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Abstract

Muscle Torque Generators (MTGs) have been developed as an alternative to muscle-
force models, reducing the complexity of muscle-force models to a single torque at the
joint. Previous studies have been conducted to determine functions to scale joint torque
based on position and velocity-dependent properties. However, current MTGs can only be
applied to single Degree of Freedom (DOF) joints, leading to complications in modeling
joints such as the shoulder, which has 3 DOF. Therefore, this project aimed to develop,
for the first time, an MTG model that accounts for the coupling between 2 DOF at the
shoulder joint, with shoulder plane of elevation and shoulder elevation being the DOF of
interest.

The 2 DOF MTG form was based on previous research for a single DOF MTG. Three
different 2 DOF MTG equations were developed to evaluate the effect of the degree of
coupling between DOF. Polynomial torque-angle scaling, torque-velocity scaling, and pas-
sive functions were defined for the different coupling equations, as well as the activation
function. The Biodex System 4 ProTM was used to determine the net joint torques at the
shoulder for 20 participants in isometric, isokinetic, and passive tests. Data was processed
and normalized to compare the relative shoulder strength of individuals. MATLAB’s Curve
Fitting ToolboxTM was used to find the curves or surfaces that best fit the experimental
data for the MTG functions with different degrees of coupling. A completely general
model, a female general model, a male general model, and 13 subject-specific models were
fit for the three coupling methods. It was found that subject-specific models tended to fit
higher-order curves and surfaces compared to the general models that contained averaged
data.

The models were validated against experimental isokinetic torque data. It was deter-
mined that the male general model with position coupling resulted in the lowest error
(6.4%), with the position coupling for the completely general model resulting in the next
lowest error (8.0%). The female general model resulted in higher errors (average error of
19.9% ± 7.1%), with limited coupling showing the best results with an error of 11.6%. For
subject-specific models, it was determined that the average error was the lowest for posi-
tion and velocity coupling with an error of 22.8% and increasing with decreased coupling.
The subject-specific models predicted the general torque trend well for most participants;
however, the subject-specific models were highly dependent on the participant’s consistent
effort during data collection. The work demonstrated that subject-specific, completely
general, female general, and male general MTG models can predict torque results that are
dependent on multiple DOF of the shoulder. Future work should include the addition of a
fatigue model and the bi-articular nature of the biceps brachii.
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Chapter 1

Introduction

Forward dynamic musculoskeletal simulations allow for the safe study of complex motions.
Applications include optimizing athlete performance [7, 33, 50], movement science [62],
design of assistive devices [64, 52], and rehabilitation planning [36]. To create a human
model for simulations, a reasonable representation of muscles is required, and commonly
muscle-force models based on the Hill-type muscle model are applied [28]. However, these
muscle-force models have some drawbacks. One drawback includes the need to define
muscle geometry such as the insertion point, wrapping, and the muscle moment arm [11,
60]. There is also the muscle redundancy issue, in which there are more muscles at a
joint than DOF, and therefore optimization is normally required to solve for a motion
[12]. Finally, these muscle-force models require parameters that can be difficult to fit [31].
One solution to the mentioned drawbacks is to use a Muscle Torque Generator (MTG)
as it reduces the complexity of muscle-force models to a single torque at the joint, all
while maintaining the position and velocity dependencies of muscles [31]. The simplicity
of MTGs allows for faster forward dynamic simulations of complex motions.

1.1 Motivation and Goals

While MTGs help reduce the complexity of muscle-force models, they currently can only
be used for single DOF joints, and additional MTGs are often added to represent joints
with more DOF [46]. Currently, there is no MTG that can be used for three-dimensional
joint motion that accounts for coupling between the DOF [48]. Therefore, the goal of
this work is to develop, for the first time, an MTG model that accounts for the coupling
between 2 DOF for the shoulder joint. The shoulder joint, also known as the glenohumeral
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joint, was selected as it has 3 DOF and it has torques generated from multiple muscles
with different lines of action [66, 47]. The model aims to simplify the complexity of the
shoulder joint to allow for simpler and faster simulations. In the first phase of this thesis,
three different forms of the 2 DOF MTG model for the shoulder joint were designed with
different degrees of coupling between DOF to allow for a comparison. The different scaling
functions for the MTGs were also defined. In the next phase, biomechanical torque data
was gathered to identify the parameters in the designed models. Finally, in the third
phase, the subject-specific and general models were fit to the experimental data for the
three different coupling methods. The ability to predict joint torque was evaluated against
experimental torque data for the subject-specific, completely general, female general, and
male general models, leading to a comparison of degrees of coupling and model accuracy.

1.2 Contributions

The contributions of this work include:

• Development of subject-specific and general multi-DOF MTGs as a function of two
joint angles and angular velocities for the first time.

• Gathered experimental torque data in terms of two joint angles and two joint angular
velocities at the shoulder, supporting the development of the MTG model.

• Compared how the degree of coupling between the angles and angular velocities of
the shoulder affected the accuracy of the resultant MTG models.

1.3 Document Structure

The following describes the organization of the document:

• Chapter 1 provides an introduction to the work presented in this thesis, outlining
the motivation and goals as well as the project contributions.

• Chapter 2 provides the background on muscle-force models as well as current MTG
models, their structure, and the functions that are used to formulate the MTG mod-
els.

2



• Chapter 3 outlines the multi-DOF MTG model that was developed for the shoulder.
The angles and torques are defined for the model as well as the coupling equations
and scaling functions used.

• Chapter 4 describes the collection and processing of the biomechanical data collected
for the shoulder. The first sections highlight the collection of elevation and the plane
of elevation isometric and passive torques, followed by the isokinetic torques obtained.
The data processing steps for the different data types are then described.

• Chapter 5 details the multi-DOF model fitting and compares the accuracy of the
different coupling equations. The first section outlines the different parameter fitting
methods used, followed by the results of fitting the different coupling equations and
subject-specific and general models. The accuracy of the models is then evaluated
from comparisons against experimental data.

• Chapter 6 concludes the research done in this thesis by summarizing the work. Lim-
itations of the model and recommendations for future work are also discussed.

3



Chapter 2

Background and Literature Review

The literature has been reviewed to understand the principles behind MTGs and their ap-
plications. MTG models offer an alternative to muscle-force models, so first a short review
of muscle-force models including the underlying muscle principles and their limitations is
presented. Next, a detailed review of the current MTG models and the different func-
tions used to represent human joint torque is outlined. Finally, a summary of the different
approaches to model MTGs is provided.

2.1 Muscle-Force Models

As previously mentioned in Chapter 1, a reasonable representation of joint actuation is
required to model a human in forward dynamic simulations, with common models used
being muscle-force models. Often, muscles and tendons are represented as massless cables
with insertion points and muscle wrapping around the skeleton [14, 59]. Typically, these
models are based on the model by Hill [28] and consist of a contractile element as well as a
series elastic and parallel elastic element [70, 75]. The force the muscle produces depends
on several factors, with some of the main factors being the muscle length, which is described
by force-length curves [22], and the muscle lengthening rate, described by force-velocity
curves [28], as well as the muscle pennation angle and the maximum isometric force the
muscle can produce [31]. In the mono-articular case, these muscles span one joint and
cause tension to act on the tendon, which in turn causes a force to act on the bone, with
the resulting joint torque depending on the moment arm [31, 60].

While muscle-force models are useful for simulations where individual muscle forces
or bone-on-bone contact forces are needed, they can introduce additional complexities in
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situations where this is not required [51]. The need to define muscle geometry such as the
insertion point, wrapping, and the muscle moment arm for the models leads to parameters
that are difficult to obtain from living humans [11, 60]. There is also more than one muscle
crossing a joint, which causes the muscle redundancy issue, and therefore optimization
is normally required to solve for a motion [12]. MTGs offer a solution to the problems
mentioned above and will be reviewed in the following section.

2.2 Muscle Torque Generator Models

An MTG is a model that reduces the complexity of muscle-force models to a single torque
at the joint, all while maintaining the position and velocity dependencies of muscle forces
[31]. To date, there have been several different approaches to the overall MTG model.
However, typically the models are functional equations containing a torque-angle scaling
function, which represents the length-dependent properties of muscles, a torque-velocity
scaling function, which represents the muscle lengthening dependent properties, a passive
function which considers forces from viscoelastic elements of the muscle, and finally the
activation function, which gives activation torque [31]. The application of the MTG model
can vary the functions used in the overall model and often dynamometry is used to deter-
mine parameters for the specific joint being evaluated [3, 6, 20, 23, 38, 73]. The specific
joint being modeled, even if it has more than one DOF, is modeled using a single DOF
MTG per DOF [46]. The following sections outline different approaches to the overall
model, followed by the different modeling approaches for the functional components.

2.2.1 Overall Model

In the work done by Inkol et al. [31], the standard form of an MTG is defined using the
following equation:

τ(τact, θ, ω) = τact · τω(ω) · τθ(θ) + τp(θ, ω) (2.1)

Equation 2.1 operates under the assumption of tendon rigidity. The scalar activation
torque, τact, lies between τmin, the minimum allowed isometric torque, and τmax, the max-
imum allowed isometric torque. The minimum isometric torque, τmin, can be defined in
either the positive direction or the negative, depending on the simulation being conducted.
For example, in the work of McNally and McPhee [50], the minimum isometric torque was
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set to zero, and each joint was actuated by two MTGs to provide torque in both directions,
while in the work of Jansen and McPhee [33], only one MTG was applied per joint and the
minimum isometric torque was set to be the maximum isometric torque in the opposite di-
rection. τθ and τω are the torque-angle and torque-velocity scaling functions, respectively.
τθ depends on θ, which is the angle of the single DOF joint, and τω depends on ω, the rate
of change of θ. τp represents the passive torques that are caused by the passive viscoelastic
elements in muscles.

Extending the work done by Forrester et al. [20], an alternative to the above equation
has been proposed by Millard et al. [51] and can be seen in Equation 2.2.

τ(a, θ, ω) = sττmax(a · τθ(θ, sA, λA) · τω(ω, sV , λV )

+τp(θ,∆
P , λP )(1− βPE

ω

svωM
max

))
(2.2)

The torque-angle scaling, torque-velocity scaling, and passive torque functions, similar
to the approach used in 2.1, are defined using τθ, τω, and τp. However, unlike the previ-
ous MTG equation that uses different methods of scaling functions, this model employs
5th-order Bezier curves to define the functions. Muscle activation, a term that can be con-
sidered using the activation torque τact, is represented using a. An additional non-linear
damping term was added to the passive torque function in order to reduce vibrations.
Fitting parameters, λA, λV , and λP , and scaling parameters, sA, sV , and ∆P , are used for
the torque-angle scaling, torque-velocity scaling, and passive torque functions, respectively.
Finally, the term sτ is used to scale the maximum isometric torque.

While the author of this thesis has seen the above method applied less frequently, a
benefit is that most parameter terms have a physical meaning; for example, increasing the
scaling term sA effectively increases the optimal fiber length of muscles. Millard et al. used
quadratic programming to systematically fit these parameters to different dynamometer
data sources.

2.2.2 Torque-Angle Scaling Functions

The torque-angle scaling function scales the maximum isometric torque such that the
length-dependent properties of muscles are incorporated. Often, this is done using poly-
nomial functions as the degree of the polynomial can be easily adjusted, and parameter
identification is flexible [6, 24, 23, 33]. However, the implementation often depends on the
application. Different variations of the torque-angle scaling function are presented below.
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Kulig et al. [40] conducted work to determine human strength curves, which are curves
that outline the torque-angle relationship of a joint. The authors found that a similar
trend could be seen between the torque-angle curve of a joint and the force-length curve
of muscles. In a typical force-length strength curve, a peak in muscle strength is achieved
when the sarcomere length is optimal, and zero force is seen at the smallest and longest
lengths [22]. Previous mathematical models that aim to model the force-length curves of
muscles can therefore be used as inspiration for the torque-angle scaling function. The
force-length curve has been previously modeled using a normal [4], quadratic [9], and sine-
exponential curve [26] as well as a spline interpolation [44]. While there is no consensus
on which model should be used for the force-length curve, Kulig et al. discuss that the
strength dependency can have one of three general behaviours: an ascending behaviour, a
descending behaviour, and an ascending-descending behaviour [40].

Anderson et al. [3] considered the three behaviours discussed by Kulig et al. [40]
and chose to model the torque-angle scaling as a sinusoidal function as it captures all
behaviours mentioned. The model below in Equation 2.3 was used to represent the torque-
angle scaling for applications to the lower limb. It can be noted that this equation contains
the maximum isometric torque τmax. While some researchers choose to incorporate the
maximum isometric torque in the τact term of models, others choose to add it to the
torque-angle scaling function. Often, it depends on the style of activation function that is
used, as the τmax term only needs to be applied once in the MTG.

τθ(θ) = τmax · cos
(
π

θ − θ0
θmax − θmin

)
(2.3)

In Equation 2.3, θ0 is the angle where torque production is optimal, and θmax and θmin

are the maximum and minimum angles where torque production is zero. The authors used
the torque-angle scaling together with a torque-velocity scaling function to determine the
active torque of lower limb muscles, gathering experimental data using a dynamometer
and finding that they were able to predict knee extension torque with an R2 value as high
as 0.942.

Haering et al. [23] studied the effect that different torque-angle scaling functions had
on predicting torque accuracy for the elbow. Five different mathematical models were
compared: a normal, cosine, quadratic, cubic, and sine-exponential function, which can
be seen in Equations A.1, A.2, A.3, A.4, and A.5, respectively. The key terms in these
equations are θ0 and ROM , with ROM being the Range of Motion (ROM) of the joint
specified. However, ROM can be defined as the difference between the maximum and
minimum angle (θmax - θmin) and therefore Equation A.2 is equivalent to Equation 2.3.
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The authors noted that previous to their work, there was no consensus on which style
of mathematical model was best to determine torque-angle scaling for the elbow. They
determined that the cosine, quadratic, and cubic models performed better than the normal
and sine-exponential models, with the quadratic providing the best fit for a wide selection
of participants. A comparison of the different mathematical models evaluated by Haering
et al. [24] is depicted in Figure 2.1.

Figure 2.1: A comparison of the normalized torque-angle scaling mathematical models
evaluated by Haering et al. [24].

