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Summary

With the increasing importance of predictive modeling in health research comes the need
for methods to rigorously assess predictive accuracy. We consider the problem of eval-
uating the accuracy of predictive models for nominal outcomes when outcome data are
coarsened at random. We first consider the problem in the context of a multinomial
responsemodeled by polytomous logistic regression. Attention is then directed to the
motivating setting in which class membership corresponds to the state occupied in a mul-
tistate disease process at a time horizon of interest. Here, class (state) membership may
be unknown at the time horizon since disease processes are under intermittent observa-
tion. We propose a novel extension to the polytomous discrimination index to address
this and evaluate the predictive accuracy of an intensity-based model in the context of a
study involving patients with arthritis from a registry at the University of Toronto Centre
for Prognosis Studies in Rheumatic Diseases.
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1 Introduction

1.1 Introduction to Prediction

Predictive modeling is of increasing importance in the era of personalized and stratified medicine
(Steyerberg, 2019). Much of the early work on methods for assessing prediction accuracy in-
volved continuous outcomes where performance metrics include the proportion of explained
variation (Schemper, 2003) and the “leave-one-out” analog called the PRESS statistic (Kut-
ner et al., 2005), which better reflects out-of-sample performance. Any loss function can be
specified of course, with the overall performance reflected by the expected loss. Harrell’s concor-
dance measure, called the C index, is another popular measure of performance which is geared
towards assessing discriminatory power of a predictive model (Harrell et al., 1982). With di-
chotomous outcomes, point prediction yields a predicted response on the same scale as the
response, while probabilistic prediction uses an estimated probability of the response. Point
prediction has considerable appeal in medical research; discrimination measures based on mis-
classification rates and receiver operating characteristic curves are within this context (Hanley
et al., 1989; Pepe, 2003), where the latter reflects of the utility of an underlying risk score for
the classification of individuals. Since probabilistic prediction involves the use of estimated
probabilities, the Brier score is natural to use when assessing predictive performance in this
setting (Brier, 1950). Extensions of these measures have been proposed for right-censored data,
where the goal is typically set to predicting the event status (failed/not failed) at some time
horizon; due to censoring these extensions typically involve either imputation or use of inverse
probability of censoring weights to address the fact that the failure status may be unknown for
some individuals due to right-censoring (Uno et al., 2007, 2011).

Two general approaches are adopted for measuring predictive performance to deal with
polytomous outcomes; the hypervolume under the ROC manifold (HUM) (Li et al., 2013) and
the polytomous discrimination index (PDI) (Li et al., 2018; Van Calster et al., 2012). The
former is a generalization of the area under the receiver operator characteristic curve. Consider
a nominal outcome with K potential categories and a randomly selected K-tuple with one
individual from each class. The HUM is the probability that the outcomes of all K individuals
in this K-tuple are correctly classified. The term volume under the surface (VUS) is often used
when the outcome has three categories (Mossman, 1999; Dreiseitl et al., 2000), where the term
HUM is used when K > 3. The PDI for a particular category k is the probability that the
subject in category k from a random K-tuple is correctly assigned to that category. This can
be computed for each category k, and when these are averaged over all K categories an overall
PDI is obtained.

We consider the challenge of measuring predictive performance based on multistate models
for chronic disease processes which can be naturally characterized in terms of distinct stages
(Cook and Lawless, 2018). Markov models are used routinely in such settings and considered
here, where transition intensities are modulated by multiplicative covariate effects (Aalen et al.,
2008; Andersen et al., 2012; Cook and Lawless, 2018). We suppose interest lies in predicting
state occupancy at a particular time horizon based on a fitted multistate model. Examples
of such problems are numerous, including prediction of nosocomial infections in the ICU and
patient outcomes (Escolano et al., 2000), and prediction of outcomes following bone marrow
transplantation (Keiding et al., 2001). Putter et al. (2006) report on a detailed analysis founded
on a five-state model used to characterize disease course in breast cancer patients following
surgery. States included on occupied when no events have occurred, and ones representing
local recurrence, distant metastases, both local recurrence and distant metastases, and death;
these authors also discuss the utility of multistate modeling for making predictions conditional
on any observed history. More recently, Spitoni et al. (2018) discuss Brier score and Kullback-
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Leibler type loss functions for predictions based on multistate process along with methods for
estimating the corresponding expected loss functions under right-censoring – they then discuss
extensions accommodating dynamic prediction.

The setting of interest involves a registry of patients attending a rheumatology clinic for
periodic health assessments – at these clinic visits information is collected on the disease state;
see Section 1.2 for full details of the motivating study. Specifically, we consider the problem of
predicting state occupancy at a specified time horizon based on data arising from intermittent
observation of a continuous-time multistate process. Intermittent observation of the processes
makes it challenging to estimate the prediction accuracy of a model since it may not be known
which state is occupied by some individuals at the time horizon of interest. We propose a novel
extension to the PDI to accommodate such an intermittent observation scheme wherein the state
occupied may be unknown for a subset of individuals in the validation sample. Our motivating
application, described in detail under Section 1.2, involves the prediction of sacroiliac joint
damage in patients in a psoriatic arthritis clinic, but there are many other clinical settings where
this problem arises. In osteoporosis, for example, individuals are at risk of fractures (detected
upon radiographic examination) due to weakened integrity of the bone. The development and
evaluation of predictive models must deal with the fact that fracture status may be observed
intermittently and so the event status at a particular time horizon may be unknown. Similarly
in breast cancer prevention studies, individuals free of breast cancer are typically recruited but
some may develop ductal carcinoma in situ, and ultimately progress to invasive breast cancer
(Bergholtz et al., 2020); multistate processes can be used effectively to model this progression.
Since individuals in prevention studies are screened periodically (i.e. annually or biannually)
states are only known at the intermittent observation times of the disease process.

As a preliminary investigation, we considered a simplified version of the problem involving
a simple categorical (polytomous) response with analyses based on a multinomial regression
model. In this setting, we consider the problem where the validation sample does not report
the categorical response for all individuals, but rather may simply indicate a set of possible
categorical responses. We use the term coarsening to describe the general phenomenon whereby
there is a loss of information about measurements; Heitjan and Rubin (1991) define coarsening
to include “as special cases rounded, heaped, censored, partially categorized and missing data”.
Thus it is a slightly more general concept than what comes to mind from the term “missing
data”, and we use it here to encompass both the case where a set of possible categorical responses
is reported rather than a single category, and the case where information is incomplete on state
occupancy for a multistate process due to intermittent observation of a continuous-time process.

The remainder of the article is organized as follows. In Section 1.2, we describe the motivat-
ing problem involving data from the University of Toronto Psoriatic Arthritis Cohort where the
goal is to predict different forms of sacroiliac joint damage in patients with psoriatic arthritis.
In Section 2, we review the PDI for multinomial data and extend it to deal with coarsened
data. The purpose of this section is to explore the impact of coarsening and methods for deal-
ing with it in a simplified setting via multinomial representation. In Section 3, we introduce
notation for the analysis of multistate processes under intermittent observation, and use the
framework proposed in Section 2 to deal with prediction of the state occupied at a specified
time horizon. Simulation studies are carried out to investigate the finite sample performance
of the proposed estimation procedure under both the multinomial (Section 2) and the multi-
state (Section 3) settings. Section 4 involves an application to the motivating data where we
use human leukocyte antigens to predict the presence of unilateral sacroiliac joint damage or
axial disease in patients with psoriatic arthritis and estimate the PDI as a function of time.
Concluding remarks and topics for future research are given in Section 5.
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1.2 Prediction of Sacroiliac Involvement in Psoriatic Arthritis

The motivating problem arose in a collaboration with researchers at the Centre for Prognosis
Studies in Rheumatic Disease in the University Health Network at the University of Toronto.
These researchers maintain the Psoriatic Arthritis Cohort (UTPAC), founded in 1976 and now
comprised of approximately 2000 patients. Upon recruitment, individuals provide biospecimens
which are used for genetic testing and for proteomic analysis. Recruited patients are scheduled
for annual clinic examination and biannual radiographic examination of joint damage. The
broad aim of this cohort is to provide a platform for study of the clinical and radiological
disease course, and to identify genetic and other types of risk factors for high disease activity
and rapid progression of joint damage.

There has been considerable discussion in the rheumatology literature in recent years re-
garding the nature of spinal involvement in individuals with psoriatic arthritis. Ankylosing
spondylitis is an arthritis condition with axial sacroiliac joint involvement, whereas other
arthritic conditions tend to the development of unilateral sacroiliac joint damage. The aim
of the current study is to predict spinal involvement in individual patients, and more specif-
ically whether patients are likely to experience unilateral damage of the sacroiliac joints, or
bilateral damage. The latter represents axial disease which is associated with greater pain and
mobility impairment. Accurate prediction of axial disease is important as those at high risk
may be given more intensive, potentially toxic and expensive, preventative therapy. Prediction
of unilateral sacroiliac damage is also important; researchers speculate that this may represent
a distinct disease process.

(a) State space diagram for onset
of unilateral sacroiliac (SI) dam-
age and axial disease.

(b) Timeline diagrams for visits and damage state for a
sample of six patients.

Figure 1: Four state diagram for the onset of sacroiliac damage in psoriatic arthritis (panel (a))
and six sample timelines depicting data obtained from follow-up visits information on sacroiliac
damage is acquired in patients from the University of Toronto Psoriatic Arthritis Cohort (panel
(b)); gaps in timelines of panel (b) reflect periods during which the state is unknown.

We adopt a multistate model for the analysis. Figure 1(a) shows a simple four state model
that can be used to characterize the onset of unilateral (left or right side) sacroiliac joint
damage, as well as axial disease. The extent of joint damage is assessed using the New York
Radiological Grading Criteria (Geijer et al., 2009) with damage defined here as grade 2 or
higher. An individual free of sacroiliac damage makes a 0 → k transition upon the onset of
grade 2 or higher damage in the left (k = 1) or right (k = 2) sacroiliac joint, and enters state 3
upon the development of grade 2 or higher damage in their second sacroiliac joint. Figure 1(b)
shows sample data for six individuals in the UTPAC with the length of the lines representing
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how long they were under follow-up, and the vertical ticks representing visits at which x-rays are
taken and damage can be assessed. We note that no transition times in Figure 1(a) are observed
due to intermittent radiological assessments and hence we only know the state occupied at the
times radiological assessments are made. Different line types in Figure 1(b) are used to depict
the different states of sacroiliac damage; gaps are used to denote periods when the damage
state is unknown.

2 Prediction with Multinomial Outcomes

2.1 The Polytomous Discrimination Index

Before considering the challenges involved in prediction and multistate processes under in-
termittent observation, we consider an analogous setting involving a coarsened multinomial
random variable Y taking on the values 0, 1, 2, . . . , K. If X = (X1, . . . , Xp)

′ is a p× 1 covariate

vector, let P (Y = k|X) = πk(X), k = 1, . . . , K and P (Y = 0|X) = 1−
∑K

k=1 πk(X). Consider
a multinomial regression model of the form

log(πk(X)/π0(X)) = X̄ ′βk = ηk , k = 1, . . . , K , (1)

where X̄ = (1, X ′)′, βk = (βk0, . . . , βkp)
′ is (p + 1) × 1 vector of regression coefficients, k =

1, 2, . . . , K, and β = (β′
1, . . . , β

′
K)

′ is K(p+1)×1 vector. We let ηk = X̄ ′βk be a linear predictor
associated with outcome k in (1), and η = (η1, . . . , ηK)

′ denote the K × 1 vector of linear
predictors in which we suppress the notation for the dependence on X. For the purpose of
predictive modeling, we refer to η1, . . . , ηK as risk scores and η as the multivariate risk score
with dimension K. We initially assume that β is known to focus on estimation of the PDI in an
idealized setting, but investigate properties when β is estimated in Section 2.3. We consider the
setting where the prediction for an individual with X = x is Ŷ = argmax

k
{πk(x), k = 0, . . . , K}.

