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Abstract

Binder-jet additive manufacturing (BJAM) is a three-dimensional (3D) printing pro-
cess which produces parts from successive layers of a powder material (typically metal or
ceramic) and selective jetting of a liquid binder to join particles together in each layer.
These parts are subsequently exposed to heat treatment steps to remove the binder (de-
binding stage) and fuse the particles together (sintering stage) into a final part. During
this sintering process, the part experiences shrinkage as the voids between powder particles
are eliminated, and can experience distortion due to softening at high temperatures close
to the melting point of the material.

In this thesis, a modified version of the Skorohod-Olevsky viscous sintering (SOVS)
model is presented to model the densification and deformation of samples printed from
gas-atomized 4340 low-alloy steel during solid-phase sintering. First, a lumped form of the
model is considered for modeling the densification of samples inside a push-rod dilatome-
ter, and trained on one of the data sets. The fitting of the model to the experimental data
is done using a derivative-free global optimization approach – the data-based online non-
linear extremumseeker (DONE) algorithm. The resulting optimized model obtains density
prediction errors of at most 3% on the training data, but expectedly experiences greater
errors when applied to different heating rates.

The modified SOVS model is then implemented in 3D within COMSOL Multiphysics
software, and used to predict the densification and deformation of printed 4340 artifacts.
The artifacts were sintered inside an optical dilatometer furnace, and the contour data ex-
tracted from these experiments was used to train and validate the 3D sintering model using
the same optimization approach. The resulting optimized model could predict contour er-
rors within 0.3mm on the training data, and 1.4mm and 0.7mm for validation samples,
all with a characteristic length of 20mm. The results show good contour prediction per-
formance, despite the relatively simple nature of the modified SOVS model used in this
work, and establishes a basis for further sintering modeling using in-situ thermo-optical
measurements.
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Chapter 1

Introduction

Additive manufacturing (AM) is a rapidly growing method of manufacturing a wide range
of complex-shaped objects. While AM technology has existed for several decades, many
AM processes have experienced a rapid surge in popularity in recent years, and are begin-
ning to see industrial adoption for large-scale production. AM processes generally use a
base feedstock material, typically in the form of a filament, powder, or liquid, and construct
a part layer by layer by fusing the feedstock material together. Compared to conventional
modes of manufacturing such as molding, casting, or machining, AM processes offer far
greater design freedom, and can produce parts with less waste and necessary tooling.

This thesis focuses on an AM process known as Binder Jet Additive Manufacturing
(BJAM), with a focus on metal BJAM. In this process, a thin layer of powder is spread
onto a build bed, followed by selective deposition of a liquid binder with the use of an ink-
jet print head, (typically) followed by exposure to a heat source to cure the binder in order
to form a printed layer of a part. Successive layers of powder are deposited and jetted,
until a final solid part is obtained; the part at this stage is called a ”green part”. The part
in this ”green” state has low strength, and is only held together by the cured binder. For
most metal and ceramic materials processed via BJAM, the part is then heat treated in a
process known as de-binding and sintering to disintegrate the binding agent and to fuse the
powder to increase the strength of the part. The sintering process is well-established for
other conventional powder manufacturing processes, and many of its challenges translate
to BJAM, in addition to some sintering challenges unique to binder jetting.
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1.1 Motivation

During sintering, a part can experience severe deformations and shrinkage as it densifies
into a solid part. A key challenge in BJAM is in controlling the final properties and shape
of the resulting sintered part, given these effects. Unlike other metal processes such as
laser powder bed fusion or electron beam melting, the final part properties of a BJAM-
produced part are not set until after the sintering process. Therefore, the printing and
sintering processes must work in tandem to produce a part with the correct shape and
material properties.

As the production volumes of BJAM are typically much lower than conventional powder
metallurgy processes, it is wasteful and costly to iteratively determine the combination of
printed geometry and sintering parameters that achieve the optimal shape. Instead, the
transformations during sintering should be predicted and compensated for by leveraging
the geometrical freedom of BJAM. The goal of this thesis is to establish a framework to
model the sintering deformation and densification of such BJAM printed parts with several
objectives:

1. Select a sintering model, calibrate, and verify its performance for available experi-
mental densification data.

2. Implement the sintering model in a full 3D simulation to model the effects sintering
on a given geometry.

3. Establish an experimental framework to fit the sintering model to a desired material
system in 3D.

1.2 Thesis Structure

This thesis consists of five chapters. This first chapter is the introductory chapter. Chapter
2 provides a background and literature review on the BJAM technology, theory of sinter-
ing, sintering models, optimization methods, and solid mechanics. Chapter 3 details the
modification of a sintering model to a lumped approximation, and the process of fitting
the model to a series of push-rod dilatometry experiments using gradient-free optimization
approaches. Chapter 4 extends this to a new set of experiments to capture the real-time
deformation of a BJAM printed artifact using optical dilatometry, and the further opti-
mization of the sintering model in 3D. Chapter 5 is the final chapter, and summarizes the
thesis, conclusions, and next steps.
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Chapter 2

Background and Literature Review

2.1 Binder-Jet Additive Manufacturing

2.1.1 Overview

Binder-Jet Additive Manufacturing (BJAM) is a three-dimensional (3D) printing process
developed in 1993 by a team at the Massachusetts Institute of Technology [68]. The
process was licensed to companies such as Z Corporation and Extrude Hone (later becoming
ExOne) to produce commercial machines, initially printing in nonmetals (plaster powder
and sand), and into metal parts shortly after in 1998 [21]. With the popularization of the
BJAM process in industry in producing cost-effective parts, many new competitors have
recently entered the BJAM market, or are in development of a BJAM system.

The BJAM process can be broadly categorized into two steps – a printing step where a
so-called green part is created by selectively jetting liquid binder onto successively spread
layers of powder, and a sintering step where the particles comprising the green part are
consolidated, creating the final part with the desired properties [60].

The BJAM process shares many characteristics with conventional powder metallurgy
processes such as press-and-sinter and metal injection molding (MIM), as both also simi-
larly form a green part, and then process it into a solid metal part [51]

Figure 2.1 below describes the BJAM steps in greater detail. Typically between the
printing and sintering process, a primary curing step may be involved which sets the
partially liquid binder before depowdering. Not shown is an optional separate debinding
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step in which the majority of the polymer binder is removed either chemically, or through
thermal decomposition – either in the same furnace as the sintering furnace, or separately.

Figure 2.1: Schematic of the full two-step BJAM and sintering process. [31]

2.1.2 Printing Parameters

The ultimate goal of the green part printing process is to generate a series of fused primitive
shapes in the shape of the input CAD data. The liquid binder The primitive shapes take
the form of a spherical cap, whose dimensions are driven by the capillary flow interactions
between binder and powder [5]. These primitives are typically cured thermally, though UV
and other methods exist [60]. The printing process parameters applied during green part
printing are optimized to produce a green part with acceptable detail, strength, density,
and uniformity. The main parameters available to be modified in the binder-jet printing
process are summarized in Table 2.1.

Depending on the type of printhead used, certain parameters may not be easily mod-
ified, as they rely on physical features like orifice size, while others can be modified by
adjusting the printhead firing parameters [69]. Instead, binder-based parameters are often
condensed into a binder ”saturation percentage”, which relates the amount of air space
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Table 2.1: Summary of printing parameters which can typically be modified during the
binder-jetting process.

Parameter Effect on Green Part

Layer thickness (µm) Feature resolution in Z, print time
Powder overfill Ensures full layer is spread (with excess)
Roller linear speed Assists in powder spreading
Roller rotation Assists in powder spreading
Binder drop size Primitive formation, part resolution
Binder drop spacing Primitive overlap, part resolution
Curing power Binder curing, green part strength
Curing time Binder curing, green part strength
Print orientation ”Stair-stepping” orientation
Printhead scan speed Part resolution

that the binder drop will displace [75]. The amount of binder used in the part is a key
determining factor of the part resolution. Excessive binder saturation can cause bleeding
and feathering of the binder, and lose detail in small pore features as shown in Figure 2.2
[13].

The binder deposition strategy can also be modified to improve part quality or printing
speed. The binder layer can be deposited as a raster pattern, vector pattern, or combina-
tion. While pure raster patterns offer the fastest printing speed, the resolution of the part
may become limited by ”stair-stepping” defects. This effect is reduced with high-resolution
printheads, but in cases where a low resolution printhead is used, a vector scanning path
can provide a smoother and more precise output, at the expense of a much longer layer
print time, and high accelerations on the printhead gantry for sharp details [75]. High
raster scanning speeds around 150 mm/s can also smear fine features like narrow slots,
leading to a loss of detail [46].

At the start of a new layer, the motion of a counterrotating roller acts to spread and
agitate the powder. While studies have suggested that variations on the roller speed and
rotation is limited in its effect on bed density [75], omission of the roller entirely will result
in significant density irregularities in the powder bed [58]. Innovations have been made
on powder compaction, such as using vibrating rollers [75], or multi-stage rollers [20] to
increase the green part density through compaction.

After it is jetted and infiltrated to the powder layer, the binder can optionally be cured
to crosslink the polymer chains, binding the green primitive together into a part that
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Figure 2.2: Test prints of calcium phosphate showing loss of hole detail at increasing levels
of binder saturation [13].

can be handled [60]. This step is binder-specific, as some compositions are heat-activated
thermoset polymers, while other binders may be cured via UV light [75], evaporation, or
other chemical reactions [60].

2.1.3 Green Part Characteristics

The finish and accuracy of the green part is primarily driven by the powder feedstock that is
used. Typically, finer powders and more precise jetting will allow for finer feature resolution
[60]. However, in tests of 316L stainless steel, Miyanaji et. al found that dimensional
accuracy ranging from 0.1-0.5mm in powder ranging from 20-80µm, with higher accuracy
with coarser powders due to the reduced amount of capillary spreading in coarser powders
[45]. They also found a positive correlation of surface roughness ranging from 2-16µm with
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the same powder [45].

Green part strength is a function of the binder type and of binder used, but has not been
extensively tested, as green part strength primarily needs to be sufficient for depowdering
and transport. Green density, however, has been correlated to increased final sintered
density [45], and typically ranges from 50-60% of the solid material density [58]. This is
similar to the green density of green MIM parts [24], but below the green density achievable
through press-and-sinter processes due the effects of high-pressure die compaction, where
densities can reach as high as 85-90% [25].

The size of the printed part is primarily limited by the size of the machine build
volume, but an upper limit also exists where the green part may fail under its own weight
[60]. Build chamber envelopes can vary depending on the application of the machine (small
build chambers are ideal for lab applications, as less powder is needed for a tall print), and
can reach larger volumes such as 4000 x 2000 x 1000mm for the printing cores for casting
[28], and to 750 x 330 x 250mm for metal parts [1].

2.1.4 Sintering Parameters

Prior to sintering at high temperature, the binder used to hold the green part together dur-
ing depowdering must be removed through thermal, catalytic, or solvent-based methods,
with thermal debinding being most common in BJAM. The part is heated to the binder
decomposition temperature, and held for a time sufficient to remove the binder [60]. A
reducing atmosphere consisting of hydrogen can also be used to aid in debinding by react-
ing with the solid binder and oxides on the material surface [19]. Improper debinding can
cause parts to crack or swell from the escaping debinding gases [60], or leave impurities in
the powder which may react with the material during sintering [19].

The part sintering can be conducted in the same furnace as thermal debinding, or
in a different furnace. The parameters defining the sintering cycle play a strong role in
driving the densification and distortion of the resulting part [64]. The parameters typically
available for sintering are summarized in Table 2.2. Sintering parameters should be selected
which are compatible with the furnace used. Generally, higher temperatures and longer
hold times result in higher final densities [58], but at higher cost due to the longer cycle
and increased wear on the furnace at higher temperatures [25].

The atmosphere used during the sintering process also strongly contributes to the sin-
tering behavior. The atmospheres used can range from air, to combinations of inert and
reducing gases, to full vacuum [25]. Air is suitable for most ceramic materials, but is un-
suitable for metals as it leads to oxidation. Inert gases shield the sample from oxidation,
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Table 2.2: Common adjustable sintering parameters [25].

Parameter Effect on Sintered Part

Debinding Temperature Impurities & defects
Debinding Hold Time Impurities & defects
Sintering Temperature Final density, shrinkage
Heating Rate Final density, shrinkage
Hold Time Final Density, shrinkage
Sintering Atmosphere Impurity & oxide formation

and reducing gases can react with any existing surface oxides to further improve the qual-
ity of the final sintered part. Sintering in the absence of an atmosphere (vacuum) aids in
eliminating trapped-gas porosity in the sintered sample, at the cost of poor thermal con-
ductivity at low temperatures, and risks of metal evaporation when near the melting point
of the material [25]. The interactions between the atmosphere and part being sintered need
to be considered to ensure that no adverse reactions altering the chemical composition of
the part occur.

2.2 Sintering

Sintering is a process in which individual powder particles are consolidated into a single
part at a temperature close to, but below the melting point of the material, typically
in the range of 50% − 90%Tm [26]. Fundamentally it is driven by a reduction in the
free energy within the powder compact — the surface area (and free energy) of the pore
network in the green partis high, and decreases as sinter necks form and grow. Sintering
for powder metallurgy and BJAM can be broadly categorized into three types — solid-
state, liquid-phase, and viscous — which are dependent on the material composition and
temperature reached, summarized in Table 2.3 [51]. Both solid-state and viscous sintering
occur below the melting or liquidus temperature of the material, and correspondingly have
slower densification rates than liquid-phase sintering, where the presence of the liquid
accelerates material transfer. Any of these methods can also be augmented by applying
an external pressure, either through a set of dies, or in a high-pressure atmosphere, which
forces material movement and closes pores [51].
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Table 2.3: Summary of sintering types, and their primary material classes and densifying
mechanisms [51]

Sintering Type Typical Materials Primary Densifying Behavior

Solid-State Polycrystalline metals
& ceramics

Atomic diffusion across grain boundaries

Viscous Amorphous materials Viscous flow and diffusion of atoms forces
pores to close

Liquid-Phase All metals & ceramics Liquid phase provides high diffusivity
path, and capillary forces drives viscous
flow

Pressure-Assisted All materials External pressure forces pores closed.

2.2.1 Sintering Mechanisms

Solid-State Sintering

Solid-state sintering (SPS) is the most basic sintering process, and is applicable to all
polycrystalline materials, including metals and ceramics. Matter is transported primarily
through diffusion between the particle surface, interior, and grain boundary locations (see
Figure 2.3, and can be categorized into densifying and non-densifying modes [51].

In non-densifying SPS, material is transported from the surface of a powder particle
to the sinter neck locations via diffusion along the the surface or through the grain lattice
(Figure 2.3 #1-2) or via evaporation/condensation mechanisms (#3). Since the material
atoms come at the particle surface, they begin at a higher energy state, and the mechanisms
can become active at lower temperatures. Through these mechanisms, the sinter necks
between powder particles can build and strengthen the part, but the centroid of each
particle does not change sufficiently, resulting in little to no shrinkage or density change
in the part; the typical expected shrinkage in non-densifying SPS is expected to be 0-3 %
for powder compacts in powder metallurgy, with a sinter neck up to approximately 1/3 of
the particle diameter [26]. Such behaviour is also present in commercially pure titanium
printed via BJAM [67], where it was observed that the temperature range required for non-
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densifying SPS is dependent on the material system as well as the surface curvature of the
powder particles, which is driven by the powder morphology and powder size distribution.

The mechanisms for densifying SPS are diffusion of atoms from the grain boundary
and particle interior to the sinter neck (Figure 2.3 #4-5), and through plastic flow (#6).
These are also referred to as volumetric diffusion [26]. These mechanisms occur at higher
temperatures, as the atoms at the grain boundaries (including interfaces between multiple
particles) and grain interiors have lower free energy, and require more activation energy
in the form of heat. Since material is transported from the interior to the sinter neck,
the centroids of the particles shift closer together, and the effective density of the part
increases while the overall part dimensions shrink. For this type of densifying mechanism,
the densification is expected to progress to an intermediate stage, where the sinter necks
are expected to grow from 1/3 to just over 1/2 of the particle diameter, with porosities
starting to become enclosed [26]. Such phenomena is observed in BJAM literature for
Titanium alloys [67], low alloys steels [57], and copper [6].

Figure 2.3: Schematic of solid-state sintering mechanisms. All mechanisms cause neck
growth, but only modes 4-6 drive densification [51]

SPS mechanisms will eventually reach an equilibrium point where the densifying sin-
tering mechanisms are no longer favored at the current temperature, and the part will no
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longer densify. This can be schematically represented as a force balance at a sinter neck
location, as shown in Figure 2.4. The surface tension forces, γsv, are driven by the sinter-
ing temperature, and are resisted by the grain boundary forces, γgb. Given constant grain
boundary and surface tension forces, the dihedral angle ψ will increase as the sinter neck
continues to grow and the pore becomes rounder, until it reaches an equilibrium point [51].
Prolonged heat treatment at the same temperature past this point will not yield any more
densification or sinter neck growth, but will result in the coarsening of the microstructure
as the grains of the part continue to grow and anneal [26].

Figure 2.4: Equilibrium state at a sinter neck location for solid-state sintering [51]

Once sufficient densification has occurred, the pore network of the part will transition
from open to closed porosity. At this point, any trapped gases will provide resistance to
further densification and contribute to the equilibrium behavior [51]. Use of a vacuum at
high temperatures minimizes the amount of gas that is trapped [25].

In general, solid-state sintering mechanisms are stable, but may require prolonged heat-
ing hold times, and will not attain the same maximum density as the other sintering modes
(liquid-phase sintering, viscous sintering, pressure-assisted sintering) described below. For
BJAM-printed materials, solid-phase sintering densities of 73% can be obtained in 4340
steel [57], and 84.6% in commercially pure titanium [66] when no hold time at maximum
temperature is used. Figure 2.5 shows a literature review of various material systems in
BJAM literature, with the maximum attained density plotted as a function of the sintering
sintering temperature (Ts) relative to the melting temperature (Tm) of the material [41].
The figure shows that solid-phase sintering where Ts/Tm < 1 can still obtain high densities
given the right heat treatment parameters, but can also yield lower densities (presumably
when hold times at the maximum temperature is low). In cases where Ts/Tm > 1, the
solidus point is exceeded, and infiltration or liquid-phase sintering occurs.
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Figure 2.5: Relative density and maximum sintering temperature (Ts) relative to solidus
point temperature (Tm) for various material systems examined in BJAM literature [41].

Liquid-Phase Sintering

Liquid-phase sintering (LPS) involves the formation of a small amount of liquid phase
during heating to aid in the densification of the part. A requirement for successful LPS
is to generate a controlled amount of liquid phase. This can be accomplished by mixing
in an additive which can melt at sintering temperatures. The additive can then penetrate
the solid material grains, and in some cases, be reabsorbed into a solid phase [51]. This
approach has been successfully used to improve the densification behavior of 316 and 420
stainless steel with the addition of boron compounds [17]. Alternatively, the additive can
come in the form of an alloyed powder where the liquid phase is generated by exceeding
the solidus point of the alloy in a process known as supersolidus liquid phase sintering
(SLPS). In SLPS, the amount of liquid phase generated is controlled by the degree to
which the solidus temperature is exceeded, requiring very precise temperature control, and
alloys which have a sufficiently large range between solidus and liquidus points [56]. The
schematic difference between additive-based LPS and supersolidus LPS is summarized in
Figure 2.6 below.

The liquid phase aids densification by penetrating the grains of the powder particles,
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Figure 2.6: Additive-based and supersolidus liquid phase sintering [51].

allowing for much more efficient diffusion mechanisms, as well as through bulk rearrange-
ment of grains through capillary forces. LPS does not experience an equilibrium point
such as SPS, and can attain much higher final densities above 95%, making it a preferred
mode for industrial powder metallurgy [51]. However, it still remains subject to density
limitations imposed by trapped gas porosity.

