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Abstract

Novel view synthesis involves generating novel views of a scene when seen from different
viewpoints. It offers numerous applications in computer vision domains such as telepres-
ence, virtual reality, re-cinematography, etc. Recent literature work in the field successfully
achieved remarkable photo-realistic synthesis results, however, they require per-scene op-
timization settings and densely sampled input views which is not easily attainable in prac-
tice. Developing lightweight generalizable view synthesis systems with sparse input views
would make them more applicable for direct consumer usage. Novel view synthesis poses
several difficulties, such as addressing obscured regions, broadening the range of viewing
directions, sidestepping suboptimal per-scene optimization configurations, and depicting
intricate multi-human scenarios. Tackling those challenges depends on the representation
used to model the 3D structure of the scenes. Explicit 3D representations utilize different
techniques to explicitly model the scene structure. One example is multi-plane images
(MPIs) that segment the scene into a set of parallel planes giving it the ability to effec-
tively handle occlusions. Implicit neural representations, such as Neural Radiance Fields,
enable the encapsulation of 3D scene structure within the weights of a neural network,
thereby facilitating a 360-degree range of viewing directions and photorealistic synthesis
results. However, a promising avenue of research would be to explore the combination of
implicit and explicit representations in order to harness their advantages and address more
challenging scenarios.

In this thesis, we focus on layered scene representations that blend explicit and implicit
properties at either the pixel or object level in a generalizable manner. One example
of the pixel-level representation is Multi-plane Neural Radiance Fields (MINE), which
combines multi-plane images with Neural Radiance Fields for efficient and generalizable
novel view synthesis. However, current literature only examines single-view settings for
MINE, which limits its viewing range. Our work conducts a thorough technical analysis of
the capabilities of single-view MINE and proposes a new Multi-plane NeRF architecture
that accepts multiple views to improve synthesis results and expand the viewing range.
Additionally, existing methods for handling complex multi-human scenes rely on per-scene
optimization settings, making them impractical for real-world use. To address this, we
propose a novel object-level layered scene representation named GenLayNeRF that can
generate novel views of scenes with close human interactions while generalizing to new
human subjects and poses. Furthermore, there is a scarcity of open-source datasets for
multi-human view synthesis. To fill this gap, we create two new datasets, ZJU-MultiHuman
and DeepMultiSyn, which contain scenes with close human interactions. These datasets
are used to evaluate our performance against generalizable and per-scene baselines. The
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results indicate that our proposed approach outperforms generalizable and non-human per-
scene NeRF methods while performing at par with layered per-scene methods without test
time optimization.
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Chapter 1

Introduction

1.1 Preface

Photography has evolved in recent years and most consumer phones contain high-quality
cameras allowing any user to be a photographer. Every second, a vast amount of photos are
recorded. When confronted with an intriguing situation, a user would typically document
it by utilizing a camera to snap as many photographs from as many different perspectives
as possible. The more perspectives and photographs gathered, the greater the story and
experience. Novel view synthesis algorithms strive to improve a user’s experience even
further by allowing him or her to reproduce the imaging by synthesizing a novel picture
from a different viewpoint at the scene. Novel view synthesis offers a wide range of appli-
cations, including re-cinematography [25], producing material for virtual reality [7], and
synthesizing scenes to improve computer vision algorithms [63]. It is also used to enable
very high frame-rate movies in multi-lens camera array systems [74].

1.2 Motivations

The research community has developed methods that achieve photo-realistic view synthesis
results on a variety of synthetic and real-world scenes [42, 45, 47, 55, 1]. However, most
of the methods are constrained to per-scene optimization settings [42, 45]. In other words,
models are trained once per scene and need to be re-trained from scratch for each novel
scene at inference time. In real-world applications, it would be highly ineffective to retrain
models for every new scene. In addition, some of the methods require a densely sampled set
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of input views to generate plausible novel views [10, 15, 23]. This requires a combination of
synchronized camera rig systems which is not easily achievable or cost-effective in practice.
In recent years, few methods started presenting generalizable view synthesis approaches
that require sparse input view to increase the applicability to real-world scenarios [72,
80, 34]. We believe that creating light view synthesis systems that generalize to unseen
scenarios while requiring a small number of views will highly impact many real-world
applications. It can enable consumers to participate in immersive reality experiences using
their handheld consumer phone cameras without requiring expensive setups. As more
multi-view photos and videos are captured, the generalization capabilities of the view
synthesis systems will eventually grow and elevate the realistic properties of the virtual
experiences.

1.3 Problems And Challenges

Our target in this thesis is to explore novel view synthesis approaches that generalize
to new scenes at test time while requiring a small number of input views. The main
challenge to be tackled is how to effectively model the 3D structure of the scene. The
difficulty lies in the ability to infer accurate geometric structures and texture details from
sparse 2D input images. This is particularly evident in complex scenes with occluded areas,
lighting effects, non-smooth surfaces, etc. View synthesis systems need to generate 3D scene
representations that can model occlusions and predict the content of the hidden regions,
while also taking into consideration the effect of lighting on the object colors when seen from
novel views. The synthesis task becomes even more challenging when the target viewpoints
are considered significantly far away from the input views which means researchers need to
consider the viewing range capability when creating their systems. Another main challenge
is handling scenes with human subjects. Such scenes are characterized by containing
non-static subjects with complex deformations for the different body parts, fine-grained
texture and body geometry details, and self-occlusions that occur during the motion of
the subject. The difficulty of the problem increases when multiple human subjects are
interacting together which introduces additional inter-human occlusions. In general, it
remains a challenge to develop systems that are also both memory and computation efficient
to enable effective real-world deployment.
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1.4 Proposed Solutions

Different 3D scene representations were proposed in the literature to tackle the challenges
mentioned for novel view synthesis. Explicit 3D approaches aim to portray the scene struc-
ture using volumetric representations [57, 1, 65]. Those types of representations help in
explicitly modeling occluded areas and lighting effects making them optimal for scenes with
many complex overlapping objects. Multi-plane Images (MPI) are an example of volumet-
ric representations that divide the scene into a set of parallel planes with pixels containing
color and transparency values. On the other hand, implicit neural representations [80, 47]
such as Neural Radiance Fields (NeRF) [42], tend to encapsulate the 3D scene structure
within neural network weights enabling a 360◦ viewing direction range and photo-realistic
synthesis results. A promising direction would be to study the combination of implicit and
explicit representations to make use of their advantages and handle challenging scenarios.

In this thesis, we focus on layered scene representations that combine the explicit and
implicit properties either at the pixel level or object level in a generalizable manner. Multi-
plane neural radiance fields (MINE) [34] was proposed as a pixel-level layered represen-
tation that combines multi-plane images with neural radiance fields for generalizable and
efficient novel view synthesis. However, the current literature work only studies single-
view settings for MINE which limits the viewing range capability of the method. In our
work, we carry out an in-depth technical analysis of the capabilities of single-view MINE
in terms of performance, generalization, and efficiency. We then propose a novel multi-
plane NeRF architecture that accepts arbitrary multi-view input to enhance the synthesis
results and the viewing range. Regarding complex multi-human scenes, the existing work
[55] only handles per-scene optimization settings making them inefficient to use in practice.
For that reason, we additionally propose a novel object-level layered scene representation,
GenLayNeRF, that can generate novel views of scenes with close inter-human interactions
while generalizing to unseen human subjects and poses at inference time. There is a lack of
open-source multi-human view synthesis datasets. For that reason, we also create two new
datasets, ZJU-MultiHuman and DeepMultiSyn, which contain scenes with close human
interactions. We used the two datasets to compare our performance against generalizable
and per-scene baselines.

1.5 Contributions

The main contributions of this thesis are summarized as follows:
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• We provide in-depth technical analysis on the performance, generalization, and effi-
ciency of single-view multi-plane neural radiance fields for novel view synthesis.

• We propose, MV-MINE, an architecture merging generalizable neural radiance fields
and multi-plane images with a multi-view input setting.

• We propose an attention-based feature fusion module for effectively aggregating
multi-view input for multi-plane neural radiance fields.

• We propose a generalizable object-level layered scene representation, GenLayNeRF,
with attention-aware feature fusion for the free-viewpoint rendering of real-world
multi-human scenes from sparse input views while operating on novel human subjects
and poses.

• We construct multi-human view synthesis datasets that are used for evaluation. The
datasets can be considered as a benchmark for any comparison between the relevant
multi-human methods.

• Our approach, GenLayNeRF, surpasses state-of-the-art generalizable and non-human
per-scene NeRF methods while performing at par with the multi-human per-scene
methods without requiring long per-scene training procedures.

1.6 Organization Of Thesis

The rest of the thesis will be organized as follows. Chapter 2 will present the background
and literature review regarding the relevant novel view synthesis approaches. In Chapter 3,
we present the proposed methodology of the technical analysis of single-view MINE along
with the architecture of proposed architecture MV-MINE and GenLayNeRF. Chapter 4
will discuss the experimental setup and results for assessing the proposed approaches and
analysis points, which is followed by a discussion in Chapter ??. Lastly, in Chapter 5, we
present the summary of this thesis and discuss its related future research directions.
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Chapter 2

Background And Literature Review

In this chapter, we will discuss the classical (Section 2.1) and learning-based approaches
(Section 2.2) for view synthesis, based on explicit and implicit utilization of scene geome-
try. Explicit 3D approaches, presented in Section 2.2.1, model the camera frustum directly
through different representations to better model occluded areas. Multi-plane explicit rep-
resentations (MPI) project parallel RGB-α planes that can be warped and used to generate
new views, but suffer from incomplete 3D scene representation due to depth discretization.
Layered Depth Images (LDI) offer a more memory and space-efficient approach by allowing
each pixel to have arbitrary layers at different depths. Implicit 3D representations, dis-
cussed in Section 2.2.2, model the 3D scene structure within neural network weights and
can be per-scene optimization methods or generalizable approaches that handle unseen
scenes at inference time. We also go over the human-based approaches that can handle
complex subjects with deformations and self-occlusions. Recent approaches that combine
implicit and explicit representations on a pixel or object level are mentioned in Section
2.2.3. Finally, we will also explore different attention mechanisms available in computer
vision tasks in Section 2.3.

