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Abstract

Muscle Torque Generators (MTGs) have been developed as an alternative to muscle-
force models, reducing the complexity of muscle-force models to a single torque at the
joint. Previous studies have been conducted to determine functions to scale joint torque
based on position and velocity-dependent properties. However, current MTGs can only be
applied to single Degree of Freedom (DOF) joints, leading to complications in modeling
joints such as the shoulder, which has 3 DOF. Therefore, this project aimed to develop,
for the first time, an MTG model that accounts for the coupling between 2 DOF at the
shoulder joint, with shoulder plane of elevation and shoulder elevation being the DOF of
interest.

The 2 DOF MTG form was based on previous research for a single DOF MTG. Three
different 2 DOF MTG equations were developed to evaluate the effect of the degree of
coupling between DOF. Polynomial torque-angle scaling, torque-velocity scaling, and pas-
sive functions were defined for the different coupling equations, as well as the activation
function. The Biodex System 4 Pro™ was used to determine the net joint torques at the
shoulder for 20 participants in isometric, isokinetic, and passive tests. Data was processed
and normalized to compare the relative shoulder strength of individuals. MATLAB’s Curve
Fitting Toolbox™ was used to find the curves or surfaces that best fit the experimental
data for the MTG functions with different degrees of coupling. A completely general
model, a female general model, a male general model, and 13 subject-specific models were
fit for the three coupling methods. It was found that subject-specific models tended to fit
higher-order curves and surfaces compared to the general models that contained averaged
data.

The models were validated against experimental isokinetic torque data. It was deter-
mined that the male general model with position coupling resulted in the lowest error
(6.4%), with the position coupling for the completely general model resulting in the next
lowest error (8.0%). The female general model resulted in higher errors (average error of
19.9%  7.1%), with limited coupling showing the best results with an error of 11.6%. For
subject-specific models, it was determined that the average error was the lowest for posi-
tion and velocity coupling with an error of 22.8% and increasing with decreased coupling.
The subject-specific models predicted the general torque trend well for most participants;
however, the subject-specific models were highly dependent on the participant’s consistent
effort during data collection. The work demonstrated that subject-specific, completely
general, female general, and male general MTG models can predict torque results that are
dependent on multiple DOF of the shoulder. Future work should include the addition of a
fatigue model and the bi-articular nature of the biceps brachii.
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Chapter 1

Introduction

Forward dynamic musculoskeletal simulations allow for the safe study of complex motions.
Applications include optimizing athlete performance [7, 33, 50], movement science [62],
design of assistive devices [64, 52], and rehabilitation planning [36]. To create a human
model for simulations, a reasonable representation of muscles is required, and commonly
muscle-force models based on the Hill-type muscle model are applied [28]. However, these
muscle-force models have some drawbacks. One drawback includes the need to de ne
muscle geometry such as the insertion point, wrapping, and the muscle moment arm [11,
60]. There is also the muscle redundancy issue, in which there are more muscles at a
joint than DOF, and therefore optimization is normally required to solve for a motion
[12]. Finally, these muscle-force models require parameters that can be di cult to t [31].
One solution to the mentioned drawbacks is to use a Muscle Torque Generator (MTG)
as it reduces the complexity of muscle-force models to a single torque at the joint, all
while maintaining the position and velocity dependencies of muscles [31]. The simplicity
of MTGs allows for faster forward dynamic simulations of complex motions.

