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Abstract

This thesis consists of three self-contained essays evaluating topics in portfolio selection,
continuous-time analysis, and market incompleteness.

The two opposing investment strategies, diversification and concentration, have often
been directly compared. Despite the less debate regarding Markowitz’s approach as the
benchmark for diversification, the precise meaning of concentration in portfolio selection
remains unclear. Chapter 1, coauthored with Jiawen Xu, Kai Liu, and Tao Chen, offers
a novel definition of concentration, along with an extreme value theory-based estimator
for its implementation. When overlaying the performances derived from diversification (in
Markowitz’s sense) and concentration (in our definition), we find an implied risk threshold,
at which the two polar investment strategies reconcile – diversification has a higher expected
return in situations where risk is below the threshold, while concentration becomes the
preferred strategy when the risk exceeds the threshold. Different from the conventional
concave shape, the estimated frontier resembles the shape of a seagull, which is piecewise
concave. Further, taking the equity premium puzzle as an example, we demonstrate how
the family of frontiers nested inbetween the estimated curves can provide new perspectives
for research involving market portfolios.

Parametric continuous-time analysis for stochastic processes often entails the general-
ization of a predefined discrete formulation to a continuous-time limit. However, unknown
convergence rates of the frequency-dependent parameters can destabilize the continuous-
time generalization and cause modelling discrepancy, which in turn leads to unreliable
estimation and forecast. To circumvent this discrepancy, Chapter 2, coauthored with Tao
Chen and Renfang Tian, proposes a simple solution based on functional data analysis
and truncated Taylor series expansions. It is demonstrated through a simulation that our
proposed method is superior in both fitting and forecasting continuous-time stochastic
processes compared with parametric methods that encounter troubles uncovering the true
underlying processes.

When the markets are incomplete, perfect risk sharing is impossible and the law of one
price no longer guarantees the uniqueness of the stochastic discount factor (SDF), resulting
in a set of admissible SDFs, which complicates the study of financial market equilibrium,
portfolio optimization, and derivative securities. Chapter 3, coauthored with Tao Chen,
proposes a discrete-time econometric framework for estimating this set of SDFs, where the
market is incomplete in that there are extra states relative to the existing assets. We show
that the estimated incomplete market SDF set has a unique boundary point, and shrinks
to this point only when the market completes. This property allows us to develop a novel
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measure for market incompleteness based upon the Wasserstein metric, which estimates
the least distance between the probability distributions of the complete and incomplete
market SDFs. To facilitate the parametrization of market incompleteness for implementa-
tion, we then consider in detail a continuous-time framework, in which the incompleteness
specifically arises from stochastic jumps in asset prices, and we demonstrate that the the-
oretical results developed under the discrete-time setting still hold true. Furthermore, we
study the evolution of market incompleteness in four of the world’s major stock markets,
namely those in China, Japan, the United Kingdom, and the United States. Our findings
indicate that an increase in market incompleteness is usually caused by financial crises or
policy changes that raise the likelihood of unanticipated risks.
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Chapter 1

Portfolio Selection – from
under-diversification to
concentration1

1.1 Introduction

Many times, the two opposing investment strategies, diversification and concentration,
have been directly compared (e.g., Bird et al., 2012; Yeung et al., 2012; Choi et al., 2017).
As shown in the path-breaking work by Markowitz (1952), diversification has the strength
of lowering overall portfolio risk, yet may also limit portfolio performance (e.g., Evans and
Archer, 1968; Fisher and Lorie, 1970; Liu, 2016). On the flip side, concentration is known
for its potential to generate better than market average returns, but is criticized for its
lack of ability to avert idiosyncratic risks (e.g., Keynes et al., 1983; Buffett, 1994; Loeb,
2007; Ekholm and Maury, 2014).

While there is much less dispute adopting Markowitz’s approach as the benchmark
for diversification, the exact meaning of concentration in portfolio selection is still vague.
For instance, studies have used the number of stocks in a portfolio to distinguish between
diversification and concentration, and thresholds of 3, 11 to 15, or 30 have been proposed
(e.g., Statman, 1987; Goetzmann and Kumar, 2008; Ivković et al., 2008). However, this
measure is arbitrary, and there has not yet been a consensus on the threshold (Campbell,
2018, pp.324; Oyenubi, 2019). Another metric – the concentration index – estimates how

1This chapter is co-authored with Jiawen Xu, Kai Liu, and Tao Chen
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much a portfolio deviates from the benchmark (Blume and Friend, 1975), with a lower index
value representing a higher level of diversification and a zero index value representing “the
diversified” portfolio (e.g., Brands et al., 2005; Kacperczyk et al., 2005; Goldman et al.,
2016). Yet, this index only compares the relative concentration level of two portfolios, and
“the concentrated” portfolio is either undefined or reduced to a single asset, which is not
an interesting case. There is also the normalized portfolio variance, which is the ratio of
portfolio variance over the average variance of stocks in that portfolio (e.g., Goetzmann
et al., 2005; Goetzmann and Kumar, 2008). Assuming equal weights, a lower value of
normalized variance suggests more diversification, and again this is a relative measure
with “the concentrated” portfolio undefined.

As reminded by the motivating example in (Markowitz, 1952, pp.78-79), diversification
prevails when there are multiple assets generating maximum expected return due to a
simple law of large numbers argument. Therefore, the discussion of concentration is sensible
only when confronting assets with heterogeneous expected returns, and it is evident that the
three commonly used measures above do not extend to concentration in natural ways. In
this paper, we decide not to dwell on the concept of under-diversification, which generalizes
any deviations from diversification, but to propose a novel definition for concentration
together with an estimation method for its empirical implementation.

Our inspiration comes from the example in (Campbell, 2018, pp.329-330), where one
risky asset is only held by a group of homogeneous investors with identical initial wealth
together with the riskless asset. When one-period power utility and log-normal payoff are
imposed, this simple setup generates a crucial implication for the current paper: undiver-
sified investors care about the total variance of an asset’s return and not just its covariance
with a broader index, idiosyncratic volatility is positively related to expected return.

Now we are ready to motivate our definition of concentration. We view that the market
is dominated by undiversified investors, individuals, or institutions, who are constrained
by their own investment policies and time horizons. They are heterogeneous in that they
have different perceptions of the market, initial wealth, risk preferences, and inter-temporal
substitution. Based on this set of beliefs, instead of assuming that investors are balancing
the expected return and variance trade-off globally (as proposed by Markowitz and his
followers), we assume that they choose or are only allowed to take a certain level of risk
and strive for the highest possible expected return at that local variance. Hence, the
determinant factor of investors’ behavior is the standalone variances of assets’ returns
in the portfolio as opposed to their covariance in the diversification (Markowitz’s) sense.
Further, note that our definition of concentration is in terms of a fixed portfolio variance,
which is assumed to be investor specific.
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Aggregation of heterogeneous agents has always been a challenge in Macroeconomics.
From the newly defined concentration’s perspective, we are able to construct the frontier
(hereafter, concentrated market frontier) in the following way: let portfolio variance sweep
through its domain, and at each level, there is a projected maximum expected return asso-
ciated with it. Then, the collection of those pairs forms the concentrated market frontier.
To be conformable with Markowitz’s framework, we replace the variance coordinate with
its positive root. It is important to note that this concentrated market frontier should only
be viewed as one extreme, similar to (or as unrealistic as) the well-known diversified mar-
ket frontier2 and it is actually the combination of both frontiers that provides us further
insights.

The empirical implementations of the two strategies are summarized as follows, and
we will elaborate in Section 1.2.2. The diversified market frontier is estimated through a
dimensional reduction (DR) technique introduced by Liu (2017) and followed by the mean-
variance optimization in Markowitz (1952) and Merton (1972); the concentrated market
frontier is estimated by an extreme value theory (EVT)-based method originally proposed
by Chen and Yang (2020) for general frontiers.

Combining the two estimated frontiers, we find (i) an implied risk threshold, where the
two opposing investment strategies reconcile. When the risk level is below the threshold,
diversification yields a higher expected return, whereas once the risk level exceeds the
threshold, concentration becomes the dominant strategy. Different from the traditional
concave efficient frontier, the merged frontier reveals to be seagull-shaped. This mixed
frontier is piecewise concave and robust to all major stock markets we study. (ii) The
family of frontiers nested inbetween the estimated curves captures the true market frontier,
which stems from an unknown distribution of undiversified investors. From a set-identified
perspective, we take the equity premium puzzle as an example to illustrate the potential
of this collection of market portfolios to provide fresh insights into the related researches.

The paper proceeds as follows. The data and the statistical methods employed to
estimate the frontiers are explained in Section 1.2. We present and discuss our findings in
Section 1.3. Section 1.4 concludes.

2A concise way of saying the estimated efficient frontier implied by Markowitz’s mean-variance opti-
mization method.
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1.2 Data and Statistical Analysis

We start with the data description and then the procedures to implement the two invest-
ment strategies.

1.2.1 Data Description

The data are collected monthly on six stock pools around the world, three of which are
emerging markets, namely Brazil, China, and India, and the remaining three are developed
markets, namely Japan, the United Kingdom (UK), and the United States (US)3. The three
selected emerging markets are among the largest and fastest-growing emerging markets,
while the three selected developed economies are among the most significant stock markets
worldwide. Moreover, as each of the six markets has been extensively studied in the
financial literature (e.g., Hamao et al., 1990; Floros, 2005; Gay Jr et al., 2008; Madaleno and
Pinho, 2012; Fang and You, 2014), they serve as appropriate examples for demonstrating
the robustness of our findings.

Our data is from January 2000 to December 2021 since 2000 is the first year for which we
are able to obtain complete stock data for all six stock markets. The monthly logarithmic
return is used, and the monthly volatility is the positive root derived from its variance
(Andersen and Bollerslev, 1998; Feibel, 2003). Both the expected return and volatility
are annualized according to Jorion (2010, pp.224). To obtain relatively stable portfolio
variance, stocks with less than four years of return data are excluded from this analysis. We
then sort our sample in ascending order by volatility and trim the boundary observations
by excluding the first and last 5% of the data4. The sample sizes of the four markets (in
the aforementioned order) are 450, 3240, 3930, 3060, 2340, and 4710, respectively.

3The Brazil stock pool includes all stocks currently listed at the B3 Stock Exchange. The China
stock pool includes all stocks currently listed at the Shanghai and the Shenzhen Stock Exchanges. The
India stock pool includes all stocks currently listed at the Bombay Stock Exchange and the National
Stock Exchange of India. The Japanese stock pool includes all stocks currently listed at the Tokyo Stock
Exchange. The US stock pool includes all stocks currently listed at the New York Stock Exchange and
the NASDAQ Stock Market. The UK stock pool includes all stocks currently listed at the London Stock
Exchange.

4The method to estimate the concentrated market frontier is non-parametric, which is generally known
for boundary bias. This is the reason we follow the common practice in non-parametric estimation by
trimming the observations close to the boundaries. To ensure comparability, both frontiers are estimated
based on the same trimmed data set.
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1.2.2 Statistical Analysis

This section explains the statistical methods utilized to estimate the diversified and con-
centrated market frontiers. Both procedures are introduced to the literature recently. With
no intention we try to claim that they are “the” procedures associated with both frontiers;
this paper employs them as viable estimation tools.

The Diversified Market Frontier

Ideally, the diversified market frontier can be directly estimated following the mean-
variance optimization described in Markowitz (1952). To improve readability, we move the
mathematical formulation to Appendix A.1. Though conceptually intuitive, Markowitz’s
optimization method is challenging to implement empirically: the sample covariance ma-
trix is known to suffer from singularity or near-singularity problems in the presence of
a large number of assets (Buser, 1977; Pappas et al., 2010). In order to restore invert-
ibility of the covariance matrix in certain sense, shrinkage method of different kinds have
been proposed (e.g., Leonard et al., 1992; Yang and Berger, 1994; Daniels and Kass, 1999;
Ledoit and Wolf, 2003, 2004, 2012, 2017); however, all these methods rely heavily on the
interpretation of priors or the Bayesian likelihood-based foundation.

We resort to a pure numerical algorithm that was initially proposed by Liu (2017).
The main reason behind this choice is because their DR approach does not require many
technical assumptions. It simply picks out NDR number of assets with the highest Sharpe
Ratios that contribute to a pre-specified percentage of the total market variation and can
be arbitrarily close to the unit. This paper works with 95%. With these chosen stocks, we
then solve the mean-variance optimization to obtain the diversified market frontier. For
the sake of completeness, the mathematical derivations can be found in Appendix A.2.

Each market portfolio is derived using the capital market line, where the corresponding
average one-year treasury rate from 2000 to 2021 is used as proxy for the risk-free interest
rate, and we summarize the statistics in Table 1.1. The three emerging markets appear
to have considerably greater volatility than the developed ones, which accords the litera-
ture that emerging markets are inherently riskier (e.g., Sharkasi et al., 2006; Saranya and
Prasanna, 2014). The Sharpe ratio shows that the US market portfolio has the best risk-
adjusted performance among the six markets, implying that it compensates the investor for
the risk taken most effectively. Furthermore, the sample sizes are all significantly smaller
than the original ones, which suggests that a substantial number of stocks are highly cor-
related in their returns.
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Table 1.1: Summary Statistics of Market Portfolios under Diversification

Mean Standard Deviation Sharpe Ratio Number of Assets
Brazil 0.365 0.208 1.163 24
China 0.440 0.341 1.215 34
India 0.440 0.320 1.166 38
Japan 0.185 0.113 1.629 57
UK 0.375 0.145 2.441 58
US 0.264 0.079 3.118 127

The Concentrated Market Frontier

In Finance, EVT has been successfully employed to estimate the extreme quantiles, tail
probabilities of asset returns and risks (e.g., Pownall and Koedijk, 1999; Longin, 2000;
McNeil and Frey, 2000; Rocco, 2014; Longin, 2016). Here we briefly describe the idea
of the EVT-based method proposed by Chen and Yang (2020) and leave the details to
Appendix A.3.

If we view uncertainty and the expected return as the input and output of a production
function, then predicting the maximum possible output based on similar inputs matches
exactly the way we construct the concentrated frontier. Specifically, we divide the trimmed
sample into g equal-sized groups, and this analysis takes g as 10 (e.g., for the China market,
each group consists of 324 observations). The choice of g follows the fundamental bias-
variance compromise in that if g gets bigger, the observations within each group are more
“similar” but with less number of them. In this case, the bias reduces while the variance
of the estimator increases, and a reversed argument holds when g becomes smaller. For
each group (G1-G10) in the stock pool, we first calculate the moment estimator of the
extreme-value index, γ̂, according to Dekkers et al. (1989). Subsequently, this γ̂ is used to
estimate the maximum expected return under EVT (hereafter, EVT expected return) at
each risk level based on von Mises (1954) and Jenkinson (1955).

Table 1.2 presents the EVT and the maximum expected returns for each group. The
relatively large γ̂’s for the groups with greater risks indicate that considerable improvement
in investment performance can be attained at higher risk levels by concentration. In
contrast, little or no increase in return can be achieved at the lower risk levels with relatively
small γ̂’s. Last, we connect all pairs of EVT expected return and volatility to obtain the
concentrated market frontier.
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Table 1.2: EVT Results

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

Brazil
γ̂ -0.272 -0.401 -0.334 -0.217 -0.216 -0.130 -0.144 -0.228 -0.245 -0.282

EVT Return 0.334 0.392 0.441 0.489 0.526 0.568 0.610 0.649 0.762 0.923
Max Return 0.333 0.334 0.345 0.413 0.417 0.257 0.279 0.648 0.562 0.858

China
γ̂ -0.326 -0.253 -0.207 -0.167 -0.142 -0.122 -0.110 -0.114 -0.246 -0.168

EVT Return 0.312 0.423 0.500 0.559 0.594 0.625 0.648 0.677 0.720 0.796
Max Return 0.311 0.410 0.335 0.359 0.538 0.436 0.597 0.503 0.719 0.679

India
γ̂ -0.262 -0.181 -0.160 -0.160 -0.122 -0.156 -0.196 -0.181 -0.101 -0.093

EVT Return 0.509 0.592 0.653 0.707 0.751 0.788 0.820 0.854 0.887 0.955
Max Return 0.508 0.431 0.546 0.643 0.571 0.628 0.721 0.731 0.536 0.929

Japan
γ̂ -0.167 -0.167 -0.117 -0.167 -0.158 -0.151 -0.150 -0.546 -0.230 -0.168

EVT Return 0.186 0.249 0.288 0.325 0.364 0.407 0.460 0.515 0.563 0.602
Max Return 0.185 0.229 0.170 0.249 0.319 0.307 0.317 0.514 0.506 0.568

UK
γ̂ -0.288 -0.257 -0.194 -0.231 -0.156 -0.248 -0.153 -0.233 -0.316 -0.534

EVT Return 0.351 0.483 0.575 0.656 0.752 0.839 0.924 1.030 1.137 1.333
Max Return 0.282 0.408 0.393 0.482 0.512 0.709 0.626 0.880 1.037 1.333

US
γ̂ -0.255 -0.133 -0.107 -0.105 -0.121 -0.089 -0.068 -0.078 -0.094 -0.080

EVT Return 0.254 0.447 0.635 0.783 0.897 0.985 1.072 1.159 1.226 1.316
Max Return 0.254 0.309 0.428 0.426 0.541 0.699 0.394 0.610 0.565 0.488

1.3 Empirical Results

We overlay the estimated diversified and concentrated market frontiers in Figure 1.1 to
reconcile the two investment strategies. Section 1.3.2 provides further Economic insights
through market portfolio.

1.3.1 The Reconciliation of Concentration and Diversification

When combining the two market frontiers, we observe a seagull-shaped frontier in all
markets. Figure 1.1 shows that there exists an implied risk threshold, at which the two
strategies reconcile. When the risk is below that threshold, diversification yields higher
expected returns, while concentration becomes superior when the risk exceeds that thresh-
old. This finding is consistent with the existing literature on the trade-off between expected
return and variance (e.g., Modigliani and Leah, 1997; Campbell et al., 2001; Ghysels et al.,
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Figure 1.1: The Estimated Market Frontiers

2005; Bali and Peng, 2006). In particular, if the investor is constrained at a relatively low-
risk level, diversification outperforms concentration by reducing the potential idiosyncratic
risk of the portfolio without sacrificing the potential return much. While concentration
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brings significant risk, practitioners such as Warren Buffett advocate, it can also result in
a significant gain if the investor makes the proper judgment. Additionally, in line with our
discussion in Table 1.1, concentration outperforms diversification at the lowest risk thresh-
old for the US market, whence risk-taking activities are compensated most effectively.

1.3.2 Discussions

Here we explore possible Economic insights from those two estimated frontiers, which
should only be viewed as the two extreme cases. Between them, there is a family of
frontiers representing under-diversification of different degrees. Figure 1.2 illustrates this
idea through two sample intermediary curves. If we use the diversified market frontier as
the benchmark and move the concentrated one to the left while rotating clock-wisely, we
are able to trace out all the possible frontiers representing an under-diversified investment
strategy with an increasing degree of diversification till it meets the fully diversified frontier.
Within this process, the curvature of frontiers changes.

Figure 1.3 presents each frontier paired with its corresponding capital market line, and
the tangent pointM is interpreted as the market portfolio. We use the subscripts d and c to
differentiate the market portfolio associated with the diversified and concentrated frontiers.
Most of the time, researches use general stock indexes as proxies for Md. Assuming agents
are allowed to borrow and lend freely at the risk-free rate R, portfolio M ′

c is introduced as
a device to replicate the true market portfolio that matches the actual data, which shares
the same Sharpe ratio asMc and admits the same level of risk asMd. Panel A’s in Figure 3
present the geometric relationships with Panel B being the left-lower orthants respectively.

The distance between Md and R is the well-known Equity Premium (EP) proposed by
Mehra and Prescott (1985), which has been extensively discussed over the past 35 years
(Mehra, 2008). By Adopting the same consumption aggregation idea in Caselli and Ventura
(2000), we conduct the analysis assuming that the sum of heterogeneous investors behave
as if it were a single agent. Then, EP should be measured as the distance between M ′

c and
R, which can be substantially smaller than the traditional one. Here it is important to
note that we are not intending to add another trial to tackle the EP puzzle. Our goal is
to use it as an example to show the practicality of our findings for any research involving
the market portfolio.
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Figure 1.2: Illustration of the True Market Frontier

1.4 Conclusion

This study proposes a novel definition of concentration for portfolio selection and creates
a new market frontier based on a well-known aggregation method in Macroeconomics.
A comparison to the traditional diversified portfolio selection approach is presented, and
our estimated seagull-shaped frontier can be used as a guide when developing investment
strategies so that, to maximize returns, investors can construct their portfolios either by
diversification or concentration according to their risk constraints relative to the implied
risk threshold. Further, possible implications of the new market portfolio are discussed,
and it will be of compelling interest to locate a frontier from the family of frontiers we
proposed that matches the data, and we defer this to further studies.
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Figure 1.3.1: The Estimated Market Frontiers (Panel A) and Its Left-lower Orthant (Panel
B), Brazil

Figure 1.3.2: The Estimated Market Frontiers (Panel A) and Its Left-lower Orthant (Panel
B), China
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Figure 1.3.3: The Estimated Market Frontiers (Panel A) and Its Left-lower Orthant (Panel
B), India

Figure 1.3.4: The Estimated Market Frontiers (Panel A) and Its Left-lower orthant (Panel
B), Japan
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Figure 1.3.5: The Estimated Market Frontiers (Panel A) and Its Left-lower Orthant (Panel
B), UK

Figure 1.3.6: The Estimated Market Frontiers (Panel A) and Its Left-lower Orthant (Panel
B), US
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Chapter 2

A Functional Data Approach for
Continuous-time Analysis Subject to
Modeling Discrepancy under Infill
Asymptotics1

2.1 Introduction

Much of finance and economics is about the study of dynamics over time, where analysis us-
ing time series data plays a vital part. Despite discrete-time observations in practice, many
time series data such as stock prices, interest rates, and GDP are essentially drawn from
their continuous-time underlying processes, whence consistent estimation can be achieved
from continuous-time analyses but not necessarily from their discrete-time counterparts.
Thus, the former has become increasingly incorporated by modern time series analysis
(e.g., Merton, 1980; Merton and Samuelson, 1992; Stentoft, 2011; Buccheri et al., 2021).

Traditionally, when a continuous-time analysis is conducted parametrically, the model-
ing routinely originates in a discrete-time setting and is then generalized to a continuous-
time formulation as the limit (Merton and Samuelson, 1992). Yet, the parametric gener-
alization often places strong restrictions on the specifications of the convergence rates of
frequency-dependent (hereafter, f.d.) parameters, resulting in models that are unadapt-
able to real-world data, and thus forecasting failure (Corradi, 2000; Das, 2002; Duan et al.,

1This chapter is co-authored with Renfang Tian and Tao Chen
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2006; Trifi, 2006; Giraitis et al., 2007; Stentoft, 2011; Badescu et al., 2017; Hafner et al.,
2017). For instance, with different sets of conditions regarding the speed of convergence
of parameters, many GARCH-like processes have various sorts of diffusion processes (e.g.,
Nelson, 1990; Corradi, 2000; Duan et al., 2006; Hafner et al., 2017). Consequently, there
arises discrepancy in the continuous-time generalization as it is debatable which assump-
tion is the correct one (e.g., Singleton, 2009, pp.176-178; Alexander and Lazar, 2021), and
mistaking the assumption will lead to an invalid limit, thereby unreliable analysis results.
In such circumstances, nonparametrics appear to be an appealing tool that can naturally
adapt to the true limits based on data-driven methods and bypass this discrepancy in
continuous-time modeling and analysis (Sundaresan, 2000).

There has been a large literature demonstrating the effectiveness of nonparametric
methods for accurate estimation and forecasting in cases where parametric assumptions
are deemed to be inadequate (e.g., Härdle et al., 1997; Heiler, 1999; Fan and Yao, 2003; Pena
et al., 2011; Zhu et al., 2011; Bosq, 2012; Kutoyants, 2012; Kleppe et al., 2014; Ryabko,
2019; Aydin and Yilmaz, 2021). Many studies incorporated nonparametric methods to
approximate the density of the states in the absence of a closed-form expression, so that
they could use maximum likelihood to estimate continuous-time diffusion models (e.g.,
Durham and Gallant, 2002; Aı̈t-Sahalia and Kimmel, 2007; Kleppe et al., 2014). Yet, they
are still presuming the parametric format of the underlying processes. Another stream of
literature used kernel-based methods to estimate the processes that are nonanticipative
smooth functions with unknown structures (e.g., Kutoyants, 2012) and forecast through
conditional density estimation (e.g., Härdle et al., 1997; Matzner-Løfber et al., 1998; Fan
and Yao, 2003; Berry et al., 2015). It has been shown, however, that traditional kernel
estimators are inconsistent under infill asymptotics over bounded domains (Lahiri, 1996;
Bosq, 2012), and the use of kernel estimators under such an infill asymptotic structure
requires careful consideration of the dependence among observations before large sample
properties can be obtained, which requires substantial work (Kurisu, 2019).

The main contribution of our paper is to propose a fitting and forecasting approach
from the viewpoint of functional data analysis (FDA) to accommodate f.d. data structures
under infill asymptotics. In particular, we fit the underlying process by using local poly-
nomials, and we obtain the forecasts by extending the movement of the process based on
the boundary derivatives of the functional fitting. The FDA method has been widely em-
ployed in capturing the dynamics of unknown smooth functions behind stochastic processes
(Ramsay, 2005; Zhu et al., 2011; Chen et al., 2018), but not specifically for the purpose
of tracking the f.d. data structures in continuous-time analysis. This paper also makes a
note that functional approaches can be further developed in this context to achieve desired
performance under infill asymptotics with bounded or unbounded domains. The proce-
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dure and properties of the proposed method are illustrated through a simulation study. To
improve readability, all proofs are placed in Appendix B.

The rest of this paper is structured as follows. In Section 2.2, we introduce the FDA-
based method of fitting and forecasting continuous-time underlying processes and subse-
quently derive the large sample properties of the functional estimators. In Section 2.3, we
take the strong GARCH(1,1) process as a motivating example and show via simulation
that in continuous-time analysis, while parametric methods, such as maximum likelihood
estimation (MLE), encounter discrepancy, the proposed FDA-based method can provide
reliable estimation and forecast. Section 2.4 concludes.