2.1 Classical View Synthesis Approaches

It can be helpful to categorize traditional novel view synthesis algorithms based on how
much they utilize explicit scene geometry [56]. Initial work for novel view synthesis utilized
the concept of light fields [33, 21] which require a dense sample of input frames that are
organized on a regular grid, and novel views are sampled by slicing the sampled light
field from existing views. Such methods lie at one extreme of the spectrum by completely
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not exploiting the scene geometry. Other approaches tend to explicitly predict a global
mesh representation of the scene which is then reprojected and blended with input views
to generate novel views [12]. In between the two extremes, several more recent methods
[5, 27] aim to predict the local geometry of each input view which are then projected and
blended to generate the novel views, however, they still rely on interpolation and fail to
render occluded areas leading to implausible synthesis results in those areas.

2.2 Learning-based View Synthesis Approaches

Recent progress has been made in utilizing end-to-end learning approaches for predicting
novel views. We categorize the approaches based on the 3D scene representation which
can be explicit, implicit, or a combination of both.

2.2.1 Explicit 3D Representations

Volumetric approaches aim towards learning explicit representations of the camera frustum,
which opens the door for modeling occluded regions and non-Lambertian effects. The
representations include 3D voxel grids [57, 77], textured meshes [1, 75], point clouds [65] ,
layered depth images (LDI) [68, 53] and MPI [64, 87, 41]. In this section, we focus on the
layer-based approaches which are LDI and MPI.

Multi-plane Images (MPI)

MPI approaches represent the scene as a set of discretized RGB-α front-parallel planes
representing the elements of the scene at different depths, as shown in Figure 2.1. One
way to generate MPIs from input images would be to use a gradient-based approach to
optimize its parameters with the target of re-creating the input images after projecting
the predicted MPI. This requires a large number of input views or the addition of regular-
ization terms to reach the optimal parameters and avoid overfitting making it ineffective
in practice. Zhou et al. [87] utilized a feed-forward neural network to directly predict the
MPI from input images. They rendered novel views of scenes through forward projecting
and alpha compositing of the planes. However, the method suffers from the inability to in-
trinsically model the geometric visibility between input images and predicted MPI as they
are implicitly learned within the network weights. This issue presents itself evidently when
distant scene elements occlude each other, which requires extremely large network weights

6



Figure 2.1: Visualization of the concept of multi-plane images [87].

to be effectively represented. Flynn et al. [16] proposed a solution by combining direct
parameter optimization with network learning. They use an iterative algorithm where the
current MPI is improved by computing gradients with respect to the input images and
processing these gradients using a convolutional neural network ( CNN) to compute an en-
hanced MPI. This allows for avoiding overfitting while modeling occlusions without dense
network connections. Srinivasan et al. [59] enhances the MPI prediction results by allow-
ing an increase in the number of planes at test-time using 3D CNN. They also introduce a
two-step MPI prediction approach to enforce the plausibility of the textures and structure
of disoccluded regions.

Most of the MPI approaches mentioned previously rely on multi-view input for novel
view prediction. A recent approach [67] proves the potential of utilizing MPI in the single-
view setting for high-quality view synthesis. They estimate the planes using a deep CNN
and introduce a scale-invariant synthesis approach to solve the scale ambiguity problem
for single-view settings. The main drawback is that the planes are predicted at discrete
depths which constrains the ability to model the 3D space at any depth value continuously.
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Figure 2.2: Visualization of the concept of layered depth images [79].

Layered Depth Images (LDI)

LDI [52] are sparse 3D representations of the scene modeled as a pixel lattice where each
pixel location contains a set of pixels. Each pixel is represented with a color and a depth
value. A visualization is shown in Figure 2.2. In smooth regions, all pixels are directly
connected to their 4 neighboring pixels. One line of approach [13, 68] uses a variant of
the LDI which has fixed layers (depths) for all pixels. Specifically, layers in every pixel are
sorted from nearest to farthest. This leads to problems around areas with discontinuous
depths due to abrupt changes in depth which lead to poor locality representation. Other
approaches [25, 26] explicitly store the connectivity information within each pixel to allow
for the arbitrary number of layers and they possess no connections in areas of depth
discontinuities. Those representations have grabbed the attention of researchers due to
their adaptability to scenes with complex depths with the help of the arbitrary number of
layers per pixel and their memory and space-efficient properties compared to MPI. Quite
recently, [53] proposed an LDI-based approach with explicit connectivity storage along with
a novel learning-based in-painting approach that predicts the color and depth of occluded
regions to synthesize texture and structures. Their algorithm is recursive in nature as it
carries out local in-painting on spatial contexts with standard CNN until all depth edges
are traversed. Even though the results were impressive, the algorithm’s recursive nature
makes it inefficient for real-world applications.
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Figure 2.3: Visualization of the neural radiance fields (NeRF) architecture [42].

2.2.2 Implicit Neural Representations

Recent work has been made in implicitly modeling the geometry, structure, and texture of
the 3D scene within neural network weights. We categorize the approaches into per-scene
optimization methods, generalizable approaches, and human-based approaches.

Per-Scene Optimization Approaches

NeRF [42] revolutionized the concept of novel view synthesis by encapsulating the full
continuous 5D radiance field of scenes inside a Multi-Layer Perceptron (MLP). This enables
the representation of the whole continuous 3D space of a scene inside the MLP weights. For
each pixel in the input view images, a ray is transmitted across the 3D space with respect to
the camera, and 3D points are sampled. Each 3D point along with the ray viewing direction
passes through an MLP to produce the radiance and density of the point. The predicted
radiance fields are aggregated across all points on the ray using volumetric rendering to
produce the final pixel color per ray. This operation is repeated for all pixels in the target
image until the image is fully rendered.

The method achieved photo-realistic results but failed to work on highly deformable
scenes with non-static subjects. Deformable NeRF methods [43, 47] modeled the dynamic
subjects by training a deformation network that transforms 3D points to a canonical space
before querying the MLP. However, one of the main drawbacks is being confined to per-
scene optimization and lacking any generalization capabilities to novel scenes.
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Generalizable Approaches

Per-scene optimization NeRF methods [45, 42, 47, 55] need to be trained from scratch on
each scene with a moderately high number of source views which is often impractical due to
the large time and computational costs. Generalizable NeRF methods [66, 80, 72] offered
a possible solution by conditioning NeRF on image features. Specifically, the network
architecture consists of a feature encoder CNN for generating feature planes from input
images and a NeRF network for predicting novel views from the target viewpoints. For each
3D point, the methods extract pixel-aligned features for each input view and aggregate the
multi-view feature vectors with pooling operations. pixelNeRF [80] used a simple averaging
strategy, while IBRNet [72] carried out globally and locally conditioned weighted pooling
operations. Those approaches have the ability to generate novel views of scenes not seen
during training while only relying on sparse views as input. Utilization of image features
opened the door for implicitly learning strong priors from the diverse training scenes.
Despite the promising generalization capabilities, the methods suffered from blur artifacts
with human subjects due to the large degree of self-occlusions and complex motions.

Human-based Approaches

Handling scenes with human subjects that have relatively complex deformations is a chal-
lenging task. NeuralBody [45] offered a solution by anchoring NeRF with a deformable
human model [38] to provide a prior over the human body shape and correctly render self-
occluded regions. This resulted in high-quality synthesis output for single-human scenes
but was constrained to the per-scene optimization setting. Recently, NHP [32] combined
the 3D human mesh with image features to accurately represent complex body dynamics
and generalize to novel human subjects and poses. They carried out feature aggregation
across multiple views and timesteps using cross-attention. The work in HumanNeRF [85]
enhanced the quality of the results by incorporating efficient fine-tuning procedures and
neural appearance blending techniques. However, the blending module only operates on
pre-scanned synthetic data with accurate depth maps and cannot be extended to real-
world data. The limitation of state-of-the-art generalizable human view synthesis methods
[32, 85] lies in the inability to be directly extended to multi-human scenes which impose
extra challenges due to the inter-human occlusions and the complex human interactions.
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Figure 2.4: Full architecture of the single-view multi-plane neural radiance field [34] archi-
tecture.

2.2.3 Combination of Implicit And Explicit Representations

There are a few approaches in the literature that offer a combination of both implicit and
explicit 3D representations to make use of their advantages. We divide them into pixel-level
representations and object-level representations.

Pixel-level Representations

MINE [34] was proposed as a pixel-level combination of implicit and explicit representa-
tions for novel view synthesis with single-view input. They utilized an encoder-decoder
architecture, shown in Figure 2.4, to predict front-parallel planes consisting of 4D radiance
fields (RGB and volume density) [42] for each pixel. They sample the planes at arbitrary
depth values throughout the training allowing the method to possess continuous representa-
tions of the depth dimension. This is followed by homography warping [67] and volumetric
rendering [42] to render the target frame. MINE [34] proves the promising capability of
marrying the concepts of NeRF with multi-plane images for high-quality synthesis results.
However, being limited to a single-view setting, the method is constrained to a narrow
viewing direction angle range.

Object-level Representations

Object-level layered scene representations were proposed to handle complex scenes with
multiple subjects. Each layer represents a single entity in the scene which can be a human,
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object, or background. [39] manipulated the timing of the subjects’ motions in a video by
decomposing each frame into a set of RGBA layers. ST-NeRF [83] modeled each dynamic
human layer using a deformable model similar to D-NeRF [47] to achieve editable free-
viewpoint rendering. Recently, [55] extended ST-NeRF by modeling the human subjects
using NeuralBody [45] and predicted human segmentation masks as part of the network
training. They were able to rely on more sparse input views by using 8 viewpoints instead
of 16 and achieved a wider view range by covering a 360◦ range instead of 180◦. The
restriction of both methods is requiring lengthy per-scene training procedures for learning,
yielding them inefficient to use.

2.3 Attention Mechanisms

The attention mechanism has gained significant focus in recent years for its impressive
performance in natural language processing [69]. It has also proved to have a great impact
on computer vision tasks like image classification [71], segmentation [81, 82], multi-view
stereo [40], and hand-pose estimation [29]. Generally, the mechanism aims to explore de-
pendencies and similarities between input and query vectors and then carries out weighted
averaging to generate a contextual feature representation. In particular, AttsMVS [40]
uses an attention-aware network embedded with a regularization module to robustly fuse
multi-view information. In the object detection task, the DETR [2] framework combines
a 2D CNN with an attention module to detect objects in parallel as a sequence of output
tokens. In image classification, the ViT [14] model demonstrates the ability of the atten-
tion mechanism to learn global contexts without relying on CNN features, which are more
suited to local concepts.

