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Abstract 

A machine learning (ML) model was developed to study the discharge behavior of a 

𝐿𝑖!𝑁𝑖".$$𝑀𝑛".$$𝐶𝑜".$$𝑂% half-cell with particle-scale resolution. The ML model could predict the 

state-of-lithiation of the particles as a function of time and C-rate. Although direct numerical simulation 

has been well established in this area as the prevalent method of modeling batteries, computational 

expense increases going from 1D-homogenized model to particle-resolved models. The model was 

trained on a total of sixty different electrodes with various lengths for a total of 4 different C-rates: 

0.25, 1, 2, and 3C. The ML model uses convolutional layers, resulting in an image-to-image regression 

network. To evaluate model performance, the root mean squared error was compared between the state 

of lithiation (SoL) predicted by the ML model and ground truth results from pore-scale direct numerical 

simulation (DNS) on unseen electrode configurations. It was shown that the ML model can predict the 

SoL within 3.76% accuracy in terms of relative error, but almost an order of magnitude faster than the 

DNS approach.  
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Chapter 1 
Introduction 

Climate change has become a rising concern today.  It has been typically attributed to the anthropogenic 

emission of greenhouse gases (GHG), notably carbon dioxide (IPCC, 2014). GHGs originate from 

various sources including agriculture, oil and gas production and use, transport, poorly insulated 

buildings, etc. The transportation sector is a significant emitter as it is mostly comprised of vehicles 

using petroleum-based fuels, which converts hydrocarbons into carbon dioxide. In 2020, the transport 

sector in Canada accounted for 24% of the national GHG emissions alone (Environment and Climate 

Change Canada, 2022). While large industrial-scale applications – like commercial aircrafts or cargo 

ships – are difficult to decarbonize, there is potential to decarbonize passenger vehicles using mass 

adaptation of all-battery electric vehicles (BEVs). BEVs do not produce any tailpipe emissions, 

meaning BEVs do not contribute to the local air pollution nor emit GHGs during operation. By 

transitioning to EVs, Canadians can significantly reduce their carbon footprint, and help mitigate the 

impacts of climate change. More than 80% of the electricity mix comes from hydroelectricity in many 

Canadian provinces (Regulator, 2021). In a coal-dominated energy grid, BEVs are about as carbon 

efficient as internal combustion engine (ICE) vehicles, but are far more efficient on cleaner grids so 

can leverage the increasing use of green electricity generation (IRENA, 2017).  

1.1 Lithium-ion Battery Operation 

In this thesis, a Convolutional Neural Network (CNN) was developed to predict the discharge 

performance of lithium-ion battery half-cell quicker than conventional direct numerical simulations 

(DNS). First, background on lithium-ion battery operation is given before the thesis work is addressed 

as it is the predominant battery technology in BEVs (Salgado et al., 2021). Lithium-ion batteries 

consists of a porous negative and positive electrode amongst other components. Active materials are 

held together in the electrode regions by a conductive binder (Xu et al., 2019). Graphite is commonly 

used as the active material in negative electrodes due to its high energy capacity and low cost and is 

coupled with a lithium alloy as the positive electrode. Chemistries such as iron phosphate, nickel-

cobalt-aluminum oxide, or nickel-manganese-cobalt (NMC) oxide are typically used in BEVs (Salgado 

et al., 2021). Lithium-ion battery operation is visualized in Figure 1.1. During discharge lithium ions 

are de-intercalated from the graphite particles in the negative electrode and diffuse and migrate through 

the separator and into the positive electrode particles. Simultaneously, an electric current pass from the 
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negative electrode to the positive electrode through external circuitry, which drives a load. The reverse 

– or charge – process occurs in the reverse direction with lithium ions originating from the positive 

electrode active materials. In contrast to other technologies, such as the lead-acid battery, the active 

species would simply convert on the surface of the electrode (Sulzer, Chapman, Please, Howey, & 

Monroe, 2019). This means the active material is limited to the initial amount in the electrolyte whereas 

lithium-ion batteries have higher energy capacity as it features intercalation so there is active species 

in both electrolyte and in the materials. 

 

 

Figure 1.1: Schematic depicting the discharge operation of a lithium-ion battery. Intercalated lithium 
ions (yellow) diffuse out of graphite particles (grey) in the negative electrode, through the electrolyte, 
and intercalated into the NMC particles (grey blue) of the positive electrode. Simultaneously, 
electrons pass through the negative electrode through the conductive matrix, the copper foil, 
powering an application, through an aluminum foil, and pairs with the intercalated lithium ion in the 
NMC particle. 

 

1.2 Current Issues 

Even though EVs are commercially available the high cost, limited range, and limited tolerance to 

fast-charging limits wider adoption (Cano et al., 2018). These issues stem from the usage of lithium-
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ion batteries. Other related issues are thermal runaway reactions (Ai, Kraft, Sturm, Jossen, & Wu, 2020; 

Tomaszewska et al., 2019) and mechanical degradation through cracking and – eventually – the 

disintegration of active materials (Fathiannasab, Zhu, & Chen, 2021; Xu et al., 2019). Though these 

issues are not the focus of this thesis. This thesis tackles the issue of range by modelling cell discharge 

behavior. The capacity of a battery is related to the amount of active material in the cell. Increasing the 

thickness of the cell would increase the amount of active material. However, this naïve approach limits 

the supposed capacity increase to low discharge rates (Doyle, Newman, Gozdz, Schmutz, & Tarascon, 

1996). Lu et. al. showed than thin NMC half-cells could be discharged at higher rates for longer 

compared to thicker cells (Lu et al., 2021). This phenomenon is due to concentration polarization. Even 

though thick cells are designed for high-capacity usage, a thin cell with less active material can last 

longer in some scenarios. This results in a severe limitation in cell design – to balance between range 

and efficiency, the current trend in BEV manufacturing is to either use more thin cells or  

“overdesign” energy cells (Gallagher et al., 2016). Though this limitation may be alleviated by 

considering and, specifically, improving the architecture of the cell. Recent works achieved better 

capacity utilization by choosing a suitable particle-size-distribution (Lu et al., 2020, 2021), specific 

particle placement (Lu et al., 2020), and electrode perforation (Chen et al., 2020). To evaluate 

performance, one could either experimentally discharge the cell or model the cell performance. 

Therefore, cell architectural could be designed towards minimizing losses through concentration and 

evaluated using electrochemical simulations.  

 

1.3 Current and Proposed Modeling Approaches 

A physics-based modeling approach could be used to estimate the cell discharge behavior for lithium-

ion batteries. The governing equations are described by a system of partial differential algebraic 

equations. There are two models which use a similar set of equations, as will be discussed shortly. 

Transport is described by concentrated solution theory in the electrolyte (Newman, John; Bennion, 

Douglas; Tobias, 1965) and intercalation in NMC can be modeled with Fick’s second law. One form 

of battery modeling considers a macroscopic description of the electrode, where volume-averaged 

quantities are considered instead of the exact geometrical details. This is referred to as porous electrode 

theory (Newman, John; Tiedemann, 1975). Usage of both concentrated solution and porous electrode 

theories is called Newman’s framework, and for lithium-ion batteries specifically the Doyle-Fuller-
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Newman (DFN) model (Doyle, Fuller, & Newman, 1993; Doyle et al., 1996; Doyle & Newman, 1995). 

The other form of model considers the exact internal geometry of active materials, otherwise known as 

the microstructure. Typically only the active materials in the modeled electrode domains are resolved 

(Chen et al., 2020; Lu et al., 2021; Xu et al., 2019). This model can be referred to as microstructure-

resolved modeling and the technique is called DNS. This model is more physical than the DFN model 

as it does not assume a uniform particle size. Particles have various sizes and take on various shapes 

within an electrode. Further, neither the average particle size nor the number-averaged particle size 

could capture phenomena like slow voltage relaxation in a lithium-ion battery with the DFN model 

(Kirk, Please, & Jon Chapman, 2021). More importantly, the tortuous pathways are described by the 

geometry itself whereas a tortuosity correction needs to be applied in the DFN model. The techniques 

described in (Chen et al., 2020; Lu et al., 2021; Xu et al., 2019) are related to reducing the tortuosity of 

the electrode microstructure, so accurate modeling of tortuosity is important. 

Although the microstructure-resolved model is more physical than the DFN model, it is limited in 

terms of the time it takes to simulate battery behavior (Hutzenlaub et al., 2014) and by extension is 

limited to only modeling a few active materials within the electrode (Lu et al., 2020, 2021; Xu et al., 

2019). Therefore, this work develops another method to screen electrode microstructure quicker than 

conventional methods. Cells in BEVs tend to be designed to be thin but tightly packed (Gallagher et 

al., 2016). This setting would benefit from microstructural design as tight packings tend to result in 

higher tortuosity. Additionally, in the interest of developing cells with better range, it is essential that 

cells can perform efficiently at various discharge rates. The conventional method in solving the 

microstructure-resolved model is to use multi-physics software, such as COMSOL Multiphysics due to 

its commercial availability. Though simulations are time consuming as it requires meshing at the onset, 

and matrices to be assembled and solved at every timestep. In this regard, this research proposes to use 

Deep Learning (DL) to tackle the research objective. The success of DL has revolutionized the field of 

artificial intelligence and opened up new opportunities for innovation and discovery (Lecun, Bengio, 

& Hinton, 2015). LeCun showed CNNs was able to identify digits in zip code recognition using only 

raw images instead of complex feature engineering of previous generations of machine learning (ML) 

models (LeCun et al., 1989). In 2012, Krizhevsky trained a deep CNN – which was previously thought 

computationally infeasible – using an efficient graphic process unit (GPU) implementation of the 

convolution operation (Krizhevsky, Alex; Sutskever, Ilya; Hinton, 2012). The trained AlexNet network 
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had state-of-the-art performance on the ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC-2012), beating other techniques at the time by a significant margin. 

In terms of optimizing battery microstructures, Takagishi et. al. identified the need to accelerate the 

microstructure design process. They generated microstructures to predict the electrolyte, kinetic, and 

diffusional resistance using a feed-forward network (FNN). However, their approach considered a simplified 

electrochemical model. Moreover, it explored manufacturing parameters instead of modeling cell 

performance. This work aims to use CNNs to estimate cell behavior at various discharge rates to understand 

the performance of a given microstructure across a wide spectrum. This can be used to rapidly screen 

microstructural design by looking and the resulting discharge behavior. The model was intended as an 

accurate surrogate using simulated electrochemical data from the microstructure-resolved model on a NMC 

half-cell – with lithium foil as the negative electrode and NMC porous electrode – with randomly sized and 

located circles to represent NMC particles. As a first assumption, only 2D microstructures were considered 

and it was trained on 4 different C-rates. To understand discharge behavior, the concentration of lithium 

inside particles and average concentration along the through-plane (the direction of transport) was 

visualized. As an external outcome, mechanical degradation of particles is a contributing factor in reducing 

the lifespan of a cell. Fathiannasab et. al. showed stresses are highly correlated to the concentration 

gradient instead the active particles (Fathiannasab et al., 2021). Therefore, quick, and accurate 

prediction of lithium concentration inside active materials would be a breakthrough in designing high-

performance lithium-ion batteries both in terms of range and durability. 

The rest of the thesis is organized in the following order: the theory of battery operation at both 

continuum and microscale along with how CNNs work is presented; the methods of obtaining the DNS 

solution and ML dataset; the results are discussed; and ends with the conclusions and recommendations. 
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Chapter 2 
Background and Theory 

The following sections provides the background for the inner workings of lithium-ion battery operation, 

and equations are presented for both the continuum and micro-scale approaches for modeling batteries. 

A half-cell was considered in this work, so the descriptions and equations reflect the use of a lithium 

foil as the negative and NMC particles for the positive electrode. Both approaches share similar 

equations, so the sets of equations are contrasted to highlight the differences between the models. The 

micro-scale equations – as described in section 2.2.3 – were solved using COMSOL Multiphysics. 

COMSOL Multiphysics was used in this work as it is commercially available Finite Element Analysis 

(FEA) software. The purpose of COMSOL was solely to generate training data for the CNN, meaning 

another commercial software could have been utilized. It should be emphasized that no new Finite 

Element Method (FEM) or numerical methods was developed in this work. Though for completeness, 

COMSOL implements the Galerkin Finite Element Method (FEM) which uses the same basis and test 

functions (COMSOL Multiphysics, 2015). The theory of how CNNs work is then presented, and the 

different components involved in the training and operation of a Neural Network (NN) are discussed. 

This chapter concludes with the discussion of some image processing algorithms which were used in 

the pre-processing steps to identify individual particles and create particle masks to create data for this 

NN framework. 

2.1 Lithium-ion Operation at the Microscale 

This work only considers the electrochemical operation of a battery cell, which translates to new cell 

with no existing degradation and at isothermal operation. Thus mechanical, thermal, and other effects 

are out of the scope of this thesis. Figure 1.1 illustrates the dynamics of lithium-ion battery operation 

at the microscale, though in the present work only a half-cell is considered to the porous graphite 

negative electrode is replaced by lithium foil. When the cell is connected to a load, lithium ions are 

released into the liquid electrolyte and move to the positive electrode region due to diffusion due to 

concentration gradients and hindered due to migration due to the electrolyte potential. When lithium 

ions reach a positive electrode particle, they intercalate into the particles, which is controlled by 

electrode kinetics (Figure 2.1). This process creates an ionic current equal in magnitude to the electronic 

current, measurable with an ammeter. The ions then further shuttle within the crystalline structure of 
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the active NMC particles, which is typically described by diffusion, though this behavior may be 

governed by different dynamics for phase-change materials such as lithium iron phosphate using the 

Cahn-Hilliard equation (Bazant, 2013). Active materials with multiple phases with respect to the 

intercalated lithium-ion concentration are said to show solid solution behavior (Bazant, 2013; F. Wang 

& Tang, 2020; Zeng, 2015). Lithium iron phosphate is such a material, as exhibited by a strong voltage 

plateau during discharge, meaning a lithium-rich and lithium-poor are present in the cell (Zeng, 2015).  

On the particle level, this translates into a lithium-rich and lithium-poor region separated by a 

discontinuity – in mathematics, this is known as a shock. As lithium iron phosphate particles are 

charged or discharged, the shock would propagate forward. This model shows excellent agreement in 

comparison between the simulated voltage curve and experimental results for lithium iron phosphate 

half-cells. In particular, using the Cahn-Hilliard equation Zeng showed the simulated voltage curve 

displayed the classic flat plateau region at low discharge, but also show how the voltage curve would 

conform to a “typical” discharge curve at high discharge rates (Zeng, 2015). This is in contrast to other 

studies which attempt to use Fick’s second law with a high and low diffusivity for the lithium-rich and 

poor phases (Kashkooli et al., 2016). In comparison, the concentration profile from Fick’s second law 

is smooth and continuous and does not have jump discontinuities. 

 

Figure 2.1: Intercalation of lithium ion from electrolyte phase into an electrode particle during 
discharge. 

