
Learning and Decision Making in
Social Contexts:

Neural and Computational Models

by

Peter Duggins

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Systems Design Engineering

Waterloo, Ontario, Canada, 2022

© Peter Duggins 2022



Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

Supervisor: Chris Eliasmith
Professor, Dept. of Systems Design Engineering,
University of Waterloo

Internal Member: Bryan Tripp
Professor, Dept. of Systems Desigin Engineering,
University of Waterloo

Internal Member: Kerstin Dautenhahn
Professor, Dept. of Electrical and Computer Engineering,
University of Waterloo

Internal-External Member: John McLevey
Professor, Dept. of Knowledge Integration,
University of Waterloo

External Examiner: Rajesh P.N. Rao
Professor, Paul G. Allen School of Computer Science and Engineering
University of Washington

ii



Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii



Abstract

Social interaction is one of humanity’s defining features. Through it, we develop ideas,
express emotions, and form relationships. In this thesis, we explore the topic of social
cognition by building biologically-plausible computational models of learning and decision
making. Our goal is to develop mechanistic explanations for how the brain performs a
variety of social tasks, to test those theories by simulating neural networks, and to validate
our models by comparing to human and animal data.

We begin by introducing social cognition from functional and anatomical perspectives,
then present the Neural Engineering Framework, which we use throughout the thesis to
specify functional brain models. Over the course of four chapters, we investigate many as-
pects of social cognition using these models. We begin by studying fear conditioning using
an anatomically accurate model of the amygdala. We validate this model by comparing
the response properties of our simulated neurons with real amygdala neurons, showing that
simulated behavior is consistent with animal data, and exploring how simulated fear gener-
alization relates to normal and anxious humans. Next, we show that biologically-detailed
networks may realize cognitive operations that are essential for social cognition. We val-
idate this approach by constructing a working memory network from multi-compartment
cells and conductance-based synapses, then show that its mnemonic performance is com-
parable to animals performing a delayed match-to-sample task. In the next chapter, we
study decision making and the tradeoffs between speed and accuracy: our network gathers
information from the environment and tracks the value of choice alternatives, making a
decision once certain criteria are met. We apply this model to a two-choice decision task,
fit model parameters to recreate the behavior of individual humans, and reproduce the
speed-accuracy tradeoff evident in the human population. Finally, we combine our net-
works for learning, working memory, and decision making into a cognitive agent that uses
reinforcement learning to play a simple social game. We compare this model with two
other cognitive architectures and with human data from an experiment we ran, and show
that our three cognitive agents recreate important patterns in the human data, especially
those related to social value orientation and cooperative behavior. Our concluding chapter
summarizes our contributions to the field of social cognition and proposes directions for
further research.

The main contribution of this thesis is the demonstration that a diverse set of social cog-
nitive abilities may be explained, simulated, and validated using a functionally-descriptive,
biologically-plausible theoretical framework. Our models lay a foundation for studying
increasingly-sophisticated forms of social cognition in future work.
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Chapter 1

Introduction

1.1 Social Cognition

Social intelligence is a defining feature of homo sapiens. From our hunter-gatherer origins
to our modern societies, social interactions are essential for survival and well-being, both
for individuals and for communities. Every day, we communicate to exchange informa-
tion and form opinions, compete for limited resources, and coordinate with each other
to solve complex problems. We create products for human use and entertain ourselves
with multiplayer games and interpersonal stories. Many of humanity’s greatest accom-
plishments, from art and architecture to technology and sciences, exemplify our ability to
bring together talented individuals into collaborative projects that produce public goods.
However, the greatest risks facing our species, from climate change to international war,
also partly stem from difficulty accepting and working with each other; on a societal scale,
we have historically struggled to coordinate our actions in ways that promote desirable
collective outcomes. Understanding social cognition thus has immense value, both from a
scientific and a societal perspective.

Social psychology, the formal study of social intelligence through the systematic mea-
surement of human thoughts, feelings, and behaviors [134], began in the early 1900s with
experiments on group behavior [241] and the publication of the first social psychology
textbook [162]. The field grew substantially in the World War II era, first with stud-
ies on persuasion, propaganda, and psychological warfare from the US military, and later
with studies seeking to understand the conformity, obedience, and social pressures that
enabled wartime atrocities. While rife with methodological and ethical problems, many of
the experiments conducted during this period, including Asch’s conformity study [10], the
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Stanford Prison Experiment [95], and Milgram’s obedience study [166], captured the pub-
lic attention and inspired renewed interest in social psychology. In the 1970s and 80s, the
field became more cognitively oriented, focusing more on the mental and neural processes
underlying social thinking while developing tools to address the methodological failures
of early experiments. Modern social psychology studies numerous intrapersonal phenom-
ena, such as attitudes, persuasion, and self-concepts, and interpersonal phenomena, such
as social influence, group dynamics, and interpersonal attraction, using a diverse set of
experimental, statistical, and computational tools.

At a high level, social intelligence can describe any thought, feeling, or behavior that is
influenced by the presence of others or by internalized social norms. Given the pervasive-
ness of social interaction described above, it is easy to see how a wide variety of cognitive
operations fall within this category. While this breadth makes it difficult to constrain
the study of social intelligence, it also reflects an important principle: social cognition
includes and builds upon existing non-social cognitive components. Many of the functions
and operations performed by the brain, such as classification, working memory, valuation,
and decision making, will be useful for social thinking in a general sense. What’s more,
evolution has a tendency to leverage existing functional mechanisms when designing new
cognitive tools: it seems likely that, as humans evolved and refined their socio-cognitive
abilities, natural selection favored mutations that made incremental changes and improve-
ments to existing neural systems, rather than inventing new social cognition systems from
scratch. For example, the amygdala is known to interpret social information and initi-
ate appropriate social behaviors in social primates [69], a role that may have evolved by
functionally extending its existing ability to coordinate approach and avoidance behaviors
in non-social settings [2]. Similarly, the vmPFC is thought to evaluate the quality of po-
tential actions for an individual, but neural and behavioral evidence suggest that social
animals also use this area (alongside more dedicated structures) to estimate the social
value of potential actions, leading to a combined utility estimate that is used to direct
social behavior [47]. In studying social cognition, it is therefore important to recognize
that the cognitive operations and functional brain areas under discussion exist within a
larger cognitive system: it is not always possible to differentiate social operations from
domain-general operations like associative learning, working memory, or decision making.
Labelling cognitive mechanisms as “social” is a useful convention rather than a clear-cut
scientific distinction.

The overarching goal of this thesis is to explore social cognition from the perspective
of learning and decision making. We believe that, by focusing on the adaptive nature
of social intelligence, we can understand the cognitive mechanisms that underlie a wide
range of social phenomena across many disciplines within social psychology. This belief
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stems from the observation that most social environments are fluid: they contain intelligent
agents whose thoughts and behaviors change across time, culture, context, and more. To
successfully navigate such environments, brains have evolved learning systems that model
the social world and make smart decisions within it. Rather than study the models that
individuals have built over their lifetimes, the heuristics that groups rely upon as cognitive
shortcuts, or the statistical regularities of behaviors within particular cultures, we will
study the processes through which these phenomena are implemented in the brain. Thus,
our goal is to describe the cognitive algorithms that individuals use to learn about, and
make decisions within, environments that contain other intelligent agents. We strive to
identify the neural and anatomical correlates of these algorithms and to demonstrate that
biological brains can (and do) realize them. To do so, we rely on computational models
that rigorously define algorithms for learning and decision making, train these models to
perform simple cognitive tasks from social psychology, and validate them by comparing
model outputs to neural and behavioral data from social animals.

1.2 Computational Models

Computational models are powerful tools for studying social cognition. In contrast to many
methods in social psychology, economics, and neuroscience, computational methods pro-
vide a mechanistic account of brain function, which can inform our understanding of how
particular cognitive processes are implemented in the brain. Computational models can
also be used to rigorously specify cognitive theories and contrast competing hypotheses:
outputs from competing models can be compared to neural and behavioral data, providing
an empirical basis for comparison. Notably, models make precise quantitative predictions
about social decision making across people, context, time, and other experimental con-
founds. Parameter fitting also allows researchers to identify how individual differences in
learning variables or decision variables uniquely interact to determine behavior. Finally,
computational models can synthesize theories from diverse scientific fields using a com-
mon framework, and can be incrementally expanded by adding additional mechanisms and
variables; this provides a grounded basis for theoretical development with the potential to
explain an expanding body of data. These benefits have been widely recognized within the
cognitive science community [243], leading to an encouraging increase in the quantity and
quality of computational models for social cognition [36, 150].

Of course, computational models are incredibly diverse with respect to the mechanisms
they simulate, the parameters they include, and the data they produce. Before embarking
on the task of building models to study social cognition, it is important to think about
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which features of computational models are scientifically valuable; that is, which features
meaningfully enhance our ability to understand the relationship between the biological
brain and our social and cognitive capabilities. We believe that three features, in particular,
characterize a good computational model of social cognition: biological fidelity, functional
capacity, and explainability.

First, the components of a computational model should resemble components of the
biological brain. While high-level models of artificial intelligence may perform at human
levels on various cognitive tasks, they do not necessarily inform our understanding of how
humans perform those tasks. All the models presented here include several biological con-
straints that ensure they correspond to brains. For instance, our models are constructed
out of spiking neurons connected with synaptic weights: while more detailed biophysi-
cal models of neural physiology and connectivity exist, these constraints impose a basic
structure that is qualitatively more brain-like than many other approaches to artificial in-
telligence, including deep neural networks and symbolic production rules. Furthermore, all
cognitive operations performed by our models are computed dynamically through neural
connection weights; this ensures that the model has not offloaded any key computational
components to non-neural platforms, and ensures that the problems of representational
noise and algorithmic specification are directly addressed by the model, as they must be
by brains. Finally, we identify the anatomical areas associated with our model components
wherever possible, and tag components as biologically-questionable otherwise. While the
biological realism of a neurocomputational model can always be expanded, we believe these
biological constraints strike an acceptable balance between realism and coherence.

Second, computational brain models must have functional capacity: that is, they must
represent external inputs, perform functional operations on those representations, and
produce behavioral outputs. Clearly, the scientific understanding of social cognition has not
yet reached a stage where we can expect models to navigate complex social environments in
humanlike ways. While many algorithms play multiplayer games at superhuman levels [214]
or display remarkable linguistic abilities on standardized tasks [215], much work remains
to build agents that can flexibly interact with humans across many social contexts. As
mentioned above, we believe that the best approach to developing flexible cognitive agents
is to achieve a deeper understanding of the basic mechanisms of learning and decision
making. For us, this means constructing agents endowed with learning and decision making
systems and showing that they can, through experience, learn to complete various social
tasks. We say that an agent has functional capacity if it can learn to perform a wide array
of such tasks, and if its behavior resembles human behavior.

Finally, computational models should be explainable with regards to what informa-
tion is being represented and what operations are being applied. All else being equal,
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a model whose internal processes can be clearly understood is preferable to a black-box
model: while both models may predict the data equally well, the former will have more
scientific value with respect to characterizing how social intelligence arises. For example,
the internal representations and computations learned by deep neural networks are often
obscure, requiring independent tools to interpret [168] or to correct learned biases [252].
However, it is possible to overstep when designing models to meet this criteria: we should
not expect that everything the brain does will be amenable to linguistic or mathemati-
cal description using our current scientific toolkit. Forcing models to use a specific set of
high-level symbols, as was common in the 1960s, 70s, and 80s with connectionist models
[204] and good-old-fashioned AI [98], may severely limit the model’s ability to generalize
to novel tasks or scale to larger symbolic vocabularies. In summary, models with compre-
hensible internal representations and operations are useful for describing the mechanisms
of social cognition, but subsymbolic representations and operations are required to capture
the flexible nature of social cognition.

One persistent problem with computational models is overspecification and overfitting.
If a model includes enough parameters and mechanisms, it can recreate any dataset, with-
out necessarily informing our understanding of social cognition. Many models are built to
explain particular social phenomenon, and do so convincingly; the greater challenge, and
the more important scientific test, is whether these models can also explain additional, com-
parable social phenomenon. If a model must be significantly reorganized to apply to other
forms of social cognition, we should be wary of its general explanatory power. While many
tools can be used to combat the overfitting of model parameters to a particular dataset
[243], the problem of overspecifying the structure or mechanisms of a model to a narrow
scientific domain is more insidious. We believe this problem is best addressed through the
use of cognitive architectures, which are theories about the structure of the mind that focus
on generality and usability: they intend to explain a wide variety of cognitive phenomena
using a common set of mechanisms that may work together to perform many cognitive
tasks. The most successful architectures, such as Adaptive Control of Thought - Ratio-
nal (ACT-R) [5] and the Semantic Pointer Architecture (SPA) [64], specify subsystems for
common cognitive operations such as working memory, attention, association, and decision
making; because the mechanisms underlying the operation of these subsystems are com-
patible, researchers can connect subsystems together to form larger systems that perform
more complex cognitive tasks. Both ACT-R and SPA have been used this way for decades,
producing a wide body of research modelling diverse cognitive phenomena. In this thesis,
our computational models derive from one or more cognitive architectures.
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1.3 Functional Neuroanatomy

Recall that the goal of this thesis is to study the neural and cognitive mechanisms of
learning and decision making in social contexts, and to recreate them using computational
models. Doing so clearly requires an investigation of the brain itself. By observing the
brain’s activity while it engages in social tasks, we can identify which parts of the brain are
involved in which social operations, then develop more detailed representational and func-
tional hypotheses. These theories can be rigorously specified using formal computational
models that are representationally and functionally segregated (i.e., have components that
correspond to the identified brain systems) and perform social tasks (i.e., produce sim-
ulated activity and behavior that may be compared to empirical data). The successes
and failures of these hypotheses and models should inform the design of new experiments,
observations, and interpretations.

In this section, we review the brain’s functional neuroanatomy, with the aim of develop-
ing a high-level picture of the role played by different brain areas during social cognition.
In subsequent chapters, we provide greater detail about the functional organization of
particular regions, and discuss existing computational models of their behavior. In this
review, we generally reference recent review papers and meta analyses, rather than citing
primary sources that detail particular empirical experiments. Review papers synthesize
an overwhelming body of literature into coherent theories about brain organization. More
importantly, these papers are less likely than the primary papers to draw overgeneralized
conclusions; individual studies frequently claim that certain brain areas represent a par-
ticular quantity, or perform a particular function, based only on a single experiment or
dataset. We report the conclusions drawn by several recent reviews, and discuss the extent
to which they agree or disagree about functional neuroanatomy.

Despite these precautions, there are numerous empirical and theoretical challenges to
functional neuroanatomy. In Appendix A, we discuss five of these challenges at length, in-
cluding: the difficulty of dividing the brain into discrete regions; the problem of ascribing
specific symbolic representations to neural activities; the confusion of functional redun-
dancy between brain areas; the intractability of designing controlled social experiments;
and the prevalence of vague terminology. Readers who are troubled by the breadth of our
neuroanatomical claims should refer to these notes, which qualify many of our statements.
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1.3.1 The Value Based Framework

When making social decisions, an individual must weight competing alternatives and
choose an option that satisfies various criteria. Most cognitive scientists who study de-
cision making describe this process using the “value based framework” (our terminology),
in which an individual, or “agent”, assigns each potential action a “value” and selects the
action with the highest value when making a decision [231]. In the value based framework,
value is a catch-all quantity: it incorporates every feature than an agent potentially cares
about, with respect to deciding between candidate actions. While conceptually simple,
this framework is consistent with the many complexities of learning and decision making
in social contexts. Agents contain sophisticated mental models that evaluate potential
actions based on a wealth of social and nonsocial information. These mental models make
predictions about the outcome of taking various actions, and agents learn to improve their
value estimates by comparing their predictions to the outcomes their actions actually pro-
duce in the social world. Agents may also adapt their mental models to accommodate
high-level goals, emotional states, and social contexts through complex modulatory mech-
anisms. Overall, the value based framework is consistent with behavioral and neuroimaging
data [180], can easily be realized in computational models [36], and is closely associated
with reinforcement learning, another successful theory of learning and decision making
[230]. For these reasons, we believe that it is appropriate for studying learning and de-
cision making in social contexts, and we organize our review of functional neuroanatomy
accordingly.

In the following sections, we describe how value based decision making is organized in
the human brain. We begin by reporting regions that are involved in representing social
information, processing it, and computing value estimates. We discuss how these estimates
are integrated into a common currency for valuation, then describe how this process is
modulated by other regions that assess goals, norms, and context. We also identify regions
that are crucial to error monitoring and learning, then finally point out several regions that
facilitate action selection. Fig. 1.1 provides an overview of this anatomical mapping.

1.3.2 Value Estimation

In the last decade, a great deal of research has focused on the neural basis of valuation,
and many excellent meta analyses and review articles have summarized empirical data
from fMRI studies, behavior experiments, neurochemical and lesion studies, studies of
neurological disorders, and more [231, 205, 198, 194, 180, 177, 154, 122, 81, 74, 46]. A
common theme among these analyses is the distinction between “proself” and “prosocial”
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Figure 1.1: Anatomical mapping of the value based framework in the human brain. Col-
ored dots indicate the functional roles of each region, with the primary role indicated by
text color. Directed arrows indicate specific anatomical connections, and multi-pronged
arrows indicate diffuse connectivity to multiple areas within the region. Abbrevations: dor-
solateral prefrontal cortex (dlPFC), dorsomedial prefrontal cortex (dmPFC), ventromedial
prefrontal cortex (vmPFC), anterior cingulate cortex (ACC), orbitofrontal cortex (OFC),
insular cortex (IC, particularly anterior insula), amygdala (AMY), hippocampus (HIPP),
superior temporal sulcus (STS), temperoparietal junction (TPJ), ventral striatum (vSTR),
vental tegmental area (VTA), basal ganglia (BG).
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cognition. Proself cognition estimates action values with reference to the individual and
their personal goals. Prosocial cognition, on the other hand, is directly concerned with
understanding other agents, predicting social behaviors, and evaluating actions with re-
spect to social goals; it encompasses trust, social status, emotional recognition, empathy,
motivational inference, mentalizing, social norms, norm enforcement, and more. Converg-
ing evidence strongly suggests that proself and prosocial cognition occur in distinct brain
regions [231, 180]. Prosocial areas process social information and produce rich social rep-
resentations, then use these representations to evaluate candidate actions; these cognitive
processes are typically required for an individual to exhibit prosocial behaviors, including
cooperative, norm-compliant, and altruistic behaviors [194].

Several brain regions in and around the medial prefrontal cortex (mPFC) and the
temporal cortex are involved in prosocial cognition. As a whole, activity in the mPFC
reliably correlates with multisensory integration, distinguishing self from other, processing
social emotions, estimating social status and hierarchy, mentalizing, and adhering to social
norms [198, 239, 81, 243, 74, 36]. Given the size and interconnectivity of the mPFC, this
area likely performs various social operations related to analyzing social relationships and
predicting the social impact of actions. For instance, the dorsomedial prefrontal cortex
(dmPFC) tracks other agents’ beliefs and intentions and responds to deviations between
individual and group preferences, suggesting that it may be a critical region for assessing
conflicts between proself and prosocial behavior [36]. Some researchers believe that dmPFC
also facilitates value integration [231].

The orbitofrontal cortex (OFC) is a brain region adjacent to the mPFC that also
performs prosocial valuation. OFC activity correlates with proself and prosocial value,
distinctions between self and other, and social rewards [239, 198]. Some researchers believe
the OFC is also involved in value integration [81, 180], while others contend it is critical
for emotional valuation of reward signals [200]. While the OFC is clearly important for
prosocial valuation, more work is needed to specify its exact functional role.

The anterior cingulate cortex (ACC) also lies adjacent to the mPFC and manages a
variety of features and computations related to prosocial valuation; it is important for
empathy and mentalizing [198, 239, 154, 205], for monitoring conflict between cognitive
and emotional processes and accommodating social uncertainty [194, 154], and for facili-
tating prosocial learning through reward prediction errors (RPEs) [198, 18, 194, 36, 205].
It may also be directly involved in assigning value to actions [81, 231]. Other areas in
the cingulate cortex also process social information: the dorsal posterior cingulate cortex
facilitates mentalizing [194], the midcingulate cortex facilitates empathy [243, 194], and
the paracingulate cortex facilitates the development of trust and inference of other agents’
intentions [154]. As with the OFC, more work is needed to functionally subdivide the
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cingulate cortex and clarify how the ACC coordinates learning and prosocial valuation.

Another area that seems to perform multiple functions related to prosocial valuation is
the insular cortex (IC), particular the anterior insula (AI). IC facilitates empathy [243, 194,
154] and processes social emotions, including those related to social norms like fairness and
cooperation [136]. Some researchers believe the insula is a critical hub for the integration
of social information, bringing together external sensory information, internal autonomic
information, and signals encoding reward to facilitate social learning and affective decision
making [198, 177]. In particular, the insula may coordinate social behavior by managing
a network of subcortical areas that includes behavioral systems, emotional systems, and
reward systems [198]. In nonhuman animals ranging from mammals to birds to reptiles,
these structures facilitate simpler forms of learning and decision making in social contexts,
including sexual displays, aggression, parental care, foraging, and habitat selection [177].
We suspect that the cortical decision making network evolved to complement this system,
but that the original system continues to influence a variety of social behaviors in humans.

The temperoparietal junction (TPJ) and superior temporal sulcus (STS) are two areas
located in the temporal cortex that are frequently implicated in mentalizing, the process of
taking the perspective of other agents and predicting the social consequences of actions [239,
243, 94, 36, 154]. Other temporal areas are also important for processing social information,
but are not directly involved in valuation: these include the temporal poles (which are
implicated in mentalizing [243]), and the medial temporal lobes and fusiform gyrus (which
facilitate the recognition of known agents and the recall of previous interactions [239]). TPJ
and STS project to cortical areas like the mPFC and ACC, allowing prosocial valuations
estimated through mentalizing to integrate with other specialized value estimates.

Finally, proself valuation is important for social decision making; without it, individu-
als would be unable to pursue their own goals during social interactions. Neural estimates
of “economic value” have been widely studied, both in nonsocial contexts [30] and social
contexts [231]. These studies reveal a common set of brain regions that are consistently
activated during prosocial valuation. The two most commonly cited regions are the ven-
tromedial prefrontal cortex (vmPFC) and the ventral striatum (vSTR), but many other
regions also correlate with proself valuation, including the dmPFC, OFC, posterior cingu-
late cortex, and insula [30]. As we discuss in the next section, many of these areas are
implicated in value integration, so labelling these regions as exclusively “proself evaluators”
is misleading. Nonetheless, it is important to recognize their heightened role in computing
the self-interested value of actions, given a mixture of economic and social information.
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1.3.3 Value Integration

In cognitive science and neuroeconomics, there is a widely accepted view that different
regions in the brain use different mechanisms to compute multiple independent value es-
timates for potential actions, but that these valuations are eventually integrated into a
common currency that determines subsequent decisions [231, 180, 30]. The synthesis of
value estimates occurs primarily in the vmPFC and vSTR [239, 243, 180, 205, 194]. Neu-
ral activities in these regions reliably correlate with both proself and prosocial features
across a variety of cognitive tasks and social contexts, and these activities robustly predict
individuals’ subsequent behaviors. Notably, when a social context presents a tradeoff be-
tween individual goals and collective goals, vmPFC and vSTR seem to combine proself and
prosocial evaluations into more complex combined representations that determine decision
making. This suggests that value integration may be a complex function that combines
specialized value estimates in a flexible, goal-driven manner. In the next section, we review
how other systems may modulate and control the vmPFC to achieve this flexibility.

Interestingly, the activity of vmPFC and vSTR also correlate with RPEs, and with
changes in value estimates during cognitive tasks where participants learn action values
[36, 18, 81, 150]. While these observations are consistent with the value based framework
in general, they suggest that vmPFC and vSTR may be involved in the primary valuation
of actions, rather than the secondary integration of precomputed values. As discussed in
the previous section, vmPFC and vSTR are directly involved in proself valuation, which
would explain why they represent and respond to RPEs: they are actively refining their
proself estimates in response to external feedback. However, it is unclear whether these
regions also directly evaluate prosocial actions using prosocial RPEs, or whether they use
existing prosocial estimates originating in regions like OFC, ACC, STS, and TPJ. It seems
likely that these regions perform both functions to some degree, but for conceptual clarity,
we will assume that vmPFC and vSTR compute proself values directly, then combine these
estimates with external prosocial estimates to produce an overall value signal.

Further evidence of value integration in vmPFC and vSTR comes from their connectiv-
ity to other brain regions. Many of the value estimating regions above, including mPFC,
ACC, OFC, STS, and TPJ, project to one or both of these areas, and vmPFC and vSTR
are themselves interconnected. These connections facilitate the transmission of value es-
timates into neural systems that can compare and integrate them, allowing these systems
to evaluate actions according to many relevant features [231]. Furthermore, connectivity
between vmPFC, dmPFC, and dorsolateral prefrontal cortex (dlPFC) suggests that these
regions may work together to ensure value integration aligns with high-level goals, which
may depend on the current social environment [231, 81, 243, 180]. Finally, these systems

11



project to areas that are thought to compare candidate actions and execute the selected
action, including basal ganlgia, cerebellum, and motor cortex [192, 72]. Thus, vmPFC and
vSTR are well-positioned to act as a “hub” of value integration.

Of course, many other regions are implicated in value integration. Activity in the
dmPFC and ACC, which lie adjacent to the vmPFC, also correlate with multiple value
features, and their connectivity is similarly conducive to integration [231, 94]. Similar
statements can be made about OFC [198, 180, 81]. As we discussed in Appendix A, the
divisions between these brain areas may be more confusing than helpful when identifying
the region of the brain that is responsible for value integration. Regardless of where
exactly value integration takes place, it is clear from the behavioral, neural, and anatomical
evidence that the brain’s activity is well characterized by the value based framework.

1.3.4 Value Updating

A critical component of valuation is the ability to improve value estimates in response
to external feedback from the environment. Given the diversity of value estimates, social
goals, and types of social feedback, there are undoubtedly many neural mechanisms for
updating the mental models that drive social decision making; we investigate many of
these mechanisms, and the theories behind them, throughout the remainder of this thesis.
In the value based framework, the brain tracks the expected value of performing an ac-
tion (the standard value estimate), observes the impact of the action on the environment,
and evaluates that outcome with respect to the individual’s current goals. Other systems
compare the expected value to the observed value and calculate a reward prediction error
(RPE) based on the difference. RPEs are then used to update synaptic weights in special-
ized valuation systems, with the aim of reducing the gap between expected outcomes and
observed outcomes.

Neural activities in many brain regions correlate with RPEs in both social and nonsocial
contexts [81, 231, 84]. Unfortunately, it can be difficult to determine whether a brain region
computes RPEs directly, or whether it uses RPEs computed by specialized systems. For
instance, many scientists believe that vSTR directly encodes proself and prosocial RPEs
[150], but these regions also seem to perform value estimation and integration. In contrast,
the midbrain dopaminergic system, including the ventral tegmental area (VTA), seems
crucial for encoding RPEs, but does not appear to encode action values; this system uses
the neurotransmitter dopamine (DA) to facilitate synaptic plasticity in frontal cortex and
basal ganglia [84], two areas that encode prosocial value and perform value integration.
Furthermore, it seems as though specialized prosocial RPEs are generated and/or used by
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prosocial valuations systems, most notably the ACC [198, 194, 205] and OFC [198, 199].
Overall, it seems quite likely that the computation of RPEs for value updating is distributed
across several brain regions that are closely tied to value estimation.

Value updating is computationally realized in models of reinforcement learning (RL). In
RL, an agent uses external feedback from the environment (rewards and punishments) to
update its value estimates, with the goal of choosing more rewarding actions in the future
[230]. A large body of empirical and computational work has investigated the relationship
between neural activity in the regions mentioned above, and the RPE signals predicted by
RL [84]. For instance, in a recent review paper that uses RL to analyze prosocial valuation
and decision making [81], the authors discuss the correspondence between various neural
systems and functional learning mechanisms. This work further supports the conclusion
that the brain uses RPEs to update its value estimates and facilitate social decision making.

1.3.5 Value Modulation

A common feature of social decision making is that it is highly context-dependent: social
norms differ between groups, emotions change rapidly, and goals are regularly reevaluated.
While value updating based on RPEs is a powerful technique for updating our mental mod-
els of the social world, it is a slow process: in order to produce enduring synaptic changes,
evaluation systems typically require many instances of value updating spread across time
and place. In many social contexts, the brain needs to adapt on short timescales, tem-
porarily modifying its evaluative processes to produce the best outcomes. Rather than
directly updating the underlying mental models, systems that modulate social valuation
may flexibly alter how those systems are expressed relative to one another. This allows an
individual to maintain several sets of effective mental models, and switch between them as
needed. We refer to this process as value modulation.

The primary characteristic of value modulation is that it can rapidly reorganize cogni-
tive processing (e.g., value estimation, integration, and updating) in response to external
changes (e.g., other agents’ emotions and behaviors) or internal changes (e.g., goals). The
brain region primarily associated with such reorganization is the dorsolateral prefrontal
cortex (dlPFC): its activity correlates with executive, goal-directed control over value in-
tegration. For example, dlPFC dynamically weighs proself versus prosocial value [81, 46],
overrides existing evaluations [180], and aligns goals with contextual factors [243]. dlPFC is
therefore critical in coordinating an individual’s response to social norms: it is involved in
norm compliance and enforcement [239, 154] and in modulating valuation based on abstract
rules [194]. The strong connectivity between neurons in dlPFC and vmPFC further sup-
ports the idea that value estimates, which are collected and integrated in vmPFC, may be
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interpreted and modified by dlPFC, which has greater access to high-order representations
of an individual’s goals and its social context.

Systems involved in emotional processing also influence social decision making through
value modulation. The amygdala (AMY) coordinates various emotional responses in the
brain [69, 2], and is implicated in numerous social emotions, especially fear and trust
[154, 177]. As input, AMY receives both social and nonsocial information: it has access to
facial recognition through the temporal cortex (fusiform gyrus), episodic memory through
hippocampus and medial temporal lobes, and negative stimuli (sensory or social) through
brainstem, thalamus, and various cortical areas. As output, AMY connects to several areas
whose neurochemical projections modulate the rest of the brain, including hypothalamus,
nucleus accumbens, and VTA. AMY is therefore able to orchestrate emotional responses
to salient stimuli and modulate cognitive processes including perception, attention, and
valuation [122, 177, 239]. One central feature of AMY is that it learns associations between
social features and aversive (or rewarding) outcomes [81]. While this could be considered a
form of value estimation, AMY outputs are not compared and integrated in the same way
as other valuation regions; instead, AMY’s influence is realized through salience detection,
reallocation of attention, and reorientation of emotional state. These changes affect value
estimation, integration, and updating in indirect ways. We discuss the mechanisms of AMY
learning, AMY’s effects on social decision making, and the role of the neurotransmitter
oxytocin more extensively in Ch. 2.

The hippocampus (HIPP) is important in forming and retrieving episodic memories,
an operation that is used by many systems concerned with either valuation or emotional
modulation [180]. With regards to social decision making, HIPP helps form, update,
and flexibly manipulate representations of social relations; these cognitive processes help
individuals navigate complex social environments [203]. There are several interesting par-
allels between these cognitive processes and spatial navigation, another function performed
HIPP. However, more research is needed to understand exactly how these abilities fit in
with the value based framework.

1.3.6 Action Selection

Once final values have been assigned to each candidate action, the brain must decide which
of these actions to implement. In the value based framework, this simply requires choosing
the action with the greatest final value; all the work of evaluating actions and weighing their
tradeoffs has already been completed. Although choosing the option with the greatest value
is mathematically trivial, it is rather difficult to implement in biological neural networks.
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Many computational neuroscientists believe that action selection is implemented through
some form of “competition” between candidate actions, such as mutual inhibition between
groups of neurons representing different actions.

Several brain regions receive inputs from value integration areas, are recurrently con-
nected by inhibitory synapses, and encourage mutual competition between internal repre-
sentations. Several nuclei within the basal ganglia (BG), including STR, globus pallidus,
and the subthalamic nuclei, form a network that has been shown, both empirically and in
computational models, to realize action competition [192, 92, 219]. Consistent with the idea
that BG selects between candidate actions and recommends one for execution, many BG
nuclei project back to motor cortex and the cerebellum, areas that plan actions and gener-
ate motor commands. BG also projects back to the prefrontal cortex, and many cognitive
scientists believe that these projections may transmit “cognitive commands” that coor-
dinate communication between cognitive systems, effectively routing information between
memory systems, evaluation systems, and motor systems [222, 5, 64]. Other researchers
have suggested that simpler social actions, such as social play and sexual behaviors, are
governed by networks of subcortical nuclei [177], but it is not clear how these areas would
accommodate cortical value estimates. Similarly, while specialized brain areas leverage
mutual inhibition for domain-specific action selection [130], it is not clear whether this
mechanism generalizes to social decision making in brain regions outside the BG.

Overall, action selection has received far less attention than valuation in the social de-
cision making literature. We view biological action selection as a difficult and interesting
problem, one that requires coordination between several functional systems and introduces
constraints that affect social decision making. In addition to action selection, the decision
making literature rarely addresses action proposition or planning. Until now, we have
assumed that candidate actions exist ready-made, but the process of actually generating
reasonable candidates must be highly complex, experience-driven, and context-dependent.
We mention this concern here because action proposal and action selection likely form
an iterative and/or hierarchical feedback cycle. Once an action is chosen, the brain must
specify that action in greater detail, which requires proposing, evaluating, and selecting
additional candidate actions that expand upon the chosen action [107, 189]. The neural
circuit referred to as the “cortico-basal ganlgia-thalamo-coritcal loop” likely supports hi-
erarchical and iterative action selection in the brain [93]. More empirical, theoretical, and
computational research is needed to understand the functionality of this circuit.
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1.3.7 Working Memory

Working memory is a system for actively maintaining and manipulating information, and
is consequently essential for a variety of social and nonsocial cognitive tasks. Unlike action
selection, the neuroanatomy of working memory has been extensively studied. For many
years, the consensus was that working memory was mainly associated with activity in the
lateral prefrontal cortex (lPFC) [45]. This theory was based on repeated observation of
“delay period activity” in dlPFC neurons: in working memory tasks, neurons that repre-
sent task-relevant information continue firing after an external stimuli is removed, if the
task requires an animal to actively maintain information about the stimuli. These activ-
ities indicate that animals actively maintain representations of task relevant information
over time, even when the original stimulus is removed. In recent years, this theory has
been refined; modern accounts of working memory suggest that it is highly distributed
throughout prefrontal cortex, sensory cortex, and parietal cortex, with memory buffers
existing at many hierarchical levels for many different sensory modalities [217, 39]. PFC,
in particular, may collect and maintain task relevant information originating from other
memory buffers. While there are relatively few studies that investigate the relationship
between working memory systems and valuation systems, it seems reasonable to assume
that value estimators, integrators, and updaters use working memory networks whenever
information needs to be maintained over time.

1.3.8 Summary

The brain is an overwhelmingly complex system, and our characterization of how neu-
roanatomy relates to value based decision making is necessarily oversimplified. To help
summarize this perspective further, we provide a brief, high-level hypothesis for how infor-
mation flows within this system, allowing the brain to learn about the social world make
appropriate decisions; Fig. 1.1 provides a graphical overview.

The brain begins by representing features of the external world, especially those related
to other agents and social groups. This involves sensory processing, such as the identifi-
cation of group members by facial recognition, and linguistic processing, such as parsing
the semantic and emotional content of dialogue. The brain uses this information to build
rich representations of the current social context. For example, the brain estimates the
trustworthiness of other individuals based on previous interactions and their social repu-
tation. Simultaneously, the brain sets goals at various levels of abstraction: these goals
reflect a mix of short- and long-term objectives, as well as proself and prosocial orienta-
tions. Finally, the brain generates candidate actions that have the potential to realize its
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goals given the current social environment.

With information readily available, goals in mind, and actions to consider, the brain
begins the process of value based decision making. It first uses its rich representations of the
social world to evaluate candidate actions. This process appears to be distributed across
many distinct evaluation systems in cortex, which are functionally specialized to compute
specific types of action value, notably proself and prosocial value. Once computed, these
estimates are routed to systems that integrate them into a holistic evaluation, a value that
determines the overall quality of each action relative to the others. This integration is
guided by other systems in the brain that represent goals and contexts: these modulate
the integration process, emphasizing certain evaluations and depreciating others based
on the current high-level needs of the individual. For instance, executive systems may
encourage behaviors that will facilitate trust-building if an individual has joined a new
social group, but may encourage selfish behaviors if the group has a reputation for treachery.
Once value assignment is complete, the brain selects the action with the highest overall
utility and implements it. Finally, as the individual observes the consequences of the
action, the brain compares the expected outcome with the observed outcome, and computes
prediction errors. These error signals drive synaptic plasticity in regions responsible for
value estimation, changing how future evaluations will proceed.

1.4 Neural Engineering Framework

Now that we have reviewed the functional operations involved in learning and decision
making, and discussed the brain areas that realize them, we can begin to build biologically-
inspired computational models. The Neural Engineering Framework (NEF) is a theory of
neural representation, originally developed by Eliasmith and Anderson [65], that provides
the mathematical basis for the Semantic Pointer Architecture (SPA), and can be used on its
own to construct cognitive models using spiking neural networks. The NEF characterizes
spiking activity within populations of neurons as encoding information in a latent state
space. While spikes are the physical means of communication between neurons, cognition
can be analyzed as transformations of these lower-dimensional states, permitting a more
abstract, computational, or symbol-like description of what brains do. We assume that
this state space can be represented by a vector-valued signal x(t), and that the cognitive
operations performed in the brain may be described through the dynamics of this state
space ẋ(t). At the sensory periphery, neurons transduce external signals (light, sound,
etc.) into spikes that represent the stimuli. These representations are transformed via
connections within the brain, ultimately producing motor commands that activate the
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body’s muscles.

1.4.1 Representation, Transformation, and Dynamics

Broadly speaking, to build a cognitive model using the NEF, we must describe the relevant
cognitive processes in terms of state space dynamics (a procedure facilitated by the SPA),
then determine the connectivity within a neural network such that its spiking activity
implements those dynamics. To do so, the theory defines methods for encoding and decod-
ing between neural activity and the state space, and describes how synaptic connections
implement state space transformations. Given a signal x(t) and a population of neurons,
the signal must drive those neurons to fire in patterns that represent the signal. Each
neuron spikes most frequently when presented with its particular “preferred stimulus” and
responds less strongly to increasingly dissimilar stimuli (i.e., values of x(t)). Each neuron i
is accordingly assigned a preferred direction vector, or encoder, ei. At the sensory periph-
ery, ei determines how the external x(t) is transduced into electrical inputs to neuron i;
within the network itself, ei co-determines connection weights, which dictate how neuron
i responds to spiking inputs from an upstream population whose activities represent x(t).
Mathematically, both these processes can be summarized as

ai(t) = G[ei · x(t)], (1.1)

where ai(t) is the activity of neuron i, G is the neuron model with electrical current inputs
[·], and ei · x(t) is the dot product between the state space inputs and neuron i’s encoder.
The specifics of how inputs drive the cell, and how the cell dynamically responds, depends
upon the neuron model G. A distributed encoding extends the notion of representation:
if x(t) is fed into multiple neurons, each with a unique tuning curve defined by ei and
other parameters, then each neuron will respond with a unique spiking pattern ai(t), and
the collection of all neural activities will robustly encode the signal. Eq. 1.1 is typically
extended to include two additional parameters that determine the slope and x-intercept of
each individual neuron in order to capture observed neuron tuning curves:

ai(t) = G[αiei · x(t) + βi], (1.2)

where αi is referred to as the gain and scales the magnitude of the neural response to an
input x, and βi is referred to as the bias, realized by injecting a constant bias current
into the neuron, and can be chosen to effectively set the state-space values xint where the
neuron will begin firing.
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The NEF is agnostic about the choice of G, but we generally use spiking leaky-integrate-
and-fire (LIF) neurons in our models, whose membrane dynamics v̇(t) are given by

Cm v̇(t) = gL(EL − v(t)) + J(t) (1.3)

where Cm is the membrane capacitance, gL is the leak conductance, EL is the leak reversal
potential, and J(t) is an external current injected into the membrane. This external current
originates from the synapse, and its magnitude is given by the argument for G in Eq. 1.2
(i.e., Ji(t) = αiei · x(t) + βi). An additional mechanism implements the spiking behavior
in the LIF neuron: once v(t) reaches a threshold vth, a spike event is recorded and v is
held at the reset potential vreset for the duration of the refractory period vref. The LIF
neuron is frequently used in computational models where both biological plausibility and
scalability are a concern: previous research has shown that LIF neurons (and extensions
thereof) reproduce the spiking behaviors of a wide class of biological neurons [232], and it
is possible to simulate networks of millions of LIF neurons on the appropriate hardware
[66].

For state space representation to be useful, there must be methods to recover, or decode,
the original vector from the neuron activities. The NEF defines decoders di that either
perform this recovery or compute arbitrary functions, f(x), of the represented vector.
A functional decoding with df

i allows networks of neurons to transform the signal into
a new state, which is essential for performing cognitive operations. To compute these
transformations, a linear decoding is applied to the neural activities:

f̂(x(t)) =
n∑

i=0

ai(t) d
f
i , (1.4)

where ai is the activity of neuron i, n is the number of neurons, and the hat notation
indicates that the computed quantity is an estimate of the target function. At the mo-
tor periphery, x(t) is retrieved using appropriate decoders, driving the model’s behavioral
output via muscles; within the network itself, df

i co-determines connection weights, which
dictate how downstream neurons respond to spikes produced by neuron i. Connection
weights between each presynaptic neuron i and each postsynaptic neuron j combine en-
coders and decoders into a single value

w = e× df . (1.5)

Discrete spikes produced by G are transformed into real-valued activities a (which also
correspond to post-synaptic currents) by convolving the spike train with a filter,

ai(t) =
∑
T

h(t− T ) ∗ δi(T ) (1.6)
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where T are the spike times, h is an impulse response function for the filter, and δi is a
dirac-delta function describing the spike train for neuron i. These filters h describe the
effects current-based synapses within the network: when a neuron j receives a spike from
neuron i, this spike is translated into a post-synaptic current J(t) that drives neuron j,
perturbing its membrane voltage according to Eq. 1.3. We typically use a low-pass filter,
or exponential synapse, defined by an instantaneous rise and a decay time τ .

State space transformations in the NEF are specified by describing the dynamics of the
state variables,

ẋ = f(x,u, t) (1.7)

where x is the represented state, ẋ is its derivative, u are inputs (external signals or
upstream representations), and t is time. In our models, we typically specify these dynamics
using control theory,

ẋ(t) = Ax(t) +Bu(t), (1.8)

where A and B are transformation matrices. B governs how feedforward inputs affect the
current representation (e.g., scaled addition), while A governs how recurrent inputs affect
the representation (e.g., simple harmonic oscillation); both A and B are implemented
through weighted synaptic connections between neurons in populations representing u(t)
and x(t). These matrices can be found by solving for the appropriate decoders, as described
below. While Eq. 1.8 describes linear systems, NEF methods work for nonlinear dynamics
as well.

1.4.2 Optimizing or Learning Encoders and Decoders

Given this formulation, the challenge of building cognitive neural systems using the NEF
reduces to (a) describing a cognitive algorithm as a dynamical system (e.g., Eq. 1.8),
and (b) finding encoders and decoders such that neural connection weights implement
the transformations dictated by the dynamical system. The NEF includes both top-down
and bottom-up methods for finding these weights; we use both methods throughout this
thesis. In the top-down method, encoders are randomly distributed across (or within) a unit
hypersphere with dimensionalityD (for a state space signal x ∈ RD), ensuring that neurons
in the population will efficiently tile the space with their tuning curves. Encoders may also
be fit to neural data. Given this encoding, the NEF uses a least-squares optimization to
solve for decoders that will minimize the error E between the neural estimate and the
target function

E =
1

2

∫ 1

−1

(
f(x)− f̂(x)

)2
dx. (1.9)
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Substituting Eq. 1.4 for f̂(x), this can be reformulated as a least-squares problem

A d = f(x) (1.10)

which can be approximately solved by taking the matrix pseudo-inverse

d = (ATA+ Iσ2)−1ATf(x) (1.11)

with regularization term σ. In the NEF, a solution is aquired by specifying the activity
matrix A and the target vector f(x) at numerous evaluation points which tile RD: A is
calculated by estimating the neural activities (according to Eq. 1.1) for each neuron n at
each value of x, while f(x) is computed directly at these points,

A =

a1(x = −1) . . . an(x = −1)
...

. . .
...

a1(x = 1) . . . an(x = 1)

 (1.12)

This top-down method allows modellers to analytically solve for the connection weights
in a neural network that will compute a target function: it has the advantage of being
pre-computed, removing any need to train the network online or with labelled examples.
We use this method by default when building our neural networks, especially when we need
the network to realize specific, mathematically well-defined operations, such as rescaling
an input or maintaining a representation in working memory (see below).

However, the function that a neural network should compute within a larger cognitive
model is not always clear, especially if the network’s goal is to learn associations between
stimuli or to evaluate the utility of possible actions based on environmental feedback. To
deal with these situations, the NEF also includes bottom-up methods to train encoders
and decoders during the simulation itself. To update the decoders, we use the Prescribed
Error Sensitivity (PES) learning rule [156]:

∆d =
ϵ

n
a(t) (x̂(t)− x(t)) (1.13)

where ϵ is the decoder learning rate, n is the number of presynaptic neurons, a(t) are the
filtered activities from presynaptic neurons, x(t) is the state space target, and x̂(t) is the
estimate decoded with Eq. 1.4. Conceptually, Eq. 1.13 uses the error between the decoded
estimate and state space target to update the decoders during the simulation. Extensive
work with the PES rule in NEF networks has shown it is capable of learning decoders to
compute a wide range of functions [249].
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To update encoders, we sometimes use the Voja learning rule:

∆e = κ a(t) (x(t)− e) (1.14)

where κ is the learning rate. The Voja learning rule effectively shifts the encoders in a
neural population towards the inputs observed by the network, ensuring that neurons will
respond to the inputs present for a particular task. This is especially useful for storing
and recalling associations, or for learning associative memories, in spiking neural networks
[251].

1.4.3 Two Example Networks: Working Memory and Action Se-
lection

In addition to these learning rules, researchers using NEF networks for cognitive modelling
have developed a number of network components that are frequently reused to perform par-
ticular functions. Two such subsystems that we use throughout this thesis are a working
memory, which is used to actively maintain a representation for manipulation by down-
stream subsystems, and a decision network, which is used to select the representation with
the highest value among several possibilities. These subsystems are also a core part of the
SPA and have been widely used in other functional brain models [64].

