the statefully-added ingress rule, and such allow-egress rule which
matches the ip packet pkx is of higher priority than any deny-egress rule that matches pkx or,
(2) there exists a matching allow-ingress rule Ri in G for pkip that is of higher priority than any
deny-ingress rule that matches pkip, but not both.

Given (i) an Azure network security groups G, (ii) a subnet S , (iii) a VM 8, M =
⟨ipm, S ,G⟩ (iv) an ip packet pkip whose destination ip address is pkip.ipdest such
that pkip.ipdest = ipm, and (v) a sequence of Rules ⟨R1, . . . ,Rn⟩ for some n ≥ 1 in
G, we define the term/phrase “There exists an allow-egress rule Ri in G that per-
mits some egress traffic for which pkip matches the statefully-added ingress rule” as
the situation that ((Ri ∈ {P1 . . . Pn}) ∧ (Ri.Direction = outbound) ∧ (Ri.Access =
allow) ∧ (pkip.protocol = Ri.Protocol) ∧ (pkip.ipsrc ∈ Ri.DestinationI pRange) ∧
(pkip.portsrc ∈ Ri.DestinationPortRange)) ∧ (pkip.ipdest ∈ Ri.S ourceI pRange) ∧
(pkip.portdest ∈ Ri.S ourcePortRange)) is valid.

Given (i) an Azure network security groups G, (ii) a subnet S , (iii) a VM 8, M =
⟨ipm, S ,G⟩ (iv) an ip packet pkip whose destination ip address is pkip.ipdest such that
pkip.ipdest = ipm, and (v) a sequence of Rules ⟨R1, . . . ,Rn⟩ for some n ≥ 1 in G, we
define the term/phrase “There exists a matching allow-ingress rule Ri in G for pkip”
as the situation that ((Ri ∈ {P1 . . . Pn}) ∧ (Ri.Direction = inbound) ∧ (Ri.Access =
allow)∧(pkip.protocol = Ri.Protocol)∧(pkip.ipsrc ∈ Ri.S ourceI pRange)∧(pkip.portsrc ∈

Ri.S ourcePortRange)) ∧ (pkip.ipdest ∈ Ri.DestinationI pRange) ∧ (pkip.portdest ∈

Ri.DestinationPortRange)) is valid.

We define the term/phrase “an Azure network security group G allows an ip packet pkip to leave a
VM” as the situation that: (1) there exists an allow-ingress rule Ri in G that permits some ingress
traffic for which the pkip matches the statefully-added egress rule, and such allow-ingress rule
which matches the ip packet pkx is of higher priority than every deny-ingress rule that matches
pkx or, (2) there exists a matching allow-egress rule Ri in G for pkip that is of higher priority than
every deny-egress rule that matches pkip, but not both.

Given (i) an Azure network security groups G, (ii) a subnet S , (iii) a VM 8, M =
⟨ipm, S ,G⟩ (iv) an ip packet pkip whose source ip address is pkip.ipsrc such that
pkip.ipsrc = ipm, and (v) a sequence of Rules {R1, . . . ,Rn} for some n ≥ 1 in G,
we define the term/phrase “There exists an allow-ingress rule Ri in G that per-
mits some ingress traffic for which pkip matches the statefully-added egress rule”
as the situation that ((Ri ∈ {P1 . . . Pn}) ∧ (Ri.Direction = inbound) ∧ (Ri.Access =
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allow) ∧ (pkip.protocol = Ri.Protocol) ∧ (pkip.ipsrc ∈ Ri.DestinationI pRange) ∧
(pkip.portsrc ∈ Ri.DestinationPortRange)) ∧ (pkip.ipdest ∈ Ri.S ourceI pRange) ∧
(pkip.portdest ∈ Ri.S ourcePortRange)) is valid.

Given (i) an Azure network security groups G, (ii) a subnet S , (iii) a VM 8, M =
⟨ipm, S ,G⟩ (iv) an ip packet pkip whose source ip address is pkip.ipsrc such that
pkip.ipsrc = ipm, and (v) a sequence of Rules {R1, . . . ,Rn} for some n ≥ 1 in G, we
define the term/phrase “There exists a matching allow-egress rule Ri in G for pkip”
as the situation that ((Ri ∈ {P1 . . . Pn}) ∧ (Ri.Direction = outbound) ∧ (Ri.Access =
allow)∧(pkip.protocol = Ri.Protocol)∧(pkip.ipsrc ∈ Ri.S ourceI pRange)∧(pkip.portsrc ∈

Ri.S ourcePortRange)) ∧ (pkip.ipdest ∈ Ri.DestinationI pRange) ∧ (pkip.portdest ∈

Ri.DestinationPortRange)) is valid.

We define the term/phrase “an Azure network security group G allows an ip packet pkip to enter
the subnet to which G is bound” as the situation that: (1) there exists an allow-egress rule Ri in G
that permits some egress traffic for which the pkip matches the statefully-added ingress rule, and
such allow-egress rule which matches pkx is of higher priority than every deny-egress rule that
matches pkx or, (2) there exists a matching allow-ingress rule Ri in G for pkip that is of higher
priority than every deny-ingress rule that matches pkip, but not both.

Given (i) a subnet S to which an Azure network security group G is bound, (ii)
a VM 8, M = ⟨ipm, S ,G⟩ (iii) an ip packet pkip whose destination ip address is
pkip.ipdest such that pkip.ipdest = ipm, and (iv) a sequence of Rules ⟨R1, . . . ,Rn⟩ for
some n ≥ 1 in F, we define the term/phrase “there exists an allow-ingress rule Ri in
F for which the ip packet pkip matches the statefully-added egress rule” as the situ-
ation that (Ri ∈ ⟨R1 . . .Rn⟩)∧ (Ri.Direction = ingress)∧ (Ri.Action.Allow.Protocol =
pkip.protocol)∧(pkip.portsrc ∈ Ri.Action.Allow.PortRange)∧(pkip.ipdest ∈ Ri.S ource)
is valid.

Given (i) a subnet S to which an Azure network security group G is bound, (ii)
a VM 8, M = ⟨ipm, S ,G⟩ (iii) an ip packet pkip whose destination ip address is
pkip.ipdest such that pkip.ipdest = ipm, and (iv) a sequence of Rules ⟨R1, . . . ,Rn⟩ for
some n ≥ 1 in G, we define the term/phrase “There exists a matching allow-ingress
rule Ri in G for pkip” as the situation that ((Ri ∈ {P1 . . . Pn}) ∧ (Ri.Direction =
inbound) ∧ (Ri.Access = allow) ∧ (pkip.protocol = Ri.Protocol) ∧ (pkip.ipsrc ∈

Ri.S ourceI pRange)∧(pkip.portsrc ∈ Ri.S ourcePortRange))∧(pkip.ipdest ∈ Ri.DestinationI pRange)∧
(pkip.portdest ∈ Ri.DestinationPortRange)) is valid.

We define the term/phrase “an Azure network security group G allows an ip packet pkip to leave
the subnet to which G is bound” as the situation that: (1) there exists an allow-ingress rule Ri in
G that permits some ingress traffic for which pkip matches the statefully-added egress rule, and
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such allow-ingress rule which matches pkx is of higher priority than every deny-ingress rule that
matches pkx or, (2) there exists a matching allow-egress rule Ri in G for pkip that is of higher
priority than every deny-egress rule that matches pkip, but not both.

Given (i) a subnet S to which an Azure network security group G is bound, (ii) a
VM 8, M = ⟨ipm, S ,G⟩ (iii) an ip packet pkip whose source ip address is pkip.ipsrc

such that pkip.ipsrc = ipm, and (iv) a sequence of Rules {R1, . . . ,Rn} for some n ≥ 1
in G, we define the term/phrase “There exists an allow-ingress rule Ri in G that
permits some ingress traffic for which pkip matches the statefully-added egress rule”
as the situation that ((Ri ∈ {P1 . . . Pn}) ∧ (Ri.Direction = inbound) ∧ (Ri.Access =
allow) ∧ (pkip.protocol = Ri.Protocol) ∧ (pkip.ipsrc ∈ Ri.DestinationI pRange) ∧
(pkip.portsrc ∈ Ri.DestinationPortRange)) ∧ (pkip.ipdest ∈ Ri.S ourceI pRange) ∧
(pkip.portdest ∈ Ri.S ourcePortRange)) is valid.

Given (i) a subnet S to which an Azure network security group G is bound, (ii) a
VM 8, M = ⟨ipm, S ,G⟩ (iii) an ip packet pkip whose source ip address is pkip.ipsrc

such that pkip.ipsrc = ipm, and (iv) a sequence of Rules {R1, . . . ,Rn} for some n ≥ 1
in G, we define the term/phrase “There exists a matching allow-egress rule Ri in
G for pkip” as the situation that ((Ri ∈ {P1 . . . Pn}) ∧ (Ri.Direction = outbound) ∧
(Ri.Access = allow)∧(pkip.protocol = Ri.Protocol)∧(pkip.ipsrc ∈ Ri.S ourceI pRange)∧
(pkip.portsrc ∈ Ri.S ourcePortRange)) ∧ (pkip.ipdest ∈ Ri.DestinationI pRange) ∧
(pkip.portdest ∈ Ri.DestinationPortRange)) is valid.

Given the above definition, we specify the semantics of the Azure network security group as
follows:

Given two network security groups Gi and G j that bounds to a subnet S and a VM 8
M respectively such that M = ⟨ipvm, S ,G j⟩, an ip packet pkip is allowed to arrive at
M if and only if (i) Gi allows pkip to enter S , and, (ii) G j allows pkip to reach M.

And, an ip packet pkip sent by M is allowed to exit Azure if and only if (i) G j allows
pkip to leave M, and, (ii) Gi allows pkip to leave S .

2.3 Multi-cloud Connectivity Security Attributes Equivalence
and Tightness

In this section, we discuss the equivalence problem of AWS, GCP, and Azure network security
based on the semantics presented in section 2.2. Specifically, we try to answer the following
question – given one security configuration in one of the clouds, does there exists an equivalent
security configuration in other clouds that achieve the same security objectives? If not, what is
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the tightest security configuration can other clouds offer? For example, given an AWS subnet, an
AWS security group, and an NACL configuration that allows an ip packet pkip to arrive at a VM
in AWS, does there exists a configuration in GCP that also allows pkip to arrive at a VM in GCP?
If this is not possible, what is the best security configuration in GCP one can implement to cover
as many security objectives, that are achieved by the AWS security configuration, as possible?
An important aspect that will be useful in the discussion of this section is that: In AWS, security
groups are stateful while NACLs are stateless. In GCP and in Azure, both GCP firewall rules and
Azure NSG are stateful.

We first acknowledge that AWS supports the concept of ICMP type and code in both security
groups and NACLs which Azure and GCP do not support such granularity. In this regard, we
claim that there exists a least common denominator problem between the network security fea-
tures offered by the three cloud computing vendors, i.e., there exists a security feature that AWS
supports but Azure and GCP do not support. We also claim that AWS is more ‘expressive’ in its
network security features than GCP and Azure due to its additional support for ICMP type and
ICMP code. However, for the purpose of our analysis in this section, we refrain ourselves from
considering this aspect and consider only ip packets with protocols that support ports.

Given a subnet S c that belongs to one of the clouds, another subnet S o such that S c ∩ S o = ∅,
two VMs Mm1 and Mm2, we are interested in the following scenarios: (i) two VMs resides in the
same subnet S c and, (ii) M1 resides in S c and M2 resides in S o.

2.3.1 Security Within a Subnet
In this subsection, we discuss the equivalence relation of the security features between any of the
two clouds.

2.3.1.1 AWS vs. GCP

Theorem 1 For every AWS security configuration, there exists an equivalent GCP security con-
figuration.

We prove this theorem by case analysis. Given an ip packet pkip, a subnet S aws to which a
NACL N is bound, a set of ip permissions P1 in a set of security groups G1, another set of
ip permissions P2 in a set of security groups G2, a VM Mm1 = ⟨ipm1, S aws,G1⟩, and a VM
M2 = ⟨ipm2, S aws,G2⟩, there are six cases arising from the AWS security semantics: (1) pkip =

⟨ipm1, ipm2, protocolip, portm1, portm2⟩ which is allowed to leave Mm1 and allowed to arrive at
Min, (2) pkip = ⟨ipm1, ipm2, protocolip, portm1, portm2⟩ which is allowed to leave Mm1 and denied
to arrive at Mm2, (3) pkip = ⟨ipm1, ipm2, protocolip, portm1, portm2⟩ which is denied to leave Mm1,
(4) pkip = ⟨ipm2, ipm1, protocolip, portm2, portm1⟩ and is allowed to leave Mm2 and allowed to
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arrive at Mm1, (5) pkip = ⟨ipm2, ipm1, protocolip, portm2, portm1⟩ and is allowed to leave Mm2 and
denied to arrive at Mm1, and, (6) pkip = ⟨ipm2, ipm1, protocolip, portm2, portm1⟩ and is denied to
leave Mm2.

Given a GCP subnet S gcp to which a firewall F is bound, a sequence of rules ⟨R1, . . . ,Rn⟩ in F
for some n ≥ 1, a VM Mm1 = ⟨ipm1, S gcp, F⟩, and a VM Mm2 = ⟨ipm2, S gcp, F⟩, by constructing
equivalent GCP security configurations, we perform the case analysis as follows:

Case 1 – Given pkip = ⟨ipm1, ipm2, protocolip, portm1, portm2⟩ which is allowed to leave Mm1 and
allowed to arrive at Min, we can construct the following security configuration in GCP to achieve
the same objective: (i) a matching allow-egress rule Ri in F for ippk that is of higher priority than
every deny-egress rule in F that matches pkip, and, (ii) a matching allow-ingress rule R j in F for
ippk that is of higher priority than every deny-ingress rule in F that matches pkip.

Case 2 – Given pkip = ⟨ipm1, ipm2, protocolip, portm1, portm2⟩ which is allowed to leave Mm1 and
denied to arrive at Mm2, we can construct the following security configuration in GCP to achieve
the same objective: (i) a matching allow-egress rule Ri in F for ippk that is of higher priority than
every deny-egress rule in F that matches pkip, and, (ii) a matching deny-ingress rule R j in F for
ippk that is of higher priority than every allow-ingress rule in F that matches pkip.