In the work of Brown and McPhee [6], different polynomial functions were used to model
the elbow, wrist, and shoulder of a wheelchair basketball athlete. It was determined that
a second-order polynomial provided the best fit for the elbow and wrist; however, a 4th-
order polynomial provided the best fit for the shoulder. The second-order polynomial was
based on previous work [37, 20], and curve-fitting was used to determine the parameters.
Equation 2.4 shows the polynomial torque-angle scaling function used for the shoulder.

τθ(θ) = aθ4 + bθ3 + cθ2 + dθ + e (2.4)

To model Olympic track cycling standing starts, Jansen and McPhee [33] used the
cosine function outlined in Equation 2.3 to similarly capture the muscle behaviours as in
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Anderson et al. [3]. As the lower limbs were the joints in question for the model, parameters
were adopted from [3] and [39].

In the work of McNally and McPhee [50], a biomechanical model of the golf swing was
modeled. Due to the ballistic motion of the golf swing, the authors chose not to include a
torque-angle scaling function and instead focused on the torque-velocity scaling function,
which will be discussed in the next section.

2.2.3 Torque-Velocity Scaling Functions

The torque-velocity scaling function scales the maximum isometric torque production such
that the lengthening properties of muscles are considered. Typically, a piecewise function is
used to capture the nature of concentric and eccentric motions [3, 73, 50], with a hyperbolic
curve being a common component [3, 23, 73].

During a concentric motion, an increase in the speed of muscle shortening causes the
muscle force to decrease in a hyperbolic nature [28]. However, in the eccentric phase, it has
been found that maximum muscle force will increase to a value of 1.5 times the isometric
force, with a plateau at higher speeds [25]. King and Yeadon [38] created a model that
captured the double hyperbolic shape mentioned and applied the model in Equation 2.5.
This model employed the positive parameters a, b, c, d, p, and q, which were determined
by minimizing the squared difference between experimental values and the model results.
The authors found the fit of the function to be sufficient for the data collected; however,
when extrapolating beyond what was measured, there was a degradation in performance.

τω(ω) =
a+ bepω

(1 + cepω)(1 + deqω)
(2.5)

In the work of Yeadon et al. [73], the authors modeled the maximum joint torque
over a range of angular velocities. However, the authors discuss that in studies of human
skeletal muscle, the 1.5 increase of eccentric force over isometric force is rarely achieved,
with the force increasing minimally over the maximum isometric force [68]. With electrical
stimulation, this eccentric torque can be increased beyond the isometric torque by greater
than 20% [69], and when measuring eccentric loading without stimulation, it was found
that Electromyography (EMG) activity did not change over eccentric velocities, leading to
the theory that lower forces are achieved during eccentric contractions as a means of injury
protection [67]. Yeadon et al. therefore created a model that accounted for the activation
profile of eccentric motions.
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Yeadon et al. defined two models, a four parameter function and a seven parameter
function, which consist of the four parameter function combined with a three parameter
activation function that defines the activation profile. Equation 2.6 gives the four parameter
concentric and eccentric torque relationship, where τecc is the ratio between the maximum
eccentric torque and maximum isometric torque, ωmax is the angular velocity where the
curve reaches a torque of zero, and ωc is the vertical asymptote of the Hill hyperbola.

τω(ω) =


C

(ωc+ω)
− τc ω ≥ 0

E
(ωe−ω)

+ τecc ω ≤ 0
(2.6)

In the above equation, τc = τmaxωc

ωmax
, C = τc(ωmax + ωc), ωe = (τecc−τmax)

4.3τmax

ωmaxωc

(ωmax+ωc)
and

E = −(τecc − τmax)ωe.

Equation 2.7 is the three parameter activation function that, when multiplied by the
four parameter function, forms the seven parameter model. The parameter αmax is the
maximum activation level, which is often assumed to be 1, and αmin is the minimum
activation level in the eccentric phase. The inflection point on the curve described by
Equation 2.7 is ω1, and finally, ωr is the ascent range of αmin to αmax.

α(ω) = αmin +
αmax − αmin[
1 + e

ω−ω1
ωr

] (2.7)

Yeadon et al. found that this seven parameter function allowed for both maximal and
submaximal activities to be modeled. However, the authors set τecc to a constant value
of 1.5 and found some simulation results to be unrealistic. The model has been found
useful for sports simulations [31], with it being applied in Brown and McPhee’s [6] forward
dynamic simulation of manual wheelchair propulsion.

Anderson et al. [3] based their concentric torque relationship on Hill’s hyperbolic
function [28]. The concentric torque relation can be seen when the angular velocity is
greater than zero in Equation 2.8. In this equation, ω75 and ω50 define the shape of the
parabola and correspond to the angular velocity at which the torque is 75% and 50% of
the maximum isometric torque, respectively. In order to consider the eccentric torque,
the authors scaled the concentric torques linearly with velocities based on the work by
Dudley et al. [16], where the relationship of eccentric to concentric torque in the knee was
shown to increase with speed. The parameter E was added to help define the eccentric to
concentric torque relation. The model developed here has been applied in forward dynamic
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simulations, with Jansen and McPhee [33] applying it to a predictive simulation of Olympic
track cycling starts due to Anderson’s specific application to the lower limbs.

τω(ω) =


2ω75ω50+ω(ω50−3ω75)
2ω75ω50+ω(2ω50−4ω75)

ω ≥ 0

2ω75ω50−ω(ω50−3ω75)
2ω75ω50−ω(2ω50−4ω75)

(1− Eω) ω ≤ 0

(2.8)

Haering et al. [23] created and compared a new model with the model developed by
Anderson et al. to address the derivative discontinuity in Anderson’s model (see Figure 2.2)
to avoid jumps in continuity and issues when fitting the curves to experimental data. The
authors designed a new power-based model, which is a polynomial function that considers
the concentric velocity where power is maximal, basing the addition of the velocity term on
previous work that found it to be correlated to muscle composition [21, 58]. The maximum
power velocity is used as an inflection point in the concentric phase of the torque-angle
scaling function. The authors found that the new power-based model fit concentric data
better than Anderson’s model, but was worse at fitting eccentric data due to the constraint
that ensured continuity between the eccentric and concentric phases.

Sprigings and Neal [61] and MacKenzie and Sprigings [46] used torque-velocity scaling
without torque-angle scaling to adjust the torques after the muscle activation had already
been considered in their forward dynamic model of the golf swing. The scaling used was
originally applied for high and long jumps by Alexander [1], and an interesting feature of
this model is the lack of a piecewise function for concentric and eccentric motions due to
the motion studied not including a negative angular velocity.

τω(ω) =
(ωmax − ω)

(ωmax + Γω)
(2.9)

The parameter Γ is the shaping factor for the torque-velocity curve. The work done by
Alexander, Sprigings and Neal, and by MacKenzie and Sprigings was extended by McNally
and McPhee [50] by incorporating the work done by Van Soest, who outlined a general
form for the eccentric relationship [65]. A piecewise function was used to represent the
concentric and eccentric velocities as seen in Equation 2.10; McNally and McPhee extended
the motion of the golf swing such that negative angular velocities were considered. The
term S is the ratio of the change in torque and the change in velocity between the eccentric
and concentric phases.
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τω(ω) =


(ωmax−ω)
(ωmax+Γω)

ω ≥ 0

(1−τecc)ωmax+Sωτecc(Γ+1)
(1−τecc)ωmax+Sω(Γ+1)

ω ≤ 0

(2.10)

As previously mentioned, this model did not scale using a torque-angle function. How-
ever, a passive function was used, which will be covered in the next section.

Figure 2.2: A comparison of the normalized torque-velocity scaling functions modeled by
King and Yeadon [38], Yeadon et al. [73], Anderson et al. [3], and McNally and McPhee
[50].

Figure 2.2 shows a normalized comparison of the double hyperbolic function by King
and Yeadon, the piecewise four parameter function by Yeadon et al., the piecewise function
by Anderson et al., and the piecewise function by McNally and McPhee. King and Yeadon
obtained parameters from the force-velocity data of Edman [17] who studied the force-
velocity relationship of frog muscles. Parameters for the function by Yeadon et al. were
obtained from knee extension trials for a single subject, and parameters from Anderson et
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al. were obtained from knee flexion trials for a single subject. McNally and McPhee used
parameters matching the work done by Van Soest [64].

2.2.4 Passive Functions

The passive function allows for torques contributed by components in parallel with the
contractile elements of muscle to be considered. These include structures such as tendons,
ligaments and muscle tissues such as the epimysium and perimysium [3, 31]. In the litera-
ture, there are two main forms presented: a double-exponential form [3, 29, 57, 72] and a
linear spring-damper form [37, 63].

King and Yeadon [38] modeled passive torque as a linear torsional spring, with a stiffness
based on the elastic component of the muscle and tendon in the vasti muscles [32]. This
method was later applied in the work by King et al. for the evaluation of MTG models for
jumping [37].

Yoon and Mansour [74] used a double exponential function that helped to simulate the
ROM of the joint. Equation 2.11 was applied twice, once for hip flexion and a second time
for hip extension, with parameters k1, k2, k3, and k4 being modified for the motion. The
maximum angle for the joint’s range of motion, θ+, and θoff , the angle offset from the
joint’s maximum angle, were also modified for flexion versus extension. While this model
performed well, the θoff term can complicate the application to joints other than the joint
studied.

τp(θ) = k1(e
k2(θ−θ+) − 1) + k3(e

k4(θ−θoff ) − 1) (2.11)

Hoang et al. [29] applied a similar double exponential function at the ankle, considering
the sum of torque in both plantar flexion and dorsiflexion. Riener and Edrich [57] also
applied a similar double exponential function. However, biarticular muscles that cross two
joints were considered in their model, with the angle of the adjacent joint factoring into
the model equations.

Anderson et al. [3] based their work on the double exponential models previously
mentioned [74, 29], and presented a slightly simpler model, seen in Equation 2.12. In
this equation, the ROM is enforced by the two terms and the passive equation itself is
independent of the muscle activation.

τp(θ) = k1e
k2θ + k3e

k4θ (2.12)
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Figure 2.3: Comparison of the normalized passive hip torque results for hip extension to
flexion for the models designed by Yoon and Mansour [74] and Anderson et al. [3].

Figure 2.3 compares the normalized passive hip torque results for hip extension to
flexion for the models designed by Yoon and Mansour and Anderson et al. The model
parameters were determined from two different participants that completed the motion.

Yamaguchi [72] uses the terms θ+ and θ− to define the feasible ROM in their double
exponential passive function (Equation 2.13) which is easily adapted to other joints due
to the parameter’s physical meaning. A viscous damping term was also added with a
recommend linear damping coefficient of c = 0.1Nm · rad−1.

τp(θ, ω) = k1e
−k2(θ−θ−) − k3e

−k4(θ+−θ) − cω (2.13)

Yamaguchi’s equation was later applied to the model of the golf swing used by McNally
and McPhee [50].

2.2.5 Activation Functions

The activation function aims to capture the activation of muscles and provides a torque
between the minimum isometric torque τmin and the maximum isometric torque τmax.
Often, two main strategies are applied. The first strategy employs a function to capture the
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activation dynamics of the model [46, 50, 73], and the second uses an activation parameter,
a, that is often between 0 and 1 to scale the isometric torque depending on the muscle
activation, or relative muscle effort [6, 33, 51]. The latter method is usually applied to an
optimal control problem.

MacKenzie and Sprigings [46] used an activation curve to take into account the muscle
activation and deactivation times for their model of the golf swing. In Equation 2.14, t and
t′ are the time it takes for the MTG to activate and de-activate, and tact is the activation
time constant. One thing to note about this equation is that the activation always leads to
maximum muscle torque when the MTG is activated, and the muscle activation cannot be
controlled further, making this equation more applicable to sports applications. McNally
and McPhee [50] extended this equation by adding an exponential that acts to smooth the
transition between activation and deactivation. Figure 2.4 shows the normalized activation
function used by McNally and McPhee where the activation time was set to 0 seconds and
deactivation time was set to 0.6 seconds.

τa = τmax

(
1− e

−t
tact

)
− τmax

(
1− e

−t′
tact

)
(2.14)
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Figure 2.4: The normalized activation function used by McNally and McPhee [50] where
the activation time was set to 0 seconds and deactivation time was set to 0.6 seconds.

Millard et al. [51], Brown and McPhee [6], and Jansen and McPhee [33] applied an
activation term, a, to directly solve for the activation torque. This allows for torques less
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than or equivalent to the maximum isometric torque. Jansen and McPhee specifically used
an activation term of -1 to 1 to simulate the difference between muscles causing flexion and
extension. In recent works by Jiang et al. [34], a similar activation term has been applied
to their work of synthesising realistic human motion, where they are using novel machine
learning techniques to solve for torque limits.

2.3 Summary

In summary, there are many methods previously used to develop an MTG for a single DOF
joint. Dynamometry has been used to provide experimental data to fit the functions that
define an MTG [3, 6, 20, 23, 38, 73]. However, there has not been a consensus on which
style of functions to use. For torque-angle scaling, polynomial functions provide a simple
approach, particularly for parameter fitting [6, 23]. In terms of torque-velocity scaling
functions, a piecewise style function provides a better fit for both concentric and eccentric
motions compared to a power-based model [23]. Passive torques are often minimal, except
when outside an individual’s ROM, which is then commonly represented by a double ex-
ponential function [3, 29, 57, 72]. Finally, the activation function tends to vary depending
on the application, but for most forward dynamic simulations, an activation level that is
controlled is applicable [6, 33, 51].

There are some general limitations to the MTG. These include the fact that bone-
on-bone contact forces cannot be modeled using an MTG [51] and that antagonist co-
contractions are not individually accounted for in the model [20]. One large limitation is
the fact that an MTG can currently only be applied to single DOF joints, which often
results in forward dynamic simulations being restricted to planar motions [19, 34, 18].
A previous approach applied two single DOF MTGs operating in horizontal and vertical
directions and scaled them using a torque ratio term [49]. However, this approach does not
consider the impact of the coupling between the two DOF of the joint, and to date there
is no single MTG that is capable of providing torque for a three-dimensional motion [48].
Therefore, there is an opportunity to improve the MTG such that the coupling between
two joint angles is considered in order to design an MTG for multi-DOF motion.
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Chapter 3

Multi-Degree-of-Freedom Muscle
Torque Generator Model

The definitions for the multi-DOF MTG are outlined in this chapter. Different coupling
equations are presented to evaluate the effect that the degree of coupling has on the model.
Finally, equations for the torque-angle and torque-velocity scaling functions as well as the
passive and activation functions are outlined.

