
Radiometric Compensation of
Nonlinear Projector Camera Systems
by Modeling Human Visual Systems

by

Matthew Post

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Systems Design Engineering

Waterloo, Ontario, Canada, 2023

c© Matthew Post 2023



Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Radiometric compensation is the process of adjusting the luminance and colour output
of images on a display to compensate for non-uniformity of the display. In the case of
projector-camera systems, this non-uniformity can be a product of both the light source
and of the projection surface. Conventional radiometric compensation techniques have been
demonstrated to compensate the output of a projector to appear correct to a camera, but
a camera does not possess the colour sensitivity and response of a human. By correctly
modelling the interaction between a projector stimulus and camera and human colour
responses, radiometric compensation can be performed for a human tristimulus colour
model rather than that of the camera. The result is a colour gamut which is seen to be
correct for a human viewer but not necessarily the camera.

A novel radiometric compensation method for projector-camera systems and textured
surfaces is introduced based on the human visual system (HVS) colour response. The
proposed method for modelling human colour response can extend established compen-
sation methods to produce colours which are human-perceived to be correct (egocentric
modelling). As a result, this method performs radiometric compensation which is not only
consistent and precise, but also produces images which are visually accurate to an external
colour reference. Additionally, conventional radiometric compensation relies on a solution
of a linear system for the colour response of each pixel in an image, but this is insufficient
for modelling systems containing a nonlinear projector or camera. In the proposed method,
nonlinear projector output or camera response has been modelled in a separable fashion to
allow for the linear system solution for the human visual space to be applied to nonlinear
projector-camera systems.

The performance of the system is evaluated by comparison with conventional solutions
in terms of computational speed, memory requirements, and accuracy of the colour com-
pensation. Studies include the qualitative and quantitative assessment of the proposed
compensation method on a variety of adverse surfaces, with varying colour and specularity
which demonstrate the colour accuracy of the proposed method. By using a spectrora-
diometer outside of the calibration loop, this method is shown to produce generally the
lowest average radiometric compensation error when compared to compensation performed
using only the response of a camera, demonstrated through quantitative analysis of com-
pensated colours, and supported by qualitative results.
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Nomenclature

C A vector representing the channel-wise camera colour re-
sponse for a pixel, typically red, green, and blue

e(λ) The spectrum of light output by a particular projector
colour channel as a function of wavelength, with the pixel
intensity as a factor.

F(·) An arbitrary nonlinearity function for a three dimensional
input vector

K A matrix representing the compensation solution to be ap-
plied to achieve a desired projector output

Ka A matrix representing the compensation solution to be ap-
plied to achieve a desired projector output which is aug-
mented to account for ambient light

q(λ) The spectral sensitivity of a given sensor, here either a
camera colour channel or human tristimulus curve

P A vector representing the channel-wise projector colour
output for a pixel, typically red, green, and blue

s(λ) The spectral reflectance of the surface upon which light is
projected

S A vector representing the channel-wise colour response for
a pixel in a standardized colourspace, typically red, green,
and blue

Sa A vector representing the channel-wise colour response for
a pixel in a standardized colourspace, typically red, green,
and blue, augmented by appending a 1

Vc,p A matrix representing the mapping from camera
colourspace to projector colourspace

Vs,h A matrix representing the mapping from the XYZ
colourspace to a standard RGB colourspace
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Vh,p A matrix representing the mapping from the projector
colourspace to the XYZ colourspace

w(λ) The spectrum of light output by a particular projector
colour channel as a function of wavelength, at maximum
intensity.

λ Wavelengths of light, typically in nanometers.
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Chapter 1

Introduction

In recent years, the use of projection technology to display media on unconventional sur-
faces has become increasingly prevalent. Projectors are used in not only cinemas, but
in planetarium domes, amusement park rides, and to project onto architecture. Projec-
tors have also become cheaper and increasingly powerful, with some individual projectors
capable of outputting 60,000 lumens.

With the increased availability of projectors with high luminous outputs, there has been
an increased demand to project onto novel and challenging surfaces. Often these projection
scenarios include an array of projectors illuminating a pre-existing structure or a surface
not originally designed for projection. Examples are varied, but typically the surface is
a building, monument, and can include a range of 3D geometry, textured surfaces, and
image content specifically designed for the scene. These challenging scenarios each result
in colours or textures in the projected imagery which are not part of the intended content.
Such textures and colours can easily reduce the impact of the content on an audience.
Similarly, blended multi-projector displays present another challenge to seamless content,
which is projector colour matching. Two projectors, even projectors from the same brand
and model, can present different colour gamuts due to differing light sources. This can
produce visible seams in content, and make the content colours look incorrect with respect
to that of other projectors. This typically requires the painstaking manual tuning of
colours, which can be prohibitive for large arrays of projectors.

A notable example of projection on the 3-dimensional surface of a monument is the
Statue of Unity in Gujarat, India. The 182 metre tall, bronze-clad statue was illuminated
with 30 Christie Crimson projectors, each outputting an HD image to cover a portion of
the surface. The surface poses a particular challenge to project on, as the bronze cladding
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creates a surface which changes the proportion of light reflected based on relative angle. The
result of projecting on this surface is content which lacks the intended colours, luminance of
the surface varying widely, and textures of the surface visible through the projected content.
The challenges of projection mapping can be seen in Figure 1.1b, showing projection on
a flat yet challenging ice surface, and projection on the Statue of Unity in uncontrolled
conditions. Both show different conditions in which non-uniformity of projection can be
perceived by a viewer.

(a) Projection mapping on a 2 dimensional surface as demonstrated on the ice surface of a hockey
rink.

(b) Projection mapping on a 3 dimensional surface as demonstrated on the Statue of Unity.

The statue presents obvious challenges to projection, not just for geometric alignment
of pixels, but also for the uniform illumination. The geometry of the statue surface causes
the angle of incident of the projector, and thus the effective luminance to change, and the
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texture and colour of the surface causes further non-uniformity. The ice rink poses similar
challenges to the statue due to differing angles of projection of the projectors, but has the
additional difficulty of being a partially specular surface. This means that much of the
projected light for a pixel is evenly scattered, the relative viewing angle can significantly
change perceived luminance. Additionally, on a flat white surface, humans can more readily
perceive differences in the colour between projector light sources, thus requiring the colour
range of the projectors to be more precisely matched.

1.1 Thesis Contribution and Proposed Method

The target of this thesis is to propose a method for radiometric compensation which over-
comes several shortcomings of existing solutions in three separate parts of the compensation
pipeline. There are three major contributions:

1. Radiometric compensation of non-linear projector-camera systems is solved efficiently.
This method is an improvement over existing methods by virtue of separating the
projector non-linearity and linear radiometric compensation. This method consists
of capturing the range of a projector’s colour gamut using a camera, and represent-
ing the recorded values in terms of the projector primary colours. This method is
detailed in Chapter 3.

2. The process of colour correction of projectors with respect to a human’s sensitivity
is introduced. Projector systems are compensated by modelling the differences in
interaction between the way projector light sources interact with cameras and the
human visual system. The colourspace transformations between the colours of cam-
eras and projectors calibrate projectors to a common gamut. This method is outlined
in Chapter 4.

3. The detection of pixel-level outliers in radiometric compensation is introduced. Both
the detection and the correction of these pixels is explored. This method identifies
poorly compensated pixels for a given projector, and uses information from nearby
pixels to fill in the missing information. This method is outlined in Chapter .

The contributions in this thesis are each proposed to solve a particular problem in a
radiometric compensation pipeline, with the goal of being eventually used in commercial
applications. The solutions proposed must result in an comprehensive pipeline for radio-
metric compensation which can be applied to high-resolution and high-framerate projectors
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in realtime, and can be run without human intervention and tuning. The performance of
the proposed methods is demonstrated in Chapter 6.
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Chapter 2

Background

In this chapter, background information and related work in this thesis is presented. The
principles of ubiquitous projection, projection on any surface, and projector-camera sys-
tems are explored. Section 2.1 provides an overview of existing compensation methods
and the underlying mathematics for projector camera systems. Section 2.2 describes the
process of determining the geometric relationships between projector pixels and camera
pixels. Section 2.3 describes the spectral stimulation of the human visual system, and
the principles of the projector spectral outputs. Existing work in the field is described,
and shortcomings are assessed. Section 2.4 provides an overview of existing compensation
methods and their deficits.

2.1 Overview

Radiometric compensation is the process of altering the output of images on a display to
compensate for non-uniformity of the display. A display may take the form of a computer
monitor, an LED array wall, a video projector, or another visual medium. In the case of
video projectors, this non-uniformity can be a product of non-uniformity of both the light
source and of the projection surface. Radiometric compensation aims to achieve a more
accurate representation of the projected image by modelling non-uniformity. In projector-
camera systems, the camera provides the feedback required to allow the projector image
to be compensated for background texture of a projection surface. In the vast majority of
these systems, cameras and projectors use a three-channel RGB representation of images.