1.1 Motivation and Goals

While MTGs help reduce the complexity of muscle-force models, they currently can only
be used for single DOF joints, and additional MTGs are often added to represent joints
with more DOF [46]. Currently, there is no MTG that can be used for three-dimensional
joint motion that accounts for coupling between the DOF [48]. Therefore, the goal of
this work is to develop, for the rst time, an MTG model that accounts for the coupling
between 2 DOF for the shoulder joint. The shoulder joint, also known as the glenohumeral
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joint, was selected as it has 3 DOF and it has torques generated from multiple muscles
with di erent lines of action [66, 47]. The model aims to simplify the complexity of the
shoulder joint to allow for simpler and faster simulations. In the rst phase of this thesis,
three di erent forms of the 2 DOF MTG model for the shoulder joint were designed with
di erent degrees of coupling between DOF to allow for a comparison. The di erent scaling
functions for the MTGs were also de ned. In the next phase, biomechanical torque data
was gathered to identify the parameters in the designed models. Finally, in the third
phase, the subject-speci c and general models were t to the experimental data for the
three di erent coupling methods. The ability to predict joint torque was evaluated against
experimental torque data for the subject-speci ¢, completely general, female general, and
male general models, leading to a comparison of degrees of coupling and model accuracy.

1.2 Contributions

The contributions of this work include:

" Development of subject-speci ¢ and general multi-DOF MTGs as a function of two
joint angles and angular velocities for the rst time.

" Gathered experimental torque data in terms of two joint angles and two joint angular
velocities at the shoulder, supporting the development of the MTG model.

" Compared how the degree of coupling between the angles and angular velocities of
the shoulder a ected the accuracy of the resultant MTG models.

1.3 Document Structure
The following describes the organization of the document:

" Chapter 1 provides an introduction to the work presented in this thesis, outlining
the motivation and goals as well as the project contributions.

" Chapter 2 provides the background on muscle-force models as well as current MTG
models, their structure, and the functions that are used to formulate the MTG mod-
els.



Chapter 3 outlines the multi-DOF MTG model that was developed for the shoulder.
The angles and torques are de ned for the model as well as the coupling equations
and scaling functions used.

Chapter 4 describes the collection and processing of the biomechanical data collected
for the shoulder. The rst sections highlight the collection of elevation and the plane
of elevation isometric and passive torques, followed by the isokinetic torques obtained.
The data processing steps for the di erent data types are then described.

Chapter 5 details the multi-DOF model tting and compares the accuracy of the
di erent coupling equations. The rst section outlines the di erent parameter tting
methods used, followed by the results of tting the di erent coupling equations and
subject-speci ¢ and general models. The accuracy of the models is then evaluated
from comparisons against experimental data.

Chapter 6 concludes the research done in this thesis by summarizing the work. Lim-
itations of the model and recommendations for future work are also discussed.



Chapter 2

Background and Literature Review

The literature has been reviewed to understand the principles behind MTGs and their ap-
plications. MTG models o er an alternative to muscle-force models, so rst a short review
of muscle-force models including the underlying muscle principles and their limitations is
presented. Next, a detailed review of the current MTG models and the dierent func-
tions used to represent human joint torque is outlined. Finally, a summary of the di erent
approaches to model MTGs is provided.

2.1 Muscle-Force Models

As previously mentioned in Chapter 1, a reasonable representation of joint actuation is
required to model a human in forward dynamic simulations, with common models used
being muscle-force models. Often, muscles and tendons are represented as massless cables
with insertion points and muscle wrapping around the skeleton [14, 59]. Typically, these
models are based on the model by Hill [28] and consist of a contractile element as well as a
series elastic and parallel elastic element [70, 75]. The force the muscle produces depends
on several factors, with some of the main factors being the muscle length, which is described
by force-length curves [22], and the muscle lengthening rate, described by force-velocity
curves [28], as well as the muscle pennation angle and the maximum isometric force the
muscle can produce [31]. In the mono-articular case, these muscles span one joint and
cause tension to act on the tendon, which in turn causes a force to act on the bone, with
the resulting joint torque depending on the moment arm [31, 60].

While muscle-force models are useful for simulations where individual muscle forces
or bone-on-bone contact forces are needed, they can introduce additional complexities in
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situations where this is not required [51]. The need to de ne muscle geometry such as the
insertion point, wrapping, and the muscle moment arm for the models leads to parameters
that are di cult to obtain from living humans [11, 60]. There is also more than one muscle
crossing a joint, which causes the muscle redundancy issue, and therefore optimization
is normally required to solve for a motion [12]. MTGs o er a solution to the problems
mentioned above and will be reviewed in the following section.