2.2 Methodology and Large Sample Properties

In this section, we explain the functional fitting and forecasting procedures followed by a
discussion on their large sample properties. As noted by Jouzdani and Panaretos (2021),
smoothness assumptions are often imposed in FDA to accommodate incomplete and noisy
observations, but those assumptions are not applicable for a large group of stochastic pro-
cesses such as diffusion processes; on the other hand, fully observed sample paths can
be assumed to incorporate continuous but non-differentiable underlying processes, yet
continuous-time underlying processes are mostly not fully observed in practice. Hence,
in this study, we fit functional data through the Bernstein polynomial approximation,
which can adapt to continuous but not necessarily differentiable stochastic processes, and
no “complete observation” assumption needs to be made.

2.2.1 Fitting and Forecasting

Consider a complete probability space (Ω,F , P ) and a re-scaled bounded time interval
[0,1]. We denote a sample path for any given state ω ∈ Ω over [0,1] by the mapping
Xω(t) ∶ [0,1]→ R. Realizations are drawn at countably many time points, as such

Xω,t =Xω(t) + ϵω,t, (2.1)

where ϵω,t is the observational error. At any given time point t, we denote a ∆-step-ahead

predictor by X̂ω(t + ∆). If the sample path Xω(t) is continuous, it has an arbitrarily
close polynomial approximation according to the Weierstrass approximation theorem, and
Bernstein polynomials BK(t,Xω) provide a specific format of polynomial approximation,
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as such for each K ∈ N,

BK(t,Xω) ∶=
K

∑
k=0

Xω (
k

K
)(K

k
)tk(1 − t)K−k. (2.2)

Then we have the following lemma.

Lemma 2.2.1. Consider BK(t,Xω) as in Equation (2.2) with the continuous sample path
Xω for all ω ∈ Ω. For any ε > 0, there exists some δ > 0 that induces ∣t1 − t2∣ ≤ δ Ô⇒
∣Xω(t1) −Xω(t2)∣ ≤ ε/2 for all t1, t2 ∈ [0,1], such that for all K ≥ supt∈[0,1] ∣Xω(t)∣/(2δ2ε),

sup
t∈[0,1]

∣BK(t,Xω) −Xω(t)∣ ≤ ε.

Lemma 2.2.1 suggests that, fixing everything else, for any given ε, one needs a high-
degree polynomial for approximation if the continuity of Xω requires a very small δ, while
low-degree polynomial can be used to achieve desired approximation if a large δ suffices
the given ε. This lemma also implies that while fitting any continuous process, the typical
smoothness assumptions for functional data can be imposed on the Bernstein approximat-
ing polynomials BK(t,Xω), and the remaining estimation error can be controlled by the
selection of the degree K, which takes into account the level of volatility in the underlying
process Xω.

In the spirit of FDA (Ramsay, 2005), one can construct a B-spline representation for
the polynomial approximation BK(t,Xω) as such

BK(t,Xω) =ΦΦΦ⊺(⋅)CCC,

where ΦΦΦ is a B-spline basis that contains Q basis functions, CCC is a vector of Q corresponding
basis coefficients, and the superscript “⊺” indicates the transpose operation. Then equation
(2.1) can be rewritten as

Xω,t ≈ΦΦΦ⊺(t)CCC + ϵω,t. (2.3)

With the predetermined basis functions and the observations {Xtj}Jj=1 at {tj}Jj=1 ⊆ [0,1],
the coefficientsCCC can be estimated by minimizing the penalized least squares J−1∑J

j=1[Xtj−
X(tj)]2 + λ ∫

1

0 X
(2)(t)dt with a tuning parameter λ, which yields

C̃̃C̃Cω ∶=

⎡
⎢
⎢
⎢
⎢
⎣

1

J

J

∑
j=1

ΦΦΦ(tj)ΦΦΦ
⊺
(tj) + λ∫

1

0
ΦΦΦ(2)(t) {ΦΦΦ(2)(t)}

⊺
dt

⎤
⎥
⎥
⎥
⎥
⎦

−1
1

J

J

∑
j=1

ΦΦΦ(tj)Xω,tj , (2.4)
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where the superscript “(2)” indicates the 2nd derivative of a function. In practice, Q and
λ can be selected through some cross-validation algorithms as explained in Ramsay (2005).
Henceforth, an estimator for Xω(t) can be defined as

X̃ω(t) ∶=ΦΦΦ⊺(t)C̃̃C̃Cω, ∀t. (2.5)

Throughout the paper, we use X̃ω and X̂ω to distinguish between the fitting and forecast
results.

With the fitted process X̃ω(t), the ∆-step-ahead predictor X̂ω(t +∆) can be obtained
by a truncated Taylor expansion with the first R derivatives of the fitted functions, such
that

X̂ω(t +∆) ∶=
R

∑
r=0

1

r!
∆rX̃

(r)
ω (t) =

R

∑
r=0

1

r!
(∆)r C̃̃C̃C⊺ωΦΦΦ(r)(t). (2.6)

The validity of the above Taylor expansion requires the fitted function X̃ω(t) to be at least
R times continuously differentiable, while the underlying process Xω(t) only need to be
continuous. Due to the local polynomial property of the B-spline basis, one can adopt the
B-spline basis of order R + 2 to ensure the desired differentiability of X̃ω(t).

2.2.2 Large Sample Properties

We now discuss the properties of our functional predictors based on the following Assump-
tions.

Assumption 2.2.1. Consider a continuous sample path Xω(t) as such for any ε > 0, there
exists δ > 0 such that ∣t1−t2∣ ≤ δ implies ∣Xω(t1)−Xω(t2)∣ ≤ ε/2. Then we have the following.

(a) The sample path Xω(t) is observed on a set of evenly-spaced time points.

(b) The observational error ϵω,tj is uncorrelated across {tj}Jj=1 ⊆ [0,1], with E[ϵω,t ∣
Xω(s), s < t] = 0 and Var[ϵω,t] < c <∞ for all t ∈ [0,1] and some constant c.

(c) Q ∼ Jα1 and λ ∼ Jα2 with 0 < α1 < 1 and α2 < 0.

Assumption 2.2.1 (a) is a sufficient but not necessary condition. When the sampling
frequency increases properly, for example as stated in Claeskens et al. (2009), the desired
properties of the functional estimator can be achieved without requiring evenly-spaced
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time series observations. A relaxed version is to assume that the ratio between the lengths
of the largest and the smallest time windows is bounded away from zero and bounded
above. For simplicity, we assume equal-spaced observations without loss of generality.
Part (b) states a sufficient condition to achieve the consistency of the functional estimator
X̃ω as in Equation (2.5), while a proper “low correlation” assumption for this error term
is also sufficient. Finally, Part (c) indicates that the dimension of the basis expansion
shall increase with the sample size to allow for a consistent functional estimator X̃ω, and
meanwhile, the tuning parameter shall be kept as a op(1) so that the estimation error
introduced by the roughness penalty dies down as the sample size grows towards infinity.

Convergence in linear functionals

For any given ∆, we consider the convergence of the forecasting process X̂ω over (∆,1), or
equivalently, over t ∈ (0,1 −∆). Under Assumption 2.2.1, we have the following results.

Theorem 2.2.1 (Weak Convergence of X̂ω given ∆). Consider a continuous sample path
Xω on [0,1] as such for any ε > 0, there exists δ > 0 such that ∣t1 − t2∣ ≤ δ implies ∣Xω(t1)−
Xω(t2)∣ ≤ ε/2.

Let FR be a collection of all degree-R polynomials over [0,1 − ∆] for R ≥ K, and
FK ∶ FR → R be the linear functional as such FK(ψ) ∶= ⟨X̂ω(⋅ +∆) −BK(⋅ +∆,Xω), ψ⟩ for
ψ ∈ FR.

If Assumption 2.2.1 holds and given K, then FK(ψ)
pÐ→ 0 as J →∞ for all ψ ∈ FR.

If Assumption 2.2.1 holds and K → ∞, then supt∈(0,1−∆) ∣X̂ω(t +∆) −Xω(t +∆)∣
pÐ→ 0

as J →∞.

Theorem 2.2.1 establishes the convergence of the forecasting process X̂ω through its
weak convergence to the Bernstein approximating polynomial BK(t +∆,Xω) and the uni-
form convergence of BK(t,Xω) to Xω as K increases towards infinity. Basically, X̂ω con-
verges uniformly to the true path Xω with enlarging K and J ; while with a fixed K, X̂ω

still converges to the approximating polynomial BK(t +∆,Xω). Note that weak conver-
gence implies uniform convergence over intervals on the real line, but the converse is not
generally true.

Asymptotic normality

Now we explore the asymptotic distribution of the functional prediction X̂ω. However,
before we state any further assumptions or the resulting asymptotic properties, it is im-
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portant to note that the behavior of the observational error ϵω,t may affect the perspective

of the realizations from Xω and can also destabilize the asymptotic distribution of X̂ω. For
example, when a continuous sample path Xω is observed without noise, it is more plausible
to consider the functional fitting as an interpolation – in this case, we do not necessarily
have asymptotic normality for X̂ω. Yet, if Xω is observed with noise, then we can establish
a pointwise asymptotic normality under sufficient conditions.

Assumption 2.2.2. (a) The noise ϵtj is independent across all {tj}Jj=1 ⊆ [0,1].

(b) Q ∼ Jα1 and λ ∼ Jα2 with α1 > 0 and α2 < 0, such that Qλ = op(J−1/2).

Assumption 2.2.2 (a) states a sufficient condition for generating the asymptotic nor-
mality by the Lyapunov CLT which allows for unidentically distributed variables. If one
has mixing random processes, a different version of this assumption can be specified by
imposing identical distribution, where a different CLT can be applied without affecting the
result on asymptotic normality. Part (b) assumes a stronger condition on the orders of the
two parameters Q and λ, so that the non-normal part of the estimation error is dominated
and will not be inflated while deriving the asymptotic distribution.

Theorem 2.2.2. Consider a continuous sample path Xω on [0,1] as such for any ε > 0,
there exists δ > 0 such that ∣t1 − t2∣ ≤ δ implies ∣Xω(t1) −Xω(t2)∣ ≤ ε/2.

Under Assumptions 2.2.1 and 2.2.2, the following asymptotic normality holds for all
t ∈ (0,1 −∆) and R →∞ as J →∞:

[V (t;∆,R,ΦΦΦ)]−1/2 [X̂ω(t +∆) −Xω(t +∆)]
dÐ→ N (0,1),

where σ2
j ∶= Var (ϵtj) for all j, and

V (t;∆,R,ΦΦΦ) ∶=
J

∑
j=1
σ2
jA

2
tj
(t;∆,R,ΦΦΦ),

Atj(t;∆,R,ΦΦΦ) ∶=
R

∑
r=0

1

r!
∆r {ΦΦΦ(r)(t)}⊺ {∫

1

0
ΦΦΦ(s)ΦΦΦ⊺(s)ds}

−1
ΦΦΦ(tj).

Theorem 2.2.2 constructs the pointwise asymptotic normality of the functional pre-
dictor X̂ω through the asymptotically normal prediction error from X̂ω to the Bernstein
approximating polynomial BK(t,Xω) and the convergence of BK(t,Xω) to Xω as K in-
creases towards infinity. Specifically, since the inverse factorial series ∑∞r=0(r!)−1 converges,
when R → ∞, we have ∑R

r=0(r!)−1∆r < C < ∞ for some small ∆ and fixed C ∈ R, whence
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Atj(t;∆,R,ΦΦΦ) and thus A2
tj
(t;∆,R,ΦΦΦ) is bounded. Then by Assumptions 2.2.1 (b) and

2.2.2 (a), the term V (t;∆,R,ΦΦΦ) is of order J . Meanwhile, X̂ω(t +∆) −Xω(t +∆) can be
decomposed into X̂ω(t+∆)−BK(t+∆,Xω) and BK(t+∆,Xω)−Xω(t+∆), where the former
will be inflated to an asymptotic normal, and the latter is dominated because a desirably
small approximation error BK(t+∆,Xω)−Xω(t+∆) can be achieved by a sufficiently large
K. As a result, a

√
J-asymptotic normality can be achieved.

2.3 Simulation Analysis

This section presents a simulation study to illustrate the procedure of our FDA-based
method. Its performance is then compared to that of a parametric approach under both
correct specification and misspecification, thereby revealing FDA’s superiority in tracking
the f.d. data structures of stochastic processes.

2.3.1 The Data-generating Process

The data-generating process is based on the strong GARCH (1,1), where yk = (Sk −
Sk−1)/Sk−1, k = 1,2, ... is the arithmetic return on a financial asset with the price Sk.
Let h be the time window, and recall that a strong GARCH (1,1) process is repre-
sented by yk = µ + ϵk with ϵk ∼ N (0, Vk) given the σ-algebra generated by ϵk−1 and
Vk = ωh + ξhϵ2k−1 + γhVtj−1 for the f.d. parameters ωh, ξh, γh > 0 and ξh + γh < 1 (Engle,
1982; Bollerslev, 1986).

As h shrinks, (Skh, Vkh) weakly converges to its continuous-time limit (St, Vt) (Corradi,
2000). This is a simple but motivating example, since given different assumptions on the
f.d. parameters’ convergence rates (i.e., the convergence of ξh can be at rate

√
h or rate h),

(St, Vt) has been shown to be a diffusion process solution to either a stochastic volatility
(SV) model (Nelson, 1990; Meddahi, 2001)

[dst
dvt
] = [ a
(β − 1

2σ
2) + α exp(−vt)

]dt + [
√
1 − ρ2 exp(vt2 ) ρ exp(vt2 )

0 σ
] [dW

1
t

dW 2
t

] , (2.7)

where st ∶= log (St), vt ∶= log (Vt),W 1
t andW 2

t are independent standard Brownian motions,
or a deterministic volatility (DV) model (Corradi, 2000)

[dst
dvt
] = [ a

β + α exp(−vt)
]dt + [exp (

vt
2
)

0
]dW 1

t . (2.8)
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Indeed, despite that the ARCH-type diffusion models under both SV and DV have been
frequently applied in literature to estimate continuous-time processes (e.g., Das, 2002; Duan
et al., 2006; Aı̈t-Sahalia and Kimmel, 2007; Christoffersen et al., 2010; Kleppe et al., 2014;
Wu et al., 2018), there has been considerable debate on the choice of the convergence rate
assumptions, which makes the parametric analysis such as MLE tailored for either limit
questionable (e.g., Wang, 2002; Alexander and Lazar, 2021). More generally, if the f.d.
data structures have different limiting processes under different convergence conditions, it
would be impractical for parametric continuous-time generalization to exhaust all possible
limits to choose the correct one.

Hence we generate pseudo-continuous return and volatility processes as in Equations
(2.7) and (2.8) over the interval of [0,1], consisting of five equally-spaced trading points per
day for one year of 252 trading days (i.e., 5 time points per day × 252 days per year × 1 year).
The true values of parameters in Table 2.1 are used to generateN = 1000 pseudo-continuous
log-return and log-volatility2 trajectories from the SV limit, denoted respectively by SS(t)
and vS(t), and those trajectories from the DV limit, denoted respectively by SD(t) and
vD(t). In favor of parametric methods, our simulation study takes the entire pseudo-
continuous-time processes as the observations (i.e., J = 1260), denoted as SS(tj), vS(tj),
SD(tj) and vD(tj) for j = 1, ..., J , to numerically mimic the scenario where the sampling
time window becomes arbitrarily small, and the estimation is performed based on an eight-
month rolling window.

2.3.2 Fitting and Forecasting with FDA

Now we present the procedures for fitting and forecasting with FDA3 in steps (a) to (c),
and the forecast evaluation is discussed in step (d). Note that, only the implementations
in terms of SS(t) and SD(t) are explained here, and similar procedures can be applied to
vS(t) and vD(t) processes.

2It should be noted that the volatility is not always observed in practice, and discussions addressing
parametric analysis with such unobservability have been provided in literature (e.g., Ledoit and Santa-
Clara, 1998; Aı̈t-Sahalia and Kimmel, 2007; Kleppe et al., 2014). Yet, the FDA-based method can handle
the return and volatility processes separately; hence in what follows, we assume that volatility is accessible
without harming the analysis of the return. Should we be interested in the unobserved volatility, the same
FDA-based method can be applied to suitable proxies.

3In Appendix B.8, the performance of FDA-based analysis is also illustrated with observations drawn
equality spaced on a daily basis, and we show that it is capable of providing reliable forecasts with
smaller sample sizes and larger sampling time windows such as a-month-long daily data containing only
21 observations.
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(a) For each of the 1000 replications, estimate the underlying processes SS(t) and SD(t)
as in Equations (2.4) and (2.5) from Section 2.2.1, using order-four B-spline basis4 where
the number of basis functions are selected by a leave-one-out cross validation. We then
obtain S̃S(t) and S̃D(t), respectively, as in Equation (2.5).
(b) Compute the forecasting values ŜS(t +∆) and ŜD(t +∆) using Equation (2.6) with
R = 1.
(c) Implement the Kolmogorov-Smirnov (K-S) test on the pairs “ŜS(t +∆) and SS(t +
∆)”, “ŜS(t +∆) and SD(t +∆)”, “ŜD(t +∆) and SS(t +∆)” as well as “ŜD(t +∆) and
SD(t+∆)” for all time points t, to check whether the FDA-based predictors can distinguish
the true underlying processes from a falsely assumed continuous-time limit in terms of their
distributions.
(d) Calculate the mean-squared forecast error (MSFE) according to Leitch and Tanner
(1991) and Hansen and Lunde (2005), between the pairs “ŜS(t + ∆) and SS(t + ∆)”,
“ŜS(t+∆) and SD(t+∆)”, “ŜD(t+∆) and SS(t+∆)” as well as “ŜD(t+∆) and SD(t+∆)”
for the out-of-sample performance evaluation.

Figure 2.1: Functional Data Prediction, Returns

Figures 2.1 and 2.2 present the prediction results, where the underlying processes are
indicated by gray lines and the one-step-ahead rolling forecasts are indicated by the black
lines. Then, we use the K-S test to compare the predicted and the underlying processes5.

4In practice, a data-driven method can be used to select the optimal order of the B-spline basis and
the truncating term R of the Taylor expansion. However, developing such a data-driven method is not
the focus of the current paper, so we adopt the commonly used order-four B-spline basis and R = 1 (as
in step (b)) in our estimation. The tuning parameter and the number of basis functions are selected by a
leave-one-out cross validation.

5The rejection rate of the null of distribution equality over the entire time domain is shown in Figures
B.1 and B.2 of Appendix B.8.
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Figure 2.2: Functional Data Prediction, Volatility

We find that, at almost every fixed observing time tj, our forecast data shares the same dis-
tribution as its underlying process at the 5% significance level, and the null of distribution
equality is rejected (almost) everywhere for the cross-comparisons. The results imply that
the one-step-ahead rolling forecast using the FDA-based method can preserve the distribu-
tions of the true underlying processes pointwisely and can distinguish the true underlying
processes from a falsely assumed continuous-time limit in terms of their distributions.

2.3.3 Comparison to Parametric Methods

In this section, we adopt MLE as a representative parametric method for the comparison
to our FDA approach because the MLE method has been a commonly used approach
for parametrically estimate GARCH-like models (see e.g., Aı̈t-Sahalia 2002; Kleppe et al.
2014). Based on the stochastic differential equations of the two limits in Equations (2.7)
and (2.8), the likelihood functions are obtained utilizing the (joint) normality of dW 1

t and
dW 2

t , and the differentials ds and dv are approximated by the corresponding first difference
of the discrete observations.

The results for the first rolling window is shown in Table 2.1 to provide a snapshot of the
performance of MLE, while the details for all 420 estimations are plotted in Appendix B.9.
With correctly specified models, MLE shows a good asymptotic performance, while the
estimates appear to be significantly different from the truth under misspecification. As
noted in Table 2.1, the rejection rates for some parameters slightly exceed the reasonable
range of errors induced by a binomial distribution with N = 1000 trials and a probability of
success at 5% even when the model is correctly specified, which can be attributable to the
insufficient number of observations. Nevertheless, in general, methods that do not involve
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such model specifications will be handy to circumvent the discrepancy in continuous-time
modeling and analysis.

Table 2.1: Estimating GARCH Parameters with MLE

Parameters a α β σ ρ
True values (SV) 0.1 0.2 -8.5 2.7 -0.8
Fitting SV processes using a SV model (correct specification)

Estimate -0.006 0.303 -9.577 2.699 -0.801
Bias -0.106 0.103 -1.077 -0.001 -0.001

Rejection Rate 0.074 0.077 0.060 0.060 0.047
Fitting SV processes using a DV model (misspecification)

Estimate 0.101 0.476 -13.563 – –
Bias 0.001 0.276 -5.063 – –

Rejection Rate 0.063 0.808 0.906 – –

True values (DV) 0.1 0.2 -8.5 0 0
Fitting DV processes using a DV model (correct specification)

Estimate 0.089 0.202 -8.546 – –
Bias -0.011 0.002 -0.046 – –

Rejection Rate 0.044 0.056 0.047 – –
Fitting DV processes using a SV model (misspecification)

Estimate 1.068 0.200 -8.500 0.000 0.163
Bias 0.968 0.000 -0.000 0.000 0.163

Rejection Rate 0.319 1.000 1.000 1.000 0.866

Note: an 1000-time simulation allows for a “±
√
0.95 ∗ 0.05/1000 ∗ 2 = 0.014” error on

the 5%-rejection rate under correct specification.

Next, the estimation results are used for the one-step-ahead out-of-sample forecasting.
Recall Equations (2.7) and (2.8), whence the forecasts based on conditional expectation
are such that

⎧⎪⎪⎨⎪⎪⎩

ŝt+∆ ∶= Ê [st+∆∣st] = st + â∆,
v̂t+∆ ∶= Ê [vt+∆∣vt] = vt + [(β̂ − 1

2 σ̂
2) + α̂ exp(−vt)]∆

(2.9)

for the SV limit and

⎧⎪⎪⎨⎪⎪⎩

ŝt+∆ ∶= Ê [st+∆∣st] = st + â∆,
v̂t+∆ ∶= Ê [vt+∆∣vt] = vt + [β̂ + α̂ exp(−vt)]∆

(2.10)
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for the DV limit, where â, β̂, α̂, and σ̂ are the estimated parameters from MLE, and ∆ is
the forecasting step as previously defined.

Finally, we compare the predictors of the FDA- and MLE-based methods in MSFE. For
the prediction of DV volatility using an SV model, since the parameters α and β can be
estimated accurately without stochastic noise, and the conditional mean prediction relies
only on α and β as shown in Equation (2.9), this MLE estimation is essentially under correct
specification and hence provides a precise forecast. In all three other cases where the MLE
is under misspecification, FDA outperforms MLE in terms of MSFE in all 1000 simulations.
When MLE is under correct specification, the FDA-based method still dominates MLE in
all 1000 simulations for the prediction of the stochastic return and volatility as well as the
return of DV process, while 822 out of 1000 times, FDA performs better for the prediction
of the DV volatility. The distributions of the comparisons in relative MSFE – the ratio of
the MSFEs between FDA and MLE – are presented in Appendix B.8.

2.4 Conclusion

In continuous-time modeling, parametric methods fail to provide reliable analysis when
there is discrepancy due to the existence of multiple limits. This paper adopts FDA to
uncover the true continuous-time underlying processes subject to f.d. data structures under
infill asymptotics and suggests a forecasting method by integrating FDA with Taylor series
expansion, which also explores an application of FDA in out-of-sample prediction.

Our theorems demonstrate that the FDA-based method only requires the smoothness
of the the conditional mean function and the low correlation of the observation errors, and
with proper basis expansions, large samples ensure that the functional estimator converges
to a unique and well-defined limit. The simulation analysis shows that the FDA method
is capable of distinguishing processes with different limits in out-of-sample prediction and
outperforms the MLE method in MSFE, which makes it a preferable tool for fitting and
forecasting when there is uncertainty in modeling the underlying process. Finally, though
we illustrate our idea with a GARCH example, it should be noted that the suggested FDA-
based method is not limited to any particular continuous-time model, and can be further
extended as in Kearney et al. (2015) to processes with jump dynamics, which are widely
used in describing equity returns.
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Chapter 3

Stochastic Discount Factors in
Incomplete Markets1

3.1 Introduction

Stochastic discount factor (henceforth SDF) forms the basis for all asset pricing and pro-
vides a summary of investor preferences for payoffs over different states of the world. Under
the law of one price (henceforth LOOP), the asset pricing equation established by Harrison
and Kreps (1979), Harrison and Pliska (1981) and Hansen and Jagannathan (1991) im-
plies that asset prices today are a function of their expected future payoffs discounted by
the SDF. When markets are complete, the asset pricing equation leads to a unique SDF,
whereas there is a multiplicity of admissible SDFs that satisfy the equation in the absence
of complete markets (Hansen and Jagannathan, 1991; Boyle et al., 2008; Kaido and White,
2009), thus complicating the study of financial market equilibrium, portfolio optimization,
and derivative securities (Skiadas, 2007; Staum, 2007; Boyle et al., 2008). It is therefore
essential to establish a framework for characterizing the incomplete market SDF set, and
assess the extent of market incompleteness.

Markets are incomplete when perfect risk transfer is impossible, and this incompleteness
can be caused by a variety of factors such as jumps or volatility in underlying asset prices
(Jackwerth, 2004; Staum, 2007; Willems and Morbee, 2008; Bondarenko and Longarela,
2009; Mnif, 2012; Marroquı et al., 2013; Kwak et al., 2014; Cheridito et al., 2016; Bouzianis
and Hughston, 2020). This paper first considers a discrete-time setting, which does not

1This chapter is co-authored with Tao Chen
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restrict the class of unhedgeable risks, and therefore does not constrain the cause of market
incompleteness. Particularly, we regard markets as incomplete when there are extra states
relative to the traded assets due to idiosyncratic risks that cannot be diversified by trading
the spanning assets in the market. We demonstrate that the incomplete market SDF set
constructed under this general setup has a unique boundary point, and only shrinks to
this point when the market completes. This nice property allows us to examine features
of the incomplete market SDF set, and enables us to determine the degree of market
incompleteness.