 

The chemical reactions for the dissolution of lithium ions from the foil and intercalation into NMC 

are as follows: 
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 𝐿𝑖(()
9 + 𝑒B ⇌ 𝐿𝑖(*)	 

𝐸"(𝑉)	(𝑣𝑠. 𝐿𝑖/𝐿𝑖9) = 0 
(2.1) 

 

 𝑥𝐿𝑖(()
9 + 𝑥𝑒B +𝑁𝑖".$$𝑀𝑛".$$𝐶𝑜".$$𝑂%(*) ⇌ 𝐿𝑖(>B!)𝑁𝑖".$$𝑀𝑛".$$𝐶𝑜".$$𝑂%(*) (2.2) 

 

The thermodynamic potentials are typically reported relative to lithium for convenience in the 

lithium-ion battery literature as opposed to the Standard Hydrogen Potential which is used most 

everywhere else. Regarding equation (2.2), 𝑥 is the SoL which represents the fraction of free sites 

available for lithium to intercalate into within the active material. The nickel, manganese, and cobalt 

have subscripts of 0.33 to indicate the molar ratio of each chemical in the metal oxide, an equal amount 

is used so NMC111 is indicated in equation (2.2). Different alloys have different ranges of 𝑥 to be 

intercalated. For instance, 𝐿𝑖!𝐶𝑜𝑂% can only use around half of its theoretical capacity  of 

274	𝑚𝐴ℎ	𝑔B> due to structural instability issues past 4.35	𝑉 (Li et al., 2021); this translates to cycling 

between roughly 0.43 to 1	𝑆𝑜𝐿. NMC111 is reported to intercalate between 0 − 0.975 (Zheng et al., 

2013). This property is one of the reasons for lithium-ion batteries being a high energy density storage 

device; active species are stored within the active materials as opposed to species being plated on top 

of the electrodes, in lead-acid batteries for instance. Since intercalation materials can host varying 

amount of lithium within the material, the equilibrium potential is a function of 𝑥 compared to equation 

(2.1). Technically, the potential is defined as the thermodynamically reversible potential, though in 

practice, this data is obtained under very low discharge (or C) rates; 0.02C as reported in (Kashkooli et 

al., 2016). The equilibrium potential plot for NMC111 is shown in Figure 2.2. 
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Figure 2.2: Equilibrium potential of NMC111 as a function of 𝒙, data from (Zheng et al., 2013). 

 

2.2 Governing Equations: From Continuum to Microscale 

2.2.1 Models Contrasted 

By far the predominant physics-based model for the lithium-ion battery is Doyle-Fuller-Newman 

(DFN) model (Kirk et al., 2021). The DFN model is reviewed in section 2.2.2. The DFN model uses 

concentrated solution theory (Newman, John; Bennion, Douglas; Tobias, 1965) and porous electrode 

theory (Newman, John; Tiedemann, 1975). Concentrated solution theory considers the concentrated 

effects of transport in comparison to a dilute-solution theory such as the Nernst-Planck equation. The 

interested reader could refer to Bizeray et. al. (Bizeray, Howey, & Monroe, 2016) for an in-depth 

comparison between concentrated and dilute theories or Newman and Thomas-Alyea (Newman, John; 

Thomas-Alyea, 2004) for a reference text. Porous electrode theory refers to use of volume-averaged 

quantities instead of usage of the exact internal geometry of the electrode (Newman, John; Tiedemann, 

1975). In effect, the solid electrode phase is superimposed on the electrolyte phase in the region marked 

“positive electrode region” in Figure 2.3. For intercalation electrodes, another domain is used for the 
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particle phase as marked by “NMC particles” in the same figure. The second model does not have a 

formal name but is referred to as the microstructure-resolved or micro-scale equations in this work. 

This model is reviewed in section 2.2.3. As shown in Figure 2.4, the micro-scale model does not utilize 

porous electrode theory as the active material geometry is resolved within the electrode region. 

However, like the DFN model, transport in the electrolyte phase is modeled with concentrated solution 

theory. 

Aside from the difference in the geometries between the two models, one major difference between 

the DFN and microstructure-resolved models could be contrasted between equation (2.8) and equations 

(2.20) and (2.26), respectively. These are the concentrated solution theory equations and represent 

transport in the electrolyte. Notably, the influx or efflux of lithium ions due to lithium intercalation is 

handled differently between the two models. The DFN models this as a homogeneous reaction as 

observed in the third term in the right-hand side of equation (2.8) whereas the microstructure-resolved 

model accounts for transport within the electrolyte phase (equation (2.20)) and lithium intercalation 

separately (equation (2.26)). The DFN model is said to account for the intercalation reaction as a 

homogeneous reaction whereas the latter as a heterogeneous reaction. In other words, the reactions are 

modeled as a bulk reaction in the DFN while the microstructure-resolved model models the reaction on 

the surface of the particles. The different approach to handling the reaction is why the DFN model is 

sometimes referred to as homogeneous modeling and similarly heterogeneous modeling for the 

resolved model. Another difference is that resolved modeling is flexible in terms of the size, location, 

and specific placement of particles, which affects battery performance (Chen et al., 2020; Lu et al., 

2020, 2021). This is in contrast with the homogeneously sized spherical particle with symmetry 

assumption in the DFN model. 

 

2.2.2 The DFN Pseudo-2D Model for Lithium-ion Batteries 

The equations in this section describes the DFN model (Doyle et al., 1993; Doyle & Newman, 1995; 

Doyle et al., 1996) and is depicted in Figure 2.3. This model is often referred to as pseudo-2D since the 

transport of ions in the electrolyte is considered as a 1D model, while intercalation into the NMC 

particles is modeled as a second transport process occurring at each location in the 1D model.  This is 

drawn as perpendicular paths to the 1D transport at Γ6 using equation (2.16). Referring again to Figure 

2.3, the 1D domain represents the cross-section where lithium ions travel from left to right, from the 
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negative electrode (Li foil) – with equation (2.9) in Ω*26 – to the cathode current collector – with 

equation (2.8) in Ω2(2, – during cell discharge. The dependent variables in this domain are 𝐶2, 𝜙2, and 

𝜙*, representing the concentration of lithium in the electrolyte, electrolyte potential, and solid phase 

potential, respectively. 𝜙* is only defined in the subdomain marked as the “positive electrode region” 

(i.e., cathode, Ω2(2,) which assume there is no voltage loss in the anode. There is a lithium ion sink in 

the positive electrode region as lithium is intercalated into the 2D rectangular domain representing the 

NMC111 particles. The lithium concentration 1D domain is exchanged with the NMC domain, which 

acts as source of Li ions for the reaction. The dependent variable in the NMC domain, Ω6,  is 𝐶*, the 

concentration of lithium ions intercalated in the solid NMC host structure, modeled by equation (2.14). 

The particles were assumed to be spherical with uniform radius, which is estimated from microscopy. 

Moreover, symmetry is assumed in this model, so 𝑟 = 0 is the center of a particle whereas 𝑟 = 𝑅 is the 

outer radius, where intercalation occurs. The rest of this section will discuss the equations of the DFN 

model. 

 

Figure 2.3: Computational domain of the DFN Pseudo-2D model representing a half-cell with a 
lithium foil and positive electrode composed of NMC111 particles. The rectangular domain, 𝛀𝒑, 

Ω!"!#Ω$!%

Ω%

Γ!
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represents the NMC particles across the length of the positive electrode, where lithium intercalates 
through the outer radius, 𝚪𝒑. Electrolyte transport occurs in 𝛀𝒔𝒆𝒑 and 𝛀𝒆𝒍𝒆𝒄. 

 

Electrode Kinetics 

The rate of intercalation of 𝐿𝑖 into the NMC active particles is described by the Butler-Volmer 

equation: 

 𝑖 = 𝑖" yexp z
𝛼+𝐹𝜂
𝑅𝑇

{ − exp z
−𝛼,𝐹𝜂
𝑅𝑇

{|	[=]
𝐴
𝑚% (2.3) 

 

The value of 𝑖", the exchange current density, is defined as: 

 
𝑖" = 𝐹(𝑘,)H&(𝑘+)H+�𝐶*,'+! − 𝐶*,*./0�

H&�𝐶*,*./0�
H+ �

𝐶2
𝐶2,/20

�
H&

 (2.4) 

 

The Butler-Volmer equation is the simplest type of dependence on current density based on the 

surface overpotential of an electrode and the composition adjacent to the electrode surface (Newman, 

John; Thomas-Alyea, 2004). It assumes a first-order dependence on concentration and is applicable for 

a single chemical reaction, though it could be extended to multi-step reactions. This equation is used to 

describe the surface kinetic reaction on the NMC particles. A positive value means the reaction 

proceeds in the anodic direction and negative for cathodic direction. A value of 0 would correspond to 

no net intercalation. Equation (2.2) is the kinetic equation of the system and is written in the cathodic 

direction. The coefficients 𝛼+ and 𝛼, are called the Tafel coefficients, where 𝛼+ + 𝛼, = 1 and 𝛼+, 

𝛼, ≥ 0. These quantities describe the symmetry factor which describes the fraction of applied potential 

which promotes the anodic (𝛼+) and cathodic reaction (𝛼,), respectively (Newman, John; Thomas-

Alyea, 2004). In this system the anodic reactants are 𝐶*,*./0 and the cathodic reactants are 𝐶*,'+! −

𝐶*,*./0 and 𝐶2 (Doyle et al., 1993).The exchange current density could be viewed as a reference kinetic 

parameter which describes the “background” current density in absence of an applied voltage. It is a 

function of the concentration of lithium ions as well as kinetic parameters, which derived as 𝑖" =

𝑛𝐹𝑘+
H+𝑘,

H&𝐶I,
H+𝐶J

H& as equation (8.23) (Newman, John; Thomas-Alyea, 2004). 𝐶*,*./0 and 𝐶*,'+! 

represent the intercalated lithium ions on the surface of NMC and maximum concentration of lithium 
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ions in the active material host structure, and 𝐶2,/20 is the reference concentration of lithium in the 

electrolyte phase taken to be 1'&(
'"  (Xu et al., 2019). Note that 𝐶*,'+! is a material constant and that as 

𝐶*,*./0 approaches 𝐶*,'+!, 𝑖" approaches 0 and the reaction stops. The kinetic parameters are 𝑘+ and 

𝑘, are the reaction rate constant of the anodic and cathodic directions of the lithium intercalation 

reaction, and 𝛼+ and 𝛼, have been reported to be equal in the anodic and cathodic direction (Smith & 

Wang, 2006), 𝛼+ = 𝛼, = 0.5. 

 
𝜂 = 𝜙* − 𝜙2 − 𝑈�

𝐶*,*./0
𝐶*,'+!

� [=]	𝑉 
(2.5) 

 

Then, the activation overpotential, 𝜂, depends on the solid- and electrolyte-phase potentials, as well 

as the electrode potential of the material, 𝑈. 

Lithium-ion Transport in the Electrolyte Phase 

Lithium-ion transport in the electrolyte phase is modeled using the Onsager-Stefan-Maxwell 

equations as typically used in the DFN model (Bizeray et al., 2016). In the void space of the electrode 

the charge flux is given by: 

 
𝑖2 = −𝜅∇𝜙2 +

2𝑅𝑇
𝐹

𝜅 y1 +
𝜕𝑙𝑛𝑓±
𝜕𝑙𝑛𝐶 |

(1 − 𝑡"9)∇𝑙𝑛𝐶2 	[=]
𝐴
𝑚% 

(2.6) 

where 𝜅 is the ionic conductivity varying with lithium concentration, 𝑓± is the mean molar activity 

coefficient of the electrolyte, and 𝑡"9 is the lithium-ion transference number. The ionic current originated 

from the concentrated solution theory work of Newman et. al. (Newman, John; Bennion, Douglas; 

Tobias, 1965) and was applied to lithium-ion battery modeling by Doyle et. al. (Doyle et al., 1993). Due 

to the absence of reactions in the separator region, the ionic current is conserved in the separator region: 

 ∇ ⋅ 𝑖2 = 0 (2.7) 

 

 
𝜀6&*,2

𝜕𝐶2
𝜕𝑡

= ∇ ⋅ �𝐷2
6&*,200∇𝐶2� −

𝜀6&*,2
𝜏6&*,2

𝑡"9

𝐹
𝑖2 + 𝑎𝑗(1 − 𝑡"9)	[=]

𝑚𝑜𝑙
𝑚% ⋅ 𝑠

 
(2.8) 

where 𝜀6&*,2, 𝜏6&*,2, and 𝑎 are the volume fraction of the electrolyte phase in the positive electrode 

region, the associated diffusional tortuosity, and the specific surface area of the active particles, 
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respectively. 𝐷2
6&*,200 = :()#,*

;()#,*
𝐷2, the effective lithium-ion diffusivity in the electrolyte. Bruggeman’s 

relation is commonly used, where 𝜏 = 𝜀B".K, thus 𝐷2
6&*,200 = 𝜀6&*,200>.K 𝐷2. Bruggeman’s relation was 

originally derived for spherical particles or cylindrical cross-sections (Tjaden, Cooper, Brett, Kramer, 

& Shearing, 2016) and is used in models due to the simplicity of estimating the tortuosity only using 

porosity in absence of experimental values  (Ai et al., 2020; Kirk et al., 2021; Marquis, Sulzer, Timms, 

Please, & Chapman, 2019). Though even for spherical particles like NMC, this relation is a close 

approximation but is not exact and the accuracy degrades severely for differently shaped particles like 

graphite with anisotropic values (Ebner, Chung, García, & Wood, 2014). The governing equation in 

the separator is similar though without the reaction term:  

 
𝜀*26

𝜕𝐶2
𝜕𝑡

= ∇ ⋅ �𝐷2
*26,200∇𝐶2� − 𝜀*26>.K

𝑡"9

𝐹
𝑖2 

(2.9) 

 

The initial conditions are as follows: 

 𝜙2 = 0	𝑉 

𝐶2(𝑡 = 0) = 1000
𝑚𝑜𝑙
𝑚$  

(2.10) 

 

At the lithium foil, the boundary conditions are the applied current density, usually defined in terms 

of C-rate, and the potential at the foil is taken as the ground. The definition of C-rate is the current 

density which discharges the cell at inverse of C hours. So 1C would discharge the cell in 1 hour and 

2C would discharge the cell in half an hour, etc.: 

 −𝑛�⃗ ⋅ Γ1*(𝑥 = 0) =
𝑖+66
𝐹

 

−𝑛�⃗ ⋅ 𝑖2(𝑥 = 0) = 𝑖+66 

𝜙2(𝑥 = 0) = 0	𝑉 

(2.11) 

where Γ12 is a shorthand for the diffusional and migration fluxes. There is no flux of either 

concentration or ionic current at the current collector: 

 𝑛�⃗ ⋅ �−𝐷2
200∇𝐶2�(𝑥 = 𝐿) = 0 (2.12) 
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𝑛�⃗ ⋅ 𝑖2(𝑥 = 𝐿) = 0 

 

Lithium-ion Intercalation 

The current density is governed by Ohm’s law where 𝜎* is the conductivity of the lumped solid 

phase: 

 𝑖* = −𝜎*∇𝜙* (2.13) 

 

Lithium ions diffuse due to Fick’s law where 𝐷* is the diffusivity of lithium ions inside the active 

material: 

 𝜕𝐶*
𝜕𝑡

= 𝐷*
𝜕%𝐶*
𝜕𝑟%

 
(2.14) 

 

The initial conditions are: 

 𝐶*(𝑡 = 0) = 𝐶*," 

𝜙*(𝑡 = 0) = 𝑈�
𝐶*,"
𝐶*,'+!

� 

(2.15) 

 

Lithium ions enter the active material as follows: 

 
𝑗LM = −𝐷*

𝜕𝐶*
𝜕𝑟

(𝑟 = 𝑅) 
(2.16) 

 

There is no flux of lithium ions at the “walls” (Figure 2.3): 

 −𝑛�⃗ ⋅ 𝐷*∇𝐶*�𝑥 = 𝑥*26� = 0 

−𝑛�⃗ ⋅ 𝐷*∇𝐶*(𝑟 = 0) = 0 

−𝑛�⃗ ⋅ 𝐷*∇𝐶*(𝑥 = 𝐿) = 0 

(2.17) 

 

Lastly, the electronic current to the solid matrix is described as follows: 
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 𝜕𝜙*
𝜕𝑥

�𝑥 = 𝑥*26� = 0 

𝑖+66 − 𝑖2 = −𝜎*
𝜕𝜙*
𝜕𝑥

(𝑥 = 𝐿) 

(2.18) 

 

2.2.3 Microstructure-Resolved Modeling of Lithium-ion Batteries 

The geometry of the microstructure-resolved model is illustrated in Figure 2.4. Instead of a separate 

domain as in the DFN model, the NMC particles are embedded within the positive electrode domain. 

