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Abstract

Social interaction is one of humanity’s defining features. Through it, we develop ideas,
express emotions, and form relationships. In this thesis, we explore the topic of social
cognition by building biologically-plausible computational models of learning and decision
making. Our goal is to develop mechanistic explanations for how the brain performs a
variety of social tasks, to test those theories by simulating neural networks, and to validate
our models by comparing to human and animal data.

We begin by introducing social cognition from functional and anatomical perspectives,
then present the Neural Engineering Framework, which we use throughout the thesis to
specify functional brain models. Over the course of four chapters, we investigate many as-
pects of social cognition using these models. We begin by studying fear conditioning using
an anatomically accurate model of the amygdala. We validate this model by comparing
the response properties of our simulated neurons with real amygdala neurons, showing that
simulated behavior is consistent with animal data, and exploring how simulated fear gener-
alization relates to normal and anxious humans. Next, we show that biologically-detailed
networks may realize cognitive operations that are essential for social cognition. We val-
idate this approach by constructing a working memory network from multi-compartment
cells and conductance-based synapses, then show that its mnemonic performance is com-
parable to animals performing a delayed match-to-sample task. In the next chapter, we
study decision making and the tradeoffs between speed and accuracy: our network gathers
information from the environment and tracks the value of choice alternatives, making a
decision once certain criteria are met. We apply this model to a two-choice decision task,
fit model parameters to recreate the behavior of individual humans, and reproduce the
speed-accuracy tradeoff evident in the human population. Finally, we combine our net-
works for learning, working memory, and decision making into a cognitive agent that uses
reinforcement learning to play a simple social game. We compare this model with two
other cognitive architectures and with human data from an experiment we ran, and show
that our three cognitive agents recreate important patterns in the human data, especially
those related to social value orientation and cooperative behavior. Our concluding chapter
summarizes our contributions to the field of social cognition and proposes directions for
further research.

The main contribution of this thesis is the demonstration that a diverse set of social cog-
nitive abilities may be explained, simulated, and validated using a functionally-descriptive,
biologically-plausible theoretical framework. Our models lay a foundation for studying
increasingly-sophisticated forms of social cognition in future work.
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Chapter 1

Introduction

1.1 Social Cognition

Social intelligence is a de�ning feature ofhomo sapiens. From our hunter-gatherer origins
to our modern societies, social interactions are essential for survival and well-being, both
for individuals and for communities. Every day, we communicate to exchange informa-
tion and form opinions, compete for limited resources, and coordinate with each other
to solve complex problems. We create products for human use and entertain ourselves
with multiplayer games and interpersonal stories. Many of humanity's greatest accom-
plishments, from art and architecture to technology and sciences, exemplify our ability to
bring together talented individuals into collaborative projects that produce public goods.
However, the greatest risks facing our species, from climate change to international war,
also partly stem from di�culty accepting and working with each other; on a societal scale,
we have historically struggled to coordinate our actions in ways that promote desirable
collective outcomes. Understanding social cognition thus has immense value, both from a
scienti�c and a societal perspective.

Social psychology, the formal study of social intelligence through the systematic mea-
surement of human thoughts, feelings, and behaviors [134], began in the early 1900s with
experiments on group behavior [241] and the publication of the �rst social psychology
textbook [162]. The �eld grew substantially in the World War II era, �rst with stud-
ies on persuasion, propaganda, and psychological warfare from the US military, and later
with studies seeking to understand the conformity, obedience, and social pressures that
enabled wartime atrocities. While rife with methodological and ethical problems, many of
the experiments conducted during this period, including Asch's conformity study [10], the
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Stanford Prison Experiment [95], and Milgram's obedience study [166], captured the pub-
lic attention and inspired renewed interest in social psychology. In the 1970s and 80s, the
�eld became more cognitively oriented, focusing more on the mental and neural processes
underlying social thinking while developing tools to address the methodological failures
of early experiments. Modern social psychology studies numerous intrapersonal phenom-
ena, such as attitudes, persuasion, and self-concepts, and interpersonal phenomena, such
as social in
uence, group dynamics, and interpersonal attraction, using a diverse set of
experimental, statistical, and computational tools.

At a high level, social intelligence can describe any thought, feeling, or behavior that is
in
uenced by the presence of others or by internalized social norms. Given the pervasive-
ness of social interaction described above, it is easy to see how a wide variety of cognitive
operations fall within this category. While this breadth makes it di�cult to constrain
the study of social intelligence, it also re
ects an important principle: social cognition
includes and builds upon existing non-social cognitive components. Many of the functions
and operations performed by the brain, such as classi�cation, working memory, valuation,
and decision making, will be useful for social thinking in a general sense. What's more,
evolution has a tendency to leverage existing functional mechanisms when designing new
cognitive tools: it seems likely that, as humans evolved and re�ned their socio-cognitive
abilities, natural selection favored mutations that made incremental changes and improve-
ments to existing neural systems, rather than inventing new social cognition systems from
scratch. For example, the amygdala is known to interpret social information and initi-
ate appropriate social behaviors in social primates [69], a role that may have evolved by
functionally extending its existing ability to coordinate approach and avoidance behaviors
in non-social settings [2]. Similarly, the vmPFC is thought to evaluate the quality of po-
tential actions for an individual, but neural and behavioral evidence suggest that social
animals also use this area (alongside more dedicated structures) to estimate the social
value of potential actions, leading to a combined utility estimate that is used to direct
social behavior [47]. In studying social cognition, it is therefore important to recognize
that the cognitive operations and functional brain areas under discussion exist within a
larger cognitive system: it is not always possible to di�erentiate social operations from
domain-general operations like associative learning, working memory, or decision making.
Labelling cognitive mechanisms as \social" is a useful convention rather than a clear-cut
scienti�c distinction.

The overarching goal of this thesis is to explore social cognition from the perspective
of learning and decision making. We believe that, by focusing on the adaptive nature
of social intelligence, we can understand the cognitive mechanisms that underlie a wide
range of social phenomena across many disciplines within social psychology. This belief
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stems from the observation that most social environments are 
uid: they contain intelligent
agents whose thoughts and behaviors change across time, culture, context, and more. To
successfully navigate such environments, brains have evolved learning systems that model
the social world and make smart decisions within it. Rather than study the models that
individuals have built over their lifetimes, the heuristics that groups rely upon as cognitive
shortcuts, or the statistical regularities of behaviors within particular cultures, we will
study the processes through which these phenomena are implemented in the brain. Thus,
our goal is to describe the cognitive algorithms that individuals use to learn about, and
make decisions within, environments that contain other intelligent agents. We strive to
identify the neural and anatomical correlates of these algorithms and to demonstrate that
biological brains can (and do) realize them. To do so, we rely on computational models
that rigorously de�ne algorithms for learning and decision making, train these models to
perform simple cognitive tasks from social psychology, and validate them by comparing
model outputs to neural and behavioral data from social animals.

1.2 Computational Models

Computational models are powerful tools for studying social cognition. In contrast to many
methods in social psychology, economics, and neuroscience, computational methods pro-
vide a mechanistic account of brain function, which can inform our understanding of how
particular cognitive processes are implemented in the brain. Computational models can
also be used to rigorously specify cognitive theories and contrast competing hypotheses:
outputs from competing models can be compared to neural and behavioral data, providing
an empirical basis for comparison. Notably, models make precise quantitative predictions
about social decision making across people, context, time, and other experimental con-
founds. Parameter �tting also allows researchers to identify how individual di�erences in
learning variables or decision variables uniquely interact to determine behavior. Finally,
computational models can synthesize theories from diverse scienti�c �elds using a com-
mon framework, and can be incrementally expanded by adding additional mechanisms and
variables; this provides a grounded basis for theoretical development with the potential to
explain an expanding body of data. These bene�ts have been widely recognized within the
cognitive science community [243], leading to an encouraging increase in the quantity and
quality of computational models for social cognition [36, 150].

Of course, computational models are incredibly diverse with respect to the mechanisms
they simulate, the parameters they include, and the data they produce. Before embarking
on the task of building models to study social cognition, it is important to think about
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which features of computational models are scienti�cally valuable; that is, which features
meaningfully enhance our ability to understand the relationship between the biological
brain and our social and cognitive capabilities. We believe that three features, in particular,
characterize a good computational model of social cognition: biological �delity, functional
capacity, and explainability.