For working memory, we construct a “gated working memory” (gWM) originally de-
veloped by Choo [38]: this system receives an input vector u and maintains an estimate
x, with the relationship between x and u determined by an input gate:

ẋ =

{
u− x if gate is open

0 if gate is closed
(1.15)

When the “gate” is open, the system shifts its current representation towards the in-
put value, effectively “loading” the current input into working memory; when the gate is
closed, the system attempts to maintain the current representation without any change.
Downstream subsystems may read the currently represented estimate x̂ in order to recall
previous states of the system, while control subsystems may open or close the gate to load
or empty the contents of working memory in a task-appropriate manner. Such a network
may perform mnemonic tasks such as the oculomotor delayed response task (DRT), in
which an animal must remember the 2D location of a briefly-presented visual cue for a
short period of time before recalling its location [208].
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Figure 1.2: Network architecture for the gated working memory. Gray text indicates state
space inputs and outputs, while blue text indicates neural populations. Black connections
compute the identity function, while the green connection computes the negative of the
identity function and the red connection inhibits downstream neurons.

The network used to realize the gWM is shown in Fig. 1.2. The input signal u(t) is
represented by a population diff, while the gating signal g(t) is represented by an inhibitory
population inh. The gains and biases (Eq. 1.2) of the neurons in inh are set such that
all neurons are inactive when the gate is open, but when the gate is closed (g(t) > 0),
these neurons activate and inhibit diff. When the gate is open, diff receives both the
input u(t) and the current representation stored in the central memory population mem,
x̂(t). Functional decoders df are used to compute the negative of the current memory
representation, f̂(x) = −x̂, such that diff sees an effective input of u(t) − x̂(t). As
long as the gate remains open, this signal is communicated to mem, driving the currently
represented value x̂(t) towards the input u(t). When the gate is closed, diff becomes quiet,
and the recurrent connection on mem maintains x̂(t) as best it can (given the imperfect
representations and spike noise inherent in spiking neural networks, [65]). To access the
memory, downstream systems can simply decode x̂(t) from the spikes generated in mem.

For action selection or decision making, we use a network whose anatomy and function
are modelled off the basal ganglia (BG), a subcortical structure that is thought to play a
central role in selecting between candidate actions (for instance, between motor plans to
execute a reaching movement towards one of several visual targets) [192]. Our network was
originally developed by Stewart et al. [219] based off a model of BG function proposed by
Gurney et al. [92]. The network is shown in Fig. 1.3: it includes separate populations for
the subthalamic nuclei (STN), globus pallidus internus and externus (GPi and GPe), and
striatal D1 and D2 neurons (STR D1 and STR D2). We assume that the inputs to this
network originate in cortex and encode the values, or utilities, of candidate actions (see
the neuroanatomical discussion in Sec. 1.3). These inputs travel through several streams
within the BG, commonly referred to as the direct, indirect, and hyperdirect pathways.
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Figure 1.3: Network architecture for the basal ganglia network used for WTA selection.
Text coloration and inset are as in Fig. 1.2. Functionally, this network takes a vector of
values (representing, for instance, the utility of potential actions) and, through a series of
recurrent connections with mutual inhibition, selects the value with the greatest magnitude.
The default output is an inhibitory vector with −1 for each of the non-winning components
and 0 for the winning component; this signal may be used to inhibit the non-selected
action. See [219] for a detailed description of the anatomical and functional connectivity
that inspired this circuit.

A detailed discussion of the interaction between these pathways, especially the balance
of excitatory inputs and inhibitory control, is outside the scope of this thesis: interested
readers should refer to [219] for further details. To summarize, the network as a whole acts
as a winner-take-all circuit, identifying the element of the input vector with the greatest
magnitude and outputting a vector that can be used to select the winning element. More
specifically, for an input vector xin = (0.2, 0.8, 0.5), the network will produce an output
xout = (−1, 0,−1), which can be used by downstream systems to inhibit all actions except
the chosen one (via methods that will be discussed in subsequent chapters).

Previous empirical and theoretical work has advanced the hypothesis that inhibitory
outputs from BG, in conjunction with inhibitory projections from thalamus back to cortex,
are used to select between action plans by disinhibiting specific neural assemblies in cortex
[133, 219]. However, recent work suggests that thalamic outputs to cortex and cerebellum
may influence cortical dynamics, and the process of action selection, in more subtle ways
(see [212] for a review). This work distinguishes two classes of cells within thalamus,
core cells and matrix cells, which have distinct patterns of connectivity to the rest of the
brain, and may facilitate different modes of processing with respect to action selection.
Thalamic core cells may facilitate the execution of previously-learned action sequences
by deepening basins of attraction within cortical network dynamics, effectively pushing
the brain towards choosing actions that have worked well in the past. On the other
hand, thalamic matrix cells may fulfil a more modulatory function through their diffuse
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spatial projections to cortex, flattening attractor basins in cortex and effectively promoting
variability (or injecting randomness) into cortical dynamics. Given that BG projects to
matrix cells but not core cells, this new account of connectivity between BG, thalamus,
and cortex challenges the assumption that inhibitory outputs from BG can be used to
directly select between cortical action plans. Future work should investigate whether our
BG model can be used in conjunction with more biologically plausible models of thalamus
to achieve flexible control over cortical dynamics, for instance by promoting exploration
versus exploitation via the differential activation of core versus matrix cells.

An alternative network for action selection is the independent accumulator, originally
developed by Gosmann et al. [89]. This network is less focused on detailed anatomical
reconstruction than the BG model, but has several properties that make this subsystem
easier to functionally control and interpret. The network is shown in Fig. 1.4. As with
the BG model, inputs to the network originate in cortex and encode the values of can-
didate actions. Each value is passed to a separate population (collectively labeled acc)
that connects back to itself; this recurrent connection computes f(x) = Rx, making each
population act like an integrator. When driven by a vector of action utilities xin, the value
represented by each population in acc will ramp (or “accumulate”) at a rate proportional
to that element of xin and the ramp rate R. Each population also connects to a separate
pool of inhibitory neurons (collectively labeled inh): the neuron parameters α and β for
this population are set such that they only activate if their input exceeds some threshold
xthr. Finally, each population in inh connects back to each other population in acc with an
inhibitory connection. As a result, once the accumulated value represented in acc exceeds
xthr, a WTA response is triggered, and all other values in acc are set to zero. Thus, for
an input vector xin = (0.2, 0.8, 0.5), the network will produce an output xout = (0, 1, 0), a
“one-hot” representation that identifies the chosen action.

The IA network is preferable to the BG network in some circumstances. The BG net-
work simulates multiple populations and recurrent pathways in order to recreate the direct,
indirect, and hyperdirect pathways. While these features make the network biologically re-
alistic, they require a set of fixed neural and synaptic parameters. The Nengo library that
we use to build and simulate neural networks [21] specifies these parameters automatically,
but this leaves the user with few tools to manage representation and dynamics within the
network. This is problematic because the BG network often fails to select the best action
if the inputs fall outside a certain range or if they are very similar to one another; the
user must add additional network components to properly rescale or separate inputs. In
contrast, users can directly modify the parameters of the core IA network to realize these
operations: in our models, we set (a) the neural parameters α, β, and e to ensure xin is
represented properly, and (b) the ramp rate R and threshold xthr to choose the highest-
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Figure 1.4: Network architecture for the independent accumulator network used for WTA
selection. Blue boxes contain one neural population for each candidate action. As with
the BG network in Fig. 1.3, this network takes a vector of input values and, after realizing
the internal WTA dynamics, selects the action with the greates value. WTA dynamics are
driven by the independent accumulation of each value: each population i in acc represents
a value xi that ramps over time according to ui and a shared ramp rate R. acc drives
populations of inhibitory neurons inh, which remain inactive until x crosses a threshold
xthr. Once a population in inh is activated, it inhibits all other populations in acc, leaving
only a single population in acc with nonzero activity. Decoding a one-hot output vector
from these activities is trivial.

value action with greater probability. Manipulating the ramp rate and threshold of the
IA network also provides an important form of cognitive control: we explore how these
parameters relate to speed-accuracy tradeoffs in simulated decision makers in Ch. 3.

The IA model also bears many similarities to drift diffusion models (DDMs) [190],
a popular family of decision making models that successfully predict simple perceptual
decisions, account for reaction times, and correspond to brain activation [101, 191]; DDMs
have even been applied to social decision making tasks [196]. DDMs assume that the
decision maker continuously accumulates noisy information about competing choice options
until an internal decision boundary is reached, at which point a choice is made. Information
often takes the form of an internally-computed value signal, and thresholds are a subjective
decision criteria that may be adjusted based on personal factors or task demands. Thus,
although the IA does not recreate particular anatomical regions in the brain, its form and
function have been extensively validated by way of DDMs, and it is consistent with general
cortical connectivity.
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1.5 Thesis Outline

In this chapter, we motivated the study of social decision making, reviewed the functional
neuroanatomy of social cognition in the brain, and introduced a theoretical framework for
building biologically-plausible computational models. In the next four chapters, we develop
and analyze four cognitive models built as spiking neural networks. Each of these models
investigates a different aspect of learning or decision making.

In Ch. 2, we model associative learning in the amygdala, then investigate the neural
mechanisms of fear conditioning and extinction. We pay particular attention to anatomical
detail: we recreate various nuclei within the amygdala, specify their connectivity, and
simulate the effects of neurotransmitters including oxytocin, dopamine, and serotonin. We
validate the model by comparing its behavior to conditioning studies in mice, and find that
our pharmacological interventions recreate many known effects in the empirical literature.

In Ch. 3, we model biologically-detailed neurons and synapses and construct a detailed
working memory model. Simulating and training this model requires extending the NEF,
but allows us to investigate the effects of low-level biological perturbations, such as those
thought to underlie certain forms of social neuromodulation. We validate this model by
showing our detailed networks retain functional capacity, then show that the mnemonic
properties of the working memory model resemble those of simple animals.

In Ch. 4, we model the speed-accuracy tradeoff in decision making by building a network
that realizes value accumulation, value modulation, and action selection. This model is
informed by theories of inference and decision making under time pressure, and includes
several cortical and subcortical brain areas. We validate the model by comparing its
behavior to a dataset from humans performing an identical task, and find that the model
recreates several trends in the human data.

In Ch. 5, we model learning and decision making in a social game by building cognitive
agents that realize value estimation, value updating, and action selection. Our models
represent social information in high-dimensional spaces and use reinforcement learning
to update proself and prosocial estimates of action values. We validate the model by
conducting a human experiment, training a population of unique agents, and comparing
human behaviors to agent behaviors; we find that our agents reproduce several trends
related to social value orientation.

In Ch. 6, we summarize our contributions to the field of social cognition. We compare
our work to other computational models, discuss its practical and theoretical limitations,
and propose avenues for future research.
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Chapter 2

Fear Conditioning and the Amygdala

Author’s Note: some of the content in this chapter was previously published as a poster
at the 2019 Society for Neuroscience conference [53]. Code is available on GitHub.

2.1 Introduction

To make intelligent social decisions, agents must learn which features of the environment,
and which potential actions, are associated with positive and negative outcomes. The
brain contains many distinct learning systems that work together to achieve this goal. In
the previous chapter, we discussed how various cortical and subcortical areas might re-
alize value-based decision making. An important step in evaluating actions and states is
recognizing which features are associated with positive or negative outcomes. In “asso-
ciative learning”, agents build models that predict the co-occurrence of external features,
including associations between neutral stimuli and positive or negative stimuli. These as-
sociative models can be used to evaluate basic actions, such as approach and avoidance,
which manifest in numerous social and non-social contexts. Associative models can also be
used in model-based computations, which use explicit knowledge about the dynamics and
correlations within an environment to predict how an agent’s actions will affect changes
that promote pleasure or avoid pain. Thus, while associative learning does not directly
evaluate the quality of potential actions, it is still essential for value-based decision making.

In this chapter, we develop and investigate a neural model of fear conditioning in
the amygdala. Fear conditioning is a particular form of associative learning in which an
agent learns to associate a neutral stimulus with a negative stimulus, causing the agent
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to exhibit a fear response when the neutral stimulus is present. In evolutionary terms,
fear conditioning has high adaptive value: agents that can learn to avoid life-threatening
stimuli in the environment are more likely to survive. This makes fear conditioning one
of the most common forms of associative learning in the animal kingdom, and one of
the most widely studied (and modeled) types of learning in neuroscience and psychology.
The amygdala (AMY) is an important locus of fear conditioning in the brain: it undergoes
synaptic plasticity during fear conditioning, and lesions impair both learning and expression
of conditioned fear responses. Furthermore, AMY is an affective system that coordinates
emotional and hormonal responses to salient stimuli, effectively modulating value-based
computations. With respect to social decision making, AMY learns associations between
specific people (e.g., faces or identifying attributes) and valued outcomes, and is important
in evaluating trustworthiness and directing primitive social actions (e.g., reproduction,
parenting, aggression, and submission). For these reasons, AMY is widely understood to
play an critical role in learning and decision making in social contexts.

Our model of fear conditioning in the amygdala seeks to be both biologically detailed
and functionally capable. Anatomically, our network contains many nuclei, whose inter-
nal and external connectivity are appropriately constrained; we show that empirically-
consistent response profiles of these neurons develop naturally over the course of training.
Functionally, our network is trained using online, local, error-driven learning rules, and
is capable of learning a variety of associations between neutral stimuli, negative stimuli,
and environmental contexts. As a result, our network exhibits fear conditioning, fear ex-
tinction, and fear renewal when trained under various traditional experimental protocols.
We show that externally activating or inactivating specific nuclei impairs these processes,
and discuss the extent to which these results align with empirical experiments. Finally, we
investigate fear generalization; we demonstrate that our model exhibits gradients of fear
responses to similar stimuli that resemble the gradients observed in empirical studies.

We begin by introducing the functional and anatomical properties of the amygdala
in greater detail. We then introduce two versions of the model: the first includes less
anatomical detail and contains the minimum neural circuitry required to learn the desired
functionality; the second includes greater anatomical detail and is able to reproduce a wider
variety of empirical data. We describe the various training protocols we use, then simulate
the networks and analyze the results, comparing to empirical data where possible. We
conclude by discussing the successes and failures of the model, and by identifying directions
for future work.
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2.1.1 Fear Conditioning Protocols and Terminology

In a traditional fear conditioning experiment, an animal is placed into some environment,
or “context”. To establish a baseline for future testing, a neutral stimulus is presented for
a short duration: stimuli may be auditory (tones of a specific frequency), visual (images
of faces, objects, or natural scenes), or even olfactory (distinct odors). This stimulus is
referred to as the “conditioned stimulus” (CS) because the animal will later be conditioned
to fear its presence. The experimenter measures the baseline fear response of the animal;
different animals display different fear responses in different settings, but common metrics
include freezing (cessation of movement to avoid attracting predators), startle responses
(pupil dilation, involuntary movements, etc.), and physiological measures (galvanic skin
response, heart rate, etc.).

Once a baseline has been established, conditioning begins. During the “aquisition” or
“conditioning” phase, the CS is presented for a duration, and a negative (or “aversive”)
stimulus is also presented for a duration. The negative stimulus, or “unconditioned stim-
ulus” (US, so-named because the animal will exhibit the fear response to its presence by
default), may be mild pain (electric shock), unpleasant odors, scary images, or any other
stimuli that the animal would naturally avoid. The duration, ordering, and overlap of the
CS and US are experimental parameters, but the most common setup is to present the
CS for a duration, immediately followed by the US. Both stimuli are then removed. This
constitutes a single “pairing” of the CS and US; typical fear conditioning experiments con-
sist of multiple pairings to robustly reinforce the association (although one-shot learning
is possible for some animals in some contexts). As acquisition proceeds, the animal learns
that the CS predicts the onset of the US, and begins to exhibit the fear response to the
CS itself. During a “fear expression” test, the CS is presented alone (without the US), and
the animal’s fear response is again measured; if the response is statistically greater than it
was during the baseline test, fear conditioning has occurred. Fear conditioning may also
occur to the context itself: when placed in the environment where acquisition occurred,
the animal may exhibit a moderate fear response, even when no CS is presented.

Interestingly, conditioned responses to the CS are notoriously difficult to unlearn; they
persist over a long duration (sometimes an entire lifetime for traumatic experiences), and
explicit efforts to unlearn the association are only effective in certain situations. Training
associated with such unlearning is referred to as “extinction”, and proceeds as follows.
The animal undergoes fear conditioning in a context (CTX+), then the animal is placed
in a new context (CTX-, a new environment with readily distinguishable features), and a
second round of training occurs. The CS is repeatedly presented without the US, and over
time, the animal’s fear expression to the CS diminishes (this typically requires more pairings
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than does fear acquisition). However, neural and behavioral evidence shows that extinction
training does not actually unlearn the original CS-US association: rather, the animal learns
a positive (safety) association that competes with the negative (fear) association learned
during acquisition, cancelling out the fear response in some circumstances, but not others.
When fear expression is tested in CTX-, little or no fear response is observed; but when the
animal is returned to CTX+ and presented the US, it exhibits the fear response at nearly
full strength. This process is called “fear renewal”, and demonstrates that fear extinction
is context-specific.

Finally, “fear generalization” refers to the tendency for animals to exhibit fear re-
sponses to stimuli or contexts similar to those present during conditioning. In one popular
paradigm, researchers show participants circles of two sizes during training: larger circles
(CS+) are paired with the US, while smaller circles (CS-) are not associated with the US.
During testing, the researchers present circles whose sizes range between the CS+ and the
CS-: they typically observe a gradient of fear responses, indicating that fear expression
diminishes as stimuli become increasingly dissimilar to the CS+ [145, 60]. Alternatives
of this paradigm exist for contextual conditioning. In one experiment, researchers put
humans in a virtual reality room (CTX+) containing various objects, and periodically
presented a US as they explored the room; participants also explored a safe room (CTX-)
containing different objects, in which the US was not presented. The researchers then
placed participants in a new room that shared 50% of the objects from CTX+ and 50%
from CTX-; they observed fear responses that indicated participants felt partly afraid and
partly safe [7]. These experiments suggest that fear learning acts on a sub-symbolic level
of abstraction: stimuli and context that share features with the CS+ and CTX+ elicit
partial fear responses.

2.1.2 Neuroanatomy

The amygdala is a small structure located in the temporal lobes, adjacent to the hip-
pocampus, that contains several nuclei, including the lateral amygdala (LA), basolateral
amygdala (BLA), central lateral amygdala (CeL), and central medial amygdala (CeM).
The internal and external connectivity of these nuclei are critical for fear conditioning.
AMY nuclei contain a mix of excitatory pyramidal neurons and inhibitory interneurons;
most nuceli contain various cell types and neurotransmitters, making the neural substrates
of AMY resemble both cortex and basal ganglia [161]. Several dedicated populations of
interneurons surround and separate the LA/BLA and the CeL/CeM; these “intercalated
cells” (ITC, as well as interneurons distributed within the nuclei) are also important for
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Figure 2.1: Sketch of amygdala neuroanatomy. Nuceli abbreviations: lateral amygdala
(LA), basolateral amygdala (BLA), central lateral amygdala (CeL), central medial amyg-
dala (CeM). External population abbreviations: hippocampus/MTL/mPFC (Hipp), sen-
sory cortices (Cortex), hypothalamus/periaqueductal gray/sympathetic/parasympathetic
(Hypo). The gray regions are intercalated cells (ITC).

fear conditioning [153, 131], but their exact functional role is less clear. Fig. 2.1 provides
a rough sketch of the neuroanatomy and connectivity of these nuclei.

LA receives connections from sensory cortices (sometimes through intermediary struc-
tures) that convey information about the external world. The synapses between long-range
cortical axons and the dendrites of pyramidal cells in LA are the primary site of fear learn-
ing; plasticity within these synapses induces LTP in response to coincident CS and US,
increasing the sensitivity of (some) LA neurons to the CS and driving downstream fear
responses [131, 62, 193]. Artificially inactivating LA neurons during training or testing
impairs fear learning [173]. LA pyramidal neurons project almost exclusively to BLA and
to CeL; they do not convey fear responses to anywhere outside AMY.
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BLA receives few connections from sensory cortices, but is reciprocally connected to
several structures in the medial temporal lobe (MTL) (including HIPP) [161], and mPFC
(including the infralimbic and prelimbic cortices, IL and PL) [160]. These connections con-
vey high-level contextual information to the BLA, including episodic memory from HIPP
and personal identifiers from MTL. The BLA coordinates and controls fear responses based
on this contextual information [62, 27, 248, 35]. In particular, BLA is the primary site of
both context-dependent conditioning and extinction: synaptic plasticity on BLA pyrami-
dal neurons and/or inhibitory interneurons is associated with increased fear responses in
environments where painful stimuli were experienced, and with decreased fear responses in
environments where painful stimuli were expected but not experienced. Pyramidal neurons
within BLA exhibit various responses during fear conditioning and expression. BLA “fear
neurons” become more active (responsive to CS inputs) during fear conditioning, but be-
come less responsive during extinction training. In contrast, BLA “extinction neurons” do
not respond to the CS after conditioning, but become responsive during extinction train-
ing. It seems likely that, following extinction, these neurons activate interneurons within
BLA that inhibit fear neurons, suppressing the fear response in safe contexts. However,
not all fear neurons in BLA are suppressed: “persistent neurons” are a small subset of BLA
neurons that become CS-responsive during fear conditioning, but remain responsive after
extinction. BLA neurons do project to brain areas outside AMY: apart from the reciprocal
connections to temporal lobe mentioned above, BLA outputs also reach striatum, which
in turn projects back to cortex, suggesting triangular connections between BLA, cortex,
and striatum [161]. Through these connections, BLA is implicated in affective labelling,
goal-directed behavior, planning, and decision making [167]. BLA also connects to CeM,
and may connect indirectly to CeL through clusters of interneurons [62].

CeL receives some connections from outside amygdala, mostly from noncortical struc-
tures such as the thalamus and brainstem, as well as projections from the LA and from
clusters of interneurons. The responsiveness of CeL neurons changes over the course of fear
conditioning, with some neurons showing increased responses to the CS, and others showing
decreased responses. Several lines of evidence suggest that these changes in responsiveness
reflect synaptic plasticity within CeL, rather than simply transmitting learned responses in
LA: CeL may have access to both CS and US information via extra- and intra-amygdalar
inputs, and it displays synaptic and neurochemical changes following conditioning [120].
It is unclear whether these synaptic changes occur on connections from LA, or from areas
outside amygdala. Unlike LA and BLA, CeL mostly consists of GABAergic interneurons; it
appears that an inhibitory circuit within this nucleus controls fear responses, and damaging
or inhibiting this area significantly impairs fear conditioning [120, 35]. Specifically, baseline
activity within CeL (so-called CeL-off neurons) appears to inhibit CeM, preventing default
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fear responses. However, artificially inactivating CeL-off neurons (or activating CeL-on
neurons that inhibit CeL-off neurons) produces an unconditioned fear response (freezing)
[40], suggesting that CeL acts as a controllable gate for CeM-driven fear responses.

CeM is the major output hub of AMY: it receives connections from BLA and CeL that
convey fear and safety signals, and projects to numerous subcortical structures that drive
basic fear responses. These targets include the hypothalamus, which controls endocrine
responses in the brain and body; the periaqueductal gray, which directs behavioral re-
sponses (like freezing) to internal and external stressors; and numerous other structures
in the sympathetic, parasympathetic, and hormonal systems that control bodily responses
[161]. Through the CeM, the AMY is able to regulate the body’s state, to modulate large
portions of the brain, and to direct behavioral responses [167]. In fear conditioning exper-
iments, CeM appears to integrate the responses learned in LA, BLA, and CeL to arrive at
an overall fear estimate [62]. Consistent with this theory, activating CeM before training
produces unconditioned freezing, while inactivating it after training reduces fear responses.

Many other neural populations play some role in fear conditioning, extinction, and
expression. These include MTL and cortical structures like IL and PL, as well as clusters
of inhibitory interneurons like the intercalated cells (ITC). For functional and anatomical
simplicity, we will ignore these nuclei in our model, but we will comment on their possible
contribution to associative learning in Sec. 2.4.

2.1.3 Function

Broadly speaking, AMY is part of the brain’s “affective system”: it helps organisms decide
which of their goals to pursue in the current context. This is achieved by using associative
learning to assign “salience” to objects, people, and events in the wider world. Organisms
routinely experience stimuli that have intrinsic or extrinsic value: “appetitive” stimuli like
food and sex are naturally desirable, while “aversive” stimuli like pain are undesirable.
These “valenced” stimuli should be approached, avoided, or otherwise acted upon to in-
crease an organism’s chances of survival and reproduction. The AMY assigns salience to
(previously) neutral stimuli by associating their presence with these valenced stimuli and
with intrinsic behavioral responses to valenced stimuli. In fear conditioning, AMY learns
to produce an intrinsic (or “unconditioned”) fear response (UR, e.g., freezing) in response
to the neutral CS when it is reliably paired with the aversive US. Conceptually, this process
may be described as either associating the CS with the UR directly, or as associating the
CS with the US, which is intrinsically associated with the UR [167]. CS-UR associative
learning guarantees that an organism will rapidly develop responses to salient stimuli: be-
cause such learning is independent of contextual information, AMY responses will drive
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the UR in many circumstances, guaranteeing a reliable “better safe than sorry” response.
Learning within CeA (CeL and CeM microcircuits) may realize this type of associative
learning: inputs from brainstem and thalamus convey simple representations of US and
CS, while outputs to hormonal and basic behavioral systems direct the UR.

As cortex evolved to represent and plan around more sophisticated representations of
the external world, AMY may have evolved more sophisticated mechanisms of assigning
salience and controlling behavior. High-dimensional representations in sensory cortex are
conveyed to LA, which can learn to associate these CS with various types of US; heightened
responses in LA may then drive CeM (via CeL or BLA) to activate the UR. The advantage
of this pathway is that it uses more complex representations of the CS, allowing an organism
to distinguish stimuli that predict the US from those that are present by happenstance.
Later, we will discuss how cortical complexity supports fear generalization.

A third layer of complexity to associative learning is introduced by the BLA, which helps
AMY further distinguish salient features of the environment from irrelevant distractors.
BLA receives sophisticated representations about an organism’s overall context from MTL
and mPFC: these signals may convey the organism’s current goals (e.g., preserving social
reputation by appearing brave when confronted with danger) or high-level assessments of
the environment (e.g., reasoning that a climbing harness indicates protection from lethal
falls, but only when properly equipped and supported by a trusted climbing partner).
However, it is difficult to directly account for goal-related and contextual information
when learning CS-US associations: learning three-way associations between CTX, CS, and
US is more complicated (we suspect) than learning a series of two-way relations between
CTX/CS and CS/US. More importantly, incorporating CTX information directly into CS-
US learning rules may cause an organism to incorrectly identify situations as non-salient,
which may be a life-threatening mistake. Neural and behavioral evidence suggest that
AMY circuitry instead uses BLA to learn separate CTX associations that suppress fear
responses: LA associations between CS and US are preserved during extinction training,
but BLA learns a second memory trace that uses CTX information to correct false-positives
(or otherwise supplement the primary CS-US association). This “better safe than sorry”
approach ensures that, if the CTX association turns out to be wrong, or if more complicated
contingencies arise, the organism does not have to relearn the original CS-US association;
it simply amends the secondary memory trace in BLA.

This account of CTX learning in BLA explains several phenomenon in an evolutionarily-
consistent manner. First, it minimizes the likelihood that the organism will have to repeat-
edly endure painful CS-US associations: these memory traces persist despite downstream
learning. Second, the context-specificity and limited generalization of extinction training
(evidenced by fear renewal and context generalization experiments) are consistent with the
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principle that situational salience cues should not override stimulus-based salience cues,
but merely suppress them in limited situations. Third, it explains the post-training re-
sponse profiles of LA versus BLA neurons. LA neurons continue spiking in response to
learned CS after extinction training, and this activity continues to drive a fear response.
On the other hand, BLA neurons show diverse response profiles following extinction train-
ing (fear neurons, extinction neurons, and persistent neurons): their relative responses can
be combined into a contextually-sophisticated salience assessment, possibly implementing
a simple form of model-based control over fear expression [185]. Cortical areas like MTL
and mPFC, whose hierarchical neural architectures and high-dimensional representations
are well-suited for model-based reasoning, may also support complex associations between
CS, US, and CTX, and relay associative information to AMY through the BLA.

Taken together, this functional hypothesis explains the roles of the various AMY nuclei,
and shows how parallel learning rules may coordinate diverse responses to salient stimuli.
This account is generally consistent with other models of AMY function, both conceptual
[167] and computational [62, 35]. In the next two sections, we implement two spiking neuron
models that realize this hypothesis: the first includes less biological detail, but has a clear
functional correspondence to the populations and learning rules presented above; while the
second expands this minimal model to include more biological detail, while keeping the
same anatomical and functional divisions intact. After training the models and analyzing
the results, we compare our model(s) to other computational and functional accounts of
the amygdala.

2.2 Computational Models

2.2.1 Minimal Functional Model

We begin by describing a relatively-simple model of AMY function that should produce fear
conditioning, extinction, and renewal. The anatomical organization of this model maps
broadly onto the divisions between AMY nuclei discussed above, but the model’s activity
profiles and its responses to external perturbation lack empirical realism, motivating the
design of a second model.

Fig. 2.2 gives the network architecture for model 1. Three neural populations, labelled
externalCS, externalUS, and externalCTX, lie outside AMY and coordinate CS, US, and
CTX inputs; and one neural population labelled fear represents the overall fear response;
its decoded activity constitutes the model’s output. The model contains one central popu-
lation labelled BLA: it is a three-dimensional population whose activities represent mixed
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Figure 2.2: Minimal functional model of fear conditioning in the amygdala. Black text
indicates neural populations containing 100-300 spiking LIF neurons. Coloration indicates
the communication of information (red for US, blue for CS, green for CTX) or the appli-
cation of a particular function (orange for PES learning, pink for direct inhibition). For
simplicity, we draw error as a single population, but it actually consists of three distinct
error populations, each of which implements a distinct learning rule and is gated by a dis-
tinct connection from the gate population. The quantities computed by these populations,
and the conditions in which gate inhibits them, are indicated in the legend.

responses to CS, US, and CTX. Finally, there are three one-dimensional error populations
that are used to update CS and CTX associations, plus a two-dimensional gate population
gate that is used to control learning updates.

Input signals conveying CS, US, and CTX information drive the external populations.
The CS signal has dimensionality dimCS (default value is 3) and is presented for a duration
of 1 second, followed by 1 second of silence (all zeros). The US signal is one-dimensional
(indicating the presence or absence of the US), and is presented alongside the CS during
acquisition training (1s on, then 1s off). The CTX signal has dimensionality dimCTX

(default value is 5) and remains constant during acquisition training, then changes during
extinction training or renewal testing. To generate the vectors corresponding to CS and
CTX, we drew samples from the surfaces of hyperspheres with dimensionality dimCS or
dimCTX: this ensures that all CS and CTX vectors are unit length, which in turn ensures
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that the responses of the external populations to different CS and CTX are approximately
equivalent, even though different subsets of neurons within these populations will activate
as the external cues change.

The external populations all connect to BLA: externalCS and externalCTX connection
weights are initialized to zero, and these weights are learned during acquisition training
or extinction training; while the externalUS connection into BLA simply computes the
identity function (passes the US information directly). During acquisition training, the
error population errorCS-fear computes the difference between the US-induced response of
BLA neurons and the CS-induced response of BLA neurons. If their difference (US minus
CS) is positive, this indicates that a US is currently active, but that BLA is not responding
to the coincident CS. In this case, learning changes connection weights from externalCS to
BLA such that BLA’s CS response increases. This is achieved by using the PES learning
rule (Eq. 1.13) to update decoders on the externalCS to BLA connection based on the
error signal provided by errorCS-fear. Following fear conditioning, presenting the CS alone
should produce a CS-response in BLA.

Unfortunately, with this setup, repeated presentation of the CS without the US will
cause direct unlearning of the CS-US association. This is because errorCS-fear represents
BLA’s US response minus BLA’s CS response: when the former is absent and the latter
is present, this signal will become negative, and a negative value sent to the PES learning
will produce negative changes in the decoders, unlearning the original association. To
prevent this, learning must cease when the CS is present without the US. This can be
achieved in two ways: by initializing the neural tuning curves in errorCS-fear such that this
population only represents positive values (i.e., activities naturally drop to zero when the
error becomes negative); or by placing an inhibitory gate on errorCS-fear, such that it is
externally inhibited when the CS is present in isolation. We chose the later architecture,
for reasons that will become apparent later.

Fig. 2.3 shows how these components interact to implement fear acquisition with re-
peated CS-US pairing. During the baseline test, the CS is presented in isolation, but
neither the BLA nor the fear population shows a response. Next, five CS-US pairings are
presented: BLA’s CS response initially starts at zero, leading to a large error and rapid
updates of the externalCS to BLA connection. By the fourth pairing, the CS response has
risen to meet the US response, and learning becomes negligible as the error goes to zero.
Next, we switch the context from CTX+ to CTX-, then repeatedly apply the CS for a fear
expression test. When the CS is present without the US, the gate becomes active, and the
error population is inhibited: the total lack of activity in errorCS-fear is decoded as zero
error. This prevents unlearning, so CS responses are retained throughout the test.
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Figure 2.3: Fear conditioning in BLA during acquisition training and fear expression test-
ing. The first panel plots the combined fear response produced by the network, while the
second panel indicates when CS, US, and CTX are applied. Plotted CS values indicate the
presence of the multidimensional CS signal, while plotted CTX values are the dot product
between the current CTX and CTX+. The third and fourth panel indicate the decoded
state from the BLA and errorCS-fear populations. During acquisition, PES learning causes
BLA’s CS to rise until the value represented in errorCS-fear (US minus CS) reaches zero.
After the context switch, no US is applied, and the gate population inhibits errorCS-fear,
preventing unlearning.
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Next, we add context learning between externalCTX and BLA. If the combined CS and
CTX responses of BLA is positive, this indicates a combined fear response; if it is zero, this
indicates a lack of fear response. During acquisition, CS responses become high; during
extinction, we need to train BLA’s CTX response to become negative, to suppress this fear
response. The error population errorCTX-safe computes the summation between the BLA’s
CS response and its CTX response, contingent on the presence of the US, and drives PES
learning on the decoders from externalCTX to BLA. As a result, when (CS + CTX) is
positive, the decoders from externalCTX to BLA decrease, causing BLA’s CTX response
to become more negative. However, this learning needs to be contingent on the US not
being present: otherwise, this learning rule will cause contextual safety learning during
acquisition training. To account for this contingency, we again use the gate population to
control learning: gate inhibits errorCTX-safe by default, and only releases inhibition when
the CS is present but the US is not. Finally, BLA’s CS and CTX responses are summed
and sent to the fear population.

Fig. 2.4 shows how this network realizes fear conditioning and extinction at different
stages of training. The baseline and fear acquisition phases proceed as before: the extinc-
tion gate keeps any contextual learning from occurring before the context switch. During
extinction training, the context input is switched to a new high-dimensional vector labelled
“CTX-”, and the CS is presented without an accompanying US. BLA’s CTX response be-
gins at zero, but steadily decreases as errorCTX-safe drives PES learning. By the end of
the extinction phase, BLA’s CTX response has reached a value around -0.5; when added
with the BLA’s CS response of +1.0, this produces only a minor fear response of +0.5.
Changing the learning rate, or the degree of inhibition by the extinction gate, changes
the speed of contextual extinction. Thus, the model may capture individual variability in
contextual fear suppression with only a few parameters.

Finally, we introduce a third learning rule and error population, which also target the
connection between externalCTX and BLA. This third connection allows context-based
fear conditioning, in which BLA learns to directly associate the CTX and US (no CS
is required). Empirical data show that, when a US is intermittently delivered while an
animal is present in CTX+, the animal will produce a moderate fear response whenever it
is returned to CTX+. However, the extinction-based learning rule introduced above does
not support this behavior, since it operates on differences between BLA’s CS and CTX
response. To compensate, we add a third error population, errorCTX-fear, which computes
the difference between BLA’s CTX and US responses, and drives PES learning on the
externalCTX to BLA connection. Unlike the CS-US learning rule, we want this connection
to support both fear responses and safety responses: learning will not be restricted to the
positive domain. Still, we do want fear learning to proceed faster than safety learning,
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Figure 2.4: Fear extinction in BLA. After fear acquisition has occurred and the context
switches from CTX+ to CTX-, errorCTX-safe computes the value (CS + CTX) and drives
PES learning between externalCTX and BLA. This results in a gradual decrease of BLA’s
CTX response, which competes with BLA’s CS response to suppress the overall fear re-
sponse. The gate population inhibits this learning whenever the CS is not present, and
whenever the US is present.
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otherwise BLA may unlearn the CS-US associations during the 1s pauses between pairings
we enforce during acquisition training. We achieve this by once again using the gate
population: gate slightly inhibits errorCTX-fear by default, but inhibition is removed when
the US is present. This lets BLA learn CTX-US associations quickly, but also lets it
unlearn them slowly (if the animal experiences CTX for a long duration without the US
appearing).

Fig. 2.5 shows the behavior of the complete functional model. During acquisition in
CTX+, BLA acquires both a strong CS and a moderate CTX+ response, leading to strong
fear responses. During extinction, BLA acquires a moderate CTX- response that competes
with the CS response to suppress fear, leading to a weak fear response. Following extinction,
we simulate three fear expression tests: we present the CS without the US in CTX+, CTX-,
and a novel CTX. Note that we externally stop all learning during the expression tests, to
eliminate spurious ordering effects from continued learning during testing. As expected,
baseline fear responses are minimal, while responses to the CS in CTX+ are maximal; fear
responses in CTX- are low but nonzero, and fear responses in a novel context are high, but
not as extreme as with CTX+.

We next generated a large dataset for analysis by simulating 100 unique instances of
model 1. When initializing an NEF network, each population and connection is assigned
a random number seed, which is used to sample encoders, gains, biases, etc. from the
appropriate distribution. To generate many unique instances of model 1, we simply choose
a different seed for each model, leading to unique tuning curve distributions within each
neural population. We also assign each model instance a different learning rate for each
of the three learned connections (by again sampling from distributions according to the
random seed): these parameters determine how fast each model instance learns the various
associations. Our models were trained using the same “ABX” protocol, which is a common
protocol in fear conditioning experiments [151]: fear acquisition (5 pairings of CS and
US) occurred in CTX A, followed by fear extinction (10 CS presentations) in CTX B,
followed by tests in some context X. We collected spike data from BLA and measured
fear response by decoding spikes from fear. In the following figures, we plot the variance
of the measured quantities over the 100 model instances, visualized as 95% bootstrapped
confidence intervals.

Fig. 2.6 shows mean fear response in response to the CS in CTX+, CTX-, and CTXn.
As expected, fear responses are highest when CS is presented in CTX+, smallest when CS
is presented in CTX-, and intermediate in a novel CTX. These results align with measured
fear responses in the empirical literature [245, 103].

Fig. 2.7 shows the mean CS-evoked responses of BLA neurons. To generate this plot,
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Figure 2.5: Fear learning in the complete functional model. During acquisition, BLA
learns to associate both CS and CTX+ with US, leading to stronger fear responses. The
contextual switch and extinction trials suppress this response in CTX-. Fear expression is
then tested in three contexts: CTX+, CTX-, and a novel CTX that is partially similar to
both CTX+ and CTX-.
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Figure 2.6: Fear responses across 100 unique instances of model 1. For each model instance,
we initialized the model with a random network seed and three random learning rates for
the three PES learning rules. We trained the models using an ABX experimental protocol,
and measured their fear responses in CTX+, CTX-, and a novel CTX.

we collected spike data from all neurons in BLA, then categorized them based on their
mean activity. We classified a neuron as a “fear neuron” if its CS-evoked mean activity
(a) increased by at least 50% between baseline and the CTX+ test, and (b) decreased by
at least 50% between the CTX+ and CTX- tests. We classified a neuron as an “extinction
neuron” if its CS-evoked mean activity increased by at least 50% between the CTX+
and CTX- tests. We classified a neuron as a “persistent neuron” if its mean activity (a)
increased by at least 50% between baseline and the CTX+ test, and (b) changed by less
than 50% between the CTX+ and CTX- tests. Fig. 2.7 shows that model 1 contains
neurons of all three classes, which have been repeatedly identified in empirical studies
[161, 131].

Lastly, Fig. 2.8 shows how many neurons in BLA were classified according to the above
scheme. We recorded the number of neurons in each class for an individual network, divided
by the total number of neurons in BLA to calculate a normalized value, then plotted the
distribution of this value as a histogram across the 100 unique networks. Estimates of
these numbers vary widely across in empirical experiments and measurement criteria [90],
ranging from 5% at the low end [135] to 40% at the high end [193]; estimates in the range
of 20%-30% are quite common [27, 193]. In our model 1 experiments, we observed that 5%-
20% of simulated neurons could be reliably classified as fear neurons or extinction neurons:
these values are within the ranges reported in the literature.
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Figure 2.7: Mean firing rates of BLA neurons, classified by response profiles, across 100
unique instances of model 1. Note that the differences in mean firing rate between different
experiments (for each neuron type) are largely determined by an arbitrary measurement
threshold in the data analysis: a neuron had to change its firing rate by at least 50% to be
counted towards inclusion in one of these categories.

Figure 2.8: Histograms of the percentage of fear neurons, extinction neurons, and persistent
neurons observed across 100 unique instances of model 1. After performing the neural
response categorization for Fig. 2.7, we recorded the number of neurons in each category,
divided by the total number of neurons in BLA, and recorded the response. This plot
shows how consistent these percentages are across unique model instances.
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2.2.2 Anatomically Detailed Model

Model 1 captured many of the important results in traditional fear learning experiments:
fear responses changed over the course of acquisition and extinction; fear expression varied
based on the experimental protocol used and the test context; and simulated neurons could
naturally be classified into fear neurons, extinction neurons, and persistent neurons. How-
ever, model 1 lacks many anatomical details that define the biological AMY. In particular,
model 1 contained one central population that handled all the incoming connections and
computed all the important quantities. As we discussed in Sec. 2.1.2, the AMY is anatom-
ically divided into several nuclei that receive specific external connections, perform specific
functional roles, and have limited internal and external projections. Furthermore, model
1 does not make any novel experimental predictions: rather, it serves as a demonstration
that our signals, learning rules, and representations are working as intended (i.e., they
reproduce well-established experimental results) in a simplified network

Model 2 aims to recreate the essential anatomical divisions in AMY while preserving the
core functionality of model 1. The purpose of this extension is twofold. First, a successful
implementation of model 2 would show that our functional description of the AMY is
not tied to an oversimplified model of its structure, and would increase the biological
realism of our theory. Second, including more biological detail would open new avenues
for measurement and experimentation, increasing the predictive power and applicability of
our model. As with model 1, we will introduce the components of model 2 in a piecewise
manner to clarify how they act in isolation, then perform a complete analysis on the full
model and make several experimentally testable predictions. The complete model is shown
in Fig. 2.9.

We begin with a model of CS-US association in the LA. LA contains two neural pop-
ulations: LApyr are the excitatory pyramidal neurons, and LAinh are the inhibitory in-
terneurons. Both of these populations are two-dimensional and represent both CS and
US information, which are again delivered through external populations externalCS and
externalUS. LApyr receives both CS and US signals normally. LAinh receives the high-
dimensional CS signal using a fixed connection that detects the presents of any CS: when
a CS is present, LAinh’s CS response will be 1, and when a CS is absent (during every 1s
pause between stimuli), LAinh’s CS response will be zero. Finally, LApyr transmits the US
signal to LAinh. As in model 1, the connection between externalCS and LApyr is learned us-
ing the PES learning rule, leading to a fear acquisition. Error is computed in a population
LAerror and is equal to the difference between LApyr’s CS response and the presence of US;
unlike in model 1, this US information is conveyed via LAinh. Fig. 2.10 shows the dynamics
of fear acquisition in LA. As expected, learning causes LApyr to become responsive to CS,
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Figure 2.9: Anatomically detailed model of fear conditioning in the amygdala. Black text
indicates neural populations. Colored arrows indicate the communication of information
(red for US, blue for CS, green for CTX) or the application of a particular function (orange
for PES learning, pink for direct inhibition). See text for details about the representations
used in each population and the functions computed by each connection.
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Figure 2.10: Dynamics of fear acquisition in model 2; compare to Fig. 2.3 from model 1.

leading to a heightened fear response that persists through the extinction phase.

Next, we add several populations for the neurons found in the central amygdala, CeL
and CeM. Broadly speaking, CeL learns CS-US associations during fear acquisition, and
transmits fear responses from LA to CeM; while CeM is the output nucleus, combining fear
and safety signals from all other populations into a final fear response. In model 2, LApyr

connects to a population called CeLon, which inhibits another population called CeLoff,
which in turn inhibits the final population CeM. During fear acquisition, CeLon learns to
mirror the CS-responsiveness of LApyr: the error population CeLerror calculates the differ-
ence between CeLon’s response and LApyr’s CS response, which drives PES learning in the
usual manner. Following training, CeLon activity inhibits CeLoff, which disinhibits CeM
and creates a fear response. Fig. 2.11 shows an example simulation of this network: CeLon

responses closely mirror LApyr’s CS responses after fear acquisition, and this correspon-
dence is preserved during extinction.

The final components of model 2 are four BLA populations: BLApyr, BLAinh, and
two error populations. BLApyr represents learned responses to CS, US, and CTX; it re-
ceives CS and US information from LApyr and CTX information from externalCTX. The
former connection is fixed (a simple communication channel), and the latter is updated
with PES learning driven by BLAerror-safe and BLAerror-fear, which govern extinction learn-
ing and context-dependent fear conditioning, respectively. BLAinh gates context learning
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Figure 2.11: Fear conditioning produces CS-induced responses in CeLon neurons, which in
turn inhibits CeLoff neurons and disinhibits CeM, causing a fear response.
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by communicating relevant signals and by inhibiting the error populations in appropriate
conditions: it receives CS and US information from BLApyr and transmits these signals to
the learning rules; it lightly inhibits BLAerror-fear unless the US is present, leading to fast
contextual fear acquisition but slow de-acquisition; and it inhibits BLAerror-safe unless CS
is present and no US has occurred in recent history, leading to fear extinction only during
repeated presentations of CS without US. Finally, BLApyr connects to CeM, communicat-
ing both contextual fear and safety signals; the relative weights of these signals, wfear and
wsafe, are free parameters than govern the strength of of contextual fear suppression.

Fig. 2.12 shows the dynamics of neural representations in the complete model during
acquisition and extinction training. BLApyr’s CS response increases during acquisition
as LApyr neurons undergo synaptic plasticity. At the same time, whenever a CS and US
are simultaneously present, BLApyr acquires a fear association between CTX and US. In
CTX+, this CTX-induced fear response combines with the CS-induced fear responses in
BLApyr (and CeLon) to produce maximal levels of freezing. In between CS presentations
during acquisition, model 2 still exhibits moderate fear expression, due to continued fear
activation driven by BLApyr’s CTX+ response. After switching to CTX-, BLApyr’s CTX
response drops back to (approximately) zero: the new context shares few enough features
with CTX+ that it does not activate the same externalCTX neurons, meaning the learned
CTX+ response will not be engaged. What’s more, during extinction training, newly
activated externalCTX neurons (those sensitive to CTX- but not CTX+) will provide the
basis for learning a new association between CTX-, CS, and the absence of US. This
association drives BLApyr’s CTX response to negative values; when this is added to the
CS-induced fear response in CeM, the result is suppressed fear expression.