Case 3 – Given pkip = ⟨ipm1, ipm2, protocolip, portm1, portm2⟩ which is denied to leave Mm1, we
can construct the following security configuration in GCP to achieve the same objective: (i) a
matching deny-egress rule Ri in F for ippk that is of higher priority than every allow-egress rule
in F that matches pkip

Case 4 – Given pkip = ⟨ipm2, ipm1, protocolip, portm2, portm1⟩ and is allowed to leave Mm2 and
allowed to arrive at Mm1, we can construct the following security configuration in GCP to achieve
the same objective: (i) a matching allow-egress rule Ri in F for ippk that is of higher priority than
every deny-egress rule in F that matches pkip, and, (ii) a matching allow-ingress rule R j in F for
ippk that is of higher priority than every deny-ingress rule in F that matches pkip.

Case 5 – Given pkip = ⟨ipm2, ipm1, protocolip, portm2, portm1⟩ and is allowed to leave Mm2 and
denied to arrive at Mm1, we can construct the following security configuration in GCP to achieve
the same objective: (i) a matching allow-egress rule Ri in F for ippk that is of higher priority than
every deny-egress rule in F that matches pkip, and, (ii) a matching deny-ingress rule R j in F for
ippk that is of higher priority than every allow-ingress rule in F that matches pkip.

Case 6 – Given pkip = ⟨ipm2, ipm1, protocolip, portm2, portm1⟩ and is denied to leave Mm2, we
can construct the following security configuration in GCP to achieve the same objective: (i) a
matching deny-egress rule Ri in F for ippk that is of higher priority than every allow-egress rule
in F that matches pkip
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Thus, we have proved that for every AWS security configuration, there exists an equivalent GCP
security configuration.

Theorem 2 For every GCP security configuration, there exists an equivalent AWS security con-
figuration.

We prove this theorem by case analysis. Given an ip pakcet pkip, a GCP subnet S gcp to which
a firewall F is bound, a sequence of rules ⟨R1, . . . ,Rn⟩ in F for some n ≥ 1, a VM Mm1 =

⟨ipm1, S gcp, F⟩, and a VM Mm2 = ⟨ipm2, S gcp, F⟩, there are 6 cases arising from the GCP security
semantics: (1) pkip = ⟨ipm1, ipm2, protocolip, portm1, portm2⟩ which is allowed to leave Mm1 and
allowed to arrive at Min, (2) pkip = ⟨ipm1, ipm2, protocolip, portm1, portm2⟩ which is allowed to
leave Mm1 and denied to arrive at Mm2, (3) pkip = ⟨ipm1, ipm2, protocolip, portm1, portm2⟩ which is
denied to leave Mm1, (4) pkip = ⟨ipm2, ipm1, protocolip, portm2, portm1⟩ which is allowed to leave
Mm2 and allowed to arrive at Mm1, (5) pkip = ⟨ipm2, ipm1, protocolip, portm2, portm1⟩ which is al-
lowed to leave Mm2 and denied to arrive at Mm1, and, (6) pkip = ⟨ipm2, ipm1, protocolip, portm2, portm1⟩

which is denied to leave Mm2.

Given a subnet S aws to which a NACL N is bound, a set of ip permissions P1 in a set of
security groups G1, another set of ip permissions P2 in a set of security groups G2, a VM
Mm1 = ⟨ipm1, S aws,G1⟩, and a VM M2 = ⟨ipm2, S aws,G2⟩, by constructing equivalent GCP se-
curity configurations, we perform the case analysis as follows:

Case 1 – Given pkip = ⟨ipm1, ipm2, protocolip, portm1, portm2⟩ which is allowed to leave Mm1 and
allowed to arrive at Min, we can construct the following security configuration in AWS to achieve
the same objective: (i) a matching egress ip permission Pi ∈ P1 for pkip, (ii) a matching ingress
ip permission P j ∈ P2 for pkip.

Case 2 – Given pkip = ⟨ipm1, ipm2, protocolip, portm1, portm2⟩ which is allowed to leave Mm1 and
denied to arrive at Mm2, we can construct the following security configuration in AWS to achieve
the same objective: (i) a matching egress ip permission Pi ∈ P1 for pkip, (ii) no matching ingress
ip permission exists for pkip for all ip permission P j ∈ P2.

Case 3 – Given pkip = ⟨ipm1, ipm2, protocolip, portm1, portm2⟩ which is denied to leave Mm1, we
can construct the following security configuration in AWS to achieve the same objective: (i) no
matching egress ip permission exists for pkip for all ip permission Pi ∈ P1.

Case 4 – Given pkip = ⟨ipm2, ipm1, protocolip, portm2, portm1⟩ and is allowed to leave Mm2 and
allowed to arrive at Mm1, we can construct the following security configuration in AWS to achieve
the same objective: (i) a matching ingress ip permission Pi ∈ P1 for pkip, (ii) a matching egress
ip permission P j ∈ P2 for pkip.

Case 5 – Given pkip = ⟨ipm2, ipm1, protocolip, portm2, portm1⟩ and is allowed to leave Mm2 and
denied to arrive at Mm1, we can construct the following security configuration in AWS to achieve
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the same objective: (i) a matching egress ip permission P j ∈ P2 for pkip, (ii) no matching ingress
ip permission exists for pkip for all ip permission Pi ∈ P1.

Case 6 – Given pkip = ⟨ipm2, ipm1, protocolip, portm2, portm1⟩ and is denied to leave Mm2, we
can construct the following security configuration in AWS to achieve the same objective: (i) no
matching egress ip permission exists for pkip for all ip permission P j ∈ P2.

Thus, we have proved that for every GCP security configuration, there exists an equivalent AWS
security configuration.

2.3.1.2 AWS vs. Azure

Theorem 3 For every AWS security configuration, there exists an equivalent Azure security con-
figuration.

We prove this theorem by case analysis. Given an ip packet pkip, a subnet S aws to which a
NACL N is bound, a set of ip permissions P1 in a set of security groups G1, another set of
ip permissions P2 in a set of security groups G2, a VM Mm1 = ⟨ipm1, S aws,G1⟩, and a VM
M2 = ⟨ipm2, S aws,G2⟩, there are six cases arising from the AWS security semantics: (1) pkip =

⟨ipm1, ipm2, protocolip, portm1, portm2⟩ which is allowed to leave Mm1 and allowed to arrive at
Min, (2) pkip = ⟨ipm1, ipm2, protocolip, portm1, portm2⟩ which is allowed to leave Mm1 and denied
to arrive at Mm2, (3) pkip = ⟨ipm1, ipm2, protocolip, portm1, portm2⟩ which is denied to leave Mm1,
(4) pkip = ⟨ipm2, ipm1, protocolip, portm2, portm1⟩ and is allowed to leave Mm2 and allowed to
arrive at Mm1, (5) pkip = ⟨ipm2, ipm1, protocolip, portm2, portm1⟩ and is allowed to leave Mm2 and
denied to arrive at Mm1, and, (6) pkip = ⟨ipm2, ipm1, protocolip, portm2, portm1⟩ and is denied to
leave Mm2.

Given an Azure subnet S azure, a sequence of rules ⟨Ri1 , . . . ,Rin⟩ in an Azure NSG G1 for some
n ≥ 1, another sequence of rules ⟨R j1 , . . . ,R jn⟩ in another Azure NSG G2 for some n ≥ 1, a VM
Mm1 = ⟨ipm1, S azure,G1⟩, and a VM Mm2 = ⟨ipm2, S azure,G2⟩, by constructing equivalent Azure
security configurations, we perform the case analysis as follows:

Case 1 – Given pkip = ⟨ipm1, ipm2, protocolip, portm1, portm2⟩ which is allowed to leave Mm1 and
allowed to arrive at Min, we can construct the following security configuration in GCP to achieve
the same objective: (i) a matching allow-egress rule Ri in G1 for ippk that is of higher priority
than every deny-egress rule in G1 that matches pkip, and, (ii) a matching allow-ingress rule R j in
G2 for ippk that is of higher priority than every deny-ingress rule in G2 that matches pkip.

Case 2 – Given pkip = ⟨ipm1, ipm2, protocolip, portm1, portm2⟩ which is allowed to leave Mm1 and
denied to arrive at Mm2, we can construct the following security configuration in GCP to achieve
the same objective: (i) a matching allow-egress rule Ri in G1 for ippk that is of higher priority
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than every deny-egress rule in G1 that matches pkip, and, (ii) a matching deny-ingress rule R j in
G2 for ippk that is of higher priority than every allow-ingress rule in G2 that matches pkip.

Case 3 – Given pkip = ⟨ipm1, ipm2, protocolip, portm1, portm2⟩ which is denied to leave Mm1, we
can construct the following security configuration in GCP to achieve the same objective: (i) a
matching deny-egress rule Ri in G1 for ippk that is of higher priority than every allow-egress rule
in G1 that matches pkip

Case 4 – Given pkip = ⟨ipm2, ipm1, protocolip, portm2, portm1⟩ and is allowed to leave Mm2 and
allowed to arrive at Mm1, we can construct the following security configuration in GCP to achieve
the same objective: (i) a matching allow-egress rule Ri in G2 for ippk that is of higher priority
than every deny-egress rule in G2 that matches pkip, and, (ii) a matching allow-ingress rule R j in
G1 for ippk that is of higher priority than every deny-ingress rule in G1 that matches pkip.

Case 5 – Given pkip = ⟨ipm2, ipm1, protocolip, portm2, portm1⟩ and is allowed to leave Mm2 and
denied to arrive at Mm1, we can construct the following security configuration in GCP to achieve
the same objective: (i) a matching allow-egress rule Ri in G2 for ippk that is of higher priority
than every deny-egress rule in G2 that matches pkip, and, (ii) a matching deny-ingress rule R j in
G1 for ippk that is of higher priority than every allow-ingress rule in G1 that matches pkip.

Case 6 – Given pkip = ⟨ipm2, ipm1, protocolip, portm2, portm1⟩ and is denied to leave Mm2, we
can construct the following security configuration in GCP to achieve the same objective: (i) a
matching deny-egress rule Ri in G2 for ippk that is of higher priority than every allow-egress rule
in G2 that matches pkip

Thus, we have proved that for every AWS security configuration, there exists an equivalent Azure
security configuration.

Theorem 4 For every Azure security configuration, there exists an equivalent AWS security con-
figuration.

We prove this theorem by case analysis. Given an ip packet pkip, an Azure subnet S azure, a
sequence of rules ⟨Ri1 , . . . ,Rin⟩ in an Azure NSG G1 for some n ≥ 1, another sequence of rules
⟨R j1 , . . . ,R jn⟩ in another Azure NSG G2 for some n ≥ 1, a VM Mm1 = ⟨ipm1, S azure,G1⟩, and
a VM Mm2 = ⟨ipm2, S azure,G2⟩, there are six cases arising from the Azure security semantics:
(1) pkip = ⟨ipm1, ipm2, protocolip, portm1, portm2⟩ which is allowed to leave Mm1 and allowed to
arrive at Min, (2) pkip = ⟨ipm1, ipm2, protocolip, portm1, portm2⟩ which is allowed to leave Mm1

and denied to arrive at Mm2, (3) pkip = ⟨ipm1, ipm2, protocolip, portm1, portm2⟩ which is denied
to leave Mm1, (4) pkip = ⟨ipm2, ipm1, protocolip, portm2, portm1⟩ and is allowed to leave Mm2 and
allowed to arrive at Mm1, (5) pkip = ⟨ipm2, ipm1, protocolip, portm2, portm1⟩ and is allowed to leave
Mm2 and denied to arrive at Mm1, and, (6) pkip = ⟨ipm2, ipm1, protocolip, portm2, portm1⟩ and is
denied to leave Mm2.
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Given a subnet S aws to which a NACL N is bound, a set of ip permissions P1 in a set of
security groups G1, another set of ip permissions P2 in a set of security groups G2, a VM
Mm1 = ⟨ipm1, S aws,G1⟩, and a VM M2 = ⟨ipm2, S aws,G2⟩, by constructing equivalent Azure
security configurations, we perform the case analysis as follows:

Case 1 – Given pkip = ⟨ipm1, ipm2, protocolip, portm1, portm2⟩ which is allowed to leave Mm1 and
allowed to arrive at Min, we can construct the following security configuration in AWS to achieve
the same objective: (i) a matching egress ip permission Pi ∈ P1 for pkip, (ii) a matching ingress
ip permission P j ∈ P2 for pkip.

Case 2 – Given pkip = ⟨ipm1, ipm2, protocolip, portm1, portm2⟩ which is allowed to leave Mm1 and
denied to arrive at Mm2, we can construct the following security configuration in AWS to achieve
the same objective: (i) a matching egress ip permission Pi ∈ P1 for pkip, (ii) no matching ingress
ip permission exists for pkip for all ip permission P j ∈ P2.

Case 3 – Given pkip = ⟨ipm1, ipm2, protocolip, portm1, portm2⟩ which is denied to leave Mm1, we
can construct the following security configuration in AWS to achieve the same objective: (i) no
matching egress ip permission exists for pkip for all ip permission Pi ∈ P1.

Case 4 – Given pkip = ⟨ipm2, ipm1, protocolip, portm2, portm1⟩ and is allowed to leave Mm2 and
allowed to arrive at Mm1, we can construct the following security configuration in AWS to achieve
the same objective: (i) a matching ingress ip permission Pi ∈ P1 for pkip, (ii) a matching egress
ip permission P j ∈ P2 for pkip.

Case 5 – Given pkip = ⟨ipm2, ipm1, protocolip, portm2, portm1⟩ and is allowed to leave Mm2 and
denied to arrive at Mm1, we can construct the following security configuration in AWS to achieve
the same objective: (i) a matching egress ip permission P j ∈ P2 for pkip, (ii) no matching ingress
ip permission exists for pkip for all ip permission Pi ∈ P1.

