
On the Design of Efficient Deep Learning
Methods for Human Activity Recognition

in Resource Constrained Devices

by

Sheikh Nooruddin

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2023

© Sheikh Nooruddin 2023

Author’s Declaration

This thesis consists of materials all of which I authored and co-authored: see the Statement of
Contributions included in the thesis. This is a true copy of the thesis, including any required final
revision, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

Following publications have resulted from the work presented in the thesis:

1. Sheikh Nooruddin, Md. Milon Islam, Fakhri Karray and Ghulam Muhammad, “A Multi-
resolution Fusion Approach for Human Activity Recognition from Video Data in Tiny Edge
Devices,” Information Fusion, Elsevier, 2023. [Under Review].

2. Sheikh Nooruddin, Md. Milon Islam and Fakhri Karray, “TinyHAR: Benchmarking Hu-
man Activity Recognition Systems in Resource Constrained Devices,” 8𝑡ℎ IEEE World Fo-
rum on Internet of Things (IEEE WFIoT2022), IEEE, Yokohama, 26 Oct.–11 Nov., 2022.
[Accepted].

3. Sheikh Nooruddin, Md. Milon Islam and Fakhri Karray, “An Evolutionary Computing
based Approach for Optimal Target Coverage in Wireless Sensor Networks,” Proceed-
ings of 15𝑡ℎ KES International Conference on Human Centred Intelligent Systems (HCIS),
edited by: Zimmermann, A., Howlett, R.J., Jain, L.C., Human Centred Intelligent Systems.
Smart Innovation, Systems and Technologies, vol. 310, Springer, Singapore, 2022.

4. Md. Milon Islam, Sheikh Nooruddin, Fakhri Karray and Ghulam Muhammad, “Multi-
level Feature Fusion for Multimodal Human Activity Recognition in Internet of Healthcare
Things,” Information Fusion, Elsevier, vol. 94, pp. 17-31, Jan. 2023.

5. Md. Milon Islam, Sheikh Nooruddin, Fakhri Karray and Ghulam Muhammad, “Inter-
net of Things: Device Capabilities, Architectures, Protocols, and Smart Applications in
Healthcare Domain,” IEEE Internet of Things Journal, IEEE, vol. 10, no. 4, pp. 3611-
3641, Dec. 2022.

6. Md. Milon Islam, Sheikh Nooruddin, Fakhri Karray and Ghulam Muhammad, “Hu-
man Activity Recognition Using Tools of Convolutional Neural Networks: A State of
the Art Review, Data Sets, Challenges, and Future Prospects,” Computers in Biology and
Medicine, Elsevier, vol. 149, pp. 106060, Oct. 2022.

7. Md. Milon Islam, Sheikh Nooruddin and Fakhri Karray “Multimodal Human Activity
Recognition for Smart Healthcare Applications,” IEEE International Conference on Sys-
tems, Man, and Cybernetics (SMC), IEEE, Prague, pp. 196-203, 9-12 Oct., 2022.

In papers 1, 2, and 3, I was responsible for the conceptualization, methodology, validation,
investigation, and writing the original draft. Md. Milon Islam was partly responsible for the
methodology, validation, investigation, and writing the original draft.

iii

In papers 4, 5, 6, and 7, I was responsible partly for the methodology, literature review, data
presentation, discussion, and writing the original draft. Md. Milon Islam was responsible for the
conceptualization, methodology, literature review, data presentation, discussion, and writing the
original draft.

In all of the above papers, Prof. Fakhri Karray was responsible for the review, revision, co-
ordination, guidance, and suggestions. Prof. Ghulam Muhammad aided in the review, revision,
guidance, and suggestions.

Chapters 1 to 5 of this dissertation contain relevant parts of papers 1 to 7.

iv

Abstract

Human Activity Recognition (HAR) is the process of automatic recognition of Activities of
Daily Life (ADL) from human motion data captured in various data modalities by wearable and
ambient sensors. Advances in deep learning, especially Convolutional Neural Networks (CNN)
have revolutionized intelligent frameworks such as HAR systems by effectively and efficiently
inferring human activity from various modalities of data. However, the training and inference
of CNNs are often resource-intensive. Recent research developments are focused on bringing
the effectiveness of CNNs in resource constrained edge devices through Tiny Machine Learning
(TinyML). TinyML aims to optimize these models in terms of compute and memory requirements
- aiming to make them suitable for always-on resource constrained devices - leading to a reduc-
tion in communication latency and network traffic for HAR frameworks. In this thesis, at first,
we provide a benchmark to understand these trade-offs among variations of CNN network archi-
tectures, different training methodologies, and different modalities of data in the context of HAR,
TinyML, and edge devices. We tested and reported the performance of CNN and Depthwise Sep-
arable Convolutional Neural Network (DSCNN) models as well as two training methodologies:
Quantization Aware Training (QAT) and Post Training Quantization (PTQ) on five commonly
used benchmark datasets containing image and time-series data: UP-Fall, Fall Detection Dataset
(FDD), PAMAP2, UCI-HAR, and WISDM. We also deployed and tested the performance of the
model-based standalone applications on multiple commonly available resource constrained edge
devices in terms of inference time and power consumption. Later, we focus on HAR from video
data sources. We proposed a two-stream multi-resolution fusion architecture for HAR from video
data modality. The context stream takes a resized image as input and the fovea stream takes the
cropped center portion of the resized image as input, reducing the overall dimensionality. Due
to camera bias, objects of interest are often situated in the center of the frame. We tested two
quantization methods: PTQ and QAT to optimize these models for deployment in edge devices
and tested the performance in two challenging video datasets: KTH and UCF11. We performed
ablation studies to validate the two-stream model performance. We deployed the proposed ar-
chitecture in commercial resource constrained devices and monitored their performance in terms
of inference latency and power consumption. The results indicate that the proposed architecture
clearly outperforms other relevant single-stream models tested in this work in terms of accuracy,
precision, recall, and F1 score while also reducing the overall model size. The experimental
results in this thesis demonstrate the effectiveness and feasibility of TinyML for HAR from mul-
timodal data sources in edge devices.

v

Acknowledgements

I would like to thank my supervisor Prof. Fakhri Karray for all the guidance and support given
to me throughout my Master’s degree as well as the research opportunities.

In addition, I want to thank my colleague Md. Milon Islam for our long brainstorming sessions
at the CPAMI lab. I also want to thank Prof. Ghulam Muhammad for reviewing, revising, and
suggesting meaningful changes to our manuscripts.

I would like to acknowledge and thank the members of my thesis committee Prof. Mark
Crowley and Prof. Ali Elkamel for reviewing this thesis. Their assessment and evaluation are
very appreciated.

I would love to express my deepest gratitude to my wife Falguni Ahmed Sharna, without
whose selfless sacrifice, dedication, and unwavering support, none of this would have been pos-
sible.

vi

Dedication

This thesis is dedicated to my wife, parents, colleagues, and those who helped me push
through until the end.

vii

Table of Contents

List of Figures xi

List of Tables xiii

List of Abbreviations xiv

1 Introduction 1
1.1 Problem Definition . 1
1.2 Motivation . 2
1.3 Scope of the Work . 3
1.4 Contributions . 3
1.5 Thesis Organization . 5

2 Literature Review 6
2.1 Overview on Human Activity Recognition . 6

2.1.1 HAR from Multimodal Sensing Devices 8
2.1.2 HAR from Smartphone Sensor Data . 12
2.1.3 HAR from Radar Signal . 14
2.1.4 HAR from Image and Video data . 15

2.2 Literature on TinyML Benchmarks . 18
2.3 Literature on Lightweight Deep Learning Models for HAR 18
2.4 Summary . 21

viii

3 Proposed Methodology 22
3.1 Benchmarking HAR . 22

3.1.1 Convolutional Neural Networks . 23
3.1.2 Quantization Methods . 25
3.1.3 Tiny Edge Devices . 26

3.2 Multi-resolution Fusion Architecture for HAR 28
3.2.1 Parameters of Convolutional Neural Networks 30
3.2.2 TinyML Deployment . 30

3.3 Summary . 32

4 Experimental Results and Discussions 33
4.1 Datasets . 33

4.1.1 UP-Fall Detection Dataset . 33
4.1.2 Fall Detection Dataset . 34
4.1.3 PAMAP2 . 34
4.1.4 UCI-HAR . 34
4.1.5 WISDM . 35
4.1.6 KTH Human Activity Dataset . 35
4.1.7 UCF11 YouTube Action Dataset . 36

4.2 Performance Evaluation . 36
4.2.1 Model Performance . 36
4.2.2 Device Performance . 37

4.3 Experimental Setup . 37
4.4 Benchmarking HAR . 38

4.4.1 Results Analysis . 38
4.4.2 Inferrence Time and Power Consumption 43

4.5 Multi-resolution Fusion Architecture . 44
4.5.1 Results Analysis . 45

ix

4.5.2 Ablation Studies . 55
4.5.3 Inference Time and Power Consumption 58

4.6 Summary . 59

5 Conclusion and Future Works 60
5.1 Conclusion . 60
5.2 Limitations and Future Works . 61

References 62

x

List of Figures

2.1 An overall system architecture of CNN-based human activity recognition. 7
2.2 Human activity recognition systems and their modalities. 8
3.1 Generalization of HAR application architecture from a TinyML perspective. . . . 23
3.2 An overview of the proposed two-stream multi-resolution fusion architecture.

The frames are generated from the video data and sent to the context stream to
extract the significant features. The center cropped images from the frames are
fed into the fovea steam for feature extraction (see top part). Later, the retrieved
features are fused and sent to the fully connected layer for activity recognition.
Moreover, the PTQ technique (see bottom right part) quantized the size of the
developed fusion architecture and deployed the optimized model in the tiny edge
devices. Further, QAT method (see bottom left part) optimized the parameters
(inputs, weights, biases, and activations) of the model during the initial training
and sent the optimized network to edge devices for deployment. 29

3.3 TinyML development and deployment lifecycle of our proposed multi-resolution
fusion approach that includes the training of the fusion architecture using the
video data, quantization of the developed architecture to reduce the size, compila-
tion to generate necessary files compatible in low-power devices, and deployment
in tiny edge devices. 31

4.1 Inference time for the datasets in the tested boards. 44
4.2 Power consumption for the datasets in the tested boards. 45
4.3 Performance measures (accuracy curves) of the developed two-stream mutti-resolution

fusion approach. (a) KTH (b) UCF11. 46
4.4 Performance measures (loss curves) of the developed two-stream mutti-resolution

fusion approach. (a) KTH (b) UCF11. 47

xi

4.5 Confusion matrix of the two-stream multi-resolution fusion architecture for KTH
dataset. (a) KTH (64,32) and (b) KTH (32,16). 48

4.6 Confusion matrix of the two-stream multi-resolution fusion architecture. (a) UCF
(64,32) and (b) UCF (32,16). 49

4.7 Performance measures (ROC curves) of the developed two-stream mutti-resolution
fusion approach. (a) KTH (b) UCF11. 54

4.8 Performance of the proposed two-stream multi-resolution fusion architecture on
the tested boards. (a) inference time (b) power consumption. 57

xii

List of Tables

3.1 Overview of the boards used in experimentation 27

4.1 Experimental results for the UP-FALL detection dataset 39
4.2 Experimental results for the FDD dataset . 40
4.3 Experimental results for all time-series datasets 42
4.4 Delta of performance metrics between QAT and PTQ models. 43
4.5 Percentile performance metrics of the proposed multi-resolution architecture for

each activity in KTH dataset . 50
4.6 Percentile performance metrics of the proposed multi-resolution architecture for

each activity in UCF dataset . 51
4.7 Recognition performance of the proposed two-stream multi-resolution fusion ap-

proach . 52
4.8 Experimental results of the quantized multi-resolution fusion architecture 53
4.9 Delta of performance metrics between QAT and PTQ models 53
4.10 Experimental findings of different variants of the proposed multi-resolution fu-

sion architecture . 56

xiii

List of Abbreviations

ACGAN Auxiliary Classifier Generative Adversarial Network 15
ADL Activities of Daily Life 16, 33
AUC Area Under Curve 55
Bi-LSTM Bi-Directional Long Short-Term Memory 11, 13
BLE Bluetooh Low Energy 26
CNN Convolutional Neural Network 3, 5–8, 10–17, 19–25, 32, 38, 41, 43, 59, 60
CSI Channel State Information 19
CVAE Convolutional Variational Autoencoder 15
DCNN Deep Convolutional Neural Networks 15
DL Deep Learning 2, 6
DSCNN Depthwise Separable Convolutional Neural Network 3, 5, 22, 24, 25, 32, 38, 41, 43,

59, 60
ECG Electrocardiography 9
EMG Electromyography 9
FMCW Frequency- Modulated Continuous Wave 7
GAN Generative Adversarial Network 14, 15

xiv

GPS Global Positioning System 8, 12, 28
HAR Human Activity Recognition 1–3, 5–7, 9, 11–14, 18–23, 59, 61
HOF Histograms of Optical Flow 17
HOG Histogram of Oriented Gradients 17
IMU Inertial Measurement Unit 34
IoT Internet of Things 2
IR Infrared 15, 22
LSTM Long Short-Term Memory 11, 17, 19, 20, 61
MAC Multiply-accumulate 41
MBH Motion Boundary Histograms 17
MCU Micro-Controller Units 18
ML Machine Learning 2, 3, 6, 22, 23
MLP Multi-Layer Perceptron 20
NMSE Normalized Mean Square Error 15
PTQ Post Training Quantization 3–5, 22, 26, 28, 30, 32, 38, 41, 44, 51–53, 55, 58, 60
QAT Quantization Aware Training 3–5, 22, 25, 26, 30, 32, 38, 41, 44, 51–53, 55, 58–60
ReLU Rectified Linear Unit 25
RF Random Forest 19, 20
RGB-D RGB-Depth 8, 15
RNN Recurrent Neural Network 19, 61
ROC Receiver Operating Characteristic 55

xv

SDK Software Development Kit 12
SIFT Scale Invariant Feature Transform 17
SoC System on Chip 61
SRAM Static Random Access Memory 26, 28, 32
STFT Short-Time Fourier Transform 14
SVM Support Vector Machines 16
TCN Temporal Convolutional Network 11
TDD Trajectory-pooled Deep-convolutional Descriptors 17, 21
TinyML Tiny Machine Learning 1–6, 18, 22, 30, 33, 38, 60, 61
UWB Ultra-Wideband 7
WISDM Wireless Sensor Data Mining 35
YOLO You Only Look Once 16

xvi

Chapter 1

Introduction

This chapter introduces the task of Human Activity Recognition (HAR) from multimodal data
sources. We then reframe HAR in the context of Tiny Machine Learning (TinyML) and discuss
the unique challenges, positive aspects, and motivations behind TinyML based HAR. We then
define the scope of our work and highlight the unique contributions of this dissertation.

1.1 Problem Definition

HAR is the process of identifying common patterns of activity from signals collected by embed-
ded sensing devices. HAR has a wide area of applications including smart homes where users
can automate their work activities without physically being available, smart healthcare to observe
patients without professional supervision, tracking the actions of the elderly, and similar applica-
tions including security and surveillance where the digitization of tasks is necessary based on an
individual’s activity [1, 2]. For instance, any variation from normal tasks can be easily detected
by keeping an eye on everyday activities since most of the serious diseases have symptoms that
force humans to deviate from their usual activities.

Due to the proliferation of portable and stationary embedded systems in human environments,
it has become incredibly easy to collect and process human activity data in huge volumes. In most
cases, the activity recognition systems use data from sensor modalities or vision modalities [3]. In
sensor modalities, the data is collected from a single sensor such as an accelerometer/gyroscope
or the combination of multiple sensors integrated with an inertial measurement unit including an
accelerometer, gyroscope, magnetometer, and microphone [4]. The sensor-based HAR frame-
works ensure cheap and flexible solutions while preserving privacy issues. The major issue of

1

the sensor-based HAR platform is that many of the users are not interested to wear such bulky
devices in their different body positions. In vision-based modalities, RGB video and depth cam-
eras are exploited to perceive the information from the users [5]. In this scheme, the users are not
required to wear any devices. The major drawbacks of the vision-based HAR platform include
the privacy issues of the users and it is influenced by the environmental conditions. Moreover,
the vision-based HAR framework requires a huge amount of memory to store high-resolution
data. When these systems are deployed in multi-user scenarios such as care homes, hospitals,
public spaces, etc. in a centralized server-client architecture, there is a huge pressure on compute
resources and network bandwidth.

Deep Learning (DL) and Machine Learning (ML) have served as key components for various
real-time applications including HAR, object and image recognition, health monitoring, surveil-
lance and entertainment systems, and natural language processing [6, 7, 8]. In most of the use
cases, traditional machine learning approaches [9] have been widely used that input the hand-
crafted features to a classifier network for activity recognition. Although some of the previous
works [10, 11] obtained some promising results, some drawbacks regarding the handcrafted fea-
tures include poor generalization, requiring prior domain expertise to extract significant features,
and needing numerous trials to find the best patterns. Hence, the researchers have turned to deep
learning techniques [12, 13] to recognize human activities where relevant features are automat-
ically learned during the network training phase. Though the deep learning approaches have
shown remarkable performance for HAR, the majority of the deep learning models have a huge
number of trainable network parameters. In the case of the limited number of data, the excess-
ing number of trainable parameters makes the network prone to overfitting, thus decreasing the
performance of generalization [14]. Another big challenge for HAR in wearable devices is that
they have limited resources and limited power availability. In such scenarios, large-sized deep
learning models are difficult to deploy on edge devices [15].

1.2 Motivation

TinyML is a rapidly expanding area of machine learning approaches and applications, including
hardware, software, and algorithms, able to perform on-device sensor data analytics at incredibly
low power, facilitating a wide range of always-on use-cases, and aiming battery-operated systems
[16]. TinyML platforms are gradually being deployed for a variety of commercial purposes and
novel solutions, while substantial improvement on methods, networks, and architectures is being
achieved simultaneously. TinyML and Internet of Things (IoT) in conjunction has the potential
to deliver cheap, accessible and always-on solutions to various problems. TinyML uses methods
such as neural architecture search to develop more sophisticated models for edge devices, and

2

prunes, quantizes, and distils pre-trained machine learning architectures for effective on-device
inference [17]. The main purpose of TinyML is to exploit cross-layer design methodologies and
apply machine learning inference to ultra-low-power devices including custom-designed circuits
or embedded systems that use less than a milliWatt of power [18]. When ML inference is relo-
cated to the edge, several fundamental difficulties emerge, including latency, reliability, power
consumption, limited computational resources, limited space, robustness, throughput, and pri-
vacy. Hence, it is vital to assess and explain trade-offs of popular HAR platforms mentioning the
complexity of the design methodologies and resource utilization in low-power devices. Bench-
marking for HAR is highly required to unlock the full potential of TinyML and guide future
research in this research domain. While designing TinyML models, the challenges should be
addressed and the performance must be kept at reasonable levels depending on the nature of the
applications.

1.3 Scope of the Work

This research is focused on exploring and innovating novel TinyML approaches for standalone
HAR systems in resource constrained edge devices. This research provides a benchmark for HAR
systems in three commodity edge devices using five publicly available datasets. This research also
presents a novel two-stream multi-resolution fusion architecture for HAR from video modality -
increasing model performance while decreasing model size.

1.4 Contributions

The major contributions of this thesis are two folds. Firstly, we are the first research study to
specifically experiment and present the benchmark for HAR using standard Convolutional Neural
Network (CNN)s and Depthwise Separable Convolutional Neural Network (DSCNN)s in resource
constrained edge devices. A summary of the technical contributions of this part is as follows:

• We systematically tested multiple CNN and DSCNN structures on five popular HAR datasets
with two different data modalities: vision and time-series data.

• We tested the performance of the models in terms of accuracy, precision, recall, F1-Score
number of parameters, and model size.

• We tested the effectiveness of two different quantization approaches: Quantization Aware
Training (QAT) and Post Training Quantization (PTQ) in terms of their effect on model
size, number of parameters, and model performance.

3

• We deployed the tested models into standalone applications in three publicly available
resource-constrained edge devices.

• We tested the performance of the deployed standalone applications in terms of inference
latency and power consumption.

Secondly, we proposed a novel two-stream multi-resolution fusion architecture for human
activity recognition from video data in resource-constrained edge devices. The two streams of
the model are called the context stream and the fovea stream. The context stream takes a resized
image of the full-size input and the fovea stream takes the cropped center as input from the resized
image. Due to camera bias, subjects in activity videos are often in the center of the frames. By
focusing on the cropped center image with the fovea stream, important spatial features can be
extracted. Additionally, using the two-stream architecture reduces the dimensionality of input
data. The extracted features from the two streams are fused using the concatenation operator
and sent to a fully connected layer for recognition purposes. The performance of the proposed
fusion architecture is evaluated in two challenging video datasets: KTH and UCF11. We also
performed ablation studies to validate our proposed model structure. Two quantization methods:
PTQ and QAT were performed on the proposed model to prepare them for deployment. We
deployed the quantized models into three commodity edge devices and reported their performance
in terms of inference time and power consumption. To the best of our knowledge, this is the first
research work that develops a two-stream multi-resolution fusion architecture for human activity
recognition in edge devices utilizing TinyML based on the existing state-of-the-art literature in
this research domain. Moreover, this work employed video data for human activity recognition
from a TinyML perspective for the first time. The summary of our main contribution to this part
is as follows:

• We proposed a novel two-stream multi-resolution fusion architecture for efficient human
activity recognition from video data.