A special case of liquid-phase sintering is infiltration, where the part is only partially
sintered in solid-phase, and a different material with a melting point below the sintering
temperature is infiltrated into the part skeleton. The infiltrant is supplied via a gate,
and flows in through capillary forces [60]. The result is a final part with a high relative
density, while retaining accuracy and minimizing shrinkage, as the base skeleton does not
densify excessively [41]. This process is commonly used for a combination of 420 stainless
steel with a bronze infiltrant [38], yielding accurate and cost-effective parts, and can be
extended to systems of two steel alloys with different melting points [33]. Infiltration is also
a common approach to forming metal-matrix composites through BJAM [41]. While parts
resulting from infiltration have lower shrinkage rates, high densities, and are accurate, the
infiltration process is costlier than a conventional sintering process [18], and the resulting
composite materials may not be suitable compared to a single alloy material.

One major challenge presented by LPS is microstructural softening. The presence of
liquid causes the remaining solid part to become much softer and prone to deformation and
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outright collapse [51], [27]. Excessive liquid formation can cause geometry to lose fidelity,
or collapse entirely into liquid [17].

Viscous Sintering

Viscous sintering is limited to only amorphous materials such as glass, and occurs in the
solid state. As the material does not have any crystal or grain structure to aid in diffu-
sion, the primary densification mechanism is viscous flow [51]. The lack of grain structure
also means that the equilibrium state is only primarily limited by any trapped gas poros-
ity. Though materials of interest to BJAM which are capable of viscous sintering are
extremely limited, viscous sintering can be a useful approximation when sintering densifi-
cation is largely dependent on viscous flow forces, such as during the rapid densification
stage of supersolidus liquid phase sintering [51]. As very few materials exhibit amorphous
microstructure, and is typically limited to glasses and some ceramics [53], the process is
rarely observed.

Pressure Assisted Sintering

External applied forces can improve the densification of sintered parts significantly over
”pressureless” sintering by providing an additional driving force to the surface energy-
minimization mechanisms within SPS and viscous sintering. In addition to the high tem-
peratures necessary for sintering, densification-aiding pressure is supplied either through
an applied force with the part optionally constrained within a die, or through hot isostatic
pressing (HIP), where the part is sealed within a high-pressure chamber [51]. For parts
produced via BJAM, the complexity and non-standard shape limits pressure assistance to
only the latter type—HIP.

HIP furnace systems can reach high temperatures required for sintering, and can reach
pressures as high as 2000 atm [36] using process gases such as Argon. The combination
of high temperatures allowing for plastic and creep-like deformation of the part and high
external pressure effectively ”crushes” any pores within the part. Whereas the pressure
exerted by trapped gases in conventional sintering can quickly equal any driving stresses
and halt densification, the extremely high pressures of HIP greatly minimize porosity from
trapped gases, and can attain densities as high as 99.7% [36]. An additional benefit of
HIP is that near-photographic shrinkage is attained, as the high uniform external pres-
sure dominates over BJAM-related sintering mechanisms which may result in nonuniform
densification in the X-Y plane vs. the Z build axis.
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As HIP works on the principle of pressure differentials, it requires that the part’s poros-
ity is fully closed from the surface [36]. This necessitates sufficient conventional solid-phase
or liquid phase sintering first to seal off the surface of the part prior to the HIP treatment.
This makes HIP useful as a post-processing step to further improve the densification. How-
ever, the costly equipment required makes HIP an expensive post-processing step [51].

2.2.2 Sintering Challenges for BJAM

Shrinkage

Bulk shrinkage is the most immediately noticeable effect encountered during sintering. As
the green density of a BJAM part is typically in the range of 50-60%, and useful mechanical
properties typically require 90% density, a significant volumetric change must occur. The
sintering process parameters directly affect the degree of densification the part undergoes,
and correspondingly, the amount of shrinkage. Variations in peak temperature and hold
time can change the final density and shrinkage factor of the part, as illustrated in Figure
2.7 below.

Figure 2.7: Varying heating times and temperature can result in varying final densities
and degrees of shrinkage [58].

Compensation for sintering shrinkage is relatively straightforward, especially if the
shrinkage is assumed to be isotropic. Following a conservation of mass, the shrinkage
ratio between the initial and final dimensions d0 and df :
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Scaling the geometry by the inverse of this ratio therefore can compensate for the
shrinkage related to densification. As an extension, if the shrinkage is known to be non-
uniform in X,Y, and Z, an extended model can be used to offset these distortions as is
[71].

Distortion

As a typical sintering cycle exposes parts to extended periods of elevated temperature, soft-
ening the material, creep-like plastic deformation may occur [47]. A freely sintering part
will typically experience the forces of gravity and friction as it moves against the furnace
floor. Though these forces are comparatively weak, over an extended period of time, they
can cause significant distortion, such as in Figure 2.8. Slumping and distortion are partic-
ularly relevant in LPS where the presence of the liquid phase further softens the structural
skeleton of the part [27]. As parts produced via BJAM have fewer design constraints, and
can feature more complex geometry and greater potential for freely overhanging.

Figure 2.8: Distortion of a cantilevered feature when sintering TiO2 [29].

Compensation for these types of distortions can be accomplished through the use of
differing sintering schedules or techniques, such as those that only partially sinter and
infiltrate the parts [38], using external setters and supports [60], or by printing a pre-
distorted part [44]. The latter approach requires knowledge of the final sintered shape of
the part, which can be attained either through simulation, or by measuring a previously
printed and sintered part.
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Anisotropy

The powder spreading process during the BJAM printing process is a complex physical
interaction which does not result in a perfectly uniform spatial distribution of particles in
the green part. When analyzed using computed tomography (CT), the mesostructure of
both green and solid-phase sintered parts shows that the volume fraction varies periodically
with the layer height, especially when bimodal powder blends are used [67], as shown in
Figure 2.9. Powder spreading artifacts are also further present with non-spherical powders,
such as those produced via water-atomization rather than gas-atomization [58].

Figure 2.9: Multimodal powder distributions result in segregation and density variation in
the green part, which transfers to sintered part [67].

Functionally, the anisotropy in the build plane (XY) and build axis (Z) results in
nonuniform densification behavior as the part shrinks by various degrees in the XY and Z
dimensions (Figure 2.10. As a result, cylindrical features become distorted if they are not
aligned in the Z axis [71]. The anisotropy of BJAM printed parts also presents challenges
in modeling the shrinkage rate, as varying parameters may be necessary depending on the
orientation of the sample [66].

2.3 Sintering Models

2.3.1 Analytical Models

While the process of sintering dates back millenia to early pottery (a sintered ceramic),
sintering models became necessary for the more complex applications of sintering such as
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Figure 2.10: Anisotropic in sintered parts results in varying shrinkage rates in the X and
Y axes compared to the Z axis [71].

powder metallurgy and technical ceramics. Analytical models for describing sintering date
back to 1945 with a sintering model proposed by Frenkel describing sintering via viscous
flow mechanisms [23], and have been frequently refined further with models such as the
Shuttleworth model published in 1949 [42], and many others since. These models typically
define a very simplified domain, such as two spherical particles in contact with each other,
with a growing sinter neck between them.

An expanded sintering model called the combined stage sintering (CSS) model was
developed by Hansen et al. in 1992 [30]. The model aims to analytically describe the
entire SPS process from initial sinter neck growth, to pore elimination, to the formation
of grain boundaries throughout the part. The model assumes that the primary mode of
mass transport is through capillary forces, and that the changes in microstructure can be
captured through quantifiable parameters [58]. The model is defined by equation 2.2, with
constants and parameters defined in Table 2.4.

− 1

L

dL

dt
=
γΩ

kT

(
δDBΓB

G4
+
DV ΓV

G3

)
(2.2)

The CSS model describes a shrinkage rate as a function of the surface energy state of
the base material at a given temperature and combination of parameters defining the grain
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Table 2.4: Summary of parameters in the combined sinter stage theory [30].

Symbol Parameter

γ Surface energy
Ω Atomic Volume
k Boltzmann constant
T Temperature
DV , DB Volume & grain boundary diffusion coefficients
G Average grain size
δ Grain boundary width
ΓV ,ΓB Dimensionless parameters driving densification behavior

characteristics of the powder material system. While the model is analytically sound, and
can be used to accurately define densification behavior, it relies on parameters which are
difficult to quantify. In particular, the component parameters which define dimensionless
parameters ΓV and ΓB, are hard-to-define constants which must be based off multiple other
single-stage sintering models and material tests [30]. This model is thus better used as a
general descriptor of sintering behavior, rather than as a predictive numerical model.

An empirical approach to the CSS model exists in the Master Sinter Curve (MSC),
developed by Su et al. in 1996 [61]. The model makes three major assumptions [66]:

1. Shrinkage is isotropic, thus uniaxial terms can be converted to volume and densifi-
cation.

2. There is one single, dominant sintering mechanism driving sintering (i.e. only grain
boundary diffusion or only volume diffusion).

3. The material and powder properties G and Γ are solely dependant on the density of
the sintering part.

With the above assumptions, the CSS equation can be modified and simplified to
equation 2.3:

Θ(t, T (t)) ≡
∫ t

0

1

T
exp

(
− Q

RT

)
dt =

k

γΩD0

∫ ρ

ρ0

(G(ρ))n

3ρΓ(ρ)
dρ ≡ Φ(ρ) (2.3)
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The new formulation equates the changes to the material system (Φ(ρ)) to the master
sinter parameter Θ(T (t), t). The master sinter parameter acts as a measure of the cumu-
lative ”sintering work” done on the part, and is purely a function of time and temperature
- both fully known parameters. The parameters defining Φ(ρ) can then be approximated
with a sigmoidal function of the master sinter parameter Θ [66], which relates ρ to Θ in
equation 2.4. This equation allows a simple empirical approach to estimate the sintered
density of a sample given any time and temperature combination.

ρ = ρ0 +
ρmax − ρ0

ρmax + exp
(
− ln θ−a

b

) (2.4)

The MSC is therefore defined by only a small number of parameters, ρ0, ρmax, a, and
b defining the shape of the sigmoid function, and Q defining the conversion of the heat
treatment over time to the master sinter parameter Θ(t, T (t)). Of these, only a, b and Q
need to be fit to the experimental data, as ρ0 and ρmax are typically known.

The experimental data used to inform the MSC typically comes in the form of push-
rod dilatometry data. The data measures the displacement and linear shrinkage of a
part undergoing heat treatment. The displacement is converted to a engineering strain
ε, and the coefficient linear thermal expansion (α) is applied to obtain actual shrinkage
from sintering. By assuming identical shrinkage in the dimensions not measured by the
dilatometer, and knowing the initial starting density, the volume fraction of the part can
be obtained using equation 2.5.

ρ = ρ0(1− ε+ α∆T )−3 (2.5)

A robust MSC will feature multiple experiments conducted at multiple heating rates,
and an appropriate selection of Q will ”collapse” the results into single sigmoidal region
[66]. Optimization of the MSC parameters a and b relies on the reduction of residual
squares, assuming a given value of Q. A conventional MSC optimization approach will find
the optimal a and b values for a range of Q values, and select the value of Q which clusters
multiple heating rates closest together, and likely correspondingly also minimizes the sum
of residuals. A master sinter curve with well-fitted parameters is shown in Figure 2.11.

The MSC can be further extended to capture the effects of liquid phase sintering. Bol-
lina et al. [10] have modified the grain-growth parameter of teh MSC to also be dependent
on the grain size, with a 4th order power relation. This results in teh MSC capturing the
comparatively small amount of sintering as the powder approaches the solidus temperature
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Figure 2.11: Sigmoid-approximated master sinter curve, overlaid with experimental data
for sintered pure Ti powder at varying heating rates [66].

of the alloy, and then rapidly densify as liquid phase is generated in the material. A MSC
curve showing liquid phase sintering behavior in red is shown in Figure 2.12

Overall, the MSC model is a practical tool for predicting the degree of sintering densifi-
cation, with only a few experiments required for construction. MSC accuracy for predicting
BJAM part sintering can range from 0.9% to 4.3% from the model used in figure 2.4, but
is still limited in some factors:

• The MSC generated is only valid for the one powder and material system. Using the
same material system with different powder size distributions, or different powder
production mode (such as water atomization vs. gas atomization) will require a new
parameters to be determined [66].

• The MSC assumes that shrinkage and densification is isotropic. Studies of BJAM
printed parts show them to be orthotropic in the build direction [67], which will
translate to differences in sintering behavior which are not captured by the MSC.
Constructing an MSC using samples from a different print orientation results in
different sintering behavior and corresponding parameters [66].

• The MSC does not predict the grain behavior of the sintered parts. In sintering
schedules which would not actually drive densification, but only cause grain growth
and coarsening, the MSC may overestimate the final density [53].
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Figure 2.12: Master sinter curve for 316L stainless steel, comparing densification behavior
with and without Boron doping [10]

• The lumped density parameter of the MSC cannot be used to predict densification
in parts with non-uniform green densities, or with complex geometry, and cannot
account for external forces such as friction and gravity acting on a part to distort it
[53].

Despite these limitations, the MSC model is a valuable practical tool for initial material
characterization, and makes appropriate simplifications to the complex CSS model. Its
ability to predict a density given a different combination of time and temperature makes it
useful for optimizing a sintering heat treatment process to minimize cost in terms of hold
time and maximum furnace temperature [61].

2.3.2 Meso-Scale Modeling with Kinetic Monte Carlo Methods

Kinetic Monte Carlo (KMC) approaches are distinct from physics-based approaches in
that they rely on probabilities and random events to abstract a set of physical rules and
approximate a deterministic problem. A 3D KMC model for simulating sintering at the
powder particle scale was developed by Tikare et al. [62] to model rapid sintering and
melting characteristics.
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A 3D domain is discretized into voxels far smaller than an individual powder particle.
At each KMC step, every voxel can randomly migrate or change grain orientation to match
an adjacent grain, with the probability of success proportional to whether the event reduces
the total ”free energy” of the system. The system’s ”free energy” is defined by evaluating
a voxel in respect to its neighbours, with voxels surrounded by material with like grain
orientation having the lowest energy, and voxels at the surface and neighboring other grain
orientations having higher energy [72]. In the KMC simulation space, temperature and
time must be abstracted through scaling factors, and time is typically measured in the
number of KMC steps that are performed [62]. The model behavior is primarily tuned by
adjusting the probability distributions that define when a voxel is allowed to move in space,
and when it is allowed to change grain state. Figure 2.13 illustrates the simulation of a
120µm x 120µm x 120µm CT scanned domain, showing the initial grain growth phase,
neck formation, pore elimination, and grain growth [74].

Figure 2.13: Sintering progress of a powder compact. (a) 0 KMC steps, (b) 20000 KMC
steps, (c) 80000 KMC steps, (d) 200000 KMC steps [74].

The KMC approach to modeling is able to visualize sintering behavior at the mesoscale
of the powder, and can provide useful qualitative insight especially in the context of seg-
regated powder systems such as those present when multimodal powders [67] are used in
BJAM. The model uniquely can also consider the full sintering process, from initial neck
formation, to late-stage grain coarsening [72], which other models may struggle to do.
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However, the abstractions necessary to transform the problem into ”Monte Carlo space”
make it difficult to apply external forces as boundary conditions, or to extract quantitative
information about the sintering behavior such as density-time-temperature curves. Further,
the computational domain is limited, as resolution of discretization must be smaller than
an individual powder particle, imposing memory and computational limits even on modern,
parallelized computer hardware [12].

2.3.3 Continuum-based Sintering Models

A continuum-based approach to modeling the sintering process treats the sintering part
as a homogeneous part with a solid and a pore fraction [53]. These approaches represent
the sintering strain as a function of time, temperature, and any other external factors
using differential equations based on the constitutive equations of solid mechanics. The
constitutive equations from these models can be solved as a lumped model, but are generally
also compatible with finite element method (FEM) approaches. This allows the complex
part geometry to be discretized into a mesh of multiple elements, each with its own volume
fraction, and to be solved numerically using specialized software.

Various models operating on this principle exist, with varying degrees of parameter
complexity and consideration of the material behavior alongside material movement [48, 73,
72, 50, 11, 14]. In general, all models relate the current sintering strain rate to the current
deviatoric stress component which expresses distortion with no associated volume change,
and the current hydrostatic component which causes only uniform volumetric shrinkage.
The sintering strain rate driven by the deviatoric and hydrostatic stresses is resisted by a
material shear and bulk viscosity, 2G̃ and 3K̃ respectively, which evolve with temperature
and density of the material. The definition of the shear viscosity, bulk viscosity, and the
sintering stress σs differentiates the sintering models from one another [25].

ε̇ij =
σ′
ij

2G̃
+
σm − σs

3K̃
δij (2.6)

The density (volume fraction) is then updated through a coupled ODE, where the
conservation of mass drives the expression:

ρ̇ = −ρε̇inkk (2.7)
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Skorohod-Olevsky Viscous Sintering

The Skorohod-Olevsky viscous sintering (SOVS) model simulates a viscous sintering pro-
cess, and relies largely on empirical fits and general relations based on expressions for
strain within continuum mechanics [48]. It assumes a viscous sintering process (typical of
amorphous materials), and it does not have any microstructural considerations [52].

The SOVS model expresses the effective shear and bulk viscosities G̃ and K̃ as products
of the bulk material viscosity (η0), which defines the fully dense material viscosity, and the
normalized shear and bulk viscosities (ϕ and ψ respectively).

G̃ = η0ϕ (2.8)

K̃ = 2η0ψ (2.9)

The normalized viscosities ϕ and ψ express a relative viscosity of the material, and are
functions of the volume fraction (ρ) and fixed empirical parameters (an, bn, and cn). They
act as scaling factors on the bulk material viscosity defined by η0. The expression for shear
viscosity is monotonically increasing with ρ, and increases to the full bulk viscosity when
full density is reached [52]. The expression for the normalized bulk viscosity ψ approaches
infinity as the volume fraction approaches 1, providing a limit to further shrinkage and
densification within the model.

ϕ(ρ) = a1ρ
b1 (2.10)

ψ(ρ) = a2
ρb2

(1− ρ)c2
(2.11)

The sintering stress driving densification is expressed as a product of the volume frac-
tion, an empirical parameter, and a base sintering stress σs0.

σs = σs0a3ρ
b3 (2.12)

The base sintering stress is then defined as a function of the surface energy α and the
grain radius r.
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σs0 =
3α

r
(2.13)

The term η0 expresses the shear viscosity of the fully dense material, and is formu-
lated as an Arrhenius relation with respect to temperature, a pre-exponential empirical
parameter A and an empirical activation energy Q.

η0(T ) = AT exp

(
Q

RT

)
(2.14)

Substituting equations 2.8 to 2.13 into equation 2.6 results in a simplified equation 2.15.
This equation, along with equations 2.14 and 2.7 defines the SOVS model behavior.

ε̇inij =
σ′
ij

2η0(θ)ϕ(ρ)
+
σm − 3σs(ρ)

18η0(θ)ψ(ρ)
δij (2.15)

All parameters and intermediate terms used in the SOVS model are summarized in
Table 2.5. Parameters an, bn, and cn are fixed parameters derived from ratios that appear
in the constitutive continuum mechanics as first obtained by Olevsky [48]. Alternatively,
these fixed parameters can be defined using a kinetic Monte Carlo study [2]. In this work,
the original values defined by Olevsky are used for ease of implementation, but the common
values for both definitions are listed in Table 2.6.

The SOVS model defined here is based on an updated version of the SOVS model, which
uses a Arrhenius-type function in the definition for η0, while the original formulation for
this function uses a quadratic polynomial expression acting on temperature normalized by

a reference temperature T0 where η0 = A
(

T
T0

)2

+ B
(

T
T0

)
+ C. The modified Arrhenius

formulation is based on creep theory [52], and better matches experimental data than the
polynomial fit. An additional benefit of this approach is that it reduces the total number
of parameters that need to be fit, and leaves all empirical fit parameters as being positive
numbers.