To facilitate the empirical implementation of our results, we parameterize the market
incompleteness in a continuous-time setting and propose that the undiversifiable risk is
caused by a specific, but practically realistic source of incompleteness – stochastic jumps,
where prices exhibit positive probabilities of unexpected changes, regardless of the interval
between successive observations. Jump diffusion processes have been frequently used to
model asset pricing, and their empirical performance in fitting the time-series properties
of the asset price has been extensively evidenced by a number of studies (Dritschel and
Protter, 1999; Svishchuk et al., 2000; Bellamy, 2001; Andersen et al., 2002; Carr et al.,
2002; Geman, 2002; Willems and Morbee, 2008; Bouzianis and Hughston, 2020; Aı̈t-Sahalia
et al., 2021). In most cases, jumps cause incompleteness, except in very simple or unusual
models, whence the market offers sufficient trading opportunities (Dritschel and Protter,
1999; Staum, 2007). As such, inspired by Merton (1976)’s work, whereby the total change in
price should be a combination of the normal and abnormal price vibrations, our continuous-
time framework considers complete markets as those in which asset prices are subject
only to normal fluctuations, and incomplete markets as those with a positive likelihood of
experiencing unanticipated changes in price. We demonstrate that the theoretical results
developed in the discrete-time counterpart are still valid in the continuous-time setting,
and we further use those results to establish the degree of market incompleteness.

In the literature, one popular measure for the degree of market incompleteness is
through the correlation between the derivative price and its basis asset values (Cass and
Citanna, 1998; Marin and Rahi, 2000; Dávila et al., 2017; Chen et al., 2021), where a
lower correlation indicates a greater degree of incompleteness, and the market is complete
only when the correlation reaches 100%. Another measure employs the root-mean-squared
error between the payoff function of the derivative and the value of the optimal-replication
portfolio constructed by the underlying securities (Bertsimas et al., 2001). The degree of
incompleteness is thus determined by the extent to which the replicated portfolio is able
to correctly price the derivative of the underlying assets.

Our approach is distinct from the previous ones in that instead of focusing on the
linkage between the prices of derivative securities and their underlying assets, we only
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concern the prices of the primitive assets. In particular, considering that SDFs summarize
investor preferences for payoffs across different states of the world, we define the degree
of market incompleteness as how much the investor’s risk preference under incomplete
markets diverges from that under complete markets. The empirical implementation of
this measure is summarized as follows, and we will elaborate in Sections 3.2 and 3.3 with
discrete- and continuous-time examples. After constructing the incomplete market SDF set
and determining its corresponding complete SDF boundary point using the asset prices,
we employ the distance between their probability distributions to estimate the degree
of market incompleteness. As the complete market SDF is the boundary point of the
incomplete market SDF set, this distance vanishes only if the extra-state probability is zero,
that is, when the incomplete market SDF set degenerates into a unique complete market
SDF. It can be challenging to gauge this distance, since the complete and incomplete
SDFs have probability distributions of different dimensions, i.e., there are extra states
with positive probabilities under incomplete markets compared with complete markets. A
natural solution to this problem is the Wasserstein metric, a widely adopted measure in
estimating the distance between distributions whose supports differ, and its value reflects
the least cost required to transform from one distribution to another (Mallows, 1972;
Del Barrio et al., 1999; Villani, 2009; Nguyen, 2011).

The remainder of this paper proceeds as follows. Sections 3.2 and 3.3 sketch the discrete-
and continuous-time frameworks to model SDF under incomplete markets, and show the
applicability of our model in assessing the evolution of market incompleteness. Section 3.4
provides the empirical analysis and investigates the evolution of incompleteness in four of
the world’s largest stock markets. Section 3.5 concludes with a summary and a discussion
of directions for future research.

3.2 Discrete-time Setting

In this section, we model the SDF set and the market incompleteness under three discrete-
time setups, where each case is denoted as one risk-free bond−A risky asset(s)−T periods−S
states with A ∈ N, and T ≥ 2 ∈ N . The number of traded assets is assumed to be less than
the number of states at the end of each period, i.e., A + 1 < S, so that the markets are
incomplete, while the cause of this incompleteness is not imposed. Then, there is a set of
SDFs identified by the distribution of observed asset prices (Boyle et al., 2008; Kaido and
White, 2009).

To motivate our study, we begin with a two-period market with only one additional
state relative to the number of traded assets in Sections 3.2.1 and 3.2.2. We formalize the

29



setup as follows.

Assumption 3.2.1. Suppose that there are one risk-free bond and A ∈ N risky assets.
We consider a two-period market, t ∈ {0,1}, with trading occurring on dates t = 0,1.
The outcome of the second period, t = 1, is uncertain, and is represented by a finite set
Ω = {ωs}s=1,2,...,S comprising S = A + 2 states of nature. Let F be the set of events with all
subsets of Ω and P be the physical probability measure such that P ∶ F → R . There exists
a set P of complete probability measures on (Ω,F) such that P ∈ P . Letting P (ωs) = πs be
the probability of state ωs such that πs are strictly positive scalars for all s = 1,2, . . . , S in
incomplete markets, while πS = 0 in complete markets.

Assumption 3.2.1 has three implications. First, there are only two periods in the
economy, and thus, we do not index the states by time in the subsequent two sections. We
will extend our setup to multiperiods, where t takes the value from a finite sequence of
real numbers in [0,1] that are equally-spaced, and continuous-time, where t is generalized
to take any value in [0,1]. Second, without loss of generality, the last state is assumed to
be the extra one, which is caused by an unknown source of idiosyncratic risk that cannot
be hedged by the existing marketed assets. Third, our basic design requires the markets
to be either complete, with the same number of marketed assets and states, or incomplete,
with only one extra state. In Section 3.2.4, this restriction is relaxed to a finite number of
extra states, and πS is extended to a vector such that2 [πs̄]s̄=A+2,A+3,...,S ∈ RS−1−A

++ . Then,
the market completes only when3 [πs̄]s̄=A+2,A+3,...,S = 0S−1−A.

3.2.1 One Risk-free Bond, One Risky Asset, Two periods, Three
States (1-1-2-3)

Suppose that we have one risk-free bond and one risky primitive asset in the economy,
and there are three states at period t = 1 such that Ω = (ω1, ω2, ω3), correspondingly there
exists a set of physical probabilities

Π = {π = [π1, π2, π3]⊺ ∈ R3
++ ∶

3

∑
s=1
πs = 1} . (3.1)

As we have two assets, the gross rate of returns realized at the second period are of
length two4, i.e., r (ωs) = [rs,1]⊺, where rs denotes the return for the risky asset in state

2We write v ∈ Rn
++

for a vector that is strictly positive in all its coordinates.
30n denotes a zero vector of size n.
4For vectors and matrices, we shall use the superscript ‘⊺’ to denote transpose.
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s and, for simplicity, the return of the bond is 1, suggesting a zero risk-free rate. Let
r = [r(ω1),r(ω2),r(ω3)], we assume that the second-moment matrix of r, E[rr⊺], is
nonsingular, so that the cases where the entries of r is linearly dependent are ruled out.
This restriction also guarantees that LOOP holds trivially for linear combinations of r
(Hansen and Jagannathan, 1991). We can treat r as payoffs for assets with price one, and
the asset pricing equation is expressed as5

Eπ[rM] =
3

∑
s=1
r (ωs)M (ωs)πs = 12, (3.2)

where the subscript of E is used to specify which probability measure is being used to
compute the expectation. As discussed in Kaido and White (2009), the SDF M is a non-
zero F -measurable random variable such that M ∶ Ω →Mπ, where Mπ is the set of SDFs
under P ∈ P that satisfies Equation (3.2):

Mπ ∶= {M ∶ Eπ[rM] = 12} . (3.3)

Let M s ≡ M(ωs) and α = π3M3 ∈ R∗ be the free variable6,7, for any π ∈ Π, we can
think of M as a vector in R3

∗, where the three coordinates give the values of M on the
three possible outcomes. Thus, Equation (3.3) can be rewritten as8

Mπ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
M ∈ R3

∗ ∶
⎡⎢⎢⎢⎢⎢⎣

M1

M2

M3

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1−r2
r1−r2
r1−1
r1−r2
0

⎤⎥⎥⎥⎥⎥⎦
π−1 + α

⎡⎢⎢⎢⎢⎢⎣

r2−r3
r1−r2

− r1−r3
r1−r2
1

⎤⎥⎥⎥⎥⎥⎦
π−1, α ∈ R∗

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Lastly, we write C as the set that combines all Mπ’s given π ∈Π such that C ∶= {Mπ,π ∈
Π}.

51n is a vector of ones in Rn .
6M can be also thought as the discounted Radon–Nikodym derivative, where the Radon–Nikodym

derivative D is defined as a F-measurable random variable such that for any A ∈ F ,Q(A) = ∫ADdP
(Kaido and White, 2009) with Q being the risk-neutral probability measure. In our setup, assuming zero
risk-free interest rate, M = E[dQ/dP ∣F]. Since Q and P are equivalent in measure, they agree on which
events have zero probability, and hence, M is non-zero.

7We write v ∈ Rn
∗
for a vector that is non-zero in all its coordinates.

8To simplify our notation, for two vectorsA andB of the same sizes, AB is their element-wise product
with the same size, and its element is expressed as (AB)i =Ai×Bi. Similarly, for a vector A, the element-
wise power of a real number x on it is Ax, i.e., (Ax

)i = (Ai)
x; for a real number x, the element-wise power

of a vector A on it is xA, i.e., (xA)i = x
Ai .
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Set properties of C

The following proposition provides the limit and boundary points of the set of probability
measures in Equation (3.1), which will later be used to explore the boundary point of the
incomplete market SDF set C. The proof is in Appendix C.2.

Proposition 3.2.1. Consider the metric space (Π̄, d) such that

Π̄ = {π = [π1, π2, π3]⊺ ∶
3

∑
s=1
πs = 1, π1, π2 > 0, π3 ≥ 0}

and d is the Euclidean distance metric. Then, the set of limit points of Π in (Π̄, d) is

L(Π) = {π = [π1, π2, π3]⊺ ∶
3

∑
s=1
πs = 1, π1, π2 > 0, π3 ≥ 0}

and the set of boundary points of Π in Π̄ is

∂Π = {π = [π1, π2, π3]⊺ ∶
3

∑
s=1
πs = 1, π1, π2 > 0, π3 = 0} .

The probability set Π̄ has the first two states being strictly positive and the last state
being nonnegative, which therefore, covers all complete and incomplete market scenarios
described in Assumption 3.2.1. Proposition 3.2.1 implies that there is a unique boundary
point for Π in (Π̄, d) when limπ3 → 0, which is compatible with Assumption 3.2.1 such
that the incompleteness is introduced through a non-tradable risk with positive likelihood
of occurrence.

In accordance to Proposition 3.2.1, the next result presents that the combined incom-
plete market SDF set C has the complete market SDF on its boundary, and its proof can
be found in Appendix C.3.

Theorem 3.2.1. Consider a metric space (C̄, d1) with C̄ ∶= {Mπ,π ∈ Π̄} and d1 being the
Wasserstein distance such that for x,y ∈ Π̄,

d1 (Mx,My) = inf
w

⎧⎪⎪⎨⎪⎪⎩

Sx

∑
sx=1

Sy

∑
sy=1

wsysxx
sxd2 (M sx ,M sy) ∶w ∈W (x,y)

⎫⎪⎪⎬⎪⎪⎭
, (3.4)

where9 W (x,y) ∶= {w ∈ RSy×Sx
+ ∶w⊺1Sy = x,wx = y} is the set of transport plans between

x and y. Sz is the number of states with non-zero probabilities and the superscript sz

9We write A ∈ RM×N
+

for matrix of dimension M ×N that is non-negative in all its elements.
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is the index of the elements in the vector under the physical probability z ∈ Π̄. For all
sx = 1,2, . . . , Sx and sy = 1,2, . . . , Sy,

d2 (M sx ,M sy) = ∣vsx − vsy ∣ + ∣usx − usy ∣ , (3.5)

where
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v(x) =
⎡⎢⎢⎢⎢⎢⎢⎣

1−r2
r1−r2
r1−1
r1−r2

0

⎤⎥⎥⎥⎥⎥⎥⎦
x−1 and u(x) =

⎡⎢⎢⎢⎢⎢⎢⎣

r2−r3
r1−r2

− r1−r3
r1−r2

1

⎤⎥⎥⎥⎥⎥⎥⎦
x−1, x ∈Π;

v(x) =
⎡⎢⎢⎢⎢⎣

1−r2
r1−r2
r1−1
r1−r2

⎤⎥⎥⎥⎥⎦
x−1 and u(x) =

⎡⎢⎢⎢⎢⎣

0

0

⎤⎥⎥⎥⎥⎦
x−1, x ∈ ∂Π.

Then, the set of limit points of C in (C̄, d1) is

L(C) = {Mπ,π ∈Π} ∪ {Mπ,π ∈ ∂Π} ,

where, for any π ∈ ∂Π,

Mπ = {[
M1

M2] = [
1−r2
r1−r2
r1−1
r1−r2
]π−1} ,

and the set of boundary points of C is denoted as ∂C = {Mπ,π ∈ ∂Π} .

Theorem 3.2.1 utilizes the Wasserstein metric as the distance measure, which is a natu-
ral way to compare two probability distributions with different supports, and thus, suitable
to quantify the divergence of the incomplete market SDFs from the complete market one.
Then, we have the following Lemma 3.2.1, suggesting that, for every incomplete market
SDF set, Mx ∈ C, there is a complete market SDF My ∈ ∂C that minimizes the distance
between them. The proof of this lemma is presented in Appendix C.4, and we will further
utilize it in the discussion of set properties ofC and the measure for market incompleteness.

Lemma 3.2.1. For every Mx ∈C, there exists My∗ such that

My∗ = argmin
My∈∂C

d1(Mx,My).

The next result develops an overview of the incomplete market SDF set, where C is
convex, open, bounded, and not compact. The proof is provided in Appendix C.5.
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Theorem 3.2.2. Let Π be the set of physical probabilities satisfying Equation (3.1).

Let Mπ be the identified SDF set in the 1-1-2-3 case satisfying Equation (3.3) under
π ∈Π.

Let C be the combined SDF set such that C = {Mπ,π ∈Π} . Then, C is a convex set.

Let (C̄, d1) be the metric space such that C̄ = {Mπ,π ∈ Π̄} and for x,y ∈ Π̄, d1 is as

defined in Equation (3.4). Then, C is open, bounded and not compact under (C̄, d1) .

Measure for market incompleteness

As discussed in Theorems 3.2.1 and 3.2.2, we can hence employ the metric d1 defined
in Equation (3.4) to measure for market incompleteness. Assuming that, at t = 0, the
complete and incomplete market SDFs are 1, and the distance between them is 0 following
the metric d1, for every x ∈ Π̄, the degree of market incompleteness measured at t = 1 is
defined as in Equation (3.6), which is the least transport cost from the SDF set Mx ∈ C̄
to the complete market SDF set My ∈ ∂C ∶

MI(x) = min
My∈∂C

d1(Mx,My)

= min
My∈∂C

inf
w

⎧⎪⎪⎨⎪⎪⎩

Sx

∑
sx=1

Sy

∑
sy=1

wsysxx
sxd2 (M sx ,M sy) ∶w ∈W (x,y)

⎫⎪⎪⎬⎪⎪⎭
.

(3.6)

Let M∗y = argmin
My∈∂C d1(Mx,My), since d1 is a valid metric and the complete market

SDF is the boundary point of the incomplete market SDF set, the degree of market in-
completeness equals zero only when markets are complete, i.e., limMx→My∗

MI(x) = 0. As
this degree increases (decreases), the cost to transport the incomplete market SDF to the
complete market SDF increases (decreases), which implies more (less) divergence of the
current market from completeness.

3.2.2 One Risk-free Bond, A Risky Assets, Two Periods, A + 2
States (1-A-2-A + 2)

This section extends the previous economy by having A ≥ 2 risky primitive assets and A+2
states at t = 1 such that Ω = (ωs)s=1,2,...,A+2. Correspondingly, for P ∈ P, there is a set of
physical probabilities

Π = {[π1, π2, . . . , πA+2]⊺ ∈ RA+2
++ ∶

A+2
∑
s=1

πs = 1} . (3.7)
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In each state s, assuming a zero risk-free interest rate, the gross rate of return vector
realized is of length A+1 and denoted as r(ωs) = [r1,s, r2,s, . . . , rA,s,1]⊺ , where ra,s denotes
the gross rate of return for the risky asset a, and we still assume a zero risk-free rate.
Let r = [r(ω1),r(ω2), . . . , r(ωA+2)], the second-moment matrix of r is again nonsingular.
Recall that based on the asset pricing equation

Eπ[rM] =
A+2
∑
s=1
r (ωs)M (ωs)πs = 1A+1, (3.8)

the SDF is a non-zero F -measurable random variable such that M ∶ Ω →Mπ, where Mπ

is the set of SDFs under P ∈ P that satisfies Equation (3.8):

Mπ = {M ∶ Eπ[rM] = 1A+1} . (3.9)

Let M s ≡ M(ωs) and α = πA+2MA+2 ∈ R∗ be the free variable, for any π ∈ Π, we
can think of M as a vector in RA+2

∗ , where each coordinate gives the value of M on the
corresponding outcome. Thus, Equation (3.9) implies that10

r′M (1∶A+1)∗π(1∶A+1)∗ = 1A+1 + α (−r′′) ,

where r′ = (r)∗(1∶A+1) and r′′ = (r)∗(A+2) , and we can be rewrite it as

Mπ = {M ∈ RA+2
∗ ∶M = v(π) + αu(π), α ∈ R∗} ,

where

v(π) = [(r
′)−1 1A+1

0
]π−1 and u(π) = [− (r

′)−1 (r′′)
1

]π−1.

Lastly, the combined set C of Mπ’s for all π ∈Π is defined as C ∶= {Mπ,π ∈Π}.

Set properties of C

As in the 1-1-2-3 case, we start by showing that the complete market SDF is indeed the
boundary point of the incomplete market SDF set. The following proposition demonstrates
that the probability distribution under complete markets is the boundary point of the set
of probabilities under incomplete markets, and its proof is discussed in Appendix C.6.

10For a matrix A, the ith row of the matrix is denoted as Ai∗ and the jth column of the matrix is
denoted as A∗j .
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Proposition 3.2.2. Consider the metric space (Π̄, d) such that

Π̄ = {π = [π1, π2, . . . , πA+2]⊺ ∶
A+2
∑
s=1

πs = 1, πs > 0 for s = 1,2, . . . ,A + 1, πA+2 ≥ 0}

and d is the Euclidean distance metric. Then, the set of limit points of Π in (Π̄, d) is

L(Π) = {π = [π1, π2, . . . , πA+2]⊺ ∶
3

∑
s=1
πs = 1, πs > 0 for s = 1,2, . . . ,A + 1, πA+2 ≥ 0}

and the set of boundary points of Π in Π̄ is

∂Π = {π = [π1, π2, . . . , πA+2]⊺ ∶
A+2
∑
s=1

πs = 1, πs > 0 for s = 1,2, . . . ,A + 1, πA+2 = 0} .

Then, the following result corroborates with Theorem 3.2.1 that the constructed in-
complete SDF set indeed has its boundary point to be the complete market SDF under
the defined metric space. The proof of this result is presented in Appendix C.7

Theorem 3.2.3. Consider the metric space (C̄, d1) with C̄ = {Mπ,π ∈ Π̄} and d1 being
the Wasserstein distance such that for x,y ∈ Π̄,

d1(Mx,My) = inf
w

⎧⎪⎪⎨⎪⎪⎩

Sx

∑
sx=1

Sy

∑
sy=1

wsysxx
sxd2 (M sx ,M sy) ∶w ∈W (x,y)

⎫⎪⎪⎬⎪⎪⎭
, (3.10)

where W (x,y) ∶= {w ∈ RSy×Sx
+ ∶w⊺1Sy = x,wx = y} is the set of transport plans between x

and y. Sz is the number of states with non-zero probabilities and the subscript sz is the index
of the elements in the vector under the physical probability z ∈ Π̄. For all sx = 1,2, . . . , Sx

and sy = 1,2, . . . , Sy,
d2(M sx ,M sy) = ∣vsx − vsy ∣ + ∣usx − usy ∣ ,

where ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

v(x) =
⎡⎢⎢⎢⎢⎣

(r′)−1 1A+1

0

⎤⎥⎥⎥⎥⎦
x−1 and u(x) =

⎡⎢⎢⎢⎢⎣

− (r′)−1 (r′′)
1

⎤⎥⎥⎥⎥⎦
x−1, x ∈Π;

v(x) = (r′)−1 1A+1x−1 and u(x) = 0A+1x−1, x ∈ ∂Π.

Then, the set of limit points of C in (C̄, d1) can be denoted as

L(C) = {Mπ,π ∈Π} ∪ {Mπ,π ∈ ∂Π} ,
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where, for any π ∈ ∂Π,
Mπ = {M = [(r′)−1 1A+1π−11∶(A+1)]} ,

and the set of boundary points of C is then ∂C = {Mπ,π ∈ ∂Π} .

Based on Theorem 3.2.3, we can then derive the following lemma, which will be em-
ployed further in the discussion of set properties and the degree of market incompleteness.
Its proof is shown in Appendix C.8

Lemma 3.2.2. For every Mx ∈C, there exists My∗ such that

My∗ = argmin
My∈∂C

d1(Mx,My).

The next result establishes the convexity, openness, boundedness, and non-compactness,
for C in the 1-A-2-(A+2) case with its proof discussed in Appendix C.9

Theorem 3.2.4. Let Π be the set of all the probability density measures under P satisfying
Equation (3.7).

Let Mπ be the identified SDF set in the 1-A-2-(A+2) case satisfying Equation (3.9)
given π in Π.

Let C be the combined SDF set such that C = {Mπ,π ∈Π} . Then, C is a convex set.

Let (C̄, d1) be the metric space such that C̄ = {Mπ,π ∈ Π̄} and for x,y ∈ Π̄, d1 is as

defined in Equation (3.10). Then, C is open, bounded and not compact under (C̄, d1) .

Measure for market incompleteness

Similar to the 1-1-2-3 case, based upon Theorems 3.2.3 and 3.2.4, we adopt d1 defined
in Equation (3.10) as the measure for market incompleteness. Given that at t = 0, the
complete and incomplete market SDFs are assumed to be 1, and the distance between
them is 0 following the metric d1, for every x ∈ Π̄, the degree of market incompleteness is
defined as in Equation (3.11), which is the least transport cost from Mx ∈ C̄ to My ∈ ∂C ∶

MI(x) = min
My∈∂C

d1(Mx,My). (3.11)

Let M∗y = argmin
My∈∂C d1(Mx,My), since d1 is a valid metric and the complete market

SDF is the boundary point of the incomplete market SDF set, the degree of market incom-
pleteness equals zero only when the markets become complete, i.e., limMx→My∗

MI(x) = 0.
A higher (lower) degree suggests more (less) transport cost is required from the incomplete
to the complete market SDF, implying that the market is further away from (closer to)
the complete market.
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3.2.3 One Risk-free Bond, One Risky Asset, Three Periods, Three
States (1-1-3-3)

We now extend our layout to a three-period financial market. Consider a time interval
[0,1], there are 2 equally-spaced subperiods in [0,1], and h = 1/2 is the time window.
Suppose we have two long-lived assets, one risk-free bond and one risky primitive asset,
available for trading at time points {0,1/2,1}, and three states at each t = {kh}k=1,2 such
that the finite set of states Ωt = (ω1

t , ω
2
t , ω

3
t ). Letting Pt(ωs

t ) = πs
t be the physical probability

of state ωs
t , the corresponding set of physical probabilities under Pt is

Πt = {πt = [π1
t , π

2
t , π

3
t ]
⊺ ∈ R3

++ ∶
3

∑
s=1
πs
t = 1} . (3.12)

Assuming a zero risk-free interest rate, the gross rate of asset returns realized at t = kh
in state s is of length two and denoted as rt(ωs

t ) = [r1,st ,1]⊺, where ra,st is the return of
the risky asset a in state s at time t. Let rt = [rt(ω1

t ),rt(ω2
t ),rt(ω3

t )], we assume as in
the previous sections that the second-moment matrix of rt is nonsingular. Then, each
subperiod [(k−1)h, kh] can be viewed as a two-period model as in the 1-1-2-3 case, and we
have the random variable mt ∶ Ωt → mπt , where mπt is the set of subperiod SDFs under
Pt ∈ P t that satisfies the asset pricing equation:

mπt ∶= {mt ∶ Eπt[rtmt] = 12} .

Here, we denote the above SDF set as the one-period SDF set with mt being the SDF
that discount the asset payoff at time kh to its price at time (k − 1)h for k = 1,2, and

the multiperiod SDF at t is defined as M t = Πt/h
k=1mkh (Cochrane, 2009), which prices a

k-period payoff and satisfies the following equation

Eπkh
[rkhM kh] =M (k−1)h.

Then, the multiperiod SDF set at t can be written in the form Mπt = Π
t/h
k=1mπkh

.

To examine the evolution of market incompleteness over time, we focus on the single-
period SDF set at time t such that for every πt ∈Πt

mπt =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

mt ∈ R3
∗ ∶
⎡⎢⎢⎢⎢⎢⎣

m1
t

m2
t

m3
t

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1−r1,2t

r1,1t −r
1,2
t

r1,1t −1
r1,1t −r

1,2
t

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

π−1t + α

⎡⎢⎢⎢⎢⎢⎢⎢⎣

r1,2t −r
1,3
t

r1,1t −r
1,2
t

− r1,1t −r
1,3
t

r1,1t −r
1,2
t

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

π−1t , α ∈ R∗

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

,
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where ms
t ≡ mt(ωs

t ) and α = (1 − π1
t − π2

t )m3
t , and the set that contains all single-period

SDFs in each period t is ct ∶= {mπt ,πt ∈Πt} .
Further, analogous to the results proved in the 1-1-2-3 case, the following proposition

and theorems hold.

Proposition 3.2.3. For t = kh, consider the metric space (Π̄t, d) such that

Π̄t = {πt = [π1
t , π

2
t , π

3
t ]
⊺ ∶

3

∑
s=1
πs
t = 1, π1

t , π
2
t > 0, π3

t ≥ 0}

and d is the Euclidean distance metric. Then, the set of limit points of Πt in (Π̄t, d) is

L(Πt) = {πt = [π1
t , π

2
t , π

3
t ]
⊺ ∶

3

∑
s=1
πs
t = 1, π1

t , π
2
t > 0, π3

t ≥ 0} ,

and the set of boundary points of Πt in Π̄t is

∂Πt = {πt = [π1
t , π

2
t , π

3
t ]
⊺ ∶

3

∑
s=1
πs
t = 1, π1

t , π
2
t > 0, π3

t = 0} .