Case 6 – Given pkip = ⟨ipm2, ipm1, protocolip, portm2, portm1⟩ and is denied to leave Mm2, we
can construct the following security configuration in AWS to achieve the same objective: (i) no
matching egress ip permission exists for pkip for all ip permission P j ∈ P2.

Thus, we have proved that for every Azure security configuration, there exists an equivalent AWS
security configuration.

2.3.1.3 Azure vs. GCP

Theorem 5 For every Azure security configuration, there exists an equivalent GCP security con-
figuration.

We prove this theorem by case analysis. Given an ip packet pkip, an Azure subnet S azure, a
sequence of rules ⟨Ri1 , . . . ,Rin⟩ in an Azure NSG G1 for some n ≥ 1, another sequence of rules
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⟨R j1 , . . . ,R jn⟩ in another Azure NSG G2 for some n ≥ 1, a VM Mm1 = ⟨ipm1, S azure,G1⟩, and
a VM Mm2 = ⟨ipm2, S azure,G2⟩, there are six cases arising from the Azure security semantics:
(1) pkip = ⟨ipm1, ipm2, protocolip, portm1, portm2⟩ which is allowed to leave Mm1 and allowed to
arrive at Min, (2) pkip = ⟨ipm1, ipm2, protocolip, portm1, portm2⟩ which is allowed to leave Mm1

and denied to arrive at Mm2, (3) pkip = ⟨ipm1, ipm2, protocolip, portm1, portm2⟩ which is denied
to leave Mm1, (4) pkip = ⟨ipm2, ipm1, protocolip, portm2, portm1⟩ and is allowed to leave Mm2 and
allowed to arrive at Mm1, (5) pkip = ⟨ipm2, ipm1, protocolip, portm2, portm1⟩ and is allowed to leave
Mm2 and denied to arrive at Mm1, and, (6) pkip = ⟨ipm2, ipm1, protocolip, portm2, portm1⟩ and is
denied to leave Mm2.

Given a GCP subnet S gcp to which a firewall F is bound, a sequence of rules ⟨R1, . . . ,Rn⟩ in F
for some n ≥ 1, a VM Mm1 = ⟨ipm1, S gcp, F⟩, and a VM Mm2 = ⟨ipm2, S gcp, F⟩, by constructing
equivalent GCP security configurations, we perform the case analysis as follows:

Case 1 – Given pkip = ⟨ipm1, ipm2, protocolip, portm1, portm2⟩ which is allowed to leave Mm1 and
allowed to arrive at Min, we can construct the following security configuration in GCP to achieve
the same objective: (i) a matching allow-egress rule Ri in F for ippk that is of higher priority than
every deny-egress rule in F that matches pkip, and, (ii) a matching allow-ingress rule R j in F for
ippk that is of higher priority than every deny-ingress rule in F that matches pkip.

Case 2 – Given pkip = ⟨ipm1, ipm2, protocolip, portm1, portm2⟩ which is allowed to leave Mm1 and
denied to arrive at Mm2, we can construct the following security configuration in GCP to achieve
the same objective: (i) a matching allow-egress rule Ri in F for ippk that is of higher priority than
every deny-egress rule in F that matches pkip, and, (ii) a matching deny-ingress rule R j in F for
ippk that is of higher priority than every allow-ingress rule in F that matches pkip.

Case 3 – Given pkip = ⟨ipm1, ipm2, protocolip, portm1, portm2⟩ which is denied to leave Mm1, we
can construct the following security configuration in GCP to achieve the same objective: (i) a
matching deny-egress rule Ri in F for ippk that is of higher priority than every allow-egress rule
in F that matches pkip

Case 4 – Given pkip = ⟨ipm2, ipm1, protocolip, portm2, portm1⟩ and is allowed to leave Mm2 and
allowed to arrive at Mm1, we can construct the following security configuration in GCP to achieve
the same objective: (i) a matching allow-egress rule Ri in F for ippk that is of higher priority than
every deny-egress rule in F that matches pkip, and, (ii) a matching allow-ingress rule R j in F for
ippk that is of higher priority than every deny-ingress rule in F that matches pkip.

Case 5 – Given pkip = ⟨ipm2, ipm1, protocolip, portm2, portm1⟩ and is allowed to leave Mm2 and
denied to arrive at Mm1, we can construct the following security configuration in GCP to achieve
the same objective: (i) a matching allow-egress rule Ri in F for ippk that is of higher priority than
every deny-egress rule in F that matches pkip, and, (ii) a matching deny-ingress rule R j in F for
ippk that is of higher priority than every allow-ingress rule in F that matches pkip.
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Case 6 – Given pkip = ⟨ipm2, ipm1, protocolip, portm2, portm1⟩ and is denied to leave Mm2, we
can construct the following security configuration in GCP to achieve the same objective: (i) a
matching deny-egress rule Ri in F for ippk that is of higher priority than every allow-egress rule
in F that matches pkip

Thus, we have proved that for every AWS security configuration, there exists an equivalent GCP
security configuration.

Theorem 6 For every GCP security configuration, there exists an equivalent Azure security con-
figuration.

We prove this theorem by case analysis. Given an ip pakcet pkip, a GCP subnet S gcp to which
a firewall F is bound, a sequence of rules ⟨R1, . . . ,Rn⟩ in F for some n ≥ 1, a VM Mm1 =

⟨ipm1, S gcp, F⟩, and a VM Mm2 = ⟨ipm2, S gcp, F⟩, there are 6 cases arising from the GCP security
semantics: (1) pkip = ⟨ipm1, ipm2, protocolip, portm1, portm2⟩ which is allowed to leave Mm1 and
allowed to arrive at Min, (2) pkip = ⟨ipm1, ipm2, protocolip, portm1, portm2⟩ which is allowed to
leave Mm1 and denied to arrive at Mm2, (3) pkip = ⟨ipm1, ipm2, protocolip, portm1, portm2⟩ which is
denied to leave Mm1, (4) pkip = ⟨ipm2, ipm1, protocolip, portm2, portm1⟩ which is allowed to leave
Mm2 and allowed to arrive at Mm1, (5) pkip = ⟨ipm2, ipm1, protocolip, portm2, portm1⟩ which is al-
lowed to leave Mm2 and denied to arrive at Mm1, and, (6) pkip = ⟨ipm2, ipm1, protocolip, portm2, portm1⟩

which is denied to leave Mm2.

Given an Azure subnet S azure, a sequence of rules ⟨Ri1 , . . . ,Rin⟩ in an Azure NSG G1 for some
n ≥ 1, another sequence of rules ⟨R j1 , . . . ,R jn⟩ in another Azure NSG G2 for some n ≥ 1, a VM
Mm1 = ⟨ipm1, S azure,G1⟩, and a VM Mm2 = ⟨ipm2, S azure,G2⟩, by constructing equivalent Azure
security configurations, we perform the case analysis as follows:

Case 1 – Given pkip = ⟨ipm1, ipm2, protocolip, portm1, portm2⟩ which is allowed to leave Mm1 and
allowed to arrive at Min, we can construct the following security configuration in GCP to achieve
the same objective: (i) a matching allow-egress rule Ri in G1 for ippk that is of higher priority
than every deny-egress rule in G1 that matches pkip, and, (ii) a matching allow-ingress rule R j in
G2 for ippk that is of higher priority than every deny-ingress rule in G2 that matches pkip.

Case 2 – Given pkip = ⟨ipm1, ipm2, protocolip, portm1, portm2⟩ which is allowed to leave Mm1 and
denied to arrive at Mm2, we can construct the following security configuration in GCP to achieve
the same objective: (i) a matching allow-egress rule Ri in G1 for ippk that is of higher priority
than every deny-egress rule in G1 that matches pkip, and, (ii) a matching deny-ingress rule R j in
G2 for ippk that is of higher priority than every allow-ingress rule in G2 that matches pkip.

Case 3 – Given pkip = ⟨ipm1, ipm2, protocolip, portm1, portm2⟩ which is denied to leave Mm1, we
can construct the following security configuration in GCP to achieve the same objective: (i) a
matching deny-egress rule Ri in G1 for ippk that is of higher priority than every allow-egress rule
in G1 that matches pkip
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Case 4 – Given pkip = ⟨ipm2, ipm1, protocolip, portm2, portm1⟩ and is allowed to leave Mm2 and
allowed to arrive at Mm1, we can construct the following security configuration in GCP to achieve
the same objective: (i) a matching allow-egress rule Ri in G2 for ippk that is of higher priority
than every deny-egress rule in G2 that matches pkip, and, (ii) a matching allow-ingress rule R j in
G1 for ippk that is of higher priority than every deny-ingress rule in G1 that matches pkip.

Case 5 – Given pkip = ⟨ipm2, ipm1, protocolip, portm2, portm1⟩ and is allowed to leave Mm2 and
denied to arrive at Mm1, we can construct the following security configuration in GCP to achieve
the same objective: (i) a matching allow-egress rule Ri in G2 for ippk that is of higher priority
than every deny-egress rule in G2 that matches pkip, and, (ii) a matching deny-ingress rule R j in
G1 for ippk that is of higher priority than every allow-ingress rule in G1 that matches pkip.

Case 6 – Given pkip = ⟨ipm2, ipm1, protocolip, portm2, portm1⟩ and is denied to leave Mm2, we
can construct the following security configuration in GCP to achieve the same objective: (i) a
matching deny-egress rule Ri in G2 for ippk that is of higher priority than every allow-egress rule
in G2 that matches pkip

Thus, we have proved that for every GCP security configuration, there exists an equivalent Azure
security configuration.

2.3.2 Secturity Outside a Subnet

2.3.2.1 AWS vs. GCP

Theorem 7 The networking security feature in GCP is not as expressive as the one in AWS. That
is, there exists an AWS security configuration, for which no equivalent GCP security configura-
tion exists.

We prove this theorem by contradiction. We construct an AWS security configuration such that
no equivalent GCP security configuration exists as follows:

Given an AWS subnet S aws, a set of ip permissions {P1, . . . , Pn} for some n ≥ 1 in security
group {G1, . . . ,Gk} for some k ≥ 1, a VM, Maws = ⟨ipm, S aws, {G1, . . . ,Gk}⟩, a NACL N, with
a sequence of rules ⟨R1, . . . ,Rm⟩ for some m ≥ 1, to which S is bound, an ip packet pkin =

⟨ipx, ipy, protocol, portx, porty⟩ such that ipy = ipm, and an ip packet generated in response to
pkin, i.e., pkres = ⟨ipy, ipx, protocol, porty, portx⟩, suppose the following security configuration
exists:

There exists an ip permission Pi in {P1, . . . , Pn} such that pkin is allowed by Pi, i.e.,

∃Pi · (Pi ∈ {G1, . . . ,Gn})∧ (P.direction = ingress)∧ (pkin.ipx ∈ Pi.I pRanges)∧ (pkin.protocol =
Pi.I pProtocol) ∧ (pkin.porty ∈ [Pi.FromPort, Pi.ToPort])
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and,

there exists an allow-ingress rule R j in ⟨R1, . . . ,Rm⟩ such that pkin is allowed by R j to enter S aws,
i.e.,

∃R j · (R j ∈ ⟨R1, . . . ,Rm⟩) ∧ (¬R j.Egress) ∧ (R j.RuleAction = allow) ∧ (pkin.ipx ∈

R j.CidrBlock) ∧ (pkin.protocol = R j.Protocol) ∧ (pkin.porty ∈ R j.PortRange)

and that R j has higher priority than any deny-ingress rule that matches pkin, and

there exists a deny-egress rule Rk in ⟨R1, . . . ,Rm⟩ such that pkres is denied by Rk to leave S aws,
i.e.,

∃Rk · (Rk ∈ ⟨R1, . . . ,Rm⟩) ∧ (Rk.Egress) ∧ (Rk.RuleAction = deny) ∧ (pkres.ipx ∈

Rk.CidrBlock) ∧ (pkres.protocol = Rk.Protocol) ∧ (pkres.portx ∈ Rk.PortRange)

and that Rk has higher priority than any allow-egress rule that matches pkres.

With the above security configuration, the following security objective is achieved: (i) pkin is
allowed to enter S aws, (ii), pkin is allowed to arrive at the VM Maws, and (iii) pkin’s response
packet pkres is denied to leave AWS.

Given a GCP subnet S gcp to which the GCP firewall F is bound, a sequence of rules ⟨R1, . . . ,Rn⟩

for some n ≥ 1 in F, a VM, Mgcp = ⟨ipm, S gcp, F⟩, an ip packet pkin = ⟨ipx, ipy, protocol, portx, porty⟩

such that ipy = ipm, and an ip packet generated in response to pkin, i.e., pkres = ⟨ipy, ipx, protocol, porty, portx⟩,
assume there exists a security configuration that achieves the same security objective as that in
AWS, i.e., (i) pkin is allowed to arrive at Mgcp, and (ii) pkres is denied to leave GCP. Suppose our
assumption is true, i.e., there exists a GCP configuration that allows pkin to arrive at Mgcp, then
there either (i) exists an allow-egress rule Ri for which pkin matches the statefully-added ingress
rule, and such allow-egress rule which matches the ip packet pkres is of higher priority than every
deny-egress rule that matches pkres, or, (ii) there exists a matching allow-ingress rule Ri in F for
pkin that is of higher priority than any deny-ingress rule that matches pkin.

If (i) is true, then it is a contradiction to that pkres will be denied to leave GCP because there
exists an allow-egress rule Ri which matches the ip packet pkres that is of higher priority than
every deny-egress rule that matches pkres. If (ii) is true, then there is also a contradiction because
the firewall rule in GCP is stateful, i.e., if there exists an allow-ingress firewall rule Ri in F that
matches pkin such that pkin is allowed to arrive at Mgcp and that Ri has higher priority than any
deny-ingress rule that matches pkin, then its response packet pkres will also be allowed to leave
GCP.

Therefore, we proved that there exists an AWS security configuration, for which no equivalent
GCP security configuration exists.
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Theorem 8 For every GCP security configuration, there exists an equivalent AWS security con-
figuration.

