
A quasi-optimal Monte Carlo algorithm for the symbolic
solution of polynomial systems in Z[X, Y]

Esmaeil Mehrabi Éric Schost
emehrab@uwo.ca eschost@uwo.ca

Computer Science Department,
Western University, London, ON, Canada

February 22, 2015

Abstract

We give an algorithm for the symbolic solution of polynomial systems in Z[X,Y].
Following previous work with Lebreton, we use a combination of lifting and modular
composition techniques, relying in particular on Kedlaya and Umans’ recent quasi-
linear time modular composition algorithm.

The main contribution in this paper is an adaptation of a deflation algorithm of
Lecerf’s, that allows us to treat singular solutions for essentially the same cost as the
regular ones. Altogether, for an input system with degree d and coefficients of bit-
size h, we obtain Monte Carlo algorithms that achieve probability of success at least
1− 1/2P , with running time d2+εO (̃d2 + dh + dP +P2) bit operations, for any ε > 0.

1 Introduction

Overview. Newton iteration is one of the most popular components of polynomial sys-
tem solvers, from either the numeric or symbolic points of view. The usual version of this
procedure handles situations without multiplicities only, since it requires that the Jacobian
matrix of the given system be invertible at the roots we are looking for. To handle singular
roots, various forms of deflation techniques have been developed (we will review some of
them below).

In this paper, we are interested in applying such techniques to the symbolic solution
of bivariate polynomial systems F = G = 0, with F and G in Z[X, Y]. This is in the
continuation of previous work with Lebreton [29], where Newton iteration techniques were
used to handle solutions without multiplicities of the system F = G = 0. In this work,
using results and ideas from [29], as well as Lecerf’s deflation algorithm [30], we extend this
approach to all solutions.

1

Motivated by applications to computational topology or computer graphics, recent years
have witnessed the publication of a large body of work on bivariate systems. While some
algorithms rely mostly on numerical techniques such as subdivision [1], many recent results
involve symbolic elimination techniques, possibly in combination with real or complex root
isolation [22, 16, 14, 43, 3, 15, 6, 5, 24]; we will discuss some these results further below.

Our interest here is on complexity of the symbolic side of such algorithms. In a nut-
shell, our main result says that bivariate systems with integer coefficients can be solved
“symbolically” in essentially optimal time by Monte Carlo algorithms.

Over an arbitrary field. Let us first discuss known results for solving a bivariate system
F = G = 0 over K[X, Y], where K is an arbitrary perfect field. Suppose that the zero-set
V (F,G) of F and G in an algebraic closure K of K is finite. In this case, if F and G have
total degree at most d, the Bézout theorem implies that the system F = G = 0 has at most
d2 solutions.

Several approaches exist to describe the solutions of our system: Gröbner bases, trian-
gular representations, or descriptions based on univariate polynomials. For instance, in [29],
together with Lebreton, we relied on a canonical description of a zero-dimensional variety,
called the equiprojectable decomposition [11], using triangular sets; this is close to the de-
composition based on subresultant calculations used in [22], but as a geometric notion, it
does not take into account multiplicities in the input system.

Although it would be natural to use this kind of description here as well, the techniques
we rely on are slightly easier to apply when working in generic coordinates. Indeed, if we
are in generic coordinates, the zeros of F = G = 0 can simply be described by a pair of
polynomials in K[X], of the form

P (X) = 0, Y = S(X). (1)

Remark that for such a description to make sense, no two points on V (F,G) should have
the same abscissa; this is precisely what is ensured once we are in generic coordinates. In
such an output, our choice is to take P squarefree; in other words, our representation of the
solutions does not reflect multiplicities (as a matter of fact, if K were not perfect, P could
still have multiple roots in K while being squarefree in K[X]).

The input polynomials F and G have degree d in two variables; the polynomials P and
S have degree at most d2 in one variable. Thus, representing both input and output involves
only O(d2) elements in K. One would then naturally hope that P and S could be computed
within O (̃d2) operations in K, where the O (̃) notation omits polylogarithmic factors.

However, no such result is known; the very close problem of computing the resultant of
F and G using O (̃d2) operations is given as a research problem in [18, Problem 11.11]. For
the latter resultant problem, the best algorithm known so far [41] uses O (̃d3) operations
in K.

Systems over the integers. In this paper, we are going to work in the particular case
where K = Q. In such cases, it becomes crucial to take into account the bit-size of the input

2

and output as well; cost estimates will then be given in a boolean model (explicitly, a RAM
with logarithmic cost).

For a nonzero integer a, we write len(a) = dlog(|a|)e, and we call this the length of a; for
a = 0, we write len(0) = 1. This quantity essentially represents the amount of bits needed
to store a (one may also work with the height of a, written ht(a) = log(|a|), but the fact
that len(a) takes integer values will be useful to us). It will be convenient to introduce a
notion of length for polynomials with coefficients in Q as well: if P is such a polynomial,
the length len(P) denotes the maximum of the lengths len(d) and len(ni)i∈I , where d is a
minimal common denominator for all coefficients of P and (ni)i∈I are the coefficients of dP
(which are integers). Thus, degree and length combined give us an upper bound on the total
amount of bits, or machine words, needed to store P .

Suppose then that F and G have coefficients in Z, with degree at most d and length
at most h. Assuming that F and G have no nontrivial factor in Q[X, Y] and that we are
in generic coordinates, so that a representation of the solutions of F = G = 0 as in (1)
makes sense, both P and S having coefficients in Q. As is well-known (since at least [2, 42]),
the bit-size bounds for the coefficients of S are much worse than those for P , and this is
reflected in practice very accurately. Explicitly, the following results are known (we will
reprove them):

len(P) = O (̃dh+ d2), len(S) = O (̃d3h+ d4).

The usual workaround is to replace S by another polynomial R, defined as R = P ′S mod P ;
equivalently, the solutions are now described by

P (X) = 0, Y =
R(X)

P ′(X)
.

This construction was highlighted in [2, 42], but goes back to early work of Kronecker [26]
and Macaulay [33]. For the polynomial R, much better length bounds are known, of the
form len(R) = O (̃dh + d2). Thus, representing (P,R) involves O (̃d3h + d4) bits; a similar
construction for triangular representations is in [12].

Following Rouillier [42], we will call this representation the Rational Univariate Repre-
sentation of V (F,G). Rouillier’s definition is more general, in that it allows one to take
multiplicities into account, working with ideals rather than varieties: in Rouillier’s terminol-
ogy, P and R as defined above would be called a Rational Univariate Representation of the
radical of the ideal 〈P,Q〉; we will stick to the slightly more compact terminology above.

Let us finally say a word about generic position questions. As was mentioned above,
our requirement for the existence of an output such as polynomials (P, S) or (P,R) is that
the coordinates X separates the points in V (F,G), that is, that any two distinct points in
V (F,G) have different abscissas. A change of variables of the form X ← X + tY will ensure
that this is the case, for almost all values of t ∈ Z (that is, all values except a finite number).

Main result. In all that follows, we will say that a solution (x, y) of the system F = G = 0
is simple if the Jacobian determinant of (F,G) is nonzero at (x, y).

3

Let us denote by Z the set of such simple solutions. In [29], we gave with Lebreton
an algorithm to compute a triangular representation of Z; this algorithm could be adapted
to give a univariate representation as we do here, after putting the equations in generic
coordinates.

In a nutshell, the idea of that algorithm is to compute the output modulo a prime p,
then lift this representation modulo powers of p using a suitable form of Newton iteration.
Looking only at points in Z makes it straightforward to apply such techniques, since by
assumption, at such points, the Jacobian matrix of (F,G) is invertible. One of the two
main results of [29] was that for any ε > 0, one could compute a description of Z by means
of triangular sets using d3+εO (̃d + h) bit operations, by a Monte Carlo algorithm, with
probability of success greater than 1/2.

In this paper, we show that that we can extend these ideas to find a univariate repre-
sentation of the whole V (F,G), with a running time that matches the results of [29] in the
case where all solutions of F = G = 0 are simple. As in [29], the algorithm uses a modifica-
tion of the Kedlaya-Umans modular composition algorithm [23], the new ingredient being a
deflation algorithm by Lecerf [30] to handle multiple roots.

Our algorithm is probabilistic of the Monte Carlo kind: one can choose an arbitrary
threshold, say 1/2P , and the algorithm guarantees that the result is correct with probability
at least 1− 1/2P . Part of the randomness simply amounts to choosing an integer in a finite
set. Another component is more involved, as it amounts to choosing primes. Since this is a
delicate question in itself, and not the topic of this paper, we will use the following device:
we assume that we are given an oracle O, which takes as input an integer B, and returns a
prime number in {B + 1, . . . , 2B}, uniformly distributed within this set of primes.

Theorem 1. Let F,G ∈ Z[X, Y] with degree at most d and length at most h, that have no
nontrivial factor in Q[X, Y].

For any ε > 0, there exists an algorithm with the following characteristics. Given P ≥ 1,
the algorithm computes the Rational Univariate Representation of the system Ft = Gt = 0,
where t is an integer of length O(log(d)), Ft = F (X + tY, Y) and Gt = G(X + tY, Y). The
running time is d2+εO (̃d2 + dh + dP + P2) bit operations, and the probability of success is
at least 1− 1/2P .

The algorithm makes two calls to the oracle O, with input integers in (2Pdh)O(1).

From such an output, using the techniques of [40], one may then compute a triangular
decomposition of V (F,G), or compute a Rational Univariate Representation of the system
Ft′ = Gt′ = 0 for t′ ∈ Z of small height; we leave the details to the reader.

For fixed P , the running time of our algorithm is d3+εO (̃d + h) bit operations, which
almost matches the known upper bounds on the output size. It is worth noting that these
upper bounds are actually sharp, up to polylogarithmic terms. Consider the system

F (d) =
d∏
i=1

(X − i), G(d) =
d∏
j=1

(Y − j);

these polynomials have degree d and length Θ (̃d), where the Θ (̃) notation is inspired by
the O˜ one, and also indicates the omission of polylogarithmic factors.

4

For any t ∈ Z such that the integers {i − tj}1≤i,j≤d are pairwise distinct, the first poly-

nomial in the Rational Univariate Representation of the system F
(d)
t = G

(d)
t = 0 is precisely

R(d) =
∏

1≤i,j≤d(X − i+ tj).

If we take t of length O(log(d)) as in the theorem, one sees that R(d) has degree d2 and
length Θ (̃d2). More precisely, if we assume that t < 0, so all roots of R(d) are pairwise
distinct positive integers, we claim that the sum of the lengths of the coefficients of R(d) is
Θ (̃d4). The upper bound follows from the previous remarks; to obtain the lower bound,
note that this sum is greater than the sum of the lengths of the coefficients of (X + 1)d

2
,

which is Θ (̃d4), see for instance [27]. Thus, simply writing the output for such examples
requires Θ (̃d4) bit operations.

As mentioned above, there exist a host of algorithms for bivariate systems, some of them
mixing symbolic and numerical techniques. On the symbolic side, many previous works,
starting in particular from [22], rely on resultant and subresultant calculations, or closely
related triangular decomposition algorithms, as in [7]. The reader will find a detailed review
of previous work in [24] (which is one of those references that involve symbolic-numerical
techniques, relying on root isolation ideas).

For the “symbolic” problem we consider, we are not aware of previous results that would
be in the same complexity class as ours. To our knowledge the best deterministic algorithm
is from [5], with cost O (̃d6h + d7); a Las Vegas version of the same algorithm has cost
O (̃d4h+ d5).

It is relatively easy to write a Monte Carlo algorithm that would run in time O (̃d4h+d5):
pick many small primes (O(dh+d2) of them) or a large one (of length O(dh+d2)), and solve
the system F = G = 0 in O (̃d3) operations modulo each of these primes. Our results show
that when using Monte Carlo algorithms, we can almost save a further factor d.

Practical aspects and extensions. It remains a challenge to make the algorithms pre-
sented here competitive in practice. The main difficulty is that we rely on Kedlaya and
Umans’ algorithm for modular composition [23] and its bivariate extension by Poteaux and
Schost [39]. Unfortunately, the constants hidden in the cost estimates of these algorithms
make a direct implementation of these techniques slower than naive algorithms for inputs of
realistic size; further work is needed to solve this issue.

In [29], we also gave with Lebreton an alternative result (still only for computing the
solutions without multiplicities), that did not make use of Kedlaya-Umans and Poteaux-
Schost’s modular composition algorithm; instead, that result used an extension of Brent and
Kung’s modular composition algorithm [8]. For polynomials in Z[X, Y], the resulting cost
was O (̃d(ω+5)/2h+ d(ω+7)/2) ⊂ O˜(d3.69h+ d4.69) bit operations, where ω is such that we can
multiply n× n matrices using O(nω) ring operations, over any ring (the best known bound
to date is ω < 2.38 from [28]).

That result was not as good as the one based on Kedlaya and Umans’ ideas, but had the
advantage of being easy to implement, yielding an efficient practical solution. In addition,
that algorithm admitted extensions to input systems in k[T][X, Y] (for a field k) instead of
Z[X, Y], with a similar running time (now counted in terms of operations in k); this is not

5

known to be possible for Kedlaya and Umans’ algorithm so far.
In our situation, it remains possible to extend the general principle of our algorithm to

inputs in k[T][X, Y], but we were not able to apply ideas à la Brent and Kung to obtain the
same result O (̃d(ω+5)/2h + d(ω+7)/2) as in [29]. Explicitly, the adaptation of the results in
Subsection 4.1 to such a context, with a suitable complexity, still eludes us.

Multiplicities. Before giving an overview of our algorithm, it will be useful for us to recall
the definition of the multiplicity of an isolated solution of a polynomial system. We will only
need to discuss systems in one or two variables.

We assume that our polynomials have coefficients in an algebraically closed field K (since
this will include the case of polynomials with coefficients in any subfield K of K).

First, consider a nonzero univariate polynomial F in K[X], and a root x of F . The
multiplicity of F at x, sometimes written µ(F, x), is the largest integer M such that (X−x)M

divides F . The multiplicity M is one if and only if F ′(x) is nonzero.
Next, consider an ideal ψ in K[X, Y], and an isolated solution (x, y) of the system of

equations ψ = 0. Define the ideal ψ′ = {f(X +x, Y + y) | f ∈ ψ}, so that (0, 0) is a solution
of the system ψ′ = 0. Then, the multiplicity of the system ψ at (x, y), that we will denote by
µ(ψ, (x, y)), is the dimension of the K-vector space K[[X, Y]]/ψ′, see for instance [9, Chapter
4]; the fact that (x, y) is an isolated solution is equivalent to this dimension being finite. If
ψ = 〈F,G〉, for some polynomials F,G in K[X, Y], the multiplicity M is one if and only if
the Jacobian determinant of (F,G) is nonzero at (x, y).

It will also be useful to remember the following extension of the Bézout bound on the
number of isolated solutions of a bivariate system: if F,G are polynomials in K[X, Y], with
both F and G having degree at most d, then the sum of the multiplicities of the isolated
solutions of the system F = G = 0 is at most d2. Examples such as F = Xd, G = Y d show
that multiplicities as large as d2 are possible.

Overview of the algorithm. As was hinted at above, the basic idea of our algorithm is
simple: we use modular techniques. A common way to put this idea to practice is straight-
forward: given input polynomials F and G in Z[X, Y], that we assume for simplicity to be in
generic coordinates, we compute the Rational Univariate Representation of V (F,G) modulo
pi for sufficiently many primes pi, and recombine them by Chinese Remaindering.

The main idea in [29] was that using lifting techniques could result in better algorithms.
Denoting the Rational Univariate Representation of V (F,G) by (P,R) ∈ Q[X]2, this boils
down to essentially computing (P,R) mod p for a prime p, then lifting these polynomials to
(P,R) mod p2, (P,R) mod p4, . . . , (P,R) mod p2κ and eventually recover (P,R) by rational
number reconstruction. The bulk of the computational effort is the lifting step, which is
a form of Newton iteration; the basic approach follows previous work from [20, 21, 45],
but the actual computation uses modular composition techniques derived from Kedlaya and
Umans’ algorithm. (Note that the lifting algorithm is actually slightly more involved, as the
polynomial S from (1) also appears in the calculation, but the main idea is the same.)

However, the lifting algorithms from [20, 21, 45] require that all points (x, y) described

6

by the Rational Univariate Representation (P,R) are simple solutions of the input system
(F,G); this is why the algorithm of [29] was restricted to such points. In order to handle
all solutions, including the multiple ones, we need to employ a form of Newton iteration for
multiple roots.

Our approach is based on a result of Lecerf’s [30], which generalizes the usual Newton
iterator to multiple roots, in a context of m-adic lifting, that is, modulo the powers of a
maximal ideal m in a domain A. The main idea behind this approach is classical: it boils
down to replacing the given polynomial system ψ with a new one, say ψ̃, such that for a
given root (x, y) of ψ with multiplicity M , (x, y) is still a root of the new system ψ̃, but
with multiplicity M̃ < M . We can then find a new deflated system for which (x, y) is a
non-singular root, by repeating the process sufficiently many times.

We are however not able to directly use the complexity results in [30]. Indeed, while
they handle the general case of n-variate systems, these algorithms assume that the input
system is given by means of a straight-line program, rather than the dense representation we
use here — we could of course build a straight-line program representation from our dense
polynomials in a naive manner, but the cost overhead would be too large. In addition, the
running time given in [30] grows like the square of the multiplicity M of the root; this is too
much for us to achieve the results claimed in Theorem 1, as we saw above that multiplicities
as large as d2 are possible for a bivariate system of degree d.

Our main technical contribution in this paper lies in the adaptation of Lecerf’s algorithm
to our context of lifting bivariate systems, with an admissible complexity. The fact that we
only consider bivariate systems simplifies the description of the algorithm considerably.

Other deflation algorithms. Generalizing Newton iteration to singular situations, and in
particular designing an efficient iterator with quadratic convergence in degenerate cases, are
still research problems; we briefly review some of the previous work on this question. Remark
that all algorithms below work for an arbitrary number of variables, not only bivariate
systems.

An early result in this area is due to Ojika, Watanabe, and Mitsui [36]: by applying a
triangulation preprocessing step on the Jacobian matrix at the approximate root, minors of
the Jacobian matrix are added to the system to reduce the multiplicity.

In [31, 32], instead of triangulating the Jacobian matrix, the number of variables is
doubled and new equations are introduced, which are linear in the new variables; it is proved
that the multiplicity decreases through this process. In [13], this construction in related to
Macaulay’s inverse systems; Macaulay’s dialytic method [33] is revisited for this purpose.
These deflation methods are applied iteratively until the root becomes simple, increasing
each time the number of variables.

Other algorithms for the construction of inverse systems are described e.g. in [34], reduc-
ing the size of the intermediate linear systems, or in [35] using an integration method. In [38],
a minimization approach is used to reduce the value of the equations and their derivatives at
the approximate root, assuming a basis of the inverse system is known. In [46], the inverse
system is constructed via Macaulay’s method; multiplication tables of the local algebras are

7

deduced and their eigenvalues are used to improve the approximate solution; the convergence
of this process is quadratic when the Jacobian has co-rank one at the multiple root.

Unfortunately, even when the input system is bivariate, it seems difficult to control the
complexity of the above algorithms. In addition, several of these results rely on purely
numerical techniques, such as the Singular Value Decomposition, which will not carry over
to our context.

Organization of the paper. Section 2 gives quantitative results on output size and
primes of good reduction for various constructions – some of them being well-known. We
continue in Section 3 with simple algorithms for calculations with reducible polynomials,
and in Section 4 with some normal forms algorithms, which crucially rely on Kedlaya and
Umans’ modular composition algorithm.

Section 5 states a deflation result inspired by Lecerf’s, which leads us to define a notion of
signature attached to isolated zeros of a bivariate system; in Section 6, we give an algorithm
to compute a partition of the zeros of a zero-dimensional bivariate system induced by this
signature.

Section 7 shows how the previous constructions can be used to write a Newton iteration
for multiple roots of a bivariate system (again inspired by Lecerf’s work), and Section 8 gives
the main algorithm and proves Theorem 1.

Acknowledgements. We wish to thank Yacine Bouzidi, Sylvain Lazard, Guillaume Mo-
roz, Marc Pouget and Fabrice Rouillier for helpful discussions. This work was supported by
NSERC and the Canada Research Chairs program.

2 Quantitative estimates

This section is devoted to first recall some classical properties of the length of polynomials,
then use them to prove some basic quantitative estimates, such as on the size of the output
of our algorithm, primes of “bad reduction” for various constructions, etc. The results in
the first two subsections are hardly new; those of the next two sections are very much in the
same spirit.

2.1 Length bounds

With regards to primes of bad reduction, the typical kind of statement we will need to make
is of the form “there exists a nonzero integer A such that if a prime p does not divide A,
. . . (some desirable properties are guaranteed)”. In all such cases, we will have to estimate
the length of A, since such estimates are required in order to choose p that satisfies the
non-divisibility condition with a prescribed probability.

Writing down these length estimates entirely explicitly is however rather tedious, error-
prone, and hardly useful: for any practical purposes, the implementation itself should deter-
mine the bounds (foregoing in particular any simplifying overestimate one could be tempted

8

to do when writing these bounds, as for instance in [11, 10]). Following [7], we will thus
mostly refrain from writing explicit bounds here; instead, we will give asymptotic estimates,
and indicate how to derive the actual bounds.

The techniques we use are extremely classical, such as factor bounds, or bounds on
determinants of polynomial matrices. Lemma 1.2 in [25] and the discussion that follows it
provide the following results:

b1. For F1, . . . , Fs in Z[X1, . . . , Xn], all of degrees at most d and length at most h, and G
in Z[Y1, . . . , Ys], of degree at most e and length at most `, G(F1, . . . , Fs) has degree at
most de and length at most `+ e(h+ len(s+ 1) + len(n+ 1)d). For fixed s and n, this
is O(`+ e(h+ d)).

b2. For F in Z[X, Y] of degree d and length h, any factor of F in Z[X, Y] has length at
most h+ 3d = O(h+ d).

b3. If M is an n×n matrix with entries in Z[X, Y] of degree at most d and length at most
h, det(M) has degree at most nd and length at most n(h+2d+len(n)) = O (̃n(h+d)).

In most cases where we apply these results, we will typically handle input polynomials F,G of
degree d and length h, with resulting bounds in (dh)O(1). Often, writing polynomial bounds
as (dh)O(1) above will be sufficient, but in some cases such as Corollary 1 below, we will write
down the actual exponents.

Although we do not write explicit bounds, we said above that our main algorithm will
need to be able to evaluate them, in order to be able to choose prime numbers that satisfy
some luckiness properties with prescribed probability. In all that follows, a function of the
form ∆ : Nk → N, for some integer k, that can be computed in time log(∆)O(1), will be
called efficiently computable. All bounds we will obtain by applications of b1, b2 and b3 will
be efficiently computable, since this is the case for all expressions in b1, b2 and b3 (this is
why we introduced the length of integers as a function taking integer values); for example,
all bounds of the form (dh)O(1) as above will be computable in log(dh)O(1) bit operations.
Thus, the costs incurred by these calculations will be negligible compared to all other ones.