2.2 Muscle Torque Generator Models

An MTG is a model that reduces the complexity of muscle-force models to a single torque
at the joint, all while maintaining the position and velocity dependencies of muscle forces
[31]. To date, there have been several dierent approaches to the overall MTG model.
However, typically the models are functional equations containing a torque-angle scaling
function, which represents the length-dependent properties of muscles, a torque-velocity
scaling function, which represents the muscle lengthening dependent properties, a passive
function which considers forces from viscoelastic elements of the muscle, and nally the
activation function, which gives activation torque [31]. The application of the MTG model
can vary the functions used in the overall model and often dynamometry is used to deter-
mine parameters for the speci c joint being evaluated [3, 6, 20, 23, 38, 73]. The specic
joint being modeled, even if it has more than one DOF, is modeled using a single DOF
MTG per DOF [46]. The following sections outline di erent approaches to the overall
model, followed by the di erent modeling approaches for the functional components.

2.2.1 Overall Model

In the work done by Inkol et al. [31], the standard form of an MTG is de ned using the
following equation:

(act; 5P )= ac (1) ()+ o(51) (2.1)

Equation 2.1 operates under the assumption of tendon rigidity. The scalar activation
torque, ., lies between i, , the minimum allowed isometric torque, and o, the max-
imum allowed isometric torque. The minimum isometric torque, nin , can be de ned in
either the positive direction or the negative, depending on the simulation being conducted.
For example, in the work of McNally and McPhee [50], the minimum isometric torque was



set to zero, and each joint was actuated by two MTGs to provide torque in both directions,

while in the work of Jansen and McPhee [33], only one MTG was applied per joint and the

minimum isometric torque was set to be the maximum isometric torque in the opposite di-

rection. and , are the torque-angle and torque-velocity scaling functions, respectively.
depends on , which is the angle of the single DOF joint, and, depends on , the rate

of change of . , represents the passive torques that are caused by the passive viscoelastic

elements in muscles.

Extending the work done by Forresteret al. [20], an alternative to the above equation
has been proposed by Millarcet al. [51] and can be seen in Equation 2.2.

(@;!')=s mx(@ (;s* ") (sY; )

¥ p(; P; P)(l PESV!!Max))

(2.2)

The torque-angle scaling, torque-velocity scaling, and passive torque functions, similar
to the approach used in 2.1, are de ned using, ., and ,. However, unlike the previ-
ous MTG equation that uses di erent methods of scaling functions, this model employs
5" -order Bezier curves to de ne the functions. Muscle activation, a term that can be con-
sidered using the activation torque ., is represented using. An additional non-linear
damping term was added to the passive torque function in order to reduce vibrations.
Fitting parameters, #, V,and ", and scaling parameterss®, sV, and F, are used for
the torque-angle scaling, torque-velocity scaling, and passive torque functions, respectively.
Finally, the term s is used to scale the maximum isometric torque.

While the author of this thesis has seen the above method applied less frequently, a
bene t is that most parameter terms have a physical meaning; for example, increasing the
scaling terms”* e ectively increases the optimal ber length of muscles. Millarcet al. used
quadratic programming to systematically t these parameters to di erent dynamometer
data sources.

2.2.2 Torque-Angle Scaling Functions

The torque-angle scaling function scales the maximum isometric torque such that the
length-dependent properties of muscles are incorporated. Often, this is done using poly-
nomial functions as the degree of the polynomial can be easily adjusted, and parameter
identi cation is exible [6, 24, 23, 33]. However, the implementation often depends on the
application. Di erent variations of the torque-angle scaling function are presented below.
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Kulig et al. [40] conducted work to determine human strength curves, which are curves
that outline the torque-angle relationship of a joint. The authors found that a similar
trend could be seen between the torque-angle curve of a joint and the force-length curve
of muscles. In a typical force-length strength curve, a peak in muscle strength is achieved
when the sarcomere length is optimal, and zero force is seen at the smallest and longest
lengths [22]. Previous mathematical models that aim to model the force-length curves of
muscles can therefore be used as inspiration for the torque-angle scaling function. The
force-length curve has been previously modeled using a normal [4], quadratic [9], and sine-
exponential curve [26] as well as a spline interpolation [44]. While there is no consensus
on which model should be used for the force-length curve, Kulgt al. discuss that the
strength dependency can have one of three general behaviours: an ascending behaviour, a
descending behaviour, and an ascending-descending behaviour [40].