We prove this theorem by case analysis. Given an ip packet pkip, a subnet S gcp to which a firewall
F is bound, a sequence of rules ⟨R1, . . . ,Rn⟩ in F for some n ≥ 1, a VM Min = ⟨ipin, S gcp, F⟩,
and a VM Mo = ⟨ipo, S o⟩ such that ipo < S gcp and S gcp ∩ S o = ∅, there are four cases
arising from the GCP security semantics: (1) pkip = ⟨ipo, ipin, protocolip, portx, porty⟩ and
is allowed to arrive at Min, (2) pkip = ⟨ipo, ipin, protocolip, portx, porty⟩ and is denied to ar-
rive at Min, (3) pkip = ⟨ipin, ipo, protocolip, portx, porty⟩ and is allowed to leave S gcp, and, (4)
pkip = ⟨ipin, ipo, protocolip, portx, porty⟩ and is denied to leave S gcp.

Suppose we are given the following AWS setting: a subnet S aws to which a NACL N is bound, a
set of ip permissions {P1, . . . , Pn} for some n ≥ 1 in a set of security groups {G1, . . . ,Gk} for some
k ≥ 1, a sequence of rules ⟨R1, . . . ,Rm⟩ in N for some m ≥ 1, a VM Min = ⟨ipin, S aws, {G1 . . . ,Gk}⟩,
and a VM Mo = ⟨ipo, S o⟩ such that ipo < S aws and S aws ∩ S o = ∅. By constructing equivalent
AWS security configurations, we perform the case analysis as follows:

Case 1 – Given pkip = ⟨ipo, ipin, protocolip, portx, porty⟩ and is allowed to arrive at Min, We
can construct the following security configuration in AWS to achieve the same objective: (i) a
matching allow-ingress NACL rule Ri ∈ N for pkip that is of higher priority than any deny-ingress
rule that matches pkip, and, (ii) a matching allow-egress NACL rule R j ∈ N for the packet
generated in response to pkip, i.e., pkres = ⟨ipin, ipo, protocolip, porty, portx⟩ that is of higher
priority than any deny-egress rule that matches pkres and, (iii) a matching ingress ip permission
P j ∈ {P1, . . . , Pn} for pkip.

Case 2 – Given pkip = ⟨ipo, ipin, protocolip, portx, porty⟩ and is denied to arrive at Min, we can
construct the following security configuration in AWS to achieve the same objective: a matching
deny-ingress NACL rule Ri ∈ N for pkip that is of higher priority than any allow-ingress rule that
matches pkip

Case 3 – Given pkip = ⟨ipin, ipo, protocolip, portx, porty⟩ and is allowed to leave S gcp, we can
construct the following security configuration in AWS to achieve the same objective: (i) a match-
ing allow-egress NACL rule Ri ∈ N for pkip that is of higher priority than any deny-egress rule
that matches pkip, and, (ii) a matching allow-ingress NACL rule R j ∈ N for the packet gen-
erated in response to pkip, i.e., pkip = ⟨ipo, ipin, protocolip, portx, porty⟩ that is of higher pri-
ority than any deny-ingress rule that matches pkres and, (iii) an matching egress ip permission
P j ∈ {P1, . . . , Pn} for pkip.

Case 4 – Given pkip = ⟨ipin, ipo, protocolip, portx, porty⟩ and is denied to leave S gcp, we can
construct the following security configuration in AWS to achieve the same objective: a matching
deny-egress NACL rule Ri ∈ N for pkip that is of higher priority than any allow-egress rule that
matches pkip.
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Thus, we have proved that for every GCP security configuration, there exists an equivalent AWS
security configuration.

2.3.2.2 AWS vs. Azure

Theorem 9 The networking security feature in Azure is not as expressive as the one in AWS.
That is, there exists an AWS security configuration, for which no equivalent Azure security con-
figuration exists.

We prove this theorem by contradiction. We construct an AWS security configuration such that
no equivalent Azure security configuration exists as follows:

Given an AWS subnet S aws, a set of ip permissions {P1, . . . , Pn} for some n ≥ 1 in security
group {G1, . . . ,Gk} for some k ≥ 1, a VM, Maws = ⟨ipm, S aws, {G1, . . . ,Gk}⟩, a NACL N, with
a sequence of rules ⟨R1, . . . ,Rm⟩ for some m ≥ 1, to which S is bound, an ip packet pkin =

⟨ipx, ipy, protocol, portx, porty⟩ such that ipy = ipm, and an ip packet generated in response to
pkin, i.e., pkres = ⟨ipy, ipx, protocol, porty, portx⟩, suppose the following security configuration
exists:

There exists an ip permission Pi in {P1, . . . , Pn} such that pkin is allowed by Pi, i.e.,

∃Pi · (Pi ∈ {G1, . . . ,Gn})∧ (P.direction = ingress)∧ (pkin.ipx ∈ Pi.I pRanges)∧ (pkin.protocol =
Pi.I pProtocol) ∧ (pkin.porty ∈ [Pi.FromPort, Pi.ToPort])

and,

there exists an allow-ingress rule R j in ⟨R1, . . . ,Rm⟩ such that pkin is allowed by R j to enter S aws,
i.e.,

∃R j · (R j ∈ ⟨R1, . . . ,Rm⟩) ∧ (¬R j.Egress) ∧ (R j.RuleAction = allow) ∧ (pkin.ipx ∈

R j.CidrBlock) ∧ (pkin.protocol = R j.Protocol) ∧ (pkin.porty ∈ R j.PortRange)

and that R j has higher priority than any deny-ingress rule that matches pkin, and

there exists a deny-egress rule Rk in ⟨R1, . . . ,Rm⟩ such that pkres is denied by Rk to leave S aws,
i.e.,

∃Rk · (Rk ∈ ⟨R1, . . . ,Rm⟩) ∧ (Rk.Egress) ∧ (Rk.RuleAction = deny) ∧ (pkres.ipx ∈

Rk.CidrBlock) ∧ (pkres.protocol = Rk.Protocol) ∧ (pkres.portx ∈ Rk.PortRange)

and that Rk has higher priority than any allow-egress rule that matches pkres.

With the above security configuration, the following security objective is achieved: (i) pkin is
allowed to enter S aws, (ii), pkin is allowed to arrive at the VM Maws, and (iii) pkin’s response
packet pkres is denied to leave AWS.
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Given an Azure subnet S azure to which an NSG Gi with a sequence of rules {R1
i , . . . ,R

n
i } for some

n ≥ 1 is bound, a VM, Mazure = ⟨ipm, S azure,G j⟩ to which another NSG G j with a sequence of
rules {R1

j , . . . ,R
k
j} for some k ≥ 1 is bound, an ip packet pkin = ⟨ipx, ipy, protocol, portx, porty⟩

such that ipy = ipm, and an ip packet generated in response to pkin, i.e., pkres = ⟨ipy, ipx, protocol, porty, portx⟩,
suppose there exists a configuration that achieves the same security objective as that in AWS, i.e.,
allows pkingress to arrive at Mazure and denies pkres to leave Azure. Since there exists a config-
uration that allows pkin to arrive at Mazure, by the semantics of Azure networking security, (i)
Gi allows pkin to enter S azure, and, (ii) G j allows pkin to reach Mazure which means the response
packet pkres generated in response to pkin is also allowed to leave Azure due to the statefulness of
NSG rules. This is a contradiction to the assumption that the configuration denies pkres to leave
Azure.

Therefore, we have proven that there exists an AWS security configuration, for which no equiv-
alent Azure security configuration exists.

Theorem 10 For every Azure security configuration, there exists an equivalent AWS security
configuration.

We prove this theorem by case analysis. Given an ip packet pkip, a subnet S azure to which a
NSG Gi is bound, a sequence of rules ⟨R1, . . . ,Rn⟩ in Gi for some n ≥ 1, another NSG G j with
a sequence of rules ⟨R1, . . . ,Rm⟩ for some m ≥ 1, a VM Min = ⟨ipin, S azure,G j⟩, and a VM
Mo = ⟨ipo, S o⟩ such that ipo < S azure and S azure ∩ S o = ∅, there are four cases arising from
the Azure security semantics: (1) pkip = ⟨ipo, ipin, protocolip, portx, porty⟩ which is allowed to
enter S azure and is allowed to arrive at Min, (2) pkip = ⟨ipo, ipin, protocolip, portx, porty⟩ which is
allowed to enter S azure and is denied to arrive at Min (3) pkip = ⟨ipo, ipin, protocolip, portx, porty⟩

which is denied to enter S azure. (4) pkip = ⟨ipin, ipo, protocolip, portx, porty⟩ which is allowed to
leave Min and is allowed to leave S azure. (5) pkip = ⟨ipin, ipo, protocolip, portx, porty⟩ which is
allowed to leave Min and is denied to leave S azure. (6) pkip = ⟨ipin, ipo, protocolip, portx, porty⟩

which is denied to leave Min.

Suppose we are given the following AWS setting: a subnet S aws to which a NACL N is bound, a
set of ip permissions {P1, . . . , Pn} for some n ≥ 1 in a set of security groups {G1, . . . ,Gk} for some
k ≥ 1, a sequence of rules ⟨R1, . . . ,Rm⟩ in N for some m ≥ 1, a VM Min = ⟨ipin, S aws, {G1 . . . ,Gk}⟩,
and a VM Mo = ⟨ipo, S o⟩ such that ipo < S aws and S aws ∩ S o = ∅. By constructing equivalent
AWS security configurations, we perform the case analysis as follows:

Case 1 – Given pkip = ⟨ipo, ipin, protocolip, portx, porty⟩ which is allowed to enter S azure and is
allowed to arrive at Min, we can construct the following security configuration in AWS to achieve
the same objective: (i) a matching allow-ingress NACL rule Ri ∈ N for pkip that is of higher prior-
ity than any deny-ingress rule that matches pkip, and (ii) a matching allow-egress NACL rule R j ∈

N for the packet generated in response to pkip, i.e., pkres = ⟨ipin, ipo, protocolip, porty, portx⟩ that
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is of higher priority than any deny-egress rule that matches pkres and, (iii) an matching ingress ip
permission P j ∈ {P1, . . . , Pn} for pkip.

Case 2 – Given pkip = ⟨ipo, ipin, protocolip, portx, porty⟩ which is allowed to enter S azure and is
denied to arrive at Min, we can construct the following security configuration in AWS to achieve
the same objective: (i) a matching allow-ingress NACL rule Ri ∈ N for pkip that is of higher prior-
ity than any deny-ingress rule that matches pkip, and (ii) a matching allow-egress NACL rule R j ∈

N for the packet generated in response to pkip, i.e., pkres = ⟨ipin, ipo, protocolip, porty, portx⟩ that
is of higher priority than any deny-egress rule that matches pkres and, (iii) no matching ingress
ip permission exists for pkip for all ip permission P j ∈ {P1, . . . , Pn} for 1 ≤ j ≤ n.

Case 3 – Given pkip = ⟨ipo, ipin, protocolip, portx, porty⟩ which is denied to enter S azure, we can
construct the following security configuration in AWS to achieve the same objective: a matching
deny-ingress NACL rule Ri ∈ N for pkip that is of higher priority than any allow-ingress rule that
matches pkip,

Case 4 – Given pkip = ⟨ipin, ipo, protocolip, portx, porty⟩ which is allowed to leave Min and is
allowed to leave S azure, we can construct the following security configuration in AWS to achieve
the same objective: (i) a matching allow-egress NACL rule Ri ∈ N for pkip that is of higher
priority than any deny-egress rule that matches pkip, (ii) a matching allow-ingress NACL rule
R j ∈ N for the packet generated in response to pkip, i.e., pkip = ⟨ipo, ipin, protocolip, portx, porty⟩

that is of higher priority than any deny-ingress rule that matches pkres and, (iii) a matching egress
ip permission P j ∈ {P1, . . . , Pn} for pkip.

Case 5 – Given pkip = ⟨ipin, ipo, protocolip, portx, porty⟩ which is allowed to leave Min and is
denied to leave S azure, we can construct the following security configuration in AWS to achieve
the same objective: (i) a matching egress ip permission P j ∈ {P1, . . . , Pn} for pkip, (ii) a matching
deny-egress NACL rule Ri ∈ N for pkip that is of higher priority than any allow-egress rule that
matches pkip.

Case 6 – Given pkip = ⟨ipin, ipo, protocolip, portx, porty⟩ which is denied to leave Min, we can
construct the following security configuration in AWS to achieve the same objective: (i) no
matching egress ip permission exists for pkip for all ip permission P j ∈ {P1, . . . , Pn} for 1 ≤ j ≤ n.

Thus, we have proved that for every Azure security configuration, there exists an equivalent AWS
security configuration.

2.3.2.3 Azure vs. GCP

Theorem 11 For every GCP security configuration, there exists an equivalent Azure security
configuration.
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We prove this theorem by case analysis. Given an ip packet pkip, a subnet S gcp to which a firewall
F is bound, a sequence of rules ⟨R1, . . . ,Rn⟩ in F for some n ≥ 1, a VM Min = ⟨ipin, S gcp, F⟩,
and a VM Mo = ⟨ipo, S o⟩ such that ipo < S gcp and S gcp ∩ S o = ∅, there are four cases
arising from the GCP security semantics: (1) pkip = ⟨ipo, ipin, protocolip, portx, porty⟩ and
is allowed to arrive at Min, (2) pkip = ⟨ipo, ipin, protocolip, portx, porty⟩ and is denied to ar-
rive at Min, (3) pkip = ⟨ipin, ipo, protocolip, portx, porty⟩ and is allowed to leave S gcp, and, (4)
pkip = ⟨ipin, ipo, protocolip, portx, porty⟩ and is denied to leave S gcp.