In this thesis the porous separator and binders were not resolved, thus effective values were used to 

correct for their reduction in fluxes. The white space in the figure represents the electrolyte phase. 

Because only 2D domains were considered here it was not possible to have percolation of both the solid 

and void phase simultaneously. This means if the conductive binder was resolved, it would not be 

possible for both ionic transport and electronic transport of the current due to path of conductive binder 

and porous electrolyte void phase being blocked. In 3D, there would be pathways for both ionic and 

electrical transport to go from one point in the domain to the other – otherwise known as percolation. 

Instead, in this case a fictitious binder phase is superimposed onto the electrolyte phase in the positive 

electrode region to provide electrical conductivity for the electrical current. This was accomplished by 

assigning a non-zero electrical conductivity to the liquid electrolyte phase, which is a tactic used by 

other microstructural models (Chen et al., 2020; Lu et al., 2021; Xu et al., 2019). The dependent 

variables modeled are identified: 𝜙2, 𝐶2, and 𝜙* are modeled in the combined electrolyte phase in the 

separator and positive electrode region; and 𝐶* and 𝜙* are modeled in the NMC particles. Governing 

equations and initial and boundary conditions common to both the DFN and microstructure-resolved 

models are referred to whereas specific equations to the latter model are introduced here. 
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Figure 2.4: Computational domain of the microstructure-resolved model representing a half-cell 
with a lithium foil and positive electrode composed of NMC111 particles. The regions are, from left 
to right, lithium foil, separator, and positive electrode region.  

 

Lithium-ion Transport in the Electrolyte Phase 

The kinetic equations from (2.3) – (2.5) and the ionic current equation (2.6) are the same between 

both models. In the microstructure-resolved model there are no sources or sinks for ionic current within 

the bulk electrolyte phase: 

 ∇ ⋅ 𝑖2 = 0 (2.19) 

 

As the active particles were resolved, compared to equation (2.8), effective correlations are not 

required to correct for the reduction in flux due to the porous nature of the electrode: 

 𝜕𝐶2
𝜕𝑡

= ∇ ⋅ (𝐷2∇𝐶2) −
𝑡"9

𝐹
𝑖2 

(2.20) 
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The porous separator was not resolved, so equation (2.9) is common between both models. The initial 

and boundary conditions (2.10) and (2.11) and (2.12), respectively, are still relevant. However, due to 

the resolved particles, the intercalation reaction results in a source or sink of lithium ions and ionic 

current. The ionic current is:  

 −𝑛�⃗ ⋅ Γ<, = 𝑗NO𝐹, ∀𝑖 ∈ 𝑃= (2.21) 

 

The flux of lithium ions across the electrolyte/NMC particle interface is:  

 −𝑛�⃗ ⋅ Γ1* = 𝑗NO , ∀𝑖 ∈ 𝑃= (2.22) 

 

Lithium-ion Intercalation 

Symmetry is not assumed in this model so a more general form of Fick’s second law is used: 

 𝜕𝐶*
𝜕𝑡

= ∇ ⋅ (𝐷*∇𝐶*) 
(2.23) 

 

The electronic current, equation (2.13), is used to describe the electronic current. Though as there are 

two phases for the conductive binder and NMC particles, compared to one lumped phase in the DFN 

model, this equation was used for each. Conservation of charge in the solid phases applies separately 

to each phase: 

 ∇ ⋅ �−𝜎PQ1,L=RS2/∇𝜙*,PQ1,L=RS2/� = 0 (2.24) 

 

The initial conditions are the same as equation (2.15). In addition, the initial potential of the 

conductive binder is assumed to be at the same potential as the NMC particles: 

 
𝜙*,{PQ1,L=RS2/}(𝑥, 𝑡 = 0) = 𝑈PQ1 �

𝐶*,"
𝐶*,'+!

� 
(2.25) 

 

The source of lithium ions from the electrolyte phase into the NMC particles is as represented with 

a Neumann boundary condition and the second boundary indicates there is no flux of lithium out of the 

domain: 
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 −𝑛�⃗ ⋅ Γ1# = −𝑗NO , ∀𝑖 ∈ 𝑃= 

−𝑛�⃗ ⋅ Γ1#(𝑥 = 𝑥,.//2RV	,&((2,V&/ , 𝑡) = 0 

(2.26) 

where 𝑃= are the NMC particles in the positive electrode region. There is electronic current at the 

electrolyte/NMC particle interface and the boundary condition at the current collector is the applied 

current density: 

 −𝑛�⃗ ⋅ Γ<# = −𝑗NO𝐹, ∀𝑖 ∈ 𝑃= 

−𝑛�⃗ ⋅ Γ<#(𝑥 = 𝑥,.//2RV	,&((2,V&/ , 𝑡) = −𝑖+66 

 (2.27) 

 

The 1C rate for the electrode could be estimated as follows: 

 
𝑄>1 =

𝐹𝐶*,'+!
3600ℎ,2((

� 𝜋𝑅=%
P(&-./+,*#

=X>

[=]
𝐴ℎ
𝑚% 

 

(2.28) 

where ℎ,2(( is the height of the cell in meters. 

2.3 Deep Learning 

In this thesis a Convolutional Neural Network (CNN) was used to predicate state of lithiation as a 

function of both discharge rate and discharge time. This model was trained on the output of the 

heterogeneous model described above. A foreword should be given that DL is largely a practice, though 

there are some works which provide theoretical results in providing a basis in terms of why some 

models or techniques work well (Chollet, 2021e), it is important to mention the practical side of DL in 

the best interest of the reader. In this section, the fundamental details of CNNs and deep learning in 

general are described. First, the CNNs are compared with a simple fully connected Feed-Forward 

Neural Network (FNN) to contrast the differences between CNN and FNN. Though the work herein 

does not leverage fully connected FNNs, so this section will be brief. There will be a brief section on 

autoencoders as the autoencoder topology was used in this work. Then, the remainder of this section 

will dive into the mechanics of training NNs. 
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2.3.1 Fully Connected Feed-Forward Neural Networks 

The FNN could be viewed as a building block from which other NN models are based on. The term 

“feed-forward” refers to data from the input only propagating in the forward direction, from the inputs 

to the output(s). A schematic of a fully connected FNN is shown in Figure 2.5. A sample calculation is 

shown in the figure with arbitrarily chosen weights and biases. Starting from the input vector, NN 

prediction proceeds with matrix vector multiplication and addition, followed by a non-linear activation 

in each layer until the output unit. More details of the mathematical formulae describing the FNN are 

provided below. The notation for an element in the weight matrix – in this figure – is 𝑤=Y where 𝑖 is the 

“neuron” unit (top-down) in the next layer and 𝑗 is neuron unit in the current layer. The task of this 

particular network is to learn an approximation, 𝑦�, to some function 𝑦	from the independent variables 

𝑥> and 𝑥%, thus this is an example of a single-output model though there is no restriction on the number 

of output units in general. NNs could be configured with an arbitrary number of hidden layers with an 

arbitrary number of hidden units in each respective layer; in the depicted figure, there are 2 hidden 

layers with 3 hidden units each. The fully connected moniker arises as each neuron is connected to 

every other neuron in the next layer. For a single hidden layer FNNs are known to be universal 

approximators given a sufficiently large number of hidden neurons (Hornik, Stinchcombe, & White, 

1989). However, this is not a particularly useful statement in practice. The theorem states an arbitrary 

function could be represented by a shallow NN but it does not state precisely how many hidden units 

are required to accomplish this. Additionally, shallow networks with more units tend to perform poorly 

in terms of generalization, whereas deeper models can reduce the number of units required and 

generalization error  (Goodfellow, I; Bengio, Y.; Courville, 2016a). Montufar et. al. showed deep 

networks comprised of rectifier nonlinearities could represent functions with a number of regions that 

is exponential to the depth of the network (Montúfar, Pascanu, Cho, & Bengio, 2014).  
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Figure 2.5: A schematic of a fully connected FNN with two hidden layers. There are two input units, 
and each hidden layer has three units. Given an input 𝒙��⃗ = [𝒙𝟏 𝒙𝟐]𝑻, the NN predicts an output 𝒚� 
from optimizing some loss metric. Arbitrarily chosen weights (𝑾𝟏, 𝑾𝟐, and 𝑾𝟑) and biases (𝒃𝟏����⃗ , 
𝒃𝟐����⃗ , and 𝒃𝟑) are shown at the top of the figure. The weights between the input layer and first hidden 
layer are colorized to show the relation between the illustration and the corresponding weight matrix. 
A sample calculation is shown at the bottom, depicting the prediction process starting from the input 
vector 𝒙��⃗ . The formula for the output of a fully connected layer is described for the first layer and 
omitted for the successive layers due to similarity. The non-linear activation function used is the 
Rectified Linear Unit. 

 

Mathematically, a general fully connected FNN is represented by: 

Input Layer Layer 1 Layer 2 Output Layer

!! =
1 4
2 5
3 6

)! =
10
20
30

!" =
−1 −2 −3
−4 −5 −6
−7 −8 −9

)" =
300
200
100

!# = 1 2 3

!⃗ = 1
2

ℎ! = '()!!! + +!)

ℎ! = '(
19
32
45

)
ℎ" = '

82
−306
−694

=
82
0
0

)# = 0

56 = ' )#ℎ" = 82

/!

/"

01

Sample Calculation



 

 22 

 	𝑢� = 𝑓(P)(𝑓(PB>)(…𝑓(>)(	�⃗�))) (2.29) 

 

The mapping of a layer 𝑛, 𝑓(R)�𝑥(RB>)�, acts on the output of the previous layer 𝑥(RB>). Specifically, 

this operation is represented using an affine transform followed by element-wise activation using a non-

linearity: 

 	𝑓(R)��⃗�(RB>)� = 𝜎(𝑊(R)�⃗�(RB>) + 𝑏�⃗ (R)) (2.30) 

where 𝑊(R) and 𝑏�⃗ (R), and 𝜎 are the weight matrix and bias vector of layer 𝑛, and 𝜎 is the non-linear 

activation function for the layer. Activation functions are critical in providing nonlinearities to the 

model as a network without activation functions will be composed of linear operations and multiple 

applied linear operations will only result in a linear result. Nonlinearities are essential in understanding 

more complex representations (Montúfar et al., 2014). The weights and biases are updated during the 

optimization process, colloquially known as “training”, while the activation functions are a design 

choice. In principle, activation functions could be different layer-by-layer but is typically set constant 

throughout the network. Common activation functions are sigmoid, hyperbolic tangent, and the 

Rectified Linear Unit (ReLU). ReLU is a common choice as it does not suffer from the “vanishing 

gradient” problem for “deep” NNs, which may be problematic for the sigmoid and hyperbolic activation 

functions as the corresponding derivatives can tend to 0 in deeper networks. Though the sigmoid and 

hyperbolic tangent are useful when the range of the output is expected to be bounded by some value – 

i.e., 𝑟𝑎𝑛𝑔𝑒(𝑠𝑖𝑔𝑚𝑜𝑖𝑑) ∈ [0, 1] and 𝑟𝑎𝑛𝑔𝑒(𝑡𝑎𝑛ℎ) ∈ [−1, 1]. The ReLU function is as follows: 

 	𝜎(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (2.31) 

2.3.2 Convolutional Neural Networks 

CNNs have been successful in vision-based tasks due to the properties of translational invariance and 

ability to learn hierarchies of features (Chollet, 2021d; Goodfellow, I; Bengio, Y.; Courville, 2016c; 

Lecun et al., 2015). Using images as an example, translational invariance refers to the property of the 

NN being able to learn a pattern in one portion of the image and recognize that pattern in a different 

section. CNNs can accomplish this property whereas fully connected FNNs, for instance, can learn to 

recognize a cat in a bottom-left corner of an image but will struggle to recognize the presence of a cat 

in the top-right corner of another image (Chollet, 2021d). Due to the convolution and because of 
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translational invariance, CNNs are able to learn local patterns whereas FNNs are limited to global 

patterns. The ability to learn hierarchies of features is another key property, which relates the depth of 

the CNN as will be discussed shortly. Returning to the cat example, CNNs learn to recognize edges on 

a cat and layers deeper in the network learn larger sets of features, such as the eyes, nose, or ears. CNNs 

accomplish this by performing convolutions using kernels learned during training. The convolution 

operation and “learned” kernel are discussed in more detail below. These kernels have a few parameters 

which amount to CNNs being memory efficient compared to the fully connected FNN architecture as 

the parameters of the learned filters are “shared” across an image whereas FNNs learn values to weight 

matrices which is applied to the entire input space, because of this these layers are sometimes called 

dense layers (Goodfellow, I; Bengio, Y.; Courville, 2016c). 

The building block of a CNN is the convolutional layer which performs the convolution operation. 

Mathematically this is represented as (Goodfellow, I; Bengio, Y.; Courville, 2016c): 

 	𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) =��𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)𝐾(𝑚, 𝑛)
R'

 (2.32) 

where ∗, 𝐼, 𝐾, and 𝑆 denote the convolution operation, input, kernel (or equivalently, filter), and feature 

map respectively. The equation above is written for a two-dimensional image, though this operation 

can be generalized to 𝑁 dimensions. Convolution operation applies the kernel, 𝐾, across the entire 

input, 𝐼. A natural question would be how a kernel should be sized. The size of kernels used in image 

based CNNs, as a common practice, are sized 3 × 3 or 5 × 5 (Chollet, 2021d) and the depth dimension 

is specified by the number of channels in the tensor. More concretely, it turns out a good practice is to 

start off with small filters (3 × 3) (Karpathy, Andrej; Li, 2022) as multiple stacked convolutional layers 

leads to a receptive field of a larger filter, but with more complex representations and fewer parameters 

to learn. For instance, three stacked 3 × 3 convolutional layers has the equivalent receptive field of a 

7 × 7 kernel (Chollet, 2021a; Karpathy, Andrej; Li, 2022; O’Shea, Keiron; Nash, 2015; Simonyan & 

Zisserman, 2015), and this tactic achieved better results than a single 7 × 7 filter on the 1000-class 

ILSRVC-2014 classification problem (Simonyan & Zisserman, 2015). However, that is not to say 

stacking layers is not the only approach. Szegedy et. al. proposed the Inception layer which uses 

differently sized convolutions from 1 × 1, 3 × 3, and 5 × 5 using the same input, 𝐼, to learn features 

from multiple scales (Szegedy et al., 2015). Both networks by (Simonyan & Zisserman, 2015) and 

(Szegedy et al., 2015) had state-of-the-art results on ILSRVC-2014 though these works used different 

approaches. Previously, computer vision experts designed kernels by hand, which resulted in kernels 
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like the Sobel operator (Pratt, 2001). In contrast, kernels in CNNs function as the “neurons” described 

in the fully connected FNN in Figure 2.5, thus kernels are “learned” during NN training. The Sobel 

operator for detecting vertical changes is represented by: 

 
𝐺^ = �

+1 +2 +1
0 0 0
−1 −2 −1

� (2.33) 

 

Zero padding or “same” padding better captures information from the border, but used more as a 

convenience factor to so the feature map would have the same dimensions as the input (Chollet, 2021a; 

Karpathy, Andrej; Li, 2022; Simonyan & Zisserman, 2015; Szegedy, Ioffe, Vanhoucke, & Alemi, 

2017). This is important in more advanced NN architectures to combine information from different 

sources such as the Inception V4 or Inception ResNet architectures (Szegedy et al., 2017). The other 

form of padding is called the “valid” padding, which does not pad the input. In terms of computation, 

although it is known that the convolution could be efficiently computed using the Fast Fourier 

Transform (Cooley, James W.; Lewis, Peter A. W.; Welch, 1967) which would require padding for 

accurate computation due to periodicity, this is not the default implementation of the convolution in 

DL frameworks. In fact,  implementation exploits the fact that a convolution is a linear operation and 

thus could be represented by a large weight matrix (Karpathy, Andrej; Li, 2022; TensorFlow 

Developers, 2022) – this does not require padding for accurate computation. The convolution operation 

is demonstrated on a 4	 × 	4 array using the Sobel operator as follows: 

  

Figure 2.6: Illustration of the convolution operation on input, 𝑰, using the Sobel operator, 𝑮𝒚, with 
“valid” padding to obtain the feature map, 𝑺. 