Theorem 3.2.5. Consider the metric space (c̄t, d1) such that c̄t = {mπt ,πt ∈ Π̄t} and for
xt,yt ∈ Π̄t,

d1(mxt ,myt
) = inf

wt

⎧⎪⎪⎨⎪⎪⎩

Sxt

∑
sxt=1

Syt

∑
syt=1

w
sxtsyt
t x

sxt
t d2 (msxt

t ,m
syt
t ) ∶wt ∈W (xt,yt)

⎫⎪⎪⎬⎪⎪⎭
, (3.13)

where W (xt,yt) ∶= {wt ∈ RSyt×Sxt
+ ∶ w⊺t 1Syt

= xt,wtxt = yt} is the set of transport plans
between xt and yt. Szt is the number of states with non-zero probabilities and the subscript
szt is the index of the elements in the vector under the physical probability zt ∈ Π̄t. For all
sxt = 1,2, . . . , Sxt and syt

= 1,2, . . . , Syt
,

d2 (msxt
t ,m

syt
t ) = ∣vsxt − vsyt ∣ + ∣usxt − usyt ∣ ,

where
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v(xt) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1−r1,2t

r1,1t −r
1,2
t

r1,1t −1
r1,1t −r

1,2
t

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

x−1t and u(xt) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1,2t −r
1,3
t

r1,1t −r
1,2
t

− r1,1t −r
1,3
t

r1,1t −r
1,2
t

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

x−1t , xt ∈Πt;

v(xt) =
⎡⎢⎢⎢⎢⎢⎣

1−r1,2t

r1,1t −r
1,2
t

r1,1t −1
r1,1t −r

1,2
t

⎤⎥⎥⎥⎥⎥⎦
x−1t and u(xt) =

⎡⎢⎢⎢⎢⎣

0

0

⎤⎥⎥⎥⎥⎦
x−1t , xt ∈ ∂Πt.
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Then, the set of limit points of ct in c̄t can be denoted as

L(ct) = {mπt ,πt ∈Πt} ∪ {mπt ,πt ∈ ∂Πt} ,

where, for any πt ∈ ∂Πt,

mπt =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
[m

1
t

m2
t

] =
⎡⎢⎢⎢⎢⎢⎣

1−r1,2t

r1,1t −r
1,2
t

r1,1t −1
r1,1t −r

1,2
t

⎤⎥⎥⎥⎥⎥⎦
π−1t

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

and the set of boundary points of ct is then ∂ct = {mπt ,πt ∈ ∂Πt} .

Theorem 3.2.6. Let Πt be the set of physical probability measures satisfying Equation (3.12).
Let mπt be the identified SDF set in the 1-1-3-3 case given the probability measure πt in
Πt, and let ct be the combined SDF set such that ct = {mπt ,πt ∈Πt} . Then, ct is a convex
set.

Let (c̄t, d1) be the metric space such that c̄t = {mπt ,πt ∈ Π̄t} and for xt,yt ∈ Π̄t, d1 is
as defined in Equation (3.13). Then, ct is open, bounded and not compact under (c̄t, d1).

Last, we derive the degree of market incompleteness based on the set properties in The-
orems 3.2.5 and 3.2.6. Again, since at time 0, the complete and incomplete market SDFs
are assumed to be 1, the distance between them is 0 following the metric d1. Thus, given

{xkh ∈ Π̄kh}
t/h
k=1 , the degree of market incompleteness at t is defined as in Equation (3.14),

which is the average of the least transport costs from mxkh
∈ c̄kh to mykh

∈ ∂ckh from
time h to t, indicating that we weigh the degree of market incompleteness equally across
subperiods.

MI ({xkh}t/hk=1) =
h

t

t/h

∑
k=1

min
mykh

∈∂ckh
d1 (mxkh

,mykh
) . (3.14)

As the subperiod degrees of market incompleteness are functions of their subperiod asset

returns, which are uncorrelated, we take the average of them so that MI ({xkh}t/hk=1) is

not monotonic in t. Moreover, since d1 is a valid metric and the complete market SDF
is the boundary point of the incomplete market SDF set in each subperiod, the degree
of market incompleteness equals zero only when markets are dynamically complete, i.e.,
when markets are complete at every subperiods. Hence, the estimated M̂I ({xh}) and
M̂I ({xkh}2k=1) depict the evolution of market incompleteness over the time interval [0,1].
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3.2.4 Generalization of the Discrete-time Setting

Finally, we consider a generalized discrete-time setting in which there are a finite number
of additional states rather than only one, while still allowing for any types of idiosyncratic
risks. The setup is formalized as follows.

Assumption 3.2.2. Suppose that there are one risk-free bond and A ∈ N risky assets. Let
S ≥ A+ 2 and (Ω,F , P ) be the complete probability space, where Ω, F and P are the same
as defined in Assumption 3.2.1. Suppose that there are K ≥ 1 equally-spaced subperiods
in [0,1], and let h = 1/K be the time window. All assets are long-lived and available for
trading at time points {0, h, . . . , (K−1)h,1}, and there are S states at each t = {kh}k=1,2,...,K
such that Ωt = (ωs

t )s=1,2,...,S. Let Pt(ωs
t ) = πs

t be the physical probability of state ωs
t , where π

s
t

are strictly positive scalars for all s in incomplete markets, while [πs̄
t]s̄=A+2,A+3,...,S = 0S−A−1

when the markets are complete. There exists a set P t of complete probability measures at
each t = {kh}k=1,...,K such that Pt ∈ P t .

Assumption 3.2.2 is a generalization of Assumption 3.2.1, where the amount of unhedge-
able risks at time t is no longer restricted to be one, and we allow for multiple additional
states in each subperiod. Correspondingly, the set of physical probabilities at t when the
markets are incomplete is11

Πt = {[π1
t , π

2
t , . . . , π

S
t ] ∈ RS

++ ∶
S

∑
s=1
πs
t = 1}. (3.15)

At time t = kh, the gross rate of return vector of length A + 1 realized at state s is

rt(ωs
t ) = [r1,st , r2,st , . . . , rA,s

t , r0t ]
⊺
, where ra,st denotes the return of the risky asset a in state

s, and r0t denotes the risk-free rate. Let rt = [rt(ωs
t )]s=1,2,...,S, when the assumption that

the second-moment of rt is nonsingular holds, at the end of each subperiod t, we have the
random variable mt ∶ Ωt →mπt , where mπt is the set of SDFs under Pt ∈ P t that satisfies
the asset pricing equation:

mπt ∶= {mt ∶ Eπt[rtmt] = 1A+1.} . (3.16)

Subsequently, let αt = [πs̄
tm

s̄
t]s̄=A+2,A+3,...,S ∈ RS−A−1

∗ be the vector of free variables, we can
derive the single-period SDF set at time t in the form such that for every πt ∈Πt

mπt = {mt ∈ RS
∗ ∶mt = vt(πt) +ut(πt)αt,αt ∈ RS−A−1

∗ } ,
11Here, we restrict all πs

t ’s to be positive under incomplete markets, instead of letting πs
t ≥ 0 for s ≥ A+2,

because the latter can be simplified to a lower-dimensional case. For instance, if πS
t = 0 under both complete

and incomplete markets, then, our setup can be reduced to an (S − 1)-dimensional case.
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where

vt(πt) = [(r
′
t)
−1
1A+1

0S−A−1
]π−1t and ut(πt) = [− (r

′
t)
−1 (r′′t )

1S−A−1
]π−1t

with r′t = (rt)∗(1∶A+1) and r′′t = (rt)∗(A+2∶S) . Lastly, the combined set ct of mπt ’s for all
πt ∈Πt is defined as ct ∶= {mπt ,πt ∈Πt}.

Now, we demonstrate that the results in previous special cases hold in the generalized
setting. The following proposition indicates that the probability distribution under com-
plete markets is the boundary point of the set of probabilities under incomplete markets,
and its proof is discussed in Appendix C.10.

Proposition 3.2.4. Consider the metric space (Π̄t, d) such that

Π̄t =Πt ∪ {πt = [π1
t , π

2
t , . . . , π

S
t ]
⊺ ∶

S

∑
s=1
πs
t = 1, πs

t > 0 for s = 1,2, . . . ,A + 1,

πs
t = 0 for s = A + 2,A + 3 . . . , S}

and d is the Euclidean distance metric.

Then, the set of limit points of Πt in (Π̄t, d) is L(Πt) = Π̄t, and the set of boundary
points of Πt in Π̄t is

∂Πt = {πt = [π1
t , π

2
t , . . . , π

S
t ]
⊺ ∶

S

∑
s=1
πs
t = 1, πs

t > 0 for s = 1,2, . . . ,A + 1,

πs
t = 0 for s = A + 2,A + 3 . . . , S}.

Then, we can establish the following result such that the constructed incomplete SDF
set has its boundary point to be the complete market SDF under the defined metric space.
The proof of this result is presented in Appendix C.11

Theorem 3.2.7. Consider the metric space (c̄t, d1) with c̄t = {mπt ,πt ∈ Π̄t} and d1 is as
defined in Equation (3.13). Then, the set of limit points of ct in (c̄t, d1) is

L(ct) = {mπt ,πt ∈Πt} ∪ {mπt ,πt ∈ ∂Πt} ,

where, for any πt ∈ ∂Πt,

mπt = {mt = [(r′t)
−1
1A+1(πt)−11∶(A+1)]} ,

and the set of boundary points of ct is then ∂ct = {mπt ,πt ∈ ∂Πt} .
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The following lemma, derived from Theorem 3.2.7, implies that for every incomplete
market SDF set, mxt ∈ ct, there exists a complete market SDF, myt

∈ ∂ct that minimizes
the distance between them. This lemma enables us to further explore the set properties
of the incomplete market SDF as well as the degree of market incompleteness. Its proof is
presented in Appendix C.12.

Lemma 3.2.3. For every mxt ∈ ct, there exists my∗t
such that

my∗t
= argmin
myt∈ct

{d1(mxt ,myt
)} .

The next result establishes the convexity, openness, boundedness, and non-compactness,
for ct in the generalized case with its proof discussed in Appendix C.13.

Theorem 3.2.8. Let Πt be the set of all the probability density measures under Pt satisfying
Equation (3.15).

Let mπt be the identified SDF set in the generalized case satisfying Equation (3.16)
given πt in Πt.

Let ct be the combined SDF set such that ct = {mπt ,πt ∈Πt} . Then, ct is a convex set.

Let (c̄t, d1) be the metric space such that c̄t = {mπt ,πt ∈ Π̄t} and for xt,yt ∈ Π̄t, d1 is
as defined in Equation (3.13). Then, ct is open, bounded and not compact under (c̄t, d1) .

Last, based on the set properties in Theorems 3.2.7 and 3.2.8, given {xkh ∈ Π̄kh}
t/h
k=1 ,

the degree of market incompleteness at t is defined as in Equation (3.17), which is the
mean of the least transport costs from mxkh

∈ c̄kh to mykh
∈ ∂ckh from time h up to t12:

MI ({xkh}t/hk=1) =
h

t

t/h

∑
k=1

min
mykh

∈∂ckh
d1 (mxkh

,mykh
) . (3.17)

The subperiod degrees of market incompleteness are functions of their subperiod asset
returns, which are uncorrelated, then by taking the average of these subperiod transport

costs, we get the degree of market incompleteness at t, MI ({xkh}t/hk=1), which is not mono-

tonic in t. Moreover, as d1 is a valid metric and the complete market SDF is the boundary
point of the incomplete market SDF set in each subperiod, the degree of market incomplete-
ness equals zero only when the markets are dynamically complete, i.e., when the markets

are complete at every subperiods. Hence, for t ∈ (0,1], the estimated M̂I ({xkh}t/hk=1)’s
depict the evolution of market incompleteness over time.

12Again, we assume that the complete and incomplete market SDFs are 1 at time 0, and the distance
between them is 0 following the metric d1.
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3.3 Continuous-time Setting

The modelling of the SDF set and the degree of market incompleteness in the continuous-
time setting is similar to that used in its discrete-time counterpart, but there are differences.
Particularly, in order to implement our approach in empirical works, we further parame-
terize the market incompleteness by specifying that the asset prices are generated by the
jump diffusion processes, which constitute an important class of incomplete market models
and are realistic in practice (Kaido and White, 2009). We formalize our setup as follows

Assumption 3.3.1. Suppose that there are one risk-free bond and A ∈ N risky assets in
the market. Let (Ω,F ,{F t}t∈[0,1], P ) be the complete filtered probability space, where Ω, F
and P are the same as defined in Assumption 3.2.2, and the filtration {F t} = {F t}t∈[0,1] is
assumed to satisfy the usual properties (Protter, 2005). There exists a set P of complete
probability measures on (Ω,F) such that P ∈ P .

In incomplete markets, we have RA −valued risky asset price process {St}, which solves
the stochastic differential equation (SDE)

dSt

St−
= µB

t dt +σB
t dBt + J tdÑ t, (3.18)

where {µB
t } is an RA-valued adapted drift process, {σB

t } is an RA×A-valued adapted diffu-
sion coefficient process. J t is a random jump amplitude, which is predictable and J t > −1,
implying that all elements in St remain positive, consistent with the limited liability pro-
vision (Aı̈t-Sahalia et al., 2009). Then, it is convenient to have J t = exp(Qt) − 1A as in
Hanson and Westman (2002), where Qt follows a normal distribution with mean µJ

t and
standard deviation σJ

t . {Bt} is a vector of A independent Brownian motions under P
and Ñ t =N t − vt(dx)t is the compensated martingales of Poisson process N t with mean
measure vt(dx)t, where vt(dx) ≥ 0 is taken to be the Lévy measure associated with an
A-dimensional pure-jump Lévy process. Thus, vt(dx) is a σ-finite measure on (R,B(R))13
such that vt({0}) = 0, suggesting that v does not have mass on 0, and

∫
R
min (1, ∣x∣2)vt(dx) <∞, (3.19)

so the jumps have finite variation. {Bt} and Ñ t are independent under P and are adapted
to {F t}. We require that

P [∫
t

0
(∣µB

s ∣ +σB
s
2 + J2

svs(dx))ds <∞] = 1 (3.20)

13We use B(R) to denote the Borel σ-algebra.
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for t ≥ 0, which is a sufficient restriction to ensure that the integral with respect to the
compensated Poisson random measure exists for both small and large jumps. We assume
that the market is built with a risk-free bond with a known rate of return of rt.

Given the RA-valued adapted processes {ψt}t≥0 and {γt}t≥0, the Girsanov transforma-
tion defines the new adapted processes {B̄t} and {N̄ t} by adjusting the original Brownian
motion and the compensated martingales of Poisson process:

B̄t =Bt + ∫
t

0
ψsds and N̄ t = Ñ t + ∫

t

0
vs(dx)γsds.

Then, the asset return process under the risk-neutral probability measure can be written
as

dSt

St−
= rt1B

Adt +σB
t dB̄t + J tdN̄ t

and the existence of the SDF holds only for (ψt,γt) satisfying the condition below

µB
t − rt1A −σB

t ψt − J tγtvt(dx) = 0, a.s. − P.

Such vectors are called the market prices of risk, where {ψt}t≥0 is the adapted Brownian
market price of risk and {γt}t≥0 is the predictable jump market price of risk, and γt < 1
for t ≥ 0.

Let ϕt = (µB
t ,σ

B
t ,µ

J
t ,σ

J
t ,vt(dx)) ∈Φt, where

Φt = {(µB
t ,σ

B
t ,µ

J
t ,σ

J
t ,vt(dx)) ∶ vt(dx) > 0A}

is an admissible parameter space under P ∈ P . When markets are incomplete, the market
prices of risk form the set

Γ(ϕt) = {(ψt,γt) ∶ µB
t − rt1A −σB

t ψt − J tγtvt(dx) = 0} . (3.21)

Let αt = ln [(1A − γt)−1], Equation (3.21) is transformed to

Γ(ϕt) = { (ψt,γt) ∶ ψt = (σB
t )−1 (µB

t − rt1A) − (σB
t )
−1 (J t (1A − e−αt)vt(dx)) ,

γt = 1A − e−αt ,αt ∈ RA }. (3.22)

Correspondingly, for (ψt,γt) ∈ Γ(ϕt), the SDF process {M(ϕt)}t≥0 follows the dynamic
form

dM(ϕt)
M(ϕt−)

= − [rt1Adt +ψtdBt + γtdÑ t]
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with the solution

M(ϕt) = exp(−∫
t

0
rs1Ads − ∫

t

0
ψsdBs −

1

2 ∫
t

0
ψ2

sds)

× exp(−∫
t

0
αsdÑ s − ∫

t

0
(e−αs − 1A +αs)vt(dx)ds) .

We shall restrict M(ϕt) to be a P -square integrable martingale over the time interval
[0,1], i.e., supt∈[0,1]E [M 2(ϕt)] <∞. Then, the SDF set is

M(ϕt) = {M(ϕt) = exp(−∫
t

0
rs1Ads − ∫

t

0
ψsdBs −

1

2 ∫
t

0
ψ2

sds)

× exp(−∫
t

0
αsdÑ s − ∫

t

0
(e−αs − 1A +αs)vt(dx)ds) ,

αt = ln [(1A − γt)−1] , (ψt,γt) ∈ Γ(ϕt)},

and the set that contains all SDFs under P ∈ P is defined as Ct ∶= {Mt(ϕt),ϕt ∈ Φt}.
Analogous to the discrete case, in order to analyze the evolution of the degree of market
incompleteness, we frame the following discussion in terms of the SDF set including all
possible SDFs that price payoff over an infinitesimal time interval [t, t + dt):

m(ϕt) = {m(ϕt) =M(ϕt)/M(ϕt−),ϕt ∈Φt}

= {m(ϕt) = exp(−rt1Adt −ψtdBt −
1

2
ψ2

tdt) × exp (−αtdÑ t − (e−αt − 1A +αt)vt(dx)dt) ,

αt = ln [(1A − γt)−1] , (ψt,γt) ∈ Γ(ϕt)}, (3.23)

and thus, this SDF discounts the payoff at t+dt to its price at t. Accordingly, the set that
contains all m(ϕt) for P ∈ P is ct ∶= {m(ϕt),ϕt ∈Φt} .

3.3.1 Set Properties of Ct

Similar to the discrete-time framework, we first verify that the boundary point of the pro-
posed SDF set is indeed the one under the complete market. Let Φ̄t ∶= {(µB

t ,σ
B
t ,µ

J
t ,σ

J
t ,vt(dx)) ∶

vt(dx) ≥ 0A} be the admissible parameter space, the following proposition establishes the
limit and boundary points of Φt under Φ̄t. The proof is shown in Appendix C.14.
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Proposition 3.3.1. Consider the metric space (Φ̄t, d) such that

Φ̄t ∶= {(µB
t ,σ

B
t ,µ

J
t ,σ

J
t ,vt(dx)) ∶ vt(dx) ≥ 0A}

and d is the Euclidean norm. Then, the set of limit points of Φt in (Φ̄t, d) is

L(Φt) = {(µB
t ,σ

B
t ,µ

J
t ,σ

J
t ,vt(dx)) ∶ vt(dx) ≥ 0A} ,

and the set of boundary points of Φt in (Φ̄t, d) is

∂Φt = {(µB
t ,σ

B
t ,µ

J
t ,σ

J
t ,vt(dx)) ∶ vt(dx) = 0A} .

The next result indicates that with the continuous-time setup, the complete market SDF
is indeed the boundary point of the incomplete market SDF set. The proof is presented in
Appendix C.15.

Theorem 3.3.1. Consider the metric space (c̄t, d3) such that c̄t = {m(ϕt),ϕt ∈ Φ̄t}, and
for ϕt,ϕ

′
t ∈ Φ̄t satisfies Equation (3.20), let P (ϕt) and P (ϕ′t) denote the physical probability

measures in P,

d3(m(ϕt),m(ϕ′t)) = infwt

{∫ d4(m(ϕt),m(ϕ′t))dwt ∶ wt ∈W (P (ϕt), P (ϕ′t))} , (3.24)

where W (P (ϕt), P (ϕ′t)) ∶= {wt ∶ ∫ wtdP (ϕ′t) = P (ϕt), ∫ wtdP (ϕt) = P (ϕ′t)} is the set of
transport plans between P (ϕt) and P (ϕ′t), and

d4 (m(ϕt),m(ϕ′t)) = ∣f(ϕt) − f(ϕ′t)∣

with

f(ϕt) = exp(−rt1Adt − g(ϕt)dBt −
1

2
g(ϕt)2dt) × exp (−dÑ t − e−1vt(dx)dt) ,

g(ϕt) = (σB
t )
−1 (µB

t − rt1A) − (σB
t )
−1 (J t (1A − e−1A)vt(dx)) ,

and J t = exp(Qt) − 1A,Qt ∼ N(µJ
t ,σ

J
t
2).

Then, the set of limit points of ct in c̄t can be denoted as L(ct) = {m(ϕt),ϕt ∈ Φ̄t} and
the set of boundary points of ct is then ∂ct = {m(ϕt),ϕt ∈ ∂Φt} , where for any ϕt ∈ ∂Φt,

m(ϕt) = {m(ϕt) = exp(−rt1Adt −ψtdBt −
1

2
ψ2

tdt) ,µB
t − rt1A −σB

t ψt = 0} . (3.25)
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Based on Theorem 3.3.1, we derive the following lemma, which will later be incorporated
in the discussion of set properties and the degree of market incompleteness. The proof of
Lemma 3.3.1 is presented in Appendix C.16.

Lemma 3.3.1. For every m(ϕt) ∈ ct, there exists m(ϕ∗t ) such that

m(ϕ∗t ) = argmin
m(ϕ′t)∈∂ct

{d3 (m(ϕt),m(ϕ′t))} .

The next theorem establishes the properties of the incomplete market SDF set, and the
proof is provided in Appendix C.17.

Theorem 3.3.2. Let m(ϕt) be the identified SDF set given that ϕt ∈Φt, and let ct be the
combined SDF set such that ct = {m(ϕt),ϕt ∈Φt}. Then, ct is a convex set.

Let (c̄t, d3) be the metric space such that c̄t = {m(ϕt),ϕt ∈ Φ̄t}, and d3 is as defined in
Equation (3.24). Then, ct is open, bounded and not compact under (c̄t, d3).

3.3.2 Measure for Market Incompleteness

Based upon Theorems 3.3.1 and 3.3.2, given {ϕi ∈ Φ̄i}i∈(0,t] , the degree of market incom-

pleteness at t is defined as in Equation (3.26), which is the mean of the least transport
cost process from m(ϕi) ∈ c̄i to m(ϕ′i) ∈ ∂ci over (0, t]14:

MIt ({ϕi}i∈(0,t]) = Et [ min
ϕ′i∈∂Φi

d3 (m(ϕi),m(ϕ′i))] . (3.26)

Since d3 is a valid metric and the complete market SDF is the boundary point of the
incomplete market SDF set, the degree of market incompleteness equals zero only when
the market is dynamically complete, i.e., the distance between complete and incomplete
market SDF sets measured by d3 reduces to zero at every i over the time period (0, t].

The following pointwise properties ofMI(⋅) indicate thatMI ({ϕi}i∈(0,t]) is continuous
and not monotone in t, which enable us to implement our theoretical results in empiri-
cal studies and examine the evolution of market incompleteness over time. The proof is
presented in Appendix C.18.

Theorem 3.3.3. The degree of market incompleteness MI ({ϕi}i∈(0,t]) is continuous on
the time interval (0,1] and is not monotone in t.

14Same as in the discrete setting, we assume that the complete and incomplete market SDFs are 1 at
time 0, and the distance between them is 0 following the metric d3.
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3.4 Application

This section illustrates the degree of market incompleteness estimation with four countries’
major stock market index composites. We first present the layout of a simple but important
special case of our continuous-time setup, which will be used for the demonstration of our
market incompleteness measure. Then, we describe the data in Section 3.4.1 and the
parameter estimations in Section 3.4.2.

Throughout this section, we consider a running example as follows.

Assumption 3.4.1. Let Rt ∶= lnSt − lnSt− be a vector of A ∈ N log-returns observed at
t ∈ [0,1]. Suppose the degree of market incompleteness is evaluated at K equally-spaced
time points {kh}k=1,...,K with the time window h = 1/K. To simplify the notation, we use
the subscript k to denote the parameter that characterizes the return in the time period
[(k − 1)h, kh].
When markets are incomplete, let {Bt} be a vector of A ∈ N independent standard Brow-
nian motions under P and N t be the Poisson process with mean measure vk(dx)t, where
vk(dx) ≥ 0 is taken to be the Lévy measure associated with an A-dimensional pure-jump
Lévy process. {Bt} and {N t} are independent and adapted to the filtration {F t}. Rt

solves the SDE15

Rt = (µB
k −σB2

k /2 − vk(dx)µJ
k)dt +σB

k dBt +QkdN t,

where µB
k ∈ R

A, σB
k ∈ R

A×A, Qk follows a normal distribution with mean µJ
k ∈ R

A and
standard deviation σJ

k ∈ R
A×A, and dt is estimated by the observational interval. Moreover,

both σB
k and σJ

k are diagonal matrices, and the price of the risk-free bond has a known
constant rate of return rk.
When the markets are complete, let {Bt} be a vector of A ∈ N independent standard Brow-
nian motions under P . Rt solves the SDE

Rt = (µC
k −σC2

k /2)dt +σC
k dBt,

where µC
k ∈ R

A, σC
k ∈ R

A×A .

Assumption 3.4.1 ensures that the market prices of risk always lie in a nonrandom
time-invariant set over a given time period [(k−1)h, kh]. Specifically, for t ∈ [(k−1)h, kh],

15Given that the value of interest is usually the log-return on asset, we transform Equation (3.18) using
the stochastic chain rule for Markov processes in continuous time, the detailed derivation can be found in
Kushner (1967) and Gihman and Skorohod (2012).
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k = 1, . . . ,K, and αk = ln [(1A − γk)−1] , Equation (3.22) becomes

Γ(ϕk) = {(ψ,γ) ∶ ψk = (σB
k )
−1 (µB

k − rk1A) − (σB
k )
−1 (Jk (1A − e−αk)vk(dx)) ,

γk = 1A − e−αk ,αk ∈ RA} .

Then, under incomplete markets, the SDF set in Equation (3.23) can be written as

m(ϕk) = {m(ϕk) = exp(−rk1Adt −ψkdBt −
1

2
ψ2

kdt)

× exp (−αkdÑ t − (e−αk − 1A +αk)vk(dx)dt) , (ψk,γk) ∈ Γ(ϕk)}.

Under complete markets, the SDF set in Equation (3.25) can be written as

m (ϕC
k ) = {m (ϕC

k ) = exp(−rk1Adt −ψC
k dBt −

1

2
ψC

k

2
dt) ,µC

k − rk1A −σC
kψk = 0}.