First, the components of a computational model should resemble components of the
biological brain. While high-level models of arti�cial intelligence may perform at human
levels on various cognitive tasks, they do not necessarily inform our understanding of how
humans perform those tasks. All the models presented here include several biological con-
straints that ensure they correspond to brains. For instance, our models are constructed
out of spiking neurons connected with synaptic weights: while more detailed biophysi-
cal models of neural physiology and connectivity exist, these constraints impose a basic
structure that is qualitatively more brain-like than many other approaches to arti�cial in-
telligence, including deep neural networks and symbolic production rules. Furthermore, all
cognitive operations performed by our models are computed dynamically through neural
connection weights; this ensures that the model has not o�oaded any key computational
components to non-neural platforms, and ensures that the problems of representational
noise and algorithmic speci�cation are directly addressed by the model, as they must be
by brains. Finally, we identify the anatomical areas associated with our model components
wherever possible, and tag components as biologically-questionable otherwise. While the
biological realism of a neurocomputational model can always be expanded, we believe these
biological constraints strike an acceptable balance between realism and coherence.

Second, computational brain models must have functional capacity: that is, they must
represent external inputs, perform functional operations on those representations, and
produce behavioral outputs. Clearly, the scienti�c understanding of social cognition has not
yet reached a stage where we can expect models to navigate complex social environments in
humanlike ways. While many algorithms play multiplayer games at superhuman levels [214]
or display remarkable linguistic abilities on standardized tasks [215], much work remains
to build agents that can 
exibly interact with humans across many social contexts. As
mentioned above, we believe that the best approach to developing 
exible cognitive agents
is to achieve a deeper understanding of the basic mechanisms of learning and decision
making. For us, this means constructing agents endowed with learning and decision making
systems and showing that they can, through experience, learn to complete various social
tasks. We say that an agent has functional capacity if it can learn to perform a wide array
of such tasks, and if its behavior resembles human behavior.

Finally, computational models should be explainable with regards to what informa-
tion is being represented and what operations are being applied. All else being equal,
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a model whose internal processes can be clearly understood is preferable to a black-box
model: while both models may predict the data equally well, the former will have more
scienti�c value with respect to characterizing how social intelligence arises. For example,
the internal representations and computations learned by deep neural networks are often
obscure, requiring independent tools to interpret [168] or to correct learned biases [252].
However, it is possible to overstep when designing models to meet this criteria: we should
not expect that everything the brain does will be amenable to linguistic or mathemati-
cal description using our current scienti�c toolkit. Forcing models to use a speci�c set of
high-level symbols, as was common in the 1960s, 70s, and 80s with connectionist models
[204] and good-old-fashioned AI [98], may severely limit the model's ability to generalize
to novel tasks or scale to larger symbolic vocabularies. In summary, models with compre-
hensible internal representations and operations are useful for describing the mechanisms
of social cognition, but subsymbolic representations and operations are required to capture
the 
exible nature of social cognition.

One persistent problem with computational models is overspeci�cation and over�tting.
If a model includes enough parameters and mechanisms, it can recreate any dataset, with-
out necessarily informing our understanding of social cognition. Many models are built to
explain particular social phenomenon, and do so convincingly; the greater challenge, and
the more important scienti�c test, is whether these models can also explain additional, com-
parable social phenomenon. If a model must be signi�cantly reorganized to apply to other
forms of social cognition, we should be wary of its general explanatory power. While many
tools can be used to combat the over�tting of model parameters to a particular dataset
[243], the problem of overspecifying the structure or mechanisms of a model to a narrow
scienti�c domain is more insidious. We believe this problem is best addressed through the
use of cognitive architectures, which are theories about the structure of the mind that focus
on generality and usability: they intend to explain a wide variety of cognitive phenomena
using a common set of mechanisms that may work together to perform many cognitive
tasks. The most successful architectures, such as Adaptive Control of Thought - Ratio-
nal (ACT-R) [5] and the Semantic Pointer Architecture (SPA) [64], specify subsystems for
common cognitive operations such as working memory, attention, association, and decision
making; because the mechanisms underlying the operation of these subsystems are com-
patible, researchers can connect subsystems together to form larger systems that perform
more complex cognitive tasks. Both ACT-R and SPA have been used this way for decades,
producing a wide body of research modelling diverse cognitive phenomena. In this thesis,
our computational models derive from one or more cognitive architectures.
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1.3 Functional Neuroanatomy

Recall that the goal of this thesis is to study the neural and cognitive mechanisms of
learning and decision making in social contexts, and to recreate them using computational
models. Doing so clearly requires an investigation of the brain itself. By observing the
brain's activity while it engages in social tasks, we can identify which parts of the brain are
involved in which social operations, then develop more detailed representational and func-
tional hypotheses. These theories can be rigorously speci�ed using formal computational
models that are representationally and functionally segregated (i.e., have components that
correspond to the identi�ed brain systems) and perform social tasks (i.e., produce sim-
ulated activity and behavior that may be compared to empirical data). The successes
and failures of these hypotheses and models should inform the design of new experiments,
observations, and interpretations.

In this section, we review the brain's functional neuroanatomy, with the aim of develop-
ing a high-level picture of the role played by di�erent brain areas during social cognition.
In subsequent chapters, we provide greater detail about the functional organization of
particular regions, and discuss existing computational models of their behavior. In this
review, we generally reference recent review papers and meta analyses, rather than citing
primary sources that detail particular empirical experiments. Review papers synthesize
an overwhelming body of literature into coherent theories about brain organization. More
importantly, these papers are less likely than the primary papers to draw overgeneralized
conclusions; individual studies frequently claim that certain brain areas represent a par-
ticular quantity, or perform a particular function, based only on a single experiment or
dataset. We report the conclusions drawn by several recent reviews, and discuss the extent
to which they agree or disagree about functional neuroanatomy.

Despite these precautions, there are numerous empirical and theoretical challenges to
functional neuroanatomy. In Appendix A, we discuss �ve of these challenges at length, in-
cluding: the di�culty of dividing the brain into discrete regions; the problem of ascribing
speci�c symbolic representations to neural activities; the confusion of functional redun-
dancy between brain areas; the intractability of designing controlled social experiments;
and the prevalence of vague terminology. Readers who are troubled by the breadth of our
neuroanatomical claims should refer to these notes, which qualify many of our statements.
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1.3.1 The Value Based Framework

When making social decisions, an individual must weight competing alternatives and
choose an option that satis�es various criteria. Most cognitive scientists who study de-
cision making describe this process using the \value based framework" (our terminology),
in which an individual, or \agent", assigns each potential action a \value" and selects the
action with the highest value when making a decision [231]. In the value based framework,
value is a catch-all quantity: it incorporates every feature than an agent potentially cares
about, with respect to deciding between candidate actions. While conceptually simple,
this framework is consistent with the many complexities of learning and decision making
in social contexts. Agents contain sophisticated mental models that evaluate potential
actions based on a wealth of social and nonsocial information. These mental models make
predictions about the outcome of taking various actions, and agents learn to improve their
value estimates by comparing their predictions to the outcomes their actions actually pro-
duce in the social world. Agents may also adapt their mental models to accommodate
high-level goals, emotional states, and social contexts through complex modulatory mech-
anisms. Overall, the value based framework is consistent with behavioral and neuroimaging
data [180], can easily be realized in computational models [36], and is closely associated
with reinforcement learning, another successful theory of learning and decision making
[230]. For these reasons, we believe that it is appropriate for studying learning and de-
cision making in social contexts, and we organize our review of functional neuroanatomy
accordingly.

In the following sections, we describe how value based decision making is organized in
the human brain. We begin by reporting regions that are involved in representing social
information, processing it, and computing value estimates. We discuss how these estimates
are integrated into a common currency for valuation, then describe how this process is
modulated by other regions that assess goals, norms, and context. We also identify regions
that are crucial to error monitoring and learning, then �nally point out several regions that
facilitate action selection. Fig. 1.1 provides an overview of this anatomical mapping.