• We proposed two streams for the fusion architecture: the context stream and the fovea
stream. The input images are resized to a lower resolution and input into the context stream.
The fovea stream takes the cropped center portion of the lower-resolution resized image as
input.

• We quantized the proposed model using two quantization methods: PTQ and QAT for
deployment.

• We deployed the quantized versions of the proposed model into standalone applications in
three commodity resource-constrained edge devices.

4

• We tested the proposed model performance in two challenging human activity video datasets
in terms of the number of parameters, accuracy, precision, recall, F1-Score, and size. More-
over, we evaluated the performance of the deployed quantized models in terms of their
inference time and power consumption.

1.5 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 describes the most recent literature on
HAR from multimodal data sources: multimodal sensing devices, smartphone sensor data, radar
signal, and image and video data. The chapter also includes the most recent literature on TinyML
benchmarking efforts and lightweight deep learning architectures for HAR on wearable devices.
Chapter 3 presents the benchmarking procedure, the proposed multi-resolution fusion approach,
the description of the datasets, the CNN architecture, the DSCNN architecture, the PTQ and QAT
methods for quantization, the description of the tiny edge devices, the standalone application ar-
chitecture, and the demonstration of the TinyML development and deployment lifecycles. The
experimental findings and discussions are demonstrated in Chapter 4 which includes the bench-
marking results, quantitative results analysis of the proposed multi-resolution fusion architecture,
ablation studies, and the performances of both the benchmark models and proposed architecture
in commodity tiny edge devices. Lastly, the conclusion, limitations, and potential future research
works are highlighted in Chapter 5.

5

Chapter 2

Literature Review

In this chapter, firstly, we explore the traditional approaches behind HAR from multimodal data
sources. The traditional related works are divided into four sub-sections based on the types of
sensing devices: multimodal sensing devices, smartphones, radar devices, and image and video
devices. We discuss the strengths and weaknesses of all reviewed works. We then explore the
current literature on TinyML benchmarks and lightweight deep learning models of HAR from
various data sources.

2.1 Overview on Human Activity Recognition

HAR plays a significant role in the everyday life of people because of its ability to learn extensive
high-level information about human activity from wearable or stationary devices. A substan-
tial amount of research has been conducted on HAR and numerous approaches based on deep
learning have been exploited by the research community to classify human activities. Recently,
DL algorithms have become more popular due to their automatic feature extraction capability
from vision or image data [19] as well as time-series data [8] that enables the learning of high-
level and meaningful features. DL techniques have been generally outperforming traditional ML
approaches for activity recognition in terms of classification performance measures such as ac-
curacy, precision, recall, and F1-Score [20, 21]. The recognition of human behavior based on
deep learning architecture, especially CNN is a composite system that is comprised of several
key stages. An overall system architecture of a typical CNN-based activity recognition system is
illustrated in Fig. 2.1. The first stage is comprised of the selection and implementation of sensing
devices. Data collection is the next step where an edge device is used to perceive data from input

6

ISP

Emergency

Caregiver

Medical
Server

Physician
Medical
Server

Internet

Feature Extraction
and Model Building

Sensor Data Fusion and
Data Preprocessing

Semantic Activity Descriptor Emergency AlertActivity Signals

SVM
k-NN
DT

HMM
GMM
NB

Figure 2.1: An overall system architecture of CNN-based human activity recognition.

devices and transfer it to the main server through various communication systems such as Wi-Fi
and Bluetooth. The deployment of computing and storage resources at the point where data is be-
ing collected and processed is referred to as edge computing which incorporates sensors for data
perception as well as edge servers for reliable real-time information processing [22, 23]. The fea-
ture extraction and selection stage extract the necessary features from the raw signals; this stage
is performed automatically in the case of CNN; no hand-crafted feature extractions are required.
This stage contains the CNN architecture or variants of CNN structure for the recognition of ac-
tivities. The last step includes a notification system through which an agent (human or machine)
can be notified. The notification system can aid in emergency scenarios by notifying emergency
contact personnel or emergency services.

With the rapid growth and performance improvement of deep learning techniques particularly
CNN architectures, numerous researchers have adopted them for dealing with HAR problems.
This section is focused on reviewing the four commonly used categories of devices for HAR:
i) Human activity recognition from multimodal sensing devices, ii) Human activity recognition
from smartphone sensor data, and iii) Human activity recognition from radar signals, and iv) Hu-
man activity recognition from image and video signals - as well as the CNN tools that have been
used in conjunction with these devices for performing activity recognition. Figure 2.2 illustrates
the human activity recognition systems and their different types based on the sensing devices, sig-
nals, or sensing modalities. The multimodal sensing signals based human activity recognition sys-
tems generally use data from the following sensing modalities: accelerometer, gyroscope, mag-
netometer, and barometer. Smartphone-based human activity recognition systems utilize smart-
phone sensors to collect and classify data. Radar-based human activity recognition systems use
various types of radars to collect data. Popular radar variants include Doppler radar, Frequency-
Modulated Continuous Wave (FMCW) radar, interferometry radar, and Ultra-Wideband (UWB).

7

Multimodal Sensing Devices Based Smartphones Based Radar Based Vision Based

Human Activity Recognition Systems

Accelerometer Accelerometer Doppler RGB Camera

RGB-D Camera FMCW

Interferometry

UWB

Gyroscope

Magnetometer

Gyroscope

Barometer

Figure 2.2: Human activity recognition systems and their modalities.

Vision-based systems collect data through RGB cameras or RGB-Depth (RGB-D) cameras. The
recent works for human activity recognition are described below where we discuss the data col-
lection strategies of each modality and the developed systems for each modality subsequently.
In the next few sub-sections, we discuss the four categories of devices and how the CNN-based
models and tools are utilized to infer human activity from captured data using those devices.

2.1.1 HAR from Multimodal Sensing Devices

In recent years, the research for activity recognition is focused on the combination of multiple
sensor data (accelerometer, and gyroscope) that may increase the reliability of the developed
system in certain cases [24, 25].

We consider various embedded body-worn solutions such as smart watches, smart necklaces,
bands, helmets, and watches containing sensors like 3-D accelerometer, gyroscope, magnetome-
ter, and barometer excluding smartphones as multimodal sensing devices [26]. These solutions
are generally smaller than modern smartphones and require less power to run. However, these
solutions oftentimes do not have Global Positioning System (GPS) and network connectivity.
These devices generally do not require everyday charging. As these devices are always worn or
kept on a person by the users, the sensors can record human motion and process them. Human
activity generates acceleration and angular velocity. 3-D accelerometer sensor can sense acceler-

8

ation along the 3-axes. A gyroscope and magnetometer can be used to sense the angular velocity
and orientation. A barometer helps in sensing height changes during activities. Combining these
properties, multimodal sensing solutions can infer human activities.

Wearable sensors have become increasingly popular in a wide range of applications as they
can provide accurate and reliable data on daily human activities to ensure an ambient assisted
living environment for the elderly [27]. Wearable sensors are capable of perceiving human body
movements directly and efficiently over a long duration. The rapid growth of wearable technology
has enabled the development of several types of smart sensors to capture physiological parameters
accurately with lower power consumption and fewer processing resources. These sensors can be
easily integrated into smartphones, bands, watches, and even clothes. A brief description of a few
sensors that are commonly used for HAR is given below.

The most popular and commonly used sensor for HAR is an accelerometer [28]. An ac-
celerometer is a sensor utilized to determine the acceleration - which is the rate of change of the
velocity of an object. The sampling frequency of an accelerometer typically falls between tens
and hundreds of Hz. There are numerous types of accelerometers on the market that use variable
capacitance, piezoresistive, or piezoelectric transduction techniques. The operating concept of
almost all types of accelerometers is the same: a mass reacts to acceleration by forcing a spring
or an equivalent component to expand or compress according to the measured acceleration. A
gyroscope [29] is also a frequently used sensor along with the accelerometer and mounted on the
same body parts for human activity recognition. A gyroscope is a sensor for measuring angular
velocity and orientation. Similar to an accelerometer, the sampling rate of a gyroscope sensor
ranges from tens to hundreds of Hz. As a gyroscope has three axes, it also offers three separate
time sequences. Another commonly used wearable sensor for HAR is a magnetometer [30] that is
integrated with an accelerometer and a gyroscope into an inertial measurement unit. This sensor
determines the change of a magnetic field at a specific position. The sampling frequency of this
sensor is similar (tens to hundreds of Hz) to the accelerometer and gyroscope. A magnetometer
sensor has three axes as well. Electrocardiography (ECG) [31] is a biometric sensor for HAR that
detects the electrical signals produced by the heart. The information about the rate and regularity
of heartbeats is extremely useful provided by the ECG signal. It is challenging to analyze subject
variations in the ECG data because everyone’s hearts vibrate in their unique ways. The output
of an ECG sensor is univariate time-series data. Electromyography (EMG) [32] sensor is used
for human activity monitoring that detects muscle response or electrical signal in response to a
nerve’s stimulation of the muscle. Both the EMG and ECG sensors are required to be attached
to human skin to record the data. Even though EMG is less frequently employed in traditional
situations, it is more suited for fine-grained motions including hand or arm movements, and facial
expressions. The EMG sensor generates the output in the shape of univariate time-series.

In multimodal sensing devices, a big challenge is learning the inter-modality correlations

9

along with the intra-modality data for CNN-based human activity recognition. To solve this is-
sue, some CNN-based approaches have been developed that combine various modalities for the
development of single extracted features or ensemble the output of different architectures. The
simplest way to handle multimodal sensor data is combining the data from all sensors ignoring
the sensor modalities although it has a chance of losing accurate correlations. In order to capture
local and spatial dependence over time and sensors, respectively, a multi-modal CNN architecture
is proposed in [33] that used 2-D kernels in both convolution and pooling layers. As the relation-
ship between the non-adjacent modalities is absent from traditional CNN, the system developed
in [34], proposes a novel architecture in which any sequence of signals can be adjacent to every
other sequence. Several systems have already been developed that consider each sensing modality
initially and then combine them. This architecture provides modality-specific information along
with versatile distribution of complexity. An architecture named EmbraceNet was proposed in
[35] that processes the sensors’ data separately and feeds them into the EmbraceNet. An effective
way of fusing multimodal information using this architecture is through docking and embracing
structure. A deep multimodal fusion architecture is introduced in [36] that calculates the confi-
dence score of each sensor automatically and combines the features of multi-modal sensors based
on the scores.

Some of the frameworks are introduced to minimize the interference between the used sen-
sors by treating each sensor axis independently. In this case, 1-D CNNs are very popular for
feature learning of each separate channel. A 1-D CNN architecture, proposed in [37] that omit-
ted the pooling layers to achieve more detailed features where the data from the accelerometer
and gyroscope are fed into the network separately. In [38], the acceleration of the accelerom-
eter and gyroscope from seven different body positions are used to produce frequency images
that are served as the input of two-stream CNN to learn inter-modality features. Very recently, a
few CNN-based systems have been developed to handle univariate multichannel time-series data
where the same sized filter is implemented to all time sequences. In this scenario, the raw signal
is converted to a 2-D array by stacking along the modality axis which is then applied to 2-D CNN
with 1-D filters [39]. However, the characteristics of all sensor data do not combine externally,
but they interact through mutual 1-D filters.

There is another new trend in the area of deep learning called attention mechanisms [40]
that has become a very popular and frequently used concept in diverse application domains in-
cluding human activity recognition in recent years. In the current scenarios, the majority of the
developed systems used shallow feature learning architectures that could not recognize human
activities accurately in real-world situations. To solve this issue, Hamad et al. [41] used a dilated
causal convolution with multi-head self-attention for physical activity recognition. During recog-
nition, the multi-headed self-attention is utilized to allow the model to highlight significant and
vital time steps rather than irrelevant time steps from the sequential feature space. The proposed

10

architecture obtained an F1-Score of 92.24% from the experimental findings. Wang et al. [42]
introduced an activity recognition system that processed weakly labeled information utilizing at-
tention mechanisms. The compatibility between global features and local features is computed
using this approach. By weighing their compatibility, the attention mechanism enhanced the
salient activity data and suppressed the insignificant and slightly confusing data. The experimen-
tal results revealed that the scheme appraised an accuracy of 93.83%. Tan et al. [43] presented
faster region-based CNN and attention-based Long Short-Term Memory (LSTM) for human ac-
tivity recognition where the CNN extracted the feature as posture vector and the Bi-Directional
Long Short-Term Memory (Bi-LSTM) architecture classified the human activities. An attention
layer is added between the two Bi-LSTMs. The developed network obtained precision of 97.02%
and recall of 96.83% from the experimental findings.

In the current state-of-the-art, most of the existing frameworks for HAR take the global in-
formation of input sequence and avoid local information that demonstrates changes in behav-
iors, causing the method to be responsive to external factors including occlusion and illumination
change. To resolve this problem, some of the studies [44, 45] consider the local spatial features,
global spatial features, and temporal features for HAR. Andrade-Ambriz et al. [46] proposed a
human activity recognition framework using a Temporal Convolutional Network (TCN) that uti-
lized spatio-temporal features as input of the architecture. The experiment demonstrates that the
developed prototype achieved 100% precision and recall for two popular datasets. The scheme
shared the activity recognition results to a robot called NAO during real-world environment test-
ing. Zhu et al. [47] introduced a multimodal activity recognition scheme that fused three spatial
features: local, global, and temporal features of input signals to classify different human actions.
The proposed system divided the input into three segments where the global spatial features are
found from the first segment (RGB frame) using a spatial CNN, the local spatial features are ex-
tracted from the local blocks utilizing another spatial CNN, and the last segment (optical flow) is
utilized to extract temporal features through the use of a temporal CNN. The three architectures
are evaluated individually using two benchmark datasets and the final output is obtained using
the weighted sum of the three networks. The best accuracy of 94.94% is found from the exper-
imental results for the UCF101 dataset. Gao et al. [48] proposed a framework called DanHAR
that combined channel and temporal attention on residual networks to enhance feature represen-
tation capability for human activity recognition. The proposed architecture takes a time window
as input and sends it to convolutional layers to obtain visual features. This network then generates
channel attention through pooling layers (max-pooling and average-pooling) to combine features
along the temporal axis. It is found from the experimental results that the proposed architecture
obtained an accuracy of 98.85% for the WISDM dataset. In another research, Tang et al. [49]
developed a triplet cross-dimension attention model for HAR, which introduced three attention
parts to make the cross-interaction between sensor, temporal, and channel dimensions. The per-

11

formance measure shows that the F1-Score of 98.61% is obtained by the developed system. It
is worth mentioning that the system is tested in a real-time environment using a Raspberry Pi
prototype.

2.1.2 HAR from Smartphone Sensor Data

Smartphone has become very popular for HAR thanks to the rapid growth of modern technology
as it has various built-in sensors for this task [50]. The major problem of the traditional wearable
sensing device is that the users should carry an extra device; sometimes they are not willing to
carry it, or a few times get forgotten. As almost everyone now has a smartphone, it has become an
excellent choice to conduct research using smartphone sensor data, which ensures the portability
of the developed systems to a great extent [51].

All modern smartphones contain sensors such as accelerometer, gyroscope, and magnetome-
ter. Smartphones generally require more power than multimodal sensing solutions. However,
almost all smartphones require regular daily recharging. Smartphones have more processing pow-
ers than multimodal embedded solutions. Smartphones also have GPS and network connectivity,
making them viable for transferring data and decisions in various client-server models [52]. Thus,
smartphones have access to more sophisticated data-heavy models. Users generally carry smart-
phones on locations such as thigh, chest, and hand. As human motion generates acceleration and
angular velocity, smartphone applications can sense these changes through the embedded smart-
phone sensors and process them. Smartphones also provide high-level access to sensor data via
the Software Development Kit (SDK) of the operating systems. SDK also provides additional
support such as always-on applications, notification and alarm systems, and sensor data buffers.

One of the major issues that should be considered is the position of the smartphone as it can
be kept in a pant pocket, hands, bags, and shirt pocket. It is evident that due to the various lo-
cations of the smartphone, the raw signals change considerably as the movements of the various
parts of the body are different. To handle this problem, some of the reviewed literature developed
position-independent solutions. A smartphone-based position-independent activity recognition
system using CNN was introduced in [53] that used time-domain statistical features. Here, mean-
centering is used to convert the raw input to an appropriate form to train the optimum threshold
without any bias. A 1-D CNN is introduced in [54] that used smartphone accelerometer data from
different body positions like the bag, hand, and pocket for activity recognition. As the data for dif-
ferent body positions are used, the developed system effectively ensures the position-independent
property. Another big challenge for smartphone-based systems is that traditional deep learning
architectures cannot be easily embedded in such systems due to low power capacity and limited
computational capacity. To resolve this issue, a few of the systems have been developed that

12

merged the hand-crafted features and deep features for activity recognition. Decreasing filter size
is a potential solution to reduce the size of the network that optimizes computing operations.
A HAR system is introduced in [55] where the deep features and hand-crafted features are ar-
ranged in parallel, and the features are then incorporated into the 1-D CNN architecture. The
performance of the developed system has been increased with a small number of computational
operations. The system developed in [56] used just one CNN layer and two fully connected layers
where the spectrogram features are fed into the network for activity recognition. The experimen-
tal findings revealed that the system achieved milliseconds to tens of milliseconds of computing
time for a single prediction.

In another study, the authors of [57] proposed an attention-based multi-head architecture for
HAR. The developed architecture had three lightweight convolutional heads; each is designed to
extract features from collected data using 1-D CNN. The lightweight multi-modal architecture
is stimulated with an attention mechanism to improve CNN’s representation capability, enabling
the automatic selection of significant features while suppressing irrelevant ones. Although two
datasets have been utilized here, the highest accuracy, precision, recall, and F1-Score of 98.18%,
97.12%, 97.29%, and 97.20%, respectively are achieved from WISDM data. Zhang et al. [58]
developed a system that combined the concept of CNN and attention mechanism for activity
recognition using the data from a smartphone. Here, the attention is incorporated into multi-head
CNNs that facilitate extracting and selecting features efficiently. The proposed scheme achieved
accuracy and F1-Score of 96.4% and 95.4% from the experiments. The author of [59] introduced
a novel deep learning architecture called LGSTNet, combining the concept of CNN and attention
mechanism to recognize human activity from the data of accelerometers and gyroscopes. The
activity window is fragmented into various sub-windows in this system, and the local spatial-
temporal attributes from those sub-windows are learned using an attention mechanism and CNN.
It is evident from the experiments that the obtained F1-Score of the proposed network is 95.69%.

In another research, Nafea et al. [60] presented a HAR framework that used spatial infor-
mation and temporal information, extracted by CNN with differing kernel sizes and Bi-LSTM,
respectively. The retrieved spatio-temporal data were merged in a mixed model that was trained
and verified using two benchmark datasets, yielding a 98.53% accuracy, and Cohens Kappa of
98% for the WISDM dataset. Nair et al. [61] developed a temporal convolution network-based
architecture to recognize human activities from raw motion data collected utilizing smartphone
sensors. To deal with sequence information with big receptive fields and temporality, dilations
and causal convolutions have been developed in this system. The accuracy and F1-Scores of
97.8% and 97.7%, respectively are achieved from the experimental results using the encoder-
decoder temporal convolutional network.

13

2.1.3 HAR from Radar Signal

The current research is focused on the device-free approach as it does not include any devices to
take while participating in any activities. To ensure a device-free solution, a radar-based system
shows the best performance due to its insensitivity to daylight and environmental effects as well
as contactless-manner [62]. Radar signal-based sensing modality is widely used for stationary
surveillance. Radar or radio detection and ranging systems detect both living and inanimate ob-
jects through reflection [63]. Radar systems generate intermittent high-frequency radio waves
and transmit them to the environment around them. Radio waves are electromagnetic waves that
travel at the speed of light. After hitting objects in the environment, radio waves bounce off or
reflect from them. Radio systems can receive the reflected radio signal and extract properties
of the object including size, shape, distance, and movement from the time required to detect the
reflection and the change in frequency due to collision. Radio signal-based sensing modalities
deployed in surveillance situations can thus detect stationary objects, humans as well as human
motions through the characteristics of the received signal and infer the human activity.