Hence, given {ϕi ∈Φi}ki=1 , the degree of market incompleteness at kh is

MIkh ({ϕi}
k
i=1) =

1

k

k

∑
i=1

min
ϕC

i ∈∂Φi

d3 (m(ϕi),m(ϕC
i )) ,

where

d3 (m(ϕi),m(ϕC
i )) = infwi

{∫ d4 (m(ϕi),m(ϕC
i ))dwi ∶ wi ∈W (P (ϕi), P (ϕC

i ))} .

W (P (ϕi), P (ϕC
i )) ∶= {wi ∶ ∫ widP (ϕC

i ) = P (ϕi), ∫ widP (ϕi) = P (ϕC
i )} is the set of trans-

port plans between P (ϕi) and P (ϕC
i ), and d4 (M(ϕi),M(ϕC

i )) = ∣f(ϕi) − f(ϕC
i )∣ with

f(ϕi) = exp(−ri1Adt − g(ϕi)dBt −
1

2
g(ϕi)2dt) × exp (−dÑ t − e−1vi(dx)dt) ,

g(ϕi) = (σB
i )−1(µB

i − ri1A) − (σB
i )−1 (J i(1A − e−1)vi(dx)) ,

and J i = exp(Qi) − 1,Qi ∼ N(µJ
i ,σ

J
i
2);

f (ϕC
i ) = exp(−ri1Adt − g (ϕC

i )dBt −
1

2
g2 (ϕC

i )dt)

and
g (ϕC

i ) = (σC
i )
−1 (µC

i − ri1A) .

50



3.4.1 Data Description

Our empirical study analyzes the financial markets of China, Japan, the United Kingdom
(UK), and the United States (US) using publicly available data from Yahoo Finance. Due
to the availability of data, the Chinese and the US samples begin in 1994, the UK sample
begins in 1995, whereas the Japanese sample begins in 1999, and all samples end in 2021.
We use the stock data from CSI 300 index for China, Nikkei 225 index for Japan, and
FTSE 350 index for the UK and S&P 500 for the US16.

The stock data is collected on a daily basis, and to examine the evolution of market
incompleteness, we divided the full sample into yearly blocks, i.e., for the US market,
there are 27 sub-samples, then K = 27 and h = 1/27. The daily log return (henceforth, the
return) is calculated, and assuming 252 trading days per year, dt is estimated by ∆ = 1/252.
Further, stocks with less than one-month of data are excluded from each subsample in order
to eliminate outliers and ensure the reliability of the estimates.

3.4.2 Estimation Algorithm

At each subperiod [(k − 1)h, kh], we first estimate the parameters ϕk under incomplete
market assumption using the maximum likelihood estimation (MLE) method, and the
parameters ϕC

k under the complete market assumption using the analytical closed-form
expression. To the best of our knowledge, there are not yet an analytic expression of the
optimal parameter values for jump diffusion models, and thus, we employ the MATLAB
function fminsearchbnd, which is developed based upon fminsearch to find the mini-
mum value of the constrained multivariable function using derivative-free method for our
estimation. As a prerequisite to applying the fminsearchbnd method, we must first es-
tablish an initial estimation of the parameters based on the empirical data. Consistent
with Merton (1976)’s definition, in this study, we say that there is a jump in the process
when the absolute value of return exceeds some threshold ϵ > 0, which is determined as
the minimum absolute value of the 5% and 95% quantiles of returns17, and then, we divide

16The CSI 300 is a capitalization-weighted index that replicates the performance of the top 300 stocks
traded on the Shanghai Stock Exchange and the Shenzhen Stock Exchange. The Nikkei 225 index measures
the performance of 225 large, publicly owned companies in Japan that span a wide range of industry
sectors. The FTSE 350 is a capitalization-weighted index composed of the 350 largest companies listed on
the London Stock Exchange. The S&P 500 index is a capitalization-weighted index that represents around
80% of the market capitalization of the New York Stock Exchange.

17Other quantiles can be adopted to determine ϵ, while as discussed in Tang (2018), in this case MLE
is not strongly depending on the value of ϵ.
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the empirical return data into two groups B and J , which include returns with absolute
values less than or equal to ϵ and those with absolute values larger than ϵ, respectively.

Here, the initial estimation of the intensity parameter, v̂k(dx), is measured as the num-
ber of jumps in period [(k−1)h, kh], and for simplicity, we estimate the initial parameters
ϕk assuming that there is only one jump for a return process that belongs to group J .
Then, as discussed in Hanson and Westman (2002), the expectation and variance of the
process for t ∈ [(k − 1)h, kh] are

E(RJ
t ) = E[Rt∣N t = 1] = (µB

k −σB
k

2/2 − vk(dx)µJ
k)∆ +µJ

k

and

V(RJ
t ) = V[Rt∣N t = 1] = σB

k

2
∆ +σJ

k

2
.

Hence, µ̂J
k and σ̂J

k are estimated from the above equations such that

⎧⎪⎪⎨⎪⎪⎩

µ̂J
k = (Ê (RJ

t ) − (µ̂B
k − σ̂B2

k /2)∆) (1A − v̂k(dx)∆)−1

(σ̂J
k)

2 = V̂ (RJ
t ) − σ̂B2

k ∆,

where Ê(RJ
t ) and V̂(RJ

t ) are the sample mean and variance of the empirical returns in
group J .

When there are no jumps, the expectation and variance of the return of the process for
t ∈ [(k − 1)h, kh] are

E(RB
t ) = E[Rt∣N t = 0] = (µB

k −σB
k

2/2)∆

and

V(RB
t ) = V[Rt∣N t = 0] = σB

k

2
∆.

The parameters µ̂B
k and σ̂B

k can be estimated from the above formulas such that

⎧⎪⎪⎨⎪⎪⎩

µ̂B
k = (2Ê (RB

t ) + V̂ (RB
t )∆) (2∆)−1

(σ̂B
k )2 = V̂ (RB

t ) /∆,
(3.27)

where Ê(RB
t ) and V̂(RB

t ) are the sample mean and variance of the empirical returns in
group B.
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Let R∆t ∶= lnSt− lnSt−∆ denote the log-return observed at t ∈ [(k−1)h, kh], the initial
estimates are then used to numerically optimize the likelihood function, given that the
probability density function of returns at ∆t is:

φR∆t
(x;ϕk) =

∞
∑
z=0
pz(vk(dx)∆)φn (x∣ (µB

k −σB
k

2/2 − vk(dx)µJ
k)∆ +µJ

kz,σ
B
k

2
∆ +σJ

k

2
z2) ,

where pz(vk(dx)dt) = p(dN t = z) = exp(−vk(dx)dt)(vk(dx)dt)z/z! for z = 0,1, . . . and φn

is the normal density function (Hanson and Westman, 2002). In a multivariate economy
defined in Assumption 3.4.1, returns are independent over time, so that the objective
function of the MLE method is

L(ϕk) = Πȷ
j=1φR∆t

(xj;ϕk),

where x = (x1,x2, . . . ,xȷ) is the empirical log-return data. To estimate the five parameters,
we then minimize the minus log-likelihood function:

− lnL(ϕk) = −
ȷ

∑
j=1

lnφR∆t
(xj;ϕk).

Next, we numerically estimate the degree of market incompleteness at kh given {ϕ̂i}
k

i=1

and {ϕ̂C

i }
k

i=1
as follows.

(i). For each asset a = 1,2, . . . ,A, at time point ih for i = 1, . . . , k, generate 1000 replications
of dBa

n,i ∼ N(0,∆), dÑa
n,i = dNa

n,i − v̂ai (dx)∆ with dNa
n,i ∼ Poisson(v̂ai (dx)∆) and the

observation window ∆ = 1/252 being the approximation for dt, and Ĵa
n,i = exp(Q̂a

n,i) − 1
with Q̂a

n,i ∼ N(µ̂
J,a
i , σ̂J,a2

i ).
(ii). For each n = 1,2, . . . ,1000 replication, calculate

fn(ϕ̂a
i ) = exp(−r̂i∆ − gn (ϕ̂a

i )dBa
n,i −

1

2
g2n (ϕ̂a

i )∆) × exp (−dÑa
n,i − e−1v̂ai (dx)∆)

where
gn (ϕ̂a

i ) = (σ̂B,a
i )

−1 (µ̂B,a
i − r̂i) − (σ̂B,a

i )
−1 (Ĵa

n,i(1 − e−1)v̂ai (dx))
under incomplete markets, and

fn (ϕ̂C,a
i ) = exp(−r̂i∆ − gn (ϕ̂

C,a
i )dBa

n,i −
1

2
g2n (ϕ̂C,a

i )∆)
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where gn (ϕ̂C,a
i ) = (σ̂

C,a
i )

−1 (µ̂C,a
i − r̂i) with µ̂

C,a
i and σ̂C,a

i estimated following Equation (3.27)
under complete markets.
(iii). Using the 1000 observations of fn (ϕ̂a

i ) and fn (ϕ̂
C,a
i ), we find the empirical cumulative

distributions F (x; ϕ̂a
i ) and F (x; ϕ̂C,a

i ) for the probability measures P (ϕ̂a
i ) and P (ϕ̂C,a

i )
respectively.
(iv). Derive the distance metric for each stock a at time i (Frohmader and Volkmer, 2021)

da3 (m (ϕ̂a
i ) ,m (ϕ̂C,i

i )) = ∫R ∣F (x; ϕ̂
a
i ) − F (x; ϕ̂C,a

i )∣dx.

(v). Compute the degree of market incompleteness at kh for k = 1, . . . ,K,

M̂I ({ϕ̂i}
k

i=1) =
1

k

k

∑
i=1

1

A

A

∑
a=1
da3 (m (ϕ̂i) ,m (ϕ̂

C

i )) .

3.4.3 Estimation Results

Figure 3.1 displays the evolution of the degree of market incompleteness for the four stock
markets. The market often sees an increase in MI when there is a rising level of panic.
Namely, all three developed markets experienced peaks inMI during the period 2007-2009
due to the global financial crisis, in which asset prices experienced unexpected jumps due
the presence of significant unhedgeable risks in the market. In a similar manner, the value
of MI spiked both during the mini-crash in the UK stock market in 1997 (Hua et al.,
2020) as well as during the collapse of the Chinese stock market in 2015 (Han et al., 2019).
Government regulation policies toward the stock market can also influence its completeness.
In 1995, the sharp decline inMI on the Chinese market was attributed to a policy change,
which adjusted settlement dates to the next business day (T + 1) instead of the same
day (T + 0)18 (Xu, 2000). In the Japanese market, MI rose in 2000 due to deregulation
policies, such as decontrolling brokerage commissions and reducing securities transaction
taxes (Takaishi, 2022). We also observe that the Chinese stock market has a significantly
higher degree of market incompleteness, implying that the market is susceptible to more
risks that cannot be diversified away by the spanning of traded assets, which accords with
the literature that emerging markets are inherently riskier (Sharkasi et al., 2006; Saranya
and Prasanna, 2014).

18T + 1 came into effect on January 1, 1995, replacing T + 0.
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Figure 3.1: Evolution of the Degree of Market Incompleteness

3.5 Conclusion

This paper studies an econometric framework useful for estimating the set of SDFs in the
absence of complete markets. The investigation of set properties reveals that the complete
market SDF is the unique boundary point of the incomplete market SDF set, which only
degenerates to its complete counterpart when the likelihood of unhedgeable risks vanish.
This feature allows us to introduce a novel measure for market incompleteness, which is
the distance between the probability distributions of the complete and incomplete market
SDFs. We use the Wasserstein metric to construct our measure since it naturally deals
with distributions with different supports.
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A possible implementation of this measure is presented in which we examine the evo-
lution of market incompleteness in the four of largest stock markets worldwide, including
both emerging and developed markets. The results are consistent with our construction of
incomplete markets, whereby the increase (decrease) in market incompleteness correlates
to financial crises or policy changes that raise (lower) the likelihood of undiversifiable risks.

To maintain a sharp focus on our results, we have considered in detail a specific
but practically realistic type of incomplete market resulting from stochastic jumps in the
continuous-time setting, and applied the results in the empirical study. Nevertheless, as
shown in the discrete-time setting, our framework applies more broadly, and the extension
to asset prices generated by other stochastic processes is another interesting possibility
worth exploring in future work. Methods of estimation and inference for more general
asset-price generating processes will then refine the measurement for market incomplete-
ness as well as the assessment of misspecification caused by imposing complete market
assumptions in financial studies.
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asymptotics,” Sankhyā: The Indian Journal of Statistics, Series A, 403–417.

Ledoit, O. and P. Santa-Clara (1998): “Relative pricing of options with stochastic
volatility,” University of California-Los Angeles finance working paper, 9–98.

Ledoit, O. and M. Wolf (2003): “Improved estimation of the covariance matrix of
stock returns with an application to portfolio selection,” Journal of Empirical Finance,
10, 603–621.

——— (2004): “Honey, I shrunk the sample covariance matrix,” The Journal of Portfolio
Management, 30, 110–119.

——— (2012): “Nonlinear shrinkage estimation of large-dimensional covariance matrices,”
The Annals of Statistics, 40, 1024–1060.

——— (2017): “Nonlinear shrinkage of the covariance matrix for portfolio selection:
Markowitz meets Goldilocks,” The Review of Financial Studies, 30, 4349–4388.

Leitch, G. and J. E. Tanner (1991): “Economic forecast evaluation: profits versus
the conventional error measures,” The American Economic Review, 580–590.

Leonard, T., J. S. Hsu, et al. (1992): “Bayesian inference for a covariance matrix,”
The Annals of Statistics, 20, 1669–1696.

Liu, E. X. (2016): “Portfolio diversification and international corporate bonds,” Journal
of Financial and Quantitative Analysis, 51, 959–983.

64



Liu, K. (2017): “Effective Dimensionality Control in Quantitative Finance and Insurance,”
PhD thesis, University of Waterloo.

Loeb, G. M. (2007): Battle for Investment Survival, vol. 36, John Wiley & Sons.

Longin, F. (2016): Extreme Events in Finance: A Handbook of Extreme Value Theory
and Its Applications, John Wiley & Sons.

Longin, F. M. (2000): “From Value-at-Risk to stress testing: The extreme value ap-
proach,” Journal of Banking & Finance, 24, 1097–1130.

Madaleno, M. and C. Pinho (2012): “International stock market indices comovements:
A new look,” International Journal of Finance & Economics, 17, 89–102.

Mallows, C. L. (1972): “A note on asymptotic joint normality,” The Annals of Mathe-
matical Statistics, 508–515.

Marin, J. M. and R. Rahi (2000): “Information revelation and market incompleteness,”
The Review of Economic Studies, 67, 563–579.

Markowitz, H. (1952): “Portfolio selection,” The Journal of Finance, 7, 77–91.

Marroquı, N., M. Moreno, et al. (2013): “Optimizing bounds on security prices in
incomplete markets. Does stochastic volatility specification matter?” European Journal
of Operational Research, 225, 429–442.

Matzner-Løfber, E., A. Gannoun, and J. G. De Gooijer (1998): “Nonparametric
forecasting: a comparison of three kernel-based methods,” Communications in Statistics-
Theory and Methods, 27, 1593–1617.

McNeil, A. J. and R. Frey (2000): “Estimation of tail-related risk measures for het-
eroscedastic financial time series: An extreme value approach,” Journal of Empirical
Finance, 7, 271–300.

Meddahi, N. (2001): “An eigenfunction approach for volatility modeling,” Cahier de
Recherche.

Mehra, R. (2008): Handbook of the Equity Risk Premium, Elsevier.

Mehra, R. and E. C. Prescott (1985): “The equity premium: A puzzle,” Journal of
Monetary Economics, 15, 145–161.

65



Merton, R. (1972): “An analytic derivation of the efficient portfolio frontier,” Journal
of Financial and Quantitative Analysis, 7, 1851–1872.

Merton, R. C. (1976): “Option pricing when underlying stock returns are discontinu-
ous,” Journal of Financial Economics, 3, 125–144.

——— (1980): “On estimating the expected return on the market: An exploratory inves-
tigation,” Journal of Financial Economics, 8, 323–361.

Merton, R. C. and P. A. Samuelson (1992): “Continuous-time finance,” Blackwell
Boston.

Mnif, W. (2012): “Incomplete Market Models of Carbon Emissions Markets,” Electronic
Thesis and Dissertation Repository, 2012, 975.

Modigliani, F. and M. Leah (1997): “Risk-adjusted performance,” Journal of Portfolio
Management, 23, 45–54.

Nelson, D. B. (1990): “ARCH models as diffusion approximations,” Journal of Econo-
metrics, 45, 7–38.

Nguyen, X. (2011): “Wasserstein distances for discrete measures and convergence in
nonparametric mixture models,” Citeseer. Forschungsbericht.

Oyenubi, A. (2019): “Diversification measures and the optimal number of stocks in a
portfolio: An information theoretic explanation,” Computational Economics, 54, 1443–
1471.

Pappas, D., K. Kiriakopoulos, and G. Kaimakamis (2010): “Optimal portfolio
selection with singular covariance matrix,” International Mathematical Forum, 5, 2305–
2318.

Pena, D., G. C. Tiao, and R. S. Tsay (2011): A Course in Time Series Analysis,
John Wiley & Sons.

Pownall, R. A. and K. G. Koedijk (1999): “Capturing downside risk in financial
markets: The case of the Asian Crisis,” Journal of International Money and Finance,
18, 853–870.

Protter, P. E. (2005): “Stochastic differential equations,” in Stochastic Integration and
Differential Equations, Springer, 249–361.

66



Ramsay, J. (2005): Functional Data Analysis, Wiley Online Library.

Rocco, M. (2014): “Extreme value theory in finance: A survey,” Journal of Economic
Surveys, 28, 82–108.

Ryabko, D. (2019): Asymptotic Nonparametric Statistical Analysis of Stationary Time
Series, Springer.

Saranya, K. and P. K. Prasanna (2014): “Portfolio Selection and Optimization
with Higher Moments: Evidence from the Indian Stock Market,” Asia-Pacific Financial
Markets, 21, 133–149.

Sharkasi, A., M. Crane, H. J. Ruskin, and J. A. Matos (2006): “The reaction
of stock markets to crashes and events: A comparison study between emerging and
mature markets using wavelet transforms,” Physica A: Statistical Mechanics and its
Applications, 368, 511–521.

Singleton, K. J. (2009): “Empirical dynamic asset pricing,” Princeton University Press.

Skiadas, C. (2007): “Dynamic portfolio choice and risk aversion,” Handbooks in Opera-
tions Research and Management Science, 15, 789–843.

Statman, M. (1987): “How many stocks make a diversified portfolio?” Journal of Fi-
nancial and Quantitative Analysis, 22, 353–363.

Staum, J. (2007): “Incomplete markets,” Handbooks in Operations Research and Man-
agement Science, 15, 511–563.

Stentoft, L. (2011): “American option pricing with discrete and continuous time models:
An empirical comparison,” Journal of Empirical Finance, 18, 880–902.

Sundaresan, S. M. (2000): “Continuous-time methods in finance: A review and an
assessment,” The Journal of Finance, 55, 1569–1622.

Svishchuk, A., D. Zhuravitskii, and A. Kalemanova (2000): “Analog of the Black-
Scholes formula for option pricing under conditions of (B, S, X)-incomplete market of
securities with jumps,” Ukrainian Mathematical Journal, 52, 489–497.

Takaishi, T. (2022): “Time Evolution of Market Efficiency and Multifractality of the
Japanese Stock Market,” Journal of Risk and Financial Management, 15, 31.

67



Tang, F. (2018): “Merton jump-diffusion modeling of stock price data,” Linnæus Uni-
versity Degree project.

Trifi, A. (2006): “Issues of aggregation over time of conditional heteroscedastic volatility
models: What kind of diffusion do we recover?” Studies in Nonlinear Dynamics &
Econometrics, 10.

Villani, C. (2009): Optimal transport: old and new, vol. 338, Springer.

von Mises, R. (1954): “La distribution de la plus grande de n valeurs,” American Math-
ematical Society, Providence, RI., II, 271–294.

Wang, Y. (2002): “Asymptotic nonequivalence of GARCH models and diffusions,” The
Annals of Statistics, 30, 754–783.

Willems, B. and J. Morbee (2008): “Risk management in electricity markets: hedging
and market incompleteness,” TILEC Discussion Paper.

Wu, X., H. Zhou, and S. Wang (2018): “Estimation of market prices of risks in the
GARCH diffusion model,” Economic research-Ekonomska istraživanja, 31, 15–36.
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Appendix A

Appendices of Chapter 1

A.1 The Mean-Variance Optimization

This section provides the general setup of Markowitz’s mean-variance optimization. Let
E be the vector of expected asset returns in the stock pool, V be the covariance matrix
of the returns, and w be the vector of weights indicating the fraction of portfolio wealth
held in each asset. Assuming that short sales are permitted, the constrained minimization
problem is as follows:

min
w

1

2
wTVw

subject to µ =wTE and 1 =wT1,

where µ denotes the target expected return of the portfolio, and 1 denotes a vector of ones.
The analytical solution to this problem is derived following Merton (1972), which we will
not expand on here.

A.2 The DR Method

We elaborate on the DR method first introduced by Liu (2017), which effectively reduces
the number of stocks, while still preserves the variance in the market. Suppose that there
are N assets with asset prices S(1), S(2), ..., S(N) in the market. Based on the multivariate

Black-Scholes model, the asset price processes {S(h)t } for h = 1,2, ...,N solves the stochastic
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differential equation

dS
(h)
t

S
(h)
t

= rtdt +
N

∑
l=1
σhldB

(l)
t , S

(h)
0 = 1, (A.1)

where B
(1)
t ,B

(2)
t , ...,B

(N)
t follow the independent standard Brownian motions, rt is the short

rate of interest, and [σhl] is the matrix capturing the correlation among the assets. Then,
the solution to Equation (A.1) is

S
(h)
t = exp [(∫

t

0
rsds −

t

2

N

∑
l=1
σ2
hl) +

N

∑
l=1
σhlB

(l)
t ] , h = 1,2, ...,N. (A.2)

Let t0 = 0, t1 =∆, ..., tm =m∆ be the time steps with equal space ∆, and suppose that the
continuous forward rate is constant within each period. We denote fj as the annualized
continuous forward rate for period (tj−1, tj) such that

fj =
1

∆ ∫
tj

tj−1
rsds, j = 1,2, ...,m.

Then, we have

exp (∆ (f1 + f2 + ... + fj)) = exp(∫
tj

0
rsds) , j = 1,2, ...,m. (A.3)

For j = 1,2, ...,m, let A
(h)
j be the accumulation factor of the hth index for the period

(tj−1, tj), that is,

A
(h)
j =

S
(h)
j∆

S
(h)
(j−1)∆

. (A.4)

Combining Equation (A.2) to (A.4), we get

A
(h)
j = exp [(fj −

1

2

N

∑
l=1
σ2
hl)∆ +

N

∑
l=1
σhl
√
∆Z

(l)
j ] , (A.5)

where

Z
(l)
j =

B
(l)
j∆ −B

(l)
(j−1)∆√

∆
.

By the property of Brownian motion, we know that Z
(l)
1 , Z

(l)
2 , ..., Z

(l)
m are independent

random variables with a standard normal distribution. From Equation (A.5), we derive
the continuous return for the period (tj−1, tj)

R
(h)
j = ln (A

(h)
j ) = (fj −

1

2

N

∑
l=1
σ2
hl)∆ +

N

∑
l=1
σhl
√
∆Z

(l)
j .
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The mean and covariance matrix of the returns are given by

E [R(h)j ] = (fj −
1

2

N

∑
l=1
σ2
hl)∆

and

Cov (R(h)j ,R
(s)
j ) = E [(R

(h)
j −E [R

(h)
j ]) (R

(s)
j −E [R

(s)
j ])]

= E [(
N

∑
l=1
σhl
√
∆Z

(l)
j )(

N

∑
l=1
σsl
√
∆Z

(l)
j )]

=
N

∑
l=1
σhlσsl∆, h, s = 1,2, ...,N.

Let Σ be the covariance matrix of the annualized continuous returns of the N stocks and

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

σ11 σ12 ... σ1N
σ21 σ22 ... σ2N
⋮ ⋮ ⋱ ⋮

σN1 σN2 ... σNN

⎤⎥⎥⎥⎥⎥⎥⎥⎦

be the Cholesky decomposition of Σ such that

AA⊺ = Σ,

where A⊺ is the transpose of A. Then, the variance contribution, also known as the
explained variance (e.g., Kent, 1983), of the first NDR assets with the highest Sharpe
Ratios can be defined as

∥A1∥2+... + ∥ANDR
∥2

∥A1∥2+... + ∥AN∥2

where Ai is the ith column of A. In this paper, the reduced dimensionality NDR is the mini-
mum number of assets needed to reach the 95% explained variance, and the dimensionality
reduction is achieved when NDR << N .

A.3 The EVT Method

In this section, we discuss the EVT method in further details. We take one stock market,
say the China market, as an example and exclude all non-positive returns since our concern
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is the right-tail return. Let X1,X2, ...,Xn denote the observations of returns in one group,
say G1. We consider these n returns as i.i.d. observations from some distribution function
F . Let X1,n ≤ X2,n ≤ ... ≤ Xn,n be the associated order returns, so that Xn,n denotes the
maximum return in G1. Then, according to von Mises (1954) and Jenkinson (1955), if
the maximum Xn,n, suitably centered and scaled, converges to a non-degenerate random
variable, then there exist sequences {an} (an > 0) and bn (bn ∈ R) such that

lim
n→∞

P{Xn,n − bn
an

≤ x} = Gγ(x), (A.6)

where
Gγ(x) ∶= exp (− (1 + γx)−1/γ)

for some γ ∈ R, with x such that 1 + γx > 0. That is, F is in the domain of attraction of
some extreme value distribution function Gγ and γ is the extreme-value index. By taking
logarithms, Equation (A.6) can be written as

lim
q→∞

q (1 − F (aqx + bq)) = − logGγ(x) = (1 + γx)−1/γ , Gγ(x) > 0,

where q ∈ R+ and aq and bq are defined by interpolation. We take bq = U(q) with

U(q) ∶= ( 1

1 − F )
−1
(q) = F −1 (1 − 1

q
) , q > 1,

where −1 denotes the left-continuous inverse.
We then estimate γ, aq and bq as follows. Let, for 1 ≤ k < n,

M
(p)
n,k ∶=

1

k

k−1
∑
i=0
(logXn−i,n − logXn−k,n)p , p = 1,2.