That is, the predicted outcome is the class with the highest probability of occurrence given
X = x; alternative prediction rules can be adopted if additional costs or utilities are specified
but in the absence of these we adopt this standard practice (Pepe, 2003).

Let P denote a population of interest and Pk = {i : i ∈ P , Yi = k} the sub-population of
individuals in class k, k = 0, 1, . . . , K. We then let i = {i0, i1, . . . , iK} denote a (K + 1)-tuple
of individuals from P wherein ik ∈ Pk, k = 0, 1, . . . , K, and let P(K+1) = {i : ij ∈ Pj, j =
0, 1, . . . , K} be the set of all possible such (K + 1)-tuples. Next we let {Xi0 , Xi1 , . . . , XiK}
denote the random set of covariate vectors associated with the (K+1)-tuple i ∈ P(K+1). Based
on (1), let

πk(xij) =
exp(X̄ ′

ij
βk)

1 +
∑K

l=1 exp(X̄
′
ij
βl)

, (2)

be the conditional probability of a response in class k given covariate xij which we denote more
compactly as πijk in what follows. The PDI for category k, denoted by ∆k, is defined as the
probability that, among the individuals in a randomly selected (K +1)-tuple, the individual in
class k is assigned to class k. To define this we first let

Ak(i) = I(πikk > πijk , j ̸= k, j = 0, . . . , K) (3)

indicate such an assignment for i ∈ P(K+1). Then

∆k = E{Ak(i)} , (4)
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where the expectation is over {Xi0 , Xi1 , . . . , XiK}. The dimension of the integration necessary to
compute (4) can be reduced by working with the multidimensional risk scores since η represents
a sufficient dimension reduction from X if K < p. Strong assumptions for the multivariate
covariate distribution are required to compute ∆k, so it is more commonly estimated empirically
as we next describe.

Here we consider a validation sample S comprised of n independent individuals drawn
at random from a target population for which the prediction model is to be applied. Let
Sk = {i : i ∈ S, Yi = k} be the subset of individuals in the validation sample who are known to
be in class k, where |Sk| = nk, k = 0, 1, . . . , K. In what follows i = (i0, . . . , iK) is a vector of
labels for a (K + 1)-tuple of individuals constructed from the validation sample with ik ∈ Sk,
k = 0, 1, . . . , K; we let T = {i : ik ∈ Sk, k = 0, 1, . . . , K} denote the set of all

∏K
k=0 nk possible

(K + 1)-tuples based on the validation sample. An estimating function for ∆k can then be
defined as,

Uk(∆k) =
∑
i∈T

(Ak(i)−∆k) , (5)

with solution

∆̂k =
1∏K

k=0 nk

∑
i∈T

Ak(i) , (6)

k = 0, 1, . . . , K. The overall polytomous discrimination index ∆ is defined as the simple average
of the category-specific measures:

∆̂ =
1

K

K∑
k=0

∆̂k . (7)

2.2 Estimation with Coarsened Validation Data

We now consider the case in which the true class membership is unknown for some individuals
in the validation samples due to coarsening. Methods for dealing with coarsened data are
well developed, and we do not consider the formation of a predictive model but rather how
to evaluate predictive accuracy in terms of the PDI when responses are only known to be in
one of a set of classes. Let Ci be the coarsened response for individual i where, if K = 2 for
example, Ci ∈ {0, 1, 2, (0, 1), (0, 2), (1, 2), (0, 1, 2)} and the first three elements 0, 1 and 2 are
realized when there is no coarsening. We omit the noninformative outcomes defined as those
that have probability one (e.g. Ci = (0, 1, 2) when K = 2).

As in Section 2.1, we use a subscript on individual labels to denote the class they are in,
but here we introduce a superscript p to indicate that these may be pseudo-individuals who
are conceptualized to represent the possible class membership of an individual whose response
is coarsened. For example if Ci = (j, k), then there are two pseudo-individuals associated with
individual i, with one pseudo-individual assigned to class j and another to class k; we label
these pseudo-individuals ipj and ipk, respectively, but note that the values of ipj and ipk are equal
to i —- the subscript represents the class considered for a particular allocation. We further let
Sp
k = {i : i ∈ S, k ∈ Ci} be the set of individuals who are known to be in class k (i.e. if Ci = k)

or may be in class k (i.e. if k ∈ Ci), k = 0, 1, 2. To unify the notation, we label all individuals
in Sk by ipk whether it is known that Yi = k or we simply know Yk ∈ Ci. Note that I(|Ci| = 1)
indicates the outcome for individual i is observed precisely in which case ipk = i if Yi = k. If
Ci = (j, k), then there is a pseudo-individual ipj ∈ Sp

j and a pseudo-individual ipk ∈ Sp
k . More

generally if |Ci| = m, then there will be m pseudo-individuals corresponding to individual i,
with each one belonging to one of m different sets Sp

l , l ∈ Ci. Following this construction, we
let T p = {ip : ipk ∈ Sp

k , k = 0, 1, . . . , K} denote the set of all possible (K + 1)-tuples based on
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the pseudo-individuals conceptualized corresponding to the coarsened validation sample. We
assume coarsening at random in the sense of Heitjan and Rubin (1991).

Let

wik = P (Yi = k|Ci, Xi) =
P (Yi = k|Xi)∑
j∈Ci P (Yi = j|Xi)

, (8)

be the conditional probability individual i is in class k given their coarsened response Ci,
k = 0, 1, 2. If Ci = k then wik = 1 and wij = 0 for j ̸= k, k = 0, 1, 2. We let ip = (ip0, i

p
1, . . . , i

p
K)

represent a (K + 1)-tuple of individuals or pseudo-individuals where ipj ∈ Sp
j and let D(ip) =

I(ipj ̸= ipk, j ̸= k, j, k = 0, 1, . . . , K) is the indicator that this (K + 1)-tuple of potential pseudo-
individuals is comprised of distinct real individuals.

Next we let
Ak(i

p) = I(πipkk
> πipjk

, j ̸= k, j = 0, . . . , K) (9)

be the indicator that the (pseudo) individual from class k in ip has highest predictive probability
of being in class k, and define the estimating function for ∆k as,

Ūk(∆k) =
∑
ip∈T p

D(ip){w(ip)(Ak(i
p)−∆k)} , (10)

where wi(i
p) is the product wip00

wip11
wip22

. Note that in the absence of coarsening,

Sp
j ∩ Sp

k = ∅ for ∀ j ̸= k, (11)

D(ip) = 1 and w(ip) = 1, and we retrieve the standard estimator of ∆k given in equation (6).
More generally, we obtain

∆̂k =

∑
ip∈T p D(ip)w(ip)Ak(i

p)∑
ip∈T p D(ip)w(ip)

, (12)

and we again estimate the overall polytomous discrimination index as ∆̂ =
∑K

k=0 ∆̂k/(K + 1).

2.3 Simulation Studies Involving Coarsened Multinomial Data

Here we report on the results of simulation studies in which we focus on estimation of the PDI
measure described in Sections 2.1 and 2.2. We consider three classes (K = 2) in this simulation
study and express the class probabilities given the covariates as in (1). We set p = 2 and adopt
a covariate model with X ∼ BV N(µ,Σ) with µ = (µ1, µ2)

′ and

Σ =

(
σ2
1 ρσ1σ2

ρσ2σ1 σ2
2

)
; (13)

we set µ = (0, 0)′ and σ1 = σ2 = 1 and ρ = 0.4. The regression coefficients satisfy (β21, β22)
′ =

(2β11, 2β12)
′ and we set (β11, β12)

′ = (log 1.5, log 2)′ to represent moderate covariate effects, and
(β11, β12)

′ = (log 3, log 4)′ for stronger covariate effects. The intercepts β10 and β20 are chosen to
give pre-specified marginal probabilities P (Y = 0) = 0.4, P (Y = 1) = 0.4 and P (Y = 2) = 0.2.

To avoid high dimensional integration in (4) to determine ∆k, k = 0, 1, 2 and ∆, we use
Monte Carlo methods to approximate them by simulating a dataset of one million individuals
with complete covariate values and class membership; the resulting numerical values are re-
ported under the column headed “Value” in Table 1. To examine the validity of the weighted
estimating function for coarsened data, we consider two approaches to estimation of ∆k based
on (12). As a first pass, we use the true β value and directly evaluate the PDI in validation
samples of 500 individuals. The second approach is to estimate β from an independent training
sample of 1000 individuals with coarsening, using an EM algorithm (Dempster et al., 1977)
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for estimation and use the resulting estimate of β to estimate the PDI in a validation sample
of 500 individuals. Here if D is the set of indices labeling individuals in the training data
and coarsening is at random, the maximum likelihood estimate β̂ maximizes the observed data
loglikelihood

ℓ(β) =
∑
i∈D

logP (Yi ∈ Ci|xi)

where P (Yi ∈ Ci|xi) =
∑

k∈Ci πk(xi; β). We then use Âk(i
p) obtained from (9) with the estimate

of β used to estimate the classification probabilities. The third approach involves estimating β
based on a complete case analysis and using the resulting estimate β̃ to compute the PDI. All
three approaches are evaluated under varying degree of coarsening: 0%, 30%, and 60% where
the percentages correspond to the probabilities of coarsening in the sample. In the absence of
coarsening β̂ = β̃ so there is only one set of results for this setting. We specify Ci ⊥ Yi|Yi ∈ Ci, Xi

for coarsening at random and generate the coarsened data such that P (|Ci| ≠ 1) = 0.3 for
moderate coarsening and 0.6 for more severe coarsening, i = 1, . . . , n. If |Ci| = 2 and Yi = 1,
for example, we consider Ci = (Yi, j) with j = 0 or j = 2 to define the possible coarsening for
this individual; we choose Ci = (0, 1) or Ci = (1, 2) with equal probability.

The results of the simulation study involving 1000 replicates are displayed in Table 1 where
the mean estimate is reported under EST and we provide the empirical standard error (ESE),
the average bootstrap standard error from 500 bootstrap samples (ASE), the empirical coverage
probability of confidence intervals constructed directly on the scale of the PDI (ECP), and the
corresponding ECP for confidence intervals constructed based on the logit transformation of the
polytomous discrimination indices (ECP‡). The proposed weighted estimating function yields
estimators with low empirical bias for all settings with this good performance maintained for
the higher degrees of coarsening. We also see that when the training sample involves coarsened
data and an EM algorithm is used for estimation (Dempster et al., 1977), there remains small
empirical bias; the empirical standard error of the estimators increases with the increased
degree of coarsening. The empirical bias of the estimator based on a complete case analysis is
very small, as one would expect with data coarsened at random, but the associated empirical
standard error is greater. Also as expected, there is also a larger PDI with stronger covariate
effects. Additional simulation studies with 500 and 2000 individuals in the training sample lead
to similar conclusions – these are reported on in Section S1.1 of the Supplemental Material.

3 Prediction with Multistate Processes Under an Intermittent

Observation Scheme

3.1 Notation and model formulation

We now consider a multistate disease process with K + 1 states labeled 0, 1, . . . , K where
K is an absorbing state. Let Z(t) denote the state occupied at time t and {Z(s), 0 < s}
denote the associated stochastic process. We consider a q2 × 1 covariate vector X and let
H(t) = {Z(s), 0 < s < t;X} denote the history of the process at time t. The stochastic nature
of the multistate process can be fully characterized via the transition intensities (Cook and
Lawless, 2018) for all pairs of states where,

lim
∆t↓0

P (Z(t+∆t−) = l|Z(t−) = k,H(t))

∆t
= λkl(t|H(t)) , (14)

for k, l = 0, 1, . . . , K, k ̸= l, where t− denotes an infinitesimal amount of time before t. For
simplicity we assume that the same vector of covariates are used to model all transition inten-
sities and restrict attention to Markov processes for which covariates act multiplicatively on



Jiang S and Cook RJ 9

T
ab

le
1:

E
m
p
ir
ic
al

p
er
fo
rm

an
ce

of
es
ti
m
at
es

of
∆

k
,
k
=

0,
1,
2
an

d
∆

w
it
h
n
o,

m
o
d
er
at
e
(3
0%

),
an

d
h
ea
v
ie
r
(6
0%

)
co
ar
se
n
in
g.