2.4 Summary

In this chapter, we discussed the classical view synthesis approaches based on the extent of
explicit utilization of the scene geometry. We then presented the learning-based approaches
according to the 3D scene representations. Explicit 3D approaches tend to directly model
the camera frustum through different representations which enable better modeling of oc-
cluded areas. MPIs consist of parallel RGB-α planes that can be warped and projected
to render novel views. The problem lies in the discretization of the depth of the planes
leading to an incomplete 3D scene representation. LDIs are a more general representation
that allows each pixel to have an arbitrary number of layers at different depths which is
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more memory and space efficient. Implicit 3D representations model the 3D scene struc-
ture within the weights of neural networks. They are divided into per-scene optimization
methods which require re-training for novel scenes and generalizable approaches that han-
dle unseen scenes at inference time. There are also human-based approaches that handle
the complexity of human subjects in terms of deformations and self-occlusions. Recent
methods propose a combination of implicit and explicit representations either on a pixel
or object level. The pixel-level combination takes the form of multi-plane neural radiance
fields (MINE), while the object-level combination revolves around representing each ob-
ject in the scene with an independent neural radiance field. Lastly, we go through the
different attention mechanisms available in computer vision tasks. In the next chapter,
we will discuss our proposed methodology which includes a detailed analysis of single-view
MINE in terms of performance, generalization, and efficiency. In addition, we present a
detailed overview of our newly proposed multi-view MINE architecture for elevating the
performance of MINE through the utilization of multi-view information. With regard to
the object-level representations, we present the details of our proposed approach, Gen-
LayNeRF, which utilizes generalizable layered scene representations for multi-human novel
view synthesis from sparse input views.
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Chapter 3

Proposed Methodology

Layered scene representations offer a promising combination of explicit and implicit prop-
erties to achieve high-quality novel view synthesis. Such a layered combination exists at
a pixel level or object level. MINE offer a pixel-level blend of multi-plane images [67] (
MPI) and neural radiance fields (NeRF) [42] to achieve generalizable novel view synthesis.
Existing literature work [34] in the domain is constrained to a narrow viewing direction
range due to the single-input view setting. This chapter presents our proposed methodol-
ogy for analyzing the capabilities of single-view MINE and enhancing its representational
capacity by allowing multi-view input settings. In addition, object-level layered scene rep-
resentations offer an effective solution to model scenes with complex multi-human subjects.
However, existing literature work [55, 83] in the field is constrained to per-scene optimiza-
tion settings making them inefficient for practical usage. In this chapter, we address the
current research gap by proposing an object-level layered representation, GenLayNeRF,
for achieving generalizable novel view synthesis for multi-human scenes using sparse input
views while operating on novel subjects and poses at test time.

3.1 Multi-plane Neural Radiance Fields (MINE)

In this section, we carry out an in-depth technical analysis of single-view MINE [34] for
novel view synthesis. We additionally explain the proposed architecture, MV-MINE, to
utilize multi-view information for enhancing multi-plane radiance fields.
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3.1.1 Analysis of Single-view MINE

We aim to assess three main aspects of the single-view MINE [34] architecture which is
grouped into the following categories: Performance, Generalization, and Efficiency.

Regarding performance, we train the network on the ShapeNet dataset [4] which is a
challenging dataset used by various state-of-the-art generalizable NeRF methods [66, 80]
to assess their degree of generalization through various distribution of objects in training
and testing. Additionally, we carry out ablation studies to test the impact of some NeRF
[42] concepts on the results of MINE. As mentioned in Section 2.2.2, for each pixel in the
target image, a 3D ray r is projected into the scene. 3D points are then sampled across the
ray using a specific sampling technique. Fixed-depth sampling involves sampling points at
rigid depth values across all training runs which limits the representational capacity of the
depth dimension. Stratified sampling involves randomly sampling points at different depth
locations across the projected rays. As points are sampled in random depth locations in
every training run, the method achieves a continuous depth representation by the end of all
training runs. In our ablation studies, we test the performance of MINE with fixed-depth
sampling and stratified sampling. To produce the final color Ĉ(r) per ray r, two methods
exist in the literature to fuse the predicted colors of all points i sampled on the ray. Alpha
compositing involves carrying out an over operation [46] to aggregate the colors ci for each
point i based on their alpha value αi, such that,

Ĉ(r) =
N∑
i=1

(ciαi

N∏
j=i+1

(1− αj)), (3.1)

On the other hand, volumetric rendering involves weighing all the RGB colors ci by the
density σi and the depth difference δi of each point i ∈ [1, N ], such that,

Ĉ(r) =
N∑
i=1

(Ti(1− exp(−σiδi))ci), where, Ti = exp

(
−

i−1∑
j=1

σjδj

)
(3.2)

This formulation enables a more intuitive representation of occlusions in the scene. In
other words, if a 3D point i is occluded by points appearing before it across the ray the
transmittance Ti will be low and the point will contribute less to the final color Ĉ(r) of
the pixel. We carry out an ablation study to compare the effects of alpha compositing and
volumetric rendering on the results of MINE.

With reference to generalization, we aim to validate the degree of generalization of
single-view MINE [34] to new scenes that were not seen during training. The network uses
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an encoder-decoder network allowing the decoder to be locally conditioned on the image
features extracted per pixel from the encoder. The network learns features about the scene
that serves as a strong prior when presented with frames from novel scenes leading to the
generalization ability. To validate this ability, we feed the model with new scenes that were
not seen during training and qualitatively judge the quality of the novel views produced
by the model.

In terms of efficiency, MINE [34] is characterized to be more efficient than some of the
implicit neural representation counterparts [80, 66] as it models only the frustum of the
source camera, while the other synthesis methods represent the whole 3D space. During
inference, MINE only produces N planes corresponding to N depth values from the source
view to render a new view which is one single forward pass through the network. On the
other hand, [80] needs to query a multi-layer perceptron for each point across a ray per
pixel leading to D × H × W forward passes through the network, where H and W are
the height and width of the images respectively and D is the number of points sampled
per ray. We aim to quantify such speed-up to verify the efficiency hypothesis, while also
contributing a quantitative baseline time to compare with other NeRF-variants that offer
an increase in speed just like MINE.

3.1.2 Proposed Multi-view MINE Architecture

Reliance on single-view input hinders the ability of MINE [34] to render target views that
are far from the source view. We explored the extension of the architecture to a multi-
view input setting to leverage the rich information seen from different views for better
performance on more challenging datasets, while also opening the doors to comparing with
state-of-the-art multi-view synthesis methods. The following section gives an overview of
the proposed architecture, MV-MINE, along with the modules used for multi-view feature
fusion.

Problem Formulation

Given a synchronized set Ω of frames I taken from B sparse input viewpoints of a scene
such that Ω = {I1, .., IB}, our target is to synthesize a novel view frame {Iq} of the
scene from a query viewing direction q with respect to a source view s . Each input
viewpoint b is represented by the corresponding camera intrinsics K, and camera rotation
R and translation t, where b = {Kb, [Rb|tb]}. For each input frame Iw ∈ RH×W×3 with
height H and width W , we extract a multi-scale feature pyramid using a ResNet50 [24]

16



Figure 3.1: Full architecture of the proposed post-decoder fusion architecture design.

encoder network, pre-trained on ImageNet. The operation is carried out for all input
views b in {1, .., B} to produce the multi-scale feature planes for each view, defined as
{I ′

b ∈ RHb×Wb×Cb}.
Similar to MINE [34], a decoder network with Monodepth2 [20] architecture takes the

encoded feature maps and a disparity value di = 1/zi to produce the radiance field plane
(czi , σzi), where czi , σzi represent the color and volume density at depth zi, respectively. Ho-
mography warping is then utilized to retrieve the radiance field plane (c′zi , σ

′
zi
) at the target

camera q. Lastly, volumetric rendering uses the predicted volume densities to aggregate
the colors at different depth values producing the final target image Iq.

We experiment with different architecture designs to fuse the multi-view image feature
planes I ′1..B. The designs include doing the fusion before or after the decoder network. We
discuss both designs in the following sections.

Post-Decoder Fusion

Figure 3.2 shows the full post-decoder fusion architecture design. For each view b, the
multi-scale feature planes {I ′b} are passed along with N disparity values retrieved with
stratified sampling [42] to produce N radiance field planes (cbzi , σ

b
zi
) at different depth

values. We then warp the radiance field planes from each source view to the target view
using homography warping producing a set of planes (c′1:Bzi

, σ′1:B
zi

) aligned with the target
camera frustum. To compose the radiance field planes, we can carry out basic averaging
across all views such that (c′zi , σ

′
zi
) = 1

B

∑
b (c

′b
zi
, σ′b

zi
). However, such formulation could

lead to hallucinations as equal weight is given to all input views. To overcome this, we
experiment with doing weighted averaging based on the distance between the source view
b and the target view q giving higher weight to views that are closer to the target view.
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Figure 3.2: Full architecture of the proposed Pre-Decoder Fusion architecture design.

Pre-Decoder Fusion

Compositing the radiance field planes after passing through the decoder for each input
view is considered highly inefficient. Specifically, the decoder is invoked N × B times. A
more efficient solution would fuse the multi-view feature planes before passing through
the decoder leading to N decoder invocations instead. We propose two fusion modules to
aggregate the multi-view feature planes I ′1:B with respect to a source view s. The fused
multi-view features I ′fused are then passed to the decoder to predict the radiance field
planes.

Fixed View Fusion Module. In this module, we assume that the architecture accepts a
fixed number of B input views. We start by concatenating each input feature plane with
their corresponding viewing direction b1:B. All feature planes are then concatenated and
passed through channel-wise fusion layers Conv1×1, composed of 1 × 1 convolution layers
with non-linear activation, to fuse the multi-view features per pixel. This is followed by
3 × 3 convolution Conv3×3 for learning spatially fused features. The final fused features
are derived by adding the source view s features, such that,

I ′fused = Conv3×3(Conv1×1([I
′
1; γ(b1)]⊕ ..⊕ [I ′B; γ(bB)])) + I ′s (3.3)

Attention-based View-agnostic Fusion Module. To increase the flexibility of our architec-
ture with multi-view input, we propose an attention-based fusion module that accepts an
arbitrary number B of input views throughout training and inference. Figure 3.3 shows the
architecture of the module. Each input view feature I ′1:B−1 is concatenated with generated
source view features and passed through a soft-attention masking module. To create a soft
mask, the input is down-sampled using max pooling to widen the receptive field, then the
features are refined using residual units, up-sampled to their original size, and the mask
is normalized to the [0-1] range using a sigmoid function. The learned attention mask
highlights areas of the input views that contain complementing features with respect to
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Figure 3.3: Full architecture of the proposed view-agnostic attention module. (K ∗ K)
denotes a convolution layer with K ∗K filter size.

the source view. Input view features are multiplied by their soft mask and added to the
source view features generating the final fused features I ′fused.