1.3.2 Value Estimation

In the last decade, a great deal of research has focused on the neural basis of valuation,
and many excellent meta analyses and review articles have summarized empirical data
from fMRI studies, behavior experiments, neurochemical and lesion studies, studies of
neurological disorders, and more [231, 205, 198, 194, 180, 177, 154, 122, 81, 74, 46]. A
common theme among these analyses is the distinction between \proself" and \prosocial"
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Figure 1.1: Anatomical mapping of the value based framework in the human brain. Col-
ored dots indicate the functional roles of each region, with the primary role indicated by
text color. Directed arrows indicate speci�c anatomical connections, and multi-pronged
arrows indicate di�use connectivity to multiple areas within the region. Abbrevations: dor-
solateral prefrontal cortex (dlPFC), dorsomedial prefrontal cortex (dmPFC), ventromedial
prefrontal cortex (vmPFC), anterior cingulate cortex (ACC), orbitofrontal cortex (OFC),
insular cortex (IC, particularly anterior insula), amygdala (AMY), hippocampus (HIPP),
superior temporal sulcus (STS), temperoparietal junction (TPJ), ventral striatum (vSTR),
vental tegmental area (VTA), basal ganglia (BG).
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cognition. Proself cognition estimates action values with reference to the individual and
their personal goals. Prosocial cognition, on the other hand, is directly concerned with
understanding other agents, predicting social behaviors, and evaluating actions with re-
spect to social goals; it encompasses trust, social status, emotional recognition, empathy,
motivational inference, mentalizing, social norms, norm enforcement, and more. Converg-
ing evidence strongly suggests that proself and prosocial cognition occur in distinct brain
regions [231, 180]. Prosocial areas process social information and produce rich social rep-
resentations, then use these representations to evaluate candidate actions; these cognitive
processes are typically required for an individual to exhibit prosocial behaviors, including
cooperative, norm-compliant, and altruistic behaviors [194].

Several brain regions in and around the medial prefrontal cortex (mPFC) and the
temporal cortex are involved in prosocial cognition. As a whole, activity in the mPFC
reliably correlates with multisensory integration, distinguishing self from other, processing
social emotions, estimating social status and hierarchy, mentalizing, and adhering to social
norms [198, 239, 81, 243, 74, 36]. Given the size and interconnectivity of the mPFC, this
area likely performs various social operations related to analyzing social relationships and
predicting the social impact of actions. For instance, the dorsomedial prefrontal cortex
(dmPFC) tracks other agents' beliefs and intentions and responds to deviations between
individual and group preferences, suggesting that it may be a critical region for assessing
con
icts between proself and prosocial behavior [36]. Some researchers believe that dmPFC
also facilitates value integration [231].

The orbitofrontal cortex (OFC) is a brain region adjacent to the mPFC that also
performs prosocial valuation. OFC activity correlates with proself and prosocial value,
distinctions between self and other, and social rewards [239, 198]. Some researchers believe
the OFC is also involved in value integration [81, 180], while others contend it is critical
for emotional valuation of reward signals [200]. While the OFC is clearly important for
prosocial valuation, more work is needed to specify its exact functional role.

The anterior cingulate cortex (ACC) also lies adjacent to the mPFC and manages a
variety of features and computations related to prosocial valuation; it is important for
empathy and mentalizing [198, 239, 154, 205], for monitoring con
ict between cognitive
and emotional processes and accommodating social uncertainty [194, 154], and for facili-
tating prosocial learning through reward prediction errors (RPEs) [198, 18, 194, 36, 205].
It may also be directly involved in assigning value to actions [81, 231]. Other areas in
the cingulate cortex also process social information: the dorsal posterior cingulate cortex
facilitates mentalizing [194], the midcingulate cortex facilitates empathy [243, 194], and
the paracingulate cortex facilitates the development of trust and inference of other agents'
intentions [154]. As with the OFC, more work is needed to functionally subdivide the
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cingulate cortex and clarify how the ACC coordinates learning and prosocial valuation.

Another area that seems to perform multiple functions related to prosocial valuation is
the insular cortex (IC), particular the anterior insula (AI). IC facilitates empathy [243, 194,
154] and processes social emotions, including those related to social norms like fairness and
cooperation [136]. Some researchers believe the insula is a critical hub for the integration
of social information, bringing together external sensory information, internal autonomic
information, and signals encoding reward to facilitate social learning and a�ective decision
making [198, 177]. In particular, the insula may coordinate social behavior by managing
a network of subcortical areas that includes behavioral systems, emotional systems, and
reward systems [198]. In nonhuman animals ranging from mammals to birds to reptiles,
these structures facilitate simpler forms of learning and decision making in social contexts,
including sexual displays, aggression, parental care, foraging, and habitat selection [177].
We suspect that the cortical decision making network evolved to complement this system,
but that the original system continues to in
uence a variety of social behaviors in humans.

The temperoparietal junction (TPJ) and superior temporal sulcus (STS) are two areas
located in the temporal cortex that are frequently implicated in mentalizing, the process of
taking the perspective of other agents and predicting the social consequences of actions [239,
243, 94, 36, 154]. Other temporal areas are also important for processing social information,
but are not directly involved in valuation: these include the temporal poles (which are
implicated in mentalizing [243]), and the medial temporal lobes and fusiform gyrus (which
facilitate the recognition of known agents and the recall of previous interactions [239]). TPJ
and STS project to cortical areas like the mPFC and ACC, allowing prosocial valuations
estimated through mentalizing to integrate with other specialized value estimates.

Finally, proself valuation is important for social decision making; without it, individu-
als would be unable to pursue their own goals during social interactions. Neural estimates
of \economic value" have been widely studied, both in nonsocial contexts [30] and social
contexts [231]. These studies reveal a common set of brain regions that are consistently
activated during prosocial valuation. The two most commonly cited regions are the ven-
tromedial prefrontal cortex (vmPFC) and the ventral striatum (vSTR), but many other
regions also correlate with proself valuation, including the dmPFC, OFC, posterior cingu-
late cortex, and insula [30]. As we discuss in the next section, many of these areas are
implicated in value integration, so labelling these regions as exclusively \proself evaluators"
is misleading. Nonetheless, it is important to recognize their heightened role in computing
the self-interested value of actions, given a mixture of economic and social information.
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1.3.3 Value Integration

In cognitive science and neuroeconomics, there is a widely accepted view that di�erent
regions in the brain use di�erent mechanisms to compute multiple independent value es-
timates for potential actions, but that these valuations are eventually integrated into a
common currency that determines subsequent decisions [231, 180, 30]. The synthesis of
value estimates occurs primarily in the vmPFC and vSTR [239, 243, 180, 205, 194]. Neu-
ral activities in these regions reliably correlate with both proself and prosocial features
across a variety of cognitive tasks and social contexts, and these activities robustly predict
individuals' subsequent behaviors. Notably, when a social context presents a tradeo� be-
tween individual goals and collective goals, vmPFC and vSTR seem to combine proself and
prosocial evaluations into more complex combined representations that determine decision
making. This suggests that value integration may be a complex function that combines
specialized value estimates in a 
exible, goal-driven manner. In the next section, we review
how other systems may modulate and control the vmPFC to achieve this 
exibility.

Interestingly, the activity of vmPFC and vSTR also correlate with RPEs, and with
changes in value estimates during cognitive tasks where participants learn action values
[36, 18, 81, 150]. While these observations are consistent with the value based framework
in general, they suggest that vmPFC and vSTR may be involved in the primary valuation
of actions, rather than the secondary integration of precomputed values. As discussed in
the previous section, vmPFC and vSTR are directly involved in proself valuation, which
would explain why they represent and respond to RPEs: they are actively re�ning their
proself estimates in response to external feedback. However, it is unclear whether these
regions also directly evaluate prosocial actions using prosocial RPEs, or whether they use
existing prosocial estimates originating in regions like OFC, ACC, STS, and TPJ. It seems
likely that these regions perform both functions to some degree, but for conceptual clarity,
we will assume that vmPFC and vSTR compute proself values directly, then combine these
estimates with external prosocial estimates to produce an overall value signal.

Further evidence of value integration in vmPFC and vSTR comes from their connectiv-
ity to other brain regions. Many of the value estimating regions above, including mPFC,
ACC, OFC, STS, and TPJ, project to one or both of these areas, and vmPFC and vSTR
are themselves interconnected. These connections facilitate the transmission of value es-
timates into neural systems that can compare and integrate them, allowing these systems
to evaluate actions according to many relevant features [231]. Furthermore, connectivity
between vmPFC, dmPFC, and dorsolateral prefrontal cortex (dlPFC) suggests that these
regions may work together to ensure value integration aligns with high-level goals, which
may depend on the current social environment [231, 81, 243, 180]. Finally, these systems
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project to areas that are thought to compare candidate actions and execute the selected
action, including basal ganlgia, cerebellum, and motor cortex [192, 72]. Thus, vmPFC and
vSTR are well-positioned to act as a \hub" of value integration.