In general, the radar signal is converted to the time-frequency domain which is a separate
part from the learning architecture that sometimes does not extract the optimal features. In some
cases, the raw signal is transferred to the Short-Time Fourier Transform (STFT) or 2-D matrix
and the deep learning architecture treats the 2-D matrix as an optical image. However, the optical
image pixels have high spatial correlations, whereas the 2-D radar matrix pixels have a lot of tem-
poral correlations. Hence, treating them as the same is not optimal for classification purposes.
To improve the performance of the radar-based systems, some researchers focused on the use of
variants of CNN rather than conventional CNN to resolve these issues. An end-to-end network
named RadarNet is introduced in [64] where the STFT is substituted by two 1-D convolutional
layers. The developed system merged all the steps (micro-Doppler radar data representation, ex-
traction of features, and classification) of HAR in a single architecture. F-ConvNet, another end-
to-end architecture is proposed in [65] that used three convolutional layers for multi-scale feature
extraction. A novel layer named Fourier layer is proposed here that includes Fourier initializa-
tions and two branches of processing for learning the real and imaginary segments individually.
In addition, to improve the classification accuracy, dilated convolutions are used. To reduce the
computation complexity, an end-to-end network (1-D CNN) is designed in [66] for activity recog-
nition using radar signals. The proposed system used the inception densely block (ID-Block) that
is customized for the proposed 1-D CNN where ID-Block is comprised of an inception module,
network-in-network methods, and a dense network.

To solve the issue of limited training data, Generative Adversarial Network (GAN) are fre-
quently utilized in recent times. In [67], a GAN is developed for HAR using micro-Doppler
signatures of radar. While the GAN is trained with the original micro-Doppler images, it gener-

14

ates a lot of similar images like the original that are fed into traditional CNN for training. The
use of the increased number of images enhances the performance of the developed system. Erol
et al. [68] proposed a human activity recognition platform that used synthetic radar data gener-
ated by GANs. The system introduced an Auxiliary Classifier Generative Adversarial Network
(ACGAN) to generate a large number of training samples. The average test accuracy of 82.56%
is found from the experimental findings using the proposed GAN networks with Deep Convolu-
tional Neural Networks (DCNN) architecture. The main purpose of the developed framework is
to reduce the classification confusion among similar activities by increasing the size of the train-
ing dataset. The authors of [69] introduced a framework to use the discriminator of the GAN for
human activity recognition using limited radar data. To initialize the parameter of the GAN, a
Convolutional Variational Autoencoder (CVAE) is utilized in the proposed system. From the ex-
perimental study, it is found that the scheme obtained an accuracy of 94.89% from a few numbers
of data samples. In another work, Alnujaim et. al. [70] used GAN to increase the time-frequency
images retrieved from a single angle into images from numerous angles resulting in the improve-
ment of the sample set from multiple viewpoints. The average Normalized Mean Square Error
(NMSE) of the developed prototype is 0.50E-04. However, the developed framework generated
data samples with high similarity due to the convergence instability of GAN.

2.1.4 HAR from Image and Video data

Due to advances in technology, both RGB and RGB-D cameras are easily accessible and cost-
efficient. Vision-based systems are effective for the surveillance of large regions in an effective
manner. Image and video sensing modalities are more accessible and easier to setup than radar
sensing modalities [71]. Even cheap RGB cameras nowadays have night vision capability through
Infrared (IR) sensing. As these systems are stationary solutions, very simple techniques such as
background subtraction can be used to localize and monitor motion in the surveilled area. The
detected motions can then be passed to CNN models to infer human activity. With the advance-
ment of specialized processors for neural network processing, RGB solutions with built-in neural
network processors and network connectivity are available. These systems can capture images or
video sequences and process them locally using saved deep learning models in offline mode or
can send data to servers running more sophisticated models in online mode.

Although previous research advances were focused on traditional vision-based algorithms,
current advances in both deep learning algorithms and hardware enabled us to deploy highly
effective deep learning algorithms alongside vision systems. Computer vision-based human ac-
tivity recognition systems face several challenges such as interclass variation and intraclass sim-
ilarity, diverse and complex backgrounds, multi-subject interactions, group interactions, videos

15

from long distances, and low-quality images. Intraclass variation arises from separate people per-
forming the same action in their own ways. Interclass variation arises from the numerous types
of activity we perform in our day to day lives. Vision-based image and video datasets also have
various types of backgrounds. Backgrounds differ in lab scenarios as well as in real-world sce-
narios. Image and video data also suffer from inherent complexities such as pixilation, aliasing,
light level differences, viewpoint variations, and occlusions [72]. Video-based human activity
recognition datasets are more common than still image-based datasets, as activities are regarded
more as a sequence of actions than a one-off scenario.

Most of the available human activity recognition datasets contain video sequences of Activ-
ities of Daily Life (ADL). The system in [73] introduced an abnormal human activity dataset
containing abnormal actions such as coughing, chest pain, faint, vomiting, and taking medication
while also implementing a real-time high-speed recognition algorithm based on the You Only
Look Once (YOLO) architecture [74]. However, this system only works in cases when a sin-
gle human is monitored. The system cannot recognize group activities, overlapping objects, and
small objects due to the spatial constraints of the YOLO backbone.

While performing human action recognition from video sequences, initial CNN-based re-
search works processed all of the frames of a video for recognizing tasks represented in the video.
However, this was inefficient due to the huge time, computation, and memory required to process
all the frames. An alternative solution is proposed in [75] where only a selected number of frames
of a video are classified instead of all the frames of a video. This drastically reduced the compu-
tation time and computation requirements, while also making the system real-time. In general,
30 frames from a video are selected for classification in a deterministic way based on the total
number of frames in the video. These selected frames are classified to determine the represented
actions and their confidence levels. These confidence levels and actions are averaged to deter-
mine the final action and confidence level of the entire video. However, this system works best
when a video sequence contains a single action group. When a video contains multiple actions
or action groups, determining a single action across an entire video becomes problematic. The
CNN methods discussed till now only take the spatial domain characteristics of the videos into
consideration. However, temporal domain characteristics can also be extracted from the videos
which might act as discriminating features. A two-stream CNN for human action recognition is
introduced in [76]. The spatial domain stream is trained on the individual frames of the videos.
The temporal domain stream is trained on stacked multiple-frame dense optical flow. The dense
optical flow in the temporal domain contains motion data of the objects. The two separate streams
are combined by calculating stacked L2 normalized SoftMax scores as features. These features
are classified using multi-class linear Support Vector Machines (SVM). The main issue with this
method is the huge memory requirements to store all the optical flow data. To reduce the size
of the saved data, float point data were converted to integer point data, and the saved data was

16

compressed using JPEG. Despite these measures, the saved optical flow data took huge memory
spaces for even smaller datasets. For huge datasets such as the YouTube 1M [77], YouTube 8M
[78] this method would require big data storage solutions. An alternate solution for taking the
features from the temporal domain into consideration is presented in [130]. As opposed to train-
ing two separate 2-D CNN networks in their respective spatial and temporal streams, the system
developed in [79] used 3-D convolutions to extract features from both the spatial and the temporal
domain. In this way, a single 3-D CNN can be used in place of two-stream two CNN solutions.
This also effectively solves the data storage issue of [76]. The performance of this model is com-
parable to the two-stream two CNN solutions. However, this model requires more labeled data
than unsupervised counterparts, and thus, for large video human action datasets, accurate labeling
poses a big challenge.

Handcrafted features such as the Histogram of Oriented Gradients (HOG), Histograms of Op-
tical Flow (HOF), Motion Boundary Histograms (MBH) have been historically used for human
action recognition [80]. The framework developed in [81] introduces Trajectory-pooled Deep-
convolutional Descriptors (TDD), a combination of handcrafted features and deep-extracted fea-
tures for human activity recognition. The handcrafted features and the features extracted using
deep 2-D CNN networks are aggregated based on trajectory constrained pooling. Spatio-temporal
normalization and channel normalization are further used to transform the feature maps. The TDD
features are highly discriminative and are learned automatically. However, this method performs
slightly worse than two-stream 2-D CNN solutions. While the performance of TDD is excellent
in the spatial domain, its performance is worse than or comparable to the performance of two-
stream solutions in the temporal domain. The authors of [82] proposed a hierarchical approach
for complex human recognition that used background subtraction and HOG for image prepro-
cessing, deep learning architectures (CNN, and LSTM) for feature selection and to maintain the
previous data, and Softmax-k-nearest neighbors for classifying the human activities. The pro-
posed architecture has been evaluated using the UCF101 dataset that contains 101 complicated
human activities. Extensive experiments revealed that the developed system achieved an accuracy
of 93.80%. In another research, a fusion of Scale Invariant Feature Transform (SIFT) and optical
flow method are exploited [83] to extract the shape, gradient, and orientation features from videos
of human action datasets. Additionally, CNN is used to recognize human activities by training
and testing the datasets. Two popular datasets, namely Weizmann dataset and KTH dataset are
utilized to evaluate the performance of the developed framework and appraised an accuracy of
98.03%, and 94.96%, respectively.

17

2.2 Literature on TinyML Benchmarks

Several benchmarks have been conducted regarding TinyML in various research directions. MLPerf
[84] is a benchmarking suite for machine learning inference with aims to add power measure-
ments. However, the current MLPerf inference benchmark excluded Micro-Controller Units
(MCU) and other low-power devices due to the lack of tiny benchmarks and appropriate deploy-
ments. In another research, the deep learning benchmark called MLPerf Tiny [85] is designed for
integrated and ultra-low-power systems. This benchmark focused on four major application ar-
eas including keyboard spotting, visual wake words, image classification, and anomaly detection.
Further, Sudharsan et al. [86] used three fully connected neural networks and each of the networks
is trained using 10 popular datasets. This benchmark demonstrated the onboard performance of
the models on 7 widely used MCUboards that are the major components of TinyML hardware.
In another study, Profentzas et al. [87] utilized three deep learning libraries: uTensor, TF-Lite-
Micro, and CMSIS-NN, to develop a benchmark for analyzing the trade-offs of low-power IoT
devices. Two popular datasets namely MNIST and CIFAR-10 are used for the benchmark study.
From the experimental findings, it is revealed that the CMSIS-NN is the most efficient among the
other frameworks in terms of energy consumption for the specific test scenarios. Furthermore,
Pau et al. [88] highlighted two application areas such as human activity recognition and anomaly
detection for benchmarking. The system developed hybrid binary neural network architecture
that is the combination of 32-bit integer layers and binary layer. The input and output layers in
this network have the same weights, i.e. 32-bit, however the intermediate layers are designed
utilizing binary weights. The system demonstrated how the quantization layer selection is crucial
for reducing network size and complexity without affecting the accuracy of the architecture.

2.3 Literature on Lightweight Deep Learning Models for HAR

Nowadays, deep learning has become a prominent research topic in various real-time applications
including human activity recognition due to the rapid increase of mobile computing devices.
To ensure real-time applications, many researchers are focusing on developing lightweight deep
learning architectures that are applicable to tiny embedded devices [89, 90]. Hence, deep learning
on tiny edge devices has become a research concern over the past few years. The lightweight
deep learning architectures that have been developed for human activity recognition are briefly
demonstrated below.

Gupta et al. [91] developed a TinyML system for HAR by optimizing the existing deep learn-
ing architectures. The system used three variants of deep learning architectures such as simple

18

CNN, DeepConv LSTM, and multi-layer LSTM. To reduce the weight of the models, the pro-
posed system exploited two popular optimization techniques including pruning and quantization.
For the evaluation of the developed platform, the system is tested with a benchmark dataset called
UCI-HAR. The obtained accuracy of the optimized model (DeepConv LSTM) is 90.48% which is
relatively low than the original model, but the size of the optimized architecture decreased dras-
tically. However, the developed scheme has not been tested with any edge computing devices.
Zhou et al. [92] proposed a lightweight deep learning architecture called TinyHAR to classify
activities in wearable devices. The developed framework extracted the significant features from
the raw data using different multimodal saliencies, multimodal collaboration, and time–series in-
formation. DeepConv LSTM is used as a baseline architecture. The proposed system has been
tested with six popular open-access datasets and the best F1-Score of 98.99% is achieved from
the SKODA dataset. Compared to the original model, the TinyHAR achieved the same perfor-
mance with around 6% less model sizes. However, the deployment of the proposed architecture
on edge devices including Seed Studio’s RISC-V based Sipeed MAix BiT platform is still on-
going. To develop a HAR with lower computing requirements and latency, Agarwal and Alam
[93] introduced a lightweight Recurrent Neural Network (RNN)-LSTM architecture that is de-
ployed on Raspberry Pi devices. The experiment is performed on the widely used Wireless Sen-
sor Data Mining (WISDM) dataset to evaluate the performances of the developed architecture.
From the experimental findings, it is revealed that the developed framework achieved an accuracy
of 95.78%. However, the proposed system has been tested with only one dataset which did not
prove the good generalization ability of the model.

In another research, the authors of [94] presented a lightweight human activity recognition
approach called LiteHAR that does not need substantial parameters for training. In this system,
the high-level patterns are retrieved from raw Channel State Information (CSI) data using ran-
domly initialized convolution kernels without training the kernels. The activity recognition is
done through Ridge regression classifier, which has linear computational complexity and is rel-
atively fast. The evaluation of the LiteHAR architecture is done on a benchmark dataset called
StanWiFi and the obtained accuracy is 91% for classifying seven ADL. Coelho et al. [95] in-
troduced a lightweight two-level classifier utilizing pruned and quantized CNN architecture for
HAR on portable devices. The extracted features from the collected data are fed into SVM to
classify the static and dynamic activities. Moreover, the decision tree is exploited to recognize
the activities from the extracted features and static activities. Additionally, the lightweight CNN
architecture recognized the activities from the preprocessed data and dynamic activities features.
The found accuracy and F1-Score are above 90% utilizing the benchmark dataset UCI-HAR.
However, the performance of the developed network has not been tested with any tiny devices.
In [96], the authors presented a machine learning framework based on the concept of Random
Forest (RF) and CNN for HAR on microcontrollers. The developed networks are converted to C

19

code to deploy in MCU. To evaluate the performance of the models, a popular benchmark dataset
called PAMAP2 is used. The mid-range microcontroller namely nRF5340 is exploited as an edge
device for experimentation. The experimental results depicted that the RF architecture obtained
the similar level of accuracy for HAR but several times faster than the baseline CNN architecture.

In another work, Liu et al. [97] proposed a lightweight deep learning architecture using lin-
ear grouped convolution for HAR on portable devices. In this system, the data collected from
sensors are fed into the architecture as an overall data stream. Six popular human activity recog-
nition datasets are utilized to test the proposed network. The developed system obtained good
recognition performance while decreasing the number of parameters and computation complex-
ity. Moreover, the real-world experiments for HAR are conducted on two portable devices such
as Android and Raspberry Pi. However, there are still more than half million parameters in the
optimized architectures. Huang et al. [98] utilized channel equalization and channel selectivity in
CNNs for HAR to reinstate the channels that imploded as a result of normalization. The proposed
channel equalization technique forced all channels at the same layer to participate in feature ex-
traction by preventing the network from depending on just a few selectively activated channels and
thereby providing good generalization capability. The evaluation of the proposed architecture is
done through the use of six open-access benchmark HAR datasets. The best accuracy of 99.17%
is found from the USC-HAD dataset. Finally, the developed network is tested with a Raspberry Pi
to get the output from real-world deployment scenarios. Lattanzi et al. [99] presented a compara-
tive study between two types of neural networks such as Multi-Layer Perceptron (MLP) and CNN
to explore some prominent performance measures needed for tiny wearable devices including in-
ference time, power consumption, and the use of memory for HAR. In this study, the smartwatch
called Hexiwear is used as a wearable device to capture the data from the participants, and the
low-power Arm Cortex-M4 is exploited as a processing device. The experimental findings re-
vealed that the MLP architecture obtained a 4 times reduction in the use of memory, and about 36
times reduction in energy consumption than the CNN model while achieving the same accuracy
measure. Ankita et al. [100] developed a human activity recognition framework combining the
concept of convolutional layers, LSTM, and the deep neural network. The proposed architecture
retrieved the significant patterns from the raw data automatically and classified them with some
model attributes. The developed framework is tested on a publicly available benchmark dataset
called UCI-HAR collected through Samsung Galaxy S2 from the volunteers. It is found from
the experimental analysis that the developed lightweight model obtained an accuracy of 97.89%
for activity recognition. However, this scheme failed to encode the positioned orientation of the
activities.

20

2.4 Summary

In this chapter, we explored the use of CNNs in HAR systems through the presented sensing
modalities. We also presented the different and effective use of various CNN architectures and
techniques such as 1-D CNNs, inception blocks, dense blocks, two-stream convolutional net-
works, 3-D CNNs, and specialized features such as TDD. We discussed the reviewed systems in
terms of their strengths, weaknesses, and future scopes. We presented the current literature on
benchmarking efforts to test these systems in edge environments. We also presented the current
advances in lightweight deep learning models for HAR in edge devices.

21

Chapter 3

Proposed Methodology

In this chapter, we discuss the underlying structures making HAR possible in tiny edge devices.
CNN’s have revolutionalized modern pattern recognition tasks such as HAR. However, CNN’s
have huge compute and memory requirements - making vanilla CNN’s unsuitable for TinyML.
We discuss alternate structures such as DSCNN - that reduce the number of operations and mem-
ory requirements compared to CNN. We then discuss quantization methods: QAT and PTQ to
compress both CNN and DSCNN architectures for deployment in resource constrained devices.
We discuss the standalone embedded application architecture and the features of the commodity
edge devices.

3.1 Benchmarking HAR

A generalization of a HAR application in the context of TinyML and resource constrained devices
is illustrated in Fig. 3.1. A generic HAR application includes an initialization stage and a main
loop. In the initialization stage, device pins are reset, connections to sensing devices and other
services are checked, and static memory is allocated for the model, inputs, and outputs. The main
loop runs indefinitely until the power runs out or the device is shut down. In the main loop, at
first the sensing data from various devices such as RGB camera, accelerometer, gyroscope, mag-
netometer, and IR sensors are collected and stored as inputs. The model is then invoked and the
activity is classified from the input data. Finally, actions such as notifying emergency services,
recording measurements, and sounding alarms are taken. A typical ML workflow contains the
following stages: collecting and preparing data, designing model architectures, training the mod-
els, evaluating and optimizing models, converting models, deploying models, and performing

22

Figure 3.1: Generalization of HAR application architecture from a TinyML perspective.
inference using the models. This benchmark study is associated with multiple major stages of the
typical ML workflow–from data collection and preparation to model inference. This study also
overlaps with two major components of the generic HAR architecture: sensor data collection and
model invocation. Each of the components used in this benchmark is described below.

3.1.1 Convolutional Neural Networks

Convolutional neural networks have emerged as one of the most prominent neural networks in
the area of deep learning for a variety of important applications [101]. The powerful learning
capability of deep CNN is due to the use of numerous feature extraction steps that can learn
representations from input data automatically. In general, a CNN architecture consists of three
types of layers: convolutional, pooling, and fully connected layers.

The convolutional layer uses numerous convolutional kernels to compute different feature
maps to learn feature representations [102]. The feature value at location (𝑝, 𝑞) in the 𝑟𝑡ℎ feature
map of the 𝑠𝑡ℎ layer, 𝑧𝑠𝑝,𝑞,𝑟, is determined mathematically in (3.1).

𝑧𝑠𝑝,𝑞,𝑟 = 𝑤𝑠𝑇
𝑟 𝑥𝑠

𝑝,𝑞 + 𝑏𝑠𝑟 (3.1)
Here, the weight vector of the 𝑟𝑡ℎ filter is 𝑤𝑠

𝑟, and the bias term of the 𝑠𝑡ℎ layer is 𝑏𝑠𝑟. Additionally,
𝑥𝑠
𝑝,𝑞 is the input patch centered at (𝑝, 𝑞) of the 𝑠𝑡ℎ layer. In CNN architecture, the total number of

23

multiplications required to convolve 𝑁 kernels of size 𝐷𝑘 ×𝐷𝑘 ×𝑀 over an input image is as in
(3.2).

𝐷𝑘 ×𝐷𝑘 ×𝑀 ×𝐷𝑓 ×𝐷𝑓 ×𝑁 = 𝐷2
𝑘 ×𝑀 ×𝐷2

𝑓 ×𝑁 (3.2)
where 𝐷𝑓 is the dimension of the final output image.

Depthwise separable convolutions [103] instead perform the convolution operation in two
steps: depthwise convolution and pointwise convolution. Depthwise convolution treats each
channel in the image independently. For example, if the input image has 𝐷𝑖 × 𝐷𝑖 × 𝐶 dimen-
sions, the depthwise convolution results in 𝐶 number of images of dimension is 𝐷𝑓 × 𝐷𝑓 × 1.
Pointwise convolution acts as a kernel of size 1 × 1 × 𝐶 over the output images. Thus, the total
number of multiplications performed by these two stages are calculated in (3.3).

𝐷2
𝑘 ×𝑀 ×𝐷2

𝑓 +𝑀 ×𝐷2
𝑓 ×𝑁 = 𝑀 ×𝐷2

𝑓 × (𝐷2
𝑘 +𝑁) (3.3)

The ratio of the total number of multiplications in DSCNN and standard CNNs are given by (3.4).

𝐷𝑆𝐶𝑁𝑁
𝐶𝑁𝑁

=
𝑀 ×𝐷2

𝑓 × (𝐷2
𝑘 +𝑁)

𝐷2
𝑘 ×𝑀 ×𝐷2

𝑓 ×𝑁
= 1

𝑁
+ 1

𝐷2
𝑘

(3.4)

Thus, the higher number of filters and larger kernels result in lesser number of multiplications
in DSCNNs compared to CNNs. DSCNNs also have lower number of learnable parameters than
identical CNNs. DSCNNs can greatly improve latency, reduce memory footprint, and be more
efficient than their CNN counterparts.