P
e
r
c
e
n
t
a
g
e
o
f
In

d
iv
id
u
a
l
s
w
it
h
C
o
a
r
se

n
e
d

O
b
se

r
v
a
t
io
n
s

0%
30
%

60
%

P
ar
am

et
er

V
al
u
e

M
et
h
o
d
†

E
S
T

E
S
E

A
S
E

E
C
P

E
C
P
‡

E
S
T

E
S
E

A
S
E

E
C
P

E
C
P
‡

E
S
T

E
S
E

A
S
E

E
C
P

E
C
P
‡

m
o
d
e
r
a
t
e
c
o
v
a
r
ia
t
e
e
f
f
e
c
t
s;

(β
1
1
,β

1
2
)′
=

(l
og

1.
5,
lo
g
2)

′ ,
(β

2
1
,β

2
2
)′
=

(2
β
1
1
,2
β
1
2
)′

∆
0

0.
67
0

T
ru
e

0.
66
5

0.
02
8

0.
02
9

0.
96
7

0.
95
6

0.
66
5

0.
02
4

0.
02
4

0.
94
9

0.
94
3

0.
66
3

0.
02
2

0.
02
3

0.
96
1

0.
95
4

E
M

0.
66
5

0.
02
8

0.
03
0

0.
96
1

0.
95
6

0.
66
5

0.
03
0

0.
03
1

0.
95
0

0.
95
3

0.
66
6

0.
03
4

0.
03
2

0.
94
3

0.
94
2

C
C

0.
66
6

0.
03
2

0.
03
3

0.
95
4

0.
94
1

0.
66
9

0.
04
5

0.
04
4

0.
94
7

0.
94
9

∆
1

0.
40
4

T
ru
e

0.
40
5

0.
03
2

0.
03
2

0.
95
3

0.
95
4

0.
40
2

0.
02
9

0.
03
0

0.
96
0

0.
95
1

0.
40
0

0.
02
4

0.
02
3

0.
94
4

0.
95
2

E
M

0.
40
6

0.
03
3

0.
03
1

0.
92
6

0.
93
0

0.
40
7

0.
03
1

0.
03
0

0.
94
1

0.
93
8

0.
41
1

0.
03
1

0.
02
9

0.
93
4

0.
94
6

C
C

0.
40
8

0.
03
7

0.
03
7

0.
95
2

0.
95
0

0.
41
8

0.
05
2

0.
05
1

0.
94
7

0.
94
7

∆
2

0.
67
7

T
ru
e

0.
66
3

0.
03
4

0.
03
3

0.
94
4

0.
94
6

0.
66
3

0.
03
7

0.
03
8

0.
95
8

0.
94
9

0.
66
2

0.
02
5

0.
02
6

0.
95
9

0.
95
1

E
M

0.
66
4

0.
03
4

0.
03
2

0.
93
4

0.
94
1

0.
66
5

0.
03
7

0.
03
6

0.
95
8

0.
95
4

0.
66
5

0.
04
5

0.
04
4

0.
94
2

0.
94
5

C
C

0.
66
4

0.
04
3

0.
04
4

0.
95
7

0.
95
2

0.
67
1

0.
05
6

0.
05
6

0.
95
0

0.
95
5

∆
0.
58
3

T
ru
e

0.
57
8

0.
02
3

0.
02
2

0.
95
1

0.
95
7

0.
57
6

0.
02
0

0.
01
9

0.
94
1

0.
94
9

0.
57
5

0.
01
8

0.
01
9

0.
95
5

0.
95
4

E
M

0.
57
8

0.
03
1

0.
03
0

0.
96
2

0.
95
7

0.
57
9

0.
03
3

0.
03
1

0.
96
3

0.
95
3

0.
58
0

0.
03
7

0.
03
5

0.
94
0

0.
95
1

C
C

0.
57
9

0.
03
7

0.
03
6

0.
94
7

0.
94
8

0.
58
6

0.
04
0

0.
03
9

0.
95
4

0.
94
3

st
r
o
n
g

c
o
v
a
r
ia
t
e
e
f
f
e
c
t
s;

(β
1
1
,β

1
2
)′
=

(l
og

3,
lo
g
4)

′ ,
(β

2
1
,β

2
2
)′
=

(2
β
1
1
,2
β
1
2
)′

∆
0

0.
82
8

T
ru
e

0.
83
1

0.
02
1

0.
02
1

0.
95
2

0.
94
9

0.
83
2

0.
01
8

0.
01
9

0.
96
1

0.
95
3

0.
83
2

0.
01
6

0.
01
6

0.
94
4

0.
95
6

E
M

0.
83
2

0.
02
1

0.
02
2

0.
95
5

0.
95
2

0.
83
2

0.
02
2

0.
02
3

0.
95
8

0.
95
6

0.
83
3

0.
02
5

0.
02
6

0.
94
8

0.
95
9

C
C

0.
83
3

0.
02
4

0.
02
3

0.
95
3

0.
94
2

0.
83
4

0.
03
2

0.
03
1

0.
95
9

0.
94
5

∆
1

0.
55
3

T
ru
e

0.
56
6

0.
03
4

0.
03
3

0.
94
3

0.
95
1

0.
56
5

0.
03
1

0.
03
2

0.
94
8

0.
95
6

0.
56
4

0.
02
8

0.
02
8

0.
95
6

0.
94
7

E
M

0.
56
7

0.
03
3

0.
03
3

0.
94
6

0.
94
2

0.
56
9

0.
03
4

0.
03
2

0.
94
2

0.
95
1

0.
56
9

0.
03
6

0.
03
5

0.
94
8

0.
95
4

C
C

0.
56
7

0.
03
9

0.
03
8

0.
94
8

0.
94
1

0.
57
4

0.
05
3

0.
05
3

0.
94
2

0.
95
6

∆
2

0.
82
1

T
ru
e

0.
82
5

0.
02
6

0.
02
7

0.
96
2

0.
95
7

0.
82
5

0.
02
3

0.
02
3

0.
94
4

0.
95
8

0.
82
3

0.
02
0

0.
01
9

0.
94
3

0.
94
8

E
M

0.
82
5

0.
02
5

0.
02
6

0.
96
4

0.
95
1

0.
82
6

0.
02
8

0.
02
9

0.
96
0

0.
95
4

0.
82
6

0.
03
3

0.
03
3

0.
94
6

0.
95
0

C
C

0.
82
5

0.
03
2

0.
03
3

0.
94
3

0.
95
2

0.
82
8

0.
04
0

0.
04
0

0.
95
9

0.
95
2

∆
0.
73
4

T
ru
e

0.
74
1

0.
02
1

0.
02
0

0.
94
7

0.
95
3

0.
74
1

0.
01
9

0.
01
9

0.
94
5

0.
95
2

0.
74
0

0.
01
6

0.
01
7

0.
94
8

0.
95
7

E
M

0.
74
2

0.
02
6

0.
02
7

0.
95
4

0.
95
4

0.
74
3

0.
02
8

0.
02
9

0.
94
6

0.
95
0

0.
74
3

0.
03
1

0.
03
0

0.
94
6

0.
95
1

C
C

0.
74
2

0.
03
0

0.
03
0

0.
95
1

0.
95
7

0.
74
5

0.
03
5

0.
03
4

0.
94
3

0.
94
5

N
o
te
:
T
h
e
A
S
E

is
th
e
av
er
ag
e
of

b
o
ot
st
ra
p
st
an

d
ar
d
er
ro
rs

b
a
se
d
o
n
5
0
0
b
o
o
ts
tr
a
p
sa
m
p
le
s
cr
ea
te
d
fo
r
ea
ch

si
m
u
la
te
d
d
a
ta
;
th
e
E
C
P

is
th
e
em

p
ir
ic
a
l
co
ve
ra
g
e

p
ro
b
ab

il
it
y
of

n
om

in
al

95
%

co
n
fi
d
en
ce

in
te
rv
al
s
co
n
st
ru
ct
ed

b
a
se
d
o
n
th
e
n
o
rm

a
l
a
p
p
ro
x
im

a
ti
o
n
o
f
th
e
es
ti
m
a
to
r
u
si
n
g
th
e
b
o
o
ts
tr
a
p
st
a
n
d
a
rd

er
ro
r
w
h
il
e
E
C
P
‡

is
th
e
co
rr
es
p
on

d
in
g
em

p
ir
ic
al

co
ve
ra
ge

p
ro
b
ab

il
it
y
w
h
en

th
e
co
n
fi
d
en
ce

in
te
rv
a
ls

a
re

co
n
st
ru
ct
ed

b
as
ed

o
n
th
e
lo
g
it

tr
a
n
sf
o
rm

a
ti
o
n
;
tr
a
in
in
g
sa
m
p
le
s
a
re

o
f
1
0
0
0

ob
se
rv
at
io
n
s;

va
li
d
at
io
n
sa
m
p
le
s
in
vo
lv
e
50
0
in
d
iv
id
u
al
s;

n
si
m

=
1
0
0
0
.

†
P
re
d
ic
ti
on

is
b
as
ed

on
tr
u
e
p
ar
am

et
er

va
lu
es

(T
ru
e)
,
as

w
el
l
a
s
m
a
x
im

u
m

li
ke
li
h
o
o
d
es
ti
m
a
te
s
b
a
se
d
on

a
n
ex
p
ec
ta
ti
o
n
-m

a
x
im

iz
a
ti
o
n
a
lg
o
ri
th
m

(E
M
)
a
n
d
co
m
p
le
te
-

ca
se

an
al
y
si
s
(C

C
);
th
e
“E

M
es
ti
m
at
e”

is
th
e
u
su
al

M
L
E

ob
ta
in
ed

b
y
fi
tt
in
g
a
st
a
n
d
a
rd

m
u
lt
in
o
m
ia
l
re
g
re
ss
io
n
m
o
d
el

w
h
en

th
er
e
is

n
o
co
a
rs
en
in
g
.



The polytomous discrimination index for prediction involving
multistate processes under intermittent observation 10

baseline transition intensities via

λkl(t|H(t)) = λkl(t) exp(X
′βkl) ,

with βkl = (βkl1, . . . , βklq2)
′ a q2 × 1 vector of regression coefficients for k → l transitions

(Andersen et al., 2012). If αkl is a q1× 1 parameter vector indexing λkl(t) and q = q1+ q2, then
the k → l transition intensity is indexed by the q × 1 parameter vector θkl = (α′

kl, β
′
kl)

′ and θ
is the full vector containing all θkl for k ̸= l = 0, 1, . . . , K. We adopt a common dimension for
the parameters indexing the different baseline intensities, but this is for notational convenience
and can be easily relaxed.

In what follows we consider a four state process, illustrated in Figure 1 (a), with 0 → 1,
0 → 2, 1 → 3, and 2 → 3 transitions possible. The 4× 4 transition probability matrix P(s, t|x)
can be computed by product integration as discussed in Section 2.2 of Cook and Lawless (2018).
We let Q(t|x) denote the 4× 4 matrix of cumulative transition intensities

Q(t|x) =


−Λ01(t|x)− Λ02(t|x) Λ01(t|x) Λ02(t|x) 0

0 −Λ13(t|x) 0 Λ13(t|x)
0 0 −Λ23(t|x) Λ23(t|x)
0 0 0 0

 ,

where Λkl(t|x) =
∫ t

0
λkl(s|x)ds. Then let dQ(t|x) be a 4×4 matrix with (k, l) entry dΛkl(t|x) =

λkl(t|x)dt if k ̸= l and −dΛk·(t|x) if k = l with “·” representing summation over the corre-
sponding index. Then if I is a 4× 4 identity matrix the transition probability matrix P(s, t|x)
with (k, l) entry

pkl(s, t|x) = P (Z(t) = l|Z(s) = k, x) ,

is obtained by

P(s, t|x) =
∏
(s,t]

{I+ dQ(t|x)} .