Anderson et al. [3] considered the three behaviours discussed by Kuleg al. [40]
and chose to model the torque-angle scaling as a sinusoidal function as it captures all
behaviours mentioned. The model below in Equation 2.3 was used to represent the torque-
angle scaling for applications to the lower limb. It can be noted that this equation contains
the maximum isometric torque .. While some researchers choose to incorporate the
maximum isometric torque in the ., term of models, others choose to add it to the
torgue-angle scaling function. Often, it depends on the style of activation function that is
used, as the ,ax term only needs to be applied once in the MTG.

()= max COS — (2.3)

max min

In Equation 2.3,  is the angle where torque production is optimal, andmax and s
are the maximum and minimum angles where torque production is zero. The authors used
the torque-angle scaling together with a torque-velocity scaling function to determine the
active torque of lower limb muscles, gathering experimental data using a dynamometer
and nding that they were able to predict knee extension torque with an Rvalue as high
as 0.942.

Haering et al. [23] studied the e ect that di erent torque-angle scaling functions had
on predicting torque accuracy for the elbow. Five dierent mathematical models were
compared: a normal, cosine, quadratic, cubic, and sine-exponential function, which can
be seen in Equations A.1, A.2, A.3, A4, and A.5, respectively. The key terms in these
equations are o and ROM, with ROM being the Range of Motion (ROM) of the joint
speci ed. However,ROM can be de ned as the di erence between the maximum and
minimum angle ( max - min ) @nd therefore Equation A.2 is equivalent to Equation 2.3.
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The authors noted that previous to their work, there was no consensus on which style
of mathematical model was best to determine torque-angle scaling for the elbow. They
determined that the cosine, quadratic, and cubic models performed better than the normal
and sine-exponential models, with the quadratic providing the best t for a wide selection
of participants. A comparison of the di erent mathematical models evaluated by Haering
et al. [24] is depicted in Figure 2.1.

Figure 2.1: A comparison of the normalized torque-angle scaling mathematical models
evaluated by Haeringet al. [24].

In the work of Brown and McPhee [6], di erent polynomial functions were used to model
the elbow, wrist, and shoulder of a wheelchair basketball athlete. It was determined that
a second-order polynomial provided the best t for the elbow and wrist; however, d"4
order polynomial provided the best t for the shoulder. The second-order polynomial was
based on previous work [37, 20], and curve- tting was used to determine the parameters.
Equation 2.4 shows the polynomial torque-angle scaling function used for the shoulder.

()=a*+b3+c?+d +e (2.4)

To model Olympic track cycling standing starts, Jansen and McPhee [33] used the
cosine function outlined in Equation 2.3 to similarly capture the muscle behaviours as in
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Andersonet al. [3]. As the lower limbs were the joints in question for the model, parameters
were adopted from [3] and [39].

In the work of McNally and McPhee [50], a biomechanical model of the golf swing was
modeled. Due to the ballistic motion of the golf swing, the authors chose not to include a
torque-angle scaling function and instead focused on the torque-velocity scaling function,
which will be discussed in the next section.

2.2.3 Torque-Velocity Scaling Functions

The torque-velocity scaling function scales the maximum isometric torque production such

that the lengthening properties of muscles are considered. Typically, a piecewise function is
used to capture the nature of concentric and eccentric motions [3, 73, 50], with a hyperbolic
curve being a common component [3, 23, 73].