The activation function [104] adds nonlinearities to CNN, which are useful for detecting non-
linear features in multi-layer networks. Assume that 𝑎(⋅) is the nonlinear activation function. The
activation value 𝑎𝑠𝑝,𝑞,𝑟 of convolutional feature 𝑧𝑠𝑝,𝑞,𝑟 is calculated using (3.5).

𝑎𝑠𝑝,𝑞,𝑟 = 𝑎(𝑧𝑠𝑝,𝑞,𝑟) (3.5)

The pooling layer [105] reduces the resolution of the features maps to obtain shift-invariance.
Each feature map of a pooling layer is linked to its corresponding feature map of the preceding
convolutional layers. Let, the pooling function is denoted as 𝜌(⋅), hence for each feature map 𝑎𝑠∶,∶,𝑟we can calculate (3.6).

𝑦𝑠𝑝,𝑞,𝑟 = 𝜌(𝑎𝑠𝑚,𝑛,𝑟),∀(𝑚, 𝑛) ∈ ℝ𝑝,𝑞 (3.6)
where ℝ𝑝,𝑞 is a local neighborhood around the location (𝑝, 𝑞).

A fully connected layer, which comes after several convolutional and pooling layers, aims
to conduct high-level reasoning [106]. This layer connects all neurons from the preceding stage

24

to every neuron in the current layer to create global semantic features. Finally, the loss func-
tion is used in the output layer to obtain the optimal parameters. Let, all the parameters of
CNN are denoted by 𝜃, and the input-output relationships for data samples 𝐷 are represented
as {𝑥(𝑑), 𝑦(𝑑); 𝑑 ∈ [1,… , 𝐷]}, where the input data of 𝑑-𝑡ℎ is 𝑥(𝑑), the corresponding target label
is 𝑦(𝑑), and the output of CNN is 𝑜(𝑑). The loss value () of CNN is determined by (3.7).

 = 1
𝐷

𝐷
∑

𝑖=1
𝓁(𝜃; 𝑦(𝑑), 𝑜(𝑑)) (3.7)

In this study, to maintain consistency across experiments, we experimented with two major
types of architectures: CNNs and DSCNNs. In both cases, the input layer had 8 filters of size 3×3.
The hidden layer contained 8, 16, or 32 filters of size 3 × 3. The base of both models contained
three fully connected layers. Both the first and second base layers contained 16 neurons. The
final layer had neurons equal to the number of classes of each dataset. In all layers, except the
final layer Rectified Linear Unit (ReLU) was used as the activation function. The final layer used
the Softmax activation function. We used Adam as the optimizer and Sparse Categorical Cross-
entropy as the loss function. The original models were trained using a learning rate of 0.001.
The QAT models were trained using a learning rate of 0.0001. All models were trained for 100
epochs.

3.1.2 Quantization Methods

We quantized our proposed two-stream fusion architecture using two quantization methods and
tested their performance in multiple datasets. Quantization in this context is the process of con-
verting learned model parameters such as weights, biases, and activations from higher precision
to lower precision data types - reducing model size, latency, etc. in the process. Although quan-
tization results in some information loss, in some instances, quantization can improve model
performance.

Post Training Quantization

Post Training Quantization [107, 108] quantizes models without retraining. There are several
ways to perform post-training quantization: Dynamic range quantization, full integer quantiza-
tion, and float16 quantization. Dynamic range quantization converts 32-bit floating point values
into 8-bit integers. During inference, Dynamic range quantization converts the integer values to
floating point values and caches the results. This results in some speedup in inference time as

25

well as minor performance improvements than the other PTQ methods. Full integer quantization
also converts 32-bit floating point values into 8-bit integers - reducing the model size by 75% of
the original model. Float16 quantization converts 32-bit floating point values into 16-bit inte-
gers - reducing the model size by 50% of the original model. PTQ methods also require a small
representation dataset for optimal quantization. As PTQ aggressively reduces the precision of
the parameters, some information loss occurs. For our experimentation, we used dynamic range
quantization.

Quantization Aware Training

Quantization Aware Training [109, 110] requires retraining the original model for minimizing the
quantization loss. QAT includes the quantization loss into overall model loss during the forward
pass for each epoch - thus optimizing the total loss as the backward pass is kept the same. QAT
emulates inference time quantization. During QAT, 32-bit floating point values are converted to
8-bit integer values - resulting in huge reduction in model size. QAT models almost always have
lesser size than PTQ models - making QAT perfect for boards with very little Static Random
Access Memory (SRAM). As QAT retrains the original model optimizing total loss, it often
results in slight performance improvement over the PTQ and 32-bit original models.

3.1.3 Tiny Edge Devices

We tested the model performances in terms of power consumption and latency in three resource
constrained edge devices: Arduino Nano 33 BLE Sense, Sony Spresense, and Espressif ESP32-
DevKitC. Table 3.1 presents an overview of the selected devices.

Arduino Nano 33 BLE Sense

The Arduino Nano 33 BLE Sense device [111] has a 32-bit nRF52840 microprocessor with a
clock speed of 64MHz. The board has 256KB SRAM and 1MB flash memory. The board is
equipped with many sensors: microphone, inertial measurement unit, temperate sensor, humidity
sensor, gesture sensor, pressure sensor, proximity sensor, brightness sensor, and color sensor. The
board is also equipped with Bluetooh Low Energy (BLE) for communication.

26

Ta
ble

3.1
:O

ver
vie

wo
fth

eb
oar

ds
use

di
ne

xp
eri

me
nta

tio
n

Bo
ar

d
M

C
U

/A
SI

C
C

lo
ck

M
em

or
y

Se
ns

or
s

R
ad

io
Ar

du
ino

Na
no

33
M,

IM
U,

T,
H,

G
BL

ES
ens

e
32

-bi
tn

RF
52

84
0

64
MH

z
1M

BF
las

h,
25

6k
BS

RA
M

PS
,P

X,
B,

C
BL

E
So

ny
Sp

res
ens

e
AR

M
®

Co
rte

x® -M
4F

×
6

15
6M

Hz
8M

BF
las

h,
1.5

MB
SR

AM
GP

S
No

ne
Es

pre
ssi

fE
SP

32
-D

evK
itC

Xt
ens

a®
du

al-
cor

e3
2-b

itL
X7

24
0M

Hz
8M

BF
las

h,
51

2K
BS

RA
M

No
ne

Wi
-Fi

,B
LE

∗
M

=M
icr

op
ho

ne,
IM

U=
Ine

rtia
lM

eas
ure

me
nt

Un
it,

T=
Te

mp
era

tur
e,H

=H
um

idi
ty,

G=
Ge

stu
re,

PS
=P

res
sur

e,P
X=

Pro
xim

ity
,

B=
Br

igh
tne

ss,
C=

Co
lor

27

Sony Spresense

The Sony Spresense device [112] has an ARM ® Cortex®-M4F microprocessor with 6 cores and
a clock speed of 156MHz. The device has 1.5MB SRAM and 8MB flash memory. The board
has on-board GPS but does not have any on-board radio for communication. However, additional
sensors and Wi-Fi capabilities can be added by connecting an expansion board to the original
board. The device also has dedicated circuitry for efficiently managing energy consumption.

Espressif ESP32-DevKitC

The Espressif ESP32-DevKitC device [113] has a Xtensa ® dual-core 32-bit LX7 microprocessor
with a 240MHz clock speed. The device has 512KB of SRAM and 8MB flash memory. The
device does not have any on-board sensors, but contains Wi-Fi and BLE radio systems for com-
munication.

Among the three devices, the Espressif device has the highest clock speed, followed by the
Sony device, and the Arduino device has the lowest clock speed. The Sony device has the highest
SRAM, followed by Espressif, and the Arduino device has the lowest SRAM. The quantized
models are stored in SRAM for faster performance. The Arduino device has the highest number
of sensors. The Sony device and the Espressif device require extension boards for sensors.

3.2 Multi-resolution Fusion Architecture for HAR

In this section, we present and discuss all stages of the proposed multi-resolution fusion archi-
tecture development pipeline in the context of our human activity recognition system: dataset
preprocessing, parameters of the proposed architecture, and deployment in tiny edge devices.

Figure 3.2 provides a detailed overview of our proposed system. At first, from the video
sequences of human activities, we extracted the full-size greyscale images and their cropped cen-
ter images. This is the input for our proposed two-stream multi-resolution fusion architecture.
The two streams are symmetrical. The full-size images are input into the context stream and the
cropped center images are input into the fovea stream. Due to camera bias, subjects performing
activities in videos are often in the center of the frame. By inputting the center crop of the full-
size images into the fovea stream, the models can extract meaningful features without distracting
backgrounds or artifacts in the outskirts of the frame. The outputs of these two streams are fused
through concatenation and feed into a fully connected network which outputs the activity. For
example, for a 128 × 128 resolution still input image from a video sequence, the context stream

28

Convolution

Input Weights

ReLU6

Output

Biases

Multi-resolution Fusion
Architecture

Output Activities

Convolution

Input

Weights

Weights
Quantization

ReLU6

Activation
Quantization

Output

Biases

Convolution (8×3×3)

Max-Pool (2×2)

Convolution (16×3×3)

Max-Pool (2×2)

Dropout (0.3)

Flatten ()

Convolution (8×3×3)

Max-Pool (2×2)

Convolution (16×3×3)

Max-Pool (2×2)

Dropout (0.3)

Flatten ()

Dense (8)

Dropout (0.5)

Dense (8)

Dropout (0.5)

Dense (number of
classes, Softmax)

M
ul

ti-
re

so
lu

tio
n

Fu
si

on
 A

rc
hi

te
ct

ur
e

Q
ua

nt
iz

at
io

n
Aw

ar
e

Tr
ai

ni
ng

Po
st

 T
ra

in
in

g
Q

ua
nt

iz
at

io
n

Ti
ny

 E
dg

e
D

ev
ic

es

Vi
de

os

Im
ag

es

C
ro

pp
ed

 Im
ag

es

in
t 8

int 8

in
t 3

2

int 32

int 8

int 8

A
rd

ui
no

 N
an

o

So
ny

 S
pr

es
en

se

Es
pr

es
si

fE
SP

32

Fig
ure

3.2
:A

no
ver

vie
wo

fth
ep

rop
ose

dt
wo

-st
rea

m
mu

lti-
res

olu
tio

nf
usi

on
arc

hit
ect

ure
.T

he
fra

me
sa

re
gen

era
ted

fro
mt

he
vid

eo
dat

aa
nd

sen
tto

the
con

tex
tst

rea
mt

oe
xtr

act
the

sig
nifi

can
tfe

atu
res

.T
he

cen
ter

cro
pp

ed
im

age
sfr

om
the

fra
me

sa
re

fed
int

ot
he

fov
ea

ste
am

for
fea

tur
ee

xtr
act

ion
(se

et
op

par
t).

La
ter

,th
er

etr
iev

ed
fea

tur
es

are
fus

ed
and

sen
tto

the
ful

ly
con

nec
ted

lay
er

for
act

ivi
ty

rec
og

nit
ion

.M
ore

ove
r,t

he
PT

Qt
ech

niq
ue

(se
eb

ott
om

rig
ht

par
t)

qua
nti

zed
the

siz
eo

fth
ed

eve
lop

ed
fus

ion
arc

hit
ect

ure
and

dep
loy

ed
the

op
tim

ize
dm

od
eli

nt
he

tin
ye

dge
dev

ice
s.

Fu
rth

er,
QA

Tm
eth

od
(se

eb
ott

om
lef

tp
art

)o
pti

mi
zed

the
par

am
ete

rs
(in

pu
ts,

we
igh

ts,
bia

ses
,an

da
cti

vat
ion

s)
of

the
mo

del
du

rin
gt

he
ini

tia
ltr

ain
ing

and
sen

tth
eo

pti
mi

zed
net

wo
rk

to
edg

ed
evi

ces
for

dep
loy

me
nt.

29

would receive a resized 64 × 64 image and the fovea stream would receive the central 32 × 32
pixels of the resized 64 × 64 image. This also reduces the dimensionality of the input by 31.2%.
After the model is trained, it is quantized using PTQ where the weights and activations of the
trained model are quantized into lower-precision data types and later deployed in the three tested
commodity resource constrained devices: Arduino Nano 33 BLE Sense, Sony Spresense, Espres-
sif ESP32. Another quantization technique QAT converts the input, weights, and activations of
the model into lower-precision data types (int8) during the initial training. However, the biases
and convolution outputs are stored in higher-precision data types (int32) for better generalization
performance and reduction in important feature loss. The trained models are then deployed in the
three tested edge devices.

3.2.1 Parameters of Convolutional Neural Networks

In the proposed multi-resolution fusion architecture, the context stream consists of two convolu-
tion operations with filter sizes of 8 and 16 to retrieve high-level features from the input images.
After each convolution operation, a max-pooling operation is performed. At the end of each
stream, a dropout layer and flatten layer is added. Dropout layers randomly disregard a given per-
centage of the features extracted from the previous layer. This helps the model generalize better to
the training data by reducing overfitting. This might also result in a slight performance increase
during testing - as the dropouts layers are not used during testing and the model gets access to
all extracted features. The context stream and fovea stream are symmetrical. Both of the streams
are fused using the concatenation operator. After concatenation, the fused output is input into a
fully connected network. The fully connected layer has two dense layers with 8 neurons and a
final dense layer with the number of neurons equal to the number of classes in the dataset. The
dense layers have a dropout layer between them. The dropout layers between convolutions layers
and dense layers have a dropout rate of 0.3 and 0.5.

3.2.2 TinyML Deployment

Figure 3.3 presents detailed overviews of the steps in TinyML development and deployment life-
cycle: training, quantization, compilation, and deployment. After designing the proposed archi-
tecture in TensorFlow, we train the model on selected dataset. After the model is trained, we
move to quantization phase. Using TFLite Micro, we perform two types of quantization: PTQ
and QAT. After quantization, when we compile the model, we get the model_data.h file. This
file contains the weight vectors of the quantized model as well as model metadata. We have
to develop the inference logic that handles initialization, main loop and response features. We

30

T
F

L
it

e
M

ic
ro

 L
ib

ra
ry

In
it

ia
li

ze

D
ef

in
e

M
o

d
el

 I
n

p
u

ts

S
et

u
p

 M
ai

n
 L

o
o

p

C
am

er
a

P
ro

v
id

er

T
F

L
it

e
M

ic
ro

R
es

p
o

n
se

A
p

p
li

ca
ti

o
n

 C
o

d
e

B
ar

e
M

et
al

 O
S

T
F

L
it

e
M

ic
ro

 L
ib

ra
ry

O
th

er
 B

u
ff

er
s

M
o

d
el

 I
n

te
m

ed
ia

te

V
al

u
es

S
R

A
M

S
en

so
r

In
it

ia
li

za
ti

o
n

D
ec

la
re

 V
ar

ia
b

le
s

L
o

ad
 m

o
d

el

O
P

R
es

o
lv

er

In
it

ia
li

ze
 I

n
te

rp
re

te
r

A
ll

o
ca

te
 T

en
so

r

A
re

n
a

R
ea

d
 C

am
er

a
In

p
u

t

C
o

n
v
er

t
to

 G
re

y
sc

al
e

N
o

rm
al

iz
e

model_data.hevaluation.h

In
it

ia
li

za
ti

o
n

M
a

in
 L

o
o

p

A
p

p
li

ca
ti

o
n

M
em

o
ry

inference.h

TFLiteQuantization

QATPTQ

Network Definition

Tensorflow

Proposed Architecture

T
ra

in
in

g
Q

u
a

n
ti

za
ti

o
n

C
o

m
p

il
a

ti
o
n

D
ep

lo
y

m
en

t

A
p

p
li

ca
ti

o
n

 C
o

d
e

B
ar

e
M

et
al

 O
S

Q
u

an
ti

za
ti

o
n

P
ar

am
et

er
s

M
o

d
el

 W
ei

g
h

ts

F
la

sh

T
F

L
it

e
M

ic
ro

 L
ib

ra
ry

Fig
ure

3.3
:T

iny
ML

dev
elo

pm
ent

and
dep

loy
me

nt
life

cyc
le

of
ou

rp
rop

ose
dm

ult
i-re

sol
uti

on
fus

ion
app

roa
ch

tha
t

inc
lud

es
the

tra
ini

ng
of

the
fus

ion
arc

hit
ect

ure
usi

ng
the

vid
eo

dat
a,

qu
ant

iza
tio

no
fth

ed
eve

lop
ed

arc
hit

ect
ure

to
red

uce
the

siz
e,

com
pil

ati
on

to
gen

era
te

nec
ess

ary
file

sc
om

pat
ibl

ei
nl

ow
-po

we
rd

evi
ces

,a
nd

dep
loy

me
nt

in
tin

y
edg

ed
evi

ces
.

31

also have to develop the evaluation logic to evaluate the model metrics. After we have all the
files, we can deploy the models in the edge devices. In Fig. 3.3, we showed the deployment in
edge devices from application and memory perspective. The standalone application has two ma-
jor parts: initialization and main loop. During initialization, the device is initialized, the sensor
modules are started, variables are declared, the tiny model is loaded, the OPResolver is started,
the interpreter is initialized, the tensor arena is allocated, and the main infinite loop is setup. The
OPResolver only loads relevant operations from the TFLite Micro library - drastically reducing
space overhead. The interpreter allocates the tensor arena, interprets the operations, and runs the
model. The tensor arena is a contiguous memory array holding all of the input, output and model
intermediate variables. After initialization, the infinite main loop is run. The main loop reads
camera input, converts the received image to greyscale, and normalizes the image. The model
performs inference on the image. Based on the inference result, an appropriate action is taken. In
our case, we only log the timestamp and classification result. Figure 3.3 presents the SRAM and
Flash memory components for the standalone application. The SRAM component consists of
application code, bare metal OS components, the TFLite Micro library, other buffers and model
intermediate values. Generally, the SRAM of edge devices is limited to couple hundred KB. The
flash memory component consists of the application code, bare metal OS components, TFLite
Micro library, quantization parameters, and model weights. In edge devices, the flash memory
is often larger in size than SRAM and limited to couple hundred KB to multiple MB. Thus, the
flash memory holds the quantized weights and parameters. The SRAM holds the intermediate
values from calculation, relevant TFLite Micro operations, and application code.

3.3 Summary

In this chapter, we explored the theoretical building blocks behind efficient deep learning models
and their inherent differences: CNN and DSCNN, the quantization algorithms for reducing the
model size without degrading model performance: QAT and PTQ, the standalone application
architecture to deploy these models, as well as the commodity edge devices and their unique
features: Arduino Nano 33 BLE Sense, Sony Spresense, and Espressif ESP32-DevKitC.

32

Chapter 4

Experimental Results and Discussions

In this chapter, we present and discuss the quantitative and qualitative results of benchmarking
experiments and multi-resolution fusion architecture experiments. We tested the performance
of the developed models in terms of the number of parameters, accuracy, precision, recall, F1-
Score, and size in KB. We reported the performance of the developed models in terms of their
inference time and power consumption in commodity edge devices. We performed and reported
results of variations of the proposed architecture. Later, we discussed the tradeoffs between the
model designs and provided insights into choosing the proper model and quantization strategies
for various use cases.

4.1 Datasets

To perform the benchmark study on TinyML in low-power devices, we retrieved five popu-
lar benchmark datasets of human activity recognition from different well-known sources. We
used two major video human activity recognition datasets to test the performance of our multi-
resolution fusion models. The detailed description of each dataset is demonstrated as follows.

4.1.1 UP-Fall Detection Dataset

UP-Fall detection dataset [114] is a large multimodal human activity recognition benchmark that
contains 11 activities and 3 trials per activity. The participants were involved to perform five
different forms of human falls as well as six ADL. The duration of fall activities is 10 seconds,
while the duration of ADL is variable. The data has been collected from a laboratory environment

33

using wearable sensors, ambient sensors, and vision devices. The dataset contained two types of
data: time-series data collected from wearable sensors, and ambient sensors; video/image data
collected from camera devices. Additionally, the vision data has two views including frontal
views (camera 2) and lateral views (camera 1). For this research, we have selected only the vision
data considering the frontal views. The image data were resized to three different input sizes:
16 × 16 × 3, 32 × 32 × 3, and 64 × 64 × 3 for experimentation.

4.1.2 Fall Detection Dataset

Fall Detection Dataset [115] has been collected from 5 different controlled rooms through an
uncalibrated Kinect sensor in the shape of raw RGB and depth image with a size of 640 × 480.
Five volunteers (2 males, and 3 females) performed five different activities in the controlled en-
vironments. The dataset contains 21499 images in total. For the research purpose, the dataset
is divided into three sets: training (15800 images), validation (3199 images), and testing (2500
images). The total number of images are in sequence, but none of them are repeated, and all of
the sets have original and horizontally flipped samples incorporated in sequence to maximize the
number of samples in each set. Similar to the UP-Fall detection dataset, the input images were
resized to 16 × 16 × 3, 32 × 32 × 3, and 64 × 64 × 3 input sizes for experimentation.