2.2 Polynomials in general position

In this subsection, we describe a classical notion of system in general position, and we dis-
cuss conditions that ensure that this property is preserved through reduction at a prime.
These results are classical (they go back to Kronecker and Macaulay), and their quantitative
versions appear for instance in [42, 25, 45, 11, 14, 6], among many other references. Nev-
ertheless, we give self-contained proofs of the facts we need, as we did not find the exact
statements we needed in the literature. The main result in this subsection is Corollary 1
below.

In all this section, π denotes the mapping (x, y) 7→ x of projection on the first factor;
although the points x, y will be taken in various fields, we keep the same notation throughout,
since no ambiguity can arise. In the beginning of this section, A is a domain with field of
fractions K; we let K denote an algebraic closure of K.

9

Representing zero-dimensional algebraic sets. Let V ⊂ K2
be a finite set, and assume

that V can be written as V = V (F1, . . . , Ft) for some F1, . . . , Ft in K[X, Y]. Suppose that
the following conditions are satisfied:

G1. K is perfect;

G2. X is a separating element for V , that is, the restriction of π to V is one-to-one.

Under these assumptions, there exist uniquely defined polynomials (P, S) in K[X], with P
monic and squarefree (in K[X], or equivalently in K[X], under our perfectness assumption),
and S of degree less than deg(P), such that the ideal 〈P, Y −S〉 is the defining ideal of V in
K[X, Y].

Following [19], we call polynomials (P, S) the Shape Lemma representation of V , and
denote them by (P, S) = SL(V). Over a field such as K = Q, it is well known that this
representation suffers from coefficient size bloat [2, 42]: the coefficients of S are in many cases
significantly larger than those of P . A workaround is to use an alternative description, the
Rational Univariate Representation of V , for which this issue usually disappears. It consists
in polynomials (P,R), with R = SP ′ mod P ∈ K[X]; we denote these polynomials by
(P,R) = RUR(V). One can always deduce RUR(V) from SL(V); since we took P squarefree
over a perfect field, P ′ is a unit modulo P , so one can conversely deduce SL(V) from RUR(V).

As mentioned in the introduction, the term “Rational Univariate Representation” is
from [42]; the original definition is able to incorporate multiplicities, which we do not take
into consideration here.

Polynomials in general position. Recall that A is our domain, with fraction field K.

Let then F and G be in A[X, Y] and let V = V (F,G) ⊂ K2
. We say that F,G are in general

position if the following holds:

H1. F and G have no common factor in K[X, Y], so V is finite;

H2. The leading coefficients f and g of respectively F and G with respect to Y are in A;

H3. V satisfies G1 and G2.

When this is the case, by H3, the polynomials P , S and R associated to V as above are
well-defined. H2 then implies that the polynomial P appearing in the Shape Lemma repre-
sentation of V is the squarefree part of the resultant of F and G with respect to Y (once
made monic in X). As a matter of notation, when F,G are in general position, we will write
(P, S) = SL(F,G) and (P,R) = RUR(F,G).

The following shearing operation is the usual device used to put polynomials in general
position. For t in A, we will denote by Ft and Gt the polynomials Ft = F (X + tY, Y) and
Gt = G(X + tY, Y); similarly, we will write Vt = V (Ft, Gt), so that

Vt = {(x, y) ∈ K2 | (x+ ty, y) ∈ V } = φt(V),

10

where φt is the mapping K2 → K2
given by φt(x, y) = (x − ty, y). Letting T be an inde-

terminate over A, we use the same notation, using a subscript T instead of t, to denote the
polynomials

FT = F (X + TY, Y) and GT = G(X + TY, Y),

and their zero-set VT in K(T)
2
; remark that VT actually lies in K(T)2 ⊂ K(T)

2
. If F and

G are polynomials in A[X, Y], with no common factor in K[X, Y] (so they satisfy H1), one
easily verifies that over the ring A[T] instead of A, FT and GT satisfy H1 and H2, VT satisfies
G2, and VT has the same cardinality as V .

Over the integers. Let us now restrict our attention to the case A = Z and K = Q;
as before, we take F and G that satisfy H1 and we write V = V (F,G). The following
construction is classical; see for instance [6, 7] for a very close presentation.

Let A be the resultant of FT and GT with respect to Y ; this is a nonzero polynomial
in Z[T,X], and we denote by a ∈ Z[T] its leading coefficient with respect to X. Let next
B ∈ Z[T,X] be the squarefree part of A, that is, B = A/ gcd(A,A′), where A′ is the
derivative of A with respect to X, and where the gcd is taken in the unique factorization
domain Z[T,X]. The gcd, and thus B itself, are a priori defined only up to sign, but this
will be inconsequential.

In what follows, the content of a polynomial with integer coefficients is the gcd of its co-
efficients (so it is defined up to sign). Gauss’ lemma states that the content is multiplicative;
this is well-known for univariate polynomials, and the multivariate case follows for instance
by using Kronecker’s substitution. A polynomial with unit content is called primitive.

Lemma 1. The polynomial B is primitive in Z[T,X]. In Q[T,X], B factors as

B = b
∏

(x,y)∈V

(X − (x− Ty)), (2)

where b is the leading coefficient of B with respect to X, belongs to Z and divides the content
of a.

Proof. Let (xi, yi)i∈I be the coordinates of all points in V , and let (mi)i∈I be their cor-
responding multiplicities, with respect to the ideal 〈F,G〉. Then, the resultant A factors
as

A = a
∏
i∈I

(X − (xi − Tyi))mi .

Since A is in Z[T,X] and a in Z[T], we see in particular that the product A? =
∏

i∈I(X −
(xi − Tyi))mi is in Q[T,X].

For a given integerm, let Vm be the subset of V consisting of all those points of multiplicity
m (so all Vm are empty, except finitely many of them). Then, the product

∏
(x,y)∈Vm(X −

(x−Ty)) is in Q[T,X], since we can obtain as a factor in the squarefree factorization of A?.
Since this product is monic in X, we can write it as∏

(x,y)∈Vm

(X − (x− Ty)) =
Bm

βm
,

11

for some polynomial Bm ∈ Z[T,X] of content 1, and some integer βm. As a consequence, we
can write

A = a
∏
m

Bm
m

βmm
, (3)

where the product involves only finitely many m’s. Since all Bm’s have content one, and
A has integer coefficients, we deduce in particular that the product of all βmm divides the
content of a.

Since a is in Z[T], we deduce from the expression of A given above that B can be written
as

B =
∏
m

Bm =

(∏
m

βm

) ∏
(x,y)∈V

(X − (x− yT)). (4)

The polynomial B is primitive because all Bm’s are; we also deduce that b =
∏

m βm, which
divides a. This concludes the proof of the lemma.

The following lemmas show how the polynomial B and its factors allow us to give formulas
for the Rational Univariate Representation of Vt and its subsets, when Ft and Gt are in
general position. To state these lemmas, remark that if W if a subset of V , we may rewrite
the factorization in (2) as

B = bCW CW c ,

where we write W c = V \W and

CW =
∏

(x,y)∈W

(X − (x− Ty)) and CW c =
∏

(x,y)∈W c

(X − (x− Ty)).

Lemma 2. Let W be a subset of V defined over Q. Then, CW is in Q[T,X] and it can
be written as BW/bW , where BW is a primitive polynomial in Z[T,X] that divides B in
Z[T,X], and bW is a nonzero integer that divides b.

Proof. The formula defining the polynomial CW shows that this polynomial is in Q[T,X]; to
prove that it is in Q[T,X], it is then enough to prove that this polynomial lies in Q(T)[X].
The latter claim is clear, since the monicity of CW with respect to X implies that it is the
characteristic polynomial of the multiplication-by-X map in the coordinate ring Q(T)[WT]
of WT , and WT is defined over Q(T).

Next, we start from the factorization B = bCW CW c , which holds between polynomials
in Q[T,X]. Since CW and CW c are in Q[T,X], and monic in X, they can be written as
CW = BW/bW and CW c = BW c/bW c , with bW and bW c in Z, and BW and BW c primitive
in Z[T,X]. Clearing denominators, we obtain bWbW cB = bBWBW c . Using Gauss’ Lemma
over Z[T,X], we deduce that bWbW c = b and BWBW c = B.

Remark that the polynomial BW in the previous lemma is uniquely defined up to sign
only; this will be harmless in what follows.

The explicit factorization the polynomials BW or CW allows us to give formulas for the
Rational Univariate Representation of V , or of one of its subsets W .

12

Lemma 3. Let t ∈ Z be such that Ft and Gt are in general position and let W be a subset
of V , defined over Q. Then, Wt satisfies G1 and G2, the associated Rational Univariate
Representation (PWt , RWt) = RUR(Wt) is given by

PWt =
1

bW
BW (t,X) and RWt =

1

bW

∂BW

∂T
(t,X),

and the Shape Lemma Representation (PWt , SWt) = SL(Wt) is given by

PWt =
1

bW
BW (t,X) and SWt =

∂BW
∂T

(t,X)
∂BW
∂X

(t,X)
mod PWt .

Proof. If Ft and Gt are in general position, Vt satisfies G1 and G2; it is then also the case for
its subset Wt, which proves the first point. To prove the next points, we use the fact that
(PWt , RWt) = RUR(Wt) is given by

PWt = CW (t,X) and RWt =
∂CW
∂T

(t,X);

this claim is classical (see for instance [2, 42, 45] in the recent literature, which actually
apply in more general cases) and can also be recovered immediately from the definition of
CW . Using Lemma 2 then gives the assertions for RUR(Wt). Finally, to conclude for SL(Wt),
one uses the fact that RWt = SWtP

′
Wt

mod PWt .

Let now ∆ ∈ Z[T] be the discriminant of B with respect to X and define finally Γ as the
product of ∆ by the leading coefficients f and g of respectively FT and GT with respect to
Y , and by the leading coefficient a of A in X. Because FT and GT satisfy H2, f and g are in
Z[T], so ∆ is a nonzero element of Z[T].

The following lemma gives upper bounds on the degree and length of Γ and of the various
polynomials BW , for W a subset of V .

Lemma 4. Suppose that F and G have degree at most d and length at most h. Then, the
following holds:

• for any subset W of V defined over Q, the polynomial BW ∈ Q[T,X] has degree
bounded by d2 and length bounded by an efficiently computable integer BB(d, h) =
O(dh+ d2).

• Γ has degree bounded by 6d4 and length bounded by an efficiently computable integer
BΓ(d, h) = O(d3h+ d4).

Proof. The polynomials FT and GT have degree at most d in Y and (T,X) and, by inequality
b1 above, length at most h + 4d = O(h + d). Their resultant A ∈ Z[T,X] has total degree
at most 2d2, and the determinant bound b3 implies that its length is at most 2dh+ 16d2 =
O(dh+d2). The factor bound b2 then implies that B, which divides A in Z[T,X], has length
bounded by an efficiently computable integer in O(dh+ d2).

13

From this, we can prove our bounds on BW . The degree bound in (T,X) is obvious, since
at most d2 linear factors appear in the product giving CW . For the length bound, remark
that the polynomial BW divides B, and thus A in Z[T,X], so it admits the same length
upper bound as B itself.

On the other hand, the determinant bound b3, together with the degree and length
bounds for the polynomial B, imply that ∆ has degree at most 2d4 and length O(d3h+ d4).
Multiplying by the leading coefficients f and g of respectively FT and GT with respect to
Y , and by the leading coefficient a of A in X, which are all in Z[T] and whose sum of
degrees is at most 2d+ 2d2 ≤ 4d4, we deduce that Γ has degree at most 6d4 and length still
O(d3h+ d4).

The last technical lemma we need is the following specialization result, which will show
how Γ controls (in particular) primes of bad reduction. Although we give it in the general
form we will need below, our presentation is inspired by that in [7], which was given for
A = Fp, for a prime p.

Lemma 5. Let φ be a ring morphism Z[T] → A, where A is a domain; this morphism
extends to a ring morphism φ : Z[T,X, Y]→ A[X, Y].

Let V ′ = V (φ(FT), φ(GT)) ⊂ K2
, where K is an algebraic closure of the fraction field K

of A. Then:

• if φ(f) and φ(g) are nonzero, the cardinality of π(V ′) is the number of pairwise distinct
roots of φ(A) in K;

• if φ(Γ) is nonzero, φ(FT) and φ(GT) satisfy H1 and H2, and the cardinality of π(V ′) ⊂ K
is equal to the cardinality of V .

Proof. First, let us establish that the cardinality of π(V ′) is the number of pairwise distinct
roots of φ(A) in K when φ(f) and φ(g) are nonzero. In this case, indeed, they remain the
leading coefficients of respectively φ(FT) and φ(GT) with respect to Y (which proves H2); in
addition, the resultant res(φ(FT), φ(GT), Y) coincides with the image φ(res(FT , GT , Y)) =
φ(A). On the other hand, because φ(f) and φ(g) are nonzero, the number of pairwise distinct
roots of res(φ(FT), φ(GT), Y) is the cardinality of π(V ′) ⊂ K. Our claim above is thus proved.

Let us further suppose that φ(Γ) is nonzero. Then, φ(a) is nonzero, where a is the leading
coefficient of A with respect to X (recall that a divides Γ). Thus, φ(A) itself is nonzero, which
implies that res(φ(FT), φ(GT), Y) is nonzero. As a result, the only possible common factors
of φ(FT) and φ(GT) in K[X, Y] must lie in K[X]. However, since their leading coefficients
with respect to Y lie in A, they have no such common factor. This proves H1.

Since B = A/ gcd(A,A′), we deduce that B divides A, and that A divides some poly-
nomial of the form aBk in Z[T,X], for some positive integer k; we can for instance deduce
this from the factorizations of A and B given in (3) and (4). This relationship remains true
through φ; this implies that φ(B) and φ(A) have the same roots in K.

Now, we claim that because φ(∆) is nonzero, φ(B) has no multiple root in K. Indeed,
the leading term b of B divides a (Lemma 1), so φ(b) must be nonzero. This implies that

14

the resultant computation that gives ∆ = res(B,B′, X) carries over through φ, where B′ is
the derivative of B with respect to X. Thus, φ(∆) is the discriminant of φ(B), and since it
does not vanish, φ(B) has no multiple root in K, as claimed above.

The latter claim implies that the number of roots φ(B), or equivalently, as we saw above,
of φ(A), is equal to the degree of φ(B). Since φ(b) is nonzero, this degree is the degree of B
in X, which is the cardinality of V , by Eq. (2). On the other hand, the first paragraph proved
that the number of roots of φ(A) is equal to the cardinality of π(V ′), so we are done.

We can finally conclude this subsection with the following corollary, which summarizes
the facts we will need below to control the bit-size of the output of our algorithm, as well
as primes of bad reduction and unlucky changes of coordinates. As said before, we make
no claim of originality here, but the lack of a reference that provided all exact claims we
need led us to write all proofs. Some of these results, or close variants, are known: see for
instance [6, Proposition 10] for bit-size estimates for Rational Univariate Representations,
in a context where multiplicities are still kept into account, but where the results are stated
only for V (F,G), not its Q-definable subsets.

Corollary 1. Let F and G be in Z[X, Y], that satisfy H1, with degree at most d and length
at most h. Then, the following holds.

• For t in Z, if Γ(t) is nonzero, then Ft and Gt are in general position.

• For t as above, if t has length at most `, and if W is a subset of V defined over Q, then
the polynomials (PWt , RWt) = RUR(Wt) have degree bounded by d2 and length bounded
by an efficiently computable integer BRUR(d, h, `) = O (̃dh+ d2`).

In addition, the polynomial SWt appearing in (PWt , SWt) = SL(Wt) has degree at most
d2 and length bounded by an efficiently computable integer BSL(d, h, `) = O (̃d3h+d4`).

In particular, the polynomials in RUR(Ft, Gt) and SL(Ft, Gt) satisfy these bounds.

• Let in addition p be a prime. If Γ(t) mod p is nonzero, then Ft mod p and Gt mod p
are in general position, and the leading terms of Ft mod p and Gt mod p with respect
to Y are the images of those of Ft and Gt modulo p.

• Let W be a subset of V defined over Q. For t and p as above, write again (PWt , RWt) =
RUR(Wt) and (PWt , SWt) = SL(Wt). Then, p cancels no denominator in PWt, RWt or
SWt, and PWt mod p remains squarefree.

In addition, for W = V , we have

SL(Ft, Gt) mod p = SL(Ft mod p,Gt mod p)

and
RUR(Ft, Gt) mod p = RUR(Ft mod p,Gt mod p).

15

Proof. Suppose that t ∈ Z is such that Γ(t) is nonzero. Properties H1 and G1 clearly hold for
Ft and Gt. Applying the previous lemma to φ : Z[T]→ Z given by φ(f) = f(t), we deduce
that H2 holds for Ft and Gt, and that the cardinality of π(Vt) ⊂ Q is equal to the cardinality
of V . Since V and Vt have the same cardinality, because Vt is obtained from V by a change
of variables, this proves that Vt satisfies G2. Thus, Ft and Gt are in general position.

To prove the second item, recall the formulas for PWt , RWt and SWt given in Lemma 3:

PWt =
1

bW
BW (t,X), RWt =

1

bW

∂BW

∂T
(t,X) and SWt =

∂BW
∂T

(t,X)
∂BW
∂X

(t,X)
mod PWt .

Recall also the bounds on the degree and length of BW given in Lemma 4, which are
respectively d2 and O(dh+d2); the lengths of both derivatives of BW admit the same bound
as that of BW , up to a negligible additional len(d) term. Using the evaluation bound b1, we
deduce that evaluation at T = t incurs a length growth of O(d2`), so that the lengths of PWt

and RWt are O (̃dh+ d2`), as claimed.
Next, we deduce bounds for SWt . The expression given above for SWt shows that we can

obtain its coefficients by solving a linear system with matrix the Sylvester matrix of BW (t,X)
and ∂BW

∂X
(t,X), and with right-hand side made up from the coefficients of ∂BW

∂T
(t,X); this

proves in particular that the denominators of all coefficients of SWt divide the discriminant
of BW (t,X). We can then use Cramer’s formulas and apply the determinant bound b3 to
estimate the length of the coefficients of SWt ; the Sylvester matrix and the right-hand side
have size O(d2), with integer entries of length O (̃dh+ d2`), so all determinants we need are
integers of length O (̃d3h+ d4`).

The results of the last two paragraphs allow us to define BRUR and BSL; since both bounds
are derived by direct applications of b1, b2 and b3, they are indeed efficiently computable;
this proves the second item.

Suppose next that the prime p is such that Γ(t) mod p is nonzero. Consider first φ′ :
Z[T]→ Fp[T] given by φ(f) = f mod p. Because Γ(t) mod p is nonzero, we have in particular
that φ′(Γ) is nonzero. The previous lemma then implies that (FT mod p,GT mod p) satisfy
the coprimality assumption H1. Since these polynomials are obtained from (F mod p,G mod
p) through the substitution X 7→ X + TY , we deduce that (F mod p,G mod p) satisfy H1

as well. Let V ′T be the zero-set of (FT mod p,GT mod p) in an algebraic closure of Fp[T];
then, as pointed out previously, V ′T satisfies G2, so that |π(V ′T)| = |V ′T |. On the other hand,
applying the previous lemma to φ′ implies that the cardinality of |π(V ′T)| is equal to |V |. In
particular, we deduce that |V ′T | = |V |.

Let further V ′t be the zero-set of (Ft mod p,Gt mod p) in an algebraic closure of Fp.
Because evaluation of T at t commutes with reduction modulo p, we deduce that (Ft mod
p,Gt mod p) are obtained by evaluating (FT mod p,GT mod p) at T = t mod p, so |V ′T | =
|V ′t |. Since we saw that |V ′T | = |V |, we deduce that |V | = |V ′t |.

Consider now the mapping φ′′ : Z[T] → Fp given by φ(f) = f(t) mod p. Applying the
previous lemma to φ′′, we deduce that (Ft mod p,Gt mod p) satisfy H1 and H2, and that
|π(V ′t)| = |V |. Since we saw above that |V | = |V ′t |, this proves that |π(V ′t)| = |V ′t |, so that
(Ft mod p,Gt mod p) are in general position.

16

This almost proves the third item; the missing assertion from that item (that the leading
terms of Ft mod p and Gt mod p with respect to Y are the images of those of Ft and Gt

modulo p) is straightforward, since both f and g divide Γ in Z[T].
To conclude, consider a subset W of V , defined over Q, together with the formulas that

yield (PWt , RWt) = RUR(Wt). In particular, we have (PVt , RVt) = RUR(Vt) = RUR(Ft, Gt)
and (PVt , SVt) = SL(Vt) = SL(Ft, Gt).

Recall that b mod p is nonzero (we established this in the proof of the previous lemma,
applied to φ′′). Since bW divides b, bW does not vanish modulo p. Using Lemma 3, this
proves that none of the denominators of the coefficients of either PWt or RWt vanishes at
p. On the other hand, B(t,X), or equivalently PVt , remains squarefree modulo p (this was
established as well in the proof of the previous lemma), so this is the case as well for the
polynomial PWt appearing in the Shape Lemma representation of Wt. We saw above that
all denominators appearing in the coefficients of SWt divide the discriminant of BW (t,X),
so they are nonzero modulo p, as claimed.

To conclude, notice that the polynomials Ft and Gt reduce to zero modulo (PVt , Y −
SVt). This relationship remains true modulo p, so that the polynomials (PVt mod p, Y −
St mod p) define a subset of V ′t = V (Ft mod p,Gt mod p). However, both sets have the same
cardinality |V |, so they are equal. By uniqueness, we conclude that SL(Ft, Gt) mod p =
SL(Ft mod p,Gt mod p); multiplying by P ′Vt mod PVt , this carries over to RUR(Ft, Gt) mod
p = RUR(Ft mod p,Gt mod p). The proof is complete.

Finally, we state a partial converse to these claims.

Lemma 6. Let F and G be in Z[X, Y], that satisfy H1, with degree at most d and length at
most h. Suppose that a prime p and t ∈ Z are such that:

• Γ mod p is nonzero,

• a(t)f(t)g(t) 6= 0 mod p

• X is a separating element for V (Ft mod p,Gt mod p) ⊂ Fp
2
.

Then, Γ(t) mod p is nonzero.

Proof. Because f(t)g(t) 6= 0 mod p, A(t,X) mod p is the resultant of Ft mod p and Gt mod p
with respect to Y , computed over Fp, and its roots are precisely the X-coordinates of the

points in V (Ft mod p,Gt mod p) ⊂ Fp
2
.

The last assumption then implies that the number of these roots is equal to the cardinality

of V (Ft mod p,Gt mod p) ⊂ Fp
2
, or equivalently of V (FT mod p,GT mod p). Using Lemma 5

with φ : Z[T] → Fp[T] given by reduction modulo p, the first assumption implies that this
is precisely the cardinality of V (F,G) (because the projection π is one-to-one on V (FT mod
p,GT mod p)).