In the literature, several methods for radiometric compensation have been proposed and
have been shown to work effectively in real-time with projector-camera systems with linear
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relationships [21, 2, 23]. In general, such methods work by determining a multi-channel
linear model of the reflected light for each pixel and determining the inverse solution.
To create a closed calibration loop for each pixel on a given projection surface, pixel
correspondences are first calculated between the projector and camera through the use of
structured light in a set of training images. Next, colour training images are projected on
the surface and captured with the camera. These training images are then used to constrain
the solution to the system inverse model for each pixel. The result is a 3 × 3 matrix model
V for each pixel, where each element relates the 3 spectral contributions of the projector
to each of the 3 colour responses of the camera. The matrix would be a diagonal matrix if
each projector colour channel only stimulated the respective camera colour channel. The
projector and camera colour channels both have overlapping distributions, necessitating
the off-diagonal terms in the matrix V . Let C and P denote a 3× 1 vector of RGB values
output from the camera and input of the projector, respectively. The inverse solution to a
given system provides the required projector output, P , from a desired camera colour as
follows:

C = V P, P = V −1C (2.1)

This model of a pixel’s colour in a projector-camera system does not include parameters
for ambient light, and thus can only model systems where the projector is the only source
of light for the camera. This was improved by Yoshida [31] with the augmentation of the
matrix equation with a constant term to include ambient light contributions as follows:

P = KCa, Ca =


cr
cg
cb
1

 (2.2)

where K is a 3 × 4 matrix that represents the inverse of the pixel colour response. Al-
ternatively, certain projectors have nonlinear responses to inputs which prevent simple
linear system modeling. The nonlinearity of the projector output causes the radiomet-
ric response of each projected pixel to become nonlinear. This nonlinearity is designed
into many projectors output response to enhance colour vibrancy and perceived contrast,
as with a gamma correction applied to other displays. Nonlinearity can include gamma
corrections, white boosting, colour boosting, or S-curves applied to the colour intensities,
all which may be desirable for some enhancement of the projected image, but less desir-
able for those who might be trying to model the system. Recently, Grundhöfer and Iwai
[6] proposed a method for radiometric compensation of such non-linear systems using a
lookup table per pixel and thin plate spline interpolation to approximate the colour inverse
problem. The lookup table inherently provides solutions for nonlinear projector response
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(a) (b)

Figure 2.1: (a) Sample Stone Tile test background and (b) compensated image using the
proposed scheme. This experiment is conducted in high ambient light conditions.

and ambient light. However, this method has two significant drawbacks; firstly, the sparse
lookup table of each pixel’s colour response must be stored, and secondly, a spline interpo-
lation must be performed for each pixel in each image to be compensated. This requires a
significant increase in both computations and storage per pixel over the linear solution.

Here, a method that efficiently computes the radiometric compensation of a nonlinear
projector system is proposed. This method separates the nonlinearity of the projector from
the linear radiometric compensation. The proposed scheme provides a significant reduction
in computational complexity and storage requirements of the compensation when compared
to that of the method in [6]. This reduction is achieved without sacrificing the accuracy
of the compensation; a sample of this nonlinear compensation can be seen in Figure 5.1,
where a stone tile wall is being illuminated with high ambient light.

2.2 Geometric Calibration

Geometric calibration of projector-camera systems is required in order to establish the
relationships between their respective pixels. In the context of radiometric compensation,
this relationship is required to use the information gathered with the camera to compen-
sate specific projector pixels. The geometric relationship can be expressed in multiple
ways including correspondences between camera pixels and projector pixels or the pose
of the devices relative to each other when the screen geometry is known. The geometric
calibration generates a mapping between camera pixels and projector pixels, allowing the
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camera to be used for calibrating the projector colours in a secondary calibration proce-
dure. The projector-camera geometric relationship is calculated assuming a fixed scene,
in which the relationship between pixels of both devices does not change. The correspon-
dences between pixels are sometimes sufficient to accomplish all calibration tasks, such as
radiometric compensation. In the case that specific video content must be aligned to the
surface geometry, the relative poses between projectors and cameras is calculated from the
pixel correspondences. In either case, the pixel correspondences typically need to be as
dense as possible, and in the case of radiometric compensation, must be pixel-dense in the
projector domain.

Geometric calibration is often accomplished through the use of structured light. Struc-
tured light is any pattern with known geometric properties that is projected and allows
pixels in a camera image to be related back to the projected pixels. Numerous methods
of encoding spatial information in projected light have been developed [27] and demon-
strated to be effective in projector-camera systems where the geometric relationships must
be known [2, 8]. Such methods can include Gray Coded Binary patterns (GCB), blob
patterns, or sinusoidal waves [27]. In these cases, the intensity of the pixels (on or off for
binary) allow each camera pixel to be decoded to a projector pixel given a temporal encod-
ing. The projector is used to display a sequence of images, and the sequence of intensities
associated with a given pixel can be used to identify the pixel uniquely in a camera image.
By covering the entire projector field with temporally-encoded pixel addresses, pixel-dense
mappings between projector pixels and camera pixels can be obtained.

Though the design and development of structured light test patterns falls beyond the
purview of the work presented, it is a prerequisite for the work. In the case of Gray Coded
Binary patterns (GCB), the horizontal positions and vertical positions of pixels are encoded
separately, with two sequences of test patterns. In each sequence, pixels are switched to
either fully on (white) or off (black), based on Gray (reflected binary) code. Gray coding
has the property that any two adjacent binary codes in the set differ by a single pixel
value. By direct consequence, a single bit error in decoding means a single pixel error in
decoded position. The encoding method forms bar patterns as seen in Figure 2.2. Each
of the columns show a different sequence of horizontal bars used to encode vertical pixel
position in the projected images.

The test patterns used for generating the correspondences between camera and pro-
jector must be selected based on the requirements of the calibration. Projection on a
3-dimensional, discontinuous surface requires a pixel-dense test pattern sequence such as
the Gray-coded binary patterns outlined above, though this requires the use of a longer test
pattern sequence. Projection on smooth, continuous surfaces does not require pixel-dense
correspondences, and thus shorter sequences, or patterns which rely on spatial continuity
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Figure 2.2: Sample of Gray-Coded binary patterns for 16 different vertical positions, with
4 different horizontal bar patterns.

of the pattern in the camera domain may be used. For the purpose of radiometric compen-
sation, pixel-dense correspondences between projector and camera are required such that
each projector pixel may be compensated appropriately for a viewer.

2.3 Human Visual System

The human eye is a remarkable difference detector, able to quickly discern edges in lu-
minance and colour in a scene, whether this change occurs spatially or through time.
Radiometric compensation aims to deceive this detector into seeing spatial uniformity by
producing colours on a surface which are perceived to be the same, while possibly having
different light spectra. The correct compensation of an image not only produces a uniform
image in a scene, but also an image of the correct colours. The uniformity indicates accu-
racy, the specific colour indicates precision. A radiometric compensation technique must
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Figure 2.3: Human spectral sensitivity. This is the human visual system tristimulus model
which became the CIE 1931 standard model. This model is still prevalent in industry,
despite not being fully representative of the human population.

thus correctly account for the different projection spectra and the spectral sensitivity of
the human eye.

The spectral sensitivity of the human visual system is typically modelled as a tristimulus
system, composed of three response functions each of which approximates the sensitivity of
a particular set of cones in the human retina. These curves are traditionally represented as
X(λ), Y (λ), Z(λ). To maintain generality of the equations of spectral responses, these will
be instead be represented by qX(λ), qY (λ) and qZ(λ) respectively. These spectral response
curves can be seen in Figure 2.3. The three curves roughly cover the wavelengths which
humans perceive as red, green, and blue respectively. Note the two maxima of the qX(λ)
in figure 2.3, which causes perceived colours to wrap from red to blue through magenta,
showing the human response of qX(λ) to both short and long wavelengths, corresponding
to blue and red respectively.

These curves can be combined with the spectra of incoming light r(λ), to approximate
the colours which a human would perceive using an inner product:

Ci =

∫
qi(λ)r(λ)dλ (2.3)

The result of this inner product of the spectrum of incoming light with the spectral
response of the human visual system is dependant on the shapes of the curve for both.
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This means that the perceived colour computed from a measurement of the light spectrum
will vary with the HVS model used. The way the human eye perceives colour cannot
be directly measured, but rather it must be inferred statistically by human test subjects
matching perceived colours and intensities of calibrated light sources [12]. Due to the
nature of this statistical data collection, multiple human perceptive colour models have
been developed [12, 2], each being demonstrated to be a suitable model for a particular
test population. The differences in these models however lead to the calculations of colour
perception not being consistent between the models, and so any method based on these
models will vary in performance accordingly. The compensation technique developed in
Section 4 relies heavily on a pre-existing model, and the outcome of compensation can be
affected by the characteristics of the selected model.

2.4 Current Radiometric Compensation Techniques

The industry of projector displays extensively utilizes light projection on a wide variety
of surfaces to paint a virtual canvas [20, 3, 16, 29]. Projector displays have a wide range
of applications including cinema displays, amusement rides, or to project video content
onto arbitrary surfaces that can range from the flat sides of buildings, to cars, museum
interiors, sports arenas, and abstract sculptures. When these surfaces have colourations
or textures, the effect of image projection onto these surfaces is clearly influenced by the
background texture [23]. Projector-camera systems [23, 6] are used to provide feedback to
compensate and adjust the projected image to reduce or, ideally, eliminate the effects of
the background.