4.1.3 PAMAP2

PAMAP2 dataset [116] is an activity monitoring dataset that contains 18 different household
activities which were collected from 9 different volunteers (8 men, and 1 woman) through the
use of a heart rate monitor and three Inertial Measurement Unit (IMU)s such as accelerometers,
gyroscopes, and magnetometers. The IMUs are positioned at the hand, chest, and ankle whereas
the heart rate monitor is placed at the chest for data collection purposes. The sampling frequency
for this dataset is 100 Hz. In this dataset, 10 seconds of data at the start and the end of each labeled
activity event is eliminated to prevent dealing with possible transient activities. We processed 120
consequent data sequences and resized into 20 × 20 × 3 input size for experimentation.

4.1.4 UCI-HAR

UCI-HAR dataset [117] has been frequently utilized in human activity recognition research since
its publication. This dataset is also known as the behavior recognition dataset and was collected
from 30 subjects considering six daily activities through the use of accelerometers and gyroscope

34

operating at 50 Hz in a supervised scenario. The three-component values of the accelerometer
and gyroscope are acquired independently, and the data dimension is 561. The data collection
processes have been video-recorded to label the data manually. The activity recognition proce-
dure starts with the collection of sensor data, which are then pre-processed with noise filters and
recorded in 2.56 seconds of fixed-width sliding windows with a 50% overlap. The retrieved data
has been randomly partitioned into training set with 70% subjects, and testing set with 30% sub-
jects. As every sample of the UCI-HAR dataset contains pre-processed features extracted from
multiple sequences of activity, the input was resized to 17 × 11 × 3 for experimentation.

4.1.5 WISDM

Wireless Sensor Data Mining (WISDM) dataset [118] has been collected from 36 subjects in a
strictly controlled environment using tri-axial accelerometer of smartphone. Each of the volun-
teers kept the smartphone in their front leg trouser pockets, and was requested to perform six
different types of low-level activities. The longitudinal, lateral, and forward activity signals are
collected through an accelerometer at a sampling frequency of 20 Hz. For this dataset, the length
of the sliding window is 10 seconds and the overlap rate is 90%. The dataset contains 1098209
samples overall in the form of time-series and the nature of the data is imbalanced. We processed
100 input data sequences and resized them into 10 × 10 × 3 input size for experimentation.

4.1.6 KTH Human Activity Dataset

The KTH human activity dataset [119] contains a total of 2391 video sequences of six human
actions performed by 25 subjects in 4 unique scenarios: indoor, outdoor, outdoor with different
clothes, outdoor with scale variation. We used 4 human actions from the KTH dataset: boxing
(𝐾1), handclapping (𝐾2), handwaving (𝐾3), and walking (𝐾4). We did not use the running and
jogging activities as the still images from these activities are indistinguishable from the walking
activity without temporal information. The original video sequences had a spatial resolution of
160×120 pixels and were captured over homogeneous backgrounds with a static camera at 25fps
frame rate. We extracted the single images from the videos sequences, resized the greyscale
images into 128 × 128, 64 × 64, and 32 × 32, and cropped the center images into resolution:
64 × 64, 32 × 32, and 16 × 16. We normalized all the images by dividing the pixel intensities of
each image by 255.0.

35

4.1.7 UCF11 YouTube Action Dataset

The UCF11 YouTube Action Dataset [120] contains 11 unique activities: basketball (𝑈1), biking
(𝑈2), diving (𝑈3), golf_swing (𝑈4), horse_riding (𝑈5), soccer_juggling (𝑈6), swinging (𝑈7),
tennis_swing (𝑈8), trampoline_jumping (𝑈9), volleyball_spiking (𝑈10), and walking (𝑈11).
We trained and tested all 11 activities of this dataset. The dataset is very challenging for recog-
nition tasks due to huge variations in camera motion in the sequences, varying illumination con-
ditions, changing viewpoints, cluttered backgrounds, different object scales, and differences in
object pose and appearance. The dataset contains a total of 1168 video sequences. As the dataset
was collected from YouTube, the videos are from different subjects and have different resolutions.
For preprocessing, the single-frame images are extracted from the video sequences and converted
to greyscale. The greyscale images are then resized into 128 × 128, 64 × 64, and 32 × 32, and
their center portions are cropped into resolution: 64 × 64, 32 × 32, and 16 × 16. The resized and
cropped images are normalized by dividing the pixel intensities of each image by 255.0.

4.2 Performance Evaluation

To demonstrate the effectiveness and feasibility of the benchmark models and the proposed fu-
sion architectures, we utilize two different classes of performance metrics: model performance
metrics and device performance metrics. Model performance metrics track the performance of
the developed models while device performance metrics track their on-device performance in
deployment scenarios.

4.2.1 Model Performance

We measure the efficiency both of the benchmark models and the proposed fusion architecture in
terms of four widely used statistical metrics: accuracy, precision, recall, and F1-Score. Here, 𝑇𝑃 ,
𝐹𝑃 , 𝑇𝑁 , and 𝐹𝑁 represent True Positive, False Positive, True Negative, and False Negative,
respectively. Due to the multiclass nature of the datasets, we used weighted average to calculate
the performance metrics. Weighted average considers the frequency of the class labels during the
calculation of the metrics.The four metrics are defined as follows.

• Accuracy: Accuracy is the ratio of correctly recognized samples in all data samples that
represent the rate of recognition of human activities.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1
𝑁

𝑁
∑

𝑘=1

𝑇𝑃𝑘 + 𝑇𝑁𝑘

𝑇𝑃𝑘 + 𝑇𝑁𝑘 + 𝐹𝑃𝑘 + 𝐹𝑁𝑘
(4.1)

36

• Precision: Precision is the ratio of real positive samples to the total number of recognized
positive data instances.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 1
𝑁

𝑁
∑

𝑘=1

𝑇𝑃𝑘

𝑇𝑃𝑘 + 𝐹𝑃𝑘
(4.2)

• Recall: Recall represents the proportion of correctly recognized positive samples to the
total number of real positive data instances.

𝑅𝑒𝑐𝑎𝑙𝑙 = 1
𝑁

𝑁
∑

𝑘=1

𝑇𝑃𝑘

𝑇𝑃𝑘 + 𝐹𝑁𝑘
(4.3)

• F1-Score: F1-Score is a measure to evaluate the performance of multi-classification archi-
tectures that is represented by the weighted average of recall and precision which facilitates
to give more insights into human activity recognition tasks.

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 1
𝑁

𝑁
∑

𝑘=1

2 ∗ 𝑇𝑃𝑘

2 ∗ 𝑇𝑃𝑘 + 𝐹𝑃𝑘 + 𝐹𝑁𝑘
(4.4)

4.2.2 Device Performance

To evaluate the performance of our proposed models, we developed standalone applications utiliz-
ing these models and deployed them in commercially available edge devices. We used inference
time and power consumption measurements to track their performance.

• Inference Time: Inference time indicates the total time taken to perform a forward propa-
gation in a model. In our case, the standalone application logs two timestamps: one before
the model is invoked and one after classification is performed. The difference between these
two timestamps is the inference time for that sample. We calculated the average inference
time from all test samples.

• Power Consumption: Power consumption represents the average electric current drawn
while running the standalone application in mA reported by the Power Profiler Kit.

4.3 Experimental Setup

The computer used for these experiments had the following specifications: CPU: Intel® Core™
i7-6700K 8-core CPU @ 4.00GHz, GPU: GTX 1080 with 8 GB GDDR5 memory, RAM: 32 GB

37

DDR4. The computer was running Ubuntu 22.04 LTS with Python(v3.10), TensorFlow(v2.8.0),
and Tensorflow Model Optimization(v0.7.2) libraries. Nordic® Power Profiler Kit II was used to
measure the power consumption of the devices deploying the models.

4.4 Benchmarking HAR

We elaborate on the test results on the selected datasets as well as the inference time and power
consumption in selected devices.

4.4.1 Results Analysis

In the UP-Fall detection dataset and FDD dataset, the data was normalized. In the PAMAP2,
UCI-HAR, and WISDM datasets, the data were standardized. We performed 80% − 20% train-
test split on the UP-Fall, PAMAP2, and WISDM datasets. FDD and UCI-HAR datasets provided
separate training and testing sets.

In all subsequent Tables in this subsection, the gray rows indicate DSCNN model and the
white rows indicate CNN model. We will discuss and compare the model performance between
QAT and PTQ versions only in the following stages as our focus is on TinyML. Table 4.1 presents
the experimental results for the UP-Fall detection dataset. For the UP-Fall detection dataset, for
input size 16 × 16 × 3, the highest levels of accuracy, precision, recall and F1-Score of 89.4%,
89.4%, 89.4%, and 89.3%, respectively, was achieved when QAT and 16 hidden layers in CNN
network was used. For 32×32×3 input size, the highest accuracy, precision, recall, and F1-Score
of 92.2%, 92.6%, 92.2%, and 92.2%, respectively, was achieved when QAT and 16 hidden layers
in CNN was used. For 64×64×3 input size, the highest metrics were achieved when QAT and 8
hidden layers in CNN was used. The highest accuracy, precision, recall, and F1-Score are 95.5%,
95.6%, 95.5%, and 95.4%, respectively.

Table 4.2 presents the experimental results for the FDD dataset. For the FDD datasets, for
input size of 16 × 16 × 3, the highest accuracy, precision, recall, and F1-Score of 79.3%, 78.3%,
79.3%, and 78.4%, respectively, was achieved when QAT and 32 hidden layers in CNN was used.
For 32 × 32 × 3 input size, the highest accuracy, recall, and F1-Score was achieved when QAT
and 32 hidden layers in CNN were used. The highest accuracy, recall, and F1-Score were 81.7%,
81.7%, and 81.2%, respectively. For 64 × 64 × 3 input size, the highest accuracy, recall, and F1-
Score of 86.9%, 86.9%, and 86.5%, respectively, was achieved when PTQ and 32 hidden layers
in DSCNN was used.

38

Ta
ble

4.1
:E

xp
eri

me
nta

lre
sul

tsf
or

the
UP

-FA
LL

det
ect

ion
dat

ase
t

Per
for

ma
nce

(%
)

QA
T(%

)
PT

Q(
%)

IS
H

PM
A

P
R

F1
S

A
P

R
F1

S
A

P
R

F1
S

8
17

95
83

.4
83

.8
83

.4
83

.5
18

6.7
84

.2
85

.1
84

.2
84

.4
7.1

83
.4

83
.8

83
.4

83
.5

10
.3

16
28

91
88

.8
89

.0
88

.8
88

.8
20

1.2
89

.4
89

.4
89

.4
89

.3
8.4

88
.8

89
.0

88
.8

88
.8

14
.6

32
50

83
87

.4
87

.5
87

.4
87

.3
22

7.8
86

.3
87

.7
86

.3
86

.8
11

.0
87

.4
87

.5
87

.4
87

.3
23

.2
16

8
11

90
82

.2
82

.2
82

.2
82

.0
21

0.7
83

.0
83

.0
83

.0
82

.9
8.1

82
.2

82
.2

82
.2

82
.0

9.1
16

17
74

85
.1

85
.4

85
.1

85
.2

21
8.5

54
.0

48
.2

54
.0

48
.4

9.0
85

.1
85

.4
85

.1
85

.2
11

.5
32

29
42

86
.4

86
.7

86
.4

86
.3

23
2.6

87
.3

87
.3

87
.3

87
.2

10
.5

86
.4

86
.7

86
.4

86
.3

16
.0

8
58

91
90

.9
91

.1
90

.9
90

.8
23

8.6
91

.7
91

.9
91

.7
91

.7
11

.2
90

.9
91

.1
90

.9
90

.8
26

.4
16

11
08

3
91

.9
92

.2
91

.9
91

.8
30

0.9
92

.2
92

.6
92

.2
92

.2
16

.5
91

.9
92

.2
91

.9
91

.8
46

.6
32

21
46

7
18

.3
03

.3
18

.3
05

.0
42

5.5
18

.5
03

.4
18

.5
05

.7
27

.0
18

.3
03

.3
18

.3
05

.6
87

.2
32

8
52

86
90

.8
91

.4
90

.8
90

.8
26

0.8
92

.0
92

.0
92

.0
91

.9
12

.2
90

.8
91

.4
90

.8
90

.8
25

.2
16

99
66

88
.2

88
.1

88
.2

88
.0

31
7.2

87
.5

88
.4

87
.5

87
.8

17
.0

88
.2

88
.1

88
.2

88
.0

43
.5

32
19

32
6

18
.5

03
.4

18
.5

05
.7

43
0.1

18
.5

03
.4

18
.5

05
.7

26
.6

18
.5

03
.4

18
.5

05
.7

80
.1

8
26

37
1

95
.0

95
.1

95
.0

94
.9

48
1.8

95
.5

95
.6

95
.5

95
.4

31
.1

95
.0

95
.1

95
.0

94
.9

10
6.3

16
52

04
3

91
.6

92
.3

91
.6

91
.8

78
9.8

92
.5

92
.5

92
.5

92
.4

56
.3

91
.6

92
.3

91
.6

91
.8

20
6.5

32
10

33
87

18
.3

03
.3

18
.3

05
.7

14
00

.0
18

.5
03

.4
18

.5
05

.7
10

6.9
18

.3
03

.3
18

.3
05

.7
40

7.1
64

8
25

76
6

91
.4

91
.5

91
.4

91
.2

50
4.2

92
.5

92
.5

92
.5

92
.3

32
.0

91
.4

91
.5

91
.4

91
.2

10
5.1

16
50

92
6

93
.6

93
.8

93
.6

93
.6

80
6.1

93
.7

94
.0

93
.7

93
.6

56
.8

93
.6

93
.8

93
.6

93
.6

20
3.4

32
10

12
46

18
.5

03
.4

18
.5

05
.7

14
00

.0
18

.5
03

.4
18

.5
05

.7
10

6.4
18

.5
03

.4
18

.5
05

.7
39

9.9
∗

IS
=I

np
ut

Sh
ape

,H
=H

idd
en

La
yer

,P
M

=P
ara

me
ter

s,A
=A

ccu
rac

y,P
=P

rec
isio

n,
R=

Re
cal

l,F
1=

F1
-Sc

ore
,

S=
Siz

ein
KB

.

39

Ta
ble

4.2
:E

xp
eri

me
nta

lre
sul

tsf
or

the
FD

Dd
ata

set

Per
for

ma
nce

(%
)

QA
T(%

)
PT

Q(
%)

IS
H

PM
A

P
R

F1
S

A
P

R
F1

S
A

P
R

F1
S

8
17

10
69

.3
69

.8
69

.3
68

.1
18

5.5
71

.1
70

.0
71

.1
69

.5
7.0

69
.3

69
.0

69
.3

68
.1

10
.0

16
28

06
69

.2
69

.1
69

.2
68

.5
19

9.9
72

.9
72

.3
72

.9
71

.8
8.3

69
.2

69
.1

69
.2

68
.5

14
.3

32
49

98
77

.1
76

.6
77

.1
75

.0
22

6.3
79

.3
78

.3
79

.3
78

.4
10

.9
77

.1
76

.6
77

.1
75

.0
22

.8
16

8
11

05
59

.4
59

.7
59

.4
58

.6
20

9.2
59

.8
60

.5
59

.8
59

.4
8.0

59
.4

59
.7

59
.4

58
.6

8.8
16

16
89

64
.8

64
.8

64
.8

62
.8

21
7.0

63
.5

60
.9

63
.5

60
.5

8.8
64

.8
64

.8
64

.8
62

.8
11

.1
32

28
57

65
.2

65
.7

65
.2

64
.3

23
1.4

66
.9

66
.2

66
.9

65
.4

10
.4

65
.2

65
.7

65
.2

64
.3

15
.7

8
58

06
77

.0
77

.0
77

.0
75

.9
23

7.3
75

.7
75

.1
75

.7
74

.5
11

.1
77

.0
77

.0
77

.0
75

.9
26

.1
16

10
99

8
79

.1
79

.7
79

.1
78

.6
29

9.6
81

.4
81

.5
81

.4
81

.1
16

.4
79

.1
79

.7
79

.1
78

.6
46

.3
32

21
38

2
78

.8
79

.9
78

.8
78

.3
42

4.3
81

.7
81

.2
81

.7
81

.2
26

.9
78

.8
79

.9
78

.8
78

.3
86

.9
32

8
52

01
50

.5
53

.8
50

.5
47

.1
25

9.5
56

.9
55

.7
56

.9
54

.9
12

.1
50

.5
53

.8
50

.5
47

.1
24

.8
16

98
81

71
.9

73
.1

71
.9

71
.2

31
5.9

70
.0

69
.7

70
.0

68
.0

16
.9

71
.9

73
.1

71
.9

71
.2

43
.2

32
19

24
1

77
.2

77
.7

77
.2

76
.0

42
8.8

73
.8

73
.0

73
.8

71
.8

26
.5

77
.2

77
.7

77
.2

76
.0

79
.8

8
26

28
6

82
.7

83
.4

82
.7

82
.2

48
3.3

82
.6

82
.4

82
.6

82
.2

31
.2

82
.7

83
.4

82
.7

82
.2

10
6.1

16
51

95
8

86
.5

87
.4

86
.5

86
.1

79
1.3

86
.6

86
.6

86
.6

86
.3

56
.4

86
.5

87
.4

86
.5

86
.1

20
6.3

32
10

33
02

79
.8

80
.1

79
.8

77
.9

14
00

.0
78

.2
78

.0
78

.2
75

.8
10

7.0
79

.8
80

.1
79

.8
77

.9
40

6.9
64

8
25

68
1

76
.3

75
.1

76
.3

74
.8

50
6.1

72
.2

69
.4

72
.2

68
.7

32
.1

76
.3

75
.1

76
.3

74
.8

10
4.9

16
50

84
1

74
.2

75
.3

74
.2

73
.9

80
8.0

72
.2

72
.2

72
.2

70
.6

56
.9

74
.2

75
.3

74
.2

73
.9

20
3.2

32
10

11
61

86
.9

86
.6

86
.9

86
.5

14
00

.0
79

.0
78

.2
79

.0
78

.2
10

6.5
86

.9
86

.6
86

.9
86

.5
39

9.8
∗

IS
=I

np
ut

Sh
ape

,H
=H

idd
en

La
yer

,P
M

=P
ara

me
ter

s,A
=A

ccu
rac

y,P
=P

rec
isio

n,
R=

Re
cal

l,F
1=

F1
-Sc

ore
,

S=
Siz

ein
KB

.

40

Table 4.3 provides the experimental results for the time-series datasets: PAMAP2, UCI-HAR,
and WISDM. For the PAMAP2 dataset, the highest levels of accuracy, recall and F1-Score of
91.2% was achieved when PTQ and 32 hidden layers in CNN were used. However, the perfor-
mance of the QAT and PTQ models were very similar. For the UCI-HAR dataset, the highest
metrics of accuracy, recall, and F1-Score were 78.2%, 78.2%, and 78.3%, respectively. These
metrics were achieved when PTQ and 32 hidden layers in CNN was used. For the WISDM
dataset, the highest accuracy, recall, and F1-Score of 87.8%, 87.8%, and 87.3%, respectively, was
achieved when QAT and 32 hidden layers in CNN was used.

Table 4.4 presents the percentile delta between the performance metrics of QAT and PTQ
models for each dataset. The delta for each performance metric was calculated using (4.5). Here,
𝑉 is the property, we are interested in. 𝑉𝑄𝐴𝑇 and 𝑉𝑃𝑇𝑄 are average values of the property across
a specific input size for the QAT and PTQ model. The delta was calculated by averaging all the
values for a specific input size. A negative delta in our case signifies that the value from PTQ
model is larger than the value form QAT model and vice versa. A positive delta value for 𝐴, 𝑃 ,𝑅,
and 𝐹1 indicate the QAT models performed better on average than PTQ models. A negative delta
value of 𝑆 indicate that PTQ models were on average larger in size than QAT models. From Table
4.4, it is evident that the PTQ models are consistently larger in size than their counterpart QAT
models. In the majority of cases, the QAT models outperformed the PTQ models.

Δ𝑉 = 𝑉𝑄𝐴𝑇 − 𝑉𝑃𝑇𝑄 (4.5)
In all our experiments, the CNN models achieved higher levels of accuracy, precision, re-

call and F1-Score in general compared to their DSCNN counterparts. While DSCNN resulted
in lower number of total parameters in all cases, DSCNN models also used marginally more
storage space in both QAT and PTQ use cases. DSCNN models also had marginally smaller
latency and power consumption. This is due to the fact that, theoretically DSCNN models use
lesser Multiply-accumulate (MAC) operations than their CNN counterparts. This results in lesses
number of computations for CPUs in resource constrained devices. The PAMAP2 dataset has sig-
nificantly more inference latency and power draw due to the significantly larger input size. The
QAT models outperformed the PTQ models in most cases. However, the PTQ models consis-
tently provided performance metrics similar to the originally trained model, whereas, sometimes
the QAT model would under-perform than the original model. The PTQ models also require rep-
resentative datasets which the QAT models do not need. PTQ models also required more storage
space than the QAT models.