Of course, many other regions are implicated in value integration. Activity in the
dmPFC and ACC, which lie adjacent to the vmPFC, also correlate with multiple value
features, and their connectivity is similarly conducive to integration [231, 94]. Similar
statements can be made about OFC [198, 180, 81]. As we discussed in Appendix A, the
divisions between these brain areas may be more confusing than helpful when identifying
the region of the brain that is responsible for value integration. Regardless of where
exactly value integration takes place, it is clear from the behavioral, neural, and anatomical
evidence that the brain's activity is well characterized by the value based framework.

1.3.4 Value Updating

A critical component of valuation is the ability to improve value estimates in response
to external feedback from the environment. Given the diversity of value estimates, social
goals, and types of social feedback, there are undoubtedly many neural mechanisms for
updating the mental models that drive social decision making; we investigate many of
these mechanisms, and the theories behind them, throughout the remainder of this thesis.
In the value based framework, the brain tracks the expected value of performing an ac-
tion (the standard value estimate), observes the impact of the action on the environment,
and evaluates that outcome with respect to the individual's current goals. Other systems
compare the expected value to the observed value and calculate a reward prediction error
(RPE) based on the di�erence. RPEs are then used to update synaptic weights in special-
ized valuation systems, with the aim of reducing the gap between expected outcomes and
observed outcomes.

Neural activities in many brain regions correlate with RPEs in both social and nonsocial
contexts [81, 231, 84]. Unfortunately, it can be di�cult to determine whether a brain region
computes RPEs directly, or whether it uses RPEs computed by specialized systems. For
instance, many scientists believe that vSTR directly encodes proself and prosocial RPEs
[150], but these regions also seem to perform value estimation and integration. In contrast,
the midbrain dopaminergic system, including the ventral tegmental area (VTA), seems
crucial for encoding RPEs, but does not appear to encode action values; this system uses
the neurotransmitter dopamine (DA) to facilitate synaptic plasticity in frontal cortex and
basal ganglia [84], two areas that encode prosocial value and perform value integration.
Furthermore, it seems as though specialized prosocial RPEs are generated and/or used by
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prosocial valuations systems, most notably the ACC [198, 194, 205] and OFC [198, 199].
Overall, it seems quite likely that the computation of RPEs for value updating is distributed
across several brain regions that are closely tied to value estimation.

Value updating is computationally realized in models of reinforcement learning (RL). In
RL, an agent uses external feedback from the environment (rewards and punishments) to
update its value estimates, with the goal of choosing more rewarding actions in the future
[230]. A large body of empirical and computational work has investigated the relationship
between neural activity in the regions mentioned above, and the RPE signals predicted by
RL [84]. For instance, in a recent review paper that uses RL to analyze prosocial valuation
and decision making [81], the authors discuss the correspondence between various neural
systems and functional learning mechanisms. This work further supports the conclusion
that the brain uses RPEs to update its value estimates and facilitate social decision making.

1.3.5 Value Modulation

A common feature of social decision making is that it is highly context-dependent: social
norms di�er between groups, emotions change rapidly, and goals are regularly reevaluated.
While value updating based on RPEs is a powerful technique for updating our mental mod-
els of the social world, it is a slow process: in order to produce enduring synaptic changes,
evaluation systems typically require many instances of value updating spread across time
and place. In many social contexts, the brain needs to adapt on short timescales, tem-
porarily modifying its evaluative processes to produce the best outcomes. Rather than
directly updating the underlying mental models, systems that modulate social valuation
may 
exibly alter how those systems are expressed relative to one another. This allows an
individual to maintain several sets of e�ective mental models, and switch between them as
needed. We refer to this process as value modulation.

The primary characteristic of value modulation is that it can rapidly reorganize cogni-
tive processing (e.g., value estimation, integration, and updating) in response to external
changes (e.g., other agents' emotions and behaviors) or internal changes (e.g., goals). The
brain region primarily associated with such reorganization is the dorsolateral prefrontal
cortex (dlPFC): its activity correlates with executive, goal-directed control over value in-
tegration. For example, dlPFC dynamically weighs proself versus prosocial value [81, 46],
overrides existing evaluations [180], and aligns goals with contextual factors [243]. dlPFC is
therefore critical in coordinating an individual's response to social norms: it is involved in
norm compliance and enforcement [239, 154] and in modulating valuation based on abstract
rules [194]. The strong connectivity between neurons in dlPFC and vmPFC further sup-
ports the idea that value estimates, which are collected and integrated in vmPFC, may be
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interpreted and modi�ed by dlPFC, which has greater access to high-order representations
of an individual's goals and its social context.

Systems involved in emotional processing also in
uence social decision making through
value modulation. The amygdala (AMY) coordinates various emotional responses in the
brain [69, 2], and is implicated in numerous social emotions, especially fear and trust
[154, 177]. As input, AMY receives both social and nonsocial information: it has access to
facial recognition through the temporal cortex (fusiform gyrus), episodic memory through
hippocampus and medial temporal lobes, and negative stimuli (sensory or social) through
brainstem, thalamus, and various cortical areas. As output, AMY connects to several areas
whose neurochemical projections modulate the rest of the brain, including hypothalamus,
nucleus accumbens, and VTA. AMY is therefore able to orchestrate emotional responses
to salient stimuli and modulate cognitive processes including perception, attention, and
valuation [122, 177, 239]. One central feature of AMY is that it learns associations between
social features and aversive (or rewarding) outcomes [81]. While this could be considered a
form of value estimation, AMY outputs are not compared and integrated in the same way
as other valuation regions; instead, AMY's in
uence is realized through salience detection,
reallocation of attention, and reorientation of emotional state. These changes a�ect value
estimation, integration, and updating in indirect ways. We discuss the mechanisms of AMY
learning, AMY's e�ects on social decision making, and the role of the neurotransmitter
oxytocin more extensively in Ch. 2.

The hippocampus (HIPP) is important in forming and retrieving episodic memories,
an operation that is used by many systems concerned with either valuation or emotional
modulation [180]. With regards to social decision making, HIPP helps form, update,
and 
exibly manipulate representations of social relations; these cognitive processes help
individuals navigate complex social environments [203]. There are several interesting par-
allels between these cognitive processes and spatial navigation, another function performed
HIPP. However, more research is needed to understand exactly how these abilities �t in
with the value based framework.

1.3.6 Action Selection

Once �nal values have been assigned to each candidate action, the brain must decide which
of these actions to implement. In the value based framework, this simply requires choosing
the action with the greatest �nal value; all the work of evaluating actions and weighing their
tradeo�s has already been completed. Although choosing the option with the greatest value
is mathematically trivial, it is rather di�cult to implement in biological neural networks.
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Many computational neuroscientists believe that action selection is implemented through
some form of \competition" between candidate actions, such as mutual inhibition between
groups of neurons representing di�erent actions.

Several brain regions receive inputs from value integration areas, are recurrently con-
nected by inhibitory synapses, and encourage mutual competition between internal repre-
sentations. Several nuclei within the basal ganglia (BG), including STR, globus pallidus,
and the subthalamic nuclei, form a network that has been shown, both empirically and in
computational models, to realize action competition [192, 92, 219]. Consistent with the idea
that BG selects between candidate actions and recommends one for execution, many BG
nuclei project back to motor cortex and the cerebellum, areas that plan actions and gener-
ate motor commands. BG also projects back to the prefrontal cortex, and many cognitive
scientists believe that these projections may transmit \cognitive commands" that coor-
dinate communication between cognitive systems, e�ectively routing information between
memory systems, evaluation systems, and motor systems [222, 5, 64]. Other researchers
have suggested that simpler social actions, such as social play and sexual behaviors, are
governed by networks of subcortical nuclei [177], but it is not clear how these areas would
accommodate cortical value estimates. Similarly, while specialized brain areas leverage
mutual inhibition for domain-speci�c action selection [130], it is not clear whether this
mechanism generalizes to social decision making in brain regions outside the BG.