3.1 Definition of Model Joint Torques and Angles

The multi-DOF MTG model aims to capture the coupling between two major motions of
the shoulder: shoulder plane of elevation, and shoulder elevation as defined according to
the International Society of Biomechanics (ISB) [71]. Two angles were defined to describe
these two motions. The first angle, θ1, is defined as the angle of the plane of elevation
of the humerus relative to the thorax. The second angle, θ2, is defined as the angle of
elevation of the humerus relative to the thorax (measured from -Y). Figure 3.1 depicts the
coordinate system and angle definitions for the model. The coordinate system is defined
using the ISB standards and is for the right arm with the person facing towards positive
X.

Clinically, shoulder plane of elevation is defined as horizontal adduction when the
humerus moves horizontally across and towards the chest and is defined as horizontal
abduction when it moves horizontally away from the chest [53]. Shoulder elevation is clini-
cally defined as abduction when the plane of elevation, θ1, is 0 degrees and forward flexion
when the plane of elevation is 90 degrees [71].
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Figure 3.1: Torque and angle definitions for shoulder plane of elevation and shoulder
elevation. The coordinate system is defined for the right arm with the person facing
towards positive X.

To fully describe the model, one torque was defined per DOF. The first torque, τ1, is
the torque responsible for shoulder plane of elevation and is about Y in the direction of
the first DOF (θ1). The second torque, τ2, is the torque responsible for elevation and is
about -x’ in the direction of the second DOF (θ2). Each of these torques are individually
determined by considering the coupling between the two DOF. The resultant torque, τ , is
in the direction of α, which is defined in Figure 3.1.

The shoulder joint has a large ROM [66], ranging from 0 to 140 degrees in horizontal
adduction and 0 to 167 degrees in forward flexion on average [54]. In order to reduce the
ROM for the model to simplify the data collection process, the model use case was defined
to be for lifting and reaching motions. Therefore, θ1 was defined to be between 0 and 120
degrees and θ2 between 60 and 160 degrees. This ensures that the joint angles are within
the normal shoulder ROM, while removing the lower ranges of elevation which aren’t as
commonly used for lifting motions. Figure 3.2 shows a visualization of the ROM defined
for the multi-DOF shoulder MTG.
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Figure 3.2: Visualization of ROM defined for the multi-DOF shoulder MTG model. The
anterior and posterior directions are defined.

3.2 Coupling Equations

To develop the MTG forms for τ1 and τ2, the standard single DOF MTG equation seen in
Equation 2.1 can be used as a template. One of the goals of this work is to determine the
impact that different degrees of coupling between the two DOF has on model accuracy.
To do this, models were developed that show limited coupling between the DOF, position
coupling (such that the torque-scaling function is dependent on two DOF), and position and
velocity coupling (where both the torque-angle and torque-velocity scaling are dependent
on the two DOF).

First, equations for τ1 and τ2 were developed with limited coupling. To achieve this,
multiple single DOF MTG models were developed across the range of the secondary DOF.
For τ1, the torque-angle scaling, torque-velocity scaling, and passive function can be de-
termined with respect to θ1 and θ̇1. If these functions are determined with respect to θ1 at
specific points of θ2, then the elevation torque given limited coupling between the two an-
gles is achieved. This is seen in Equation 3.1, where five single DOF MTGs are determined
when θ2 is at 60, 85, 110, 135, and 160 degrees. These angles were chosen in order to span
the ROM examined. Linear interpolation between the curve fits was used to determine the
torque scaling at points that lay between the discrete values of θ2.
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τ1 = τact · τω(θ̇1) · τθ(θ1) + τp(θ1) for θ2 = 60, 85, 110, 135, 160 deg (3.1)

A similar approach was used for the limited coupling case for τ2. The torque-angle
scaling, torque-velocity scaling, and passive scaling for the horizontal plane of elevation
torques can be determined with respect to θ2. The single DOF MTG can be determined at
five θ1 angles (when θ1 is equal to 0, 30, 60, 90, and 120 degrees) to determine our limited
coupling equation for τ2 (Equation 3.2). Again, the angles of θ1 were chosen such that
the ROM studied was fully examined. Linear interpolation between values of θ1 was again
applied.

τ2 = τact · τω(θ̇2) · τθ(θ2) + τp(θ2) for θ1 = 0, 30, 60, 90, 120 deg (3.2)

Next, the position coupling cases were developed for the two torques. In this case, the
torque-angle scaling function and passive function are dependent on two angles, while the
torque-velocity scaling function is dependent on only one angular velocity. Equations 3.3
and 3.4 below describe the position coupling MTGs for τ1 and τ2, respectively.

τ1 = τact · τω(θ̇1) · τθ(θ1, θ2) + τp(θ1, θ2) (3.3)

τ2 = τact · τω(θ̇2) · τθ(θ1, θ2) + τp(θ1, θ2) (3.4)

Finally, an additional step was taken from the position coupling equations to develop
models that include both position and velocity coupling. For this case, the torque-angle
scaling and passive functions maintain the dependency on two angles as done in the position
coupling case, and an additional degree of coupling is added to the torque-velocity scaling
function such that it is dependent on two angular velocities instead of one. Equations 3.5
and 3.6 below describe the position and velocity coupling MTGs for τ1 and τ2 respectively.

τ1 = τact · τω(θ̇1, θ̇2) · τθ(θ1, θ2) + τp(θ1, θ2) (3.5)

τ2 = τact · τω(θ̇1, θ̇2) · τθ(θ1, θ2) + τp(θ1, θ2) (3.6)

Table 3.1 offers a summary of the 2 DOF MTG equations developed to explore different
degrees of coupling. To explore model accuracy, subject-specific and general models were
developed.
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Table 3.1: Summary of Coupling Equations

Method Coupling Equations

1 limited
τ1 = τact · τω(θ̇1) · τθ(θ1) + τp(θ1) for θ2 = 60, 85, 110, 135, 160 deg

τ2 = τact · τω(θ̇2) · τθ(θ2) + τp(θ2) for θ1 = 0, 30, 60, 90, 120 deg

2 θ
τ1 = τact · τω(θ̇1) · τθ(θ1, θ2) + τp(θ1, θ2)

τ2 = τact · τω(θ̇2) · τθ(θ1, θ2) + τp(θ1, θ2)

3 θ, θ̇
τ1 = τact · τω(θ̇1, θ̇2) · τθ(θ1, θ2) + τp(θ1, θ2)

τ2 = τact · τω(θ̇1, θ̇2) · τθ(θ1, θ2) + τp(θ1, θ2)

3.3 Muscle Torque Generator Function Equations

For the different degrees of coupling, different torque-angle scaling, torque-velocity scaling,
and passive functions must be developed. As discussed in Chapter 2, a polynomial torque-
angle scaling function is a simple and effective function to use for parameter fitting [6, 23].
Therefore, a polynomial curve was used for the limited degree of coupling case for the
torque-angle scaling function. For the coupling cases that include position coupling, a
polynomial surface was used.

It was found that piecewise functions offer a good representation of the concentric and
eccentric torques seen in the torque-velocity scaling function [23]. To maintain a simple
model, polynomial curves and surfaces were considered. Therefore, two polynomial curves,
one curve for concentric motions when the angular velocity is greater than 0 deg/s and the
other for eccentric motions when the angular velocity is less than 0 deg/s, were used for
methods that didn’t include velocity coupling. For the velocity coupling case, piecewise
polynomial surfaces were used. A drawback of the piecewise curves is that while these
functions fit well to the data and are continuous, they are not differentiable when θ̇ is zero
and are therefore of class C0.

Since the MTG ROM evaluated is within the ROM of the shoulder, it was expected
that passive torques would have a minimal impact [72]. As the double-exponential function
is mainly applicable to torques outside the ROM, polynomial curves and surfaces were
applied for the passive torque function similarly to what was done for the torque-angle
scaling function.
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One thing to be noted is that the MTG functions for τ1 and τ2 will be different and
depend on the data gathered for plane of elevation torques and elevation torques, respec-
tively. As different curves and surfaces can provide a better fit depending on the data,
curves and surfaces up to the third-degree were evaluated for the best fit. To avoid over-
fitting, higher-order curves and surfaces were not considered. For notation, curves will be
denoted as m-Curve, where m is the order of the polynomial curve up to 3 and surfaces
will be denoted as m,n-Surface where m is the degree of the first independent variable
up to 3 and n is the degree of the second up to 3. Equation 3.7 shows an example of a
2,3-Surface torque-angle scaling function and Equation 3.8 shows an example of a torque-
velocity scaling function that uses a 2-Curve for the concentric motion and a 1-Curve for
the eccentric. The parameters, p are to be fit using experimental data.

τθ(θ1, θ2) = p00 + p10θ1 + p01θ2 + p20θ
2
1 + p11θ1θ2 + p02θ

2
2 + p21θ

2
1θ2 + p12θ1θ

2
2 + p03θ

3
2 (3.7)

τω(θ̇1) =


p1θ̇1

2
+ p2θ̇1 + p3 θ̇1 ≥ 0

p1θ̇1 + p2 θ̇1 < 0

(3.8)

Finally, the activation function must be considered to determine how much τ1 and τ2
are contributing to the total force production, where the total torque production, τ , is
the sum of the two torque vectors in the direction of α. An activation term approach,
similar to that in previous works was applied [6, 33, 51], where the activation torque, τact,
is the product of an activation term (a1 and a2 for the plane of elevation and elevation,
respectively) and the isometric torque, τmax, for the specified direction. Equation 3.9 shows
the activation function for τ1 or τ2.

τact1,2 = τmax1,2a1,2 (3.9)

Two different approaches were used to determine the activations a1 and a2. First, the
activations were assumed to be related to the resultant torque direction, α, where the
activations had a sine and cosine relationship as seen in Equations 3.10 and 3.11. This
was inspired by vector addition, as the magnitude of the two activations will equate to
1. Figure 3.3 shows how a1 and a2 change given α for the first activation approach. This
ensures that if the motion was only in the plane of elevation, for example, a1 would go to
1, while a2 would go to 0 such that there is no elevation torque contribution.
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a1 = cosα (3.10)

a2 = sinα (3.11)

Figure 3.3: The sine and cosine relationship of a1 and a2, and the resultant torque direction
α for the first activation approach.

The second activation approach solved for independent activations directly from ex-
perimental isokinetic data, operating under the assumption that activations a1 and a2 are
constant in time for a given α. Since the data is isokinetic and does not contain angular
dependencies, the standard form of the MTG (Equation 2.1) can be simplified to the form
expressed in Equation 3.12. The activation torques for a direction are expressed using
Equation 3.9. If the activations are constant, then the component torques τ1 and τ2 of the
isokinetic torques are equivalent to the isometric torque for the component torque direction,
τmax, the activation for the direction for the given α, aα, and an unknown torque-velocity
scaling function that is dependant on the angular velocity in the direction of α, s(ωα).
Equation 3.13 expresses this relationship for a plane of elevation torque. Further details of
this approach are outlined in Chapter 4.

τ(ω) = τact · τω(ω) (3.12)

τ1 = τmax1 · a1α · s(ωα) (3.13)
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Chapter 4

Shoulder Experiments

The contents of this chapter describe the methods to collect and process data used to
fit subject-specific and general MTG functions for the shoulder. In order to develop the
functional coupling MTG equations outlined in Section 3.1, experimental data was gathered
to generate equations for the torque-angle scaling, torque-velocity scaling, and passive
functions.

4.1 Setup

4.1.1 System Used

Testing was conducted using the Biodex System 4 ProTM (Biodex Medical Systems, Inc,
Shirley, NY). The Biodex is a computerized dynamometer that is used in sports and
orthopedic medicine, neurorehabilitation, and research. The Biodex allows for a specific
joint in the body to be isolated, and the net joint torque can be measured in different
modes of operation. For this study specifically, the shoulder joint was isolated and the
isometric, isokinetic, and passive modes were utilized to measure the net shoulder torques.

4.1.2 Joint Alignment

To ensure accurate torque measurements, the axis of the Biodex must be aligned with
a participant’s anatomical joint center [27]. The Shoulder Joint Center (SJC) can be
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approximated as 10.4% of the distance from the acromion to the radiale, with the three-
dimensional position lying on the longitudinal axis between the two bony landmarks [13].
Participants’ bony landmarks were palpated and the 10.4% distance was marked. The
Biodex was fitted with a custom 3D-printed part that secured a laser pointer in the center
of the Biodex crank. The laser pointer was used to align the Biodex crank center with the
marker at the participant’s SJC. Work done in [5] has shown that the SJC is often not
stationary throughout the movement. The movement of the SJC can be attributed to the
fact that shoulder joint mobility is not only the motion of the glenohumeral joint, but is also
the motion of the scapula gliding along the thorax, also known as scapulothoracic-gliding
[66]. Until 120 degrees in elevation, shoulder mobility is due to the glenohumeral joint.
However, past this, the motion is also a result of scapular gliding. This can contribute to
the movement of the SJC at higher elevations. To minimize the movement of the SJC,
all participants were instructed to keep their back (with a specific focus on the scapula)
against the seat of the Biodex. Two straps, one across each participant’s shoulder was used
to prevent movement outside of the shoulder joint during testing. Participants were also
instructed to keep their elbow and wrist joints locked in a neutral and straight position.

With the alignment process mentioned, the Biodex crank angle measurement was used
as the shoulder angle, as done in the previous Biodex testing by Brown [5]. In this work, an
electrogoniometer was used to determine if there was any discrepancy between the Biodex
crank angle measurement and the angle of the elbow joint. It was determined that the
Biodex crank angle was an accurate representation of the elbow joint angle, most likely
due to the rigid handle that connected the person and the Biodex. The shoulder joint and
elbow joint used the same rigid attachment, and therefore Brown used the Biodex crank
angle as a measurement of the shoulder, instructing participants to keep their back against
the seat similarly to what was done for this work. The same grip attachment was used
in this study, and therefore the Biodex crank angle measurements were also used as the
shoulder joint angle.