41

Ta
ble

4.3
:E

xp
eri

me
nta

lre
sul

tsf
or

all
tim

e-s
eri

es
dat

ase
ts

Per
for

ma
nce

(%
)

QA
T(%

)
PT

Q(
%)

IS
H

PM
A

P
R

F1
S

A
P

R
F1

S
A

P
R

F1
S

8
24

52
80

.4
79

.6
80

.4
79

.4
20

5.4
79

.8
78

.5
79

.8
78

.6
8.0

3
80

.4
79

.6
80

.4
79

.4
13

.0
16

41
88

90
.5

90
.4

90
.5

90
.4

22
8.0

90
.7

90
.5

90
.7

90
.6

10
.0

90
.5

90
.4

90
.5

90
.4

19
.8

PA
MA

P2
32

76
60

91
.2

91
.1

91
.2

91
.2

26
9.7

91
.1

91
.0

91
.1

91
.0

13
.8

91
.2

91
.1

91
.2

91
.2

33
.4

20
×
20

8
18

47
82

.0
81

.8
82

.0
81

.4
22

8.5
82

.1
82

.0
82

.1
81

.7
9.0

7
82

.0
81

.8
82

.0
81

.4
11

.8
16

30
71

82
.4

82
.1

82
.4

81
.9

24
4.2

83
.1

82
.6

83
.1

82
.6

10
.5

82
.4

82
.1

82
.4

81
.9

16
.6

32
55

19
85

.5
85

.2
85

.5
85

.1
27

3.7
85

.4
84

.7
85

.4
84

.7
13

.3
85

.5
85

.2
85

.5
85

.1
26

.2
8

14
54

69
.7

71
.6

69
.7

69
.6

18
2.4

71
.2

71
.9

71
.2

71
.3

6.7
69

.7
71

.6
69

.7
69

.6
9.0

UC
I

16
22

94
73

.9
74

.8
73

.9
74

.1
19

3.8
75

.2
75

.4
75

.2
75

.3
7.8

73
.9

74
.8

73
.9

74
.1

12
.3

HA
R

32
39

74
78

.2
78

.7
78

.2
78

.3
21

4.0
78

.0
78

.4
78

.0
78

.1
9.9

78
.2

78
.7

78
.2

78
.3

18
.8

17
×
11

8
84

9
63

.4
64

.0
63

.4
63

.0
20

6.3
64

.9
64

.6
64

.9
64

.6
7.8

63
.4

64
.0

63
.4

63
.0

7.8
16

11
77

69
.9

70
.1

69
.9

69
.8

21
1.1

68
.9

69
.0

68
.9

68
.8

8.3
69

.9
70

.1
69

.9
69

.8
9.1

32
18

33
57

.6
59

.2
57

.6
57

.9
21

9.0
56

.7
56

.9
56

.7
56

.7
9.4

57
.6

59
.2

57
.6

57
.9

11
.7

8
13

26
84

.2
82

.7
84

.2
83

.2
18

0.9
85

.6
84

.3
85

.6
84

.4
6.6

84
.2

82
.7

84
.2

83
.2

8.5
16

20
38

86
.7

85
.8

86
.7

85
.9

19
0.9

87
.1

86
.7

87
.1

86
.7

7.6
86

.7
85

.8
86

.7
85

.9
11

.3
WI

SD
M

32
34

62
87

.4
87

.7
87

.4
87

.2
20

8.0
87

.8
87

.4
87

.8
87

.3
9.4

87
.4

87
.7

87
.4

87
.2

16
.8

10
×
10

8
72

1
82

.0
79

.7
82

.0
79

.9
20

4.8
81

.1
77

.1
81

.1
78

.6
7.7

82
.0

79
.7

82
.0

79
.9

7.3
16

92
1

84
.3

81
.4

84
.3

82
.4

20
8.0

84
.3

82
.0

84
.3

82
.9

8.1
84

.3
81

.4
84

.3
82

.4
8.1

32
13

21
84

.8
83

.5
84

.8
83

.3
21

2.9
85

.7
84

.5
85

.7
84

.8
8.9

84
.8

83
.5

84
.8

83
.3

9.7
∗

IS
=I

np
ut

Sh
ape

,H
=H

idd
en

La
yer

,P
M

=P
ara

me
ter

s,A
=A

ccu
rac

y,P
=P

rec
isio

n,
R=

Re
cal

l,F
1=

F1
-Sc

ore
,

S=
Siz

ein
KB

.

42

Table 4.4: Delta of performance metrics between QAT and PTQ models.
Dataset Input Size ΔA ΔP ΔR ΔF1 ΔS

0.10 0.63 0.10 0.30 -7.2016 × 16 -9.80 -11.9 -9.80 -11.6 -3.00
0.43 0.43 0.43 -3.8 -35.132 × 32 0.16 0.30 4.43 -3.96 -31.0UP-Fall
0.53 0.26 0.53 0.36 -17564 × 64 0.4 0.4 0.4 0.3 -171
-0.76 1.96 2.56 2.7 -6.9616 × 16 0.06 -0.86 0.26 -0.13 -2.8
1.3 0.4 1.3 1.3 -34.932 × 32 0.36 -2.06 0.36 0.13 -30.7FDD

-0.53 -1.30 -0.53 -0.63 -17464 × 64 -4.66 -5.73 -4.66 -5.90 -170
-0.20 -0.36 -0.16 -0.26 12.6PAMAP2 20 × 20 0.23 0.06 0.23 0.20 19.9
1.16 0.20 0.86 0.90 -5.23UCI-HAR 17 × 11 -0.13 -0.93 -0.13 -0.20 -1.03
0.73 0.73 0.73 0.70 -4.33WISDM 10 × 10 0.01 -0.33 0.01 0.23 -0.13

4.4.2 Inferrence Time and Power Consumption

Fig. 4.1 presents the average inference time in milliseconds (ms) for each device and dataset.
Generally, the Espressif ESP-32 device has lower inference time than the other devices for the
same dataset. The DSCNN models also have generally lower inference time than the CNN mod-
els. Fig. 4.2 presents the average power consumption for each device and dataset. The Espressif
ESP-32 device had higher power consumption than the other devices due to the higher clock
speed of the processor. The DSCNN models also had marginally lower power consumption than
CNN models due to the decreased number of required computations. The power consumption
and inference time can also be significantly reduced if grayscale images are used instead of color
images. As the purpose is activity classification, converting color images to grayscale images
should have marginal effect on model performance while greatly affecting inference time and

43

0

1000

2000

3000

4000

5000

6000

UP-Fall FDD PAMAP2 UCI-HAR WISDM

In
fe

re
nc

e
Ti

m
e

(m
s)

CNN-Arduino

CNN-Sony

CNN-Espressif

DSCNN-Arduino

DSCNN-Sony

DSCNN-Espressif

Figure 4.1: Inference time for the datasets in the tested boards.

power consumption.
In terms of inference time, the device with the higher clock speed generally resulted in lower

inference time. However, the higher clock speed resulted in more power consumption than lower
clock speed counterparts. The tested Sony Spresense device has built in power management
circuitry and multi-core processing support, which resulted in generally low inference time and
low power consumption.

4.5 Multi-resolution Fusion Architecture

We present the test results of our proposed two-stream multi-resolution fusion architecture on
the KTH and UCF11 dataset, the performance after quantization using QAT and PTQ, ablation
studies, and deployment performance.

44

0

50

100

150

200

250

300

UP-Fall FDD PAMAP2 UCI-HAR WISDM

Po
w

er
 C

on
su

m
pt

io
n

(m
J)

CNN-Arduino

CNN-Sony

CNN-Espressif

DSCNN-Arduino

DSCNN-Sony

DSCNN-Espressif

Figure 4.2: Power consumption for the datasets in the tested boards.

4.5.1 Results Analysis

We used Adam optimizer and sparse categorical cross-entropy loss to train the model. The learn-
ing rate for training the model is set to 0.0001. The models for each experiment were trained
for 500 epochs. We used 5-fold cross-validation to ensure the model performances were robust
to training data. The average metrics of the cross-validation run were presented as the model
performance in the subsequent tables. In all subsequent tables, white rows represent the results
on KTH dataset and gray rows represent the result on UCF11 dataset. We represent a model in
all subsequent tables using the format: 𝐷𝐴𝑇𝐴𝑆𝐸𝑇 (𝑥, 𝑦). 𝐷𝐴𝑇𝐴𝑆𝐸𝑇 (𝑥, 𝑦) indicates that the
context stream takes an input of size 𝑥 × 𝑥 and the fovea stream takes an input of size 𝑦 × 𝑦.

Figure 4.3 illustrates the accuracy with respect to epoch while training the proposed fusion
architecture on KTH and UCF11 datasets. The KTH (64,32) model reached peak training and
validation accuracy around 200 epochs. The accuracy curves for training and validation are simi-
lar to one another without any major changes, indicating that the model is generalizing well to the
dataset. The KTH (32,16) model reached similar accuracy to KTH (64,32) model while training
but reached lower accuracy while validating. The UCF (64,32) model reached higher training
and validation accuracy than the UCF (32,16) model. This result is mirrored in Table 4.7.

45

(a)

(b)
Figure 4.3: Performance measures (accuracy curves) of the developed two-stream mutti-
resolution fusion approach. (a) KTH (b) UCF11.

46

(a)

(b)
Figure 4.4: Performance measures (loss curves) of the developed two-stream mutti-resolution
fusion approach. (a) KTH (b) UCF11.

47

(a)

(b)
Figure 4.5: Confusion matrix of the two-stream multi-resolution fusion architecture for KTH
dataset. (a) KTH (64,32) and (b) KTH (32,16).

48

(a)

(b)
Figure 4.6: Confusion matrix of the two-stream multi-resolution fusion architecture. (a) UCF
(64,32) and (b) UCF (32,16).

49

Figure 4.4 illustrates the model loss with respect to epoch while training the proposed fusion
architecture on KTH and UCF11 datasets. The KTH (64,32) achieved the lowest loss at end of
training. However, the training loss for KTH (32, 16) was similar to KTH (64,32) around 500𝑡ℎ
epoch. As the KTH (64,32) and KTH (32,16) models both reached similar levels of loss while
training, their overall performance metric on the test dataset was similar. For the UCF dataset,
the UCF (64,32) model reached significantly lower levels of loss than the UCF (32,16) dataset.
Thus, the UCF (64,32) model performed better than the UCF (32,16) model in the test dataset.

Figure 4.5 represents the confusion matrix for the best KTH (64,32) and KTH (32,16) mod-
els. The KTH (64,32) and KTH (32,16) models both misclassified 547 and 533 samples of the
boxing activity. They misclassified instances of boxing as walking. KTH (64,32) model correctly
identified more instances of handwaving than KTH (32,16) model. KTH (32,16) model correctly
identified more instances of walking compared to KTH (64,32) model. KTH (64,32) model mis-
classified 113 instances of handwaving as walking, whereas the KTH (32,16) model incorrectly
classified 81 instances.

Figure 4.6 represents the confusion matrix for the best UCF (64,32) and UCF (32,16) models.
UCF (64,32) model misclassified 77 instances of golf_swing as trampoline_jumping, 77 instances
of golf_swing as walking, and 71 instances of trampoline_jumping as golf_swing. UCF (32,16)
model incorrectly classified 309 instances of walking as golf_swing, 288 instances of trampo-
line_jumping as golf_swing, and 228 instances of golf_swing and walking.
Table 4.5: Percentile performance metrics of the proposed multi-resolution architecture for each
activity in KTH dataset

Performance (%) PTQ(%) QAT(%)
Activity Model P R F1 P R F1 P R F1

KTH (64,32) 94.2 99.9 97.0 94.3 99.9 97.0 94.2 99.9 97.0𝐾1 KTH (32,16) 92.5 99.9 96.0 92.4 99.9 96.0 92.5 99.9 96.0
KTH (64,32) 99.2 99.9 99.5 99.2 99.9 99.5 99.2 99.9 99.5𝐾2 KTH (32,16) 98.0 99.9 98.9 98.0 99.9 98.9 98.0 99.9 98.9
KTH (64,32) 98.8 99.9 99.3 98.8 99.8 99.3 98.8 99.9 99.3𝐾3 KTH (32,16) 99.1 99.4 99.2 99.1 99.3 99.2 99.1 99.4 99.2
KTH (64,32) 100 94.5 97.2 100 94.5 97.2 100 94.5 97.2𝐾4 KTH (32,16) 100 93.0 96.4 100 93.3 96.5 100 93.0 96.4

∗ P = Precision, R = Recall, F1 = F1-Score

50

Table 4.6: Percentile performance metrics of the proposed multi-resolution architecture for each
activity in UCF dataset

Performance (%) PTQ(%) QAT(%)
Activity Model P R F1 P R F1 P R F1

UCF (64,32) 99.1 98.4 98.7 99.1 98.3 98.7 99.0 99.1 99.0𝑈1 UCF (32,16) 95.0 96.4 95.7 95.0 96.3 95.6 96.6 96.7 96.7
UCF (64,32) 99.5 99.4 99.5 99.5 99.4 99.4 99.3 99.7 99.5𝑈2 UCF (32,16) 97.4 97.4 97.4 97.4 97.4 97.3 98.7 98.4 98.5
UCF (64,32) 98.2 98.9 98.6 98.2 98.8 98.4 98.5 99.0 98.8𝑈3 UCF (32,16) 91.6 91.7 91.7 91.6 91.7 91.6 94.9 95.4 95.2
UCF (64,32) 93.4 95.1 94.2 93.5 95.1 94.2 94.3 97.0 95.6𝑈4 UCF (32,16) 82.4 79.0 80.7 82.4 79.0 80.7 88.7 84.3 86.4
UCF (64,32) 98.6 97.8 98.2 98.6 97.9 98.2 98.9 98.6 98.7𝑈5 UCF (32,16) 93.0 91.3 92.1 93.0 91.7 92.3 89.9 95.6 92.6
UCF (64,32) 98.9 98.2 98.5 99.0 98.2 98.5 99.1 98.6 98.9𝑈6 UCF (32,16) 93.7 92.1 92.9 93.7 92.5 93.1 97.7 91.6 94.5
UCF (64,32) 98.7 98.1 98.4 98.7 98.1 98.4 98.8 98.3 98.5𝑈7 UCF (32,16) 92.1 93.6 92.9 92.1 93.6 92.9 93.4 95.0 94.2
UCF (64,32) 99.5 99.6 99.5 99.5 99.6 99.5 99.4 99.7 99.6𝑈8 UCF (32,16) 97.8 98.7 98.2 97.9 98.6 98.2 98.8 99.0 98.9
UCF (64,32) 97.7 97.9 97.8 97.7 97.9 97.7 97.2 98.9 98.0𝑈9 UCF (32,16) 89.0 90.1 89.6 89.0 90.1 89.5 94.2 89.8 91.9
UCF (64,32) 96.3 97.4 96.9 96.3 97.4 96.9 98.0 97.3 97.6𝑈10 UCF (32,16) 85.9 85.7 85.8 85.9 85.7 85.8 81.5 93.7 87.2
UCF (64,32) 97.2 96.6 96.9 97.2 96.6 96.9 98.9 95.2 97.1𝑈11 UCF (32,16) 85.2 85.6 85.4 85.2 85.6 85.4 90.9 86.0 88.4

∗ P = Precision, R = Recall, F1 = F1-Score

Table 4.5 presents the performance of the proposed fusion approach and its quantized ver-
sions on KTH dataset in terms of precision, recall, and F1-Score for each activity. The highest
difference of precision was in 𝐾1 activity where the precision of KTH (32,16) model is lower
than KTH (64,32) model. The activity 𝐾4 had the lowest recall of 97.2% and 96.4% for KTH
(64,32) and KTH (32,16) models. However, 𝐾4 activity had the highest precision of 100% for
both models. In general, the performance of PTQ and QAT models were similar for all activities
in both models. The highest F1-Score of 99.2% was achieved for the 𝐾2 activity by the KTH

51

Table 4.7: Recognition performance of the proposed two-stream multi-resolution fusion approach

Model PM A P R F1 S
KTH (64,32) 32,308 98.3 98.3 98.2 98.2 1700
KTH (32,16) 7,732 98.2 98.3 98.2 98.2 575.7
UCF (64,32) 32,308 97.9 97.9 97.9 97.9 1700
UCF (32,16) 7,732 91.1 91.0 91.1 91.0 576.5
PM = Parameters, A = Accuracy, P = Precision, R = Recall

F1 = F1-Score, S = Size in KB.

(64,32) model.
Table 4.6 presents the per-activity performance of the proposed fusion approach and its quan-

tized versions on UCF dataset in terms of precision, recall, and F1-Score. The UCF (64,32) model
obtained the highest precision of 99.5% in 𝑈2 activity, best recall of 99.6% in 𝑈8 activity, and
highest F1-Score of 99.5% in 𝑈2 and 𝑈8 activities. The UCF (64,32) model achieved the low-
est precision, recall, and F1-Score of 93.4%, 95.1% and 94.2% in 𝑈4 activity. The UCF (32,16)
model obtained the highest precision of 97.8% in 𝑈8 activity, highest recall of 98.7% in 𝑈8 ac-
tivity, and best F1-Score of 98.2% in 𝑈8 activity. The UCF (32,16) model achieved the lowest
precision, recall, and F1-Score of 82.4%, 79.0%, and 80.7% in 𝑈4 activity. For UCF (32,16)
model, in activities: 𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈10, and 𝑈11 - the QAT models outperformed PTQ mod-
els in terms of precision, recall, and F1-Score. For UCF (64,32) model, the performance of the
QAT models were similar to PTQ models across almost all activities.

Table 4.7 represents the recognition performance of the proposed two-stream multi-resolution
fusion architecture on the KTH and UCF11 datasets. For the KTH dataset, the performance was
similar for both KTH (64,32) and KTH (32,16) models. The accuracy for the KTH (64,32) model
was marginally higher, while the original size of KTH (64,32) model was 2.9 times than the size
of KTH (32,16) model. For the UCF11 dataset, the accuracy, precision, recall, and F1-Score
were significantly higher for the UCF (64,32) model. The KTH (64,32) model achieved 97.9%
performance score in all metrics, whereas the KTH (32,16) model achieved accuracy, precision,
recall, and F1-Score of 91.1%, 91.0%, 91.1%, and 91.0%, respectively. The UCF models have a
size relationship between them, similar to the KTH models.

Table 4.8 presents the performance of the developed fusion networks after quantization. As
PTQ converts the already trained model, the performance metrics are very similar to the original
model. QAT trains a new model while taking into account the quantization loss with the model
loss. QAT models can have better or worse performance than the original model. The PTQ KTH

52

Table 4.8: Experimental results of the quantized multi-resolution fusion architecture

PTQ(%) QAT(%)
Model PM A P R F1 S A P R F1 S

KTH (64,32) 32,308 98.3 98.3 98.2 98.2 453.5 98.2 98.3 98.2 98.2 121.3
KTH (32,16) 7,732 98.2 98.3 98.2 98.2 101.6 97.9 98.1 98.0 98.0 33.4
UCI (64,32) 32,308 97.9 97.9 97.9 97.9 454.7 97.8 97.9 97.8 97.8 121.4
UCI (32,16) 7,732 91.1 91.1 91.1 91.1 101.8 91.4 91.4 91.4 91.3 33.5
PM = Parameters, A = Accuracy, P = Precision, R = Recall, F1 = F1-Score, S = Size in KB.

Table 4.9: Delta of performance metrics between QAT and PTQ models
Model ΔA ΔP ΔR ΔF1 ΔS

KTH (64,32) -0.09 0.00 0.00 0.00 -332.29
KTH (32,16) -0.29 -0.20 -0.20 -0.20 -68.19
UCF (64,32) -0.10 0.00 -0.10 -0.10 -333.29
UCF (32,16) 0.30 0.30 0.30 0.20 -68.39

(64,32) model had higher accuracy than the QAT KTH (64,32) model. However, the precision,
recall, and F1-Score for both models are pretty similar. The QAT KTH (32,16) model has a 27.5%
lower space requirement than the QAT KTH (64,32) model while using 23.9% lower parameters.
The PTQ KTH (32,16) model uses 22.4% lower space than the PTQ KTH (32,16) model. For the
UCF dataset, the QAT UCF (32,16) model performed marginally better than the PTQ UCF (32,16)
model. Similar to the QAT UCF models, the QAT UCF (32,16) model has 27.5% lower space
requirements than QAT UCF (64,32) model. However, in all cases of KTH and UCF models,
QAT resulted in a significantly lower model size.

Table 4.9 represents the delta of performance metrics between the QAT and PTQ models.
This helps us better to understand which quantization metric is providing better performance on
average. We calculated the delta for each metric using (4.6). Here, 𝑋 represents the performance
metric, 𝑋𝑄𝐴𝑇 represents the average value of the metric across 5 runs for the QAT model, 𝑋𝑃𝑇𝑄represents the average values of the metric across 5 runs for the PTQ model. For accuracy, pre-
cision, recall, and F1-Score, a negative delta indicates that the PTQ models had a better overall
performance. For size, a negative delta indicates that the PTQ models have higher memory re-
quirements than the QAT models. For KTH (64,32), KTH (32,16), and UCF (64,32) models, the
accuracy, precision, recall, and F1-Score are mostly negative. Only for UCF (32,16) model, the
delta scores are positive. Thus, on average PTQ method lead to better-performing models.