The lack of grain growth mechanics within the model reduce the model’s accuracy, and
lead to over-prediction of the final density, especially with slow heating rates and long hold
times, where grain coarsening effects would be more pronounced, and [53]. The ability to
predict grain coarsening and growth would also be useful to estimating and optimizing final
part strength. However, these features are omitted from the model, and make it simpler
to implement.
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Table 2.5: List of parameters in the SOVS model, and how they are obtained.

Symbol Parameter Obtained Through

a1, a2, a3, Empirical geometric parameters Fixed, from literature
b1, b2, b3 Empirical geometric parameters Fixed, from literature
c2 Empirical geometric parameter Fixed, from literature
R Gas constant Known value
T Temperature Known from experiment
δij Kronecker delta Known function
εij Strain rate tensor Calculated

G̃ Effective shear viscosity Calculated

K̃ Effective bulk viscosity Calculated
ρ Relative density (Solid = 1) Calculated
ϕ Normalized shear viscosity Calculated
ψ Normalized bulk viscosity Calculated
η0(T ) Shear viscosity of fully dense phase Calculated
σ′
ij Deviatoric stress tensor Calculated
σm Mean stress Calculated
σs Sintering stress Calculated
α Surface energy Literature
r grain radius Powder characterization
A1 Empirical parameter Experimental fit
QSOV S Effective activation energy for material flow Experimental fit

Table 2.6: Common values for the fixed SOVS parameters, derived from [2].

Parameter Original Definition [48] (Used in This Work) Kinetic Monte Carlo [2]

a1 1 1.12
a2 2/3 2/3
a3 1 1.7
b1 2 1.26
b2 3 2.26
b3 2 0.26
c2 1 1.12
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It should also be noted that the SOVS model is almost entirely phenomenological, and
though its parameters are grounded in physical concepts such as sintering stress, and ac-
tivation energy, the parameters driving these can be defined as either optimization inputs,
or through material knowledge and other experiments. In the work on characterizing ZnO
powder by Reiterer et al., grain size and surface energy measurements are used to charac-
terize σs0, and loading push-rod dilatometry is used to characterize the viscous response
defined by η0 [52]. In contrast, the work on fitting an SOVS model to SLA 3D printed
Al2O3 parts by Safonov et al. uses the same materials-based approach in determining σs0,
but uses an optimization-based approach in finding the parameters defining η0. When
extending the SOVS model to BJAM-produced steel parts, optimization-based approaches
will be superior, as the further deviation from the intended material of the model will
likely not produce useful results, while a well-designed optimization approach will allow
for greater flexibility in applying the model.

The Riedel Svoboda Sintering Model

The Riedel-Svoboda (RS) sintering model is also a continuum mechanics-based approach
to model the densification and microstructural evolution of a powder compact, introduced
by Riedel in 1990 [54]. Unlike the SOVS model, it considers coarsening mechanics, and
distinguishes between open and closed porosity [53], giving a more accurate representation
of the microstructural evolution as the part is sintered. The primary expression for sintering
strain rate remains similar to equation 2.6, but with the addition of a term defining the
gas pressure in closed pores, which can impede densification [53]:

˙εij =
σ′
ij

2G
+
σm − σs +∆p

3K
δij (2.16)

The RS model is differentiated by the way that the shear and bulk moduli and stresses
are determined. The model relies less on empirical parameters to form power laws, and
instead relies on a number of diffusion coefficients to model the parameters in a manner
which is more closely models the physics of sintering [53]. The model has been successfully
applied to model the solid-state sintering of pressed silicon carbide forms [54]. The cost of
this improved accuracy is a more complex model parameter finding process. Limitations in
existing published documentation for powder blends and complex experimental processes
to determine these diffusion coefficients limit the materials that the model can be tested
with, and make iterative development of parts with various BJAM feedstocks considerably
more difficult.
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Other Continuum Sintering Models

Other sintering models based on a continuum approach have been constructed, which aim
to address the challenges in simulating the sintering of metal printed parts. Zhang in
2005 [73] built a model which simulates the sintering process for 316 stainless steel, with
additional densification dependency on the average grain diameter. The grain diameter
is initialized at a known value, and set to evolve following an Arrhenius relation with
temperature. The parameters for estimating the grain growth were fit using microscopy
images from samples removed after varying heat treatment stages [73]. The underlying
model is also further modified to have a temperature cutoff point, below which no sintering
occurs, emulating the base amount of activation energy needed for sinter neck formation.

More recently, models by Zhang et al. [72], Borujeni et al. [11], and Paudel et al. [50]
have targeted sintering simulation for 316L stainless steel parts produced via BJAM. These
extended models still follow the same base expression outlined in equation 2.6 above, but
also track changes to the grain size of the part, and utilize expressions for σs and the shear
and bulk viscosities which reference the grain size. As a result, these models allow for
accurate simulation of both simple geometry, estimating density and grain changes over
time, but also more complex models, simulating severe slumping and collapse, to the extent
of contact with the part itself and the furnace floor. These simulation frameworks also offer
experimental design setups which find optimal parameters for deformation analysis using
a bar bending study [50]. These models were not implemented in this thesis due to their
increased complexity, and late publication and release in the timeline of this thesis.

2.4 Optimization

Optimization algorithms are used to minimize or maximize a given deterministic objective
function, subject to a set of constraints. In single-objective optimization, the objective
function takes in an input vector of parameters, and outputs a single value, such as a cost,
profit, or error [34]. The algorithms to solve optimization problems are highly varied, and
largely depend on the characteristics of the objective function.

In the case of simple objective functions, direct optimum solutions can often be found.
However, in the case of more complex, non-linear problems, iterative approaches to find a
local or global minimum must be used instead. Conventionally, non-linear optimization is
based on the principle of gradient descent, where the local minimum is found by following
the direction of steepest descent—the gradient [34].
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In some optimization problems, the objective function may not be differentiable, and
the gradient cannot be calculated. The gradient can be estimated numerically via a finite
difference scheme, but can be very computationally expensive. Instead, derivative-free or
direct search optimization approaches can be used [9].

2.4.1 Nelder-Mead Simplex Optimization

Several optimization approaches can be used where a gradient cannot be taken. A common
search-based approach is the Nelder-Mead simplex method, which evaluate a set of points
forming a simplex in the parameter space. The algorithm then moves this set of points
through through the problem space based on a series of rules defining vertex movement, and
simplex contraction and expansion, as can be seen in Figure 2.14. The rules are structured
such that the points will all converge to a local minimum [55]. More sophisticated versions
of this approach exist in the form of pattern search techniques, but operate on similar
principles of exploring the problem space, and selecting new points based on a set of
heuristic rules.

Figure 2.14: Nelder-Mean simplex optimization steps used to find the minimum of a non-
linear function [32]
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2.4.2 Genetic Algorithms

Genetic algorithms are a set of naturally-inspired algorithms which follow a process of evo-
lution, where the fittest individuals are most likely to pass on their genes. The parameter
space is encoded as a set of genes, typically in the form of a binary string. Following a
random distribution of genes in the population, each member is evaluated for fitness by con-
verting the gene string back into a parameter vector and evaluating the objective function.
The most successful members are then used to establish a new population by exchanging
”genes” with each other [34]. Further random mutations allow the parameter space to be
further explored. Different rules which define chromosome encoding, population genera-
tion, selection/propagation, and mutation can vary genetic algorithms, with benefits and
drawbacks to each [55]. The objective function is evaluated once per population member
per iteration, resulting in a relatively high function evaluation cost.

2.4.3 Particle Swarm Algorithms

Particle swarm algorithms use a population of particles distributed along the parameter
space, each having a random initial velocity and ”momentum”. At each iteration, the
particle locations are all evaluated, and the best location (along with the optimum point
from all iterations) is used to attract the particles by changing their momentum [55]. The
algorithm performance is tuned by changing the initialization parameters and the degree
of attraction to the best points at every iteration. Similar algorithms such as the firefly
algorithm introduce additional parameters simulating attraction forces between swarms
in nature [34]. Like with genetic algorithms, a large number of function evaluations is
needed—one per particle per iteration, and measurements taken in previous iterations are
discarded.

2.4.4 Local Approximation Approaches

An alternative to directly approximating the gradient at a point is to locally fit a model
to a sampled set of points clustered somewhere around a given point. The resulting local
model is then used to determine the best direction to move within a trust region—the
given maximum distance to those points used to define the model. An example of one step
in a trust region approach is shown in Figure 2.16. The local approximation is assumed to
be valid for the trust region, and the trust region is grown or shrunk based on the quality
of the approximation from the previous iteration [7].
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Figure 2.15: Particle swarm optimization applied to a standard problem [34].

The NEWUOA algorithm is a quadratic trust region approach optimization approach
which fits a quadratic model, the best next point within the trust region, and updates
the model with the new point while discarding the old point [55]. This approach locally
approximates the function results while marching through the parameter space, resulting
in one of the most effective optimization approaches for direct search [63]. This approach
reuses measurement points, but still eventually discards old measurements, and is some-
what sensitive to noise if too-close points are evaluated together.

2.4.5 Global Approximation Approaches

Global approximation solutions aim to fit a surrogate function over the entire domain of the
objective function using a series of sampled points from the objective function. The set of
parameter points can be pre-selected based on random sampling over the entire domain, or
through more structured and systematic approaches [34]. The resulting surrogate function
can then be analyzed for the global minimum, and refined by the previously mentioned
approaches [55]. This type of approach is sampling-point heavy, as it requires taking a
large number of samples before constructing the model.

A special type of surrogate function is Gaussian process regression (GPR), which ex-
presses an observed objective function response as a normal distribution with expected
values, and covariances with all other measured values [34]. The model is defined by the
kernel function which makes up the covariance terms and affect the shape of the distribu-
tion in between measured points. The end result of a GPR is a probability distribution
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Figure 2.16: One step in a trust region optimization process, where a local 2nd order
function is used to approximate the function within the trust region [7].

with upper and lower confidence bounds of the potential objective function response to
any input value, illustrated in 1D in Figure 2.17. Near measured points, the distribution is
narrow, as the exact response of the nearby point is known. In between measurements, the
variance is high, as the objective function response is unknown. The mean of this distri-
bution serves as the estimate of the true objective function behavior, while the confidence
interval gives an estimate of how accurate the fit is in that region. The GPR model can be
made noise tolerant by assuming that the measurements themselves are affected by noise,
widening the confidence interval around the actual measurements.

Selecting the GPR model is largely defined by the type of kernel that is used, and
the parameters within the kernel. Kernel type typically drives the shape of the func-
tion response (polynomial, squared exponential, etc.), while internal parameters such as
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Figure 2.17: An example 1D Gaussian process model. The 95% confidence interval fluctu-
ates between the measured points, and the function mean estimates the objective function
response [34].

characteristic length ℓ define the smoothness of the response between points [34].

Bayesian Optimization

A Gaussian process regression can also be implemented in an online approach known
as Bayesian optimization [22]. At every iteration, a new point is selected based on an
acquisition function, and the GPR model is updated. The type of acquisition function
used drives the performance and ”risk tolerance” of the online optimization process. This
approach is very measurement-efficient, as all sampled points are used to update the model
at every iteration, making it effective for optimization problems with costly measurements
where objective function evaluations should be kept to a minimum.

The major challenge in Bayesian optimization and the GPR model as a whole is the
rapidly increasing complexity of the model as data points are collected. The computational
load of updating a GPR model scales cubically with the number of samples collected
[35], which can eventually surpass the computational cost of evaluating the model alone.
Bayesian optimization can be modified to reduce the computational complexity, such that
it can converge to a value without the marginal computational cost growing to infinity,
with some compromises to the performance of the model [35].
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Data-based Online Nonlinear Extremum-seeker (DONE) Algorithm

A simpler and faster alternative to Bayesian optimization and Gaussian process regres-
sion is to use a random Fourier expansion (RFE) as a surrogate model of the objective
function instead of a Gaussian process [9], as is done in the data-based online nonlinear
extremumseeker (DONE) algorithm. The DONE algorithm is an optimization algorithm
tailored towards optimizing unknown objective functions with noisy and costly measure-
ments. The DONE algorithm was used to optimize parameters for an optical coherence
tomography experiment, where each evaluation of the objective function must be con-
ducted experimentally [63], showing superior performance to a coordinate search and the
NEWUOA trust region algorithm.

The DONE algorithm uses a large, randomly sampled set of n-dimensional RFE terms
with to fit the sampled data and update with every new measurement, where n is the
number of parameters being varied. It approximates the objective function f(x) with a
surrogate function g(x), where x is the vector of inputs to the objective function. g(x)
is comprised of a series of D cosine functions with weight ck (found by the algorithm),
frequency ωk and phase bk (both randomly sampled during initialization) [9]:

f(x) ≈ g(x) =
D∑

k=1

ck cos(ω
T
k x+ bk) (2.17)

The phase and frequency in each RFE term is different for each dimension, and remains
fixed throughout the entire optimization process, while the single weight coefficient per
RFE term is updated at every iteration. To prevent overfitting, and give tolerance to
measurement noise, a regularization parameter which contributes the total fit weights to
the fit error is also used [9]. An optimal fit thus both minimizes the surrogate function
errors, as well as the total sum of weights of all the RFE terms.

At each iteration step, a global minimum point predicted by the surrogate function
is evaluated with the true objective function, and the surrogate function is updated with
the measurement result [9]. The RFE surrogate function g(x) is comprised of only cosine
functions, with an easily calculable gradient:

∇g(x) =
D∑

k=1

−ckωT
k sin(ωT

k x) (2.18)

The process of fitting the RFE to the set of sampled points is itself an optimization
problem, but one that is comparatively easy to solve. The RFE fit is regularized to prevent
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overfitting and reduce sensitivity to random noise. The optimum RFE fit is the vector of
RFE weights c that minimizes the regularized mean square error J , where y is the measured
objective function value, aic is the value predicted by the RFE, and λ is the regularization
parameter [9]:

J(c) =
n∑

i=1

(yi − aic))
2 + λ||c||2 (2.19)

The process to update the RFE surrogate function weights uses a linear least squares
minimization approach. The model can use a naive optimization approach where the
optimal RFE term is recalculated fully in a process that increases in complexity with every
new measurement [63], but can be simplified numerically using a recursive least squares
approach such as the inverse QR decomposition algorithm [9]. The latter maintains the
same computational complexity even as new measurements are taken, and thus has only
O(D2) complexity, where D is the number of RFE terms used in the surrogate function.

When selecting the next point to test in the surrogate function, and finding the mini-
mum of the RFE term, the DONE algorithm adds a random pertubation to the starting
point of the starting point of the surrogate function minimization, as well as the new mea-
surement point to take. This further increases noise tolerance of the model, and reduces
the likelihood of falling into a local minimum [9].

At a high level, the DONE algorithm consists of an initialization phase (Step 0), and
four repeating steps, summarized below and in the flow chart in Figure 2.18 [9]:

Figure 2.18: Flow chart describing the DONE algorithm

0. The D RFE terms which comprise the surrogate function are first initialized via
random sampling from pre-defined probability density functions (PDFs) for both the
frequency and phase. The phase is sampled from a uniform distribution of [0, 2π],

36



while the frequency is sampled from a normal distribution with a given standard
deviation. The selection of the hyperparameter σ for the frequency PDF is critical
for capturing the frequencies present in the true objective function.

1. A point is sampled and tested with the true objective function. If this is the first
iteration, a given starting point is used, otherwise, the most recent global optimum
point found by the surrogate function is used.

2. The RFE weights are updated to consider the most recent measurement. To avoid
overfitting, the fit is regularized by contributing the magnitude of the RFE weights
to the residual. The degree of this contribution is defined by the hyperparameter λ.

3. The global minimum of the newly updated surrogate function is solved for using
any conventional optimization method, such as fmincon in Matlab. As a starting
point for solving the surrogate optimization, the previous optimum point (or initial
starting point) is used. The starting point is also perturbed by a random noise vector,
sampled from a zero-mean normal distribution with standard deviation defined by
the hyperparameter σζ . This prevents the surrogate function from falling into a local
minimum.

4. The next point to be checked against the true objective function is selected as the
recently found new global minimum point from the surrogate function. The optimum
parameters are perturbed by a noise term with a standard deviation defined by
the exploration hyperparameter σξ. This reduces the chances of converging a local
minimum in the true objective function space.

The DONE algorithm solves the problem of computational complexity of online Bayesian
optimization, while still remaining measurement-efficient and tolerant to measurement
noise. This approach, however, is more reliant on arbitrary parameters which define not
only the RFE terms, but also the degree of noise tolerance through regularization and
exploration parameters. These parameters can be less intuitive, and therefore may re-
quire some hyperparameter tuning for optimal results. The RFE terms can approximate
integrable square functions well [9], but may struggle for more complex objective functions.

The selection of D in the DONE algorithm is purely a balance of accuracy and compu-
tation time. Since overfitting is controlled by regularization, a larger pool of RFE terms
(larger D) is always better [9]. Accurate selection of σ is also key to a good RFE approx-
imation, but requires some knowledge of the original objective function. If the objective
function shape is unknown, then σ can be found using hyperparameter tuning approaches
instead [9]. The same applies to the regularization, and perturbation parameters.
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Chapter 3

Lumped Modeling of Sintering
Process

3.1 1D Model Motivation

This chapter explores the process of simplifying the Skorohold-Olevsky Viscous Sintering
(SOVS) model into a lumped ODE, and the optimization steps taken to fit this data to
a 1D dataset representing density evolution of a sintering sample over time. Specifically,
this chapter will accomplish the following:

1. Describe an experimental data set from a sintering experiment conducted in a push-
rod dilatometer.

2. Process the experimental data into density vs. time and temperature.

3. Simplify the SOVS model into a lumped ODE form that can be numerically inte-
grated.

4. Obtain initial SOVS model parameters from literature.

5. Simulate the SOVS sintering model under the same for an arbitrary input vector of
SOVS parameters.

6. Calculate the corresponding error between the simulated sintering response with the
lumped SOVS model and the experimental data.
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7. Implement the data-based online nonlinear extremumseeker (DONE) optimization
algorithm to automatically optimize the SOVS parameters to fit the experimental
data.

8. Tune the DONE model hyperparameters to obtain the best parameter fit to the
experimental data.

9. Evaluate the performance of the trained model with experimental data at other
heating rates.

The full SOVS model is a partial differential equation (PDE) describing part defor-
mation and shrinkage coupled to an ordinary differential equation (ODE) describing the
evolution of density, as pores and voids are eliminated from the powder compact [48].
When fully implemented, this model can consider the 3D geometry of a part and the ex-
ternal forces such as gravity and friction acting on it during sintering process. This comes
at a computational cost which scales with the complexity of the geometry.

Prior to implementing the model in the full 3D case, it may be useful to construct a
lumped model with reduced computational complexity compared to the full model imple-
mented within FEM. Such a simplified model will allow for faster iteration for parameter
fitting and evaluation of the model as applied to the 4340 steel powder material system
used in this work. A lumped, simplified approach of the SOVS model has been previously
implemented as a verification approach to validate the model performance with laboratory
experiments [39, 2]. Use of a simpler, more efficient model also presents an opportunity to
develop and refine the optimization approach which can be used to find optimal simulation
parameters in the 3D case. It is expected that hyperparameters obtained in the lumped
case can be transferred over to the extended model.

3.2 Methodology for Lumped-Form Skorohod-Olevsky

Viscous Sintering (SOVS) Model

3.2.1 Geometric Simplification

The SOVS equations in full form are summarized in equations 2.6 to 2.14 in section 2.1.1.
The process to reduce these equations to a lumped case follows the process outlined in the
work by Arguello [2]. The loading condition to be studied is a small cylinder under a light
compressive load. This simple loading state allows for two assumptions to be made:
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1. Due to the sample geometry and low applied load, the deviatoric stress in the sample
will cause negligible deformation, and can be ignored. Therefore σ′ = 0.