3.2 GenLayNeRF: Generalizable Layered Scene Rep-

resentations for Multi-human Novel View Synthe-

sis

Novel view synthesis of scenes with close interactions between multiple humans impose
challenges due to the complex inter-human occlusions. Object-level layered scene repre-
sentations [55, 83] effectively handle some of the complexities by dividing the scene into
multi-layered radiance fields, however, they are mainly constrained to per-scene optimiza-
tion settings making them inefficient to use in practice. On the other hand, generalizable
human view synthesis methods [32, 85] combine the 3D human meshes with image fea-
tures to generalize to novel human subjects and poses, yet they are mainly designed to
operate on single-human scenes. In this section, we propose, GenLayNeRF, a generaliz-
able object-level layered scene representation for the free-viewpoint rendering of multiple
human subjects which requires no per-scene optimization and very sparse views as input.
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Figure 3.4: Overview of the GenLayNeRF approach.

3.2.1 Overview

As seen in Figure 3.4, we consolidate a layered scene representation where each human
subject is modeled using the SMPL-X model (shown as red dots in the perspective view).
We render the target image Iq from the query viewing direction q by projecting rays
through the scene layers and sampling per-layer 3D points within the intersections of the
rays with the layers (shown in the top view). Image-aligned and human-anchored features
are then generated and effectively fused using self-attention and cross-attention modules
to output the final fused features ṽx1:B. The generated features are passed to the density
network to predict the volume density σ(x), whereas the color network additionally uses
the raw RGB values rx1:B and q to predict the color c(x,q).

3.2.2 Problem Definition

Given a synchronized set Ω of frames I taken from B sparse input viewpoints of a scene
with N arbitrary number of humans , such that Ω = {I1, .., IB}, our target is to synthesize a
novel view frame {Iq} of the scene from a query viewing direction q. Each input viewpoint
b is represented by the corresponding camera intrinsics K, and camera rotation R and
translation t, where b = {Kb, [Rb|tb]}. The N pre-fitted 3D human body meshes are given
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for each input frame. Our system should be trained on multiple scenes and generalize to
novel poses and human subjects at test time. A full overview of the proposed system is
shown in Figure 3.4.

3.2.3 Layered Scene Representation

Scenes with multiple humans suffer from inter-human occlusions that become evident when
subjects closely interact together. A practical solution to handle complex multi-human
scenarios is dividing the scene into distinct layers where each layer models an entity using
a neural radiance field [83, 39]. Entities can be humans, objects, or backgrounds. Our
proposed approach focuses mainly on human layers and represents each layer using the
SMPL-X model. SMPL-X [44] are deformable skinned models that are vertex-based where
each model for a human h consists of 10,475 vertices, such that sh ∈ R10,475×3. These
models are responsible for preserving the local geometry and appearance of humans making
it possible to model their complex deformations and occluded areas.

Our target is to render the full novel view image Iq from a query viewpoint q. To achieve
that, we first use the camera-to-world projection matrix, defined as P−1 = [Rq|tq]−1K−1

q ,
to march 3D rays across the multi-layered scene. In practice, we have a ray for each pixel p
in the final image, where the ray origin r0 ∈ R3 is the camera center and the ray direction
is given as d = P−1p−r0

||P−1p−r0|| .

3D points x are sampled across the rays at specific depth values z, where x = r(z) =
r0 + zd. Since we have several human layers in the scene, we determine the intersection
areas of the rays with the humans using the 3D bounding box around each layer defined by
the minimum and maximum vertex points of the SMPL-X meshes. We then sample depth
values within the np intersecting areas only such that z ∈ [[znear1 , zfar1 ], .., [znearnp

, zfarnp
]].

This guarantees that the sampled points lie within areas that contain the relevant human
subjects as clear in the top view shown in Figure 3.4. Our proposed method is capable of
implicitly representing the true contents of the points lying inside the ambiguous intersec-
tion areas between layers. This is achieved using the multi-view aggregated features and
the layered volumetric rendering module.

3.2.4 Feature Generation And Attention-Aware Feature Fusion

The original NeRF architecture [42] directly uses the sampled points’ locations and the
query viewing direction to predict the color and density of each point. Conditioning the
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NeRF predictor on extracted image features proved to achieve impressive generalization
capabilities [80, 72] by implicitly learning strong priors from the training scenes. In our pro-
posed approach, we extract multi-view image features for each query point x and effectively
merge them using attention-based fusion modules to derive the needed spatially-aligned
feature vectors. This strategy allows the system to extrapolate to novel human subjects
and poses beyond what it saw during training by learning implicit correlations between
the independent human layers.

Image-aligned Feature Generation

Given an input view image Iw ∈ RH×W×3 with height H and width W , we extract a multi-
scale feature pyramid using a ResNet34 [24] backbone network f , pre-trained on ImageNet.
The multi-scale feature planes have the following dimensionality [(64× H

2
× W

2
), (64× H

4
×

W
4
), (128× H

8
× W

8
)]. The feature maps are concatenated into a shape (C × H

2
× W

2
) after

being bilinearly upsampled to the highest resolution, which is (H
2
× W

2
) producing a feature

map I
′

b ∈ RH×W×C with C output channels. The operation is carried out for all input
views b in {1, .., B}. We then project the point x on all input feature maps I

′

b to collect
the corresponding image-aligned features for each view b denoted as pxb .

Human-anchored Feature Generation

Existing layered scene representations [55] follow the approach of NeuralBody [45] by en-
coding the vertices of human layers using learnable embeddings that are unique to each
layer in each training scene. In our approach, we embed the vertices with general features
instead by projecting the world-coordinate vertices sh on the multi-view feature maps ex-
tracted from the input images, such that, vh,b = I

′

b[Kb((Rbs
T
h ) + tb)]. vh,b ∈ R10,475×C

represents the features of the vertices projected on feature map I
′

b for layer h.

We query the radiance field predictor using continuous 3D sampled points. For that
reason, the sparse human vertices need to be diffused into a continuous space that can be
queried at any location. We incorporate the SparseConvNet [22, 45] architecture which
utilizes 3D sparse convolution to diffuse the vertex features into different nearby continuous
spaces for every layer. A detailed description of the architecture of the employed Spar-
seConvNet network is shown in Table 3.1. Before diffusion, the vertex locations of each
layer are transformed to their SMPL-X coordinate system to make sure that the diffused
spaces are independent of the humans’ world locations. To effectively anchor the network
on the available SMPL-X body priors, we transform x to the SMPL-X coordinate space

22



Layer Description Output Dim.
Input volume D′ ×H ′ ×W ′ × 64

1-2 [F=(3,3,3),K=64,S=1]×2 D′ ×H ′ ×W ′ × 64

3 [F=(3,3,3),K=64,S=2] D′

2
× H′

2
× W ′

2
× 64

4-5 [F=(3,3,3),K=64,S=1]×2 D′

2
× H′

2
× W ′

2
× 64

6 [F=(3,3,3),K=64,S=2] D′

4
× H′

4
× W ′

4
× 64

7-9 [F=(3,3,3),K=64,S=1]×3 D′

4
× H′

4
× W ′

4
× 128

10 [F=(3,3,3),K=128,S=2] D′

8
× H′

8
× W ′

8
× 128

11-13 [F=(3,3,3),K=128,S=1]×3 D′

8
× H′

8
× W ′

8
× 128

14 [F=(3,3,3),K=128,S=2]×3 D′

16
× H′

16
× W ′

16
× 128

15-17 [F=(3,3,3),K=128,S=1]×3 D′

16
× H′

16
× W ′

16
× 128

Resize & Concat layers 5,9,13, and 17 D′

16
× H′

16
× W ′

16
× 384

Table 3.1: The architecture of SparseConvNet. The layers consist of 3D sparse convolution,
batch normalization, and ReLU activation. ”F” denotes filter size, ”K” denotes the number
of kernels, and ”S” denotes stride.

of its corresponding human layer. Trilinear interpolation is then utilized to retrieve the
corresponding human-anchored features vxb from the diffused layer spaces of each view b.

Attention-Aware Feature Fusion

There are different possible strategies to fuse the feature representations (vx1:B, p
x
1:B) for

point x; one simple strategy is a basic averaging approach [48, 49]. This usually leads to
smoother output and ineffective utilization of the information seen from distinct views.
To learn effective cross-view correlations, we employ a self-attention module that attends
between all the multi-view human-anchored features vx1:B where each feature in one view is
augmented with the extra features seen from the other views. This is done with a weighted
average between the view features based on their similarity. Each view feature is first
concatenated (⊕) with its corresponding viewing direction db.

Specifically, the self-attention weights mv selfx and the view-aware human-anchored
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features v̂x1:B are calculated as:

vx1:B = vx1:B ⊕ d1:B,

mv selfx = soft(
1√
dk1

query(vx1:B) . key(v
x
1:B)

T ),

v̂x1:B = mv selfx . val1(v
x
1:B) + val2(v

x
1:B),

mv selfx ∈ RB×B, v̂x1:B ∈ RB×C ,d1:B ∈ RB×3

(3.4)

where key, query, and (val1, val2) represent the key, query, and value embeddings of the
corresponding argument features respectively, and dk1 denotes the dimensionality of the
key embedding and is set to 128. soft denotes the softmax operation.

We additionally make use of the rich spatial information in the image-aligned features
by carrying out cross-attention from the view-aware human-anchored features to the image-
aligned features. The similarity between the multi-view image features and the per-view
vertex features is used to re-weigh the image features and embed them with the vertex
features. The fused features ṽx1:B are calculated with the same formulation in Equation
3.5. The arguments of query and val2 are replaced by v̂x1:B, while the arguments of key
and val1 are replaced by px1:B, such that,

v̂x1:B = v̂x1:B ⊕ d1:B,

px1:B = px1:B ⊕ d1:B,

mv crossx = soft(
1√
dk1

query(v̂x1:B) . key(p
x
1:B)

T ),

ṽx1:B = mv crossx . val1(p
x
1:B) + val2(v̂

x
1:B),

mv crossx ∈ RB×B, ṽx1:B ∈ RB×C

(3.5)

Afterward, we carry out view-wise averaging, such that ṽx = 1
B

∑
b ṽ

x
b , to generate the

final fused feature representation for x.