Conventional projector radiometric compensation schemes [6, 31, 2] are limited by the
colour sensitivity of the calibration camera, since the subjective balance of the camera
colour components determines the actual colours which are produced on-screen, resulting
in compensation which appears incorrect to a human viewer. Thus, the addition of a
mapping from camera tristimulus colour to human tristimulus colour will allow radiometric
compensation to be performed with respect to the colour sensitivity of a human viewer
rather than that of a camera. To the best of our knowledge, no method for radiometric
compensation has been presented which can calibrate projector colours for a human viewer
rather than that of a camera.

In this thesis, a novel projector radiometric compensation method is proposed that
utilizes a mapping between the spectral sensitivities of a camera and a human viewer. This
method introduces the mapping of a camera colour response to human colour response using
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a projector stimulus for the first time. This radiometric compensation method is developed
for linear systems and subsequently extended to nonlinear ones.

2.5 Related Work

The purpose of performing radiometric compensation with a projector-camera system is to
provide perceived uniformity in images seen on the projection surface. This can be done
either to compensate for non-uniformity of the projection surface [30] or of the light source
itself [6]. This compensation is generally accomplished by using the camera in the system to
determine the relationships between commanded projector intensities and colours observed
on the surface.

Early methods for radiometric compensation were proposed using per-pixel linear so-
lutions of increasing complexity [2, 31, 23, 30]. For instance, in [30] a method for com-
pensating single-channel systems is introduced, which solves for a single gain value to
be applied per-pixel in each target image, thereby compensating for the luminance but
not compensating multiple colour channels simultaneously. Others proposed three-channel
colour compensation [23, 31] by including colour mixing between projector and camera.
These methods aim to produce colours to appear correct to a camera by modeling the light
contributions from each projector channel to each camera channel by use of a 3× 3 matrix
solution per pixel. Ambient light was incorporated into radiometric compensation meth-
ods through the introduction of an additional column to the compensation matrices [31].
Recently, several methods have been proposed for radiometric compensation of nonlinear
systems [16, 6, 25]. For example, a method for making the solution for per-pixel nonlinear
systems feasible has been introduced in [6], where a lookup table is used to provide the
compensation for each pixel. Later in [25], a method was proposed for separating the
nonlinearity of the system from the pixelwise colour response to greatly reduce both the
memory and computational requirements imposed by the nonlinear solution in [6]. These
methods [6, 25] linearize a projector-camera system with a nonlinear response, but do not
consider this for the nonlinearity or colour response of the human visual system.

Recent compensation methods [30, 8] have attempted to provide better compensation
for viewers by modelling the human visual system. These methods improve visual quality
of a scene by reducing edge artifacts from backgrounds in images, placing focus on con-
trast and edge sensitivity, but do not model human colour perception. For instance, the
method outlined in [30] reduces edge artifacts due to background by dynamically scaling
the intensity of a target image until the perceived edges are reduced in strength to below
the threshold of human perception. However, this method does not perform radiometric
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correction to preset target colours, and instead aims to make the camera colour response
equal to the colour of the target image while reducing luminance and contrast to reduce
edge artifacts from the background. The effects of perception to colour were outlined in
[1], where compensation of content is performed in a perceptually uniform space. This
method does provide a means of adapting the compensation based on the content of the
image, but does not account for the human perception of the projector colours.

The problem of luminance and colour non-uniformity was explored in [18], but the
proposed solution did not maintain appropriate white balance in compensated images when
the projector colour channels were solved independently and instead perform single-channel
luminance balancing. Most of the existing radiometric compensation and screen colour
correction techniques [19, 11, 6, 29] have optimized the compensated projector outputs
to appear accurate to a white point of a camera, or used a previously colour-calibrated
projector. All of the methods mentioned above have not yet been extended to include the
human visual colour response, and thus can be improved by better modeling of the human
visual system.
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Figure 2.4: An overview of the proposed radiometric compensation scheme: Although a
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Chapter 3

Nonlinear Projector Modeling

Modern projectors have been optimized to provide the perceptually best video experience
by increasing resolution, increasing framerate, and by modifying their projected colours.
This modification of colours is typically done to increase the contrast of the projected
image, in addition to the saturation of colours. This sort of modification involves the
introduction of a non-linearity to the colour intensities of the projected image, such as a
gamma function or a logistic function. Both increase contrast by reducing the intensity
of dark colours towards black, and increasing the lighter colours towards white. Often
this is termed white boosting or colour boosting. This nonlinearity introduces difficulty into
modelling the system, as it invalidates linear matrix solutions for radiometric compensation.

Modern cinema class projectors such as the Christie Boxer and D4KLH60 operate
at a resolution of 4K (4096 × 2160) and frame rates of 120Hz. These projectors require
more computationally efficient nonlinear compensation methods than those that previously
existed [6, 5]. In this chapter, a nonlinear radiometric compensation method capable of
being applied to these high-performance cinema projectors is introduced. The proposed
method uses a single lookup table to linearize the projector response, rather than using a
lookup table per pixel as in [6]. The proposed method then employs the linear formulation
proposed by Yoshida [31] which uses 3×4 matrices to model the linear radiometric response
of a camera to both a projector and constant ambient light sources. The linearization step
in the proposed scheme therefore does not need to be calculated for each pixel, but rather
for the light source and then applied to the linear response model of all pixels.

15



3.1 Background Modeling

It is assumed that the the screen can be modelled by Lambertian reflectance [13]. This
model holds valid for projection surfaces which reflect light in a more diffuse way than
specular, which includes most conventionally designed projection surfaces. This assump-
tion is not valid for specularly reflective surfaces, such as metal, glossy paint or glass, but
these surfaces do not lend themselves to projection as the projected images are not well-
formed on the surface. Thus when assuming lambertian reflectance, the screen irradiance
for a given projector primary channel is a product of both the given pixel intensity for that
channel and the spectral response of the same channel. The nonlinearity of the projector
output can be caused by additional colour channels in the projector which do not directly
correspond to RGB, such as cyan, magenta or white. This can also be caused by nonlin-
ear gain applied to the colour channels such as a gamma function. Given the wavelength
distribution wi(λ) of each colours channel i, the combined nonlinear irradiance ei can be
expressed as:

ei = Fi(P (u)) · wi(λ) (3.1)

Here, u is the pixel indices (u, v) in the projector frame of reference, and Fi(·) is the
nonlinear projector response to input P (u).

The background compensation for the projector is calibrated based on the colour feed-
back from the camera in the system. When the projector stimuli and camera responses
can be treated as linear with respect to one another, the system and its inverse can be
modelled as shown in (2.2). The colour and texture of the background surface for each
pixel provide a simple scalar gain to each colour channel component, and so the system
with background colouration and the corresponding compensation (the system inverse) can
also be modelled as such.

This linear solution for radiometric compensation can thus be applied to a non-linear
system if the correct linearization of the projector is known. Let the response of the camera
be represented as C, the projector input as P , and the projector’s internal nonlinearity
function as F (·). The relationship of the camera response to the light reflected off of a
projection surface can be described by the 3× 3 matrix relationship V :

C = V F (P ) (3.2)

Then, the compensation of the system can be accomplished by inverting the system to
solve for the inverse relationship K, allowing the required projector colour intensities P
given an arbitrary desired camera response, C:

P = F−1(KC) (3.3)
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Equation 3.3 can then be expanded to account for scenarios with ambient light on the
projection surface by using an augmented camera response Ca as found in Equation 2.2,
resulting in the nonlinear compensation:

P = F−1(KCa) (3.4)

This equation is fundamental for fast nonlinear radiometric compensation; the linear
per-pixel compensation matrix K is separable from the projector linearization function
F−1(·). The linear compensation method in (2.2) can then be used when a suitable model
of F−1(·) is known, which can in fact be learned.

The full system is then solved for each pixel by using an initial set of eight projected
flat colour test patterns using the pseudo-inverse. The test patterns consist of the extreme
projection values of the projector, namely white, the projector primaries and secondaries,
and black. In the case of most projectors, the primary light drives are red, green and
blue. The resulting secondary colours are cyan, yellow and magenta. These eight colour
values are the eight vertices of the colour gamut of the projector, and every other possible
colour output lies within the resultant cubic colourspace. In the case of solving the linear
system for each pixel, more test colours provides greater stability to the solution of K.
The vertices of the projector’s gamut were selected to improve solution stability, but the
system can be solved with just the projector’s primaries and a black level image, as white,
and the projector secondaries are linear combinations of red, green and blue.