53

(a)

(b)
Figure 4.7: Performance measures (ROC curves) of the developed two-stream mutti-resolution
fusion approach. (a) KTH (b) UCF11.

54

However, all of the models had negative size delta, meaning the QAT method had led to better
storage-optimized models while having slightly worse performance. Ultimately, the selection of
a quantization method depends on a multiple factors: the task, the development or deployment
board, the model, etc. If the development board has very little onboard memory, the QAT models
are more suitable. Also, in some cases, QAT models might outperform PTQ models. Thus, it is
always recommended to train the QAT models and compare their performance with PTQ models.

Δ𝑋 = 𝑋𝑄𝐴𝑇 −𝑋𝑃𝑇𝑄 (4.6)
Figure 4.7 presents the Receiver Operating Characteristic (ROC) curve of the proposed fusion

architecture on KTH and UCF11 datasets. The solid lines with different color represent the Area
Under Curve (AUC) values of each model across all activities. Generally a higher AUC score
indicates a better performing model. As the KTH (64,32) and KTH (32,16) models perform
similarly across all activities, their AUC scores are similar. The rectangular shape of both lines
indicates that the models are generalizing and performing well. The UCF (64,32) model has a
significantly higher AUC score of 0.98 than the UCF (32,16) model (AUC: 0.93) indicating the
former model is vastly outperforming the latter. The almost rectangular shape of UCF (64,32)
model also indicates a well-performing model.

4.5.2 Ablation Studies

Table 4.10 presents the experimental findings of different variants of the proposed multi-resolution
fusion architecture. Variations include context-only stream, fovea-only stream, and two-stream
reverse-resolution architecture.

Context-only Stream

KTH (64,0), KTH (32,0), UCF (64,0), and UCF (32,0) represent the context-only stream archi-
tecture. In these models, only the full images were used as input. The fovea stream was not
used. KTH (64,0) performed better than KTH (32,0) model. In both cases, the QAT variants per-
formed marginally better than the PTQ variants. UCF (64,0) performed significantly better than
UCF (32,0). The QAT variants of UCF model performed better comapred to the PTQ variants.
Both the KTH and UCF models could not outperform the proposed two-stream multi-resolution
fusion networks.

55

Ta
ble

4.1
0:

Ex
per

im
ent

alfi
nd

ing
so

fd
iffe

ren
tv

ari
ant

so
fth

ep
rop

ose
dm

ult
i-re

sol
uti

on
fus

ion
arc

hit
ect

ure

Pe
rf

or
m

an
ce

(%
)

PT
Q

(%
)

Q
AT

(%
)

M
od

el
PM

A
P

R
F1

S
A

P
R

F1
S

A
P

R
F1

S
KT

H(
64

,0)
26

,45
2

96
.0

96
.3

96
.0

95
.9

15
00

96
.0

96
.3

96
.0

95
.9

42
8.9

96
.3

96
.6

96
.3

96
.3

11
2

KT
H(

32
,0)

5,9
72

95
.7

96
.0

95
.7

95
.7

45
9.3

95
.7

96
.1

95
.7

95
.7

93
.0

95
.9

96
.2

95
.9

95
.9

27
.9

KT
H(

0,6
4)

26
,45

2
95

.2
95

.6
95

.2
95

.2
45

7.7
95

.2
95

.6
95

.2
95

.2
92

.9
95

.8
96

.1
95

.8
95

.8
27

.9
KT

H(
0,3

2)
5,9

72
89

.9
90

.9
89

.9
89

.9
23

8.1
89

.9
90

.9
89

.9
89

.9
20

.9
90

.7
91

.5
90

.7
90

.7
9.9

KT
H(

32
,64

)
32

,30
8

96
.6

96
.8

96
.6

96
.6

67
1.6

96
.6

96
.8

96
.6

96
.6

13
1.2

96
.7

97
.0

96
.7

96
.7

40
.8

KT
H(

16
,32

)
7,7

32
93

.8
94

.3
93

.9
93

.8
37

6.6
93

.9
94

.3
93

.9
93

.8
35

.2
94

.0
94

.5
94

.0
94

.0
16

.8
UC

F(
64

,0)
26

,45
2

94
.6

94
.6

94
.6

94
.6

50
7.4

94
.6

94
.6

94
.6

94
.6

10
6.8

95
.6

95
.6

95
.6

95
.6

31
.5

UC
F(

32
,0)

5,9
72

82
.1

82
.1

82
.2

82
.1

26
3.3

82
.2

82
.1

82
.2

82
.0

26
.9

83
.1

83
.0

83
.1

82
.8

11
.5

UC
F(

0,6
4)

26
,45

2
69

.1
69

.4
69

.1
68

.9
26

1.7
69

.1
69

.4
69

.1
68

.9
26

.8
70

.3
70

.1
70

.3
70

.0
11

.5
UC

F(
0,3

2)
5,9

72
49

.4
50

.0
49

.4
48

.4
21

4.1
49

.4
50

.0
49

.4
48

.4
10

.9
50

.7
51

.0
50

.7
49

.9
7.5

9
UC

F(
32

,64
)

32
,30

8
80

.0
80

.0
80

.0
79

.7
67

2.4
80

.0
79

.8
80

.0
79

.7
13

1.4
81

.5
81

.6
81

.5
81

.4
40

.9
UC

F(
16

,32
)

7,7
32

58
.6

58
.4

58
.6

57
.3

21
4.1

58
.6

58
.5

58
.6

57
.3

35
.4

61
.4

60
.5

61
.4

60
.5

16
.9

∗
PM

=P
ara

me
ter

s,A
=A

ccu
rac

y,P
=P

rec
isio

n,
R=

Re
cal

l,F
1=

F1
-Sc

ore
,S

=S
ize

in
KB

.

56

0

1000

2000

3000

4000

5000

6000

7000

KTH UCF11

In
fe

re
nc

e
Ti

m
e

(m
s)

Model (64,32)-Arduino

Model (64,32)-Sony

Model (64,32)-Espressif

Model (32,16)-Arduino

Model (32,16)-Sony

Model (32,16)-Espressif

(a)

0

50

100

150

200

250

300

350

KTH UCF11

Po
w

er
 C

on
su

m
pt

io
n

(m
J)

Model (64,32)-Arduino

Model (64,32)-Sony

Model (64,32)-Espressif

Model (32,16)-Arduino

Model (32,16)-Sony

Model (32,16)-Espressif

(b)
Figure 4.8: Performance of the proposed two-stream multi-resolution fusion architecture on the
tested boards. (a) inference time (b) power consumption.

57

Fovea-only Stream

KTH (0,64), KTH (0,32), UCF (0,64), and UCF (0,32) models represent the fovea-only stream
architecture. The models only take the cropped center images as input. The context streams
in these models are not used. KTH (0,64) performed significantly better than KTH (0,32). In
both cases, the QAT variants of KTH performed marginally better than the PTQ variants. For
UCF models, UCF (0,64) performed significantly better compared to UCF (0,32). However,
both of them performed worse than other ablation models. The QAT variants of UCF models
outperformed the PTQ variants.

Two-stream Reverse-resolution

KTH (32,64), KTH (16,32), UCF (32,64), and UCF (16,32) models represent the two-stream
reverse-resolution architecture. In this architecture, the fovea stream receives the lower-resolution
full images as input and the context stream receives the higher-resolution center-cropped images.
KTH (32,64) achieved higher levels of performance than KTH (16,32). The QAT variants of
KTH models achieved marginally higher performance score compared to PTQ variants. Simi-
larly, UCF (32,64) achieved much better performance than UCF (16,32). The QAT UCF variants
outperformed the PTQ UCF variants.

Within all KTH variants, the two-stream reverse-resolution variant KTH (32,64) achieved the
highest levels of accuracy, precision, recall, and F1-Score of 96.6%, 96.8%, 96.6%, and 96.6%,
respectively. Within all UCF variants, the context-only stream UCF (64,0) achieved the highest
performance - 94.6% in accuracy, precision, recall, and F1-Score. In all of the variant models,
the QAT variants outperformed their PTQ counterparts.

4.5.3 Inference Time and Power Consumption

Figure 4.8 presents the performance of the proposed fusion architecture in terms of their inference
time and power consumption in the three tested boards. For any specific device, the inference
time and power consumption of a model depend on the following: the number of convolutions,
the size of fully connected layers, and the input size. As we used the same model with a fixed
number of convolutions and fully connected layers, the input size mainly dictated the inference
time and power consumption. The inference time for similar models for both KTH and UCF11
datasets is similar. For KTH models, the KTH (64,32) model variants have higher inference times
than KTH (32,16) models. For KTH (64,32) model, the Arduino board had the highest inference
time, followed by the Sony board, and the Espressif board had the lowest inference time. This

58

is due to the different types of processors used in each board. The board with a higher clock
speed processor can retrieve and interpret instructions quicker than a board with a lower clock
speed, leading to better inference time performance. Similarly, UCF (64,32) had a higher average
inference time than UCF (32,16) models. To the end, the Arduino board had the highest inference
time, followed by the Sony board, with the Espressif board having the lowest inference time.

Although higher clock speed results in better inference time performance, they also require a
higher voltage to run, leading to an overall increase in power consumption. The UCF (64,32) and
KTH (64,32) models had higher power consumption than UCF (32,16) and KTH (32,16) models.
Within the KTH models, the Arduino board had the lowest power consumption, followed by the
Sony board, and the Espressif board had the highest power consumption. Similar trends can be
noticed in the UCF models.

In all of the tested models and their variants, the higher-resolution models performed better in
terms of accuracy, precision, recall, and F1-Score than their lower-resolution counterparts. This
can be explained by the loss of information during downsampling. As we resized an image to
a lower resolution, some useful shape information can be lost that could have been crucial for
detection. However, higher-resolution models require higher inference and higher power require-
ments than lower-resolution models. Through our experiments, it is visible that, instead of using
a single-stream QAT KTH (64,0) model, our proposed two-stream QAT KTH (32,16) model re-
sults in 29.2% parameter reduction and 29.8% size reduction while increasing accuracy, precision,
recall, and F1-Score by 2.3%, 2.0%, 2.2%, and 2.3%, respectively.

4.6 Summary

In this chapter, we introduced the multimodal datasets used in our research. We presented the
two types of performance metrics that we used to evaluate our models: model performance in
terms of the number of parameters, size, accuracy, precision, recall, and F1-Score and device
performance in terms of inference time and power consumption. We reported and analyzed the
benchmarking performance of the CNN and DSCNN models in the multimodal datasets. We
also presented the performance and ablation studies of our proposed two-stream multi-resolution
fusion architecture. The quantitative and qualitative analysis of the research presented in this
chapter indicates the feasibility of efficient HAR systems in edge devices.

59

Chapter 5

Conclusion and Future Works

This chapter presents the concluding remarks, limitations, and future research scopes of our pre-
sented research work in this thesis.

5.1 Conclusion

TinyML is a rapidly evolving research domain with numerous applications that can change our
lives for the better. In this thesis, at first, we presented a benchmark study to evaluate the per-
formance of standard CNN and DSCNN models using five popular human activity recognition
benchmark datasets with various data modalities on low-power devices. We also evaluated the
performance of QAT and PTQ training methodologies for quantization. We evaluated model
performance based on their number of parameters, accuracy, precision, recall, F1-Score, and
size in KB. We deployed the model-based applications to multiple publicly available resource-
constrained edge devices and evaluated the applications in terms of their inference time and power
consumption. The outcomes of each model are highly diverse depending on the model size, quan-
tization, input size, and structure. Later, we proposed a two-stream multi-resolution fusion archi-
tecture for human activity recognition from video data modality in resource-constrained devices.
We tested the proposed model in two challenging datasets: KTH and UCF. We evaluated the
performance of two quantization methods: QAT and PTQ on the proposed architecture. We de-
ployed the proposed QAT models on commodity edge hardware and evaluated the performance
in terms of inference time and power consumption.

It is evident from the experimental results that current methods available through advances in
TinyML are suitable for human activity recognition on low-power devices and are ready to use
for real-time application purposes.

60

5.2 Limitations and Future Works

While TinyML is rapidly evolving, there are several limitations the research community needs
to focus on to make TinyML ubiquitous. Developing and deploying TinyML models on edge
devices require specific low-level programming for each different type of device. This lack of
interoperability and accessibility are significant roadblocks to the mass adaptation of TinyML.
Although the proposed fusion architecture performed very well in detecting human activities, it
still could not take advantage of the temporal features of video streams. A combination of the
proposed model with recurrent models such as RNN or LSTM could improve the performance.
However, currently, the publicly available TinyML libraries do not support recurrent networks
for a wide number of commodity devices.

In the future, more diverse generalized neural architectures such as LSTM and RNN can be
developed and tested in System on Chip (SoC) and other resource constrained devices. Efforts
can be focused on creating indoor activity-oriented datasets by collecting and augmenting data
from multiple datasets. Creating an open-access general model trained on multiple different HAR
video datasets would provide out-of-the-box framework support for smart Tiny HAR applications.
Creating no-code or low-code TinyML deployment solutions for a wide range of edge devices
would further reduce the barrier to entry and improve accessibility.

61

References

[1] Sen Qiu, Hongkai Zhao, Nan Jiang, Zhelong Wang, Long Liu, Yi An, Hongyu Zhao, Xin
Miao, Ruichen Liu, and Giancarlo Fortino. Multi-sensor information fusion based on
machine learning for real applications in human activity recognition: State-of-the-art and
research challenges. Information Fusion, 80:241–265, 2022.

[2] Md Milon Islam, Sheikh Nooruddin, Fakhri Karray, and Ghulam Muhammad. Human
activity recognition using tools of convolutional neural networks: A state of the art review,
data sets, challenges, and future prospects. Computers in Biology and Medicine, page
106060, 2022.

[3] Zehua Sun, Qiuhong Ke, Hossein Rahmani, Mohammed Bennamoun, Gang Wang, and Jun
Liu. Human action recognition from various data modalities: A review. IEEE transactions
on pattern analysis and machine intelligence, 2022.

[4] Kaixuan Chen, Dalin Zhang, Lina Yao, Bin Guo, Zhiwen Yu, and Yunhao Liu. Deep learn-
ing for sensor-based human activity recognition: Overview, challenges, and opportunities.
ACM Computing Surveys (CSUR), 54(4):1–40, 2021.

[5] Preksha Pareek and Ankit Thakkar. A survey on video-based human action recogni-
tion: recent updates, datasets, challenges, and applications. Artificial Intelligence Review,
54(3):2259–2322, 2021.

[6] Iqbal H. Sarker. Deep learning: A comprehensive overview on techniques, taxonomy,
applications and research directions. Sn Computer Science, 2(6):420, 2021.

[7] Iqbal H. Sarker. Machine learning: Algorithms, real-world applications and research di-
rections. Sn Computer Science, 2(3):160, 2021.

[8] Shibo Zhang, Yaxuan Li, Shen Zhang, Farzad Shahabi, Stephen Xia, Yu Deng, and Nabil
Alshurafa. Deep learning in human activity recognition with wearable sensors: A review
on advances. Sensors, 22(4):1476, 2022.

62

[9] Farzana Kulsoom, Sanam Narejo, Zahid Mehmood, Hassan Nazeer Chaudhry, Ayesha
Butt, and Ali Kashif Bashir. A review of machine learning-based human activity recogni-
tion for diverse applications. Neural Computing and Applications, pages 1–36, 2022.

[10] Ariza-Colpas P Patricia, Vicario Enrico, Butt Aziz Shariq, De-la_Hoz-Franco Emiro,
Piñeres-Melo Marlon Alberto, Oviedo-Carrascal Ana Isabel, Muhammad Imran Tariq, Jo-
hanna Karina García Restrepo, and Patara Fulvio. Machine learning applied to datasets
of human activity recognition: Data analysis in health care. Current Medical Imaging,
19(1):46–64, 2023.

[11] Yang Li, Guanci Yang, Zhidong Su, Shaobo Li, and Yang Wang. Human activity recog-
nition based on multienvironment sensor data. Information Fusion, 91:47–63, 2023.

[12] Neha Gupta, Suneet K Gupta, Rajesh K Pathak, Vanita Jain, Parisa Rashidi, and Jasjit S
Suri. Human activity recognition in artificial intelligence framework: A narrative review.
Artificial intelligence review, 55(6):4755–4808, 2022.

[13] Md Milon Islam, Sheikh Nooruddin, Fakhri Karray, and Ghulam Muhammad. Multi-level
feature fusion for multimodal human activity recognition in internet of healthcare things.
Information Fusion, 94:17–31, 2023.

[14] Fuqiang Gu, Mu-Huan Chung, Mark Chignell, Shahrokh Valaee, Baoding Zhou, and Xue
Liu. A survey on deep learning for human activity recognition. ACM Computing Surveys
(CSUR), 54(8):1–34, 2021.

[15] E Ramanujam, Thinagaran Perumal, and S Padmavathi. Human activity recognition with
smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors
Journal, 21(12):13029–13040, 2021.

[16] Muhammad Shafique, Theocharis Theocharides, Vijay Janapa Reddy, and Boris Mur-
mann. Tinyml: Current progress, research challenges, and future roadmap. In 2021 58th
ACM/IEEE Design Automation Conference (DAC), pages 1303–1306. IEEE, 2021.

[17] Lachit Dutta and Swapna Bharali. Tinyml meets iot: A comprehensive survey. Internet of
Things, 16:100461, 2021.

[18] Partha Pratim Ray. A review on tinyml: State-of-the-art and prospects. Journal of King
Saud University-Computer and Information Sciences, 2021.

[19] Vijeta Sharma, Manjari Gupta, Anil Kumar Pandey, Deepti Mishra, and Ajai Kumar. A
review of deep learning-based human activity recognition on benchmark video datasets.
Applied Artificial Intelligence, 36(1):2093705, 2022.

63

[20] Ivan Miguel Pires, Faisal Hussain, Gonçalo Marques, and Nuno M Garcia. Comparison of
machine learning techniques for the identification of human activities from inertial sensors
available in a mobile device after the application of data imputation techniques. Computers
in Biology and Medicine, 135:104638, 2021.

[21] Arti Maurya, Ram Kumar Yadav, and Manoj Kumar. Comparative study of human activity
recognition on sensory data using machine learning and deep learning. In Proceedings
of Integrated Intelligence Enable Networks and Computing: IIENC 2020, pages 63–71.
Springer, 2021.

[22] Fatima Alshehri and Ghulam Muhammad. A comprehensive survey of the internet of
things (iot) and ai-based smart healthcare. IEEE Access, 9:3660–3678, 2020.

[23] Darshan Vishwasrao Medhane, Arun Kumar Sangaiah, M Shamim Hossain, Ghulam
Muhammad, and Jin Wang. Blockchain-enabled distributed security framework for next-
generation iot: An edge cloud and software-defined network-integrated approach. IEEE
Internet of Things Journal, 7(7):6143–6149, 2020.

[24] Abdu Gumaei, Mohammad Mehedi Hassan, Abdulhameed Alelaiwi, and Hussain Al-
salman. A hybrid deep learning model for human activity recognition using multimodal
body sensing data. IEEE Access, 7:99152–99160, 2019.

[25] Tanvir Mahmud, AQM Sazzad Sayyed, Shaikh Anowarul Fattah, and Sun-Yuan Kung.
A novel multi-stage training approach for human activity recognition from multimodal
wearable sensor data using deep neural network. IEEE Sensors Journal, 21(2):1715–1726,
2020.

[26] Reem Abdel-Salam, Rana Mostafa, and Mayada Hadhood. Human activity recognition
using wearable sensors: review, challenges, evaluation benchmark. In International Work-
shop on Deep Learning for Human Activity Recognition, pages 1–15. Springer, 2021.

[27] Fatemeh Serpush, Mohammad Bagher Menhaj, Behrooz Masoumi, and Babak Karasfi.
Wearable sensor-based human activity recognition in the smart healthcare system. Com-
putational Intelligence and Neuroscience, 2022, 2022.

[28] Amira Mimouna and Anouar Ben Khalifa. A survey of human action recognition using
accelerometer data. Advanced Sensors for Biomedical Applications, pages 1–32, 2021.

[29] Praveen Kumar Shukla, Ankit Vijayvargiya, Rajesh Kumar, et al. Human activity recog-
nition using accelerometer and gyroscope data from smartphones. In 2020 International

64

Conference on Emerging Trends in Communication, Control and Computing (ICONC3),
pages 1–6. IEEE, 2020.

[30] Abdul Kadar Muhammad Masum, Erfanul Hoque Bahadur, Ahmed Shan-A-Alahi,
Md Akib Uz Zaman Chowdhury, Mir Reaz Uddin, and Abdullah Al Noman. Human ac-
tivity recognition using accelerometer, gyroscope and magnetometer sensors: Deep neural
network approaches. In 2019 10Th international conference on computing, communication
and networking technologies (ICCCNT), pages 1–6. IEEE, 2019.

[31] Mahsa Sadat Afzali Arani, Diego Elias Costa, and Emad Shihab. Human activity recogni-
tion: A comparative study to assess the contribution level of accelerometer, ecg, and ppg
signals. Sensors, 21(21):6997, 2021.