2. The load has a minor contribution to the sintering densification of the sample, and
can be approximated as an applied uniform hydrostatic stress, σm.

Applying these assumptions simplifies the strain rate expression of 2.15 to the following
equation, where the parameters are the same as defined in Table 2.5:

ε̇inij =
σm − 3σs(ρ)

18η0(T )ψ(ρ)
δij (3.1)

Since the above equation only has terms along the diagonal of the strain tensor (the
right-hand term is multiplied by the Kronecker delta δij), the expression can be combined
with equation 2.7 to express the density evolution as a single ODE. Substituting standard
values for parameters an, bn, cn, and simplifying yields the following expression:

ρ̇ =
σm
η0

1− ρ

ρ2
− −σs0

η0
(3.2)

The resulting equation above is an ODE of the rate of volume fraction change ρ̇, ex-
pressed as a function of the current volume fraction ρ, mean stress σm, bulk skeleton density
η0(T ), and the sintering stress fit parameter σs0.

3.2.2 Additional Model Parameters

Since the SOVS model is intended for amorphous ceramics rather than polycrystalline
metals [53], sintering phenomena such as the activation energy required to begin densifica-
tion, and density limits imposed by porosity and grain coarsening are not considered. To
compensate for this lack of modeling, several additional parameters are considered:

1. Below a given temperature, Tcutoff , the material should not sinter, and the strain
rate should be 0. This has been implemented in previous sintering models based on
the SOVS equations by [73]. In the implementation of the lumped model, this is
done by setting any strain rate calculated at a timestep where the mean temperature
is below Tcutoff to 0.
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2. The expression for ψ(θ) in equation 2.11 is modified to consider a maximum volume
fraction, ρmax. This accounts for a degree of trapped porosity and the thermodynamic
limits of the sintering process limiting the maximum density below 100%. This yields
equation 3.3 below, where 1 has been replaced by ρmax.

ψ(ρ) = a2
ρb2

(ρmax − ρ)c2
(3.3)

3. Extending on the Arrhenius formulation for η0(T ) as presented by Reiterer et al. [53],
the pre-exponential factors AT are extended to AT n to give additional flexibility to
the temperature dependence of the skeleton viscosity, in line with a general Arrhenius
function fit [37]. This is done to increase the model flexibility with a new material
system and to improve the likelihood of a successful model fit to the gas-atomized
4340 material system.

η0(T ) = AT n exp

(
Q

RT

)
(3.4)

Finally, in the lumped form it is more convenient to express relative density ρ as a pore
fraction instead:

θ = 1− ρ (3.5)

Substituting this change and adding the additional model parameters to equation 3.2
results in an ODE describing the lumped porosity evolution:

θ̇ =
σm
4η0

(θ − θmin)

(1− θ)2
− 3σs0

4η0
(θ − θmin) (3.6)

3.2.3 Time-Stepping Strategy

The ODE for equation 3.6 presents an initial value problem (IVP) for modeling sintering
densification. A 4th order Runge-Kutta (RK4) time-stepping scheme can be used as a
compromise between ease of implementation and stability. An RK4 time-stepping strategy
was implemented in MATLAB, (code in Appendix A). A time-step size of 100 seconds was
found to offer stable results matching the lumped model results of [2], and offered good
computational speed. The functionality of TCutoff is implemented as a check during each

41



Table 3.1: Material properties of 4340 steel samples tested on push-rod dilatometer [57].

Property Value

Bulk Material Density 7.85 g/m3

Starting Volume Fraction 0.50
D10 13.9 µm
D50 25.5 µm
D90 46.7 µm

time step — if the starting temperature in the time step is less than TCutoff , then the final
density at the end of the RK4 steps is set to zero.

3.3 Methodology for Lumped Model Optimization

3.3.1 Experimental Data

The true sintering behavior is captured as 1D push-rod dilatometry data from a push-rod
dilatometer (Linseis 75VX). In these data sets, the sample is heated at a rapid rate to
750C, and then is heated to a maximum temperature of 1425 °C at variable rates of 1, 3
and 5 °C/min (see Figure 3.1), and held for 30 minutes. Afterwards, the furnace is shut
off and the sample is allowed to cool rapidly. During the heat treatment, a constant flow
of 2% H2 - 98% Ar shielding gas was used.

The samples tested in the push-rod dilatometer are printed gas-atomized 4340 steel on
an ExOne M-Flex printer using previously optimized parameters for that material. The
material properties of the samples are summarized in Table 3.1. Prior to sintering in the
push-rod dilatometer, the samples were debound for 4 hours at 400 °C in a flowing 2% H2

- 98% Ar environment.

The dilatometer retains the sample by applying a bias force of approximately 100 g or
0.1N of force during the heat treatment. For a sample with an initial diameter of 8mm, the
resulting hydrostatic stress is -1980 Pa. As the dimensional change is relatively small, and
the effect of the applied stress is expected to be minor compared to the sintering stress,
the hydrostatic stress is assumed to stay the same even as the sample shrinks.

Since the push-rod dilatometry setup provides only a measure of engineering strain, ε =
dL
L0
, the data must be processed into a density or pore fraction measurement. A correction
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for thermal expansion is first applied to the strain measurement, using a linear coefficient
of thermal expansion α, for the bulk material. For 4340 powder, a linear coefficient of
thermal expansion (CTE) of 10e− 6m/m◦C was used [3]. Next, the temperature corrected
strain is correlated to density, given that the initial density of these samples is known [57],
and assuming the material is isotropic.

ρ = ρ0(1− ε+ α∆T )−3 (2.5)

The resulting density-temperature-time plots are plotted in Figure 3.1 and serve as the
basis for optimization and evaluation of the sintering model. For simplicity in the opti-
mization scheme, the optimization data will be based on the performance of the experiment
heating at 5◦C/min, and the other data sets will be used for verification.

Figure 3.1: Dilatometry data sets measuring volume fraction as a function of time and
temperature
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3.3.2 Data-Based Online Nonlinear Extremumseeker (DONE)
Algorithm Implementation

The challenge of finding the correct simulation parameters for the reduced SOVS model
(σs0, A, n, QSOV S, and ρmax Tcutoff can be considered as a black-box optimization problem
— a vector of fit parameters yields densification behavior, which can be compared to the
experimental data and derive a corresponding total error term, which is then minimized.
Conventional gradient-based optimization approaches cannot be used, as it is impossible
to analytically calculate the gradient of the densification simulation. It is possible to
approximate the gradient using finite differences, but requires a very large number of
samples. Instead, direct optimization approaches should be used which are efficient with
measurements.

The measurement efficiency of the DONE algorithm is well-suited to this problem, as
collecting a single data point can require costly computation, particularly when the model
is extended to the 3D case. The DONE algorithm reuses its measurements to continually
build a function approximation, and is thus more efficient than other direct optimization
methods.

The DONE algorithm’s ability to work with noisy measurements is not strictly nec-
essary, as the same measurement set is used for every objective function evaluation, and
any noise in the one measurement set is always repeated. The measurement efficiency and
speed of evaluation still make the DONE algorithm preferable over other approaches such
as Bayesian optimization, which have a growing computational cost as more measurements
are obtained [9].

Random Fourier Expansion (RFE) Sampling Parameter

A major challenge in implementing the DONE algorithm is in selecting the correct initial-
ization parameters for the algorithm. In the case when the optimal distribution of RFE
terms is unknown, the frequency and phase of each RFE term is randomly sampled. The
phase is assumed as a uniform distribution in [0, 2π], and the frequencies are assumed to
be normally distributed with a standard deviation σ [9]. The quality of resulting surrogate
function fit (and corresponding optimum parameter) is dependent on a good selection for
σ.

As a related challenge, the objective function in this problem presents a challenge in
parameter scaling. Since some parameters (such as n) have a limited range of [0, 2] and
other parameters such as Q and A may be several orders of magnitude larger, a frequency

44



Figure 3.2: Flow chart describing the boundary growth process.

selected in one dimension may not offer the same results in a second dimension. The
objective function parameters are normalized such that they all lie on a range of [0, 1],
scaled by a defined upper and lower bound on the parameters. It can then be assumed
that if the problem is reasonably bounded, then the necessary frequencies for the RFE
terms to effectively model the objective function can be obtained by selecting σ = 1.

Upper and Lower Bounds

The use of an arbitrarily defined upper and lower bound also presents an additional
problem—if too-wide bounds are input, the algorithm may fall into a local minimum and
converge to a parameter set that yields invalid results (either causing instability in the
time-stepping code, or resulting in a ”flat line” of no densification predicted). However, if
the bounds are too narrow, then the algorithm will not converge to the true minimum of
the problem.

To solve this problem, an iterative approach is used where a small set of all valid bounds
are used, and gradually expanded, within a defined set of extreme bounds. The use of
extreme bounds ensures that the bounds do not grow into invalid values (i.e. negatives).
The algorithm used is summarized as a flowchart in Figure 3.2.

The boundary growth algorithm starts from a given point, with conservative upper and
lower bounds, and finds the optimum point using the DONE algorithm. Afterwards, the
optimum point is checked against the upper and lower bounds in every dimension, and if
the distance of the point is within 10% of either the upper or lower bound, that bound is
grown by 5% in that direction. A check is also put in place to ensure that the bound is
not overexpanded past a set of extreme upper bounds and lower bounds.
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Since the normalization step is tied to the upper and lower bounds, and σ remains the
same regardless of the bounds, growing the bounds also serves as a method of automatically
adjusting the frequency of the RFE terms in non-normalized space. It follows, however,
that overexpansion of the bounds can also result in a poor fit of the RFE approximation.
It is therefore important to monitor the bound growth and convergence behavior, as the
bounds can only expand, and the algorithm can eventually become unstable and diverge.

The iterative approach also greatly increases the computational cost of the problem,
as the entire optimization process must be repeated for every cycle of growing bounds.
However, since the lumped model is still very fast to solve, and the DONE optimization
scheme is reasonable to compute, it is still viable to perform this iterative model. This
iterative boundary growth approach also presents an opportunity to reuse the final upper
and lower bounds in the DONE optimization of the 3D SOVS sintering model.

Initial Starting Point and Bounds

The initial starting point is a known valid set of SOVS model parameters for the SOVS for
Zinc Oxide (ZnO) powder (summarized in Table 3.2 below) [2]. A ceramic material system
must be used, as the SOVS model has not been directly applied to metals in literature.
Although the material and temperatures simulated are different from the 4340 steel used
in this work, these parameters provide a known, stable starting point that can be further
modified. The initial starting point for boundary growth is ±10% of these values. Since
Tcutoff and ρmax are not considered in this work, a starting value of Tcutoff = 750◦C and
ρmax = 0.90 are used.

Parameter Starting Value

σs0 3 810 000Pa
A 100Pa s

QSOV S 120 000 Jmol−1

n 1
ρmax 0.90

Tcutoff 750 ◦C

Table 3.2: Initial values and bounds for the lumped SOVS model parameters to be opti-
mized [2].
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Table 3.3: Hyperparameters used in DONE optimization algorithm.

Parameter Description Value

N # of measurements 100
D # of RFE terms used 1000
σ St. Dev of RFE sampling distribution 1
λ Regularization parameter for RFE fitting 0.05
ζ, ξ Exploration parameters 0.01

3.3.3 Error Term Definition

In order for optimization approach to be implemented, the model performance versus the
experimental results must be expressed as an error term to be minimized. The most basic
approach is to minimize the root-mean-square error (RMSE) between the simulation and
experimental results [59]. For the simulation time period (points i to n), each experimental
porosity value (θexp) is compared to a linearly interpolated simulation result (θsim). The
square of these errors is summed, averaged, and square-rooted to form the RMSE error.
The RMSE error expression forms the objective function that is minimized by the DONE
algorithm.

eRMSE =

√∑n
i=1(θexp − θsim)2

n
(3.7)

3.4 Results

3.4.1 Optimization Convergence

The DONE algorithm was implemented using the MATLAB code snippet by Bliek [8],
with hyperparameters summarized in Table 3.3. The boundary growth algorithm was
iterated 100 times to naturally grow the bounds, yielding the error convergence plot in
figure 3.3. As the boundaries grow, the best optimized result predicted by the DONE
algorithm improves with lower RMSE, but begins to diverge as the boundaries grow too
much. Further discussion on the boundary growth settings is considered in Section 3.5.2.

The final parameters, along with the upper and lower bounds obtained by the boundary
growth steps are summarized in Table 3.4. These parameters can be used as a starting
point for optimizing the sintering performance of the 3D SOVS model.
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Figure 3.3: RMSE convergence results with iterative boundary growth algorithm. Over-
growing the boundaries results in instability of the DONE algorithm.

Table 3.4: Optimized parameters and bounds for lumped SOVS model optimization using
the DONE algorithm

Parameter Optimum Lower Bound Upper Bound

σs0 10.10e6 9.38e6 12.00e6
A 436.4 380 455
n 0.980 0 1
Q 16293 13718 17550

ρmax 0.885 0.85 0.953
Tcutoff 751 100 1000
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3.4.2 1D Model Performance

The plot of the function behavior vs. experimental behavior is shown in Figure 3.4. The
lumped SOVS model shows satisfactory performance in tracking the density evolution of the
sample as it sinters. It predicts no densification until a sufficient activation temperature
is reached, and increases in densification rate as the temperature increases. At higher
densities, it shows an asymptotic taper to the maximum density. However, the curve still
naturally follows a roughly sigmoid curve, and exhibits overshoot/undershoot behavior
which begins to diverge at the end of the simulation. The model predicts a final pore
fraction of 16.1%, corresponding to a density of 83.9%. Compared to the measured density
of 82.5%, this results in a final (and maximum) error of 1.4%.

Figure 3.4: Plot of experimental porosity evolution compared with fitted lumped SOVS
model for heating at 5 °C/min, with a 30 minute hold time.

The non-ideal densification modeling can be attributed to the empirical and relatively
simplistic nature of the model, which was initially designed for modeling the sintering of
amorphous ceramic materials [48]. The additional complexity of polycrystalline materials
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and grain growth mechanics are not captured in this model [53]. While the modifications
implemented in this work are helpful in mimicking the densification behavior, further
modifications to the core SOVS function or the addition of other correction factors may
be necessary, though such is beyond the scope of this present work.

When plotted against dilatometry experiments at 3◦C/min and 1◦C/min in figures
3.5 and 3.6 respectively, the performance is diminished, with maximum overshoot and
undershoot errors summarized in Table 3.5. At the slightly lower heating rate of 3◦C/min,
the general contour is tracked well, but the overall densification is slightly underestimated.
Contrarily, heating at 1◦C/min results in a large overestimation of the final density. The
expected root causes of of this behavior are discussed in section 3.5.

It should also be noted that the data for 3◦C/min has the best densification behavior,
and predicts a lower final porosity than either of the other 2 heating rates. This is counter
to the expected behavior of improved densification with slower heating rates [66], and is
expected to be outlier behavior.

Figure 3.5: Comparison of optimized SOVS model to experimental porosity evolution at
at 3◦Cmin
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Figure 3.6: Comparison of optimized SOVS model to experimental porosity evolution at
at 1◦Cmin

3.5 Discussion

Given the relatively simple nature of the SOVS model, even with the additional flexibility
afforded by the addition of Tcutoff , ρmax, and n terms, the model still struggles to generalize
well to other heating rates, as seen in Figures 3.6 and 3.5. This is to be expected, as the
model is rather simplistic in its homogenization approach, and does not consider sinter
mechanics at the powder scale, nor does it consider grain growth behavior. Both of these
factors are affected of the thermal history of the material [53], and their omission is a trade-
off which allows the model to remain computationally simple and avoid heavy reliance on
material parameters.

When the SOVS model is applied to materials which do not exhibit grain growth, the
predicted densification rate is close to dilatometer-measured densification rates [53]. The
same study, however, also points out that when applied to materials which do exhibit grain
growth, the SOVS model fails to predict densification curves for different time-temperature
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Table 3.5: Porosity errors for varying heating rates, using the model trained on data from
the 5 °C/min. The data marked by * is believed to be outlier data.

Heating Rate Max % Undershoot Max % Overshoot Average Error

1 °C/min -8.1% 15.2% 8.3%
3 °C/min* -3.3% 0.047% -1.3%
5 °C/min -1.4% 2.9% 0.043 %

profiles, particularly at very low heating rates where grain coarsening is favoured over
sintering [53].

The problem of heating rate dependence is also present in other models such as the
Master Sinter Curve, though is limited to very large differences in heating rate (15◦C/min
vs 200◦C/min) [40]. The deviation of the model for heating rates within reasonable limits
for sintering of metal alloys for binder jetting additive manufacturing can be used to define
the confidence bounds of the model.

3.5.1 Challenges in Optimizing a Sintering Model

Optimizing a 3D-based sintering model in a simplified lumped form presents several benefits
and drawbacks. The greatest benefit is the reduced computation time, which allows for
much faster iteration of parameters compared to a computationally heavy FEA model.
The reduction in geometric order, however, causes the optimization problem to become
underconstrained. Given the expression for lumped formulation SOVS equations (equations
3.6 and 2.14 below), the porosity evolution θ̇ is dependent on a ratio between σm or σs0
and η0, which has A as a multiplicative factor. As σs0 and A are both dependent variables
that the optimization algorithm adjusts, the optimization becomes impossible as the exact
values would be indeterminate.

θ̇ =
σm
4η0

(θ − θmin)

(1− θ)2
− 3σs0

4η0
(θ − θmin) (3.6)

η0(T ) = AT n exp

(
Q

RT

)
(2.14)

This problem has several potential solutions. The first, as employed in this thesis, is to
also consider the mean applied stress from the push-rod of the dilatometer. The inclusion
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of the σm term results in the densification expressed as the sum of two expressions in
Equation 3.6. One term then becomes ”anchored” as a ratio of σm and A, while the other
term remains a ratio of σs0 and A. This helps define an optimal value for A, and then by
extension, σs0. While this solves the underconstraining problem, it may still give too much
flexibility to σs0 and A, and may result in inaccuracy and noise in the expression.

A second approach would be the functional opposite of the previous approach, ignoring
σm and treating the ratio of σs0 and A as a single variable in the context of the optimization.
However, this approach was not pursued as it would assume the applied stress has no effect
on the densification of the sample.

The third approach would be to fix the value of σs0 per the original definition of the
SOVS model as σs0 = −3α

r0
, where α is the surface material surface energy, and r0 is

the average grain size of the powder. This approach was not taken because it was not
certain if the same equation would apply to 4340 steel as it applies to ceramics within the
phenomenological model. Further, additional flexibility for σs0 was considered to be useful
in the 3D model, as it would allow for more control over driving the ratio of shrinkage to
plastic creep deformation at high temperatures.

3.5.2 Iterative Bound Growth

The iterative parameter boundary growth strategy allowed for automated exploration of
the parameter space, along with automatic re-scaling of the RFE expansion terms to best
cover the bounded region. The consequence of the loss of stability during the boundary
growth in Figure 3.3. The DONE algorithm relies on random sampling to ensure that
enough sufficiently accurate RFE terms exist to form a good surrogate function fit. As the
bounds are continually expanded, it becomes decreasingly likely that such a fit is obtained,
as the RFE terms in that dimension must cover a wider possible range of values. Even in a
diverging state, the randomly sampled nature of the RFE terms means that occasionally,
the correct RFE terms are obtained and allow for an effective fit.

The instability as the bounds grow may also be caused by unstable parameter com-
binations being inadvertently reached by growing the bounds of multiple variables. It is
possible that the extreme values of multiple input variables have a compounding effect,
and produce very unstable results. By continually growing the optimization bounds, it be-
comes increasingly likely that these combinations will be reached and selected, disrupting
the optimization results, and yielding the erratic behavior seen in Figure 3.3.