We now consider a sample of n individuals under intermittent observation labeled i =
1, . . . , n and let 0 = ai0 < ai1 < · · · < aimi

denote the mi visit times at which data are available
for individual i. To formalize this observation process, we let τi denote a loss to follow-up
time and Yi(t) = I(t ≤ τi) indicate that individual i is still on study. We also let dAi(s) = 1
if individual i has a visit at time s with dAi(s) = 0 otherwise. Let Ai(t) =

∫ t

0
Yi(s)dAi(s)

record the cumulative number of visits over (0, t], and let {Ai(s), 0 < s} denote the counting
process for visits which is terminated upon censoring. We let Zi(ai0) = 0 with probability 1
for ai0 = 0, and let the observed process history be denoted by H̄i(t) = {Yi(s), dAi(s), 0 <
s < t, (Zi(aim), air), r = 0, 1, . . . , Ai(t

−)}. We assume a conditionally independent and non-
informative censoring time and that the visit process is conditionally independent in the sense
of Cook and Lawless (2018, 2021) – this is akin to the sequential missing at random assumption
characterized by Hogan et al. (2004) for longitudinal data with drop-outs. Then under a Markov
model the observed data partial likelihood is

L(θ) =
n∏

i=1

mi∏
r=1

P (Zi(air)|Zi(ai,r−1), Xi) , (15)

and maximum partial likelihood estimates can be obtained by a Fisher-scoring algorithm
(Kalbfleisch and Lawless, 1985) or direct maximization using the msm function (Jackson, 2011).
This is a brief discussion of the likelihood construction for Markov processes under intermittent
observation – predictive models can be constructed based on this likelihood by simple model
fitting if covariates are specified, or through use of penalization. Our primary interest however,
is to discuss assessment of predictive accuracy based on any particular predictive model based
on a validation sample. We describe how to do this in the next section.
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3.2 Estimating predictive accuracy with coarsened multistate data

We now consider the problem in which interest lies in predicting state occupancies for an
individual at a time horizon denoted by t◦ > 0. If we consider a 4-tuple i = (i0, . . . , i3) where
individual ij is in state j at t◦, let πijk(t◦) = p0k(0, t◦|Xij) be the conditional probability that
an individual with their covariate vector is in state k at t◦. We then define

Ak(i; t◦) = I(πikk(t◦) > πijk(t◦), j ̸= k, j = 0, . . . , 3) (16)

and define the PDI for category k at t◦ as ∆k(t◦) = E{Ak(i; t◦)} where again the expectation
is take over the distributions of the covariate vectors for members of the 4-tuple.

Since the continuous-time multistate disease process is under intermittent observation, the
state occupied at t◦ will be unknown for individuals who were censored in a transient state
prior to t◦ and those whose recorded states at visits immediately before and after t◦ differ.
The observed data for individual i is denoted by H̄i(∞) with the key elements being Di =
{(Zi(air), air), r = Ai(t

−
◦ ), Ai(t

−
◦ ) + 1, Xi} under the assumptions of Section 3.1. Note that if

Ai(t
−
◦ ) = mi then we let ai,mi+1 = ∞ and Zi(ai,mi+1) = 3. As in Section 2.2, we use a subscript

to label individuals according to the state they are in at t◦ with the superscript p used to
indicate that these may be pseudo-individuals, conceptualized to represent the represent all
possible states occupied by an individual when their true state is unknown.

The weight wij(t◦) = P (Zi(t◦) = j|Di) under the multistate process is then given by,

wij(t◦) =
P (Zi(t◦) = j|Zi(aiAi(t

−
◦ )), Xi)P (Zi(ai,Ai(t

−
◦ )+1)|Zi(t

−
◦ ) = j,Xi)

P (Zi(ai,Ai(t
−
◦ )+1)|Zi(aiAi(t

−
◦ )), Xi)

. (17)

We use Sp
k(t◦) to denote the set of pseudo-individuals who may occupy state k at t◦, k = 0, 1, 2, 3.

Moreover, we let ip = (ip0, i
p
1, i

p
2, i

p
3)

′ represent a 4-tuple of individuals or pseudo-individuals
where ipj ∈ Sp

j (t◦) and let T p(t◦) = {ip : ipk ∈ Sp
k(t◦), k = 0, 1, 2, 3} denote the set of all possible

4-tuples at t◦. We let πipkk
(t◦) = p0k(0, t◦|Xipk

) and define

Ak(i
p; t◦) = I(πipkk

(t◦) > πipjk
(t◦), j ̸= k, j = 0, . . . , 3) (18)

as the indicator that the (pseudo) individual from class k among the 4-tuple has highest predic-
tive probability of being in class k. We then define the weighted estimating function for ∆k(t◦)
as,

Ūk(∆k(t◦); t◦) =
∑
ip∈T p

D(ip; t◦){wi(i
p; t◦)(Ak(i

p; t◦)−∆k(t◦))} , (19)

where D(ip; t◦) = I(ip ∈ T p(t◦), i
p
j ̸= ipk, j ̸= k, j, k = 0, 1, 2, 3) is the indicator that this 4-tuple

is comprised of distinct individuals and wi(i
p; t◦) =

∏3
k=0 wipkk

(t◦). The estimate ∆̂k(t◦) is the

solution to D(ip; t◦) = 0 and an overall PDI denoted by ∆̂(t◦) can be estimated by averaging
the K + 1 category-specific PDI values obtained at t◦.

3.3 Simulation Studies Involving Multistate Processes

To mimic the data from the motivating study, we specify the parameter setting as follows. The
transition intensities are set under the constraint λ01 = λ02 so that the baseline intensity for
the onset of unilateral damage is the same for the left and right SI joints, and λ13 = λ23 = 2λ01

so that the intensity for the onset of axial disease is twice as high as it was for the onset
of unilateral damage. We consider covariates X = (X1, X2)

′, with X ∼ BV N(µ,Σ), where
µ = (µ1, µ2)

′ and Σ in a similar fashion as (13) with µk = 0, σ2
k = 1, k = 1, 2, and ρ = 0.5. We
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set P (Z(t◦) = 3|Z(0) = 0;X = 0) = 0.5 at t◦ = 1, so the prevalence of axial disease at time t◦ is
0.5 among individuals with X1 = X2 = 0. Further, we set β01 = β02 so that the covariates have
the same effect for the onset of unilateral damage, and β13 = β23 so that the covariates have
the same effect for the onset of axial disease among those individuals with unilateral damage.
Specifically, we let β01 = β02 = (log 1.5, log 2.0)′ and β13 = β23 = Rβ01, where R = 0.25, 0.5, 1.0,
and 2.0. Given the covariates and transitional intensities, we can then generate the multistate
data Z(s), 0 < s < 2|x.

(a) R = 0.25. (b) R = 0.5.

(c) R = 1. (d) R = 2.

Figure 2: Contour plots of the empirical covariate distributions by class membership for the four
simulation scenarios under the multistate processes with random samples of 10,000 individuals.

For the visit process we consider the follow-up period of 2 units duration, and set the time
horizon for prediction to t◦ = 1. We adopt a time homogeneous Poisson process for the visit
times with rate ρ = 5 or 10 giving A(2) ∼ Poisson(mean 10 or 20) with ai1 < · · · < aimi

the realized visit times. Given the intermittent observation process, the observed data is thus
composed of {(aim, Zi(aim)),m = 0, 1, . . . ,mi, Xi}, for i = 1, . . . , n. In line with our motivating
application, we are interested in estimating the prediction accuracy for state occupancy for
unilateral damage (states 1 or 2), regardless of sides, as well as the state occupancy for axial
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Table 2: Finite sample properties of estimates of ∆k(t◦), k = 0, 1, 2 and ∆k(t◦) with t◦ = 1, for
different values of R with an average of 10 or 20 visits over the period (0, 2].

E(M) = 10 E(M) = 20

Parameter Value Method† EST ESE ASE ECP ECP‡ EST ESE ASE ECP ECP‡

β01 = β02 = (log 1.5, log 2.0)′; β13 = β23 = Rβ01, R = 0.25

∆0(t◦) 0.708 True 0.709 0.029 0.030 0.962 0.957 0.709 0.029 0.030 0.958 0.959
MLE 0.708 0.029 0.031 0.952 0.950 0.706 0.029 0.029 0.951 0.959

∆1(t◦) 0.416 True 0.428 0.029 0.028 0.959 0.957 0.429 0.031 0.030 0.940 0.943
MLE 0.419 0.031 0.030 0.956 0.954 0.418 0.030 0.031 0.935 0.935

∆2(t◦) 0.651 True 0.637 0.026 0.026 0.941 0.943 0.639 0.027 0.028 0.962 0.958
MLE 0.638 0.027 0.028 0.942 0.940 0.637 0.027 0.027 0.946 0.951

∆(t◦) 0.592 True 0.591 0.021 0.020 0.942 0.949 0.592 0.021 0.020 0.942 0.943
MLE 0.588 0.020 0.018 0.932 0.941 0.587 0.020 0.020 0.940 0.945

β01 = β02 = (log 1.5, log 2.0)′; β13 = β23 = Rβ01, R = 0.5

∆0(t◦) 0.697 True 0.690 0.030 0.031 0.952 0.946 0.689 0.030 0.031 0.953 0.959
MLE 0.690 0.030 0.029 0.938 0.944 0.691 0.030 0.031 0.940 0.958

∆1(t◦) 0.435 True 0.431 0.032 0.031 0.940 0.954 0.432 0.032 0.032 0.957 0.955
MLE 0.427 0.031 0.030 0.942 0.939 0.428 0.031 0.032 0.962 0.945

∆2(t◦) 0.702 True 0.703 0.025 0.026 0.956 0.957 0.702 0.026 0.026 0.941 0.954
MLE 0.702 0.024 0.025 0.964 0.954 0.701 0.023 0.026 0.951 0.957

∆(t◦) 0.613 True 0.608 0.021 0.019 0.954 0.943 0.608 0.021 0.020 0.950 0.947
MLE 0.606 0.020 0.019 0.958 0.950 0.607 0.020 0.021 0.960 0.958

β01 = β02 = (log 1.5, log 2.0)′; β13 = β23 = Rβ01, R = 1

∆0(t◦) 0.674 True 0.659 0.032 0.031 0.942 0.943 0.659 0.032 0.033 0.952 0.951
MLE 0.659 0.032 0.032 0.961 0.950 0.660 0.031 0.032 0.963 0.951

∆1(t◦) 0.461 True 0.456 0.033 0.032 0.956 0.958 0.457 0.031 0.032 0.954 0.957
MLE 0.451 0.034 0.033 0.935 0.948 0.453 0.032 0.033 0.930 0.938

∆2(t◦) 0.794 True 0.789 0.021 0.022 0.949 0.941 0.789 0.022 0.022 0.958 0.944
MLE 0.784 0.022 0.023 0.952 0.947 0.787 0.021 0.022 0.937 0.941

∆(t◦) 0.643 True 0.635 0.021 0.019 0.939 0.945 0.635 0.019 0.020 0.941 0.945
MLE 0.631 0.021 0.022 0.946 0.955 0.633 0.019 0.019 0.932 0.947

β01 = β02 = (log 1.5, log 2.0)′; β13 = β23 = Rβ01, R = 2

∆0(t◦) 0.640 True 0.624 0.034 0.033 0.942 0.944 0.622 0.032 0.033 0.949 0.953
MLE 0.622 0.033 0.032 0.934 0.941 0.622 0.033 0.032 0.926 0.941

∆1(t◦) 0.513 True 0.513 0.034 0.033 0.947 0.958 0.514 0.031 0.032 0.939 0.947
MLE 0.503 0.034 0.033 0.956 0.960 0.503 0.033 0.032 0.953 0.950

∆2(t◦) 0.871 True 0.869 0.017 0.017 0.953 0.953 0.870 0.017 0.017 0.949 0.942
MLE 0.868 0.017 0.018 0.941 0.944 0.868 0.016 0.017 0.949 0.951

∆(t◦) 0.670 True 0.669 0.019 0.020 0.940 0.945 0.669 0.018 0.019 0.950 0.954
MLE 0.665 0.018 0.020 0.956 0.952 0.664 0.017 0.018 0.951 0.945

Note: The ASE is approximated with 500 bootstrap samples with replacement within each simulated data.
Note that ECP is the empirical coverage probability of nominal 95% confidence intervals constructed based on
the normal approximation of the estimator using ASE as the standard error while ECP‡ is the corresponding
empirical coverage probability when the confidence intervals are constructed on using the logit transformation;
training samples are of 1000 observations; validation samples involve 500 individuals, nsim = 1000.