Overall, action selection has received far less attention than valuation in the social de-
cision making literature. We view biological action selection as a di�cult and interesting
problem, one that requires coordination between several functional systems and introduces
constraints that a�ect social decision making. In addition to action selection, the decision
making literature rarely addresses action proposition or planning. Until now, we have
assumed that candidate actions exist ready-made, but the process of actually generating
reasonable candidates must be highly complex, experience-driven, and context-dependent.
We mention this concern here because action proposal and action selection likely form
an iterative and/or hierarchical feedback cycle. Once an action is chosen, the brain must
specify that action in greater detail, which requires proposing, evaluating, and selecting
additional candidate actions that expand upon the chosen action [107, 189]. The neural
circuit referred to as the \cortico-basal ganlgia-thalamo-coritcal loop" likely supports hi-
erarchical and iterative action selection in the brain [93]. More empirical, theoretical, and
computational research is needed to understand the functionality of this circuit.
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1.3.7 Working Memory

Working memory is a system for actively maintaining and manipulating information, and
is consequently essential for a variety of social and nonsocial cognitive tasks. Unlike action
selection, the neuroanatomy of working memory has been extensively studied. For many
years, the consensus was that working memory was mainly associated with activity in the
lateral prefrontal cortex (lPFC) [45]. This theory was based on repeated observation of
\delay period activity" in dlPFC neurons: in working memory tasks, neurons that repre-
sent task-relevant information continue �ring after an external stimuli is removed, if the
task requires an animal to actively maintain information about the stimuli. These activ-
ities indicate that animals actively maintain representations of task relevant information
over time, even when the original stimulus is removed. In recent years, this theory has
been re�ned; modern accounts of working memory suggest that it is highly distributed
throughout prefrontal cortex, sensory cortex, and parietal cortex, with memory bu�ers
existing at many hierarchical levels for many di�erent sensory modalities [217, 39]. PFC,
in particular, may collect and maintain task relevant information originating from other
memory bu�ers. While there are relatively few studies that investigate the relationship
between working memory systems and valuation systems, it seems reasonable to assume
that value estimators, integrators, and updaters use working memory networks whenever
information needs to be maintained over time.

1.3.8 Summary

The brain is an overwhelmingly complex system, and our characterization of how neu-
roanatomy relates to value based decision making is necessarily oversimpli�ed. To help
summarize this perspective further, we provide a brief, high-level hypothesis for how infor-
mation 
ows within this system, allowing the brain to learn about the social world make
appropriate decisions; Fig. 1.1 provides a graphical overview.

The brain begins by representing features of the external world, especially those related
to other agents and social groups. This involves sensory processing, such as the identi�-
cation of group members by facial recognition, and linguistic processing, such as parsing
the semantic and emotional content of dialogue. The brain uses this information to build
rich representations of the current social context. For example, the brain estimates the
trustworthiness of other individuals based on previous interactions and their social repu-
tation. Simultaneously, the brain sets goals at various levels of abstraction: these goals
re
ect a mix of short- and long-term objectives, as well as proself and prosocial orienta-
tions. Finally, the brain generates candidate actions that have the potential to realize its
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goals given the current social environment.

With information readily available, goals in mind, and actions to consider, the brain
begins the process of value based decision making. It �rst uses its rich representations of the
social world to evaluate candidate actions. This process appears to be distributed across
many distinct evaluation systems in cortex, which are functionally specialized to compute
speci�c types of action value, notably proself and prosocial value. Once computed, these
estimates are routed to systems that integrate them into a holistic evaluation, a value that
determines the overall quality of each action relative to the others. This integration is
guided by other systems in the brain that represent goals and contexts: these modulate
the integration process, emphasizing certain evaluations and depreciating others based
on the current high-level needs of the individual. For instance, executive systems may
encourage behaviors that will facilitate trust-building if an individual has joined a new
social group, but may encourage sel�sh behaviors if the group has a reputation for treachery.
Once value assignment is complete, the brain selects the action with the highest overall
utility and implements it. Finally, as the individual observes the consequences of the
action, the brain compares the expected outcome with the observed outcome, and computes
prediction errors. These error signals drive synaptic plasticity in regions responsible for
value estimation, changing how future evaluations will proceed.

1.4 Neural Engineering Framework

Now that we have reviewed the functional operations involved in learning and decision
making, and discussed the brain areas that realize them, we can begin to build biologically-
inspired computational models. The Neural Engineering Framework (NEF) is a theory of
neural representation, originally developed by Eliasmith and Anderson [65], that provides
the mathematical basis for the Semantic Pointer Architecture (SPA), and can be used on its
own to construct cognitive models using spiking neural networks. The NEF characterizes
spiking activity within populations of neurons as encoding information in a latentstate
space. While spikes are the physical means of communication between neurons, cognition
can be analyzed as transformations of these lower-dimensional states, permitting a more
abstract, computational, or symbol-like description of what brains do. We assume that
this state space can be represented by a vector-valued signalx(t), and that the cognitive
operations performed in the brain may be described through the dynamics of this state
space _x(t). At the sensory periphery, neurons transduce external signals (light, sound,
etc.) into spikes that represent the stimuli. These representations are transformed via
connections within the brain, ultimately producing motor commands that activate the
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body's muscles.

1.4.1 Representation, Transformation, and Dynamics

Broadly speaking, to build a cognitive model using the NEF, we must describe the relevant
cognitive processes in terms of state space dynamics (a procedure facilitated by the SPA),
then determine the connectivity within a neural network such that its spiking activity
implements those dynamics. To do so, the theory de�nes methods for encoding and decod-
ing between neural activity and the state space, and describes how synaptic connections
implement state space transformations. Given a signalx(t) and a population of neurons,
the signal must drive those neurons to �re in patterns that represent the signal. Each
neuron spikes most frequently when presented with its particular \preferred stimulus" and
responds less strongly to increasingly dissimilar stimuli (i.e., values ofx(t)). Each neuroni
is accordingly assigned a preferred direction vector, orencoder, ei . At the sensory periph-
ery, ei determines how the externalx(t) is transduced into electrical inputs to neuroni ;
within the network itself, ei co-determines connection weights, which dictate how neuron
i responds to spiking inputs from an upstream population whose activities representx(t).
Mathematically, both these processes can be summarized as

ai (t) = G[ei � x(t)]; (1.1)

whereai (t) is the activity of neuron i , G is the neuron model with electrical current inputs
[�], and ei � x(t) is the dot product between the state space inputs and neuroni 's encoder.
The speci�cs of how inputs drive the cell, and how the cell dynamically responds, depends
upon the neuron modelG. A distributed encoding extends the notion of representation:
if x(t) is fed into multiple neurons, each with a unique tuning curve de�ned byei and
other parameters, then each neuron will respond with a unique spiking patternai (t), and
the collection of all neural activities will robustly encode the signal. Eq. 1.1 is typically
extended to include two additional parameters that determine the slope and x-intercept of
each individual neuron in order to capture observed neuron tuning curves:

ai (t) = G[� i ei � x(t) + � i ]; (1.2)

where � i is referred to as the gain and scales the magnitude of the neural response to an
input x, and � i is referred to as the bias, realized by injecting a constant bias current
into the neuron, and can be chosen to e�ectively set the state-space valuesx int where the
neuron will begin �ring.

18



The NEF is agnostic about the choice ofG, but we generally use spiking leaky-integrate-
and-�re (LIF) neurons in our models, whose membrane dynamics _v(t) are given by

Cm _v(t) = gL (EL � v(t)) + J (t) (1.3)

whereCm is the membrane capacitance,gL is the leak conductance,EL is the leak reversal
potential, and J (t) is an external current injected into the membrane. This external current
originates from the synapse, and its magnitude is given by the argument forG in Eq. 1.2
(i.e., Ji (t) = � i ei � x(t) + � i ). An additional mechanism implements the spiking behavior
in the LIF neuron: oncev(t) reaches a thresholdvth , a spike event is recorded andv is
held at the reset potential vreset for the duration of the refractory period vref. The LIF
neuron is frequently used in computational models where both biological plausibility and
scalability are a concern: previous research has shown that LIF neurons (and extensions
thereof) reproduce the spiking behaviors of a wide class of biological neurons [232], and it
is possible to simulate networks of millions of LIF neurons on the appropriate hardware
[66].