The instability phenomenon can be improved in the future by using a larger number
of RFE fit terms used by the DONE algorithm, at the cost of slower iteration. As the
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model relies on regularized fits, it is always better to construct the surrogate function with
more RFE terms [9]. The current approach used in this thesis to run 100 boundary growth
iterations of the DONE algorithm with D = 1000 sampled RFE terms and N = 100
objective function measurements took approximately 2 hours to complete. As the model
complexity with respect to the number of RFE terms is O(D2) [9], further iteration with a
larger number of RFE samples to fit was not done in the interest of keeping computational
times reasonable.

This approach also carries a risk in that it pre-supposes that the optimal parameter
combination is already close to the starting combination of parameters. As the starting
material parameters are for a ZnO ceramic [2], while the material that is aimed to be
fitted is 4340 steel, it is possible that only a local minimum was found. The minimum
point found is likely a region with higher stiffness (as is typical with ceramics compared
to metals), and results in a correspondingly higher σs0 value as explained above. While
this may appear correct in the lumped model, the deformation characteristics, which are
partly defined by the same stiffness expression, may not give correct results. This problem
was encountered in the following chapter, and required a different approach to the hyper-
parameter optimization than the iterative boundary growth strategy used in the lumped
model.

3.5.3 Other Formulations for Maximum Density

A further extension to the ρmax term was considered where the term would have linear
variation with temperature, up to a limit. This was intended to emulate the shifting equi-
librium point in solid-phase sintering, and was expected to ”flatten” the sigmoid curve.
During the controlled heating rate stage of the sintering cycle, the pore fraction was ex-
pected to decrease linearly over time, and as the hold temperature is reached, the model
would then be expected to densify asymptotically as before.

An adverse effect was however observed with this modification, as seen in Figure 3.7.
The added temperature dependency of ρmax(T ) dominates the function behavior over the
viscous resistance terms driven by η0, as the density rapidly reaches a plateau once the
temperature stops increasing. Since both ρmax(T ) and η0 are temperature dependent and
drive densification behavior, they act in opposition to one another—a definition of ρmax(T )
which closely matches the linear portion of the densification forces η0 to be very low to
avoid overshooting the experimental data. As a result, the density prediction becomes
strongly dependent on the current temperature, rather than considering sintering strain
and shrinkage over the whole heat treatment cycle.
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It is possible that in the extended 3D case, ρmax and η0 no longer become directly
antagonistic, and may improve the model accuracy. However, this change was not carried
forward into the 3D model for the sake of simplicity.

Figure 3.7: Sintering model performance with a linear expression for ρmax(T ). The mini-
mum pore fraction is reached quickly after the high temperature hold period is reached.

3.6 Summary

In this section, a simplified lumped version of the SOVS sintering model was implemented as
a first step in modeling the sintering process of BJAM-printed 4340 steel. The SOVS model
was reduced down in dimension based on literature [2], and additional modifications to the
sintering equations were implemented to give the model more flexibility with extended
material systems.

The DONE algorithm, a gradient-free optimization approach was implemented for the
purpose of finding the lumped SOVS parameters which best matched densification data
from experimental push-rod dilatometry. The optimum point found yielded good results
for the training data at 5 °C/min, but degraded results when applied to other heating rates,
which were expected based on the simple nature of the model.
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Finally, a hyperparameter tuning scheme was also developed for finding the optimal
boundaries and sampling terms for the DONE algorithm, based on setting initially con-
servative bounds, and expanding them between entire iterations of the DONE algorithm.
This approach allowed for a known starting value from literature to be used, with no re-
quired knowledge of the optimal scale of RFE terms, or upper and lower bounds required.
The approach worked in finding an optimal point, but eventually leads to instability in the
optimization loop.

The work in this chapter shows that the DONE algorithm can be used for derivative-
free parameter optimization of a complex problem, though the iterative bound growth
approach faces some challenges. This chapter also shows that the SOVS model, while
intended for amorphous ceramics, can be used to model the sintering behavior of metals in
a basic lumped case, and instills confidence in the efficacy of this model in the 3D case.
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Chapter 4

2.5D Modeling of Sintering Shrinkage
and Deformation

High-fidelity three dimensional models predicting densification and distortion during sinter-
ing can be quite complex to implement, requiring specialized experiments to determine ma-
terial properties for simulation [53]. In this present work, the modified Skorohod-Olevsky
Viscous Sintering (SOVS) model presented in Chapter 3.1 was adopted and deployed to
simulate a cantilever geometry in COMSOL Multiphysics 6.0. The model was experimen-
tally fitted to data collected using optical dilatometry. This chapter demonstrates that,
despite the simplifying assumptions made in the simulation setup and simplistic nature of
the SOVS model, the densification behaviour can be simulated within 0.3mm on training
data, and 1.4mm on validation data (1.6% and 8.0% of the characteristic length of the
problem). As this chapter focuses on the implementation of the sintering model to cap-
ture material behavior, the default FEM solver settings in COMSOL will be used where
possible.

4.1 Finite Element Analysis Model Setup

4.1.1 Model Configuration

The SOVS model as modified in Chapter 3 was implemented in COMSOL software to
simulate the sintering behavior of a part in 3D. The model setup in the software consists of
two coupled physics modules — the solid mechanics module, and a domain ODE module,
handling the deformation and density evolution behavior respectively.
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The additional parameters and variables which define the custom model behavior are
divided into static global parameters which remain unchanged for the entirety of the sim-
ulation, and nodal variables which are separately calculated and stored for every element.
The global parameters contain the empirical SOVS parameters, including the fixed em-
pirical an, bn, cn values (common values defined in Table 2.6), and the parameters being
optimized — the base sintering stress σs0 (equation 2.12), the parameters defining the
material viscosity, A, Q, and n (equation 3.4), and the maximum achievable density ρmax

(equation 3.3). The sintering temperature is also defined as a time-dependent global vari-
able. The nodal variables contain intermediate variables calculated per node, including the
expressions for the sintering stress σs(ρ) (equation 2.12, the shear viscosity G̃(ρ, T ) (equa-
tion 2.8, and K̃(ρ, T ) (equation 2.9). Since these rely on temperature and local density,
they must be calculated per node.

Solid Mechanics

The solid mechanics module defines the elastic behavior of the material, the sintering strain
rate tensor, and also the boundary conditions and loads that the part is subjected to. The
base material behavior is a linear-elastic material, with linear additive strain decomposition
between elastic and inelastic strains as described below:

ε̇ = ε̇e + ˙εin (4.1)

This behavior is computationally much faster compared to a non-linear strain decom-
position, at the cost of model accuracy. In the case of this model, the inelastic strains
will be large, but the elastic strains from self-weight loading are very small, so deviations
were expected to be minimal, and similar to that of a ”rigid plastic” material. The con-
sequences of this assumption as compared to a more computationally expensive nonlinear
strain formulation is discussed in Section 4.5.3.

The inelastic component of the strain rate, εin, captures the deformation and shrinkage
caused by sintering. It is input into COMSOL directly in symmetric tensor form as a
function of the stress tensor and nodal variables. This tensor is obtained by expanding the
Kronecker delta notation of equation 2.6 into matrix form:
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ε̇in =
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 (4.2)

As the part deformation is very slow with respect to time, inertial terms can be ignored
in the model formulation. The element discretization is kept at the COMSOL default
setting — quadratic serendipity elements.

Densification ODE

The densification behavior is represented as a distributed ordinary differential equation
(ODE) over the same mesh. The ODE module declares a custom variable ρ, representing
the volume fraction. The model ODE input takes the form of a general second order ODE,
as described in Equation 4.3:

a
∂2ρ

∂t2
+ b

∂ρ

∂t
= f (4.3)

The first order densification ODE from Equation 2.5 can be obtained by substituting
the following coefficients:

a = 0 b = 1 f = −ρε̇kk

The starting volume fraction is initialized uniformly as ρ = 0.5 based on the known
green density of the green parts from previous works with this material [57].

4.1.2 Sample Geometry

A set of geometric design artifacts were conceptualized to serve as an experimental reference
for training the simulation behaviour, and as demonstrators for performing experimental
validation after the model was optimized and tuned. To test the simulation behaviour,
while ensuring that the part does not collapse and damage instrumentation during exper-
iments, the following design requirements were considered:
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1. The part must experience a significant amount of distortion during a normal sintering
cycle, but not so much that the part collapses under its own weight.

2. The part must have parametric geometry features which allow for its deformation
characteristics to be fine-tuned.

3. The part geometry should minimize the effects of floor friction on the deformation
behavior, as it is not considered by the model at this time.

4. The geometry must fit inside a 2” diameter view port of an optical dilatometry
instrument.

Cantilever Geometries

The parameteric double cantilever geometry in Figure 4.1 was designed to fit the specified
requirements. The unsupported overhangs in the part allow for amplification of deforma-
tion from sintering, which can be fine-tuned by adjusting the wall thickness and cantilever
amount. The effects of furnace floor friction are minimized with the small base of contact —
the amount of movement of the base against the floor is relatively small, with no leverage,
so distortion is minimized. The geometry also includes additional features (small studs on
the surface of the part) which aid in alignment of the part inside an optical dilatometer and
can be used as reference markers in three dimensional scanning. The samples are encoded
with the combination of wall thickness and cantilever in the format W − OO where W is
the wall thickness and OO is the overhang, in mm.

The design geometries spanned all permutations of wall thicknesses W = 3, 4, 5, 6, and
7 mm , and an overhang OO = 10 and 20mm. An example of the 5-10 sample is shown in
Figure 4.1.

Hollow Block Geometry

In addition to the Cantilever geometries specified above, a hole block artifact (Figure 4.2)
was also designed as a test geometry to assess the performance of the tuned model on a
different loading condition compared to the training data of the cantilever. The larger base
of contact of the hole block also highlights the effects of floor friction, which is minimized
by the cantilever artifacts.
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Figure 4.1: Double cantilever geometry, with 5mm wall thickness and 10mm overhang.
Studs and ridges aid in sample alignment and registration. The Z (build) axis along which
the parts are printed is also shown.
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Figure 4.2: Hole block geometry used for validation of sintering model.

4.1.3 Boundary Conditions

The cantilever geometry was initially simplified from the printed geometry by removing
the alignment studs and ridges, and by removing the embossed text for part identification.
The simplified part was imported into COMSOL in .STEP format, and was reduced to a
quarter-symmetric part. As the removed features are minor at the surface, they are not
expected to contribute to the gross deformation of the cantilever bracket. However, their
fine feature size will negatively affect the quality of the mesh and speed of the simulation.

The part was constrained through symmetry boundary conditions (purple faces in Fig-
ure 4.3), and with a frictionless roller support along the bottom face. The symmetry

62



Figure 4.3: Schematic representation of the boundary conditions and loads applied to the
simulation geometry.

constraints ensure that the part remains centered in the viewport, even without fixing any
nodes in the simulation domain.

The part was meshed as a free tetrahedral mesh for simplicity. The use of a free meshing
technique is also useful for future flexibility with other geometry, as customized meshing
strategies may not be directly transferable from one geometry to another.

4.1.4 Time-Stepping and Solver Configuration

The back-end finite element solver settings were kept at the default COMSOL settings,
including the use of a backward differentiation formula (BDF) for time-stepping. Compared
to explicit time-stepping methods such as Runge-Kutta time-stepping, this approach is
more stable, but requires an iterative time-step solution. The time-step sizes were allowed
to vary, automatically adjusting based on the convergence errors and number of iterations
required to converge. Small errors and low iterations increases the time-step size, speeding
up the simulation, while repeated errors reduce the time-step size in favour of stability. The
flexible time-step maximizes the solution speed, while allowing for more stable time-steps
when the material behavior is changing very quickly, such as during rapid densification,
periods of fast deformation, and during large changes in nodal variables as the temperature
increases.

The simulation is configured to directly solve both modules directly coupled together.
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This approach is more memory- and time-intensive than a segregated solver which iterates
the solutions until both modules converge, but ensures greater stability. Since the defor-
mation and densification modules are closely coupled through the volume fraction ρ, this
is a useful compromise. For future work, it may be useful to examine the effectiveness of
segregated vs. direct solvers on the problem stability and solution speed.

4.1.5 Stabilization

Due to the higher complexity of the 3D FEM model, some parameter combinations would
result in instability and divergence of the solver, even when using a backward differentiation
approach. This was especially prevalent in parameter combinations which resulted in rapid
densification up to the density limit ρmax. The primary cause of this is believed to be the
expression for the normalized bulk viscosity, ψ(ρ), which contributes to the densification
”stiffness”:

ψ(ρ) = a2
ρb2

(ρmax − ρ)c2
(3.3)

As the volume fraction ρ of the element approaches ρmax, the denominator approaches
0 and the expression for ψ(ρ) approaches infinity. This provides a limit to densification
as the part becomes infinitely stiff with respect to further shrinkage. As the value of c2
in the above expression is 1 in this work (and in some cases, a non-integer value [2]), the
expression for ψ(ρ) will become negative or undefined if the value of ρ were to exceed
ρmax due to a time-stepping discretization error. This causes the entire viscosity term to
be negative or undefined, and can lead to instability or complete failure of the numerical
method.

To address this problem, three modifications were made to the code:

1. The maximum allowed time-step size was restricted to 30 seconds. This is with the
intention of preventing large time-steps which overshoot the density limit.

2. The expression for ψ(ρ) was further modified to express ρmax − ρ as an absolute
value expression. In the event that the maximum density is reached, the expression
for ψ(ρ) will remain a large positive number.

ψ(ρ) = a2
ρb2

|ρmax − ρ|c2
(4.4)
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3. A 1% ”buffer zone” of maximum density was implemented in the density update
ODE, such that any element density update stops if the density is within 1% of ρmax.
In COMSOL, this was implemented as a step function by multiplying the density
update with an inequality expression which outputs 1 normally, and flips to 0 when
the volume fraction ρ is within 1% of ρmax.

ρ̇ = −ρε̇inkk(ρ < (ρmax − 0.01)) (4.5)

While the first modification improves stability at the slight cost of computation time,
modifications 2 and 3 improve stability at the slight cost of accuracy near full densification.
In tandem, they aim to implement a “saturation” effect, where the volume fraction and
corresponding bulk viscosity of the material is “frozen” once it approaches ρmax, but before
it reaches the asymptotic point. This improves the stability as it prevents the instability
near the asymptote, but may also result in erroneous behavior once saturation is reached.
For future work, the constitutive equations of the sintering model can also be revisited,
and a different approach to maximum density saturation using exponential expressions can
be implemented. One such approach is the expression used by Bagheriasl et al. to model
temperature dependence for flow stress [4].

However, these modifications still make a useful compromise, as they allow for evalu-
ation of parameter combinations that would otherwise diverge and fail, and let them be
naturally penalized by having larger error deviations from the experimental data, which
does not reach the maximum density. Conveniently, the inaccuracies caused by these modi-
fications generally manifest themselves in parameter combinations which predict extremely
rapid densification to the density limit early in the sintering model. As the correct exper-
imental data does not do this, the inaccuracies from these modifications should have a
minimal effect near the optimal parameter combinations.

4.2 Experimental Sintering Trials

4.2.1 Sample Printing

The cantilever geometry was printed using a commercial binder jetting additive manufac-
turing system (MFlex, ExOne, North Huntingdon, PA, US) using the parameters listed
in Table 4.3. The material system used was a low alloy steel (4340) produced via gas
atomization (Sandvik Osprey Ltd., Neath, UK), with a powder size distribution listed in
Tale 4.2 and a near-spherical powder morphology, as shown in Figure 4.4 [57].
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Figure 4.4: SEM image of gas-atomized 4340 showing powder morphology [57].
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Table 4.1: Summary of dimensions, sintering characteristics, and dilatometer fit of can-
tilevered samples.

Part ID Wall Thk. (mm) Overhang (mm) Deformation Fits Viewport

3-10 3 10 Stable Completely
4-10 4 10 Stable Completely
5-10 5 10 Stable Completely
6-10 6 10 Minimal Completely
7-10 7 10 Minimal Partly
3-20 3 20 Collapse Partially
4-20 3 20 Collapse Partially
5-20 3 20 Collapse Partially
6-20 3 20 Stable Partially
7-20 3 20 Stable Partially

All permutations of wall thickness and overhang were printed, and sintering charac-
teristics were initially tested in a tube furnace (GSL1600X, MTI Corp, Richmond, CA,
US) by sintering at 1450 °C for a hold time of 30 minutes following the schedule shown in
Figure 4.7. Table 4.1 summarizes all permutations used, their sintering deformation char-
acteristics, and their fit inside the dilatometer view port. Samples which fit completely in
the optical dilatometer view port were also favored, as they would provide additional data
through symmetry, and allow for midpoint registration.

Samples 3-10, 4-10, and 5-10 all produced acceptable amounts of distortion, while also
fitting entirely inside the optical dilatometer. Sample 5-10 was selected as the reference
geometry for optimization in this work, as it provided good sintering behavior in both solid-
and liquid-phase. As such, the model was optimized for simulating the sintering response
on the 5-10 sample and samples 3-10 and 4-10 were used for validatio. Thicker-walled
samples with 10mm overhangs were generally found to deform too little in solid-phase, and
were not tested in the optical dilatometer.

Of note, samples with 20mm overhangs were found to be very sensitive to distortions,
and created a controlled amount of distortion in 6-20 and 7-20 sample configurations with
the desired heating schedule. However, the full width of the sample would not fully fit inside
the viewport of the optical dilatometer, resulting in only half of the sample being captured.
Although this would still allow for the sintering behavior to be accurately captured, samples
with smaller overhangs and lower wall thicknesses were preferred for the additional contour
redundancy they offered.
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Table 4.2: Powder and green part characteristics of GA 4340 material system.

Property Value

Solid Bulk Density 7.85 g/cm3

Powder D10 16 µm
Powder D50 28 µm
Powder D90 46 µm
Powder aspect ratio 0.87
Green part density ρ0 0.5

Table 4.3: BJAM process parameters for cantilever part printing on ExOne MFlex printer.

Print Parameter Value

Layer Height 60 µm
Powder Spread Speed 6mm/s
Recoater Rotation 200 rpm
Binder Saturation 65%
Heater Power 60%
Avg Bed Temperature 26 °C
Binder Set time 5 s

The powder morphology is irregular, thus the part was printed lying down in the build
bed, such that the XY plane of the part was captured in the image feed (as shown in Figure
4.1. The parts were then studied in sintering simulations and experimental validation with
the XY build plane in the vertical direction, thus minimizing the effects of anisotropic
behaviour associated with the build Z-axis of the part [66, 71]. This was done such that
the model can remain simple in this implementation by assuming isotropic behavior.

4.2.2 Optical Dilatometry

The sintering behavior is captured on a optical dilatometer (TOM-AC, Fraunhofer ISC,
Germany). The device consists of an atmosphere-controlled chamber furnace with view
ports containing a backlight and camera system (summarized in Figure 4.5). At temper-
atures below 1300◦C, the backlight is activated and the silhouette of the part is captured,
while at higher temperatures, the backlight is switched off and the glowing hot part can
be captured directly (as shown in Figure 4.6).
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Figure 4.5: Schematic Layout of the TOM-AC Optical Dilatometer System [16].

(a) Backlight on, 1000 °C (b) Backlight off, 1420 °C

Figure 4.6: Raw images obtained by the TOM-AC optical dilatometer system, at temper-
atures below 1300 °C with backlight, and at higher temperatures without backlighting.

The camera system of the dilatometer captures an orthographic view of the part without
any perspective distortions using specialized telecentric optics. Images of the sample are
taken at regular intervals, and recorded with a time-stamp and the temperature at the
time of capture.
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Each image is processed using a MATLAB script to segment the sample from the
surroundings (defined as the furnace floor and the background) and to locate the sample
origin (defined as the middle bottom of the part). The code finds horizontal and vertical
edges by looking for sharp transitions defining the furnace floor and vertical edges in the
part, and finds the part origin using heuristic approaches. The MATLAB code for the
contour extraction process is included in appendix B.