4.2 Elevation Torque Data

The testing was broken down into three main sections: elevation torque, in which the
participant applied torque in the direction of θ2 for isometric and passive tests, plane of
elevation torque, where the participant applied torque in the direction of θ1 for isometric
and passive tests, and isokinetic tests, which vary the degree of elevation and plane of
elevation torques by changing the Biodex axis tilt, effectively changing α. This section
focuses on the elevation torques gathered.
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4.2.1 Subjects

10 males (24 ± 4 years, 1.79 ± 0.08m, 78.2 ± 7.6kg) and 10 females (22 ± 7 years, 1.63 ±
0.06 m, 59.6 ± 8.2 kg) participated in the study. The eligibility criteria of the study ensured
that participants had not experienced any pain during activities of daily living within the
past 6 months, as well as ensured that the participant did not have any shoulder pain or an
existing heart condition. The participants also did not have any prior experience with the
Biodex System. Ethics approval was obtained from the University of Waterloo Research
Ethics Board (REB 44157).

4.2.2 Isometric Test

For the isometric testing mode, the attachment arm of the Biodex was moved to a specific
elevation to achieve a specific θ2, and the chair of the Biodex was rotated to achieve
different planes of elevation, θ1. The Biodex attachment arm then remained stationary
while the participant used their Maximum Voluntary Contraction (MVC) for 5 seconds.
Isometric torque was measured in elevation for 25 different combinations of θ1 and θ2.
θ1 was measured at 0, 30, 60, 90, and 120 degrees and θ2 was measured at 60, 85, 110,
135, and 160 degrees. Three minutes of rest were given to participants between every five
exertions with more on request to prevent the participant from fatiguing. Figure 4.1 shows
an example of the setup of an isometric test in elevation when θ1 is 0 degrees and θ2 is 85
degrees.

4.2.3 Passive Test

In the passive testing mode, the chair of the Biodex was rotated to achieve a specific plane
of elevation, θ1, and the Biodex was set to elevate the participant’s arm across the ROM
studied (60 deg ≤ θ2 ≤ 160 deg). The Biodex moved the participant’s arm at a rate of 5
deg/s while the participant provided no torque in order to measure only the passive torques
in the shoulder resisting the motion. Five passive tests were done, measuring the ROM of
θ2 for θ1 at 0, 30, 60, 90, and 120 degrees.
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Figure 4.1: Example of a participant setup when θ1 is 0 deg and θ2 is 85 deg for isometric
testing in elevation

4.3 Plane of Elevation Torque Data

4.3.1 Subjects

7 male (26 ± 3 years, 1.80 ± 0.07m, 79.0 ± 7.7kg) and 6 female (24 ± 6 years, 1.63 ±
0.07m, 59.5 ± 6.3kg) subjects who participated in the elevation torque data collection were
able to return and participate in the plane of elevation torque section of the study. The
eligibility criteria for the study remained the same.

4.3.2 Isometric Test

For the isometric tests, the chair of the Biodex was lowered such that the participant was
lying horizontally. The attachment arm of the Biodex was moved to different positions,
which corresponded to a different plane of elevation angle, θ1. The tilt of the Biodex
axis was modified such that different elevation angles, θ2, could be achieved. Similar to
the elevation torque isometric study, the Biodex attachment arm remained stationary at
specified angles, and MVC was used for 5 seconds at each of these positions. Isometric
torques were measured in the plane of elevation for 25 different combinations of θ1 and θ2.
θ1 was measured at 0, 30, 60, 90, and 120 degrees and θ1 was measured at 70, 85, 110, 135,
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and 160 degrees. 70 degrees elevation was measured for the plane of elevation isometric
torques instead of the 60 degrees in the elevation isometric torques as the Biodex axis was
unable to tilt past 70 degrees. Extrapolation using the resulting MTG functions can be
done to determine torques produced at 60 degrees of elevation if required. Figure 4.2 shows
an example of the setup of a plane of elevation isometric test when θ1 is 0 deg and θ2 is 85
deg.

Figure 4.2: Example of a participant setup when θ1 is 0 deg and θ2 is 85 deg for the plane
of elevation isometric testing.

4.3.3 Passive Test

In the passive testing mode, the lowered chair position was maintained, and the axis of
the Biodex was tilted to achieve specific elevations, θ2. The Biodex was set to move the
participant’s arm across the plane of elevation for the ROM studied (0 deg ≤ θ1 ≤ 120 deg).
Similar to the previous passive study, the participant was instructed not to provide any
torque so that only passive torques were measured, and the Biodex moved the participant’s
arm at 5 deg/s. Five passive tests were done measuring the ROM of θ1 for θ2 at 70, 85,
110, 135, and 160 degrees.
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4.4 Isokinetic Data

The same 20 individuals who participated in the elevation torque data collection also
participated in gathering the isokinetic data. For the isokinetic testing, the Biodex was
set up so that the participant was first in forward flexion (with the Biodex axis having a
tilt of 0 degrees and θ1 having a constant angle of 90 degrees). The participant was then
instructed to apply their MVC in a concentric motion followed by an eccentric motion
while the Biodex limited the speed they were able to achieve. Speeds of 5, 10, 20, 30,
and 45 deg/s were used to cover speeds applicable for slow to medium lifting and reaching
motions (as previous studies found maximum speeds to range from 80 to 200 deg/s [41]).
While in forward flexion, θ̇2 was individually measured as the participant strictly elevated
their arm. The axis of the Biodex was then tilted 30 and 60 degrees from the vertical (with
the participant’s arm moving diagonally away from their chest in concentric motions) to
measure the combination of θ̇1 and θ̇2. Finally, the Biodex axis was tilted to 90 degrees
such that only θ̇1 was measured in a horizontal plane of elevation motion. The same
speeds mentioned above were applied to all angles. In total, 20 concentric and 20 eccentric
combinations of θ̇1 and θ̇2 were measured. Figure 4.3 shows an example of a participant
setup when the Biodex axis is tilted 30 degrees from the vertical.

Figure 4.3: Example of a participant setup when the Biodex axis is tilted 30 deg from the
vertical. The participant was limited to 5 deg/s, resulting in a θ̇1 of 2.5 deg/s and a θ̇2 of
4.3 deg/s for the trial.

The participant was limited to 5 deg/s for the specific test shown in 4.3, resulting in
a θ̇1 of 2.5 deg/s and a θ̇2 of 4.3 deg/s. Participants were given three minutes of rest
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between every 5 concentric and eccentric pairs, with more rest given upon request. With
low velocity tests, participants found it very tiring to reach high eccentric torques, and
were given additional rest after these trials. This was similarly found by Yeadon et al.
[73], again leading to the theory that maximal contraction is avoided during eccentric
motions as a means of injury prevention. Therefore, while participants were encouraged
to produce their MVC, it is possible that this was not achieved during eccentric motions.

4.5 Data Processing

First, a 6 Hz low-pass 2nd-order Butterworth filter was applied to all torque data gathered
to remove noise [8]. Next, different processing techniques were applied to the different data
types. The following paragraphs outline the data processing techniques that were used on
the different types of biomechanical torque data.
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Figure 4.4: Example of a participant’s isometric toque results for a 5s contraction. The
highest average torque is found over 0.5s intervals to determine the isometric torque for
the specific angle.

The plane of elevation and elevation isometric torques at a specific angle for each par-
ticipant were determined by selecting the highest average torque over 0.5 second intervals,
as done in [55]. An example of the method used to find the isometric torque at a specific
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angle can be seen in Figure 4.4. The isometric torques were then normalized by each indi-
vidual’s maximum isometric torque in either plane of elevation or elevation to allow for a
fair comparison between individuals of different strengths.

For the isokinetic torque results, a function was first applied that removed torque data
that was less than 70% of the target angular velocity, as done in [5]. The maximum and
average joint torques were then found for each concentric and eccentric angular velocity
trial. The final isokinetic torques for a participant were then found by regressing the
maximum torque values against the average torque values to create a maximal dataset as
described in [73]. The maximal dataset provides sets of torque and angular velocity values
with less noise and ensures that the torque values no longer have angular dependencies.
An example of the regression used to replace the isokinetic torque value can be seen in
Figure 4.5.

-50 -40 -30 -20 -10 0 10 20 30 40 50
Average Torque (Nm)

-50

-40

-30

-20

-10

0

10

20

30

40

50

M
a
x
 T

o
rq

u
e
 (

N
m

)

data
linear fit

Figure 4.5: Example of regression used to create a maximal isokinetic dataset.

The components of the angular velocity along the θ̇1 and θ̇2 axes were found using the
Biodex axis tilt angle and simple trigonometry. For isokinetic torques not measured strictly
along the plane of elevation or elevation axis, the components of the total torque, τ1 and
τ2 were also determined using the Biodex axis tilt angle and trigonometry. For Method
1 and Method 2 that used no velocity coupling, the isokinetic torques were normalized
by the maximum isometric torque in the same direction. For Method 3 with velocity
coupling, the components of the maximum total torque cannot simply be divided by the
maximum isometric torque in the same direction as the muscle activation may not be
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maximum for the given α, resulting in an unfair comparison between torques gathered in
pure plane of elevation or pure elevation. Rearranging Equation 3.12 which gives torque
for an isokinetic test, the measured torque can be divided by the activation torque, τact, to
give the torque-velocity scaling function. This essentially divides the component isokinetic
torques by the activation and the maximum isometric torque for the direction, allowing
for a fair comparison to be made.

The normalized maximum isometric and isokinetic torques (normalized by τmax) were
then plotted in a box plot for each participant to visualize outliers in a participant’s nor-
malized torque values. Outliers are defined as being more than 1.5 times the Interquartile
Range (IQR) above or below the upper and lower quartile. Figure 4.6 shows the result of
the box plot for the 20 participants used in the isometric elevation and isokinetic tests.
The outliers, which are shown as red crosses, were removed from the data set.

The passive torques were then analysed. The Biodex removes the contribution of gravity
torque using the weight of a participant’s limb for isometric and isokinetic tests; however,
this feature is not available for passive torques. Therefore, additional processing is required
to remove the contribution of gravitational torques. A trial using the Biodex attachment
arm only was first run, as this results in the gravitational and inertial torques from the
attachment. The mass, moment of inertia, and center of gravity of the Biodex attachment
can then be solved for using least-squares fitting. This information, along with the pre-
viously measured participant limb weight from the isometric studies, can be combined to
remove the contribution of the gravity torques, resulting in the passive torques. In cases
where the Biodex axis is tilted, the gravity torques are projected onto the plane of rotation
as the Biodex only measures torques in this plane. Once the passive torques were obtained,
no normalization is required as the passive torques are not dependent on an individual’s
strength and instead on the passive structures such as ligaments in the shoulder.

As previously mentioned in Chapter 3, two different activation assumptions were ex-
amined. The first assumes that the activations a1 and a2 are related using cosine and
sine functions as outlined in Equations 3.10 and 3.11. The second approach solved for the
independent activations directly using the isokinetic data. To solve for these activations,
5 male and 5 female participants were used, leaving the remaining dataset to solve for the
coupled torque-velocity scaling function required for Method 3.

As shown in Equation 3.13, a component of the total isokinetic torque (the component
being in the direction of τ1 or τ2) measured at a given α can be expressed as the isometric
torque for the given direction, an unknown torque-velocity scaling function, and the acti-
vation for the direction that is assumed to be constant for α. Four different ratios between
two data points were created for the five isokinetic torques measured for a given α. As
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Figure 4.6: Box plot of each participant’s normalized torque data (normalized by τmax)
used to identify outliers. The median is represented by the red bar, the upper and lower
quartiles by the box, the maximum and minimum values excluding outliers by the dotted
lines, and the outliers by the red crosses.
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the isometric torque and the activation are constant, they canceled out and the result is
a ratio of the isokinetic torques measured at two points which is equivalent to a ratio of
the polynomial scaling curve that is evaluated at the two points. Equation 4.1 shows an
example of the ratio used for plane of elevation torques for data point i and j.

τ1i
τ1j

=
si(ωα)

sj(ωα)
(4.1)

Using curve fitting, it was determined that a cubic relationship resulted in the best fit
for the scaling function s(ωα). Optimization was then used to solve for the four coefficients
of the unknown scaling function, minimizing the difference between the torque ratios and
the ratios of the scaling functions. Once the coefficients of the scaling function were
determined for a given α, a second round of optimization was conducted to solve for
the activation, using Equation 3.13 to minimize the difference between the experimental
component torques and the calculated torques. This was done for a completely general
dataset, a female dataset and a male dataset. The process was also repeated for concentric
and eccentric data, to follow the theory that less activation is used in eccentric motion
[73]. The concentric results of the activations given α can be seen in Figure 4.7 and the
eccentric results are seen in Figure 4.8. As expected, the activation results are lower for
eccentric motion compared to concentric. One interesting point to note is that the results
of the completely general concentric activations in Figure 4.7 are not unlike like activation
assumptions used in the first activation approach (see Figure 3.3). In the future, more
data points should be considered for a more robust solution.

At this point, the isometric, isokinetic and passive data could either be used as is
for subject-specific models, or the mean from the population at each angle and angular
velocity combination could be determined for completely general, female general and male
general models. Chapter 5 details how the processed torque data was used to fit the MTG
functions for the different coupling equations.
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Figure 4.7: Concentric activations for a given α for the completely general model, the
female general model and the male general model.

Figure 4.8: Eccentric activations for a given α for the completely general model, the female
general model and the male general model.
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Chapter 5

Multi-Degree-of-Freedom Muscle
Torque Generator Model Fitting and
Comparison

The maximum elevation and plane of elevation isometric torques, the maximum isokinetic
torques, and the passive torque were used to fit the MTG functions from Chapter 3 for the
different coupling cases. First, the methods of fitting parameters for the different MTG
functions using the experimental data are outlined. Next, the results of the curve and
surface fits are presented and discussed for τ1 and τ2. The complete model results are then
compared against experimental data for the general and subject-specific cases. Finally, the
results of the models are compared and discussed.