 

And, on an image, the feature map after applying the Sobel operator could be visualized as: 

! ∗ #! =
1
5
9
13

2
6
10
14

3
7
11
15

4
8
12
16

∗
+1 +2 +1
0 0 0
−1 −2 −1

1 = −32 −32
−32 −32



 

 25 

 

Figure 2.7: Image of a dog (a) and the feature map of applying the Sobel operator, 𝑮𝒚, (b). 

 

A user-specified number of filters is specified for a convolutional layer in a CNN, where the elements 

in the kernels are learned during the training process. The number of feature maps from the output of a 

convolutional layer corresponds to the number of filters specified. Then, if the CNN is comprised of 

multiple convolutional layers, the size of the succeeding kernels has additional dimensional 

corresponding to the number of feature maps created in the previous layer. A non-linear activation is 

applied similarly to equation (2.30) in a CNN, though a convolution operation is used and the bias in 

CNNs are scalar instead of vector. Although the choice of activation function is largely architecture 

dependent, the ReLU activation has been shown to be largely successful in CNNs. Krizhevsky trained 

CNNs on the CIFAR-10 dataset, a relatively small dataset in comparison to the ILSVRC-2012 dataset, 

and observed 6x faster training using the ReLU function in comparison to the hyperbolic tangent 

(Krizhevsky, Alex; Sutskever, Ilya; Hinton, 2012). Although a concern with the ReLU function are 

“dead neurons” as it either predicts 0 or a non-zero value (equation (2.31)), the ReLU function had 

(a) (b)
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more competitive results for image classification compared to the hyperbolic tangent function on 

various datasets (Glorot, Xavier; Bordes, Antoine; Bengio, 2011). However, it has been a decade since 

the paper by Krizhevsky and there have been many more activation functions proposed. Since then, the 

computational power has also greatly improved. At the time of writing, the RTX 4080 is commercially 

available whereas Krizhevsky was limited to the GTX 580 (Krizhevsky, Alex; Sutskever, Ilya; Hinton, 

2012). As such, one may not be as constrained to try different activation functions due to recent 

advances in compute power. 

Another important consideration is down sampling, which reduces the width and height dimensions 

of an image. Down sampling reduces the amount of parameters that subsequent layers process (Chollet, 

2021d) and the pooling operation helps the CNN model become less sensitive to local artifacts which 

helps to better achieve translational invariance (Goodfellow, I; Bengio, Y.; Courville, 2016c). There 

are different ways to down sample an image – in tasks where location matters more such as image 

segmentation, the strided convolution works better than max-pooling (Chollet, 2021a). Although 

settings are configurable, the 2 × 2 pooling operation with a stride of 2 is common place (Karpathy, 

Andrej; Li, 2022; Simonyan & Zisserman, 2015) as larger pooling operations are very destructive in 

terms of information discarded. Down sampling is illustrated in Figure 2.8. In general, max-pooling is 

performed on the resulting feature map after a convolution. In this case, max-pooling is used with a 

stride of 2, meaning that the maximum value of each 2 × 2 region is selected, and a subset is created. 

  

Figure 2.8: Max-pooling using a 𝟐	 × 	𝟐 window on input, 𝑰, with a stride of 2. 

 

2.3.3 The Autoencoder Topology 

Autoencoders are a type of neural network that are designed to learn efficient representations of data in 

an unsupervised manner. Autoencoders are a specific form of the FNN which could be trained using 

the same framework as will be described in section 2.3.3. The “unsupervised manner” refers to the 

network using the inputs as the target value, i.e., the outputs are the same as the inputs (Goodfellow, I; 
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Bengio, Y.; Courville, 2016b). It consists of an encoder and a decoder network that work in tandem to 

compress the input data into a lower-dimensional space, called the latent dimension, and then 

reconstruct it back to its original form as shown in Figure 2.9. The encoder network takes in the input 

data and maps it to a compressed representation, also known as a latent space, while the decoder 

network takes the compressed representation and generates the reconstructed output. After training, the 

decoder is discarded – the value of this methodology is the ability to learn compressed representations 

of the input. Autoencoders have various applications such as image denoising, data compression, 

anomaly detection, and dimensionality reduction (Goodfellow, I; Bengio, Y.; Courville, 2016b).  

As will be discussed in the methods section, the CNN trained in this work was clearly not trained in 

an unsupervised manner, i.e., it had different outputs than inputs. Therefore, the trained CNN is not 

claimed to be an autoencoder, rather it uses the autoencoder topology. However, the usage of this 

topology was motivated by the “feature extraction” functionality due to down sampling from input and 

up sampling to predict another image (Agostini, 2020; Ronneberger, Fischer, & Brox, 2015). 

 

 

Figure 2.9: The autoencoder topology. The encoder compresses an input to a latent dimension 
representation. The decoder upscales the latent vector to an output with the same dimensions as the 
input. 

 

Encoder DecoderLatent
Dimension
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2.3.4 Optimization of Neural Networks 

The weights and biases in a NN are updated during the training process, usually using Stochastic 

Gradient Descent (SGD). Gradients of the weights and biases are computed using the chain rule of 

calculus and then updated using a formula like: 

 
𝜃V = 𝜃VB> − 𝛼V ⋅

1
𝑛
�∇`𝑓=(𝜃VB>)
R

=X>

 (2.34) 

where 𝑡, 𝑖, 𝑛, 𝜃, 𝛼, and 𝑓 is the current epoch, the 𝑖V? training sample, the number of samples in a 

training dataset, the updated parameter which is either the weights or biases, the step size, and the 

objective function being optimized. The stochastic or the random part refers to each batch of data is 

drawn at random (Chollet, 2021b) (chapter, 2.4.3). The term ∇`𝑓 refers to the gradient of the cost 

function in which the NN is evaluated on with respect to the learnable parameters (Goodfellow, I; 

Bengio, Y.; Courville, 2016e), 𝑤=Y
(() and 𝑏=

((), where (𝑙) is the lth hidden layer. In a feedforward network 

the gradient is computed starting from the output of the model. Using the chain rule of calculus, the 

gradient with respect to the weights and biases of each layer is computed until the input layer is reached.  

This algorithm is known as the Backpropagation algorithm (Rumelhart & Hinton, G. E.; Williams, 

1986). It should be clarified that backpropagation is merely a method to compute the gradients with 

respect to some ancestors in the network – the interested reader could refer to chapter 6.5 of 

(Goodfellow, I; Bengio, Y.; Courville, 2016d) for more information on backpropagation, software 

implementation details, and specifically algorithm 6.4 for an algorithm for backpropagation for a deep 

NN. The weights and biases are then updated according to equation (2.34). In ML literature, the step 

size is also called the “learning rate”; this is a key parameter which dictates the degree of how much 

the NN parameters are updated based on a signal. The objective is also called the “loss function” and 

is typically the squared difference between the ground-truth data the NN is trying to predict compared 

against the current predicted value:  

 
𝑓 =�(𝑦= − 𝑦�=)%

R

=X>

 (2.35) 

where 𝑦 and 𝑦� are the true and predicted values. Equation (2.34) was written for updating parameters 

on the entire dataset, though in practice small batch sizes are used to balance between computational 

limitations and pure SGD which uses a batch size of 1. Also, in practice different optimizers work 

better for different types of data and model architectures, which further modifies the second term in 
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equation (2.34). In this work, the Adam optimizer (Kingma & Ba, 2015) was used which implements 

an averaged and squared gradient term in its update formula. 

The vanishing gradient and exploding gradient problems are issues one may occur in applying SGD 

to train DNNs. The vanishing gradient problem is where the gradients tend towards 0, which halts the 

NN from further training. On a similar note, the exploding gradient can occur when a component of 

gradient (with respect to the weights or biases) or many components are infinity. Mathematically the 

max norm is ||�⃗�||a = max	(|𝑥=|) and across the entire vector, the 2-norm is ¥|�⃗�|¥% = ¦∑ 𝑥=%R
=X> . 

Though within the deep learning literature, the term “exploding gradient” is used more frequently. 

These issues typically occur in recurrent neural networks (Pascanu, Mikolov, & Bengio, 2013) or deep 

FNNs (Glorot & Bengio, 2010). Glorot and Bengio also attributed the difficulty in training deep NNs 

to saturating activation functions, e.g., the sigmoid function, and suggested the usage of non-saturating 

nonlinearities instead (Glorot & Bengio, 2010). As discussed in section 2.3.1, more complex 

representations could be learned with deeper NNs. Thus, the exploding gradient problem may be 

problematic. Though these issues may occur, one should not avoid training deep NNs given the success 

of deep architectures (Simonyan & Zisserman, 2015; Szegedy et al., 2015). Techniques such as batch 

normalization, where the weights of a layer are rescaled, have been shown to help with training by 

smoothing out the loss landscape (Santurkar, Tsipras, Ilyas, & Madry, 2018). Batch normalization could 

simply be added after a hidden layer. Another technique involves using residual connections, which for 

the first time, allowed training of very deep NNs (He, Zhang, Ren, & Sun, 2016). There are other 

methods in the literature proposed to tackle the vanishing and exploding gradients issue, though this 

area is in active research. 

 

2.4 Image Processing 

2.4.1 The Distance Transform 

The distance transform is an operator applied to binary images. Binary labels of 0 and 1, assigned to 

each pixel, are termed the “background” and “foreground” of the image, respectively. Applying a 

distance transform on an image replaces the foreground with values computed from some distance 
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metric (Rosenfeld & Pfaltz, 1968). Common metrics are city block, chessboard, Euclidean, etc. The 

distance metric for the Euclidean Distance Transform (EDT) is: 

 𝑑 = ¨(𝑖 − ℎ)% + (𝑗 − 𝑘)% (2.36) 

where (𝑖, 𝑗) and (ℎ, 𝑘) are the location of the foreground pixel and the location of the closet background 

pixel to the foreground, in a 2D image, respectively. Usage of the EDT is shown in Figure 2.10. 

2.4.2 The Watershed Algorithm 

The Watershed transformation acts on a distance transform to obtain “watershed lines” by interpreting 

the distance values of elevations and findings ‘basins’ analogous to physical catchment basins, also 

known as watersheds. Watershed algorithms are typically used for separating and identifying different 

objects in an image, otherwise known as object segmentation. The implementation used in this work 

segments different objects by assigning labels to pixels into separate basins. In the marker-based 

watershed algorithm, markers are used to guide the “flooding” process in the algorithm. Markers could 

be determined manually, automatically using a criterion such as the local minima of the gradient of an 

image or using the local maxima of a distance function to the background (Van Der Walt et al., 2014). 

The EDT is used in this work. The following figure illustrates the marker-based watershed algorithm. 
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Figure 2.10: Workflow for the marker-based watershed segmentation algorithm. The local 
maximum is determined from the EDT of a binarized image on the foreground (yellow – left), and 
objects are segmented based on local maximum markers.  

 

In this work, circular geometry was considered for the active material geometry with clearance, so 

most particles are not touching. In general, a predefined, idealized shape may not be expected from 

tomographic data of active materials, and furthermore, many particles may be touching or connected. 

Therefore, the watershed algorithm discussed herein plays an important part in segmenting particles for 

identification and further scientific analysis. 

2.4.3 Upscaling and Downsampling 

In this thesis, upscaling and downsampling of images was performed to zoom images to a uniform size 

as inputs to the CNN. The incorporation of non-uniform particle sizes necessitated this procedure. 

Afterwards, the predictions were zoomed to the original size to compare to ground-truth data. Zooming 

an image is performed by zooming an array using nearest neighbor interpolation for order 0 and spline 

interpolation from orders 1 to 5. Nearest neighbor interpolation is used in this work as it is well suited 

in preserving the original image after zooming to one size and back to the original, as shown in the 

following figure. 
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Figure 2.11: Original image sized 𝟏𝟔𝟏 × 𝟏𝟔𝟏 (a), zoomed image using nearest neighbor 
interpolation to 𝟐𝟎𝟎 × 𝟐𝟎𝟎 (b), and (c) is the difference between the “unzoomed” image of (b) and 
the original image (c). 

In many cases, zooming an image from size 𝑋 to 𝑌 and back from 𝑌 to 𝑋 results in the same image 

as illustrated in Figure 2.11(c). However, this may not be true in the general case. Another way to 

compare for equality is as follows: 

 𝑎𝑏𝑠(𝑎 − 𝑏) ≤ (𝑎V&( + 𝑟V&( ∗ 𝑎𝑏𝑠(𝑏)) (2.37) 

where 𝑎 and 𝑏 is the numeric value associated to a pixel belonging to the original image and the 

comparator, and 𝑎V&( and 𝑟V&( are the absolute and relative tolerance, respectively. This equation is 

evaluated elementwise, and the compared image is only the same as the original image if the equation 

is true for all pixels 𝑎 and 𝑏. 

To demonstrate the effect of higher-order zoom, the image in Figure 2.11(b) is upscaled using first 

order interpolation instead of nearest neighbor, as per Figure 2.12(b). Using higher-order zoom 

introduces artifacts around the border. It is desirable to match the original image as close as possible 

when returning a zoomed image to its original size. Artifacts are introduced on the first usage of 

zooming using a high order, resizing the zoomed image to its original size would only introduce more 

artifacts. Therefore, nearest neighbor interpolation is most suitable for this application. 

(a) (b) (c)
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Figure 2.12: Original image sized 161 × 161 (a), zoomed image using first order interpolation to 
𝟐𝟎𝟎 × 𝟐𝟎𝟎 (b). 

 

2.4.4 Multi-Dimensional Interpolation 

The FEM solves partial differential equations on a domain by solving appropriate interpolant functions 

on smaller segments of the original domain called “finite elements” (Seshu, 2004). In this work, arrays 

representing images were used as inputs to the CNN. FEM solutions could be processed in such a 

format using an interpolation strategy – it should be noted that interpolation in this section pertains to 

interpolation of FEM solution data and not the spline interpolation in section 2.4.3. Figure 2.13 depicts 

the mesh of an NMC particle found in the positive electrode. 

(a) (b)
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Figure 2.13: A mesh of a domain representing an NMC particle. The original meshing process was 
performed using COMSOL Multiphysics v5.6 when solving for the FEM solution.  Qhull (Barber, 
Dobkin, & Huhdanpaa, 1996) was used as an intermediate step to recreate the mesh from the vertices 
(red markers) before interpolating for the empty space inside the convex hull using linear barycentric 
interpolation.  