Now, recall from Lemma 1 and its proof that there exist polynomial (Bm)m∈M in Z[T,X]
(for some finite set M) and integers (βm)m∈M such that we have

A =
a∏

m∈M βmm

∏
m∈M

Bm
m and B =

∏
m∈M

Bm,

17

where the first fraction is an exact division in Z[T].
Since a(t) mod p is nonzero, we deduce that the number of roots of A(t,X) mod p and

B(t,X) mod p in Fp are the same. We saw above that this number is equal to the cardinality
of V (F,G), which is equal to the degree of B with respect to X.

This implies that B(t,X) mod p is squarefree, so its discriminant does not vanish. Since
a(t) mod p is not zero, the leading coefficient b of B does not vanish modulo p; this implies
that this discriminant is equal to ∆(t) mod p. Thus, this quantity is nonzero, and this is
enough to deduce that Γ(t) mod p itself is nonzero.

2.3 Non-vanishing conditions

Let K be a field, let P and S be in K[X], with P monic of degree e, and S of degree
less than e. Consider a further polynomial H in K[X, Y], and assume that the following
properties hold:

C1. P is squarefree.

C2. H vanishes nowhere on the set V = V (P, Y − S).

In this short section, we mainly focus on the case K = Q. Assuming that H has integer
coefficients, we give conditions under which these two properties are maintained through
reduction at a prime p.

Proposition 1. There exists an efficiently computable function ∆1(d, h, e, `) = (dhe`)O(1)

such that the following holds.
Suppose that P and S are in Q[X] and have degree at most e and length at most `, and

that H ∈ Z[X, Y] has degree at most d and length at most h. If (P, S,H) satisfy C1 and C2,
there exists a nonzero integer δ1 such that:

• δ1 has length at most ∆1(d, h, e, `);

• for any prime p that does not divide δ1, P mod p and S mod p are well-defined, and
(P, S,H) mod p satisfy C1 and C2 over Fp.

The proof of this result occupies the rest of this section. Let cP and cS be minimal
common denominators for the coefficients of respectively P and S, so that we can write
P = P ?/cP and S = S?/cS, with P ? and S? in Z[X]. Remark that the integers cP and cS
have length at most `, and that the same holds for the polynomials P ? and S?.

Suppose that p is a prime that does not divide cP cS, and that P remains squarefree
modulo p. Thus, C1 is maintained through reduction at such a prime.

Starting from H =
∑

i+j≤d hi,jX
iY j, let us then define the polynomial with integer

coefficients
H? =

∑
i+j≤d

cd−jS hi,jX
iY j,

18

so that K = cdSH(X,S) satisfies K = H?(X,S?) ∈ Z[X]. By assumption C2, this polynomial
is coprime with P , and C2 holds modulo p if K and P remain coprime modulo p. Because p
does not divide the leading coefficient cP of P ?, this is the case as soon as p does not divide
the resultant of K and P ?, which is a nonzero integer. Thus, we can define δ1 as the nonzero
integer

δ1 = cP cS res(P ?, P ?′, X) res(P ?, K,X).

It remains to estimate the length of this integer. First, recall that cP and cS have length
at most ` and that the same holds for P ? and S?; this implies that P ?′ has length at most
`+ len(e).

• The matrix giving the resultant res(P ?, P ?′, X) has size at most 2e and integer entries
of length at most ` + len(e). Hence, we can use the determinant bound b3 to deduce
that its determinant is a nonzero integer of length O (̃e`).

• The polynomial H? has degree at most d, and coefficients of length at most h+ d`.

• The polynomial K = H?(X,S?) is obtained by evaluating a polynomial of degree
at most d in two variables, with coefficients of length at most h + d`, at univariate
polynomials of degree at most e and length at most `. Using the evaluation bound b1,
we deduce that K has degree at most de and length O(h+ d(e+ `)).

• As a result, using again the determinant bound b3, we obtain that the matrix giving
the resultant res(P ?, K,X) has for determinant a nonzero integer of length O(de(h +
d(e+ `))).

Adding all estimates gives an explicit formula for the upper bound ∆1, which is easily seen
to be polynomial in d, h, e, ` and computable in time log(dhe`)O(1).

2.4 Conservation of intersection multiplicity

Our context in this section is similar to the one of the previous section. We consider a perfect
field K, P and S in K[X], with P monic of degree e, and S of degree less than e. Now, we
also take two further polynomials H,K in K[X, Y], not necessarily coprime, and we assume
that the following properties hold:

M1. P is squarefree.

M2. All points in V = V (P, Y − S) are isolated points of V (H,K).

We are interested in describing situations under which the following extra property is verified:

M3(n). There exists n ≥ 1 such that for all (x, y) in V , 〈H,K〉 has multiplicity n at (x, y).

Define the new polynomials G = gcd(H,K) ∈ Z[X, Y], H† = H/G and K† = K/G.
Then, V (H†, K†) is finite, the points in V are still isolated points of V (H†, K†), and for

19

(x, y) ∈ V , the intersection multiplicities µ((H,K), (x, y)) and µ((H†, K†), (x, y)) are the
same.

Intersection multiplicity is invariant through linear change of coordinates. Thus, reusing
the notation of Subsection 2.2, we deduce that for any value of t in K, and for (x, y) in V ,
the equality µ((H†, K†), (x, y)) = µ((H†t , K

†
t), (x− ty, y)) holds.

As per our convention, Vt denotes the image of V = V (P, Y − S) under the change of
coordinates φt : (x, y) 7→ (x− ty, y).

If t ∈ Z is such that H†t and K†t are in general position, then since Vt is a subset
of V (H†t , K

†
t) of cardinality e defined over the perfect field K, it admits a Shape Lemma

representation: there exist polynomials P[t] and S[t] in K[X], with P[t] monic and squarefree
of degree e, such that Vt = V (P[t], Y −S[t]). Note that we use the symbol [t] in our subscripts
for P and S, since the subscript t is reserved for polynomials obtained by applying a linear
change of variable. The same will hold below for the polynomial A[t].

Lemma 7. Let t be such that H†t and K†t are in general position, and let A[t] ∈ K[X] be
their resultant with respect to Y . For n ≥ 1, condition M3(n) holds if and only if we have
both:

• P n
[t] divides A[t] in K[X];

• P[t] and A[t]/P
n
[t] are coprime in K[X].

Proof. Because H†t and K†t are in general position, for any (x, y) in Vt, we know that
µ((H†t , K

†
t), (x, y)) is the valuation of the resultant A[t] = res(H†t , K

†
t , Y) at x, that is, the

highest exponent n such that (X −x)n divides A[t]. Equivalently, µ((H†t , K
†
t), (x, y)) is char-

acterized as being the unique integer n such that (X − x)n divides A[t] and (X − x) and
A[t]/(X − x)n are coprime.

Taking all (x, y) in V into account, this leads to the condition given in the statement of
the lemma.

We will now focus on the particular case where K = Q. We suppose that H and K are
in Z[X, Y], that P and S are in Q[X], and that P, S,H,K satisfy M1, M2 and M3(n), for
some n ≥ 1. Our goal is to give conditions on a prime p such that the same polynomials
taken modulo p are well-defined and still satisfy M1, M2 and M3(n).

Proposition 2. There exists an efficiently computable function ∆2(d, h, e, `) = (dhe`)O(1)

such that the following holds.
Suppose that P and S are in Q[X] and have degree at most e and length at most `, and

that H,K ∈ Z[X, Y] have degree at most d and length at most h. If (P, S,H,K) satisfy M1,
M2 and M3(n), for some n ≥ 1, there exists a nonzero integer δ2 such that:

• δ2 has length at most ∆2(d, h, e, `);

• for any prime p that does not divide δ2, P mod p and S mod p are well-defined, and
(P, S,H,K) mod p satisfy M1, M2 and M3(n) over Fp.

20

The proof of this proposition will occupy the rest of this section. As a preliminary remark,
we will still let G be the gcd of H and K in Z[X, Y], and write H† = H/G and K† = K/G.

Since V = V (P, Y − S) consists entirely of isolated points of V (H,K), the polynomials
(P, S,G) satisfy conditions C1 and C2 of the previous section. Our first constraint is that p
does not divide the integer δ1 defined in Proposition 1. For such a prime p, the polynomials
(P, S,G) mod p are well-defined, P remains squarefree modulo p, and (P, S,G) mod p still
satisfy conditions C1 and C2. In particular, the polynomials (P, S,H,K) mod p still satisfy
M1, but we cannot conclude that they satisfy M2 yet.

Let then Γ be the polynomial in Z[T] associated to the coprime polynomials H† and
K† by the construction of Section 2.2. In all that follows, we take t in Z such that Γ(t) is
nonzero; in particular, by Corollary 1, H†t and K†t are in general position. We let A[t] =
res(H†, K†, Y) ∈ Z[X] and P[t] ∈ Q[X] be as defined above; then, by the previous lemma,
P n

[t] divides A[t] in Q[X], and P[t] and A[t]/P
n
[t] are coprime in Q[X].

We will give conditions on p for which the same statement remains true modulo p; then,
using the converse direction in the previous lemma will allow us to conclude.

The resultant A[t] is in Z[X], not necessarily monic. The polynomial P[t] is monic in
Q[X], so we may write it as P[t] = P ?

[t]/c[t], with c[t] in Z and P ?
[t] primitive in Z[X]. Since

P n
[t] divides A[t] in Q[X], we deduce that P ?

[t]
n divides A[t] in Z[X], so N[t] = A[t]/P

?
[t]
n is a

polynomial with integer coefficients. By assumption, P[t] and N[t] are coprime, and thus so
are P ?

[t] and N[t]. We deduce that their resultant is a nonzero integer.

Let us then add the following conditions on our prime p: Γ(t) mod p is nonzero, and the
resultant res(P ?

[t], N[t], X) does not vanish modulo p. We will prove that M2 and M3(n) are

satisfied for (P, S,H,K) mod p.
Since Γ(t) mod p is nonzero, we can apply Corollary 1 to H† and K†, and we deduce the

following facts:

• H†t mod p and K†t mod p are in general position; in particular, H† mod p and K† mod p
have finitely many common solutions. Since H = GH† and K = GK†, and since by
Proposition 1 the points defined by (P mod p, Y − S mod p) do not cancel G mod p,
we deduce that these points are isolated points on V (H mod p,K mod p), and that
the multiplicities of (H,K) mod p and (H†, K†) mod p are the same at these points.
In particular, we have proved that M2 still holds.

• Let α[t] ∈ Fp[X] be the resultant of H†t mod p and K†t mod p with respect to Y . By

Corollary 1, the leading terms of H†t mod p and K†t mod p are the reductions modulo
p of those of H†t and K†t . As a consequence, α[t] = A[t] mod p.

Since P mod p is squarefree, the equations (P mod p, Y −S mod p) define a subset V ′ ⊂ Fp
2

of cardinality e of V (H† mod p,K† mod p). Applying the change of coordinates φt, we

obtain a subset V ′t ⊂ Fp
2

of V (H†t mod p,K†t mod p) of cardinality e. Since we saw that the

equations (H†t mod p,K†t mod p) are in general position, we deduce as in the discussion prior
to Lemma 7 that V ′t admits a Shape Lemma representation.

21

Lemma 8. None of the denominators of the coefficients of P[t] or S[t] vanishes modulo p,
P[t] mod p is squarefree and the Shape Lemma representation of V ′t is (P[t] mod p, S[t] mod p).

Proof. The facts that none of the denominators of the coefficients of P[t] or S[t] vanishes
modulo p and that P[t] mod p is squarefree are consequences of Corollary 1 applied to H†,
K†, and the Q-definable subset V of V (H†, K†).

By construction, Vt is the zero-set of (P[t], Y − S[t]). Thus, applying φ−1
t , we deduce

that P[t](X − tY) and Y − S[t](X − tY) vanish on V ; this implies that P[t](X − tY) and
Y − S[t](X − tY) reduce to zero modulo (P, Y − S).

Because no denominator reduces to zero modulo p in these membership equalities, they
remain true modulo p. This shows that V ′ is contained in the zero-set of (P[t](X − tY) mod
p, Y − S[t](X − tY) mod p). The set V ′ has cardinality e (because P mod p is squarefree),
and so does the zero-set of (P[t](X− tY) mod p, Y −S[t](X− tY) mod p), because P[t] mod p
is squarefree; thus, the inclusion is an equality.

Applying φt, we deduce that V ′t is the zero-set of (P[t] mod p, Y −S[t] mod p). By unique-
ness of the Shape Lemma representation, we are done.

We can now prove that M3(n) is satisfied for (P, S,H,K) mod p. In what follows, we
write π[t] = P[t] mod p ∈ Fp[X].

Recall that N[t] ∈ Z[X] is given by N[t] = A[t]/P
?
[t]
n. By assumption, P ?

[t] is primitive, so

P ?
[t] mod p is nonzero, which implies that N[t] mod p = (A[t] mod p)/(P ?

[t]
n mod p); in addi-

tion, P ?
[t] mod p coincides with π[t] up to a nonzero constant. We saw above that A[t] mod p

is the resultant α[t] = res(H†t mod p,K†t mod p, Y), so that N[t] mod p and α[t]/π
n
[t] are the

same, up to a nonzero constant.
Since p divides the denominator of no coefficient of P[t], the degree of P ?

[t] mod p remains

equal to e, so res(P ?
[t], N[t], X) mod p is equal (up to a nonzero constant) to the resultant

res(π[t], α[t]/π
n
[t], X) computed in Fp[X]. By assumption on p, the resultant res(P ?

[t], N[t], X)

does not vanish modulo p, so that res(π[t], α[t]/π
n
[t], X) is a nonzero element of Fp. The pre-

vious lemma shows that π[t] is precisely the first polynomial appearing in the Shape Lemma
representation of V ′t , and Lemma 7 then implies that M3(n) is satisfied for (P, S,H,K) mod p.
Thus, we are done.

It remains to quantify the conditions on p. The first constraint is that p does not divide
the integer δ1 defined in Proposition 1; recall that δ1 has length (dhe`)O(1). Our other
constraints are that Γ(t) and res(P ?

[t], N[t], X) do not vanish modulo p, where t is any integer
that does not cancel Γ. Let us then deal with these two terms.

• Since Lemma 4 shows that deg(Γ) ≤ 6d4, there exists t ∈ N that does not cancel Γ
and such that t ≤ 6d4 + 1; its length is O(len(d)). By Lemma 4 again, the length of
Γ is O(hd3 + d4), so the length of Γ(t) is of the same order: an upper bound (hd)O(1)

can be calculated for it using the evaluation bound b1.

• Using the factor bound b2, we obtain an upper bound (hd)O(1) for the length of both
H† and K†. From this, the determinant bound b3 gives an efficiently computable upper
bound on the length of A[t], which is still (dh)O(1); the degree of A[t] is at most d2. The

22

polynomials P ?
[t] and N[t] both divide A[t], so we can apply again the factor bound b2

to deduce upper bounds for their length, which are again (dh)O(1). Finally, using once
again the determinant bound b3, we can deduce bounds of the form (hd)O(1) for the
length of the integer res(P ?

[t], N[t], X).

Since all bounds obtained here are direct consequences b1, b2 and b3, they can all be computed
efficiently, so the proof is complete.

3 Finding nonzeros in a list

In this section, we present simple algorithms for bookkeeping computations with univariate
polynomials. The process given below of partitioning an algebraic set into parts indexed
by indices that are here integers, but will later on become more complex, is a template for
several further constructions. By convention, here and in what follows, our array indices
start at one.

Consider the following question: take a field K, an element x in K (or, as below, in an
algebraic closure of it called K) and polynomials r = [r1, . . . , rN] in K[X]. To x and r, we can
associate the index v(x, r) ∈ {1, . . . , N}, defined as the smallest i such that ri(x) is nonzero;
if no such i exists, take v(x, r) = ∞. Computing v(x, r) is easy, by evaluating all ri’s at x
one after the other.

Let r be as before and let now P be non-constant and squarefree in K[X]; let also V be the
set of roots of P in K. The finite set V can be partitioned into non-empty sets Vv1 , . . . , Vvs ,
for some indices vi ∈ {1, . . . , N} ∪ {∞}, where Vvi is the subset of all points x in V such
that v(x, r) = vi. Computing the partition Vv1 , . . . , Vvs amounts to factoring P into (non-
necessarily irreducible) factors P1, . . . , Ps, and finding indices v1, . . . , vs in {1, . . . , N}∪{∞},
such that for all i in {1, . . . , s}, the set of roots of Pi in K is precisely Vvi (remark that the
Pi’s and vi’s are uniquely defined, up to order). This is the object of the following algorithm
called nonzero index.

Lemma 9. Suppose that P is squarefree of degree e, and that all ri have degree less than
e. Algorithm nonzero index correctly returns (P1, v1), . . . , (Ps, vs) as specified above, using
O (̃eN) operations in K.

Proof. Correctness is proved by seeing that at the beginning of each step i of the for loop,
the roots of C are exactly the roots x of P for which v(x, r) ≥ i, and that the roots of the
gcd Z are then those roots x of P for which v(x,R) > i. Each pass through the loop takes
O (̃e) operations for gcd and exact division [18], so the cost estimate follows.

Slightly more generally, consider polynomials

R = [[R1,1, . . . , R1,N], . . . , [RM,1, . . . , RM,N]]

in K[X], and x ∈ K as above. Then, to x and R, we want to associate the smallest index
i ∈ {1, . . . ,M} such that the vector [Ri,1(x), . . . , Ri,N(x)] is not identically zero (if it exists);

23

Algorithm 1: nonzero index(P , r)

Input: P in K[X], r = [r1, . . . , rN] in K[X]N

Output: L = [(P1, v1), . . . , (Ps, vs)], with vi ∈ {1, . . . , N} ∪ {∞}
L = []1

C = P2

for i = 1, . . . , N do3

Z = gcd(C, ri)4

if Z is not constant then5

append (C/Z, i) to L6

C = Z7

end8

if C is not constant then9

append (C,∞) to L10

return L11

we also want to compute the smallest index j ∈ {1, . . . , N} such that Ri,j(x) is nonzero, so
that our output is w(x,R) = (i, j). If no such i exists, instead of the pair (i, j), we return
w(x,R) = (∞,∞).

Given R and a squarefree polynomial P as before, we can then partition the zero-set
V ⊂ K of P into Vw1 , . . . , Vwt , such that for r in {1, . . . , t}, Vwr is the set of all x ∈ V
for which w(x,R) = wr. As output, we thus return a sequence a polynomials P1, . . . , Pt,
together with indices w1, . . . , wt in ({1, . . . ,M} × {1, . . . , N}) ∪ {(∞,∞)}, such that for all
i in {1, . . . , t}, the set of roots of Pi in K is precisely Vwi .

This is done by the following algorithm, called nonzero index vectorial, which now takes
as input P and the sequence of sequences of polynomials R. We use a subroutine called
infinity(L) which takes as input a sequence [(P1, v1), . . . , (Ps, vs)] such as the one computed
by nonzero index, and returns the polynomial Pi in it corresponding to vi = ∞, if one such
polynomial exists; otherwise, this subroutine returns 1.

Lemma 10. Suppose that P is squarefree of degree e, and that all Rj,i have degree less than
e. Algorithm nonzero index vectorial correctly returns (P1, w1), . . . , (Pt, wt) as specified above,
using O (̃eMN) operations in K.

Proof. Correctness is proved by seeing that at the beginning of each step i of the for loop,
the roots of C are exactly the roots x of P for which all Ri′,j(x) vanish, for any i′ < i and
j ∈ {1, . . . , N}. After the call nonzero index(C, r), L′ = [(Pi,j, vi,j) | j ∈ Di] contains the
nonzero indices for [Ri,1 mod C, . . . , Ri,N mod C], for some index set Di. We remove from it
the factor C = infinity(L′) (if it exists), which corresponds to those roots for which we will
continue the process. At the end of the loops, C defines those roots of P that cancel all Rj,i,
so we associate it with (∞,∞).

For a given index i, the reductions at step 4 take O (̃Ne) operations in K, using fast
Euclidean division. Calling nonzero index takes O (̃Ne) operations as well, in view of the

24

Algorithm 2: nonzero index vectorial(P , R)

Input: P in K[X], R = [R1,1, . . . , R1,N], . . . , [RM,1, . . . , RM,N] in K[X]M×N

Output: L = [(P1, w1), . . . , (Pt, wt)], wi ∈ ({1, . . . ,M} × {1, . . . , N}) ∪ {(∞,∞)}
L = []1

C = P2

for i = 1, . . . ,M do3

r = [Ri,j mod C | j ∈ [1, . . . , N]]4

L′ = nonzero index(C, r) L′ has the form L′ = [(Pi,j, vi,j)]j∈Di , vi,j ∈ N ∪ {∞}5

C = infinity(L′)6

if C is not constant then7

remove (C,∞) from L′8

L = L cat [(P, (i, v))) | (P, v) ∈ L′]9

end10

if C is not constant then11

append (C, (∞,∞)) to L12

return L13

previous lemma. Summing these costs, we conclude the proof.

4 Normal forms for derivatives

We now discuss some algorithms to compute normal forms of derivatives, inspired by tech-
niques from [29]. These results will be crucial for our main algorithm in further sections.

The following notation will be useful: for positive integers n1, . . . , ns, and for a ring A,
A[X1, . . . , Xs]n1,...,ns denotes the set of all F ∈ A[X1, . . . , Xs] such that deg(F,Xi) < ni holds
for all i. In all instances where we use this notation, we will have s ∈ {1, 2, 3} (variables
may then carry other names than X1, . . . , Xs).

In all this section, we work over the ring A = Z/NZ, for some prime power N = p`, using
indeterminates X, ξ, ζ. Our input is as follows:

• L = [(n1,m1), . . . , (nt,mt)] is a list of pairs of integers.

• L′ = [P1, . . . , Pt] is a list of polynomials, with for all i, Pi monic of degree ei in A[X].
In addition, we suppose that for all i, j, with i 6= j, Pi and Pj generate the unit ideal
in A[X]. Equivalently, Pi mod p and Pj mod p are coprime in Fp[X].

• L′′ = [J1, . . . , Jt] is a list of polynomials, with for all i, Ji in A[X, ξ]ei,ni+1.

• F is a polynomial in A[X, Y].

As output, we want to compute the normal forms

Di,µ =
∂µF

∂Y µ
(X + ξ, Ji) mod 〈Pi(X), ξni+1〉 ∈ A[X, ξ]ei,ni+1,

25

for all i = 1, . . . , t and µ = 0, . . . ,mi. This will be done by computing

Fi = F (X + ξ, Ji + ζ) mod 〈Pi(X), ξni+1, ζmi+1〉, (5)

for all i = 1, . . . , t, since Taylor expansion shows that

Di,µ = µ! cf(Fi, ζ
j),

where cf(P, ζj) denotes the coefficient of ζj in a polynomial P . We will focus on the com-
putation of the Fi’s, since the overhead to deduce all D′i,µs by coefficient extraction and
multiplication by µ!’s will be negligible.