4.2.3 Heat Treatment

The printed green parts selected for the optical dilatometry study were sintered in the
TOM-AC furnace in a similar schedule to the one shared in Figure 4.7. The samples were
first debound at a temperature of 400 °C for 4 hours to decompose all of the binder, before
being heated up to 1450 °C. The heating rate was 10 °C/min up to 1000 °C, followed by
a slower approach of 5 °C/min up to the maximum temperature, followed by a hold time.
This heating schedule was selected based on previous experience with sintering the GA
4340 material system, where a small amount of liquid phase would form at the maximum
temperature, and cause noticeable deformations in the part. The images in Figure 4.8
show a series of images of the 5-10 sample undergoing this heat treatment.

Although the sample was sintered up to the formation of liquid phase, and data was
collected for the entire heating period, including debinding, hold, and cooldown, only a
reduced period of interest is simulated. The period of interest in the heat treatment cycle
considers that temperatures below a cutoff point are assumed to have no effect, similarly
to the assumptions applied in the lumped modeling described in Section 3.1. Based on
the lack of change in the optimization of the cutoff point in the lumped optimization,
the lower cutoff point was changed to a fixed, lower temperature that was selected as
500 °C. The upper cutoff point of the region of interest was selected as 1425 °C, just below
the temperature at which liquid phase formation begins [57]. Past this point, separate
parameters or a separate model altogether would be necessary to model the densification
and distortion behavior.

4.3 2.5D Optimization

4.3.1 Lumped Formulation Parameters

One of the goals of using the initial lumped model was to serve as a starting point for
optimization of the more complex 3D model. However, when extended to the 3D case,
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Figure 4.7: Sintering schedule used for the samples in this work. For ease of simulation,
the simulation is performed only in the time period of interest.

Figure 4.8: A series of images from the heating schedule described in Figure 4.7.
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the model only results in densification, with no change to the contour. These optimized
parameters, found in Table 3.4, feature large numbers for the sintering stress σs0, balanced
out by large values defining the stiffness Q and A. As the 1D lumped optimization started
from known parameters for a ceramic material with minimal slumping, and only optimized
for densification, it follows naturally that this parameter set would have the bulk densifica-
tion properties of the GA 4340 material, but retain the general deformation characteristics
of a ceramic.

While it would be possible to begin the optimization loop from the lumped model
parameters, there was a concern that the optimization approach would not find any pa-
rameters that cause both shrinkage and deformation. Instead, a manual starting point was
found through manual trial and error by rounding the simulation parameters from the op-
timized model and varying the orders of magnitude of parameters until a both deformation
and distortion was observed in the model. These parameters were then further manually
tuned, yielding the starting parameters shown in Table 4.4. The upper and lower bounds
were then set as ±50% of this manually found point.

4.3.2 Contour Error Evaluation

The sintering error is obtained by comparing the images obtained from the optical dilatom-
etry experiments to the output of the simulation. At each simulation output point, the
output image is compared to the closest experimental image, and the error is defined as
the number of mismatching pixels between the sample and experiment images, as shown
in Figure 4.9. The MATLAB code detailing the error calculation is detailed in Appendix
C. This approach combines both densification and distortion into one term, and allows
single-objective optimization strategies to be used.

As the experimental and simulated parts shrink, the number of pixels making up their
contours also decreases. Correspondingly, any contour mismatch as the parts shrink will
be under-represented. To compensate for this, the error term is normalized by the area
of the experimental contour. The normalized error over time is then combined into a
root-mean-square error term:

eRMSE =

√∑n
i=1(err)

2

n
(4.6)

As the general amount of distortion in solid-phase is relatively low, particularly in the
early stages of the sintering cycle, the deformation at the end of the solid phase sintering
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Figure 4.9: Image comparison between the experimental dilatometry image, and the equiv-
alent simulated geometry.
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region is given additional weighting in the error term consideration. This is done to promote
parameters which accurately predict the shape at the end of SPS, to serve as an accurate
starting point for liquid phase sintering. This is accomplished by giving the final error
term in the RMSE calculation 25% of the total weight in the calculation.

4.3.3 Optimization Algorithm

The data-based online nonlinear extremum-seeker (DONE) optimization algorithm was
used to find the optimum set of model parameters. The DONE algorithm was modified
from the model used in Chapter 3 to accommodate for way the simulated contour data
is generated and stored. Data needs to be continuously passed between COMSOL and
MATLAB as new simulation parameters are input and resulting contour data is read in
the optimization loop shown in Figure 4.10. A manual data handling approach was used
due to the additional complexity of automating the separate programs using COMSOL
LiveLink.

Figure 4.10: Schematic outlining the optimization structure of the model. Data transfer
between MATLAB and COMSOL is handled manually.

Sintering results from COMSOL are exported as a series of greyscale images such as
the one in Figure 4.11. Alongside the stack of images, a text file containing the parameters
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Figure 4.11: Sintering simulation output as a greyscale image for comparison with experi-
mental data. One image is output for every simulated minute.

associated with the result is saved for future reference. The images and information are
read into MATLAB and compared to pre-segmented experimental images to measure the
experimental error. The tested parameters and corresponding error are stored inside a
spreadsheet and is manually entered based on the error output of the evaluation code.

The optimization code implementing the DONE algorithm is modified from the MAT-
LAB function written by Bliek [8]. The code uses the same structure outlined in Figure
2.18, but replaces most function checks with data stored inside the spreadsheet. The al-
gorithm constructs the RFE fit using all of the data present in the spreadsheet, and then
outputs the next set of parameters to check. The new set of parameters is then transferred
to the simulation software, and the simulation is re-run with the new parameters. A fixed
seed is used for random number generation, ensuring that the RFE terms used remain the
same every time the code is run.
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Figure 4.12: RMSE convergence chart for 3D simulation optimization

4.4 Results & Analysis

4.4.1 Optimization Convergence

The optimization algorithm was initialized with a known good starting set of values, found
through manual adjustment and testing with the simulation, and run for 50 iterations of
the algorithm, yielding a total of 51 tested points. The starting point set of values and
resulting optimum values are shown in Table 4.4. The convergence behavior is shown in
shown in Figure 4.12.

The convergence chart shows an initial period of hunting, with large jumps in the
RMSE error while the model explores the objective function, followed by a region of overall
stability once the model settles into a region of known good results. This is expected, as
during the first few measurement points, the model has nearly no knowledge of the space
around the model, and can occasionally sample more extreme points if the RFE fit predicts
it. Near the end of the convergence cycle, the optimization algorithm begins to find better
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Table 4.4: Summary of starting, optimum, and bound values for 3D sintering simulation.

Parameter Starting Value Optimum Lower Bound Upper Bound

σs0 7000 6929 3500 10500
A 500 344 250 750
n 1.1 1.1107 0.5 2
QSOV S

R
7000 6938 3500 10500

ρmax 0.95 0.89 0.8 1

results than the optimized result with slightly lower overall RMSE than the starting point.
Near the end of the optimization, the optimization algorithm begins to overpredict the
softness of the material, and some higher measurement points are recorded.

While the optimization algorithm may not have been effective in this case, there are sev-
eral mitigating factors that contribute to this. Primarily, the starting point found manually
was actually a very good point already, and closely matched the sintering behavior of the
material in solid-phase, leaving little more optimization to the global model-based DONE
algorithm. This is compounded by limitations in the optimization method used, along
with the overall shape and behavior of the objective function, which is further discussed
in Section 4.5.2.

4.4.2 Model Accuracy

The model is run with the optimized parameter sets listed in Table 4.4, predicting the
deformation shown in Figure 4.13 at the end of solid-phase sintering. When the model
simulation contour is overlaid with the experimental data at the end of solid-phase sintering
(Figure 4.14), good contour accuracy is achieved, and the model predicts only slightly more
shrinkage than is achieved in the experimental part. The contour deviation is minimal
throughout the part, with a maximum deviation of 0.3mm, when measured using ImageJ
software, and ignoring the deviation of the alignment features. The contour accuracy of
the 5-10 sample is expected to be good, as it is the training data set. The contour accuracy
for the training data set along with validation data sets is summarized in Table4.5.

A potential limitation in the model accuracy, however, is the density distribution, shown
in Figure 4.13. The model predicts a final density gradient ranging from 56% in areas of
tension to 61% in areas of compression. As all samples sintered in the optical dilatometer
were sintered into the liquid phase with higher densification, it is difficult to completely
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confirm that the true porosity distribution is as predicted. However, recent literature on
sintering simulation of 316L stainless steel [11, 72, 50] suggests that any density gradients
that do exist will be far smaller, at < 1%, rather than the 5% spread observed here. A
more detailed discussion regarding the root cause of the large density gradient is presented
in Section 4.5.1.

The 5-10 sample was sectioned after the full sintering cycle, including liquid-phase
sintering, and is shown in Figure 4.15. The section shows uniform porosity distribution
which is not affected by areas of tension or compression in the part. The porosity in this
sample is a consequence of gas entrapment and coalescence, which is a complex phenomenon
at the interplay between heating rate, gas flow, and oxide reduction from the flowing H2

atmosphere and residual carbon in the debound part, as found in a recent work by Yang et
al. [70]. In the work, it was found that heating rates < 3◦C/min are required to prevent
pore entrapment, allowing for gradual closing of pores in tandem with densification. As
the heat treatment in this work used a 5◦C/min heating rate, this is likely the same
phenomenon at play. The model is not sensitive to this type of porosity limitation, and
only partly simulates this with the ρmax term. Consideration of this phenomenon within
the context of a simulation is left for future work.

4.4.3 Mesh Convergence

The entire sintering modeling and optimization process was performed with a relatively
coarse mesh for the purpose of fast and efficient computation. The model with best param-
eters was re-run with a 3x smaller tetrahedral element length and compared to the behavior
of the final geometry. A comparison of the fine and coarse mesh results is shown in Figure
4.16. The fine mesh shows slightly more deformation than the default coarse mesh, with
0.2mm greater deformation at the tip of the cantilevered bracket. This suggests that the
model should be run and trained with a finer mesh than used, but since this difference is
relatively small, while the improved computation speed of the coarse mesh of ∼ 5 minutes
vs. ∼ 3 hours, the model is still useful as-is.

4.4.4 Model Generalization to Other Sample Geometries

While the phenomenological model and optimization approach used in this thesis is material-
agnostic and flexible to implement, it presents a risk of over-training on only one geometry,
while performing poorly with other geometries. To validate the model generalization, the
model trained on deformation data from the 5-10 geometry was directly applied to the
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Figure 4.13: Volume Fraction distribution of the 5-10 sintered part at the end of solid-
phase sintering.
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Figure 4.14: Sintering simulation with optimized parameters overlaid with a dilatometry
image of the double cantilever part at the end of the solid-phase sintering stage.

Figure 4.15: Sectioned and scanned image of the 5-10 sample after the full sintering cycle,
including liquid-phase sintering.
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(a) Regular mesh used for all other simulations (b) Fine Mesh

Figure 4.16: Comparison of fine and coarse meshes for model simulation with the same
colour scale.

Table 4.5: Summary of maximum contour deviation for all samples sintered under optical
dilatometry. The sintering model is trained on the 5-10 sample, marked with *.

Sample Max Deviation [mm] Characteristic Length [mm] Error %

5-10* 0.3 20 1.5%
4-10 0.8 19 4.3%
3-10 1.4 18 7.7%
Hole Block 0.7 20 3.5%

4-10 and 3-10 sample geometry (Figures 4.17 and 4.18 respectively) to test the model be-
havior with a similar loading condition, but with thinner walls and correspondingly higher
expected distortions. The model was also tested against a hollowed block geometry with
lower expected stresses, but with a different loading condition due to the supported arc
geometry and larger contact patch with the furnace floor (Figure 4.19. The maximum
contour error of the training and validation geometries is summarized in Table 4.5.

The contour error can be converted to a % deviation by normalizing against a charac-
teristic length. In this case, the maximum overall dimension of the part can be considered
as a characteristic length. In this case, it is the 20mm half length of the 5-10 sample,
(reduced to 19mm and 18mm for the 4-10 and 3-10 samples, respectively). For the hole
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Figure 4.17: Sintering simulation with optimized parameters overlaid with a dilatometer
image of 4-10 cantilever validation geometry at the end of the solid-phase sintering stage.

block, the largest overall dimension in the simulation is the 20mm height.

Counter-intuitively, the deformation of sample 3-10 is less than that of sample 4-10.
This can potentially be due to an error in the furnace setup for the dilatometry experiment.
Sample 3-10 was observed to have more oxidation than other parts sintered previously,
possibly caused by too low of a flow of 5%H2−95%Ar shielding gas, resulting in a formation
of oxide which prevented densification and stiffened the part.

The geometry overlay of the hole block sample from dilatometry and simulation, as
captured in Figure 4.19, shows overall agreement between the model and experimental
data, with slightly increased errors at the bottom and top corners of the block. It is
likely that the model’s lack of friction modeling with the floor led to an overprediction of
densification in that region. The higher density in the bottom right corner also suggests
that the compressive hydrostatic stress state in that geometry further drove densification
in that region specifically, and issue that is further discussed in subsection 4.5.1.
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Figure 4.18: Sintering simulation with optimized parameters overlaid with dilatometer
image of 3-10 cantilever validation geometry at the end of the solid-phase sintering stage.
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Figure 4.19: Sintering simulation with optimized parameters overlaid with dilatometer
image of hole block validation geometry at the end of the solid-phase sintering stage.
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4.5 Discussion & Challenges

4.5.1 Density Distributions in the SOVS Model

The SOVS model was selected for this simulation because of its simplicity and ease of
implementation. The low number of empirical parameters make optimization approaches
more flexible, and its lack of other physical interfaces and couplings make it relatively effi-
cient for calculation. The model simplicity and black box optimization approach, however,
comes at the cost of accuracy in the model. The primary inaccuracy in this model as
optimized is the inaccuracy of the density distribution.

Within the sintering strain rate tensor (Equation 4.2, two stresses contribute to the
shrinkage of the part — the virtual sintering stress σs and the hydrostatic stress σm —
and are resisted by a bulk viscosity term K̃. With optimal parameters found in this
work, the overall sintering stress and bulk viscosity are relatively low, and the hydrostatic
stress experienced from self-weight us sufficient to influence the rate of shrinkage and
densification, as evidenced by the density distributions present within all of the predictions
made by the model. As the self-loading case results in areas of hydrostatic compression and
tension, this leads to differential shrinkage throughout the part, which may cause rotations
in the geometry without any shear deformation.

This phenomenon can cause incorrect predictions on densification. This is most clearly
seen in the hole block validation geometry in Figure 4.19. The bottom corner of the hole
block deviates from observations within the optical dilatometer, and is predicted by the
model to shrink more than is seen. The colour map of the hole block indicates that it
has a higher volume fraction than its surroundings, and correspondingly has shrunk more.
With large variations in simulated density, the part also experiences larger variations in
stiffness and strength, further leading to more inaccuracy, where the actual part may be
more uniformly stiff.

A final extreme effect of this is also observed if the part experiences slumping through
differential shrinkage, and then later approaches uniform full density. The part will begin
to un-distort as the elements reach full density, and any virtual rotations and deformations
are cancelled out as there is no more difference in density throughout the part. Any
deformation caused by shear will remain, but the overall contour of the part will be very
inaccurate, and does not reflect the true behavior of a sintering material.

The root cause of this is the direct linking of the effective bulk and shear viscosities
K̃ and G̃. All of the variable empirical parameters either affect only the densification
behavior (σs0 and ρmax), or the fully dense skeleton viscosity term η0 (A, n, QSOV S). K̃
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and G̃ are defined as functions of η0 and Φ or Ψ. Since Φ and Ψ are only functions of the
density and are otherwise fixed ratios, any attempt to change the behavior of K̃ by varying
the parameters of η0 also changes G̃. A fundamental problem is thus encountered — the
model can either define a material that shrinks appropriately, but does not deform at all,
or one that shrinks and can deform, but through deformation that erroneously includes
differential shrinkage.

This problem can be addressed by either opening some of the fixed parameters in
the SOVS model (an, bn, cn) to the optimization algorithm, or by adding an additional
weighting factor to σm in the expression for ε̇ij. The first option would allow for the bulk
and shear viscosities to be independently modified such that higher sintering stresses can be
used to dominate over σm while retaining a relatively low shear viscosity for deformation.
The second option would directly minimize or negate σm, and allow for smaller sintering
stresses and viscosities to be used.

The problem is further complicated by the availability of measurements. Through
optical dilatometry, the density distribution data is unknown, and only the contour is
measured. As the results in Figures 4.14 and 4.17 to 4.19 show, deformation through
differential shrinkage can be accurate enough to match the contours of the sintering sample,
and contour information alone cannot be relied on to predict the true density gradient
of the part. Density gradient information can either be captured through in-situ CT
scanning during sintering [43], or by analyzing the porosity of the final sintered parts
through sectioning or CT analysis, but both require additional and more costly data sources
than even optical dilatometry data.

Challenges with sintering gas entrapment at high heating rates offer additional challenge
in predicting the density of the sintered part [70]. This phenomenon often manifests with
higher density near the surface, with lower density near the core of the part where more
pores are trapped. As part of a future work, lower heating rates should be used to minimize
pore entrapment, and eventually, to model and predict this phenomenon.

Future model development needs to address both the issue of differential shrinkage in
the simulation, as well as quantifying its true contribution to densification. If σm can
be found to have no effect on densification at the scale of self-weight loading for BJAM-
produced parts, then the model can be improved with no additional optimization load.

4.5.2 Optimization Challenges

The task of fitting model parameters to a sintering model with only optical dilatometry data
for reference presents a challenging objective function — one with costly measurements, and

86



no means of directly obtaining the gradient of the objective function. The DONE algorithm
was selected to address these challenges, but also presents its own unique problems, and
reveals other optimization problems not initially considered.

Unnecessary Noise Tolerance in the DONE Algorithm

The DONE algorithm relies on a set of random Fourier expansion (RFE) terms to ap-
proximate the objective function and updates the fit as measurements are obtained. As a
side-effect of the use of a regularization parameter in the RFE fit to prevent overfitting,
the model becomes tolerant to measurement noise, at the cost of trusting all measurements
less. In the objective function presented here, there is no measurement noise as the same
image data is reused, but noise tolerance cannot be turned ”off”, as a regularization is
parameter is needed to fit a large number of RFE terms to a comparatively very small
number of measurements. As a result, multiple measurements are sometimes required, and
the model may not immediately identify an area with a minimum. This is in contrast
to Bayesian optimization, where measurement uncertainty can be separately defined and
accounted for [34]. For future work, a Bayesian optimization approach may be more useful
than the DONE algorithm, especially if the higher cost of Bayesian optimization is justified
by the higher computation cost of increasing the complexity of the sintering simulation.

Small Deformations During Solid-Phase Sintering

As the model is only being trained on a short solid-phase sintering period before entering
liquid-phase sintering, only a small amount deformation and shrinkage occurs in the mea-
surements. The part appears to not change at all for the majority of the sintering period,
and only slightly in the end. As a result, parameter sets which elicit no deformation or
shrinkage appear correct for a majority of the data set, and only increase in error when
the part begins to noticeably shrink and deform, yielding a reasonably low final error, de-
spite not being a good set of parameters. A complementary problem is that the sintering
model is very sensitive to changes in parameters when deformation and shrinkage in the
simulation do occur. Since the error is calculated purely as a mismatch between simulated
and experimental profiles, a too-large deformation will often cause a relatively large error,
which appears as the very large error spikes in convergence plot of Figure 4.12. These two
problems are summarized in Figure 4.20.