 

Solutions for the variable of interest are stored in the mesh vertices in the FEM as illustrated in the 

red markers as illustrated in Figure 2.13. In a FEM framework, the values within the elements are 

evaluated from the solved interpolant functions. Though those values are considered missing in an 

array-based format. Accordingly, the mesh could be recreated using a triangulation algorithm (Barber 

et al., 1996) and missing values in an element could be interpolated using the vertices immediately 

enclosing it using linear barycentric interpolation. In other words, values were interpolated within each 

triangle.  
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Chapter 3 
Machine Learning Dataset Generation, Model Training, and 

Evaluation 

3.1 Electrochemical Model 

Prior to the electrochemical simulations being conducted, positive electrode geometries were generated 

differing by cell lengths and porosity.  Each electrode in the dataset consists of half-cells where the 

NMC particles are represented by polydisperse circles with varying radii randomly generated by a 

Random Sequential Addition (RSA) algorithm as described by Torquato (Torquato, 2002) (using a 

custom MATLAB implementation, see Figure 3.1). Circles were used as a first approximation since 

NMC particles have been reported as relatively spherical within literature (Ebner et al., 2014; Khan, 

Agnaou, Sadeghi, Elkamel, & Gostick, 2021; Lu et al., 2020). Although particles are spherical instead 

of circular – i.e., 3D instead of 2D – this work trained CNNs to predict concentration in 2D images to 

showcase the concept of using a CNN to predict battery operation as a proof-of-concept before any 

work was attempted at the 3D level. Also, while simulations could have been conducted with 3D 

geometries and training been conducted on 2D slices of the simulation data, this may have been 

problematic in terms of the definition of the C-rate. For instance, suppose a 3D electrode geometry was 

filled with spherical particles of 𝑅. Then the correct C-rate corresponds to this particular radius. 

Suppose that for a given slice all the selected particles are cut such that the resulting image would 

correspond to a 2D slice with circular particles with radius 𝑅=. Since this radius is smaller than 𝑅, the 

1C capacity would be lower than the original case. This would result in a mismatch in discharge rates. 

Using a 2D geometry directly would always model the radius of 𝑅, albeit the 3D representation are 

cylinders instead of spheres. Moving on, 2-dimensional analysis of other chemistries may require 

different geometries to be considered and a full 3-dimensional implementation could use voxel images 

obtained by x-ray tomography, but this is outside the scope of this preliminary study. The porosity and 

cell lengths were motivated by Table I in (Gallagher et al., 2016). The actual porosity values used in 

this work is mentioned later. The separator lengths used in simulation in this work is taken to be 20	𝜇𝑚 

(Xu et al., 2019). 
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Figure 3.1: 2D positive electrode geometry with circular particles or “microstructure” generated 
using the RSA algorithm. Cells differed by the specified 𝑳 and 𝜺𝒑𝒐𝒔,𝒆, and the arrangement and sizes 
of the particles due to random selection. The particle locations and radii, cell length, actual porosity, 
and diffusional tortuosity were exported for further processing. 
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The simulations were governed by the equations found in section 2.2.3. The physical parameters are 

tabulated in Table 3.1. After the geometry was created using the RSA algorithm, simulation parameters, 

variables, material properties, and governing equations were set programmatically using the COMSOL 

LiveLink™ for MATLAB®. The applied current density was specified in terms of C-rates, initially 

0.25	𝐶 is used. Then, the simulation is solved as a time dependent study using segregated steps with 

Anderson Acceleration on until either theoretical discharge time is reached or the lower cut-off voltage 

of 3.1	𝑉. Segregated steps refer to the process of solving each individual physics separately instead of 

solving a multi-physics simulation as a fully coupled problem in each time step. Anderson acceleration 

is useful for solving linear or almost linear problems using the segregated solver (COMSOL 

Multiphysics, 2015). The microstructure-resolved equations could be solved either as fully coupled or 

using a segregated solver in 2D, though solving these equations in 3D with the segregated method can 

speed up computations. The concentration values in the NMC particles are exported for further 

processing. This is repeated corresponding to 0.5, 1, 2, and 3 C. A new microstructure is generated, and 

this process is repeated for the C-rates until all electrochemical simulations for all microstructures (𝐿 

and 𝜀6&*,2) was completed. 

 

Table 3.1: Physical parameters for electrochemical simulations used in this work. 

Parameter 
(unit) 

Value Parameter 
(unit) 

Value 

𝜎PQ1  ( 7
'

) 100 (Zheng et al., 2013) 𝐶*," ('&(
'" ) 980 

𝜎N=RS2/ ( 7
'

) 1 𝐶2,/20 ('&(
'" ) 1 (Xu et al., 2019) 

𝜅 ( 7
'

) Function of 𝐶2, (Doyle et al., 
1996) 

𝐶2," ('&(
'" ) 1000 (Xu et al., 2019) 

𝑡&9 (1) 0.363 (Valo̸en & Reimers, 2005) 𝜀*26,( (1) 0.4 

c(R0±
c(R1*

 (1) 0 (Doyle et al., 1996) 𝑈 (𝑉) Function of 𝐶*, (Zheng et al., 
2013) 

𝑘, (
'
*

) 2 × 10B>> (Smith & Wang, 2006) 𝐷2 ('
!

*
) 7.5 × 10B>" 
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𝑘+ ('
*

) 2 × 10B>> (Smith & Wang, 2006) 𝐷* (
'!

*
) 5 × 10B>$ (Zheng et al., 2013) 

𝛼, (1) 0.5 (Smith & Wang, 2006) 𝑆𝑂𝐶'+! (1) 0.975 (Zheng et al., 2013) 

𝛼+ (1) 0.5 (Smith & Wang, 2006) 𝑆𝑂𝐶'=R (1) 0 (Zheng et al., 2013) 

𝐶*,'+! ('&(
'" ) 48900   

 

 

Figure 3.2 was generated according to the procedure outlined here and illustrates several results that 

are of engineering interest: (a) the concentration of lithium ions in the electrolyte phase and (b) the 

lithium-ion concentration within the NMC particles under 3 C-rate discharge. The magnitude of the 

lithium-ion concentration in the electrolyte and the resulting gradient is an indication of concentration 

polarization in the cell, and the concentration in the particles constitute the SoL. Although several 

variables were solved for by the DNS solver, only the solid concentration 𝐶* as a function of time was 

tracked for training the NN model. This corresponds to figures similar to Figure 3.2 (bottom), which 

for convenience we refer to as “SoL maps” (state-of-lithiation maps). The CNN was tasked to predict 

the fractional SoL map in each particle given the C-rate and time step as well as additional inputs. The 

concentration and time were exported from the DNS solver for the purpose of creating a dataset 

amenable to training a CNN, and this will be discussed in the following section. 

 

Figure 3.2: Results from FEM simulation for a microstructure under 3 C-rate discharge at 𝑡 = 600	𝑠.  
𝐶2 and 𝐶* are the lithium-ion concentration in the electrolyte and NMC phase, respectively. 
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3.2 Dataset Generation 

 

Figure 3.3: Data processing steps from the DNS solution (left) to a binarized image of the electrode 
microstructure (middle) to the target SoL map (right). The NN model only considers the SoL of the 
center particle for training/prediction, and the SoL of the neighboring particles is only shown here 
for illustration purposes. 

 

Recall that the DNS solver stores SoL values at the FEM mesh nodes, so it cannot be directly fed into 

the CNN workflow. Therefore, the DNS results need to be processed into a pictorial format, i.e., as a 

2D array of SoL values. Additionally, instead of having the ML model to directly output the SoL map 

of an entire microstructure, the model predicts the SoL of isolated particles to facilitate the learning 

process, as illustrated in Figure 3.3. In this figure, the first column represents the SoL distribution within 

a cropped region obtained from the FEM solution, and the last column represents the processed SoL to 

be used for training the NN model. For this purpose, the vertices of the NMC mesh from the FEM 

domain is projected onto a 2D array of 0s and 1s, representing the electrolyte and NMC particles, and 

then the FEM solution is interpolated over the mesh to fill in the “missing” pixels within the NMC 

particles. It should be noted that the NN model developed in this work was designed to predict the SoL 

of the center particle in each cropped out region. In Figure 3.3 (right), however, the SoL values for the 

neighboring particles are also shown, but only for illustration purposes. The following sections 

elaborate on the data processing steps. 

3.2.1 Electrodes Used in Training 

Starting from the DNS solution, the concentration of lithium in each NMC particle was saved from the 

simulations and normalized by the maximum intercalated lithium concentration, 𝐶*,'+!, to obtain the 

fractional SoL. The ML dataset comprised of data from 60 random microstructure realizations in form 
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of circle packings with lengths of 48, 77, 101, 129, 154, and 176 𝜇𝑚, a constant width of 100 𝜇𝑚, 

porosities between 35% to 60%, and particle radii between 1 and 10 𝜇𝑚. The average statistics of the 

electrodes generated in this work is compared with values from a real microstructure in Table 3.2. 

 

Table 3.2: The length, porosity, tortuosity, and mean radii of the 60 randomly generated 
microstructures. The length and porosity of a real NMC111 microstructure used in a coin cell was 
tabulated (Xu et al., 2019). The real microstructure tortuosity reported is evaluated from (Ebner et al., 
2014) corresponding to a porosity of 0.5. 

 60 Electrode Dataset Real Microstructure 

 Minimum Average Maximum  

Length (𝜇𝑚) 48 119 176 40 

Porosity 0.391 0.491 0.609 0.5 

Tortuosity 1.47 1.71 1.91 1.45 – 1.55 

Mean Radius (𝜇𝑚) 1.67 2.29 3.33 N/A 

 

FEM simulations of galvanostatic discharge were performed on these microstructures at 5 C-rates of 

0.25, 0.5, 1, 2, and 3C. SoL values were evenly sampled 12 times during discharge based on the 

theoretical time to fully discharge a cell at the specified C-rate. For demonstration, the specifications 

of 5 out of 60 microstructures are tabulated in Table 3.3. 

 

Table 3.3. Specification of five microstructures seen during training. 

 Microstructures 

 I II III IV V 

Length (𝝁𝒎) 154 176 48 176 129 

Number of Particles 247 531 118 287 317 

Porosity 0.55 0.43 0.49 0.53 0.58 

Tortuosity 1.64 1.80 1.79 1.63 1.50 

Mean Radius (𝝁𝒎) 2.53 1.97 2.12 2.50 2.91 
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3.2.2 Generating dataset: Voxelization of Microstructural images and SoL maps 

The developed NN model takes in a binary image that represents the electrode microstructure with 0s 

and 1s representing the electrolyte and the NMC particles, respectively, and outputs an image of the 

same size with each representing the corresponding SoL. For each FEM simulation, the center 

coordinates, and the radii of the NMC particles are known. Also, simulations were conducted on an 

unstructured triangular mesh, so the interpolate module from SciPy was used to interpolate these values 

on an orthogonal grid to create 2D images of SoL. Further, the input images could be created from a 

threshold operation as values representing SoL belong to the NMC particle phase. The coordinates were 

scaled to obtain a resolution of 0.2	𝜇𝑚 per pixel. 

3.2.3 Generating dataset: Isolation of Particles 

In addition to the binary image, the EDT of the input image, as shown in Figure 3.4 (left), was fed to 

the NN model since it has been shown to facilitate the training (Santos et al., 2020, 2021). In particular, 

the motivation was the concentration profile would be higher at the outer radius and lower in the center, 

therefore the EDT of the image would look similar to the concentration profile within the particle. It is 

not strictly necessary to have the EDT of the image as the input to the network (though this is not a 

particularly expensive operation), one could opt to feed in the raw input image though it facilitated the 

training albeit not by a significant margin. As mentioned in previous sections, the NN model was 

designed to predict SoL for individual particles. Note, however, that the layout of the neighboring 

particles affects mass transport and consequently the SoL of the particle of interest. Therefore, the 

neighboring particles were also included in the input image to make NN predictions more robust. To 

standardize how many particles to include, starting from the center of an arbitrary particle of interest 

with a radius of 𝑅=, the width and height of the input image was defined by 3𝑅=. Since the particle sizes 

are distributed between 1	𝜇𝑚 and 10	𝜇𝑚, the extracted images will have different sizes. To standardize 

the inputs, the resulting images were scaled to be 150 by 150 pixels using the nearest neighbor 

interpolation. Note that the zoom factor for each image was recorded and fed to the NN model as 

metadata, which will be discussed in the following sections. Finally, since each input image consists of 

many particles, only one of which is of interest, using watershed segmentation a mask was generated 

for the particle of interest, as shown in Figure 3.4 (middle), which is later used by the NN model to 

only return the SoL for this particle, as shown in Figure 3.4 (right). 
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Figure 3.4. Each input image (left) is a cut-out of a region of the microstructure centered around a particle 
followed by the Euclidian distance transform. The figure in the middle is the mask of the particle of 
interest and the one on the right is the SoL map for the respective particle. 

3.2.4 Metadata 

In addition to the image-based inputs to the CNN, a feature vector was fed into the network to predict 

the SoL. This vector consists of 4 critical parameters necessary for the network to predict the dynamic 

nature of cell operation and the other 5 may be considered as metadata to facilitate the learning process. 

The parameters constituting the feature vector are tabulated in Table 3.4. The critical parameters were 

time, C-rate, zoom factor, and distance from separator. Many of the same images may be fed to the 

network which correspond to a particle of interest, but battery discharge is transient, thus without the 

time and C-rate parameters the output would be multimodal. Regarding distance from separator, during 

discharge the particles near the separator will reach a higher SoL sooner than the particles near the 

current collector so the distance from the separate was included in the metadata (Lu et al., 2021; Xu et 

al., 2019). Additionally, smaller particles typically experience uniform lithiation whereas larger 

particles would have a larger concentration gradient so the particle radius was provided (Lu et al., 2021; 

Xu et al., 2019). The term “metadata” is defined as information that would help the model train but are 

not critical. Porosity is an example of such; the model could theoretically infer the porosity from the 

image fed into the network but having this value precomputed would facilitate the model learn. It is a 

common practice to scale each variable to a standard range (i.e., 0 → 1) to help ML models better learn 

the data (Obaid, Hadeel S.; Dheyab, Saad Ahmed; Sabry, 9AD). These features are all trivial to obtain 

to do not require any computational resources that would undermine the speed-up obtained by the 

model. 
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Table 3.4: Features (metadata) used in the ML model to aid with predicting SoL. These values were 
simply scaled by their respective maximum value so their values, between [𝟎, 𝟏], are fed to the model 
with a similar magnitude. 

Features Normalization Value Description 

x 1 x-coordinate of center of particle (1) 

y 100 y-coordinate of center of particle 
(𝜇𝑚) 

R 10 radius of NMC particle (𝜇𝑚) 

L 176 length of electrode (𝜇𝑚) 

zoom factor 9 discussed in text 

C-rate 3 discussed in text 

Time 14400 time since discharge (s) 

distance from Separator 1 discussed in text 

porosity 1 discussed in text 

 

3.3 Machine Learning Model 

3.3.1 Machine Learning Architecture 

The ML workflow in this work was written in Python and using the TensorFlow library (TensorFlow 

Developers, 2022). An autoencoder architecture was used to build the NN model. This architecture is 

composed of two parts, the encoder and the decoder as shown in Figure 3.5. The ReLU activation 

function was used for majority of the model. The encoder takes in a 2D image as input and compresses 

it by consecutively applying convolutional filters followed by max pooling with a stride of 2, which 

eventually results in a 1D array of compressed information. The decoder part, which is essentially the 

encoder but in reverse order, takes in this 1D array and decompresses it to eventually reconstruct a 2D 

image of the same size as the input. Upscaling is handled by nearest neighbour interpolation (Odena, 

Dumoulin, & Olah, 2017). An additional convolutional layer with the sigmoid activation function was 

added so the output would be bounded between 0 and 1. Finally, the feature vector was introduced to 
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the NN model by adding them to the compressed 1D array in the bottleneck section, i.e., the junction 

between the encoder and the decoder. 