3.2 Projector Modeling

The nonlinearity function F (P ) of a given projector is modelled through the use of a single
lookup table to linearize the colour response for the projector. A lookup table was selected
as it provides low constant-time access to all values for the function model, while using
very little memory. A fully dense lookup table for every possible 8-bit RGB colour value
only requires 3-byte colour values for each of the (28)3 possibilities which is 3 × (256)3

bytes, or 48 megabytes; such a data structure is small enough to fit in most modern GPU
memory without concern. The lookup table of the proposed scheme is generated by sparsely
sampling the projector’s output over the full range of the projector’s RGB channel inputs
as follows. Single colour images are first projected on a near white surface, and captured
with the camera. The camera images are then averaged over a 200 × 200 pixel patch in
the center of the projected field. This provided a large enough sample size once averaged
to produce a stable colour value even with significant camera sensor noise. Due to the
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differences of the response of the camera with respect to the stimulus of the projector,
a meaningful inverse of the system must provide the projector response only in terms of
projector RGB input. The solution of the projector inverse model should thus be invariant
to the camera response. To achieve this, all of the sample colours as seen by the camera
are remapped with respect to the projector primaries, in this case the maximum outputs
of red, green and blue channels. This mapping is computed by taking the inverse of the
appended RGB camera responses V0 to projector primaries as follows:

Pout = V −1
0 C (3.5)

= V −1
0 V0F (Pin) (3.6)

= F (Pin) (3.7)

where V0 =

vRR vRG vRB
vGR vGG vGB
vBR vBG vBB

 (3.8)

Here, Pout is the nonlinear projector RGB output, C and Pin are the camera response
and the projector RGB input in (3.2), and vij is the response of camera channel i to
stimulus of projector channel j at maximum intensity. As shown in equations (3.5)-(3.7),
the projector nonlinearity function F (·) can be determined by evaluating (3.5) to obtain
the normalized output Pout for a given input Pin. The matrix in (3.8) is then used to map
all colours seen by the camera to a colourspace of which the projector primaries are basis
vectors.

The mapped colours are thus projector outputs Pout in terms of projector primaries,
with known input RGB vectors P . This known relationship between inputs and outputs of
the projector allows a lookup table to be built with no further dependence on the camera
response but is solely a product of the projector configuration. This lookup table can be
built from either dense or sparse sampling, with a suitable interpolation being performed
prior to radiometric compensation. In the case of sparse sampling, the projector gamut
can be sampled at a subset of the possible RGB inputs, and interpolated to derive the
desired lookup table. In this thesis, linear interpolation with sample points chosen on a
uniform 3D grid is used, resulting in n3 points.

Background Compensation: To project a given target image on a given surface, ra-
diometric compensation must be applied to each pixel. The compensation for a given
projector and projection surface is performed by computing (3.3) for each desired pixel
colour C in the input image. From (3.5) the function F−1(·) which linearized the system
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is approximated via a lookup table F̂ (Pout), and is computed once per projector config-
uration. The pixelwise linear compensation K can be obtained from (2.2) once for each
projector-background setup. The evaluation of the proposed compensation method in (3.3)
requires only a (3× 4) ∗ (4× 1) matrix multiplication and a single indexing operation per
pixel in each projected frame. Comparatively, the existing state-of-the-art method in [6]
requires a thin plate spline interpolation of 63 points per pixel.
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Chapter 4

Projector to Human Colour
Response Modeling

Modelling the colour response of the human visual system provides an alternative to a
camera as a sensing method for performing radiometric compensation. Figure 2.4 shows
an overview of the proposed scheme, consisting of a projector, camera, human viewer,
computer and a surface to be compensated. In the proposed method, the colour response of
a camera is corrected to accurately represent the colours as seen by the human viewer. The
human colour response is subsequently mapped to the colourspace of the desired projector
content, allowing the radiometric compensation for a given background and projector to
be performed with respect to the human eye, and not just to a camera. The proposed
radiometric compensation scheme will be developed to determine an independent solution
for each individual pixel on a given projection surface.

4.1 Representation of Spectral Responses

In this section, the relationships that govern the spectral responses for the human eye and
a camera with respect to a projector stimulus are presented. The human colour response
to light stimuli can be represented as a tristimulus model [12] consisting of three gain
functions as seen in Figure 4.1.

Let the spectral output of a projector ej(λ) be defined as

ej(λ) = Pjwj(λ), (4.1)
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Figure 4.1: An illustration of example spectral responses for human tristimulus curves (a),
camera tristimulus curves (b), and the spectral output of a Christie Matrix StIM LED
projector (c). Further, (d) shows the projector primaries in xy colourspace obtained for
(c) as seen by (a).

where wj(λ) is the light intensity output of the jth stimulus (such as a projector colour
channel) as a function of wavelength λ, and Pj is the proportional gain (pixel intensity)
corresponding to this jth stimulus. The proportional gain Pj is the jth element of the
RGB input to the projector, P , used previously. Next, let qi(λ) denote the response of the
ith sensor (such as a camera colour channel or human retinal cell type) as a function of
wavelength λ. It has been shown [23] that the resultant response, ri, of the ith sensor to
the combined reflected stimuli can be expressed as

ri =
∑
j

vi,jPj (4.2)

where

vi,j =

∫ λmax

λmin

qi(λ)wj(λ)s(λ) dλ. (4.3)

Here s(λ) is the surface reflectance for a given light wavelength, and λmin and λmax are
the bounds of the sensor wavelength sensitivity. Examples of the response curves qi(λ)
and projector stimuli ej(λ) can be seen in Figure 4.1 (a-c). It must be pointed out that
both the camera response (quantum efficiency) and projector stimuli (spectral output) are
highly dependent on the characteristics of the respective devices.

As derived in (4.3) the sensor tristimulus colour response, vi,j, is represented by the
inner product of three colour sensitivity functions qi(λ) of a given camera or human colour
perception model (such as CIE 1931 [12] and CIE 1964 [24]) and the spectral outputs of
each projector channel wj(λ) with a given screen spectral reflectance s(λ). The projector
spectral output wj(λ) can not be measured directly, due to the sensitivity of most sensors
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and the power of the projectors to be modelled. However, from (4.1) it follows that

wj(λ) ∝ ej(λ) (4.4)

where ej(λ) can be approximated by the measurements of a spectroradiometer. The pro-
jector spectra only need to be measured once and stored for each projector type, which
removes the requirement of measuring the spectrum at the time of radiometric compensa-
tion.

Let C and H be the spectral responses of the camera sensor and human visual system,
respectively, and let P be the channelwise input to the projector. For instance, these
vectors can be expressed in terms of three primary channels, RGB or XYZ, as

C =

crcg
cb

, H =

hxhy
hz

, P =

prpg
pb

 (4.5)

where the subscripts r, g, b denote the three channels of an RGB colour model, and x, y,
and z denote the three channels of an XYZ colour model. Let Vc,p and Vh,p be of size (3×3)
that denote the projector colour mixing matrices for the camera and human visual system,
respectively. By substituting in (4.3) these matrices can be expressed as follows:

Vc,p =

vrr vrg vrb
vgr vgg vgb
vbr vbg vbb

, Vh,p =

vxr vxg vxb
vyr vyg vyb
vzr vzg vzb

 (4.6)

From (4.2), the response of a camera to a projector, as well that of a human visual
system to a projector, can be represented as

C = Vc,pP (4.7)

H = Vh,pP (4.8)

Existing state-of-the-art radiometric compensation methods, such as [23, 6, 31], correct
for colours as seen by the calibration camera by modelling the inverse of (4.7), and do
not compensate for the colours seen by a human viewer. Although these compensation
techniques provide reasonably precise correction of screen uniformity, they cannot accu-
rately calibrate to an exact desired colour. From Figure 4.1 (d), human responses to the
projector primaries and white are different from the target colours as seen when calibrated
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to a camera’s response. This difference in colour calibration result is due to the differences
in the shape of the human and camera sensor response curves used in (4.3); as a result

Vc,p 6= Vh,p. (4.9)

Thus, it is evident that a mapping between the human and camera responses is required.
In the following section, a mapping from camera spectral response to a model of a human
spectral response using the stimulus of a projector is introduced.

4.2 Mapping of Spectral Responses

To map a given camera colour response to a human colour response, the sensitivity of
both sensors to a given projector stimulus are first determined by (4.7) and (4.8). This
portion of the calibration needs to be performed only once for a given projector-camera
pair. The projector spectrum is used as an intermediate reference point to establish the
relationship between camera and human colour responses. This relationship will then be
used to eliminate any system dependency on camera pre-calibration or a priori knowledge
of the quantum efficiency of the camera.

The mapping between camera and human responses can be determined by substituting
P from (4.7) into (4.8) as follows:

H = Vh,pV
−1
c,p C. (4.10)

To perform radiometric compensation in the colour space of content images, the human
colour response H can be mapped to a colour S of size (3 × 1) in a standard colourspace
(such as an RGB space with linear gamma) by using a known mapping, Vs,h [28]:

S = Vs,hH (4.11)

From (4.10) and (4.11), a mapping of the camera response into a standard colourspace can
now be determined as

S = Vs,hVh,pV
−1
c,p C (4.12)

By transforming the colours as seen by the camera C to a camera invariant colourspace,
the radiometric compensation can be performed using S, which will be referred to as the
corrected camera response.
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4.3 Compensation in Mapped Space

In this section, the relationship in (4.12) will be utilized in order to perform radiometric
compensation with a camera response corrected with respect to a human viewer. This
radiometric compensation will be established first for linear projector systems without
ambient light. Then, to consider practical projector situations, the proposed method will
be extended to systems demonstrating nonlinear projector responses and operating in the
context of ambient light contributions.