† Prediction is based on true parameter values (True) and maximum likelihood estimates (MLE).
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disease (state 3). This results in three estimates of the PDI at time t◦. Note that although we
are collapsing the unilateral damage states together when estimating the PDI, the associated
parameters with multistate process are estimated under the general 4-state model to allow
flexibility.

As in the multinomial setting we considered two approaches for estimating ∆k(t◦). The first
approach treats the full parameter vector θ as fixed at the true value and directly evaluates
the PDI in a validation sample of 500 individuals. The second approach estimates θ from
an independent training sample of size 1000 by maximizing the log likelihood in (15), and
then evaluates the PDI in a validation sample of size 500. To visualize the setting under
R = 0.25, 0.5, 1 and 2, we have constructed the empirical contour plots of the joint density
of the covariates conditional on class membership, displayed in Figure 2. This contour plot
is created by simulating a random sample of 10,000 individuals where it gives a sense of the
separation of the covariate distribution between the three different classes. A complete table
of simulation results repeated over 1000 simulation runs can be found in Table 2. Similar to
the multinomial setting, the column named ‘Value’ corresponds to the true PDI value at time
t◦ estimated by Monte Carlo. As in Section 2, we report the mean estimate under the column
headed EST, and provide the empirical standard error (ESE) and average bootstrap standard
error based on 500 bootstrap samples (ASE); the empirical coverage probability of nominal 95%
confidence intervals computed on the scale of ∆k is reported under ECP while ECP‡ reports
the corresponding empirical coverage probability for confidence intervals are constructed based
on the logit transformation. We can see that the proposed weighted estimating function gives
estimates with small empirical bias. Notably, the empirical standard error of the estimators
of ∆k(t◦) and ∆(t◦) are only modestly affected by the estimation of θ. Thus, the increase
in frequency of the visit process also had modest effect on the empirical bias and standard
error. As R increased from 0.25 to 2, giving a stronger covariate effect of transitioning from
the unilateral damage state to axial state, we see a big increase in ∆2(t◦). This finding is in
accordance with the empirical contour plots in Figure 2. Additional simulation studies with
n = 500 and 2000 in the training sample retain similar conclusions as what we presented here.
These results are in Section S1.2 of the Supplemental Material.

4 Sacroiliac Joint Damage in Psoriatic Arthritis

Here we revisit the problem of predicting sacroiliac damage in patients with psoriatic arthritis
(PsA) using data from the University of Toronto Psoriatic Arthritis Clinic, where interest lies
in predicting whether an individual is in a certain state at a pre-specified time horizon; see
Section 1.2. This multistate disease process is depicted in Figure 1(a) and we aim to assess
the accuracy of predictions for being in states defining unilateral sacroiliac damage (states 1
or 2) and axial disease (state 3). Table 3 provides the distribution of the coarsening sets at
time horizons t◦ = 5, 10, 15 and 20 years. From this table we can see that the state occupied
for individuals is usually uncertain with increasing degrees of coarsening due to intermittent
observation at later time horizons. We restrict attention to individuals recruited to the clinic
that did not have any sacroiliac damage upon clinic entry (at state 0), giving a sample of
953 individuals. The baseline covariates used in this analysis included age of PsA diagnosis,
gender, and several human leukocyte antigen markers including, HLA-A2, HLA-A11, HLA-
B38, HLA-C12, HLA-DR8, HLA-DR14, HLA-DQ2, HLA-DQ3 and HLA-DQ5, which have
been reported as important risk factors in previous work in this area. We considered four
multistate models including a model with time homogeneous transition intensities and four
distinct sets of regression coefficients (Model 1), a model with time homogeneous transition
intensities with the regression coefficients constrained to be equal for the 0 → 1 and 0 → 2
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transitions, as well as 1 → 3 and 2 → 3 transitions (Model 2). Models 3 and 4 were analogous
to Models 1 and 2, respectively, but with piecewise-constant (four pieces) baseline intensities
having cut-points at t = 8, 16, 24 years. The estimated relative risks (RR) for each of these
covariates and their associated 95% confidence intervals are presented in Table 4 for all four
models.

Table 3: Distribution of coarsened state occupancy data at time horizons t◦ = 5, 10, 15 and 20
years from clinic entry.

Ci t◦ = 5 t◦ = 10 t◦ = 15 t◦ = 20

Prediction Time Horizon

0 611 (64.11%) 407 (42.71%) 251 (26.33%) 161 (16.89%)
1 7 (0.73%) 7 (0.73%) 6 (0.63%) 2 (0.21%)
2 12 (1.26%) 10 (1.05%) 12 (1.26%) 10 (1.05 %)
3 117 (12.28%) 188 (19.72%) 253 (26.55%) 286 (30.01%)

(0, 1) 6 (0.63%) 5 (0.53%) 1 (0.11%) 0 (0%)
(0, 2) 12 (1.26%) 6 (0.63%) 6 (0.63%) 3 (0.31%)
(1, 3) 11 (1.15%) 12 (1.26%) 18 (1.89%) 23 (2.41%)
(2, 3) 17 (1.78%) 32 (3.36%) 35 (3.67%) 42 (4.41%)

(0, 1, 2, 3) 160 (16.79%) 286 (30.01%) 371 (38.93%) 426 (44.70%)

The mean value of the PDI for each class, as well as the overall value, were computed at
times t◦ = 5, 10, 15, 20, with the point estimates joined over the different time horizons in
Figure S1 of the Supplemental Material. All four models demonstrated much superior predic-
tion than the null model whose value of the PDI is 1/3 (see lower dashed horizontal line). The
time-homogeneous Model 1 with unconstrained regression coefficients tended to give the best
predictive performance in terms of class-specific and overall discrimination. To assess the un-
certainty in ∆̂k(t◦) and the overall estimate ∆̂(t◦) for the four models, pointwise 95% confidence
intervals were computed at each time horizon based on the nonparametric bootstrap. Model
1 had the best performance so we show the plots for the time-homogeneous models (Models
1 and 2) in Figure 3 and include the plots for piecewise-constant models (Models 3 and 4) in
Figure S2 of the Supplemental Material.

5 Discussion

Our primary goal is to describe how to estimate the accuracy of a prediction model for state
occupancy of a multistate process at a specified time horizon, in the setting where the disease
process is under intermittent observation. As an initial investigation, we consider prediction
with a multinomial response where outcomes may be coarsened for some individuals so that it
is only known that the outcome is one of a set of possible categories. A weighted estimator of
the PDI is proposed by considering a pseudo-sample of individuals accommodating the different
response categories that individuals with grouped outcomes may belong to; this approach is
shown to perform well with moderate to heavy completely random coarsening rates. Building on
the discussion under the multinomial setup in Section 2, we then described estimation of PDI in
multistate disease processes. The interest lies in predicting whether an individual is in a certain
state at a pre-specified time horizon t◦. However, the state occupied by some individuals at t◦



The polytomous discrimination index for prediction involving
multistate processes under intermittent observation 16

T
ab

le
4:

E
st
im

at
e
of

re
gr
es
si
on

co
effi

ci
en
ts

fr
om

fi
tt
in
g
M
o
d
el
s
1
to

4
to

d
at
a
fr
om

th
e
U
n
iv
er
is
ty

of
T
or
on

to
P
so
ri
at
ic

A
rt
h
ri
ti
s
C
oh

or
t;

cu
t-
p
oi
n
ts

ar
e
at

8,
16

an
d
24

ye
ar
s
fr
om

d
is
ea
se

on
se
t.

M
o
d
el
s
1
an

d
3

M
o
d
el
s
2
an

d
4

0
→

1
0
→

2
1
→

3
2
→

3
0
→

1/
2

1/
2
→

3

C
ov
ar
ia
te

R
R

C
I

R
R

C
I

R
R

C
I

R
R

C
I

R
R

C
I

R
R

C
I

T
im

e
h
o
m
o
g
e
n
e
o
u
s
in
t
e
n
si
t
y

ge
n
d
er

(m
al
e
v
s.

fe
m
al
e)

1.
96

(0
.8
4,

4.
56
)

1.
33

(0
.7
5,

2.
35
)

1.
30

(0
.3
3,

5.
14
)

1.
62

(0
.7
4,

3.
58
)

1.
52

(1
.0
5,

2.
22
)

1.
34

(0
.8
5,

2.
11
)

ag
e

(y
ea
rs
)

1.
00

(0
.9
7,

1.
03
)

0.
96

(0
.9
4,

0.
99
)

1.
08

(1
.0
2,

1.
14
)

0.
98

(0
.9
5,

1.
00
)

0.
97

(0
.9
6,

0.
99
)

0.
99

(0
.9
7,

1.
01
)

a2
3.
15

(1
.2
4,

8.
05
)

1.
58

(0
.8
7,

2.
85
)

4.
77

(0
.8
9,

28
.3
2)

0.
79

(0
.4
3,

1.
44
)

1.
99

(1
.3
3,

2.
97
)

1.
34

(0
.8
4,

2.
14
)

a1
1

1.
73

(0
.6
7,

4.
41
)

0.
60

(0
.1
9,

1.
92
)

11
.5
1

(2
.0
6,

64
.3
4)

1.
33

(0
.4
7,

3.
74
)

0.
99

(0
.5
5,

1.
80
)

1.
94

(1
.0
0,

3.
77
)

b
38

1.
04

(0
.3
0,

3.
60
)

1.
11

(0
.4
2,

2.
95
)

2.
25

(0
.2
3,

22
.1
8)

2.
52

(0
.8
4,

7.
59
)

1.
05

(0
.5
3,

2.
07
)

2.
52

(1
.0
9,

5.
83
)

c1
2

1.
05

(0
.3
8,

2.
96
)

1.
55

(0
.7
2,

3.
32
)

2.
46

(0
.3
2,

19
.0
7)

1.
52

(0
.6
6,

3.
48
)

1.
35

(0
.7
6,

2.
34
)

1.
56

(0
.8
5,

2.
86
)

d
r8

0.
45

(0
.0
9,

2.
12
)

1.
66

(0
.6
3,

4.
37
)

1.
30

(0
.0
9,

18
.6
4)

0.
75

(0
.2
4,

2.
37
)

1.
05

(0
.4
8,

2.
30
)

0.
55

(0
.2
2,

1.
38
)

d
r1
4

1.
05

(0
.3
0,

3.
68
)

1.
25

(0
.4
3,

3.
64
)

0.
19

(0
.0
2,

2.
15
)

0.
58

(0
.1
7,

1.
99
)

1.
17

(0
.5
6,

2.
42
)

0.
37

(0
.1
5,

0.
89
)

d
q
2

0.
15

(0
.0
5,

0.
46
)