If for instance Ji does not depend on ξ, so it lies in A[X]ei , and 2, . . . , ni are units in A,
Di,µ can be written

Di,µ =

ni∑
ν=0

1

ν!

∂µ+νF

∂Xν∂Y µ
(X, Ji)ξ

ν mod 〈Pi(X)〉;

knowing Di,µ thus allows us to compute the normal forms of the derivatives ∂µ+νF
∂Xν∂Y µ

modulo
〈Pi(X), Y − Ji(X)〉, for all i = 1, . . . , t, ν = 0, . . . , ni and µ = 0, . . . ,mi.

Suppose that F has degree d. We make the following assumption regarding the quantities
ni,mi, ei:

HNF. The inequality
∑

1≤i≤t(ni + 1)(mi + 1)ei = O(d2) holds.

Representing F requires approximately d2 coefficients in A, and representing all Pi’s and
Ji’s uses about

∑
1≤i≤t(ni + 1)ei extra coefficients. On the other hand, for all i, Fi lies in

A[X, ξ, ζ]ei,ni+1,mi+1, so representing all of them uses
∑

1≤i≤t(ni + 1)(mi + 1)ei coefficients in
A. Thus, assumption HNF means that input and output sizes add up to about d2 elements
of A = Z/NZ, or d2 log(N) bits.

The main result in this section is the following proposition, which shows that all Fi can
be computed in essentially linear time.

Proposition 3. Under assumption HNF, for any ε > 0, there exists an algorithm nor-
mal forms that takes as input a prime power N = p`, sequences L,L′, L′′ and polynomial F
as above, and returns all Fi, for i in {1, . . . , t}, using d2+εO (̃log(N)) bit operations.

4.1 Auxiliary results

A first normal form algorithm. The central problem for these normal form questions
is normal form computation modulo a single triangular set T = (P (X), Q(X, Y)), where
P ∈ A[X] is monic in X and Q ∈ A[X, Y] is monic in Y , reduced with respect to P .

Suppose that deg(P,X) = f and deg(Q, Y) = e. Given F in A[X, Y], the question is to
compute F mod 〈P,Q〉 ∈ A[X, Y]f,g. This apparently simple question is actually quite chal-
lenging; so far, no algorithm is known to solve it in optimal time in an algebraic complexity
model.

26

In our particular context of computations modulo N , however, better results are available.
Building on seminal results by Kedlaya and Umans [23], Theorem 6 in [39] gives a quasi-
linear bit complexity result for such a task (as pointed out in [29], this result was originally
proved for N a prime, but carries over without modification to the case of a prime power).

Lemma 11. For any ε > 0, there exists an algorithm normal form bivariate with the following
input:

• a prime power N ;

• F in A[X, Y]m,n, with A = Z/NZ,

• a triangular set T = (P (X), Q(X, Y)), with P in A[X], monic of degree f , and Q in
A[X, Y], monic in Y of degree g and of degree in X less than e.

This algorithm returns F mod 〈T〉 ∈ A[X, Y]f,g using (mn+fg)1+εO (̃log(N)) bit operations.

Remark that up to the exponent ε, this algorithm is optimal, since storing input and
output involves Θ(mn + ef) coefficients in A = Z/NZ, for a total of Θ((mn + ef) log(N))
bits of storage.

Using this result, Proposition 3 in [29] states the following extension towards the reduction
of one polynomial F modulo several bivariate triangular sets.

Lemma 12. Let T1, . . . ,Ts be triangular sets in A[X, Y], where for i = 1, . . . , s Ti =
(Pi(X), Qi(X, Y)), with Pi monic in X of degree fi and Qi(X, Y) monic in Y of degree gi,
and reduced with respect to X. Suppose that for all i, j in {1, . . . , s}, with i 6= j, Pi and Pj
generate the unit ideal in A[X].

Let F be in A[X, Y] with degree d, and suppose that
∑

i≤s figi = O(d2). Then, for
any ε > 0, there exists an algorithm normal forms bivariate that takes as input the prime
power N , T1, . . . ,Ts and F as above, and returns all F mod 〈Ti〉, for i in {1, . . . , s}, using
d2+εO (̃log(N)) bit operations.

As in Proposition 3, the input and output sizes are Θ(d2) elements of A, so the running
time is close to optimal. This lemma will be our main tool to prove Proposition 3; most of
the work in this section will consist in reducing our original problem to an instance of the
bivariate problem above.

Remark that there are two slight differences between the lemma above and the one stated
in reference [29]. First, that result seemingly required another assumption, namely that all
gi should satisfy gi ≤ d. This is actually not needed: the article [29] gave an alternative
solution to this problem, valid in an algebraic complexity model (over an arbitrary ring),
that did require such an assumption; the property gi ≤ d was assumed to hold throughout
for simplicity. In our context, we can safely omit it.

Another slight difference is that the result in [29] required as an extra input the inverses
of (P1 · · ·Pi−1Pi+1 · · ·Ps) modulo Pi, for all i = 1, . . . , s. It was then pointed out that in the
case A = Z/NZ, for N a prime power, they can be computed in O (̃d2 log(N)) operations,
which will be negligible. Thus, our assumptions are not restrictive.

27

An easy change of order. Our next auxiliary result is an explicit change of order al-
gorithm for a particular bivariate ideal in A[X,Z]. Several references give algorithms to
perform this kind of operations [4, 37, 39], but we are not aware of a complexity result that
would apply in our particular case (for instance, the change of order algorithms of [37, 39]
require a radical ideal over a field, but none of these conditions apply here). Nevertheless,
the situation is simple enough that we can give an explicit solution.

Lemma 13. Let P be monic of degree e in A[X], such that P mod p is squarefree in Fp[X],
and let n be a positive integer.

There exists an algorithm change order special that computes using O (̃en log(N)) bit op-
erations a polynomial V in A[Z] of degree less than en, such that in A[X,Z], we have the
following equality between ideals:

〈P (X), (Z −X)n〉 = 〈P (Z)n, X − V (Z)〉.

Proof. Let P ? be an arbitrary monic lift of P to Zp[X], where Zp is the ring of p-adic integers.
Because P mod p is squarefree, P ? is squarefree as well. In the first part of the proof, we
work over Zp, its field of fractions Qp, and an algebraic closure of it, Qp.

Let a1, . . . , ae be the (unknown) pairwise distinct roots of P ? in Qp. Then, the ideal
〈P ?(X), (Z −X)n〉 is the product of the pairwise coprime ideals∣∣∣∣ (Z − ai)n

X − ai,
i = 1, . . . , e.

For such ideals, changing the order of X and Z is straightforward. We deduce that the
polynomial V ? of degree less than en defined by the Chinese Remainder conditions

V ? mod (Z − ai)n = ai, i = 1, . . . , e

satisfies the equality 〈P ?(X), (Z −X)n〉 = 〈P ?(Z)n, X − V ?(Z)〉, except that V ? is a priori
in Qp[Z], and the equality holds in Qp[X,Z].

Let us write Q = P ?(Z)n. To compute V ?, we define the polynomials of degree at most
(e− 1)n

A =
e∑
i=1

ai
∏
i′ 6=i

(Z − ai′)n and B =
e∑
i=1

∏
i′ 6=i

(Z − ai′)n.

First, let us show how to compute A and B; we will show as we go that both A and B are
in Zp[Z].

Let Ã and B̃ be the reverse polynomials Z(e−1)nA(1/Z) and Z(e−1)nB(1/Z); define simi-
larly Q̃ = ZenQ(1/Z), so that we have

Ã =
e∑
i=1

ai
∏
i′ 6=i

(1− ai′Z)n, B̃ =
e∑
i=1

∏
i′ 6=i

(1− ai′Z)n

28

and

Q̃ =
e∏
i=1

(1− aiZ)n.

Let us first show how to compute the power series expansions of the rational functions Ã/Q̃
and B̃/Q̃. Consider the power series

1

(1− Z)n
=
∑
j≥0

cjZ
j and S =

∑
j≥0

sjZ
j,

where sj = aj1 + · · ·+ ajn is the jth power sum of P ?, so that all cj’s and sj’s are in Zp. The
rational functions Ã/Q̃ and B̃/Q̃ can then be written as

Ã

Q̃
=

e∑
i=1

ai
(1− aiZ)n

=
e∑
i=1

∑
j≥0

aj+1
i cjZ

j =
∑
j≥0

cjsj+1Z
j,

B̃

Q̃
=

e∑
i=1

1

(1− aiZ)n
=

e∑
i=1

∑
j≥0

ajicjZ
j =

∑
j≥0

cjsjZ
j,

so they lie in Zp[[Z]]. Upon multiplication by Q̃, we deduce that Ã and B̃ are both in Zp[Z],
and so are A and B, as claimed.

In addition, we claim that B is invertible modulo Q, not only in Qp[Z], but actually in
Zp[Z]. Indeed, the resultant of Q and B is (up to sign) the n2-th power of the discriminant
of P ?, which is by assumption a unit in Zp.

Finally, one verifies that A/B mod (Z−ai)n = ai, which implies that V ? = A/B mod Q.
In particular, V ? is in Zp[Z], as announced before.

So far, the Chinese Remainder conditions we used have established the equality 〈P ?(X), (Z−
X)n〉 = 〈Q(Z), X−V ?(Z)〉 in Qp[X,Z]. However, since all polynomials are in Zp[X,Z], and
monic in their leading variables, we deduce that the underlying membership identities hold
in Zp[X,Z] as well. Truncating modulo N , and defining V = V ? mod N ∈ A[Z], we conclude
that the equality 〈P (X), (Z −X)n〉 = 〈P (Z)n, X − V (Z)〉 holds in A[X,Z].

Finally, we turn to the cost analysis. We can compute all coefficients cj and sj at precision
en using O (̃en) operations in A, and thus O (̃en log(N)) bit operations: for the former, this
is for instance done by computing (1 − X)n by binary powering and inverting it; for the
latter, this is in [44].

Once we know the coefficients cj and sj, we recover Ã and B̃ through multiplication
by Q and reversal, for another O (̃en) operations in A, and A and B are deduced for free.
The last non-obvious step is the computation of 1/B mod Q (since the rest is just another
multiplication modulo Q). This is done using Newton iteration: the inverse of B modulo
〈p,Q〉 can be computed using the fast extended gcd algorithm in Fp[Z] in O (̃en) operations
modulo p; then, Newton iteration for inverse gives us 1/B mod Q in A[Z] in quasi-linear
time O (̃en log(N)). Summing all costs above gives the claimed overall running time.

29

All notation being as in the lemma, we deduce that we have an isomorphism

ψ : A[X,Z]/〈P (X), (Z −X)n〉 → A[Z]/〈P (Z)n〉.

Taking A[X,Z]e,n and A[Z]en for representatives of respectively the left and right-hand sides,
ψ is given by

ψ(R) = R mod 〈P (Z)n, X − V (Z)〉

for R in A[X,Z]n,e, and

ψ−1(S) = S mod 〈P (X), (Z −X)n〉

for S in A[Z]en. Once V is known, applying Lemma 11, we deduce in particular that for
any ε > 0, both change of bases ψ and ψ−1 can be performed in (en)1+εO (̃log(N)) bit
operations.

4.2 Proof of Proposition 3

Recall that on input sequences L,L′, L′′ our goal is to compute normal forms

Fi = F (X + ξ, Ji + ζ) mod 〈Pi(X), ξni+1, ζmi+1〉,

for i = 1, . . . , t. We now show how to perform this operation, thereby proving Proposition 3:
assuming that HNF holds, that is,

∑
1≤i≤t(ni + 1)(mi + 1)ei = O(d2), we can compute all Fi,

for i in {1, . . . , t}, using d2+εO (̃log(N)) bit operations. This will be done by reducing this
problem to an instance of a bivariate normal form computation, that can be handled with
Algorithm normal forms bivariate from Lemma 12.

Let us fix i in {1, . . . , t}, and let Z and T be two new variables. We will use them through
the change of variables Z = X + ξ, T = Ji + ζ.

First change of variables. First, we consider the introduction of the variable Z, that
stands for X + ξ. In most of this paragraph, the index i ∈ {1, . . . , t} is fixed. For any such
i, there is an A-algebra isomorphism

φi : A[X, ξ]/〈Pi(X), ξni+1〉 → A[X,Z]/〈Pi(X), (Z −X)ni+1〉.

The left-hand side and right-hand side respectively admit the polynomials in A[X, ξ]ei,ni+1

and A[X,Z]ei,ni+1 as canonical representatives. With these representatives, we have, for R
in A[X, ξ]ei,ni+1, φi(R) = R(X,Z −X) mod Pi. The inverse mapping is given by φ−1

i (S) =
S(X, ξ +X) mod Pi, for S in A[X,Z]ei,ni+1.

Lemma 14. The following holds:

• For R in A[X, ξ]ei,ni+1, one can compute φi(R) using O (̃eini log(N)) bit operations.

• For S in A[X,Z]ei,ni+1, one can compute φ−1
i (S) using O (̃eini log(N)) bit operations.

30

Proof. We give the proof for φi; that for φ−1
i is entirely similar. Define Bi = A[X]/〈Pi〉.

Computing φi(R) amounts to seeing R in Bi[ξ], and computing R(ξ −X) in that ring (and
finally, formally replacing ξ by Z). This is thus an instance of shifting a polynomial, in this
case by −X. Since R has degree less than ni in ξ, the divide-and-conquer algorithm of [17]
solves this problem in O (̃ni) operations (+,×) in Bi, which is O (̃eini) operations (+,×) in
A, and thus O (̃eini log(N)) bit operations.

The mapping φi can then be extended to a change of a variables

Φi : A[X, ξ, ζ]/〈Pi(X), ξni+1, ζmi+1〉 → A[X,Z, ζ]/〈Pi(X), (Z −X)ni+1, ζmi+1〉,

which acts coefficient-wise in ζ; by the previous lemma, both Φi and its inverse Φ−1
i can thus

be computed in O (̃einimi log(N)) bit operations. Taking all i ∈ {1, . . . , t} into account, and
using assumption HNF, the cost becomes O (̃d2 log(N)) bit operations.

For i in {1, . . . , t}, let us finally write J
(1)
i = φi(Ji), so that J

(1)
i lies in A[X,Z]ei,ni+1.

Defining
F

(1)
i = F (Z, J

(1)
i + ζ) mod 〈Pi(X), (Z −X)ni+1, ζmi+1〉,

we see that Fi as showed in (5) can be recovered as Φ−1
i (F

(1)
i).

Since we saw that applying all changes of variables φi, or even Φi, and their inverses, takes
time O (̃d2 log(N)), we can now focus on computing the polynomials F

(1)
i , for i = 1, . . . , t.

Second change of variables. Our second change of variables is actually a change of
order. As before, for the following discussion, we fix an index i in {1, . . . , t}.

Applying Lemma 13, we deduce that we can compute in O (̃eini log(N)) bit operations
a polynomial Vi in A[Z] such that we have the equality between ideals

〈Pi(X), (Z −X)ni+1〉 = 〈Pi(Z)ni+1, X − Vi(X)〉

in A[X,Z]. In addition, we saw that for any ε > 0, the change of basis

ψi : A[X,Z]/〈Pi(X), (Z −X)ni+1〉 → A[Z]/〈Pi(Z)ni+1〉

and its inverse can be performed in (eini)
1+εO (̃log(N)) bit operations. As above, the map-

ping ψi can be extended to a change of basis

Ψi : A[X,Z, ζ]/〈Pi(X), (Z −X)ni+1, ζmi+1〉 → A[Z, ζ]/〈Pi(Z)ni+1, ζmi+1〉

which acts coefficient-wise in ζ. Both Ψi and its inverse Ψ−1
i can thus be computed in

(eini)
1+εO (̃mi log(N)) bit operations; using assumption HNF, the cost for all i in {1, . . . , t}

is thus d2+εO (̃log(N)) bit operations.

For i in {1, . . . , t}, let us finally write J
(2)
i = ψi(J

(1)
i), so that J

(2)
i lies in A[Z]ei(ni+1) '

A[Z]/〈Pi(Z)ni+1〉. Defining

F
(2)
i = F (Z, J

(2)
i + ζ) mod 〈Pi(Z)ni+1, ζmi+1〉,

we see that F
(1)
i can be recovered as Ψ−1

i (F
(2)
i). Thus, since the change of bases take quasi-

linear time d2+εO (̃log(N)), we can now focus on computing the normal forms F
(2)
i , for

i = 1, . . . , t.

31

Third change of variables. Our last change of variables introduces a new variable T
which will stand for J

(2)
i + ζ. In the same vein as what we said for the introduction of

variable Z, we can now notice that there is an A-algebra isomorphism

γi : A[Z, ζ]/〈Pi(Z)ni+1, ζmi+1〉 → A[Z, T]/〈Pi(Z)ni+1, (T − J (2)
i)mi+1〉.

The left-hand side and right-hand side admit respectively the elements of A[Z, ζ]ei(ni+1),mi+1

and A[Z, T]ei(ni+1),mi+1 as canonical representatives. With these representatives, we have,

for R in A[Z, ζ]ei(ni+1),mi+1, γi(R) = R(Z, T −J (2)
i) mod P ni+1

i . The inverse mapping is given

by γ−1
i (S) = S(Z, ζ + J

(2)
i) mod P ni+1

i , for S in A[Z, T]ei(ni+1),mi+1.
Proceeding exactly as in Lemma 14, we deduce that we can compute γi or its inverse in

O (̃einimi log(N)) bit operations. Defining finally

F
(3)
i = F (Z, T) mod 〈Pi(Z)ni+1, (T − J (2)

i)mi+1〉,

we deduce that F
(2)
i = γ−1

i (F
(3)
i). Once more, the changes of variables take quasi-linear time,

so we are left with the problem of computing the polynomials

F (Z, T) mod 〈Pi(Z)ni+1, (T − J (2)
i)mi+1〉,

for i = 1, . . . , t. Since the polynomials (Pi(Z)ni+1, Pj(Z)nj+1) generate the unit ideal in A[Z]
(for i 6= j), this can be done as a direct application of Algorithm normal forms bivariate from
Lemma 12.

For i in {1, . . . , t}, the polynomials defining the triangular set (Pi(Z)ni+1, (T −J (2)
i)mi+1)

have respective degrees in their main variables ei(ni + 1) and mi + 1. Using once more as-
sumption HNF, we deduce that the total cost for all indices i is d2+εO (̃log(N)) bit operations,
for any ε > 0. Adding up all costs seen so far, we conclude the proof of Proposition 3.

5 A deflation lemma

Consider a polynomial system F = G = 0 in K[X, Y], where K is a field, and an isolated

solution of it (x, y) ∈ K2
, where K is an algebraic closure of K. Most extensions of Newton

iteration to the case where (x, y) has multiplicity M > 1 seek to replace the given system
with a new one, say ψ, such that the multiplicity of ψ at the root (x, y) is less than M ;
eventually, we reach M = 1, where we can apply Newton iteration without difficulty. Such
a process is called deflation.

Since our main algorithm is based on a form of Newton iteration, we will need to employ
such techniques in order to handle multiple roots. This section presents a particular deflation
process initially due to Lecerf [30], which will be at the heart of our main algorithm.

In this approach, the deflated systems are constructed by considering suitable derivatives
of the given system 〈F,G〉. The following construction assigns to an isolated solution (x, y)
of F = G = 0 a signature σ(x, y), of the form σ(x, y) = (m, H, n, a, K) (defined precisely
below). In essence, this signature predicts which derivatives of F,G should be taken to

32

reach a deflated ideal ψ satisfying the multiplicity reduction requirement. This definition is
inspired by that of a generic trace in [30].

The deflation lemma below is the key to this construction; it follows very closely [30,
Lemma 4]. We introduce a small modification: the initial approach works in generic coor-
dinates, so following it would require us to perform the corresponding probability analysis,
which appears not to be straightforward. Instead, in our bivariate setting, it is possible
to bypass generic coordinates; the resulting proof is very similar to Lecerf’s, up to minor
changes (for instance, in the definition of the integer m below, or the monomial order we
use).

Lemma 15. Let 〈F,G〉 ⊂ be an ideal in K[X, Y], with F and G of degree at most d, and let

(x, y) ∈ K2
be an isolated root of 〈F,G〉 with multiplicity M . Define

m = min

{
µ :

∂µF

∂Y µ
(x, y) 6= 0 or

∂µG

∂Y µ
(x, y) 6= 0

}
.

If K has characteristic greater than d, then

(a) m ≥ 1;

(b) m ≤ d;

(c) (x, y) is a root of ψ with multiplicity n, for some integer n satisfying 1 ≤ n ≤ M/m,
where

ψ =

〈
F,G,

∂F

∂Y
,
∂G

∂Y
, . . . ,

∂m−1F

∂Y m−1
,
∂m−1G

∂Y m−1

〉
.

Proof. In what follows, we denote by I the ideal 〈F,G〉. Upon translating the origin to
(x, y), we can assume without loss of generality that x = y = 0. To prove the first item, note
that F (0, 0) = G(0, 0) = 0, which implies m > 0.

Let us next prove that m is finite, and bounded from above by d. Because K has
characteristic greater than d, if all partial derivatives of F with respect to Y, Y 2, . . . , Y d

vanish at (0, 0), F (0, Y) must be the zero polynomial (recall that F has degree at most d),
so that X divides F . If this is the case for G as well, X divides both F and G, so (0, 0) is
not an isolated solution of F = G = 0, a contradiction. Thus, we have proved (a) and (b).

Using the equalities

∂µF

∂Y µ
(0, 0) = 0 and

∂µG

∂Y µ
(0, 0) = 0, 0 ≤ µ ≤ m− 1

and

ψ =

〈
F,G,

∂F

∂Y
,
∂G

∂Y
, · · · , ∂

m−1F

∂Y m−1
,
∂m−1G

∂Y m−1

〉
,

it is clear that (0, 0) is a root of ψ, so n ≥ 1. It remains to prove the upper bound n ≤M/m.

33

We are going to work locally, by looking at F,G and their derivatives in K[[X, Y]]. By
the definition of the multiplicity, we have

M = dimKK[[X, Y]]/I and n = dimKK[[X, Y]]/ψ.

We are going to describe more precisely these residue class rings. Let us endow K[[X, Y]]
with the order defined by

Xa1Y b1 > Xa2Y b2 ⇐⇒ a1 < a2 or a1 = a2 and b1 < b2.

One verifies that this order is compatible with multiplication, and that 1 > X and 1 > Y
both hold. This is thus a local monomial order, as in [9, Chapter 4]; precisely, this is a
reverse lexicographic order.

To any power series S in K[[X, Y]], we can associate its leading monomial lm(S) with
respect to this order; as usual, this notation carries over to ideals in K[[X, Y]].

From [9, Theorem 4.3], we infer that the monomials in lm(I)c and lm(ψ)c – where the
exponent c denotes complement – form bases of respectively K[[X, Y]/I and K[[X, Y]/ψ. In
particular, the numbers of these monomials are respectively M and n. Define

T = {XaY m−1 ∈ lm(I)c | a ≥ 0}.