[32] Ku Nurhanim, I Elamvazuthi, LI Izhar, Genci Capi, and Steven Su. Emg signals clas-
sification on human activity recognition using machine learning algorithm. In 2021 8th
NAFOSTED Conference on Information and Computer Science (NICS), pages 369–373.
IEEE, 2021.

[33] Sojeong Ha, Jeong-Min Yun, and Seungjin Choi. Multi-modal convolutional neural net-
works for activity recognition. In 2015 IEEE International conference on systems, man,
and cybernetics, pages 3017–3022. IEEE, 2015.

[34] Wenchao Jiang and Zhaozheng Yin. Human activity recognition using wearable sensors
by deep convolutional neural networks. In Proceedings of the 23rd ACM international
conference on Multimedia, pages 1307–1310, 2015.

[35] Jun-Ho Choi and Jong-Seok Lee. Embracenet: A robust deep learning architecture for
multimodal classification. Information Fusion, 51:259–270, 2019.

[36] Jun-Ho Choi and Jong-Seok Lee. Confidence-based deep multimodal fusion for activity
recognition. In Proceedings of the 2018 ACM International Joint Conference and 2018
International Symposium on Pervasive and Ubiquitous Computing and Wearable Comput-
ers, pages 1548–1556, 2018.

[37] Chih-Ta Yen, Jia-Xian Liao, and Yi-Kai Huang. Human daily activity recognition per-
formed using wearable inertial sensors combined with deep learning algorithms. Ieee
Access, 8:174105–174114, 2020.

[38] Isah A Lawal and Sophia Bano. Deep human activity recognition with localisation of
wearable sensors. IEEE Access, 8:155060–155070, 2020.

65

[39] Sojeong Ha and Seungjin Choi. Convolutional neural networks for human activity recog-
nition using multiple accelerometer and gyroscope sensors. In 2016 international joint
conference on neural networks (IJCNN), pages 381–388. IEEE, 2016.

[40] Zhaoyang Niu, Guoqiang Zhong, and Hui Yu. A review on the attention mechanism of
deep learning. Neurocomputing, 452:48–62, 2021.

[41] Rebeen Ali Hamad, Masashi Kimura, Longzhi Yang, Wai Lok Woo, and Bo Wei. Dilated
causal convolution with multi-head self attention for sensor human activity recognition.
Neural Computing and Applications, 33(20):13705–13722, 2021.

[42] Kun Wang, Jun He, and Lei Zhang. Attention-based convolutional neural network for
weakly labeled human activities’ recognition with wearable sensors. IEEE Sensors Jour-
nal, 19(17):7598–7604, 2019.

[43] Tan-Hsu Tan, Ching-Jung Huang, Munkhjargal Gochoo, and Yung-Fu Chen. Activity
recognition based on fr-cnn and attention-based lstm network. In 2021 30th Wireless and
Optical Communications Conference (WOCC), pages 146–149. IEEE, 2021.

[44] Yanan Liu, Hao Zhang, Dan Xu, and Kangjian He. Graph transformer network with tem-
poral kernel attention for skeleton-based action recognition. Knowledge-Based Systems,
240:108146, 2022.

[45] Hechuang Wang. Deeply-learned and spatial–temporal feature engineering for human ac-
tion understanding. Future Generation Computer Systems, 123:257–262, 2021.

[46] Yair A Andrade-Ambriz, Sergio Ledesma, Mario-Alberto Ibarra-Manzano, Marvella I
Oros-Flores, and Dora-Luz Almanza-Ojeda. Human activity recognition using temporal
convolutional neural network architecture. Expert Systems with Applications, 191:116287,
2022.

[47] Suguo Zhu, Zhenying Fang, Yi Wang, Jun Yu, and Junping Du. Multimodal activity recog-
nition with local block cnn and attention-based spatial weighted cnn. Journal of Visual
Communication and Image Representation, 60:38–43, 2019.

[48] Wenbin Gao, Lei Zhang, Qi Teng, Jun He, and Hao Wu. Danhar: Dual attention network
for multimodal human activity recognition using wearable sensors. Applied Soft Comput-
ing, 111:107728, 2021.

[49] Yin Tang, Lei Zhang, Qi Teng, Fuhong Min, and Aiguo Song. Triple cross-domain atten-
tion on human activity recognition using wearable sensors. IEEE Transactions on Emerg-
ing Topics in Computational Intelligence, 2022.

66

[50] Dipanwita Thakur and Suparna Biswas. Smartphone based human activity monitoring and
recognition using ml and dl: a comprehensive survey. Journal of Ambient Intelligence and
Humanized Computing, 11(11):5433–5444, 2020.

[51] Guan Yuan, Zhaohui Wang, Fanrong Meng, Qiuyan Yan, and Shixiong Xia. An overview
of human activity recognition based on smartphone. Sensor Review, 2018.

[52] Marcin Straczkiewicz, Peter James, and Jukka-Pekka Onnela. A systematic review of
smartphone-based human activity recognition methods for health research. NPJ Digital
Medicine, 4(1):1–15, 2021.

[53] Bandar Almaslukh, Abdel Monim Artoli, and Jalal Al-Muhtadi. A robust deep learning
approach for position-independent smartphone-based human activity recognition. Sensors,
18(11):3726, 2018.

[54] Song-Mi Lee, Sang Min Yoon, and Heeryon Cho. Human activity recognition from ac-
celerometer data using convolutional neural network. In 2017 ieee international conference
on big data and smart computing (bigcomp), pages 131–134. IEEE, 2017.

[55] Daniele Ravi, Charence Wong, Benny Lo, and Guang-Zhong Yang. A deep learning ap-
proach to on-node sensor data analytics for mobile or wearable devices. IEEE journal of
biomedical and health informatics, 21(1):56–64, 2016.

[56] Daniele Ravi, Charence Wong, Benny Lo, and Guang-Zhong Yang. Deep learning for
human activity recognition: A resource efficient implementation on low-power devices.
In 2016 IEEE 13th international conference on wearable and implantable body sensor
networks (BSN), pages 71–76. IEEE, 2016.

[57] Zanobya N Khan and Jamil Ahmad. Attention induced multi-head convolutional neural
network for human activity recognition. Applied Soft Computing, 110:107671, 2021.

[58] Haoxi Zhang, Zhiwen Xiao, Juan Wang, Fei Li, and Edward Szczerbicki. A novel iot-
perceptive human activity recognition (har) approach using multihead convolutional at-
tention. IEEE Internet of Things Journal, 7(2):1072–1080, 2019.

[59] Ge Zheng. A novel attention-based convolution neural network for human activity recog-
nition. IEEE Sensors Journal, 21(23):27015–27025, 2021.

[60] Ohoud Nafea, Wadood Abdul, Ghulam Muhammad, and Mansour Alsulaiman. Sensor-
based human activity recognition with spatio-temporal deep learning. Sensors, 21(6):2141,
2021.

67

[61] Nitin Nair, Chinchu Thomas, and Dinesh Babu Jayagopi. Human activity recognition
using temporal convolutional network. In Proceedings of the 5th international Workshop
on Sensor-based Activity Recognition and Interaction, pages 1–8, 2018.

[62] Xinyu Li, Yuan He, and Xiaojun Jing. A survey of deep learning-based human activity
recognition in radar. Remote Sensing, 11(9):1068, 2019.

[63] Ali Hanif, Muhammad Muaz, Azhar Hasan, and Muhammad Adeel. Micro-doppler based
target recognition with radars: A review. IEEE Sensors Journal, 2022.

[64] Wenbin Ye, Haiquan Chen, and Bing Li. Using an end-to-end convolutional network on
radar signal for human activity classification. IEEE Sensors Journal, 19(24):12244–12252,
2019.

[65] Wenbin Ye and Haiquan Chen. Human activity classification based on micro-doppler
signatures by multiscale and multitask fourier convolutional neural network. IEEE Sensors
Journal, 20(10):5473–5479, 2020.

[66] Haiquan Chen and Wenbin Ye. Classification of human activity based on radar signal
using 1-d convolutional neural network. IEEE Geoscience and Remote Sensing Letters,
17(7):1178–1182, 2019.

[67] Ibrahim Alnujaim, Daegun Oh, and Youngwook Kim. Generative adversarial networks
for classification of micro-doppler signatures of human activity. IEEE Geoscience and
Remote Sensing Letters, 17(3):396–400, 2019.

[68] Baris Erol, Sevgi Z Gurbuz, and Moeness G Amin. Gan-based synthetic radar micro-
doppler augmentations for improved human activity recognition. In 2019 IEEE Radar
Conference (RadarConf), pages 1–5. IEEE, 2019.

[69] Chaoyang Wu and Wenbin Ye. Generative adversarial network for radar-based human
activities classification with low training data support. In 2021 IEEE 4th International
Conference on Electronic Information and Communication Technology (ICEICT), pages
415–419. IEEE, 2021.

[70] Ibrahim Alnujaim, Shobha Sundar Ram, Daegun Oh, and Youngwook Kim. Synthesis of
micro-doppler signatures of human activities from different aspect angles using generative
adversarial networks. IEEE Access, 9:46422–46429, 2021.

[71] Li-Fang Wu, Qi Wang, Meng Jian, Yu Qiao, and Bo-Xuan Zhao. A comprehensive re-
view of group activity recognition in videos. International Journal of Automation and
Computing, 18(3):334–350, 2021.

68

[72] Tej Singh and Dinesh Kumar Vishwakarma. Human activity recognition in video bench-
marks: A survey. Advances in Signal Processing and Communication, pages 247–259,
2019.

[73] Malik Ali Gul, Muhammad Haroon Yousaf, Shah Nawaz, Zaka Ur Rehman, and Hyung-
Won Kim. Patient monitoring by abnormal human activity recognition based on cnn ar-
chitecture. Electronics, 9(12):1993, 2020.

[74] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016.

[75] Shubham Shinde, Ashwin Kothari, and Vikram Gupta. Yolo based human action recogni-
tion and localization. Procedia computer science, 133:831–838, 2018.

[76] Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for action
recognition in videos. Advances in neural information processing systems, 27, 2014.

[77] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar,
and Li Fei-Fei. Large-scale video classification with convolutional neural networks. In
Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pages
1725–1732, 2014.

[78] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul Natsev, George Toderici, Balakr-
ishnan Varadarajan, and Sudheendra Vijayanarasimhan. Youtube-8m: A large-scale video
classification benchmark. arXiv preprint arXiv:1609.08675, 2016.

[79] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolutional neural networks for
human action recognition. IEEE transactions on pattern analysis and machine intelligence,
35(1):221–231, 2012.

[80] Heng Wang, Alexander Kläser, Cordelia Schmid, and Cheng-Lin Liu. Dense trajectories
and motion boundary descriptors for action recognition. International journal of computer
vision, 103(1):60–79, 2013.

[81] Limin Wang, Yu Qiao, and Xiaoou Tang. Action recognition with trajectory-pooled deep-
convolutional descriptors. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4305–4314, 2015.

[82] Fatemeh Serpush and Mahdi Rezaei. Complex human action recognition using a hierarchi-
cal feature reduction and deep learning-based method. SN Computer Science, 2(2):1–15,
2021.

69

[83] Jagadeesh Basavaiah and Chandrashekar Mohan Patil. Human activity detection and action
recognition in videos using convolutional neural networks. Journal of Information and
Communication Technology, 19(2):157–183, 2020.

[84] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther Schmuelling,
Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark Charlebois, William Chou,
et al. Mlperf inference benchmark. In 2020 ACM/IEEE 47th Annual International Sym-
posium on Computer Architecture (ISCA), pages 446–459. IEEE, 2020.

[85] Colby Banbury, Vijay Janapa Reddi, Peter Torelli, Nat Jeffries, Csaba Kiraly, Jeremy
Holleman, Pietro Montino, David Kanter, Pete Warden, Danilo Pau, et al. Mlperf tiny
benchmark. In Thirty-fifth Conference on Neural Information Processing Systems Datasets
and Benchmarks Track (Round 1), pages 1–15, 2021.

[86] Bharath Sudharsan, Simone Salerno, Duc-Duy Nguyen, Muhammad Yahya, Abdul Wahid,
Piyush Yadav, John G Breslin, and Muhammad Intizar Ali. Tinyml benchmark: Executing
fully connected neural networks on commodity microcontrollers. In 2021 IEEE 7th World
Forum on Internet of Things (WF-IoT), pages 883–884. IEEE, 2021.

[87] Christos Profentzas, Magnus Almgren, and Olaf Landsiedel. Performance of deep neural
networks on low-power iot devices. In Proceedings of the workshop on benchmarking
cyber-physical systems and Internet of things, pages 32–37, 2021.

[88] Danilo Pau, Marco Lattuada, Francesco Loro, Antonio De Vita, and Gian Domenico Lic-
ciardo. Comparing industry frameworks with deeply quantized neural networks on mi-
crocontrollers. In 2021 IEEE International Conference on Consumer Electronics (ICCE),
pages 1–6. IEEE, 2021.

[89] Swapnil Sayan Saha, Sandeep Singh Sandha, and Mani Srivastava. Machine learning for
microcontroller-class hardware-a review. IEEE Sensors Journal, 2022.

[90] Sorin Zoican, Marius Vochin, Roxana Zoican, and Dan Galatchi. Neural network testing
framework for microcontrollers. In 2022 14th International Conference on Communica-
tions (COMM), pages 1–6. IEEE, 2022.

[91] Shubham Gupta, Sweta Jain, Bholanath Roy, and Abhishek Deb. A tinyml approach to
human activity recognition. In Journal of Physics: Conference Series, volume 2273, page
012025. IOP Publishing, 2022.

70

[92] Yexu Zhou, Haibin Zhao, Yiran Huang, Till Riedel, Michael Hefenbrock, and Michael
Beigl. Tinyhar: A lightweight deep learning model designed for human activity recogni-
tion. In Proceedings of the 2022 ACM International Symposium on Wearable Computers,
pages 89–93, 2022.

[93] Preeti Agarwal and Mansaf Alam. A lightweight deep learning model for human activity
recognition on edge devices. Procedia Computer Science, 167:2364–2373, 2020.

[94] Hojjat Salehinejad and Shahrokh Valaee. Litehar: Lightweight human activity recogni-
tion from wifi signals with random convolution kernels. In ICASSP 2022-2022 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
4068–4072. IEEE, 2022.

[95] YL Coelho, B Nguyen, FA Santos, S Krishnan, and TF Bastos-Filho. A lightweight model
for human activity recognition based on two-level classifier and compact cnn model. In
XXVII Brazilian Congress on Biomedical Engineering: Proceedings of CBEB 2020, Oc-
tober 26–30, 2020, Vitória, Brazil, pages 1895–1901. Springer, 2022.

[96] Atis Elsts and Ryan McConville. Are microcontrollers ready for deep learning-based hu-
man activity recognition? Electronics, 10(21):2640, 2021.

[97] Tianyi Liu, Shuoyuan Wang, Yue Liu, Weiming Quan, and Lei Zhang. A lightweight
neural network framework using linear grouped convolution for human activity recognition
on mobile devices. The Journal of Supercomputing, pages 1–21, 2022.

[98] Wenbo Huang, Lei Zhang, Hao Wu, Fuhong Min, and Aiguo Song. Channel-equalization-
har: a light-weight convolutional neural network for wearable sensor based human activity
recognition. IEEE Transactions on Mobile Computing, 2022.

[99] Emanuele Lattanzi, Matteo Donati, and Valerio Freschi. Exploring artificial neural
networks efficiency in tiny wearable devices for human activity recognition. Sensors,
22(7):2637, 2022.

[100] Ankita, Shalli Rani, Himanshi Babbar, Sonya Coleman, Aman Singh, and Hani Moaiteq
Aljahdali. An efficient and lightweight deep learning model for human activity recognition
using smartphones. Sensors, 21(11):3845, 2021.

[101] Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy, Bing Shuai,
Ting Liu, Xingxing Wang, Gang Wang, Jianfei Cai, et al. Recent advances in convolutional
neural networks. Pattern recognition, 77:354–377, 2018.

71

[102] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436–444, 2015.

[103] François Chollet. Xception: Deep learning with depthwise separable convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
1251–1258, 2017.

[104] Andrinandrasana David Rasamoelina, Fouzia Adjailia, and Peter Sinčák. A review of
activation function for artificial neural network. In 2020 IEEE 18th World Symposium on
Applied Machine Intelligence and Informatics (SAMI), pages 281–286. IEEE, 2020.

[105] Manli Sun, Zhanjie Song, Xiaoheng Jiang, Jing Pan, and Yanwei Pang. Learning pooling
for convolutional neural network. Neurocomputing, 224:96–104, 2017.

[106] SH Shabbeer Basha, Shiv Ram Dubey, Viswanath Pulabaigari, and Snehasis Mukherjee.
Impact of fully connected layers on performance of convolutional neural networks for im-
age classification. Neurocomputing, 378:112–119, 2020.

[107] Yury Nahshan, Brian Chmiel, Chaim Baskin, Evgenii Zheltonozhskii, Ron Banner, Alex M
Bronstein, and Avi Mendelson. Loss aware post-training quantization. Machine Learning,
110(11-12):3245–3262, 2021.

[108] Ron Banner, Yury Nahshan, and Daniel Soudry. Post training 4-bit quantization of con-
volutional networks for rapid-deployment. Advances in Neural Information Processing
Systems, 32, 2019.

[109] Eunhyeok Park, Sungjoo Yoo, and Peter Vajda. Value-aware quantization for training and
inference of neural networks. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 580–595, 2018.

[110] Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart
Van Baalen, and Tijmen Blankevoort. A white paper on neural network quantization. arXiv
preprint arXiv:2106.08295, 2021.

[111] Agus Kurniawan and Agus Kurniawan. Arduino nano 33 ble sense board development.
IoT Projects with Arduino Nano 33 BLE Sense: Step-By-Step Projects for Beginners, pages
21–74, 2021.

[112] Marco Giordano, Luigi Piccinelli, and Michele Magno. Survey and comparison of milli-
watts micro controllers for tiny machine learning at the edge. In 2022 IEEE 4th Interna-
tional Conference on Artificial Intelligence Circuits and Systems (AICAS), pages 94–97.
IEEE, 2022.

72

[113] Md Ziaul Haque Zim. Tinyml: analysis of xtensa lx6 microprocessor for neural network
applications by esp32 soc. arXiv preprint arXiv:2106.10652, 2021.

[114] Lourdes Martínez-Villaseñor, Hiram Ponce, Jorge Brieva, Ernesto Moya-Albor, José
Núñez-Martínez, and Carlos Peñafort-Asturiano. Up-fall detection dataset: A multimodal
approach. Sensors, 19(9):1988, 2019.

[115] Kripesh Adhikari, Hamid Bouchachia, and Hammadi Nait-Charif. Activity recognition for
indoor fall detection using convolutional neural network. In 2017 Fifteenth IAPR Interna-
tional Conference on Machine Vision Applications (MVA), pages 81–84. IEEE, 2017.

[116] Attila Reiss and Didier Stricker. Introducing a new benchmarked dataset for activity mon-
itoring. In 2012 16th international symposium on wearable computers, pages 108–109.
IEEE, 2012.

[117] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and Jorge L Reyes-Ortiz.
Human activity recognition on smartphones using a multiclass hardware-friendly support
vector machine. In International workshop on ambient assisted living, pages 216–223.
Springer, 2012.

[118] Jennifer R Kwapisz, Gary M Weiss, and Samuel A Moore. Activity recognition using cell
phone accelerometers. ACM SigKDD Explorations Newsletter, 12(2):74–82, 2011.

[119] Christian Schuldt, Ivan Laptev, and Barbara Caputo. Recognizing human actions: a local
svm approach. In Proceedings of the 17th International Conference on Pattern Recogni-
tion, 2004. ICPR 2004., volume 3, pages 32–36. IEEE, 2004.

[120] Jingen Liu, Jiebo Luo, and Mubarak Shah. Recognizing realistic actions from videos “in
the wild”. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages
1996–2003. IEEE, 2009.

73

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Problem Definition
	Motivation
	Scope of the Work
	Contributions
	Thesis Organization

	Literature Review
	Overview on Human Activity Recognition
	HAR from Multimodal Sensing Devices
	HAR from Smartphone Sensor Data
	HAR from Radar Signal
	HAR from Image and Video data

	Literature on TinyML Benchmarks
	Literature on Lightweight Deep Learning Models for HAR
	Summary

	Proposed Methodology
	Benchmarking HAR
	Convolutional Neural Networks
	Quantization Methods
	Tiny Edge Devices

	Multi-resolution Fusion Architecture for HAR
	Parameters of Convolutional Neural Networks
	TinyML Deployment

	Summary

	Experimental Results and Discussions
	Datasets
	UP-Fall Detection Dataset
	Fall Detection Dataset
	PAMAP2
	UCI-HAR
	WISDM
	KTH Human Activity Dataset
	UCF11 YouTube Action Dataset

	Performance Evaluation
	Model Performance
	Device Performance

	Experimental Setup
	Benchmarking HAR
	Results Analysis
	Inferrence Time and Power Consumption

	Multi-resolution Fusion Architecture
	Results Analysis
	Ablation Studies
	Inference Time and Power Consumption

	Summary

	Conclusion and Future Works
	Conclusion
	Limitations and Future Works

	References