1.
27

(0
.7
0,

2.
32
)

0.
17

(0
.0
4,

0.
73
)

1.
18

(0
.5
7,

2.
46
)

0.
65

(0
.4
2,

1.
00
)

0.
71

(0
.4
5,

1.
14
)

d
q
3

0.
58

(0
.2
6,

1.
29
)

1.
31

(0
.7
2,

2.
38
)

0.
13

(0
.0
3,

0.
57
)

1.
83

(0
.9
2,

3.
63
)

0.
94

(0
.6
2,

1.
42
)

1.
24

(0
.7
6,

2.
02
)

d
q
5

0.
54

(0
.2
2,

1.
30
)

0.
94

(0
.4
9,

1.
80
)

2.
31

(0
.7
1,

7.
55
)

1.
30

(0
.5
8,

2.
90
)

0.
74

(0
.4
8,

1.
15
)

1.
29

(0
.7
8,

2.
14
)

P
ie
c
e
w
is
e
c
o
n
st
a
n
t
in
t
e
n
si
t
y

ge
n
d
er

(m
al
e
v
s.

fe
m
al
e)

1.
56

(0
.7
8,

3.
10
)

1.
26

(0
.7
5,

2.
13
)

0.
77

(0
.2
4,

2.
46
)

1.
88

(0
.9
7,

3.
63
)

1.
35

(0
.9
3,

1.
96
)

1.
36

(0
.8
6,

2.
16
)

ag
e

(y
ea
rs
)

1.
00

(0
.9
7,

1.
02
)

0.
95

(0
.9
3,

0.
97
)

1.
06

(1
.0
0,

1.
11
)

0.
97

(0
.9
5,

1.
00
)

0.
97

(0
.9
5,

0.
98
)

0.
99

(0
.9
7,

1.
01
)

a2
2.
70

(1
.1
7,

6.
22
)

1.
50

(0
.8
5,

2.
66
)

3.
39

(0
.6
6,

17
.4
6)

0.
80

(0
.4
3,

1.
49
)

1.
87

(1
.2
5,

2.
79
)

1.
35

(0
.8
4,

2.
15
)

a1
1

1.
85

(0
.7
8,

4.
34
)

0.
44

(0
.1
3,

1.
55
)

13
.6
2

(2
.5
2,

73
.6
3)

1.
19

(0
.4
2,

3.
40
)

0.
95

(0
.5
2,

1.
73
)

1.
82

(0
.9
3,

3.
55
)

b
38

0.
88

(0
.2
4,

3.
16
)

1.
34

(0
.5
3,

3.
40
)

1.
49

(0
.1
4,

15
.5
1)

2.
77

(0
.9
0,

8.
52
)

1.
08

(0
.5
5,

2.
13
)

2.
32

(1
.0
0,

5.
41
)

c1
2

1.
04

(0
.3
5,

3.
13
)

1.
49

(0
.6
9,

3.
24
)

2.
92

(0
.3
5,

24
.2
7)

1.
48

(0
.6
3,

3.
49
)

1.
33

(0
.7
5,

2.
33
)

1.
56

(0
.8
4,

2.
87
)

d
r8

0.
43

(0
.0
9,

1.
95
)

1.
52

(0
.5
7,

4.
09
)

1.
12

(0
.0
9,

14
.2
4)

0.
85

(0
.2
7,

2.
69
)

0.
92

(0
.4
1,

2.
05
)

0.
60

(0
.2
4,

1.
49
)

d
r1
4

1.
03

(0
.2
9,

3.
69
)

1.
14

(0
.3
1,

3.
18
)

0.
26

(0
.0
2,

3.
61
)

0.
57

(0
.1
7,

1.
98
)

1.
18

(0
.5
8,

2.
40
)

0.
45

(0
.1
8,

1.
12
)

d
q
2

0.
14

(0
.0
5,

0.
41
)

1.
48

(0
.8
1,

2.
68
)

0.
14

(0
.0
4,

0.
52
)

1.
38

(0
.7
0,

2.
74
)

0.
73

(0
.4
7,

1.
13
)

0.
75

(0
.4
6,

1.
22
)

d
q
3

0.
65

(0
.3
2,

1.
34
)

1.
12

(0
.6
3,

2.
01
)

0.
15

(0
.0
4,

0.
57
)

1.
86

(0
.9
5,

3.
68
)

0.
92

(0
.6
1,

1.
39
)

1.
23

(0
.7
5,

2.
03
)

d
q
5

0.
47

(0
.1
9,

1.
13
)

1.
13

(0
.5
9,

2.
17
)

1.
73

(0
.4
7,

6.
33
)

1.
53

(0
.7
1,

3.
30
)

0.
80

(0
.5
1,

1.
25
)

1.
29

(0
.7
6,

2.
19
)



Jiang S and Cook RJ 17

5 10 15 20

0.
2

0.
3

0.
4

0.
5

t0

∆ 0
 ( 

t o
 )

5 10 15 20

0.
2

0.
3

0.
4

0.
5

t0

∆ 1
 ( 

t o
 )

5 10 15 20

0.
2

0.
3

0.
4

0.
5

t0

∆ 2
 ( 

t o
 )

5 10 15 20

0.
2

0.
3

0.
4

0.
5

t0

∆ 
( t

o 
)

Model 1

Model 2

Figure 3: Plots of the predictive discrimination index estimates as a function of t◦ and the em-
pirical 95% confidence interval (dashed lines) for a time homogeneous model with no constraints
on covariate effects (Model 1), a time homogeneous model with constraints (Model 2),; con-
straints ensure 0 → 1 and 0 → 2 regression coefficients for the onset of unilateral damage, and
1 → 3 and 2 → 3 regression coefficients for the development of axial disease, are respectively
the same. ∆0(t◦) corresponds to prediction of no SI-joint involvement, ∆1(t◦) corresponds to
prediction of unilateral SI-joint damage, ∆2(t◦) corresponds to prediction of axial disease, and
∆(t◦) is the overall measure.

may be unknown due to the intermittent observation scheme. A weighted estimator of the PDI
considering pseudo-sample of individuals is thus proposed and has empirically shown to perform
well in simulation studies. We did not consider ties in the predictive probabilities in estimating
the PDI, but they can be handled easily as discussed in Van Calster et al. (2012). The proposed
method is then applied to a motivating study involving data from the University of Toronto
Psoriatic Arthritis Clinic. Here we fitted four models and assessed their predictive accuracy
at a few different time horizons via 5-fold internal cross-validation. In general, all four models
seem to have reasonable PDI values compared to the null model. The most parsimonious model
with time-homogeneous transition intensities seemed often to exhibit superior performance.

For the multinomial setting coarsening completely at random (Heitjan and Rubin, 1991)
implies that the presence and nature of coarsening is completely independent of the response
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category. If this is not satisfied, then joint modeling, inverse probability weighting (Robins
et al., 1994), or augmentation and inverse probability weighting (Bang and Robins, 2005) can
be employed. In the multistate setting, response-dependent visit times can lead to bias both in
terms of model fitting when building a predictive model, and in assessing predictive accuracy.
Joint modeling of the multistate process and the visit process can help mitigate bias in model
fitting. Use of joint disease and visit process models for prediction seem less natural and would
not tend to be transportable to other clinic settings where visit schedules may differ – we are
currently exploring the use of inverse-intensity weighting for this setting.

Complex disease processes often feature heterogeneity beyond that explained through co-
variates. Jiang and Cook (2019) describe finite mixture models of multistate processes under
intermittent observation and develop score tests for effects of biomarkers on class membership.
Here the use of score tests was motivated by the need to screen a large number of genetic
markers for their association with the disease course combined with the difficulty in fitting
such mixture models. Once a list of candidate genetic markers are identified by this approach,
it is natural to incorporate them into a predictive model for the disease course. In this case,
one could model covariate effects on class membership as done in Jiang and Cook (2019), as
well as on the intensity functions of the multistate process in the different classes. Such a rich
predictive model could then be used to predict state occupancy at t◦ – our proposed method
for estimating the PDI can be readily adapted to deal with this setting.

Multistate models with hidden states may also be of interest in some disease settings. States
are often based on distinct conditions such as the definition for each state is clear. There is no
ambiguity in our motivating setting – whether an individual has sacroiliac joint damage on the
left or right-side (or both) is typically clear from radiographic examination. In other settings it
may be difficult to determine which state an individual occupies upon examination – if it can
be determined that they are in a strict subset of the possible states this remains informative
and the likelihood can be modified to deal with this at training stage. This would represent
a hybrid coarsening process involving aspects of the settings of Sections 2 and 3 which can
be dealt with using the msm function as described in Section 3.4 of Jackson (2011), but we do
not consider this here. In other longitudinal observation schemes the states occupied may be
subject to misclassification. In such cases hidden Markov models could be considered, but the
general approach to estimating the PDI indices we discuss here remain applicable. Finally, as
one reviewer pointed out, life history processes are often observed subject to left truncation. It
is important to address this when it arises in datasets during model building and the assessment
of predictive accuracy should address such complications and this, along with the development
of robust standard errors for the estimators we develop, is worthy of future research.
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S1 Additional Simulation Results

S1.1 Multinomial Data

Here we report on additional simulation results concerning estimation of the polytomous dis-

crimination index for the problem considered in Section 2 of the manuscript on involving coars-

ened multinomial data. In Section 2.3 of the main manuscript we reported simulation results

for validation samples of size n = 1000; here we consider n = 500 and 2000 in Tables S1 and S2,

respectively for no coarsening, 30% and 60% coarsened observations. We report results when

the true parameter values are used to estimate the category-specific polytomous discrimination

indices and the overall polytomous discrimination indices, as well as methods wherein estimates

were obtained from a training sample with β estimated based on an expectation-maximization

algorithm or complete-case analysis; note that when there is no coarsening the results on rows

labeled EM are simply maximum likelihood estimates based on complete data. As in the main

body of the paper we consider moderate and stronger covariate effects; code is available from

the authors upon request to facilitate exploration of other parameter configurations of interest.

As in the main body of the paper we see good agreement between the average bootstrap

standard errors and the empirical standard errors, and good agreement between the empirical

and nominal coverage probabilities for 95% confidence intervals based on either the original scale

of the PDI or the logit transformation. We see that, paradoxically, there can be a decrease

in the empirical standard errors with increasing levels of coarsening when the true parameter

values are used. When estimates are used there is a tendency for the empirical standard errors

to increase with increasing coarsening; the standard errors based on estimators from complete
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case analyses are larger than those when estimates are obtained from more efficient analyses

involving the EM algorithm. Moreover, we see that there is relatively little impact of the size

of the training sample on the precision of the estimation of the PDI estimators.

S1.2 Multistate Processes

Here we report on the results on simulation studies involving multistate processes observed

intermittently. In addition to the n = 1000 setting in Section 3.3 of the main manuscript, here

we show the simulation results when the validation sample is made up of n = 500 or 2000

individuals in Tables S3 and S4, respectively. As in the multinomial setting, we find the size

of the training sample and hence the precision of the ML estimators have little impact on the

precision of the PDI estimators.