5.1 Parameter Fitting

Using the processed experimental data, the different curves and surfaces outlined in Chap-
ter 3 were applied to determine the best type of fit for the data, as well as the resulting
parameters for the fit. First, the method of the curve and surface fits are described, followed
by the fitting results.
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5.1.1 Methods

In total, 36 best curves and surface fits were found to evaluate the different degrees of
coupling for the three methods. Five best curve fits were found for the torque-angle scaling
function as well as the passive torque function in the limited coupling case for τ1 when θ2
was 85, 110, 135, and 160 degrees. The same was done for τ2, and the best curve fits
were determined when θ1 was equal to 0, 30, 60, 90, and 120 degrees. Two curves, one
for concentric motion and eccentric motion were found for both τ1 and τ2 in methods that
did not include velocity coupling (Methods 1 and 2). A surface that was in terms of θ1
and θ2 was found for the torque-angle scaling function and the passive function for both
τ1 and τ2 in methods that included position coupling (Methods 2 and 3). Finally, for the
velocity coupling case, two surfaces, one for concentric motion and the other for eccentric,
were found for the torque-velocity scaling functions for both τ1 and τ2. As activations are
considered in the data processing for Method 3, the number of surface fits was doubled
for the coupled torque-velocity scaling functions so that both activation methods were
considered. The functions and number of best curves/surfaces found for those functions
are summarized in Table 5.1, where the subscript after the MTG function type indicates
whether the function is for τ1 or τ2.

MATLAB’s Curve Fitting ToolboxTM was used to find the curve or surface that best fits
the experimental data for a given function. Polynomial curves and surfaces in the toolbox
fall under the regression model group, where the default fit method is a linear least squares
method. To avoid overfitting the data, curve and surface fits were only evaluated to the
third degree; therefore three different curves were evaluated for the functions without
coupling, and nine different surfaces were evaluated for the functions with coupling. The
torque-angle and passive functions were fit using the default methods. For the torque-
velocity scaling functions, an additional constraint was added to ensure that the curves
and surfaces had an intercept at one when the angular velocity was equal to zero. In
previous piecewise torque-velocity scaling models [3, 23, 73], there is a constraint at this
point as isometric torques are achieved when the angular velocity is zero, and therefore no
torque-velocity scaling is required. To ensure that this criterion was met, and to ensure
that there was no C0 discontinuity between the piecewise models, the intercept constraint
was set. An example of the constraint can be seen in Figure 5.1, where the concentric and
eccentric curves meet at the intercept of 1.

For subject-specific models, the Root Mean Square Percentage Error (RMSPE) was
calculated for each curve and surface fit. The fit with the least amount of error was then
selected as the fit for that model. 13 subject-specific models were evaluated, as only 13
participants completed the study for both the elevation and plane of elevation isometric

37



Table 5.1: Summary of Muscle Torque Generator Functions and the Number of Best Curves
and Surfaces Fit

Function Number of Curves/Surfaces

τθ1(θ1) 5 Curves

τθ2(θ2) 5 Curves

τp1(θ1) 5 Curves

τp2(θ2) 5 Curves

τω1(θ̇1) Con. 1 Curve

τω1(θ̇1) Ecc. 1 Curve

τω2(θ̇2) Con. 1 Curve

τω2(θ̇2) Ecc. 1 Curve

τθ1(θ1, θ2) 1 Surface

τθ2(θ1, θ2) 1 Surface

τp1(θ1, θ2) 1 Surface

τp2(θ1, θ2) 1 Surface

τω1(θ̇1, θ̇2) Con. 2 Surfaces

τω1(θ̇1, θ̇2) Ecc. 2 Surfaces

τω2 θ̇1, θ̇2) Con. 2 Surfaces

τω2(θ̇1, θ̇2) Ecc. 2 Surfaces
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Figure 5.1: Example of a piecewise torque-velocity scaling function curve fit with an
intercept constraint at 1 when θ̇2 = 0. The solid line in red represents a second-degree
curve fit to the concentric data. The dashed red line represents the linear fit for the
eccentric data.

Figure 5.2: Example of a surface fit used for the torque-angle scaling function. A 3,2-
Surface was found to be the best fit for the experimental data.
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and passive torques. General models were also created, a completely general model based
on all participant data, a general model based on female participant data, and a general
model based on male participant data. To determine the curves and surfaces that best fit
the general models, k-fold cross validation was used. K-fold cross validation is a method
where the data is partitioned into folds, and (k-1) folds are used to create the model while
the remaining fold is used to validate the model [35]. Typically, k-values of 5 and 10 are
used, and the process described above is iterated a total of k-times. For the general models,
a k-value of 10 was used, and the average RMSPE of the 10-folds was determined for a
specific curve or surface fit. The best fit was the curve or surface with the lowest error.
An example of a surface fit for the torque-angle scaling function can be seen in Figure 5.2.
The best fit surface to the data presented was determined to be a 3,2-Surface. It should
be noted that separate RMSPEs are calculated for concentric and eccentric motions as
different curves are applied.

5.1.2 Fitting Results

The methods described above were applied to the three general models evaluated, and the
13 subject-specific models. The results of the curve and surface fits along with the accuracy
of the fits are presented below.

General Model Results

The curve and surface fit results for the three general models are displayed in Table 5.2.
As k-fold cross validation was used to determine the curves and surfaces that best fit the
models, the RMSPE is the average error of the folds. As five different curves were used for
the first four functions in the table (τθ1(θ1), τθ2(θ2), τp1(θ1), τp2(θ2)), the average RMSPE
of the curves was presented. The median curve type was also presented for the first four
functions. A1 and A2 for the final eight functions in the table indicate whether the first
or second activation method was applied. As the torque-angle and torque-velocity scaling
functions give normalized torque, percentage error was chosen to display the difference
between the unitless values. A higher percentage error indicates that the curve or surface
fit results in a scaled normalized torque that is farther from the experimental data. The
passive torque function does not produce a normalized value and to compare the accuracy
with the other MTG functions, the passive torques were normalized by the absolute maxi-
mum passive torque for either the plane of elevation or elevation torques of a model. This
allowed for the calculation of the RMSPE of the passive torques. The absolute maximum
passive torques for τ1 for the completely general, female general and male general model
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were 8.2 Nm, 8.3 Nm and 8.5 Nm, respectively. For τ2, the absolute maximum torques for
the completely general, female general and male general model were 4.3 Nm, 4.9 Nm and
4.9 Nm, respectively.

Looking at the curve and surface fits for the torque-angle scaling function, it is seen the
most common fit for θ1 in the limited coupling case (τθ1(θ1)) across the three general mod-
els is a 3-Curve, showing that a cubic function best describes the torque-angle relationship
in the plane of elevation. The most common fit for θ2 in the limited coupling case (τθ2(θ2))
across the three general models is a 2-Curve, showing that a quadratic relationship best
describes the impact of θ2 in elevation. The fits of these curves also result in the lowest
RMSPE for each model compared to all other function types. This indicates that partic-
ipants showed more reproducible results using an isometric elevation motion compared to
isometric plane of elevation or isokinetic motions. The cubic and quadratic relationship is
also reflected in the torque-angle scaling for the position coupling case for both plane of
elevation torques, and elevation torques (τθ1(θ1, θ2), τθ2(θ1, θ2)) in the completely general
model, the general female model, and the male general model, where the impact that θ1
and θ2 are best described using 3 and 2 degrees for the surface, respectively. The exception
to this finding is in the female general model for elevation torques (τθ2(θ1, θ2)), where θ1
is better represented using 1 degree. A comparison between the completely general model
and the female general model for the position-coupled torque-angle scaling function in el-
evation (τθ2(θ1, θ2)) can be seen in Figure 5.3. It has previously been shown that there
are differences in how women and men activate their shoulder muscles under isometric
loading, with women typically showing a lower muscle activation in muscles that act in the
primary force direction and more activation in other muscles [2]. The differences in muscle
activation in isometric loading could explain why the female general model is presenting
different curve fitting results from the completely general and male general models.

Evaluating the curve and surface fits for the torque-velocity scaling function, it can be
seen that there is more variability between the fit types. On average, a higher RMSPE is
found for curves and surfaces fit to eccentric data compared to concentric data, although
this is not always the case. As previously mentioned, participants found it difficult to reach
high torques in eccentric motion, and most likely did not use their MVC as discussed in
[73]. This led to wide-spread eccentric torque data with less of a trend, and only increased
above the concentric torque in the male general model, resulting in a torque that was lower
compared to what previous models predicted [3, 23, 46].

For the torque-velocity scaling function without coupling in the plane of elevation
(τω1(θ̇1)), a cubic relationship was determined for both the concentric and eccentric mo-
tions. An example of the cubic relationship is displayed in Figure 5.4, where the torque-
velocity scaling function in the plane of elevation is plotted for the female general model.
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Table 5.2: General Muscle Torque Generator Functions Fitting Results and Accuracy

All Female Male

Function Fit Type RMSPE Fit Type RMSPE Fit Type RMSPE

τθ1(θ1) 3-Curve 14.0% 3-Curve 15.2% 3-Curve 14.4%

τθ2(θ2) 2-Curve 9.3% 2-Curve 12.5% 3-Curve 13.2%

τp1(θ1) 3-Curve 36.4% 3-Curve 38.3% 3-Curve 32.0%

τp2(θ2) 3-Curve 47.9% 3-Curve 48.6% 3-Curve 61.8%

τω1(θ̇1) Con. 3-Curve 23.3% 3-Curve 25.9% 3-Curve 21.5%

τω1(θ̇1) Ecc. 3-Curve 20.9% 3-Curve 20.6% 3-Curve 22.3%

τω2(θ̇2) Con. 2-Curve 10.5% 1-Curve 14.6% 2-Curve 14.1%

τω2(θ̇2) Ecc. 1-Curve 17.5% 2-Curve 25.2% 1-Curve 21.8%

τθ1(θ1, θ2) 3,2-Surface 14.7% 3,2-Surface 15.6% 3,2-Surface 15.0%

τθ2(θ1, θ2) 3,2-Surface 10.3% 1,2-Surface 13.3% 3,2-Surface 14.5%

τp1(θ1, θ2) 3,2-Surface 38.7% 3,1-Surface 39.4% 1,1-Surface 38.1%

τp2(θ1, θ2) 2,3-Surface 50.6% 1,3-Surface 49.0% 2,3-Surface 63.7%

τω1(θ̇1, θ̇2) Con. A1 1,2-Surface 28.9% 1,1-Surface 29.6% 2,3-Surface 25.8%

τω1(θ̇1, θ̇2) Ecc. A1 2,1-Surface 26.0% 1,1-Surface 32.9% 1,1-Surface 22.3%

τω2(θ̇1, θ̇2) Con. A1 3,2-Surface 19.7% 3,1-Surface 24.4% 1,3-Surface 15.9%

τω2(θ̇1, θ̇2) Ecc. A1 3,1-Surface 26.1% 2,1-Surface 29.5% 1,1-Surface 23.1%

τω1(θ̇1, θ̇2) Con. A2 1,3-Surface 20.5% 3,2-Surface 13.0% 1,3-Surface 23.1%

τω1(θ̇1, θ̇2) Ecc. A2 1,1-Surface 28.3% 3,1-Surface 37.2% 2,2-Surface 19.4%

τω2(θ̇1, θ̇2) Con. A2 3,1-Surface 15.0% 3,1-Surface 16.4% 3,1-Surface 14.6%

τω2(θ̇1, θ̇2) Ecc. A2 3,1-Surface 23.1% 2,3-Surface 54.6% 3,1-Surface 20.7%
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(a) 3,2-Surface General Model (b) 1,2-Surface Female General Model

Figure 5.3: Comparison of the completely general and female general model for the
position-coupled torque-angle scaling function in elevation (τθ2(θ1, θ2)).

Due to a lack of repeated trials (repeated trials were not conducted to reduce participant
fatigue), it is likely that the cubic curves are overfitting the data. K-fold cross validation
was used to determine the RMSPE for the curves and to help mitigate overfitting. In Figure
5.4, a lower error was determined for eccentric motion compared to concentric using k-fold
cross validation. When the curves are compared against the mean experimental data of the
group, the eccentric appears to have a higher error. However, the k-fold cross validation
indicates that the 3-Curve was a more general model for the data subsets compared to if
the data was fit only to the experimental mean. Percent errors ranging from 20.6-25.9%
are observed for the concentric and eccentric curves. This indicates that the Root Mean
Square Error (RMSE) between the normalized experimental torques and the torques scaled
by the torque-velocity scaling function range between 0.206-0.259. Participants expressed
more fatigue when completing isokinetic tasks compared to isometric tasks, which could
have led to inconsistencies between participants and result in the higher error achieved
compared to the torque-angle scaling functions.

For the torque-velocity scaling function without coupling in the place of elevation
(τω2(θ̇2)), a quadratic relationship was the most common for concentric elevations, and
a linear relationship was the most common for eccentric elevations. A different curve fit
was seen in the female general model, with a linear fit applied to concentric motions and
a quadratic for eccentric in elevation. A comparison of the female general model and
male general model for the torque-velocity scaling function in elevation is shown in Figure

43



Figure 5.4: Example of a 3-Curve fit for the torque-velocity scaling function in the plane
of elevation (τω1(θ̇1)) for the female general model.

5.5. The comparison shows that the male population was able to produce higher eccentric
torques on average compared to the female population, resulting in the difference in fits.

For the torque-velocity scaling functions with coupling, the two different activation
methods (A1 and A2) were considered as seen in Table 5.2. For the first activation method
in the plane of elevation (τω1(θ̇1, θ̇2)), less of a trend is displayed between the three general
models. Surfaces with 1 degree for θ̇1 are the most common for concentric and eccentric
motions, and for θ̇2 1 degree is most common for eccentric motion. For the first activa-
tion method in elevation (τω2(θ̇1, θ̇2)), surfaces with 3 degrees for θ̇1 are most common for
concentric motion, and for θ̇2 1 degree surfaces are the most common in eccentric motion.
For the second activation method in plane of elevation (τω1(θ̇1, θ̇2)), there are also limited
trends between the models. Surfaces with 1 degree for θ̇1 are the most common for con-
centric motions, and for θ̇2 1 degree is most common for eccentric motion. For the second
activation method in elevation (τω2(θ̇1, θ̇2)), a 3,1-Surface was seen across all concentric
and eccentric fits, with the exception being a 2,3-Surface for the eccentric female model.
The higher errors seen in the female general model for the second activation method could
be due to the addition of activations which rely on assumptions. It is possible that the
activations calculated for the female general model do not accurately represent the muscle
activations of the population.