This type of objective function behavior is problematic for optimization algorithms.
A gradient descent approach may fail if it resides in the ”plateau” of no shrinkage or
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Figure 4.20: Schematic diagram showing the sintering response problem. A wide range of
parameter which do not elicit any shrinkage or deformation result in a close but low error,
while too-strong sintering responses yield large errors, with a narrow optimum point in
between.

deformation at all, while a direct approach like the DONE algorithm may not find the
global minimum, and decide that the best parameter combination resides in the same
plateau. In this work, this was eliminated by starting close to the optimum point, but this
may be a significant problem if this is not done.

Some other approaches can be taken as future work to mitigate this problem:

1. Further increasing the weights of contours which have higher deformation.

2. Revisiting the cutoff temperature Tcutoff where it is assumed there is no sintering
or deformation, and fixing it based on the dilatometry measurements. This may
however lead to inaccuracies in the simulation, especially if different geometries may
experience deformation at an earlier time due to higher stresses.

3. Bounding the viable parameter combinations to only those which cause some defor-
mation and shrinkage.

The third option of bounding the viable parameter combinations can potentially be
achieved by examining the extreme values of the intermediate variables σs, K̃, and G̃.
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Given a set of input parameters, and the known maximum temperature, the extreme
theoretical values of these intermediate variables can be calculated as:

G̃min = η0min
ϕmin (4.7)

K̃min = 2η0min
ψmin (4.8)

ϕmin = a1ρ0b1 (4.9)

ψmin = a2
ρb20

(ρmax − ρ0)c2
(4.10)

σsmax = σs0a3ρ
b3
max (4.11)

The calculation for η0min
is not as straight-forward, as the expression is not strictly

monotonically decreasing for all values of T (even though most parameter combinations
are for the temperature ranges used for sintering). However, the minimum can still be
calculated relatively easily.

η0min
= min

[
AT n exp

(
Q

RT

)]
(4.12)

Based on parameter sets for a given geometry which are known to cause deformation and
shrinkage, threshold values for σsmax

K̃min
defining shrinkage and 1

K̃min
defining deformation can

be obtained, and converted into optimization constraints which will exclude all parameters
which do not give any sintering response to the heat treatment schedule used. Since
this approach evaluates σs, K̃, and G̃ directly, the constraint developed using the process
above can work for sintering models which have other formulations for σs, K̃, and G̃. This
provides an opportunity for future work to further improve the optimization process for
all sintering models of this type.
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Single-Objective Optimization

The DONE optimization algorithm used here is a single-objective optimization algorithm.
This approach was selected because it is much easier to implement, but does not make
any distinction between deformation and densification error. While it was not encountered
during this work, it may be possible for the densification and deformation error to form a
local minimum. A potential expansion in future work would be to separate the densification
and deformation behavior in the experiments and simulation, and use a multi-objective
optimization approach. This has the potential to convert the single complex objective
function into two linked simpler (potentially even convex) objective functions.

4.5.3 Challenges in Simulation Assumptions

The goal of the model presented in this work is as a first iteration in building a framework
to model the sintering process, using 2D optical dilatometry data as the sole training data.
As such, several assumptions have been made to simplify the computational complexity
and reduce the problem scope. Several assumptions have been made with respect to the
boundary conditions, material behavior, and governing equations in the simulation that
must be addressed during further model development:

Thermal Expansion Ignored

For in the 2.5D sintering model, it was expected that deformation and shrinkage would
be the primary driving factor of error in the model, and thermal expansion was ignored
for simplicity. As thermal expansion temporarily counteracts shrinkage from sintering,
the model trained on the uncorrected data will under-predict the actual shrinkage by
the amount of thermal expansion. With a coefficient of thermal expansion (CTE) of
10e − 6m/m◦C [3], the green part would expand by 0.925 % when heated from 500◦C to
1425◦C, corresponding to ∼ 0.19mm shrinkage, given a characteristic length of 20mm.

To add thermal expansion to this framework, it can be considered within the simulation,
or during post-processing of the data. Within the simulation, it is possible to add an
additional ”thermal strain” term based on the material in literature, and connect it with
the sintering temperature of the part. This is more accurate, and would be compatible
with a heat transfer model where temperature non-uniformity may cause stresses in the
part, but is computationally more expensive. An efficient compromise would be to assume
a uniform temperature for the purpose of thermal expansion, and account for it during the
comparison of the simulation and experimental images.
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Instantaneous Heat Transfer

As the bulk and shear viscosities in the SOVS model are temperature dependent, a gradient
in temperature directly translates to a gradient in sintering behavior. The simulation
assumes that the heat transfer through the part is lumped and instantaneous, directly
equaling the furnace temperature. For anything but very small parts, this is not the case.

While the thermal conductivity of this GA 4340 powder has not been quantified, heat
transfer analysis of powders such as 17-4 stainless steel show conductive heat transfer co-
efficients of 0.25Wm−1K−1 at atmospheric pressure in Ar [65], which is very low compared
to the equivalent bulk material (0.25Wm−1K−1). Low heat transfer coefficients will cause
larger temperature gradients throughout the part.

A simulation framework considering heat transfer should also consider the evolution
of the heat transfer characteristics with densification. As sinter necks form and grow, the
thermal conductivity will change in turn. This will require a two-way coupling of heat
transfer and densification, as changes in shape and density will affect the thermal conduc-
tivity and vice versa. These heat transfer characteristics can be defined from literature
based on the material class being sintered, or also be treated as additional parameters to
be optimized.

The heat transfer simulation can also be extended to model the furnace conditions
in which the part is heated. At these high temperatures where radiant heat transfer is
significant, more complex geometry which may be shielded from heat may experience non-
uniform heating. However, this approach comes at a high cost of characterizing the furnace
being used, and significantly higher computational cost in the simulation.

Ignored Floor Friction

The boundary conditions set up for the cantilever part assume that the interface between
the part furnace floor is frictionless. In reality, the friction between the furnace floor and
sintering imparts a stress that over time may cause deformation in the part [15], and a
comprehensive sintering model should consider a friction model between the sample and
furnace [11].

The double-cantilever geometry was designed to have a minimal contact patch with the
floor, thus minimizing the effects of floor friction during heating. However, the hole block
sintering experiment (Figure 4.19) shows that friction in wider contact regions may play a
larger role in other geometries.
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Friction can be added to the model by considering a single kinetic friction coefficient, as
is done in recent works [11, 50, 72]. Since the model is assumed to be stiff with very large
time-steps, differentiation between kinetic friction and static friction becomes difficult. This
single parameter can be considered either as an additional optimization parameter, or based
from literature on high-temperature friction effects. Since the friction parameter is only
relevant when it resists shrinkage (only at densifying sintering temperatures), it is possible
that the parameter can remain as a single fixed value, rather than being temperature
dependent. However, it is possible to design experiments to characterize the dynamic
friction of the part [15].

Solid-Phase Sintering Only

While the experimental sintering schedule used in this work has both solid- and liquid-phase
sintering regions, only parameters for the solid-phase region were considered for simplicity
in scope. However, the high final density and rapid densification benefits of liquid-phase
sintering form a need for a comprehensive sintering model that considers both solid-state
and liquid-phase sintering characteristics. In the case of Master Sinter Curves, the model
can be augmented to include liquid phase formation [10], though a more complex approach
is necessary when applying a finite-element model [49]. Since the physical interactions
which drive liquid phase sintering are different from the solid-state region, entirely new
parameters may need to be considered for the liquid-phase region, and in the most extreme
potential case, even different governing equations may need to be considered.

Maintaining continuity in the material behavior in the model will present an additional
challenge. If the behavior is allowed to jump immediately from one mode to another,
the model may suffer from discretization and time-stepping errors. However, applying
smoothing functions over a transition region may cause erroneous behavior, or may be
outright impossible if entirely different governing equations are used for the LPS behavior.
This transition may be further complicated if heat transfer is also considered, where not
all regions of the part may transition into liquid phase simultaneously.

No Grain Growth

The sintering process naturally reaches an equilibrium point where the forces driving sin-
tering densification equal the surface tension and trapped gas porosity forces [70]. The
SOVS model used here is intended for amorphous ceramics without any grain microstruc-
ture [47], and was selected for this thesis due to its simplicity. However, as a result, it is
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unable to track microstructural effects such as grain growth and coarsening during metal
sintering [26]. The phenomenon of reaching a density equilibrium is partially emulated by
ρmax, but the underlying mechanism is not.

Grain evolution can be tracked using a separate ODE which assumes a starting grain
size, and evolves it over time based on the temperature the part is subjected to. The grain
size can then be used in an expression for the sintering stress, creating a negative feedback
loop, limiting the maximum attainable density [72, 73]. As it is difficult to see grain growth
mechanics in the optical dilatometry data stream, the grain densification model should be
obtained through experimental results [73] or literature [72]. Tracking the grain growth
will require additional two-way coupling in the model, increasing the computational cost.

Isotropic Sintering

Since the powder recoating process in BJAM produces non-uniform powder distribution in
the Z axis [67], various anisotropic effects manifest during the sintering process, as outlined
in Section 2.2.2. The cantilever and hole block samples used in this thesis were printed
with the Z axis in the ”extrusion” direction of the parts, such that the camera only saw the
XY plane of the parts. Since sintering behavior is generally the same in the XY plane, [71],
no anisotropic effects were visible in the samples, and an isotropic assumption, at least in
the xy plane, could safely be made.

For more accurate shrinkage and distortion predictions of printed parts, anisotropic
effects should be considered. Anisotropic shrinkage is the observed effect, with potential
causes ranging from anisotropy in the sintering forces to anisotropy in material stiffness. In
a simple geometry, these may be indistinguishable, but in a more complex loading case, they
may act differently under shear loading. Determining the root cause of these anisotropic
effects is outside the scope of this work, but presents opportunity for future work. The
parameters defining this would need to be defined empirically, as this information is not
a conventional material property defined in literature, and is highly powder and machine-
dependent.

One possible implementation of sintering anisotropy for future work is a ratio multi-
plier on σs, as it appears in the strain tensor expression for ε̇in. Similarly, implementing
anisotropic stiffness can be implemented by considering the same multiplier on the stiff-
ness terms Kp and Gp. The anisotropic factor can then be treated as a parameter to be
optimized within the problem.
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Constant Elastic Modulus

The stresses related to the self-weight of the part are calculated by solving an elastic loading
equation at every time step. Part of this calculation involves the elastic modulus of the
material, which is assumed to be that of bulk 4340 steel. This was done for simplicity, as it
would be difficult to quantify the elastic modulus at high temperatures and varying volume
fractions, especially since it cannot be decoupled from the sintering action. Further, under
the very light loads from self weight, changes in the elastic modulus were not expected to
cause any major changes in the stress distribution of the part.

Linear FEA Formulation

The constitutive equations used for the solid mechanics model in the simulation are a
geometrically linear formulation with additive strain decomposition, instead of a fully non-
linear approach. The linear and nonlinear approaches differ in two respects - the definition
of the strain tensor, and the decomposition of elastic and inelastic strains.

In the nonlinear geometric case, the strain is defined as a function of the displace-
ment gradient (∇u) as ε = 1

2

[
(∇u)T +∇u+ (∇u)T∇u

]
. The linear small-strain formu-

lation omits the final (∇u)T∇u term, as small displacements result in very small values
of (∇u)T∇u that can be ignored. For problems with larger displacements (such as in the
model presented here), this contributes a greater amount to the strain in the part, and can
affect the model accuracy.

When solving elasticity problems with elastic and inelastic deformation, it is necessary
to remove the inelastic component to solve the stresses based on the elastic component
of strain. A geometrically linear formulation directly subtracts the inelastic strain from
the elastic strain: εel = ε − εinel. In contrast, a nonlinear strain decomposition uses a
multiplicative decomposition of the elastic deformation gradient tensor from the overall
deformation gradient tensor: Fel = FF−1

inel. The elastic deformation gradient tensor can
then be related back to the elastic strain via other constitutive equations. With small
strains, both approaches are functionally the same, but the additive decomposition ap-
proach loses accuracy as large strains are encountered.

The above differences manifest as an underprediction of the amount of deformation
encountered in the model, as shown in Figures 4.21 and 4.22. While both models achieve
the same average volume fraction, the nonlinear model (Figure 4.21b) has a wider spread
between the maximum and minimum density, and a greater spread in density from the
zones of tension and compression. It is possible that the greater tension-compression effect
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is due to the rotation in the geometry, where the moment applied to the vertical part of
the component is amplified as the part begins to slump.

(a) Linear Elastic Formulation (b) Nonlinear Elastic Formulation

Figure 4.21: Comparison of results from linear and nonlinear elastic formulations at the
end of the solid-phase sintering step.

The contours of the two parts appear similar, but differ slightly at the end of the solid
phase sintering step. When overlaid in Figure 4.22, the red contour, corresponding to
the nonlinear geometric formulation, experiences a slightly greater amount of deformation,
amounting to a maximum contour deviation of 0.2mm at the tip of the cantilever. It is
likely that this difference will continue to grow as total amount of deformation continues.
While the difference may be somewhat minor for solid-phase sintering, it is likely that it
will lead to unacceptable inaccuracies in liquid phase.

The use of a linear geometric formulation was done primarily to reduce the computa-
tional cost of the problem. When the nonlinear geometric formulation is used, the time
to compute the model increases threefold from ∼ 5 minutes to ∼ 15 minutes on an 8-core
desktop computer. This increase in computation time is minor, and is still acceptable for
finding the deformed state of a part in a single simulation. However, for the full opti-
mization cycle where over 50 iterations were conducted, this amounts to several hours of
additional computation time.

The linear geometric formulation may be useful in a preliminary optimization cycle. The
faster simulation time can be used to more rapidly converge to a set of parameters which
give both good densification and deformation performance. The constitutive equations can
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Figure 4.22: Overlay of deformed shape after solid-state sintering of the linear FEA simu-
lation (blue) and nonlinear simulation (red).
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then be adjusted to the nonlinear form for fine-tuning in a narrower optimization domain.
Depending on the optimization methods used for both phases, it may even be possible to
reuse the linear measurements in the second optimization loop, with an assumed margin
of error.
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Chapter 5

Conclusions

This thesis targeted the prediction of shape deformations in binder-jet additively manu-
factured metal parts during solid-phase sintering. To this end, various sintering models
were reviewed, and the Skorohod-Olevsky viscous sintering (SOVS) model was selected
and modified for additional flexibility with the 4340 material system. This model was first
simplified into a lumped form, and fit to push-rod dilatometry data that was previously
collected for a different work [57]. While the model did not perform as well for heating
rates different from the training data, good performance with the training data validated
the sintering model as useful at a constant heating schedule.

The modified SOVS model was them implemented in COMSOL multiphysics software,
and was used to predict the distortion and densification of cantilevered bracket structures
tested in an optical dilatometer furnace. Parameters from the lumped model optimization
were ineffective at capturing contour deformation, requiring a new round of optimization.
The resulting fitted model maintained good accuracy for parts with relatively low distor-
tion, but some of the assumptions used to improve the computation speed led to reduced
accuracy with thinner-walled geometries. The final model is effective at predicting the final
contour, but shows its limitations in erroneously predicting a large density gradient in the
resulting part.

This thesis established a a groundwork for an open experimentally-informed model to
simulate the densification of sintering parts. The use of such a model in an industrial
application to predict and eventually compensate for deformation in a part about to be
3D printed has the potential to greatly reduce the costs of unnecessary iteration and re-
printing, and eliminate a source of waste, making binder-jet additive manufacturing a more
commercially attractive and sustainable process.
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5.1 Future Steps

5.1.1 Simulation

The next steps to take in continuing this work are to address the challenges experienced
with the sintering model and optimization process, and to further extend the model perfor-
mance. The core sintering model should either be modified to address the density gradient
issues, or reformulated based on literature that has been published since the start of this
thesis [72, 50, 11]. Additionally, the FEM implementation of the model should be up-
dated to consider additional physics interactions, such as floor friction, heat transfer, grain
growth mechanics, and optional supports during sintering.

Following this, the sintering model should be extended to model liquid phase sintering of
the 4340 material system, using the remaining set of data from the same optical dilatometry
experiments. The model can also be further extended to capture sintering phenomena that
are currently not simulated by models in recent literature. The multiphysics nature of
this model can be used to also simulate debinding processes at lower temperatures, and
dealloying and phase segregation in some cases of liquid-phase sintering (such as Fe-Si)
[58].

5.1.2 Optimization

The optimization strategy used in this thesis should also be revisited, and the computa-
tional effectiveness of more conventional optimization strategies such as the NEWUOA
trust region algorithm and Bayesian optimization should be evaluated relative to the com-
paratively new DONE algorithm. The data handling of the optimization process should
also be fully automated to remove the bottleneck of manual data transfer. Additionally,
the error definition used for the optimization should be revisited to better

The optimization approach should also be further extended to use more data sources
for improved accuracy of the final model. Multiple artifact geometries should be considered
in the training set, and validated against even more complex, real-world parts. Additional
optimization data can also come in the form of a post-sinter 3D scan, which is more
commonly available than instrumented furnaces like the optical dilatometer used in this
thesis.
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Appendix A

MATLAB Code for Lumped SOVS
RK4 Time-Stepping
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Appendix B

MATLAB Code for Contour
Extraction from Optical Dilatometry

%% Read in Image Data from the Target Folder

clear all

close all

HomeFolder = pwd; %save current folder for returning later

TargetFolder = ...

’C:\Users\roman\SynologyDrive\TOM-AC\TOM-AC Output Data\2022_05_24_TOMAC’;

cd(TargetFolder)

dirData = dir(’*.bmp’); %select all bmp files

expTime = zeros(length(dirData),1);

expTemp = zeros(length(dirData),1);

% Loop through dirData and extract time and temperature

for i = 1:length(dirData)

%convert string to datetime, and then to UNIX time

expTime(i) = posixtime(datetime(dirData(i).date));

filenameparts = split(dirData(i).name,"__"); %split into 3 parts
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tempstr = filenameparts{3}; %select the third part w/ temperature

tempstr = erase(tempstr,".bmp");

expTemp(i) = str2double(erase(tempstr, ".bmp"));

end

% Crop DirData around a starting temperature

dirData(expTemp<500) = [];

expTime(expTemp<500) = [];

expTemp(expTemp<500) = [];

expTime = expTime-expTime(1); %change to elapsed seconds

numImgs = length(dirData);

% get dimensions of the first image

imsize = size(imread(dirData(1).name));

imdata = zeros(imsize(1),imsize(2), length(dirData), ’uint8’);

f = waitbar(0,’Loading Images’);

for i = 1:numImgs

imdata(:,:,i) = imread(dirData(i).name);

waitbar(i/numImgs,f)

end

close(f)

cd(HomeFolder) %change back to home folder

%% Register the furnace floor as a pixel position
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% checking with the first image only

floorheight = zeros(numImgs, 1);

partmidpt = zeros(numImgs, 1);

f = waitbar(0,’Finding Part Centre’);

for i = 1:numImgs

waitbar(i/numImgs,f)

% i=1; %for debug

% i=844;

% i=1500;

im = imdata(:,:,i); %select image out of the stack

im_dims = size(im);

% Find the Furnace Floor (Origin Y)

ymean = mean(im,2); %average horizontally

ymean = movmean(ymean,3); %smooth out the data

ymean_offset = [0;ymean]; %make an offset for a first difference

ymean_offset = ymean_offset(1:end-1); %truncate to same dimensions

y_fdif = (ymean - ymean_offset); %calculate the first difference

y_fdif(1)=0;

y_fdif(1:700) = 0; %cropping left

y_fdif(850:end) = 0; %cropping right

y_fdif_abs = abs(y_fdif);

% Alternative method to find the furnace floor

im_tempthresh = imbinarize(im);

%generate coordinates

[X_coords, Y_coords] = ...

meshgrid(1:size(im_tempthresh,2),1:size(im_tempthresh,1));

im_centroid_x = ...
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sum(X_coords.*double(im_tempthresh),’all’)/sum(im_tempthresh,’all’);

im_centroid_y = ...

sum(Y_coords.*double(im_tempthresh),’all’)/sum(im_tempthresh,’all’);

%compensate for the fact we only detect the decrease on the way down,

% and the extra -1 at the end

[~,floorheight(i)] = max(y_fdif_abs);

% Find the Part Center (Origin X)

imbase = im(floorheight(i)-50:floorheight(i),:);

xmean = mean(imbase,1).’; % average vertically

xmean = movmean(xmean,3); %smoothing

xmean_offset = [0;xmean]; %shift

xmean_offset = xmean_offset(1:end-1); %truncate to same dim

x_fdif = xmean-xmean_offset;

x_fdif(1:10) = 0;

x_fdif_abs = abs(x_fdif);

[x_fdif_peakval, x_fdif_peakpos] = findpeaks(x_fdif_abs, ...