During a concentric motion, an increase in the speed of muscle shortening causes the
muscle force to decrease in a hyperbolic nature [28]. However, in the eccentric phase, it has
been found that maximum muscle force will increase to a value of 1.5 times the isometric
force, with a plateau at higher speeds [25]. King and Yeadon [38] created a model that
captured the double hyperbolic shape mentioned and applied the model in Equation 2.5.
This model employed the positive parameters, b, c, d, p, and g, which were determined
by minimizing the squared di erence between experimental values and the model results.
The authors found the t of the function to be su cient for the data collected; however,
when extrapolating beyond what was measured, there was a degradation in performance.

a+ be
A+ ce )1+ det')

()= (2.5)

In the work of Yeadonet al. [73], the authors modeled the maximum joint torque
over a range of angular velocities. However, the authors discuss that in studies of human
skeletal muscle, the 1.5 increase of eccentric force over isometric force is rarely achieved,
with the force increasing minimally over the maximum isometric force [68]. With electrical
stimulation, this eccentric torque can be increased beyond the isometric torque by greater
than 20% [69], and when measuring eccentric loading without stimulation, it was found
that Electromyography (EMG) activity did not change over eccentric velocities, leading to
the theory that lower forces are achieved during eccentric contractions as a means of injury
protection [67]. Yeadonet al. therefore created a model that accounted for the activation
pro le of eccentric motions.



Yeadonet al. de ned two models, a four parameter function and a seven parameter
function, which consist of the four parameter function combined with a three parameter
activation function that de nes the activation pro le. Equation 2.6 gives the four parameter
concentric and eccentric torque relationship, where,. is the ratio between the maximum
eccentric torque and maximum isometric torque! .« is the angular velocity where the
curve reaches a torque of zero, ard is the vertical asymptote of the Hill hyperbola.

8
<geny o 10
(1) =, (2.6)
' (.EE—.) + ecc ! 0
In the above equation, ¢ = mtte C = ((Ipax + ! ¢), 1= Lo m) Lmacle o gngd

max 43 max  ('max *!c)
E = ( ecc max)! e:

Equation 2.7 is the three parameter activation function that, when multiplied by the
four parameter function, forms the seven parameter model. The parametef.x IS the
maximum activation level, which is often assumed to be 1, and,,, is the minimum
activation level in the eccentric phase. The in ection point on the curve described by
Equation 2.7 is! 1, and nally, !, is the ascent range of i, t0 max-

DR L — 2.7)

l+e™r

Yeadonet al. found that this seven parameter function allowed for both maximal and
submaximal activities to be modeled. However, the authors set.. to a constant value
of 1.5 and found some simulation results to be unrealistic. The model has been found
useful for sports simulations [31], with it being applied in Brown and McPhee's [6] forward
dynamic simulation of manual wheelchair propulsion.

Anderson et al. [3] based their concentric torque relationship on Hill's hyperbolic
function [28]. The concentric torque relation can be seen when the angular velocity is
greater than zero in Equation 2.8. In this equation] ;5 and ! 5o de ne the shape of the
parabola and correspond to the angular velocity at which the torque is 75% and 50% of
the maximum isometric torque, respectively. In order to consider the eccentric torque,
the authors scaled the concentric torques linearly with velocities based on the work by
Dudley et al. [16], where the relationship of eccentric to concentric torque in the knee was
shown to increase with speed. The paramet& was added to help de ne the eccentric to
concentric torque relation. The model developed here has been applied in forward dynamic
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simulations, with Jansen and McPhee [33] applying it to a predictive simulation of Olympic
track cycling starts due to Anderson's speci ¢ application to the lower limbs.