Overall, a wider spread of data is seen for the isokinetic measurements compared to
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(a) Female General Model (b) Male General Model

Figure 5.5: Comparison of the female general model and male general model for the
torque-velocity scaling function in elevation (τω2(θ̇2)).

the isometric measurements, and higher errors are more commonly observed in the torque-
velocity scaling fits (particularly in eccentric motions) compared to the torque-angle scaling
fits. The higher errors could be due to the intercept constraint that was used to avoid a
discontinuity between concentric and eccentric curves, along with the fact that participants
found the isokinetic testing more tiring compared to isometric testing.

For the passive torque functions, large RMSPEs are observed for the curve and surface
fits compared to the torque-angle and torque-velocity scaling functions. One reason for the
high errors is due to the nature of passive torques. As the passive torques are low in the
ROM (8.3 Nm ± 0.15 Nm maximum in plane of elevation and 4.7 Nm ± 0.37 Nm maximum
in elevation), a difference of a few Nm has a larger effect on the RMSPE compared to that
of isometric measurements and isokinetic measurements. The accuracy of the Biodex could
also contribute to the high errors seen for the passive torque functions, as the Biodex is
accurate to 6.8 Nm, while the passive torques are often smaller. However, in terms of
the overall model the passive torques are significantly smaller than the active torques and
therefore the passive torques have a small impact on the overall model results.

For the passive functions with limited coupling (τp1(θ1) and τp2(θ2)), 3-Curves were the
best fit for all models. For the passive functions with coupling (τp1(θ1, θ2) and τp2(θ1, θ2)),
surfaces with 3 degrees are more common for θ2 in elevation (τp2(θ1, θ2)). The cubic rela-
tionship results in an increase in passive torque towards the extreme ROMs, similar to that
of the double exponential function that is commonly used for the passive scaling function.
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The passive function with coupling for the plane of elevation torques (τp1(θ1, θ2)) results in
1 degree surfaces for θ2 in the female and male general models and 2 degrees for θ2 in the
completely general model, indicating that elevation has a more linear impact on the torque
in horizontal adduction motions. Figure 5.6 shows a comparison of the completely general
model in plane of elevation and elevation for the coupled passive functions (τp1(θ1, θ2) and
τp2(θ1, θ2)).

(a) Plane of Elevation Torques (b) Elevation Torques

Figure 5.6: Comparison of the completely general model in plane of elevation and elevation
for the coupled passive functions (τp1(θ1, θ2) and τp2(θ1, θ2)).

On average, the completely general fits have a lower RMSPE than the male and female
general fits. One reason for this could be due to the number of data points used for the
models. For the completely general model for the elevation torques, the torque data for all
20 participants are averaged, while for the male and female models in elevation the data
for 10 participants are averaged. For plane of elevation torques, the number of participants
is reduced to 13 for the completely general model, 6 for the female general model, and 7
for the male general model. The larger number of participants may lead to a more visible
trend in the completely general model fits compared to the other model types.

Subject-Specific Model Results

Curves and surfaces were fit to individual participants’ data to create 13 subject-specific
models. The average fit type, the average RMSPE, and the standard deviation of the error
are presented in Table 5.3. Similar to the general models, A1 and A2 for the final eight
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functions in the table indicate whether the first or second activation method was applied,
and the passive torques were normalized by the absolute maximum passive torques to allow
for the calculation of the RMSPE of the passive torques.

The first thing to note is that 3-Curves and 3,3-Surfaces were the average fit for all MTG
functions except for the plane of elevation coupled torque-velocity scaling (τω1(θ̇1, θ̇2)) in
the eccentric case for activation method one and two, and the elevation coupled torque-
velocity scaling (τω2(θ̇1, θ̇2)) in the eccentric case for activation method two, which result in
3,2-Surfaces and a 2,3-Surface, respectively. The average RMSPE is also lower than that of
the general models. The reason for the difference in errors between the general and subject-
specific models could be due to the complex nature of the shoulder joint. As individual
anatomy varies across the population, so does torque production and therefore it is harder
to model the population compared to one individual [15]. However, there is a potential
source of error for the subject-specific models. To prevent fatiguing of participants, each
torque measurement was only collected once per participant. If a participant did not use
their MVC, it is still reflected in the model as the maximum. The risk of this is reduced in
the general models as k-fold cross validation was used for the participant group, finding a
model that best fits more than one participant’s results and therefore reducing the impact
of an error in measurement. As higher-degree curves and surfaces were used to fit the
subject-specific results compared to the general, there is also the risk that the curves and
surfaces are overfitting the data, again since k-fold cross validation was not possible for
these models.

Evaluating the average fits and variability in Table 5.3, the lowest variability on average
is displayed in the torque-angle scaling functions for functions with (τθ1(θ1, θ2), τθ2(θ1, θ2))
and without (τθ1(θ1), τθ2(θ2)) coupling. As seen in the general models, there is also a higher
average RMSPE for the eccentric fits compared to the concentric, with the highest error
resulting from the torque-velocity scaling function for elevation torques in eccentric motion
(τω2(θ̇1, θ̇2)) with an average RMSPE of 11.6%. This could indicate that the activations
calculated using the second method are not a reasonable assumption for the eccentric
motion of all participants.

5.2 Model Validation

The general and subject-specific models were validated using isokinetic testing data where
the angle and velocity dependencies were maintained (the regression process outlined in
Chapter 4 was not completed to remove the angle dependencies). The isokinetic test
was conducted at 5 deg/s with the Biodex dynamometer being tilted 30 degrees from the
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Table 5.3: Subject-Specific Muscle Torque Generator Functions Average Fitting Results
and Accuracy

Function Average Fit Type Average RMSPE Standard Deviation

τθ1(θ1) 3-Curve 2.9% 2.3%

τθ2(θ2) 3-Curve 1.9% 1.9%

τp1(θ1) 3-Curve 7.3% 4.5%

τp2(θ2) 3-Curve 9.5% 3.3%

τω1(θ̇1) Con. 3-Curve 7.4% 6.3%

τω1(θ̇1) Ecc. 3-Curve 7.7% 6.4%

τω2(θ̇2) Con. 3-Curve 6.3% 7.3%

τω2(θ̇2) Ecc. 3-Curve 8.1% 7.2%

τθ1(θ1, θ2) 3,3-Surface 6.4% 1.5%

τθ2(θ1, θ2) 3,3-Surface 5.6% 2.4%

τp1(θ1, θ2) 3,3-Surface 9.7% 3.7%

τp2(θ1, θ2) 3,3-Surface 10.3% 3.8%

τω1(θ̇1, θ̇2) Con. A1 3,3-Surface 8.6% 5.2%

τω1(θ̇1, θ̇2) Ecc. A1 3,2-Surface 7.6% 3.8%

τω2(θ̇1, θ̇2) Con. A1 3,3-Surface 8.2% 4.5%

τω2(θ̇1, θ̇2) Ecc. A1 3,3-Surface 8.6% 4.2%

τω1(θ̇1, θ̇2) Con. A2 3,3-Surface 8.8% 1.6%

τω1(θ̇1, θ̇2) Ecc. A2 3,2-Surface 9.1% 4.1%

τω2(θ̇1, θ̇2) Con. A2 3,3-Surface 8.7% 3.7%

τω2(θ̇1, θ̇2) Ecc. A2 2,3-Surface 11.6% 6.8%
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vertical (corresponding to an α of 60 degrees), resulting in a motion that used both plane
of elevation and elevation torques. The best curve and surface fits were found for the 2
DOF MTG model, and the shoulder joint angles (θ1, θ2) and the shoulder joint angular
velocities (θ̇1, θ̇2) from the resulting experimental motion were used as the inputs to the
general and subject-specific models. While the Biodex limited the participant’s angular
velocity to 5 deg/s for the isokinetic test, no processing was done to remove torques that
fell below this limit in order to observe the impact of angular velocity on the model.

5.2.1 General Models

For the general models, participant data was averaged for the isokinetic motion and the
average experimental torque was compared against the model results. The completely gen-
eral model, the female general model and the male general model were compared against
the experimental results for the three coupling methods presented in Chapter 3 (Equations
3.1 to 3.6). The completely general model used all participant experimental data for com-
parison, while the female and male general models used experimental data averaged across
the female and male participants, respectively. As two different activation assumptions
were evaluated, the model validation was completed for both methods. The first activation
method (A1) that assumes a sine and cosine relationship is evaluated first, followed by the
second activation method (A2) where the independent activations were solved for directly.

First Activation Method (A1)

Table 5.4 presents the three general model’s validation results for the total torque using the
first activation method for the three different coupling methods. For the completely general
model and the female model, the RMSEs and the RMSPEs increase with an increase in
the coupling, with Method 3 (containing position and velocity coupling) resulting in the
highest error for both models. In the male model, the position and velocity coupling case,
Method 3, similarly results in the highest error as it did for the completely general and
female general models. However, the lowest error is not seen in Method 1 and instead is
observed in the position coupling case, Method 2. Comparing the three general models,
Method 2 of the male general models presents the lowest error of 6.4%, while the lowest
error in the female model is 17.5%. The completely general model results in errors between
the female and male general models, with an error of 8.5%. The female model errors are
significantly higher than the completely general and male general models. This could
indicate that the first activation method is a good assumption for the completely general
and male general models but is not a good assumption for the female general models. As
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the passive torques are significantly smaller than the active torques scaled by the torque-
angle and torque-velocity scaling functions, the model errors will be minimally affected by
the passive torques. The average and standard deviation of the experimental data for the
torque predicted by the three general models have been plotted against the three model
methods to visually compare the errors in Figures 5.7-5.9.

Table 5.4: General Model Validation Results For Total Torque Using the First Activation
Method A1

All Female Male

Method RMSE (Nm) RMSPE RMSE (Nm) RMSPE RMSE (Nm) RMSPE

1 3.5 8.5% 5.3 17.5% 3.9 7.6%

2 3.8 9.0% 6.0 20.0% 3.3 6.4%

3 4.7 11.3% 8.0 26.6% 5.0 9.7%

First, the completely general experimental torques are compared against the completely
general model for Methods 1, 2 and 3 in Figure 5.7. The first half of the motion is
concentric, and the second half is eccentric, resulting in negative torques due to the change
of direction. There is a large standard deviation for the experimental torques because
male isometric and isokinetic torques at the shoulder are on average higher than female
torques [30], resulting in a greater spread of the data. The model tended to predict close
to the mean experimental torques in concentric motions and overestimated compared to
the mean experimental torques in eccentric motions. Method 1 shows the best estimation
for concentric motion, with a slight overestimation of eccentric torques. The accuracy
of the concentric prediction could be attributed to the torque-angle scaling functions of
Method 1 (τθ1(θ1) and τθ2(θ2)) resulting in the lower fitting errors compared to the coupled
torque-angle scaling functions of Methods 2 and 3 (τθ1(θ1, θ2) and τθ2(θ1, θ2)). As Method
2 has the same torque-velocity scaling function as Method 1, the impact of the coupled
torque-angle scaling function is observed. For the completely general model, the coupled
torque-angle scaling function results in a slight underestimation of the torque. Method
3 introduces the coupled torque-velocity scaling functions (τω1(θ̇1, θ̇2) and τω2(θ̇1, θ̇2). In
concentric motions, the impact of the coupled torque-velocity scaling function results in an
underestimation of the torque, indicating that the torque is reduced too much. However, in
eccentric motions the coupled torque-velocity scaling performs better than the uncoupled
torque-velocity scaling, reducing the overestimation of the eccentric torques.
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(c) Method 3

Figure 5.7: Torque results of the completely general model for Method 1, 2, and 3 using
the first activation method compared against experimental torque data averages across all
participants.
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(a) Method 1
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(b) Method 2
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(c) Method 3

Figure 5.8: Torque results of the female general model for Method 1, 2, and 3 using
the first activation method compared against experimental torque data averages across all
female participants.
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(c) Method 3

Figure 5.9: Torque results of the male general model for Method 1, 2, and 3 using the first
activation method compared against experimental torque data averages across all male
participants.
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Figure 5.8 presents the results for the female general model for Methods 1, 2 and 3
compared against the experimental average torque data for the participant subset. The
model shows a poor estimation for concentric torques across all methods, with the concen-
tric torques being the best represented in Method 1. As seen in Method 2, the coupled
torque-angle scaling functions (τθ1(θ1, θ2) and τθ2(θ1, θ2)) resulted in a greater underesti-
mation of the torques in concentric motion. The velocity coupling in Method 3 results in
the highest underestimation of torques in concentric motion, indicating that the velocity
coupling case is scaling the torques more aggressively than what is physically occurring.
One thing to note is the large spread of experimental data at the end of the eccentric
motion. This could indicate that certain participants were fatigued and were no longer
using their maximum torque, while other participants were not yet experiencing fatigue.
The model is operating under the assumption that MVC is used, and the first activation
method assumes that the concentric and eccentric torques have the same activation, and
therefore this could explain why the experimental eccentric torques are lower than that of
the model. The injury prevention mechanism outlined by [73] could also account for lower
muscle activation seen in experimental eccentric torques. As the errors are high across all
methods for the female general model, the first activation method is not a good approach
for the female population. As previously mentioned, women typically show more muscle
activation in muscles outside of the primary loading direction [2]. As the isokinetic motion
tested is primarily in elevation, higher plane of elevation activations could result in a more
accurate activation representation.

Finally, the results of the male general model for Methods 1, 2 and 3 are compared
against the average experimental torque data across the male participants in Figure 5.9.
The male general model shows a good estimation of concentric torques for Methods 1
and 2, with Method 2 resulting in the lowest RMSPE out of the three proposed methods.
Method 3, which introduces the velocity coupling, results in an underestimation of the
concentric torques, indicating that the coupled torque-velocity scaling functions scale the
torques more aggressively than what is physically occurring for the completely general, the
female general and the male general models. Again, similar to the female general model,
fatigue and the injury prevention mechanism may be preventing the participant from using
their MVC in the experiments, while the model is assuming MVC and therefore predicts
a higher torque for eccentric motions. However, less of an overestimation in eccentric
torques is seen in the male general model compared to the female general, which could be
due to the male participants producing more consistent eccentric torques (seen through
the consistency in the standard deviation). The male general model also resulted in the
lower errors compared to the completely general and female general models, showing that
the first activation method is more applicable to the male general model.
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Second Activation Method (A2)

Table 5.5 presents the three general model’s validation results using the second activation
method for the three different coupling methods. For the female model, the RMSEs and
the RMSPEs increase with an increase in the coupling, with Method 3 containing position
and velocity coupling resulting in the highest error. For the completely general model,
the position and velocity coupling case, Method 3, similarly results in the highest error as
it did for the female general model; however, the lowest error is observed in the position
coupling case, Method 2. For the male general model, the highest error is found using
Method 1 which had limited coupling, followed by Method 3, with Method 2 resulting in
the lowest error. Comparing the three general models, Method 2 of the completely general
model presents the lowest error of 8.0%, while the lowest error of the female model is
11.6%. The lowest error of the male model was obtained using Method 2, which resulted
in an error of 12.7%. Compared to the first activation method, all errors increased except
for the completely general model’s Method 2, and the female general model’s Methods 1
and 2 where the errors decreased. The average and standard deviation of the experimental
data for the three general models have been plotted against the three model methods in
order to visually compare the errors in Figures 5.10-5.12.