Background Modeling: From (4.7), the projector intensity P for a linear system can be
represented as

P = V −1
c,p C. (4.13)

In order to map the camera response to the standard colourspace, both sides of (4.13) are
multiplied by Vs,hVh,p:

Vs,hVh,pP = Vs,hVh,pV
−1
c,p C. (4.14)

Due to the effect of the background, the right-hand side of (4.14) can be approximated by
S (4.12), so that the required projector intensity P that compensates a background can
be simplified as

Vs,hVh,pP ≈ S (4.15)

P ≈ V −1
h,p V

−1
s,h S (4.16)

P ≈ KS (4.17)

where K = V −1
h,p V

−1
s,h is of size (3×3) and represents the matrix which compensates P given

a projection background and corrected camera response S.

In the case where the projector is not the sole contribution to a sensor response, as in
[21], the additional light contribution can be modelled by modifying K and S as follows:

P =

 | kra
K | kga
| kba

 S
−−
1

 (4.18)

≡ KaSa (4.19)

Similar to [25, 6], the expression in (4.19) can be extended to the case of a nonlinear
relationship between a projector and sensor response as

P = F−1(KaSa) (4.20)
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where F−1(·) is a function representing the inverse nonlinearity of the system that can be
determined empirically by exhaustively sampling the domain of the projector gamut, and
then stored as a lookup table for much faster computation.

In order to model the background, given P and the corresponding Sa for a series of test
colours, the matrix Ka can be obtained as the least-squares solution of (4.19) or (4.20) for
the linear or nonlinear case, respectively.

Background Compensation: In the compensation phase, since the pixel colours of a
given input image are provided as the target colours C to be seen on the screen and they
are in the standard colourspace of S, these values are used as S to construct Sa. Next, the
solved matrices Ka and Sa are used to directly compute the required projector output P
for the linear or nonlinear case by using the relationship in (4.19) or (4.20), respectively.

The proposed compensation solution incorporates methods to compensate both linear
and nonlinear projector-camera system, and do so by incorporating the human visual
system response. This system can thus compensate any projector, regardless of the type
of light source, to the correct desired colours as seen by a human viewer. Every part of
these methods can be computed prior to introducing content to the projector, and has been
designed for the fastest possible runtime performance. The runtime performance will be
explored in section 6.0.2. This system will produce colours which are correct to a human
viewer at a pixel level in the video display, provided the inputs to the system are correct,
reliable and noise-free. It is therefore extremely important that the samples for each pixel
model are correct, and outliers are detected and corrected.
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Chapter 5

Outlier Detection and Correction

5.1 Introduction

Radiometric compensation of a projector is the process of calibrating the output of the
projector to produce a colour-correct target image on a non-uniform surface. Radiometric
compensation aims to achieve a more accurate representation of the projected image by
modelling the non-uniformity of the system. This non-uniformity often comes in the form
of a textured or coloured screen, or luminance non-uniformity of a projector source. In
the context of projector-camera systems, the camera provides the necessary feedback to
model the system. The industry of projection displays often requires projection on adverse
backgrounds, such as the sides of buildings, walls, abstract surfaces or simply poor cinema
screens [20, 3, 16, 29]. When the surfaces unavoidably have variations in colour, reflectance
and texture, the imagery projected onto a given surface becomes augmented by this texture.
The feedback of cameras allows radiometric compensation to be performed for most pixels
with some reasonable exposure constraints, but often this modelling can fail on surfaces
of extreme reflectance and produce a poor pixel model [21]. For the purpose of this study,
these areas of extreme reflectance are pixels in a projector-camera system for which the
calculated radiometric compensation model is unable to correctly produce visually accurate
compensation of the background texture. More specifically, these are pixels which appear
poorly compensated while other pixels in an image are correctly compensated.

Typically, these difficult pixels are a product of having highly specular or non-reflective
surfaces, or from having noise in the form of camera sensor errors or pixel correspondence
errors. Interestingly, pixel correspondence errors between the projector and camera are
typically a product of the other three problems, so will not be addressed directly. It is a
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Figure 5.1: (a) Sample Stone Tile test background and (b) compensated image using the
proposed scheme. This experiment is conducted in high ambient light conditions.

challenge to not only identify these tricky pixels reliably, through a variety of projection
scenarios, but also a challenge to handle these pixels with seemingly missing colour infor-
mation. The aim of this study is to provide a means of rapidly identifying pixels which
provide poor compensation models prior to application of the models. This would be in the
form of an image mask which indicates the condition and deficiency of the compensation
matrices, and by extension a mask of pixels to be handled differently than conventional
system inversion solutions. Handling the poorly defined matrices can be performed either
by altering the final image outputs, or by altering the values of the matrix directly. Alter-
ing the final outputs or the the value of poorly defined compensation matrices inherently
becomes a denoising or inpainting problem, which lends itself well to various statistical
methods. Furthermore, the mathematical derivations of this project can be generalized
to systems beyond those of camera-projectors; this methodology can be applied to any
multi-channel active sensor problem. All of the principles of system modelling, stability,
will be derived in general for multi-channel linear systems. Exploring these principles on
other systems would lie outside of the project scope.

5.1.1 Related Work

Early methods for radiometric compensation were proposed using per-pixel linear solutions
of increasing complexity [2, 31, 23, 30]. For instance, in [30] a method for compensating
single-channel systems is introduced, which solves for a single gain value to be applied per-
pixel in each target image, thereby compensating for the luminance but not compensating
multiple colour channels simultaneously. Others proposed three-channel colour compen-
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sation [23, 31] by including colour mixing between projector and camera. These methods
aim to produce colours to appear correct to a camera by modeling the light contributions
from each projector channel to each camera channel by use of a 3× 3 matrix solution per
pixel. Ambient light was incorporated into radiometric compensation methods through the
introduction of an additional column to the compensation matrices [31]. Recently, several
methods have been proposed for radiometric compensation of nonlinear systems [16, 6, 25].
For example, a method for making the solution for per-pixel nonlinear systems feasible has
been introduced in [6], where a lookup table is used to provide the compensation for each
pixel. These methods still suffer on pixels where there is a structural lack of data, such
as where pixels always appear black on scene, or dead camera pixels. These nonlinear
methods are therefore susceptible still to tricky pixels.

These methods all create a model for the colour response of a pixel as seen by the camera
when illuminated by a projector with a given RGB input. Radiometric compensation uses
the inverse model to determine a required projector RGB input for a desired colour on
the illuminated surface. The methods assume a well-conditioned solution exists for all
pixels, which is typically not the case for regions of an image which are highly reflective or
not reflective at all. In these cases, under any illumination the camera tends to see white
for specular surfaces and black for non-reflective surfaces, causing a model for the pixel
colours to be inaccurate. Furthermore, the values in these models vary significantly from
the values in valid pixel models enough to prevent meaningful statistical operations on the
entire set of solutions.

5.2 System Description

The system which is modelled and solve for radiometric compensation is the inverse
projector-camera colour model for a pixel. This is the model which determines the re-
quired projector input for a desired camera output. The pixel correspondences between
projector and camera are first produced using decoded structured light, such as gray-coded
binary patterns. Once the geometric mapping is ascertained, the radiometric models can
then be described on a per-pixel basis.

The model of a projector-screen-camera system is composed of three main transfer func-
tions; that of each of the components. Modern projectors and cameras typically represent
colour through the use of three-channel RGB values for a two-dimensional grid of pixels.
The projector response e(λ) to a given input can be modelled as a linear gain P applied
to an intensity distribution as a function of wavelength w(λ):
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e(λ) =
c∑
i=1

P [i] · w[i](λ) (5.1)

Similarly, the camera produces a three channel response to a given light distribution:

C[i] =

∫ 800

λ=300

r[i](λ) · e(λ)dλ (5.2)

When modulated by the spectral gain of a given surface s(λ, the following relationship
between a projector and camera is developed:

C[i] =

∫ 800

λ=300

s(λ) · r[i](λ) ·
c∑
j=1

P [j] · w[j](λ)dλ (5.3)

Rearranged we see C[i] is thus a sum of products:

C[i] =
c∑
j=1

P [j] ·
∫ 800

λ=300

s(λ) · r[i](λ) · w[j](λ)dλ (5.4)

This can be represented as:

C[i] =
c∑
j=1

P [j] · v[i,j] (5.5)

V =

vRR vRG vRB
vGR vGG vGB
vBR vBG vBB

 (5.6)

Each component is linear, giving the 3 system V , plus an ambient light component α:

C = V P + α (5.7)

The system inverse compensation is thus:

P = V −1C + A (5.8)

where V −1 is the inverse system and A is the ambient offset. The inverse system is
modelled rather than known, and the intent of this study is to analyze and improve the
stability of this system.
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5.2.1 Stability Analysis

The system inverse model is created by solving for the least-squares solution to an over-
constrained system V using a series of projected test colours. For each pixel, a compensa-
tion matrix V −1 must be solved using the projector and camera values P and C for n test
colours:

P ' V̂ −1C (5.9)

where P is an n× 3 matrix, and C is an n× 3 matrix.

In many cases, the solution provided may not be meaningful or useful. This typically
occurs for black regions or highly specular regions, where a change of projector intensity is
not reflected in the camera response. In such cases, the solution for the system inverse V̂ −1

is rank-deficient, and results in many 0-valued elements to compensate for specular pixels,
or inf -valued elements to compensate for black (non-reflective pixels. This can be seen in
Figure 5.1 where there are both specular and black regions in the stonework background.
Such poor conditioning of the forward and inverse system produces colour values which lie
significantly outside the range of the rest of the compensated image values. This results
in such values being discarded or clipped to fit within the range of possible projector
outputs. Additionally, these outlier values impede the use of any global normalization of the
projector outputs. Identifying these difficult pixels would improve the use of normalization
and global techniques, and result in the improvement of overall projecting image quality.