2.3 Results

To summarize, model 2 contains four major anatomical divisions (LA, BLA, CeL, and
CeM), each of which contains subpopulations of excitatory pyramidal and/or inhibitory
interneurons. The internal and external connectivity between these subpopulations is con-
strained by the known neuroanatomy of AMY. Sensory information (CS and US) are
conveyed through LA, which projects to BLA and CeL, both of which project to CeM
in turn; while context information (CTX) is conveyed to BLA exclusively. Internal con-
nectivity within LA, BLA, and CeL computes the errors between the current responses
of excitatory neurons and the appropriate responses, given the presence or absence of the
US. Error signals are gated by inhibitory subpopulations within each nucleus, which are
laterally connected to the pyramidal neurons. Learning within the network occurs online,
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Figure 2.12: Fear conditioning and extinction in the complete version of model 2. CS-
induced fear responses learned in LApyr and CeLon drive fear expression in CeM, but CTX-
induced safety responses learned in BLApyr during extinction training partially suppress
these responses during testing.
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as CS and/or US are presented to the network while in some CTX. Below, we run a series
of experiments to assess the electrophysiological and behavioral realism of model 2.

2.3.1 Fear Expression

We begin with the standard ABX fear conditioning protocol. We randomly initialized 100
unique instances of model 2 with random network seeds, learning rates, wfear, and wsafe.
We trained these networks in CTX+ with five CS-US pairings, then switched to CTX- and
presented ten unpaired CSs. During testing, we externally inhibited all error populations
to prevent learning, then presented the CS once in either CTX+, CTX-, or a novel CTX.
We recorded the decoded value from CeM as a proxy for model 2’s overall fear response;
we report the mean value of each network averaged over time, then plot the variance in
this value across networks. Fig. 2.13 (right panel) shows the results: the fear response is
zero before training, and is greatest when the model is presented with the CS in CTX+. In
CTX−, the fear response is almost entirely suppressed, but in a novel CTX∗, we observe
a renewed fear response. These results align with behavioral data from animal studies
[245, 103], and are consistent with human data [104] in other fear conditioning paradigms
(Fig. 2.13, left panel).

2.3.2 Neural Responses

We collected spike data from each neuron in model 2 during the tests reported in the
experiment above. As in model 1 and Fig. 2.7, we classified neurons based on differences
between their mean firing rates in during each fear expression test. LApyr neurons were
classified as “up” neurons if their mean activity in the CTX+ test was at least 50% larger
than their mean baseline activity, and as “down” if their mean CTX+ test activity was
at least 50% smaller. Similarly, BLApyr neurons were classified (a) as “fear” neurons if
their CTX+ activity was at least 50% larger than baseline and if their CTX- activity was
at least 50% smaller than CTX+ activity (i.e., the neurons became responsive, then were
suppressed); (b) as “extinction” neurons if CTX- activity was at least 50% larger than
CTX+ activity (i.e., the neurons only became responsive to the safe context); and (c)
“persistent” neurons if CTX+ activity was at least 50% larger than baseline, but then
did not change by more than 50% in CTX- (i.e., fear neurons, without the suppression).
We also measured the mean activities of CeLon and Celoff neurons, which were defined as
separate populations within the network (rather than classified based on mean activities
after the simulation). Fig. 2.14 reports the mean activities of these categorized neurons,
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Figure 2.13: Left: Empirical data on fear expression. In [104], the authors paired CS+

with US and CS− with safety during acquisition, then removed the CS+-US association
during extinction. During a reinstatement test, they administered a few unpaired USs,
then measured fear responses to unpaired CS+. Reported values indicate the differences
between participant CS+ and CS− fear responses, as measured by self-reporting (or US
expectancy, not shown). While this procedure is different than the ABX protocol that
we simulate, the measured fear expression following acquisition, extinction, and testing
follows a similar pattern. Data reproduced from [104] (n = 14); fear response values were
renormalized to fall between 0 and 1. Right: Fear responses across 100 unique model
2 instances. Networks were subjected to acquisition and extinction training then tested
in three different contexts: the acquisition context CTX+, the extinction context CTX−,
or a novel context CTX∗. Consistent with empirical data, fear responses are negligable
before conditioning (control) and greatest in CTX+; fear responses in CTX− are greatly
reduced due to contextual extinction, but reemerge in novel CTX∗. Error bars plot 95%
bootstrapped confidence intervals across model instances.
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Figure 2.14: Mean firing rates of neurons with characteristic response profiles. See text
for details on neuron classification. Population firing rates were measured by convolving
simulated spike trains with a lowpass filter (τ=30ms) and averaging over time and neurons.
Coloration indicates when, and in what context, these measurements were taken: blue bars
show the baseline mean firing rate before conditioning; while orange and green bars show
the mean firing rate following acquisition and extinction training, when the network is
presented with the CS in either the acquisition context (orange) or the extinction context
(green). For each population, differences between colored bars demonstrate characteristic
response profiles: for example, BLA “fear” neurons are initially quiet, activate in response
to the CS presented in CTX+, but are inhibited when the CS is presented in CTX−.

while Fig. 2.15 depicts how many of these neurons were identified (reported as a percent
of the total number of neurons in the respective population).

2.3.3 External Activation or Inactivation

One advantage of simulating an anatomically detailed neural model is the ability to plausi-
bly recreate animal experiments. Many researchers who study fear conditioning use phar-
macology (drug application), lesioning (physically damaging a volume of brain tissue), or
direct brain stimulation (through magnets or electrodes) to externally manipulate neural
activities within AMY. These experiments have provided important insights into AMY’s
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Figure 2.15: Histograms of the number of neurons from each classification across 100 unique
instances of model 2. Learning induces CS-responses within each model, but the number of
affected neurons depends on the network seed and learning rates. The observed number of
fear, extinction, and persistent neurons in model 2 agrees with empirical estimates, which
typically range from 20%-30% [27, 193]

abstract functional neuroanatomy, and have been critical in the development in theoretical
and computational models of fear conditioning. In this section, we attempt to recreate
some of these experiments by directly injecting current into our model neurons and ob-
serving the effects on acquisition, extinction, or expression. In each experiment, a constant
current is delivered to all neurons within one nuclei (LApyr, LAinh, BLApyr, BLAinh, CeL,
or CeM ) during one phase of the standard ABX experiment (control, during acquisition,
during extinction, during the CTX+ test, or during the CTX- test).

Fig. 2.16 reports the results of the inhibition experiments, and Fig. 2.17 reports the
results of the activation experiments. In the majority of cases, externally activating or
inhibiting a population has no effect: for instance, perturbing CeM during training has
no effect on fear responses, and perturbing interneurons in LA or BLA during testing has
no effect on fear expression. For experiments where external inhibition or activation had
a significant effect of fear responses, we have indicated whether these results align with
the empirical data: green circles indicate agreement, red circles indicate disagreement, and
blue circles are unclear. We discuss the specifics below.

Inhibiting pyramidal neurons in LA prevents the learning of CS-US associations dur-
ing acquisition and reduces fear expression during testing [173]. We observed both these
effects in our model (row 2, columns 2,4,5). We also observed that inhibiting LApyr during
extinction impaired contextual learning (row 2, column 3): although such learning occurs
entirely in BLA, our model predicts that healthy LA activity is required to relay stimulus
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Figure 2.16: Fear responses when one AMY nucleus is externally inhibited during one
phase of the ABX experiment. Data is collected from 10 unique model 2 networks, and
mean fear response is plotted on the y-axis. Rows indicate which AMY nucleus was inhib-
ited, columns indicate when the inhibition was applied, and bar coloration indicates when
the fear response was measured. Circled marks indicate whether the result agrees with
empirical evidence (green), disagrees (red), or is ambiguous or untested (blue). Unmarked
data are not significantly different from the control condition.
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information to BLA.

Inhibiting interneurons in LA prevents the learning of CS-US associations. Empirically,
the precise timing of inhibitory spikes is essential for LTP in pyramidal neurons, and
complex networks of inhibition and disinhibition may facilitate pattern separation in LA
and BLA [131]. Although PES is not an spike-timing dependent plasticity rule and does
not explicitly perform pattern separation (but see [22, 19]), we found that inhibiting LAinh

impaired fear acquisition but preserved fear expression (row 3, columns 2,4,5). We also
found that inhibiting LAinh during extinction led to reduced fear expression (row 3, column
3).

Inhibiting pyramidal neurons in BLA prevents extinction and suppresses fear responses
[213]. We observed these effects in our model (row 4, columns 3,4,5). We also found that
inhibiting BLApyr during acquisition impaired fear responses (row 4, column 2), presum-
ably because contextual fear associations were not properly learned. We predict that, in
experiments where contextual cues associate with the US, inhibiting pyramidal neurons in
BLA will impair acquisition.

Inhibiting interneurons in BLA has varied effects on fear conditioning. Optogenetically
inactivating BLA neurons during acquisition appears to facilitate fear learning [131]. This
result disagrees with our simulations, in which inactivating BLAinh impaired fear condi-
tioning (row 5, column 2). One explanation for this discrepancy is that [131] targeted only
a single interneuron cell type (PV neurons); inhibiting other interneuron subtypes (such
as SOM and CCK) might impair fear acquisition, as we observed. In contrast, disrupt-
ing BLA interneurons during extinction, or ablating axoaxonic inhibitory synapses in BLA
[207], appears to impair contextual safety learning [131]; our results support this conclusion
(row 5, column 3).

Inhibiting neurons in CeL removes its default inhibition of CeM, causing unconditioned
fear responses [40]. We also observed this effect (row 6, column 1). Inhibiting CeL during
acquisition has also been shown to impair fear learning, but in our simulations, inactivat-
ing CeL during acquisition had no effect (row 6, column 2). This is surprising, given that
external inhibition should prevent learning in CeL during acquisition. It seems that the
connection between LApyr and CeLon is instead updated during other phases of the experi-
ment. This can occur because CeLerror tries to make CeLon behave like LApyr, independent
of the US, allowing learning during the extinction phase. This is an oversight in our model
that should be addressed in future work.

Finally, inhibiting CeM impairs fear expression, both empirically [40] and in our simu-
lation (row 7, columns 4,5).
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Figure 2.17: Fear responses when external activation is applied to model 2. See Fig. 2.16
for details.

We also experimented with externally activating CeA by directly injecting positive cur-
rent. In [40], the authors showed that applying oxytocin, an excitatory neurotransmitter,
to CeL during acquisition preserves fear learning, but applying it during testing impairs
fear expression. Similarly, in our simulations, we found that exciting CeL impaired expres-
sion but did not affect acquisition (row 2, columns 2,4,5). We also found that activating
CeM produces a spontaneous fear response (row 3, column 1), another result consistent
with empirical data [40].

2.3.4 Fear Generalization

To investigate fear generalization, we trained our model by presenting ten pairs of CS+-US
and ten unpaired CS− (order randomized), turned off learning, and presented a series of
novel stimuli (CS∗). Recall that we represent CS inputs using high-dimensional vectors
that encode complex sensory information; to generate CS− and CS∗, we simply created
more vectors using our original sampling procedure. The similarity between these vectors
and CS+ was calculated using cosine similarity. Fig. 2.18 (right panel) shows how the
model’s fear responses to CS∗ changes as a function of this similarity. As expected, fear
responses decrease as CS∗ becomes more dissimilar to CS+.
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Figure 2.18: Left: Empirical data on fear generalization. In [145], the authors paired the
presentation of a large circle (CS+) with a mild electric shock, and paired the presentation of
a small circle (CS−) with no shock. They then presented circles of intermediary sizes (CS1-
CS4) and measured participant fear responses using a self-reported risk rating (or startle
EMG, not shown). They performed this experiment in both healthy controls (n = 26) and
patients with generalized anxiety disorder (GAD, n = 22). They found that generalization
gradients were more gradual in GAD patients. Data reproduced from [145], and sigmoids
were fit to the data using Scipy’s curve fit function [247]. Right: Fear generalization as
a function of similarity between a novel CS∗ and the CS+. To manipulate the degree of
pattern separation in our model, we adjusted the tuning curves in EXTcs to make neurons
more (or less) sensitive to a broad range of input stimuli. We found that models with
stronger pattern separation exhibited sharper fear generalization gradients, while networks
with weaker pattern separation exhibited more gradual gradients. This trend is consistent
with empirically-observed differences between healthy humans and individuals with anxiety
disorders. Shaded regions indicate 95% bootstrapped confidence intervals across 10 unique
model instances.
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Several empirical experiments have characterized how fear responses to CS∗ decreases
with similarity to CS+. Fig. 2.18 (left panel) reproduces the data from an influential exper-
iment, which studied fear generalization in both healthy control subjects and participants
with generalized anxiety disorder (GAD) [145]. The authors found that the fear responses
of control subjects declined sharply as similarity to CS+ decreased, but that the gradient
for GAD subjects was more gradual. These results are consistent with the hypothesis that
GAD patients overgeneralize fear responses to novel stimuli, prompting a fear response
when CS∗ shares even a few features with the CS+ [56]. Similar trends have been reported
in individuals with panic disorders [146] and post-traumatic stress disorders [147].

One possible explanation for overgeneralized fear responses is that neural tuning curves
in AMY, sensory cortex, and/or hippocampus are insufficiently selective for the CS+: they
continue firing even when presented with dissimilar stimuli [145, 60]. To test the idea
that poor pattern separation smooths the gradient of fear generalization, we modified
the tuning properties of our neurons and repeated the above experiment. In our model,
external stimuli are first represented in EXTcs and EXTctx, which correspond to sensory
cortex and hippocampus. When initializing these populations, we use encoders that evenly
tile the input space, ensuring that all possible stimuli engage a subset of neurons. We also
specify the sparsity of neural representation in EXTcs by setting αi and βi, which effectively
determines how similar a CS input must be to the encoder ei before the neuron begins firing.
We hypothesized that, by varying the sparsity of neurons in EXTcs, we could control the
degree of pattern separation in our model and reproduce the differences between healthy
controls and anxious individuals.

Fig. 2.18 shows generalization gradients for two sparsity values. For each sparsity, we
trained ten unique model instances, and tested each with a set of 100 CS∗s. We observed
that models with sparser neural representations (stronger pattern separation) displayed
sharper generalization gradients. In sparse networks, fear responses declined rapidly as
soon as CS∗ became distinguishable from CS+. In contrast, in networks with weak pattern
separation, fear responses remained high for CS∗s that were similar to CS+, and only
declined as CS∗ began to resemble CS−. These trends are also present in the empirical data.
In healthy controls, fear responses declined rapidly between CS+ and CS2 then plateaued
for CS1 and CS−. In contrast, in GAD participants, fear responses remained high between
CS+ and CS4, then declined gradually until CS−. Similar gradients are apparent in patients
with panic disorders [146] and PTSD [147]. Both the empirical and simulated gradients
seem well-characterized by sigmoid curves, shifted up-down or left-right by the degree of
pattern separation (or patient pathology).

To confirm this characterization, and to demonstrate the scalability of our model to
more complex stimuli, we repeated this generalization experiment for multiple values of the
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CS dimensionality (D) and network sparsity. In order to visualize the entire generalization
gradient, we trained the model with a CS− that was maximally dissimilar to CS+, then
tested 100 CS∗s with intermediate similarities. Fig. 2.19 shows that generalization gradients
appear sigmoidal regardless of stimulus complexity, and that weakening pattern separation
in the model consistently shifts this sigmoidal gradient to the left. Unfortunately, the
empirical data on fear generalization are too sparse to validate our findings: the current
data all use the same experimental paradigm, do not report error bars in the plots, and use
only simple stimuli. We predict that future experiments on fear generalization will observe
the following trends: (1) the relationship between fear response and stimulus similarity
will be well-characterized by a sigmoid curve; (2) the generalization curves of anxious
individuals will be shifted left (with centers towards more dissimilar stimuli) relative to
healthy individuals; and (3) experiments that use simpler stimuli (those that include few
discernible features) will produce more extreme differences between healthy and anxious
individuals (larger shifts to the left).

2.4 Discussion

Now that we have introduced our model, demonstrated its capacity for fear conditioning,
and run several experiments, we discuss how our model relates to other empirical and com-
putational studies of AMY. We begin by evaluating the biological realism of our model,
then summarize its functional capabilities. We then compare our model to other compu-
tational models of AMY, thinking in particular about neurons, representations, learning
rules, and empirical validation; these comparisons are summarized in Table 2.1. We con-
clude by proposing several directions for future research, and integrating our model into
larger cognitive systems.

2.4.1 Biological Realism

One of the major goals of this chapter was to build a biologically detailed model of AMY
with enough functional capacities to simulate associative learning and fear conditioning. To
facilitate this, we first built a simpler model that was capable of the desired functionality:
conditioning, extinction, and renewal of fear associations. By beginning with this model, we
gained insights into which components (in particular, which representations and learning
rules) were necessary, without the added complications of anatomical constraints. We then
deployed these insights into a more complicated model, which captured many biological
features of AMY. We discuss the realistic and unrealistic aspects of our model below.
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Figure 2.19: Simulated fear generalization as a function of stimulus complexity and network
sparsity. As the dimensionalityD of the input stimulus increases, fear generalization curves
maintain their sigmoidal shape, regardless of the degree of pattern separation in the model.
However, differences between the observed generalization gradients in networks with strong
versus weak pattern separation are most obvious for low-complexity stimuli (D = 3), and
are less apparent for high-complexity stimuli (D = 11). In conjunction with the results
from Fig. 2.18, these findings allow us to make three predictions: fear generalization curves
are generally sigmoidal; weaker pattern separation shifts generalization curves to the left,
such that greater fear responses are observed for more dissimilar CS∗s; and experiments
that test simpler stimuli better reveal the differences between individuals with strong and
weak pattern separation.

62



The main biological feature of our model was the simulation of multiple AMY nuclei
with constrained connectivity: we simulated the lateral amygdala (LA), basolateral amyg-
dala (BLA), central lateral amygdala (CeL), and central lateral amygdala (CeM). While
other subdivisions of AMY are possible (for instance, further subdivision of LA and BLA
by cell type or response properties [161]), these four populations are the most frequently
mentioned in theoretical accounts of fear conditioning. We also simulated populations of
neurons that correspond to GABAergic interneurons in LA and BLA. The connectivity
between AMY nuclei was anatomically constrained, with the result that the flow of infor-
mation within AMY was highly structured. This posed an interesting modelling challenge,
but ultimately led to well-defined functional roles for each nucleus.

The learning rules in our model produce neurons whose activities change in response to
the CS following conditioning and/or extinction, including: CS-up and CS-down neurons in
LA; fear neurons, extinction neurons, and persistent neurons in BLA; and CS-up and CS-
down neurons in CeL. Only the latter two were directly implied by the structural divisions
in our model. In Sec. 2.3.2, we showed the differences between mean firing rates of these
neurons as a function of test context, and provided estimates of the relative frequency
of these neurons within their respective populations. While these figures seem broadly
consistent with measurements made in a few empirical experiments [105], direct comparison
is difficult for two reasons. First, we found that the number of neurons classified as, for
example, fear neurons versus extinction neurons, depended on several model parameters
that were arbitrarily chosen. These include the dimensionality of the input signals, the
encoder distribution of AMY neurons, and learning rates. These theoretical quantities
are difficult to define or measure empirically. Second, while measurement of neural spike
trains is easy in simulation, it is difficult in practice. AMY is located deep in the temporal
lobe, making imaging with external tools like fMRI or EEG problematic. Neuroscientists
have traditionally used more invasive techniques to measure neural activity in LA and
BLA, supplemented by modern tools like optogenetics. Unfortunately, even with these
tools, it is difficult to gather a large dataset of neurons whose activities change during
fear conditioning, and to ensure that neural activity is properly measured during baseline,
throughout training, and during testing. Better electrophysiological data are needed to
properly validate the response properties of our simulated neurons.

The third instance of biological realism in our model comes from our “ablation studies”
in Sec. 2.3.3, in which we externally activated or inhibited various nuclei, and observed the
effects on fear conditioning, extinction, and expression. We found that, in almost all cases,
these perturbations produced behavioral effects that aligned with empirical experiments,
in which chemicals like muscimol, or neurotransmitters like oxytocin, were used to inhibit
or excite neurons within specific nuclei. These results support our theoretical account of
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how biology and anatomy relate to function.

Despite these successes, there are many aspects of our model that are clearly unrealistic,
or do not align with the known neuroanatomy of AMY. We simulate leaky-integrate-and-
fire (LIF) spiking neurons; while these neurons provide a better correspondence to biology
than mean field approximations or rate-based rectified linear neurons, they are much less
realistic than neuron models with detailed physiology, such as the Hodgkin-Huxley model.
In particular, LIF neurons (as simulated here) do not reproduce many of the advanced elec-
trophysiological properties observed in AMY neurons, including transient bursting (most
LA neurons fire phasic bursts of spikes when CS is initially presented, but return to low
tonic firing rates even before CS is removed [183]), habituation (neurons in LA and BLA
become exhausted if US or CS is presented too many times), and expectation (neurons
fire in anticipation of a stimuli arriving, rather than in response [169]). Furthermore, we
do not model any physiological differences between pyramidal neurons and inhibitory in-
terneurons: both are instances of the same LIF model class, and use synapses with identical
time constants. A more realistic model would use different neuron models for pyramidal
and inhibitory neurons, and would enforce Dale’s principle when connecting these popu-
lations to one another, ideally using synapse models with sufficient complexity to account
for neuromodulation. We explore many of these ideas in Ch. 5; future work should apply
the insights gained there back to the AMY model presented here.

Many recent accounts have highlighted the importance of inhibitory interneurons for
fear conditioning [153, 131]. Inhibitory neurons may (a) provide a “brake” that prevents
runaway excitation in pyramidal neurons and controls the magnitude of learning, (b) be
a site of synaptic plasticity that contributes to fear or extinction memories, (c) facilitate
consolidation of extinction memories during experience replay, or (d) encourage pattern
separation within AMY nuclei. In our model, inhibitory neurons merely gate learning
based on co-occurance of the CS and US, inhibiting the error populations (and prevent-
ing synaptic plasticity) in order to prevent inappropriate learning (e.g., unlearning fear
associations or learning contextual safety while a US is present). Clearly, our inhibitory
neurons lack the rich functional capabilities that others have attributed to them. While
we acknowledge the importance of these inhibitory circuits for normal AMY function, we
were unable to devise a computationally- or functionally-specific theory of how they might
realize these capabilities. While some other computational models include interneuron
populations [140, 160], these models tend to focus on how anatomical connectivity pro-
duces empirically-observed patterns of neural activity, and place less emphasis on how this
connectivity drives learning and behavior; as such, they do not provide functional justifi-
cation for these neurons. We believe that specifying and modelling the functional role of
inhibitory circuits is an important topic for future research.
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Given this lack of functionality, it is not surprising that externally activating or inac-
tivating inhibitory neurons in our model does not always have the expected effect. We
believe there are three reasons for this. First, our interneurons do not control the de-
fault activity of pyramidal neurons, so inactivating them does not release inhibition and
produce stronger learning [131]. While we could have implemented this lateral inhibition
in our model, doing so would not have served any purpose: an inhibitory brake is only
necessary if (a) excitatory neurons are recurrently connected and inhibition would prevent
runaway excitation, or (b) external systems need to control the learning rate by pulling the
brake. Second, we do not model inhibitory microcircuits in LA or BLA; interneurons of
different types (those expressing various proteins and receptors, including parvalbumin, so-
matostain, and or cholecystokinin) appear to inhibit one another, and pyramidal neurons,
in convoluted ways. Different interneuron types likely play specific roles in encouraging
pattern separation and coordinating memory consolidation. Externally inhibiting different
cell types consequently produces different effects; our model, which ignores these micro-
circuits, cannot capture these effects. Third, we do not model learning within inhibitory
neurons; some synaptic plasticity between BLA pyramidal and interneurons has been ob-
served empirically, but its mechanisms and functional roles are unclear. Future work that
seeks to simultaneously realize fear conditioning, extinction, pattern separation, and long-
term consolidation (in an anatomical circuit where excitatory and inhibitory neurons are
laterally connected) will have to contend with the difficulty of managing many learning
rules acting in parallel.

Our model also does not simulate recurrent connectivity between AMY and other brain
structures, such as BG, sensory cortex, MTL, or hippocampus. Such connections have been
featured in other models [160, 183, 114], whose focus is either higher-level (how AMY as-
signs salience in a larger cognitive circuit) or lower-level (reproducing electrophysiology).
These connections appear to be important for contextual representation and memory con-
solidation, especially with regards to network oscillations in particular frequency bands
[27, 248]. Recent NEF models have used hippocampal representations and network oscil-
lations to perform navigation tasks guided by contextual cues [58, 57, 223]; we hope to
integrate these mechanisms into future versions of the model, with the goal of connecting
the complex contextual representations in MTL with the associative learning in AMY.

Finally, our learning rules are implemented online based on errors computed elsewhere
in the network. While there is abundant evidence for such error signals throughout the
brain [21] and within AMY specifically [142, 163, 171], many researchers believe that fear
conditioning is driven (at least partly) by the precise timing of spikes incident on the
dendrites [131, 27, 193]. While decoded US and CS signals must be concurrently present
for learning to occur in our model, the precise timing of spikes representing these quantities
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is not essential for learning. Future empirical work should continue to investigate whether
spiking timing is a key component of associative learning in AMY.

2.4.2 Functional Capacity

The other major goal of our AMY model was to reproduce a variety of behavioral data
from fear conditioning experiments. We represented external signals as high-dimensional
vectors: one was labelled as the CS and relayed to LA via cortex; while the other was
labelled as the CTX and related to BLA via MTL. In addition, a low-dimensional signal
representing an aversive stimulus (the US) was periodically sent to LA. The task of the
AMY network was to learn associations between the CS, CTX, and US, and to generate
the fear response only when CS and CTX together predicted the onset of the US. Through
the action of three error-driven learning rules acting in LA, BLA, and CeL, our model
successfully learned these associations, exhibiting behavior that reproduced many effects
observed in empirical animal experiments.

In our experiments, CS-US and CTX-US associations were presented during acquisition,
but during testing only the CS or CTX was presented. As expected, our model produced
the fear response during these tests. Next, we performed extinction training: we presented
the CS without the US in a new CTX, and observed our model gradually suppress its fear
response, as it learned that the new CTX- was associated with safety from the US. Though
we did not report these results, we tested several extinction protocols: the classic ABX
experiment, as well as “AAX”, in which extinction occurs in the same context as acquisition
and testing occurs in a new context X. We also investigated CTX-only acquisition and
extinction using both these protocols: in these experiments, no CS was presented, and
the model learned that CTX itself predicted danger or safety. In all these paradigms, we
observed appropriate test behavior in our models: fear responses in the extinction context
(with or without CS) were suppressed, fear responses in the acquisition context remained
high, and fear responses in novel context were intermediate. These results align with
the relative magnitude of fear responses in animal experiments that include acquisition,
extinction, and renewal/test phases [245, 103].

We also showed that our model generalized its learned fear associations to similar stim-
uli and contexts. One major advantage of building the model in the NEF is that external
information with rich semantic content can be represented and processed by the neural
network. We arbitrarily chose our CS information to be three-dimensional, and our CTX
information to be five-dimensional. We used normalized vectors within these spaces to
represent various neural stimuli and contexts; we presented different combinations of these
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vectors to the model during training and testing. After showing that the model produced
a fear response to one particular vector, we investigated how this association generalized
to similar vectors in the input space. We found that, when neural representations in our
model were sufficiently sparse (i.e., realized strong pattern separation), that our general-
ization gradients agreed with empirical gradients that were observed in fear conditioning
experiments [144, 59]: both simulated and empirical fear responses decline sigmoidally
as similarity to CS+ decreases. This result is broadly consistent with generalization gra-
dients across animal groups, behavioral contexts, sensory modalities, and learning styles
[82]. Interestingly, we found that when we decreased the sparsity of neural representations
(i.e., realized weak pattern separation), our generalization curves shifted left, extending the
fear response to more dissimilar stimuli. These results resemble the generalization cures
observed in patients with fear-related disorders, including generalized anxiety disorders,
post-traumatic stress disorder, and panic disorders [60, 56]. Unfortunately, the empirical
data on fear generalization is relatively sparse, being limited to a few research groups and
task designs. Our computational model thus provides initial support for the theory that
these disorders are mediated by weaker pattern separation in areas such as MTL, HIPP,
and AMY, and provides quantitative predictions about the shape and magnitude of these
curves that can be tested in future empirical studies.

While generalization would ideally emerge from any AMY model that learns fear as-
sociations between complex external stimuli, it is by no means assured, and (in fact) has
rarely been demonstrated. Firstly, computational models that use simple representations
cannot smoothly “compare” a novel CS to CS+. If a model represents CS inputs as a
one-dimensional “on/off” signal, it cannot represent novel stimuli at all; and if a model
represents CS inputs as “one-hot” vectors, every novel CS will be maximally dissimilar
from CS+. Secondly, the simulated connection that learns fear associations may not sup-
port generalization: depending on the response curves of neurons in the model, and the
mechanics of the learning rules, learning may not extend to novel stimuli not seen in the
training dataset. In our model, the connection from the external populations represent-
ing CS/CTX, which are high-dimensional, to the LA/BLA, which are low-dimensional,
necessarily requires dimensionality reduction. Before running our generalization experi-
ments, we did not know whether this reduction would discard the information required for
generalization. We were pleasantly surprised to discover that the NEF and PES learning
rules, which account for the rich information encoded in spike trains originating from a
diversely-tuned population of neurons, preserve the relevant information. We discuss this
point further in Sec. 2.4.3
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2.4.3 Comparison to Other Computational Models

The study of fear conditioning in the AMY has a long history of theoretical and compu-
tational work. Here, we discuss how these models compare to our model with respect to
particular features, such as neural representation and empirical validation. These compar-
isons show that our model shares many features with existing models, but recombines and
extends them in interesting ways.

Neural Detail

One of the key differences between brain models is how neurons are represented and sim-
ulated. In [35], the authors use the DANA library for neuronal representation to simulate
acquisition, extinction, and renewal in a simplified AMY circuit; each neuron in the popula-
tion implements a dynamical equation governed by the mean-field formalism, and outputs
a real-valued firing rate. Each population (in LA, BA, or CeL) contains either one or ten
neurons. Similarity, [158] simulates second-order conditioning in the interactions between
LA, BLA, and CeA; each of these populations contain four neurons whose dynamics are
governed by weighted input, a leak term, and a tanh nonlinearity. In [171], the authors
simulate nodes in HIPP, vmPFC, BLA, ITC, and CeA with weighted inputs and logistic
nonlinearities, and perturb connections weights with Gaussian noise to simulate neuronal
variability. These models seek to explain fear conditioning at a high-level of abstraction,
but bear little resemblance to the physical substrate of AMY. In contrast, [160] present
an anatomically-detailed model that simulate a highly-complex circuit of firing rate neu-
rons within LA, BA, PL, IL, CeL, ITC, and CeM. Each population in the model contains
subpopulations of paravalbumin interneurons, somatostatin interneurons, and pyramidal
neurons, whose membrane time constants and firing rates are calibrated against empiri-
cal data, and whose connectivity is tightly constrained by the known neuroanatomy. The
authors show that synaptic changes induced by two forms of learning produce activity
patterns that reproduce empirical response curves.

Several spiking neural networks have also simulated learning and salience detection in
AMY. A model by [248] simulated both a mean-field and spiking version of a BLA network,
which includes excitatory and inhibitory populations of spiking LIF neurons that compete
through lateral inhibition. Similarly, [114] simulated both a firing-rate and spiking model
of salience detection, attentional control, and planning that involves the AMY, thalamus,
and cortex. Their AMY model includes LA, BA, and a small microcircuit of excitatory and
inhibitory cells, and their spiking neurons were simulated using the Izhikevhich equations.
Two recent models of AMY have also been developed using the NEF. In [75], the author
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simulated an AMY circuit that contains LA, BLA and CeA along with a visual system,
PFC, and BG; and in [258], the author developed a family of AMY models that simulate
connections between LA, BA, CeA, and external systems for working memory and decision
making. Both of these NEF models used LIF neurons, but do not model learning.

A third class of models simulate AMY neurons in greater biological detail. These models
tend to place greater emphasis on recreating electrophysiological data than on reproducing
behavioral results. In a model of AMY-PFC interaction, [183] used conductance-based
Hodgkin-Huxley cells to simulate pyramidal neurons and interneurons in LA, BLA, CeA,
PL, and IL; the authors showed that dopamine and norepinephrine release in BLA (through
interaction with PL) helps transform transient LA responses into sustained fear responses.
They reproduced CS-induced activity in PL, with and without pharmacological perturba-
tion. In a model of fear acquisition and extinction in LA, [141] built a small microcircuit
consisting of eight pyramidal cells and two interneurons: the cell and synapse models were
highly realisitic, and the application of a Hebbian learning rule produced both conditioning
and extinction, as evidenced by changes in neural activity. Finally, in a model of fear ac-
quisition in LA, [126] built a network containing detailed pyramidal cells and interneurons;
they showed that synaptic plasticy within LA (from connections originating in cortex and
thalamus) was primarily responsible for fear learning, with synapses between LA neurons
playing a minor role.

In our model, we simulate a total of fourteen neural populations across LA, BLA,
CeL, CeM, Cortex, and HIPP. Each population contains 100-500 spiking LIF neurons that
are sensitive to different combinations of the CS, CTX, and US. Neurons are connected
by current-based exponential synapses, and synaptic weights are updated using an error-
driven learning rule. We simulate the behavioral changes associated with fear conditioning,
extinction, and generalization, measure the impact of externally inactivating neural popu-
lations, and observe changes in our neural activities that resemble the response profiles of
neurons in-vivo. Our model therefore captures both the symbolic and functional properties
of simpler models, and many of the anatomical and electrophysiological properties of the
detailed models.

Representation

One feature that sets our model apart from most other models of AMY fear conditioning
are the complex representations that we support. In many models, inputs to the network
are one-dimensional signals delivered as external current to model neurons [141, 126, 183,
160, 248]. These inputs obviously cannot contain much information: they simply relay
whether a CS/US is present or absent. Of these models, only [248] attempts to model
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contextual inputs; they do so by sending a one-dimensional on/off signal for CTX-A into
one population, and another on/off signal for CTX-B into another population.

Other models use “one-hot” vectors to represent sensory inputs. The model by [158]
contains four input neurons, which code for the presence or absence of the four one-
dimensional inputs (light, tone, food seen, and food taste). LA and BLA in this model
also contain four neurons each, such that internal representations are rigidly specified by
the connectivity of the model. In a slightly more interesting approach, the authors of [35]
generate input vectors representing inputs from cortex, HIPP, and IL: these vectors are
ten-dimensional vectors, with one dimension set to the maximum value (1 or 1.5), and the
others set to a minimum value (0 or 0.1). These signals are conveyed to LA and BLA,
which have 10 neurons; it is unclear whether the dimensionality and number of neurons
are set identically to support one-hot representation internally (strong pattern separation),
or whether the Rescorla-Wagner learning rule implemented in the model produces mixed
representations internally (weak pattern separation). In a much larger-scale model, [114]
uses a one-dimensional feature map to represent sensory inputs: each feature has a cor-
responding neuron in the map, and topographical connections continue to support these
one-hot representations throughout the model (although mixing does occur). Finally, the
model of [171] uses a 32-bit input stimulus, which contains information about one CS, two
CTXs, and one US (each stimulus is an 8-bit vector). However, in the input layer of the
network, the representation of different stimuli are orthogonal, such that different stimuli
are encoded by different nodes.

The only models we encountered that support feature-rich representations (internally
and externally) are the NEF models. The model in [75] uses a dedicated visual system
to extract a seven-dimensional emotional state from an input image; these visual neurons
pass information to LA, collapsing the representation down to a two-dimensional emotional
representation. This representation is used elsewhere in the model, eventually eliciting a
behavioral response based on winner-take-all competition. The model in [258] also uses
high-dimensional input representations to drive a salience-detection and motivational cir-
cuit, which uses a number of brain areas, including AMY. Both these models support
real-world applications, including emotional analysis from images and robot navigation,
demonstrating that high-dimensional representations have practical utility.

Our models represent CS and CTX as high-dimensional vectors that drive spiking
activity in neural populations outside amygdala according to Eq. 1.2. Input vectors, as
well as the encoders in the external populations, are drawn by sampling vectors from an N-
dimensional hypersphere: doing so ensures that vectors are normalized to unit length, and
increases the probability that at least one neuron will respond to any given input. Within
AMY, activities in LA and BLA represent the learned response to CS and CTX inputs;
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rather than represent these inputs directly, our AMY nuclei encode signals that indicate the
“salience” of the current input. By framing AMY nuclei representations in this salience-
space, we were able to formulate error-driven learning rules: if the salience estimate is low
when it should be high (or visa versa), the connection between the external population and
the AMY nucleus must be updated accordingly. The advantage of the PES learning rule,
as opposed to a Hebbian learning rule, is that it operates in the high-dimensional space of
the input signal, rather than the low-dimensional space of neural activity and weights. PES
leverages knowledge about the existing representational properties of AMY neurons (ei)
and the input space (di) to update entries in the weight matrix based on how much they
contribute to the error. This helps preserve important information about the input feature
space when external inputs are collapsed into AMY salience representations. One natural
consequence is that AMY’s salience response generalizes to similar inputs: as CS and CTX
change, the salience response changes proportionally, leading to a smooth generalization
gradient. This is why our model can be applied to fear generalization experiments without
any additional mechanisms.

Another notable feature of our model is that it naturally produces the neural responses
seen in LA and BLA. Many computational models treat BLA fear and extinction neurons
as separate populations that are connected via an inhibitory microcircuit [35, 62, 160]:
their CS-induced responses are typically a direct result of this connectivity and the unique
external signals they receive. In our model, all pyramidal neurons in LA and BLA receive
the same information from the external populations (although the connection weights are
initialized to zero before training), and do not receive direct projections from BLA in-
hibitory neurons. We found that the CS-responses of our LA and BLA neurons naturally
diverge as learning proceeds: some neurons become more responsive to CS or CTX, and
some become less responsive. This simplified picture of AMY connectivity, which does not
require interneurons as intermediary controllers between BLA interneurons, may provide a
more parsimonious picture of AMY representation; more comparative computational work
and validating empirical experiments are needed to resolve this question.

Learning Rules

Computational models of AMY use a variety of learning rules for associative learning and
salience detection. In biophysical models, Hebbian learning is common: these learning
rules depend on local calcium concentrations, which vary based on pre- and postsynaptic
activity [183, 141, 126]. Rate-based Hebbian learning, where weight updates explicitly
depend on pre- and postsynaptic firing rates, are also common in both biological and
mathematical models [160, 171, 158]. Other models extend rate-based Hebbian learning
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to include an error term, such that the learning rules resemble the Rescorla-Wagner rule
[35] or reinforcement learning [114]. In other models, synaptic update is governed by
coincident arrival of CS and CTX US inputs [248]. Finally, several computational models
do not simulate learning at all, but are instead focused on salience detection within larger
networks [75, 258].

Our model uses a learning rule that differs from all of these mechanisms, but has been
used in many other cognitive models [64, 189, 249]. PES learning (Eq.1.13) is not Heb-
bian, because it does not explicitly depend on postsynaptic activity. Instead, it is driven by
an error signal and by presynaptic activity, and because it updates weights in a factorized
manner (Eq. 1.5). We discussed above how PES facilitates feature-rich associative learning
that produces conditioned fear responses, context-dependent extinction, and graded fear
responses. These functional results validate the use of PES in models of fear conditioning.
What’s more, while Hebbian learning and STDP are often touted for their biological plau-
sibility, PES may also be feasibly implemented in a biological networks. One could even
make the argument that PES learning in our model resembles Hebbian learning, insofar
as it uses pre- and postsynaptic activities to determine weight updates. Suppose that our
error populations, rather than being separate neural populations, were physically located
within the dendritic tree of pyramidal neurons in LA and BLA. These units would receive
feedback from the pyramidal cells themselves (postsynaptic activity conveying CS or CTX
responses), feedforward signals from interneurons (conveying US information and gating
learning), and feedforward signals from external populations (presynaptic activity convey-
ing CS and CTX information). In this way, the dendrites would have all the information
needed to realize PES learning, and would only need to perform simple computations (sub-
traction and multiplication) to update weights. While an exploration of this perspective
is outside the scope of this chapter, it does suggest that learning in our model may not be
so different from the plasticity mechanisms used in the models above.

2.4.4 Empirical Validation

The final dimension for comparing models of AMY is validation with empirical data. Of
course, different models are built at different scales and seek to explain different phe-
nomenon, so we should not expect any model to reproduce the full spectrum of empirical
data available in fear conditioning experiments. Still, noting whether a model seeks to
validate its findings through empirical comparison, and identifying which classes of data it
can and cannot explain, is an important task for any theoretical or computational model.

The AMY models discussed above fall into two categories: those that estimate salience
and coordinate other cognitive systems; and those that learn fear and safety associations

72



between stimuli. Models in the former class [114, 75, 258] have traditionally focused less
on empirical data, and more on describing AMY’s functionality within a larger cognitive
system. This form of validation is critically important, as it demonstrates how AMY
contributes to embodied cognition, but it cannot really be labelled “empirical”, since it
does not attempt to recreate specific neural or behavioral data from biological systems.

The most common form of validation in AMY models is the reproduction of the neu-
ral activities and behaviors associated with fear conditioning. Many of the above models
showed that learning within AMY leads to changes in the CS-responsiveness of individual
neurons [141, 126, 183, 248, 160, 171]. Specifically, these models identified simulated neu-
rons whose activities increased following conditioning, or decreased following extinction.
In these models, high-level validation compared mean CS-induced activities throughout
the experiment, while low-level validation compared simulated spike trains to empirical
data. Other computational models decoded neural activities to show a change in behav-
ioral fear responses following training [141, 35]. Here, high-level validation compared mean
fear responses throughout the experiment, and low-level validation compared learning tra-
jectories sampled after each CS presentation. All of the above fear conditioning models
also examined extinction, but only a subset investigated the relationship between context
and extinction [35, 171]; the other models either do not have the representational power
to consider multiple contexts, or permit extinction to unlearn the original association.

Another common means of empirical validation involves simulated experiments in which
specific neurons or populations are externally inhibited. Several of the models described
above [171, 248, 183] externally inactivated parts of the model (via simulated GABAergic
inhibition or physical lesioning), and examined the effects on either neural activity, or
on behavioral responses. These comparisons were usually qualitative, but the biophysical
models directly compared simulated spike data to electrophysiological data [183]. Finally,
some models were not concerned with empirical validation at all [158]; these models were
either too biologically simple to compare to empirical data, or simply did not make an
effort at direct comparison.

Our model is validated against a wide variety of empirical data: we (a) identified
neurons whose CS-induced neural activity changes following conditioning and extinction,
comparing their mean firing rates and counting the number of neurons in each category;
(b) decoded neural activities to estimate fear responses, and showed how they differed in
various test contexts; and (c) simulated external excitation and inhibition, and observed
the effects on fear responses. In all these cases, we provided citations for empirical stud-
ies that qualitatively support our results. Finally, we (d) simulated fear generalizations
experiments, observing how the presentation of novel stimuli and contexts produced gra-
dients of fear responses. We also varied neuron parameters to induce different degrees of
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pattern separation in our neurons, and compared their generalization curves. We quanti-
tatively compared these data to recent empirical experiments involving fear generalization
in healthy and anxious patients. Among the models of fear conditioning in AMY that we
studied, ours is the only model that investigates the origins and effects of fear generalization
(although a few models of generalization in HIPP and cortex do exist, see [8, 132]).

2.4.5 Summary

To summarize, our AMY model extends previous computational models of fear condition-
ing in several respects. First, in contrast to AMY models that investigate the interaction of
two or three neural populations, we recreate the detailed anatomy of multiple neural popu-
lations in AMY, mPFC, cortex, and basal ganglia: the connections between our excitatory
populations are anatomically realistic, and we simulate inhibitory populations that control
the dynamics of fear conditioning. Second, rather than using a Hebbian learning rule, our
model uses an online error-driven learning rule: this mechanism realizes associative learn-
ing at a symbolic level of abstraction, and its dynamics naturally produce neural responses
that must be hard-coded in other models. Third, we used sophisticated representation of
fear stimuli and environmental contexts: while other models use low-dimensional inputs to
represent external information, we use high-dimensional inputs to encode multiple features
of the external world. These representations, when realized in an anatomically-realistic
network, allow us to simulate a variety of fear conditioning paradigms, ranging from tra-
ditional acquisition and extinction experiments, to lesion studies, to fear generalization
experiments, with a single model. Finally, while most computational models compare
their results to only a single class of empirical data, we validate our model using both
neural and behavioral data; we also identify gaps in our understanding of fear conditioning
and make predictions about the outcome of future experiments.

2.5 Conclusion

In this chapter, we presented a computational model of the amygdala (AMY) that learns
to associate neural stimuli (CS) and environmental contexts (CTX) with the presence or
absence of a negative event (US). Our model recreates many anatomical features of AMY,
notably the divisions and connections between its nuclei, and the response properties of its
pyramidal and inhibitory neurons. We trained the model using online, error-driven learning
rules that update the connection weights between brain areas like cortex and hippocampus,
which represent input stimuli, and the lateral or basolateral amygdala. These nuclei excited
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neurons in the central amygdala, generating or suppressing fear responses as appropriate.
We ran numerous experiments on the model, identifying neurons with different emergent
response profiles, measuring fear expression in various test contexts, externally inactivating
parts of the model, and observing how fear responses varied as we presented the model
with novel stimuli. We found that many of our results were consistent with empirical data,
and discussed the similarities and differences between our model and other computational
models of AMY.

Future work can extend this model in many directions. In our simulations, we presented
the US concurrently with the CS; the simultaneous presence of these signals was required
for learning in our model. However, in many empirical experiments, the US is presented
for a short duration following the cessation of the CS. Our model cannot currently handle
this experimental protocol. Luckily, recent work using the NEF has shown that associative
learning between neutral and aversive stimuli is possible when the US is delayed by a
fixed duration, for instance in eyeblink conditioning experiments [226]. Our model also
does not exhibit effects such as secondary conditioning (pairing US with CS1, then pairing
CS2 with CS1, will produce a fear response to CS2), spontaneous recovery (forgetting
contextual safety associations are slowly forgotten over time), reinstatement (presenting
the US in CTX- abolishes contextual safety associations), or rapid reacquisition (replaying
a previously-paired CS-US stimuli leads to faster learning than a novel CS-US pair).

Beyond these specific effects, there are a number of high-level functional shortcomings
of our model. Notably, the contextual fear associations learned in our model do not support
complex interactions between the cue and the context. Our model learns that, in CTX-,
when the CS is present but the US is not, that CTX- is safe. While this learning rule
uses the presence of the CS to guide learning, the subsequent association depends only on
the CTX, not on joint information about the CTX and the CS. A more interesting and
versatile association might learn that the combined presence of CTX- and CS+ predicts
safety, but that CTX- alone does not imply safety. A related shortcoming is that represen-
tations within AMY nuclei are quite simple, indicating only whether various combinations
of external stimuli are salient or not. Some evidence suggests that AMY itself is involved
in pattern separation, and it seems likely that the brain uses AMY to judge salience in
a multi-dimensional space (i.e., with respect to several independent goals). Significant
functional changes would be required to support these capacities.