 

 

Figure 3.5: The image-to-image regression NN architecture used in this study. The images on the 
left and right are the input and target images, respectively. The blocks in the encoder and decoder 
sections represent Conv2D with max pooling and Conv2D with resizing layers each activated with 
ReLU. 

3.3.2 Model Training 

A common practice within ML is to split the overall dataset into training, validation, and test datasets. 

Optimization of the model is performed on training and validation is used to tune the hyperparameters 

of the model. In this work, this splitting was done on a randomly shuffled dataset, however, it would 

be prudent to perform shuffling according to a per electrode basis. Training was performed on a shuffled 

dataset on a per sample basis, though test data in Figure 4.1 is conducted on a separate dataset for an 

unbiased estimate of the performance of the model on unseen data – more details are provided in later 

sections. The data loading function are provided in Appendix A.2. The model was trained by 

minimizing the loss function as per: 

ℒ =
1
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where 𝑁* is the number of samples, and 𝑁! and 𝑁^ are the number of pixels along 𝑥 and 𝑦 axes, 

respectively. In simple terms, the loss function, ℒ, is defined as the mean squared error (MSE) between 

the predicted SoL and the ground truth SoL values from FEM simulations. The code for evaluating the 

loss function is provided in Appendix A.3. The root mean squared error (RMSE) is defined as: 

RMSE = √ℒ (3.2) 

This value could also be reported in terms of a percentage in this case; SoL is fraction – from 0 − 1 

– so multiplication by 100	% reads as “𝑥 % SoL RMSE”. To clarify, this interpretation of RMSE is 

possible as SoL can be interpreted as a percentage, so RMSE and root mean percentage squared error 

are separate entities. 

3.3.3 Processing for ML-Predicted SoL Map and Averaged SoL Profile 

Recall that the model predicts the SoL for isolated particles of interest, similar to Figure 3.4. These 

individual images could be reconstructed into a SoL map for comparison against the voxelized DNS 

equivalent. A flow chart depicting the algorithm for reconstructing a SoL map with predicted images 

from the NN model is shown in Figure 3.6 and the code is provided in Appendix A.4. 
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Figure 3.6: Algorithm for reconstructing a SoL map with the predicted images from the NN model. 
The inputs to the model are numbered on the top-left. Within the algorithm, the “reconstruction” step 
is performed for all of the particles in a microstructure; this step is shown on the top-right. 

 

One quantitative metric to evaluate the performance of the model is to compare the reconstructed 

against the voxelized DNS SoL maps. The RMSE was used in this work. It should be noted that the 

pixels corresponding to the void phase were excluded and only pixels corresponding to the NMC phase 

were evaluated. In other words, the formula for this RMSE is similar to equation (3.2) but 
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normalization is the number of pixels corresponding to the NMC phase. Another visualization used in 

this work is plots of the average SoL along the length of the electrode. The average SoL at a certain 

point 𝑥 was averaged across the 𝑦 or in-plane direction of the cell. Also, the minimum, maximum, or 

standard deviation of SoL values could be estimated. The data for these plots were obtained for both 

reconstructed and voxelized DNS SoL maps. 
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Chapter 4 
Results and Discussion 

4.1 Generation of Reference Data 

FEM simulations were performed on a 2021 MacBook Pro with the Apple M1 Pro chip. Generation of 

60 electrodes with 5 C-rates until 100% Depth-of-Discharge (DoD) took ~ 26 hours The proposed ML 

workflow was benchmarked against FEM and tabulated for a half-cell configuration as per Table 4.1. 

This benchmark suggest that the proposed workflow is on average an order of magnitude faster than 

the DNS solution.  Based on Table 4.1, the ML runtime for the C-rate of 0.25 is almost twice that of 

other C-rates. This extra overhead is because the first run involves two additional steps for computing 

the distance transform and the watershed transform of the input image, which are then cached to speed 

up predictions at other C-rates. The results indicate that the FEM runtime decreases with increasing C-

rate while the ML model has a relatively constant runtime around 65 seconds. Increasing the C-rate 

decreases the discharge time so the DNS solver would have to perform less time-stepping whereas the 

ML framework typically outputs 12 SoL maps. It should be noted that the metadata incorporated in this 

work is relatively simple (see Table 3.4), with the most time-consuming metric computed being the 

zoom factor. If a three-dimensional surrogate would be constructed with this ML approach, 

convolutions would run in linear time. In comparison, solving the assembled matrices in the DNS run 

in either quadratic or cubic time depending on if an iterative or direct algorithm is used, respectively. 

Therefore, a significant speed-up may be possible in implementing a three-dimensional model similar 

to the model presented here. 
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Table 4.1: Runtime comparison between the ground-truth FEM and proposed ML-based framework. 

Benchmark was conducted on an electrode with a length of 176 𝝁𝒎, porosity of 0.435, tortuosity of 

1.86, and a total of 553 particles. 

C-Rate FEM runtime (s) ML runtime (s) Speedup 

0.25 954 104.24 9.2 

0.5 838 66.54 12.6 

1 730 65.50 11.1 

2 539 64.69 8.3 

3 427 65.30 6.5 

4.2 Model Training 

A total of 60 electrodes were generated, on which battery discharge was simulated using FEM at the 

following C-rates: 0.25C, 0.5C, 1C, 2C and 3C. The resulting dataset had 1,009,065 samples which 

were generated by taking snapshots of the solution for a particular electrode and C-rate at different time 

steps. 70% of the data were used for training, 15% for validation, and the remaining 15% for testing. 

The inputs and targets were represented as pixel images, and the values were scaled between [0, 1]. 

The model was trained by minimizing the loss function as per equation (3.1). The NN was trained using 

a stochastic gradient descent approach. The Adam optimizer (Kingma & Ba, 2015) was used with a 

batch size of 256 (to saturate the GPU memory for optimal performance) with an initial learning rate 

of 𝑙𝑟 = 10Be, 𝛽> = 0.9, 𝛽% = 0.999, and 𝜀 = 10Bf. The network was trained for 200 epochs where 

the learning rate was scheduled to halve every 50 epochs with an exponential decay between each epoch 

(Y. Wang, Xiao, & Cao, 2022). The training and validation loss were computed across the respective 

datasets after each epoch. 

 

In terms of optimized hyper-parameters, two candidate autoencoder models were compared, the first 

with 16, 32, 64, 128, 256, and 512 filters and the second with an additional layer with 1024 filters, 

depicted in Figure 3.5. The training and validation loss of the big and smaller models were  2.52 × 10Be 

and 3.89 × 10BK compared to 8.63 × 10Be and 2.95 × 10BK. Thus, the smaller model was chosen 

based on its lower validation loss. The NN was trained using TensorFlow v2.10 on a server computer 
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with a 2.10 GHz Intel Xeon CPU and two Nvidia Quadro RTX 8000 48GB GPUs. Each epoch on 

average took 428 seconds for a total training time of 1,428 minutes. 

4.2.1 Loss Curves 

Figure 4.1 shows the loss curves for training and test datasets. It should be noted that this curve is not 

from the model training but was constructed post hoc. The training data in the figure was obtained in a 

similar fashion to the training data used during model training, viz. a 70% random shuffling on a per 

sample basis. The test data shown represents data generated from two electrodes separately from the 

original 60 electrode with new random particle arrangements. Based on this figure, the training loss is 

decreasing indefinitely while the test loss is at its minimum at around epoch 25, and then starts to 

increase. This indicates that the model starts to overfit (i.e., memorize the features in the training 

dataset) at epoch 25 and therefore, the model state at this stage was stored for later evaluations and is 

referred to as the “best model”. 

 

 

Figure 4.1: Training data from the randomly shuffled dataset on a per image basis, 70% of the overall 
dataset was used (blue triangle markers). The red star markers represent data from two electrodes 
generated separately and is unseen data. The shaded regions are one standard deviation of loss values 
obtained from three independent trainings. The two-electrode dataset loss suggests that optimal 
model performance occurs at around epoch 25. 



 

 51 

4.3 Model Evaluation 

To evaluate the best model in physical terms rather than just reporting the 𝐿% loss, the average relative 

error of SoL was computed for both the training and test datasets. For the training set, the average 

relative error was evaluated to be ~	0.3%, which is not surprising since the NN model has already 

“seen” them during training. For the test set, which have not been seen by the NN during training, the 

average relative error was evaluated to be less than	1%. This performance indicates that the NN model 

has been able to generalize well beyond the training set. For qualitative demonstration, Figure 4.2 shows 

the SoL values for isolated particles predicted by the NN model against ground truth for randomly 

selected particles at different time points and C-rates, accompanied by the respective relative error 

computed at individual pixels. Based on our analyses and as confirmed by this figure, not only the 

average relative error for the entire test dataset is below 1%, but that for individual particles and even 

individual pixels within each particle is still maintained below 1%. 

 

 

Figure 4.2: Comparison of ML predictions for SoL against ground truth for randomly selected 
particles from the test dataset. 

 

Since concentration gradients within the particles have been shown to correlate to stress (Fathiannasab 

et al., 2021) and therefore degradation, it is of interest to see if the ML model is able to predict such 

gradients. Although the results presented in Figure 4.2 show an acceptable agreement between ML 

predictions and ground truth for SoL, it is difficult to judge model accuracy for SoL gradients, 
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especially that such gradients are very subtle within each particle and therefore, the color bar needs to 

be rescaled to minimum and maximum SoL of individual particles. 

4.4 Comparison on Whole Electrode 

Thus far, an ML model has been trained to predict the SoL for isolated particles in a given electrode 

microstructure using the procedure described in section 3.2 and with representative results shown in 

Figure 4.2. However, the current form is not of practical use, so the predicted images must be 

recombined to create a continuous SoL map for the entire electrode. Figure 4.3 shows the SoL map for 

the entire electrode at different C-rates at 50% depth of discharge as predicted by the ML model and 

compared against the FEM solution for a microstructure randomly selected from the test dataset. 

 

 

Figure 4.3: SoL (colorbar) at 50% discharge capacity based on C-rates, current flows from bottom to up. 
The generated solmaps are for microstructure 3, as tabulated in Table 3.3. Subplots (a) are for 0.25C at 
7200s, (b) for 1C at 1800s, and (c) for 3C at 600s, the left and right panels are solmaps generated from 
the Machine Learning model and from FEM, respectively. Note the logarithmic scaling of the relative 
error color map. 

 



 

 53 

The ML predictions in this figure have been reconstructed, i.e., the ML model was used to predict the 

SoL map for individual particles and in the end, they were combined to generate the SoL map shown 

in this figure. Based on this figure, the average relative error is consistently below 5%, which indicates 

that the ML model has been able to generalize beyond the training dataset with acceptable accuracy. 

Although the average relative error for all three C-rates is below 5%, the results show higher error as 

C-rate increases. To explain this behavior, note that NN models tend to perform better on continuous 

data (Grinsztajn, Oyallon, & Varoquaux, 2022). Consequently, relatively sharp gradients are more 

difficult to capture for NN models. In the context of this work, discharging a battery at high C-rates 

leads to a Li concentration distribution with relatively sharp gradients near the membrane, which 

possibly explains the worse performance of the ML model at high C-rates. 

 

 

Figure 4.4: Plane-averaged SoL distribution for an unseen microstructure at 3C (left), 1.5C (middle), 
and 3.5C (right) discharge rates at 50% depth of discharge (𝒕 = 𝟗𝟎𝟎𝒔) as a function of distance from 
the membrane. The solid line is the FEM solution, and the blue dots are ML predictions. The shaded 
region shows one standard deviation of SoL values for the FEM solution. 

 

Turning attention now to the spatial distribution of SoL on the electrode scale, Figure 4.4 shows the 

plane-averaged SoL as a function of distance from the membrane at 3C (left), 1.5C (middle), and 3.5C 

(right) discharge rates and at the theoretical 50% depth of discharge, i.e., 𝑡 = 900	𝑠, for an unseen 

microstructures. The shaded red region represents one standard deviation of SoL values for the FEM 

solution at the 𝑥-axis along the through-plane direction while the solid line and markers represent the 

average SoL at that point for FEM and ML model, respectively. Note that 3C discharge rate was seen 

during training (though the microstructure was not) unlike 1.5C and 3.5C, which were chosen to 
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evaluate the generalizability of the ML model in the interpolation and extrapolation regimes, 

respectively. Based on this figure, the maximum relative error for 3C, 1.5C, and 3.5C discharge rates 

were calculated to be 5%, 4.5%, and 15%, respectively, which suggests good agreement in the 

interpolation regime, and acceptable agreement in the extrapolation regime. This sharp increase in 

relative error in the extrapolation regime is not surprising since NN models typically perform best when 

operating in the interpolation regime (Chollet, 2021c). The SoL values were spatially pooled in Figure 

4.5 to visualize the error of the unseen electrode during discharge at various C-rates. To help the NN 

model to extrapolate, one could use physics informed neural networks (PINNs), which at its core 

involves adding a physics-based term to the loss function (Raissi, Perdikaris, & Karniadakis, 2019), but 

that is beyond the scope of this work. 
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Figure 4.5: RMSE on the time scale between voxelized FEM and CNN-predicted solmaps from 
beginning of discharge to fully discharged. The time steps were normalized against the theoretical 
time of discharge, so a complete discharge would end at a time step of 12. Values were computed on 
C-rates seen (a) and not seen (b) during training, corresponding to the “unseen” electrode. The SoL 
profile across the length of the electrodes corresponding to red markers: triangle in (a), and square 
and circle (b); were plotted in Figure 4.4 to understand the performance of the CNN on the highest 
observed error values on a “seen”, interpolated, and extrapolated C-rates, respectively.  
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Chapter 5 
Conclusions and Recommendations 

A machine learning framework was developed to explore the possibility of predicting the state-of-

lithiation within the NMC particles of a Li-ion battery electrode. The model was intended as an accurate 

surrogate with the aim of rapidly predicting the SoL given a new microstructure to avoid the use of 

computationally expensive direct numerical simulations. To simplify this task in this proof-of-concept 

study, the particles were assumed to be circular, with radii between 1 and 10 𝜇𝑚, and with a porosity 

range of 35-60%. For establishing ground truth values required for training the ML model, FEM 

simulations of battery discharge were conducted at various C-rates and depth of discharge. As for the 

ML model, an auto encoder convolutional neural network was used and trained on the data generated 

from FEM simulations. The inputs to the ML model were the binary image representing the 

microstructure, as well as its Euclidean distance transform, which was used to facilitate the training. To 

further aid the training, additional metadata was also extracted and fed to the ML model. The ML model 

was designed to predict the SoL for isolated particles rather than for the entire electrode microstructure. 

For this reason, to predict the SoL for the entire electrode, the model needs to be run multiple times and 

the results pieced back together to reconstruct the entire electrode. Due to this approach, we evaluated 

the model performance at two levels: isolated particles, and the entire electrode. For the former, the 

model was shown to be able to predict the SoL of individual particles with reasonable accuracy, 

although it struggled to accurately predict the concentration gradient in larger particles at high C-rates. 