Stability and conditioning analysis can be used to identify pixels which respond un-
favourably to compensation, and potentially improve compensation results. If the pixels
are properly identified prior to compensation or calculation of the inverse system, the pixels
can be handled with a different compensation scheme.

5.3 Proposed Method

The proposed method for correcting poor models for pixelwise radiometric compensation
can be decoupled into two major steps. Firstly, the model accuracy of the pixels must
be quantified, and from this measurement the poor pixel models must be identified. The
method classifies pixels into two categories: those which provide reliable enough models
to provide visually correct radiometric compensation, and those which cannot. Certain
pixels might provide difficult projection backgrounds, such as dark spots and blemishes
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on a screen, yet still provide well-posed compensation solutions. Here, the aim is to iden-
tify pixels which do not provide well-posed matrix solutions for their compensation, and
assuming some continuity of projection surface with neighboring pixels. pixels which do
not provide a well-posed matrix solution for compensation may be a result of dead camera
pixels, screen defects smaller than a projector or camera pixel, or poor correspondences
(mapping) from camera pixel to projector pixels due to errors in the structured light. The
proposed method identifies poor pixel models by computing the error of the system mod-
els with respect to the measurements used to generate the models. Pixel models which
poorly predict their own measurements are identified by calculating the mean squared er-
ror between the actual and predicted projector images used to compute the pixel models.
Secondly, following the identification of poor pixel models, the models must be filled in
from the models and measurements of the surrounding pixels.

5.3.1 Stability Analysis and Outlier Detection

In the proposed method, the accuracy of the radiometric model for each pixel is quantified
to provide means of identifying poor pixels. The model for a particular pixel is generated
from a series of projector inputs P and corresponding camera outputs for the same pixel
on surface, C. When the projection surface is very dark or specular, the response of the
camera does not respond correctly to the light from the projector. In these cases, the
model is unstable and is potentially rank-deficient, which The accuracy of a particular
inverse pixel model is measured by its ability to correctly predict the required input to
a projector, so the accuracy of the models is calculated from the mean squared error of
the inverse models when used to generate the projector input from the training set. This
leads to a simple and reliable way to diagnose poor models and characterize the accuracy
of well-posed inverses, by calculating the prediction error on the training set:

ε =

∑i=1
n (P̂i − Pi)T (P̂i − Pi)

n
(5.10)

ε =

∑i=1
n (KCi − Pi)T (KCi − Pi)

n
(5.11)

This mean squared error can then be used to directly determine poor pixels by setting
a threshold based on the maximum acceptable perceived error:

ε > ε̂ (5.12)
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5.3.2 Infilling

After the identification of poorly modelled pixels, the model for the pixel must be filled in
using the remaining information nearby. This can be done either through filling in poor
pixels in the training image set, then solving for the pixel model again, or by directly
interpolating the systems. The radiometric compensation model for a particular pixel in a
projector image, corresponding to a given camera image can be represented as:

PD([x,y]) = K[x,y]C[x,y] (5.13)

Where [x, y] are the pixel coordinates, and D() provides the correspondence mapping
between projector and camera pixel space. The pixel model K is typically constructed
from training sets consisting of corresponding P and C values, but in the case of poorly
modelled pixels, is constructed from information from surrounding pixels. This leads to
two separate paths for interpolating the missing pixel models, either by interpolating the
systems directly, or by interpolating the training set used for generating the models. In
the case of radiometric compensation, square 3 by 3 matrices are used for the pixel models,
each of which is determined here using the least-square-error moore-penrose pseudoinverse
for over-constrained systems. The use of matrix inverses of any size leads to the property
that interpolating the inverse systems is not equivalent to inverting an interpolated set,
which is evident from even 2 by 2 matrix systems:

(αA+ βB)−1 =

[
αa1 + βb1 αa2 + βb2
αa3 + βb3 αa4 + βb4

]−1

(5.14)

Which is nonlinear in both A and B, as shown by [22] where the general inverse of sums
is derived:

(αA)−1 − 1

1 + trace((βB)(αA)−1)
(αA)−1(βB)(αA)−1 (5.15)

The proper inverse solution of a linear combination of matrices can therefore never
be modeled by a linear combination of their respective inverses, meaning that the matrix
resulting from interpolating the neighboring inverse matrices K is not the same as the result
by interpolating C and P , then solving a new inverse model. The consequence of this is
that interpolating the pixel models is only valid if using nearest neighbor interpolation,
and so any interpolation used to determine the pixel models must be performed on the
input images from which they are calculated. The pixel model is then be computed from
the interpolated input images using a thin-plate spline interpolation.
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The interpolation of the input (camera) images is performed on the pixels which have
been previously identified as poorly modeled. In the sequence of input images from the
camera, each poorly modelled pixel is interpolated from the neighboring well-modelled
pixels surrounding it. This is performed independently for each camera image, but the
projector output does not need to be interpolated as it is known for all pixels.

The interpolation method selected was the thin plane spline, to provide second-order
smoothness constraints as found in [4]. The thin-plate spline constraints kernel is as follows:

Q =


0 0 1 0 0
0 2 −8 2 0
1 −8 20 −8 1
0 2 −8 2 0
0 0 1 0 0

 (5.16)

The pixels with poor models are interpolated using a least-squared solution enforcing
a TPS constraint for a given image, where the outlier pixels are discarded from the calcu-
lation. The interpolated values of the pixels are the only ones which need to be solved; the
remaining good pixels are retained from the original image and are not smoothed during
interpolation. There is the potential here however to recalculate the value of all pixels
in a given input image based on smoothness constraints and weights based on the pixel
model quality, though the only real advantage of this is general noise reduction and image
smoothing in camera images, which risks softening crucial edges.

5.4 Quantitative Performance

The proposed method was quantitatively assessed on both real and artificially constructed
compensation scenarios. The tasks of both identifying poor pixel models and correcting for
the models are evaluated separately, using the same dataset. The accuracy of infilling the
pixel models could only be assessed by using an image with ground truth, thus requiring
the use of an artificial dataset. In these experiments, the training set consists of the flat-
field colour images used as projector inputs,and the corresponding camera images of the
projection surface under this illumination. These images were all taken of backgrounds
without dark or specular pixels, and naturally provide good colour models for each pixel.
To create a set of images with poor pixels, a series of real-world radiometric compensation
training sets were augmented with noise. Noise was added solely to the camera images of a
training set, with a specific proportion of randomly selected pixels having added noise. To
simulate regions of steep reflectance in the images, the pixels selected for added noise had
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either salt or pepper noise consistently applied across all camera images. The peppered
pixels emulate pixels of unusually dark response in the camera, whereas the salt noise
mimics specular regions. The mask of noisy pixels was retained for the noised dataset, to
assess the accuracy and sensitivity of the method in identifying poor pixels. The proposed
method was compared with the ground truth and other methods were not implemented.

A dataset comprised of 4 series of 12 training images each is used to test the ability
of the proposed method to detect pixels with poor models. In each series of 12 images,
the images are all identically aligned on the projection surface, and so all share identical
pixel correspondences with the projector image. For each series, 2% of pixels were randomly
selected to have noise applied to them, and these pixels then had their RGB values replaced
with random values between 0 and 255. The same pixels were perturbed in all images of a
series, but each series had a different random selection of pixels. To reduce the statistical
impact of any particular pixels, the entire process of selecting, detecting bad pixels and
replacing them was repeated 100 times per image series.

5.4.1 Detection of Outliers

The outlier detection scheme was evaluated quantitatively on the artificially noisy datasets,
and verified qualitatively on real images of compensation scenarios. The dataset of 4 series
of 12 images each was augmented using salt and pepper noise, and the mask of noisy pixels
provides the ground truth for outlier detection. On each dataset, the pixel models were
determined, then the accuracy of these models were assessed using the proposed outlier
detection scheme. This process can be seen in Figure 5.2. This figure shows one of the
original images from the Rainbow background, the noise mask used to perturb the base
image, the colour noise that is used to replace pixel values, and the final noisy image.

The mask of pixels found to be outliers or noisy was then compared to the ground truth.
The accuracy was measured by calculating the percentage of correctly identified inlier
pixels (ones without noise added), and the percentage of correctly identified outlier pixels
(pixels with noise added). This can be found in Table 5.1. The method performed better
on the smooth, consistent backgrounds such as the rainbow background and parchment
background, whereas the less stationary backgrounds of stone and brick posed a greater
challenge. Overall, the method correctly classified 95.6% of inliers, and correctly classified
98.4% of outliers in the worst scenario, the stonework surface.