3.2.5 Radiance Field Predictor

The radiance field predictor, shown in Figure 3.5, consists of a color network to predict
the RGB color c of a point x, and a density network to predict the volume density σ.
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Figure 3.5: The architecture of the Radiance Field Predictor.

Color Network

For the prediction of the color c of point x, we use of the query viewing direction q to
model the view-dependent effects [42]. In addition, we explicitly augment the fused high-
level features with low-level pixel-wise information to leverage the high-frequency details
in the images. This has been achieved with an RGB fusion module which concatenates
the high-level features with the encoded raw RGB pixel values rxb for each view b. RGB
values from closer input views are assigned higher weights by cross-attending q with the
input viewing directions d1:B such that,

c̃x = MLPc1(ṽ
x
1:B; γ(q); p

x
1:B),

ĉx1:B = {[c̃x ⊕ γ(rx1)], ..., [c̃
x ⊕ γ(rxB)]},

rgb attx = soft(
1√
dk2

query(q) . key(d1:B)
T ),

c(x,q) = MLPc2(rgb attx . val1(ĉ
x
1:B)),

rgb attx ∈ R1×B.

(3.6)

Density Network

We predict volume density σ(x) for point x using the fused feature ṽx, such that:

σ(x) = MLPσ(ṽ
x), (3.7)
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, where MLPσ, MLPc1 , and MLPc2 consist of fully connected layers described in the
supplementary material. γ : R3 → R(6×l)+3 denotes a positional encoding [42] with 2 × l
basis functions and dk2 is set to 16.

3.2.6 Layered Volumetric Rendering

Layered volumetric rendering is used to accumulate the predicted RGB and density for all
points across all human layers. The points in intersecting areas np across all human layers
are sorted based on their depth value z before accumulation. The synthesized image Iq is
calculated as follows,

Iq(p) =

np∑
i=1

∫ zfari

zneari

T(z)σ(r(z))c(r(z),q)dz

, where T(z) = exp

(
−
∫ z

zneari

σ(r(s))ds

) (3.8)

We sample 64 points per ray and approximate the internal integral using the quadrature
rule [42]. Given a ground truth novel view image Igtq , all of the network weights are
supervised using the traditional L2 Norm photo-metric loss, such that L = ||Igtq − Iq||22.

3.3 Summary

In this chapter, we presented the methodology used to explore the boundaries and capa-
bilities of the combination between neural radiance fields and multi-plane images. Specifi-
cally, we discussed the performance, generalization, and efficiency aspects for the analysis
of single-view (MINE) [34]. Furthermore, we showcased the architecture of multi-view
multi-plane neural radiance field architecture, MV-MINE, which effectively utilizes infor-
mation from different viewpoints to enhance the view synthesis performance. Lastly, we
presented the architecture of the proposed object-level layered scene representation, Gen-
LayNeRF, that successfully handles the complexity of multi-human scenes for novel view
synthesis while working with unseen subjects and poses at test time. In the next chapter,
we will discuss the details of our experiments and present the results both quantitatively
and qualitatively.
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Chapter 4

Experimental Results

This chapter presents the experiments done to evaluate our proposed methodologies and
architectures. Section 4.2 presents the experimental setup and results regarding the anal-
ysis points for single-view MINE. In Section 4.3, we show the results of the comparison
of our proposed MV-MINE architecture with baseline methods and the effect of different
feature fusion modules. Lastly, regarding our proposed GenLayNeRF approach, we present
the datasets used, comparison settings, experiment results, and ablation studies in Section
4.4.

4.1 Evaluation Metrics

We utilize NeRF [42] in the evaluation metrics for novel view synthesis which are peak
signal-to-noise ratio (PSNR), the structural similarity index (SSIM) [73], and the learned
perceptual image patch similarity (LPIPS) [84] in all experiments.

4.2 Single-view MINE Experiments

We present the experimental details and results of the technical analysis of single-view
MINE [34] in terms of performance, generalization, and efficiency as mentioned in Section
3.1.1. Figure 4.1 shows an overview of all the experiments made in this section.
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Figure 4.1: Overview of the experiments made for analyzing the performance, generaliza-
tion, and efficiency of single-view MINE.

4.2.1 Performance

Regarding performance, we present the experimental setup and results used for training
on the ShapeNet dataset [4], and the ablation studies made.

Setup

Training on ShapeNet. We train MINE on specific subsets of the ShapeNet dataset [4] to
have a fair performance comparison with pixelNeRF [80] which is a generalizable single-view
NeRF method. Specifically, we focus on using the Category Agnostic ShapeNet experi-
ments [80] which train on single-view images of 13 categories of objects. Each category
has multiple objects and each object has 24 views. Following [80] we sample one random
view for training and 23 other views as target views. The train-test split is composed of
156,877 and 45,586 source and target pairs for training and validation respectively. We
trained on 4 V100 GPUs with batch size 4 and a 0.001 learning rate for the encoder and
decoder. Training for one epoch takes about 6 hours and validation takes about 3 hours.

Effect of Continuous Depth & Volumetric Rendering. The continuous depth reconstruction
proposed by NeRF [42] allowed MINE [34] to generalize the discretized depth representation
of MPI [67]. We verify this hypothesis by training on the LLFF [41] dataset from scratch
with the fixed depth sampling approach from MPI [67] and the stratified sampling approach
from NeRF [80]. In addition, using the volumetric rendering technique applied by NeRF
[80] instead of alpha compositing [67] is one of the factors contributing to enhancing the
results of MINE [34]. To verify that, we train on the LLFF dataset with both volumetric
rendering and alpha compositing. The LLFF dataset [41] contains real-world images taken
by phone camera at views lying in an equally spaced grid of a specific size. There are 8
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Figure 4.2: Output of MINE after training on Shapenet [4] using the same preprocessing
used by pixelNeRF [80]. ”GT” denotes the ground truth target view, ”Target” denotes
the output target view, and ”Source” denotes the input view to the network. Distortion
in GT of MINE is due to normalizing the images by 0.5.

scenes available with each scene having around 20-50 views available. The scenes available
are of the following objects: fern, flower, fortress, horns, leaves, orchids, room, and trex.
During the training, for each view in the scene, a random view is taken as the target view.
The sparse disparity loss is included and the scale is calculated using 3D point clouds
estimated for the images using COLMAP [50, 51]. The training was done on 4 V100 GPUs
and took around 4 hours. We used a decaying learning rate starting at 0.001 and decaying
by 0.1 every 50 epochs for 200 epochs and a batch size of 2.

Results

Training on ShapeNet. We carried out a qualitative analysis to check the plausibility of
results returned by MINE compared to pixelNeRF [80] with single-view input on ShapeNet
[4], shown in Figure 4.2. The first row shows that MINE failed to render the target object
within the boundaries of the image plane since the target viewing direction is very far from
the source viewing direction. In the second row, the object was rendered within the image
plane and the car’s structure was retained appropriately since the two viewing directions
are closer, in this case, however, the car location is still inaccurate. On the other hand,
pixelNeRF is able to correctly render the target view object in an accurate location within
the image plane regardless of how far the source and target views are.

Effect of Continuous Depth & Volumetric Rendering. Table 4.1 shows the results after
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Sampling Compositing LPIPS ↓ SSIM ↑ PSNR ↑
Stratified Volumetric 0.397 0.5244 18.12
Fixed Volumetric 0.389 0.5331 18.20

Stratified Alpha 0.448 0.4870 17.78

Table 4.1: Training results of MINE [34] on the LLFF dataset [41] with fixed, stratified
sampling, volumetric rendering, and alpha compositing.

training MINE on LLFF with fixed disparity taken at equally spaced locations, with a
random stratified sampled disparity in each training step, and with volumetric rendering
and alpha compositing for aggregating the colors from the radiance field planes. It can be
seen that the usage of stratified sampling did not enhance the results, yet the fixed dispar-
ity yielded slightly better performance on all metrics. However, the usage of volumetric
rendering led to significantly better results than alpha compositing.

4.2.2 Generalization

Regarding generalization, we present the experimental setup and results of evaluating
MINE [34] on novel scenes from the LLFF [41] and KITTI Raw [18] datasets.

Setup

Generalization on LLFF. In this experiment, we leave out the ”fortress” scene from the
LLFF dataset during training and evaluate it. This setting is considered challenging as
the novel scene differs highly from the scenes seen during training. We follow the same
experimental setup of the ablation studies mentioned in Section 3.1.1.

Generalization on KITTI Raw. We utilize samples of scenes from the KITTI Raw [18]
dataset which were not seen during training (specifically scenes dated 2011 09 26 scenes
0104, 0106, 0113, and 0117). The model is tested on each image in the scenes individually.
The GPU used for this experiment is NVIDIA GTX1070 8GB.

Results

Generalization on LLFF. The results of the generalization experiment on the fortress scene
on the LLFF dataset [41] are shown in Figure 4.3. In the second column, it is clear that the
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Figure 4.3: Output of MINE after training it on 7 LLFF [41] categories and evaluating
on the fortress scene. ”GT” denotes ground truth and ”Out” denotes the output of the
model.

model was successful in rendering the geometric structure of the source image accurately.
However, regarding the target novel views in the fourth column, it is clear the model failed
to render the geometric structure of the whole object properly showing a lot of distortions.

Generalization on KITTI Raw. The results of testing the generalization on KITTI Raw
[18] made us consider two main divisions of the problems encountered, the division of global
problems which are visible in almost all of the pictures tested, and local problems which are
visible in specific frames of the scenes. The first global problem is edge distortion where the
edges of the videos while moving along the Z-axis are highly distorted. This happens due
to duplicating the edge pixels to in-paint parts which were occluded in the source image, as
visible in Figure 4.4. Another global problem is rendering pixels where an object is behind
another object which is visible clearly in Figure 4.4 samples 1-3. Specifically, in sample 1,
it is visible in the sign at the front, when trying to render the car behind it. In sample 2,
it is visible on the right of the motorcycles, where motorcycles are getting distorted and
rendered unsuccessfully due to small barriers in front of them. In sample 3, it is visible
when looking at the car on the right, when the camera moves the car shape changes. Lastly,
the heads of pedestrians show large distortions as visible in Figure 4.4 samples 1 and 4, or
have a ghost-like effect, as seen in samples 2 and 3. Locally, we highlight areas in Figure 4.5
where pedestrians, traffic signs, and buildings suffer from splitting distortions, ghost-like
effects, and the incorrect representation of the geometric structure.