For state space representation to be useful, there must be methods to recover, or decode,
the original vector from the neuron activities. The NEF de�nesdecodersd i that either
perform this recovery or compute arbitrary functions,f (x), of the represented vector.
A functional decoding with d f

i allows networks of neurons totransform the signal into
a new state, which is essential for performing cognitive operations. To compute these
transformations, a linear decoding is applied to the neural activities:

f̂ (x(t)) =
nX

i =0

ai (t) d f
i ; (1.4)

where ai is the activity of neuron i , n is the number of neurons, and the hat notation
indicates that the computed quantity is an estimate of the target function. At the mo-
tor periphery, x(t) is retrieved using appropriate decoders, driving the model's behavioral
output via muscles; within the network itself,d f

i co-determines connection weights, which
dictate how downstream neurons respond to spikes produced by neuroni . Connection
weights between each presynaptic neuroni and each postsynaptic neuronj combine en-
coders and decoders into a single value

w = e � d f : (1.5)

Discrete spikes produced byG are transformed into real-valued activitiesa (which also
correspond to post-synaptic currents) by convolving the spike train with a �lter,

ai (t) =
X

T

h(t � T) � � i (T) (1.6)
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where T are the spike times,h is an impulse response function for the �lter, and� i is a
dirac-delta function describing the spike train for neuroni . These �lters h describe the
e�ects current-based synapses within the network: when a neuronj receives a spike from
neuron i , this spike is translated into a post-synaptic currentJ (t) that drives neuron j ,
perturbing its membrane voltage according to Eq. 1.3. We typically use a low-pass �lter,
or exponential synapse, de�ned by an instantaneous rise and a decay time� .

State space transformations in the NEF are speci�ed by describing the dynamics of the
state variables,

_x= f (x; u; t) (1.7)

where x is the represented state,_x is its derivative, u are inputs (external signals or
upstream representations), andt is time. In our models, we typically specify these dynamics
using control theory,

_x(t) = Ax(t) + Bu(t); (1.8)

whereA and B are transformation matrices.B governs how feedforward inputs a�ect the
current representation (e.g., scaled addition), whileA governs how recurrent inputs a�ect
the representation (e.g., simple harmonic oscillation); bothA and B are implemented
through weighted synaptic connections between neurons in populations representingu(t)
and x(t). These matrices can be found by solving for the appropriate decoders, as described
below. While Eq. 1.8 describes linear systems, NEF methods work for nonlinear dynamics
as well.

1.4.2 Optimizing or Learning Encoders and Decoders

Given this formulation, the challenge of building cognitive neural systems using the NEF
reduces to (a) describing a cognitive algorithm as a dynamical system (e.g., Eq. 1.8),
and (b) �nding encoders and decoders such that neural connection weights implement
the transformations dictated by the dynamical system. The NEF includes both top-down
and bottom-up methods for �nding these weights; we use both methods throughout this
thesis. In the top-down method, encoders are randomly distributed across (or within) a unit
hypersphere with dimensionalityD (for a state space signalx 2 RD ), ensuring that neurons
in the population will e�ciently tile the space with their tuning curves. Encoders may also
be �t to neural data. Given this encoding, the NEF uses a least-squares optimization to
solve for decoders that will minimize the errorE between the neural estimate and the
target function

E =
1
2

Z 1

� 1

�
f (x) � f̂ (x)

� 2
dx: (1.9)
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Substituting Eq. 1.4 for f̂ (x), this can be reformulated as a least-squares problem

A d = f (x) (1.10)

which can be approximately solved by taking the matrix pseudo-inverse

d = ( AT A + I� 2)� 1AT f (x) (1.11)

with regularization term � . In the NEF, a solution is aquired by specifying the activity
matrix A and the target vector f (x) at numerous evaluation points which tileRD : A is
calculated by estimating the neural activities (according to Eq. 1.1) for each neuronn at
each value ofx, while f (x) is computed directly at these points,

A =

2

6
4

a1(x = � 1) : : : an (x = � 1)
...

. . .
...

a1(x = 1) : : : an (x = 1)

3

7
5 (1.12)

This top-down method allows modellers to analytically solve for the connection weights
in a neural network that will compute a target function: it has the advantage of being
pre-computed, removing any need to train the network online or with labelled examples.
We use this method by default when building our neural networks, especially when we need
the network to realize speci�c, mathematically well-de�ned operations, such as rescaling
an input or maintaining a representation in working memory (see below).

However, the function that a neural network should compute within a larger cognitive
model is not always clear, especially if the network's goal is to learn associations between
stimuli or to evaluate the utility of possible actions based on environmental feedback. To
deal with these situations, the NEF also includes bottom-up methods to train encoders
and decoders during the simulation itself. To update the decoders, we use the Prescribed
Error Sensitivity (PES) learning rule [156]:

� d =
�
n

a(t) (x̂ (t) � x(t)) (1.13)

where � is the decoder learning rate,n is the number of presynaptic neurons,a(t) are the
�ltered activities from presynaptic neurons,x(t) is the state space target, and̂x (t) is the
estimate decoded with Eq. 1.4. Conceptually, Eq. 1.13 uses the error between the decoded
estimate and state space target to update the decoders during the simulation. Extensive
work with the PES rule in NEF networks has shown it is capable of learning decoders to
compute a wide range of functions [249].
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To update encoders, we sometimes use the Voja learning rule:

� e = � a (t) (x(t) � e) (1.14)

where � is the learning rate. The Voja learning rule e�ectively shifts the encoders in a
neural population towards the inputs observed by the network, ensuring that neurons will
respond to the inputs present for a particular task. This is especially useful for storing
and recalling associations, or for learning associative memories, in spiking neural networks
[251].

1.4.3 Two Example Networks: Working Memory and Action Se-
lection

In addition to these learning rules, researchers using NEF networks for cognitive modelling
have developed a number of network components that are frequently reused to perform par-
ticular functions. Two such subsystems that we use throughout this thesis are a working
memory, which is used to actively maintain a representation for manipulation by down-
stream subsystems, and a decision network, which is used to select the representation with
the highest value among several possibilities. These subsystems are also a core part of the
SPA and have been widely used in other functional brain models [64].

For working memory, we construct a \gated working memory" (gWM) originally de-
veloped by Choo [38]: this system receives an input vectoru and maintains an estimate
x, with the relationship betweenx and u determined by an input gate:

_x =

(
u � x if gate is open

0 if gate is closed
(1.15)

When the \gate" is open, the system shifts its current representation towards the in-
put value, e�ectively \loading" the current input into working memory; when the gate is
closed, the system attempts to maintain the current representation without any change.
Downstream subsystems may read the currently represented estimatex̂ in order to recall
previous states of the system, while control subsystems may open or close the gate to load
or empty the contents of working memory in a task-appropriate manner. Such a network
may perform mnemonic tasks such as the oculomotor delayed response task (DRT), in
which an animal must remember the 2D location of a brie
y-presented visual cue for a
short period of time before recalling its location [208].

22



Figure 1.2: Network architecture for the gated working memory. Gray text indicates state
space inputs and outputs, while blue text indicates neural populations. Black connections
compute the identity function, while the green connection computes the negative of the
identity function and the red connection inhibits downstream neurons.

The network used to realize the gWM is shown in Fig. 1.2. The input signalu(t) is
represented by a populationdi� , while the gating signalg(t) is represented by an inhibitory
population inh. The gains and biases (Eq. 1.2) of the neurons ininh are set such that
all neurons are inactive when the gate is open, but when the gate is closed (g(t) > 0),
these neurons activate and inhibitdi� . When the gate is open,di� receives both the
input u(t) and the current representation stored in the central memory populationmem,
x̂ (t). Functional decodersd f are used to compute the negative of the current memory
representation, f̂ (x) = � x̂ , such that di� sees an e�ective input ofu(t) � x̂ (t). As
long as the gate remains open, this signal is communicated tomem, driving the currently
represented valuêx (t) towards the input u(t). When the gate is closed,di� becomes quiet,
and the recurrent connection onmem maintains x̂ (t) as best it can (given the imperfect
representations and spike noise inherent in spiking neural networks, [65]). To access the
memory, downstream systems can simply decodex̂ (t) from the spikes generated inmem.