Suppose we are given the following Azure setting: a subnet S azure to which a NSG Gi is bound,
a sequence of rules ⟨R1, . . . ,Rn⟩ in Gi for some n ≥ 1, another NSG G j with a sequence of rules
⟨R1, . . . ,Rm⟩ for some m ≥ 1, a VM Min = ⟨ipin, S azure,G j⟩, and a VM Mo = ⟨ipo, S o⟩ such that
ipo < S azure and S azure ∩ S o = ∅. By constructing equivalent Azure security configurations, we
perform the case analysis as follows:

Case 1 – Given pkip = ⟨ipo, ipin, protocolip, portx, porty⟩ and is allowed to arrive at Min, We
can construct the following security configuration in Azure to achieve the same objective: (i) a
matching allow-ingress rule R f ∈ Gi for pkip that is of higher priority than any deny-ingress rule
in Gi that matches pkip, and, (ii) a matching allow-ingress rule Rg ∈ G j for pkip that is of higher
priority than any deny-ingress rule G j that matches pkip.

Case 2 – Given pkip = ⟨ipo, ipin, protocolip, portx, porty⟩ and is denied to arrive at Min, we
can construct the following security configuration in Azure to achieve the same objective: (i) a
matching allow-ingress rule R f ∈ Gi for pkip that is of higher priority than any deny-ingress rule
in Gi that matches pkip, and, (ii) a matching deny-ingress rule Rg ∈ G j for pkip that is of higher
priority than any allow-ingress rule in G j that matches pkip.

Case 3 – Given pkip = ⟨ipin, ipo, protocolip, portx, porty⟩ and is allowed to leave S gcp, we can
construct the following security configuration in Azure to achieve the same objective: (i) a match-
ing allow-egress rule R f ∈ Gi for pkip that is of higher priority than any deny-egress rule in Gi

that matches pkip, and, (ii) a matching allow-egress rule Rg ∈ G j for pkip that is of higher priority
than any deny-egress rule G j that matches pkip.

Case 4 – Given pkip = ⟨ipin, ipo, protocolip, portx, porty⟩ and is denied to leave S gcp, we can con-
struct the following security configuration in Azure to achieve the same objective: (i) a matching
deny-egress rule R f ∈ Gi for pkip that is of higher priority than any deny-ingress rule in Gi that
matches pkip

Thus, we have proved that for every GCP security configuration, there exists an equivalent Azure
security configuration.

Theorem 12 For every Azure security configuration, there exists an equivalent GCP security
configuration.

37



We prove this theorem by case analysis. Given an ip packet pkip, a subnet S azure to which a
NSG Gi is bound, a sequence of rules ⟨R1, . . . ,Rn⟩ in Gi for some n ≥ 1, another NSG G j with
a sequence of rules ⟨R1, . . . ,Rm⟩ for some m ≥ 1, a VM Min = ⟨ipin, S azure,G j⟩, and a VM
Mo = ⟨ipo, S o⟩ such that ipo < S azure and S azure ∩ S o = ∅, there are four cases arising from
the Azure security semantics: (1) pkip = ⟨ipo, ipin, protocolip, portx, porty⟩ which is allowed to
enter S azure and is allowed to arrive at Min, (2) pkip = ⟨ipo, ipin, protocolip, portx, porty⟩ which is
allowed to enter S azure and is denied to arrive at Min (3) pkip = ⟨ipo, ipin, protocolip, portx, porty⟩

which is denied to enter S azure. (4) pkip = ⟨ipin, ipo, protocolip, portx, porty⟩ which is allowed to
leave Min and is allowed to leave S azure. (5) pkip = ⟨ipin, ipo, protocolip, portx, porty⟩ which is
allowed to leave Min and is denied to leave S azure. (6) pkip = ⟨ipin, ipo, protocolip, portx, porty⟩

which is denied to leave Min.

Suppose we are given the following GCP setting: a subnet S gcp to which a firewall F is bound,
a sequence of rules ⟨R1, . . . ,Rn⟩ in F for some n ≥ 1, a VM Min = ⟨ipin, S gcp, F⟩, and a VM
Mo = ⟨ipo, S o⟩ such that ipo < S gcp and S gcp ∩ S o = ∅. By constructing equivalent GCP security
configurations, we perform the case analysis as follows:

Case 1 – Given pkip = ⟨ipo, ipin, protocolip, portx, porty⟩ which is allowed to enter S azure and is
allowed to arrive at Min, we can construct the following security configuration in GCP to achieve
the same objective: (i) a matching allow-ingress rule Ri in F for ippk that is of higher priority
than every deny-ingress rule in F that matches pkip.

Case 2 – Given pkip = ⟨ipo, ipin, protocolip, portx, porty⟩ which is allowed to enter S azure and is
denied to arrive at Min, we can construct the following security configuration in AWS to achieve
the same objective: (i) a matching deny-ingress rule Ri in F for ippk that is of higher priority than
every allow-ingress rule in F that matches pkip.

Case 3 – Given pkip = ⟨ipo, ipin, protocolip, portx, porty⟩ which is denied to enter S azure, we
can construct the following security configuration in AWS to achieve the same objective: (i) a
matching deny-ingress rule Ri in F for ippk that is of higher priority than every allow-ingress rule
in F that matches pkip.

Case 4 – Given pkip = ⟨ipin, ipo, protocolip, portx, porty⟩ which is allowed to leave Min and is
allowed to leave S azure, we can construct the following security configuration in AWS to achieve
the same objective: (i) a matching allow-egress rule Ri in F for ippk that is of higher priority than
every deny-egress rule in F that matches pkip.

Case 5 – Given pkip = ⟨ipin, ipo, protocolip, portx, porty⟩ which is allowed to leave Min and is
denied to leave S azure, we can construct the following security configuration in AWS to achieve
the same objective: (i) a matching deny-egress rule Ri in F for ippk that is of higher priority than
every allow-egress rule in F that matches pkip.
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Case 6 – Given pkip = ⟨ipin, ipo, protocolip, portx, porty⟩ which is denied to leave Min, we can
construct the following security configuration in AWS to achieve the same objective: (i) a match-
ing deny-egress rule Ri in F for ippk that is of higher priority than every allow-egress rule in F
that matches pkip.

Thus, we have proved that for every Azure security configuration, there exists an equivalent GCP
security configuration.

2.4 The Expressive Poweras Problem in Multi-cloud Security
Attributes

In this section, we briefly discuss the expressive power problem pertaining to multi-cloud security
attributes. Specifically, we try to answer the following question – given two clouds, C1 and C2,
does C1’s security syntax offer more than that of C2’s?

With the help of proofs presented in section 2.3, the answer to this question is straightforward.
We concluded that AWS’s security syntax is more “expressive” than Azure’s and GCP’s, and
thus, AWS’s security syntax is more expressive than Azure’s and GCP’s under the assumption
that the end-to-end connectivity involves one end, e.g., a VM, inside the cloud’s subnet, and the
other end outside the cloud’s subnet. The reasons are as follows:

1. Theorem 7: There exists an AWS security configuration for which no equivalent GCP
configuration exists, and,

2. Theorem 9: There exists an AWS security configuration for which no equivalent Azure
configuration exists.

Under the same assumption, and based on theorem 11 and theorem 12, we concluded that GCP
and Azure’s security syntax are equivalent, and thus, are equally expressive.

From theorem 1 to 6, we conclude that under the assumption that the end-to-end connectivity
involves both ends within the same subnet, AWS, GCP, and Azure’s security syntax are equivalent,
and thus, are equally expressive.

2.5 Efficient Algorithm for Cloud Security Migration
In this section, we propose six efficient algorithms for translating a given cloud security configu-
ration to the security configuration in a different cloud. Specifically, the proposed algorithm does
the following: Given a cloud configuration CA in cloud A as an input, the algorithm outputs the
“tightest” equivalent security configuration CB in cloud B as output. By “tightest”, we mean a
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security configuration that allows whatever traffic, in the form of ip packets, that CA allows while
denying as many ip packets that CA denies.

We introduced the notion of “tightest” in this context to incorporate the notion of statefulness vs.
statelessnes. This approach maximizes the availability of network traffic while trade-off is the
confidentiality.

2.5.1 Migrating AWS Security Configuration to Azure
Given the following AWS setting and security configuration:

1. an AWS subnet S aws,

2. a set of security groups {G1, . . . ,Gk} for some k ≥ 1,

3. a VM, Maws = ⟨ipawsm , S aws, {G1, . . . ,Gk}⟩,

4. a NACL N, with a sequence of rules ⟨R1, . . . ,Rm⟩ for some m ≥ 1, to which S is bound

and the following Azure setting:

1. an Azure subnet S azure,

2. a VM, Mazure = ⟨ipazurem , S azure⟩,

we propose the following algorithm 1 to efficiently migrate the AWS security configuration to
Azure by preserving availability over security.
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Algorithm 1 Migrating AWS Security Configuration to Azure - Part 1
1: function CreateAzureVmNsgFromAwsSg(securityGroups[])
2: azureVmNsg = []
3: priority = 100
4: for each s ∈ awsS ecurityGroups do:
5: for each I pPermission ∈ s do:
6: initialize a new nsgRule
7: nsgRule.Direction = IpPermission.Direction == ingress ? inbound : outbound
8: nsgRule.Priority = priority
9: nsgRule.Access = “allow”

10: nsgRule.Protocol = IpPermission.IpProtocol
11: if nsgRule.Direction == inbound then
12: nsgRule.SourceIpRange = IpPermission.IpRanges
13: nsgRule.SourcePortRange = any
14: nsgRule.DestinationIpRange = any
15: nsgRule.DestinationPortRange = IpPermission.PortRange
16: else
17: nsgRule.SourceIpRange = any
18: nsgRule.SourcePortRange = IpPermission.PortRange
19: nsgRule.DestinationIpRange = IpPermission.IpRanges
20: nsgRule.DestinationPortRange = any
21: end if
22: azureVmNsg.append(nsgRule)
23: priority = priority + 1
24: end for
25: end for
26: return azureVmNsg
27: end function
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Algorithm 1 Migrating AWS Security Configuration to Azure - Part 2
1: function CreateAzureSubnetNsgFromAwsNacl(awsNacl[])
2: sortedAwsNacl = awsNacl sorted by priority in ascending order
3: sortedAwsNaclIngress, sortedAwsNaclEgress = []
4: azureSubnetNsg = []
5: priority = 100
6: for each rule ∈ awsNacl do:
7: initialize a new nsgRule
8: nsgRule.Direction = rule.Egress ? inbound : outbound
9: nsgRule.Priority = priority

10: nsgRule.Access = rule.RuleAction
11: nsgRule.Protocol = rule.Protocol
12: if nsgRule.Direction == inbound then
13: nsgRule.SourceIpRange = rule.CidrBlock
14: nsgRule.SourcePortRange = any
15: nsgRule.DestinationIpRange = any
16: nsgRule.DestinationPortRange = rule.PortRange
17: else
18: nsgRule.SourceIpRange = any
19: nsgRule.SourcePortRange = any
20: nsgRule.DestinationIpRange = rule.CidrBlock
21: nsgRule.DestinationPortRange = rule.PortRange
22: end if
23: azureSubnetNsg.append(nsgRule)
24: priority = priority + 1
25: end for
26: return azureSubnetNsg
27: end function

The proposed algorithm consists of two parts (functions), namely 1) CreateAzureVmNsgFro-
mAwsSg, and, 2) CreateAzureSubnetNsgFromAwsNacl.

The function CreateAzureVmNsgFromAwsSg takes as an input a set of AWS Security Groups and
outputs an Azure Network Security Group that should be attached to the azure VM Mazure. The
function CreateAzureSubnetNsgFromAwsNacl takes as an input an AWS NACL and outputs an
Azure Network Security Group that should be attached to the Azure subnet S azure.
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2.5.2 Migrating AWS Security Configuration to GCP
Given the following AWS setting and security configuration:

1. an AWS subnet S aws,

2. a set of security groups {G1, . . . ,Gk} for some k ≥ 1,

3. a VM, Maws = ⟨ipawsm , S aws, {G1, . . . ,Gk}⟩,

4. a NACL N, with a sequence of rules ⟨R1, . . . ,Rm⟩ for some m ≥ 1, to which S is bound

and the following GCP setting:

1. a GCP subnet S gcp,

2. a VM, Mgcp = ⟨ipgcpm , S gcp⟩,

we propose the following algorithm 2 to efficiently migrate the AWS security configuration to
GCP by preserving availability over security.
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Algorithm 2 Migrating AWS Security Configuration to GCP - Part 1
1: function CreateGcpFirewallFromAws(securityGroups[], awsNacl[])
2: sortedAwsNacl = awsNacl sorted by priority in ascending order
3: sortedAwsNaclIngress, sortedAwsNaclEgress = []
4: gcpFirewall = []
5: for each rule ∈ sortedAwsNacl do
6: if rule.Egress = True then
7: sortedAwsNaclIngress.append(rule)
8: else
9: sortedAwsNACLEgress.append(rule)

10: end if
11: end for
12: for each s ∈ awsS ecurityGroups do:
13: for each I pPermission ∈ s do:
14: if IpPermission.Direction = ingress then
15: gcpRule = createGcpRule(IpPermission, sortedAwsNaclIngress)
16: else
17: gcpRule = createGcpRule(IpPermission, sortedAwsNaclEgress)
18: end if
19: if gcpRule , ∅ then
20: gcpFirewall.append(gcpRule)
21: end if
22: end for
23: end for
24: return gcpFirewall
25: end function
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Algorithm 2 Migrating AWS Security Configuration to GCP - Part 2
1: function CreateGcpRule(p, sortedAwsNacl)
2: initialize gcpRule = ∅
3: for each r ∈ sortedAwsNacl do
4: if (p.IpProtocol == r.Protocol) ∧ (p.PortRange ∩ r.PortRange) , ∅∧ (p.IpRanges ∩

r.CidrBlock) , ∅ then
5: if r.RuleAction == allow then
6: gcpRule.Direction = p.Direction
7: gcpRule.Priority = r.priority
8: gcpRule.Action.Allow = ⟨r.Protocol, (p.PortRange ∩ r.PortRange) ⟩
9: gcpRule.Source = p.IpRanges ∩ R.CidrBlock

10: return gcpRule
11: else
12: return gcpRule
13: end if
14: end if
15: end for
16: return gcpRule
17: end function

The proposed algorithm consists of two parts (functions), namely 1) CreateGcpFirewallFro-
mAws, and, 2) CreateGcpRule.