S2 Further Plots Related to PDI Estimation in the PsA Study

In Section 4 of the main manuscript, plots were provided of the estimated indices of predictive

discrimination as a function of t◦ along with the empirical 95% confidence interval for the time-

homogenous models (Models 1 and 2); see Figure 3. Here, we show these plots of predictive

discrimination index estimates under the piecewise-constant models in Figure (S2). Here, we

show the plot for predictive discrimination index estimates as a function of t◦ for all four

models described under Section 4 of the main manuscript: a time homogeneous model with no

constraints on covariate effects (Model 1); a time homogeneous model with constraints (Model

2); a piecewise constant intensity model with no constraints on covariate effects (Model 3); and

a piecewise constant intensity model with constraints on covariate effects (Model 4). This can

be found in Figure S1 where we can see that the most parsimonious Model 1, on average, tends

to perform the best among the four models. Table S5 reports the estimates of the baseline

intensities from the four fitted models along with 95% confidence intervals.
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Percentage of Individuals with Coarsened Observations

0% 30% 60%

Parameter Value Method† EST ESE ASE ECP ECP‡ EST ESE ASE ECP ECP‡ EST ESE ASE ECP ECP‡

moderate covariate effects; (β11, β12)
′ = (log 1.5, log 2)′, (β21, β22)

′ = (2β11, 2β12)
′

∆0 0.670 True 0.665 0.028 0.029 0.967 0.956 0.665 0.024 0.024 0.949 0.943 0.663 0.022 0.023 0.961 0.954
EM 0.664 0.028 0.030 0.963 0.959 0.665 0.030 0.030 0.947 0.952 0.665 0.034 0.033 0.947 0.941
CC 0.664 0.032 0.031 0.942 0.956 0.666 0.045 0.045 0.955 0.949

∆1 0.404 True 0.405 0.032 0.032 0.953 0.954 0.402 0.029 0.030 0.960 0.951 0.400 0.024 0.023 0.944 0.952
EM 0.403 0.033 0.034 0.976 0.969 0.403 0.031 0.031 0.951 0.946 0.407 0.031 0.032 0.964 0.956
CC 0.409 0.037 0.035 0.924 0.936 0.417 0.053 0.051 0.953 0.957

∆2 0.677 True 0.663 0.034 0.033 0.944 0.946 0.663 0.037 0.038 0.958 0.949 0.662 0.025 0.026 0.959 0.951
EM 0.666 0.034 0.032 0.937 0.945 0.666 0.037 0.037 0.951 0.950 0.667 0.046 0.044 0.949 0.945
CC 0.666 0.041 0.043 0.942 0.951 0.667 0.056 0.054 0.933 0.938

∆ 0.583 True 0.578 0.023 0.022 0.951 0.957 0.576 0.020 0.019 0.941 0.949 0.575 0.018 0.019 0.955 0.954
EM 0.582 0.032 0.030 0.952 0.963 0.581 0.035 0.034 0.961 0.957 0.582 0.037 0.036 0.953 0.952
CC 0.579 0.037 0.036 0.944 0.952 0.586 0.040 0.039 0.956 0.961

strong covariate effects; (β11, β12)
′ = (log 3, log 4)′, (β21, β22)

′ = (2β11, 2β12)
′

∆0 0.828 True 0.831 0.021 0.020 0.952 0.949 0.832 0.018 0.019 0.961 0.953 0.832 0.016 0.016 0.944 0.956
EM 0.834 0.022 0.020 0.939 0.943 0.835 0.022 0.022 0.951 0.957 0.833 0.025 0.026 0.946 0.962
CC 0.835 0.024 0.023 0.948 0.958 0.834 0.030 0.031 0.951 0.942

∆1 0.553 True 0.566 0.034 0.033 0.943 0.951 0.565 0.031 0.032 0.948 0.956 0.564 0.028 0.028 0.956 0.947
EM 0.567 0.031 0.033 0.946 0.942 0.566 0.034 0.032 0.942 0.951 0.568 0.033 0.035 0.948 0.954
CC 0.567 0.039 0.038 0.945 0.951 0.571 0.050 0.052 0.932 0.938

∆2 0.821 True 0.825 0.026 0.027 0.962 0.957 0.825 0.023 0.023 0.944 0.958 0.823 0.020 0.019 0.943 0.948
EM 0.821 0.028 0.026 0.968 0.959 0.826 0.028 0.027 0.941 0.944 0.826 0.035 0.033 0.956 0.949
CC 0.825 0.032 0.032 0.955 0.952 0.828 0.040 0.038 0.935 0.942

∆ 0.734 True 0.741 0.021 0.020 0.947 0.953 0.741 0.019 0.019 0.945 0.952 0.740 0.016 0.017 0.948 0.957
EM 0.741 0.026 0.026 0.951 0.956 0.743 0.027 0.029 0.953 0.954 0.743 0.031 0.030 0.948 0.943
CC 0.741 0.030 0.028 0.939 0.947 0.742 0.035 0.034 0.951 0.954

† Prediction is based on true parameter values (True), as well as maximum likelihood estimates based on
an expectation-maximization algorithm (EM) and complete-case analysis (CC).

Table S1: Empirical performance of estimates of ∆k, k = 0, 1, 2 and ∆ with no, moderate (30%)
and heavier (60%) coarsening; the ASE is the average of bootstrap standard errors based on
500 bootstrap samples created for each simulated data; the ECP is the empirical coverage prob-
ability of nominal 95% confidence intervals constructed based on the normal approximation of
the estimator using the bootstrap standard error while ECP‡ is the corresponding empirical
coverage probability when the confidence intervals are constructed based on the logit transfor-
mation; training samples are of 1000 observations; validation samples involve 500 individuals;
nsim = 1000.
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Percentage of Individuals with Coarsened Observations

0% 30% 60%

Parameter Value Method† EST ESE ASE ECP ECP‡ EST ESE ASE ECP ECP‡ EST ESE ASE ECP ECP‡

moderate covariate effects; (β11, β12)
′ = (log 1.5, log 2)′, (β21, β22)

′ = (2β11, 2β12)
′

∆0 0.670 True 0.665 0.028 0.029 0.967 0.956 0.665 0.024 0.024 0.949 0.943 0.663 0.022 0.023 0.961 0.954
EM 0.664 0.030 0.030 0.951 0.952 0.665 0.030 0.030 0.951 0.958 0.665 0.034 0.033 0.942 0.947
CC 0.664 0.032 0.031 0.953 0.956 0.666 0.045 0.045 0.945 0.953

∆1 0.404 True 0.405 0.032 0.032 0.953 0.954 0.402 0.029 0.030 0.960 0.951 0.400 0.024 0.023 0.944 0.952
EM 0.403 0.033 0.034 0.949 0.945 0.403 0.031 0.031 0.947 0.952 0.406 0.031 0.032 0.951 0.946
CC 0.407 0.036 0.035 0.944 0.952 0.415 0.052 0.051 0.949 0.951

∆2 0.677 True 0.663 0.034 0.033 0.944 0.946 0.663 0.037 0.038 0.958 0.949 0.662 0.025 0.026 0.959 0.951
EM 0.666 0.033 0.032 0.942 0.950 0.666 0.037 0.037 0.952 0.945 0.667 0.045 0.044 0.959 0.953
CC 0.666 0.042 0.043 0.940 0.952 0.667 0.056 0.054 0.959 0.948

∆ 0.583 True 0.578 0.023 0.022 0.951 0.957 0.576 0.020 0.019 0.941 0.949 0.575 0.018 0.019 0.955 0.954
EM 0.582 0.031 0.030 0.952 0.957 0.581 0.035 0.034 0.954 0.949 0.582 0.037 0.036 0.961 0.954
CC 0.580 0.037 0.036 0.947 0.953 0.582 0.040 0.039 0.946 0.941

strong covariate effects; (β11, β12)
′ = (log 3, log 4)′, (β21, β22)

′ = (2β11, 2β12)
′

∆0 0.828 True 0.831 0.021 0.020 0.952 0.949 0.832 0.018 0.019 0.961 0.953 0.832 0.016 0.016 0.944 0.956
EM 0.834 0.021 0.020 0.945 0.955 0.835 0.022 0.022 0.950 0.952 0.834 0.025 0.026 0.947 0.947
CC 0.835 0.024 0.023 0.951 0.958 0.834 0.030 0.031 0.954 0.948

∆1 0.553 True 0.566 0.034 0.033 0.943 0.951 0.565 0.031 0.032 0.948 0.956 0.564 0.028 0.028 0.956 0.947
EM 0.566 0.032 0.033 0.953 0.962 0.566 0.034 0.032 0.957 0.954 0.567 0.034 0.035 0.952 0.956
CC 0.567 0.039 0.038 0.960 0.953 0.569 0.051 0.052 0.952 0.948

∆2 0.821 True 0.825 0.026 0.027 0.962 0.957 0.825 0.023 0.023 0.944 0.958 0.823 0.020 0.019 0.943 0.948
EM 0.821 0.027 0.026 0.948 0.953 0.824 0.028 0.027 0.953 0.954 0.827 0.034 0.033 0.943 0.957
CC 0.825 0.032 0.032 0.950 0.954 0.828 0.039 0.038 0.952 0.955

∆ 0.734 True 0.741 0.021 0.020 0.947 0.953 0.741 0.019 0.019 0.945 0.952 0.740 0.016 0.017 0.948 0.957
EM 0.737 0.026 0.026 0.943 0.952 0.740 0.028 0.029 0.946 0.946 0.740 0.031 0.030 0.948 0.957
CC 0.741 0.029 0.028 0.941 0.942 0.742 0.035 0.034 0.952 0.945

† Prediction is based on true parameter values (True), as well as maximum likelihood estimates based on
an expectation-maximization algorithm (EM) and complete-case analysis (CC).

Table S2: Empirical performance of estimates of ∆k, k = 0, 1, 2 and ∆ with no, moderate (30%)
and heavier (60%) coarsening; the ASE is the average of bootstrap standard errors based on
500 bootstrap samples created for each simulated data; the ECP is the empirical coverage prob-
ability of nominal 95% confidence intervals constructed based on the normal approximation of
the estimator using the bootstrap standard error while ECP‡ is the corresponding empirical
coverage probability when the confidence intervals are constructed based on the logit transfor-
mation; training samples are of 2000 observations; validation samples involve 500 individuals;
nsim = 1000.
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E(M) = 10 E(M) = 20

Parameter Value Method† EST ESE ASE ECP ECP‡ EST ESE ASE ECP ECP‡

β01 = β02 = (log 1.5, log 2.0)′; β13 = β23 = Rβ01, R = 0.25

∆0(t◦) 0.708 True 0.709 0.029 0.030 0.962 0.957 0.709 0.029 0.030 0.958 0.959
MLE 0.704 0.027 0.029 0.952 0.956 0.706 0.029 0.031 0.954 0.961

∆1(t◦) 0.416 True 0.428 0.029 0.028 0.959 0.957 0.429 0.031 0.030 0.940 0.943
MLE 0.418 0.029 0.030 0.932 0.936 0.418 0.030 0.030 0.940 0.946

∆2(t◦) 0.651 True 0.637 0.026 0.026 0.941 0.943 0.639 0.027 0.028 0.962 0.958
MLE 0.640 0.028 0.026 0.944 0.946 0.637 0.027 0.028 0.943 0.946

∆(t◦) 0.592 True 0.591 0.021 0.020 0.942 0.949 0.592 0.021 0.020 0.942 0.943
MLE 0.587 0.019 0.020 0.954 0.951 0.587 0.020 0.021 0.958 0.959

β01 = β02 = (log 1.5, log 2.0)′; β13 = β23 = Rβ01, R = 0.5

∆0(t◦) 0.697 True 0.690 0.030 0.031 0.952 0.946 0.689 0.030 0.031 0.953 0.959
MLE 0.692 0.029 0.030 0.970 0.969 0.691 0.030 0.031 0.946 0.942

∆1(t◦) 0.435 True 0.431 0.032 0.031 0.940 0.954 0.432 0.032 0.032 0.957 0.955
MLE 0.426 0.031 0.030 0.944 0.944 0.428 0.031 0.031 0.940 0.944

∆2(t◦) 0.702 True 0.703 0.025 0.026 0.956 0.957 0.702 0.026 0.026 0.941 0.954
MLE 0.703 0.023 0.025 0.974 0.972 0.701 0.023 0.024 0.956 0.944

∆(t◦) 0.613 True 0.608 0.021 0.019 0.954 0.943 0.608 0.021 0.020 0.950 0.947
MLE 0.607 0.020 0.020 0.948 0.940 0.607 0.020 0.019 0.958 0.951