In the opposite direction, the biological realism of our AMY model could be expanded
in two ways. First, we could replace our LIF neurons with detailed neuron models whose
electrophysiology better matched the idiosyncrasies of pyramidal neurons and GABAergic
interneurons. This would allow biophysical manipulations, such as the direct injection of
dopamine, norephinerphine, or oxytocin to the model; currently, these perturbations can
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only be simulated at an abstract level, for instance by injecting current or changing the
synaptic gains. Second, we could begin to model inhibitory microcircuits in LA and BLA
with greater fidelity, which would open avenues for investigating the role of interneurons in
pattern separation and memory consolidation. In particular, it would be interesting to see
whether the NEF learning rule proposed by [29], which changes neural encoders to facilitate
associative memory and pattern separation, could be realized within an anatomically-
detailed network.

Finally, our AMY model should be embedded in larger cognitive networks. Many
NEF models combine several dedicated cognitive modules into larger networks in order
to perform complex cognitive tasks and reproduce empirical data [64, 66, 38]. Other
AMY models have shown how this region may help assign salience within a larger task-
performing network [75, 258, 114]. In the remainder of this thesis, we explore how our
AMY model might interface with other cognitive systems, particularly those related to
social cognition. For instance, in Ch. 3, we discuss how emotional systems like AMY may
be used to module decision making systems, accelerating their dynamics to produce faster
decisions at the expense of accuracy; and in Ch. 5, we discuss how AMY is part of a
cognitive network that uses associative learning to estimate the trustworthiness of other
individuals based on prior experience. Within the fear conditioning paradigm, it would
be interesting to investigate how cortical areas differentiate a world full of stimuli into
isolated stimuli and broader contexts, or to study how higher-level reasoning about causal
relationships and object categories may influence the fear conditioning process. Building
a model of how fear associations and salience detection modulate attention and sensory
discrimination, two functions that are frequently attributed to AMY, could be particularly
important for understanding how AMY contributes to emotional processing in general. We
hope to investigate many of these topics in future work.
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Table 2.1: Comparison between computational models of AMY. See Sec. 2.4.3 for details.

Reference Neurons Representation Learning Rules Validation
Carre [35] mean-field one-hot Hebbian (error) behavior

context
Mannella [158] rate-based one-hot Hebbian (rate) none
Moustafa [171] rate-based one-hot Hebbian (rate) activity

context
ablation

Materra [160] rate-based current-based Hebbian (rate) activity
Vlachos [248] spiking current-based signal timing activity

ablation
John [114] spiking one-hot Hebbian (error) none
Fischl [75] spiking high-dimensional none none
Zelgen [258] spiking high-dimensional none none
Pendyam [183] biophysical current-based Hebbian (calcium) activity

ablation
Li [141] biophysical current-based Hebbian (calcium) activity

behavior
Kim [126] biophysical current-based Hebbian (calcium) activity
Duggins spiking high-dimensional error activity

ablation
behavior
context
generaliza-
tion
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Chapter 3

Biologically Detailed Models and
Working Memory

Author’s Note: the majority of content in this chapter was previously published as a
journal article in PLOS Computational Biology [54]. Code is available on GitHub.

3.1 Introduction

Biological detail is an important concern for neural models that seek to bridge the gap
between neural and cognitive processes. By including synaptic and cellular mechanisms in
cognitive models, researchers may investigate aspects of psychology, such as biologically-
grounded mental disorders and their pharmacological treatment, that often cannot be
studied with simpler models. While the benefits of modelling biological detail have been
widely recognized within the computational neuroscience community, doing so makes model
construction and analysis significantly more difficult. As a consequence, most researchers
compromise on either biological realism or cognitive capacity when building cognitive mod-
els. For example, cognitive architectures like ACT-R [6] have produced numerous models
of cognition that reproduce behavioral data, but these models use production rules and
activation functions that abstract away from the brain’s neural substrate, limiting their
ability to investigate many neurological phenomenon. At the opposite extreme, the Human
Brain Project [159] has produced models that recreate the anatomy and spiking behavior of
entire cortical microcircuits, but these models do not perform recognizable neural computa-
tions or produce behavior, limiting their utility to investigate many cognitive phenomenon.
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To study the biological foundations of the human brain and design biologically-inspired
cognitive algorithms, we need models that unify biophysical detail and cognitive capacity.

Two aspects of biological detail may be especially important in understanding learning
and decision making: the interplay between excitatory and inhibitory neurons, and the role
of modulatory neurotransmitters, or “neuromodulators”. In many social cognitive areas,
GABAergic interneurons play an important role in learning, consolidation, and control
[109]. To fully understand how they accomplish these functional capabilities, we need to
build models that specifically simulate the biological details of these distinctive neurons.
In Ch. 2, we saw that a minimal functional model of the amygdala produced several
behavioral results from the fear conditioning literature, but an anatomically-detailed model
that simulated the interplay of pyramidal cells and interneurons reproduced a wider class of
empirical data [153]. In other brain systems, the rapid dynamics of the neurotransmitter
GABA strongly influences network dynamics through inhibitory control and gating: in
both Ch. 4 and 5, we build models that require fast and precise inhibition to control the
output of individual populations. Neuromodulators also play an important role in social
cognition. Many emotional systems use hormonal signals to broadly modulate cognition
in the cortex, for instance by using oxytocin to manipulate prosocial evaluations made in
AMY [148]. Furthermore, many learning systems rely on modulators like dopamine (DA) to
facilitate synaptic plasticity [50]. The cellular action of these neuromodulators goes beyond
simple excitation and inhibition, altering cellular states in complex ways that change how
networks process information. While the exact mechanisms and functional implications of
these changes remain unclear, it is likely that modulators like DA, seratonin (5HT), and
norepinephrine (NE) play an important but functionally (and biophysically) subtle role in
social cognition [13, 238, 234].

Several existing frameworks leverage biological neural networks to perform cognitive
tasks. Of course, the NEF and SPA use large-scale, biologically-constrained spiking neural
networks to study the functional aspects of cognition. Similarly, the Leabra cognitive
architecture [179] uses biologically-plausible learning rules to capture the functionality of
major cognitive systems. Other approaches emphasize dynamics within neural networks,
which, when properly controlled, can be used to perform mathematical transformations of
represented information and issue behavioral commands. The efficient coding hypothesis
[48] uses cortical connectivity to produce controlled spiking networks, while FORCE [229]
uses online learning rules in recurrent networks to implement dynamical systems. While
each of these frameworks emphasizes the role of certain biological features for cognition,
little attention has been paid to the complexity of individual neurons, the fundamental unit
in most intelligent systems. For the most part, these architectures assume simple models
for neurons, ranging from rate-mode neural assemblies to LIF point neurons.
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In this chapter, we propose a method for training and simulating networks that contain
biologically-detailed neuron models and perform useful cognitive operations. We label this
method “oracle-supervised Neural Engineering Framework” (osNEF): it is an extension of
core NEF principles that uses an “oracle”, a parallel network that is used during training
to supervise the learning process. One major advantage of osNEF is that it treats the
neuron model as a “black box”, relying on learning rules that only consider the spiking
inputs and outputs to each cell. Because it does not rely on detailed knowledge of cel-
lular dynamics, osNEF can be applied to a wide range of neuron models without major
changes to the algorithm. To facilitate easy adoption of osNEF, we develop an interface
where modellers may plug in existing neuron models, written in Python or NEURON,
into Nengo models. This approach lets modellers specify detailed low-level mechanisms
like conductance-based synapses, voltage-gated ion channels, and dendritic geometry, then
train the network to realize high-level dynamics or computations. When properly applied,
this allows researchers to investigate questions that relate low-level biological details to
high-level cognitive capacity.

Our goal is to show that osNEF can be used to construct a variety of functional neural
networks from various biologically-detailed components. To demonstrate these capabilities,
we apply osNEF to produce two classes of cognitive functionality. First, we highlight
the broad applicability of osNEF by simulating networks of biologically-detailed neurons
and training them to realize dynamical systems. We construct and train four functional
networks, which compute a variety of useful cognitive operations, and simulate them with
four different neuron models, which range in complexity from a LIF point neuron to a
spatially-extended pyramidal cell. Second, to demonstrate a concrete cognitive application,
we construct a biologically-detailed model of working memory in PFC that performs an
idealized memory task. The network is composed of anatomically-detailed reconstructions
of pyramidal cells and interneurons, both containing numerous geometric compartments
and ionic currents, and complex synapse models, including conductance-based NMDA,
AMPA, and GABA synapses. We show that the mnemonic performance of the model is
consistent with empirical data from a standard test of working memory, the delayed match-
to-sample task (DMTST). We conclude with a discussion of the strengths and limitations
of osNEF, including its biological plausibility and cognitive generality, and by comparing
it to similar approaches.
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3.2 Oracle-Supervised NEF

As the name implies, osNEF extends the Neural Engineering Framework with the goal of
simulating more complex neuron and synapse models. To introduce the goals of osNEF,
we first discuss the notion of target tuning curves. Afterwards we define the two central
methods of osNEF: an online learning rule for encoders and decoders, and an offline op-
timization for synaptic time constants. We finish by defining the neuron models used to
test these methods.

3.2.1 Target Tuning Curves

State space representation in the NEF requires that a population of neurons be sensitive to
the whole range of x, otherwise parts of the state space will have low signal-to-noise ratios
and the accuracy of the computation will suffer. Previous work has extensively studied
how different distributions may effectively represent a state space and dynamically compute
functions [65, 250]. One effective distribution is shown in Fig. 3.1: these tuning curves have
x-intercepts that vary uniformly across the state space, meaning they are inactive for some
values of x and otherwise have state-dependent activity; and they have y-intercepts that
vary uniformly over some range, meaning their spike rates change by different amounts per
unit change in x. The combination of these constraints makes it easy to accurately decode
an estimate x̂ from the collection of neural activities.

When building NEF networks, the modeller usually specifies a target range of x- and
y-intercepts for a population of n neurons, which defines a distribution of tuning curves
like the one shown in Fig. 3.1. Nengo then uses an algorithm to find gains α and biases β
(Eq. 1.2) that will realize this distribution. Unfortunately, the algorithm relies on several
assumptions that become problematic when simulating biologically-detailed neuron models.
In the algorithm, Nengo generates a series of input currents, delivers these currents to one
instance of the neuron model, and measures the resulting firing rates. Next, it uses an
interpolation method to estimate how firing rates relate to input currents. From this, it
calculates the input currents required to (a) make the neuron start firing, and (b) bring the
neuron to the specified maximum firing rate. Finally, for each neuron i in the population
of n neurons, the algorithm solves for the gain and bias needed to map between the input
currents and the specified and x- and y-intercept.

There are two problems with this algorithm for biologically-detailed neurons. First,
the algorithm operates in current-space, and has access to a direct bias current β when
controlling the neuron’s activity. In biological networks, neurons do not have an arbitrary
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Figure 3.1: Target tuning curves. We use the standard Nengo method to generate a
population of 30 ReLU neurons with x-intercepts in -[1, 1] and y-intercepts in [20, 40].

source of external current driving their activity: β can only be realized by the internal
physiology of the neuron itself, or through external synaptic input. While decoding an
effective β from synaptic input is possible, the broader issue is that this algorithm reduces
synaptic inputs into a one-dimensional value for input current. This is a valid model when
spikes are delivered through “current-based” synapses onto point neurons, but it cannot
adequately describe the consequences of either (a) delivering spikes through “conductance-
based” synapses, or (b) delivering spikes to cells with extended geometries.

The second problem with the algorithm is that it assumes neurons have a well-defined
firing rate for every given input current (or associated value of x). Real neurons are highly
adaptive: even when driven with a constant input stimuli or current, their firing rates
fluctuate in complicated ways. A complete identification of how firing rates depend on
inputs must thus account for the passage of time, which cannot be easily handled by this
algorithm: temporal nonlinearities also become an issue when solving for decoders, as we
discuss below. Although some methods have successfully identified the “temporal kernels”
realized by complex adaptive neurons [209, 110], these methods are quite involved, and
often rely on expert knowledge about the specific neuron model being identified.

Rather than adapt Nengo’s algorithm to accommodate detailed neurons, we devise a
new method with the same goal: to find neural parameters that produce neural activities
resembling a target tuning curve. Target tuning curves can be specified in many ways, but
regardless of how we specify them, the distribution should have three features: it should
qualitatively match in-vivo elecrophysiology; it should be achievable with our detailed
neuron models; and it should support state space representation given NEF-style encoding
and decoding. Fortunately, the tuning curve distributions in most NEF models meet both
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the first and third criteria, so we use Nengo’s default algorithm to generate our target
tuning curves, making sure to choose parameters that lead to plausible electrophysiology.

Fig. 3.1 shows a typical distribution of target tuning curves for osNEF. These curves
were generated using spiking rectified linear neurons (ReLUs), which are parameterized
by an x-intercept (the value of the input current below which a neuron stops firing) and
a y-intercept (the neural activity when the input is at its extrema). We use ReLUs to
generate target tuning curves for three reasons. First, ReLUs are (arguably) the simplest
spiking neurons that still capture an essential neural nonlinearity: the transition from
a region (in state space) where the neuron remains (mostly) inactive, to a region where
activity increases monotonically (as state inputs change). Second, networks of ReLUs are
cheap to simulate but functionally powerful: deep neural networks populated with ReLUs
can be trained to perform a wide variety of complex tasks [1]. Third, ReLU parameters
are intuitively aligned with the parameters α and β from Eq. 1.2: α directly determines
the slope of the linear tuning curve, while β determines the input value for which these
neurons begin firing. In contrast to these benefits, the ReLU response function is a poor fit
for most electrophysiological data. Notably, as inputs increase, ReLU firing rates increase
linearly without bounds, while the activity of biological neurons are constrained to some
maximum value, such that firing rates will plateau as neural activity approaches this value.
In Sec. 3.3.1, we explore the degree to which biologically-implausible target tuning curves
affect osNEF’s ability to train networks of detailed neurons.

3.2.2 Online Learning Rule for Encoders and Decoders

Given a set of target tuning curves, our first objective is to train synaptic parameters such
that, when a population of complex neuron models is simulated within a network, the
observed spike rates resemble the rates given by the target tuning curves. The network
and procedure used to train these parameters are depicted in Fig. 3.2 and summarized
in Table 3.1. We begin with an input signal x(t) that is fed into two streams. The top
stream of Fig. 3.2 is the oracle, where the desired transformations of x(t) are computed
analytically (i.e., Eq. 1.8) and used to generate the target spikes; and the bottom stream
of Fig. 3.2 is the neural network, where x(t) is represented by neural spikes and the desired
transformations are realized through weighted connections between neural populations. In
the oracle stream, x(t) passes through filters (rectangles), which convolve x(t) with a filter
h(t), and nodes (diamonds), where state space transformations are applied. Finally, the
oracle stream feeds this (filtered, transformed) signal into a population of neurons tar that
realize the target tuning curves; this generates the neural activities atar(t) that osNEF will
use to train the neural network proper.
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Figure 3.2: Network used during osNEF training. The top half of the figure is the oracle
stream, where the desired filters and transformations are applied analytically, and where the
target activities are generated. The bottom half of the figure is the network stream, where
synaptic connections realize the desired filters and transformations, and where osNEF
training is applied to update the relevant synaptic parameters. Both streams are driven by
an input x(t). Arrows represent the signal travelling through each stream. Boxes letters
(filters h, weights w, transformations I, and decoders d) indicate mathematical operations
being applied to the signal. The resulting quantities (spikes δ, synaptic currents J , synaptic
conductances σ, and states x) are shown above the arrow. The pink numbers reference
Table 3.1, which lists the operations that are applied at each step. pre and post are neural
populations, which receive synaptic inputs and produce spikes. Coloration indicates ReLU
neurons (black) or detailed neurons (blue), measured signals (gray), parameters updated by
osNEF’s online learning rules (orange) or offline synaptic optimization (green), references
(pink), and NEF operations (gray).

In the bottom stream of Fig. 3.2, the input signal drives a population of preliminary
neurons pre as per standard NEF encoding: x(t) is converted to a synaptic current that
drives dynamics in the neuron model. We arbitrarily chose pre to contain ReLU neurons,
but any neuron type compatible with standard NEF techniques will do. Neurons in pre
generate spikes δpre over time, which are smoothed into a real-valued neural activity signal
apre(t) by convolution with the synaptic filter h according to Eq. 1.6. These activities
are then weighted by synaptic weights w and delivered to the population of interest, pop,
which contains detailed neurons. These weights must be trained by osNEF such that the
neural activies from pop, apop(t), have the desired tuning curves. Fortunately, the oracle
stream provides neural activities atar(t) that are guaranteed to realize these desired tuning
curves, because tar is driven by the same signal that drives pop. Therefore, if apop(t) closely
matches atar(t), we can say that pop implements the desired tuning curves.

In order to achieve this, we must train the weights w such that, as spikes from pre are
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Table 3.1: Summary of equations used during osNEF training, as depicted in Fig. 3.2

Label Reference Notes
1 Eq. 1.1 converts state space to input current via encoder
2 Eq. 1.2 G is a spiking ReLU neuron
3 Eq. 1.6 converts discrete spikes to smoothed neural activity
4 Eq. 1.13 online update of decoders, co-determines synaptic weight
5 Eq. 3.2 online update of encoders, co-determines synaptic weight
6.1 Eq. 3.3 dynamics for synapse (current- or conductance-based)
6.2 Sec 3.2.4 dynamics for neuron model (may be coupled with synapse)
7 Sec 3.2.3 offline update of synaptic time constants and decoders
8 Eq. 1.4 converts neural spikes to state space estimate

weighted, passed through the synapse h, and run through the neuron model G, apop(t)
approaches atar(t). This is the first objective of osNEF training, and is accomplished using
online learning. First, we decompose w into encoders and decoders; for each presynaptic
neuron i and postsynaptic neuron j, the corresponding entry in the weight matrix is

wpre-pop
ij = dpre

i · epopij . (3.1)

where (·) is the dot product, dpre
i is the D-dimensional decoder vector for neuron i, and

epopij is the D-dimensional vector for the (i, j) neuron pair. osNEF uses two online learning
rules, one to update encoders, and another to update decoders. To update presynaptic
decoders dpre, we use the PES learning rule without any modifications.

For encoders, we introduce a new learning rule:

∆epopij = αe sign(dpre
i ) aprei (apopj − atark ) (3.2)

where αe is the encoder learning rate, sign(dpre) is the elementwise sign of the presynaptic
decoder, and (i, j, k) are neuron indices for the presynaptic, postsynaptic, and target neuron
populations, respectively. The rule is supervised in the sense that the target activities are
provided in real time as the oracle drives tar, and the difference between the current and
target activities drives the update. The rule also uses information about both presyaptic
and postsynaptic activity, making it Hebbian. Note that Eqs. 3.1-3.2 redefine encoders as
a tensor, indexed over i, j, and D, rather than a matrix over j and D, as is standard in the
NEF (Eq. 1.1). Note that, although we decompose weights into encoders and decoders, only
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the combined weights are actually used to transform signals within the network: encoders
and decoders are theoretical tools used to analyse the relationship between spike space
and state space and to facilitate training, but synaptic transmission between populations
of detailed neurons is governed only by weight.

3.2.3 Optimizing Synaptic Time Constants

Continuing on the bottom stream of Fig. 3.2, the spikes generated by pre must pass through
synapses that (a) convert δpre(t) to the state variables used in the neuron model, and
(b) apply the weights w that realize the target transformations. For our simpler neuron
models, synapses deliver current to the cells, which directly affects the cell’s voltage. For
our complex neuron model, synapses update the conductance parameters in the relevant
sections of the cell, which then influence transmembrane currents that govern voltage
change. In both cases, we assume that the synapse is a second-order lowpass, or double-
exponential, filter, whose transfer function is

h(s) =
1

(τrise s+ 1) (τfall s+ 1)
(3.3)

where τrise and τfall are time constants and s is in the Laplace domain. Whenever a synapse
receives a spike, it updates the postsynaptic cell’s input current (or conductance) by an
amount proportional to the synapse’s dynamical state and its weight. To ensure that
our decoded estimates align with the signals being transmitted in the network, we also
use the double exponential filter to estimate neural activities from neuron spiking outputs
(Eq. 1.6).

This leaves the question of how to choose τrise and τfall. When smoothing spikes for
the purpose of encoder learning (Eq. 3.2) or synapsing from pre onto pop, the choice of
time constant makes little difference, so long as it sufficiently smooths spike noise (e.g.,
τfall > 10ms). However, as we show in the Sec 3.3.1, the choice of time constants makes a
significant difference when (a) decoding x̂(t) from pop, or (b) connecting one population of
detailed neurons to another. We could choose τ values based on the effective time constants
of biological neurotransmitters, but it is unclear whether one set of parameters would be
appropriate for the variety of neuron types and networks that we investigate. To resolve
this problem, osNEF uses a novel offline optimization procedure that finds appropriate
time constants given spiking data from the simulated network itself. The optimization
procedure is as follows:
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1. Simulate the network with input x(t), record neural spikes δpop(t), and specify the
target function f(x(t)).

2. Choose a random τrise and τfall, filter the spikes to calculate apop(t), and use least-
squares to compute decoders dpop for estimating the function.

3. Calculate the error between this estimate and the ground truth by computing the
RMSE between f(x(t)) and f̂(x(t)).

4. Repeat Steps 2 and 3, using the optimization package Hyperopt [25] to search the
space of possible time constants with the objective of minimizing the error.

Returning to Fig. 3.2, this procedure is used to train the filters and decoders for pop,
hpop and dpop. Filtering spikes from pop produces neural activities apop(t), from which
we can decode an estimate x̂(t) according to Eq. 1.4. This completes the bottom stream,
which shows how a state space input may be translated into neural spikes, transformed to
realize particular mathematical operations via synaptic connections, then translated back
to a state space estimate.

3.2.4 Neuron Models

To test whether osNEF is capable of producing functional networks that contain neuron
models of varying complexity, we investigate four neuron models: the LIF neuron, the
Izhikevich neuron, the Wilson neuron, and a Layer V Pyramidal Cell compartmental model.

The LIF neuron model is a point neuron that approximates the membrane dynamics
preceding and following an action potential. Although the resulting voltage traces do not
quantitatively align with electrophysiological recordings, the LIF neuron does capture key
features of neural behavior, namely integration of inputs, leak towards a resting potential,
reset following a spike, and a refractory period. It is also extremely cheap to simulate,
as voltage dynamics are governed by a single equation. As such, LIF neurons are widely
used in simulations that seek to balance biological realism, computational scalability, and
analytical tractability (see [65]).

Although LIF neurons are fast and functional, they do not quantitatively capture the
dynamics of membrane potential. The Izhikevich neuron model [113] is another simple
neuron model that captures a wider variety of spiking behavior characteristic of biological
neurons. The model has only four free parameters and two state variables, but certain
configurations of these parameters may produce regular spiking, intrinsic bursting, fast
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spiking, chattering, and many more interesting dynamics. As such, this neuron model is
useful in networks where both scallability and electrophysiological realism are important.

While the LIF and Izhikevich neurons are useful and computationally cheap neuron
models, they do not simulate the action potential in detail, instead using hand-crafted
reset mechanisms when the cell’s voltage crosses a fixed spike threshold. For our third neu-
ron model, we chose an intermediate-complexity neuron developed by Wilson [256] that
extends the FitzHugo-Nagumo equations [76, 175] to incorporate electrophysiological de-
tail, including Ohm’s Law and equilibrium potentials of four ionic currents in neocortical
neurons (Ik, INa, IT, IAHP). The resulting model consists of three coupled ODEs repre-
senting voltage, conductance, and recovery, can generate realistic action potentials, and
naturally produces adaptation, bursting, and other neocortical behaviors [256]. Due to the
lower number and cubic dynamics of the underlying equations, simulation is still relatively
fast, but a smaller timestep is required to avoid numerical errors.

When describing electrophysiology in detail, the most widely-used formalism is the
Hodgkin-Huxley model, which we use for our final neuron model. Reproduced from
Durstewitz, Seamans, and Sejnowski [61], this model is an anatomically-detailed recon-
struction of pyramidal neurons that includes four compartments (soma, proximal-, distal-,
and basal-dendrites) and six ionic currents (two for sodium, three for potassium, and one
for calcium). The Durstewitz reconstruction accurately reproduces the neural activities of
layer-V pyramidal neurons in rat PFC, cells that are known to be active during the delay
period of working memory tasks. This neuron model is implemented in NEURON and uses
conductance-based synapses, distributed randomly on the three dendritic compartments.

3.3 Results

To demonstrate that osNEF is capable of training cognitively-useful neural networks built
from a variety of neuron models, we divide our results into three sections: representation,
computation, and application. First, we show that osNEF produces populations of neurons
with the desired tuning properties, and demonstrate that their spiking responses represent
the target signal. These results indicate that an input signal may be encoded and de-
coded effectively by a single population of biologically-detailed neurons using weights and
filters trained using osNEF. Next, we simulate networks containing multiple populations
of biologically-detailed neurons, and show that the synaptic connections between them
compute specific functions and exhibit the target dynamics. These results show that os-
NEF combines online learning and offline optimization to realize encoding, decoding, and
dynamics in a single synaptic process that occurs between populations of detailed neurons.
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Finally, we apply these techniques to train a biologically-detailed model that performs a
working memory task. These results suggest that osNEF is a useful tool for researchers
who wish to build, manipulate, and validate biologically-detailed simulations of cognitive
systems.

3.3.1 Representation

First, we show that encoding and decoding are possible with a single population of detailed
neurons. We simulate four networks using the architecture shown in Fig. 3.2; each network
has one LIF, Izhikevich, Wilson, or Pyramidal neuron in the pop population, and one ReLU
neuron in the “target” population. The networks are trained using the online learning
rules described in Sec 3.2.2, then presented with a novel input during testing. The top
and middle panels of Fig. 3.3 show the input signal x(t) (smoothed, 1Hz band-limited
white-noise) and neural activities over time, respectively. In response to this input, all four
neurons dynamically exhibit spiking activity that closely aligns with the spiking activity of
the target ReLU neuron. The bottom panel of Fig. 3.3 shows the observed tuning curves
calculated from these data: for each timestep in the simulation, we record the state space
value of the input signal x(t′) and the smoothed neural activity a(t′) at that time. We
divide the state space into 21 equally-sized regions (bins), then associate each a(t′) with
the appropriate bin. Finally, we plot the mean neural activity for each bin.

Examining the observed tuning curves in Fig. 3.3, we see that all four trained neurons
have x- and y-intercepts that closely align with the intercepts of the target ReLU neuron.
However, the y-intercept of the ReLU neuron is higher than the trained neurons. This result
is expected: ReLU activities ramp without bounds, while the activities of realistic neuron
plateau. Although this is, generally speaking, a danger of using ReLUs (or other unrealistic
neuron models) as spike space targets, it is not problematic in our simulations for two
reasons. First, the differences between the ReLU and trained tuning curves are minimal:
in Fig. 3.3, ReLU activities only exceed the trained activities for extreme inputs (x > 0.8),
and these differences fall within the observed confidence intervals. Second, because osNEF
training minimizes the differences between the spiking activity of a trained neuron and a
target neuron, trained neurons will often match the “physiologically plausible” features of
a target tuning curve but fail to match any “physiologically implausible” features. This
tendency can also be observed in Fig. 3.3: for most inputs (x < 0.8), our trained neurons
qualitatively match the inactive and linear segments of the target ReLU curve, but for
extreme inputs (x > 0.8), our trained neurons begin to plateau, failing to match the target
tuning curve but retaining realistic response properties.
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Figure 3.3: Encoding and tuning curves. The top left panel shows the input signal and the
target x-intercept, the state space value at which our neurons should begin spiking. The
bottom left panel shows neural activities and the target y-intercept, the desired neural
activity when our neurons are driven with maximum input. The right panel shows the
tuning curves derived from these data. All four neurons exhibit minimal spiking activity
when the input is below the target x-intercept, and their activities increase with x up to the
target y-intercept. Shaded error regions are 95% confidence intervals for neural activity.

Ultimately, any target tuning curve will respond differently than the neuron model
being trained. By choosing a target tuning curve that is manifestly implausible in some
respects, then showing that our trained neurons still exhibit reasonable tuning curves, we
demonstrate that osNEF does not require perfect selection of target tuning curves. More
importantly, Fig. 3.3 demonstrates that osNEF trains encoders effectively: our learning
rules produce dynamic activities that closely resemble the target tuning curves for all four
neuron models, despite significant differences in neural complexity and cellular dynamics.

To investigate decoding, we simulated four populations that contained 100 LIF, Izhike-
vich, Wilson, or Pyramidal neurons, and used osNEF to train encoders, decoders, and
readout filters for each population. An interesting problem arose when we used Eq. 1.4
and Eq. 1.6 to decode the neural activity and estimate the state space representation in pop.
When we used a default filter to smooth the spike trains (τrise = 1ms and τfall = 100ms),
our decoded estimates x̂(t) were often phase-shifted to the left of the target x(t), leading
to systemic error, as shown in Fig. 3.4. The phase shift is more pronounced in neurons
with greater observed spike adaptation or variance in interspike intervals, most notably
the Wilson neuron.

To account for this phase shift and decode a better estimate from the neural spikes, we
used our synaptic optimization to find better readout filters for each of the four networks.

90



Figure 3.4: Decoding and readout filters. Nonlinear dynamics within complex neuron
models leads to systematic decoding error if a default filter is used to smooth the spikes.
Optimizing a filter’s time constants accounts for this problem and reduces spike noise,
leading to highly accurate estimates across all neuron models. The top panels show the
target values and the state space estimates, which are decoded from the activities of 100
LIF, Izhikevich, Wilson, or Pyramidal neurons in pop; spikes are smoothed using either the
default filter (left panel) or the osNEF-trained filter (right panel). The bottom right panel
confirms that the RMSE between state space targets and decoded estimates (averaged
across 10 simulations with unique inputs) are significantly lower when using trained filters.

The optimization produced filters with longer time constants, which effectively (a) delays
the signal and negates the leftward phase shift, and (b) smooths noisy spike trains to
recover a more accurate estimate of the input signal. Panel one and two of Fig. 3.4 show
the decoded estimate when calculating x̂(t) using the default filter versus the trained filter.
Panels three shows the impulse responses of the trained filters, while panel four compares
the RMSE between x̂(t) and x(t), when filtering with the default versus trained filters,
across 10 input signals. The gains in accuracy with the trailed filter are substantial, and
demonstrate that osNEF is capable of accurately decoding state space signals from the
activities of nonlinear, adaptive neurons. In the Sec 3.3.2, we report results from networks
whose synaptic filters have been trained using the above methods.
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Figure 3.5: Network architecture for computing feedforward functions, including the iden-
tity function and multiplication of two inputs. This network extends Fig. 3.2, represented
by components with the gray background, by including an additional detailed neuron pop-
ulation pop2 and the corresponding oracle components. With this architecture, we can
compute the feedforward function f(x) on the connection between pop1 and pop2 by using
osNEF to train the synaptic parameters d1, e2, and h1. As before, coloration indicates
ReLU neurons (black) or detailed neurons (blue), synaptic parameters trained by online
learning (orange) or offline optimization (green), NEF computations (gray), and finally the
new components involved in the calculation of f(x) (pink).

3.3.2 Computation

Having established that encoders, decoders, and filters may be used to translate between
the spike space and the state space in a single neural population, we now apply osNEF to
train neural networks that compute cognitively-useful functions using the weighted synaptic
connections between two (or more) populations of detailed neurons. The simplest network
is a communication channel, which simply computes the identity function. The network
architecture is shown in Fig. 3.5; the target function is computed between detailed neuron
populations pop1 and pop2. The target function is

f(u,x) = u, (3.4)

where u(t) is the input signal and x(t) is the state space representation. A functioning
communication channel ensures that information can be relayed between components of a
cognitive system without significant loss, or be decoded by muscle effectors to implement
behavior. Fig. 3.6 shows that osNEF successfully trains encoders, decoders, and time
constants that preserve the input signal: the target signal can be reliably decoded from
pop2 with very low error for all four neuron models. While Fig. 3.3 shows that encoder
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Figure 3.6: Computing the identity function, Eq. 3.4. Using the network architecture in
Fig. 3.5, we initialize neural populations pop1 and pop2 with 100 detailed neurons, then
use osNEF to train encoders, decoders, and synaptic filters. The connection between pop1

and pop2 is trained to compute the identity function, such that pop2 represents the same
information as pop1. The left plot shows the state space target and the decoded estimates
from pop2, and the right plot shows the error (RMSE) between this estimate and the target
across 10 simulations with unique input signals.

learning leads to representative spiking activity, and Fig. 3.4 shows that this activity may
be decoded to retrieve the signal, Fig. 3.6 shows that encoding and decoding may be
combined into a single step via neural connection weights.

We also constructed a network that multiplies two input signals,

f(u,x) = u1 ⊙ u2, (3.5)

where ⊙ is the element-wise product. Multiplication is a computational primitive that
may be used in a wide variety of cognitive systems to transform simpler representations
into more complex ones. For example, the decision making network we use in Ch. 4 uses
multiplication to modulate the rate of evidence accumulation for faster action selection,
and the learning network we develop in Ch. 5 uses multiplication to calculate the expected
value of an action given a finite time horizon. Fig. 3.7 shows the state estimate decoded
from the final population for each of our neuron models. Errors are higher than in Fig. 3.6,
as expected given the increased difficulty of the computation. Still, all four neuron models
perform well overall.
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Figure 3.7: Computing the product of two unique input signals, Eq. 3.5, using the network
architecture in Fig. 3.2. The connection between pop1 and pop2 is trained to multiply two
values: pop1 represents both values, and pop2 should represent their product. The left
plot shows the state space target and the decoded estimates from pop2, and the right plot
shows the error across 10 simulations with unique input signals.

Many biological systems include recurrent connections, allowing the currently repre-
sented state to directly affect future states and permitting new classes of network dynam-
ics, including rhythmic oscillations and working memory. Indeed, a network that includes
feedforward and feedback components may implement any dynamical system described by
Eq. 1.8. The network architecture we use for simulating recurrent networks is shown in
Fig. 3.8: feedforward computation of ẋ = Bu occurs on the connection between pre and
pop, while feedback computation of ẋ = Ax occurs on the recurrent connection on pop.
To train the network, we reuse the architecture in Fig. 3.2, but set pop1 and pop2 to be
identical populations of detailed neurons computing the target recurrent function ẋ = Ax.
In doing so, we effectively “unroll” the recurrence, but still use osNEF to train network
parameters given a dynamic input signal.

The first recurrent system we investigate is a simple harmonic oscillator, that is, a
two-dimensional oscillator with frequency ω.

ẋ =

[
0 −ω
ω 0

]
x (3.6)

This oscillator is a classic example of central pattern generation: after a brief kick, the
system should maintain oscillatory dynamics without external input, which may be used
to drive rhythmic behavior in the body, or provide carrier signals that may be modulated
by downstream cognitive systems. We arbitrarily chose ω = 2π as our target frequency.
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Figure 3.8: Network architecture for recurrent networks. Orange components indicate
the feedforward computation of ẋ = Bu, and pink components indicate the recurrent
computation of ẋ = Ax; together they implement Eq. 1.8. While this network is used at
test-time, an “unrolled” version similar to Fig. 3.2 is used during training. As such, we
remove reference to tar, and to the decoders and encoders composing w, in this figure.

Fig. 3.9 shows the network dynamics after a square-wave pulse (0.1s) is used to kick the
system. All four neuron types quickly settle into stable harmonic oscillation with frequency
approximating the target ω, and these oscillations persist for 100 seconds. Because the
networks invariably oscillate at a frequency that differs slightly from ω, a naive calculation
of RMSE between x and the decoded x̂ is a poor metric of the system’s stability. To account
for this, we report two error values: we first fit a sinusoid of the form y = a sin(bt+ c) + d
to x̂, then report (a) the RMSE between this sinusoid and the neural estimate, and (b)
the normalized frequency error (b− ω)/ω.

The second recurrent system we investigate is an integrator, a system that continually
adds a feedforward input to a remembered representation of its current value:

ẋ = u. (3.7)

This dynamical system requires a neural network to continuously combine feedforward
and recurrent signals, an important operation for working memory. We use the network in
Fig. 3.10 to realize such a memory, which we refer to as a “gated working memory” [66, 38].
This network was previously discussed in Sec. 1.4.3, and our implementation here, shown in
Fig. 3.10, is functionally equivalent to Fig. 1.2. To summarize, the purpose of this network
is to (a) read an input value and represent that value using neural activities in a recurrent
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Figure 3.9: Implementing a simple harmonic oscillator (Eq. 3.6) using the recurrent network
architecture in Fig. 3.2. The connection between pop1 and pop2 is trained to compute
Eq. 3.6, then the trained weights and synapses are substituted into a testing network,
shown in Fig. 3.8. The top panel shows the targets and estimates from pop2, with a break
in the x-axis to show that oscillations remain stable over 100 seconds. The bottom panel
show the mean error between this estimate and a best-fit sinusoid, and the frequency error
between this sinusoid and the target frequency.

population, and (b) continue to represent that value once the input has been removed.
In our network, the feedforward connection from pre to pop passes to the memory a two-
dimensional value (representing, for example, a visual cue), while the recurrent connection
on pop maintains the represented cue location once the input has been removed. This
is the core “memory” component. The second component is the “difference” component,
which ensures that the value represented in pop approaches the cue value represented
in pre. Because the recurrent connection continuously computes the identity function
f(x) = x, maintaining whatever 2D value is currently represented, and the feedforward
connection continuously adds the 2D value of the perceived cue to the representation in
pop, a naive integrator will overshoot the target value if the cue is presented for an extended
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Figure 3.10: Network architecture for the gated working memory. This system loads and
stores a two-dimensional value in memory; when the gate is closed, the system maintains
its current value through recurrent activity, and when the gate is open, the system replaces
its current representation with the input value. Black text indicates LIF populations while
blue text indicates detailed neuron populations. The green connection is trained by osNEF
to compute f(x) = x, while the pink connection is trained to compute f(x) = −x. The
orange connection directly inhibits neurons in diff using fixed negative weights.

duration. To prevent this, we add an intermediary population diff between pre and pop.
This population receives the feedforward signal from pre and transmits feedforward to pop,
acting as a simple passthrough. However, it also receives a feedback connection from pop
that computes the negative of the identity function f(x) = −x. As a result, the value
represented in diff is equal to the cue’s value minus the integrator’s estimate; when this
estimate becomes equal to the cue’s value, diff should represent zero, and the representation
in pop should stabilize at the target value. Finally, the gate allows the network to ignore
the input and simply retain its current representation. When the visual cue is removed,
we treat its absence as a secondary input to the system, which activates a population
of neurons inh that inhibits diff, preventing any further update of the representation in
pop. To recall an estimate of the remembered cue’s location, we simply decode the neural
activities in pop with the identity function.

Fig. 3.11 shows the DRT performance of our network for each neuron type. In each trial,
we present a cue to the network for 1s, then close the gate and record the decoded estimate
from pop, computing the RMSE between this value and the original input over a 10s delay
period. The cues are distributed evenly around the unit circle across our 10 trials, and we
report the RMSE averaged across the 10s delay period. Once the input is removed, the
value represented in pop must be maintained through the recurrent connection; over time,
noise inevitably causes this system to drift away from the target value, leading to imperfect
recall. However, for most of the presented cues, the network settles on an attractor that is
proximate to the target value, leading to reasonable error rates across all neuron types.
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Figure 3.11: Implementing a gated working memory using a combination of feedforward,
recurrent, feedback, and inhibitory connections. The left panel shows the estimate decoded
from pop as a trajectory in (x, y) space: as the cue is presented, the estimate travels from
the origin (t = 0) to the cue’s location, which lies somewhere on the unit circle. At t = 1
the cue is removed, and the system must rely on its recurrent dynamics to maintain an
estimate of the cue’s location. We observe minimal drift in the decoded trajectories for
most cues, indicating that our memories are fairly stable over time. The right panel shows
the RMSE between the decoded estimate and the cue’s true location, averaged over a 10s
delay period and over 10 cue locations, for each neuron model.

3.3.3 Application

We now demonstrate that osNEF may be used to build a simple cognitive model out of
biologically-detailed components. As above, we use a gated working memory to model
a DRT, in which an animal must read information from an external signal, remember
that information for a period of time once the signal has been removed, then recall that
information. Numerous researchers use DRTs to investigate the neural basis for working
memory [45, 208, 61, 86], and neural integrators have been used to model working memory
in larger cognitive models that reproduce human behavioral data [23, 67, 55].

We extend the gated working memory network described above by enforcing additional
biological constraints and adding an associative memory with winner-take-all (WTA) dy-
namics to select actions, as shown in Fig. 3.12. As above, we use the Pyramidal cell model
proposed by Durstewitz et al., as this cell reconstruction was explicitly designed to simu-
late pyramidal neurons with delay-period activity in working memory tasks [61]. We also
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Figure 3.12: Architecture for the biologically-constrained DRT neural network. This net-
work extends Fig. 3.10 by (a) replacing inh with a detailed inhibitory interneurons, (b)
adding a cleanup network that uses WTA competition to find the cue that best resembles
the recalled location from pop (see [118]), and (c) replacing all connections to/from detailed
neurons with conductance-based AMPA, GABA, or (voltage-gated) NMDA synapses.
Black populations contain LIF neurons, orange populations are interneurons, and blue
populations are pyramidal cells. Pink connections use AMPA synapses, orange connec-
tions use GABA synapses, and green connections use NMDA synapses.

use Durstewitz’s (a) cellular reconstruction of inhibitory interneurons; (b) conductance-
based synapse models for GABA and AMPA; (c) conductance-based, voltage-gated synapse
model for NMDA; and (d) biophysical simulation of Dopamine (DA). In these models, DA
affects the activation threshold for the persistent Na+ current, the conductance of the
slowly inactivating K+ current and high-voltage-activated Ca2+ current, and the magni-
tude of NMDA, AMPA, and GABA synaptic conductances. The parameter values were
taken directly from the Durstewitz’s original source code and were not modified to improve
the performance of our model. As above, we use osNEF to train synaptic weights, resulting
in dense connectivity that includes both excitatory and inhibitory synapses between pyra-
midal cells and interneurons. Unlike in the networks above, however, we do not use the
osNEF to optimize synaptic time constants, since the time constants of AMPA, NMDA,
and GABA synapses are fixed to their biological values.

Our cognitive neural network performs a two-dimensional DRT. The network is first
presented with an input cue, which represents the (x, y)-location of a target point on a
visual screen, for 1s. The cue is removed, followed by a delay period, during which the
network continuously reports its remembered estimate of the cue’s location. This estimate
is sent to an associative memory, which stores the possible true locations of the target; the
associative memory compares the current estimate of the cue’s location to these targets
and outputs the target vector with the greatest similarity, effectively acting as a cleanup
operation for the remembered location [220]. We classify a response as “correct” if the
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Figure 3.13: Mnemonic performance of the biologically-detailed cognitive network and the
best fit exponential forgetting curve. We trained the network show in Fig. 3.12 using
osNEF to produce a gated working memory, then plotted error (percentage of correct
responses over 8 cue locations) as a function of time. We repeated this training and testing
procedure for 10 unique networks, treating each as an individual “participant” performing
this task, then fit an exponential function to each network’s forgetting curve. From these
fitted curves, we obtained parameters for baseline performance and performance half-life,
which we compared with the empirical data shown in Fig. 3.14.

output of the cleanup memory falls within a certain (Euclidean) distance of the target
cue, and measure the percentage of correct responses as a function of the delay period
length. To ensure robust results, we train 10 unique networks, and test each network’s
recall accuracy for 8 cues with (x, y) locations distributed evenly around the unit circle.

Fig. 3.13 reports the forgetting curves for the biologically-detailed network, plotting the
percentage of correct responses given by the model as a function of the delay length. We use
use Scipy’s curve_fit function to estimate parameters for an exponential forgetting curve
(y(t) = B exp(−t/τ)) that fits the simulated data from each network. When preprocessing
the data, we observed that the maximum accuracy achieved by the network often occurred
500-2000ms after the cue was removed, presumably as a result of the long NMDA time
constants and recurrent dynamics within the network. We set B equal to this accuracy
(for each network) and assumed an exponential rate of forgetting beyond this value; we
also transformed τ into a “half-life” by multiplying with ln 2. This resulted in best fit
parameters B ranging from 58% to 100% (mean 89%, median 95%) and τhalf ranging from
2.7− 28.0s (mean 9.6s, median 8.6s). The exponential curve is a good fit for the simulated
data, a result consistent with numerous working memory studies in animal studies [12, 255].

Our best-fit parameters are consistent with the forgetting parameters reported in a
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Figure 3.14: Estimated zero-delay performance (left) and performance half-life (right) in
DMTST across species. Performance half-life represents the time it takes for an animal’s
performance to drop halfway between its zero-delay value and chance performance. Open
circles are species medians. Empirical data are taken from [143]. There is significant
variance in forgetting rates across networks and across individual animals (or experiments)
within the empirical data. While the median mnemonic performance of our networks is
lower than the median performance of most species in [143], our high-performing networks
still outperform a significant number of individual monkeys, rodents, and birds, suggesting
that our cognitive networks operate in a biologically-plausible WM regime.

recent meta-analysis of animal mnemonic performance in the delayed match-to-sample
(DMTST) task [143], a DRT that assesses numerous aspects of working memory capacity.
The resulting dataset includes behavioral data from over 90 experiments, 25 species, and
multiple delay intervals. For each species in the dataset, the authors used an exponen-
tial curve to quantify the relationship between DMTST performance and delay intervals.
Unsurprisingly, the fitted parameters varied significantly both across species and across ex-
periments with the same species, as shown in Fig. 3.14. The baseline performance B (char-
acterized as “zero-delay performance”) was consistently high for all species, with median
estimates varying between 58% (chickadees) and 99.5% correct (rats) with a grand median
of 93% correct. The forgetting time constant τhalf differed significantly across species, with
median estimates varying between 2.4s (bees) and 71s (dogs), with a grand median of 27s.
As shown in the bottom of Fig. 3.14, the performance of our cognitive network falls within
these ranges, with a median baseline performance of B = 95% and a median forgetting time
constant of τhalf = 8.6s (comparable to pigeons’ τhalf ≃ 10s). These correspondences speak
to the cognitive plausibility of our biologically-detailed model, showing that it produces
behaviorally-plausible results despite numerous low-level constraints.
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3.4 Discussion

Our goal in this chapter has been to develop the “oracle supervised Neural Engineering
Framework” (osNEF), a method for training biologically-detailed spiking neural networks
to realize dynamical systems that are relevant to cognition. We presented a novel online
learning rule for training encoders and decoders to realize a set of target tuning curves
in the context of a larger spiking neural network. We also presented an offline optimiza-
tion procedure for training the time constants of synaptic connections that helped account
for nonlinear dynamics within the cell when realizing network-level dynamics. After pre-
senting four neuron models that ranged from the simple and computationally-inexpensive
to the complex and biologically-detailed, we showed that osNEF could be used to train
neural networks that implement several cognitively-relevant dynamical systems. Specifi-
cally, our networks were populated by LIF neurons, Izhikevich neurons, Wilson neurons,
or 4-compartment, 6-ion-channel Pyramidal cell reconstructions, and we trained them to
compute the identity function, to multiply two inputs, to exhibit simple harmonic oscilla-
tion in two dimensions, and to save and load information with a working memory. Finally,
we applied these methods to build a simple cognitive system that performs a DRT us-
ing biologically-detailed components, including Pyramidal cells, inhibitory interneurons,
conductance-based AMPA and GABA synapses, and voltage-gated NMDA synapses. We
tested our network’s mnemonic performance by measuring the number of correct responses
as a function of delay length, then showed that this performance is comparable to animal
performance in the DMTST [143]. In this section, we discuss our methods and results in
terms of biological plausiblity, cognitive capacity, and usability, compare our methods to
similar approaches, and present avenues for future research.