4.2.3 Efficiency

Regarding efficiency, we present the experimental setup and results of comparing the in-
ference speed of MINE [34] and pixelNeRF [80].
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Figure 4.4: Global problems encountered in the KITTI Raw [19] generalization experiment.

Setup

We fixed the input frame shape to (128, 128) and the number of planes in MINE to 32 to be
the same as the number of points sampled per ray in pixelNeRF. We used the pre-trained
models and the code published for both pixelNeRF and MINE to run the experiments.
The GPU used for the experiment is NVIDIA GTX1070 8GB, and the CPU is Intel(R)
Core(TM) i7-6700K CPU @ 4.00GHz with 8 cores and 32 GB RAM. To obtain an accurate
time per frame, we ran 150 frames and got the average time per frame.

Results

Table 4.2 presents the results of this experiment. We were able to validate that MINE is
more efficient in inference than pixelNeRF [80]. Particularly, MINE renders a single (128,
128) target frame in 0.77 seconds on GPU, while pixelNeRF takes 1.24 seconds which is
approximately 38% speed enhancement. Regarding CPU, MINE shows 45% enhancement
over pixelNeRF.
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Figure 4.5: Local problems encountered in the KITTI Raw [19] generalization experiment.

Method GPU Time CPU Time
Single-view MINE (32 Planes) 0.77s 8.43s
pixelNerf (32 Coarse Points) 1.24s 15.45s

Table 4.2: Results of comparing rendering time per frame for pixelNeRF[80] and MINE[34].

4.3 Multi-view MINE Experiments

Our experiments in this section focus on evaluating the performance of the proposed ar-
chitecture designs for MV-MINE, described in Section 3.1.2, and comparing them against
baseline NeRF methods. We discuss the experimental setup, while also presenting the
results both quantitatively and qualitatively.

4.3.1 Experimental Setup

The experimental setup involves the training and testing details and the datasets used in
all experiments. The experiments are split into an evaluation of the proposed modules and
a comparison with baseline methods.

Comparison Of Fusion Techniques

We train the fusion modules on all the scenes of the LLFF [41] dataset. Validation is
done on unseen target views. The fixed-view pre-decoder module 3.1.2 was trained and
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evaluated on 5 input views, while other modules used a range of 3-7 input views for training
and were evaluated on 5 input views for a fair comparison.

Comparison With Baseline Methods

Regarding per-scene methods, we evaluate our approach against NeRF [42] and SRN [58].
Regarding generalizable methods, we include pixelNeRF [80] in our baselines. In addi-
tion, we provide the results of LLFF [41] as an MPI method. Our proposed method and
pixelNeRF were both trained on a collection of the LLFF [41], Spaces [16], IBR-collected
[72], and RealEstate-4k [87] datasets. Training samples for each epoch are drawn with the
following probabilities 0.4, 0.15, 0.35, and 0.1 respectively. Evaluation is done on novel
target views of the LLFF dataset. NeRF was trained on each scene of the LLFF dataset
separately.

4.3.2 Results

We present the results of our experiments for fusion modules and baseline methods com-
parison.

Comparison Of Fusion Techniques

Table 4.3 presents the performance of the original MINE method with single view inputs
along with our proposed fusion modules operating on 5 input views. It could be seen that
the post-decoder fusion with averaging leveraged multi-view information to enhance results
compared to single-view MINE. Introducing weighted averaging led to better utilization
of features from close views and significantly enhanced results on all metrics. Implicit
feature aggregation introduced in the fixed-view pre-decoder fusion notably elevated the
performance. Lastly, shifting to view-agnostic attention-aware fusion shows the best over-
all performance on all metrics. This validates the impact of the learned soft masks in
highlighting important features in the input views with respect to the source view. Quali-
tatively, it could be seen in Figure 4.6 that MINE suffers from strong hallucinations around
image borders. The post-decoder module solves that issue yet still contains strong blur
artifacts. The pre-decoder modules show the best synthesis quality, especially with the
attention-aware module in terms of lighting and colors.
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GT MINE (1 view) Post-Decoder Pre-Decoderfixed Pre-Decoderatt

Figure 4.6: Comparison of the proposed multi-view fusion modules. We include the original
MINE [34] method operating with single input views. All fusion modules were tested with
5 input views.

Method LPIPS ↓ SSIM ↑ PSNR ↑
Single-View MINE 0.397 0.5244 18.12
Post-Decoder Fusion (Averaging) 0.354 0.601 19.56
Pre-Decoder Fusion (Averaging) 0.321 0.621 20.10
Post-Decoder Fusion (Weighted Averaging) 0.298 0.652 20.43
Fixed-View Pre-Decoder Fusion 0.232 0.761 24.08
Attention-based Pre-Decoder Fusion 0.223 0.803 24.43

Table 4.3: Quantitative comparison of the performance of the proposed multi-view fusion
modules using 5 input views and MINE using a single input view.

Comparison With Baseline Methods

Table 4.4 shows the results of our attention-aware fusion module 3.1.2 compared to the
baseline view synthesis methods. Regarding per-scene methods, it could be seen that our
method significantly surpasses SRN on all metrics, while performing better than NeRF on
the LPIPS metric without per-scene training. Regarding the generalizable methods, we
show comparable performance to both LLFF and pixelNeRF, while performing better than
pixelNeRF on the LPIPS and SSIM metrics. We also introduce slight improvements over
LLFF on the SSIM and PSNR metrics.
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Method LPIPS ↓ SSIM ↑ PSNR ↑
SRN (P) 0.378 0.668 22.84
NeRF (P) 0.250 0.811 26.50

LLFF (G) 0.212 0.798 24.13
pixelNeRF (G) 0.224 0.802 24.61
Ours (G) 0.218 0.808 24.56

Table 4.4: Comparison of our attention-based view-agnostic fusion module, with baseline
view synthesis methods. ”P” denotes per-scene optimization methods, while ”G” denotes
generalizable methods.

4.3.3 Discussion

Regarding the single-view MINE analysis, we concluded that MINE is limited only to render
novel views that are close to input source views, and in the current setting would fail to give
360◦ views of a scene like other NeRF variants [66, 80]. We believe that the reason behind
that is having only a single image as input, so the model doesn’t get exposed to several views
to enhance its novel view prediction on far target poses. Moreover, homography warping
could be another reason why the model has limited capability to render a wide range of
views since the decoder is only producing a feature plane representation that is conditioned
on the source image, and transforming the output planes by a large amount is considered
ill-posed and would cause the distortion and incorrect results shown previously. In addition,
it could be concluded that MINE cannot generalize to areas around the edges of the images
since it will need to in-paint the content of areas that it hasn’t seen before from the single-
view input. In the output, we saw that the model does nearest neighbor interpolation in
those areas instead of correctly predicting their structure and color. The method also failed
to appropriately render the fortress scene due to its disparate distribution compared to the
training scenes which highlights the weak generalization ability of single-view MINE.

Regarding the proposed MV-MINE experiments, it was clear that the multi-view infor-
mation contributed to the enhancement of the synthesis quality compared to its single-view
counterpart. In complex scenes with severe occlusions, the utilization of a single-input im-
age to render a novel view increases the difficulty of predicting the structure of the scene in
areas that were not visible in the source input view. On the other hand, if a model utilizes
multiple views as input, it can solve the ambiguities in the occluded areas by reasoning
about the information from different views. We carried out fusion using basic averaging
techniques and attention modules. Our proposed attention modules achieved the best syn-
thesis quality as seen in Figure 4.6 compared to the averaging and post-decoder modules
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which highlights its effectiveness in leveraging multi-view information. Specifically, the
modules learned the appropriate soft masks to successfully highlight the complementary
features present in the input views with respect to the source views and aggregated the
features properly into a final fused representation.

4.4 GenLayNeRF: Generalizable Layered Scene Rep-

resentations for Multi-human Novel View Synthe-

sis

In this section, we introduce the experimental details regarding our proposed GenLayNeRF
architecture, described in Section 3.2. This includes a discussion of the datasets used in the
experiments, the training details, the baselines used in the comparison, the experimental
results, and the ablation studies.

4.4.1 Datasets

The existence of readily-available open-source multi-human view synthesis datasets is lim-
ited. To solve this challenge, we construct two new datasets, ZJU-MultiHuman and Deep-
MultiSyn, for our evaluation and comparison purposes. Both datasets will be published to
act as a benchmark for multi-human view synthesis methods.

DeepMultiSyn

The DeepMultiSyn dataset is an adaptation of the 3D reconstruction dataset published
by DeepMultiCap [86]. We take the raw real-world multi-view sequences and process
them for novel view synthesis. There exist 3 video sequences of scenes containing 2 to
3 human subjects captured from 6 synchronized cameras. The number of frames in the
sequences ranges from 756 to 1976. We use EasyMoCap [54] to fit the SMPL-X human
models for all the subjects in all available frames. Additionally, we predict the human
segmentation masks following [35] to separate the humans from the background. This
dataset is considered challenging due to the existence of close interactions and complex
human actions such as boxing, and dancing activities.
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Method
DeepMultiSyn ZJU-MultiHuman
PSNR SSIM PSNR SSIM

(a) Seen Models, Seen Poses

S

NeRF 15.49 0.497 16.42 0.525
D-NeRF 17.08 0.702 18.53 0.748
L-NeRF* 23.79 0.845 24.72 0.898
Oursft 24.77 0.873 24.85 0.906

G

PixelNeRF 14.81 0.534 19.74 0.629
SRF 20.39 0.724 17.87 0.657
IBRNet 19.45 0.741 20.03 0.766
NHP* 20.91 0.698 21.75 0.813
Ours 23.61 0.847 24.61 0.893

(b) Seen Models, Unseen Poses
S L-NeRF* 21.37 0.810 22.84 0.867

G

PixelNeRF 14.14 0.520 16.88 0.560
SRF 18.07 0.663 17.93 0.680
IBRNet 18.01 0.710 19.84 0.772
NHP* 20.26 0.677 20.64 0.791
Ours 22.19 0.826 23.04 0.873

(c) Unseen Models, Unseen Poses

G

PixelNeRF 13.12 0.457

Not Applicable
SRF 13.95 0.548
IBRNet 18.80 0.672
NHP* 19.51 0.678
Ours 20.43 0.787

Table 4.5: Comparison with generalizable and per-scene NeRF methods on the DeepMul-
tiSyn and ZJU-MultiHuman Datasets. ”G” and ”S” denote generalizable and per-scene
methods, respectively. ”*” refers to human-based methods. PSNR and SSIM metric values
are the greater the better. ”ft” refers to finetuning.