Because lm(I) is stable by multiplication, for each element XaY m−1 of T , all monomials
XaY b, for 0 ≤ b ≤ m−1, are in lm(I)c, whence M = |lm(I)c| ≥ m|T |. Equivalently, we have
|T | ≤M/m.

We now prove that n is at most |T |, which is enough to conclude, since we then have
n ≤ |T | ≤M/m. To establish that n ≤ |T |, we will prove in the two items below that lm(ψ)c

is contained in {Xa | 0 ≤ a < |T |}.

• The definition of m implies that at least one of ∂mF
∂Ym

or ∂mG
∂Ym

does not vanish at (0, 0);
let us assume without loss of generality that this is the case for ∂mF

∂Ym
. This implies that

for b = 0, . . . ,m− 1, the coefficient of the monomial Y b in F is zero, while that of Y m

is nonzero. The definition of our local order then implies that Y m is the leading term
of F . Thus, Y m is in lm(I), so that XaY m is in lm(I) for any a ≥ 0.

Take a ≥ 0 and consider an element P ∈ I having leading monomial XaY m. Because
m ≤ d, and due to our assumption on the characteristic of K, we deduce that the
leading monomial of ∂m−1P

∂Ym−1 is m!XaY . Because ∂m−1P
∂Ym−1 is in the ideal ψ, this shows that

for a ≥ 0, XaY is in lm(ψ). In other words, all elements of lm(ψ)c are of the form Xa

for some a ≥ 0.

• By definition of T , X |T |Y m−1 is in lm(I). Differentiating m − 1 times as above, we
deduce that X |T | is in lm(ψ).

This proves that lm(ψ)c is contained in {Xa | 0 ≤ a < |T |}, as claimed above.

This lemma allows us to define the first components m, H of the signature σ(x, y):

34

• m is defined as in the lemma;

• the string H ∈ {”F”, ”G”} indicates which of ∂mF
∂Ym

and ∂mG
∂Ym

is nonzero at (x, y); in case
of a tie, for definiteness, we choose F .

Using the same notation as above, let us define the polynomial H = F (if H = ”F”) or H = G
(if H = ”G”), so that

m = min

{
µ :

∂µH

∂Y µ
(x, y) 6= 0

}
;

in particular, (x, y) is a root of ∂m−1H
∂Ym−1 , but not of ∂mH

∂Ym
. We also define Hc (the “complement”

of H) as either Hc = G if H = F and Hc = F if H = G.
The invertibility assumption of ∂

mH
∂Ym

(x, y) allows us to apply the implicit function theorem

to ∂m−1H
∂Ym−1 at (x, y). Replacing X by x + ξ, where ξ is a new variable, we can find a power

series J∞ in K[[ξ]] such that

∂m−1H

∂Y m−1
(x+ ξ, J∞) = 0, J∞(0) = y;

in particular, there exists A in K[[ξ]][Y] such that

∂m−1H

∂Y m−1
(x+ ξ, Y) = (Y − J∞)A and A(0, y) 6= 0.

Let us further replace Y by y + ζ, where ζ is a new variable, and let us work in the power
series ring K[[ξ, ζ]]. Since A(0, y) is nonzero, A(ξ, y + ζ) is a unit in K[[ξ, ζ]]. We deduce
that in K[[ξ, ζ]], we have the equality between ideals〈

∂m−1H

∂Y m−1
(x+ ξ, y + ζ)

〉
= 〈ζ − (J∞ − y)〉 .

Consider now the following system:

ψ =

〈
F,G,

∂F

∂Y
,
∂G

∂Y
, · · · , ∂

m−1F

∂Y m−1
,
∂m−1G

∂Y m−1

〉
.

The previous lemma implies that (x, y) is a root of ψ of multiplicity n, with n ≤ M/m.
Replacing as above X by x + ξ and Y by y + ζ, and noticing that {F,G} = {H,Hc}, the
previous remark shows that in K[[ξ, ζ]], (0, 0) is a root of multiplicity n of the ideal generated
by (

∂αH

∂Y α
(x+ ξ, J∞)

)
0≤α<m−1

, ζ − (J∞ − y),

(
∂αHc

∂Y α
(x+ ξ, J∞)

)
0≤α<m

.

For α ≥ 0, define the power series in K[[ξ]]

Hα =
∂αH

∂Y α
(x+ ξ, J∞) and Hc

α =
∂αHc

∂Y α
(x+ ξ, J∞),

35

so that the above ideal is generated by〈
H0, H

c
0, H1, H

c
1, . . . , Hm−2, H

c
m−2, ζ − (J∞ − y), Hc

m−1

〉
.

Remark that, with the exception of ζ−(J∞−y), all the above generators are in K[[ξ]]. Since
ζ − (J∞ − y) has degree one in ζ, we deduce that 0 is a root of multiplicity n of the ideal〈

H0, H
c
0, H1, H

c
1, . . . , Hm−2, H

c
m−2, H

c
m−1

〉
⊂ K[[ξ]].

This proves in particular the following lemma.

Lemma 16. The integer n satisfies

n = min ({val(Hα)}0≤α<m−1 ∪ {val(Hc
α)}0≤α<m) ,

where val denotes the ξ-adic valuation.

This allows us to to complete the definition of the signature σ(x, y): the last three
components are n, the index a ∈ {0, . . . ,m − 1} that realizes the minimum above (in case
of a tie, choose the smallest index), and a string K ∈ {”H”, ”Hc”} that indicates whether
this occurs for H or Hc (in case of a tie, choose H). Associated to string K, we have the
corresponding polynomial K ∈ {F,G}, obviously defined as K = H if K = ”H” and K = Hc

otherwise.
Finally, the following lemma will help us give conditions on the preservation of the sig-

nature through specialization at primes, when for instance K = Q.

Lemma 17. For any P in K[X, Y], the ξ-adic valuation of P (x + ξ, J∞) is equal to the
multiplicity of the ideal 〈∂m−1H

∂Ym−1 , P 〉 at (x, y).

Proof. The proof follows essentially the same derivation as above. We have by definition

µ

(〈
∂m−1H

∂Y m−1
, P

〉
, (x, y)

)
= dimKK[[ξ, ζ]]/

〈
∂m−1H

∂Y m−1
(x+ ξ, y + ζ), P (x+ ξ, y + ζ)

〉
.

Now, in K[[ξ, ζ]], we saw that we also have the equality between ideals〈
∂m−1H

∂Y m−1
(x+ ξ, y + ζ)

〉
= 〈ζ − (J∞ − y)〉 ,

so that the above multiplicity can be rewritten as

dimK K[[ξ, ζ]]/ 〈ζ − (J∞ − y), P (x+ ξ, J∞)〉 .

Since P (x+ ξ, J∞) depends only on ξ, this dimension is given by val(P (x+ ξ, J∞)).

36

6 The σ-decomposition

In this section, we consider two polynomials F and G in K[X, Y], over some field K, with
degree at most d. We assume that K is perfect and has characteristic greater than deg(F)
and deg(G), and that F and G have no nontrivial common factor in K[X, Y].

In this case, by Lemma 15, the signature σ(x, y) of any element (x, y) of V = V (F,G)
is well-defined. Since V is finite, we can use the equivalence relation “having the same
signature” to partition it into finitely many equivalence classes. This decomposition will be
called the σ-decomposition of V .

We give here an algorithm that computes this decomposition. We will work under the
extra assumption that F an G are in general position: this assumption implies that there
exist polynomials (P, S) = SL(F,G) in K[X] such that the defining ideal of V admits the
generators 〈P (X), Y − S(X)〉; in particular, P is squarefree.

To define more precisely our output, remember from the last section that the signa-
ture σ(x, y) = (m, H, n, a, K) of a point (x, y) is obtained by defining (m, H) first, then
(n, a, K). Thus, the partition of V we look for will be obtained by first decomposing it into
classes having same values for (m, H), and refining this partition into the σ-decomposition
proper. Accordingly, given (F,G) and (P, S) = SL(F,G) as input, we compute tuples
[(Ci,j, Ti,j,mi, Hi, ni,j, ai,j, Ki,j)]1≤i≤s,j∈Di , such that for all i, j, Ci,j and Ti,j are in K[X],
and for each i, j, (Ci,j, Ti,j) is the Shape Lemma representation of the subset Vmi,Hi,ni,j ,ai,j ,Ki,j
of all elements of V having signature (mi, Hi, ni,j, ai,j, Ki,j). By a slight abuse of notation,
we still call this sequence the σ-decomposition of V , and we denote it by σ-dec(F,G) (it is
uniquely defined up to order).

The first main result of this section is the following complexity bound on this calculation,
when working over a finite field.

Proposition 4. Suppose that F and G are polynomials in K[X, Y], of degree at most d, with
no nontrivial common factor and in general position over a perfect field K. Suppose further
that K has characteristic greater than d.

There exists an algorithm σ−decomposition that takes as input F , G and SL(F,G), and
returns the σ-decomposition of V (F,G). When K = Fp, with p a prime, this algorithm can
be implemented so as to take d3+εO (̃log(p)) bit operations, for any ε > 0.

Remark that when K = Fp, this algorithm is far from being optimal, as both input and
output occupy Θ(d2 log(p)) bits; however, when we apply this algorithm, this will not be
the bottleneck of the whole process. Since the notion of signature we are using comes from
Lecerf’s paper [30], it should also come as no surprise that that reference gives an algorithm
for such a calculation; however, the corresponding complexity result (Proposition 19 of [30])
is not suitable for us: that result is aimed toward multivariate systems, given by straight-line
programs. Adapted to our particular situation, the cost reported there can be as high as
O (̃d8 log(p)) bit operations (which would then become the bottleneck).

When K = Q and F,G have coefficients in Z, we also give conditions under which the
computation reduces well at a prime p; for this to make sense, we must first ensure that p is

37

greater than d, since the base field must have characteristic large enough for the signature
of points to be defined.

The data σ-dec(F,G) consists of a sequence of polynomials, integers and strings; by
reducing such an object modulo p, we refer to the sequence obtained by reducing the coef-
ficients of all polynomials in σ-dec(F,G) modulo p, if no denominator vanishes. We denote
this new sequence σ-dec(F,G) mod p.

Proposition 5. There exists an efficiently computable function ∆3(d, h, `) = (dh`)O(1) such
that the following holds.

Suppose that F and G are polynomials in Z[X, Y], with no nontrivial common factor in
Q[X, Y] and in general position, with degree at most d and length at most h. Suppose as well
that all polynomials appearing in SL(W), for any subset W of V (F,G) defined over Q, have
length at most `. Then, there exists a nonzero integer δ3 such that:

• δ3 has length at most ∆3(d, h, `);

• for any prime p that satisfies the following conditions:

– p does not divide δ3,

– for any subset W of V (F,G) defined over Q, p cancels no denominator in SL(W),

– (F mod p,G mod p) are in general position and (P mod p, S mod p) is the Shape
Lemma representation of V (F mod p,G mod p),

p is greater than d and the equality σ-dec(F,G) mod p = σ-dec(F mod p,G mod p)
holds.

The proof of these propositions occupies the whole section, so in all that follows, we
assume that the assumptions of Proposition 4 are satisfied. First, we mention the following
lemma, which will be used repeatedly.

Lemma 18. Writing the σ-decomposition of V (F,G) as [(Ci,j, Ti,j,mi, Hi, ni,j, ai,j, Ki,j)]1≤i≤s,j∈Di,
the inequality ∑

1≤i≤s,j∈Di

ni,jmi,j deg(Ci,j) ≤ d2

holds.

Proof. The deflation lemma shows that for any root x of Ci,j, ni,jmi,j is a lower bound on
the multiplicity of (F,G) at (x, Ti,j(x)). The above inequality then follows from Bézout’s
theorem.

6.1 Computing all mi’s and Hi’s

In order to motivate the general algorithm, we first briefly explain how to compute the
integer m and string H at a rational point (x, y) ∈ K2 of V (F,G), assuming such a point

38

exists. In this case, the process is straightforward: simply evaluate all required derivatives
at (x, y), and stop as soon as we find a nonzero value.

This is detailed in Algorithm compute m H rational below, where we use a function
nonzero index((x, y), [r1, . . . , rN]) that returns the smallest index i such that ri(x, y) does
not vanish; the index is calculated following the definition of m and H, by choosing F over
G in case of ambiguity (recall that by convention, array indices start at one).

Algorithm 3: compute m H rational(F,G, x, y)

Input: (F,G) in K[X, Y], a point (x, y) in V = V (F,G)
Output: (m, H)

d = max(deg(F), deg(G))1

R = [∂F
∂Y
, ∂G
∂Y
, . . . , ∂

dF
∂Y d

, ∂
dG
∂Y d

]2

n = nonzero index((x, y), R)3

if n is odd then4

return ((n+ 1)/2, ”F”)5

else6

return (n/2, ”G”)7

end8

Given the Shape Lemma representation (P, S) of V , we follow the same approach. The
only significant difference is that zero-tests are replaced by the splitting mechanism of Algo-
rithm nonzero index of Section 3.

To describe the output, note that we can partition V into subsets Vm1,H1 , . . . , Vms,Hs , for
pairwise distinct (mi, Hi), where Vmi,Hi is the subset of V consisting of all (x, y) such that
σ(x, y) = (mi, Hi, . . .); this partition is coarser than the σ-decomposition, and will be refined
later on.

The output of the following algorithm compute m H is the sequence [(Pi, Si,mi, Hi)]1≤i≤s
such that (Pi, Si) is the Shape Lemma representation of Vmi,Hi . This output, just like the
partition Vm1,H1 , . . . , Vms,Hs , is uniquely defined up to order.

Notice for further use that for all i, ∂mi−1Hi
∂Ymi−1 (X,Si) = 0 modulo Pi and ∂mHi

∂Ymi
(X,Si) is a

unit modulo Pi.

39

Algorithm 4: compute m H(F,G, P, S)

Input: (F,G) in K[X, Y], the Shape Lemma representation (P, S) of V = V (F,G)
Output: a sequence [(Pi, Si,mi, Hi)]1≤i≤s

d = max(deg(F), deg(G))1

R0 = [∂F
∂Y
, ∂G
∂Y
, . . . , ∂

dF
∂Y d

, ∂
dG
∂Y d

]2

R = [r mod 〈P, Y − S〉 | r ∈ R0]3

K = nonzero index(P,R) K is a sequence of the form [(Pi, ni)]4

S = []5

for (Pi, ni) in K do6

if ni is odd then7

append (Pi, Si, (ni + 1)/2, ”F”) to S8

else9

append (Pi, Si, ni/2, ”G”) to S10

end11

end12

return S13

Lemma 19. Algorithm compute m H is correct. When K = Fp, one can implement it so as
to take d3+εO (̃log(p)) bit operations, for any ε > 0.

Proof. Correctness of the algorithm directly follows from the correctness of nonzero index,
and the fact that all mi’s are at most d, as proved in the deflation lemma.

For the complexity analysis in the particular case K = Fp, remark first that P has degree
e ≤ d2. We deduce from Lemma 9 that the cost of nonzero index is O (̃d3) operations in K,
that is, O (̃d3 log(p)) bit operations (arithmetic operations in Fp can all be done in O (̃log(p))
bit operations. Thus, all that remains is the cost of computing polynomials R at steps 2
and 3.

This is achieved by combining these two steps into one call to Algorithm normal forms of
Proposition 3, with input t = 1, and L,L′, L′′, F , where L is the list [(0, d)], L′ is the list [P]
and L′′ is the list [S]. The output (F1) of this algorithm is

F1 = F (X + ξ, S + ζ) mod 〈P (X), ξ, ζd+1〉 = F (X,S + ζ) mod 〈P (X), ζd+1〉.

As noted in Section 4, we deduce that we can compute

Dµ =
∂µF

∂Y µ
(X,S) mod 〈P (X)〉

as
Dµ = µ! cf(F1, ζ

µ),

so we have obtained half the polynomials we wanted; doing the same with G, we obtain all
normal forms we required.

The multiplications by the various constants 0!, 1!, . . . , d! take O (̃d3 log(p)) bit opera-
tions, so we can focus on the call to Algorithm normal forms. In order to satisfy Assumption

40

HNF of Proposition 3, let us write d′ = dd3/2e. Since, with the notation of that proposition,
we have n1 = 0, m1 = d and e ≤ d2, we see that (n1 + 1)(m1 + 1)e is O(d3) = O(d′2). Thus,
we are under the assumptions of that proposition, up to replacing d by d′. For any ε > 0,
calling Proposition 3 can be done in d′2+εO (̃log(p)) bit operations; this is d3+εO (̃log(p)), as
claimed.

It would be possible to reduce the cost to d2+εO (̃log(p)) bit operations, using Lemma 18
and some amortization techniques; however, the cost d3+εO (̃log(p)) we obtained above is
sufficient to make this calculation negligible in the total cost of the main algorithm. Note
that we will use amortization techniques for some algorithms in the next subsections, for
otherwise they would become a bottleneck.

Suppose now that we are over K = Q, and that F and G are in Z[X, Y]. The following
discussion gives conditions under which the above calculation admits a good reduction at a
prime p.

Lemma 20. There exists an efficiently computable function ∆3,1(d, h, `) = (dh`)O(1) such
that the following holds.

Suppose that F and G are polynomials in Z[X, Y], with no nontrivial common factor in
Q[X, Y] and in general position, with degree at most d and length at most h. Let (P, S) =
SL(F,G) and suppose that P and S have length at most `. There exists a nonzero integer
δ3,1 such that:

• δ3,1 has length at most ∆3,1(d, h, `);

• for any prime p that satisfies the following conditions:

– p does not divide δ3,1,

– for any subset W of V (F,G) defined over Q, p cancels no denominator in SL(W),

– (F mod p,G mod p) are in general position and (P mod p, S mod p) is the Shape
Lemma representation of V (F mod p,G mod p),

p is greater than d and the sequence obtained from compute m H(F,G, P, S) mod p
coincides with the output of compute m H(F mod p,G mod p, P mod p, S mod p).

Proof. Let [(Pi, Si,mi, Hi)]1≤i≤s be the output of compute m H(F,G, P, S). For a given index
i in {1, . . . , s}, the corresponding integer mi is characterized as follows: for each entry A

coming before ∂miHi
∂Ymi

in the sequence [∂F
∂Y
, ∂G
∂Y
, . . . , ∂

dF
∂Y d

, ∂
dG
∂Y d

], we have A(X,Si(X)) = 0 mod Pi;

for the entry ∂miHi
∂Ymi

, we have gcd(∂
miHi
∂Ymi

(X,Si(X)), Pi) = 1. This latter condition is equivalent

to ∂miHi
∂Ymi

vanishing nowhere on V (Pi(X), Y − Si(X)).

Thus, the polynomials Pi, Si,
∂miHi
∂Ymi

satisfy conditions C1 and C2 of Proposition 1. We
claim that we can take for δ3,1 the product of the integers δ1 associated by that proposition
to the systems Pi, Si,

∂miHi
∂Ymi

, for i = 1, . . . , s, multiplied by d!.
Let indeed p be a prime that satisfies the assumptions listed in the statement of the

present lemma; in particular, it does not divide δ3,1.

41

Then, by these assumptions, all Pi’s and Si’s can be reduced modulo p; besides, because
the polynomial P in SL(F,G) remains squarefree modulo p, this is also the case for all
Pi’s, and these polynomials remain pairwise coprime modulo p. Thus, the polynomials
[(Pi mod p, Si mod p)]1≤i≤s form the Shape Lemma representations of some partition of
V (F mod p,G mod p). It remains to see whether this is the same partition as the one
obtained by running the algorithm over Fp, with input (F,G, P, S) mod p.

Let us first point out that because p does not divide d!, p is greater than d. Thus, by the
deflation lemma, every point (x, y) in V (F mod p,G mod p) admits a well-defined signature
(m, H, n, a, K); m is characterized as the smallest integer such that either ∂mF

∂Ym
or ∂mG

∂Ym
does

not vanish at (x, y).
On input (F,G, P, S) mod p, Algorithm compute m H returns the partition V (F mod

p,G mod p) according to these values of m and H. Now, the assumption that p does not
divide δ3,1 shows that for any (x, y) root of (Pi mod p, Y − Si mod p), the values of m and
H are precisely mi and Hi, so by uniqueness of the Shape Lemma representation, the tuples
[(Pi mod p, Si mod p,mi, Hi)]1≤i≤s are indeed the output obtained by running the algorithm
over Fp, with input (F,G, P, S) mod p.

Thus, our claims are proved, except for the upper bound ∆3,1 on the length of δ3,1. There
are at most d2 families Pi, Si,

∂miHi
∂Ymi

to take into account. Each of the polynomials ∂miHi
∂Ymi

has degree at most d, and length h′ ≤ h + len(d!), which is O (̃h + d), where the term
len(d!) accounts for the length growth through differentiation. We can then take ∆3,1 =
d2∆1(d, h′, d2, `) + len(d!), where ∆1 is the function defined in Proposition 1 and the term
len(d!) accounts for the multiplication by d!.

6.2 Computing all Ji’s

Suppose that we have determined the sequence [(Pi, Si,mi, Hi)]1≤i≤s of the previous subsec-
tion; we now want to compute power series Ji’s as defined in Section 5. Compared to the
presentation section, there is a slight difference: we are not working at a point (x, y) with

coordinates in K2
, but with points given through Shape Lemma representations.

Let us thus fix an index i in {1, . . . , s}. Associated to Pi, one can define the ring Bi =
K[X]/〈Pi〉; this is in general not a field, but only a product of fields. Two elements will
be highlighted in Bi: the residue class xi of X, and the residue class yi of Si(X). Thus,
by construction, F (xi, yi) = G(xi, yi) = 0 (where F and G are viewed as polynomials in
Bi, through the canonical injection K→ Bi). We noted in the previous subsection that the
polynomial Hi associated to Pi and Si is such that

∂mi−1Hi

∂Y mi−1
(xi, yi) = 0 in Bi and

∂miHi

∂Y mi
(xi, yi) is a unit in Bi. (6)

This is sufficient for us to apply Newton iteration, and compute a power series J∞i in Bi[[ξ]]
such that

∂mi−1Hi

∂Y mi−1
(xi + ξ, J∞i) = 0 and J∞i (0) = yi. (7)

42

The following algorithm describes this process. Remark that one can relate this construction
to the one in Section 5: if x ∈ K is a root of Pi and y = Ti(x), so that (x, y) is in V (F,G),
the power series J∞ ∈ K[[ξ]] associated to (x, y) in that section is obtained by letting xi = x
in J∞i (which is valid because x is a root of Pi).

The algorithm will actually be used in a slightly more general context than the one just
described. First, instead of taking as input only the polynomials Pi and Si computed in
the previous subsection, we will as well call this algorithm using input polynomials (Ci, Ti),
where Ci may be only a factor of Pi, and Ti will replace Si (if Ci is a factor of Pi, we may for
example take Ti = Si mod Ci). In any case, we will solve for J∞i that satisfies Eq. (7) above,
with yi now being the residue class of Ti modulo Ci. The second minor extension is that we
will not necessarily work over a field K, but possibly only a ring denoted A (which will be
of the form Z/NZ below); this is a harmless assumption, since the algorithm only requires
that (6) above holds. As a matter of notation, Bi will then denote Bi = A[X]/〈Ci〉.