For action selection or decision making, we use a network whose anatomy and function
are modelled o� the basal ganglia (BG), a subcortical structure that is thought to play a
central role in selecting between candidate actions (for instance, between motor plans to
execute a reaching movement towards one of several visual targets) [192]. Our network was
originally developed by Stewart et al. [219] based o� a model of BG function proposed by
Gurney et al. [92]. The network is shown in Fig. 1.3: it includes separate populations for
the subthalamic nuclei (STN), globus pallidus internus and externus (GPi and GPe), and
striatal D1 and D2 neurons (STR D1 and STR D2). We assume that the inputs to this
network originate in cortex and encode the values, or utilities, of candidate actions (see
the neuroanatomical discussion in Sec. 1.3). These inputs travel through several streams
within the BG, commonly referred to as the direct, indirect, and hyperdirect pathways.
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Figure 1.3: Network architecture for the basal ganglia network used for WTA selection.
Text coloration and inset are as in Fig. 1.2. Functionally, this network takes a vector of
values (representing, for instance, the utility of potential actions) and, through a series of
recurrent connections with mutual inhibition, selects the value with the greatest magnitude.
The default output is an inhibitory vector with � 1 for each of the non-winning components
and 0 for the winning component; this signal may be used to inhibit the non-selected
action. See [219] for a detailed description of the anatomical and functional connectivity
that inspired this circuit.

A detailed discussion of the interaction between these pathways, especially the balance
of excitatory inputs and inhibitory control, is outside the scope of this thesis: interested
readers should refer to [219] for further details. To summarize, the network as a whole acts
as a winner-take-all circuit, identifying the element of the input vector with the greatest
magnitude and outputting a vector that can be used to select the winning element. More
speci�cally, for an input vector x in = (0 :2; 0:8; 0:5), the network will produce an output
xout = ( � 1; 0; � 1), which can be used by downstream systems to inhibit all actions except
the chosen one (via methods that will be discussed in subsequent chapters).

Previous empirical and theoretical work has advanced the hypothesis that inhibitory
outputs from BG, in conjunction with inhibitory projections from thalamus back to cortex,
are used to select between action plans by disinhibiting speci�c neural assemblies in cortex
[133, 219]. However, recent work suggests that thalamic outputs to cortex and cerebellum
may in
uence cortical dynamics, and the process of action selection, in more subtle ways
(see [212] for a review). This work distinguishes two classes of cells within thalamus,
core cells and matrix cells, which have distinct patterns of connectivity to the rest of the
brain, and may facilitate di�erent modes of processing with respect to action selection.
Thalamic core cells may facilitate the execution of previously-learned action sequences
by deepening basins of attraction within cortical network dynamics, e�ectively pushing
the brain towards choosing actions that have worked well in the past. On the other
hand, thalamic matrix cells may ful�l a more modulatory function through their di�use
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spatial projections to cortex, 
attening attractor basins in cortex and e�ectively promoting
variability (or injecting randomness) into cortical dynamics. Given that BG projects to
matrix cells but not core cells, this new account of connectivity between BG, thalamus,
and cortex challenges the assumption that inhibitory outputs from BG can be used to
directly select between cortical action plans. Future work should investigate whether our
BG model can be used in conjunction with more biologically plausible models of thalamus
to achieve 
exible control over cortical dynamics, for instance by promoting exploration
versus exploitation via the di�erential activation of core versus matrix cells.

An alternative network for action selection is the independent accumulator, originally
developed by Gosmann et al. [89]. This network is less focused on detailed anatomical
reconstruction than the BG model, but has several properties that make this subsystem
easier to functionally control and interpret. The network is shown in Fig. 1.4. As with
the BG model, inputs to the network originate in cortex and encode the values of can-
didate actions. Each value is passed to a separate population (collectively labeledacc)
that connects back to itself; this recurrent connection computesf (x) = Rx, making each
population act like an integrator. When driven by a vector of action utilitiesx in , the value
represented by each population inacc will ramp (or \accumulate") at a rate proportional
to that element of x in and the ramp rate R. Each population also connects to a separate
pool of inhibitory neurons (collectively labeledinh): the neuron parameters� and � for
this population are set such that they only activate if their input exceeds some threshold
x thr . Finally, each population in inh connects back to eachother population in acc with an
inhibitory connection. As a result, once the accumulated value represented inacc exceeds
x thr , a WTA response is triggered, and all other values inacc are set to zero. Thus, for
an input vector x in = (0 :2; 0:8; 0:5), the network will produce an output xout = (0 ; 1; 0), a
\one-hot" representation that identi�es the chosen action.

The IA network is preferable to the BG network in some circumstances. The BG net-
work simulates multiple populations and recurrent pathways in order to recreate the direct,
indirect, and hyperdirect pathways. While these features make the network biologically re-
alistic, they require a set of �xed neural and synaptic parameters. The Nengo library that
we use to build and simulate neural networks [21] speci�es these parameters automatically,
but this leaves the user with few tools to manage representation and dynamics within the
network. This is problematic because the BG network often fails to select the best action
if the inputs fall outside a certain range or if they are very similar to one another; the
user must add additional network components to properly rescale or separate inputs. In
contrast, users can directly modify the parameters of the core IA network to realize these
operations: in our models, we set (a) the neural parameters� , � , and e to ensurex in is
represented properly, and (b) the ramp rateR and threshold x thr to choose the highest-
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Figure 1.4: Network architecture for the independent accumulator network used for WTA
selection. Blue boxes contain one neural population for each candidate action. As with
the BG network in Fig. 1.3, this network takes a vector of input values and, after realizing
the internal WTA dynamics, selects the action with the greates value. WTA dynamics are
driven by the independent accumulation of each value: each populationi in acc represents
a value x i that ramps over time according tou i and a shared ramp rateR. acc drives
populations of inhibitory neurons inh, which remain inactive until x crosses a threshold
x thr . Once a population ininh is activated, it inhibits all other populations in acc, leaving
only a single population inacc with nonzero activity. Decoding a one-hot output vector
from these activities is trivial.

value action with greater probability. Manipulating the ramp rate and threshold of the
IA network also provides an important form of cognitive control: we explore how these
parameters relate to speed-accuracy tradeo�s in simulated decision makers in Ch. 3.

The IA model also bears many similarities to drift di�usion models (DDMs) [190],
a popular family of decision making models that successfully predict simple perceptual
decisions, account for reaction times, and correspond to brain activation [101, 191]; DDMs
have even been applied to social decision making tasks [196]. DDMs assume that the
decision maker continuously accumulates noisy information about competing choice options
until an internal decision boundary is reached, at which point a choice is made. Information
often takes the form of an internally-computed value signal, and thresholds are a subjective
decision criteria that may be adjusted based on personal factors or task demands. Thus,
although the IA does not recreate particular anatomical regions in the brain, its form and
function have been extensively validated by way of DDMs, and it is consistent with general
cortical connectivity.
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1.5 Thesis Outline

In this chapter, we motivated the study of social decision making, reviewed the functional
neuroanatomy of social cognition in the brain, and introduced a theoretical framework for
building biologically-plausible computational models. In the next four chapters, we develop
and analyze four cognitive models built as spiking neural networks. Each of these models
investigates a di�erent aspect of learning or decision making.

In Ch. 2, we model associative learning in the amygdala, then investigate the neural
mechanisms of fear conditioning and extinction. We pay particular attention to anatomical
detail: we recreate various nuclei within the amygdala, specify their connectivity, and
simulate the e�ects of neurotransmitters including oxytocin, dopamine, and serotonin. We
validate the model by comparing its behavior to conditioning studies in mice, and �nd that
our pharmacological interventions recreate many known e�ects in the empirical literature.

In Ch. 3, we model biologically-detailed neurons and synapses and construct a detailed
working memory model. Simulating and training this model requires extending the NEF,
but allows us to investigate the e�ects of low-level biological perturbations, such as those
thought to underlie certain forms of social neuromodulation. We validate this model by
showing our detailed networks retain functional capacity, then show that the mnemonic
properties of the working memory model resemble those of simple animals.

In Ch. 4, we model the speed-accuracy tradeo� in decision making by building a network
that realizes value accumulation, value modulation, and action selection. This model is
informed by theories of inference and decision making under time pressure, and includes
several cortical and subcortical brain areas. We validate the model by comparing its
behavior to a dataset from humans performing an identical task, and �nd that the model
recreates several trends in the human data.

In Ch. 5, we model learning and decision making in a social game by building cognitive
agents that realize value estimation, value updating, and action selection. Our models
represent social information in high-dimensional spaces and use reinforcement learning
to update proself and prosocial estimates of action values. We validate the model by
conducting a human experiment, training a population of unique agents, and comparing
human behaviors to agent behaviors; we �nd that our agents reproduce several trends
related to social value orientation.

In Ch. 6, we summarize our contributions to the �eld of social cognition. We compare
our work to other computational models, discuss its practical and theoretical limitations,
and propose avenues for future research.
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Chapter 2

Fear Conditioning and the Amygdala

Author's Note : some of the content in this chapter was previously published as a poster
at the 2019 Society for Neuroscience conference [53]. Code is available on GitHub.