Table 5.5: General Model Validation Results For Total Torque Using the Second Activation
Method A2

All Female Male

Method RMSE (Nm) RMSPE RMSE (Nm) RMSPE RMSE (Nm) RMSPE

1 4.5 10.8% 3.5 11.6% 8.6 16.8%

2 3.1 8.0% 3.8 12.5% 6.5 12.7%

3 5.2 12.4% 9.4 31.1% 7.4 14.4%

First, the completely general experimental torques were compared against the com-
pletely general model for Methods 1, 2 and 3 using the second activation method in Figure
5.10. All three methods estimate the model torques to be very similar to the experimental
mean, resulting in a better estimate for eccentric torques compared to those estimated
using the first activation method. The second activation method used separate activations
for concentric and eccentric motions in order to account for any reduction in eccentric
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motions, while the first activation method did not consider this. Therefore, different ac-
tivations for concentric and eccentric motions produced more accurate eccentric torques
for the completely general model. Comparing Methods 1 and 2 of the completely general
model, it is seen that the coupled torque-angle scaling function in Method 2 resulted in
less overestimation of concentric torque. Method 3, which introduced the coupled torque-
velocity scaling functions (τω1(θ̇1, θ̇2) and τω2(θ̇1, θ̇2)), resulted in a similar underestimation
of torques when compared to the Method 3 of the first activation method.
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Figure 5.10: Torque results of the completely general model for Method 1, 2, and 3 using
the second activation method compared against experimental torque data averages across
all participants.
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Figure 5.11: Torque results of the female general model for Method 1, 2, and 3 using the
second activation method compared against experimental torque data averages across all
female participants.
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Figure 5.12: Torque results of the male general model for Method 1, 2, and 3 using the
second activation method compared against experimental torque data averages across all
male participants.
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Figure 5.11 shows the results for the female general model for Methods 1, 2 and 3 using
the second activation method compared against the experimental average torque data for
the participant subset. Method 1 resulted in estimated concentric torques that were the
most similar to the experimental mean, with the coupled torque-angle scaling in Method
2 resulting in a slight underestimation. Compared to the first activation method, which
resulted in a torque estimation at the lower end of the standard deviation, the second
activation method performed better. For the female model using the second activation
method, a1 and a2 were both determined to be 1 when α was 60 degrees for concentric
motion, resulting in higher activations compared to the first activation method. These
higher activations resulted in concentric torque estimations closer to the experimental
mean. Method 3 resulted in underestimation of both the concentric and eccentric torques.
As the activations are considered in Method 3, the high activations determined resulted
in a more significant torque scaling for the coupled torque-velocity scaling function, and
therefore produced less accurate results when compared to the experimental torque data.

Finally, the results of the male general model for Methods 1, 2 and 3 using the second
activation method are compared against the average experimental torque data across the
male participants in Figure 5.12. The higher concentric activations that were determined
for the second activation method compared to the first resulted in an overestimation for
both Method 1 and 2, suggesting that the first activation method is a better approach
for a general male model. The lower activations for eccentric motion provide a torque
estimate slightly closer to the experimental mean, again supporting the benefit of separate
concentric and eccentric activations. Lastly, the coupled torque-velocity scaling used in
Method 3 resulted in underestimations of torques similar to the other general model types.

Overall, general torque data that is a function of two angles and two angular velocities
can be modeled for the shoulder using a 2 DOF MTG. For the general models, two dif-
ferent activation methods were considered along with the degree of coupling. The second
activation method provided the best results for both the completely general model and the
female general model, with Method 2 providing the lowest error for the completely general
model (RMSPE of 8.0%) and Method 1 providing the lowest error for the female general
model (11.6%). The first activation method was a better approach for the male general
model, with Method 2 providing the lowest error of 6.4%. The methods that resulted in the
lowest errors for the models all had RMSEs lower than the accuracy of the Biodex. It was
noted that for the general models, separate concentric and eccentric activations provided
a better estimate for the torques compared to the same activation used for concentric and
eccentric motions. Method 3 that used the coupled torque-velocity scaling also resulted
in a scaling that was too aggressive for the general models. This could be due to the
isokinetic testing used for the functions, as participants were instructed to use their MVC
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many times for this study. With an increase in MVCs, there is an increased risk of fatigue
which would result in lower torque production and therefore more aggressive scaling in the
coupled torque-velocity scaling function. The MTG function parameters for the general
models that resulted in the lowest validation errors are listed in Appendix B.

5.2.2 Subject-Specific Models

For the subject-specific models, individual participant torques for the isokinetic motion
were compared against a subject’s model results for the three coupling equations presented
in Chapter 3. Again, as two activation methods were considered, the model validation was
completed for both methods.

First Activation Method (A1)

Table 5.6: Average Subject-Specific Model Validation Results For Total Torque Using the
First Activation Method A1

Method Average RMSPE Standard Deviation

1 24.1% 11.6%

2 23.1% 11.5%

3 22.8% 12.2%

Table 5.6 presents the average of the 13 subject-specific models using the first activation
method for the three coupling methods as well as the standard deviation. For the subject-
specific models, an increase in coupling resulted in a decrease in the average model error,
with Method 1 having the highest error of 24.1% and Method 3 with the lowest of 22.8%.
Method 3 producing the lowest error conflicts with the results from the general models,
as Method 3 resulted in the highest error for the general models. It is more difficult
to capture a general population trend compared to a subject-specific trend [15], so it is
likely that the subject-specific models were able to determine a more accurate coupled
torque-velocity scaling function compared to the general models. However, Method 3 does
result in the highest standard deviation of the methods. As many participants found
the isokinetic testing difficult, the coupled torque-velocity scaling functions could have
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been fit to experimental results that did not best represent the true participant torque-
velocity scaling function for some participants, leading to a higher deviation for Method 3.
If participants repeated the isokinetic testing and an average result was found, a torque-
velocity scaling function that was more representative of the participant might be obtained.
The high standard deviations for all models indicate that some subject-specific models
fit with higher accuracy than others. The large variability in accuracy again could be
attributed to the subject-specific models being based on experimental results that were
not repeated.

Figure 5.13 shows an example of a subject-specific model for the three coupling methods
for one participant. While the 2 DOF MTG is unable to predict the chatter produced from
the experimental torque, all three models predict the general trend, which may be sufficient
for a forward dynamic simulation. Method 3 results in a better estimation of the eccentric
torque data compared to Method 1 and 2, while Method 1 provides a more jagged result
due to the linear interpolation used between fitted curves.

Second Activation Method (A2)

Table 5.7 presents the average of the 13 subject-specific models using the second activation
method for the three coupling methods as well as the standard deviation. Similar to
the first activation method, the highest error is seen with the least amount of coupling;
however, using the second activation method, Method 2 results in the lowest error instead
of Method 3. As Method 3 used the activation when determining the coupled torque-
velocity scaling function, it is possible that the activation method does not represent what
is physically occurring for some participants, or that not enough data points were used
when determining the activations.

Table 5.7: Average Subject-Specific Model Validation Results For Total Torque Using the
Second Activation Method A2

Method Average RMSPE Standard Deviation

1 25.3% 13.1%

2 23.0% 12.9%

3 24.4% 12.5%
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Figure 5.13: Torque results of the subject-specific model of one participant using the first
activation method for Methods 1, 2, and 3 compared against the experimental torque data
of the participant.

62



When comparing the validation results of the general models (see Tables 5.4 and 5.5)
against the subject-specific results (Tables 5.6 and 5.7), it can be seen that the subject-
specific models result in a higher error when compared to the general models. This is
opposite to the fitting results, where for the general models (Table 5.2) a higher fitting
error is seen compared to the subject-specific models (Table 5.3). The general fitting
errors are higher than the subject-specific fitting errors as the general model uses k-fold
cross validation to determine the best fit to more than one individual’s torque data. As
the population has differences in shoulder anatomy, it is difficult to accurately represent
a group [15], and therefore we see higher errors compared to subject-specific models that
are fit to one participant. When validating, the general models are validated against a
population’s averaged torque results, while the subject-specific models results are validated
against a single participant’s torque results, which has more noise compared to the averaged
data. The noise in the subject-specific data could be contributing to the higher validation
errors. The general data also uses k-fold cross validation to find functions that best fit the
average population, and therefore we see low fitting errors to the average population torque
data. The subject-specific model validation has a larger range of fitting results, which
could be attributed to some participants not using their MVC during a motion, resulting
in an inaccurate model and higher average validation errors. In the future, collecting
and averaging multiple subject-specific trials would reduce noise and could lead to lower
validation errors.

Figure 5.14 shows an example of a subject-specific model using the second activation
method for the three coupling methods for one participant. Methods 1 and 2 both result
in the eccentric torques being underestimated for the participant, while Method 3 provides
the best estimate for the particular participant even though it was not the best method
for all participants. This again highlights how some subject-specific models fit with higher
accuracy compared to others.

Overall, subject-specific data that is a function of two angles and two angular velocities
can be modeled using a subject-specific 2 DOF MTG model. The first activation method
resulted in lower errors compared to the second, with the model accuracy increasing with
an increase in coupling. The lowest average error was for Method 3 and was 22.8%.
Altogether, the results of these models are highly dependent on the participant using their
MVC throughout the entire study, as measurements were not repeated. Therefore, some
of the subject-specific models perform better than others, and on average have a lower
accuracy compared to the general models.
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Figure 5.14: Torque results of the subject-specific model of one participant using the
second activation method for Methods 1, 2, and 3 compared against the experimental
torque data of the participant.
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Chapter 6

Conclusion

In this chapter, the research is summarized and the limitations of the study are discussed.
Recommendations for future work in this area of research are also proposed.

6.1 Research Summary

Work in the field of muscle modeling has led to the innovation of MTGs, a model that
reduces the complexity of muscle-force models to a single torque at the joint, allowing for
faster forward dynamic simulations. However, there is a lack of MTG models that accounts
for coupling between 2 DOF at a joint, leading to complexity in modeling three-dimensional
joint motion for complicated joints such as the shoulder. This was motivation to develop
multi-DOF MTGs as a function of two angles and angular velocities at the shoulder joint.
A background understanding of the previous structure of single DOF MTGs was presented
in Chapter 2 and was used to develop different 2 DOF MTG models that represented
different degrees of coupling between the two joint angles and angular velocities. The
research was completed with the development of subject-specific and general 2 DOF MTG
models for the different degrees of coupling for the first time, comparing the effect that
coupling has on the model accuracy.

Multi-Degree-of-Freedom Muscle Torque Generator Model

In Chapter 3, the definitions for the multi-DOF MTG were outlined. The different cou-
pling equations were developed and presented for elevation and plane of elevation torques.
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The equations for the torque-angle and torque-velocity scaling functions as well as the pas-
sive and activation functions were outlined. The torque-angle scaling, the torque-velocity
scaling and passive functions were designed to be polynomial curves and surfaces whose fit
was evaluated up to 3 degrees.

Shoulder Experiments

Experimental torque data was gathered to fit the subject-specific and general MTG func-
tions in Chapter 4. Dynamometry was used to collect isometric and passive elevation
torques as a function of two angles, as well as the isometric and passive plane of elevation
torques. Isokinetic testing was also conducted as a function of two joint angular velocities.
The data was then processed to determine the maximum torque a participant could output
at the test points outlined.

Multi-Degree-of-Freedom Muscle Torque Generator Model Fitting and Com-
parison

In Chapter 5, the experimental data collected was used to fit curves and surfaces to the
MTG functions for subject-specific and general models. Three general models were evalu-
ated, a completely general model, a female general model and a male general model. The
fit type results were presented for the general models, as well as the average fit type for the
subject-specific models. The models were finally validated using experimental data, and it
was determined that for the general models, position coupling provided the best estimate
of average joint torque for the completely general population and the male general popu-
lation, while limited coupling provided the best estimate for the female population. For
subject-specific models, position and velocity coupling provided the lowest error on aver-
age; however, the lack of repeated tests for the subject-specific models could be leading to
inaccuracy in the velocity-coupling methods.

6.2 Limitations

• While participants were encouraged to use their MVC, it is possible that participants
were not able to maintain their maximum for the full study. Participants might have
experienced muscle fatigue or suppressed muscle activation in eccentric motions as
a means of injury prevention [73]. Participants not using their MVC can lead to
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inaccuracies in parameter fitting for the MTG functions. Testing subjects with the
addition of EMG data would provide insight into the total muscle activation during
the study [10].

• The 2 DOF MTG assumes that all the muscles at the shoulder joint are mono-
articular, while in actuality the biceps brachii is a bi-articular muscle that spans both
the shoulder and the elbow, and therefore torque production is not only affected
by the shoulder joint angles but also that of the elbow [42]. MTG models that
consider the bi-articular nature of muscles have previously been shown to be a better
representation of human motion [43], and therefore the 2 DOF shoulder MTG could
provide a better torque estimation if the effects of the elbow joint angle are considered.

• MTGs by nature make simplifications for faster simulations compared to muscle-force
models. However, this leads to some drawbacks if the model aims to gain insight into
certain elements of the human body. For example, as individual muscle fibers are
not modeled, the force in these muscle fibers cannot be discerned [51]. Due to the
simplicity of the MTG, bone-on-bone contact forces are also not able to be modeled.
The agonist and antagonist co-contractions from muscles are also not individually
accounted for in an MTG model, as the MTG provides only the net torque at the
joint [20].