For the latter, however, the model was able to accurately capture the SoL distribution across the entire 

electrode with reasonable accuracy. We also evaluated the performance of the ML model in predicting 

the SoL for C-rates unseen during the training. We tested different C-rates both in the interpolation and 

extrapolation regimes. In the former, the model performed very similar to those C-rates seen during 

training with a maximum relative error of 5% (for a particular unseen microstructure), while in the 

latter, the model accuracy significantly dropped although it still maintained within an acceptable range 

with a maximum relative error of 15% (for the same microstructure). Conventional methods of 

predicting state-of-lithiation within electrode particles solve partial differential algebraic equations 

using numerical methods such as the finite element method. The main idea of this framework was to 

reduce the computation time to predict the state-of-lithiation for battery discharge in heterogeneous 

models. Our benchmarks indicate that computation time is at least an order of magnitude quicker in 
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comparison to finite element simulations, and we expect even higher speedups in the 3D case. This 

work – to the best of our knowledge – is the first to leverage neural networks to circumvent the 

requirement of solving PDEs in understanding battery discharge behavior. This work is a proof-of-

concept which indicates that machine learning models could be a viable alternative to study battery 

behavior, although we considered a simplified circular geometry for NMC particles as a first 

approximation.  

There are a few recommendations to expand upon the work presented here: 

• This work could be extended to study battery discharge behavior on real tomography images. 

The usage of the watershed masks presented here is flexible and could be applied to segment 

individual particles in a real microstructure. 

• The samples should be shuffled in terms of a per-electrode basis. Randomly shuffling the 

dataset in a per-sample basis can incorporate data from other microstructures unintentionally. 

It would be beneficial to have a larger validation dataset composed of randomly shuffled 

electrode data to do a more rigorous search of hyperparameters. 

• Relating to the previous point, selection of optimal hyperparameters could be achieved through 

an ablation study. This means identifying a set of candidate hyperparameters and conduct a 

parametric study on how a hyperparameter affects the loss as well as identifying the values of 

the best parameters. 

• The Laplacian convolutional filter could be used to construct an additional loss term in the 

optimization process to incorporate a physics-informed loss into the neural network. It would 

be interesting to see if the concentration gradients are improved in the prediction. 
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Appendix A 
Python Code 

The samples of the Python code used in this work could be found here. Typing definitions used within 

the framework are defined herein. The Extract-Transform-Load functionality is used to load data from 

persistent memory into random-access memory, and the code for the custom loss function used during 

training is defined. The last code block reconstructs a SoL map from the output images as described in 

section 3.3.3. The table below specifies the version numbers of the most important software packages 

used in this work. 

 

Table A.1 Key Python software packages used in this work and the specific versions. 

Software Version 

NumPy 1.22.4 

Numba 0.56 

Pandas 1.4.3 

PoreSpy 2.1 

SciKit-Image 0.19.3 

SciPy 1.9.0 

TensorFlow 2.10 

 

1. Typing Definitions 

01: from typing import Tuple, TypedDict, List, Callable 
02: import numpy as np 
03: import tensorflow as tf 
04:  
05: meshgrid = Tuple[np.ndarray, np.ndarray] 
06:  
07:  
08: ETL_key_fn = Callable[[int], tf.types.experimental.TensorLike] 
09: ETL_key_and_tensor_fn = Callable[ 
10:     [int, tf.types.experimental.TensorLike], tf.types.experimental.TensorLike 
11: ] 
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12: ETL_fn = ETL_key_and_tensor_fn 
13:  
14:  
15: class Circle_Info(TypedDict): 
16:     x: str 
17:     y: str 
18:     R: str 
19:  
20:  
21: class Microstructure_Data(TypedDict): 
22:     id: int 
23:     length: int 
24:     porosity: str 
25:     tortuosity: str 
26:     circles: List[Circle_Info] 
27:  
28:  
29: class Metadata(TypedDict): 
30:     micro: str 
31:     x: float 
32:     y: str 
33:     R: str 
34:     L: int 
35:     zoom_factor: float 
36:     c_rate: str 
37:     time: str 
38:     dist_from_sep: float 
39:     porosity: float 
40:  
41:  
42: class Metadata_Normalizations(TypedDict): 
43:     L: int 
44:     h_cell: int 
45:     R_max: float 
46:     zoom_norm: float 
47:     c_rate_norm: float 
48:     time_norm: int 
49:  
50:  
51: META_INDICES = { 
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52:     "x": 0, 
53:     "y": 1, 
54:     "zoom_factor": 4, 
55: } 
56: 

2. Extract-Transform-Load Functionality 

001: from typing import List, Dict, Tuple, Callable, Union 
002:  
003: import tensorflow as tf 
004: import numpy as np 
005:  
006: from scipy.ndimage import zoom 
007: from scipy import ndimage as ndi 
008: from skimage.segmentation import watershed 
009: import porespy as ps 
010:  
011: from utils import typings 
012:  
013:  
014: class ETL_Functions(): 
015:  
016:     @staticmethod 
017:     def load_npy_arr_from_dir( 
018:         pic_num: int, 
019:         data_dir: str, 
020:         img_dir: str, 
021:         img_size: int, 
022:         tf_img_size: int, 
023:         order: int = 0, 
024:     ) -> tf.types.experimental.TensorLike: 
025:         path = tf.strings.join( 
026:             [data_dir, "/", img_dir] 
027:         ) 
028:         fname = tf.strings.join( 
029:             [path, "/", tf.strings.as_string(pic_num), ".npy"]) 
030:  
031:         img = tf.numpy_function( 
032:             np.load, [fname], tf.uint16, 
033:         ) 
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034:         img = tf.cast(img, dtype=tf.float32) 
035:  
036:         zoom_factor = tf_img_size / img_size 
037:         img = tf.py_function( 
038:             lambda a: zoom(a, (zoom_factor, zoom_factor, 1), order=order), 
039:             [img], 
040:             tf.float32, 
041:         ) 
042:         return img 
043:  
044:     @ staticmethod 
045:     def gather_img_from_np_arr( 
046:         idx_num: int, 
047:         arr_imgs: np.ndarray, 
048:         img_size: int, 
049:         tf_img_size: int, 
050:         order: int = 0, 
051:     ) -> tf.types.experimental.TensorLike: 
052:         img = tf.gather(arr_imgs, idx_num) 
053:         img = tf.convert_to_tensor(img) 
054:  
055:         zoom_factor = tf_img_size / img_size 
056:         img = tf.py_function( 
057:             lambda a: zoom(a, (zoom_factor, zoom_factor, 1), order=order), 
058:             [img], 
059:             tf.float32, 
060:         ) 
061:         return img 
062:  
063:     @ staticmethod 
064:     def dist_transform_input( 
065:         idx_num: int, 
066:         inp_img: tf.types.experimental.TensorLike, 
067:     ): 
068:         # Solid and paddings 
069:         thres = tf.math.less(inp_img, 1.0) 
070:         distance = tf.py_function( 
071:             ndi.distance_transform_edt, [thres], tf.float32 
072:         ) 
073:  
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074:         # Normalize Distance Transform 
075:         dist_max = tf.math.reduce_max(distance) 
076:  
077:         distance = tf.cast(distance, tf.float32) 
078:         dist_max = tf.cast(dist_max, tf.float32) 
079:  
080:         distance = tf.math.scalar_mul(1 / dist_max, distance) 
081:  
082:         return distance 
083:  
084:     @ staticmethod 
085:     def get_mask( 
086:         idx_num: int, 
087:         inp_img: tf.types.experimental.TensorLike, 
088:         tf_img_size: int, 
089:         width_wrt_radius: float = 3, 
090:         encoding: float = 1.0, 
091:     ): 
092:         center_loc = tf_img_size // 2 
093:  
094:         # Threshold input image to boolean where `True` is the solid phase. The 
095:         # solid phase is taken to be less than the pore encoding as greater 
096:         # than the padding encoding of `0.0`. 
097:         cond1 = tf.math.less(inp_img, encoding) 
098:         cond2 = tf.math.greater(inp_img, 0.0) 
099:  
100:         thres = tf.math.logical_and(cond1, cond2) 
101:         thres = tf.cast(thres, tf.bool) 
102:  
103:         # Use the EDT on the solid phase with `True` values 
104:         distance = tf.py_function( 
105:             ndi.distance_transform_edt, [thres], tf.float32) 
106:  
107:         # Return array where `True` entries represent the peaks 
108:         peaks = tf.numpy_function( 
109:             ps.filters.find_peaks, [distance], tf.bool, 
110:         ) 
111:  
112:         # Label the `peaks` in an array with unique integer numbers for the 
113:         # peaks 
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114:         markers, _ = tf.py_function( 
115:             ndi.label, [peaks], [tf.int32, tf.int64], 
116:         ) 
117:  
118:         # Take the negative of distance since watershed fills "basins" 
119:         distance = tf.math.scalar_mul(-1., distance) 
120:         # Watershed segmentation 
121:         labels = tf.numpy_function( 
122:             watershed, [distance, markers], tf.int32, 
123:         ) 
124:  
125:         # Find label of the center particle and then do a boolean 
126:         # for the center image 
127:         center_lab = labels[center_loc, center_loc] 
128:  
129:         # Get indices in the array which correspond to labels for the center 
130:         # particle 
131:         label_indices = tf.where( 
132:             tf.math.equal(labels, center_lab) 
133:         ) 
134:  
135:         # Update a boolean image where `True` correspond to the watershed 
136:         # region for the particle of interest 
137:         shape = tf.shape(label_indices) 
138:         update = tf.ones(shape[0], tf.bool) 
139:  
140:         mask_im = tf.zeros_like(thres, tf.bool) 
141:         mask_im = tf.tensor_scatter_nd_update( 
142:             mask_im, label_indices, update, 
143:         ) 
144:  
145:         perturb = tf.cast( 
146:             tf.math.ceil(tf_img_size / width_wrt_radius / 8), tf.int32 
147:         ) 
148:  
149:         def update_mask_perturb(y, x, ret_im): 
150:             # `y` and `x` are +1 or -1 
151:             label = tf.where( 
152:                 tf.math.equal(labels, labels[ 
153:                     center_loc + y * perturb, 
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154:                     center_loc + x * perturb, 
155:                 ]) 
156:             ) 
157:             update = tf.ones(tf.shape(label)[0], tf.bool) 
158:             ret_im = tf.tensor_scatter_nd_update( 
159:                 ret_im, label, update, 
160:             ) 
161:             return ret_im 
162:  
163:         mask_im = update_mask_perturb(-1, -1, mask_im) 
164:         mask_im = update_mask_perturb(-1, 1, mask_im) 
165:         mask_im = update_mask_perturb(1, -1, mask_im) 
166:         mask_im = update_mask_perturb(1, 1, mask_im) 
167:  
168:         return tf.math.logical_and(mask_im, thres) 
169:  
170:     @ staticmethod 
171:     def format_metadata( 
172:         idx_num: int, 
173:         metadata_lookup_table: tf.lookup.StaticHashTable, 
174:     ) -> tf.types.experimental.TensorLike: 
175:         key = tf.strings.as_string(idx_num) 
176:         as_str = metadata_lookup_table[key] 
177:         str_nums = tf.strings.split(as_str, sep="-") 
178:         ret = tf.strings.to_number(str_nums, out_type=tf.dtypes.float32) 
179:         return ret 
180:  
181:     @ staticmethod 
182:     def fake_output( 
183:         idx_num: int, 
184:         tf_img_size: int, 
185:     ) -> tf.types.experimental.TensorLike: 
186:         _ = idx_num 
187:         blank_im = np.zeros( 
188:             (tf_img_size, tf_img_size, 1) 
189:         ) 
190:         blank_im = tf.convert_to_tensor(blank_im) 
191:         return blank_im 
192:  
193:     @ staticmethod 
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194:     def configure_for_performance( 
195:         ds: tf.data.Dataset, 
196:         batch_size: int, 
197:         AUTOTUNE, 
198:     ): 
199:         # 
https://www.tensorflow.org/tutorials/load_data/images#using_tfdata_for_finer_control 
200:         ds = ds.cache() 
201:         ds = ds.batch(batch_size) 
202:         ds = ds.prefetch(buffer_size=AUTOTUNE) 
203:         return ds 
204:  
205:  
206: class ETL_2D(): 
207:  
208:     def __init__( 
209:         self, 
210:         metadata: Dict[str, typings.Metadata], 
211:         metadata_norm: typings.Metadata_Normalizations, 
212:         criteria_arr: List[int], 
213:         batch_size: int, 
214:         tf_img_size: int, 
215:         process_input_fns: List[typings.ETL_fn], 
216:         process_target_fns: List[typings.ETL_fn], 
217:     ): 
218:         self.AUTOTUNE = tf.data.AUTOTUNE 
219:         self.metadata_norm = metadata_norm 
220:         self.batch_size = batch_size 
221:         self.tf_img_size = tf_img_size 
222:  
223:         self.metadata_lookup = self.get_static_hash_table( 
224:             metadata, 
225:             process_value_fn=lambda num: self._format_metadata( 
226:                 num, 
227:                 metadata, 
228:             ), 
229:             default_value="", 
230:         ) 
231:  
232:         self.starting_ds = tf.data.Dataset.from_tensor_slices(criteria_arr) 
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233:  
234:         self.input_fns = process_input_fns 
235:         self.output_fns = process_target_fns 
236:  
237:     def get_ml_dataset(self) -> tf.data.Dataset: 
238:  
239:         inp_ds = self.starting_ds.map( 
240:             self._process_input_path, num_parallel_calls=self.AUTOTUNE) 
241:         out_ds = self.starting_ds.map( 
242:             self._process_output_path, num_parallel_calls=self.AUTOTUNE) 
243:  
244:         inp_ds = ETL_Functions.configure_for_performance( 
245:             inp_ds, self.batch_size, self.AUTOTUNE) 
246:         out_ds = ETL_Functions.configure_for_performance( 
247:             out_ds, self.batch_size, self.AUTOTUNE) 
248:  
249:         ret_ds = tf.data.Dataset.zip((inp_ds, out_ds)) 
250:         return ret_ds 
251:  
252:     def amend_metadata_to_loader( 
253:         self, 
254:         input_ds: tf.data.Dataset, 
255:         mask_ds: tf.data.Dataset, 
256:         target_ds: tf.data.Dataset, 
257:     ): 
258:  
259:         meta_ds = self.starting_ds.map( 
260:             lambda arr_idx: ETL_Functions.format_metadata( 
261:                 arr_idx, self.metadata_lookup), 
262:             num_parallel_calls=self.AUTOTUNE, 
263:         ) 
264:         meta_ds = ETL_Functions.configure_for_performance( 
265:             meta_ds, self.batch_size, self.AUTOTUNE) 
266:  
267:         ret_ds = tf.data.Dataset.zip( 
268:             ((input_ds, mask_ds, meta_ds), target_ds) 
269:         ) 
270:         return ret_ds 
271:  
272:     def _process_input_path( 
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273:         self, 
274:         arr_idx: int, 
275:         input_im: tf.types.experimental.TensorLike = None, 
276:     ) -> Tuple[ 
277:             tf.types.experimental.TensorLike, 
278:             tf.types.experimental.TensorLike, 
279:             tf.types.experimental.TensorLike, 
280:     ]: 
281:         for fn in self.input_fns: 
282:             input_im = fn(arr_idx, input_im) 
283:  
284:         # Use the "raw input" to create a mask for the center particle of 
285:         # interest. Order matters (for `input_im`) 
286:         mask_im = ETL_Functions.get_mask( 
287:             arr_idx, input_im, self.tf_img_size, 
288:         ) 
289:  
290:         # Now create a normalized distance transform on the particle phase to 
291:         # use as the input image to the Neural Network. 
292:         input_im = ETL_Functions.dist_transform_input(arr_idx, input_im) 
293:  
294:         metadata = ETL_Functions.format_metadata( 
295:             arr_idx, 
296:             self.metadata_lookup, 
297:         ) 
298:  
299:         return input_im, mask_im, metadata 
300:  
301:     def _process_output_path( 
302:         self, 
303:         arr_idx: int, 
304:         target_im: tf.types.experimental.TensorLike = None, 
305:     ) -> tf.types.experimental.TensorLike: 
306:         for fn in self.output_fns: 
307:             target_im = fn(arr_idx, target_im) 
308:  
309:         return target_im 
310:  
311:     def get_static_hash_table( 
312:         self, 
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313:         hash, 
314:         process_value_fn: Callable[[int], str], 
315:         default_value: str = "", 
316:     ) -> tf.lookup.StaticHashTable: 
317:         r''' The default value depends on what the data type of the key is. 
318:         ''' 
319:         keys: List[Union[str, None]] = [None for _ in range(0, len(hash))] 
320:         vals: List[Union[str, None]] = [None for _ in range(0, len(hash))] 
321:  
322:         for i, key in enumerate(hash.keys()): 
323:             val = process_value_fn(key) 
324:  
325:             keys[i] = str(key) 
326:             vals[i] = val 
327:  
328:         keys = tf.constant(keys) 
329:         vals = tf.constant(vals) 
330:  
331:         ret_table = tf.lookup.StaticHashTable( 
332:             tf.lookup.KeyValueTensorInitializer(keys, vals), 
333:             default_value=default_value, 
334:         ) 
335:  
336:         return ret_table 
337:  
338:     def _format_metadata( 
339:         self, 
340:         pic_num: int, 
341:         metadata: Dict[str, typings.Metadata], 
342:     ) -> str: 
343:  
344:         hash = metadata[str(pic_num)] 
345:  
346:         x = float(hash["x"]) 
347:         y = float(hash["y"]) / self.metadata_norm["h_cell"] 
348:         R = float(hash["R"]) / self.metadata_norm["R_max"] 
349:         L = float(hash["L"]) / self.metadata_norm["L"] 
350:         zoom = float(hash["zoom_factor"]) / self.metadata_norm["zoom_norm"] 
351:         c_rate = float(hash["c_rate"]) / self.metadata_norm["c_rate_norm"] 
352:         time = float(hash["time"]) / self.metadata_norm["time_norm"] 
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353:         porosity = float(hash["porosity"]) 
354:         dist_from_sep = float(hash["dist_from_sep"]) 
355:  
356:         as_float = [x, y, R, L, zoom, c_rate, time, porosity, dist_from_sep] 
357:  
358:         s = "-" 
359:         ret = s.join(str(num) for num in as_float) 
360:         return ret 
361:  
362: 
#########################################################################
###### 
363: # DECORATORS 
################################################################## 
364: 
#########################################################################
###### 
365:  
366:  
367: def leave_first(fn, *args): 
368:     def wrapped( 
369:         first_arg: int, 
370:     ) -> typings.ETL_key_fn: 
371:         return fn(first_arg, *args) 
372:     return wrapped 
373:  
374:  
375: def ignore_key( 
376:     fn: typings.ETL_key_fn, 
377: ) -> typings.ETL_key_and_tensor_fn: 
378:     def wrapped(arr_idx, tensor): 
379:         _ = arr_idx 
380:         return fn(tensor) 
381:     return wrapped 
382:  
383:  
384: def ignore_tensor( 
385:     fn: typings.ETL_key_fn 
386: ) -> typings.ETL_key_and_tensor_fn: 
387:     def wrapped(arr_idx, tensor): 
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388:         _ = tensor 
389:         return fn(arr_idx) 
390:     return wrapped 
391: 