ZJU-MultiHuman

The ZJU-MultiHuman dataset consists of one video sequence with 600 frames taken from
8 uniformly distributed synchronized cameras. The video sequence was published online
[54] along with the camera calibration files. The captured scene contains 4 different human
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subjects with simple action poses such as standing, sitting, walking, and swapping seats.
Similar to DeepMultiSyn, we predict the SMPL-X models and segmentation masks utilizing
[54, 35].

ZJU-MoCap

Our method can work with any arbitrary number of humans in the scene. For that reason,
we utilize a subset of the ZJU-MoCap dataset [45] which is a single-human view synthesis
benchmark consisting of 10 human scenes captured from 23 synchronized cameras in order
to increase the diversity in the human subjects used for training. We rely on 5 human
scenes that have their pre-computed 3D body priors and masks available.

4.4.2 Training Details

Our model is implemented using Pytorch. It is trained using the Adam [30] optimizer with
a decaying learning rate that starts at 5e-4 and decays by 0.1 every 300 epochs. We sample
1,024 rays per image during training from within the bounding box of the humans in the
scene. We optimize our network on a single Nvidia V100 GPU with 32 GB RAM.

Regarding the train-test splits, the DeepMultiSyn training split is comprised of 301
frames on average per scene for each camera view after excluding the 18% inaccurate
frames. This sums up to 5,418 frames for three scenes and 6 camera views. The ZJU-MoCap
training split consists of 50 frames on average per scene for each camera view, which sums
up to 3,450 frames for three scenes and 23 camera views. The ZJU-MultiHuman training
split consists of 400 frames for each camera view which sums up to 3,200 frames for 8
camera views. Therefore, the total number of training frames is around 12,068 frames.
The training was done with three input views chosen randomly for each frame.

Each generalization setting has its own test split. Two target camera views are fixed for
testing on the DeepMultiSyn and the ZJU-MoCap dataset, while three views are fixed for
the ZJU-MultiHuman dataset. In all settings, three camera views are fixed as input for all
the datasets. The ”Seen Models, Seen Poses” setting is tested on the same training poses
which sum up to 1,806 and 1,200 testing frames on all the testing views for the DeepMul-
tiSyn and the ZJU-MultiHuman datasets, respectively. The ”Seen Models, Unseen Poses”
is tested on novel poses which sum up to 846, 750, and 916 frames for the DeepMultiSyn,
ZJU-MultiHuman, and ZJU-MoCap datasets, respectively. Lastly, the ”Unseen Models,
Unseen Poses” setting is tested on novel subjects and poses which sum up to 242 and 263
testing frames on the DeepMultiSyn and ZJU-MoCap datasets, respectively.
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GT Ours NHP IBRNet GT Ours NHP IBRNet

Figure 4.7: Comparison with generalizable NeRF methods on seen models and unseen
poses for the DeepMultiSyn Dataset. We include the top two performing generalizable
methods, NHP [32] and IBRNet [72], in the qualitative comparison.

4.4.3 Baselines

We compare our proposed approach with generalizable and per-scene NeRF methods that
are human and non-human based.

Comparison With Generalizable NeRF Methods

Generalizable human-based NeRF methods [32, 85] operate only on scenes with single
humans. For a fair comparison, we adjust the NHP [32] method to work on multi-human
scenes. We make use of the per-human segmentation masks to render a separate image
for each individual in the scene. We then superimpose the human images based on their
depth to render the novel view image. Regarding non-human methods, PixelNeRF [80] is
the first NeRF method to incorporate novel scene generalization by conditioning NeRF on
pixel-aligned features. IBRNet [72] merges concepts from image-based rendering and NeRF
to aggregate the sparse multi-view information. SRF [9] utilizes stereo correspondences in
the input images along with NeRF to perform well on unseen scenes. All methods were
trained on all the human scenes of the datasets simultaneously.
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GT Oursft Ours L-NeRF D-NeRF NeRF

Figure 4.8: Comparison with per-scene NeRF methods on seen models, and seen poses
for the DeepMultiSyn Dataset. The red boxes highlight areas where our method is better
at representing the texture details compared to L-NeRF [55].

Comparison With Per-scene Methods

The first baseline is the multi-human layered scene representation approach [55], denoted as
L-NeRF. We reimplemented [55] since the code was not publicly available at the submission
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GT Ours NHP IBRNet

Figure 4.9: Comparison with generalizable NeRF methods on seen models and unseen
poses for the ZJU-MultiHuman Dataset.

Method
(a) Seen Models,
Unseen Poses

(b) Unseen Models,
Unseen Poses

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
NHP 26.19 0.869 24.63 0.872
Ours 28.01 0.905 25.36 0.886

Table 4.6: Performance evaluation on single-human scenes on the ZJU-MoCap dataset.

time. We also compare against D-NeRF [47] and the original NeRF [42] method. All of
the mentioned approaches are trained on each scene separately.

4.4.4 Experimental Results

Our evaluation spans three settings that test different degrees of generalization as follows:

Seen Models, Seen Poses

In this setting, we test on the same human subjects and poses that the model is trained
on. Table 4.5a indicates the results in terms of the per-scene and generalizable baselines.
Regarding the generalizable approaches, our method exhibits the best overall performance
on both datasets on all metrics. Figure 4.8 shows the qualitative comparison between our
method and the per-scene NeRF methods on seen models and seen poses. The highlighted
areas indicate that our proposed method is capable of representing more texture details
compared to L-NeRF [55]. D-NeRF [47] shows highly blurred results that impact the
representation of the main human features, while NeRF [42] cannot handle dynamic scenes,
hence, it renders the average of all the training frames.
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cross att self att rgb att # V. PSNR ↑ SSIM ↑
3 20.92 0.7860
3 21.75 0.8045
3 21.98 0.8093
3 22.19 0.8260

1 20.48 0.7800
2 21.47 0.8060
4 22.42 0.8316

Table 4.7: Ablation study results on seen models and unseen poses for the DeepMul-
tiSyn dataset. ”# V.” denotes the number of views.

GT Ours L-NeRF

Figure 4.10: Comparison with a per-scene multi-human method [55] on seen models, and
unseen poses on the DeepMultiSyn Dataset.

Pose Generalization

We additionally test all approaches on the same human subjects seen during training,
but with novel poses. L-NeRF is a human-based method that generalizes to novel poses,
therefore, it is included in this comparison. On both datasets, Table 4.5b shows that our
proposed approach highly outperforms all the generalizable NeRF methods on all metrics.
Our performance is relatively close to L-NeRF on the ZJU-MultiHuman dataset as the
novel poses have a similar distribution to the training poses. On the other hand, L-NeRF
lags behind our method on the DeepMultiSyn dataset due to the complex novel poses avail-
able which validate the pose generalization ability of our method on challenging motions.
Qualitatively, Figures 4.7 and 4.9 show that IBRNet fails to properly model the full body of
the human subjects. NHP can moderately render each individual subject solely, however it
fails to represent areas of occlusions where subjects highly overlap. On the other hand, our
method successfully models the body shapes and can handle overlapping areas which vali-
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GT Ours Ours (1 View) NHP IBRNet SRF

Figure 4.11: Qualitative comparison on seen models, unseen poses on the DeepMulti-
Syn dataset. We include the results of our proposed approach using a single input view
and compare it to the generalizable NeRF methods that take 3 views as input.

GT Ours NHP

Figure 4.12: Qualitative comparison on unseen models, unseen poses on the ZJU-
MoCap dataset.

date the effectiveness of the layered scene representation in the generalizable multi-human
setting. Figure 4.10 shows how L-NeRF fails to properly render the appearance of subjects
when presented with complex unseen poses. Figure 4.11 shows the results of our proposed
approach using a single input view compared to the generalizable NeRF methods that take
3 views as input for seen models, and unseen poses. Our single-view results show better
performance than NHP in the overlapping areas among persons, while also representing
the main features of the human subjects better than SRF [9] and IBRNet [72]. Our 3-view
results show enhancements by removing some appearance artifacts in the rendered image.
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GT Ours NHP IBRNet

Figure 4.13: Comparison with generalizable NeRF methods on unseen models and un-
seen poses for the DeepMultiSyn dataset.

Human Generalization

A challenging setting would be to test on human subjects and poses that were not seen
during training. This was only done on the DeepMultiSyn dataset by leaving out one scene
for testing. Table 4.5c validates that our method has the best generalization capability as
it outperforms all other methods by a large margin. 4.13 shows that our method better
represents the main body features of the novel human subjects. IBRNet fails to fully render
some body parts like the legs, while NHP suffers from more blur artifacts, especially in
overlapping areas.

4.4.5 Ablation Studies

Performance on Single-Human Scenes

We evaluate our performance on single-human scenes on the ZJU-MoCap dataset compared
to the state-of-the-art method, NHP. The method was trained on the single and multi-
human training split detailed in the supplementary material. Table 4.6a shows that our
method surpasses NHP by a large margin on pose generalization on both metrics. For
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the human generalization in Table 4.6b, we also show a noticeable enhancement which
demonstrates the effectiveness of our method in handling scenes with as low as one human
subject. Figure 4.12 demonstrates a qualitative comparison with NHP [32] on single-human
scenes for unseen human subjects on the ZJU-MoCap dataset. Our method shows fewer
overall appearance artifacts in the rendering results.

Effect of Fusion modules

We assess the effect of different fusion modules on the synthesis results. From Table 4.7,
the second row uses the cross-attention module (cross att) in Section 3.2.4 and it shows a
noticeable improvement over doing basic average pooling in the first row. This indicates
the effectiveness of the correlation learned between the vertex and image features. The
addition of the self-attention module (self att) in Section 3.2.4 in the third row led to the
incorporation of multi-view aware features and achieved a slight enhancement on both
metrics. The last row adds the raw RGB fusion module (rgb att) in the Color Network
presented in Section 3.2.5. It enhances the performance, especially on the SSIM metric,
validating the importance of utilizing low-level information.

Effect of Number of Views

We evaluate the performance of our proposed approach when given a different number of
input views at test time. Table 4.7 indicates that using 4 views leads to an enhancement
in both metrics due to the extra information available. Decreasing the number of views
gradually degrades the performance. However, using only one input view, our method
outperforms all the generalizable NeRF methods in Table 4.5 that use 3 input views.

4.4.6 Discussion

One of the main contributions of this method revolves around the problem that is being
solved, how non-trivial it is, and how existing literature work does not sufficiently solve the
problem which is creating a generalizable multi-human view synthesis method that works
with very sparse input views.