We use the moment estimators for γ ∈ R introduced by Dekkers et al. (1989):

γ̂ ∶=M (1)
n,k + 1 −

1

2

⎛
⎜⎜
⎝
1 −
(M (1)

n,k)
2

M
(2)
n,k

⎞
⎟⎟
⎠

−1

.

Specifically, we first test that γ exists for all groups according to Dietrich et al. (2002).
Next, we plot γ̂ as a function of k, which is the number of upper order statistics used for
estimation minus 1. Then, we determine the first stable region in k of the estimate from
the moment estimator plot. Namely, we try to identify a set of consecutive values of k
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Figure A.1: Moment Estimator Versus k for G1 of the China Market.

where the estimated values do not fluctuate much, so that the procedure is insensitive to
the choice of k in such a region. For the moment estimator in G1 for the China market,
as illustrated in Figure A.1, such a stable region runs from around k = 30 to k = 200.

Next, we define the following estimators for an/k and bn/k:

â ∶= ân/k ∶=
⎧⎪⎪⎨⎪⎪⎩

Xn−k,nM
(1)
n,k (1 − γ̂) if γ̂ < 0

Xn−k,nM
(1)
n,k otherwise,

and
b̂ ∶= b̂n/k ∶=Xn−k,n.

Then, our goal is to estimate the right endpoint

x∗ ∶= sup{x∣F (x) < 1}

of the distribution function F , that is, the ultimate return of G1 based on the observed
returns. When estimating the endpoint, we assume that γ < 0. Next, it can be shown that
Equation (A.6) is equivalent to

lim
q→∞

U(qx) −U(q)
a(q) = x

γ − 1
γ

, x > 0.
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As t gets large, we can write

U(qx) ≈ U(q) + a(q)x
γ − 1
γ

.

Because γ < 0 this yields, for large x and setting q = n/k,

x∗ ≈ U (n
k
) − a(n

k
) 1
γ
.

Therefore, x∗ can be estimated as

x̂∗ ∶= b̂ − â
γ̂
,

where γ̂ < 0, and x̂∗ ∶=∞ otherwise. The endpoint estimate of G1 for the China is shown
in Figure A.2, and the selected estimate is the dotted horizontal line.

Figure A.2: Endpoint Estimators Versus k for G1 of the China Market.
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Appendix B

Appendices of Chapter 2

B.1 Additional Notations and Lemmas.

Let N0(ζ) and N1−∆(ζ) denote the ζ-neighborhood of t = 0 and t = 1 −∆ respectively, for
some small ζ > 0. Then we define T∆,ζ ∶= [0,1−∆]∪N0(ζ)∪N1−∆(ζ). Also, let X̃ω,J denote
the fitted function for Xω under the sample size J .

Lemma B.1.1. Consider a continuous sample path Xω(t) on [0,1] as such for any ε > 0,
there exists δ > 0 such that ∣t1− t2∣ ≤ δ implies ∣Xω(t1)−Xω(t2)∣ ≤ ε/2. Suppose Assumption
2.2.1 holds. Then for BK(t,Xω) as in Equation (2.2) and K ≥ R ≥ supt∈[0,1] ∣Xω(t)∣/(δ2ε),
we have the following.

(a) For any t ∈ T∆,ζ and ω ∈ Ω, there is X̃ω,J(t) −BK(t,Xω)
pÐ→ 0 as J →∞.

(b) For every ϱ, η > 0 there exists a ξ > 0 such that {X̃ω,J} is asymptotically stochastically
equicontinuous on T∆,ζ in that lim supJ→∞ P{supt1,t2∈T∆,ζ , ∣t1−t2∣<ζ ∣X̃ω,J(t1)−X̃ω,J(t2)∣ >
ϱ} < η.

(c) For any t ∈ T∆,ζ, ω ∈ Ω, and r = 1, ...,R, there is X̃
(r)
ω,J1
(t) − X̃(r)ω,J2

(t) pÐ→ 0 as J1, J2 →
∞.

(d) For every ϱ, η > 0 there exists a ζ > 0, such that for all r = 1, ...,R − 1, there is

lim supJ→∞ P{supt1,t2∈N0(ζ) ∣X̃
(r)
ω,J(t1) − X̃

(r)
ω,J(t2)∣ > ε} < η, and

lim supJ→∞ P{supt1,t2∈N1−∆(ζ) ∣X̃
(r)
ω,J(t1) − X̃

(r)
ω,J(t2)∣ > ε} < η.
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Lemma B.1.2. Suppose Assumption 2.2.1 and Lemma B.1.1 hold, then

(a) For r = 1, ...,R − 1, plimJ→∞ limt→0+ X̃
(r)
ω,J(t) = limt→0+ plimJ→∞ X̃

(r)
ω,J(t), and

plimJ→∞ limt→(1−∆)− X̃
(r)
ω,J(t) = limt→(1−∆)− plimJ→∞ X̃

(r)
ω,J(t).

(b) supt∈[0,1−∆] ∣X̃ω,J(t) −BK(t,Xω)∣
pÐ→ 0 as J →∞;

(c) For all r = 1, ...,R−1, X̃(r)ω,J(0)−B
(r)
K (0,Xω)

pÐ→ 0 and X̃
(r)
ω,J(1−∆)−B

(r)
K (1−∆,Xω)

pÐ→
0 as J →∞.

Lemma B.1.3. Let f be a function that maps a squared matrix to a real value; then for
full rank squared matrices XXX, YYY and ZZZ, say with dimension J-by-J , there is

f(YYY ) = f(XXX) + tr [{
∂f (ZZZ)

∂ZZZ
}

⊺

(YYY −XXX)] ,

where min{xij, yij} < zij <max{xij, yij} for all elements xij, yij and zij of the matrices XXX,
YYY and ZZZ, respectively, with i, j = 1, ..., J .

B.2 Proof of Theorem 2.2.1

First, applying integration by parts given any positive integer R, we have that for all
ψ ∈ FR,

R

∑
r=1
(−1)r−1 X̃

(r−1)
ω,J (1 −∆)ψ

(R−r)
(1 −∆) =

R

∑
r=1
(−1)r−1 X̃

(r−1)
ω,J (0)ψ

(R−r)
(0)+

∫

1−∆

0
X̃ω,J(t)ψ

(R)
(t)dt − (−1)R ∫

1−∆

0
X̃
(R)
ω,J (t)ψ(t)dt,

R

∑
r=1
(−1)r−1B

(r−1)
K (1 −∆,Xω)ψ

(R−r)
(1 −∆) =

R

∑
r=1
(−1)r−1B

(r−1)
K (0,Xω)ψ

(R−r)
(0)+

∫

1−∆

0
BK(t,Xω)ψ

(R)
(t)dt − (−1)R ∫

1−∆

0
B
(R)
K (t,Xω)ψ(t)dt,
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which implies that

∣∫

1−∆

0
X̃
(R)
ω,J (t)ψ(t)dt − ∫

1−∆

0
B
(R)
K (t,Xω)ψ(t)dt∣

≤ ∣
R

∑
r=1
(−1)r−1 {X̃

(r−1)
ω,J (1 −∆) −B

(r−1)
K (1 −∆,Xω)}ψ

(R−r)
(1 −∆)∣

+ ∣
R

∑
r=1
(−1)r−1 {X̃

(r−1)
ω,J (0) −B

(r−1)
K (0,Xω)}ψ

(R−r)
(0)∣

+ ∣∫

1−∆

0
X̃ω,J(t)ψ

(R)
(t)dt − ∫

1−∆

0
BK(t,Xω)ψ

(R)
(t)dt∣ .

Lemma B.1.2(c) indicates that both ∣∑R
r=1 (−1)

r−1 {X̃(r−1)ω,J (1 −∆) −B
(r−1)
K (1 −∆,Xω)}ψ(R−r)(1 −∆)∣

and ∣∑R
r=1 (−1)

r−1 {X̃(r−1)ω,J (0) −B
(r−1)
K (0,Xω)}ψ(R−r)(0)∣ are op(1). Meanwhile, Lemma B.1.2(b)

implies that ∣∫
1−∆
0 X̃ω,J(t)ψ(R)(t)dt − ∫

1−∆
0 BK(t,Xω)ψ(R)(t)dt∣ = op(1). Hence, given any

positive integer R,

∣∫

1−∆

0
X̃
(R)
ω,J (t)ψ(t)dt − ∫

1−∆

0
B
(R)
K (t,Xω)ψ(t)dt∣ = ∣⟨X̃

(R)
ω,J , ψ⟩ − ⟨B

(R)
K (⋅,Xω), ψ⟩∣ = op(1), ∀ψ ∈ FR,

and applying the properties of inner products, one can obtain

⟨X̂ω(⋅ +∆), ψ⟩ = ⟨
R

∑
r=0

1

r!
(∆)r X̃

(r)
ω,J , ψ⟩ =

R

∑
r=0

1

r!
(∆)r ⟨X̃

(r)
ω,J , ψ⟩

=
R

∑
r=0

1

r!
(∆)r ⟨B

(r)
K (⋅,Xω), ψ⟩+op(1) = ⟨

R

∑
r=0

1

r!
(∆)rB

(r)
K (⋅,Xω), ψ⟩+op(1) = ⟨BK(⋅ +∆,Xω), ψ⟩+op(1).

Then under Lemma 2.2.1, the desired results follow.

◻

B.3 Proof of Theorem 2.2.2

To improve readability, we define the followings:

ΥΥΥ∆(t) ∶=
R

∑
r=0

1

r!
∆r
[ΦΦΦ(r)(t)]

⊺
, ΩΩΩ ∶=

1

J

J

∑
j=1

ΦΦΦ(tj)ΦΦΦ
⊺
(tj), ΓΓΓ ∶= ∫

1

0
ΦΦΦ(2)(t) {ΦΦΦ(2)(t)}

⊺
dt.
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Given the order of Q relative to J , we impose that Q < J without loss of generality. Then
applying Lemma B.1.3 indicates that

X̂ω(t +∆) =ΥΥΥ∆(t)C̃̃C̃Cω =ΥΥΥ∆(t) (ΩΩΩ + λΓΓΓ)
−1 1

J

J

∑
j=1

ΦΦΦ(tj)Stj =ΥΥΥ∆(t)ΩΩΩ
−1 1

J

J

∑
j=1

ΦΦΦ(tj)Stj +O (Qλ)

=ΥΥΥ∆(t)ΩΩΩ
−1 1

J

J

∑
j=1

ΦΦΦ(tj)ΦΦΦ
⊺
(tj)CCC +ΥΥΥ∆(t)ΩΩΩ

−1 1

J

J

∑
j=1

ΦΦΦ(tj)ϵtj +O (Qλ) + o (J
−1/2
)

=ΥΥΥ∆(t)CCC +ΥΥΥ∆(t)ΩΩΩ
−1 1

J

J

∑
j=1

ΦΦΦ(tj)ϵtj +O (Qλ) + o (J
−1/2
) ,

and thus,

X̂ω(t +∆) −BK(t +∆,Xω) =ΥΥΥ∆(t)ΩΩΩ−1
1

J

J

∑
j=1

ΦΦΦ(tj)ϵtj +O (Qλ) + o (J−1/2) .

Under Assumption 2.2.2(b), O (Qλ) = op (J−1/2), and by Chui (1971),

ΩΩΩ =
1

J

J

∑
j=1

ΦΦΦ(tj)ΦΦΦ
⊺
(tj) = ∫

1

0
ΦΦΦ(t)ΦΦΦ⊺(t)dt + o (J−1) .

Then again by Lemma B.1.3, we have

X̂ω(t +∆) −BK(t +∆,Xω) =
R

∑
r=0

1

r!
∆r
{ΦΦΦ(r)(t)}

⊺
{∫

1

0
ΦΦΦ(s)ΦΦΦ⊺(s)ds}

−1 1

J

J

∑
j=1

ΦΦΦ(tj)ϵtj + o (J
−1/2
) ,

and by Assumption 2.2.2(a) and the Lyapunov CLT, it follows that

[V (t;∆,R,ΦΦΦ)]−1/2 {X̂ω(t +∆) −BK(t +∆,Xω)}

= [V (t;∆,R,ΦΦΦ)]−1/2
J

∑
j=1

R

∑
r=0

1

r!
∆r
{ΦΦΦ(r)(t)}

⊺
{∫

1

0
ΦΦΦ(s)ΦΦΦ⊺(s)ds}

−1
ΦΦΦ(tj)ϵtj + op(1)

= [V (t;∆,R,ΦΦΦ)]−1/2
J

∑
j=1

Atj(t;∆,R,ΦΦΦ)ϵtj + op(1)

d
Ð→ N (0,1) ,

where σ2
j ∶= Var (ϵtj) for all j, and

V (t;∆,R,ΦΦΦ) ∶=
J

∑
j=1

σ2jA
2
tj(t;∆,R,ΦΦΦ),

Atj(t;∆,R,ΦΦΦ) ∶=
R

∑
r=0

1

r!
∆r
{ΦΦΦ(r)(t)}

⊺
{∫

1

0
ΦΦΦ(s)ΦΦΦ⊺(s)ds}

−1
ΦΦΦ(tj).
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Then under Lemma 2.2.1, the desired results follow with R →∞.

◻

B.4 Proof of Lemma 2.2.1

First, since Xω is continuous on the compact set [0,1], we have c ∶= supt∈[0,1] ∣Xω(t)∣ <∞.
Then

∣Xω(t) −Xω(t∗)∣ ≤ c(
t − t∗
δ
)
2

+ ε
2
∀t ∈ [0,1],

and thus,

∣BK(t,Xω) −Xω(t∗)∣ = ∣BK(t,Xω −Xω(t∗))∣ (Binomial Theorem)

≤ BK (t, c(
t − t∗
δ
)
2

+ ε
2
)

= c

δ2
BK (t, (t − t∗)2 +

ε

2
)

≤ c

δ2
[t2 + 1

K
(t − t2) − 2tt∗ + (t∗)2] + ε

2
.

It is implied that for t = t∗ specifically, we have

∣BK(t∗,Xω) −Xω(t∗)∣ ≤
c[t∗ − (t∗)2]

Kδ2
+ ε
2
≤ c

4Kδ2
+ ε
2
,

since t∗ − (t∗)2 ≤ 1
4 . Therefore, with K ≥ c

2δ2ε , we have supt∈[0,1] ∣BK(t,Xω) −Xω(t)∣ ≤ ε.
◻

B.5 Proof of Lemma B.1.1

Lemma B.1.1(a) can be justified by the results from previous studies. For example Claeskens
et al., 2009, under their Assumptions 1 to 3 that state conditions on the choice of basis
functions and the distribution of the sampling points.

For part (b), with properly selected basis functions that are continuously differentiable
up to a desired order, applying the mean-value theorem indicates the Lipschitz condition in
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that for all t1 < t2 ∈ T∆,ζ with t2 − t1 < ζ, ∣X̃ω,J(t1) − X̃ω,J(t2)∣ ≤ sups∈T∆,ζ
∣X̃(1)ω,J(s)∣ (t2 − t1),

where sups∈T∆,ζ
∣X̃(1)ω,J(s)∣ = Op(1). Then with the fact that limζ→0 sup∣t1−t2∣<ζ ∣t1 − t2∣ = 0 for

all t1, t2 ∈ T∆,ζ , asymptotic stochastic equicontinuity of {X̃ω,J} follows on T∆,ζ .

For part (c), note that the convergence of the functional estimators is achieved through
the convergence of the estimated basis coefficients, and the derivatives of these functional
estimators are obtained through the derivatives of the non-stochastic basis functions; hence,
the convergence of the higher order derivatives of the estimated functions can be easily
justified by choosing the proper basis functions that are continuously differentiable up to
a desired order.

For part (d), similarly to the justification for (b), with properly selected basis functions,

one can obtain that for all t1 < t2 ∈ N0(ζ), ∣X̃(r)ω,J(t1) − X̃
(r)
ω,J(t2)∣ ≤ sups∈[t1,t2] ∣X̃

(r+1)
ω,J (s)∣ (t2 − t1),

where sups∈[t1,t2] ∣X̃
(r+1)
ω,J (s)∣ = Op(1) and limζ→0 supt1<t2∈N0(ζ) ∣t2 − t1∣ = 0. Therefore, asymp-

totic stochastic equicontinuity of {X̃(r)ω,J} on N0(ζ) for r = 1, ...,R − 1 follows. The same
justification holds for N1−∆(ζ).

◻

B.6 Proof of Lemma B.1.2

To verify Lemma B.1.2 (a), note that

∣lim
t→0

X̃
(r)
ω,J(t) −B

(r)
K (0,Xω)∣ ≤ ∣lim

t→0
X̃
(r)
ω,J(t) − X̃

(r)
ω,J(t)∣ + ∣X̃

(r)
ω,J(t) −B

(r)
K (t,Xω)∣ + ∣B

(r)
K (t,Xω) −B

(r)
K (0,Xω)∣ .

Given any ϱ > 0, there exists an η > 0 such that one can find a t, for which there is a J̄ that

P{max{∣lim
t→0

X̃
(r)
ω,J(t) − X̃

(r)
ω,J(t)∣ , ∣X̃

(r)
ω,J(t) −B

(r)
K (t,Xω)∣ , ∣B

(r)
K (t,Xω) −B

(r)
K (0,Xω)∣} < ϱ} > 1 − η, ∀J > J̄ ,

implying that P{∣limt→0 X̃
(r)
ω,J(t) −B

(r)
K (0,Xω)∣ < ϱ} > 1 − η. Therefore, with Lemma B.1.1

(c), we have that plimJ→∞ limt→0 X̃
(r)
ω,J(t) = limt→0B

(r)
K (t,Xω) = limt→0 plimJ→∞ X̃

(r)
ω,J(t).

For Lemma B.1.2 (b), applying Theorem 21.9 from Davidson (1994), with X̃ω,J(t) −
BK(t,Xω)

pÐ→ 0 for each t ∈ T∆,ζ by Lemma B.1.1 (a), as well as asymptotic stochastic
equicontinuity of {X̃ω,J(t)} on t ∈ T∆,ζ by Lemma B.1.1 (b), it follows the uniform conver-

gence in probability of X̃ω,J on T∆,ζ in that supt∈T∆,ζ
∣X̃ω,J(t) −BK(t,Xω)∣

pÐ→ 0. Hence,
Lemma B.1.2 (b) is verified.
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For Lemma B.1.2 (c), since the proofs for the two convergences follow the same idea,
here we only focus on t→ 0+ and omit the proof under t→ (1−∆)−. Let Bζ = N0(ζ)⋂[0,1−
∆]. Then Lemma B.1.2 (c) can be proved by induction — we show that plimJ→∞ X̃

(1)
ω,J(0) =

B
(1)
K (0,Xω), and we justify plimJ→∞ X̃

(r)
ω,J(0) = B

(r)
K (0,Xω) implies plimJ→∞ X̃

(r+1)
ω,J (0) =

B
(r+1)
K (0,Xω) for r = 1, ...,R − 2.
Similarly to the verification for Lemma B.1.2 (b) based on pointwise convergence and

asymptotic stochastic equicontinuity, by Lemmas B.1.1 (c) and (d) as well as Theorem

21.9 from Davidson (1994), we have X̃
(1)
ω,J converges uniformly in probability on Bζ , such

that given any ϱ > 0 there exists an η > 0, for which one can find a J̄ that

P
⎧⎪⎪
⎨
⎪⎪⎩

sup
t∈Bζ

∣X̃
(1)
J1
(t) − X̃

(1)
J2
(t)∣ < ϱ

⎫⎪⎪
⎬
⎪⎪⎭

> 1 − η, ∀J1, J2 > J̄ . (B.1)

Under the same ϱ, η, J1 and J2, for all τ ≠ 0 ∈ Bζ , applying the mean-value theorem yields

∣
X̃J1(τ) − X̃J2(τ) − X̃J1(0) + X̃J2(0)

τ − 0
∣ ≤ sup

t∈[0,τ]⊂Bζ

∣X̃
(1)
J1
(t) − X̃

(1)
J2
(t)∣ ≤ sup

t∈Bζ

∣X̃
(1)
J1
(t) − X̃

(1)
J2
(t)∣ ,

and with Equation (B.1), we have

P
⎧⎪⎪
⎨
⎪⎪⎩

sup
t≠0∈Bζ

∣
X̃J1(t) − X̃J2(t) − X̃J1(0) + X̃J2(0)

t
∣ < ϱ

⎫⎪⎪
⎬
⎪⎪⎭

> 1 − η. (B.2)

Define the following two functions for t ≠ 0 ∈ Bζ :

gJ(t) =
X̃ω,J(t) − X̃ω,J(0)

t
and g(t) =

BK(t,Xω) −BK(0,Xω)

t
;

then Equation (B.2) implies that gJ converges uniformly in probability on Bζ/{0}. Since

X̃ω,J converges uniformly to BK(⋅,Xω) in probability on Bζ , it follows that

plim
J→∞

gJ(t) = g(t), ∀t ≠ 0 ∈ Bζ . (B.3)

Meanwhile, given the differentiability of X̃ω,J(t) and BK(t,Xω), we have

lim
t→0

gJ(t) = X̃
(1)
ω,J(0) and lim

t→0
g(t) = B

(1)
K (0,Xω). (B.4)

Then, applying Lemmas B.1.2 (a) on Equations (B.3) and (B.4) indicates that plimJ→∞ X̃
(1)
ω,J(0) =

B
(1)
K (0,Xω).
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Now suppose for a given r where r = 1, ...,R−2, we have plimJ→∞ X̃
(r)
ω,J(0) = B

(r)
K (0,Xω).

Then Lemmas B.1.1 (c) and (d) as well as Theorem 21.9 from Davidson (1994) imply that

X̃
(r+1)
ω,J converges uniformly in probability on Bζ , such that given any ϱ > 0 there exists an

η > 0, for which one can find a J̄ that P{supt∈Bζ
∣X̃(r+1)J1

(t) − X̃(r+1)J2
(t)∣ < ϱ} > 1 − η, for all

J1, J2 > J̄ . Similarly to the previous proof, one can obtain

P
⎧⎪⎪
⎨
⎪⎪⎩

sup
t≠0∈Bζ

RRRRRRRRRRRRR

X̃
(r)
J1
(t) − X̃

(r)
J2
(t) − X̃

(r)
J1
(0) + X̃

(r)
J2
(0)

t

RRRRRRRRRRRRR

< ϱ

⎫⎪⎪
⎬
⎪⎪⎭

> 1 − η.

Note that the pointwise consistency of X̃
(1)
ω,J on Bζ can be shown by the same means as for

plimJ→∞ X̃
(1)
ω,J(0) = B

(1)
K (0,Xω), switching m with any point in the domain. Then re-define

the following two functions for t ≠ 0 ∈ Bζ :

gJ(t) =
X̃
(r)
ω,J(t) − X̃

(r)
ω,J(0)

t
and g(t) =

B
(r)
K (t,Xω) −B

(r)
K (0,Xω)

t
;

it is implied by the uniform convergence and the pointwise consistency that X̃
(r)
ω,J converges

uniformly to B
(r)
K (⋅,Xω) in probability on Bζ , it follows that

plim
J→∞

gJ(t) = g(t), ∀t ≠ 0 ∈ Bζ .

Meanwhile, given the differentiability of X̃
(r+1)
ω,J (t) and B

(r+1)
K (t,Xω), we have

lim
t→0

gJ(t) = X̃
(r+1)
ω,J (0) and lim

t→0
g(t) = B

(r+1)
K (0,Xω).

Then again, applying Lemma (a) indicates that plimJ→∞ X̃
(r+1)
ω,J (0) = B

(r+1)
K (0,Xω).

◻

B.7 Proof of Lemma B.1.3

First, let ψ(q) ∶= f(XXX + q(YYY −XXX)) for q ∈ [0,1]. Then taking the first order derivative of
ψ(q) with respect to q through the matrix argument of the function f yields

ψ(1)(q) = tr [{
∂f (XXX + q(YYY −XXX))

∂ (XXX + q(YYY −XXX))
}

⊺

{
∂ (XXX + q(YYY −XXX))

∂q
}] = tr [{

∂f (XXX + q(YYY −XXX))

∂ (XXX + q(YYY −XXX))
}

⊺

(YYY −XXX)] .
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By the mean-value theorem, there exists some q ∈ [0,1], such that ψ(1) − ψ(0) = ψ(1)(q),
which is equivalent to

f(YYY ) − f(XXX) = tr [{
∂f (ZZZ)

∂ZZZ
}

⊺

(YYY −XXX)] .

B.8 FDA Results

This appendix presents functional data predictions of return and volatility, the correspond-
ing K-S test results with different sample sizes, and the distribution of the comparisons
in relative MSFE (RMSFE). To begin with, the K-S test results are presented in Fig-
ures B.1 and B.2 for the original pseudo-continuous sample setup with an eight-month
rolling window. Next, we modify our simulation by drawing equally spaced daily points as
observations from the 1000 pseudo-continuous SS(t), vS(t), SD(t) and vD(t), and keep the
rolling window size of 8 months, the predictions are graphed in Figures B.3 and B.4. We
then consider the case where we use the 1000 pseudo-continuous SS(t), vS(t), SD(t) and
vD(t) as the sample, and reduce the rolling window to a size of 21 days (i.e., a-month-long
rolling window), and the forecast results are shown in Figures B.7 and B.8. Figures B.11
and B.12 illustrate the out-of-sample forecast based on a-month-long daily data. Further,
Figures B.5, B.6 (following Figures B.3 and B.4), B.9, B.10 (following Figures B.7 and
B.8), B.13, and B.14 (following Figures B.11 and B.12) depict the corresponding K-S test
results, and the FDA-based method appears to correctly distinguish between the processes
with different limits in out-of-sample prediction with smaller sample sizes.

Figure B.1: Forecast vs. Underlying, ŜD(tj)
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Figure B.2: Forecast vs. Underlying, ŜS(tj)

Figure B.3: Functional Data Prediction with an 8-month Rolling Window, Daily Returns

Figure B.4: Functional Data Prediction with an 8-month Rolling Window, Daily Volatility
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Figure B.5: Forecast vs. Underlying, Daily ŜS(tj)

Figure B.6: Forecast vs. Underlying, Daily ŜD(tj)

Figure B.7: Functional Data Prediction with a 1-month Rolling Window, Continuous
Returns
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Figure B.8: Functional Data Prediction with a 1-month Rolling Window, Continuous
Volatility

Figure B.9: Forecast vs. Underlying, Continuous ŜS(tj)

Figure B.10: Forecast vs. Underlying, Continuous ŜD(tj)
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Figure B.11: Functional Data Prediction with a 1-month Rolling Window, Daily Returns

Figure B.12: Functional Data Prediction with a 1-month Rolling Window, Daily Volatility

Figure B.13: Forecast vs. Underlying, Daily ŜS(tj)

B.9 MLE Results

This appendix presents detailed information on the 420 rolling window estimates, as well
as the corresponding biases and rejection rates for each parameter. The horizontal dashed
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Figure B.14: Forecast vs. Underlying, Daily ŜD(tj)

line indicates the true value of the parameter in the estimate plots, and the horizontal
dashed line indicates the 5% significance level in the rejection rate plots. Last, Figures
B.31 to B.34 present the distributions of the ratios of the MSFEs between FDA and MLE.