• Polynomial curves and surfaces were used for the torque-angle scaling, torque-velocity
scaling, and passive functions of the 2 DOF MTG. While this leads to simple pa-
rameter fitting, the parameters do not have a physical meaning. Previous models
have considered parameters with physical meaning, such as the torque-angle scal-
ing functions by Anderson et al. [3] and Haering et al. [23], which use the angle
that produces maximum torque and the ROM as parameters for the model. Adding
parameters with physical meaning could improve the 2 DOF model’s interpretabil-
ity. Examining the physical meaning of the parameters could also provide additional
insight when considering how to approach torques with different levels of activation.

• While the piecewise function used for the torque-velocity scaling function ensures a
better fit for both concentric and eccentric motions, it has only C0 continuity. This
has a drawback that there is no derivative for optimization.

• Twenty participants has previously been found to be statistically significant for deter-
mining isometric and isokinetic strength [56]. However, this work applied 36 different
curve and surface fits to the data from twenty participants. Increasing the number of
participants would increase the statistical significance of the curve and surface fitting
results.
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6.3 Recommendations and Future Work

• The addition of a fatigue model, such as in [45], could be applied to the experimental
data collected in order to account for the participant’s fatigue over time.

• To increase the validity of subject-specific models, participants could return to the
study on multiple days to repeat the protocol (randomizing the order of tests to
reduce the impact of fatigue). The impact of less than maximum contractions would
be reduced and a more robust subject-specific model could be created. EMG data
collection could also be used to supplement the collected torque data, indicating the
strength of participants’ contractions.

• To increase the accuracy of the activation function, EMG data could be collected to
compare the activation of muscles in the plane of elevation and elevation. Therefore,
the experimental EMG data could be used for the muscle activation in place of the
two activation assumptions made in this work.

• To increase the accuracy of the coupled torque-velocity scaling function, additional
isometric measurements could be made in the same directions as the isokinetic test-
ing. In this work, isometric tests were only conducted in the plane of elevation and
elevation, meaning that isokinetic tests done outside of these motions needed to be
decomposed into components in order to normalize the torque data for the scaling
function. This also required the activations to be considered so that MVCs were
compared. A simpler method would be to measure isometric torques in the direction
of the isokinetic tests so that normalization could be done directly.

• The bi-articular effects of the biceps brachii could be modeled to increase the fidelity
of the model [43]. As the shoulder torques were studied while the elbow was kept in
a straight locked position, an additional study could be conducted to determine how
elbow angle has an impact on the shoulder torque.

• While a 2 DOF model has been created for the shoulder, the shoulder has 3 DOF in
total, and the effects of internal and external rotation were not considered. Additional
data could be collected to expand the current model and add in the coupling effects
of the final DOF for the shoulder.

• The current model studied a ROM and isokinetic speeds that were appropriate for
lifting and reaching motions. To apply this model to other simulations, specifically
those which are used in sports engineering, a larger ROM and faster speeds could be
studied to expand the model’s usability.
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Appendix A

Additional Muscle Torque Generator
Functions from the Literature

The equations presented below are the torque-angle scaling functions evaluated in [24].

Normal:

τθ(θ) = τmax · e−
1
2(6·

θ−θ0
ROM ) (A.1)

Cosinus:

τθ(θ) = τmax · cos
(
π
θ − θ0
ROM

)
(A.2)

Quadratic:

τθ(θ) = τmax

(
−4

(
θ − θ0
ROM

)2

+ 1

)
(A.3)

Cubic:

τθ(θ) = τmax

(
27
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)3

− 27
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Sinus-Exponential:

τθ(θ) = τmax

(
1

2
sin
(
1.919πe(−

θ−θ0
ROM ) + 1

)
+

1

2

)
(A.5)

79



Appendix B

Muscle Torque Generator Model
Parameters

B.1 Completely General Model Parameters

Below are the MTG function parameter results for the completely general 2 DOF MTG
model that resulted in the lowest validation error. The lowest error was achieved using
Method 3 with the second activation method.

Torque-Angle Scaling Functions

τθ1(θ1, θ2) = p00 + p10θ1 + p01θ2 + p20θ
2
1 + p11θ1θ2 + p02θ

2
2 + p21θ

2
1θ2 + p12θ1θ

2
2 + p03θ

3
2

Where:

p00 = 1.382
p10 = −0.01285
p01 = 0.003759
p20 = 5.824 · 10−5

p11 = 4.826 · 10−5

p02 = −0.0001532
p21 = −6.313 · 10−7

p12 = 5.027 · 10−7

p03 = 7.479 · 10−7
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τθ2(θ1, θ2) = p00 + p10θ1 + p01θ2 + p20θ
2
1 + p11θ1θ2 + p02θ

2
2 + p21θ

2
1θ2 + p12θ1θ

2
2 + p03θ

3
2

Where:

p00 = 0.513
p10 = 0.006663
p01 = 0.00436
p20 = −4.62 · 10−5

p11 = −6.117 · 10−5

p02 = 2.224 · 10−5

p21 = 8.979 · 10−8

p12 = 4.298 · 10−7

p03 = −4.327 · 10−7

Torque-Velocity Scaling Functions

τω1(θ̇1)Con = p1θ̇1
3
+ p2θ̇1

2
+ p3θ̇1 + p4

Where:

p1 = −1.919 · 10−5

p2 = 0.001732
p3 = −0.0530
p4 = 1

τω1(θ̇1)Ecc = p1θ̇1
3
+ p2θ̇1

2
+ p3θ̇1 + p4

Where:

p1 = 4.485
p2 = 0.003559
p3 = 0.08128
p4 = 1
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τω2(θ̇2)Con = p1θ̇2
2
+ p2θ̇2 + p3

Where:

p1 = 0.0001405
p2 = −0.0111
p3 = 1

τω2(θ̇2)Ecc = p1θ̇2 + p2

Where:

p1 = 0.002983
p2 = 1

Passive Functions

τp1(θ1, θ2) = p00 + p10θ1 + p01θ2 + p20θ
2
1 + p11θ1θ2 + p02θ

2
2 + p21θ

2
1θ2 + p12θ1θ

2
2 + p03θ

3
2

Where:

p00 = −5.762
p10 = 0.1067
p01 = 0.05409
p20 = −0.0003442
p11 = −0.003758
p02 = 0.002334
p21 = 1.442 · 10−5

p12 = 5.679 · 10−6

p03 = −1.791 · 10−5

82



τp2(θ1, θ2) = p00 + p10θ1 + p01θ2 + p20θ
2
1 + p11θ1θ2 + p02θ

2
2 + p30θ

3
1 + p21θ

2
1θ2 + p12θ1θ

2
2

Where:

p00 = −1.743
p10 = −0.06815
p01 = 0.05989
p20 = 0.001759
p11 = −0.001675
p02 = 0.0002756
p30 = −8.496 · 10−6

p21 = 1.041 · 10−5

p12 = −5.329 · 10−6

B.2 General Female Model Parameters

Below are the MTG function parameter results for the general female 2 DOF MTG model
that resulted in the lowest validation error. The lowest error was achieved using Method
1 with the second activation method.

Torque-Angle Scaling Functions

τθ1(θ1)70 = p1θ
3
1 + p2θ

2
1 + p3θ1 + p4

Where:

p1 = 9.55 · 10−7

p2 = −0.0001481
p3 = 0.004616
p4 = 0.8126
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τθ1(θ1)85 = p1θ
3
1 + p2θ

2
1 + p3θ1 + p4

Where:

p1 = 1.329 · 10−6

p2 = −0.0002045
p3 = 0.006954
p4 = 0.6883

τθ1(θ1)110 = p1θ
3
1 + p2θ

2
1 + p3θ1 + p4

Where:

p1 = 1.598 · 10−6

p2 = −0.0002605
p3 = 0.009392
p4 = 0.6306

τθ1(θ1)135 = p1θ
3
1 + p2θ

2
1 + p3θ1 + p4

Where:

p1 = 7.705 · 10−7

p2 = −9.129 · 10−5

p3 = −0.002348
p4 = 0.8415
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τθ1(θ1)160 = p1θ
3
1 + p2θ

2
1 + p3θ1 + p4

Where:

p1 = 9.54 · 10−7

p2 = −0.0001303
p3 = −0.0006366
p4 = 0.8323

τθ2(θ2)0 = p1θ
2
2 + p2θ2 + p3

Where:

p1 = −3.413 · 10−5

p2 = 0.003733
p3 = 0.6712

τθ2(θ2)30 = p1θ
2
2 + p2θ2 + p3

Where:

p1 = −7.189 · 10−5

p2 = 0.01182
p3 = 0.3333
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τθ2(θ2)60 = p1θ
2
2 + p2θ2 + p3

Where:

p1 = −6.946 · 10−5

p2 = 0.01196
p3 = 0.3334

τθ2(θ2)90 = p1θ
2
2 + p2θ2 + p3

Where:

p1 = −4.587 · 10−5

p2 = 0.007394
p3 = 0.6123

τθ2(θ2)120 = p1θ2 + p2

Where:

p1 = −0.00207
p2 = 1.016
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Torque-Velocity Scaling Functions

τω1(θ̇1)Con = p1θ̇1
3
+ p2θ̇1

2
+ p3θ̇1 + p4

Where:

p1 = −3.002 · 10−5

p2 = 0.002519
p3 = −0.06946
p4 = 1

τω1(θ̇1)Ecc = p1θ̇1
3
+ p2θ̇1

2
+ p3θ̇1 + p4

Where:

p1 = 5.868 · 10−5

p2 = 0.004489
p3 = 0.09473
p4 = 1

τω2(θ̇2)Con = p1θ̇2 + p2

Where:

p1 = −0.003985
p2 = 1
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τω2(θ̇2)Ecc = p1θ̇2
2
+ p2θ̇2 + p3

Where:

p1 = 0.000158
p2 = 0.01237
p2 = 1

Passive Functions

τp1(θ1)70 = p1θ1 + p02

Where:

p1 = −0.0553
p2 = 0.5671

τp1(θ1)85 = p1θ
3
1 + p2θ

2
1 + p3θ1 + p4

Where:

p1 = 0.0003244
p2 = −0.09628
p3 = 9.389
p4 = −305.4
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τp1(θ1)110 = p1θ
3
1 + p2θ

2
1 + p3θ1 + p4

Where:

p1 = −8.348 · 10−6

p2 = 0.001039
p3 = −0.07717
p4 = 0.7029

τp1(θ1)135 = p1θ
3
1 + p2θ

2
1 + p3θ1 + p4

Where:

p1 = −1.521 · 10−5

p2 = 0.002154
p3 = −0.1817
p4 = 7.234

τp1(θ1)160 = p1θ1 + p2

Where:

p1 = −0.1707
p2 = 13.73
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τp2(θ2)0 = p1θ
3
2 + p2θ

2
2 + p3θ2 + p4

Where:

p1 = −7.265 · 10−6

p2 = 0.001838
p3 = −0.1171
p4 = 0.5502

τp2(θ2)30 = p1θ
3
2 + p2θ

2
2 + p3θ2 + p4

Where:

p1 = −7.808 · 10−6

p2 = 0.002128
p3 = −0.1706
p4 = 2.647

τp2(θ2)60 = p1θ
3
2 + p2θ

2
2 + p3θ2 + p4

Where:

p1 = −3.937 · 10−6

p2 = 0.001429
p3 = −0.1474
p4 = 2.728
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τp2(θ2)90 = p1θ2 + p2

Where:

p1 = −0.009803
p2 = −1.037

τp2(θ2)120 = p1θ
3
2 + p2θ

2
2 + p3θ2 + p4

Where:

p1 = −8.568 · 10−6

p2 = 0.003841
p3 = −0.5079
p4 = 16.21

B.3 General Male Model Parameters

Below are the MTG function parameter results for the general male 2 DOF MTG model
that resulted in the lowest validation error. The lowest error was achieved using Method
2 using the first activation method.

Torque-Angle Scaling Functions

τθ1(θ1, θ2) = p00 + p10θ1 + p01θ2 + p20θ
2
1 + p11θ1θ2 + p02θ

2
2 + p21θ

2
1θ2 + p12θ1θ

2
2 + p03θ

3
2

Where:

p00 = 1.447
p10 = −0.01379
p01 = −0.0005368
p20 = 5.97 · 10−5

p11 = 9.887 · 10−5

p02 = −0.0001232
p21 = −8.866 · 10−7

p12 = 6.613 · 10−7

p03 = 4.955 · 10−7
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τθ2(θ1, θ2) = p00 + p10θ1 + p01θ2 + p20θ
2
1 + p11θ1θ2 + p02θ

2
2 + p21θ

2
1θ2 + p12θ1θ

2
2 + p03θ

3
2

Where:

p00 = 0.6179
p10 = 0.00407
p01 = 0.00683
p20 = −3.269 · 10−5

p11 = −7.839 · 10−5

p02 = 1.882 · 10−6

p21 = −2.069 · 10−8

p12 = 7.295 · 10−7

p03 = −5.043 · 10−7

Torque-Velocity Scaling Functions

τω1(θ̇1)Con = p1θ̇1
3
+ p2θ̇1

2
+ p3θ̇1 + p4

Where:

p1 = −1.142 · 10−5

p2 = 0.001199
p3 = −0.04318
p4 = 1

τω1(θ̇1)Ecc = p1θ̇1
3
+ p2θ̇1

2
+ p3θ̇1 + p4

Where:

p1 = 3.768 · 10−5

p2 = 0.003126
p3 = 0.07683
p4 = 1
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τω2(θ̇2)Con = p1θ̇2
2
+ p2θ̇2 + p3

Where:

p1 = 0.0002403
p2 = 0.01668
p3 = 1

τω2(θ̇2)Ecc = p1θ̇2 + p2

Where:

p1 = −0.0001378
p2 = 1

Passive Functions

τp1(θ1, θ2) = p00 + p10θ1 + p01θ2

Where:

p00 = −2.379
p10 = 0.03088
p01 = −0.0509
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τp2(θ1, θ2) = p00 + p10θ1 + p01θ2 + p20θ
2
1 + p11θ1θ2 + p02θ

2
2 + p30θ

3
1 + p21θ

2
1θ2 + p12θ1θ

2
2

Where:

p00 = −3.183
p10 = −0.04959
p01 = 0.02993
p20 = 0.002002
p11 = −0.001316
p02 = 0.0006157
p30 = −1.068 · 10−5

p21 = 1.114 · 10−5

p12 = −9.877 · 10−6
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