Existing generalizable human-based methods [32, 85] cannot be extended directly to
multi-human settings. Comparisons with NHP [32] for multi-human scenes in Figure 4.7
show our superior performance where NHP fails to render overlapping areas of humans. Re-
garding layered scene representations[55, 83], they are mainly constrained to the per-scene
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training settings and cannot operate properly on novel subjects/poses. The comparison
with L-NeRF [55] in Figure 4.10 shows how they fail to properly render the human sub-
jects when complex novel poses are given, unlike our method. Another drawback of existing
methods is demanding a higher number of input views. ST-NeRF [83] requires 16 input
views and can only render a 180◦ viewing range. L-NeRF utilizes 8 input views, while our
method is designed to work with 3 input views and achieves 360◦ free-viewpoint rendering.
We even provide adequate quality results with as low as 1 input view, as shown in Figure
4.11. As a result, a clear research gap exists in the literature for having a high-quality
sparse-view multi-human method that requires no per-scene training and we offer an effec-
tive solution to fill the gap which highlights our contribution and position in the literature
work.

Existing attention-aware feature fusion methods suffer from limited utilization of cross-
view information and low-level frequency details. Our proposed approach utilizes a novel
and unique collection of three attention modules (cross-att, self-att, and rgb-att) to gen-
erate view-aware and pixel-aware human features augmented with encoded low-level RGB
values for retaining high-frequency details. They jointly allow our method to have superior
multi-human performance compared to the baseline methods. The enhancement over other
collections of modules was also fairly proved for single-human settings in Table 4.6 against
NHP [32], which uses temporal and multi-view attention modules.

Regarding the per-scene NeRF methods, Table 4.5 show that NeRF [42] exhibits a
significantly low performance since it cannot handle dynamic scenes. D-NeRF [47] has
a dynamic object modeling ability, yet suffers in representing complex human motions
leading to degraded performance. Our proposed method performs at par with the state-
of-the-art per-scene baseline (L-NeRF [55]), while effectively saving computational and
time resources. Specifically, L-NeRF takes a total of 144 hours to converge on all three
scenes one at a time, while our method needs a total of 50 hours to converge on all the
scenes simultaneously. After per-scene finetuning, our method surpasses L-NeRF on both
datasets. Our method is more robust to SMPL-X inaccuracies due to the usage of low and
high-level image features that complement mesh errors.

4.5 Summary

In this chapter, we discuss the experimental setup and results for evaluating the analysis
criteria of single-view MINE [34]. Regarding performance, the results of training on the
ShapeNet dataset [4] showed the inability of single-view MINE to render objects from far
away views, unlike the implicit 3D scene representation method, pixelNeRF [80]. The
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ablation studies on NeRF concepts proved the effectiveness of volumetric rendering for
enhanced synthesis results, whereas stratified sampling did not contribute positively to the
overall performance. Additionally, we showed the weak generalization ability of single-view
MINE to novel scenes, especially on the LLFF [41] dataset. We also proved the significant
inference efficiency of MINE compared to pixelNeRF. Moreover, the experiments for the
proposed MV-MINE architecture show the effectiveness of utilizing the attention-based pre-
decoder fusion for high-quality results compared to other proposed modules. We also show
comparable performance with state-of-the-art implicit and explicit novel view synthesis
baseline methods.

Regarding the GenLayNeRF architecture, we discussed the details of the datasets pro-
posed and the baseline methods. Experimental results showed that our method outper-
forms state-of-the-art generalizable NeRF methods in different generalization settings and
performs at par with layered per-scene optimization methods on all metrics without re-
quiring long per-scene optimization runs and high computational resources. The ablation
studies highlighted the superior performance of our method on single-human scenes com-
pared to NHP [32] and the effectiveness of the proposed attention modules to enhance
the synthesis results. In the next chapter, we will provide a detailed discussion of the
limitations of our proposed approaches along with the possible future research directions.
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Chapter 5

Conclusion

In this thesis, we went over the existing literature work in the field of novel view synthe-
sis. We examined the classical view synthesis approaches and presented learning-based
approaches based on 3D scene representations. Explicit 3D approaches directly model the
camera frustum through different representations, allowing better modeling of occluded
areas. Multi-plane images (MPI) [67] are explicit representations that are composed of
parallel RGB-α planes that can be warped and projected to render novel views. However,
MPI has the drawback of incomplete 3D scene representation due to the discretization
of the depth of the planes. Layered Depth Images (LDI) [52] are a more memory and
space-efficient explicit representation that allows each pixel to have an arbitrary number of
layers at different depths. Implicit 3D representations model the 3D scene structure within
the weights of neural networks. These representations can be classified as per-scene opti-
mization methods that require re-training for novel scenes, and generalizable approaches
that can handle unseen scenes during inference. There are also human-based approaches
that handle the complexity of human subjects in terms of deformations and self-occlusions.
Recent methods propose a combination of implicit and explicit representations, either on
a pixel or object level. The pixel-level combination takes the form of multi-plane neural
radiance fields (MINE) [34], while the object-level combination represents each object in
the scene with an independent neural radiance field [55]. Finally, we provided an overview
of the different attention mechanisms available in computer vision tasks.

Furthermore, we tackled several challenges with regard to novel view synthesis which in-
cludes handling occluded areas, expanding the viewing direction range, avoiding in-efficient
per-scene optimization settings, and representing complex multi-human scenes. This was
done by exploring the capabilities of combining explicit [67, 55] and implicit [72, 32] 3D
scene representations in the form of scene layers at the pixel level or the object level. For
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the pixel-level representations, we presented an in-depth technical analysis of single-view
MINE to evaluate their boundaries in terms of performance, generalization, and efficiency.
Performance was evaluated through training on a novel challenging dataset [4] and com-
paring the effect of different rendering and sampling techniques borrowed from NeRF [42]
on the quality of the results. Generalization was assessed by evaluating the network on
novel scenes from the KITTI Raw [18] and LLFF [41] datasets. Efficiency was assessed
through a quantitative time comparison with pixelNeRF [80] on both GPU and CPU. We
concluded from our experiments that single-view MINE demonstrated weak generalization
and a small viewing direction range, which might be due to single-view input or homogra-
phy warping, although it had faster inference times than pixelNeRF [80]. We also deduced
that volumetric rendering plays a more important role than stratified sampling in achieving
better results for single-view MINE. Furthermore, we proposed a novel multi-view MINE
architecture, MV-MINE, that utilizes a novel attention-based module to effectively fuse
multi-view features and enhance the synthesis quality for MINE. Experiments indicated
that our proposed attention module performs better than other proposed fusion techniques.
In addition, our method shows competitive performance compared to baseline novel view
synthesis approaches. One main limitation of the proposed MV-MINE method is the re-
liance on homography warping to render the novel views. Even though we proved the
strength of utilizing neural radiance planes along with volumetric rendering to predict the
novel views. The requirement of having a rigid warping mechanism between the source
and target planes still limits the viewing direction range to be rendered as warping be-
comes more ill-posed whenever the distance between the source and target views increases.
Future work could look into ways to render novel views from the predicted MPIs directly
without the need to carry out warping from source to target views.

As to the object-level representations, we introduced a generalizable layered scene rep-
resentation, GenLayNeRF, for the free-viewpoint rendering of multi-human scenes using
very sparse input views while operating on unseen poses and subjects without test time op-
timization. We divide the scene into a set of multi-human layers and generate multi-view
image features and human-anchored features. We then utilize a combination of cross-
attention and self-attention modules that effectively fuse the information seen from differ-
ent viewpoints. In addition, we introduce an RGB fusion module to embed low-level pixel
values into the final color prediction for higher-quality results. We assess the efficacy of
our approach on two newly proposed multi-human datasets. Experimental results show
that our method outperforms state-of-the-art generalizable NeRF methods in different gen-
eralization settings and performs at par with layered per-scene optimization methods on
all metrics without requiring long per-scene optimization runs and high computational re-
sources. Our proposed method has the potential of performing direct inference on novel
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human subjects to suit real-world applications when trained on larger datasets. Several
enhancements to our proposed method could be investigated further. As our two proposed
datasets were sufficient to show the generalization capability of our method, there is room
for improvement by elevating the diversity in terms of the number of scenes, camera views,
distinct humans, and complex actions. This would lead to better generalization capabili-
ties on broader challenging scenarios. Furthermore, inaccuracies in the estimation of the
SMPL-X models highly hinder performance. A possible research direction could explore
the optimization of the SMPL-X parameters as part of the network training. Lastly, our
method suffers from blur artifacts in the representation of human clothing details. One
could experiment with integrating a deformation model to represent small deformations
such as textured clothing.
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and Michael Zollhöfer. Deepvoxels: Learning persistent 3d feature embeddings. 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
2432–2441, 2019.

[58] Vincent Sitzmann, Michael Zollhoefer, and Gordon Wetzstein. Scene representa-
tion networks: Continuous 3d-structure-aware neural scene representations. ArXiv,
abs/1906.01618, 2019.

[59] Pratul P. Srinivasan, Richard Tucker, Jonathan T. Barron, Ravi Ramamoorthi, Ren
Ng, and Noah Snavely. Pushing the boundaries of view extrapolation with multiplane

57



images. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 175–184, 2019.

[60] Pratul P. Srinivasan, Tongzhou Wang, Ashwin Sreelal, Ravi Ramamoorthi, and Ren
Ng. Learning to synthesize a 4d rgbd light field from a single image. 2017 IEEE
International Conference on Computer Vision (ICCV), pages 2262–2270, 2017.

[61] Carsten Stoll, Juergen Gall, Edilson de Aguiar, Sebastian Thrun, and Christian
Theobalt. Video-based reconstruction of animatable human characters. ACM SIG-
GRAPH Asia 2010 papers, 2010.

[62] Zhuo Su, Lan Xu, Zerong Zheng, Tao Yu, Yebin Liu, and Lu Fang. Robustfusion:
Human volumetric capture with data-driven visual cues using a rgbd camera. In
ECCV, 2020.

[63] Shao-Hua Sun, Minyoung Huh, Yuan-Hong Liao, Ning Zhang, and Joseph J. Lim.
Multi-view to novel view: Synthesizing novel views with self-learned confidence. In
European Conference on Computer Vision, 2018.

[64] Richard Szeliski and Polina Golland. Stereo matching with transparency and matting.
International Journal of Computer Vision, 32:45–61, 1998.
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