3.4.1 Biological Plausibility

The central motivation of this chapter was to introduce more biological realism into NEF
networks without compromising on cognitive capability. Because osNEF operates exclu-
sively in the spike space of neural activity and the state space of dynamical systems, our
methods are agnostic about the internal structure of neuron and synapse models. This
means osNEF can be applied to many neuron models, ranging from univariate point neu-
rons to multi-compartment models with complex state dynamics, and can use features of
neuron synapses to manage intracellular nonlinearities and achieve the desired network-
level dynamics. Here, we simulated neuron models with electrophysiologically-plausible
internal dynamics, connected them with higher-order synapses (including some whose dy-
namics couple with intracellular dynamics directly), and showed that they can perform
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a variety of cognitive operations. As we discuss below, these biological and functional
capabilities are a significant extension of existing methods in computational neuroscience.

Despite these biological extensions, our networks still depart from biological realism in
several respects. While our neuron and synapse models themselves conform to biology, the
connectivity within the network is less constrained. For instance, neurons in our networks
connect to post-synaptic cells with both excitatory and inhibitory synapses, but Dale’s
Principle suggests that biological neurons exclusively release one type of neurotransmitter
[63] (although some neuroscientists have questioned this principle, see [227]). More impor-
tantly, the networks presented here do not attempt to reproduce the statistics of neural
connectivity between populations, to diversify neuron morphology (beyond small variations
in compartmental geometry) or cell type (beyond Pyramidal cells and inhibitory interneu-
rons), or to match other network-level anatomical details. These are important biological
features that have been the focus of projects that anatomically reconstruct the brain with
high fidelity [159]. Functionally, these features may affect a network’s ability to compute
specific functions or perform particular cognitive operations, either by adding subcellular
information processing, or by constraining network-level dynamics. Fortunately, osNEF
does not prohibit the inclusion of such feature; future work should investigate whether
imposing these constraints poses a problem for our methods.

Another questionably-realistic aspect of our method is the online learning rule for up-
dating synaptic weights, Eq. 3.2. Most terms in this equation require only local information,
such as presynaptic activity, postsynaptic activity, and a state space error signal, and so
are plausibly-accessible by individual neurons for learning. However, one critical compo-
nent in osNEF is the “oracle”, a population of neurons built using standard NEF tools
that generates the desired neural activities. While it is possible that the brain contains
“teacher” populations that supervise the weight updates within “student” populations, we
are not aware of any empirical evidence that directly supports this mechanism. We must
therefore treat osNEF’s encoder learning as biologically unfounded: it is a theoretical tool
for constructing networks, not a biological hypothesis.

Finally, the osNEF procedure for optimizing synaptic time constants is not intended to
mimic a biological mechanism, but simply to find synapses that realize particular network-
level dynamics given complex neuron-level dynamics. It is possible that future neuroscience
research will reveal some optimization process in the brain that effectively selects which
neurotransmitters, receptors, or network structures should be used to control system dy-
namics. Studies of highly-structured neural circuits, such as the granule-Golgi cells in the
cerebellum [121], indicate that plasticity may interact with synaptic and intrinsic cellular
responses (such as rebound firing [206] and inhibitory inputs [201]) to alter the temporal
properties of the network. While the osNEF optimization via Hyperopt would not repro-
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duce the processes of such an optimization, it might reproduce the results, with respect to
the balance of time constants observed in the final network.

3.4.2 Cognitive Capacity

To create cognitive models out of biologically-detailed neural networks, we trained our net-
works to implement linear dynamical systems described by control theory (Eq. 1.8). We
first showed that osNEF could produce neurons whose tuning curves were an effective func-
tion basis despite neural adaptation, spike noise, and the like. We then trained networks
to perform a variety of operations common to cognitive systems, and finally combined
several such operations together into a larger cognitive network. This network successfully
performed a DRT, exhibiting an exponential forgetting curve that resembles animal for-
getting curves in the DMTST [143]. These mnemonic capacities are impressive given that
(a) our network uses only hundreds of neurons, which is orders of magnitude fewer neurons
than are active in behaving animals, and (b) our DRT task is significantly harder than the
DMTST task used in the meta-analysis (eight cues versus two). In conjunction with the
broader successes of the NEF and SPA, we expect that osNEF can be used to train more
sophisticated cognitive networks built from biologically-detailed components.

However, osNEF tools are limited in several respects. Networks trained using the stan-
dard NEF methods typically have less error than the results we reported in Sec. 3.3.2.
This is due, in large part, to the lack of biological constraints imposed by the default
parameters implementing NEF networks in Nengo: such networks use point neurons and
lowpass current-based synapses, leading to fewer cellular nonlinearities, and have firing
rates approximately ten times higher than our simulations. Normal NEF methods also
realize tuning curve distributions that provide a superior function basis. In standard NEF
networks, neurons are biased by directly injecting a current into the “soma”, allowing for
precise control over the conditions under which a neuron will begin firing. Before the net-
work is simulated, Nengo optimizes these bias currents and the encoding vectors such that
neurons exhibit a wide range of x- and y-intercepts. osNEF does not use current injec-
tion to bias neurons: instead, it trains synaptic weights to achieve the target tuning curve
distribution, making postsynaptic activities more dependent on noisy presynaptic spikes.
In recurrent networks where feedforward input was selectively removed (the oscillator and
the gated working memory), we needed to introduce and train a dedicated bias population
to stabilize recurrent activity. Finally, not all target tuning curves can be realized by a
given neuron type: osNEF may fail if the targets have physiologically-implausible response
curves or if a detailed neuron is tightly constrained by its morphology. Because osNEF is a
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black-box approach, the only way to know whether a neuron may be trained to reproduce
a target tuning curve is through trial and error.

3.4.3 Usability

In developing osNEF, we strove to make our methods both broadly applicable and easy to
learn, with the hopes that other researchers will apply them in their own projects. We used
the Nengo ecosystem [20] because it is a scalable and flexible neuron simulator that has been
used to build and train numerous neural and cognitive models, including some of the world’s
largest functional brain models [66, 38]. To support a wide range of biological mechanisms,
users may simulate neural and synaptic dynamics in either Python or NEURON. Python
is appropriate for simulating simple models: this language has intuitive syntax and can
be used alongside NumPy for efficient matrix operations [96]. NEURON is appropriate
for simulating complex neuron models: this language is designed to efficiently simulate
detailed cellular and synaptic mechanisms. Libraries of neural reconstructions written in
NEURON are widely available from online repositories like the Allen Cell Types Database
[228] and the Neocortical Microcircuit Collaboration Portal [186], and our interface allows
researchers to connect these models into the Nengo ecosystem for functional modelling, as
we did with the Durstewitz model [61].

That said, training neural networks with osNEF requires significantly more effort and
simulation time than standard Nengo networks. Users must choose appropriate training
signals, build a parallel oracle network to generate the target activities, and simulate the
network over time to engage online learning. The challenges posed by different neuron types
and target dynamics makes automating this process difficult, so the user must complete
these steps manually. However, we believe that the broad applicability of osNEF justify
these challenges for the motivated researcher.

3.4.4 Comparison to Other Methods

The NEF is the theoretical core of osNEF: from it, we borrow (a) the distinction between
spike space and state space, (b) the decomposition of weights into encoders and decoders,
and (c) the use of control theory to specify target dynamics. We also use a number of
standard NEF tools, including (d) the PES learning rule, and the specification of target
networks via (e) least-squares optimization of decoders and (f) distribution of encoders,
gains, and biases. osNEF extends the NEF by (1) redefining encoders as a tensor over
presynapic neurons, postsynaptic neurons, and state space dimensions, (2) introducing an

105



online learning rule to update encoders and decoders based on state space error, spike space
supervision, and Hebbian activity, and (3) optimizing the time constants of synapses to
realize network-level dynamics while accounting for adaptive neuron-level dynamics. Many
of these techniques bear a resemblance to other research in computational neuroscience.
For instance, a central theme of methods like FORCE learning [229] and efficient balanced
networks (EBN, [28]) is to describe cognitive algorithms in terms of the dynamics of a latent
state variable x(t) represented by neural activity, then train neural connection weights such
that the network behaves like a target dynamical system. However, the techniques for
constructing and training networks varies significantly between these paradigms: osNEF
borrowed several of these techniques in extending the NEF.

In the full-FORCE method [49], the recurrent activities of a neural network are trained
with the aid of a parallel target-generating network that is driven by the desired output
of the system. full-FORCE target networks have random internal connectivity: when
driven by the target dynamics, such networks produce activities that include both a chaotic
component (from the random recurrent connectivity) and a desired component (from the
driving input). Such activities, the authors hypothesize, is a suitable basis for realizing
non-trivial dynamics, especially when combined with an optimized readout filter. In their
paper, the authors show that a recursive least squares optimization process, which compares
the target activities with the activities of the task-performing network, may be used to
train recurrent weights in the later and reproduce a wide variety of dynamics. Our oracle
populations are also driven to exhibit the target dynamics and used to learn recurrent
weights. However, our oracle does not rely on random connectivity: we use the NEF
to specify weights that guarantee that tar will exhibit spike variability and the target
dynamics. Our approach also simplifies the relationship between the task-performing and
target networks: they are both driven by the same external inputs, rely solely on recurrent
activity to generate the target dynamics, and should exhibit the same activities. This
eliminates a great deal of parameter tuning required by full-FORCE, and provides a clear
conceptual pictures of how the target network supervises the task network. Furthermore,
osNEF uses a local, online, error driven learning rule, while the RLS approach used in
full-FORCE is a global, iterative update that is very unlikely to be implemented by brains.

A recent extension of EBNs to nonlinear adaptive control theory [3] also bears many
similarities to osNEF. In this paper, the authors realize nonlinear dynamics in a recurrently-
connected population of spiking LIF neurons using a state space teacher and an online
learning rule. Many mathematical similarities exist between this approach and the NEF,
especially with regards to the PES rule. The authors convincingly demonstrate their ability
to learn nonlinear dynamics, including a bistable attractor and rhythmic walking motions
derived from motion capture data, and their networks are similarly constrained to low
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firing rates, small numbers of neurons, and irregular spiking. However, where their work
(and EBNs in general) focuses on using fast inhibitory connections to create an efficient,
balanced coding scheme, our work focuses on implementing all of the required components
in biological detail. While the authors describe how biological components could be used to
implement their methods (AMPA/GABA-A synapses for fast connections, NMDA/GABA-
B synapses for slow connections, and nonlinear dendrites for the basis functions), dealing
with the nonlinear, non-instantaneous dynamics imposed by compartmental neurons and
conductance-based synapses often requires significant theoretical extensions, even when
the underlying framework can already model nonlinear dynamical systems.

Recent papers using both FORCE [176] and EBN [209] have implemented linear (and
sometimes nonlinear) dynamics in neural networks populated with biologically-detailed
neurons. If simulation of functional networks with complex neurons is already possible
with other techniques, why use osNEF? Broadly speaking, there are important theoreti-
cal differences between the underlying frameworks, FORCE, EBN, and NEF. Even if we
assume that all three methods solve similar problems with similar performance, there is
significant value in developing and presenting an NEF-based method that is comparable
to FORCE- and EBN-based methods. The NEF modeling community is quite large, so
validating a method for training biologically-detailed functional models within this frame-
work is important, independent of similar successes with FORCE and EBN. Furthermore,
given the complexity of training biologically-detailed networks, we believe that the research
community will benefit from the existence of multiple methods that tackle this problem in
different ways. Future work should compare these methods, identify their relative strengths
and weaknesses, and develop new methods that build upon their successes.

There are also significant differences between these three methods with respect to bi-
ological plausibility and computational capacity. In the FORCE paper [176], the authors
simulate spiking LIF, Theta, and Izhikevich neurons, showing that they can produce a
number of dynamical systems, including oscillators, chaotic systems, songbird calls, and
episodic memories. These methods use a variety of current-based synapse models (exponen-
tial, double exponential, and alpha) and respect Dale’s principle. In the EBN paper [209],
the authors simulate point neurons that include Hodgkin-Huxley-type ionic currents, show-
ing that they can produce several types of one-dimensional integrators that statistically
reproduce empirical patterns of neural activity. Their methods also use double-exponential
synapses, but do not respect Dale’s principle. In this chapter, we simulate three point neu-
rons and one pyramidal cell reconstruction with four compartments and six ionic currents.
We show that our trained networks reproduce four linear dynamical systems (feedforward
and recurrent networks) and perform a cognitive task at performance levels comparable
to simple animals. Our methods use both current-based double-exponential synapses and
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conductance-based, voltage-gated NMDA synapses; we do not respect Dale’s principle. We
feel confident in claiming that we have (a) simulated neurons with significantly more bio-
logical realism than the FORCE and EBN papers, except with respect to Dale’s principle
(but see below), and (b) demonstrated that our trained networks perform a wider variety of
computations than [209] and a comparable number to [176] (excepting nonlinear systems).

Other researchers have extended the NEF with the goal of increasing the framework’s
biological plausibility. Stöckel [223] has developed numerous methods for training neural
networks to realize computationally-useful dynamical systems. One such method simulates
networks of multi-compartment LIF neurons in which synaptic connections are decom-
posed into excitatory and inhibitory components, each characterized by an appropriate
equilibrium potential. By selectively placing these synapses on different compartments
and optimizing excitatory and inhibitory weights, Stöckel shows that these dendrites can
effectively compute functions like four-quadrant multiplication [225]. Other work applies
this E-I optimizer to a functional model of eyeblink conditioning in the cerebellum’s gran-
ule–Golgi microcircuit, demonstrating that anatomically-detailed spatial connectivity can
be profitably incorporated into NEF models while respecting Dale’s principle [226]. These
methods nicely complement the osNEF: where Stöckel focuses on adding biological details
to the connections between groups of neurons (managing E-I balance, targeting dendrites,
and reproducing spatial structure), we focus on adding biological details to the internal
dynamics of the underlying components (the neuron and synapse models). Future work
that combines these techniques would greatly enhance the biological plausibility of NEF
networks, which have previously been criticized for lacking particular biological features.

The use of high-order synapses to control network-level dynamics has also been explored
using the NEF and EBN. Voelker has derived a method for computing the parameters of
high-order synapses that, when simulated in networks of simple neurons, preserves state
space dynamics in the network. These NEF-style techniques can be used to construct
models that encode rolling windows of input history, and the resulting neural activities
closely resemble the mnemonic responses of time cells in the cortex [249]. In contrast to
osNEF, these analytical techniques guarantee a solution, but rely on certain assumptions
that are violated once sufficient biological detail is included: specifically, if the dynamics
internal to the neuron model dominate the synaptic dynamics, or if the synaptic dynamics
are coupled to the cellular dynamics. EBN has also used synaptic dynamics to account for
the nonlinear dynamics of complex neurons, but relies on a significantly different optimiza-
tion processes for discovering those synaptic dynamics. In [209], the authors use a form
of system identification that (a) drives the neuron model with a specific random process,
(b) analyses the resulting voltage traces when the neuron spikes, (c) calculates the average
action potential waveform, (d) takes its temporal derivative, and (e) convolves it with an
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exponential function. In our networks, where cellular adaptivity is a major force, where
voltage-gated synapses depend on intracellular activity, and where the dynamics of distinct
geometric compartments are coupled, applying these types of analytical techniques become
difficult or impossible. Still, these methods demonstrate the utility of optimizing synaptic
time constants for network-level dynamics.

3.5 Conclusion

Functional capacity and biological plausibility are two important criteria for neural network
models that seek to clarify the relationship between low-level mechanisms and high-level
behavior. In this chapter, we developed osNEF, a method for training biologically-detailed
spiking neural networks to realize cognitively-relevant dynamics. osNEF uses an online
learning rule that (1) combines insights from several theoretical frameworks, (2) includes
error-driven, supervised, and Hebbian components, and (3) can be applied to a wide variety
of neuron and synapse models. We demonstrated the utility of osNEF by (a) showing that
the neural activities of a trained network form an appropriate function basis for dynamic
computation, (b) building several functional networks that perform cognitively-useful op-
erations with high accuracy, and (c) combining these operations into a larger cognitive
network that performs a simple working memory task. This cognitive network is built
from numerous biologically-detailed components, including Pyramidal cells, inhibitory in-
terneurons, conductance-based GABA synapses, and voltage-gated NMDA synapses, and
performs a delayed response task with mnemonic performance comparable to simple ani-
mals. We concluded by discussing the biological realism of osNEF, assessing its cognitive
capacity and usability, and comparing it to similar methods in the literature.

The methods presented in this chapter have several applications to learning and deci-
sion making in social contexts. Functional components like working memory are essential
for cognition in general, and for the social tasks that we investigate in Chs. 4-5 in partic-
ular. Here, we showed how to construct a biologically-realistic working memory network
that can, in conjunction with rudimentary networks for perception and action selection,
perform a simple mnemonic task. Moreover, future work may apply osNEF to study many
other aspects of social cognition. For example, we could extend the biological realism and
cognitive flexibility of our AMY model from Ch. 2 by simulating (a) pyramidal neurons
and interneurons, (b) microcircuits with exclusively excitatory or inhibitory connections,
and (c) neurotransmitters like DA, 5HT, and NE. Our simulations in this chapter show
that these extensions are feasible: our pyramidal and interneuron networks can compute
complex functions, our learning rules can be adapted to enforce Dale’s principle, and our
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neuron models include enough detail to simulate the electrophysiological effects of neuro-
modulators. Unfortunately, time constraints kept us from pursuing these research direc-
tions. Future work should use osNEF to test specific hypotheses related to pharmacology,
neurological disorders, and other phenomenon where biology directly affects cognitive abil-
ities.
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Chapter 4

Value Accumulation and the
Speed-Accuracy Tradeoff

Author’s Note: some of the of content in this chapter was previously published as a
journal article in the Proceedings of the 42nd Annual Conference of the Cognitive Science
Society [55]. Code is available on GitHub.

4.1 Introduction

In previous chapters, we focused on models of associative learning and working memory,
emphazising biological plausibility in the form of detailed neuroanatomy and electrophys-
iology. These components play an important role in many cognitive operations related
to learning and decision making. In the next two chapters, we shift our focus towards
higher-level cognition by modelling how these components work together to perform com-
plex cognitive tasks. In particular, our goal is to build neural models that realize the
value based framework, as laid out in Ch. 1. In this chapter, we investigate the process of
value integration and decision making, and in Ch. 5, we investigate value learning based
on external feedback.

In dynamical systems like the brain, evaluations and decisions are not made instanta-
neously: value estimates change as evidence is gathered, and the optimal choice is con-
stantly reevaluated as the brain processes external data through various internal models.
In many contexts, agents face a decision making (DM) tradeoff between speed and ac-
curacy: agents that take more time to gather and process information will usually make
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better decisions, but agents that take less time to decide will respond more quickly. The
speed-accuracy tradeoff (SAT) is prevalent in both natural systems and human societies.
Take, for instance, the quasi-social task of choosing a mate. An individual who spends
significant time with a potential mate, interacting with them in many different situations,
will get to know them well and can make an informed decision about their compatibility.
On the other hand, an individual who only spends a short time with a potential mate might
make a decision based on scant evidence, but can use their extra time to investigate other
potential mates, increasing their chances of finding someone who is highly compatible.

Many natural and artificial DM tasks feature some form of the SAT, so it is not sur-
prising that the brain’s DM systems have evolved to accommodate this tradeoff. Neural
and behavioral results indicate that individual and contextual differences, especially those
related to urgency and uncertainty, strongly influence how people approach the SAT when
performing cognitive tasks. Urgency influences DM if an agent is rewarded for acting
quickly, which can occur if the magnitude of the reward depends upon the decision time,
or if multiple actions (and associated rewards) are allowed within a fixed time window.
Uncertainty influences DM when evidence is noisy or is gathered incrementally, or when
prior knowledge (accurate or inaccurate) influences the evaluation process. The cognitive
mechanisms that animals use to manage urgency and uncertainty are critically important
for understanding DM.

In this chapter, we present a model of dynamic value accumulation and action selection.
The model gathers information from the environment by sequentially sampling cues and
tracks the accumulated value for two candidate actions in a working memory. It monitors
the accumulated evidence and the passage of time, which jointly control a gate that inhibits
action selection until the model’s decision criteria are met. Once this occurs, winner-take-all
(WTA) dynamics selects one action to be implemented, and this choice becomes the model’s
output. Our network includes many mechanisms that have been theorized to contribute to
the dynamic evaluation, accumulation, and selection of values. To investigate how these
mechanisms influence the SAT, we vary model parameters to create a population of unique
agents, then have each agent perform a DM task with sequential sampling. We measure
each agent’s accuracy and decision time and analyze their relationship, both for individual
agents and across the population. Finally, we compare these data with an empirical dataset
from humans performing an identical experiment, discuss which cognitive mechanisms best
explain the SAT in the empirical and simulated data, and mention future work that might
resolve open questions from our experiments.
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4.2 Background

4.2.1 Cognitive Tasks

Decision making is an extensive field in cognitive science, and DM tasks are quite diverse.
Tasks used to investigate the SAT fall into two broad categories: perceptual discrimination
tasks, and sequential sampling tasks. In perceptual tasks, participants are presented with
a sensory input and must classify the input as quickly as possible. In random dot motion
tasks, for instance, participants view a movie in which many dots move in various directions,
and must identify the predominant direction of movement. In other discrimination tasks,
participants view a static image for a short duration, and must classify a target item despite
the presence of distractor items. Behavioral responses in perceptual discrimination tasks
are usually indicated by button presses or shifting gaze to a specific location. Speed is
assessed by measuring the time between stimulus presentation and choice selection, while
accuracy is measured as the mean number of correct responses across many trials. Task
difficulty is controlled by varying the number of distractor stimuli.

In sequential sampling tasks, participants view a sequence of stimuli that give partial
information about the value of various choices. Typically, after each item in the sequence,
participants may choose to make a decision, or continue sampling evidence from the se-
quence to acquire more information. For example, participants might view a screen which
sequentially reveals information about the value of two items, and be instructed to select
the item with greater overall value. In these tasks, accurate value estimates can only be
achieved by taking multiple samples, but doing so requires more time. As with percep-
tual tasks, behavioral responses are often indicated by button presses, and accuracy is
measured by averaging the number of correct responses over many trials. In sequential
sampling tasks, the correct response is determined by the underlying probability distribu-
tion from which the samples are drawn: the item with the greater chance of generating
positive value is the correct choice. Response times may be measured in real time, assum-
ing a regular schedule for presenting samples from the sequence, or simply by counting
the number of samples that were requested before a decision was made. Task difficulty is
controlled by manipulating the underlying probability distribution, for instance by varying
how frequently each item increases in value.

There are important differences between these two types of tasks with respect to un-
derstanding the cognitive mechanisms governing the SAT. Perceptual discrimination tasks
have a longer history: the SAT was first measured and characterized using perceptual
tasks, and participant behaviors and neural activities are readily reproducible. However,
some researchers have questioned the extent to which these tasks actually probe the types
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of complex, cognitive DM that we seek to understand [73]. While perceptual discrimina-
tion does involve the accumulation of evidence for choice alternatives [242, 119, 52], and
may be flexibly modulated by signals indicating the quality of evidence or the need for
urgency [257], DM in these tasks does not require internal deliberation, risk assessment, or
the voluntary seeking of additional information, three features that define high-level DM.
Furthermore, the SAT is not always an inherent feature of perceptual discrimination tasks:
this tradeoff must often be highlighted by researchers when designing the task or explain-
ing it to participants, for instance by giving explicit verbal instructions to favor speed or
accuracy, by creating a payoff structure that explicitly rewards one or the other, or by
imposing external deadlines for responses [102]. Finally, differences in speed and accuracy
in perceptual tasks may be governed by perceptual abilities and by the allocation of at-
tention, rather than by exerting metacognitive control over DM systems [73]. In contrast,
sequential sampling tasks, such as those presented in [85, 149], naturally address many of
these concerns. Even without explicit verbal instructions or payoff structures, participants
in sampling tasks conceptually understand they are faced with a SAT, and attempt to be-
have accordingly, with varying levels of success [73]. These tasks involve a repeated, active
decision to continue gathering information, or to make a choice based on the accumulated
evidence: this engages deliberative DM systems, where urgency and uncertainty estimates
may dynamically interact to control cognition and behavior. Finally, sequential sampling
tasks are largely divorced from sensory processing, meaning that individual differences in
perceptual abilities do not confound the analysis of the SAT. For these reasons, we choose
to investigate DM and the SAT using sequential sampling tasks.

4.2.2 Neuroanatomy

The functional neuroanatomy of value based accumulation and DM is largely consistent
with the value base framework presented in Sec. 1.3. In many DM tasks, value estimation
is not necessary, as the values associated with each candidate action is either given directly
(sampling tasks) or inferred by perceptual hierarchies (discrimination tasks). Once values
have been represented in the brain, these values must be integrated into the current overall
value estimate for each action. Extensive evidence supports the idea that this occurs
via neural accumulators distributed throughout the brain; this notion is consistent with
the value based framework, especially with the hypothesis that accumulators for different
modalities are realized in domain-specific WM buffers throughout cortex (see Sec. 1.3.7).
In perceptual tasks, evidence accumulation occurs primarily in visual areas like the medial
temporal area (MT), the fusiform gyrus (for facial recognition), or parietal areas like the
intraparietal sulcus (IPS) [119, 257, 91]. In sequential sampling tasks, evidence is abstract,
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and is processed in the cortial areas identified in Secs. 1.3.2-1.3.3, such as vmPFC, dlPFC,
OFC, and ACC [52, 85, 172, 149, 91]. Interestingly, value accumulation is also apparent
in parts of motor cortex, such as the supplementary motor area (SMA) and the premotor
cortex (PMC), for both perceptual and sampling tasks [119, 91], indicating that internal
representations of the action plans themselves might accumulate evidence.

Various brain areas have been implicated in flexibly controlling the SAT based on
urgency, uncertainty, and prior knowledge. Areas like dlPFC may influence the weighting of
incoming information, based on the reliability of evidence or the urgency of acquiring more
information [52]. Various areas of the BG, including the caudate nucleus, substantia nigra
pars compacta (SNc), and the subthalamic nucleus (STN), are also thought to modulate
urgency information, effectively shifting decision thresholds through projections to cortex
[257, 91]. The involvement of these areas in thresholding decisions is further supported by
data from humans with parkinson’s, schizophrenia, and autism: disrupted SNc and STN
activity in these disorders correlates with higher decision thresholds and slower evidence
accumulation [91]. Other researchers have argued that changes in decision threshold and
the rate of evidence accumulation are realized directly in cortical areas, where sensory
processing and WM evaluate and integrate evidence [96]. Finally, as discussed in Sec. 1.3.6,
action selection involves WTA competition, either through inhibitory connections within
the cortex (particularly motor regions) or via mutual connections between cortex and BG.

4.2.3 Theoretical Models

Many mathematical and computational models have explored the neural and cognitive basis
of DM. The most influential model in this field is the drift diffusion model (DDM), in which
a decision variable drifts between two decision thresholds, and a choice is made when the
variable crosses one threshold [190]. In the DDM, the drift of the decision variable is subject
to random noise, leading to variance in reaction times (RTs) across trials, and has a slope
(drift rate) that varies between individuals or is based on the context (e.g., stronger or more
credible evidence leads to higher drift rates). The three key parameters of the DDM are
thus the decision threshold, the drift rate, and the “non-decision time”, which determines
the length of time between the start of the simulation and the onset of accumulation.
The DDM has been very successful in modelling animal behavior across many domains:
DDM parameters can be fit to individuals such that models reproduce individual RTs
and accuracy distributions; and DDM variables have been correlated with neural activity
in brains areas associated with DM [191]. Many of the results discussed in the previous
section, which associate parameters like threshold and evidence accumulation rate with
particular brain regions, are made in reference to the DDM. However, the DDM is a purely
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mathematical model and is agnostic about neural implementation, so any correspondence
between DDM variables and neural activity will necessarily be a high-level comparison.

Numerous extensions of the DDM have sought to increase its cognitive and neural
realism, for instance by capturing the effects of urgency and uncertainty. Some DDM
models assume that decision thresholds vary over time, shrinking as the pressure to make
a decision steadily increases: the existence of a ramping urgency signal is consistent with
behavioral data [51] and neural data [41], though the strength of this effect has been called
into question [71]. In other models, the drift rate is the target of urgency modulation: as
time pressures increase, drift rates also increase, leading to faster decisions [174]. Finally,
decision conflict, or the uncertainty about choice values, may also stimulate changes in
DDM parameters, speeding or slowing decisions based on past performance or current
feelings of confidence [138]. Several computational models have already realized the DDM
in neural networks [218, 78], and have investigated the role of urgency and uncertainty in
flexibly controlling the SAT. However, neural implementations are less common than pure
mathematical models.

Other theoretical models provide an alternative account of DM that address some of the
weaknesses of the DDM. In its original form, the DDM includes a single decision variable
that may (noisily) drift towards one of two thresholds; this formalization limits DDMs to
two-choice tasks (although DDM models like [202] have extended this towards multiple
choices). In so called “race” models of DM, each choice alternative has a separate decision
variable, and each variable independently accumulates towards its own decision threshold:
whichever choice crosses threshold first wins. Race models include the linear ballistic
accumulator (LBA, [31]) and the independent accumulator (IA, [89]) models. Given that
these models (a) naturally apply to multiple-choice DM, (b) can be extended to model
urgency and uncertainty, and (c) reproduce empirical data, we use these frameworks as the
foundation for our model.

Another framework that has been successful in explaining DM in the brain is Bayesian
inference. Rather than explicitly track value estimates for candidate actions or decision
variables, this framework assumes that the brain maintains beliefs about the external world
using probability distributions, then uses those beliefs to calculate the expected value of
each candidate action. As an agent samples information from the environment, takes
actions, and observes the outcome, it uses Bayesian inference (sometimes in conjunction
with Reinforcement Learning) to update its beliefs. Previous work has shown that com-
putational models of probabilistic inference and belief updating may explain many aspects
of human DM under uncertainty, both in perceptual tasks [187, 108] and social tasks
[124, 125].
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Bayesian models of DM have several advantages over DDM and race models. First,
by maintaining a belief distribution, Bayesian agents can incorporate new information and
update their beliefs in an efficient and distributed manner: that is, these agents may ef-
fectively update their beliefs about the value of many candidate actions simultaneously.
Second, Bayesian agents’ rich representations about the external world may serve as the
basis for a wider variety of cognitive operations. For instance, Bayesian models can ex-
plicitly calculate the value gained by sampling new information; this calculation lets the
model learn (via external feedback) the expected value of a new piece of information, and
make a decision when the expected value of choice exceeds the expected value of sampling
[108]. Another example is that Bayesian models can calculate uncertainty using formulas
that account for the entire history of sampling, rather than the current evidence estimate
alone: previous work has shown that these uncertainty calculations may explain counter-
intuitive findings in the behavioral literature, such as the well-documented tendency for
people to express high perceptual confidence in situations where they actually have low
accuracy [123]. In addition to their added cognitive flexibility, empirical evidence supports
the idea that brains may perform Bayesian inference, and the above computational models
have shown that they can be realized in neural networks (with varying degrees of biological
plausibility) [187].

While Bayesian inference is a promising approach to studying DM, its assumptions and
mechanics differ from those involved in traditional value based decision making, as we have
laid out in this thesis. For example, Bayesian models require that the modeller specify the
mathematical form of the belief distribution used by an agent, which arguably introduces
an implausible degree of “expert knowledge” into the model. In contrast, DDM and race
models do not assume the model has any prior knowledge about the underlying world state.
Furthermore, Bayesian updates are more computationally-intensive than value updates,
and require different neural architectures and learning rules. The cognitive components
required for such updates are currently under development in the NEF [210, 80], whereas
the cognitive components for evidence accumulation are already well-established in the
Semantic Pointer Architecture [64]. For these reasons, we relegate an investigation of
decision making through Bayesian inference to future work.

4.3 Model

To investigate DM and the SAT, we adopt the sequential sampling task described in [73].
In this task, participants are presented with sequential evidence about the changing fi-
nancial value of two hypothetical stocks, and are asked to select the stock with greater
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value. Participants view a screen which displays information about stock A on the left
and stock B on the right. Every 500ms, the screen displays new evidence about one stock,
indicating whether it increased or decreased in value. Samples alternate between stocks A
and B. Behind the scenes, stocks A and B are each assigned a probability of increasing in
value. These probabilities range from 0.1 to 0.9, and the difference in probabilities between
A and B is fixed to one of three values, ∆P = [0.1, 0.2, 0.4]. Larger ∆P corresponds to
an easier decision task, which should lead to faster and more accurate DM. When par-
ticipants are ready to make a decision, they press the space bar to stop sampling, then
press the F or J key to select stock A or B. Once participants complete a single trial,
the next trial begins immediately. Participants have a fixed time period to complete the
task, and the amount of remaining time is displayed on the screen. Because participants
are rewarded based on the number of correct stocks they chose (+1 point for a correct
choice, -1 for an incorrect choice), and because the number of trials they perform is limited
only by their speed (within the fixed time period of the experiment), the task rewards
both speed and accuracy, effectively establishing the SAT. In their empirical study, [73]
used post-experiment surveys to confirm that participants understood this tradeoff; they
also performed various manipulations of the experiment (e.g., changing reward structure,
instructions, or feedback), which (slightly) altered how quickly participants performed the
task.

Our spiking neural model contains four core components, summarized in Fig. 4.1. The
value population receives external inputs: an input of +1 indicates the stock increased in
value, and an input of -1 indicates it decreased. These values are sent to an accumulator
population, whose recurrent connections integrate evidence for each option. Next, a gate
population controls action selection by inhibiting the action population; this inhibition is
released only when specific criteria are met. The action population receives inputs from the
accumulator : as discussed below, this functional connection ensures that only the highest
value choice is selected. Note that the value, accumulator, and action populations all rep-
resent the two value estimates independently, which guarantees that neural representations
of these values do not interfere with one another.

Several parameters dictate how our model responds to urgency and uncertainty, and
make gated WTA dynamics possible. The connection between value and accumulator is
initialized with a gain parameter wramp: this parameter corresponds to the ramp rate in
DDM models, and governs how quickly external evidence is accumulated. The accumulator
population also receives an external input S which can be used to set the initial evidence
loaded into the accumulator: S thus represents the prior knowledge of the system. With
regards to WTA selection, the connection between accumulator and action ensures that
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Figure 4.1: Network architecture for the value accumulation and decision making model.
Grey text represents inputs and outputs to the model, while black text indicates popula-
tions of 1000 LIF neurons. Black arrows indicate connections that compute the indicated
functions, while the red arrow indicates an inhibitory connection. Orange quantities are
the free parameters of the model: S is an evidence bias fed into the accumulator during
model initialization; wramp is the evidence accumulation rate; wdelta controls the strength of
certainty-based threshold reduction; wtime controls the strength of urgency-based threshold
reduction; and T is the baseline decision threshold.

only one choice has positive value. This connection computes the function

f(x) = [x0 − x1,x1 − x0], (4.1)

which is equivalent to the signed difference between the evidence for choice A and choice
B. When choice A has larger accumulated evidence, this function will decode a value with
sign [+,−], whereas when choice B has more evidence, it will compute [−,+]. We also
set the intercepts and encoders in action such that the population only represents positive
values of x: negative inputs will result in zero neural activity. The result is that the
representation in action will be positive in the dimension representing the winning choice,
and zero in the other dimension. We discuss the straightforward extension of this function
to higher dimensions (choices between three or more options) in Sec. 4.5.

Finally, action selection must be delayed until certain decision criteria are met. Without
the gate population, any integrated evidence in accumulator will lead to immediate positive
values in action and a corresponding behavioral output from the model. In previous
sections, we discussed various criteria for an “appropriate” choice, including the passage of
time, the meeting of a decision threshold, or the estimation of high confidence in a choice.
gate realizes all these criteria simultaneously via a weighted combination of internal and
external signals. First, gate receives a constant background input T , which represents the
decision threshold: this positive value must be negated by other inputs to gate in order to
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remove inhibition from action. Next, gate receives an input based on the elapsed time t
in the current trial; this linearly-ramping signal is multiplied by a constant −wtime, which
represents the strength of temporal urgency. Thus, as time passes, gate’s representation
decreases by an amount proportional to t and wtime. Finally, gate receives from accumulator
an estimate of choice confidence, which is calculated as f(x) = |x̂0 − x̂1|, the absolute
difference between the two value estimates. As confidence grows, the value represented in
gate decreases, and the effective threshold for action selection decreases.

It is worth noting that, in our model, the likelihood of making a choice increases not
with the absolute value estimate of an option, but with the relative difference between
that option and all other options. This property arises from two mechanisms. First, the
value transmitted from accumulator to action is based on the signed difference between
integrated value estimates: this value must overcome the dynamic threshold imposed by
gate before action will activate and make a selection. Second, the dynamic threshold com-
puted by gate is influenced by choice confidence, which depends on the absolute difference
between integrated value estimates: when wdelta > 0, large differences in accumulated evi-
dence will thus compound to produce faster decisions. These mechanisms were chosen for
two reasons. First, they allow us to incorporate a (simple) calculation of choice confidence
into the network, a feature which many computational models of DM lack. Second, com-
puting the difference between accumulated evidence accommodates negative values, which
are featured in this task (and many real-world situations). Many existing DM models,
including Nengo’s default BG network [220] and IA network [89], rely on accumulation
(or comparison) of positive value to a threshold. When predominantly negative values are
observed, these networks do not function properly.

4.4 Results

To investigate the DM capabilities of our model and compare its performance to human
data, we divide our results into three sections. First, we investigate the dynamics of neural
representation in the model, and begin to characterize the influence of model parameters
related to urgency and uncertainty. Next, we examine the distributions of accuracy and
speed from two human participants (one fast and inaccurate, the other slow and accurate),
then attempt to tune our model parameters to reproduce their behavior. Finally, we
investigate the SAT tradeoff more generally by simulating a heterogeneous population
of agents and plotting the relationship between speed and accuracy. We compare these
trends to the human data across multiple difficulty conditions, and analyze the relationship
between individual model parameters and simulated speed and accuracy.
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4.4.1 Dynamics

We begin by showing the dynamics from a simplified version of the model. In this network,
we set wtime, wdelta, and S to zero, leading to a static decision threshold and an unbiased
accumulator. Fig. 4.2 plots the accumulated evidence and the decision variables over time,
as cues are sequentially sampled from the environment. The accumulator maintains an
accurate estimate of the integrated value over time (blue and orange lines, left panel), and
the connection between accumulator and action computes the signed difference between
these estimates (pink line, right panel). When this difference exceeds the threshold imposed
by gate (green line), inhibition on action is released, leading to nonzero values and a
behavioral output (transparent blue or orange lines, right panel). We record the time
when this decision occurs, and mark it with a green (red) circle, to indicate a correct
(incorrect) choice. In this example, the model makes a correct decision after viewing the
7th cue. Fig. 4.3 shows a second simulation with nonzero wtime and wdelta. As time passes
and evidence accumulates, the ramping urgency signal and the growing certainty about
differences in accumulated value dynamically reduce the decision threshold. Relative to
Fig. 4.2, this changes the point where the signal decoded from accumulator overcomes the
dynamic threshold, leading to a decision shortly after viewing the 6th cue.

In these examples, altering the model parameters helped the model choose quickly and
correctly, but in other cases, promoting speed may prompt an incorrect decision. Figs. 4.4-
4.7 plot four examples of the SAT on a single trial of the sequential sampling task. In
each figure, we simulate three different networks, which are identical except for a single
parameter value, T , wramp, wtime, or wdelta. We evaluate the dynamics of these models
on the same trial, meaning each model receives identical input values for options A and
B. Our figures show that, for each parameter, choosing an extreme value leads to each a
slow but accurate, or a fast but inaccurate, decision, while choosing an intermediate value
leads to a fast and accurate decision. These figures demonstrate the impact of the four
free model parameters on the dynamics of value accumulation and decision making, and
indicate that each parameter may influence an agent’s SAT.

4.4.2 Individual Behavior

We now investigate whether the behavior of our simulated agents aligns with empirical data.
We use the dataset from Fiedler et al. [73], which is available online and is distributed
with the Creative Commons Attribution 4.0 International license; see the original paper for
experimental details. We first attempt to recreate the behavioral data from representative
individuals in the dataset. We selected two individuals based on (a) the distribution of cues
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Figure 4.2: Dynamics of the DM network with a static decision threshold. We set wtime,
wdelta, and S to zero, leading to a static decision threshold and an unbiased accumulator.
The left panel shows the accumulated evidence for options A and B: the dotted lines are
the analytically-computed summation of cue values, and the solid lines are the estimated
values decoded from the spiking activity of accumulator. The right panel shows the output
from the gate population, which must be exceeded by the output of accumulator (|x̂0− x̂1|)
before inhibition on action is released and a choice is made.

they sampled before making a decision in the hardest difficulty condition (∆P = 0.1), and
(b) their mean accuracy over all trials in this condition. One individual made decisions
quickly but less accurately (median number of sampled cues is 8, with accuracy 67%),
while the other made decisions slowly but accurately (median cues is 16, with accuracy
84%). To see if our model could reproduce these two extremes of decision making, we ran a
hyperpameter optimization on our four parameters using the Neural Network Intelligence
(NNI) optimizer [165]. To compute the loss function, we simulated an agent with the same
inputs (sampled values of option A and B) that the two human participants viewed during
the hardest difficulty condition; if the model agent requested more cues on a trial than
did the human, we generated additional data based on the trial’s recorded probability
that A or B would increase in value. After each trial, we recorded the number of cues
sampled by the model and whether it made the correct selection. The loss was set equal
to the sum of the absolute difference between the cues sampled by the agent, and the cues
sampled by the participant; the total loss across all trials was the sum of these losses.
Thus, the optimization attempted to find parameters that make agents choose with similar
speeds as the human participant when ∆P = 0.1, but did not factor in whether the agent
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Figure 4.3: Dynamics of the DM network with a dynamic decision threshold. We set
wtime = 0.02 and wdelta = 0.4 leading to a decision threshold that changes over time and
with accumulating evidence.

was similarly accurate (or inaccurate) as the human, nor did it account for the easy and
moderate difficulty conditions.

Fig. 4.8 shows the behavioral data from two optimized agents, one fast and one slow,
compared to the two human participants, across all three difficulty conditions. We observed
that the speed distributions of simulated agents resemble the human data for all three
difficulty conditions. Given that these models were only “trained” on the hardest difficulty,
this agreement suggests that the optimized parameters may describe core DM attributes
of an individual that are invariant across contexts and tasks. We also observed that the
mean accuracies of the optimized models were similar to the human accuracies, suggesting
that our model may also capture the accuracy differences that accompany these decision
strategies.

4.4.3 Speed Accuracy Tradeoff

Finally, we investigate whether our model reproduces the SAT in the general case, and
attempt to identify which cognitive mechanisms are primarily responsible for this effect.
We begin by showing how the SAT manifests in the empirical data from [73]: for each
individual human in the dataset, we recorded the mean number of cues they sampled,
calculated their mean accuracy, and plotted these values against each other. Fig. 4.9
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Figure 4.4: Dynamics of the DM network for different values of the decision threshold
parameter T . This parameter controls the y-intercept of the dynamic threshold.

Figure 4.5: Dynamics of the DM network for different values of the urgency parameter
wtime. This parameter controls temporal decreases in the dynamic threshold.
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Figure 4.6: Dynamics of the DM network for different values of the ramp rate parameter
wramp. This parameter controls the slope of accumulating evidence (note y-axis scale).

Figure 4.7: Dynamics of the DM network for different values of the confidence parameter
wdelta. This parameter controls the relationship between differences in accumulated evi-
dence and the dynamic threshold.
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Figure 4.8: Distributions of cues sampled by simulated agents and human participants. We
chose a fast and a slow decision maker from the empirical dataset, then optimized model
hyperparameters to reproduce the number of cues they sampled before making a decision
in the ∆P = 0.1 difficulty condition. The top row plots the fast individual and the bottom
row plots the slow individual; human data are in orange and model data are in blue.
Optimized agents sample a similar number of cues and have similar accuracy rates across
all difficulty conditions, indicating that the optimized DM parameters generalize outside
the training set. The y-axis indicates percent responses for each bin of the histogram, and
the mean accuracies are indicated in the plot legends.

shows the result: individuals who sampled more cues performed better on average, and the
relationship between accuracy and speed is well-approximate with a linear fit. This trend
is apparent across multiple difficulty conditions.

To reproduce the empirical SAT in a population of simulated agents, we repeated the
optimization in Sec. 4.4.2 for each human in the empirical dataset, attempting to find
parameters that caused simulated agents to sample a similar number of cues as their
human counterpart on the hardest difficulty condition. As before, the optimization did
not account for human accuracies or the cues sampled on the easier difficulties. After
finding optimal parameters for each agent, we had them complete the sampling task on
all three difficulty conditions, presenting them with the same inputs that the humans saw
whenever possible. We plotted the results in Fig. 4.10. Overall, the SAT is evident in
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Figure 4.9: Speed-accuracy tradeoff among human participants across three difficulty con-
ditions. Each point represents one individual performing multiple trials of the sequential
sampling task. As expected, the mean accuracy of a participant reliably increases with
the participant’s mean number of sampled cues. More difficult task conditions (smaller
∆P ) shifted the SAT curve downward but preserve this relationship. Linear regression
was performed using Seaborn [254].

the model data across all difficulty conditions: the simulated variance in mean cues and
accuracy captures the diversity of decision strategies present in the human data. Although
the optimization only sought to find parameters that reproduced the cues distribution
for ∆P = 0.1, the resulting population managed to recreate SAT trends in all difficulty
conditions. This result supports the tentative conclusion from previous sections, suggesting
that our parameterized model captures important features of DM and the SAT, and that
a model trained on one task may generalize to similar tasks and still reproduce human
behavior.