This surface was chosen as an example of the pixel mask which is generated by the
proposed outlier detection scheme. In Figure 5.3, the mask of good pixels can be seen in
white, where all pixels which do not provide a strong model are black. As can be seen in the
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(a) (b) (c) (d)

Figure 5.2: An illustration of the noise applied to a captured dataset with original image
(a), the mask of colour noise to be applied to the image (10x zoom, ROI in next image)
(b), an image with noise applied values with which the pixels will be replaced with zoom
ROI, and finally (d) shows the result of noise applied to the image, zoomed for detail.

figure, all pixels which are not illuminated by the projector are considered outliers. This
is because the pixel values which generated the models are completely unable to predict
the lightsource intensity illuminating them. Visually speaking, the pixel mask clearly
includes all illuminated pixels and excludes all non-illuminated pixels, which also includes
the portions of the illuminated background which are simply too dark to reflect sufficient
light back to the camera. It can also be seen that certain highly specular pixels have been
discarded, as they similarly provide no ability to predict their illumination colour, but for
a different reason.

(a) (b)

Figure 5.3: Original Stonework Image Capture under White Light (a), and Pixel Mask (b)
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(a) (b) (c) (d)

Figure 5.4: An illustration of the backgrounds used in the dataset with Rainbow (a), Brick
(b), Parchment (c), and Brick (d). All have been warped to projector pixel coordinates.

5.4.2 Accuracy of Correction

The accuracy of the correction was assessed in two parts, namely the pixel error and the
PSNR. Both of these error metrics were measured between the original non-noisy camera
images and the images with noisy pixels filled in with interpolated values. The noisy and
corrected images can both be seen in Figure 5.5, where the rainbow background allows the
speckle of outliers to be seen more clearly. Visually, this infilling in nearly indistinguishable
from the original image, as the human eye is very forgiving to slight single-pixel differences.
The performance of the infilling method is assessed in Table 5.1, where the mean pixel error
is anchored in perspective by the prediction error of the pixel models of unperturbed pixels.
The PSNR overall correlates with the mean pixel error, simply by the nature of the PSNR
calculation. The PSNR is generally quite high on all backgrounds as only 5% of pixels
were perturbed with noise. The accuracy of the correction is demonstrated by these error
metrics, and is relatively low on the smooth backgrounds of the rainbow and parchment
textures. Comparatively, the error is much higher on the non-stationary backgrounds of
the stone and brick, where the texture has much steeper gradients and neighboring pixels
have less relationship to the pixel being infilled.

(a) (b) (c)

Figure 5.5: Original Rainbow Image (a), noisy image (b), and denoised image (c)
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Image Series Mean Error Mean Error
(Noisy Pixels)

PSNR Correctly
Classified
Inliers

Correctly
Classified
Outliers

Rainbow 0.04 12.80 57.01 99.2% 98.8%
Stone 0.13 40.69 48.99 95.6% 98.9%

Parchment 0.06 18.05 55.51 98.7% 98.4%
Brick 0.08 24.36 55.76 98.5% 98.6%

Table 5.1: Comparison of outlier Detection and Infilling accuracy among datasets

5.4.3 Discussion

Through the quantitative results, is has been shown that projector pixels which provide
poor compensation models and consequently poor compensation results, can be accurately
identified and inferred from neighboring strong pixels. The method for classifying poor
pixels demonstrated a larger variance in accuracy between correctly classifying noise-free
pixels when compared to the noisy pixels. The percentage of correctly classified inliers
varied from 95% to nearly 99%, but the percentage of correctly classified outliers varied
from 98.4% to 98.9%. This indicates there are separate mechanisms for the wrong classi-
fication in each case. When investigating the wrongly classified inliers (inliers classified as
outliers), these so-called inliers were in fact difficult pixels in the original camera images.
These images were taken from real camera captures of a live background scene, which
includes dark pixels in the case of the stonework, and natural camera sensor noise in all
portions of the dataset. The outlier detection technique was finding outliers inherent in
the dataset that were not added in the noise process, as the ground truth of outliers did
not account for existing native outliers in the dataset.

More interesting is the remarkably consistent classification rate of the outliers which
were introduced in the noise process. This hints at a structural problem in the identification
process, but is in the method is which the noise was generated. The noise that is used
to perturb the images is RGB random noise in specific pixels, which have a small chance
of randomly forming a pixel solution which is consistent. In other words, even a 14 by 3
matrix of random values can form a consistent pattern a small percentage of the time. As
these randomly generated noisy pixel values are simply fed into a matrix solver and the
prediction error is thresholded, these noisy pixels can slip by the detector in cases where
they happen to be consistent and predictable from the system model matrix they produce.
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5.5 Conclusions

The proposed method offers reliable, efficient means to both identify pixels in a projector-
camera system which have been modeled poorly, and means to infill the systems for these
poor pixels by using the information from surrounding pixels. The method was demon-
strated to successfully detect over 98% of outliers in a dataset of images in a radiometric
compensation run. The method was also shown to discriminate outliers from reliable pixels
very well, with over 95% of reliable pixels classified correctly of even significantly adverse
backgrounds. The method of interpolating data prior to recomputing pixel models has also
been shown to be very effective, achieving a mean pixel RGB error of 12.8 on relatively
smooth backgrounds, and a mean pixel RGB error of 40.687 on adverse backgrounds while
still appearing visually consistent.

Further study is necessary into enhancing the interpolation techniques used for inferring
the missing pixels in images, particularly in images or other data where textural patterns
can emerge. Such enhanced interpolation techniques to be tested may include generative
neural nets or classical textural inpainting techniques. Further study is also warranted into
the noise processes used for creating artificial datasets, as to provide true outliers which
do not provide good models for a system solver.
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Chapter 6

Results

The results that follow are in three parts: demonstration of compensation of nonlinear
projectors, compensation using the Human Visual Space, and outlier removal.

For projector calibration, eight flat-field test patterns are used: white, black, three
primaries (red, green, blue), and three secondaries (cyan, yellow, magenta). The use of
additional colours, beyond the commonly-used three primary and black colours, leads to
greater stability of the solution for each pixel. The camera captures of each of these
flat fields and the projected colours are then remapped using the matrix from (4.20) to
determine the least-squares solution to Ka, where an RGB colourspace with linear gamma
was chosen for the camera output.

6.0.1 Qualitative Results

Several backgrounds and target images have been selected to test the capabilities of the pro-
posed radiometric compensation method under several challenging conditions. In particu-
lar, the proposed radiometric compensation scheme is evaluated by using three challenging
background surfaces, namely Brick, Rainbow, Textured Rainbow, and the compensation
is applied to nine different target images, namely, Astronaut, Car, Cubes, Flower, Bal-
loons, Skating, Plate, Yellowstone and Waterfall. The first and second columns of Figure
6.1 show the test backgrounds and the target images, respectively. The Brick background
represents the scenario of projection onto brick buildings, which is very challenging, partic-
ularly when compensating for the dark borders around bricks. The Rainbow and Textured
Rainbow backgrounds both include a full range of colours, with Rainbow designed to have a
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range of extreme but smooth colour patches, whereas Textured Rainbow also requires com-
pensation for higher frequency texture patterns in addition to the variations in chroma.

Figure 6.1 also demonstrates sample projector outputs and compensated results for the
proposed scheme, and the captured results for projection without radiometric compensation
and projection with radiometric compensation but without HVS. The first row of Figure
6.1 shows the results of projecting the Astronaut target image on Brick background. It
is clear that the proposed scheme can provide compensation quality better than that of
projection without using HVS, as the proposed scheme compensates to the correct colours
and has reduced the effect of edges in the final image. In the second and third rows,
the Car and Cubes target images have been projected; the proposed scheme offers colour
uniformity, non-noticeable background edges, and maintains visual quality for the human
viewer.

The middle three rows of Figure 6.1 show the results of projecting Flower, Balloons
and Skating images on the Rainbow background. Unlike the method of projection without
HVS, the proposed method provides not only highly uniform compensated images, but
also shows accurate colours that are very close to the content colours. This also confirms
the ability of the proposed scheme to solve for highly colourful background and content
scenarios, and for the capability of projecting a sample sports content on a challenging
background.

Finally, the last three rows of Figure 6.1 illustrate the results of projecting Plate, Yel-
lowstone and Waterfall content images on the Textured Rainbow background. These results
demonstrate the ability of the proposed method to produce compensated colours that are
closer to the target colours of an image, rather than that of compensation without using
HVS. This performance is consistent across the various textures, colours and environmental
conditions.

6.0.2 Quantitative Results

For purposes of practical evaluation, two different projector classes1 are used to assess the
uniformity and accuracy of the compensation. The camera used in the system is a 5MP
camera2, which is used to provide feedback to the system for compensation. The projector
models differ in their light sources, and include an LED based projector of linear colour
response and a mercury lamp based projector of nonlinear colour response. The Rainbow

1The projectors used were Christie Matrix StIM (LED) and Christie DWX600-G (Mercury Lamp).
2The PointGrey Flea3 Camera with GigE was used.
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Figure 6.1: Sample qualitative results for the proposed scheme, uncompensated projection,
and compensation without HVS correction on Brick (1st, 2nd and 3rd rows), Rainbow (4th,
5th and 6th rows) and Textured Rainbow (7th, 8th and 9th rows) backgrounds using nine
different test images. All images are shown in projector coordinates.
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Figure 6.2: Illustration for the twelve different sample locations on the Rainbow background
used for the spectroradiometer measurements.

background pattern shown in Figure 6.1 is used to provide a challenging background with
uniformly coloured patches for which the compensation accuracy is measured by a spec-
troradiometer. This test background is designed with twelve different background colours,
and each colour either being a primary, secondary, or tertiary colour in the RGB and CYM
colour systems to challenge the limits of the compensation methods. For each compensa-
tion method, a spectroradiometer3 outside of the calibration loop is used to measure the
screen compensation for four target colours on the coloured background patches. Each
background patch provides a different uniform region upon which to position the circular
measurement area of the spectroradiometer as seen in Figure 6.2, where the spectrora-
diometer measures the incident light from a 5 degree cone.