3. Loss Function 

01: import tensorflow as tf 
02:  
03:  
04: class Mask_MSE(tf.keras.losses.Loss): 
05:  
06:     def __init__(self, name="mask_mask"): 
07:         super().__init__(name=name) 
08:  
09:     def call(self, y_true, y_pred): 
10:         # Evaluate pixels on the intersection where `y_pred` and `y_true` have 
11:         # valid input 
12:  
13:         # Just making sure we're not ignoring negatives, since if the 
14:         # predictions are negative within the valid region then we're 
15:         # artificially masking out these regions. 
16:         mask_pred_greater = tf.math.greater(y_pred, 0.0) 
17:         mask_pred_lesser = tf.math.less(y_pred, 0.0) 
18:  
19:         mask_pred = tf.math.logical_or(mask_pred_greater, mask_pred_lesser) 
20:         mask_true = tf.math.greater(y_true, 0.0) 
21:  
22:         # Intersection between both masks 
23:         mask = tf.math.logical_and(mask_pred, mask_true) 
24:         mask = tf.cast(mask, tf.float32) 
25:  
26:         y_pred = tf.math.multiply(y_pred, mask) 
27:         y_true = tf.math.multiply(y_true, mask) 
28:  
29:         return tf.math.reduce_mean(tf.square(y_pred - y_true)) 
30: 

4. SoL Map Reconstruction 

001: from typing import Tuple, Dict 



 

 80 

002:  
003: import numpy as np 
004: import tensorflow as tf 
005:  
006: import scipy.ndimage as ndi 
007: from scipy.interpolate import griddata 
008:  
009:  
010: from utils import typings 
011:  
012:  
013: ###################################################### 
014: # PREDICT "SOLMAP" FROM MACHINE LEARNING PREDICTIONS # 
015: ###################################################### 
016:  
017:  
018: def electrode_sol_map_from_predictions( 
019:     input_dataset: tf.data.Dataset, 
020:     predicted_imgs: np.ndarray, 
021:     micro_mask: np.ndarray, 
022:     L_electrode: int, 
023:     norm_metadata: Tuple[int, int, int, float, int, int], 
024:     batch_size: int, 
025:     scale: int = 10, 
026: ) -> Tuple[np.ndarray, Dict[str, float]]: 
027:     r'''`electrode_sol_map_from_predictions` takes an electrode (in the form of 
028:     an tf.data.Dataset) its predicted SOL output at a certain C-rate and time 
029:     step to "patch" all the particles back into whole electrode, thus returning 
030:     a "State-of-Lithiation"-map output. 
031:  
032:     This output could be compared to ground-truth values from COMSOL to 
033:     investigate the performance of the Machine Learning model, or as a stand- 
034:     alone tool to get SOL maps quicker than the Direct Numerical Solution 
035:     solution. 
036:  
037:     Note: "input_dataset" and "predicted_imgs" should be in the same order, 
038:         i.e., they should not be shuffled. Otherwise, the SOL will not be in 
039:         the correct order. 
040:  
041:     Inputs: 
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042:     - input_dataset: tf.data.Dataset 
043:     - predicted_imgs: np.array 
044:     - micro_mask: the microstructure with NMC phase a `True` 
045:     - L_electrode: electrode length (um) 
046:     - norm_metadata: values used to normalize the metadata during model 
047:         training 
048:     - batch_size: the `batch_size` of `input_dataset` 
049:     - scale: int; scales the resolution of the outputted image. 
050:     ''' 
051:  
052:     tf.experimental.numpy.experimental_enable_numpy_behavior() 
053:  
054:     _, h_cell, _, zoom_norm, _, _ = norm_metadata 
055:  
056:     solmap = np.zeros( 
057:         (h_cell * scale, L_electrode * scale, 1), 
058:         dtype=np.float32, 
059:     ) 
060:  
061:     predicted_imgs_ds = tf.data.Dataset.from_tensor_slices(predicted_imgs) 
062:     predicted_imgs_ds = predicted_imgs_ds.batch(batch_size) 
063:  
064:     # For each input (image, mask, metadata) in the dataset, extract the color 
065:     # from the Machine Learning output and place it in the coordinate in the 
066:     # electrode. 
067:     for data_batch, pred_batch in zip(input_dataset, predicted_imgs_ds): 
068:  
069:         in_batch, _ = data_batch 
070:         _, _, meta_batch = in_batch 
071:  
072:         x_centers = _ML_Pred_to_Solmap.get_meta_elem("x", meta_batch) * \ 
073:             tf.cast(L_electrode, tf.float32) 
074:         y_centers = _ML_Pred_to_Solmap.get_meta_elem("y", meta_batch) * \ 
075:             tf.cast(h_cell, tf.float32) 
076:         zoom_factors = _ML_Pred_to_Solmap.get_meta_elem( 
077:             "zoom_factor", meta_batch) * tf.cast(zoom_norm, tf.float32) 
078:  
079:         # Zoom images back to their original sizes 
080:         unzoomed_imgs = tf.map_fn( 
081:             _ML_Pred_to_Solmap.zoom_tensor_ret_img, 



 

 82 

082:             (pred_batch, zoom_factors), 
083:             fn_output_signature=tf.RaggedTensorSpec( 
084:                 shape=None, 
085:                 ragged_rank=1, 
086:                 dtype=tf.float32, 
087:             ) 
088:         ) 
089:  
090:         # Get the center pixel of a prediction image 
091:         prediction_centers = tf.map_fn( 
092:             lambda im: tf.math.scalar_mul( 
093:                 tf.cast(1/2, tf.float32), 
094:                 tf.cast(tf.shape(im.to_tensor())[0], tf.float32), 
095:             ), 
096:             unzoomed_imgs, 
097:             fn_output_signature=tf.TensorSpec( 
098:                 shape=(), 
099:                 dtype=tf.float32, 
100:             ) 
101:         ) 
102:  
103:         # Get a tensor of masks for the SoL values (RaggedTensor) 
104:         sol_value_mask = tf.math.greater(unzoomed_imgs, 0.0) 
105:  
106:         for batch_idx in range(pred_batch.shape[0]): 
107:             x = x_centers[batch_idx] 
108:             y = y_centers[batch_idx] 
109:             center = prediction_centers[batch_idx] 
110:  
111:             zoomed_pred_img = unzoomed_imgs[batch_idx].to_tensor() 
112:  
113:             # Meshgrids where a non-zero pixel is the x or y coordinate of a 
114:             # pixel which has a predicted SoL value. 
115:             sol_X, sol_Y = _ML_Pred_to_Solmap.sol_pixel_meshgrid( 
116:                 sol_value_mask[batch_idx]) 
117:  
118:             # Translate the meshgrids so we are: 
119:             #   - subtract predicted image center (circle centered at (0, 0)) 
120:             #   - add the scaled (x, y) center particle coordinates 
121:             elec_X, elec_Y = _ML_Pred_to_Solmap.sol_to_electrode_meshgrid( 
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122:                 (sol_X, sol_Y, sol_value_mask[batch_idx], x, y, center), 
123:                 scale, 
124:             ) 
125:  
126:             elec_X = elec_X.numpy() 
127:             elec_Y = elec_Y.numpy() 
128:  
129:             # Take SoL values from the "unzoomed" prediction images and place 
130:             # it in the corresponding meshgrid location in the SoLmap 
131:             elec_Y[elec_Y >= np.shape(solmap)[0]] = np.shape(solmap)[0] - 1 
132:             elec_X[elec_X >= np.shape(solmap)[1]] = np.shape(solmap)[1] - 1 
133:  
134:             solmap[ 
135:                 elec_Y, 
136:                 elec_X, 
137:                 :, 
138:             ] = zoomed_pred_img.numpy()[sol_Y, sol_X, :] 
139:  
140:     solmap_mask = solmap > 0.0 
141:  
142:     # Find pixels that are not common to both the `microstructure` and `solmap` 
143:     mismatched_pixels = np.logical_xor(micro_mask, solmap_mask) 
144:     # Filter extra particle - only pixels in found in `micro_mask` are valid 
145:     mismatched_pixels = micro_mask * mismatched_pixels 
146:  
147:     # Perform nearest neighbour interpolation for the `missing_indices` using 
148:     # data from the `existing_sol_indices` 
149:     missing_indices = np.where(mismatched_pixels) 
150:     existing_sol_indices = np.where(solmap_mask) 
151:  
152:     interpolated_sol_values = griddata( 
153:         existing_sol_indices, 
154:         solmap[existing_sol_indices], 
155:         missing_indices, 
156:         method="nearest", 
157:     ) 
158:  
159:     solmap[missing_indices] = interpolated_sol_values 
160:  
161:     # Another round of masking pixels (excess) 
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162:     excess_pixels = np.logical_xor(solmap > 0.0, micro_mask) 
163:     solmap = ~excess_pixels * solmap 
164:  
165:     # Return some statistics to show how many pixels were missing 
166:     stats = { 
167:         "num_pix_missing": np.sum(mismatched_pixels), 
168:         "per_pix_missing": np.sum(mismatched_pixels) / np.prod( 
169:             solmap_mask.shape) * 100, 
170:     } 
171:  
172:     return solmap, stats 
173:  
174:  
175: class _ML_Pred_to_Solmap(): 
176:  
177:     @ staticmethod 
178:     def get_meta_elem( 
179:         elem: str, 
180:         meta_tensor: tf.types.experimental.TensorLike 
181:     ): 
182:         return tf.gather( 
183:             meta_tensor, 
184:             typings.META_INDICES[elem], 
185:             axis=1, 
186:         ) 
187:  
188:     @ staticmethod 
189:     def zoom_tensor_ret_img(inputs): 
190:         img, zoom_factor = inputs 
191:  
192:         out_img_size = 1 / zoom_factor 
193:  
194:         unzoomed_img = tf.py_function( 
195:             lambda arr: ndi.zoom( 
196:                 arr, (out_img_size, out_img_size, 1), order=0 
197:             ), 
198:             [img], tf.float32, 
199:         ) 
200:  
201:         unzoomed_img = tf.RaggedTensor.from_tensor(unzoomed_img) 
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202:         return unzoomed_img 
203:  
204:     @ staticmethod 
205:     def sol_pixel_meshgrid(sol_value_mask): 
206:         # Get the pixel location of where SoL values are in the direct Machine 
207:         # Learning predictions 
208:  
209:         zoomed_im = sol_value_mask.to_tensor() 
210:         zoomed_img_size = tf.shape(zoomed_im)[0] 
211:  
212:         # Linearly spaced array 
213:         img_linspace = tf.range(0, zoomed_img_size) 
214:  
215:         # Meshgrid with coordinates corresponding to `zoomed_im` size 
216:         X, Y = tf.meshgrid(img_linspace, img_linspace) 
217:  
218:         def fn(T): return tf.math.multiply( 
219:             T, tf.cast(zoomed_im[:, :, 0], tf.int32)) 
220:  
221:         X = fn(X) 
222:         Y = fn(Y) 
223:  
224:         return X, Y 
225:  
226:     @ staticmethod 
227:     def sol_to_electrode_meshgrid(tup, scale): 
228:         # There may be some controversy in choosing which pixel would be the 
229:         # center either using `ceil`, `floor`, or `round` approach. 
230:         # 
231:         # For odd-sized images this is easy, it's just 1/2 the image rounded 
232:         # down, but for evenly-sized images this might be controversial: 
233:         #   5-pixels: 
234:         #       5 / 2 = 2.5 ==> 2 ([] [] [x] [] []) 
235:         #   4-pixels: 
236:         #       4 / 2 = 2   ==> 2 ([] [x] [] []) 
237:  
238:         X, Y, sol_value_mask, x, y, center = tup 
239:  
240:         sol_value_mask = sol_value_mask.to_tensor() 
241:  
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242:         def fn(T, coord): 
243:             return tf.cast(sol_value_mask, tf.float32) * scale * coord + \ 
244:                 (tf.cast(tf.expand_dims(T, axis=-1), tf.float32) - center) 
245:  
246:         # Translate SoL meshgrid to its location in the electrode 
247:         elec_X = tf.cast(tf.math.round(fn(X, x)), tf.int64) 
248:         elec_Y = tf.cast(tf.math.round(fn(Y, y)), tf.int64) 
249:  
250:         # Reshape since meshgrid should be (dim, dim) and not (dim, dim, 1) 
251:         elec_X = elec_X[:, :, 0] 
252:         elec_Y = elec_Y[:, :, 0] 
253:  
254:         return elec_X, elec_Y 
255: 

 

 