Figure B.15: Fitting DV Process Using a DV Model — â

Figure B.16: Fitting DV Process Using a DV Model — α̂
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Figure B.17: Fitting DV Process Using a DV Model — β̂

Figure B.18: Fitting SV Process Using a SV Model — â

Figure B.19: Fitting SV Process Using a SV Model — α̂

Figure B.20: Fitting SV Process Using a SV Model — β̂
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Figure B.21: Fitting SV Process Using a SV Model — σ̂

Figure B.22: Fitting SV Process Using a SV Model — ρ̂

Figure B.23: Fitting SV Process Using a DV Model — â

Figure B.24: Fitting SV Process Using a DV Model — α̂
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Figure B.25: Fitting SV Process Using a DV Model — β̂

Figure B.26: Fitting DV Process Using a SV Model — â

Figure B.27: Fitting DV Process Using a SV Model — α̂

Figure B.28: Fitting DV Process Using a SV Model — β̂
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Figure B.29: Fitting DV Process Using a SV Model — σ̂

Figure B.30: Fitting DV Process Using a SV Model — ρ̂

Figure B.31: FDA vs. Misspecified MLE, Relative MSFE for SV Data
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Figure B.32: FDA vs. Misspecified MLE, Relative MSFE for DV Data

Figure B.33: FDA vs. Correctly Specified MLE, Relative MSFE for SV Data

Figure B.34: FDA vs. Correctly Specified MLE, Relative MSFE for DV Data

94



Appendix C

Appendices of Chapter 3

C.1 Proofs of Propositions and Theorems

Before proceeding to the proofs, we first recall the following definitions regarding limit and
boundary points, set’s convexity, openness, boundedness, and compactness properties.

Definition C.1.1 (Limit Point). Let (S, d) be the metric space and C ⊆ S . x ∈ S is a
limit point of C if ∀ϵ > 0, there is a point y ∈ C /{x} with d(x, y) < ϵ
Definition C.1.2 (Boundary point). Let (S, d) be the metric space, if C is a subset of
S, a point x ∈ S is a boundary point of C if every neighbourhood of x contains at least
one point in C and at least one point not in C.
Definition C.1.3 (Convex set). Let S be an affine space over some ordered field. A
subset C of S is convex if, for all x and y in C, the line segment connecting x and y is
included in C. This means that the affine combination

ρx + (1 − ρ)y ∈ C,

for all x, y ∈ C, and ρ in the interval [0,1].
Definition C.1.4 (Open set). A subset C of a metric space (S, d) is open if every
element, x, in C has a neighbourhood centred at x with radius ϵ lying in the set (i.e.,
B(x, ϵ) ⊂ C).
Definition C.1.5 (Bounded set). A set C in a metric space (S, d) is bounded if it has
a finite generalized diameter. In other words, there is an R <∞ such that d(x, y) ≤ R for
all x, y ∈ C.
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Definition C.1.6 (Compact set). For any subset C in a metric space (S, d), an open
cover is a collection of sets {Gn} which are open in (S, d), such that C ⊂ ⋃n{Gn}. C is
compact if and only if every open cover of C has a finite subcover.

C.2 Proof of Proposition 3.2.1

Proof. Let x = [x1, x2, x3]⊺ be any point in L(Π) and ϵ > 0, we prove that there is y =
[y1, y2, y3]⊺ ∈ Π/{x} such that d(x,y) < ϵ. Let y1 = x1, y2 = x2 − δ, and y3 = x3 + δ, where
δ <min{x2,1 − x3, ϵ/

√
2} . Then, ∑3

s=1 y
s = 1 and ys > 0 for s = 1,2,3 imply that y ∈Π/{x}.

Since d(x,y) =
√
2δ2 <

√
ϵ2 = ϵ, x ∈ L(Π).

Since ∂Π ⊂ L(Π), every x ∈ ∂Π is an element in L(Π). Therefore, for ϵ > 0, there is
at least one point in B(x, ϵ) that is also an element of Π. Now, consider y = [y1, y2, y3]⊺ ∈
B(x, ϵ) in that y1 = x1 + δ, y2 = x2 − δ, and y3 = x3 = 0, where δ < min{1 − x1, x2, ϵ/

√
2} .

Then, ∑3
s=1 y

s = 1, y1, y2 > 0 and y3 = 0 imply that y ∉Π. Hence, x ∈ ∂Π.

C.3 Proof of Theorem 3.2.1

To prove that d1 is a valid metric, we first show that, d2 in Equation (3.5) is a valid metric
satisfying the following conditions.

1. d2(M sx ,M sy) = 0 if and only if M sx =M sy .

Proof. (⇒) If d2(M sx ,M sy) = 0, we must have ∣vsx − vsy ∣ + ∣usx − usy ∣ = 0 for sx =
1,2, . . . , Sx and sy = 1,2, . . . , Sy. Since M sx and M sy are non-zero, we must have
vsx = vsy and usx = usy , and thus, M sx =M sy .

(⇐) If M sx =M sy , we have vsx = vsy and usx = usy , and thus, d2(M sx ,M sy) = 0.

2. d2(M sx ,M sy) = d2(M sy ,M sx).

Proof.
d2(M sx ,M sy) = ∣vsx − vsy ∣ + ∣usx − usy ∣

= ∣vsy − vsx ∣ + ∣usy − usx ∣
= d2(M sy ,M sx).
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3. d2(M sx ,M sz) ≤ d2(M sx ,M sy) + d2(M sy ,M sz).

Proof.
d2(M sx ,M sy) + d2(M sy ,M sz)
= ∣vsx − vsy ∣ + ∣vsy − vsz ∣ + ∣usx − usy ∣ + ∣usy − usz ∣
≥ ∣vsx − vsy + vsy − vsz ∣ + ∣usx − usy + usy − usz ∣
= ∣vsx − vsz ∣ + ∣usx − usz ∣
= d2(M sx ,M sz)

Hence, d2 is a valid metric.

Then, let

w∗ = arg inf
w

⎧⎪⎪⎨⎪⎪⎩

Sx

∑
sx=1

Sy

∑
sy=1

wsysxx
sxd2(M sx ,M sy) ∶w ∈W (x,y)

⎫⎪⎪⎬⎪⎪⎭

where W (x,y) ∶= {w ∈ RSy×Sx
+ ∶w⊺1Sy = x,wx = y} is the set of transport plans between

x and y andMx,My,Mz ∈ C̄, we prove that d1 is a valid metric that satisfies the following
conditions.

1. d1(Mx,My) = 0 if and only if Mx =My.

Proof. (⇒) If d1(Mx,My) = 0, then we have

Sx

∑
sx=1

Sy

∑
sy=1

w∗sysxx
sxd2(M sx ,M sy) = 0,

implying that w∗sysxx
sxd2(M sx ,M sy) = 0 for all pairs of (sx, sy). Since w∗sysx ≥ 0 and

d2 is a valid metric, we either have w∗sysx = 0 or d2(M sx ,M sy) = 0. Since ∑Sy

sy=1w
∗
sysx =

1, we can have one and only one s′y ≤ Sy such that M sx = M s′y , in which case, we

have w∗s′ysx = 1, and since ∑Sx
sx=1w

∗
sysxx

sx = ysy , the s′y must be distinct for different

sx. Hence, xsx = ysy for the sx such that M sx =M sy , which entails that Mx =My .

(⇐) IfMx =My, we can have d2(M sx ,M sy) = 0 and w∗sysx = 1 for every sx = sy. Since
∑Sy

sy=1w
∗
sysx = 1 and w∗sysx ≥ 0, w∗sysx = 0 for all sx ≠ sy. Hence, d1(Mx,My) = 0.

2. d1(Mx,My) = d1(My,Mx).
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Proof. Let w∗ ∈W (x,y) and w∗′ ∈W (y,x).

d1(Mx,My) =
Sx

∑
sx=1

Sy

∑
sy=1

w∗sysxx
sxd2(M sx ,M sy)

=
Sx

∑
sx=1

Sy

∑
sy=1

w∗sysxx
sx
w∗′sysxy

sy

w∗′sysxy
sy
d2(M sx ,M sy)

=
Sx

∑
sx=1

Sy

∑
sy=1

w∗′sysxy
sy
w∗sysxx

sx

w∗′sysxy
sy
d2(M sy ,M sx)

=
Sx

∑
sx=1

Sy

∑
sy=1

w∗′sysxy
syd2(M sy ,M sx)

= d1(My,Mx).

3. d1(Mx,Mz) ≤ d1(Mx,My) + d1(My,Mz).

Proof. Let w∗ ∈W (x,y), w∗′ ∈W (y,z),

d1(Mx,Mz) =
Sx

∑
sx=1

Sz

∑
sz=1

w∗′′sxszz
szd2(M sx ,M sz)

=
Sx

∑
sx=1

Sy

∑
sy=1

Sz

∑
sz=1

w∗sysxx
sxw∗′szsyy

sy
w∗′′sxszz

sz

w∗sysxx
sxw∗′szsyy

sy
d2(M sx ,M sz)

≤
Sx

∑
sx=1

Sy

∑
sy=1

Sz

∑
sz=1

w∗sysxx
sx
w∗′′sxszz

sz

w∗sysxx
sx
d2(M sx ,M sy)

+
Sx

∑
sx=1

Sy

∑
sy=1

Sz

∑
sz=1

w∗′szsyy
sy
w∗sxszz

sz

w∗′szsyy
sy
d2(M sy ,M sz)

=
Sx

∑
sx=1

Sy

∑
sy=1

w∗sysxx
sxd2(M sx ,M sy) +

Sy

∑
sy=1

Sz

∑
sz=1

w∗′szsyy
syd2(M sy ,M sz)

= d1(Mx,My) + d1(My,Mz).

Hence, (C̄, d1) is a valid metric space.

Now, we are ready to prove for Theorem 3.2.1.
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Proof. Let Mx be any point in L(C), and thus, x = [x1, x2, x3]⊺ ∈ L(Π), and ϵ > 0, we
prove that there isMy ∈C/Mx such that d1(Mx,My) < ϵ, where y = [y1, y2, y3]⊺ ∈Π/{x}.
Let y1 = x1 − δ, y2 = x2, and y3 = x3 + δ. Since d1(Mx,My) = 0 if and only if Mx =My and
d1(Mx,My) ≥ 0, thus, we can choose δ satisfying the following conditions:

d1(Mx,My) < ϵ and δ <min{x1,1 − x3} ,

so that we have ∑3
s=1 y

s = 1 and ys > 0 for s = 1,2,3, implying that y ∈ Π/{x}. Therefore,
My ∈ B(Mx, ϵ) such that My ∈C/Mx, and thus, Mx ∈ L(C).

Since ∂C ⊂ L(C), every Mx ∈ ∂C is an element in L(C). Therefore, for ϵ > 0, there is
at least one point in B(Mx, ϵ) that is also an element of C. Now, consider My ∈ B(Mx, ϵ)
in that y1 = x1 + δ, y2 = x2 − δ, and y3 = x3 = 0, where δ < min{1 − x1, x2} and satisfies the
following condition d1(Mx,My) < ϵ. Then, ys > 0 for s = 1,2, and y3 = 0, implying that
y ∉Π, and thus, My ∉C. Hence, Mx ∈ ∂C.

C.4 Proof of Lemma 3.2.1

Proof. Suppose that (M1
n,M

2
n) → (M1,M2) ∈ ∂C with π1

n + π2
n = 1 and 1/π1

n,1/π2
n > 0. If

it were 1/π1 = 0, then π1
n → ∞, but π1

n ≤ π1
n + π2

n = 1, so that’s impossible. Similarly, we
cannot have 1/π2

n = 0. Then, limn→∞ π1
n + π2

n = π1 + π2 = 1 so that (M1
n,M

2
n) ∈ ∂C, and

∂C is closed. Since ∂C is a non-empty subspace of C̄, taking Mx ∈ C, there exists a
closed ball B = B(Mx, ϵ) such that B⋂∂C is a non-empty compact set. So the function
My ↦ d1(Mx,My) defined on B⋂∂C must achieve a minimum. That is, there is some
My = M∗y ∈ B⋂∂C, which minimizes d1(Mx,My). Further, for My ∈ ∂C/B, we have
d1(Mx,My) > ϵ ≥ d1(Mx,M

∗
y), so it minimizes the distance on the whole of ∂C. Moreover,

since M∗y ∉C, d1(Mx,M
∗
y) > 0. Hence, for every Mx ∈C, there exists M∗y such that

M
∗
y = argmin

My∈∂C
{d1(Mx,My)}.

C.5 Proof of Theorem 3.2.2

Proof. Let ρ ∈ [0,1] and Mx,My ∈C. The affine combination of Mx,My is

ρMx +(1 − ρ)My = {M ∶ ρEx[rM] + (1 − ρ)Ey[rM] = ρ12 + (1 − ρ)12}
= {M ∶ ρEx[rM] + (1 − ρ)Ey[rM] = 12} ∈C.
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Hence, C is convex.

Let Mx ∈C with x = [x1, x2, x3]⊺ ∈Π. There is η > 0 such that

η = min
My∈∂C

{d1(Mx,My)},

where y ∈ ∂Π. Then, since C = C̄/∂C, by choosing ϵ < η, we have B(Mx, ϵ) ⊂ C. Hence,
C is open in (C̄, d1) .

Next, we prove that C is bounded in (C̄, d1) . First, let κv and κu denote the coefficient
vectors of v(x) and u(x), respectively, for x ∈ Π̄. That is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

κv =
⎡⎢⎢⎢⎢⎢⎢⎣

1−r2
r1−r2
r1−1
r1−r2

0

⎤⎥⎥⎥⎥⎥⎥⎦
and κu =

⎡⎢⎢⎢⎢⎢⎢⎣

r2−r3
r1−r2

− r1−r3
r1−r2

1

⎤⎥⎥⎥⎥⎥⎥⎦
, x ∈Π;

κv =
⎡⎢⎢⎢⎢⎣

1−r2
r1−r2
r1−1
r1−r2

⎤⎥⎥⎥⎥⎦
and κu =

⎡⎢⎢⎢⎢⎣

0

0

⎤⎥⎥⎥⎥⎦
, x ∈ ∂Π.

Then, given that w ∈W (x,y), we have

D =
Sx

∑
sx=1

Sy

∑
sy=1

wsysxx
sxd2(M sx ,M sy)

=
Sx

∑
sx=1

Sy

∑
sy=1

wsysxx
sx(∣κsxv /xsx − κ

sy
v /ysy ∣ + ∣κsxu /xsx − κ

sy
u /ysy ∣)

=
Sx

∑
sx=1

Sy

∑
sy=1
(∣wsysxκ

sx
v −wsysxκ

sy
v x

sx/ysy ∣ + ∣wsysxκ
sx
u −wsysxκ

sy
u x

sx/ysy ∣) .

Since ∑Sx
sx=1wsysxx

sx = ysy , for every sx = 1,2, . . . , Sx, sy = 1,2, . . . , Sy, wsysxx
sx ∈ [0, ysy],

and thus, wsysxκ
sy
v xsx/ysy ∈ [0, κsyv ]. Therefore, D is bounded, implying that there is 0 <

R <∞ such that d1 (Mx,My) ≤ R for all Mx,My ∈C. Hence, C is bounded.

Lastly, to show that C is not compact, we just need one example of an open cover that
has no finite open subcovers. Let {Gn} = {Mπ ∣π ∈Πn, n ∈ N} , where

{Πn} = {[π1, π2,1 −
2

∑
i=1
πs]

⊺

∈ R3
++ ∶

2

∑
i=1
πs ∈ ( 1

n
,
n − 1
n
) , n ∈ N} .
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Notice that, if this gives us an invalid segment such as (1,0), we treat it as an empty
element. Here, for any b = ∑2

i=1 π
s ∈ (0,1), the Archimedean Property provides an n ∈ N

such that n >max{1b , 1
1−b}. Then,

nb > 1 and n − nb > 1
⇒ 1 < nb < n − 1

⇒ b ∈ ( 1
n
,
n

n − 1) .

Thus, every element of Π is in {Πn} for some n ∈ N, and therefore, every element of C
is in {Gn} for some n ∈ N, suggesting that C ⊂ ⋃∞n=1{Gn}. Moreover, since for any n ∈ N,
Gn has a neighbourhood centred at Gn with radius ϵ > 0 lying in the set, {Gn} is an open
cover of C. Let k, l ∈ N such that k > l > 2, we have

1

k
< 1

l
< 1 − 1

l
< 1 − 1

k
⇒ {Πl} ⊂ {Πk}⇒ {Gl} ⊂ {Gk}.

Therefore, for any finite m ∈ N, ⋃m
n=1{Gn} = {Gm} = {Mπ ∣π ∈Πm,m ∈ N} . However, for

anym ∈ N, there existsΠm+1 /⊂ {Πm}, whileΠm+1 ∈Π. Thus, there exists {Mπ ∣π ∈Πm+1} /⊂
{Gm}, while {Mπ ∣π ∈Πm+1} ∈ C. Therefore, {Gn} is an open cover of C that does not
have a finite subcover. Hence, C is not compact.

C.6 Proof of Proposition 3.2.2

Proof. Let x = [x1, x2, . . . , xA+2]⊺ be any point in L(Π) and ϵ > 0, we prove that there
is y = [y1, y2, . . . , yA+2]⊺ ∈ Π/{x} such that d(x,y) < ϵ. Let ys = xs for s = 1,2, . . . ,A,
yA+1 = xA+1−δ, and yA+2 = xA+2+δ, where δ <min{xA+1,1 − xA+2, ϵ/

√
2} . Then, ∑A+2

i=1 y
s = 1

and ys > 0 for s = 1,2, . . . ,A + 2 imply that y ∈ Π/{x}. Since d(x,y) =
√
2δ2 <

√
ϵ2 = ϵ,

x ∈ L(Π).
Since ∂Π ⊂ L(Π), every x ∈ ∂Π is an element in L(Π). Therefore, for ϵ > 0, there is at

least one point in B(x, ϵ) that is also an element ofΠ. Now, consider y = [y1, y2, . . . , yA+2]⊺ ∈
B(x, ϵ) in that y1 = x1 + δ, y2 = x2 − δ, and ys = xs for s = 3,4, . . . ,A + 2, where δ <
min{1 − x1, x2, ϵ/

√
2} . Then, ∑A+2

s=1 y
s = 1, ys > 0 for s = 1,2, . . . ,A + 1 and yA+2 = 0 imply

that y ∉Π. Hence, x ∈ ∂Π.
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C.7 Proof of Theorem 3.2.3

Proof. First of all, as proved in Appendix C.3, d1 is a valid metric. Let Mx be any
point in L(C), and thus, x = [x1, x2, . . . , xA+2]⊺ ∈ L(Π). Let ϵ > 0, we prove that there is
My ∈ C/Mx (equivalently, y = [y1, y2, . . . , yA+2]⊺ ∈Π/{x}) such that d1(Mx,My) < ϵ. Let
ys = xs for s = 1,2, . . . ,A, yA+1 = xA+1 − δ, and yA+2 = xA+2 + δ. By choosing δ satisfying the
following conditions:

d1(Mx,My) < ϵ and δ <min{xA+1,1 − xA+2} ,

we have ∑A+2
i=1 y

s = 1 and ys > 0 for s = 1,2, . . . ,A + 2 imply that y ∈Π/{x}. Therefore, we
can find My ∈ B(Mx, ϵ) such that My ∈C, and thus, Mx ∈ L(C).

Since ∂C ⊂ L(C), every Mx ∈ ∂C is an element in L(C). Therefore, for ϵ > 0, there is
at least one point in B(Mx, ϵ) that is also an element of C. Now, consider My ∈ B(Mx, ϵ)
in that y1 = x1 + δ y2 = x2 − δ, and ys = xs for s = 3,4, . . . ,A + 2, where δ < min{1 − x1, x2}
and satisfies d1(Mx,My) < ϵ. Then, ys > 0 for s = 1,2, . . . ,A + 1, and yA+2 = 0, implying
that y ∉Π, and thus, My ∉C. Hence, Mx ∈ ∂C.

C.8 Proof of Lemma 3.2.2

Proof. Suppose that (M1
n,M

2
n, . . . ,M

A+1
n ) → (M1,M2, . . . ,MA+1) ∈ ∂C with ∑A+1

s=1 π
s
n = 1

and 1/πs
n > 0 for s = 1,2, . . . ,A + 1. If it were 1/π1 = 0, then π1

n →∞, but π1
n ≤ ∑A+1

s=1 π
s
n = 1,

so that’s impossible. Similarly, we cannot have 1/πs
n = 0 for any s = 2,3, . . . ,A + 1. Then,

limn→∞∑A+1
s=1 π

s
n = ∑A+1

s=1 π
s = 1 so that (M1

n,M
2
n, . . . ,M

A+1
n ) ∈ ∂C, and ∂C is closed. Since

∂C is a non-empty subspace of C̄, taking Mx ∈C, there exists a closed ball B = B(Mx, ϵ)
such that B⋂∂C is a non-empty compact set. So the function My ↦ d1(Mx,My) defined
on B⋂∂C must achieve a minimum. That is, there is some My = M∗y ∈ B⋂∂C, which
minimizes d1(Mx,My). Further, for My ∈ ∂C/B, we have d1(Mx,My) > ϵ ≥ d1(Mx,M

∗
y),

so it minimizes the distance on the whole of ∂C. Moreover, since M∗y ∉ C, d1(Mx,M
∗
y) >

0.
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C.9 Proof of Theorem 3.2.4

Proof. Let ρ ∈ [0,1] and Mx,My ∈C. The affine combination of Mx,My is

ρMx +(1 − ρ)My = {M ∶ ρEx[rM] + (1 − ρ)Ey[rM ] = ρ1A+1 + (1 − ρ)1A+1}
= {M ∶ ρEx[rM] + (1 − ρ)Ey[rM ] = 1A+1} ∈C.

Hence, C is convex.

Let Mx ∈C with x ∈Π. There is η > 0 such that

η = min
My∈∂C

{d1(Mx,My)},

where y ∈ ∂Π. Then, since C = C̄/∂C, by choosing ϵ < η, we have B(Mx, ϵ) ⊂ C. Hence,
C is open in (C̄, d1) .

Next, we prove that C is bounded in (C̄, d1) . First, let κv and κu denote the coefficient
vectors of v(x) and u(x), respectively, for x ∈ Π̄ such that

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

κv =
⎡⎢⎢⎢⎢⎣

(r′)−1 1A+1

0

⎤⎥⎥⎥⎥⎦
and κu =

⎡⎢⎢⎢⎢⎣

− (r′)−1 (r′′)
1

⎤⎥⎥⎥⎥⎦
, x ∈Π

κv = (r′)−1 1A+1 and κu = 0A+1, x ∈ ∂Π.

Given that w ∈W (x,y), we have

D =
Sx

∑
sx=1

Sy

∑
sy=1

wsysxx
sxd2(M sx ,M sy)

=
Sx

∑
sx=1

Sy

∑
sy=1

wsysxx
sx(∣κsxv /xsx − κ

sy
v /ysy ∣ + ∣κsxu /xsx − κ

sy
u /ysy ∣)

=
Sx

∑
sx=1

Sy

∑
sy=1
(∣wsysxκ

v
i −wsysxκ

sy
v x

sx/ysy ∣ + ∣wsysxκ
sx
u −wsysxκ

sy
u x

sx/ysy ∣)

Since ∑Sx
sx=1wsysxx

sx = ysy , for every sx = 1,2, . . . , Sx, sy = 1,2, . . . , Sy, wsysxx
sx ∈ [0, ysy],

and thus, wsysxκ
sy
v xsx/ysy ∈ [0, κsyv ]. Therefore, D is bounded, implying that there is 0 <

R <∞ such that d1 (Mx,My) ≤ R for all Mx,My ∈C. Hence, C is bounded.

Last, to show that C is not compact, we just need one example of an open cover that
has no finite open subcovers. Let {Gn} = {Mπ ∣π ∈Πn, n ∈ N} , where

{Πn} =
⎧⎪⎪⎨⎪⎪⎩
[π1, π2, ..., πA+1,1 −

A+1
∑
s=1

πs]
⊺

∈ (R)A+2++ ∶
A+1
∑
s=1

πs ∈ ( 1
n
,
n − 1
n
) , n ∈ N

⎫⎪⎪⎬⎪⎪⎭
.
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Notice that, if this gives us an invalid segment such as (1,0), we treat it as an empty
element. Here, for any b = ∑A+1

s=1 π
s ∈ (0,1), the Archimedean Property provides an n ∈ N

such that n >max{1b , 1
1−b}. Then,

nb > 1 and n − nb > 1
⇒ 1 < nb < n − 1

⇒ b ∈ ( 1
n
,
n

n − 1) .

Thus, every element of Π is in {Πn} for some n ∈ N, and therefore, every element of C
is in {Gn} for some n ∈ N, suggesting that C ⊂ ⋃∞n=1{Gn}. Moreover, since for any n ∈ N,
Gn has a neighbourhood centred at Gn with radius ϵ > 0 lying in the set, {Gn} is an open
cover of C. Let k, l ∈ N such that k > l > 2, we have

1

k
< 1

l
< 1 − 1

l
< 1 − 1

k
⇒ {Πl} ⊂ {Πk}⇒ {Gl} ⊂ {Gk}.

Therefore, for any finite m ∈ N, ⋃m
n=1{Gn} = {Gm} = {Mπ ∣π ∈Πm,m ∈ N} . However, for

anym ∈ N, there existsΠm+1 /⊂ {Πm}, whileΠm+1 ∈Π. Thus, there exists {Mπ ∣π ∈Πm+1} /⊂
{Gm}, while {Mπ ∣π ∈Πm+1} ∈ C. Therefore, {Gn} is an open cover of C that does not
have a finite subcover. Hence, C is not compact.