We were also curious which model mechanisms were primarily responsible for driving
the SAT in our simulated agents. To investigate this, we first looked at whether each
model parameter could, on its own, produce the behavioral variance that characterizes
the SAT. We chose a set of default parameters for our model (T = 0.3, wramp = 0.2,
wtime = 0, and wdelta = 0), then created a heterogeneous population of agents by scanning
over one parameter while holding the others constant. Each agent completed 30 trials of
the sampling task, then we plotted agents’ mean accuracies versus their mean sampled
cues. Fig. 4.11 shows that varying any of the four model variables produces some form of
SAT among the simulated agents: as they sample more cues, they become more accurate
on average, with slope and intercepts dependent on the scanned parameter. While these
trends were not good quantitative fits to the human data in Fig. 4.9, they qualitiatively
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Figure 4.10: Speed-accuracy tradeoff among simulated agents across three difficulty con-
ditions. As expected, the mean accuracy of agents reliably increases with the the mean
number of cues they sample, and harder tasks induced more errors. The simulated data
align closely with the human data in Fig. 4.9: our model captures the human variance in
sampled cues and accuracies, and our best-fit trendlines, which quantify the SAT, are quite
similar to the trendlines in the empirical data, replotted here as gray lines.

showed that any of our four model parameters may potentially drive the SAT.

Next, we analyzed the data from Fig. 4.10 to identify which model parameters best
explained differences in simulated accuracies and cues sampled. We began by running an
ordinary least-squares (OLS) regression on the parameters from the optimized agents; we
used the software package sklearn [182] to normalize the variance of each parameters to
one, then used the LinearRegression function to estimate the coefficients of our four
model parameters. We combined the data from all three difficulty conditions for this
analysis. This produced a linear fit to the simulated accuracy with score R2 = 0.23 and
coefficients CT = 0.02, Cramp = −0.01, Ctime = −0.05, and Cdelta=−0.02. This indicates that
the parameter wtime was the strongest predictor of model accuracy, with larger parameter
values leading to lower accuracies. We also ran an OLS regression with the mean number
of sampled cues as the dependent variable. This produced a linear fit with score R2 = 0.63
and coefficients CT = 1.54, Cramp = −1.88, Ctime = −2.95, and Cdelta = −1.06. Again,
wtime was the strongest predictor of cues sampled by the simulated agents. To visually
confirm these relations, we plotted mean accuracy and mean cues samples as a function of
wtime in Fig. 4.12: this plot confirms that speed reliably increases, and accuracy reliably
decreases, for agents with larger wtime.

Finally, we performed a principle component analysis to look for correlations between
model parameters in the optimized agents. Using sklearn’s PCA function, we ran a 4-
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Figure 4.11: Speed-accuracy tradeoff among simulated agents that differ by only one pa-
rameter. For each row, we created a population of agents with different values of the
indicated variable, then plotted their mean number of sampled cues against their mean
accuracy (y-axis). We found that each parameter could qualitatively explain the SAT:
accuracy increased linearly with cues sampled, with lower intercepts and greater slopes for
harder tasks. While these data do not quantitatively reproduce the empirical data from
Fig. 4.9, they show that a SAT may emerge from variance in any model parameter.

dimensional PCA on our parameter data, then plotted each pair of principle components
against one another, coloring the data by accuracy or mean cues sampled. The results are
shown in Figs. 4.13-4.14. While we did not observe any strong clustering between model
parameters, the relationship between the second, third, and fourth principle component
and our two dependent variables was again affirmed. This suggests that our model pa-
rameters do not require specific configurations (such as high decision thresholds paired
with low temporal urgency) to recreate the human data. In the next section, we discuss
how extensions of the optimization and PCA approach may be used to further identify the
contribution of each model parameter.
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Figure 4.12: Mean speed and accuracy of simulated agents from the optimized population
as a function of the urgency parameter wtime. We performed an OLS regression on the
optimized agents depicted in Fig. 4.10 and identified the parameters wtime as the strongest
predictor of agent speed and accuracy. We then plotted each agent’s mean speed and
accuracy as a function of the agent’s wtime parameter value. This plot confirms that these
two dependent variables strongly correlate with the urgency parameter. Note that the
vertical striping is an artifact of parameter discretization in NNI optimization.

4.5 Discussion

In constructing our spiking neural model of value accumulation and decision making, we
strove to make it biologically realistic and cognitively plausible. In this section, we discuss
the extent to which we achieved these goals, and identify issues for future work.

Unlike our amygdala model in Ch. 2, the model we presented in this chapter does
not have a precise neuroanatomical mapping: we labelled our neural populations based
on their functional properties, rather than their anatomical identities. However, this does
not mean that our model does not correspond to known DM circuits in the brain. In
Sec. 4.2.2, we discussed how various areas of cortex and basal ganglia might realize a
DM circuit, but pointed out that many brain areas contribute to each of these functions.
We felt that explicitly giving anatomical labels to our populations would obscure this
complexity, and give a false sense of certainty about the brain areas involved. It is likely
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Figure 4.13: Principle component analysis for model parameters, colored by mean accuracy.
We ran a 4-dimensional PCA on our parameter data and plotted each pair of PCs against
one another. The lack of clustering indicates our parameters are mostly independent, while
the color gradient in the bottom row indicates that accuracy correlates with PCs 2-4.

that DM circuits, such as one we presented in Fig. 4.1, occur in multiple places throughout
the brain, with each specialized to a different sensory or action modality. However, if
we were forced to identify the brain regions associated with our neural populations, we
would say that value estimation occurs in modality-specific regions (e.g., V1-V4 for visual
estimates, or STS/TPJ for social estimates), and value accumulation occurs in vmPFC
and vSTR. These integrated estimates are sent to areas in motor cortex, including SMA,
that help plan and execute actions. These motor areas are under the inhibitory control of
nuclei within the BG, which receive value estimates from cortex and gate action selection
by projecting back to cortex. Future work should gather electrophysiological data from
neurons in these regions for behaving animals in order to prove or disprove this proposed
functional mapping.

With regards to cognitive realism, our model included a variety of mechanisms that
dynamically govern the speed and accuracy of DM. Like most DDM models, our model
includes a static threshold parameter T and a ramp rate wramp. Similar to the drift
rate in DDMs, our ramp rate determines how fast the decision variables ramp towards
threshold; unlike DDMs, our ramp rate leads to the independent accumulation of two
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Figure 4.14: PCA for model parameters, colored by mean cues sampled. We ran a 4-
dimensional PCA on our parameter data and plotted each pair of PCs against one another.
The lack of clustering indicates our parameters are mostly independent, while the color
gradient in the bottom row indicates that speed correlates with PCs 2-4.

decision variables (as per the IA model), and does not include a noise component. However,
the spike noise inherent in neural representation, both in value and in accumulator, causes
the integration of evidence to be noisy, leading to variations in decision time that are
analogous to the DDM. In addition to threshold and accumulation rate, we investigated two
mechanisms that might contribute to speed and accuracy: a ramping urgency signal that
increases over time; and an internal estimate of choice certainty. We proposed heuristics by
which these quantities might influence a dynamic threshold, and parameterized these rules
with two variables, wtime and wdelta, that control the strength of these effects. The result
is a model with four free parameters, any of which might vary within a human population
and produce different behaviors on DM tasks. Indeed, we found that, by varying these
four parameters and simulating a sequential DM task, we could produce variable agent
behaviors that correspond to the SAT.

We also compared the behaviors of our agents to an empirical dataset from [73], in
which hundreds of human participants completed the same sequential sampling task. We
identified two individuals from this dataset whose behavior reflected a slow but accurate
DM strategy, and a fast but inaccurate DM strategy. We then used an offline optimization
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technique to find model parameters that reproduced the behavioral signatures of these two
strategies. The resulting agents successfully recreated the empirical data from these two
humans. Building on this success, we repeated this optimization for every human in the
empirical dataset, then analysed simulated and empirical SATs by plotting individuals’
mean accuracies against their mean number of cues sampled. We quantified the SAT
by using linear regression to draw best-fit trendlines, and found that our model closely
reproduced the empirical data.

In many ways, our model resembles the typical DDM model as applied to DM and the
SAT: we fit model parameters like ramp rate and decision threshold to the human data, and
used this to draw conclusions about the cognitive mechanisms of DM. However, our model
also extends DDMs in several important ways. First, our model simulates networks of
spiking neurons, and realizes all high-level model parameters within the network itself (i.e.,
by scaling synaptic weights on particular connections). We propose specific mechanisms
by which cognitive operations like value accumulation and gating may be realized within
neural networks, and map these mechanisms onto anatomical areas. Most DDMs are
purely mathematical models, where the parameters and mechanisms only qualitatively
map onto brain. Our model is therefore both more cognitively and biologically specific
than DDMs. Second, our model is applied to a sequential sampling task, whereas most
DDMs are applied to perceptual tasks; while both models can likely be adapted to perform
both tasks, the organization of our model is arguably better suited to flexibly accommodate
complex cognitive tasks than the DDM, which is limited by a single decision variable and
a lack of internal state monitoring.

While we investigated a two-choice task in this chapter, our model may be easily ex-
tended to tasks involving three or more choice alternatives. First, the input space would
be expanded to include the values of each possible stimulus, and the representations of
value and accumulator would increase proportionally. Because we represent each decision
variable as an independent dimension in these populations, this would require a linear in-
crease in the number of model neurons. Next, the connections out of accumulator would be
generalized to higher dimensions. To ensure that action receives an input that is positive
only in the dimension of the “winning” option, the connection between accumulator and
action could compute the function

f(xi) = Dxi −
D∑
j

xj. (4.2)

where D is the number of candidate actions, and i is the index over these actions. In
other words, for each possible option i ∈ D, the connection would compute the difference
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between the value of that option and each other option j, then sum them together into a
single value. This equation reduces to Eq. 4.1 for D = 2. Finally, to compute certainty,
the connection between accumulator and gate would compute some function over all accu-
mulated values that results in a one-dimensional certainty estimate. Many functions could
satisfy this criterion, and we suspect that the brain uses learned heuristics to simplify
this computation. Depending on its complexity, this functional connection may require
a secondary population with recurrent connections, but no further changes to the overall
network structure presented in Fig. 4.1 would be required. Investigating the computational
properties and behavioral signatures of such a network would be a fruitful avenue for future
research.

Another topic for future work relates to parameter identification and minimal model
specification. In this chapter, we repeatedly showed that each of our model parameters
independently contributed to the SAT, both in the general case, and for optimized agents.
Preliminary analysis with OLS and PCA suggested that the temporal urgency parameter
wtime explained the most variance in simulated speed and accuracy. However, we did not
investigate whether simpler versions of our model could adequately reproduce the trends we
identified in the human data. It would be interesting to repeat the parameter optimization
in Sec. 4.4.3, but with one, two, or three of the model parameters fixed to zero. If parameter
optimization could not recover the empirical SAT trends with specific parameters missing,
it might indicate that the associated cognitive mechanisms are essential for managing
the SAT, whereas the other mechanisms provide additional means to flexibly control the
SAT given task constraints. Future work might also explore different mechanisms for
computing certainty, urgency, or WTA competition: we proposed simple computations for
these quantities, but the exact functional form of these computations may affect the shape
of the emergent SAT in a population of model agents.

As mentioned above, one advantage of simulating spiking neural networks is the ability
to compare low-level model outputs to low-level biological data, for example by comparing
the neural activity of model populations to neural data from behaving brains. While the
design of our model was broadly informed by the representational properties of several areas
in cortex and BG, we did not perform a thorough comparison between model activity and
empirical tuning curves, like we did in Ch. 2. This could be a valuable area for future
research that could easily validate (or invalidate) the structure and mechanisms of our
model. For example, some behavioral evidence supports the notion of an urgency signal
that ramps with time [51, 41], which may reduce decision threshold or increase ramp
rates. However, neural evidence from motor cortex suggests that decisions are made when
neural activity reaches a fixed threshold, which is invariant across urgency, task difficulty,
and other contextual variables [71]. Comparing simulated and empirical neural activities,
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given a model that reproduces the behavioral results of animals performing a task, may
help to resolve this theoretical ambiguity, and inform the design of future empirical studies
that seek to differentiate the neural mechanisms responsible for the SAT.

Finally, there are a few behavioral effects from empirical studies that might be worth
studying using our model. In some sequential sampling tasks, participants develop a bias
towards one choice option after repeatedly choosing (or being rewarded for choosing) that
option [91, 96], even when task instructions indicate the independence and equality of
options on each trial. These biases may reflect prior knowledge about option values, differ-
ential reward rates for each option, or other cognitive mechanisms based on DM heuristics.
The structure of our model should accommodate a variety of mechanisms related to cogni-
tive bias: in fact, we already simulated a mechanism for value bias through the parameter
S. However, we did not investigate the effects of this parameter, since the empirical dataset
from [73] did not feature the development of biases across trials. In general, using our model
to investigate the idiosynchratic properties of human DM, and to test hypothesis about
their neural bases, is a worthwhile endeavor.

4.6 Conclusion

In this chapter, we presented a neural model of value accumulation and DM that per-
formed a sequential sampling task. The structure of our model was based on the functional
neuroanatomy of DM in the human brain, and its cognitive mechanisms realized two de-
cision criteria that influence DM, urgency and uncertainty. Four key parameters in our
model governed how simulated agents approached the speed-accuracy tradeoff: the deci-
sion threshold, the ramp rate for accumulating evidence, the strength of temporal urgency,
and the strength of decision confidence. We explored how these parameters explained
differences in human behavior with regards to the SAT: in particular, we found that we
could reproduce (a) the behavior of individual humans who followed characteristic decision
strategies, and (b) trends related to the SAT across a population of humans performing the
task. Our model thus provides a realistic account of the relationship between the neural
mechanisms underlying valuation and DM, and the behavior of individuals performing a
complex DM task. We analyzed the relationship between model parameters and emergent
SATs using several techniques, and tentatively concluded that increasing urgency driven
by the passage of time was the strongest determinant of agents’ speed and accuracy. We
concluded by discussing several theoretical and practical extensions for our model. In the
next chapter, we shift our focus away from value integration and action selection, and
towards the process of value estimation and error-driven updating.
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Chapter 5

Reinforcement Learning and the
Trust Game

Author’s Note: some of the of content in this chapter was previously published as a
journal article in the Proceedings of the 44th Annual Conference of the Cognitive Science
Society [54]. Code is available on GitHub.

5.1 Introduction

In the final research chapter of this thesis, we explore how the brain estimates the value of
candidate actions based on trial, error, and external feedback. Learning the relationship
between one’s actions, the state of the environment, and the consequences of those actions
is central to the process of value estimation. We study this process using reinforcement
learning (RL), a popular and successful framework for training intelligent agents to act in
complex environments. RL is widely believed to occur within various areas of the brain,
helping animals develop behavioral strategies as they act in, and react to, changes in the
environment. We extend previous neural models of RL in several ways, notably by creating
a valuation network with biological constraints, then applying this network to a social task
where individuals interact with adaptive software opponents in a two-player game. Our
focus in this chapter is developing cognitive agents and applying them to social task that
involve learning: to validate our models, we also ran a human experiment that provided
a dataset for comparison and analysis. Our results suggest a qualitative match between
simulated learning and human learning; our agents adopted strategies that resemble human
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strategies at a high-level, especially with regards to prosocial activities like generosity and
reciprocation.

In many ways, the NEF network we present in this chapter is the culmination of the
models we developed in the previous chapters. Online learning within the network uses
the PES rule, in conjunction with error populations and inhibitory gates, to update the
synaptic weights that realize value encoding. Although this learning is not exactly associa-
tive, it does map states of the world and candidate actions onto learned value estimates,
and uses many of the components and insights from the amygdala model in Ch. 2. In
order to manage the real-time processes of perception, action, and learning, our network
uses gated working memories to store and clear information from a cognitive workspace,
and uses functional connections to route and transform information between model compo-
nents. Our work with biologically-plausible networks in Ch. 3 shows that such functional
models may be implemented in biological detail without losing cognitive capacity. Finally,
our model uses a simple decision system to select actions once valuation is complete: while
the focus of this model is updating value estimates based on feedback, we do implement
a decision system that simplifies the action selection system in Ch. 4 in order to close
the loop between perception, action, and environment. The resulting model is broadly
applicable to cognitive tasks that involve learning and behavior, and the insights we gain
about high-dimensional state representation and cognitive control help us understand the
challenges faced by the brain when performing difficult, multi-step tasks.

We begin this chapter by reviewing the mathematics of RL and the associated func-
tional neuroanatomy. We then introduce the trust game (TG) and discuss how it has
been used to study prosocial behavior and the development of trust in psychology and
economics. We then conduct an empirical experiment on human participants, producing
a behavioral dataset that we later use to validate our model. After explaining the experi-
ment and the data collection process, we introduce our cognitive agents, and explain how
they use RL to play the TG. In order to gain a broader understanding of how RL may be
realized in cognitive systems, we design and simulate three classes of agents using three
different cognitive frameworks: deep neural networks, ACT-R, and the NEF. For each of
these architectures, we step through the relevant cognitive components and introduce the
free model parameters. Next, we apply our models to the TG, showing how parameter-
ized agents learn through trial and error. Finally, we simulate heterogeneous populations
of agents who play the TG against adaptive opponents. Comparing the simulated and
empirical data, we find many high-level similarities but many low-level discrepancies. We
conclude by discussing the successes and failures of our models, and introducing possible
extension for future work.
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5.2 Background

5.2.1 Reinforcement Learning

Reinforcement Learning (RL) is a widely-used framework for understanding how humans
and other animals update their behavior based on external feedback [230]. To briefly
summarize the theory behind RL, an agent learns some relationship between the actions it
takes, the state of the environment, and the rewards it receives. When feedback is provided
by the environment, in the form or rewards or punishment, the agent uses a learning rule
to minimize the differences between its predictions and the observed outcomes. When
making a decision, an agent observes the current state of the environment, considers the
value of each candidate action, and chooses one with high estimated value. Over the course
of learning, the likelihood that the agent chooses a rewarding action should increase.

Numerous studies have shown that the signals and learning rules proposed by RL map
onto reward-prediction errors (RPEs) and synaptic changes in the brain [84]. In general,
these studies find strong correlations between neural activity in dopaminergic neurons, such
as those in the ventral tegmental area (VTA), and the RPEs used in many RL algorithms.
For instance, animals generate dopaminergic signals whose magnitude is proportional to
the differences between expected reward and observed reward. During early training, an
animal does not expect to receive a reward when it chooses an action, so this RPE signal
is positive, and is generated immediately following the delivery of reward. As the animal
learns, it begins to predict that a reward will be received whenever that action is taken.
This has two measurable effects. First, when an expected reward is not received, the signal
generated by the brain will have a negative (decoded) value, as would be predicted by the
sign of the RPE in an RL algorithm. Second, the timing of this signal shifts: instead of
appearing when the reward is observed, it appears when the action is chosen (i.e., when the
animal generates a prediction about imminent reward). Studies have also shown that RPEs
in the brain are associated with synaptic update in various areas of cortex (those implicated
in value estimation, see Sec. 1.3): the notion that these RPEs drive value updating is also
consistent with the neurmodulatory action of dopamine with respect to synaptic plasticity.

In addition to these low-level signatures of RL in the brain, several high-level theoret-
ical frameworks describe how the large-scale organization of the brain is consistent with
RL. For example, the reinforcement learning and decision making framework (RLDM, [81])
describes three independent learning and decision making systems in the brain: the Pavlo-
vian system, the habitual system, and the goal-directed system. The Pavlovian system
controls reflexive responses to stimuli that were common and adaptively significant in our
evolutionary history, such as fight-or-flight reflexes or sexual behavior. In this system,
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candidate actions are inborn, inflexible, and preprogrammed, and may often be triggered
by a fixed decision structure. However, RL may leverage this system to generalize these
responses to novel situations (environmental states outside the original evolutionary con-
text) that require similar reactions. A perfect example of this is associative learning and
fear conditioning in the amygdala: while the structure of this system is fixed (with respect
to the types of stimuli that may be associated, and the types of behavior responses that
may be triggered), it can learn new associations between these stimuli through external
feedback and reinforcement.

Next, the habitual system can be used to learn associations between external stimuli
and behavioral responses, such that the animal repeats actions that previously produced
desirable outcomes in similar situations. RLDM argues that this kind of learning dom-
inates later stages of learning, and is largely independent of working memory, cognitive
manipulation, and motivational state: this approach directly associates states and actions
with rewards, and does not require explicit forward planning. The anatomical basis of the
hypothesized habitual system is similar to the value estimation and integration networks
we reviewed in Sec. 1.3. Finally, the goal-directed system uses learned associations between
actions and outcomes to infer which actions will produce the best outcomes from the per-
spective of an agent’s current goals. This system is deliberative, in that it uses working
memory, motivational state, and imagination to plan action sequences that will achieve
specific goals, rather than produce statistically-favorable outcomes like the habitual sys-
tem. RLDM predicts that the goal-directed system will dominate at the early stages of
learning, when an animal is actively learning the dynamics of the environment and explor-
ing different subgoals and strategies. Value modulation and executive areas like the dlPFC
are important in facilitating goal-directed computations.

5.2.2 Q-learning

To model human learning in the TG, we chose an RL algorithm of moderate complexity,
a model-free approach called Q-learning. In Q-learning, an agent interacts with the envi-
ronment by choosing actions that it expects to produce high rewards, both immediately
and in the future. The agent represents the state of the environment at any given time as
a high-dimensional vector s, and must choose an action a in order to proceed. Q-learning
agents learn a model called a value function Q(s, a), which estimates the value of being in
state s and taking action a. As the agent explores the environment, it observes how taking
action a in state s produces rewards R(s, a) and transitions the environment into a new
state s′. It then estimates Q(s, a) by combining R(s, a) with an estimate of the value of
possible future states, Q(s′, a∗), where a∗ is any available action in the new state s′. The

139



value Q(s, a) is greatest when (s, a) leads to both high immediate reward and puts the
agent into a new state which has high estimated value.

To choose an action, an RL agent must also have a policy π(s, a), which maps between
the current state of the environment s and the probability of choosing each candidate
action a. If a Q-learning agent learns a good value function (one the accurately estimates
immediate rewards and expected future values), then a good policy (one that leads to
high rewards over an episode containing many actions and state transitions) is the so-
called greedy policy. This policy simply chooses the action that maximises Q(s, a), given
the current state s. Not only is this policy intuitive and easy to implement, but various
theorems in RL guarantee that it is, in fact, the optimal policy: it will generate higher total
rewards than any other policy. Therefore, once an agent has successfully learned Q(s, a),
it should adopt the greedy policy.

This leaves two questions: how does the agent learn a good value function, and what
policy should the agent adopt while it is learning the value function? These questions are
actually closely related: in order to learn a good value function, the agent must explore
the state and action space thoroughly, gaining as much experience as possible to build
statistically (or dynamically) robust models of reward and state transitions. RL theory
guarantees that a value function will only truly model the environment if the agent visits
each (s, a) an infinite number of times. Obviously, this is impossible in practice: at some
point, the agent must cease exploration and being to exploit its learned value function via
a (more) greedy policy. The tradeoff between exploration and exploitation is a complex
one, and has been approached in numerous ways, both computationally and biologically.
One common technique to balance exploration and exploitation is to adopt a policy that
initially favors exploration, but which transitions to exploitation over time. Exploratory
policies favor the selection of novel actions and the investigation of new environment states.
Three common exploratory strategies are random action selection, which randomly selects
a and causes the agent to inadvertently explore many novel s; curiosity-driven exploration,
which artificially increases the value of unknown (s, a) to encourage the agent to investigate
them; and optimal sampling methods, which explicitly track an agent’s uncertainty about
(s, a) and attempt to reduce this uncertainty over time.

The second question is how to learn a good value function Q(s, a). In this chapter, we
train our networks using a temporal difference (TD) learning rule:

∆Q(s, a) = α
[
R(s, a) + γmax

a∗
Q(s′, a∗)−Q(s, a)

]
, (5.1)

where s is the current state, a is the chosen action, s′ is the observed next state, R
is the observed reward. maxa∗ Q(s′, a∗) is the maximum of the value function over all
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possible actions in the next state, α is the learning rate, and γ is the discount factor, a free
parameter used to control the relative value placed on immediate rewards versus expected
future value. Conceptually, this rule updates the value function based on the difference
between observed rewards R(s, a) and expected rewards (−Q(s, a)), as well as the value
of future states. In the so-called terminal state, the final (s, a) before an episode ends,
this rule should produce a value estimate equal to the average reward obtained in that
state. For all preceeding states, Q should account for the average immediate reward, and
the expected discounted value of future states. This learning rule is often referred to as
TD(0), because it only accounts for a single (s, a, r, s′) transition: extensions of this rule
can be used to update Q based on a memory of many previous transitions, but we do not
investigate those learning rules here.

5.2.3 Social Value Orientation and the Trust Game

One interesting challenge for models of learning and decision making in social contexts,
and for RL in particular, is to explain the emergence of prosocial behavior. A great deal of
recent research focuses on cooperative and altruistic behavior in social contexts, analysing
prosociality from a categorical perspective [194, 205], a computational perspective [36, 243],
and a neuroanatomical perspective [180, 231, 239]. We reviewed the neuroanatomy of
proself versus prosocial decisions in Sec. 1.3.2; a central theme of our summary was that the
brain contains distinct systems for evaluating the proself and prosocial value of candidate
actions and environmental states. These divisions have also been repeatedly noted from a
theoretical perspective, and the internal and external variables associated with prosocial
decisions have been extensively analyzed [194, 205, 46].

Social dilemmas like the prisoner’s dilemma, in which individuals are driven by compet-
ing proself and prosocial objectives, are frequently used to study the emergence of prosocial
behavior [184, 205, 243]. By recording the neural activity of humans and animals playing
these games, researchers have also used social dilemmas to clarify the neural basis of these
strategic decisions [154, 195]. Finally, RL models that relate these activities to specific sig-
nals and computations have help clarify the symbolic nature of these neural representations
[94, 18, 150]. However, more computational work is needed to elucidate the relationship
between RL algorithms and emergent prosocial behavior. To understand the origins and
consequences of social value orientation (SVO), we need models that (a) are cognitively and
neurally plausible, (b) can be generalized to multiple cognitive architectures and behavioral
tasks, and (c) explain a variety of empirical results.

We study the relationship between SVO, RL, and biological cognition using compu-
tational models that learn to play the trust game (TG), a two-player, turn-based game
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Figure 5.1: Our trust game consists of five consecutive rounds played against the same
opponent. The investor begins each round with 10 coins, and their investment is multiplied
by three. The total score is the sum of coins collected across all five rounds. Participants
are randomly selected to play the investor or trustee. Opponents are adaptive computer
agents.

in which individuals repeatedly receive and reallocate resources. In each round (or turn)
of the game, the first player (the “investor”), receives 10 coins, then gives some of these
coins to the second player (the “trustee”), keeping the rest. The trustee receives three
times this many coins. Finally, the trustee returns some number of the resulting coins to
the investor. A single game consists of five rounds. Each player’s final score is the total
number of coins collected across all five rounds. In the TG, greater rewards are earned
if both players invest and return generously, but each player will only do so if they trust
their opponent to reciprocate in the future. Fig. 5.1 provides a visual description of the
TG.

Human behavior in the TG has been widely studied from numerous perspectives, includ-
ing personal and cultural analyses [115], neural and cognitive analyses [47], determinants of
prosocial tendencies [236], and more. Behavior in the TG has a clear prosocial component
that is distinct from maximizing personal rewards: while investor behavior is most closely
correlated with expectations of repayment and perceived trustworthiness, trustee behavior
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is most closely correlated with prosocial tendencies [11]. For instance, in one-round versions
of the TG, many trustees will return coins even though their generosity cannot be repaid
in future interactions. Prosocial behavior is motivated by numerous drives, including reci-
procity, inequality-aversion, and altruism [184, 47], and the activity of numerous brain
structures correlates with prosocial values estimates and prosocial behaviors, including the
amygdala, striatum, TPJ, mPFC, and dlPFC [97, 112]. Evidence from psychology and
neuroscience confirms that learning is a critical component in social dilemmas: individuals
adapt their strategies in response to specific instances of betrayal [152], to the opponent’s
behavior in the recent past [70], and to trust estimates made in previous games [43, 240].

We should note that “trust” is a complex phenomenon that is defined in many different
ways, and is studied using many different methods. In keeping with previous TG research
[115], we consider trust to be operationally defined: it can be measured by counting the
coins transferred between participants under various conditions. Needless to say, the eco-
nomic definition of trust as “a willingness to bet that another person will reciprocate a
risky move (at a cost to themselves)” [33] is fairly limited, with respect to the many cog-
nitive processes and social norms that influence trust-related behaviors in the real world.
Nonetheless, we consider the TG to be a valuable tool for studying prosocial behavior.

In this chapter, we use computational models to investigate the emergence of prosocial
behavior. To model SVO, we incorporate two additional terms into the reward function
of RL agents, which cause agents to explicitly value the rewards obtained by others. In
keeping with other computational models of SVO [112, 42, 164], an agent’s overall reward
is a weighted combination of self-reward, other-reward, and reward-inequality, where the
relative weighting determines the agent’s degree of SVO. Using this reward function, we
train three distinct cognitive architectures to play the TG. We introduce each architec-
ture by explaining its mechanisms and parameters, and by reviewing its cognitive realism.
We then simulate and train a heterogeneous population of agents, then compare the dis-
tribution and dynamics of simulated data with human data in the TG. We conclude by
discussing whether RL, and specifically our implementation of SVO, is a suitable framework
for studying prosocial decision making, independent of the computational implementation
of agent’s internal model.

5.3 Methods

To model human learning in the TG, we used Q-learning to train agents from three different
computational architectures. Each architecture has access to the same state information
from the environment, and selects between the same number of candidate actions. However,

143



Figure 5.2: Network architectures for the three RL agents. For the deep Q-network, each
box represents a layer of ReLU neurons, which form feedforward connections in a dense
matrix. The network is trained with backpropagation (dotted lines) driven by Q-learning.
For the instance-based learner, each box represents a list of chunks, which are formed after
every transition, appended to the list during formation or recall, and updated based on a
modified Q-learning rule. Dashed lines indicate blending operations. For the NEF network,
each box represents a population (or network) of LIF neurons, and curved arrows indicate
synaptic connections with lowpass filters. The dotted line applies the PES learning rule to
the decoders in state, realizing Q-learning. Grey text indicates model inputs and outputs;
pink text indicates the important RL variables.

the internal representations used, the models that are learned, and the mechanisms of the
TD(0) learning update, differ significantly between these architectures. By investigating
how all three architectures learn to play the TG, we gain a broader understanding of how
RL and SVO relate to prosocial behavior on this social task. These architectures are
presented graphically in Fig. 5.2.

5.3.1 Social Value Orientation and the Reward Function

In the TG, the state contains two pieces of information: the current round of the game
(1-5) and the number of coins currently available (0-30). Each round, the agent’s action
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determines the number of coins they will give away versus keep. In order to explore the
(s, a) space of the TG, we use an ϵ-greedy strategy: agents take random actions with a
probability ϵ, which decays from one to zero over the course of learning. If a random action
is not taken, the agent chooses the action with the greatest Q-value. To model SVO, agents
compute a weighted sum between the rewards they themselves received, the rewards their
opponent received, and any inequalities between them:

r = wsrs + woro − wi|rs − ro|, (5.2)

where ws, wo, and wi are the weights for self-reward, other-reward, and inequality, and the
rewards rs and ro are the coins earned on any given turn. For convenience, we fix ws = 1
and interpret wo and wi as an agent’s SVO. The free parameters used by all three agents
include wo, wi, the learning rate α, and the discount factor γ.

5.3.2 Deep Q-Network

Our first agent architecture is a deep Q-network (DQN), a three-layer feedforward network
with rectified linear units. Networks like the DQN have previously been used to learn
complex, humanlike behavior in multiplayer games [253]. The DQN agent represents s as
a one-hot vector. The first layer contains 156 neurons (one neuron for each possible value
of s), the middle layer contains 30 neurons, and the last layer contains one neuron for each
possible action (11 or 31). Weights between neurons in each layer are initialized by sampling
from a Gaussian distribution. To train the network, we record each transition (s, a, r, s′)
that the agent experienced, then do a batch update at the end of each episode. Loss is
equal to the sum of ∆Q2 for each transition (Eq. 5.1), and we use Adam backpropagation
to update weights within the network. To facilitate comparisons between the learning
trajectories of DQN agents and our other agents, we did not use an experience replay
buffer; preliminary tests suggested that using a replay buffer made little difference in final
performance. Note that we also ran some preliminary experiments on a tabular Q-learning
agent, but found that it behaved similarly, so we only report results from the DQN. We also
experimented with “deeper” Q-networks that included more layers, but we found that three
layers was sufficient to learn the TG; our resulting network is therefore not particularly
“deep”, but we refer to it as a DQN to emphasize the connection between this architecture
and deep learning.
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5.3.3 Instance-Based Learner

Our second architecture is based on ACT-R [5], an integrated theory of cognition supported
by an extensive history of cognitive models validated by human behavioral data. In this ar-
chitecture, the retrieval and utilization of episodic memories is governed by instance-based
learning (IBL) and blended retrieval [237], two mechanisms that model human memory
and decision making [88] and have previously been used by cognitive agents to play social
games [137]. Our instance-based learner (IBL) contains an episodic memory and a working
memory, which work together via queries and retrievals to recall relevant pieces of infor-
mation from previous experiences. These “chunks” contain information about the state s,
the selected action a, the returned reward r, and the estimated value Q. Note that the
storage of information in these chunks is perfect: each episodic memory contains the exact
information used in the simulation. When choosing an action, the agent looks through all
chunks in episodic memory and loads into working memory those chunks which satisfy two
criteria: the chunk has sufficient activation due to recent or frequent use, and its state is
sufficiently similar to the current state. The activation of a chunk in episodic memory Ac

is given by the standard ACT-R equation:

Ac = X(µ, σ) + ln
∑
k

t−d
k , (5.3)

where the summation is over all previous appearances k of the chunk, tk is the amount of
time elapsed since the k-th appearance of the chunk, d is a decay rate, and X(µ, σ) is a
random number drawn from a logistic distribution with mean µ and scale σ. The similarity
Sc between a recalled chunk c and the current state is zero unless they (a) took place on
the same turn, and (b) had an identical number of available coins. Overall, a chunk is
recalled if

recall =

{
yes, if Ac > thrA and Sc > 0

no, otherwise
, (5.4)

where the activation threshold thrA is a free parameter of the IBL agent.

The value of each potential action is calculated using blended retrieval,

Q̂(a) =
M∑
i

Qc(a)Ac, (5.5)

that is, all chunks c where action a was taken are queried for their estimated value Qc,
weighted by their activation Ac, and summed. The Q value assigned to each new chunk is
equal to the reward returned for that action plus the discounted expected value of “future”
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chunks. To calculate this expectation, the agent recalls all chunks j with sufficient similarity
to the game’s next state s′ and blends their values

Qc = r + γ

M∑
j

QjAj, (5.6)

where the sum is over the chunks j that pass the activation and state similarity thresholds
for s′. Conceptually, the IBL agent estimates the expected discounted value of a future
state by averaging the values of states that followed from the current (s, a): to simulate
imperfect recall, the agent only “envisions” future states that have sufficient activation
and similarity to s′. Finally, the IBL agent selects the action with the maximum estimated
value Q̂(a).

In our IBL implementation of Q-learning, the agent does not update the value of previ-
ous chunks when it receives feedback from the environment. Instead, whenever the agent
takes an action, it forms a new chunk whose value is given by Eq. 5.6, then the blended
values of old and new chunks are used to estimate the overall value of an action (Eq. 5.5).
The result is that old memories retain their original (out-of-date) Q-values, but new (up-
to-date) memories make a more significant contribution to Q̂(a) as the activation of older
chunks decays to zero (Eq. 5.3). We discuss the implications of this mechanism in Sec. 5.6.2.

5.3.4 Neural Engineering Framework Agent

Our third architecture is a spiking neuron model built using the NEF. This network uses an
online, error-driven learning rule to implement Q-learning within the network, short-term
memories to recall previous states, and an independent-accumulator for action selection.
In contrast to the DQN and IBL agents, which use external software and data structures to
compute ∆Q and recall previous transitions, our goal with this agent was to simulate all the
relevant computations and cognitive processes within the neural network itself. Broadly
speaking, our network contains numerous populations networked with feedforward, lateral,
and feedback connections. Activities within each of these populations dynamically repre-
sent quantities such as s, Q(s), and ∆Q, while the connections between the populations
compute functions such as the state-value mapping, WTA competition between candidate
actions, and RPE. To manage these computations while dynamically playing the TG, the
NEF agent uses a control structure involving several inhibitory gates and working memory
buffers. We first describe the overall structure of the model (summarized in Figs. 5.2-5.3),
then detail how neurons represent the required quantities and how connections realize
cognitive control.
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To begin, state input about the TG is encoded as a high-dimensional vector and passed
to the state population, which represents ŝ; we describe this encoding scheme in detail
below. The state neurons connect feedforward to a value population, which represents
Q̂(s). The connection between state and value computes the value function, and must
be updated using a RPE calculated according to Eq. 5.1. The value population connects
to the choice network, which selects the best action using WTA dynamics. We use the
independent accumulator from Fig. 1.4 for choice for this purpose: this network integrates
the estimated value of each action over time until one hits threshold, then inhibits the
values of all non-winning actions, producing a one-hot vector representing the model’s
choice. Note that we also tried using the BG network (Fig. 1.3) to implement action
selection in our NEF agent, but found that its temporal dynamics and numerical precision
were ill-suited for generating clean one-hot vectors on the relevant timescales. After making
this choice, the NEF agent observes the reward returned by the environment, and calculates
the error ∆Q̂(s, a).

Calculating this error, and applying it to update the appropriate weights on the state-
value connection, is challenging due to the passage of time. Eq. 5.1 requires that an agent
observes the new state s′ before updating Q(s, a). At this point, s, a, and Q(s, a) are no
longer dynamically represented in the state, value, or choice populations. To accommodate
this, we introduce several gated working memories to temporarily store these quantities.
We use the gated working memory network from Fig. 1.2 to flexibly store and clear these
values. To calculate ∆Q̂(s, a), the error network recalls these values from the buffers,
then uses the PES learning rule to update the decoders on the state-value connection.
This update is also challenging because “indexing” is difficult in the NEF: to calculate
the appropriate ∆Q̂(s, a) and update only the decoders associated with representing s, we
must transform the signals in several ways, described below. However, once the appropriate
error signal is represented, it is straightforward to apply PES to update the network’s value
estimate.

To represent the state of the environment in our network, we translate our external
input (round number and available coins) into a special high-dimensional vector called
a spatial semantic pointer (SSP). SSPs were recently developed in the context of NEF
networks as an encoding scheme to represent continuous variables, such as spatial position,
audio frequency, or status in a social hierarchy [129, 127]. These vectors contain rich
semantic information that can be symbolically manipulated using mathematical operations
realizable with the NEF. We chose to represent s with SSPs for several reasons. First, SSPs
effectively capture differences between states of the environment: for example, if an agent
has 10 available coins in s1, 9 available coins in s2, and 1 available coin in s3, the dot
product (a common similarity metric) between the SSP representations of s1 and s2 will
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be higher than the dot product between s1 and s3. This means that neural activities in the
state population will faithfully encode these differences. When we decode value estimates
from these activities, the differences between value estimates Q̂(s, a) will therefore smoothly
reflect differences in the underlying states. This allows for a greater degree of generalization
in our models than is possible with one-hot encoding, where all states are maximally
dissimilar. Furthermore, we can use SSPs to tune the degree of generalization across states
by (a) changing how s is encoded into the SSP, and (b) changing the tuning curves of
neurons in the state population to control the degree of pattern separation (as we did in
Ch. 4). The dimensionality of this SSP, the length scales used to encode state information,
and the sparsity of the neurons in the state population, were all free parameters of the
model.

Another advantage of using SSPs in our NEF model is that previous work has success-
fully applied SSPs to simple problems in RL, including spatial navigation in 2D and 3D
environments [16, 128]. Compared to other encoding schemes, the symbolic advantages of
SSPs mentioned above lead to noticeable improvements in the performance and speed of
RL agents. Finally, SSP encoding is biologically plausible: when populations of spiking
neurons represent SSPs, they exhibit patterns of activity that closely resemble cells in hip-
pocampus, including place cells and grid cells [58]. Given that these hippocampal cells are
implicated in pattern separation, mapping of continuous variables, and navigation through
complex environments (both spatial and social), and given that other NEF models using
SSPs and grid-cell-like representations have successfully solved navigation and planning
problems [57], SSPs may capture the functional representations used in these parts of the
brain.

During each round of the TG, the network cycles through three phases. These phases
correspond to different dynamical states of the network, and help organize learning and
action selection.

• During phase one, the agent perceives the current state of the environment s′, and
chooses an action a′. Rather than select the highest-value action from the output of
choice, the network also considers the value of exploring other actions. We realize
this by adding a vector N to Q̂(s′), effectively boosting the value of some actions
compared to others. In our simulations, we compute N externally: with probability
ϵ, this is a random one-hot vector, and is otherwise the zero vector. The result is
ϵ-greedy action selection: we feed Q̂(s′) + N into choice, which selects the action
with the greatest combined value, a′. The agent takes this action. The network also
stores the expected future reward, Q̂(s′, a′), into WM value.

• During phase two, the model calculates ∆Q and engages PES learning. To do this,
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it recalls from WM the values of s and a, recalls Q̂(s′, a′), and views the rewards
returned as a result of its previous action, R(s, a). Using the recalled (s, a), the net-
work then estimates the value of the previous state, Q̂(s, a). With all these quantities
dynamically represented within the network, the model computes ∆Q̂(s, a) according
to Eq. 5.1. This error is passed through the PES learning rule, updating the decoders
on the connection between state and value.

• During phase three, the network stores s′ and a′ in WM buffers. This step must
happen after learning, since it overwrites the previously stored information s and a.

In order to progress through these phases during the course of a simulation, we drive
the network with two external control signals, which we label replay and buffer.

• The buffer signal tells the network whether or not to replace the contents of WM
buffers with new information. When this signal is turned off, neurons in the diff
populations of the gated WM networks are inhibited, preventing any external in-
formation from affecting the stored representations. When this signal is turned on,
inhibition is released, and the current contents of WM are replaced with new values.
In phase one, buffer causes Q̂(s′, a′) to be saved in WM value, and in phase three,
buffer causes s′ and a′ to be store in WM state and WM choice.

• The replay signal switches the input to state between s′ (the current external input)
and s (the recalled previous state stored in WM state). In phase two, replay prompts
the network to compute ∆Q̂(s, a) and disinhibits PES learning, causing update of the
state-value connection. Otherwise, in phases one and three, replay inhibits learning.

Fig. 5.3 summarizes theses phases and learning signals with a detailed network architecture.

5.3.5 Human Experiment

As we discussed in Sec. 5.2.3, the TG has been widely studied using both empirical and
computational approaches. However, the majority of this work is concerned with char-
acterizing trust as a static quantity and relating this quantity to prosocial behavior. In
contrast, we are interested in how individuals dynamically estimate the trustworthiness
of others, how this relates to SVO, and how we can understand the process of trust for-
mation through computational models of RL. To investigate these questions, we require
data that describe how individual behavior changes over time and in response to external
conditions. Datasets that include such information are rare, and are often focused around
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Figure 5.3: Detailed network architectures for the NEF agent. Grey text and arrows are
external inputs, while black text and arrows are neural populations and synaptic connec-
tions. Colored arrows are specialized control operations: the green arrow implements PES
learning; pink arrows inhibit postsynaptic neurons; and orange arrows index neural repre-
sentations based on action choices. Specialized neural networks, indicated by gray boxes,
facilitate these operations. Blue text labels the represented variables at key points in the
network. WM populations use the architecture described in Fig. 1.2, and the choice popu-
lation uses the architecture described in Fig. 1.4. The state population simulates neurons
that are sensitive to each dimension of s, while the remaining populations represent each
dimension of Q or a independently.

specific questions that are only tangentially related to our investigation. For example, [152]
study how trust-related behavior changes in response to breaches of trust that occur early
versus late in a repeated prisoner’s dilemma, while [70] study how trust-related behavior
changes over time in a repeated TG which has a definite versus indefinite end. While these
data and conclusions are interesting, they cannot be used to validate our models.

In order to acquire validation data for our model, we ran a human experiment in which
participants learned to play the TG against simulated opponents. Participants in the
experiment completed the following steps.

1. Participants reviewed the information form, which detailed the goals of the study,
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the requirements for participants, and the contact information for the study lead,
supervisor, and ethics board. They then reviewed and signed a consent form.

2. Participants completed an interactive tutorial that introduced the rules and strategy
of the TG.

3. Participants completed a pre-trial survey asking for age, gender, income, level of
education, and previous experience with economic games. The survey also asked
participants to rate how strongly they agreed or disagreed with several statements,
designed to measure empathy, altruism, and risk-taking. All questions were multiple-
choice, and answering was optional.

4. Participants played thirty games against computer opponents, described below. Fig. 5.1
depicts the web interface, and shows what information was visible to participants.
Importantly, participants viewed the increases in score (and real money earned) fol-
lowing each move, providing direct feedback about the quality of their decisions.

5. Participants completed a post-trial survey that queried their beliefs about the objec-
tive of the game, the identity of the opponents, and the progress of their learning.
All questions were multiple-choice, and answering was optional.

220 participants were recruited through Amazon Mechanical Turk; we made the study
available to all MTurk users, without any constrains on their ratings, history, or location.
Participants earned $0.10 per game plus $0.003 per coin they collected, incentivizing them
to play strategically rather than quickly. During data analysis, we eliminated all partici-
pants who either (a) failed to complete all thirty games and answer the post-trial survey
questions, or (b) failed to change their behavior (i.e., learn) over the course of the exper-
iment; details are provided in Sec. 5.4.2. This resulted in a total of N = 97 participants
in the final dataset. This study was reviewed and received ethics clearance through a
University of Waterloo Research Ethics Committee (ORE#42531).

5.3.6 Participant SVO

During preliminary analyses, we found that a number of features identified in our surveys
correlated with TG behavior, with varying degrees of statistical significance and interaction
strengths. In this chapter, we focus on analyzing the effects of participant SVO; future
work should investigate the influence of other demographic and personality factors. In the
post-trial survey, participants were asked “What was your objective when playing the trust
game?”, then selected one of the following three responses:
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• I tried to earn as many points for myself as possible, without considering my oppo-
nent’s score

• I tried to achieve a high score for both myself and my opponent

• I chose behaviors at random, playing as quickly as possible

We used this answer to classify participants as “proself” or “prosocial”; this division con-
stituted our first independent variable.

5.3.7 Simulated Opponents

To further investigate the relationship between SVO, learning, and prosocial behavior, we
introduced a second independent variable: opponent strategy. Before participants started
playing games, they were secretly sorted into two groups: the first group faced opponents
who could profitably be exploited with a greedy strategy, while the other group faced
opponents where the best strategy was to be consistently generous. We were curious
whether proself and prosocial participants would learn different strategies against these
two classes of opponents, and whether the dynamics of trust formation would differ across
these groups. Initially, we were reluctant to use simulated opponents to investigate learning
and behavior in the TG: previous studies have shown that humans are less likely to behave
prosocially when playing against computer opponents with fixed strategies [170]. This
tendency appears to arise from (a) a lack of empathy towards opponents who do not have
“feelings”, and (b) the inability to develop mutually-cooperative strategies with partners
who behave according to fixed (non-adaptive) rules.