The function CreateGcpFirewallFromAws takes as an input a set of AWS Security Groups and
an AWS NACL and outputs a GCP Firewall that should be attached to the GCP VM Mgcp. The
function CreateGcpRule is a helper function that takes as inputs an ip permission and either of
the i) sorted ingress AWS NACL, or, ii) sorted egress AWS NACL, and outputs a GCP firewall
rule.

2.5.3 Migrating Azure Security Configuration to AWS
Given the following Azure setting and security configuration:

1. an Azure subnet S azure,

2. a VM, Mazure = ⟨ipazurem , S azure,NS Gvm⟩,

3. an Azure network security group NS Gvm

4. an Azure network security group NS Gsubnet that is attached to S azure
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and the following AWS setting:

1. an AWS subnet S aws,

2. a VM, Maws = ⟨ipawsm , S aws⟩,

we propose the following algorithm 3 to efficiently migrate the Azure security configuration to
AWS:

Algorithm 3 Migrating Azure Security Configuration to AWS - Part 1
1: function CreateAwsSgFromAzureNsg(azureNsgvm[])
2: awsSecurityGroup← []
3: for each rule ∈ azureNsgvm do:
4: if rule.Access == allow then
5: initialize a new IpPermisson p
6: p.Direction← rule.Direction == inbound ? ingress : egress
7: p.IpProtocol← rule.Protocol
8: if p.Direction == ingress then
9: p.PortRange← rule.DestinationPortRange

10: p.IpRange← rule.SourceIpRange
11: else
12: p.PortRange← rule.DestinationPortRange
13: p.IpRange← rule.DestinationIpRange
14: end if
15: awsSecurityGroup.append(p)
16: end if
17: end for
18: return awsSecurityGroup
19: end function
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Algorithm 3 Migrating Azure Security Configuration to AWS - Part 2
1: function CreateAwsNaclFromAzureNsg(azureNsgsubnet[])
2: awsNacl← []
3: ruleNumber = 1
4: for each rule ∈ azureNsgsubnet do:
5: if rule.Access == allow then
6: initialize new rules ringress and regress

7: if rule.Direction == inbound then
8: ringress.Egress← False
9: ringress.RuleAction← allow

10: ringress.RuleNumber← ruleNumber
11: ringress.Protocol← rule.Protocol
12: ringress.CidrBlock← rule.SourceIpRange
13: ringress.PortRange← rule.DestinationPortRange
14: regress.Egress← True
15: regress.RuleAction← allow
16: regress.RuleNumber← ruleNumber
17: regress.Protocol← rule.Protocol
18: regress.CidrBlock← rule.SourceIpRange
19: regress.PortRange← rule.SourcePortRange
20: else
21: regress.Egress← True
22: regress.RuleAction← allow
23: regress.RuleNumber← ruleNumber
24: regress.Protocol← rule.Protocol
25: regress.CidrBlock← rule.DestinationIpRange
26: regress.PortRange← rule.DestinationPortRange
27: ringress.Egress← False
28: ringress.RuleAction← allow
29: ringress.RuleNumber← ruleNumber
30: ringress.Protocol← rule.Protocol
31: ringress.CidrBlock← rule.DestinationIpRange
32: ringress.PortRange← rule.SourcePortRange
33: end if
34: ruleNumber++
35: awsNacl.append(ringress, regress)
36: end if
37: end for
38: return awsNacl
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The proposed algorithm consists of two parts (functions), namely 1) CreateAwsSgFromAzureNsg,
and, 2) CreateAwsNaclFromAzureNsg.

The function CreateAwsSgFromAzureNsg takes as input an Azure Network Security Groups that
is attached to a VM and outputs an AWS Security Group. The function CreateAwsNaclFro-
mAzureNsg takes as input an Azure Network Security Groups that is attached to a subnet and
outputs an AWS NACL.

2.5.4 Migrating Azure Security Configuration to GCP
Given the following Azure setting and security configuration:

1. an Azure subnet S azure,

2. a VM, Mazure = ⟨ipazurem , S azure,NS Gvm⟩,

3. an Azure network security group NS Gvm sorted by priority in ascending order

4. an Azure network security group NS Gsubnet sorted by priority in ascending order that is
attached to S azure

and the following GCP setting:

1. a GCP subnet S gcp,

2. a VM, Mgcp = ⟨ipgcpm , S gcp⟩,

we propose the following algorithm 4 to efficiently migrate the Azure security configuration to
GCP:
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Algorithm 4 Migrating Azure Security Configuration to GCP - Part 1
1: function CreateGcpFirewallFromAzureNsg(azureNsgvm[], azureNsgsubnet[])
2: azureNsgsubnetIngress, azureNsgsubnetEgress← []
3: gcpFirewall← []
4: for each rule ∈ azureNsgsubnet do
5: if rule.Direction = inbound then
6: azureNsgsubnetIngress.append(rule)
7: else
8: azureNsgsubnetEgress.append(rule)
9: end if

10: end for
11: for each rule ∈ azureNsgvm do:
12: gcpRule← ∅
13: if rule.Direction = inbound then
14: gcpRule = createGcpIngressRule(rule, azureNsgsubnetIngress)
15: else
16: gcpRule = createGcpRule(rule, azureNsgsubnetEgress)
17: end if
18: if gcpRule , ∅ then
19: gcpFirewall.append(gcpRule)
20: end if
21: end for
22: return gcpFirewall
23: end function
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Algorithm 4 Migrating Azure Security Configuration to GCP - Part 2
1: function CreateGcpIngressRule(p, azureNsgsubnet)
2: initialize gcpRule = ∅
3: for each r ∈ azureNsgsubnet do
4: if (p.Protocol == r.Protocol) ∧ (p.DestinationPortRange ∩ r.DestinationPortRange)
, ∅∧ (p.SourceIpRange ∩ r.SourceIpRange) , ∅ then

5: if r.Access == allow and p.Access == allow then
6: gcpRule.Direction = p.Direction
7: gcpRule.Priority = r.priority
8: gcpRule.Action.Allow = ⟨r.Protocol, (p.DestinationPortRange ∩

r.DestinationPortRange) ⟩
9: gcpRule.Source = p.SourceIpRange ∩ r.SourceIpRange

10: return gcpRule
11: else
12: return gcpRule
13: end if
14: end if
15: end for
16: return gcpRule
17: end function
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Algorithm 4 Migrating Azure Security Configuration to GCP - Part 3
1: function CreateGcpEgressRule(p, azureNsgsubnet)
2: initialize gcpRule = ∅
3: for each r ∈ azureNsgsubnet do
4: if (p.Protocol == r.Protocol) ∧ (p.DestinationPortRange ∩ r.DestinationPortRange)
, ∅∧ (p.DestinationIpRange ∩ r.DestinationIpRange) , ∅ then

5: if r.Access == allow and p.Access == allow then
6: gcpRule.Direction = p.Direction
7: gcpRule.Priority = r.priority
8: gcpRule.Action.Allow = ⟨r.Protocol, (p.DestinationPortRange ∩

r.DestinationPortRange) ⟩
9: gcpRule.Source = p.DestinationIpRange ∩ r.DestinationIpRange

10: return gcpRule
11: else
12: return gcpRule
13: end if
14: end if
15: end for
16: return gcpRule
17: end function

The proposed algorithm consists of three parts (functions), namely 1) CreateGcpFirewallFro-
mAzureNsg, 2) CreateGcpIngressRule, and, 3) CreateGcpEgressRule

The function CreateGcpFirewallFromAzureNsg takes as input an Azure NSG that is attached to a
VM and another Azure NSG that is attached to a subnet and outputs an equivalent GCP firewall.
Both functions CreateGcpIngressRule and CreateGcpEgressRule are helper functions that take
as inputs an NSGvm rule and and NSGsubnet and output a GCP firewall rule.

2.5.5 Migrating GCP Security Configuration to AWS
Given the following GCP setting and security configuration:

1. a GCP subnet S gcp,

2. a GCP VM, Mgcp = ⟨ipgcpm , S gcp, F⟩,

3. a GCP firewall F that is attached to S gcp

and the following AWS setting:
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1. an AWS subnet S aws,

2. a VM, Maws = ⟨ipawsm , S aws⟩,

we propose the following algorithm 5 to efficiently migrate the GCP security configuration to
AWS:

Algorithm 5 Migrating GCP Security Configuration to AWS - Part 1
1: function CreateAwsSgFromGcpFirewall(gcpFirewall[])
2: awsSecurityGroup← []
3: for each rule ∈ gcpFirewall do
4: if rule.Action.Allow != ∅ then
5: initialize a new IpPermisson p
6: p.Direction← rule.Direction
7: p.IpProtocol← rule.Action.Allow.Protocol
8: if p.Direction == ingress then
9: p.PortRange← rule.PortRange

10: p.IpRange← rule.Source
11: else
12: p.PortRange← rule.PortRange
13: p.IpRange← rule.Destination
14: end if
15: awsSecurityGroup.append(p)
16: end if
17: end for
18: return awsSecurityGroup
19: end function
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Algorithm 5 Migrating GCP Security Configuration to AWS - Part 2
1: function CreateAwsNaclFromGcpFirewall(gcpFirewall[])
2: awsNacl← []
3: ruleNumber = 1
4: for each rule ∈ gcpFirewall do:
5: initialize new rules ringress and regress

6: if rule.Action.Allow , ∅ then
7: if rule.Direction == ingress then
8: ringress.Egress← False
9: ringress.RuleAcion← allow

10: ringress.RuleNumber← ruleNumber
11: ringress.Protocol← rule.Protocol
12: ringress.CidrBlock← rule.Source
13: ringress.PortRange← rule.PortRange
14: regress.Egress← True
15: regress.RuleAcion← allow
16: regress.RuleNumber← ruleNumber
17: regress.Protocol← rule.Protocol
18: regress.CidrBlock← rule.Source
19: regress.PortRange← *
20: else
21: regress.Egress← True
22: regress.RuleAcion← allow
23: regress.RuleNumber← ruleNumber
24: regress.Protocol← rule.Protocol
25: regress.CidrBlock← rule.Destination
26: regress.PortRange← rule.PortRange
27: ringress.Egress← False
28: ringress.RuleAcion← allow
29: ringress.RuleNumber← ruleNumber
30: ringress.Protocol← rule.Protocol
31: ringress.CidrBlock← rule.Destination
32: ringress.PortRange← *
33: end if
34: ruleNumber++
35: awsNacl.append(ringress, regress)
36: end if
37: end for
38: return awsNacl
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The proposed algorithm consists of two parts (functions), namely 1) CreateAwsSgFromGcpFire-
wall, and, 2) CreateAwsNaclFromGcpFirewall.

The function CreateAwsSgFromGcpFirewall takes as input a GCP firewall that is attached to
all instances within S gcp and outputs an AWS Security Group. The function CreateAwsNacl-
FromGcpFirewall takes as input the same GCP firewall that is attached to all instances within
S gcp and outputs an AWS NACL.

2.5.6 Migrating GCP Security Configuration to Azure
Given the following GCP setting and security configuration:

1. a GCP subnet S gcp,

2. a GCP VM, Mgcp = ⟨ipgcpm , S gcp, F⟩,

3. a GCP firewall F that is attached to S gcp

and the following Azure setting:

1. an Azure subnet S azure,

2. a VM, Mazure = ⟨ipazurem , S azure⟩,

we propose the following algorithm 6 to efficiently migrate the GCP security configuration to
Azure:
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Algorithm 6 Migrating GCP Security Configuration to Azure - Part 1
1: function CreateAzureNsgFromGCP(gcpFirewall[])
2: azureVmNsg = []
3: priority = 100
4: for each rule ∈ gcpFirewall do:
5: if rule.Action.Allow , ∅ then
6: initialize a new nsgRule
7: nsgRule.Direction← rule.Direction == ingress ? inbound : outbound
8: nsgRule.Priority = priority
9: nsgRule.Access = allow

10: nsgRule.Protocol = rule.Protocol
11: if nsgRule.Direction == inbound then
12: nsgRule.SourceIpRange = rule.Source
13: nsgRule.SourcePortRange = any
14: nsgRule.DestinationIpRange = any
15: nsgRule.DestinationPortRange = rule.PortRange
16: else
17: nsgRule.SourceIpRange = any
18: nsgRule.SourcePortRange = any
19: nsgRule.DestinationIpRange = rule.Destination
20: nsgRule.DestinationPortRange = rule.PortRange
21: end if
22: azureSubnetNsg.append(nsgRule)
23: priority = priority + 1
24: end if
25: end for
26: return azureVmNsg
27: end function

The proposed algorithm consists of one function only, namely CreateAzureNsgFromGCP.

The function CreateAzureNsgFromGCP takes as input a GCP firewall that is attached to all in-
stances within S gcp and outputs an Azure Network Security Group. Note that, the output Azure
NSG can be applied at both the VM as well as the subnet levels.
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Chapter 3

Provisioning Connectivity in Multi-cloud
Environment

In this chapter, the discussion will be centered around provisioning connectivity in multi-cloud
environments. In section 3.1, we formally define the term connectivity in the multi-cloud set-
ting. In section 3.2, we summarize ways to establish connectivity between different clouds 1
via cloud-managed solutions. In section 3.3, we propose a graph-based system that consists of
multiple microservices for easy management of multi-cloud applications and provide the design
and implementation details for this software. Finally, in section 3.4, we provide the design and
implementation details of the connectivity microservice that integrates the heterogeneous and
complex cloud-native APIs to provide a unified and simplified set of APIs.