As input, the algorithm takes positive integers ni as extra parameters, which give the
required precision in ξ for the power series J∞i . Since our output is truncated modulo ξni ,
we denote it by Ji, and keep the notation J∞i for the infinite-precision solution of equations
such as (7).

The computations themselves are a simple form of Newton iteration; the only important
point is to control of the cost of the evaluations of the functions ∂mi−1Hi

∂Ymi−1 and their derivatives.

Algorithm 5: compute J(F,G, [(Ci, Ti,mi, Hi, ni)]1≤i≤s)

Input: F , G, a sequence of polynomials Ci and Ti in A[X], strings Hi and indices mi

and ni
Output: a sequence [Ji]1≤i≤s with Ji ∈ Bi[[ξ]] known mod ξni that satisfies (7) mod

ξni

λ = 11

[Ji]1≤i≤s = [Ti]1≤i≤s2

I = [i | 1 ≤ i ≤ s and 1 < ni] indices for which we need to lift further3

IF = [i | 1 ≤ i ≤ s and Hi = ”F”] indices for which H = F4

IG = [i | 1 ≤ i ≤ s and Hi = ”G”] indices for which H = G5

while I is not empty do6

[ηi]i∈I = [∂
mi−1F
∂Ymi−1 (X + ξ, Ji) mod 〈Ci(X), ξ2λ〉]i∈I∩IF cat7

[ηi]i∈I = [∂
mi−1G
∂Ymi−1 (X + ξ, Ji) mod 〈Ci(X), ξ2λ〉]i∈I∩IG

[η′i]i∈I = [∂
miF
∂Ymi

(X + ξ, Ji) mod 〈Ci(X), ξ2λ〉]i∈I∩IF cat8

[η′i]i∈I = [∂
miG
∂Ymi

(X + ξ, Ji) mod 〈Ci(X), ξ2λ〉]i∈I∩IG
for i in I do9

Ji = Ji − ηi/η′i mod 〈Ci(X), ξ2λ〉10

end11

λ = 2λ12

I = [i | 1 ≤ i ≤ s and λ < ni] indices for which we need to lift further13

end14

return [Ji mod ξni]1≤i≤s we may know Ji at a slightly higher precision than ni15

43

Lemma 21. Algorithm compute J is correct. When A = Z/NZ, when N is a power of a
prime p, for any ε > 0, one can implement this algorithm so that it takes d2+εO (̃log(N))
bit operations, provided

∑
1≤i≤s ni(mi + 1) deg(Ci) = O(d2) holds.

Proof. The algorithm essentially implements Newton iteration, over all Bi[[ξ]] independently.

By assumption, for all i, ∂mi−1Hi
∂Ymi−1 (xi, yi) = 0 in Bi and ∂miHi

∂Ymi
(xi, yi) is a unit in Bi, so even

when we work over a ring A rather than a field, we can indeed run Newton iteration. The
sequence I indicates the indices for which we have not reached the required precision yet;
these are the indices for which we do further iteration steps. Sequences IF and IG indicate
which indices use F or G to do the lifting.

It remains to do the cost analysis, in the case where A = Z/NZ; all the cost is spent in
the main loop (at the beginning, the Ti’s are already reduced modulo the respective Ci’s;
at the end, truncation is free). First, remark that the highest value λ will reach will be
O(maxi ni), which is O(d2) by assumption. As a consequence, the number of times we will
enter the loop is O(log(d)), which we will be able to absorb in the term d2+ε. Thus, we can
focus on the cost of a single pass through the loop.

The inversion and multiplication at Step 10 take O (̃
∑

i∈I deg(Ci)λ) operations in Z/NZ,
or O (̃

∑
i∈I deg(Ci)λ log(N)) bit operations; this will be absorbed in the cost of Steps 7 and 8,

which are more delicate to analyze.
Since we are over Z/NZ, we use algorithm normal forms of Proposition 3 to compute the

values ηi and η′i, simultaneously for all indices i in I. We call this algorithm twice: once
using F for the indices i in IF , then using G for those indices i in IG; it is enough to analyze
the cost for, say, F .

We call algorithm normal forms with an input size tF (the cardinality of I ∩ IF), and lists
L,L′, L′′ and polynomial F as follows: we take L = [(2λ−1,mi)]i∈I∩IF , L′ = [Ci]i∈I∩IF and
L′′ = [Ji]i∈I∩IF . The key remark is that when we are at precision λ, all indices i remaining
in I ∩ IF satisfy λ < ni; thus, the input size satisfies∑

i∈I∩IF

2λ(mi + 1) deg(Ci) ≤
∑
i∈I∩IF

2ni(mi + 1) deg(Ci),

which is O(d2) by assumption. Thus, assumption HNF of Proposition 3 is satisfied, so for
any ε > 0, we can compute

Di,µ =
∂µF

∂Y µ
(X + ξ, Ji) mod 〈Ci(X), ξ2λ〉,

for all i in I ∩ IF and µ = 0, . . . ,mi, using d2+εO (̃log(N)) bit operations. Keeping those
derivatives of order mi and mi−1 gives us the requires values ηi and η′i.

6.3 Computing all ni’s, ai’s and Ki’s

Finally, we want to compute the values of n, a and K at all points in V . As input, we start
from the sequence [(Pi, Si,mi, Hi)]1≤i≤s computed in Section 6.1; recall that this sequence
defines the partition of V into sets (Vmi,Hi)1≤i≤s.

44

The σ-decomposition of V that we wish to compute is a refinement of the partition
(Vmi,Hi)1≤i≤s; in other words, we obtain it by partitioning further each Vmi,Hi into subsets
(Vσi,j)j∈Di , for some index set Di; each σi,j takes the form σi,j = (mi, Hi, ni,j, ai,j, Ki,j). Our
output will consist in a similarly indexed array of the form [(Ci,j, Ti,j,mi, Hi, ni,j, ai,j, Ki,j)]1≤i≤s,j∈Di ,
such that for all i, j, (Ci,j, Ti,j) is the Shape Lemma representation of Vσi,j .

To describe the idea the algorithm, let us fix the index i in {1, . . . , s}. Then, we need
to compute the power series Ji defined in the previous section at some suitable precision λ,
and deduce the expansions of ∂µF

∂Y µ
(X + ξ, Ji) mod ξλ and ∂µG

∂Y µ
(X + ξ, Ji) mod ξλ for suitable

values of µ; this will be done at successive precisions λ = 1, 2, 4, . . . in ξ.
Suppose we have obtained these expansions modulo ξλ. If we were over a field, using

Lemma 16, we would then look for the expansion with smallest valuation in ξ; however, we
are working over Bi = K[X]/〈Pi〉, which is not necessarily a field. Thus, we apply Algorithm
nonzero index vectorial of Section 3; it returns factors of Pi for which we have found the
correct valuation, together with possibly a residual factor, for which we have to increase the
precision λ in ξ. Thus, we replace Pi by this factor, multiply λ by 2, and start over. In order
to distinguish between the input polynomials (Pi, Si) and their factors, we use new variables
called (Ci, Ti) as our current polynomials.

The following algorithm called compute n a K implements this idea; the fact that we have
to handle as well the strings Hi to decide with partial derivatives to consider makes for some
admittedly clumsy bookkeeping (which we explain in the proof of the following lemma).
In the pseudo-code, we use the subroutine cf(P, ξj) which returns the coefficient of ξj in
polynomial P ; further subroutines infinity, index of and polynomial, that are only designed
for said bookkeeping purposes, are explained in the proof of the lemma.

Lemma 22. Algorithm compute n a K terminates and is correct. When K = Fp, for any
ε > 0, one can implement it so that it takes d2+εO (̃log(p)) bit operations.

Proof. To establish correctness, we first prove that the following invariant is preserved
throughout the while loop: at the beginning of the loop,

• for all indices i in I, (Ci, Ti) is the Shape Lemma representation of the union of all
subsets Vσi,j , for σi,j of the form σi,j = (mi, Hi, n, a, K), for some indices n, a, K such that
n ≥ λ;

• L contains the entries [(Ci,j, Ti,j,mi, Hi, ni,j, ai,j, Ki,j)]i,j, for all indices i in {1, . . . , s}
and j in Di such that ni,j < λ.

Initially, λ = 1, I = [1, . . . , s] and L is empty; since all ni,j are at least equal to one, our
loop invariant holds. Supposing that we maintained the invariant up to some exponent λ,
we prove that they will be maintained through the next pass in the loop.

Step 8 computes the sequence [Ji]i∈I ; those are power series known modulo 〈Ci, ξ2λ〉,
such that, for all i,

∂mi−1Hi

∂Y mi−1
(X + ξ, Ji) = 0 mod ξ2λ and Ji(0) = Ti

45

Algorithm 6: compute n a K (F,G, [(Pi, Si, Hi,mi)]1≤i≤s)

Input: the sequence [(Pi, Si,mi, Hi)]1≤i≤s computed in Section 6.1
Output: a sequence [(Ci,j, Ti,j,mi, Hi, ni,j, ai,j, Ki,j)]1≤i≤s,j∈Di
λ = 11

L = []2

I = [1, . . . , s]3

IF = [i | 1 ≤ i ≤ s and Hi = ”F”]4

IG = [i | 1 ≤ i ≤ s and Hi = ”G”]5

[Ci, Ti]i∈I = [Pi, Si]i∈I6

while I is not empty do7

[Ji]i∈I = compute J(F,G, [Ci, Ti,mi, Hi, 2λ]i∈I)8

[ηi,α]i∈I,α∈[0,...,mi−1] = [∂
αF
∂Y α

(X + ξ, Ji) mod 〈Ci(X), ξ2λ〉]i∈I,α∈[0,...,mi−1]9

[γi,α]i∈I,α∈[0,...,mi−1] = [∂
αG
∂Y α

(X + ξ, Ji) mod 〈Ci(X), ξ2λ〉]i∈I,α∈[0,...,mi−1]10

for i in I do11

if i is in IF then12

Ri =13

[[cf(ηi,0, ξ
j), cf(γi,0, ξ

j), . . . , cf(ηi,mi−2, ξ
j), cf(γi,mi−2, ξ

j), cf(γi,mi−1, ξ
j)]]j=0,...,2λ−1

else14

Ri =15

[[cf(γi,0, ξ
j), cf(ηi,0, ξ

j), . . . , cf(γi,mi−2, ξ
j), cf(ηi,mi−2, ξ

j), cf(ηi,mi−1, ξ
j)]]j=0,...,2λ−1

Li = nonzero index vectorial(Ci, Ri) Li has the form [(Ci,j, (ni,j, `i,j))]j∈Di16

Ci = infinity(Li)17

if Ci is not constant then18

remove Ci from Li update Ci and Ti19

Ti = Ti mod Ci20

else21

remove i from I we are done with this index22

Ti,j = [Ti mod Ai,j]Ai,j∈Li23

L = L cat [(Ci,j, Ti,j,mi, Hi, ni,j, index of(ni,j, Ri), polynomial(ni,j, Ri))]j∈Di24

end25

λ = 2λ26

end27

return L28

46

hold modulo Ci. In what follows, it will be useful to write J∞i for the power series in Di[[ξ]]

that satisfies ∂mi−1Hi
∂Ymi−1 (X + ξ, Ji) = 0 and Ji(0) = Ti, with Di = K[X]/〈Ci〉; in particular,

Ji = J∞i mod ξ2λ for all i.
Consider an index i in I; without loss of generality, we assume that I is in IF , that is,

that Hi is the string ”F”; the case where Hi is equal to ”G” is handled similarly, up to the
difference in indices.

In this case, Lemma 16 shows that for any (x, y) in V (Ci, Y − Ti) ⊂ Fp
2
, the integer n

appearing in its signature satisfies

n = min

({
val

(
∂αF

∂Y α
(x+ ξ, J∞i (x))

)}
0≤α<mi−1

∪
{

val

(
∂αG

∂Y α
(x+ ξ, J∞i (x))

)}
0≤α<mi

)
,

where val denotes the ξ-adic valuation and J∞i (x) denotes the power series in K[[ξ]] obtained
by evaluating X at x in J∞i (this is valid, since J∞i has coefficients in Di, and x is a root of
Ci). Define similarly ηi,α(x) and γi,α(x) as the polynomials in K[ξ]2λ obtained by evaluating
respectively ηi,α and γi,α at X = x. Then, in view of the calculations at Steps 9 and 10, we
see that either n ≥ 2λ, in which case all of

(ηi,α(x))0≤α<mi−1 and (γi,α(x))0≤α<mi

vanish, or n can be rewritten as

n = min
(
{val(ηi,α(x))}0≤α<mi−1 ∪ {val(γi,α(x))}0≤α<mi

)
.

The sequence Ri then precisely contains the coefficients of power series ηi,α and γi,α that we
have to test for zero at the roots x of Ci (the way that Ri is sorted follows from our definition
of the index a and the polynomial K in the signature of a point).

The call to nonzero index vectorial(Ci, Ri) returns a sequence Li = [(Ci,j, (ni,j, `i,j))]j∈Di ,
such that Ci =

∏
j∈Di Ci,j, with either (ni,j, `i,j) in {0, . . . , 2λ − 1} × {1, . . . , 2mi − 1} (the

former length is the length of Ri, the latter the length of the entries in Ri) or (ni,j, `i,j) =
(∞,∞); the roots of Ci,j are the roots x of Ci having n = ni,j, when ni,j <∞, or for which
all we can say is that n ≥ 2λ, when ni,j =∞.

If ni,j =∞ does not show up, we have found the valuation for all roots of Ci; otherwise,
the roots corresponding to ni,j = ∞ will have to enter the next pass in the while loop.
This is decided at Step 17, where subroutine infinity extracts the entry (Ci,j, (ni,j, `i,j)) in Li
having ni,j =∞, if such an entry exists, and replaces Ci by this polynomial Ci,j. If no such
entry exists, infinity returns and assign 1 to Ci.

If the new value of Ci has positive degree, we update Ti as well, so that (Ci, Ti) is the
Shape Lemma representation of all roots of Pi having n ≥ 2λ — this proves that the first
half of our loop invariant will be satisfied for the next iteration. If the new value of Ci is
equal to 1, we are done with all roots of Pi, so we can remove i from index set I.

It remains to update the sequence L with those entries of Li corresponding to ni,j <∞.
For all these entries, the index `i,j ∈ {1, . . . , 2mi−1} tells us which polynomial in Ri yielded

47

a nonzero value. The subroutines index of and polynomial simply deduce the corresponding
index ai,j (in either {0, . . . ,mi − 2} or {0, . . . ,mi − 1}), and the corresponding string Ki,j
indicates whether the non-vanishing occurred for one of the ηi,α’s or γi,α’s. This construction
shows that the second half of our loop invariant will be satisfied for the next iteration, so we
are done with our induction proof of correctness.

Next, remark that the algorithm terminates: indeed, all ni,j satisfy the crude upper
bound ni,j ≤ d2. At the end of the algorithm, I is empty and our loop invariant proves that
the output is correct.

It remains to do the cost analysis, when K = Fp. Because all ni,j are at most d2, the
number of passes through the while loop is O(log(d)), which we will be able to absorb in
the term dε. We can thus focus on a given pass through the loop, for some precision λ. The
key inequality to notice is that ∑

i∈I

2λmi deg(Ci) = O(d2). (8)

Indeed, for all indices i remaining in I at this stage, the index n of any root x of Ci is at
least λ (as per our loop invariant), so our claim follows from Lemma 18.

As a consequence, we can apply Lemma 21, which proves that the cost of computing all Ji
is d2+εO (̃log(p)) bit operations. Similarly, the inequality above shows that the computation
of all [ηi,α]i∈I,α∈[0,...,mi−1] can handled by Algorithm normal forms, with input lists L,L′, L′′

given by L = [(2λ− 1,mi − 1)]i∈I , L
′ = [Ci]i∈I and L′′ = [Ji]i∈I ; in view of Proposition 3,

the cost is d2+εO (̃log(p)) bit operations as well.
The sequence Ri has length O(λ), with entries of length O(mi), containing polyno-

mials of degree less than deg(Ci). Then, Lemma 10 implies that the cost of the call to
nonzero index vectorial(Ci, Ri) is O (̃λmi deg(Ci)) operations in Fp. Using (8) again, we de-
duce that the total cost over all i’s is O (̃d2) operations in Fp, that is, O (̃d2 log(p)) bit
operations.

All other arithmetic operations (remainder at Step 20 and multiple remainders at Step 23)
take time O (̃deg(Ci)) operations in Fp, for a total of O (̃d2 log(p)) bit operations. Summing
all costs seen so far, we conclude the proof of the lemma.

The main algorithm of this section, Algorithm σ-dec, is simply the combination of com-
pute m H and compute n a K. Combining the results of Lemmas 19, 21 and 22 proves the
complexity statement in Proposition 4. It remains to prove Proposition 5, about primes of
good reduction.

Let us thus assume that K = Q and let p be a prime that does not divide the integer
δ3,1 of Lemma 20, and that satisfies the following assumptions, that are taken from either
Lemma 20 or Proposition 5:

• for any subset W of V (F,G) defined over Q, p cancels no denominator in SL(W),

• (F mod p,G mod p) are in general position and (P mod p, S mod p) is the Shape Lemma
representation of V (F mod p,G mod p).

48

Further assumptions will be put on p, but we can already deduce the following facts: by the
first point above p divides no denominator in the coefficients of any polynomial Ci,j or Ti,j;
since P is the product of all Ci,j’s and it remains squarefree modulo p, the second item shows
that the pairs (Ci,j mod p, Ti,j mod p)1≤i≤s,j∈Di are the Shape Lemma representations of a
partition of V (F mod p,G mod p). It remains to see whether this is the σ-decomposition of
this set (which is well-defined, since p not dividing δ3,1 implies that p > d).

Consider a component (Ci,j, Ti,j,mi, Hi, ni,j, ai,j, Ki,j) of the σ-decomposition of V (F,G),
with i and j fixed throughout. By Lemma 20, another consequence of the fact that p does
not divide δ3,1 is that the sequence obtained from compute m H(F,G, P, S) mod p coincides
with the output of compute m H(F mod p,G mod p, P mod p, S mod p).

This implies that for any (x, y) in V (Ci,j mod p, Y − Ti,j mod p) ⊂ Fp
2
, the signature of

(x, y) has the form (mi, Hi, . . .). To conclude, it is enough to prove that this signature is
indeed (mi, Hi, ni,j, ai,j, Ki,j).

Let Di,j denote the ring Q[X]/〈Ci,j〉 and let J∞i,j be the power series in Di,j[[ξ]] that
satisfies

∂mi−1Hi

∂Y mi−1
(xi,j + ξ, J∞i,j) = 0 and J∞i,j (0) = yi,j,

where xi,j and yi,j is the respective images of X and Ti,j in Di,j. Then, we know from
Lemma 16 that ni,j, ai,j and Ki,j are determined as follows: consider the power series in
Di,j[[ξ]] given by

Hi(xi,j + ξ, J∞i,j), H
c
i (xi,j + ξ, J∞i,j), . . . ,

∂mi−2Hi

∂Y mi−1
(xi,j + ξ, J∞i,j),

∂mi−2Hc
i

∂Y mi−2
(xi,j + ξ, J∞i,j),

∂mi−1Hc
i

∂Y mi−1
(xi,j + ξ, J∞i,j).

Then, ni,j is such that for all n < ni,j, the coefficient of ξn of all these power series vanishes.

For n = ni,j, the coefficient of ξni,j of all power series obtained from Hi, H
c
i ,

∂Hi
∂Y
,
∂Hc

i

∂Y
, . . .

vanishes, until we reach
∂ai,jKi,j
∂Y ai,j

(xi,j + ξ, J∞i,j), for which that coefficient is a unit.
To prove our claim, it suffices to give conditions on p under which this remains the case

modulo p. The calculation of J∞i,j commutes with reduction modulo p, so the vanishing
conditions will continue to hold modulo p, and we are left to ensure that the coefficient of

ξni,j in
∂ai,jKi,j
∂Y ai,j

(xi,j + ξ, J∞i,j) remains a unit modulo p.

That coefficient being a unit is equivalent to
∂ai,jKi,j
∂Y ai,j

(x+ ξ, J∞i,j (x)) having valuation ni,j
for all (x, y) in V (Ci,j(X), Y −Ti,j(X)), where J∞i,j (x) is the power series in K[[ξ]] obtained by
evaluating xi,j at x in J∞i,j . By Lemma 17, this is equivalent to all points in V (Ci,j(X), Y −
Ti,j(X)) being roots of multiplicity ni,j of the system (∂

mi−1Hi
∂Ymi−1 ,

∂ai,jKi,j
∂Y ai,j

).

The polynomials Ci,j, Ti,j,
∂mi−1Hi
∂Ymi−1 ,

∂ai,jKi,j
∂Y ai,j

thus satisfy the assumptions of Proposition 2.
We deduce that if p does not divide the integer, say δ2,i,j, associated to these polynomials

by that proposition, the multiplicity of (∂
mi−1Hi
∂Ymi−1 ,

∂ai,jKi,j
∂Y ai,j

) at any root of Ci,j(X), Y −Ti,j(X)
modulo p remains ni,j. As a result, applying again Lemma 17 shows that the corresponding

coefficient of
∂ai,jKi,j
∂Y ai,j

(xi,j +ξ, J∞i,j) remains invertible in Fp[X]/〈Ci,j mod p〉, and we are done.

49

Taking all Ci,j into account, we see that to ensure success it is sufficient to impose the
new condition that p divides none of the integers δ2,i,j, or equivalently that it does not divide
their product δ2. Thus, we naturally define δ3 = δ2δ3,1.

To quantify this construction, recall that we suppose that F and G have degree at most

d and length at most h. There are at most d2 systems of the form Ci,j, Ti,j,
∂mi−1Hi
∂Ymi−1 ,

∂ai,jKi,j
∂Y ai,j

to take into account. In any of these systems, the degree and length of polynomials ∂miHi
∂Ymi

and
∂ai,jKi,j
∂Y ai,j

are respectively at most d and h+ len(d!), which is O (̃h+ d).
If we assume that Ci,j and Ti,j have length at most `, the bounds given in Proposition 2

show that the product δ2 of all δ2,i,j’s we consider admits an efficiently computable upper
bound of the form ∆2 = (dh`)O(1). Together with the bound given in Lemma 20 for δ3,1, this
finally leads us to define ∆3 = ∆3,1∆2, and allows us to conclude the proof of Proposition 5.

7 Newton iteration

In this section, we give the details of a Newton iteration for systems with multiplicities that
follows naturally from the deflation lemma. The following is essentially a particular case of
the general algorithm from [30]; however, we give a simpler, self-contained presentation of
the result we need, which will make it easy for us to give a cost analysis in the next section
(as in the previous section, reusing directly the complexity estimates of [30] in our setting
would lead to costs much higher than the one we will obtain).