To minimize these antisocial effects and encourage natural levels of prosocial behavior,
we strove to make our agents humanlike. Both our “greedy” and “generous” agents played
according to an adaptive “Tit-for-Tat” (T4T) strategy: they increased the amount they
transferred when the human was generous, and decreased it when the human was greedy.
We parameterized our T4T agents such that “greedy” agents barely changed their behav-
ior to reward or punish participant’s choices, while “generous” agents strongly rewarded
generous behavior and punished greedy behavior. Note that “greedy” and “generous” re-
fer to the human strategy that can best exploit this agent, not the strategy of the agent
itself. Agents also began each game with a random internal state, and had randomized
response times. Alg. 1 gives the pseudocode for our T4T agents, and Table 5.1 gives the
default parameter values for greedy and generous agents. Altogether, our agents exhibited
(a) heterogeneous behaviors across turns and games and (b) exploitable versus cooperative
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behaviors in the two experimental groups. A post-experiment survey revealed that 36%
of participants believed they played against a human opponent in one or more games,
although this metric was significantly higher (over 50%) in some experimental groups.

Algorithm 1: Pseudocode for T4T Agents. Agents begin each game with
an initial state O. In each round of the TG, the agent assesses the human’s
generosity G, and updates its internal state S based on whether this generosity
was lesser or greater than the generosity X that it considers “fair”. The agent
then updates its state by an amount that depends on the forgiveness parameter
F (if the human was generous) or the punishment parameter P (if the human
was greedy). The number of coins transferred is then calculated based on S
and the available coins C.

Input : Available Coins C
Output: Number of coins to give and keep

1 initialize state S = O;
2 while game has not ended do
3 opponent generosity G = give

give+keep
;

4 state change ∆ = G−X;
5 if ∆ > 0: forgive S += ∆ ∗ F ;
6 if ∆ < 0: punish S += ∆ ∗ P ;
7 if investor : clip state 0 ≤ S ≤ 1;
8 if trustee: clip state 0 ≤ S ≤ 0.5;
9 give = integer (C ∗ S);

10 keep = C − give;

5.4 Empirical Results

We begin by analyzing the human data. We first describe how human behavior changes over
time as participants gain experience playing the TG, pointing out interesting examples of
exploration, exploitation, and adopted strategies. We then analyze the distribution of final
strategies adopted by our participants, paying particular attention to how these strategies
differ with SVO and opponent strategy. We identify several high-level trends related to
generosity, performance, and reciprocity that differ across groups; we later use these trends
as validation targets for our simulated RL agents.
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Table 5.1: T4T agent parameters for greedy and generous agents. The greedy investor
began in a trusting state and barely punished human greediness. The greedy trustee
began in a non-trusting state, and largely retained this state regardless of human behavior.
The generous investor began with modest investments, increasing them significantly if
the human trustee reciprocated and decreasing them significantly if the human trustee
defected. The generous trustee began by keeping more than half of the investor’s transfer,
but transitioned to equal returns if the investor persisted with generous transfers.

Greedy Greedy Generous Generous
Investor Trustee Investor Trustee

O – Initial State 0.8 - 1.0 0.1 - 0.3 0.6 - 0.8 0.3 - 0.5
X – Expected Generosity 0.5 0.5 0.5 0.5
F – Forgiveness 1.0 0.0 - 0.1 0.8 - 1.0 0.4 - 0.6
P – Punishment 0.1 - 0.3 0.2 1.0 1.0

5.4.1 Learning Trajectories

Participants exhibited a wide range of strategies when playing the TG, and these strategies
developed in significantly different ways over the course of the 15 games each human played
against the simulated opponents. In this section, we examine “learning trajectories”, which
plot two dependent variables as a function of the game number (i.e., their cumulative
experience playing the TG). Our first dependent variable is score, or the number of coins
participants earned in each round of the game (0-30 coins). Our second dependent variable
is “generosity”, which is a normalized measure (0-1) of coins transferred to the opponent
on each round of the game:

G =
Cgive

Cgive + Ckeep

, (5.7)

where Cgive is the number of coins transferred to the opponent, and Ckeep is the number of
coins kept. G = 0 is a greedy action, and G = 1 is a generous one. In the following figures,
we plot a line displaying the mean score, and a histogram over generosity, as a function
of experience. Learning is said to occur if participant’s strategy converges over time (their
generosity distribution narrows), or if their mean score increases (relative to its variance
across rounds of the game).

Some participants exhibited little or no learning during the experiment: some people
chose a strategy on the first game and repeated this strategy exactly for each subsequent
game (Fig. 5.4), while the strategies and scores of others did not noticeably converge over 15

155



Figure 5.4: Example learning trajectory from a participant who adopts a strategy imme-
diately and does not adapt it given external feedback. Score is plotted as a line with 95%
confidence intervals, and generosity is plotted as a histogram across transfers in each game.
The left panel (blue) shows games when the participant played as the investor, and the
right panel (orange) shows games played as the trustee.

Figure 5.5: Example learning trajectory from a participant whose strategy does not con-
verge over time. Such behavior may be random or reflect continuing exploration.

games (Fig. 5.5). Note that the web interface for the TG required participants to manually
select how many coins they transferred on each game, so participants could not play quickly
by repeatedly selecting a “default” option. Furthermore, different participants exhibited
different “fixed” strategies, insofar as the number of coins they transferred was consistent
across rounds and games, but different across participants. For “random” players, it is
difficult to distinguish truly random strategies from strategies with sustained exploration:
it is entirely possible that participants who did not converge after 15 games were still
actively learning. In support of this hypothesis, some players only adopted a low-variance,
high-scoring strategy in the final two or three games, indicating that the transition between
exploration and exploitation may occur abruptly and towards the end of the experiment
(Fig. 5.6).

In many cases, human learning in the TG is best characterized as (a) slow but con-
sistent improvement and policy convergence, or (b) rapid convergence during the first few
games, followed by occasional exploratory actions. Slow learning is most apparent when
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Figure 5.6: Example learning trajectory from a participant whose explores for most of the
experiment, then abruptly finds, adopts, and maintains a high-performing strategy.

Figure 5.7: Example learning trajectory from a participant who gradually discovers a good
strategy following systematic trial-and-error.

agents play the investor: in our TG against our simulated T4T agents, the optimal human
strategy was to either invest everything (when paired with the generous trustee) or invest
nothing (when paired with the greedy trustee). Many participants experimented with mak-
ing exchanges of moderate generosity, and some gradually learned that extreme generosity
(zero or one) lead to slightly better long-term outcomes. While Fig. 5.6 showed an abrupt
transition after a gestalt realization near the end of the experiment, some participants
exhibited a smoother learning trajectory (Fig. 5.7). In contrast, many participants exhib-
ited rapid exploitation, converging to a largely-invariant strategy after just a few games
(Fig. 5.8). For participants who adopted a high-scoring strategy early on, this exploita-
tion lead to large cumulative rewards; however, in many (or most) cases, participants who
exploited early settled on suboptimal strategies, such as investing nothing when playing
a generous trustee. These two examples show that learning to play the TG against our
adaptive T4T is not trivial, and that participants learn at different speeds with varying
degrees of success.

Two other patterns are readily apparent from the learning trajectories of individual
participants. First, many participants continued to make at least one generous invest-
ment every game, even when those investments were never repaid by the greedy opponent
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Figure 5.8: Example learning trajectory from a participant who rapidly settles on a strategy
after minimal exploration. In this example, the participant’s policy is slightly suboptimal.

(Fig. 5.9). Strategically, this behavior offers the opponent a chance for “redemption” by
giving them the capital necessary for mutually-beneficial cooperation. Similarly, some in-
dividuals occasionally took a greedy action, to see if they could earn a few extra coins
without incurring punishment. Second, only a fraction of participants discovered (or chose
to adopt) a strategy we refer to as “late defection”. This strategy takes advantage of
the finite duration of the TG: on the fifth (final) round of the game, when playing as the
trustee, a late defector will transfer zero coins back to the investor, keeping the full amount
for themselves. An example of discovering late defection is shown in Fig. 5.10: the small
amount of generosity density at G = 0 when playing as the trustee reflects a single defection
on the final turn. This strategy is profitable because (a) the investor has no opportunity
to punish this greedy behavior later in the game, and (b) in every game, participants face
a new instance of the T4T agent, which has no memory of previous interactions. However,
an individual might not adapt this strategy for several reasons: they may not discover it;
they may choose not to adopt it out of a sense of fairness or equality for their opponent; or
they may envision facing the same opponent in future games and being punished. In our
TG experiment, all identities were anonymized, and T4T agents were coded to behave in
a humanlike manner: this may have encouraged fair-minded or cautious behavior in some
of our participants.

5.4.2 Eliminating Non-learners

Our investigation of participant learning trajectories revealed that a significant number of
our participants did not change their behavior much over the course of the experiment.
Because our computational models focus on the learning process, we wanted to eliminate
these data from subsequent analyses. To do so, we used regression (Scipy’s linregress

function) to characterize the relationship between each participant’s score and game num-
ber. This lead to a variety of fits: slopes ranged from positive (improved performance with
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Figure 5.9: Example learning trajectory from a participant who perpetually offers the
opponent a few generous transfers, even when this generosity is not reciprocated.

Figure 5.10: Example learning trajectory from a participant who discovers late defection
when playing as the trustee, leading to large score increases after game five.

learning), to zero (fixed strategies), to negative (decreased performance after exploiting a
bad strategy). After some experimentation, we decided to include only participants whose
learning trajectories had positive slopes (greater than 0.05) and were statistically signifi-
cant (at the p < 0.1 level). These criteria were fairly loose, and a number of questionable
participants were still included in the final data. Surprisingly, this cleanup eliminated
roughly half of all participants from our analysis, leaving 43 proself and 54 prosocial par-
ticipants. For completeness, we repeated the analyses in the next two sections for the
unrestricted data, and all the major trends held (in fact, several metrics were significant
at higher confidence levels in the unrestricted data).

5.4.3 Final Strategies

Having characterized several interesting patterns in participant learning trajectories, and
eliminated participants who were not fully engaged learning during the experiment, we
can look more systematically at final strategies. We are particularly interested in whether
these strategies differ between participants who faced greedy versus generous opponents,
and between participants who we classified as proself versus prosocial. Fig. 5.11 com-
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pares the generosity distribution of participants in the final three games across our four
experimental conditions, and as a function of SVO. We first observed that participants
who played against generous opponents learned different strategies than participants who
played against greedy opponents: participants playing against generous opponents were,
on average, more generous than participants who played against greedy opponents (when
playing as either the investor or the trustee). This confirms that participants learned to
use strategies that were adapted to their particular opponents.

Next, we compared the generosity distributions of proself and prosocial participants
in each condition. Using independent t-tests to compare the means of the generosity dis-
tributions, we found statistically significant differences between the generosity of proself
and prosocial participants in two of our four experimental conditions. Fig. 5.11 shows the
results: SVO-related differences in generosity were significant when participants played
against the generous trustee or the greedy investor, where generosity distributions resem-
bled bimodal distributions. When playing against the greedy trustee, both proself and
prosocial participants discovered that generous investments were selfishly exploited by the
opponent: over 50% of participants in both groups eventually adopted a strategy where
they kept all the available coins on each round. In contrast, both proself and prosocial
participants struggled to find effective strategies when playing against a generous investor.

To see whether these strategic differences were associated with differences in perfor-
mance, we performed the same analysis in Fig. 5.12, but replaced the dependent variable
of generosity with coins earned. Interestingly, we found that proself individuals achieved
higher average scores than prosocial individuals when playing against greedy opponents,
but prosocial individuals achieved higher scores against generous opponents. Comparing
the score and strategy distributions, we found that proself individuals were more likely to
adopt high-scoring greedy strategies (G ≃ 0) against greedy opponents. In contrast, proso-
cial individuals were much more likely to adopt high-scoring generous strategies against
cooperative opponents. One interpretation of this result is that prosocial players’ commit-
ment to exploring generous actions allowed them to discover that, although the first two
investments of G = 1 against the cooperative opponent lead to scores of less than 15 coins,
the final three investments of G = 1 lead to score of around 15 coins, beating out the
purely greedy strategy that guaranteed 10 coins per turn. Fewer proself players made this
discovery, so most adopted the purely greedy strategy, or explored intermediate strategies
that were largely ineffective.

Finally, we wanted to quantify the amount of late defection in proself versus prosocial
participants. To do this, we repeated the analysis in Fig. 5.11, but restricted the data
to transfers made in the final turn when participants played the trustee. The results in
Fig. 5.13 show that late defection is more prevalent in proself than prosocial participants,
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Figure 5.11: Generosity distributions of participants as a function of SVO. Each plot shows
the distribution of generosities from the indicated population of participants in the final
three games of the TG experiment. Dashed lines indicate populations means, and dotted
lines indicate quartiles. In each of the four experimental conditions, we use a t-test to
determine whether the population means are statistically different. We observe differences
only in two of the conditions: prosocial participants are significantly more generous when
playing against a greedy investor and against a generous trustee. Stars indicate statistical
significance: (ns) corresponds to p > 0.1 and (****) corresponds to p < 0.0001.

but only when playing against the greedy investor; there was no statistically significant
difference when playing against the generous investor. We were somewhat surprised that
this trend was not evident in the latter case, but we suspect that the difficulty of this
opponent, and the noisiness across games, made it difficult to discover the advantages of
this strategy through trial-and-error.
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Figure 5.12: Score distributions of participants as a function of SVO. As in Fig. 5.11, we
found that SVO only significantly affected participants’ scores when playing against the
generous trustee or the greedy investor.

Figure 5.13: Generosity distributions showing late defection when playing as the trustee.
Proself participants were more likely to keep all available coins on round five, while proself
participants were more likely to maintain an egalitarian strategy on this round. This effect
was only statistically significant when playing against a greedy investor.
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5.5 Simulated Results

Our empirical study was successful in gathering data about human learning and behavior
in the TG: we characterized a number of distinct learning trajectories and identified sev-
eral interesting patterns in the final strategies adopted by participants. In particular, we
showed that SVO has a significant effect on the strategies learned by human participants,
in multiple experimental conditions and for multiple dependent variables. In this section,
we simulate and train our cognitive agents with three objectives. First, we show that,
under ideal conditions, agents may learn good strategies in the TG; this result establishes
that our learning algorithms are working as intended despite the constraints imposed by
each architecture. Second, we compare the learning trajectories of simulated agents to the
empirical learning trajectories, and show that when agents face the same constraints as
humans playing the TG, they exhibit similar patterns of behavior. Finally, we analyze
these simulated data to identify high-level trends related to SVO, generosity, performance,
and late-game defection.

5.5.1 RL Agents Learn Optimal Strategies

We begin our computational study by showing that agents from all three architectures
may learn good strategies in the TG. Due to the complexity of the parameter space and
the nonlinearities that emerge when we train RL agents against adaptive opponents, we
do not attempt to systematically characterize the relationship between model parameters
and agent behavior. Instead, we seek any set of parameters that produce coherent learning
trajectories and high-scoring final policies. We chose the easiest experimental condition, in
which agents played as the investor against a greedy trustee. In this condition, the optimal
policy is to keep all available coins on every turn. Most of our participants adopted this
strategy during the experiment, so discovering this policy is certainly an achievable goal.

Because RL algorithms often require substantial training data, we first trained our
agents over the course of 150 games against the greedy trustee (10 times the number of
games played by our human participants). Fig. 5.14 plots the learning trajectories for 20
agents from each architecture. The majority of agents converged to the optimal strategy: in
the final games, most agents select the greedy action G = 0 on most turns, confirming that
our RL agents can discover high-scoring policies under ideal conditions. Fig. 5.15 repeats
this experiment, but limits agents to 15 training games, and enforces more biologically-
realistic parameters in the agent architectures (e.g., higher memory decay in the IBL
agent and SSP representations in the NEF agent). While the learning trajectories in this
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Figure 5.14: Learning trajectories for humans and agents playing against a greedy trustee.
The optimal policy against this opponent is to invest zero coins on every turn. After
playing 150 training games, most agents discover this strategy, confirming that RL can
teach cognitive agents to play the TG under ideal conditions.

experiment still trend towards the optimal policy, agents do not have enough training
data or cognitive capacity to reliably discover the best strategy, resulting in noisy and
suboptimal policies in the final games. This result showcases the difficulty of using RL to
learn the TG given real-world constraints.

5.5.2 Learning Trajectories under cognitive constraints

Do agent learning trajectories resemble those of our human participants? We investigated
this question using two approaches. First, we selected two representative human trajec-
tories from Sec. 5.4.1 as empirical targets, and used an optimization process to search for
model parameters that reproduce this trajectory. The results are shown in Fig. 5.16. Com-
paring the simulated and target trajectories, we can see that agents may indeed recreate
the learning histories of individual participants. However, additional investigation showed
that these trajectories were strongly overfit to the target data: minor variation in agent
parameters lead to poor fits and sometimes prevented learning entirely.

This overfitting motivated a second approach. We generated a population of agents
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Figure 5.15: Learning trajectories for humans and agents playing against a greedy trustee.
After playing 15 training games, only some agents discover the optimal strategy, while
others learn slightly noisy, suboptimal strategies. This showcases the difficulty of using
RL, specifically ϵ-greedy exploration, to learn the TG given limited training data.

from each architecture, and trained them to play the TG in the usual way. We then
examined the learning trajectories of individual agents, and selected ones that qualitatively
matched the types of behaviors shown in Sec. 5.4.1. Fig. 5.17 shows a few examples of agent
behaviors from all three architectures; while these trajectories do not quantitatively match
the behavior of any individual human, they do show that agent learning may converge
quickly or slowly, to optimal or suboptimal solutions. We confirmed that these agents
were not overfit to the training data by reinitializing individual agents and training them
against a new set of T4T opponents. Overall, these results show that different classes
of agent behavior arise from differences in RL and cognitive parameters, and that these
behaviors overlap with the empirical data to some degree.

5.5.3 High-level Trends

Finally, we analyzed simulated behavior across the entire population of agents and com-
pared these data to the empirical data. Again, we generated a population of unique agents
for each cognitive architecture. For each agent, we drew parameters from random distribu-
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Figure 5.16: Learning trajectories for two DQN agents and the target empirical data.
While our optimization produced behavior that closely resembled the human data, the
resulting agents were overfit to the training data, and, when perturbed slightly or trained
against a different opponent, did not reliably learn to play the TG.

tions that covered the range of cognitively plausible values: these included RL parameters
(including γ, τ , and α), architecture parameters (number of neurons, size of the state
space, memory decay, etc.), and SVO parameters (wo and wi). Each agent then played
15 games against the T4T opponents. We observed that, as with the human data, many
individuals failed to learn over the course of the simulated experiment: some immediately
adopted a policy and did not update it, while others never settled on a coherent policy. We
therefore performed the same procedure as in Sec. 5.4.2 to eliminate non-learners from the
agent population; this procedure removed about half of the simulated agents. Following
this selection, we labelled the remaining agents as “proself” or “prosocial” based on their
values of wo and wi: we chose an arbitrary threshold of thrsvo = 0.3, and any agent with
wo + wi < thrsvo was classified as proself, with the remainder were classified as prosocial.
With these data and labels in hand, we proceeded with several high-level analyses of the
simulated data.

First, we compared the generosities of proself and prosocial agents in the final three
games of the experiment. Figs. 5.18-5.19 compare simulated generosities across agent
architectures (and human participants) when playing against a greedy versus generous
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Figure 5.17: Sample learning trajectories from DQN, IBL, and NEF agents playing against
a generous investor. We initialized a population of unique agents from each architecture,
then trained each agent in the usual way. We observed many types of learning trajectories
within each population, including fast versus slow learners, individuals who discover opti-
mal versus inefficient strategies, and different degrees of noise. These patterns qualitatively
match the dynamics of human learning we identified in Sec. 5.4.1.
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Figure 5.18: Agent generosity distributions when playing against greedy trustees. For
human participants and all three agent architectures, SVO did not make a significant
difference in participant mean generosity: individuals of both orientations learned to avoid
exploitation by the opponent by keeping all the available coins.

trustee. The former plot shows that agents playing the greedy trustee predominantly
discover the optimal strategy (G = 0): the distribution of transfers in the final policies
are unimodal, with a peak near G = 0 that falls off quickly for larger G. Both proself
and prosocial agents learn similar strategies, showing that SVO has little effect when
playing against an opponent that consistently punishes generous behaviors. The human
data are also unimodally distributed, and the difference between proself and prosocial
humans was not statistically significant. In contrast, the latter plot shows that prosocial
agents were more likely to discover a profitable, cooperative strategy against a generous
trustee than were the proself agents. The shapes of agent generosity distributions from
all three architectures are either unimodal or bimodal: proself agents sometimes adopt
generous strategies but often become stuck playing suboptimal greedy stategies, leading to
peaks near G = 0 and G = 1. However, prosocial agents are more likely to learn generous
strategies, leading to a greater density of behaviors near G = 1 and relatively few greedy
transfers. These data are also consistent with the bimodally-distributed human data:
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Figure 5.19: Agent generosity distributions against generous trustee. For human partici-
pants and all three agent architectures, SVO made a significant difference in participant
mean generosity: prosocial individuals were more generous on average than their proself
counterparts.

participant SVO influences the probability that an individual tends towards greediness or
generosity, with proself participants more likely to choose G = 0.

To generate the agent populations described above, we performed some modest pa-
rameter optimization. During preliminary testing, we chose the ranges for the randomly
chosen agent parameters by hand (e.g., the mean and variance of a normal distribution
of γ). We found that, for most of our simulations, agent SVO had the expected effect:
prosocial agents were more generous than proself agents (or mean generosity was statis-
tically indistinguishable). However, arbitrarily choosing the range of random parameters
often led to final generosity distributions that did not resemble the empirical data. This
was not surprising, given that we have no prior knowledge about the variance in parame-
ters like learning rate or state dimensionality within the human population. We addressed
this uncertainty by optimizing the range of certain random parameters, namely α, γ, τ ,
architecture parameters, and thrsvo. In the optimization procedure, we generated a popu-
lation of agents according to the range of random parameters for that trial, trained them
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as normal, and labelled them according to thrsvo. We then measured the similarity be-
tween the final generosity distribution of proself agents and humans by calculating the KS
divergence; we repeated this for prosocial agents and humans. Using this procedure, we
were able to find population parameters that more closely reproduced the distribution of
human behaviors in the final games.

Finally, we trained agents from our three architectures to play as the trustee. As
evidenced by the human data, and by the larger state- and action-space in this condition,
playing the TG as the trustee is significantly more challenging than playing as the investor.
Our agents often struggled to learn effective strategies, especially when we applied cognitive
constraints to agent parameters. Our preliminary tests showed that agent policies rarely
converged after only 15 games, so to make comparison to the human data more interesting,
we trained agents over 150 games instead, then compared the distribution of generosities
in the final three games as usual. We were especially interested in looking at whether
agent SVO would produce differences in late defection. Fig. 5.20 shows the generosity
distributions of humans and agents on the final round of the TG, separated according to
SVO. As expected, proself agents were more likely to keep all the available coins on the
final round for a larger payoff, while prosocial agents were more likely to continue their
generous behaviors on the final round. These trends are qualitatively consistent with the
human data. However, we found that humans shifted their behavior by a greater amount
on the final turn than did any of the agents.

5.6 Discussion

In this chapter, we studied how humans use external feedback when learning to play a
simple social game, the trust game (TG). Our goal was to incorporate RL into existing
cognitive architectures and show that the resulting agents exhibit humanlike learning and
behavior in the TG. We chose three architectures for this investigation: deep neural net-
works, the ACT-R framework, and the NEF. Incorporating RL into each architecture posed
a number of unique challenges, and resulted in agents with significantly different cognitive
mechanisms for representation, evaluation, action selection, and learning. Nonetheless, we
showed that all three agents were capable of learning to play the TG, with varying degrees
of success based on the difficulty of the opponent and the number of cognitive constraints
we enforced.

To investigate whether agent behavior aligned with human behavior, we also designed
and ran an experiment with human participants, who played the TG online under the same
experimental conditions as our RL agents. Analyzing the human data, we identified a few
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Figure 5.20: Generosity distributions showing late defection when playing as the trustee.
Proself individuals transfered fewer coins on round five, while proself participants were
more likely to maintain an egalitarian strategy on this round. However, human strategies
on the final round were noticeably different than their strategies in the first four rounds,
while agent strategies changed less noticeably (not shown here).

typical learning trajectories and established several high-level trends across the population.
These became our empirical targets for model validation. One particularly significant trend
was the distinction between proself and prosocial individuals: the former self-identified
as seeking to maximize their own TG rewards regardless of the rewards earned by the
opponent; while the latter self-identified as seeking to earn high TG rewards for both
themselves and the opponent. Previous research in social cognition has identified SVO as
an important factor in social decision making, so we decided to also incorporate SVO into
our RL agents. We accomplished this in an architecture-independent way by modifying
agent reward functions to include two additional terms: one that rewarded the agent when
their opponent earned high rewards; and another that punished agents when the different
between the two players’ rewards was large. The weight that an individual agent placed
on these two terms was used to classify the agent as proself or prosocial, allowing us to
analyze the effects of SVO within the agent population.
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In this section, we first analyze the learning and behavior of each agent architecture
separately, discussing their cognitive realism and empirical validation. We then discuss
the challenges of incorporating RL (and SVO) into cognitive architectures more broadly,
identify shortcomings in our approach, and present avenues for future research.

5.6.1 DQN

The DQN is a standard feedforward neural network trained with backpropagation, in which
the error term used to calculate the gradient is given by the Q-learning formula. This agent
is simply a neural network that evaluates candidate actions given the current state of the
environment as input. While this model is realized by “neurons”, the neural realism of
the model is minimal, as it relies on several highly-engineered representations: the input
is a one-hot vector, where each possible state of the environment is a unique vector that is
orthogonal to every other state; and the last layer of the DQN contains one neuron for each
possible action. As backpropagation trains weights in the hidden layers of the network,
different states of the environment activate each neuron in the output layer to a different
degree. To make a selection, we compare the activation of each output neuron, and select
the one with maximal activity to determine the action taken; during exploration, we select
a random action instead. We externally calculate the error according to Eq. 5.1, square this
term to compute the loss, and backpropagate this value through the network. Importantly,
action selection and error computation occur outside the network; because these processes
are not subject to representational or mnemonic constraints, they should be considered
cognitively implausible. Similarly, backprograpation is not a biologically-plausible learning
rule. Overall, this agent is the least cognitively plausible, but still represents an important
class of cognitive architecture that is often used to approximate human decision making
and play social games [253].

The learning trajectories of DQN agents bore several important similarities to those of
human participants. We observed that simulated trajectories frequently had a short ex-
ploratory phase, followed by an abrupt transition to a final policy, which they maintained
with little variance through the remainder of the experiment. Several human participants
had similarly abrupt transitions to their final policies. However, a closer inspection of
the human data revealed that the suboptimal policies adopted by some participants often
consisted of optimal transfer on some turns and occasional random, exploratory, or forgiv-
ing transfers. In contrast, DQN suboptimal policies were usually invariant across turns,
but the transfers were often one or two coins away from the optimal transfer against that
opponent. Thus, while the distribution of human and DQN transfers across turns within a
population often looked similar to the human data, there were important low-level features
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of the data that the DQN agent did not reproduce. Note that the abrupt convergence of
DQN policies was often driven by high rates of exploration decay τ , which our optimiza-
tion procedures frequently selected when trying to match DQN data to the human data.
Future work should investigate to what extent the DQN architecture itself favors abrupt
transitions, versus particular parameter settings.

The DQN agent could be extended by adding additional components like RNNs or
LSTMs, or by using more advanced architectures like transformers and convnets. These
extensions would allow the network to parse the input space in different ways and to store
information about previous rounds of the game, allowing learned strategies to potentially
depend on sequences of actions taken by the agent and the opponent. While these com-
ponents would likely lead to higher-scoring policies, the neural and cognitive realism of
DNNs is still suspect, and this architecture may do little to inform our understanding of
how brains learn to make social decisions.

5.6.2 IBL

Our ACT-R agent uses an instance-based learning system (IBL) to store, retrieve, and use
information in working memory and episodic memory. Several equations govern how these
information “chunks” are manipulated, and apply mnemonic constraints that make the
IBL agent more cognitively plausible. While the agent does not use neurons to represent
chunks, it accounts for mnemonic effects at high level of abstraction. The probability
of retrieving a chunk from episodic memory depends on the recency and frequency with
which it has been activated in the recent past: this captures well-documented relationships
between memory usage and ease of recall. The influence of a recalled chunk also depends
on this ease of recall: when multiple chunks that fit the current context are retrieved,
those with greater activation are given greater weight, then all chunks are averaged, or
“blended”, together in a weighted fashion. This reinforces the recency effect, such that
the IBL agent’s decisions are most strongly influenced by the actions it has taken most
recently, but will generally be influenced by actions that have been rewarded through its
entire history.

We faced two major decisions when designing the IBL agent: what information to store
in memory chunks; how to implement RL within the architecture. We chose to have chunks
store the state information directly. Unlike the one-hot and SSP representations, this
gave the IBL agent direct access to the relevant state information. Chunks also recorded
the chosen action and the immediate reward. Finally, the chunk needed to store some
information about the value of (s, a). Although many IBL models use the immediate

173



reward R(s, a) to approximate the value of (s, a), we wanted to extend this representation
to include the discounted value of future states, as is required for Q-learning. We therefore
chose to estimate Q(s, a) for each chunk. This required a more complex update than is
typically used in IBL models. Unlike for the DQN and NEF agents, the IBL agent does
not have a well-defined Q-function for all (s, a), so it was not obvious how to calculate
maxa∗ Q(s′, a∗). Conceptually, we wanted the IBL agent to estimate the value it could
obtain in states that followed from the current (s, a). We therefore designed a novel
blending mechanism for estimating the value of future states that was inspired by the
canonical retrieval mechanism in IBL. In this update, agents wait until they observe s′,
then retrieve all chunks similar to s′, blending their values by their activations to estimate
the expected future value. Unlike Eq. 5.1, which uses a maximum over all future values,
the resulting update is a weighted sum over all chunks that were similar to s′.

The learning trajectories of IBL agents were more chaotic than the DQN agents: IBL
agents would continue to select seemingly-random actions even late into the experiment.
While these behaviors were of course influenced by the exploration decay rate τ (which
tended to be lower for IBL agents than DQN agents), they also arose from the noisy
mnemonic properties of episodic retrieval in IBL. Depending on the mnemonic noise σ,
decay rate d, and activation threshold thrA, IBL agents would sometimes fail to retrieve a
complete list of memories about past instances of the current state from episodic memory.
This would skew the estimated value of candidate actions and cause the agent to repeat
actions that were somewhat successful at some point in the past, while ignoring actions
that were reliably and highly successful in the past. While this mnemonic performance
may seem to fall well-below human standards, the learning trajectories of IBL agents did
resemble some of the slow-learning human participants. These individuals took many
seemingly-random actions late in the experiment, and occasionally repeated actions they
had taken in the past, despite having discovered higher-scoring actions in the subsequent
turns. The chaotic learning trajectories of IBL agents thus provide an alternate explanation
for the dynamics of learning observed in humans.

Among a population of unique IBL agents, the learned distribution of generosities
was also consistent with the human data. As with the DQN agent, both proself and
prosocial IBL agents learned to transfer few coins to a greedy trustee; SVO did not make
a significant difference across the IBL population. Similarly, proself IBL agents were less
generous when playing against the generous trustee than their prosocial counterparts, and
they were more likely to engage in late defection when playing as the trustee. In general,
we observed less convergence within IBL populations than we did for DQN populations; a
higher fraction of IBL agents adopted suboptimal policies in every condition we examined.
In some conditions, these broader generosity distributions were consistent with the human
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data: for instance, a sizeable fraction of proself IBL agents maintained a purely greedy
strategy against the generous trustee, a figure that better reproduced the human data
than the corresponding DQN population. In other conditions, these broad generosity
distributions poorly reproduced the human data: when playing the greedy trustee, many
IBL agents continued giving generously, whereas relatively few DQN agents and humans
did so. Overall, the cognitive realism of the IBL agents seemed to recreate several classes of
mistakes made by human participants, but the extent of these errors did not quantitatively
match the human data in many conditions.

The psychological realism of the IBL agent could be improved in several ways. First, in-
formation storage in memory chunks could be made more sophisticated. We used a highly
engineered representation that does not generalize to other tasks; future work should ex-
periment with more cognitively-plausible representations, especially ones which allow the
agent to naturally and flexibly compare the similarity of states (such as SSPs). Second,
alternative mechanisms for computing activation and blending memory chunks should be
explored. Our agents were limited in their ability to update existing chunks: because each
chunk was associated with states, actions, next states, and values, it was unclear how to
update a chunk if a new chunk matched with some, but not all, of these components.
To avoid these difficulties, we simply created a new chunk on every round of every game.
Unfortunately, this somewhat defeated the purpose of the activation equation (Eq. 5.3),
which assumes that a chunk will be periodically reactivated throughout an episode, leading
to multiple triggers that increase the likelihood of future recall. As a result, the retrieval
probability of our chunks depended solely on how recently they had been formed (plus
activation noise). Furthermore, the time scale of our simulations was ambiguous: while
Eq. 5.3 is typically applied for an agent performing a task with a millisecond timescale,
our simulations were turn-based, and hence had no natural timescale; this made speci-
fication of the parameters d and thrA somewhat arbitrary. Future work should explore
more parsimonious mechanisms for chunk reactivation and retrieval. Finally, we proposed
one mechanism for implementing Q-learning within IBL, but many other systems may be
used to estimate the expected value of future states, and to calculate the blended value of
potential actions accordingly.

5.6.3 NEF

Our NEF agent dynamically realizes state perception, value estimation, action selection,
and value updating with a network of LIF neurons. We encode the current state as an
SSP using a preprocessing step (external to the network), then feed this vector into the
state population. The connection between the state population and the value population
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computed the Q-function: these connection weights were updated by the PES learning
rule, allowing feedback to change the state-value mapping such that the representation
in value gave better estimates of immediate reward and expected future value. These
estimates were sent from value to choice, where WTA action selection occurred using an
independent accumulator network; this network was also provided with an external input
that prompted exploration. After implementing the chosen action, the agent received
feedback about the associated reward, then recalled the previous state and previous action,
calculated the error, generated an error signal, and transmitting that error signal to the
appropriate synapses on the state-value connection.

Despite the complexity of the network, and the noise introduced by neural represen-
tation, imperfect memory, and dynamic switching of network states, the NEF agent per-
formed fairly well. Against the easiest opponent (the greedy trustee), the NEF agent
reliably learned policies that approached the optimal strategy (G = 0), especially when
trained over 150 games rather than 15. As with the DQN and IBL agents, learning trajec-
tories from a population of NEF agents were quite diverse, depending on the parameters
chosen and the course of random exploration. While we observed NEF learning trajecto-
ries with both fast and slow convergence, and with humanlike patterns of noise, we also
noticed that NEF agents were more likely to become fixated on a single suboptimal action
than were the other agents (see the bottom panels of Fig. 5.17). Examining the neural
representations Q̂(s, a) over the course of the experiment, we concluded that this behavior
arose from uneven neural representation across the input space. When initializing the state
population, we did our best to distribute neural encoders so that all regions of the input
space were accurately represented. However, due to the sparsity constraints we applied
to neural representation, and due to the overlapping nature of SSP representation, some
regions of the space invariably activated a larger number of neurons than other regions.
When the PES learning rule updated the decoders associated with this region of space, a
greater number of neurons had their weights increase, leading to an abnormally large in-
crease in the value of Q̂ for the associated (s, a). When this occured early during learning,
exploration of alternative actions could rectify this error, normalizing the Q values back to
a reasonable level. However, when agents only had 15 games worth of training experience,
these abberant updates often persisted until the end of the experiment, causing the NEF
agent to select the same action over and over, reinforcing the error. We did not observe
this pattern of error within the learning trajectories of human participants.

The effect of SVO on NEF agents was similar to that of other agents. Prosocial agents
discovered greedy policies against greedy trustees with the same regularity as proself agents,
but prosocial agents were more likely to make generous transfers to a generous trustee than
were their proself counterparts. Prosocial NEF trustees were also less likely to defect on
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the final round of the TG than were proself agents. Overall, the distribution of behaviors
among populations of NEF agents was broader than the human data, as expected given
the prevalance of noise in this representation.

Of our three agents, the NEF agent is the most biologically and cognitively plausible.
First, it acts in real time: each phase of the simulation lasts 100ms, during which time
neural dynamics continuously drive changes in the represented variables. While we do not
have specific evidence for how long it takes the brain to evaluate potential actions, choose
a high-value action, buffer variables in working memory, and perform updates based on
RPEs, figures between 100ms and 1s seem appropriate. Second, all operations performed
by the agent take place directly within the network, including the storage and retrieval of
memories about past states, the selection of the best action, and the online updating of
connection weights. Third, the representations used, and the tuning curves of neurons in
the state population, are consistent with biological representations of continuous feature
spaces, such as the encoding of 2D space in the hippocampus. Fourth, the architecture of
the network is not engineered specifically for the TG: it is a general system that uses RL
to learn mappings between input states, value estimates, and selected actions, and could
be applied to other tasks without modification.

The complexity and plausibility of the NEF agent introduced many challenges that
should be addressed in future work. The network relies on external signals and phased op-
erations to manage online RL. We imagine that, in biological brains, the signals instructing
the network to, for example, overwrite information in a memory buffer, are generated ac-
cording to specific processes in separate regions. For instance, it may be that executive
areas in the PFC monitor various internal states of the brain, and modulate the networks
we simulated according to higher-order schedules. Future versions of our agent could in-
corporate additional levels of monitoring and control. It is also not clear how the brain
deals with the temporal delay between taking an action and observing its consequence: our
agent relies on a fixed temporal schedule between action and reward to manage learning,
but such a schedule does not exist in most real world tasks, a constraint which again mo-
tivates the existence of executive systems for monitoring and control. It is even possible
that the brain computes RPEs without having to explicitly recall past states: the multi-
phase design of our NEF agent was quite cumbersome, and future work should investigate
alternative means of updating connection weights that require less complexity.

Other neural models have addressed the issue of using online learning to change the
value of previously-visited states in several ways, but each of these models has its draw-
backs. For instance, in another NEF model of RL, [188, 189] used a parallel stream that
computes Q in a second value population, which is fed with information about the previous
state, while the main value population receives the current state input. With this setup,
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the network is capable of computing all the quantities required for Eq. 5.1 in a single step,
eliminating the need for multiple phases. However, the downside is that this network re-
quires both value populations to be identical, which requires initializing the network in a
certain way, and transferring weights between the two populations during the simulation.
The authors managed to achieve this using a secondary learning rule, and were able to
solve hierarchical navigation problems with this system, demonstrating its utility. In yet
another NEF model of RL, [157] used a Legendre Delay Network (LDN), a different class
of working memory network that stores rich information about windows of past history, to
facilitate Q-learning. Specifically, the authors use LDNs to remember the neural activities
associated with previous states of the environment: with these activities readily available,
the network can update the appropriate connection weights as soon as feedback from the
environment is received, without performing a secondary learning phase. However, this
system requires the network to remember a vector encoding the neural activities of an
entire neural population, which is a somewhat nonintuitive biological representation; it is
unclear how well this representation would scale to larger networks. While the authors
have shown that these networks may solve several classic problems in RL, many of the
operations required are performed outside the network, notably action selection and error
computation. Overall, our multi-phase approach is an interesting alternative to these two
NEF networks for RL, and we hope that future work combines the insights from each
approach to produce a more efficient, powerful system.

Another major challenge with the NEF agent is dealing with noise. This is an important
challenge to overcome for any agent that claims to be biologically or cognitively plausible,
and our model was modestly successful in this respect. However, we had to take several
shortcuts to achieve this success, and these shortcuts limit the plausibility and scalability
of our agent. First, unlike in previous chapters, we used rate-based LIF neurons instead
of spiking neurons; this was done purely to reduce noise within the network. Second, in
most of our populations, neurons were tuned to be sensitive to only a single dimension of
the represented state. This greatly improved the accuracy of our memory buffers, inde-
pendent accumulators, and specialized networks that changed the dimensionality of signals
for computing error. While this further reduced noise in the network, it reduced the net-
work’s biological plausibility, as real neurons are usually sensitive to multiple dimensions
of complex features. Third, we relied on dimensionality-changing networks to generate
error signals whose dimensionality was consistent with the PES learning rule; we suspect
that the brain includes more sophisticated representations that obviate the need for these
specific network components.
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5.6.4 Summary of Contributions

Taken together, the similarities between the empirical data we gathered from human par-
ticipants, and the simulated data we generated from our cognitive agents, suggest a few
conclusions. First, our models provide three mechanistic examples of how cognitive agents
may use external feedback to improve their performance. When we applied constraints
to agent cognition and learning, we observed that they struggled to learn effective TG
strategies. In many cases, agents made similar mistakes as did our human participants,
settling too quickly into suboptimal strategies or repeating exploratory moves that failed
in the past. In other cases, agent mistakes were distinctly non-human, such as when agents
made a good move on most turns but reliably made the same bad move once every game.
We showed (through parameter fitting) that the learning trajectory of an individual agent
could quantitatively recreate the learning trajectory of an individual human. However,
we found that these agents were overfit to the data: they often performed poorly when
their parameters were adjusted slightly, or when they played against a novel T4T agent.
Similarly, we were able to generate populations of agents that, following learning, recreated
some of the high-level trends in the human data, particularly the empirical distributions
of generosities in the final games. However, closer inspection of these results revealed sys-
tematic differences between human and agent behavior, both at the individual and group
level.

One parameter that did reliably predict differences in agent and human behavior was
SVO: prosocial individuals were more generous (than proself participants) when playing
against generous opponents. Many other social experiments have found that individuals
who are prosocially oriented are more likely to cooperate with opponents in social dilemmas
like the TG. Given that SVO is an important determinant of interesting social behaviors like
cooperation, altruism, and reciprocity, we wanted to include mechanisms and parameters in
our cognitive agents that permitted prosocial thinking. Following recent examples of SVO
in computational models [43, 42, 116], we implemented SVO by having agents explicitly
value the rewards earned by opponents, with weights determining the relative value of self-
reward, other-reward, and reward-inequality. When we generated populations of unique
agents, these weights (wi and wo) were randomly chosen, and we labelled agents as proself or
prosocial based on whether the sum of these parameters exceeded a specific threshold. We
found that this classification significantly influenced final agent behaviors and performance:
as with the human data, prosocial agents were more generous and scored higher against
generous opponents.

This is particularly interesting in the context of learning agents: given sufficient explo-
ration of the (s, a) space, a proself RL agent should discover that generous strategies have
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the highest expected value, and hence learn to adopt them. Why did our proself agents fail
to discover these high-scoring strategies? We believe the answer relates to the cognitive
constraints we placed on agents: their memories were imperfect, and they had limited op-
portunities to explore different actions. To achieve the full benefits of cooperation against
our generous T4T opponent, our agents needed to make generous transfers several turns in
a row; each turn, the T4T player would return a greater amount, but would become greedy
if the agent made a greedy transfer. The consequence of this behavior is that a greedy
strategy would lead to a sure payout of 10 coins every round, a strategy of mixed greed and
generosity would lead to a typical payout of less than 10 coins, and a consistently generous
strategy would lead to an average payout of more than 10 coins. This created a large region
of the (s, a) space where the best way to improve a strategy was to become more greedy,
leading to local maxima in the value landscape. Greedy agents discovered and exploited
this strategy. In contrast, generous agents were additionally rewarded based on the coins
earned by the opponent, which changed the shape of the value landscape, greatly increas-
ing the chances that these agents could discover the global maximum. In other worlds,
SVO encouraged agents to explore cooperative strategies with the potential for greater
long-term benefits. However, this came at a price: prosocial agents were more susceptible
to exploitation by greedy T4T opponents. While our prosocial agents were able to avoid
this exploitation in some experimental conditions (playing against a greedy trustee), their
generosity led to significantly lower scores in other conditions (playing against a greedy
investor). We believe that similar tradeoffs exist in many real-world social interactions,
and hope that future work continues to (a) design experiments where individuals must
navigate these complex decisions, and (b) investigate how humans learn to navigate these
tradeoffs using RL and SVO.

Our models, particularly our NEF agent, make several predictions that can be tested in
future empirical experiments. First, our SVO mechanism implies that the internal reward
signal experienced by an individual should be given by Eq. 5.2; we expect that the activity
of midbrain dopaminergic neurons correlates with these three terms (self-reward, other-
reward, and reward-inequality) when performing a social task. We predict that prosocial
individuals would contain neurons whose activity increased when others received higher
rewards, and decreased when reward inequality rose, given a fixed amount of self-reward;
we also predict that these neurons would be less common, or their changes in activity would
be less extreme, in proself individuals. Second, the multi-phase learning schedule of our
NEF agent implies that the brain retrieves an explicit estimate of previous value estimates
during learning. We predict that if an experimenter decoded a value estimate from neurons
in vmPFC (or working memory buffers elsewhere in cortex) immediately following external
feedback, then decoded another value estimate from the same neurons following learning
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and consolidation, that the magnitude of the difference in these estimates would correlate
with the magnitude of RPE neuron activity immediately following feedback. Finally, our
use of spatial semantic pointers in the NEF agent implies that the agent generalizes value
estimates across game states. This generalization could be measured empirically and com-
pared to our model outputs using the following scheme. A simulated investor would play
as normal, except they would never send exactly nine coins to the trustee. This would
leave a specific gap in the trustee’s value estimate for this game state. We predict that the
value assigned by our NEF agent to this game state, and the action taken in that state,
would reliably correlate with the values and actions from neighboring game states (e.g.,
values estimates and generosity when presented with eight or ten coins), and that this
same relationship could be observed in human data (measured neural activity for value
estimates, or measured generosity for actions).

Overall, while we maintain that our models help inform our understanding of the cog-
nitive mechanisms of social reinforcement learning and decision making, and are capable
of reproducing some human behaviors, we do not claim that our models quantitatively
explain trends in human data, nor have we thoroughly explored which of the many param-
eters and mechanisms in our models are primarily responsible for the effects we observed.
Our approach is best viewed as an initial exploration of how RL may be incorporated into
cognitive models and how these models can be validated with empirical data.

5.6.5 Summary of Limitations and Future Work

Our empirical experiment was successful in gathering human data for validation, but could
be improved in several ways. First, we were surprised at how few participants displayed
coherent learning trajectories over the course of the experiment. While empirical studies
will always include inattentive or impatient individuals, changing the difficulty of the task
may encourage higher-quality participation and promote more gradual learning, which
would be more amenable to analysis and reproduction. The difficulty of our task was
determined by two factors: the random behavior of agents, which required participants to
sample (s, a) several times before they could accurately estimate the mean value; and the
adaptive nature of agents, which required participants to examine sequences of actions to
determine the value of candidate actions (e.g., generous actions were initially unrewarding,
but highly rewarding if repeated). In retrospect, agent randomness made analysis unduly
difficult, and may have discouraged participants who got “unlucky” several times in a
row; future experiments should find deterministic means of making agent behavior more
humanlike. In contrast, we may have made the task too easy by using simulated opponents
against whom the optimal policy was pure greed or pure generosity. Many participants
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adopted these policies very quickly, leading to learning trajectories with few interesting
features. Future work should design social experiments where the optimal policy can only
be discovered by repeated trial and error. The learning task should be easy enough that
individuals can clearly assess how rewards correlate with states and actions, encouraging
them to experiment and find better strategies, but hard enough that discovering the optimal
strategy is not guaranteed.