2.1 Introduction

To make intelligent social decisions, agents must learn which features of the environment,
and which potential actions, are associated with positive and negative outcomes. The
brain contains many distinct learning systems that work together to achieve this goal. In
the previous chapter, we discussed how various cortical and subcortical areas might re-
alize value-based decision making. An important step in evaluating actions and states is
recognizing which features are associated with positive or negative outcomes. In \asso-
ciative learning", agents build models that predict the co-occurrence of external features,
including associations between neutral stimuli and positive or negative stimuli. These as-
sociative models can be used to evaluate basic actions, such as approach and avoidance,
which manifest in numerous social and non-social contexts. Associative models can also be
used in model-based computations, which use explicit knowledge about the dynamics and
correlations within an environment to predict how an agent's actions will a�ect changes
that promote pleasure or avoid pain. Thus, while associative learning does not directly
evaluate the quality of potential actions, it is still essential for value-based decision making.

In this chapter, we develop and investigate a neural model of fear conditioning in
the amygdala. Fear conditioning is a particular form of associative learning in which an
agent learns to associate a neutral stimulus with a negative stimulus, causing the agent
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to exhibit a fear response when the neutral stimulus is present. In evolutionary terms,
fear conditioning has high adaptive value: agents that can learn to avoid life-threatening
stimuli in the environment are more likely to survive. This makes fear conditioning one
of the most common forms of associative learning in the animal kingdom, and one of
the most widely studied (and modeled) types of learning in neuroscience and psychology.
The amygdala (AMY) is an important locus of fear conditioning in the brain: it undergoes
synaptic plasticity during fear conditioning, and lesions impair both learning and expression
of conditioned fear responses. Furthermore, AMY is an a�ective system that coordinates
emotional and hormonal responses to salient stimuli, e�ectively modulating value-based
computations. With respect to social decision making, AMY learns associations between
speci�c people (e.g., faces or identifying attributes) and valued outcomes, and is important
in evaluating trustworthiness and directing primitive social actions (e.g., reproduction,
parenting, aggression, and submission). For these reasons, AMY is widely understood to
play an critical role in learning and decision making in social contexts.

Our model of fear conditioning in the amygdala seeks to be both biologically detailed
and functionally capable. Anatomically, our network contains many nuclei, whose inter-
nal and external connectivity are appropriately constrained; we show that empirically-
consistent response pro�les of these neurons develop naturally over the course of training.
Functionally, our network is trained using online, local, error-driven learning rules, and
is capable of learning a variety of associations between neutral stimuli, negative stimuli,
and environmental contexts. As a result, our network exhibits fear conditioning, fear ex-
tinction, and fear renewal when trained under various traditional experimental protocols.
We show that externally activating or inactivating speci�c nuclei impairs these processes,
and discuss the extent to which these results align with empirical experiments. Finally, we
investigate fear generalization; we demonstrate that our model exhibits gradients of fear
responses to similar stimuli that resemble the gradients observed in empirical studies.

We begin by introducing the functional and anatomical properties of the amygdala
in greater detail. We then introduce two versions of the model: the �rst includes less
anatomical detail and contains the minimum neural circuitry required to learn the desired
functionality; the second includes greater anatomical detail and is able to reproduce a wider
variety of empirical data. We describe the various training protocols we use, then simulate
the networks and analyze the results, comparing to empirical data where possible. We
conclude by discussing the successes and failures of the model, and by identifying directions
for future work.
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2.1.1 Fear Conditioning Protocols and Terminology

In a traditional fear conditioning experiment, an animal is placed into some environment,
or \context". To establish a baseline for future testing, a neutral stimulus is presented for
a short duration: stimuli may be auditory (tones of a speci�c frequency), visual (images
of faces, objects, or natural scenes), or even olfactory (distinct odors). This stimulus is
referred to as the \conditioned stimulus" (CS) because the animal will later be conditioned
to fear its presence. The experimenter measures the baseline fear response of the animal;
di�erent animals display di�erent fear responses in di�erent settings, but common metrics
include freezing (cessation of movement to avoid attracting predators), startle responses
(pupil dilation, involuntary movements, etc.), and physiological measures (galvanic skin
response, heart rate, etc.).

Once a baseline has been established, conditioning begins. During the \aquisition" or
\conditioning" phase, the CS is presented for a duration, and a negative (or \aversive")
stimulus is also presented for a duration. The negative stimulus, or \unconditioned stim-
ulus" (US, so-named because the animal will exhibit the fear response to its presence by
default), may be mild pain (electric shock), unpleasant odors, scary images, or any other
stimuli that the animal would naturally avoid. The duration, ordering, and overlap of the
CS and US are experimental parameters, but the most common setup is to present the
CS for a duration, immediately followed by the US. Both stimuli are then removed. This
constitutes a single \pairing" of the CS and US; typical fear conditioning experiments con-
sist of multiple pairings to robustly reinforce the association (although one-shot learning
is possible for some animals in some contexts). As acquisition proceeds, the animal learns
that the CS predicts the onset of the US, and begins to exhibit the fear response to the
CS itself. During a \fear expression" test, the CS is presented alone (without the US), and
the animal's fear response is again measured; if the response is statistically greater than it
was during the baseline test, fear conditioning has occurred. Fear conditioning may also
occur to the context itself: when placed in the environment where acquisition occurred,
the animal may exhibit a moderate fear response, even when no CS is presented.

Interestingly, conditioned responses to the CS are notoriously di�cult to unlearn; they
persist over a long duration (sometimes an entire lifetime for traumatic experiences), and
explicit e�orts to unlearn the association are only e�ective in certain situations. Training
associated with such unlearning is referred to as \extinction", and proceeds as follows.
The animal undergoes fear conditioning in a context (CTX+), then the animal is placed
in a new context (CTX-, a new environment with readily distinguishable features), and a
second round of training occurs. The CS is repeatedly presented without the US, and over
time, the animal's fear expression to the CS diminishes (this typically requires more pairings
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than does fear acquisition). However, neural and behavioral evidence shows that extinction
training does not actually unlearn the original CS-US association: rather, the animal learns
a positive (safety) association that competes with the negative (fear) association learned
during acquisition, cancelling out the fear response in some circumstances, but not others.
When fear expression is tested in CTX-, little or no fear response is observed; but when the
animal is returned to CTX+ and presented the US, it exhibits the fear response at nearly
full strength. This process is called \fear renewal", and demonstrates that fear extinction
is context-speci�c.

Finally, \fear generalization" refers to the tendency for animals to exhibit fear re-
sponses to stimuli or contexts similar to those present during conditioning. In one popular
paradigm, researchers show participants circles of two sizes during training: larger circles
(CS+) are paired with the US, while smaller circles (CS-) are not associated with the US.
During testing, the researchers present circles whose sizes range between the CS+ and the
CS-: they typically observe a gradient of fear responses, indicating that fear expression
diminishes as stimuli become increasingly dissimilar to the CS+ [145, 60]. Alternatives
of this paradigm exist for contextual conditioning. In one experiment, researchers put
humans in a virtual reality room (CTX+) containing various objects, and periodically
presented a US as they explored the room; participants also explored a safe room (CTX-)
containing di�erent objects, in which the US was not presented. The researchers then
placed participants in a new room that shared 50% of the objects from CTX+ and 50%
from CTX-; they observed fear responses that indicated participants felt partly afraid and
partly safe [7]. These experiments suggest that fear learning acts on a sub-symbolic level
of abstraction: stimuli and context that share features with the CS+ and CTX+ elicit
partial fear responses.

2.1.2 Neuroanatomy

The amygdala is a small structure located in the temporal lobes, adjacent to the hip-
pocampus, that contains several nuclei, including the lateral amygdala (LA), basolateral
amygdala (BLA), central lateral amygdala (CeL), and central medial amygdala (CeM).
The internal and external connectivity of these nuclei are critical for fear conditioning.
AMY nuclei contain a mix of excitatory pyramidal neurons and inhibitory interneurons;
most nuceli contain various cell types and neurotransmitters, making the neural substrates
of AMY resemble both cortex and basal ganglia [161]. Several dedicated populations of
interneurons surround and separate the LA/BLA and the CeL/CeM; these \intercalated
cells" (ITC, as well as interneurons distributed within the nuclei) are also important for
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