Let D be a commutative ring and let (x?, y?) in D, m in N and H in D[X, Y] be such
that the following holds:

N1. ∂m−1H
∂Ym−1 (x?, y?) = 0.

N2. ∂mH
∂Ym

(x?, y?) is a unit in D.

We suppose in addition that m is an ideal in D such that m2 = (0). In what follows, we
suppose that we know (x, y) in D, with both x− x? and y − y? in m, and we will show how
to recover x? and y?, using a second equation K; further assumptions on (x?, y?) will be
introduced when needed.

Solving for Y . Given (x, y) in D, with both x − x? and y − y? in m, Newton iteration
applied (with respect to Y) to the polynomial ∂m−1H

∂Ym−1 shows that there exist a unique yx in
D such that

∂m−1H

∂Y m−1
(x, yx) = 0, yx = y mod m. (9)

Explicitly, yx is given by

yx = y −
∂m−1H
∂Ym−1 (x, y)
∂mH
∂Ym

(x, y)
. (10)

This is well-defined, since ∂mH
∂Ym

(x?, y?) being a unit implies that ∂mH
∂Ym

(x, y) is a unit as well.
Remark also that since m2 = (0) in D, doing just one step of Newton iteration is sufficient
to find the root yx.

50

For x = x?, we obviously get yx? = y?. Finally, note that in any case, yx as defined above
also satisfies yx = y? mod m.

The implicit functions J∞. Let ξ be a new variable, which we will use for power series
over D. Given x in D, with x − x? in m, our next goal is to compute, if it exists, a power
series J∞ in D[[ξ]] such that

∂m−1H

∂Y m−1
(x+ ξ, J∞) = 0, J∞(0) = y? mod m. (11)

Remark that very similar power series were already considered in Sections 5 and 6.

Lemma 23. A power series J∞ satisfies (11) if and only if it satisfies

∂m−1H

∂Y m−1
(x+ ξ, J∞) = 0, J∞(0) = yx. (12)

Proof. Of course, if J∞ satisfies (12), it satisfies the seemingly weaker condition (11) (recall
that yx = y? mod m) . Conversely, suppose that J∞ satisfies (11); we only have to prove
that J∞(0) = yx. Start from condition ∂m−1H

∂Ym−1 (x + ξ, J∞) = 0, and evaluate ξ at 0. This

shows that the element J∞(0) ∈ D satisfies ∂m−1H
∂Ym−1 (x, J∞(0)) = 0 and J∞(0) = y mod m; the

uniqueness of the solution of (9) proves that J∞(0) = yx.

Applying again Newton iteration, this time modulo the powers of ξ, we deduce that there
exits a unique power series J∞x in D[[ξ]] that satisfies (12), or equivalently (11). Of particular
interest will be the power series J? = J∞x? associated to x?, which thus satisfies

∂m−1H

∂Y m−1
(x? + ξ, J?) = 0, J?(0) = y?.

Of course, since x? and y? are unknown to us, we cannot compute J?. However, for any
x such that x − x? ∈ m, we claim that we have J∞x = J? mod m. We will actually prove
something more precise:

Lemma 24. Let x be in D, such that x = x? mod m. Then the equality

J∞x = J? + (x− x?)dJ
?

dξ

holds.

Proof. We prove that the power series Cx = J? + (x− x?)dJ?
dξ

is equal to J∞x . In view of the

uniqueness property, it suffices to prove that Cx satisfies both conditions in (11). We start
by evaluating the functional in (11) at x+ ξ and Cx; this gives

∂m−1H

∂Y m−1
(x+ ξ, Cx) =

∂m−1H

∂Y m−1
(x? + ξ + (x− x?), J? + (x− x?)dJ

?

dξ
).

51

Because x− x? is in m, and m2 = (0), we can do a Taylor expansion at the first order, and
deduce that the previous quantity is

∂m−1H

∂Y m−1
(x? + ξ, J?) + (x− x?) ∂mH

∂X∂Y m−1
(x? + ξ, J?) + (x− x?)dJ

?

dξ

∂mH

∂Y m
(x? + ξ, J?).

The first term above vanishes by definition of J?, so we are left with

(x− x?)
(

∂mH

∂X∂Y m−1
(x? + ξ, J?) +

dJ?

dξ

∂mH

∂Y m
(x? + ξ, J?)

)
.

The right-hand factor is identically zero, since it is the derivative with respect to ξ of the
defining equation for J?. Thus, we are done with the first condition for Cx.

To prove the second one, note that because x − x? is in m, Cx = J? mod m. As a
consequence, Cx(0) = J?(0) mod m, and thus Cx(0) = y? mod m. This proves the second
condition for Cx, and thus that Cx = J∞x .

Using the second equation. Let us now consider a further polynomial K in D[X, Y],
together with an integer a ≥ 0. To x in D, such that x = x? mod m, we now associate

S∞x =
∂aK

∂Y a
(x+ ξ, J∞x),

which is a well-defined power series in D[[ξ]]. Inspired by the notation above, we write
S? for the particular case x = x?. The following lemma shows that S∞x is a first-order
approximation of S?.

Lemma 25. Let x be in D, such that x = x? mod m. The equality

S∞x = S? + (x− x?)dS
∞
x

dξ

holds.

Proof. Let us write P = ∂aK
∂Y a

. We have to prove that

P (x+ ξ, J∞x) = P (x? + ξ, J?) + (x− x?) d
dξ
P (x+ ξ, J∞x).

The proof is similar to that in the previous lemma. Recall that J∞x = J? + (x − x?)dJ
?

dξ
.

Thus, the left-hand side is

P

(
x? + ξ + (x− x?), J? + (x− x?)dJ

?

dξ

)
,

which gives, after a first-order Taylor expansion,

P (x? + ξ, J?) + (x− x?) ∂P
∂X

(x? + ξ, J?) + (x− x?)dJ
?

dξ

∂P

∂Y
(x? + ξ, J?)

= P (x? + ξ, J?) + (x− x?) d
dξ
P (x? + ξ, J?).

52

Because x = x? mod m and J∞x = J? mod m, we deduce that P (x + ξ, J∞x) = P (x? +
ξ, J?) mod m, and this remains true after differentiation with respect to ξ. Since x − x? is
in m, and m2 = (0), we obtain that

(x− x?) d
dξ
P (x? + ξ, J?) = (x− x?) d

dξ
P (x+ ξ, J∞x).

Thus, the lemma is proved.

As in Section 6, let us write cf(S, ξj) for the the coefficient of ξj in a power series
S ∈ D[[ξ]]. We can then make our last assumptions on (x?, y?): there exists an integer n ≥ 1
such that

N3. cf(S?, ξn−1) = 0,

N4. n cf(S?, ξn) is a unit in D.

The following lemma finally allows us to compute x?, assuming we know x? mod m and
y? mod m.

Lemma 26. Let x be in D, such that x = x? mod m. If (x?, y?) satisfies N1 - N4, then
n cf(S∞x , ξ

n) is a unit in D and

x? = x− 1

n

cf(S∞x , ξ
n−1)

cf(S∞x , ξ
n)

.

Proof. To prove the first item, remark that the previous lemma shows in particular that S∞x =
S? mod m and extract the coefficient of ξn, we deduce that cf(S?, ξn) = cf(S∞x , ξ

n) mod m,
and thus n cf(S?, ξn) = n cf(S∞x , ξ

n) mod m. Since the former is a unit, the latter must be a
unit too.

To conclude, start from the equality S∞x = S? + (x− x?)dS
∞
x

dξ
proved above, and extract

the coefficient of degree n− 1 (with respect to ξ) on both sides. Using N3 gives

cf(S∞x , ξ
n−1) = (x− x?)n cf(S∞x , ξ

n).

Since we proved that n cf(S∞x , ξ
n) is a unit in D, the claim follows.

Once x? is known, we can also recover y?. One option is to apply the Newton iteration of
Eq. (10), but we will prefer the following method, which will not require further evaluations.
We know that J∞x = J? + (x − x?)dJ?

dξ
; since J? = J∞x mod m, we can rewrite J∞x = J? +

(x− x?)dJ
∞
x

dξ
. Since cf(J?, ξ0) = y?, we deduce

y? = cf(Jx, ξ
0)− (x− x?)cf(J∞x , ξ

1). (13)

To conclude this section, we state the following result, which will be used in various
contexts (such as reduction modulo an integer N).

53

Lemma 27. Let D′ be a commutative ring, ϕ a ring morphism D → D′, and let Φ denote
the extension of ϕ to a ring morphism D[X, Y] → D′[X, Y]. Suppose that ϕ(n) is a unit in
D′.

If (x?, y?) and (m,H, n, a,K) satisfy N1 - N4 over D, (ϕ(x?), ϕ(y?)) and (m,Φ(H), n, a,Φ(K))
satisfy N1 - N4 over D′.

Proof. Since they describe vanishing, resp. invertibility properties of either ∂m−1H
∂Ym−1 or ∂mH

∂Ym

at (x?, y?), N1 and N2 clearly remain true through the application of ϕ. To prove that N3

and N4, let us denote by J? ∈ D[[ξ]] the power series associated to (x?, y?) as above, and
J ′? ∈ D′[[ξ]] the power series associated to (ϕ(x?), ϕ(y?)).

By uniqueness of the solution of (12), we deduce that Φ′(J?) = J ′?, where Φ′ denotes the
extension of ϕ to a ring morphism D[[ξ]]→ D′[[ξ]]. From there, we deduce that Φ′(S?) = S ′?,
where S? is as above, and S ′? is the power series

S ′
?

=
∂aΦ(K)

∂Y a
(ϕ(x?) + ξ, J ′

?
).

Extracting coefficients of S ′?, we see that cf(S ′?, ζn−1) = 0 and that cf(S ′?, ζn) is a unit in
D′. Since ϕ(n) is invertible as well, we are done.

8 Main algorithm

We can finally present the main algorithm and analyze its complexity. All along this section,
we use the following notation. The input is a pair of polynomials F and G with coefficients
in Z, with degree at most d and length at most h. We suppose that these polynomials satisfy
the coprimality assumption H1 of Section 2, so that the associated polynomial Γ ∈ Z[T] is
well-defined.

We are going to apply a random change of variables, and compute modulo a random
prime. These choices will be done in two steps: first we choose a large enough shearing
coefficient t0 to ensure that it is “lucky” with high probability, and a first prime p0; in a
second time, we use t0 to look for another change of variables t with smaller length, together
with another prime p, and we apply the lifting process to Ft and Gt starting from the solution
modulo p.

8.1 Choosing t0 and p0

In this first section, we discuss the choices of t0 and p0, and quantify their probability of
success. As said in the introduction, we suppose that we have an oracle O, which on input an
integer B returns a random prime in the interval {B + 1, . . . , 2B}, chosen uniformly among
these primes.

Given P ≥ 1, our overall goal is to obtain a probability of success of at least 1 − 1/2P .
Let us first choose an integer t0 at random in the set {1, . . . , 2P+5d4}; remark in particular
that the length of t0 is at most P + 5 + 4len(d) = O(P + log(d)). Because Γ is nonzero of

54

degree at most 6d4, the probability that t0 cancels it is at most 1/2P+2. In what follows, let
us assume that Γ(t0) is nonzero.

Since t0 is in {1, . . . , 2P+5d4}, using the length bound on Γ given in Lemma 4 and the
evaluation bound b1, the length of Γ(t0) can be bounded by an efficiently computable integer
H0(P , d, h) = (Pdh)O(1). Let us then define

∆0(P , d, h) = max(12d4, 2P+3H0(P , d, h)),

and the set
Λ0(P , d, h) = {∆0(P , d, h) + 1, . . . , 2∆0(P , d, h)};

the reason for requiring ∆0(P , d, h) ≥ 12d4 is explained in Subsection 8.3. With these
choices, we have the following quantitative estimates:

• The set Λ0(P , d, h) contains at least ∆0(P , d, h)/(2 log(∆0(P , d, h))) primes [18, proof
of Theorem 18.8].

• There are at most log∆0(P,d,h)(|Γ(t0)|) primes in Λ0(P , d, h) that divide Γ(t0).

Let us call the oracle O, with input ∆0(P , d, h); as output, we get a random prime p0 in
Λ0(P , d, h). The probability of p0 dividing Γ(t0) is thus at most

log∆0(P,d,h)(|Γ(t0)|)
∆0(P,d,h)

2 log ∆0(P,d,h)

= 2
log(|Γ(t0)|)
∆0(P , d, h)

≤ 1

2P+2
.

Taking into account the choices of both t0 and p0, the probability that Γ(t0) is zero modulo
p0 is thus at most 1/2P+1.

When Γ(t0) does not vanish modulo p0, by Corollary 1, we deduce that the polynomials
Ft0 mod p0 and Gt0 mod p0 are in general position, and that their zero-set has the same
cardinality as V (F,G). This will be the main properties we will use about them.

8.2 Computations modulo p0

In all that follows, we suppose that t0 and p0 have been chosen such that Γ(t0) is nonzero
modulo p0. The first part of the algorithm consists in computing the polynomials SL(Ft0 mod
p0, Gt0 mod p0).

Lemma 28. Given F and G, one can compute Ft0 mod p0 and Gt0 mod p0, as well as
SL(Ft0 mod p0, Gt0 mod p0), using O (̃P + d2h+ d3 log(p0)) bit operations.

Proof. First, we have to compute t0 mod p0; this is done in time O (̃log(t0) + log(p0)) =
O (̃P + log(d) + log(p0)) by fast Euclidean division [18].

Next, we reduce F and G modulo p0; this takes O (̃d2(h+ log(p0)) bit operations, by fast
Euclidean division of each coefficient. Then, we apply the change of variable X 7→ X + t0Y
to F mod p0 and G mod p0, which gives Ft0 mod p0 and Gt0 mod p0 in O (̃d2 log(p0)) bit
operations.

55

We know that (Ft0 mod p0, Gt0 mod p0) are in general position. To compute their Shape
Lemma representation, we apply the algorithm of [29, Proposition 1], which runs in time
O (̃d3 log(p0)). There is only one minor difference: one step in that algorithm should be
avoided (Step 6, which removes multiple solutions from V (Ft0 mod p0, Gt0 mod p0) – we do
not want to discard them here).

Our next step is then to find an integer t of smaller length than t0 such that Γ(t) 6= 0;
we will as well have to change our prime.

8.3 Choosing t and p

To find a suitable t, we recall notation from Section 2: we let f and g be the leading coefficients
of respectively FT and GT with respect to Y ; they lie in Z[T]. We also let a ∈ Z[T] be the
leading coefficient of the resultant A = res(FT , GT , Y) with respect to X.

Lemma 29. Let t ∈ Z be such that neither f(t) mod p0 nor g(t) mod p0 vanishes, and such

that X is a separating element for V (Ft mod p0, Gt mod p0) ⊂ Fp0
2
. Then Γ(t) mod p0 is

nonzero.

Proof. We know that Γ mod p0 is nonzero, so in view of Lemma 6, it is enough to prove that
a(t) mod p0 is nonzero.

Writing φ : Z[T] → Fp0 given by φ(r) = r(t) mod p0, the first item in Lemma 5 implies
that the cardinality of π(V (Ft mod p0, Gt mod p0)) is the number of pairwise distinct roots
of A(t,X) mod p0 in Fp0 . Now, we know that the cardinality of V (Ft0 mod p0, Gt0 mod p0) is
finite, so it must also be the same for V (Ft mod p0, Gt mod p0), and thus for its projection.
This implies that A(t,X) mod p0 has finitely many roots, so it is not the zero polynomial.
As a consequence, the leading coefficient a of A does not vanish through φ, which is what
we wanted to prove.

To find a suitable t, the algorithm is now straightforward: we try enough such values at
random, since the test implied by the above lemma can be performed efficiently enough.

Lemma 30. One can find with probability at least 1 − 1/2P+2 an integer t ∈ {1, . . . , 12d4}
such that Γ(t) mod p0 is nonzero using d2+εO (̃P log(p0)) bit operations.

Proof. Since Γ(t0) mod p0 is nonzero, Γ mod p0 is not the zero polynomial. Since Γ has
degree at most 6d4 (Lemma 4), and since p0 has been chosen at least equal to 12d4, there
are at most 6d4 integers t among {1, . . . , 12d4} for which Γ(t) mod p0 = 0.

The algorithm is then simple: pick at random P + 2 values in this set, test if they cancel
Γ mod p0, and return one for which we find this is not the case, if any (otherwise, the whole
algorithm may just return fail). This succeeds with probability at least 1 − 1/2P+2, so we
are left with the cost analysis.

Given t in the set {1, . . . , 12d4}, to test whether Γ(t) mod p0 vanishes, we use the previous
lemma.

56

We first test whether f(t) mod p0 or g(t) mod p0 vanish. The polynomials f and g are
the highest degree forms of F and G, and since Γ does not vanish modulo p0, neither do
they; thus, f mod p0 and g mod p0 are the highest degree forms of respectively F mod p0 and
G mod p0. We computed the latter polynomials in the course of Lemma 28, so all we have
to do is evaluate them at t; this takes O(d) operations in Fp0 , so O (̃d log(p0)) bit operations.

Next, we verify whether X is a separating element for V (Ft mod p0, Gt mod p0). Since we
know (P0, S0) = SL(Ft0 mod p0, Gt0 mod p0), performing the above test amounts to testing
whether the characteristic polynomial of X + (t − t0)S0 modulo P0 is squarefree. We can
compute this characteristic polynomial using Kedlaya and Umans’ power projection algo-
rithm [23], for d2+εO (̃log(p0)) bit operations; the squarefreeness test is not more expensive.

Altogether, the cost for testing one value of t is d2+εO (̃log(p0)) bit operations; the
conclusion follows.

We will now assume that we have found a suitable t, and we will now replace our prime
p0 by a new prime p: our choice of p0 did not take into account issues related to the σ-
decomposition of V (Ft0 , Gt0); even if it had, it would not be enough to guarantee good
reduction for V (Ft, Gt). In order to choose p, note that we have the following length bounds:

• Since t is in {1, . . . , 12d4}, using the length bound on Γ given in Lemma 4 and the
evaluation bound b1, the length of Γ(t) can be bounded by an efficiently computable
integer H1(d, h) = (dh)O(1).

• From Corollary 1 again, all polynomials appearing in the Shape Lemma representation
of Vt = V (Ft, Gt), and of all its Q-definable subsets, have length at most H2(d, h) =
BSL(d, h, len(12d4)), which is O (̃dh+ d2), and thus (dh)O(1).

• The polynomials Ft and Gt have degree d; using the evaluation bound b1 again, we see
that their length is at most H3(d, h) = h+ d(len(12d4) + 3), which is again (dh)O(1).

Let us then define ∆4(d, h) = ∆3(d,H3(d, h), H2(d, h))H1(d, h), where ∆3 is the function
defined in Proposition 5. Since all of ∆3, H2, H1, H3 are efficiently computable, ∆4 itself is
an efficiently computable function of d, h, and we have ∆4(d, h) = (dh)O(1).

Consider now the integer δ4 = δ3Γ(t), where δ3 is the nonzero integer associated to Ft
and Gt by Proposition 5. The construction above shows that δ4 is a nonzero integer of length
at most ∆4(d, h). Let us finally define

∆′4(P , d, h) = max(d2, 2P+3∆4(d, h)),

and the set
Λ4(P , d, h) = {∆′4(d, h) + 1, . . . , 2∆′4(d, h)};

the reason for requiring ∆′4 > d2 appears in Lemma 33. Let us call the oracle O, with
input ∆′4(P , d, h); as output, we get a random prime p in Λ4(P , d, h). Proceeding as in
Subsection 8.1, we see that the probability of p dividing δ4 is at most

log∆′4(P,d,h)(δ4)
∆′4(P,d,h)

2 log ∆′4(P,d,h)

= 2
log(δ4)

∆′4(P , d, h)
≤ 1

2P+2
.

57

Let us assume that this is not the case; we will see that the algorithm necessarily succeeds.
This concludes the description of the randomized part of the algorithm. The probability of
choosing “lucky” (t0, p0) was at least 1− 1/2P+1, and the same holds for (t, p), so the overall
probability of success is at least 1− 1/2P , as claimed.

For what follows, it will be useful to remember that the prime p is at most 2P+4∆4(P , d, h),
which is 2O(P)(dh)O(1).

8.4 Computations modulo p

In all that follows, we suppose that t and p have been chosen such that Γ(t) is nonzero, and
such that the integer δ4 defined above does not vanish modulo p.

In particular, by Corollary 1, both systems (Ft, Gt) and (Ft mod p,Gt mod p) are in
general position, over respectively Q[X, Y] and Fp[X, Y], and we have the specialization
property SL(Ft, Gt) mod p = SL(Ft mod p,Gt mod p). Our next step consists in computing
the latter polynomials, together with the corresponding σ-decomposition.

Lemma 31. Given F and G, one can compute Ft mod p and Gt mod p, as well as SL(Ft mod
p,Gt mod p), using O (̃d2h+ d3 log(p)) bit operations.

Proof. The proof is similar to that of Lemma 31; the only difference is that t has length
O(log(d)), whereas t0 had length O(P + log(d)).

Let Σ = [(Ci,j, Ti,j,mi, Hi, ni,j, ai,j, Ki,j)]1≤i≤s,j∈Di be the σ-decomposition of V (Ft, Gt).
Since p does not divide Γ(t), Corollary 1 proves that p cancels the denominator of none of
the coefficients of the polynomials in Σ. In addition, Corollary 1 and the fact that p does
not divide the integer δ3 of Proposition 5 (applied to Ft and Gt) imply that Σ mod p is the
σ-decomposition of V (Ft mod p,Gt mod p).

Lemma 32. Given Ft mod p and Gt mod p, as well as SL(Ft mod p,Gt mod p), one can
compute Σ mod p using d3+εO (̃log(p)) bit operations.

Proof. This is Proposition 4, applied to Ft mod p and Gt mod p.

Since none of the denominators of the coefficients of the polynomials in either SL(Ft, Gt)
or Σ vanishes modulo p, all these polynomials can be seen in Zp[X]; the same obviously
holds for F and G, which have integer coefficients.

For fixed indices i, j, we can then define the residue class ring Ei,j = Zp[X]/〈Ci,j〉, as

well as x
(p)
i,j as the residue class of X in Ei,j, and y

(p)
i,j as the residue class of Ti,j. We saw

a similar construction at the end of Section 6, in the proof of Proposition 5; at the time,
we were working over Di,j = Q[X]/〈Ci,j〉, with symbols xi,j and yi,j, whereas we now use
Ei,j = Zp[X]/〈Ci,j〉.

Lemma 33. For any index i, j, the point (x
(p)
i,j , y

(p)
i,j) and (mi, Hi, ni,j, ai,j, Ki,j) satisfy con-

ditions N1 - N4 of Section 7 over the ring Ei,j.

58

Proof. In all that follows, i and j are fixed. Recall that by definition of the signature, we
know that, in Di,j,

∂mi−1Hi

∂Y mi−1
(xi,j, yi,j) = 0 and

∂miHi

∂Y mi
(xi,j, yi,j) is a unit.