Our T4T agents were designed with these considerations in mind, but could be im-
proved. We observed, in particular, that human learning when playing the trustee was
extremely inconsistent. This is partly due to the fundamental complexity of playing as the
trustee: this player has a larger (s, a) space (the number of coins available changes based
on the investor’s transfer, and candidate actions range from 0-30 instead of 0-10). However,
it was likely also due to agent randomness, and to large state updates by the T4T agents
(greed and generosity would be strongly punished or rewarded, leading to large swings in
behavior between every round). Experimentation with the T4T update parameters F and
P could alleviate this issue.

Future experiments should also investigate human-human interactions to promote real-
ism and prosocial thinking. Experimental confederates could be used in lieu of of software
opponents to provide control within the study; alternatively, the experiment could simulate
free-for-all play between participants, then conduct a thorough data analysis to identify
trends related to SVO, opponent behavior, etc. Finally, future work should analyse the ef-
fects of personality factors beyond SVO, for instance by using standardized questionnaires
or personality tests to classify individuals. While our SVO classification was significant in
many of our experimental conditions, it was assigned using only a single question, which
required self-reporting after participants played the TG: other means for assessing partic-
ipant SVO may be more robust.

Our cognitive agents could be expanded in multiple ways. We discussed architecture-
specific extensions above, but several higher-level changes may be applicable to all three
agents. First, our agents represented the state of the world by encoding the current round
of the TG and the number of coins available. While this should be sufficient information
to discover good strategies against our simulated opponents, other representations should
be explored. Real social interactions feature the exchange of many social, emotional,
and linguistic cues; perceiving these cues and using them to guide decision making is
an important part of social decision making, even in constrained social interactions like
the TG. Second, our agents did not include specialized valuation systems, like those we
discussed in Sec. 5.2.3; instead, our agents combined all state information into a single
complex representation, then learned a single mapping between that representation and
action values. It would be interesting to divide evaluation into distinct subsystems, then
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combine these systems during value integration: doing so would help break up the problem
of learning action values (in an environment containing multiple features, and for agents
with multiple goals) into manageable chunks. Future work should also endow agents with
other learning mechanisms, such as frequentist models (e.g., learning the average reward
of each action, independent of state) or model-based systems (e.g., mentalizing about how
an action affects the opponent’s state of mind and subsequent behavior).

On the topic of modulation, we would like to investigate the dynamic control of SVO
parameters wi and wo. In our agents, these parameters were fixed at initialization, but
neural evidence suggests that human prosocial tendencies may be updated on-the-fly, for
instance by temporarily favoring social outcomes when interacting with a new social group,
or quickly becoming indifferent to the wellbeing of others in response to betrayal [47]. The
role of the amygdala in estimating trust and coordinating fear responses may be particularly
relevant for such modulation [17]. Incorporating this modulation would not only make our
cognitive agent more neurally and cognitively plausible, but it could potentially eliminate
an un-humanlike error that all our agents made: repeatedly transferring one or two coins to
a greedy opponent (thus satisfying their prosocial reward function) despite never receiving
greater personal rewards for this generosity. Prosocial humans express their generosity by
occasionally make one highly-generous transfer, then immediately returning to greediness
if the opponent does not reciprocate. Such behavior could be explained by the rapid
modulation of proself versus prosocial goals.

Another area where agent behavior departs from human behavior is exploration. While
it is hard to quantify the process for human exploration, it seems likely that animals
use sophisticated strategies for exploration and exploitation, including curiosity-driven
learning, bayesian-optimal foraging, and the like [233, 221]. In contrast, our agents use
the simplest possible exploration scheme: they chose random actions in the beginning of
the experiment, and chose actions according to their policy towards the end. Not only
is this exploration scheme wildly inefficient, it also requires external knowledge about
how long the experiment will last, in order to properly set the ϵ-decay schedule. Thus,
for both cognitive plausibility and improved performance, future work should investigate
more advanced schemes for exploration.

A detailed parameter exploration would also improve our analyses. We showed that
the SVO parameters wi and wo recreate differences between proself and prosocial humans
across several experimental conditions. For completeness, future work should also attempt
to recreate these differences using other model parameters. Our claims about the explana-
tory power of SVO would be greatly strengthened if only wi and wo could reproduce the
empirical trends we observed. Future work might also explore alternative approaches for
establishing the relationship between agent SVO and human SVO. For instance, we could
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optimize model parameters (including SVO) to reproduce individual learning trajectories,
then compare each human’s SVO with the best-fit SVO parameters: if the two were reliably
correlated, we could claim that our SVO mechanism predicted individual differences.

Finally, it is important to apply our models to other social tasks. While we have
claimed that our architectures and representations are sufficiently general to apply to
other types of social cognition, these claims should be tested. To confirm the general
learning capabilities of our agents, we should train them to perform standard RL tasks,
like gridworld or box-car. We should then teach our agents to play other social games,
like the prisoner’s dilemma. Finally, we would like to train our agents to play against
other learning agents in tournament-style competitions, and apply the techniques of multi-
agent reinforcement learning to study how social norms develop in a society filled with
independent, cognitively-plausible learners.

5.7 Conclusion

In this chapter, we extended our analysis of learning and decision making in social contexts
by investigating how humans learn to play the trust game. Drawing on the learning rules
and network components we developed in previous chapters, we created an NEF agent
with multiple cognitive capabilities: our network (a) encoded external inputs into a high-
dimensional space that supports generalization over continuous variables (b) evaluated the
utility of multiple potential actions, (c) compared these actions and selected the best one,
and (d) learned based on feedback from the environment combined with (e) memories
of previous states and actions. All these operations were computed online within the
neural network. We also simulated two agents derived from totally different cognitive
architectures, a deep neural network and a symbolic ACT-R agent. By comparing the
cognitive mechanisms and performance of these agents, both with each other and with a
human dataset, we studied the extent to which human learning could be recreated and
explained by reinforcement learning.

We found that our agents recreated several empirical patterns of learning and behavior,
but that our agents fell short in other respects. In particular, we showed that it is possible
to operationalize social value orientation within the RL framework by endowing agents with
an explicit preference for the wellbeing of others and for social norms. When we simulated
populations of agents containing both proself and prosocial individuals, we found that the
differences in their behavior mirrored high-level differences between proself and prosocial
humans. Overall, our models and experiments show that cognitive agents trained using
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RL are useful tools for studying human social behavior, and suggest several conclusions
regarding exploration and cooperation that should be fleshed out in future work

In the concluding chapter of this thesis, we look back on the models we have developed,
and synthesize our findings into a coherent story. We discuss the strengths and weaknesses
of our approach to neurocognitive modelling, and point to alternative methods used in
computational neuroscience. We conclude by identifying several open questions that arise
from our results, and imagining what kinds of models and experiments might be used to
answer them.
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Chapter 6

Conclusion

6.1 Contribution

Our goal in this thesis was to explore social cognition from the perspective of learning
and decision making. We sought to describe the cognitive algorithms that govern social
behavior by proposing mechanistic theories for social information processing, identifying
the neural and anatomical correlates of these mechanisms, and showcasing how biological
brains might implement them. To do so, we built computational models that realized algo-
rithms for learning and decision making, trained these models to perform simple cognitive
tasks from social psychology, and validated them by comparing model outputs to neural
and behavioral data from social animals.

In Ch. 1, we motivated the study of social decision making, reviewed the functional
neuroanatomy of social cognition in the brain, and introduced a theoretical framework for
building biologically-plausible computational models. In particular, we endorsed the value
based framework as a theory for social decision making, pointed to biological evidence
that supported this theory, and suggested how the NEF might be used to implement the
required components.

In Ch. 2, we modeled associative learning in the amygdala, focusing on the well-
documented examples of fear conditioning and extinction. Using an anatomically-detailed
model, we recreated several nuclei within the amygdala, specified their connectivity, and
ran several fear conditioning experiments on our simulated agents. We validated our model
by comparing the tuning properties of our simulated neurons to the neural responses of
rodents and primates, both in normal conditions and under pharmacological or physiolog-
ical perturbation. We observed that our simulated neurons exhibited realistic sensitivity
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to external stimuli at various stages of conditioning, and that perturbing certain model
components during training produced plausible changes in these responses. We also com-
pared the behavioral responses of our model to empirical data, and reproduced several
classic results in the fear conditioning literature. Finally, we leveraged the unique repre-
sentational properties of our model to investigate how fear generalized to a spectrum of
stimuli resembling the conditioned stimulus. We found that the model exhibited humanlike
generalization gradients, and that these gradients could be shifted to model people with
anxiety disorders by weakening pattern separation within the model.

In Ch. 3, we took a closer look at computational models with a high degree of biological
detail. This chapter was motivated by a concern that incorporating such details might limit
the cognitive capacity of our models. We proposed a theoretical extension to the NEF that
used supervised, online learning, together with offline optimization, to discover the synaptic
weights and time constants that would accommodate biologically-detailed networks. We
validated our method by training these detailed networks to perform several operations that
are essential to cognitive systems. We also constructed a highly-detailed model of working
memory in PFC, then showed that its mnemonic properties were comparable to those
of simple animals performing a delayed match-to-sample task. While this chapter did not
investigate social cognition per-se, it showed that our models may accommodate additional
biological details, allowing us to investigate how social decision making is affected by
emotional neuromodulation in future work.

In Ch. 4, we modeled the speed-accuracy tradeoff in decision making by building a
network that performed several interrelated cognitive operations. Our network tracked
the changing value of two choice alternatives, monitored its uncertainty and external time
pressures over time, and made a decision once a flexible decision criterion was met. The
model was informed by theories of inference and decision making under time pressure,
and its anatomical structure was consistent with valuation and decision making systems in
cortex and basal ganglia. We validated the model by comparing its behavior to a human
dataset; we recreated the behavior of individual participants, captured the speed-accuracy
tradeoff, and identified which model mechanisms were most influential.

In Ch. 5, we combined many of the network components developed throughout this the-
sis into an agent with multiple cognitive capabilities. The agent encoded external inputs
into a high-dimensional space that represents continuous variables, evaluated the utility of
multiple potential actions, compared and selected the best action, and updated its men-
tal representations based on feedback from the environment combined with memories of
previous states and actions. We trained this agent to play the trust game, a simple social
dilemma that is often used in psychology and economics to study the relationships between
trust, cooperation, and social decision making. We also simulated agents from two other
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influential cognitive architectures, a deep neural network and an ACT-R agent. All three
of these agents were trained using reinforcement learning, endowed with parameterized
social value orientation by adding prosocial terms into the reward function, and played the
trust game against adaptive simulated opponents. Furthermore, we conducted a human
experiment where participants played the trust game, and were classified according to their
social value orientation. We analyzed the learning trajectories of simulated agents and hu-
man participants, and noted several similarities and differences. Within the populations
of simulated agents and humans, some individuals experimented with different strategies
and only settled into routine behavior late into the experiment, while other individuals
quickly decided upon a strategy and did not explore alternatives. Similarly, some individ-
uals discovered high-scoring strategies against the simulated opponent they faced, while
others became fixated on suboptimal strategies. We found that, compared to their proself
counterparts, prosocial participants and prosocial agents were more generous and scored
higher against cooperative opponents. We discussed the implications of these results for
the emergence of cooperative behavior, but pointed out ways in which our agents were
cognitively or behaviorally unrealistic.

In this chapter, we discuss the overall strengths and weaknesses of our modelling ap-
proach, and point out alternative methods used in computational neuroscience. We also
identify ways to increase biological and cognitive realism, other social tasks we would like
to investigate, and new analysis techniques that would solidify our results.

6.2 Critiquing our Modelling Approach

In previous chapters, we discussed the strengths and weaknesses of our individual mod-
els. Rather than review those discussions here, we reflect on the high-level strengths and
weaknesses of NEF models, giving examples from the thesis as appropriate, and comparing
them with other influential frameworks in computational neuroscience.

6.2.1 Strengths

As we discussed in Sec. 1.2, computational models are powerful tools for studying social
cognition: they provide a mechanistic account of brain function, rigorously specify cognitive
theories, contrast competing hypotheses, and synthesize disparate theories using a common
framework. The NEF, in particular, is a framework that lets modellers generate and
test functional hypotheses about the brain’s cognitive mechanisms. When we build brain
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models using the NEF, we frequently do so using a top-down approach, where we specify
the functional roles of certain populations and connections, then connect these components
to realize a network-level cognitive algorithm. This approach to “neural engineering” makes
it easy to generate models that perform a variety of functions, ranging from small-scale
mathematical operations to large-scale symbolic cognition. The models we presented in
Chs. 2-3 used connections between a few neural populations to associate input stimuli
and store short-term memories, while the models in Chs. 4-5 used multiple accumulators,
memories, and selectors to perform entire cognitive tasks. For researchers interested in
studying the brain from a functional perspective, the NEF provides a flexible theory of
neural information processing, and Nengo facilitates the rapid construction and testing of
cognitive models.

One useful property of the NEF and SPA is the ability to represent symbols at various
levels of abstraction, and to transform those symbols in mathematically precise ways. In
Ch. 4, we represented choice alternatives as two one-dimensional variables: this simple
encoding allows easy comparison between choice values, for the purposes of calculating
certainty and selecting the highest-value action. In Ch. 2, we represented external sensory
stimuli as one- to five-dimensional vectors, and learned associations between these stimuli
using online learning rules for updating synaptic weights. The moderate dimensionality
of this representation allowed us to present a variety of stimuli to the network without
hard-coding the response properties of neural populations, a common practice in compu-
tational models of fear conditioning. Furthermore, it allowed us to study how the model
responded to stimuli outside the training set, permitting a novel investigation of fear gen-
eralization that would be impossible in models with simpler representations. Finally, in
Ch. 5, we represented the entire game-state of the trust game using a 150-dimensional
vector. This symbolic representation used spatial semantic pointers to encode socially-
relevant information in a continuous feature space, which (a) allowed the network to learn
sophisticated evaluations of candidate actions that generalized across similar game-states,
(b) can easily be extended to other cognitive tasks without restructuring the network, and
(c) is analogous to neural representation of continuous variables in hippocampus. Taken
as a whole, our thesis shows the power and flexibility of NEF-style representations for
cognitive modelling.

Another advantage of NEF models is the ability to integrate many functional compo-
nents into a larger cognitive network. In our models, neural activity represents all internal
states of the model, and neural connection weights realize all symbolic manipulations; be-
cause these operations share the same substrate, and because they are governed by the
same dynamical equations, combining these operations is straightforward. Ch. 3 showed
that these representations and operations can be supported by biologically-detailed net-
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works, justifying our description of NEF models as brain models. Chs. 4-5 then showcased
the integrative potential of these networks for social cognition: both networks performed
cognitive tasks requiring perception, internal deliberation, and behavior. Other NEF and
SPA models, notably SPAUN [66], have extended the notion of unified networks further:
these models realize perception through a dedicated visual system and realize behavior
through a motor system, and are capable of performing (and switching between) multiple
tasks based on external cues. Our thesis was focused on developing and validating the
cognitive components required for social cognition in particular; as we discuss below, our
future work will continue to synthesize these components into larger, SPAUN-like agents
that are capable of performing many social tasks.

In addition to their symbolic and functional capabilities, NEF networks accommodate
many important biological constraints. While Ch. 3 showed just how detailed such net-
works could be, our remaining models also resemble real brains in many respects. To
begin, all our models dynamically simulated populations of LIF neurons with unique tun-
ing curves, and these neurons were connected with current-based exponential synapses; this
led to neural representations that were imperfect and continuously changed as the network
evolved through time. In Ch. 2, we recreated the anatomical structure of the amygdala: we
simulated numerous neural populations corresponding to the various amygdala nuclei, and
specified their internal connectivity, external connectivity, and representational properties
to match with empirical data. In Ch. 4, we modelled a decision making circuit in cortex
and basal ganglia: the connections in this network were anatomically-plausible, and the
effects of urgency and uncertainty were realized using neural control according to leading
theories of biological decision making. Finally, in Ch. 5, we modeled reinforcement learn-
ing in the value based framework; while we did not commit to a particular anatomical
mapping, both theories are broadly consistent with the organization of the brain.

Finally, NEF models can be validated with a broad array of empirical data. Ch. 2
compared the neural response curves of simulated amygdala neurons to electrophysiological
recordings taken during fear conditioning and extinction experiments. It also compared be-
havioral data from these experiments to the decoded output of the model. Ch. 3 compared
the mnemonic properties of our detailed working memory model to animals performing a
delayed response task, and compared the individual variability of our models to the range
of values reported across species and experiments. Ch. 4 compared the speed-accuracy
tradeoff of simulated agents to humans performing an identical sequential sampling task,
both at the individual level and across the population. Similarly, Ch. 5 compared the
learning trajectories and final strategies of simulated agents to human participants playing
the trust game, at the individual and group level. In all these experiments, we observed
important similarities and differences between the simulated and empirical data, suggest-
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ing that our models broadly explain the relevant cognitive mechanisms, but leaving room
for model extensions and improved analyses.

Overall, the spectrum of models we present in this thesis showcases the versatility
of NEF models with respect to functional capacity, symbolic representation, biological
plausibility, and empirical validation.

6.2.2 Weaknesses

Although the functional aspects of NEF models are scientifically useful in many respects,
they are not without their drawbacks. Some researchers have complained that NEF models
are over-engineered: modellers know what they want the network to do, and can specify
all the representations and connections to ensure that it does what is required. These
researchers advocate for an alternative, bottom-up approach, where few features of the
network are specified, and the model must learn how to solve a task from scratch. It is
true that, in this thesis, we often assume that specific functions are performed by specific
parts of the network. We would defend our approach in three ways.

First, it is valuable to study the behavior of a network, even if we do not know how that
network came to exist. For instance, even though the model in Ch. 2 has a fixed structure
and does not include learning, we still generated insights into the cognitive factors that
influence the speed-accuracy tradeoff: we showed how high-level parameters like decision
threshold, temporal urgency, and choice certainty could be realized in a neural network,
and studied how variance in these parameters could produce behavioral variance within
a population of individuals. Second, many parts of the brain (perhaps most) are not un-
differentiated structures capable of learning any function: the genetic coding of nervous
system development specifies how certain populations connect and at least partly dictates
the functions that certain networks compute. One notable exception is the cortex, which
is highly flexible, and adapts to the sensory inputs and cognitive demands placed on brains
during development. Future work should explore whether NEF networks can realize the
general-purpose, model-based learning that occurs in cortex with minimal top-down con-
straints. Third, NEF models are not always top-down: they include a significant degree
of learning, and the functions learned by the networks are not always comprehensible in
closed-form functional terms. For instance, our amygdala model in Ch. 2 learned a straight-
forward mapping between the presence of one external stimuli and the presence or absence
of another, but our cognitive agent in Ch. 5 learned a complex mapping between its unique
internal representation of the external world and its behavioral response. Therefore, while
NEF models often leverage top-down functionality when designing brain models, they are
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also capable of explaining how neural networks may learn to perform cognitive operations
with minimal engineering.

6.2.3 Alternatives

The NEF is one of many computational neuroscience frameworks that are used to study
the cognitive mechanisms of social decision making. These frameworks differ greatly with
respect to the desirable computational and cognitive features we outlined in Sec. 1.2. A
detailed analysis of the theories and models that accompany each framework is beyond the
scope of this chapter, but we briefly mention some of their strengths and weaknesses to
provide additional context to our results.

Deep neural networks are widely used in artificial intelligence and robotics, and the
last several decades have seen enormous growth in their functional capabilities. With the
advent of DNN tools like convnets, transformers, and LSTMs, these networks are capable
of solving a multitude of complex problems. For instance, the networks developed by
Google DeepMind have now surpassed human performance in strategic games like Chess
and Go, and large language models like ChatGPT can generate text that mimics human
writing. If cognitive ability is defined strictly as the ability to perform complex tasks, then
DNNs are undoubtedly powerful cognitive systems. However, DNNs are generally built
for the purposes of solving specific tasks, rather than explaining biological cognition. As
a result, the dynamical processing of information in DNNs, and the cognitive mechanisms
they employ, bear little resemblance to brains. For example, backpropagation is not a
biologically-plausible learning rule, and the connectivity of neural populations in DNNs is
not anatomically realistic. Of course, there are exceptions: DNNs have recreated many
aspects of the rodent visual system [211], some language models appear to solve linguistic
tasks in human-like ways [117], and DNNs trained with RL exhibit humanlike behavior
in multiplayer games [253]. Overall, DNNs are versatile AI systems, but must be highly
constrained if they seek to inform our understanding of human cognition.

The Adaptive Control of Thought - Rational (ACT-R) architecture is an integrated
theory of cognition that functions on a symbolic level but implements subsymbolic op-
erations and includes important cognitive constraints [5]. ACT-R models symbolically
specify the information used within a system and the production rules that dictate how to
use this information to perform actions. Through a series of subsystems that implement
episodic memory, procedural memory, working memory, and pattern matching, ACT-R
models realize many interconnected aspects of cognition, and can solve tasks end-to-end.
Importantly, the subsymbolic processing that occurs within ACT-R subsystems is governed
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by equations that impose cognitive constraints on information processing, such as noisy
information retrieval and temporal delays. These equations are motivated by the cogni-
tive constraints imposed by the brain, but are enacted at a subsymbolic level of analysis
rather than a neural level. Thus, while ACT-R can be used to study domains including
learning, memory, decision making, language, and attention, it abstracts away from the
neural basis of cognition, and cannot model many phenomena that are induced by neural
representation. For example, while ACT-R models could probably recreate many of the
behavioral findings regarding fear conditioning and extinction from Ch. 2, they could not
be used to reproduce the response curves of neurons within the amygdala, study the effects
of inactivating certain populations, or interpret fear generalization as arising from pattern
separation within neural populations. Despite these shortcomings, ACT-R is supported by
an extensive history of cognitive models that are validated by behavioral data, and is one
of the leading frameworks for studying human cognition.

The Efficient Balanced Networks (EBN) and FORCE methods simulate neural dynam-
ics using spike space and state space equations that resemble the NEF equations, and may
be used to either specify the target dynamics (top-down) or learn them given appropri-
ate error signals (bottom-up). In the conclusion of Ch. 3, we discussed in detail how the
biological realism and cognitive capacity of these methods compared to the NEF. Over-
all, these methods have similar strengths and weaknesses as the NEF, but the NEF has
a larger corpus of computational models spanning a wider range of neural and cognitive
phenomenon, especially in large-scale integrated systems like SPAUN. This is partly due
to the advanced tools for symbolic representation, and dedicated components for mem-
ory, decision making, and cognitive control, that have developed alongside the NEF and
are used in the SPA. While EBN and FORCE models may accommodate the dynamics
of high-dimensional vectors, they have not yet developed comparable tools for cognitive
analysis.

The Local, Error-driven and Associative, Biologically Realistic Algorithm framework
(LEABRA) simulates neurally- and anatomically-realistic models of learning in brain areas
like hippocampus, prefrontal cortex, and basal ganglia [178]. LEABRA models focus on
Hebbian learning mechanisms in networks with bidirectional connectivity, and in general
take a bottom-up approach to cognitive modelling: LEABRA models begin with undif-
ferentiated connections, and seek to show how a core set of computational mechanisms
facilitate learning of cognitive operation like memory, vision, and attention. This focus has
produced numerous models that are tightly-coupled with low-level empirical data, and in-
form our understanding of how cognition arises given strong biological constraints. Overall,
LEABRA is more concerned with biological realism and the emergence of specific cognitive
operations in the brain, whereas the NEF is more concerned with high-level cognition and
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symbolic processing in integrated systems.

Finally, computational models of predictive coding and Bayesian inference are becoming
increasingly popular. These models seek to explain how the brain realizes two important
cognitive operations: updating beliefs about the likelihood of events in the external world,
and active prediction of future states. As we did in Ch. 5, these models use prediction
errors to update mental models of the external world: however, these models typically
use more advanced learning rules, and more highly-structured neural circuits, to imple-
ment Bayesian or model-based computations. The mechanisms that are hypothesized to
underlie predictive coding vary significantly between different computational models, and
no single perspective has dominated this field of research [216]: two prominent examples
are process theory [181] and the free energy principle [79]. Unfortunately, computational
models of predictive coding frequently prioritize functional capacity over biological real-
ism: while some models do use plausible neural networks or anatomical connections, few
are concerned with comparing model signals with neural data, or validating model outputs
against behavioral data. On the other hand, many of the Bayesian inference models we
discussed in Sec. 4.2.3 are both cognitively powerful and biologically plausible, and have
been validated with behavioral data [123, 124, 125, 187]. These models assume that an
agent’s beliefs about the external world can be described using probability distributions,
and provide methods for updating those beliefs based on Bayes’ rule. These rich repre-
sentations of the world may serve as the basis for a wider variety of cognitive operations
than the simple representations we used in the DM model in Ch. 4. However, these rep-
resentations and computations often require a significant degree of prior knowledge about
the mathematical functions that generate events in the real world; it is unclear whether
animals possess this prior knowledge, or whether they can achieve comparable belief up-
dates through more ad-hoc computations. It is also worth noting that the NEF may be
used to build neural networks that perform certain Bayesian computations [210], and that
Spatial Semantic Pointers may be used to perform probabilistic computations within a
vector symbolic architecture [80]. In fact, our application of SSPs in the NEF agent from
Ch. 6 captures some of the benefits of Bayesian inference and belief updates, such as the
ability to (a) estimate values for unexplored regions of the state space, and (b) update
multiple value estimates in a single learning step. This suggests that predictive coding and
Bayesian inference may be realizable within biological NEF networks.
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6.3 Future Work

To conclude, we collect the suggestions for future work we have mentioned throughout
this thesis, and propose other projects where computational models may improve our
understanding of social decision making.

6.3.1 Sensitivity Analysis

One of the challenges with analyzing and validating complex models is that they include
many free parameters. Throughout this thesis, we have described the cognitive relevance
of our model parameters, fit these parameters to match individual data, and varied them
across a population of agents to simulate a diverse population. However, we did not
conduct any thorough sensitivity analyses on these parameters, and only in Ch. 4 did we
investigate the relative contribution of each model parameter. In general, simpler models
are preferable to complex models, if both can explain the data equally well. Future work
should systematically remove various parameters and mechanisms in our models, and test
whether our conclusions still hold. When doing so, it is important to validate against
various classes of data, such as neural response curves, lesion studies, and behavioral
studies: while a simpler model may appear better than a complex one if it is sufficient to
explain one of these domains, complex models may be necessary to simultaneously capture
data from multiple domains.

6.3.2 Biological Improvements

Our models simulated varying degrees of biological realism, and we attempted to connect
our findings back to biological brains through comparison to neural and behavioral data.
While computational brain models can always be made more biologically realistic, there
are a few specific aspects of biology that we feel are especially important for future work.
First, we want to more clearly define how the neural populations in our cognitive agents
(Ch. 4-5) map onto the anatomical divisions of the brain. This will involve restructuring our
neural populations so that their representations and computations more closely align with
functional neuroanatomy. For instance, in our trust game agent, we could define separate
processing streams for proself and prosocial valuation. Structural changes like this will
make it easier to compare the activity of simulated populations with electrophysiological
measurements from behaving animals, giving us a clearer picture of exactly how cognitive
operations are distributed through the brain.
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In order to develop broader theories for how different neurotransmitters are able to
modulate and control cognition, we would also like to include more biophysical mechanisms
in our cognitive agents. The tools we developed in Ch. 3 allow the simulation of such details
in NEF networks, but we did not develop a theory for how these details functionally alter
cognition. We think that a framework for understanding how neuromodulators (especially
those associated with emotional states) exert control over multiple cognitive systems would
be particularly insightful when studying social behavior. At a lower level, we also want
to understand whether division between excitatory and inhibitory synapses is crucial for
social cognition, or merely an artefact of the brain’s evolutionary history that can be
approximated with mixed-weight connections.

Lastly, while we strove to validate our models against neural and behavioral data, we
were unable to find experiments that simultaneously measured both quantities in our chosen
domains. Datasets that include both measurements would provide a more unified point
of comparison for our models, allowing us to make stronger claims about the relationship
between neural activity, symbolic representation, and behavior. Scientific collaboration
between empirical researchers and theoretical modellers is perhaps the best way to ensure
that all the relevant experimental variables are aligned; in future work, we hope to design
models alongside experiments, rather than build models that explain empirical results
post-facto.

6.3.3 Cognitive Tasks

In Ch. 1, we outlined the functional neuroanatomy of the value based framework, describ-
ing the brain areas associated with value estimation, integration, modulation, selection,
and updating. Although the NEF agent we presented in Ch. 5 simulated value estimation,
action selection, and reinforcement learning, it should be extended to account for the sepa-
rate computation, modulation, and integration of specialized value estimates. Apart from
increasing the biological realism of the agent, these additions would allow a more nuanced
investigation of prosocial cognition: for instance, such an agent could compute the proso-
cial value of a generous action, then decide whether or not to account for this value based
on the current social context. Similarly, adding systems that explicitly track trust in other
people, possibly by forming memories associated with particular individuals, could help
recreate the complex web of cognitive heuristics that people use in social situations. Both
the amygdala model in Ch. 2 and the flexible value accumulator of Ch. 4 could be incorpo-
rated into our NEF agent for this purpose. Longer-term, we would also like to simulate the
process of mentalizing, which requires learning sophisticated models of the relationships
between states, actions, and rewards, and also requires integrating those models into value
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estimates by imagining possible action sequences. Modelling these complex cognitive op-
erations will require significant theoretical advances, but offer the possibility of capturing
social abilities that are uniquely human.

We would also like to apply our cognitive agents to a greater number of social and
nonsocial tasks. Doing so would accomplish two goals. First, it would support our claims
about the cognitive generality of our networks: that is, it would show that our represen-
tations and operations are not over-engineered for a particular task. Ideally, we could
develop a SPAUN-like agent that is capable of performing multiple social tasks without
retraining, or that could use knowledge from one task when learning to perform another.
Second, we could use such an agent to investigate a host of other social phenomena. For
instance, it would be helpful to apply our agent to cognitive tasks where learning is central
to performing the task correctly. While we tried to construct such a task in our trust game
experiment, we found that humans often used strategic shortcuts, rather than exploring
multiple strategies and learning which one was superior. Comparing simulated and em-
pirical learning on such a task would provide better insights than many of our current
experiments, which were restricted to comparing the final performance of simulated agents
to behaving animals. We are particularly interested in learning tasks that involve the social
interaction of multiple intelligent agents, as these more closely resemble real-world social
interactions than strategic games like the prisoner’s dilemma. It would be interesting to
apply the methods of multi-agent reinforcement learning to populations of neurocognitive
agents, for example to study the emergence or dissolution of cooperation given the presence
of a few greedy individuals.

6.3.4 Theoretical Extensions

In addition to the extensions listed above, there are several mathematical and conceptual
extensions that would increase the cognitive plausibility of our models. Some of these are
aimed at addressing the weaknesses we identified in Sec. 6.2.2: we want to ensure that
our models are not over-engineered for particular tasks, and to show that our models can
learn cognitive operations that are not specified during development. For example, future
work could investigate whether it is possible to learn the internal representations that
are necessary for a particular task. Previous NEF models have used encoder learning to
show how the representation of a neural population may be adjusted to align with the
features of a set of input stimuli [251]. It would be interesting to explore whether these
methods could be applied throughout a network that contains dedicated components, such
as working memories or action selectors.
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To further improve the cognitive plausibility of our models, we would like to investigate
how candidate actions are generated and compared. In Chs. 2 and 4, we presented models
where choices were binary: outputs from the amygdala model represented the degree of
expressed fear (a one-dimensional scale), while the outputs from the sequential sampling
model represented a binary choice. In Chs. 3 and Ch. 5, we presented models where each
possible action was encoded as a separate variable, and the model output was chosen by
identifying the variable with the highest value. In all these models, we specified the possible
actions ahead of time. While this is standard practice in computational neuroscience, we
suspect that biological brains do not meticulously evaluate every possible candidate action,
then compare them simultaneously. Future work should explore ways in which the network
itself might generate candidate actions. A related topic is continuous action spaces: al-
though many cognitive tasks force participants to choose between discrete actions, behavior
in natural environments is usually dynamic and reactive. For instance, both animal forag-
ing and human conversation require brains to continuously generate action sequences that
are distinct from previous actions taken by the animal. Some RL models have focused on
evaluating and choosing actions in continuous spaces, for instance by combining weighted
basic actions into a real-valued action (e.g., combining left/right/up/down actions into a
2D heading vector); future work should apply these insights to neurocognitive models.

There were also several types of learning that we did not investigate in this thesis.
Perhaps the most important is “social learning”, in which agents acquire skills and knowl-
edge by observing and copying others. Given that a significant portion of human learning
occurs by imitation (especially in novel contexts or tasks), or second-hand experience (via
written or spoken language), understanding social learning is critical for understanding
social behavior. Social learning has been widely studied in economics, psychology, and
biology [106, 15], but usually from a behavioral perspective, rather than a neurocognitive
one. However, there is significant overlap between the theories posed in the social learning
literature, and the computational methods used in several subfields of RL. For example,
simulated agents may use imitation learning, inverse learning, and transfer learning to
infer the value functions and policies that drive the behavior of other agents, to transfer
their knowledge from one domain or task into another, or to copy the behavior of other
agents [111, 9, 259]. In future work, we would like to explore the connection between social
learning and RL, with the goal of expanding the learning abilities of our neural agents.

Finally, there are several cognitive phenomena that are important to social cognition,
but are currently too complex and poorly understood to be a central part of leading cog-
nitive frameworks. As we mentioned above, model-based learning and deductive reasoning
are important aspects of human cognition that we have not addressed here. These forms
of learning contribute to advanced forms of social interaction, and are likely involved in
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mentalizing. Future work should try to apply the insights from predictive coding to realize
these processes (in a neural substrate) such that the resulting network can be incorporated
into larger cognitive models. Recent work with neural models of Bayesian inference has
been applied to study limited forms of theory of mind, in which multiple agents attempt
to model and influence the belief of others in economic games [125]. Expanding this work
to other cognitive tasks, and ensuring that the neural networks are consistent with known
neuroanatomy, could be one approach to studying the neural basis of mentalizing. Lan-
guage is another area that has received a great deal of attention in dedicated models, but
which has not yet been fully integrated into models that perform a wider array of cogni-
tive tasks. It would be interesting to incorporate language models into cognitive agents
that play the trust game, allowing them to communicate with one another, and use the
internal representations generated by linguistic processing when making decisions. Adding
linguistic abilities to cognitive agents would also allow researchers to apply these models to
a wider array of cognitive tasks that better represent real-world social interactions. Emo-
tions also play a central role in our social lives; while many theories and computational
models of emotion exist, few are concerned with studying the neural and functional basis
of emotional processing, and fewer still feature emotional modulation in agents that per-
form other tasks. We hope to incorporate insights from the leading theories of emotional
processing into future NEF models, and study the interplay between emotion and social
cognition in a variety of domains.

6.4 Conclusion

In this thesis, we studied social cognition by building biologically-plausible computational
models of learning and decision making. Our goal was to develop mechanistic explanations
of the underlying cognitive capacities, to test our theories by simulating neural networks,
and to validate our models by comparing to human and animal data. Over the course
of four chapters, we presented models with various levels of biological realism, cognitive
capacity, and empirical support. These models shared an underlying theoretical framework,
which allowed us to explain the dynamics of our neural networks in functional terms, and to
integrate network components into increasingly complex models of learning and behavior.
We compared our simulated results to empirical data ranging from neural activities to
behavioral performance, noting both successes and failures. In future work, we will build
upon these models to investigate a broader range of social phenomenon, such as affective
control and multi-agent interaction.
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Gläscher. Theory of mind and decision science: Towards a typology of tasks and
computational models. Neuropsychologia, 146:107488, 2020.

[206] Marco J Russo, Enrico Mugnaini, and Marco Martina. Intrinsic properties and
mechanisms of spontaneous firing in mouse cerebellar unipolar brush cells. The
Journal of Physiology, 581(2):709–724, 2007.

[207] Rinki Saha, Stephanie Knapp, Darpan Chakraborty, Omer Horovitz, Anne Al-
brecht, Martin Kriebel, Hanoch Kaphzan, Ingrid Ehrlich, Hansjürgen Volkmer, and
Gal Richter-Levin. GABAergic synapses at the axon initial segment of basolateral
amygdala projection neurons modulate fear extinction. Neuropsychopharmacology,
42(2):473–484, 2017.

[208] Toshiyuki Sawaguchi and Patricia S Goldman-Rakic. The role of D1-dopamine recep-
tor in working memory: Local injections of dopamine antagonists into the prefrontal
cortex of rhesus monkeys performing an oculomotor delayed-response task. Journal
of Neurophysiology, 71(2):515–528, 1994.

[209] Michael A Schwemmer, Adrienne L Fairhall, Sophie Denéve, and Eric T Shea-Brown.
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C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
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Appendix A

Challenges in Functional
Neuroanatomy

In Sec. 1.3, we reviewed the functional neuroanatomy of the human brain. In researching
and summarizing the literature on this subject, we repeatedly encountered several chal-
lenges that arise when studying the functional organization of the brain. We are not the
first to note these challenges, and this is not an exhaustive list, but they are important
concerns for researchers who wish to build anatomically-grounded models of cognition.

A.1 Discrete Regions

Dividing the brain into discrete functional regions is conceptually useful but practically
difficult. The boundaries between brain areas, such as the cingulate cortex or orbitofrontal
cortex, are less obvious than the boundaries between bodily organs, both anatomically and
functionally. Our conventions for separating and labelling these regions have evolved signif-
icantly over the last few centuries. Early neuroanatomist had limited access to functioning
brains, so they classified the brain according to the physical structures that were obvious
upon dissection. Neuroanatomy improved as neuroscientists began to classify the cell types
and neurotransmitters used in various areas, and as they more thoroughly mapped the
connectivity within and between regions. Recently, imaging techniques and electrophys-
iological studies have further subdivided the larger brain regions (especially the cerebral
cortex) into smaller components, which are labelled according to their spatial location in
a 3D coordinate system (dorsal vs. ventral, rostral vs. caudal, and lateral vs. medial) or
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their relation to particular ridges and folds (gyri and sulci). Current neuroanatomy is thus
based on a wide variety of empirical data, but naming conventions and regional boundaries
may also reflect historical quirks.

With regards to functional modelling, modern imaging techniques (fMRI) and data
analysis tools (applied to datasets containing thousands of individuals) can be used to
identify functional differences between volumes of brain tissue. Unfortunately, these regions
do not always align with previously established anatomical boundaries. For example, the
valuation of potential actions is critical to decision making, but many brain areas (discussed
below) seem to be involved in representing these values. Indeed, some of these areas, such
as the ventromedial prefrontal cortex, the dorsomedial prefrontal cortex, and the rostral
anterior cingulate cortex, are adjacent to one another and are biologically comparable. In
cases like these, the boundaries that anatomists have drawn between brain regions may
impede modern efforts to functionally subdivide the brain. For these reasons, we assume
that the neural representation of high-level concepts (such as action values) occurs within
diffuse regions of the brain (such as the prefrontal and cingulate cortices) that only partially
align with neuroanamotical standards. We avoid describing the exact spatial boundaries
of these regions, but, in order to connect our work with the neuroscience literature and
broader modeling community, we still reference the existing neuroanatomical classifications
when possible. We hope that the conventions for categorizing brain areas become more
flexible and functionally-oriented in the future.

A.2 Ascribing Representation

Ascribing specific representations or computations to brain regions is challenging. While
we firmly believe that neural activity reflects the encoding, transformation, and decoding
of information in a cognitive system, it is difficult for external observers to infer the exact
content of these representations. Most neurons are sensitive to various external and inter-
nal features: their activities will change as the properties of those features change. For
instance, color-sensitive neurons in visual cortex will spike more frequently as the intensity
or frequency of incident light increases, while motor neurons will fire more frequently when
the brain requires faster contraction of particular muscles.

The challenge with attributing representations arises when describing the internal rep-
resentations used by brain regions that lie far from the sensory or motor periphery. Neural
activities in these regions correlate with both external features and patterns of neural activ-
ity in other brain regions, indicating that the represented information is a high-dimensional
mixture of external information and internal evaluations. To know exactly what such a
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neuron “represents”, we would have to enumerate all the variables that it might be sensitive
to. Given the complexity of the brain’s inputs, the sophistication of its cognition, and the
likelihood that different individuals learn different representations over the course of their
lives, it seems unlikely that scientists will ever describe these rich representations with per-
fect accuracy. In the remainder of this thesis, when we describe neurons as ‘representing’
a quantity (like “value” or “trust”), we mean that those neurons have varying sensitivi-
ties to numerous ineffable features related to that quantity (among others), and recognize
that our coarse linguistic descriptions and low-dimensional mathematical descriptions are
merely convenient conceptual and modelling abstractions.

A.3 Functional Multiplicity and Redundancy

Another difficulty with functional neuroanatomy is that multiple brain areas appear to do
roughly the same thing. We discussed earlier how this reflects the somewhat arbitrary di-
visions that neuroanatomists draw between regions of the brain. However, there are many
cases in which two or more brain areas are unequivocally distinct from one another (e.g.,
the striatum and the ventromedial prefrontal cortex) but perform similar cognitive oper-
ations (e.g., valuation). Why would the brain bother with such redundancy? We see two
possibilities. First, redundancy is a failsafe against brain damage: intact brain areas may,
through plasticity, cover for functionally-similar areas that have ceased to operate prop-
erly. Second, although multiple areas may appear to represent similar information and
perform similar cognitive roles, it is quite likely that they do so in subtly different ways,
or in slightly different domains. For example, we later discuss below how social learn-
ing and decision making appear to involve two distinct networks, one situated primarily
in the cortex; and another that includes only subcortical structures. Redundancies like
these may reflect the evolution of advanced structures and circuits in humans (and other
higher mammals) to complement the simpler functionality of other structures. While evo-
lutionarily older circuits in subcortical areas may mediate simpler forms of social learning
(e.g., determining whether to approach or avoid an object given previous experience with
associated pain, food, or sex), newer circuits in cortex may mediate more sophisticated
forms of social learning (e.g., using high-dimensional representations of social relations to
plan goal-directed behavior or predict the behavior of others). Thus, distinct functional
systems in the brain may only be “redundant” at a superficial level, and a more thorough
understanding of their functional domains may reveal important differences.
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A.4 Controlled Experiments

The dynamic, integrated nature of the embodied brain poses yet another challenge for
functional neuroanatomy. As in every natural science, cognitive neuroscience develops
through an iterated process of experimentation, observation, and theorizing. This method
works best when experiments can isolate individual variables (or processes) and control
for the rest. Unfortunately, because the brain is always engaged in numerous cognitive
processes, it is rarely possible to conduct an experiment in which all neural processes are
held constant, save for a single process that relates to the experiment being performed.
Whats more, individual differences between brains means that even a tightly-controlled
experiment will engage different representations and prompt different patterns of thought
and emotion in each individual. In order to draw broad conclusions about social cognition,
theorists need access to a wide variety of social experiments that control and manipulate
numerous social features in diverse social contexts.

Fortunately, recent meta analyses have identified several features of social experiments
that reliably correlate with different neural activities or behaviors. Rhoads et al. [194] used
an unsupervised approach to identify three low-level features in social tasks that relate to
an individual’s prosocial behavior; that is, three factors that strongly influence whether
an individual will choose actions that increase the welfare of a beneficiary. These include
(a) information about the beneficiary of an individual’s action, such whether they are a
real person or a computer agent, whether they are personally known to the individual, and
whether they have demonstrated a need for resources; (b) the form of interaction between
the two individuals, for example whether the beneficiary also make decisions, and whether
repeated interaction will occur; and (c) the outcome of the interaction, including the proba-
bility or magnitude of reward delivered to both individuals, and whether the action violates
social norms. The authors show how these features determine an individual’s likelihood
of choosing a prosocial action, which were clustered into three categories: cooperative and
strategic decisions, where outcomes depend on the decisions of others; equitable and norm-
compliant decisions, in which one individual unilaterally decides how to allocate resources,
subject to social norms; and altruistic decisions, where an individual unilaterally decides
whether to forgo resources and benefit others. For each of these clusters, the authors note
which of the aforementioned social features are relevant, identify social experiments that
engage this type of behavior, and examine which neuroanatomical areas are activated while
performing these experiments.

Similarly, Rusch et al. [205] investigate which dimensions of a social experiment corre-
late with an individual’s tendency to empathize and mentalize, or engage in mental pro-
cesses that simulate the emotional and/or rational thought processes of other individuals.

229



They identify two important features. The first is uncertainty and information asymme-
try, or the extent to which one individual has greater information or predictive capability
(with respect to the task) than another. The authors hypothesize that, if another person
has greater knowledge about the (physical or social) environment and demonstrates an
enhanced ability to predict it, an individual is motivated to represent that person’s emo-
tional state or belief state. Empathizing and mentalizing in this way allows an individual
to internalize the mental capabilities of another individual and model the world more effec-
tively, leading to better decisions. However, this is only useful when the environment has a
certain degree of uncertainty or asymmetry; if the agent is already certain about how the
world will unfold, or already knows as much as another individual, there is no motivation
to spend energy empathizing or mentalizing; and if the world is so complex as to appear
random, then neither agent can predict it, and there is also no motivation. The second
relevant factor for theory of mind is interactivity, which describes the type and extent of
involvement between two individuals. Interactivity encompasses social distance, personal
relevance, and task dependent consequences; it thus bears many similarities to the second
feature identified in [194]. The authors hypothesize that tasks with greater interactivity
should prompt more empathy and mentalizing, so an individual can accurately respond in
real time. As in the above paper, Rusch et al. classify traditional social experiments ac-
cording to these dimensions, and show how these features predict an individual’s tendency
to empathize and mentalize; they further relate this tendency to functional neuroanatomy
and to computational models.

These two analyses illustrate the challenges of designing social experiments and demon-
strate that seemingly minor experimental parameters may engage significantly different
mental representations and processes. We believe that these sorts of meta-analyses help
theorists develop unified theories of social cognition that account for a wide range of cog-
nitive interactions and generalize across the idiosyncrasies of individual experiments.

A.5 Vague Terminology

Finally, the terminology used when describing social learning and decision making is often
imprecise. While we should not expect every scientist to adopt an identical notion of high-
level psychological concepts, it is still important to avoid over-generalization. One relevant
example is the term “altruism”: some people use this word to refer to a broad class
of actions that recognize or benefit others; while other people use the word to describe a
narrow set of actions that benefit others at the explicit expense of one’s personal wellbeing.
We prefer the latter definition, which is more in line with the classification scheme of Rhoads
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et al. [194]; prosocial behavior is the wider class of actions, which may be strategic, norm-
compliant, or altruistic. In this definition, altruistic actions have no possible personal
benefit: they do not prompt reciprocal cooperation, and do not avoid punishment for
violating social norms. The only sense in which such altruism may be personally beneficial
is the so-called “warm glow”, a subjectively-positive sensation associated with selfless acts.
As we gain a wider understanding of the rich cognitive operations that underlie prosocial
behavior, we will hopefully develop a more refined terminology that identifies and locates
the particular computations involved.
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