C.10 Proof of Proposition 3.2.4

Proof. We first prove by induction that, for all n ∈ Z+ and S = A + 1 + n, there is xt =
[x1t , x2t , . . . , xSt ]

⊺ ∈ L(Πt) and yt = [y1t , y2t , . . . , ySt ]
⊺ ∈ Πt/{xt} such that d(xt,yt) < ϵ for

ϵ > 0.
Base case: When n = 1, S = A + 2, let xt = [x1t , x2t , . . . , xA+2t ]⊺ be any point in L(Πt). Let
ϵ > 0 and yt = [y1t , y2t , . . . , ySt ]

⊺ ∈Πt/{xt} such that yst = xst for s = 1,2, . . . ,A, yA+1t = xA+1t −δ,
and yA+2t = xA+2t + δ and δ < min{xA+1t ,1 − xA+2t , ϵ/

√
2} . Then, ∑A+2

i=1 y
s
t = 1 and yst > 0 for

a = 1,2, . . . ,A+2, implying that yt ∈Πt/{xt}. Since d(xt,yt) =
√
2δ2 <

√
ϵ2 = ϵ, xt ∈ L(Πt).

Induction step: Let k ∈ Z+ be given and suppose our statement is true for n = k. Then, if
xA+k+2t = η > 0, holding all other elements in xt(n = k) and yt(n = k) fixed, for any i < A+k+2
with xit(n = k) > η1, given xit(n = k + 1) = xit(n = k) − η, there is yit(n = k + 1) = yit(n = k) − η

1We use xit(n = k) to denote the ith element in xt for n = k.
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such that

(xit(n = k + 1) − yit(n = k + 1))
2 = (xit(n = k) − γ − yit(n = k) + γ)

2

= (xit(n = k) − yit(n = k))
2

and (xA+k+2t (n = k + 1) − yA+k+2t (n = k + 1))2 = 0. Therefore, d(xt(n = k+1),yt(n = k+1)) =
d(xt(n = k),yt(n = k)) < ϵ. If xA+k+2t = 0, for any xit(n = k) > yit(n = k), holding all
other elements in yt(n = k) fixed, let yA+k+2t (n = k + 1) = γ < xit(n = k) − yit(n = k) and
yit(n = k + 1) = yit(n = k) − γ, then

(xit(n = k + 1) − yit(n = k + 1))
2 + (xA+k+2t (n = k + 1) − yA+k+2t (n = k + 1))2

= (xit(n = k) − yit(n = k) + γ)
2 + γ2

= (xit(n = k) − yit(n = k))
2 − 2γ (xit(n = k) − yit(n = k)) + 2γ2

< (xit(n = k) − yit(n = k))
2
.

Therefore, d(xt(n = k + 1),yt(n = k + 1)) < d(xt(n = k),yt(n = k)) < ϵ.
Conclusion: By the principal of induction, for all n ∈ Z+ and S = A + 1 + n, there is
xt = [x1t , x2t , . . . , xSt ]

⊺ ∈ L(Πt) and yt = [y1t , y2t , . . . , ySt ]
⊺ ∈Πt/{xt} such that d(xt,yt) < ϵ for

ϵ > 0.
Since ∂Πt ⊂ L(Πt), every xt ∈ ∂Πt is an element in L(Πt). Therefore, for ϵ > 0,

there is at least one point in B(xt, ϵ) that is also an element of Πt. Now, consider yt =
[y1t , y2t , . . . , ySt ]

⊺ ∈ B(xt, ϵ) in that y1t = x1t + δ, y2t = x2t − δ, and yst = xst for s = 3,4, . . . , S,
where δ < min{1 − x1t , x2t , ϵ/

√
2} . Then, ∑S

s=1 y
s
t = 1, yst > 0 for s = 1,2, . . . ,A + 1, and yst = 0

for s = A + 2,A + 3, . . . , S imply that yt ∉Πt. Hence, xt ∈ ∂Πt.

C.11 Proof of Theorem 3.2.7

First notice that, similar to the proof in the 1-1-2-3 case, d1 is a valid metric. Then, we
prove by induction that, for all n ∈ Z+ and S = A + 1 + n, let mx be any point in L(ct)
and ϵ > 0, we want to prove that there is myt

∈ ct/mxt such that d1(mxt ,myt
) < ϵ, where

yt ∈Πt/{xt}.
Base case: Since mx ∈ L(ct), xt ∈ L(Πt). Let yst = xst for s = 1,2, . . . ,A, yA+1t = xA+1t − δ,
and yA+2t = xA+2t + δ. By choosing δ satisfying the following conditions:

d1(mxt ,myt
) < ϵ and δ <min{xA+1t ,1 − xA+2t } ,
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so that we have ∑A+2
i=1 y

s
t = 1 and yst > 0 for s = 1,2, . . . ,A + 2 imply that yt ∈ Πt/{xt}.

Therefore, we can find myt
∈ B(mxt , ϵ) such that myt

∈ ct, and thus, mxt ∈ L(ct).
Induction step: Let k ∈ Z+ be given and suppose our statement is true for n = k. Then,
for every xt(n = k + 1) such that xA+k+2t = η > 0 and xit(n = k + 1) = xit(n = k) − λiη for
i = 1,2, . . . ,A + k + 1, where ∑A+1

i=1 λi = 1 and λi > 0. By setting yA+k+2t = η and yit(n =
k + 1) = yit(n = k) − λiη > 0 i = 1,2, . . . ,A + k + 1, we have d1(mxt(n=k+1),myt(n=k+1)) =
d1(mxt(n=k),myt(n=k)) < ϵ. If xA+k+2t = 0, by choosing η and λi ≥ 0 i = 1,2, . . . ,A+ k + 1 such

that yA+k+2t = η > 0, yit(n = k + 1) = yit(n = k) − λiη > 0, and ∑A+1
i=1 λi = 1, and satisfies the

condition that d1(mxt(n=k+1),myt(n=k+1)) < ϵ so that we have ∑A+k+2
i=1 yst = 1 and yst > 0 for

s = 1,2, . . . ,A+ k + 2 imply that yt ∈Πt/{xt}. Therefore, we can find myt
∈ B(mxt , ϵ) such

that myt
∈ ct, and thus, mxt ∈ L(ct).

Since ∂ct ⊂ L(ct), every mxt ∈ ∂ct is an element in L(ct). Therefore, for ϵ > 0, there is
at least one point in B(mxt , ϵ) that is also an element of ct. Now, consider myt

∈ B(mxt , ϵ)
in that y1t = x1t + δ y2t = x2t − δ, and yst = xst for s = 3,4, . . . ,A + 2, where δ < min{1 − x1t , x2t}
and satisfies d1(mx,my) < ϵ. Then, yst > 0 for s = 1,2, . . . ,A + 1, and yst = 0 for s =
A + 2,A + 3, . . . , S, implying that yt ∉Πt, and thus, myt

∉ ct. Hence, mxt ∈ ∂ct.

C.12 Proof of Lemma 3.2.3

Proof. Suppose that (m1
t,n,m

2
t,n, . . . ,m

A+1
t,n ) → (m1

t ,m
2
t , . . . ,m

A+1
t ) ∈ ∂ct with ∑A+1

s=1 π
s
t,n =

1 and 1/πs
t,n > 0 for s = 1,2, . . . ,A + 1. If it were 1/π1

t = 0, then π1
t,n → ∞, but π1

t,n ≤
∑A+1

s=1 π
s
t,n = 1, so that’s impossible. Similarly, we cannot have 1/πs

t,n = 0 for any s =
2,3, . . . ,A + 1. Then, limn→∞∑A+1

s=1 π
s
t,n = ∑A+1

s=1 π
s
t = 1 so that (m1

t,n,m
2
t,n, . . . ,m

A+1
t,n ) ∈ ∂ct,

and ∂ct is closed. Since ∂ct is a non-empty subspace of c̄t, taking mxt ∈ ct, there exists a
closed ball B = B(mxt , ϵ) such that B⋂∂ct is a non-empty compact set. So the function
myt
↦ d1(mxt ,myt

) defined on B⋂∂ct must achieve a minimum. That is, there is some
myt

= m∗y ∈ B⋂∂ct, which minimizes d1(mxt ,myt
). Further, for myt

∈ ∂ct/B, we have
d1(mxt ,myt

) > ϵ ≥ d1(mxt ,m
∗
yt
), so it minimizes the distance on the whole of ∂ct.Moreover,

since m∗yt
∉ ct, d1(mxt ,m

∗
yt
) > 0.
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C.13 Proof of Theorem 3.2.8

Proof. Let ρ ∈ [0,1] and mxt ,myt
∈ ct. The affine combination of mxt ,myt

is

ρmxt +(1 − ρ)myt
= {mt ∶ ρExt[rtmt] + (1 − ρ)Eyt

[r1mt] = ρ1A+1 + (1 − ρ)1A+1}
= {mt ∶ ρExt[rtmt] + (1 − ρ)Eyt

[rtmt] = 1A+1} ∈ ct.

Hence, ct is convex.

Then let mxt ∈ ct with xt ∈Πt. There is η > 0 such that

η = min
myt∈ct

{d1(mxt ,myt
)} ,

where yt ∈ ∂Πt. Then, since ct = c̄t/∂ct, by choosing ϵ < η, we have B(mxt , ϵ) ⊂ ct. Hence,
ct is open in (c̄t, d1).

Next, we prove that ct is bounded in (c̄t, d1) . First, let κvt and κut denote the coefficient
vectors of vt(xt) and ut(xt), respectively, for xt ∈ Π̄t. Given that wt ∈W (xt,yt), we have

D =
Sxt

∑
sxt=1

Syt

∑
syt=1

wsytsxt
x
sxt
t d2(msxt

t ,m
syt
t )

=
Sxt

∑
sxt=1

Syt

∑
syt=1

wsytsxt
x
sxt
t (∣κ

sxt
vt /x

sxt
t − κ

syt
vt /y

syt
t ∣ + ∣κ

sxt
ut /x

sxt
t − κ

syt
ut /y

syt
t ∣)

=
Sxt

∑
sxt=1

Syt

∑
syt=1
(∣wsytsxt

κ
sxt
vt −wsytsxt

κ
syt
vt x

sxt
t /y

syt
t ∣ + ∣wsytsxt

κ
sxt
ut −wsytsxt

κ
syt
ut x

sxt
t /y

syt
t ∣) .

Since ∑Sxt
sxt=1

wsytsxt
x
sxt
t = ysyt

t , for every sxt = 1,2, . . . , Sxt , syt
= 1,2, . . . , Syt

, wsytsxt
x
sxt
t ∈

[0, ysyt
t ]. Thus, wsytsxt

κ
syt
vt x

sxt
t /y

syt
t ∈ [0, κsyt

vt ] and wsytsxt
κ
syt
ut x

sxt
t /y

syt
t ∈ [0, κsyt

ut ]. Therefore,
D is bounded, implying that there is 0 < R < ∞ such that d1 (mxt ,myt

) ≤ R for all
mxt ,myt

∈ ct. Hence, ct is bounded.
Last, to show that ct is not compact, we just need one example of an open cover that

has no finite open subcovers. Let {Gt,n} = {mπt ,πt ∈Πt,n, n ∈ N} , where

{Πt,n} =
⎧⎪⎪⎨⎪⎪⎩
[π1

t , π
2
t , ..., π

S−1
t ,1 −

S−1
∑
s=1

πs
t ]
⊺

∈ (R)S++ ∶
S−1
∑
s=1

πs
t ∈ (

1

n
,
n − 1
n
) , n ∈ N

⎫⎪⎪⎬⎪⎪⎭
.
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Notice that, if this gives us an invalid segment such as (1,0), we treat it as an empty
element. Here, for any b = ∑S−1

s=1 π
s
t ∈ (0,1), the Archimedean Property provides an n ∈ N

such that n >max{1b , 1
1−b}. Then,

nb > 1 and n − nb > 1
⇒ 1 < nb < n − 1

⇒ b ∈ ( 1
n
,
n

n − 1) .

Thus, every element of Πt is in {Πt,n} for some n ∈ N, and therefore, every element of ct is
in {Gt,n} for some n ∈ N, suggesting that ct ⊂ ⋃∞n=1{Gt,n}. Moreover, since for any n ∈ N,
Gt,n has a neighbourhood centred at Gt,n with radius ϵ > 0 lying in the set, {Gt,n} is an
open cover of ct. Let k, l ∈ N such that k > l > 2, we have

1

k
< 1

l
< 1 − 1

l
< 1 − 1

k
⇒ {Πt,l} ⊂ {Πt,k}⇒ {Gt,l} ⊂ {Gt,k}.

Therefore, for any finite m ∈ N, ⋃m
n=1{Gt,n} = {Gt,m} = {mπt ,πt ∈Πt,m,m ∈ N} . How-

ever, for any m ∈ N, there exists Πt,m+1 /⊂ {Πt,m}, while Πt,m+1 ∈ Πt. Thus, there exists
{mπt ,πt ∈Πt,m+1} /⊂ {Gt,m}, while {mπt ,πt ∈Πt,m+1} ∈ ct. Therefore, {Gt,n} is an open
cover of ct that does not have a finite subcover. Hence, ct is not compact.

C.14 Proof of Proposition 3.3.1

Proof. Let ϕt = (µB
t ,σ

B
t ,µ

J
t ,σ

J
t ,vt(dx)) be any point in L(Φt). Let ϵ > 0, we want to

prove that there is ϕ′t = (µB′

t ,σ
B′

t ,µ
J ′

t ,σ
J ′

t ,v
′(dx)) ∈ Φt/{ϕt} such that d(ϕt,ϕ

′
t) < ϵ. Let

µB′

t = µB
t ,σ

B′

t = σB
t ,µ

J ′

t = µJ
t ,σ

J ′

t = σJ
t , and v

′(dx) = vt(dx) + δ, whence Equation (3.19)
and 3.20 hold. Then, we have v′(dx) > 0A, implying that ϕ′t ∈ Φt/{ϕt} and d(ϕt,ϕ

′
t) < ϵ.

Hence, ϕt ∈ L(Φt).
Since ∂Φt ⊂ L(Φt), every ϕt ∈ ∂ϕt is an element in L(Φt). Therefore, for ϵ > 0,

there is at least one point in B(Φt, ϵ) that is also an element of ϕt. Now, consider ϕ
′
t =

(µB′

t ,σ
B′

t ,µ
J ′

t ,σ
J ′

t , v
′(dx)) ∈ B(Φt, ϵ) in that d(µB

t ,µ
B′

t ) < ϵ, σB′

t = σB
t ,µ

J ′

t = µJ
t ,σ

J ′

t = σJ
t ,

v′(dx) = vt(dx), and Equation (3.20) holds. Then, vt(dx) = 0, implying that ϕt ∉ Φt.
Hence, ϕt ∈ ∂Φt.
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C.15 Proof of Theorem 3.3.1

Proof. Let c(ϕt) be any point in L(Ct), and thus, ϕt = (µB
t ,σ

B
t ,µ

J
t ,σ

J
t ,vt(dx)) ∈ L(Φt).

Let ϵ > 0, we want to prove that there ism(ϕ′t) ∈ ct/m(ϕt) such that d3(m(ϕt),m(ϕ′t)) < ϵ,
where ϕ′t = (µB′

t ,σ
B′

t ,µ
J ′

t ,σ
J ′

t ,v
′
t(dx)) ∈ Φt/{ϕt}. Let µB′

t = µB
t ,σ

B′

t = σB
t ,µ

J ′

t = µJ
t ,σ

J ′

t =
σJ

t , and v
′
t(dx) = vt(dx) + δ. By choosing δ satisfying d3(m(ϕt), m(ϕ′t)) < ϵ, and Equa-

tion (3.19) and 3.20 hold, we have v′t(dx) > 0A implying that ϕ′t ∈ Φt/{ϕt}. Therefore,
m(ϕ′t) ∈ B(m(ϕt), ϵ) such that m(ϕ′t) ∈ ct/m(ϕt), and thus, m(ϕt) ∈ L(ct).

Since ∂ct ⊂ L(ct), every m(ϕt) ∈ ∂ct is an element in L(ct). Therefore, for ϵ > 0, there
is at least one point in B(m(ϕt), ϵ) that is also an element of ct. Now, consider m(ϕ′t) ∈
B(m(ϕt), ϵ) in that ∣µB

t − µB′

t ∣ < δ, σB′

t = σB
t ,µ

J ′

t = µJ
t ,σ

J ′

t = σJ
t , v

′
t(dx) = vt(dx), and δ

is chosen to satisfy d3(m(ϕt),mt(ϕ′t)) < ϵ and Equation (3.20) holds. Then, v′(dx) = 0,
implying that ϕ′t ∉Φt, and thus, mt(ϕ′t) ∉ ct. Hence, m(ϕt) ∈ ∂ct.

C.16 Proof of Lemma 3.3.1

Since ∂ct is a non-empty closed subspace of c̄t, taking m(ϕt) ∈ ct, there exists a closed
ball B = B(m(ϕt), ϵ) such that B⋂∂ct is a non-empty compact set. So the function
m(ϕ′t)↦ d3(m(ϕt),m(ϕ′t)) defined on B⋂∂ct must achieve a minimum. That is, there is
some m(ϕ′t) =m(ϕ∗t ) ∈ B⋂∂ct, which minimizes d3(m(ϕt),m(ϕ′t)). Further, for m(ϕ′t) ∈
∂ct/B, we have d3(m(ϕt),m(ϕ′t)) > ϵ ≥ d3(m(ϕt),m(ϕ∗t )), so it minimizes the distance
on the whole of ∂ct. Moreover, since m(ϕ∗t ) ∉ ct,we have d3(m(ϕt),m(ϕ∗t )) > 0.

C.17 Proof of Theorem 3.3.2

Proof. Let ρ ∈ [0,1] and m(ϕt),m(ϕ′t) ∈ ct. Recall that the set m(ϕt) contains all the
SDF that prices the payoff over the infinitesimal time interval [t, t + dt), and satisfies the
asset pricing formula E[Rtm(ϕt)] = 1A, where Rt is the gross return vector from t− dt to
t. Then, the affine combination of m(ϕt),m(ϕ′t) can be expressed in the form

ρm(ϕt) + (1 − ρ)m(ϕ′t) = {m(ϕ′′t ) ∶ ρE[Rtm(ϕt)] + (1 − ρ)E[R1m(ϕ′t)] = ρ1A + (1 − ρ)1A}
= {m(ϕ′′t ) ∶ ρE[Rtm(ϕt)] + (1 − ρ)E[R1m(ϕ′t)] = 1A} ∈ ct.

Hence, ct is convex.
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Let m(ϕt) ∈ ct with ϕt = (µB
t ,σ

B
t ,µ

J
t ,σ

J
t ,vt(dx)) ∈Φt. There is η > 0 such that

η = min
m(ϕ′t)∈∂ct

{d3 (m(ϕt),m(ϕ′t))} ,

where ϕ′t ∈ ∂ϕt. Then, since ct = c̄t/∂ct, by choosing ϵ < η, we have B(m(ϕt), ϵ) ⊂ ct. Hence,
ct is open in (c̄t, d3).

Next, we prove that c is bounded in (c̄, d3) . Suppose there is a positive upper bound
R <∞ and let (m(ϕ∗t ),m(ϕ′t

∗),w∗t ) = argmax
m(ϕt),mt(ϕ′t)∈ct d3 (m(ϕt),m(ϕ′t)) . Then, any

divergence of (ϕt,ϕ
′
t) from ϕt

∗, (ϕ′t
∗) can be offset by the corresponding change in the

optimal transport plan w∗t , as w
∗
t ∈W (P (ϕt), P (ϕ′t)) is a function of (ϕt,ϕ

′
t) with

W (P (ϕt), P (ϕ′t)) ∶= {wt ∶ ∫ wtdP (ϕ′t) = P (ϕt),∫ wtdP (ϕt) = P (ϕ′t)} .

Hence, ct is bounded.

Lastly, to show that ct is not compact, we just need one example of an open cover that
has no finite open subcovers. Let {Gt,n} = {m(ϕt),ϕt ∈Φt,n, n ∈ N}}, where

{Φt,n} = {(µB
t ,σ

B
t ,µ

J
t ,σ

J
t ,vt(dx)) ∶ vt(dx) >

1

n
,n ∈ N} .

Thus, every element of ϕt is in {Φt,n} for some n ∈ N, and therefore, every element of ct is
in {Gt,n} for some n ∈ N, suggesting that Gt ⊂ ⋂∞n=1{Gt,n}. Moreover, since for any n ∈ N,
Gt,n has a neighbourhood centred at Gt,n with radius ϵ > 0 lying in the set, {Gt,n} is an
open cover of ct. Let k, l ∈ N such that k > l > 2, we have

1

k
< 1

l
⇒ {Φt,l} ⊂ {Φt,k}⇒ {Gt,l} ⊂ {Gt,k}.

Hence, for any finite m ∈ N, ⋃m
n=1{Gt,n} = {Gt,m} = {m(ϕt),ϕt ∈ Φt,m,m ∈ N}. However, for

any m ∈ N, there exists Φt,m+1 /⊂ {Φt,m}, while {m(ϕt),ϕt ∈Φt,m+1} ∈ ct. Therefore, {Gt,n}
is an open cover of ct that does not have a finite subcover. Hence, ct is not compact.
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C.18 Proof of Theorem 3.3.3

Proof. Let t0 ∈ (0,1], ϵ > 0, we show that for any t ∈ (0,1] such that ∣t − t0∣ < δ, we have

∣MI ({ϕi}i∈(0,t]) −MI ({ϕi}i∈(0,t0])∣

= ∣Et [ min
ϕ′i∈∂Φi

d3 (m(ϕi),m(ϕ′i))] −Et0 [ min
ϕ′i∈∂Φi

d3 (m(ϕi),m(ϕ′i))]∣

= ∣1
t ∫

t

0
min

ϕ′i∈∂Φi

d3 (m(ϕi),m(ϕ′i))di −
1

t0
∫

t0

0
min

ϕ′i∈∂Φi

d3 (m(ϕi),m(ϕ′i))di∣

≤ ∣1
t ∫

t

0
min

ϕ′i∈∂Φi

d3 (m(ϕi),m(ϕ′i))di −
1

t ∫
t0

0
min

ϕ′i∈∂Φi

d3 (m(ϕi),m(ϕ′i))di∣

+ ∣1
t ∫

t0

0
min

ϕ′i∈∂Φi

d3 (m(ϕi),m(ϕ′i))di −
1

t0
∫

t0

0
min

ϕ′i∈∂Φi

d3 (m(ϕi),m(ϕ′i))di∣

= 1

t
∣∫

t

t0
min

ϕ′i∈∂Φi

d3 (m(ϕi),m(ϕ′i))di∣ + ∣
1

t
− 1

t0
∣ ∣∫

t0

0
min

ϕ′i∈∂Φi

d3 (m(ϕi),m(ϕ′i))di∣

< ϵ.

(C.1)

Thus, by choosing δ = δ(t0, ϵ) > 0 satisfying Equation (C.1), we have

∣MI ({ϕi}i∈(0,t]) −MI ({ϕi}i∈(0,t0]) ∣ < ϵ,

and therefore, MI ({ϕi}i∈(0,t]) is continuous on the time interval (0,1].

Next, we prove that MI ({ϕi}i∈(0,t]) is not monotonic. Let

F (t) =MI ({ϕi}i∈(0,t])

= Et [ min
ϕ′i∈∂Φi

d3 (m(ϕi),m(ϕ′i))]

= 1

t ∫
t

0
min

ϕ′i∈∂Φi

d3 (m(ϕi),m(ϕ′i))di,

F ′(t) = −t−2∫
t

0
min

ϕ′i∈∂Φi

d3 (m(ϕi),m(ϕ′i))di + t−1 min
ϕ′t∈∂Φt

d3 (m(ϕt),m(ϕ′t))

= t−1 ( min
ϕ′t∈∂Φt

d3 (m(ϕt),m(ϕ′t)) − F (t)) .
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Therefore, whether the sign of F ′(t) depends on the difference between the sub-period
market incompleteness at t and the average of sub-periods market incompleteness up to t,
which is not strictly increasing nor decreasing. Hence, MI ({ϕi}i∈(0,t]) is not monotonic.

112


	Examining Committee
	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	Portfolio Selection – from under-diversification to concentration
	Introduction
	Data and Statistical Analysis
	Data Description
	Statistical Analysis

	Empirical Results
	The Reconciliation of Concentration and Diversification
	Discussions

	Conclusion

	A Functional Data Approach for Continuous-time Analysis Subject to Modeling Discrepancy under Infill Asymptotics
	Introduction
	Methodology and Large Sample Properties
	Fitting and Forecasting
	Large Sample Properties

	Simulation Analysis
	The Data-generating Process
	Fitting and Forecasting with FDA
	Comparison to Parametric Methods

	Conclusion

	Stochastic Discount Factors in Incomplete Markets
	Introduction
	Discrete-time Setting
	One Risk-free Bond, One Risky Asset, Two periods, Three States (1-1-2-3)
	One Risk-free Bond, A Risky Assets, Two Periods, A+2 States (1-A-2-A+2)
	One Risk-free Bond, One Risky Asset, Three Periods, Three States (1-1-3-3)
	Generalization of the Discrete-time Setting

	Continuous-time Setting
	Set Properties
	Measure for Market Incompleteness

	Application
	Data Description
	Estimation Algorithm
	Estimation Results

	Conclusion

	References
	APPENDICES
	Appendices of Chapter 1
	The Mean-Variance Optimization
	The DR Method
	The EVT Method

	Appendices of Chapter 2
	Additional Notations and Lemmas.
	Proof of Theorem 2.2.1
	Proof of Theorem 2.2.2
	Proof of Lemma 2.2.1
	Proof of Lemma B.1.1
	Proof of Lemma B.1.2
	Proof of Lemma B.1.3
	FDA Results
	MLE Results

	Appendices of Chapter 3
	Proofs of Propositions and Theorems
	Proof of Proposition 3.2.1
	Proof of Theorem 3.2.1
	Proof of Lemma 3.2.1
	Proof of Theorem 3.2.2
	Proof of Proposition 3.2.2
	Proof of Theorem 3.2.3
	Proof of Lemma 3.2.2
	Proof of Theorem 3.2.4
	Proof of Proposition 3.2.4
	Proof of Theorem 3.2.7
	Proof of Lemma 3.2.3
	Proof of Theorem 3.2.8
	Proof of Proposition 3.3.1
	Proof of Theorem 3.3.1
	Proof of Lemma 3.3.1
	Proof of Theorem 3.3.2
	Proof of Theorem 3.3.3