To prove N1 and N2 for (x
(p)
i,j , y

(p)
i,j), we have to prove that similar identities hold in Ei,j, that

is, with coefficients in Zp instead of Q.
The first condition obviously carries over to Ei,j, since it is an equality involving poly-

nomials with coefficients in Q, and p divides no denominator in these polynomials. The
second condition is dealt with similarly, upon noticing that by assumption on p, the term
∂miHi
∂Ymi

(X,Ti,j) mod p remains a unit modulo Ci,j mod p.
Returning to calculations over Di,j, we can as before define a power series J∞i,j ∈ Di,j[[ξ]]

characterized by the conditions

∂mi−1Hi

∂Y mi−1
(xi,j + ξ, J∞i,j) = 0 and J∞i,j (0) = yi,j.

Defining further the power series

Si,j =
∂ai,jKi,j

∂Y ai,j
(xi,j + ξ, J∞i,j) ∈ Di,j[[ξ]],

we saw (for instance in the proof of Proposition 5) that

cf(Si,j, ξ
ni,j−1) = 0 and cf(Si,j, ξ

ni,j) is a unit.

Once more, to prove N3 and N4, we have to derive similar statements in Ei,j. First, remark
that the fact that ∂miHi

∂Ymi
(xi,j, yi,j) remains a unit in Ei,j implies that all coefficients of J∞i,j

are well-defined modulo p, so that we may consider J∞i,j in Ei,j[[ξ]]. Then, the equality
cf(Si,j, ξ

ni,j−1) = 0 in Ei,j remains obviously true in this context.
To prove that cf(Si,j, ξ

ni,j) is a unit, it is sufficient to prove that it is a unit modulo p,
that is, in Fp[X]/〈Ci,j mod p〉. This is a direct consequence of the fact that p does not divide
the integer δ3 of Proposition 5.

The last point we need to prove is that ni,j is a unit in Ei,j. This follows from the
constraint that p > d2, combined with the inequality ni,j ≤ d2.

8.5 Analysis of one lifting step

In the previous section, we showed how to compute Σ mod p. Supposing that we know
Σ mod N , for N some power of p, we now show how to compute Σ mod N2. The main result
of this section is the following proposition.

Proposition 6. Given F , G and Σ mod N , for N a power of p, one can compute Σ mod N2

using d2+εO (̃log(N)) bit operations.

59

In what follows, we denote by A the ring Z/N2Z, over which all computations will be
done. For any i in {1, . . . , s} and j in Di, we thus assume that we know ci,j = Ci,j mod N
and ti,j = Ti,j mod N . Our goal is to compute c′i,j = Ci,j mod N2 and t′i,j = Ti,j mod N2.

Let us write
Fi,j = A[X]/〈ci,j〉 and F′i,j = A[X]/〈c′i,j〉,

where in the former case, we view ci,j as a polynomial in A[X] = Z/N2Z by considering its
canonical lift. Thus, we can compute in Fi,j, but not in F′i,j, since c′i,j is unknown. In what
follows, we write αi,j for the residue class of X in Fi,j, and βi,j for that of ti,j; similarly, we
let α′i,j for the residue class of X in F′i,j, and β′i,j that of t′i,j.

Starting from the claim in Lemma 33 and applying Lemma 27 to the homomorphism
Ei,j → F′i,j of reduction modulo N2, we deduce that over the ring F′i,j, the point (α′i,j, β

′
i,j) ∈

F′i,j
2 and (mi, Hi mod N2, ni,j, ai,j, Ki,j mod N2) satisfy assumptions N1 - N4 of Section 7.
Now, Proposition 1 in [30] proves further that there exists a ring isomorphism φ : F′i,j →

Fi,j, which reduces to the identity modulo N , and leaves A = Z/N2Z invariant. Thus, by
Lemma 27 again, there exists (x?i,j, y

?
i,j) = (φ(α′i,j), φ(β′i,j)) ∈ Fi,j2 such that:

• x?i,j = αi,j mod N and y?i,j = βi,j mod N ;

• (x?i,j, y
?
i,j) and (mi, Hi mod N2, ni,j, ai,j, Ki,j mod N2) satisfy conditions N1 - N4 of Sec-

tion 7 over the ring Fi,j (remark that since Hi,j and Ki,j have coefficients in Z,
Hi,j mod N2 and Ki,j mod N2 are left unchanged by φ).

Since N2 = 0 in A, and thus in Fi,j, we will apply the algorithm of Section 7 with the ideal
m = 〈N〉, in order to first compute x?i,j and y?i,j in Fi,j; in a second stage, we will deduce c′i,j
and t′i,j. The computation of x?i,j and y?i,j proceeds itself in several steps, which follow the
description in Section 7.

Computing Ft mod N2 and Gt mod N2. Remark that all polynomials Hi mod N2 and
Ki,j mod N2 are in {Ft mod N2, Gt mod N2}, so we need to compute these two polynomials.
This is done exactly as in Lemma 28, using O (̃P + d2h+ d2 log(N)) bit operations (the cost
stated in Lemma 28 involves an extra term d3 log(p0) for solving the system (Ft0 , Gt0) modulo
p0, which we do not need here).

In what follows, we can thus assume that these polynomials are known.

Computing all vi,j’s. First, applying Eq. (10), we compute the elements vi,j in Fi,j, such
that for all i, j, we have

∂mi−1Hi

∂Y mi−1
(αi,j, vi,j) = 0

in Fi,j, and such that vi,j = βi,j mod N . This is done in Algorithm lift y below.

60

Algorithm 7: lift y(Ft, Gt,Σ)

Input: polynomials Ft, Gt mod N2, the σ-decomposition Σ mod N
Output: [vi,j]1≤i≤s,j∈Di

I = [(i, j) | 1 ≤ i ≤ s, j ∈ Di]1

IF = [(i, j) | 1 ≤ i ≤ s, j ∈ Di and Hi = ”F”]2

IG = [(i, j) | 1 ≤ i ≤ s, j ∈ Di and Hi = ”G”]3

[ηi,j](i,j)∈IF = [∂
mi−1Ft
∂Ymi−1 (αi,j, βi,j)](i,j)∈IF calculations are done in Fi,j4

[η′i,j](i,j)∈IF = [∂
miFt
∂Ymi

(αi,j, βi,j)](i,j)∈IF5

[γi,j](i,j)∈IG = [∂
mi−1Gt
∂Ymi−1 (αi,j, βi,j)](i,j)∈IG6

[γ′i,j](i,j)∈IG = [∂
miGt
∂Ymi

(αi,j, βi,j)](i,j)∈IG7

return [vi,j](i,j)∈I = [βi,j − ηi,j/η′i,j](i,j)∈IF cat [βi,j − γi,j/γi,j](i,j)∈IG8

Correctness follows from Eq. (10). Regarding running time, the bulk of the cost is
the computation of the sequences [ηi,j], [η′i,j], [γi,j], [γ′i,j]. Indeed, at the last step, the
division corresponding to index (i, j) can be done in O (̃deg(Ci,j)) operations in A, which is
O (̃deg(Ci,j) log(N)) bit operations: summing over all (i, j) and using Lemma 18, the total
adds up to O (̃d2 log(N)).

Let us thus for instance explain how to compute [ηi,j] and [η′i,j]. This is a direct appli-
cation of Algorithm normal forms of Proposition 3, with input the lists L,L′, L′′ and F , with
L = [(0,mi)](i,j)∈I , L

′ = [ci,j](i,j)∈I and L′′ = [yi,j](i,j)∈I . Lemma 18 implies that∑
1≤i≤s,j∈Di

(mi,j + 1) deg(Ci,j) = O(d2),

so we are under the conditions of Proposition 3. This implies that for any ε > 0, all [ηi,j]
and [η′i,j] can be computed in d2+εO (̃log(N)) bit operations, and the same holds for all
[γi,j] and [γ′i,j]. This concludes the cost analysis of this step.

Computing all x?i,j and y?i,j’s. Next, we consider Algorithm lift x y, which computes all
x?i,j and y?i,j in Fi,j. This stage of the algorithm directly uses the formula derived in Lemma 26,
and the subsequent Equation (13): for every index (i, j) we compute a (truncated) power
series, say Ji,j that satisfies (12), from which we deduce the corresponding power series

Si,j =
∂ai,jKi,j

∂Y ai,j
(αi,j + ξ, Ji,j) ∈ Fi,j[[ξ]].

We only need Si,j modulo ξni,j+1, which in turn means that we need Ji,j at the same precision.

61

Algorithm 8: lift x y(Ft, Gt,Σ)

Input: polynomials Ft, Gt mod N2, the σ-decomposition Σ mod N
Output: [(x?i,j, y

?
i,j]1≤i≤s,j∈Di

I = [(i, j) | 1 ≤ i ≤ s, j ∈ Di]1

IF = [(i, j) | 1 ≤ i ≤ s, j ∈ Di and Hi = ”F”]2

IG = [(i, j) | 1 ≤ i ≤ s, j ∈ Di and Hi = ”G”]3

[vi,j](i,j)∈I = lift y(Ft, Gt,Σ)4

[Ji,j](i,j)∈I = compute J(Ft, Gt, [(ci,j, vi,j,mi, Hi, ni,j + 1)](i,j)∈I)5

η = [ηi,j,α](i,j)∈I,α∈[0,...,mi] = [∂
αFt
∂Y α

(X + ξ, Ji,j) mod 〈ci,j(X), ξni,j+1〉](i,j)∈I,α∈[0,...,mi]6

γ = [γi,j,α](i,j)∈I,α∈[0,...,mi] = [∂
αGt
∂Y α

(X + ξ, Ji,j) mod 〈ci,j(X), ξni,j+1〉](i,j)∈I,α∈[0,...,mi]7

L = [](i,j)∈I8

for (i, j) in I do9

Si,j = select(Hi, Ki,j, ai,j, η, γ)10

x?i,j = αi,j − 1
ni,j

cf(Si,j ,ξni,j−1)
cf(Si,j ,ξni,j)11

y?i,j = cf(Ji,j, ξ
0)− (αi,j − x?i,j)cf(Ji,j, ξ

1)12

append (x?i,j, y
?
i,j) to L13

end14

return L15

The power series Ji,j are computed at Step 5 using Algorithm compute J, using the output
vi,j of the previous step as a starting value. For Algorithm compute J, the bound in Lemma 18
shows that we are under the assumptions of Lemma 21, over the base ring A = Z/NZ, so
we deduce that Step 5 can be executed using d2+εO (̃log(N)) bit operations.

Steps 6 and 7 are done using Algorithm normal forms. Once more, Lemma 18 shows
that we are under the assumptions of Proposition 3, so these steps take d2+εO (̃log(N)) bit
operations. Subroutine select then extracts the power series

Si,j =
∂ai,jKi,j

∂Y ai,j
(αi,j + ξ, Ji,j) ∈ Ei,j[[ξ]]

from the vectors η and γ, using Hi, Ki,j, and ai,j as indices to find the proper entry. Finally, the
updates necessary to compute all x?i,j and y?i,j take a total of O (̃d2 log(N)) bit operations, just
like inversions in Algorithm lift y did. To summarize, the cost of this step is d2+εO (̃log(N))
bit operations.

Computing all c′i,j’s and t′i,j’s. Recall that we started from ci,j = Ci,j mod N and
ti,j = Ti,j mod N . At this stage, for any index (i, j), we have found the root (x?i,j, y

?
i,j)

with coordinates in Ei,j = A[X]/〈ci,j〉. Our goal is to recover c′i,j = Ci,j mod N2, together
with t′i,j = Ti,j mod N2.

Explicit formulas exist for this conversion, see for instance [21, Section 6]. In our case, we
will write δi,j = x?i,j−αi,j ∈ Ei,j, and we let ∆i,j be its canonical preimage in A[X]; similarly,

62

we write λi,j = y?i,j−βi,j ∈ Ei,j, write Λi,j ∈ A[X] for its canonical preimage. Then, from [21,
Section 6], we deduce

c′i,j = ci,j −
(

∆i,j
dci,j
dX

mod ci,j

)
and t′i,j = ti,j + Λi,j −

(
∆i,j

dti,j
dX

mod ci,j

)
.

In particular, the new polynomials c′i,j and t′i,j can now all be computed for a total of
O (̃d2 log(N)) bit operations. Summing all costs seen so far, we conclude the proof of Propo-
sition 6.

8.6 Concluding the proof of Theorem 1

We can finally finish the cost analysis of our algorithm. Since t has been chosen with length
O(log(d)), Corollary 1 shows that the output RUR(Ft, Gt) has length O (̃dh + d2). Let us
then review the cost of the steps in our algorithm:

• Choosing t0 and p0 (Subsection 8.1) involves only computing integers which were shown
to be efficiently computable. Precisely, we can compute the integer H0(P , d, h) in
log(Pdh)O(1) bit operations; then, we also need to compute ∆0(P , d, h), which takes
an extra O (̃P log(dh)) bit operations.

• Computations modulo p0 in Subsection 8.2 involve O (̃P + d2h+ d3 log(p0)) bit opera-
tions (Lemma 28). The prime p0 is in 2O(P)(dh)O(1), so log(p0) is O (̃P + log(dh)). As
a result, the cost of this step is O (̃d2h+ d3P) bit operations.

• Finding t and p (Subsection 8.3) use d2+εO (̃P log(p0)) bit operations to find t; since
log(p0) is O (̃P+log(dh)), this is d2+εO (̃P2 +P log(dh)). We also have to compute the
bounds ∆4 and ∆′4 = 2P+3∆4; this involves log(dh)O(1) +O (̃P log(dh)) bit operations.

• Computations modulo p in Subsection 8.4 involve O (̃d2h+d3 log(p)) bit operations for
Lemma 31 and d3+εO (̃log(p)) for Lemma 32. We know that log(p) is O (̃P+ log(dh)),
so this is O (̃d2h+ d3+εP) bit operations.

• We run lifting steps (Subsection 8.5) until the precision N goes beyond twice the
bound O (̃dh+d2) on the length of the coefficients of the output (P,R) = RUR(Ft, Gt).
The previous section shows that the cost of this lifting is d2+εO (̃dh + d2), or simply
d3+εO (̃h+ d).

• Using Chinese remaindering, we can then deduce from Σ mod N the polynomials
(P mod N,S mod N) = SL(Ft, Gt) mod N , using O (̃d2 log(N)) bit operations, which
is O (̃d3h + d4). From this, we compute R = P ′S mod P modulo N , and we apply
rational reconstruction to all coefficients. This takes again time O (̃d3h+ d4).

Summing all costs, we obtain a total of d2+εO (̃d2 + dh+ dP +P2) bit operations, which
proves Theorem 1.

63

References

[1] L. Alberti, B. Mourrain, and J. Wintz. Topology and arrangement computation of
semi-algebraic planar curves. Computer Aided Geometric Design, 25(8):631–651, 2008.

[2] M. E. Alonso, E. Becker, M.-F. Roy, and T. Wörmann. Zeroes, multiplicities and
idempotents for zerodimensional systems. In MEGA’94, volume 142 of Progress in
Mathematics, pages 1–15. Birkhäuser, 1996.

[3] E. Berberich, P. Emeliyanenko, and M. Sagraloff. An elimination method for solving
bivariate polynomial systems: Eliminating the usual drawbacks. In ALENEX, pages
35–47. SIAM, 2011.

[4] F. Boulier, F. Lemaire, and M. Moreno Maza. Pardi! In ISSAC’01, pages 38–47. ACM,
2001.

[5] Y. Bouzidi, S. Lazard, G. Moroz, M. Pouget, and F. Rouillier. Improved algorithm for
computing separating linear forms for bivariate systems. In ISSAC’14, pages 75–82.
ACM, 2014.

[6] Y. Bouzidi, S. Lazard, M. Pouget, and F. Rouillier. Rational univariate representations
of bivariate systems and applications. In ISSAC’13, pages 109–116. ACM, 2013.

[7] Y. Bouzidi, S. Lazard, M. Pouget, and F. Rouillier. Separating linear forms for bivariate
systems. In ISSAC’13, pages 117–124. ACM, 2013.

[8] R. P. Brent and H. T. Kung. Fast algorithms for manipulating formal power series. J.
ACM, 25(4):581–595, 1978.

[9] D. A. Cox, J. B. Little, and D. O’Shea. Using Algebraic Geometry, volume 185 of
Graduate Texts in Mathematics. Springer, New-York, 1998.

[10] X. Dahan, A. Kadri, and É. Schost. Bit-size estimates for triangular sets in positive
dimension. Journal of Complexity, 28(1):109–135, 2012.

[11] X. Dahan, M. Moreno Maza, É. Schost, W. Wu, and Y. Xie. Lifting techniques for
triangular decompositions. In ISSAC’05, pages 108–115. ACM, 2005.

[12] X. Dahan and É. Schost. Sharp estimates for triangular sets. In ISSAC’04, pages
103–110. ACM, 2004.

[13] B. H. Dayton and Z. Zeng. Computing the multiplicity structure in solving polynomial
systems. In ISSAC’05, pages 116–123. ACM, 2005.

[14] D. I. Diochnos, I. Z. Emiris, and E. P. Tsigaridas. On the asymptotic and practical
complexity of solving bivariate systems over the reals. J. Symb. Comput., 44(7):818–
835, 2009.

64

[15] P. Emeliyanenko and M. Sagraloff. On the complexity of solving a bivariate polynomial
system. In ISSAC’12, pages 154–161. ACM, 2012.

[16] I. Z. Emiris and E. P. Tsigaridas. Real solving of bivariate polynomial systems. In
CASC, pages 150–161. Springer, 2005.

[17] J. von zur Gathen and J. Gerhard. Fast algorithms for Taylor shifts and certain differ-
ence equations. In ISSAC’97, pages 40–47. ACM, 1997.

[18] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University
Press, Cambridge, second edition, 2003.

[19] P. Gianni and T. Mora. Algebraic solution of systems of polynomial equations using
Groebner bases. In Applied algebra, algebraic algorithms and error-correcting codes,
volume 356 of Lecture Notes in Computer Science, pages 247–257. Springer, 1989.

[20] M. Giusti, J. Heintz, J.-E. Morais, J. Morgenstern, and L.-M. Pardo. Straight-line
programs in geometric elimination theory. J. of Pure and Applied Algebra, 124:101–146,
1998.

[21] M. Giusti, G. Lecerf, and B. Salvy. A Gröbner free alternative for polynomial system
solving. Journal of Complexity, 17(1):154–211, 2001.

[22] L. González-Vega and M. El Kahoui. An improved upper complexity bound for the
topology computation of a real algebraic plane curve. Journal of Complexity, 12(4):527
– 544, 1996.

[23] K. S. Kedlaya and C. Umans. Fast polynomial factorization and modular composition.
SIAM J. Computing, 40(6):1767–1802, 2011.

[24] A. Kobel and M. Sagraloff. Improved complexity bounds for computing with planar
algebraic curves. CoRR, abs/1401.5690, 2014.

[25] T. Krick, L. M. Pardo, and M. Sombra. Sharp estimates for the arithmetic Nullstellen-
satz. Duke Math. J., 109:521–598, 2001.

[26] L. Kronecker. Grundzüge einer arithmetischen Theorie der algebraischen Grössen. J.
reine angew. Math., 92:1–122, 1882.

[27] J. C. Lagarias and H. Mehta. Products of binomial coefficients and unreduced farey
fractions, 2014.

[28] F. Le Gall. Powers of tensors and fast matrix multiplication. In ISSAC’14, pages
296–303. ACM, 2014.

[29] R. Lebreton, E. Mehrabi, and É. Schost. On the complexity of solving bivariate systems:
the case of non-singular solutions. In ISSAC’13, pages 251–258. ACM, 2013.

65

[30] G. Lecerf. Quadratic Newton iteration for systems with multiplicity. Found. Comp.
Math., 2:247–293, 2002.

[31] A. Leykin, J. Verschelde, and A. Zhao. Newton’s method with deflation for isolated
singularities of polynomial systems. Theor. Comput. Sci., 359(1-3):111–122, 2006.

[32] A. Leykin, J. Verschelde, and A. Zhao. Higher-order deflation for polynomial systems
with isolated singular solutions. In Algorithms in Algebraic Geometry, volume 146 of
The IMA Volumes in Mathematics and its Applications, pages 79–97. 2008.

[33] F. S. Macaulay. The Algebraic Theory of Modular Systems. Cambridge University Press,
1916.

[34] M. G. Marinari, T. Mora, , and H. M. Möller. Groebner duality and multiplicities in
polynomial system solving. In ISSAC’95, pages 167–179. ACM, 1995.

[35] B. Mourrain. Isolated points, duality and residues. J. of Pure and Applied Algebra,
117–118:469–493, 1997.

[36] T. Ojika, S. Watanabe, and T. Mitsui. Deflation algorithm for multiple roots of a system
of nonlinear equations. Math. An. and Appls., 96(2):463–479, 1983.

[37] C. Pascal and É. Schost. Change of order for bivariate triangular sets. In ISSAC’06,
pages 277–284. ACM, 2006.

[38] S. R. Pope and A. Szanto. Nearest multivariate system with given root multiplicities.
J. Symb. Comput., 44(6):606–625, 2009.

[39] A. Poteaux and É. Schost. Modular composition modulo triangular sets and applica-
tions. Computational Complexity, 22(3):463–516, 2013.

[40] A. Poteaux and É. Schost. On the complexity of computing with zero-dimensional
triangular sets. Journal of Symbolic Computation, 50(0):110 – 138, 2013.

[41] D. Reischert. Asymptotically fast computation of subresultants. In ISSAC’97, pages
233–240. ACM, 1997.

[42] F. Rouillier. Solving zero-dimensional systems through the rational univariate represen-
tation. Appl. Algebra Engrg. Comm. Comput., 9(5):433–461, 1999.

[43] F. Rouillier. On solving systems of bivariate polynomials. In ICMS, volume 6327 of
Lecture Notes in Computer Science, pages 100–104. Springer, 2010.

[44] A. Schönhage. The fundamental theorem of algebra in terms of computational com-
plexity. Technical report, Univ. Tübingen, 1982.

[45] É. Schost. Computing parametric geometric resolutions. Appl. Algebra Engrg. Comm.
Comput., 13(5):349–393, 2003.

66

[46] X. Wu and L. Zhi. Computing the multiplicity structure from geometric involutive form.
In ISSAC’08, pages 325–332. ACM, 2008.

67

	Introduction
	Quantitative estimates
	Length bounds
	Polynomials in general position
	Non-vanishing conditions
	Conservation of intersection multiplicity

	Finding nonzeros in a list
	Normal forms for derivatives
	Auxiliary results
	Proof of Proposition 3

	A deflation lemma
	The -decomposition
	Computing all mi's and Hi's
	Computing all Ji's
	Computing all ni's, ai's and Ki's

	Newton iteration
	Main algorithm
	Choosing t0 and p0
	Computations modulo p0
	Choosing t and p
	Computations modulo p
	Analysis of one lifting step
	Concluding the proof of Theorem 1