"SortStr","descend", ...

"NPeaks",2);

partmidpt(i) = mean(x_fdif_peakpos);

end

close(f) %close waitbar

% Image Means and fdifs for Y position debugging

figure(1)

yyaxis left

plot(ymean)
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yyaxis right

plot(y_fdif_abs)

title("Y Position Debugging")

% % Full Image for info/debug

% figure(2)

% imshow(im)

% Plot part midpoint and floor for visualization

figure(3)

yyaxis left

plot(floorheight)

ylabel("Floor Height (Pixel idx)")

yyaxis right

plot(partmidpt)

ylabel("Part Midpoint (Pixel idx)")

% % Image means and fdifs for midpoint debugging

% figure(4)

% yyaxis left

% plot(xmean)

% yyaxis right

% plot(x_fdif_abs)

% title("X Position Debugging")

% % Cropped image for midpoint finding (debugging)

% figure(5)

% imshow(imbase)

% % Handy Image Stack Viewer/Player

% figure(6)

% imshow3D(imdata)

% % messing around with volshow (not really needed)

% figure(7)

% vs = volshow(imdata)

% vs.Alphamap = linspace(0,0.5,256).’
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%% Threshold and Segment the Data

imagemeans = zeros(numImgs,1);

ims_bw = zeros(size(imdata),’logical’);

f = waitbar(0,’Thresholding’);

tempThresh = 1300;

ims_partinv = imdata;

for i = 1:numImgs

imagemeans(i) = mean(imdata(:,:,i),’all’);

end

[~, backlight_lim] = ...

findpeaks(-imagemeans, "NPeaks", 2, "SortStr","descend");

% Confirm that the peaks selected are close to the threshold

backlight_lim_close_to_tempThresh = ...

abs(expTemp(backlight_lim)-tempThresh)<10

% take complement of images where backlight has been switched off

ims_partinv(:,:,min(backlight_lim):max(backlight_lim)) ...

= imcomplement(imdata(:,:,min(backlight_lim):max(backlight_lim)));

% invert all again so part is 1 and background is 0

ims_partinv = imcomplement(ims_partinv);
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for i = 1:numImgs

im = ims_partinv(:,:,i);

% ims_bw(:,:,i) = imbinarize(im,’adaptive’, ...

% ’sensitivity’,0.1);

ims_bw(:,:,i) = imbinarize((im), ’global’);

% Set the floor (+ a small margin) as background

ims_bw(floorheight(i):end,:,i) = 0;

% Update Waitbar

waitbar(i/numImgs,f)

end

close(f)

%% Isolate the part using connectivity and fill in all holes inside it

f = waitbar(0,"Isolating Part");

part_isolated = zeros(size(imdata),’logical’);

for i = 1:numImgs

waitbar(i/numImgs,f);

im = ims_bw(:,:,i);

im = imopen(im,strel(’disk’,3));

%open the image to remove the floor shards

cc = bwconncomp(im); %run connected check on images

cc_grps = cc.PixelIdxList;

cc_grps_len = cellfun(’length’,cc_grps); %get lengths of all groups

% get position of largest group vector indices

if (min(backlight_lim)<=i && i<=max(backlight_lim))

%check if backlight is on
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[~,idx] = max(cc_grps_len);

%get position of largest group length vector

else

[~,idx] = max(cc_grps_len);

%get position of largest group length vector

cc_grps_len(idx) = 0; %remove largest position

[~,idx] = max(cc_grps_len);

%get position of 2nd largest group length vector

end

part_temp = zeros(prod(im_dims),1,’logical’);

part_temp(cc_grps{idx}) = 1; %set 1s in part temp per cc_grps

part_temp = reshape(part_temp,im_dims); %reshape into an image

part_temp = imfill(part_temp,’holes’); %fill holes

part_isolated(:,:,i) = part_temp;

%fill holes in part to get a solid shape

end

close(f)

figure

imshow3D(part_isolated)

%% Crop and resize the image so it’s centred and grounded

expContour = zeros(size(part_isolated),’logical’);

f = waitbar(0,"Shifting Part");

for i = 1:numImgs

waitbar(i/numImgs,f);
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expContour(:,:,i) = ...

imtranslate(part_isolated(:,:,i),...

[floor(1280/2 - partmidpt(i)),960-floorheight(i)]);

end

close(f)
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Appendix C

MATLAB Code for Contour
Evaluation

%% load images of 5-10 block simulation

clear all

close all

HomeFolder = pwd; %save current folder for returning later

TargetFolder = ...

’G:\My Drive\_Grad School\_Thesis\COMSOL Simulation\DataExport\volFrac’;

cd(TargetFolder)

dirData = dir(’*.png’); %select all bmp files

numSimImgs = length(dirData);

% get dimensions of the first image

imsize = size(imread(dirData(1).name));

simImg = zeros(imsize(1),imsize(2), length(dirData), ’uint8’);

f = waitbar(0,’Loading Images’);

for i = 1:numSimImgs

simImg(:,:,i) = rgb2gray(imread(dirData(i).name));

waitbar(i/numSimImgs,f)

end

close(f)
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cd .. %go up one folder

% read TimeTemp.txt and make variables as we need

simTimeTemp = readtable(’TimeTemp.txt’);

simTime = table2array(simTimeTemp(:,2));

simTemp = table2array(simTimeTemp(:,3))-273.15;

% opts = delimitedTextImportOptions("Delimiter","")

parameters = readtable("Parameters.txt");

cd(HomeFolder) %change back to home folder

%% Load experimental 5-10 data

load part_isolated_510.mat

%% segment the simulation image stack

simContour = simImg.*0;

f = waitbar(0,’Thresholding’);

for i=1:numSimImgs

simContour(:,:,i) = imcomplement(imbinarize(simImg(:,:,i)));

waitbar(i/numSimImgs,f)

end

close(f)

%% resize and register the sim images to the experimental

% measure max height of experimental and sim images

[R,~] = find(expContour==1);

%get row and column indices of all 1’s

expMaxHeight = max(R) - min(R);

%part height is difference between max and row indices

[R,~] = find(simContour==1); %get row and column indices of all 1’s

simMaxHeight = max(R) - min(R);

%part height is difference between max and row indices
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simFloorheight = size(simContour(:,:,1),1) - max(R);

% translate sim images

simContour = logical(imtranslate(simContour,[0,simFloorheight,0]));

scaledown = expMaxHeight/simMaxHeight*0.97;

simContourScaled = zeros(size(imresize(simContour,scaledown,’nearest’)));

f = waitbar(0,’Scaling and Mirroring’);

for i = 1:numSimImgs

waitbar(i/numSimImgs,f)

simContourScaled(:,:,i) = imresize(simContour(:,:,i),scaledown,’nearest’);

end

simContourScaled = logical(simContourScaled);

close(f)

% Pad out the scaled image to register the same position

[R,C] = find(simContourScaled==1);

PadL = 640-min(C);

PadR = 640-size(simContourScaled,2)+min(C);

PadTop = 960-size(simContourScaled,1);

simContourPadded = ...

logical(padarray(padarray...

(simContourScaled,[PadTop, PadL,0],0,’pre’),[0,PadR,0],0,’post’));

% Mirror the sim contours with logical OR with flipped version

simContourMirrored = simContourPadded | flip(simContourPadded,2);

%% Compare match/overlap/underlap for all time sets

% declare reduced experimental variables

expContourReduced = logical(simContourPadded.*0);
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expTimeReduced = zeros(length(simTime),1);

expTempReduced = zeros(length(simTime),1);

for i = 1:numSimImgs

% find closest exp time to sim step and add to new stack

[~, ClosestIndex] = min(abs(expTime-simTime(i)));

% Record reduced scope parts

expContourReduced(:,:,i) = expContour(:,:,ClosestIndex);

expTimeReduced(i) = expTime(ClosestIndex);

expTempReduced(i) = expTemp(ClosestIndex);

end

TimeDiscrepancy = simTime - expTimeReduced;

TempDiscrepancy = simTemp - expTempReduced;

figure

yyaxis left

hold on

plot(simTime,simTemp)

plot(expTimeReduced,expTempReduced)

legend(’sim’,’exp’)

xlabel("Time")

ylabel("Temperature (C)")

title("Time Temperature Exp vs. Sim")

movegui("northwest")

figure

hold on

plot(TimeDiscrepancy)

plot(TempDiscrepancy)

legend(’TimeDiscrepancy’,’TempDiscrepancy’)

xlabel("Timestep")

ylabel("Discrepancy")

title("Time add Temp Discrepancy")

movegui("north")

% expContourReduced = expContourReduced.*0;
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contourEval.match = simContourMirrored & expContourReduced;

contourEval.undersinter = logical(simContourMirrored - contourEval.match);

%what parts of the sim remain that should have shrunk

contourEval.oversinter = (expContourReduced - contourEval.match);

%what parts of the sim sintered too quickly and should still be there

contourEval.error = contourEval.oversinter | contourEval.undersinter;

contourEval.error2 = expContourReduced - simContourMirrored;

%% Output the results

expArea = squeeze(sum(expContourReduced,[1 2]));

matchArea = squeeze(sum(contourEval.match,[1 2]));

sinterError = squeeze(sum(contourEval.error,[1 2]));

sinterError_norm = sinterError./expArea;

sinterError_alt = sinterError./matchArea;

ratio = sinterError_alt./sinterError_norm;

figure

imshow3D(contourEval.error)

movegui("northeast")

figure

plot(simTime,sinterError)

xlabel("Time")

ylabel("Total error")

title("Raw Error (Pixel Underlap + Overlap)")

movegui("south")

figure

hold on
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plot(simTime,sinterError_norm)

% plot(simTime,sinterError_alt)

xlabel("Time")

ylabel("Error")

% legend("Normalized by Exp","Normalized by Match")

title("Normalized Error")

movegui("southeast")

%% Crop error so only the SPS region is considered for error optimization

ErrorCalcCutoff = 135

FinalPtPadAmt = floor(ErrorCalcCutoff*0.25)

%padding out the final result by ~25% to favor the final result

ErrorCutoff = sinterError_norm(1:ErrorCalcCutoff);

%135 is a magic number here!

ErrorCutoffPadded = [ErrorCutoff; ErrorCutoff(end)*ones(FinalPtPadAmt,1)];

% close all %close all figures just to make it easier to read values

% RMSECutoff = sqrt((sum(ErrorCutoff.^2,"all"))/length(ErrorCutoff))

RMSECutoffPadded = ...

sqrt((sum(ErrorCutoffPadded.^2,"all"))/length(ErrorCutoffPadded))

RMSEFull = ...

sqrt((sum(sinterError_norm.^2,"all"))/length(sinterError_norm))

ErrorsInput = [RMSECutoffPadded, RMSEFull]

% %% Copy the results into a new folder

%

% cd(TargetFolder) %go to target folder

% cd .. %go one folder up

%

%

%
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% cd(’G:\My Drive\_Grad School\_Thesis\COMSOL Simulation\DataExportBackup’)

% contents = ls;

% contNum = zeros(size(contents,1),1);

%

% for i = 1:length(contNum) %find the biggest numbered folder

% folderNum = str2num(convertCharsToStrings(contents(i,:)));

%

% if(~isempty(folderNum))

% contNum(i) = folderNum;

% end

% end

%

% biggestFolderNum = max(contNum);

%

% mkdir(num2str(biggestFolderNum+1)); %make a new larger number folder

%

% cd(num2str(biggestFolderNum+1)); %go into this folder

%

% copyfile("G:\My Drive\_Grad School\_Thesis\COMSOL Simulation\DataExport\*")

%

% cd(HomeFolder)
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Appendix D

MATLAB Code for DONE
Optimization

%% Read in the measurement table, register the number of measurements

clear all

close all

opts = detectImportOptions("simHist_r3.xlsx");

opts = setvartype(opts,"double");

measurementTable = (readtable("simHist_r3.xlsx",opts));

%read table and convert to cell

measurementTable = table2cell(measurementTable);

% measurementTable = measurementTable(~cellfun(’isempty’,measurementTable)).’;

%eliminate empty cells
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% measNumericParts = cellfun(@isnumeric,measurementTable);

% measurementTable = str2double(measurementTable);

%convert strings to doubles, empty cells become NaNs

measurementTable = cell2mat(measurementTable); %convert to matrix

% measurementTable(isnan(measurementTable)) = []; %removes all NaNs

measurementTable(any(isnan(measurementTable),2),:) = [];

%removes all rows with NaNs

% a1 a2 a3 b1 b2 b3 c2 ss_0 A B n vFracMin RMSECrop RMSEFull

ParamFlags = [0 0 0 0 0 0 0 1 1 1 1 1 0 0].’;

paramMtx = measurementTable(:,ParamFlags==1);

rmseVect = 1*measurementTable(:,end-1); %Cropped RMSE Vector

% rmseVect = measurementTable(:,end); %Uncropped RMSE Vector

N = size(measurementTable,1); %the number of cycles

totalNumParams = size(measurementTable,2);

OptVectLength = size(paramMtx,2);

%% Define Parameters that would have been defined as in function

rng(1); %set the RNG seed to a fixed value for consistency (and debugging)

global X0 LB UB D LAMBDA SIGMA EXPL MODEL

%declare varialbes as global

% (need to do as we’re adapting from nested functions)

X0 = ones(OptVectLength,1)*0.5;

% N = measQty;

LB = zeros(OptVectLength,1);

UB = ones(OptVectLength,1);
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D = 2000;

LAMBDA = 0.05;

SIGMA = 1;

EXPL = 0.01;

% D = 2000;

%% Initialization

setparameters(9);

%run the full initialization given that all of the parameters are defined

next_X = X0(:); % X value used to take a measurement

% MEASUREMENTS = zeros(MODEL.d+1,N); % X and Y values of measurements

MEASUREMENTS = [paramMtx rmseVect].’;

%MEASUREMENTS is the transpose of the table

OPTS = zeros(MODEL.d+1,N); % X and Y values of found minima

X_min = zeros(MODEL.d,1); % Current minimum

initializeModel();

f = waitbar(0,’Running DONE Algorithm’);

%% DONE algorithm

for n = 1:N

waitbar(n/N,f);

%% Store X (vector of length d) and Y (scalar) values in DATASET

% MEASUREMENTS(1:MODEL.d,n) = next_X;

% MEASUREMENTS(MODEL.d+1,n) = FUN(next_X); %commented out since we

% faked our measurements list
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%% Update the RFE model using inverse QR

updateModel(MEASUREMENTS(:,n));

%% Exploration on the RFE model, initial guess for nonlinear optimization

X0 = min(max(MODEL.LB,next_X + MODEL.EXPL*randn(MODEL.d,1)),MODEL.UB);

%% Find the minimum of the RFE

options = optimset(’algorithm’,’interior-point’,’display’,’off’,...

’MaxITer’,10,’GradObj’,’on’,’Hessian’,’lbfgs’);

X_min = fmincon({MODEL.out,MODEL.deriv},X0, ...

[], [],[],[],MODEL.LB,MODEL.UB,[],options);

%% Store X (vector of length d) and Y (scalar) values in DATASET

OPTS(1:MODEL.d,n) = X_min;

% OPTS(MODEL.d+1,n) = FUN(X_min); %commented out since we are not

% running FUN as a "function"

%% Exploration on FUN, choose new measurement point

next_X = min(MODEL.UB,max(MODEL.LB,X_min + MODEL.EXPL*randn(MODEL.d,1)));

end

%% output transpose of next_X for ease of copy paste

excelInput = measurementTable(end,1:end-2);

%starting from the last parameter vector

c = 1;

for i = 1:totalNumParams

if ParamFlags(i) == 1

%find the next spot where the flag indicates an optimized parameter

excelInput(i) = next_X(c); %copy next parameter into the correct slot

c=c+1; %increment c

end

end

excelInput

close(f);

%%
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function setparameters(n)

global X0 LB UB D LAMBDA SIGMA EXPL MODEL

%declare varialbes as global

% (need to do as we’re adapting from nested functions)

%% Set default parameters

MODEL.d = length(X0); % X dimension

if n < 9

MODEL.EXPL = 0.1*sqrt(3)/MODEL.d; % Exploration parameter

if n < 8

MODEL.SIGMA = 1;

% Standard deviation of random Fourier frequencies

if n < 7

MODEL.LAMBDA = 0.1; % Regularization parameter

if n < 6

MODEL.D = 1000;

% # of basis functions of random Fourier expansion

if n < 4

MODEL.LB = -1*ones(MODEL.d,1);

% Lower bound for the elements of x

MODEL.UB = 1*ones(MODEL.d,1);

% Upper bound for the elements of x

end

end

end

end

end

%% Store parameters in RFE

if n>=4

MODEL.LB = LB;

MODEL.UB = UB;

if n >= 6

MODEL.D = D;

if n >= 7

MODEL.LAMBDA = LAMBDA;

if n >= 8

MODEL.SIGMA = SIGMA;

if n >= 9
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MODEL.EXPL = EXPL;

end

end

end

end

end

%% Allow scalar values of LB and UB

if length(MODEL.LB)==1 && MODEL.d>1

MODEL.LB = MODEL.LB*ones(MODEL.d,1);

end

if length(MODEL.UB)==1 && MODEL.d>1

MODEL.UB = MODEL.UB*ones(MODEL.d,1);

end

end

%%

function initializeModel()

global MODEL %declare varialbes as global

% (need to do as we’re adapting from nested functions)

%% Generate cosines with random frequencies and phases

MODEL.OMEGA = MODEL.SIGMA*randn(MODEL.D,MODEL.d); % Frequencies

MODEL.B = 2*pi*rand(MODEL.D,1); % Phases

MODEL.Z = @(x) cos(MODEL.OMEGA*x+repmat(MODEL.B,1,size(x,2)));

% Basis functions

%% Initialize recursive least squares parameters

MODEL.W = zeros(MODEL.D,1); % Weights of least squares solution

MODEL.out = @(x2) MODEL.W’*MODEL.Z(x2); % Output of RFE

MODEL.deriv = @(x) -MODEL.OMEGA’*diag(MODEL.W)*sin(MODEL.OMEGA*x+MODEL.B);

% Derivative of RFE

MODEL.P12 = 1/sqrt(MODEL.LAMBDA)*eye(MODEL.D);

% Square root factor of P matrix

end

%%

% function fakeExp()

function updateModel(DATA)
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global MODEL

%declare varialbes as global

% (need to do as we’re adapting from nested functions)

%% Read data

U = MODEL.Z(DATA(1:MODEL.d))’;

Y = DATA(MODEL.d+1);

%% Inverse QR update

A = [ 1, U*MODEL.P12; ...

zeros(MODEL.D,1), MODEL.P12 ];

[~,R ] = qr(A’);

R = R’;

gamma_12 = R(1,1);

ggamma_12 = R(2:end,1);

MODEL.P12 = R(2:end,2:end);

MODEL.W = MODEL.W + ggamma_12/gamma_12*(Y-U*MODEL.W);

MODEL.out = @(x2) MODEL.W’*MODEL.Z(x2);

MODEL.deriv = @(x) -MODEL.OMEGA’*diag(MODEL.W)*sin(MODEL.OMEGA*x+MODEL.B);

end
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