Measurements of xy and Luminance: From Figure 6.3, it can be seen that the pro-
posed method significantly improves the white point in the resulting compensated images.
The proposed method accurately compensates different projectors to the same reference
white as seen by a human viewer, resulting in colours on screen which are perceptually
consistent with a given target image. In addition, by compensating the projector to the
correct white, the resulting compensation is more uniform overall for white, indicating not
only greater fidelity for white images is achieved, but also the final image on screen is
more uniform overall. Figure 6.3 also shows a fundamental limit of this method. This
method can be used to accurately set the white point for compensation, but the chroma

3This test was carried out using the JETI Specbos 1211.
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Figure 6.3: Comparing the measurements of the proposed method in the xy colourspace
before and after compensation with and without using HVS, and the corresponding lumi-
nance plotted for each target colour, where a Christie Matrix StIM (LED) and DWX600-G
(Mercury Lamp) projectors are used in the 1st and 2nd rows, respectively. In this figure,
greater uniformity is indicated by a tighter points cluster in the xy colour chart or a flatter
line in the luminance plots.

of the compensated primary colours remains anchored near the original values. This
method performs accurate compensation of a white field on strongly coloured background,
but tended to keep the primary colours of red, green and blue anchored near their uncom-
pensated positions while compensating using luminance alone. This provides the primary
avenue of further work; an investigation into a method for accurately producing all de-
sired target colours on a projection surface with a variety of light sources. Despite this,
as shown in Figure 6.1 the proposed method is shown qualitatively to compensate for
extremely adverse surfaces with minimal edge artifacts incurred from the backgrounds.

The last four columns of Figure 6.3 show the luminance required to create flat colour
fields of white, red, green and blue that appear uniform using this method. As seen in
this figure, the luminance drop is comparable to compensation without HVS mapping,
and the flatness of these curves demonstrates the luminance uniformity of the image. This
difference in luminance is exactly proportional to the amount of light the most troublesome
regions of the image are capable of reflecting, as the entire compensated image must be
reduced to have the same colour and luminance of the least reflective (darkest) portions of
a background. Similar to radiometric compensation without human colour mapping, the
proposed method cannot increase the light output capabilities of a projector, but instead
it must reduce the amount of light on screen to produce perceptually uniform images as
seen in Figure 6.3.
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Compensation Error: In order to evaluate the error between a target colour and the
compensation measurements of a given method, the CIE ∆E [28] is used. This metric is
used to compute colour distance between a colour seen on screen and the desired target
colour. The target colour provides only a chroma target for the compensation, and the
luminance is dependent on the output capabilities of the projector in the system, thus the
luminance component of the ∆E must be determined separately. For this investigation, the
desired luminance is taken to be the average luminance of all screen patches, as deviation
from this luminance indicates non-uniformity of the compensated image. In this way,
the distance to both target chroma and the overall screen luminance are combined into a
single error metric to quantify both accuracy and consistency of the compensated projector
output.

Table 6.1 shows a comparison of the mean and standard deviation of the ∆E values ob-
tained for the proposed method, performing radiometric compensation projection without
HVS, and projection without compensation. As in the previous experiment, white, red,
green and blue are used as the target colours using the same two types of projectors. As
shown in this table, the proposed method offers the lowest average ∆E compared to that
of radiometric compensation without HVS in six out of eight test cases, while maintaining
nearly the same performance as non-HVS compensation in the remaining two cases.

Table 6.1: Comparing means and standard deviations of ∆E for uncompensated projection,
compensated projection but without using HVS and the proposed method, where the ∆E
values are calculated for twelve patches when targeting four different colours. The ∆E [28]
is a function representing the colour distance between the spectrometer measurement of a
given patch and the given target colour. Note: boldface and underscore denote the best
and second best results, respectively.

Methods
Christie Matrix StIM (LED) Projector Christie DWX600-G (Mercury Lamp) Projector

White Red Green Blue White Red Green Blue

Uncompensated 64.68± 29.00 86.12± 40.93 149.10± 52.1 66.53± 27.45 78.24± 26.91 68.08± 23.74 68.02± 35.00 265.37± 112.51
Comp. without HVS 16.52± 5.28 23.32± 10.43 80.05± 26.36 32.68± 12.60 13.78± 5.18 30.81± 9.89 40.98± 23.01 184.62± 71.02
Proposed Method 2.40± 1.38 10.56± 7.64 68.28± 21.91 32.32± 4.97 5.42± 2.97 31.23± 10.20 41.56± 23.22 122.98± 56.10

Computational Cost: The storage requirements and computational time of the proposed
method are verified through a Matlab implementation of the proposed method4, and then
compared to that of the existing nonlinear method in [6]. The memory and computation
times for nonlinear projector systems are assessed for three different common projector
resolutions (720p, 1080p and 4K). As shown in Table 6.2, the proposed method uses less
than 1

5
of the memory and is 13× faster in compensation time than that of the method

4A CPU with 4 cores operating at 3.40GHz was used.
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Table 6.2: Comparison of the memory and the time complexities of the proposed scheme
with and without using HVS mapping, and that of the method in [6] at three different
resolutions. Note: boldface denotes the best results and ∗ denotes a calculated value.

Methods
Memory (GiB) Time, CPU (s)
720p 1080p 4K 720p 1080p 4K

Grundhfer & Iwai [6] 2.50∗ - - 7.1 - -
Comp. without HVS 0.46 0.56 1.17 0.53 0.82 2.10
Proposed Method 0.46 0.56 1.17 0.53 0.82 2.10

in [6], while maintaining the same computational complexity of radiometric compensation
without HVS. The proposed scheme requires only a modest increase in time (less than 1
second per 4K image) during the image capturing portion of the background modelling
phase than that of the baseline, due to correcting the captured camera colours (4.12).
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Chapter 7

Conclusion

7.1 Summary of Thesis and Contributions

In this thesis, a comprehensive method for radiometrically compensating projector-camera
systems for a human viewer has been presented. The method consists of two distinct parts:
calibrating nonlinear projector systems, and calibrating the system to colours specified by
a human visual model.

The proposed method solves the nonlinear radiometric compensation problem by sepa-
rating the linearization problem from that of linear radiometric compensation. Experimen-
tal results have shown that the proposed scheme has allowed compensation to be applied
with a fraction of the memory and computational requirements than that achieved by a
recent state-of-the-art method. Additionally, the proposed scheme has offered a very low
compensation error when evaluated by a sensor outside of the compensation feedback loop.
Compensation of an adverse multi-coloured background was accomplished with a maximum
error of 5.13 over the field of the image. This work will be extended to video applications,
and to eliminate the dependence on camera colour response for the final compensation.

It has been shown that by properly modelling the colour response of a human viewer,
this method can produce approximately the same colours on a surface using different light
sources and cameras. This eliminates the need for cameras and projectors which are pre-
viously radiometrically calibrated, with camera colour mappings instead being determined
from the known spectral output of a projector. Experimental results have shown that the
proposed method with using HVS generally offers the lowest average radiometric compen-
sation error and closer to the target colours than that of compensation without HVS.
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The direct consequence of this method is the ability to calibrate and match camera
colour responses to others, or alternatively colour match two projectors without the need
to be seen by the same camera. Further work is planned to investigate the impact of
this method in performing colour calibration of blended screen multi-projector displays.
Extending the proposed colour correction with respect to a human viewer to other nonlinear
radiometric compensation methods is also a potential extension to this work.

7.2 Future Work

7.2.1 Compensation with Multiple Viewpoints

The use of radiometric compensation is applicable to large-scale, blended projector displays
on complex surfaces such as buildings and statues. These applications typically require mul-
tiple cameras in addition to the projectors to completely cover the surface. The proposed
method has been shown to correctly compensate projector surfaces to a single viewpoint,
using a single camera. Future work will include the use of multiple camera images with
partially shared surface coverage in order to compensate a seamless multi-projector display
too large to be covered by a single camera. This work will involve blending camera images
to negotiate differences in observed luminance and colour between the viewpoints.

7.2.2 Establishing Generalized Projector Models

The proposed method for radiometrically compensating projector colours to the human
visual space has been effectively demonstrated using measured spectral models of the pro-
jectors using a spectroradiometer. It has been observed and that certain projector classes
are internally consistent in spectral outputs when different projectors are compared, lead-
ing to the potential of sharing a single spectral profile between projectors. Future work
will include developing colour models for different projector classes, with different light
sources, allowing the method proposed in Section 4 to be used without the need of per-
projector modelling. The manufacturing uniformity of projectors, and in particular their
light sources can potentially lend itself to generalized models of certain projector classes.
This would allow multiple projectors within the same projector class to be compensated
using the same profile, thus removing the need for each projector to be characterized at
the time of manufacture, reducing both cost and time required for the process.
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