3.1 Definition of Connectivity in Multi-cloud Environment
Given two virtual machines (VMs) 8 M1 and M2 which are defined as follows:

M1 = ⟨ip1, S 1, securityAttribute1⟩

M2 = ⟨ip2, S 2, securityAttribute2⟩

such that ip1 ∈ S 1, ip2 ∈ S 2, and S 1 ∩ S 2 = ∅

suppose M1 and M2 reside in two VPCs V1 = ⟨cloud1, cidrBlock1⟩ and V2 = ⟨cloud2, cidrBlock2⟩

with non-overlapping CIDR blocks, i.e., S 1 ∈ cidrBlock1, S 2 ∈ cidrBlock2, and cidrBlock1 ∩

cidrBlock2 = ∅. We formally define the term “an instance of connectivity between two VMs” 11
as follows:
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We say that there exists an instance of connectivity between M1 and M2 if and only
if i). an ip packet 9 pkip1, whose ipsrc = ip1 and ipdest = ip2, is allowed to leave
M1 and allowed to arrive at M2, and, ii). an ip packet 9 pkip2, whose ipsrc = ip2 and
ipdest = ip1, is allowed to leave M2 and allowed to arrive at M1.

By definition 7, resources in V1 are logically separated from resources in V2. Thus, the above
definition has two implicit implications: i). there exists an instance of connectivity between V1

and V2, and, ii). there exists no security configuration that would otherwise:

• block or deny pk1 from leaving M1, S 1, and V1,

• block or deny pk1 from arriving at M2, S 2, and V2,

• block or deny pk2 from leaving M2, S 2, and V2,

• block or deny pk2 from arriving at M1, S 1, and V1,

In this chapter, we will focus on implication i), i.e., how to establish an instance of connectivity
between two VPCs so that we can then provision connectivity between VMs. We have already
directed our attention to multi-cloud security attributes in chapter 2 where concerns pertaining to
implication ii) were addressed.

From implication i), it is evident that in order to create an instance of connectivity between M1

and M2, we need to provision an instance of connectivity between V1 and V2, and there are
mainly two ways to provision an instance of connectivity between two VPCs, namely i). via the
graphic user interface (GUI) console provided by each cloud 1, or, ii). via the set of application
programming interfaces (APIs) or software development kits (SDKs) provided by each cloud.

In the next subsection 3.2, we discuss the detailed procedure of provisioning connectivity be-
tween two VPCs using only the GUI consoles of the clouds 1 and see why doing so is non-ideal
for complex multi-cloud systems involving provisioning a large number of instances of connec-
tivity.

3.2 Provisioning Instances of Connectivity between VPCs
Based on our definition for clouds 1, in table 3.1 we provide a concise summary of the steps and
resources necessary for establishing the connectivity between any two VPCs in the same or dif-
ferent cloud. Based on this table, we discuss the detailed procedure of provisioning connectivity
between two VPCs using only the GUI consoles of the clouds. While the details provided in
this subsection are accurate at the time of this thesis submission, we acknowledge that they may
change over time at the sole discretion of the CSPs.
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VPC1 VPC2 VPC1 Resources VPC2 Resources
AWS AWS VPC Peering Connection, Route Table[6] VPC Peering Connection, Route Table[6]
Azure Azure Azure Virtual Network Peering[12] Azure Virtual Network Peering[12]
AWS GCP Internet Gateway, Customer Gateway, Vir-

tual Private Gateway, S2S VPN Connection,
Route Table[18]

Cloud Router, HA VPN Gateway, VPN tun-
nels, Peer VPN gateway, Firewall Rules[18]

AWS Azure Customer Gateway, Virtual Private Gateway,
S2S VPN Connection, Route Table[5]

Virtual Network Gateway, Local Network
Gateway, Connection[9]

Azure GCP Virtual Network Gateway, Local Network
Gateway, Connection[9]

Classic VPN Gateway, VPN Tunnel, For-
warding Rules, Global Route[19]

Table 3.1: Summary of Resources for Provisioning Connectivity Between Two VPCs

3.2.1 Provisioning Connectivity: (AWS,AWS)
Suppose we have 2 VPCs, V1 and V2, that are both hosted on AWS under the same account and
region. To provision an instance of connectivity between V1 and V2, we need to create a VPC
Peering as follows [6]:

1. On the Amazon VPC console, choose Peering connections

2. Pick V1 as the requester VPC, and V2 as the the accepter VPC or vice versa.

3. Choose Create Peering Connection.

4. Selet the VPC peering connection created in the last setp, and choose Action, Accept
Request

5. Edit the main route table for both V1 and V2: for each route table, add a route such that the
Destination contains the other VPC’s CIDR block range and the VPC peering created in
step 3 is chosen as the target.

3.2.2 Provisioning Connectivity: (Azure, Azure)

Suppose we have 2 VNets, V1 and V2, that are both hosted on Azure 1. To provision the con-
nectivity between V1 and V2, we need to create an Azure Virtual Network Peeering as follows
[10]:

1. On one of the VNet console, choose Peerings and then Add a peering.

2. On the Add peering page, under This virtual network:

1Virtual Networks (VNets) are Azure’s version of VPCs
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• Add a custom Peering link names

• Allow traffic to remote virtual network

• Allow traffic forwarded from remote virtual network

3. On the Add peering page, under Remote virtual network:

• Add a custom Peering link names

• Add the name of the other VNet as the Virtual network

• Allow traffic to remote virtual network

• Allow traffic forwarded from remote virtual network

4. After completing step 2 and 3, click on Add.

3.2.3 Provisioning Connectivity: (AWS, GCP)
Suppose we have 2 VPCs, V1 and V2, such that V1 is hosted on AWS and V2 is hosted on GCP.
To provision the connectivity between V1 and V2, we need to create the following resources on
both AWS and GCP as follows: [18]:

1. On the GCP console, under Hybrid Connectivity, create a HA VPN gateway with a custom
name.

2. On the GCP console, under Hybrid Connectivity, create a Cloud Router with a custom
route name and ASN (autonomous system number). The ASN number can be any private
ASN in the range 64512-65534 or 4200000000-4294967294. Upon completing this step,
a VPN gateway with two interfaces will be created. Each interface will have an external
address which we will use in the following step.

3. On the AWS console, under VPC service, create a Customer Gateways such that the BGP
ASN is set to the ASN specified in step 1, and the IP address is specified as one of the
external address created in step 2.

4. On the AWS console, under VPC service, create a Virtual Private Gateway with custom
name and attach it to the AWS VPC network.

5. On the AWS console, under VPC service, create a VPN connection, i.e., Site-to-Site (S2S)
VPN connection, as follows:

• Select Virtual private gateway as the Target gateway type

• Select the virtual private gateway created in step 4 as the Virtual private gateway
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• Select the customer gateway created in step 3 under Customer gateway ID as the
Existing customer gateway.

• Select Dynamic (requires BGP) as the Routing options

• Input the CIDR block of the AWS VPC as the Local IPv4 network CIDR

• Input the CIDR block of the GCP VPC as the Remote IPv4 network CIDR

6. On the AWS console, under VPC service, download the configuration file from the S2S
connection created in step 5.

7. On the GCP console, under Hybrid Connectivity, create a Peer VPN Gateway with a
custom name and choose two interfaces. For each interface, provide one of the Outside
IP addresses from file downloaded in step 6 as the Interface IP address.

8. On the GCP console, under Hybrid Connectivity, create two VPN tunnels as follows:

• Select On-prem or Non Google Cloud as the Peer VPN gateway

• Under Peer VPN gateway name, select the peer vpn gateway created in step 7 as the

• Under High availability, select Create a pair of VPN tunnels

• Under Cloud Router, select the cloud router created in step 2.

• Under VPN tunnels, create 2 VPN tunnels by selecting the IP address used in step 3 as
the Associated Cloud VPN gateway interface. Select one of the interface from the
peer vpn gateway created in step 7 as the Associated peer VPN gateway interface.
Input the pre-shared keys from the file downloaded in step 6 as the IKE pre-shared
key

• Configure BGP Session for each tunnel by providing the ASN of AWS Virtual Pri-
vate Gateway created in step 4 as the Peer ASN. Under Allocate BGP IPv4 ad-
dress, select Manually and input the following information from the configuration
file downloaded in step 6: Inside IP address of Customer Gateway as the Cloud
Router BGP IPv4 address and Inside IP address of Virtual Private Gateway as the
BGP peer IPv4 address.

3.2.4 Provisioning Connectivity: (AWS, Azure)
Suppose we have 2 VPCs, V1 and V2, such that V1 is hosted on AWS and V2 is hosted on Azure.
To provision the connectivity between V1 and V2, we need to create the following resources on
both AWS and Azure as follows[11]:

1. On the Azure console, create a Virtual Network Gateway as follows:
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• Select VPN as the Gateway type.

• Select Route-based as the VPN type.

• Choose one of the option from the list for SKU and Generation. These options
determines the types of workloads, throughput, features, and SLAs [7].

• Select the Azure VPC as the Virtual network.

• Input a subnet range that lies within the Vnet CIDR block for the Gateway subnet
address range [7].

• Create a new Public IP address for the virtual network gateway.

2. On the AWS console, under VPC service, create a Customer Gateway such that the IP
address corresponds to the public IP address created in step 1.

3. On the AWS console, under VPC service, create a Virtual Private Gateway with custom
name and attach it to the AWS VPC network.

4. On the AWS console, under VPC service, create a VPN connection, i.e., Site-to-Site (S2S)
VPN connection, as follows:

• Select Virtual private gateway as the Target gateway type

• Select the virtual private gateway created in step 4 as the Virtual private gateway

• Select the customer gateway created in step 3 under Customer gateway ID as the
Existing customer gateway.

• Select Static as the Routing options.

• Input the Azure Vnet CIDR block as the Static IP Prefixes.

• Select IPv4 as the Tunnel inside ip Version.

5. On the AWS console, under VPC service, download the configuration file from the S2S
connection created in step 4.

6. On the Azure console, create a Local Network Gateway as follows:

• Specify the public IP of Virtual Private Gateway from the configuration file down-
loaded in step 5 as the IP Address.

• Specify the AWS VPC CIDR block as the Address Space.

7. On the Azure console, under the Virtual Network Gateway, add a new Connection as
follows:

• Select Site-to-site (IPsec) as the Connection Type.
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• Select the virtual network gateway created in step 1 as the Virtual network gateway.

• Select the local network gateway created in step 6 as the Local network gateway.

• Input the one of the pre-shared key from the configuration file downloaded in step 5
as the Shared key (PSK).

• Select IKEv2 as the IKE Protocol.

8. (Optional) To achieve high-availability, repeat step 6 and 7 to create a connection that pairs
with the second tunnel of AWS S2S Connection.

3.2.5 Provisioning Connectivity: (Azure, GCP)
Suppose we have 2 VPCs, V1 and V2, such that V1 is hosted on Azure and V2 is hosted on GCP.
To provision the connectivity between V1 and V2, we need to create the following resources on
both Azure and GCP as follows [21]:

1. On the Azure console, create a Virtual Network Gateway as follows:

• Select VPN as the Gateway type.

• Select Route-based as the VPN type.

• Choose one of the option from the list for SKU and Generation. These options
determines the types of workloads, throughput, features, and SLAs [7].

• Select the Azure VPC as the Virtual network.

• Input a subnet range that lies within the Vnet CIDR block for the Gateway subnet
address range [7].

• Create a new Public IP address for the virtual network gateway.

2. On the GCP console, under Hybrid Connectivity, create a Classic VPN as follows:

• Under the Google Compute Engine VPN gateway, select the GCP VPC as Network.

• Under the Google Compute Engine VPN gateway, select Create IP Address as for
the IP address.

• Under New Tunnel, input the IP address created in step 1 as the Remote peer IP
address. This IP address will be used later when we configure Azure Local Network
Gateway.

• Under New Tunnel, click on generate and copy to generate an IKE pre-shared key.
Note down the generated pre-shared key.
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• Under New Tunnel, select Route-based as the Routing options and input the Azure
VNet CIDR block as the Remote network IP ranges.

3. On the Azure console, create a Local Network Gateway as follows:

• Specify the IP address created in step 2 as the IP Address.

• Specify the GCP VPC CIDR block as the Address Space.

4. On the Azure console, under the Virtual Network Gateway, add a new Connection as
follows:

• Select Site-to-site (IPsec) as the Connection Type.

• Select the virtual network gateway created in step 1 as the Virtual network gateway.

• Select the local network gateway created in step 3 as the Local network gateway.

• Input the pre-shared key copied in step 2 as the Shared key (PSK).

• Select IKEv2 as the IKE Protocol.

As evident from the above, provisioning connectivity in the heterogeneous cloud environment
can be tedious and complex especially when instances of connectivity need to be provisioned
between each of the multiple clouds. However, before we address this issue and propose a
solution in subsection 3.4, we will discuss in subsection 3.3 on how to effectively capture the
multi-cloud environment using a graph-based cloud management system such that our proposed
solution in subsection 3.4 can be incorporated into it.

3.3 Graph-based Cloud Management System
In this subsection, we propose a graph-based system that consists of multiple microservices for
easy management of multi-cloud applications and provide the design and implementation details
for this system.

The purpose of this system is to provide a GUI and a backend request dispatcher that enables the
communication between a user, e.g., network admin, and the clouds such that the user will be
able to manage multiple clouds using only this system. This system would also include multiple
microservices to which the backend dispatcher would communicate to perform specific tasks.

3.3.1 System Architecture
Figure 3.1 illustrates the generic system architecture of the proposed system. In this system, the
user would have direct access to the GUI. The user would then perform a set of tasks on the
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Figure 3.1: System Architecture for Proposed Cloud Management System

GUI where the GUI will, based on the tasks performed by the user, send requests to the backend
request dispatcher.

The backend dispatcher acts as a centralized API gateway that direct the requests to different
microservices. The benefit of having a backend request dispatcher is that it reduces coupling,
the number of round trips for requests, the attack surface that would otherwise be exposed to the
public, as well as cross-cutting concerns [22].

The microservices, or simply services, behind the backend request dispatcher each handles a
unique set of tasks, for example, under the context of multi-cloud application management, these
could be:

• a database service that reads or writes data pertaining to each cloud from or into a database

• an identity access management (IAM) service that grants or revokes users’ access right to
the clouds

• a connectivity service that connects network resources between different clouds

• . . .

In our proposed system, we include the following microservices:

• The graph database microservice that leverages the graph-based database Neo4j to model
multi-cloud environments.