β01 = β02 = (log 1.5, log 2.0)′; β13 = β23 = Rβ01, R = 1

∆0(t◦) 0.674 True 0.659 0.032 0.031 0.942 0.943 0.659 0.032 0.033 0.952 0.951
MLE 0.659 0.030 0.031 0.942 0.948 0.660 0.031 0.032 0.948 0.944

∆1(t◦) 0.461 True 0.456 0.033 0.032 0.956 0.958 0.457 0.031 0.032 0.954 0.957
MLE 0.452 0.034 0.032 0.920 0.931 0.453 0.032 0.032 0.938 0.942

∆2(t◦) 0.794 True 0.789 0.021 0.022 0.949 0.941 0.789 0.022 0.022 0.958 0.944
MLE 0.754 0.020 0.021 0.956 0.951 0.787 0.021 0.022 0.944 0.942

∆(t◦) 0.643 True 0.635 0.021 0.019 0.939 0.945 0.635 0.019 0.020 0.941 0.945
MLE 0.632 0.019 0.019 0.942 0.939 0.633 0.019 0.020 0.946 0.956

β01 = β02 = (log 1.5, log 2.0)′; β13 = β23 = Rβ01, R = 2

∆0(t◦) 0.640 True 0.624 0.034 0.033 0.942 0.944 0.622 0.032 0.033 0.949 0.953
MLE 0.622 0.033 0.032 0.938 0.941 0.622 0.033 0.032 0.938 0.936

∆1(t◦) 0.513 True 0.513 0.034 0.033 0.947 0.958 0.514 0.031 0.032 0.939 0.947
MLE 0.503 0.030 0.032 0.966 0.960 0.503 0.033 0.033 0.938 0.942

∆2(t◦) 0.871 True 0.869 0.017 0.017 0.953 0.953 0.870 0.017 0.017 0.949 0.942
MLE 0.868 0.017 0.016 0.919 0.931 0.868 0.016 0.017 0.958 0.958

∆(t◦) 0.670 True 0.669 0.019 0.020 0.940 0.945 0.669 0.018 0.019 0.950 0.954
MLE 0.665 0.018 0.017 0.934 0.940 0.664 0.017 0.017 0.946 0.955

† Prediction is based on true parameter values (True) and maximum likelihood estimates (MLE).

Table S3: Finite sample properties of estimates of ∆k(t◦), k = 0, 1, 2 and ∆(t◦) with t◦ = 1,
for different values of R (β01 = β02 = (log 1.5, log 2.0)′; β13 = β23 = Rβ01) based on Markov
process under intermittent observation with an average of 10 or 20 visits over the period (0, 2].
The ASE is approximated with 500 bootstrap samples with replacement within each simulated
data. Note that ECP is the empirical coverage probability of nominal 95% confidence intervals
constructed based on the normal approximation of the estimator using ASE as the standard
error while ECP‡ is the corresponding empirical coverage probability when the confidence inter-
vals are constructed on using the logit transformation; training samples are of 500 observations;
validation samples involve 500 individuals; nsim = 1000.
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E(M) = 10 E(M) = 20

Parameter Value Method† EST ESE ASE ECP ECP‡ EST ESE ASE ECP ECP‡

β01 = β02 = (log 1.5, log 2.0)′; β13 = β23 = Rβ01, R = 0.25

∆0(t◦) 0.708 True 0.709 0.029 0.030 0.962 0.957 0.709 0.029 0.030 0.958 0.959
MLE 0.709 0.029 0.030 0.940 0.952 0.709 0.030 0.030 0.952 0.952

∆1(t◦) 0.416 True 0.428 0.029 0.028 0.959 0.957 0.429 0.031 0.030 0.940 0.943
MLE 0.421 0.031 0.031 0.942 0.957 0.423 0.031 0.030 0.944 0.942

∆2(t◦) 0.651 True 0.637 0.026 0.026 0.941 0.943 0.639 0.027 0.028 0.962 0.958
MLE 0.642 0.027 0.028 0.948 0.942 0.643 0.027 0.028 0.958 0.950

∆(t◦) 0.592 True 0.591 0.021 0.020 0.942 0.949 0.592 0.021 0.020 0.942 0.943
MLE 0.590 0.020 0.021 0.959 0.957 0.590 0.020 0.019 0.959 0.955

β01 = β02 = (log 1.5, log 2.0)′; β13 = β23 = Rβ01, R = 0.5

∆0(t◦) 0.697 True 0.690 0.030 0.031 0.952 0.946 0.689 0.030 0.031 0.953 0.959
MLE 0.690 0.030 0.031 0.956 0.950 0.691 0.031 0.031 0.948 0.946

∆1(t◦) 0.435 True 0.431 0.032 0.031 0.940 0.954 0.432 0.032 0.032 0.957 0.955
MLE 0.427 0.030 0.030 0.936 0.942 0.429 0.032 0.031 0.952 0.954

∆2(t◦) 0.702 True 0.703 0.025 0.026 0.956 0.957 0.702 0.026 0.026 0.941 0.954
MLE 0.703 0.024 0.024 0.952 0.958 0.702 0.025 0.024 0.962 0.956

∆(t◦) 0.613 True 0.608 0.021 0.019 0.954 0.943 0.608 0.021 0.020 0.950 0.947
MLE 0.606 0.020 0.021 0.958 0.954 0.606 0.021 0.020 0.944 0.944

β01 = β02 = (log 1.5, log 2.0)′; β13 = β23 = Rβ01, R = 1

∆0(t◦) 0.674 True 0.659 0.032 0.031 0.942 0.943 0.659 0.032 0.033 0.952 0.951
MLE 0.663 0.031 0.031 0.954 0.958 0.666 0.031 0.032 0.948 0.950

∆1(t◦) 0.461 True 0.456 0.033 0.032 0.956 0.958 0.457 0.031 0.032 0.954 0.957
MLE 0.454 0.033 0.033 0.949 0.948 0.453 0.031 0.032 0.946 0.944

∆2(t◦) 0.794 True 0.789 0.021 0.022 0.949 0.941 0.789 0.022 0.022 0.958 0.944
MLE 0.787 0.022 0.022 0.956 0.959 0.787 0.021 0.022 0.956 0.958

∆(t◦) 0.643 True 0.635 0.021 0.019 0.939 0.945 0.635 0.019 0.020 0.941 0.945
MLE 0.633 0.019 0.019 0.956 0.958 0.633 0.019 0.019 0.954 0.956

β01 = β02 = (log 1.5, log 2.0)′; β13 = β23 = Rβ01, R = 2

∆0(t◦) 0.640 True 0.624 0.034 0.033 0.942 0.944 0.622 0.032 0.033 0.949 0.953
MLE 0.625 0.033 0.032 0.942 0.948 0.626 0.032 0.032 0.940 0.941

∆1(t◦) 0.513 True 0.513 0.034 0.033 0.947 0.958 0.514 0.031 0.032 0.939 0.947
MLE 0.506 0.033 0.033 0.946 0.940 0.505 0.033 0.033 0.940 0.942

∆2(t◦) 0.871 True 0.869 0.017 0.017 0.953 0.953 0.870 0.017 0.017 0.949 0.942
MLE 0.870 0.017 0.018 0.954 0.956 0.868 0.018 0.017 0.958 0.947

∆(t◦) 0.670 True 0.669 0.019 0.020 0.940 0.945 0.669 0.018 0.019 0.950 0.954
MLE 0.667 0.018 0.017 0.956 0.951 0.665 0.017 0.018 0.946 0.953

† Prediction is based on true parameter values (True) and maximum likelihood estimates (MLE).

Table S4: Finite sample properties of estimates of ∆k(t◦), k = 0, 1, 2 and ∆(t◦) with t◦ = 1, for
different values of R (β01 = β02 = (log 1.5, log 2.0)′; β13 = β23 = Rβ01) based on Markov process
under intermittent observation with an average of 10 or 20 visits over the period (0, 2]. The
ASE is approximated with 500 bootstrap samples with replacement within each simulated data.
Note that ECP is the empirical coverage probability of nominal 95% confidence intervals con-
structed based on the normal approximation of the estimator using ASE as the standard error
while ECP‡ is the corresponding empirical coverage probability when the confidence intervals
are constructed on using the logit transformation; training samples are of 2000 observations;
validation samples involve 500 individuals; nsim = 1000.
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Figure S1: Plots of the predictive discrimination index estimates as a function of t◦ for a time
homogeneous model with no constraints on covariate effects (Model 1), a time homogeneous
model with constraints (Model 2), a piecewise constant intensity model with no constraints
on covariate effects (Model 3), and a piecewise constant intensity model with constraints on
covariate effects (Model 4); constraints ensure 0 → 1 and 0 → 2 regression coefficients for the
onset of unilateral damage, and 1 → 3 and 2 → 3 regression coefficients for the development
of axial disease, are respectively the same. ∆0(t◦) corresponds to prediction of no SI-joint
involvement, ∆1(t◦) corresponds to prediction of unilateral SI-joint damage, ∆2(t◦) corresponds
to prediction of axial disease, and ∆(t◦) is the overall measure.
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Figure S2: Plots of the predictive discrimination index estimates as a function of t◦ and the
empirical 95% confidence interval (dashed lines) for a piecewise constant intensity model with
no constraints on covariate effects (Model 3), and a piecewise constant intensity model with
constraints on covariate effects (Model 4); constraints ensure 0 → 1 and 0 → 2 regression
coefficients for the onset of unilateral damage, and 1 → 3 and 2 → 3 regression coefficients for
the development of axial disease, are respectively the same. ∆0(t◦) corresponds to prediction of
no SI-joint involvement, ∆1(t◦) corresponds to prediction of unilateral SI-joint damage, ∆2(t◦)
corresponds to prediction of axial disease, and ∆(t◦) is the overall measure.
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0 → 1 0 → 2 1 → 3 2 → 3

λ01(t) 95% CI λ02(t) 95% CI λ13(t) 95% CI λ23(t) 95% CI

Model 1 0.009 (0.003, 0.023) 0.028 (0.015, 0.050) 0.009 (0.001, 0.094) 0.187 (0.069, 0.508)

Model 2 0.009 (0.006, 0.014) 0.030 (0.022, 0.042) 0.073 (0.039, 0.136) 0.158 (0.096, 0.260)

Model 3 [0, 8) 0.015 (0.005, 0.042) 0.086 (0.039, 0.188) 0.038 (0.001, 1.119) 0.146 (0.047, 0.452)
[8, 16) 0.007 (0.002, 0.033) 0.051 (0.014, 0.181) 0.049 (0.005, 0.537) 0.182 (0.041, 0.809)
[16, 24) 0.005 (0.001, 0.032) 0.030 (0.008, 0.117) 0.007 (0.001, 0.102) 0.079 (0.016, 0.384)
[24, ∞) 0.008 (0.002, 0.037) 0.011 (0.002, 0.048) 0.008 (0.001, 0.083) 0.213 (0.048, 0.947)

Model 4 [0, 8) 0.019 (0.010, 0.038) 0.072 (0.048, 0.107) 0.088 (0.031, 0.248) 0.156 (0.084, 0.291)
[8, 16) 0.014 (0.004, 0.049) 0.088 (0.036, 0.216) 0.043 (0.009, 0.203) 0.050 (0.017, 0.151)
[16, 24) 0.009 (0.002, 0.039) 0.023 (0.008, 0.071) 0.067 (0.011, 0.388) 0.070 (0.020, 0.245)
[24, ∞) 0.009 (0.002, 0.034) 0.012 (0.004, 0.041) 0.036 (0.006, 0.220) 0.228 (0.073, 0.715)

Table S5: Estimate of baseline intensities from fitting Models 1 to 4 with the corresponding
95% confidence interval bands to data from the Univeristy of Toronto Psoriatic Arthritis Cohort
for time homogeneous and piecewise constant models