64



• The connectivity provisioning microservice that provides a unified set of APIs to auto-
mate connectivity provisioning in multi-cloud environments.

3.3.2 The Graph Database Microservice
The graph database microservice is the knowledge-base that all layers of the system are allowed
to read and optionally write. At the core, it is a database based on a popular NoSQL database
known as Neo4j that stores data as a graph, i.e., graph data structure. In other words, all data
within the system can be stored as either vertices or edges. The Neo4j database itself can be
queried using the graph query language known as Cypher, which is a powerful, intuitive, graph-
optimized query language [23]. However, the graph database microservice provides a simplified
set of APIs for querying, writing, modifying, and deleting data from the Neo4j database.

There are some important properties of the graph database microservice:

1. Every vertex and edge has attributes. Attributes refer to name-value pairs.

2. A vertex can itself represent a graph at a “lower layer”.

3. Similarly, an edge may represent a graph at a “lower layer.”

With the help of the graph database microservice, we can model the multi-cloud environment by
layers as follows:

• At the top layer, we would have nodes that represent each of the cloud 1. For example,
figure 3.2 shows the modeling of the top-layer of a multi-cloud application that involves
AWS, GCP, and Azure. Note that figure 3.2 shows no edge between each of the nodes be-
cause, in this illustration, there exists no network connectivity between each of the clouds.

AWS

GCP

Azure

Figure 3.2: Modeling Multi-cloud Application: Cloud-layer

• At the second-to-top level, we would have nodes that represent the VPCs contained in the
multi-cloud environment. For example, figure 3.3 shows 3 VPCs, each from one of the
clouds 1, such that no instance of connectivity exists between each pair of VPCs.
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AWS vpc

GCPvpc

Azurevpc

Figure 3.3: Modeling Multi-cloud Application – VPC-level without Connectivity

Of course, besides modeling the VPCs contained in the multi-cloud environment, we could
also model instances of connectivity, if there are any, between VPCs using an edge. Figure
3.4 illustrates an example of such scenarios where there exists an instance of connectiv-
ity between AWS vpc and GCPvpc and an instance of connectivity between AWS vpc and
Azurevpc, but no instance of connectivity exists between GCPvpc and Azurevpc. Formally,
we could represent the graph as follows:

G = ⟨V, E⟩ where V = {AWS vpc,GCPvpc, Azurevpc} and
E = {(AWS vpc,GCPvpc), (AWS vpc, Azurevpc)}

AWS vpc

GCPvpc

Azurevpc

Figure 3.4: Modeling Multi-cloud Application – VPC-level with Partial Connectivity

Finally, we could also model the fully-connected topology. Figure 3.5 shows a fully con-
nected multi-cloud network such that i). there exist two VPCs in each one of the clouds,
and, ii). there exists an instance of connectivity between each pair of the VPCs. Formally,
we can represent this network topology as follow: G = ⟨V, E⟩ such that for all vi, v j ∈ V ,
(vi, v j) ∈ E.
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AWS vpc1

AWS vpc2

GCPvpc1

Azurevpc1

GCPvpc2

Azurevpc2

Figure 3.5: Modeling Multi-cloud Application – VPC-level with Full Mesh Connectivity

Suppose we have a multi-cloud application that has the same architecture that is shown in figure
3.5, i.e., i). there are two VPCs in each of the clouds, and, ii). there exists an instance of
connectivity for each pair of the VPCs. Suppose also that we wanted to model this using the
plain Cypher query language and give each edge a meaningful name to model the relationship
between nodes [24], say “connectivity”, then we would need the following script:

1 /* Firstly, we create 6 nodes representing 6 VPCs*/

2 CREATE (v:Vpc {name: 'AWS_VPC1'});

3 CREATE (v:Vpc {name: 'AWS_VPC2'});

4 CREATE (v:Vpc {name: 'GCP_VPC1'});

5 CREATE (v:Vpc {name: 'GCP_VPC2'});

6 CREATE (v:Vpc {name: 'AZURE_VPC1'});

7 CREATE (v:Vpc {name: 'AZURE_VPC2'});

8 /* Now we create pair-wise relationships */

9 MATCH(a:Vpc),(b:Vpc) WHERE a.name = 'AWS_VPC1' AND b.name = 'AWS_VPC2' CREATE

(a)-[r:connectivity]->(b) RETURN type(r);

10 MATCH(a:Vpc),(b:Vpc) WHERE a.name = 'AWS_VPC1' AND b.name = 'GCP_VPC1' CREATE

(a)-[r:connectivity]->(b) RETURN type(r);
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11 MATCH(a:Vpc),(b:Vpc) WHERE a.name = 'AWS_VPC1' AND b.name = 'GCP_VPC2' CREATE

(a)-[r:connectivity]->(b) RETURN type(r);

12 MATCH(a:Vpc),(b:Vpc) WHERE a.name = 'AWS_VPC1' AND b.name = 'AZURE_VPC1' CREATE

(a)-[r:connectivity]->(b) RETURN type(r);

13 MATCH(a:Vpc),(b:Vpc) WHERE a.name = 'AWS_VPC1' AND b.name = 'AZURE_VPC2' CREATE

(a)-[r:connectivity]->(b) RETURN type(r);

14 MATCH(a:Vpc),(b:Vpc) WHERE a.name = 'AWS_VPC2' AND b.name = 'GCP_VPC1' CREATE

(a)-[r:connectivity]->(b) RETURN type(r);

15 MATCH(a:Vpc),(b:Vpc) WHERE a.name = 'AWS_VPC2' AND b.name = 'GCP_VPC2' CREATE

(a)-[r:connectivity]->(b) RETURN type(r);

16 MATCH(a:Vpc),(b:Vpc) WHERE a.name = 'AWS_VPC2' AND b.name = 'AZURE_VPC1' CREATE

(a)-[r:connectivity]->(b) RETURN type(r);

17 MATCH(a:Vpc),(b:Vpc) WHERE a.name = 'AWS_VPC2' AND b.name = 'AZURE_VPC2' CREATE

(a)-[r:connectivity]->(b) RETURN type(r);

18 MATCH(a:Vpc),(b:Vpc) WHERE a.name = 'GCP_VPC1' AND b.name = 'GCP_VPC2' CREATE

(a)-[r:connectivity]->(b) RETURN type(r);

19 MATCH(a:Vpc),(b:Vpc) WHERE a.name = 'GCP_VPC1' AND b.name = 'AZURE_VPC1' CREATE

(a)-[r:connectivity]->(b) RETURN type(r);

20 MATCH(a:Vpc),(b:Vpc) WHERE a.name = 'GCP_VPC1' AND b.name = 'AZURE_VPC2' CREATE

(a)-[r:connectivity]->(b) RETURN type(r);

21 MATCH(a:Vpc),(b:Vpc) WHERE a.name = 'GCP_VPC2' AND b.name = 'AZURE_VPC1' CREATE

(a)-[r:connectivity]->(b) RETURN type(r);

22 MATCH(a:Vpc),(b:Vpc) WHERE a.name = 'GCP_VPC2' AND b.name = 'AZURE_VPC2' CREATE

(a)-[r:connectivity]->(b) RETURN type(r);

23 MATCH(a:Vpc),(b:Vpc) WHERE a.name = 'AZURE_VPC1' AND b.name = 'AZURE_VPC2'

CREATE (a)-[r:connectivity]->(b) RETURN type(r);

Figure 3.6 shows the graph rendered by the Neo4j graph database after running the above script
in the Neo4j Browser [25]. However, given as input the number of nodes to be created, the
number of queries to be written is at worst quadratic to the size of the input because it requires
n(n−1)

2 edges to make a fully connected graph.

3.4 Connectivity Provisioning Microservice
As evident from subsection 3.2, establishing connectivity between two given VPCs that are
hosted on different clouds can be cumbersome and time consuming as it involves creating various
resources on both cloud platforms and often requires an understanding for computer networking.
The situation could be further exacerbated if we wish to establish a full-mesh network topology
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Figure 3.6: Creating an Example Graph using Cypher Language

between more than two VPCs. To eliminate the tedious work and potential misconfigurations,
we propose a microservice that automates the establishment of connectivity in a multi-cloud en-
vironment by providing a suite of APIs. In the following subsections, we will present the design
of the microservice and the APIs in datails.

The Connectivity Microservice
Overall, there are two main APIs for the connectivity microservice: the Connect API that creates
the resources necessary on both clouds to connect a pair of VPCs, and the Disconnect API
that deletes the resources created by the Connect API to disconnect two connected VPCs. The
Disconnect API also provides rollback functionality if an error occured during the creation of
relevant resources. These APIs can be modelled by the following Deterministic Finite Automaton
(DFA) shown in Figure 3.7.

As can be observed from Figure 3.7, there are three final states, namely failed, connected, and
disconnected. Upon receiving the Connect API call, the microservice transitions from the initial
state to the connecting state where the connectivity microservice starts to create the necessary re-
sources for the initialized connectivity between two VPCs that are specified in the API call. If an
error is encountered during the connecting state, the service goes into the failed final state indi-
cating that the establishment of connectivity has failed and the software stops. Once all resources
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Figure 3.7: Connectivity Microservice DFA

have been created successfully, the software reaches the connected state and the software stops.
When the connected final state is reached, an instance of connectivity is said to be established
between the two VPCs. An instance of connectivity stay connected until a Disconnect API call
is made such that the software transitions into the disconnecting state where the all resources
created previously by the ConnectAPI call will be deleted. Should there be an error occured
during the deletion process, the state will transition into the failed final state. Upon all resources
being deleted successfully, the software transitions into the disconnected final state to signal that
the connectivity instance between the two VPCs has been removed, i.e., no VM in one VPC is
able to send and receive network traffic from VMs in the other VPC.

As evident from table 3.1, it is worth noting that for each instance of connectivity between two
VPCs that is initialized by the connectivity microservice, the resources needed to create may
not be the same. Furthermore, the resource creating process requires sequential ordering. For
example, as described in Section 3.2, when establishing an instance of connectivity between
an AWS VPC and a GCP VPC, one needs to create a Cloud Router in GCP before creating a
customer gateway in AWS because the latter requires the IP address from the former.

Figure 3.8 presents a more fine-grained figurative description of the Connect API of the con-
nectivity microservice, whereas the flowchart in figure 3.9 shows the details of Disconnect API
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of the connectivity microservice. Each helper takes care of creating resources pertaining to the
specific connection type. A connection type is an unordered pair defined by the clouds in which
the two VPCs reside, for example {aws, gcp} refers to a pair of VPCs such that one VPC belong
to AWS and the other belongs to GCP.

START (ConnectAPI)
Connect

Dispatcher
GCP-GCP

Connect Helper

AWS-Azure
Connect Helper

AWS-GCP
Connect Helper

Azure-GCP
Connect Helper

Azure-Azure
Connect Helper

AWS-AWS
Connect Helper

success?

Connected

Failed

Yes

No

Figure 3.8: Connectivity Microservice Flowchart - Connect API
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START (DisconnectAPI)
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Helper
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Disconnect
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success?

Connected

Failed

Yes

No

Figure 3.9: Connectivity Microservice Flowchart - Disconnect API
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Chapter 4

Conclusion and Future Work

In this thesis, we explore the topic of provisioning connectivity with security attributes in multi-
cloud environments.

In chapter 2, we examined the security aspects pertaining to multi-cloud connectivity. In section
2.1, we explored various connectivity-related network security features offered by different cloud
service providers (CSPs) 1. Based on these features, section 2.2 gave formal definitions for the
syntax and semantics of cloud security pertaining to connectivity. In section 2.3, we presented
proofs of equivalence for the security attributes between clouds with the following findings –
there exists an AWS security configuration such that no equivalent security configuration exists
in neither GCP nor Azure. In section 2.4, we expanded our understanding of the expressive power
problem for the portion of the security configuration that pertains to connectivity and came to the
following conclusion:

1. Under the assumption that the end-to-end connectivity involves one end, e.g., a VM, inside
the cloud’s subnet, and the other end outside the cloud’s subnet, AWS’s security syntax is
more “express” than Azure’s and GCP’s, and thus, AWS’s security syntax is more expres-
sive than Azure’s and GCP’s.

2. Under the assumption that the end-to-end connectivity involves one end, e.g., a VM, inside
the cloud’s subnet, and the other end outside the cloud’s subnet, GCP and Azure’s security
syntax are equivalent, and thus, are equally expressive

3. Under the assumption that the end-to-end connectivity involves both ends within the same
subnet, AWS, GCP, and Azure’s security syntax are equivalent, and thus, are equally ex-
pressive.

Finally, in section 2.5, we provided six efficient algorithms that facilitate the migration from one
cloud to another.
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Chapter 3 focuses more on the practical aspects of this research, i.e., designing and developing
graph-based multi-cloud management software in which one of the key features is to facilitate the
provisioning of connectivity between clouds in the heterogeneous cloud environment. Section
3.1 gave a formal definition of the term connectivity in the multi-cloud setting. In section 3.2, we
tabulated ways to provision connectivity between different clouds 1 via cloud-managed solutions.
In section 3.3, we proposed a graph-based system that consists of multiple microservices for easy
management of multi-cloud applications and provided details for the design and implementation
of this software. Lastly, in section 3.4, we gave a deep dive into the design and implementation of
the connectivity microservice that integrates the heterogeneous and complex cloud-native APIs
to provide a unified and simplified set of APIs for provisioning connectivity in the multi-cloud
environment.

We would like to list the following potential future works that we believe are worth explor-
ing. Firstly, a lot of the work could be directed to the enhancement of the software mentioned
in chapter 3. For example, the security attributes pertaining to connectivity provisioning that
were discussed in chapter 2 have not yet been incorporated into the software. Also, another big
component pertaining to cloud security is Identity Access Management (IAM) which we have
not yet explored in this research work. Finally, besides security attributes, there are other im-
portant attributes pertaining to multi-cloud connectivity provisioning that are worth exploring,
e.g., performance attributes such as throughput. We believe the result gathered from studying
these attributes could potentially be incorporated into the aforementioned software such that the
software will become more robust in provisioning multi-cloud connectivity.
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