> 275! s0+! (150 3! 75) | 0
2075l 50+ ! (2150 4! 75) )

(M) = 29
2 2laslg !(lso 3!75) (1 E!) I 0

2175150 ! (2'50 4! 75)

Haering et al. [23] created and compared a new model with the model developed by
Andersonet al. to address the derivative discontinuity in Anderson's model (see Figure 2.2)
to avoid jumps in continuity and issues when tting the curves to experimental data. The
authors designed a new power-based model, which is a polynomial function that considers
the concentric velocity where power is maximal, basing the addition of the velocity term on
previous work that found it to be correlated to muscle composition [21, 58]. The maximum
power velocity is used as an in ection point in the concentric phase of the torque-angle
scaling function. The authors found that the new power-based model t concentric data
better than Anderson's model, but was worse at tting eccentric data due to the constraint
that ensured continuity between the eccentric and concentric phases.

Sprigings and Neal [61] and MacKenzie and Sprigings [46] used torque-velocity scaling
without torque-angle scaling to adjust the torques after the muscle activation had already
been considered in their forward dynamic model of the golf swing. The scaling used was
originally applied for high and long jumps by Alexander [1], and an interesting feature of
this model is the lack of a piecewise function for concentric and eccentric motions due to
the motion studied not including a negative angular velocity.

("max 1)
(!maX+ !)

(1) = (2.9)
The parameter is the shaping factor for the torque-velocity curve. The work done by
Alexander, Sprigings and Neal, and by MacKenzie and Sprigings was extended by McNally
and McPhee [50] by incorporating the work done by Van Soest, who outlined a general
form for the eccentric relationship [65]. A piecewise function was used to represent the
concentric and eccentric velocities as seen in Equation 2.10; McNally and McPhee extended
the motion of the golf swing such that negative angular velocities were considered. The
term S is the ratio of the change in torque and the change in velocity between the eccentric

and concentric phases.
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As previously mentioned, this model did not scale using a torque-angle function. How-
ever, a passive function was used, which will be covered in the next section.

Figure 2.2: A comparison of the normalized torque-velocity scaling functions modeled by
King and Yeadon [38], Yeadoret al. [73], Andersonet al. [3], and McNally and McPhee
[50].

Figure 2.2 shows a normalized comparison of the double hyperbolic function by King
and Yeadon, the piecewise four parameter function by Yeadet al., the piecewise function
by Andersonet al., and the piecewise function by McNally and McPhee. King and Yeadon
obtained parameters from the force-velocity data of Edman [17] who studied the force-
velocity relationship of frog muscles. Parameters for the function by Yeadast al. were
obtained from knee extension trials for a single subject, and parameters from Andersgn
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al. were obtained from knee exion trials for a single subject. McNally and McPhee used
parameters matching the work done by Van Soest [64].

2.2.4 Passive Functions

The passive function allows for torques contributed by components in parallel with the
contractile elements of muscle to be considered. These include structures such as tendons,
ligaments and muscle tissues such as the epimysium and perimysium [3, 31]. In the litera-
ture, there are two main forms presented: a double-exponential form [3, 29, 57, 72] and a
linear spring-damper form [37, 63].

King and Yeadon [38] modeled passive torque as a linear torsional spring, with a sti ness
based on the elastic component of the muscle and tendon in the vasti muscles [32]. This
method was later applied in the work by Kinget al. for the evaluation of MTG models for
jumping [37].

Yoon and Mansour [74] used a double exponential function that helped to simulate the
ROM of the joint. Equation 2.11 was applied twice, once for hip exion and a second time
for hip extension, with parametersk,, k,, ks, and ks being modi ed for the motion. The
maximum angle for the joint's range of motion, *, and  , the angle o set from the
joint's maximum angle, were also modi ed for exion versus extension. While this model
performed well, the 4 term can complicate the application to joints other than the joint
studied.

o( )= ka(e20 ) 1)+ kg(el o)1) (2.11)

Hoanget al. [29] applied a similar double exponential function at the ankle, considering
the sum of torque in both plantar exion and dorsi exion. Riener and Edrich [57] also
applied a similar double exponential function. However, biarticular muscles that cross two
joints were considered in their model, with the angle of the adjacent joint factoring into
the model equations.

Anderson et al. [3] based their work on the double exponential models previously
mentioned [74, 29], and presented a slightly simpler model, seen in Equation 2.12. In
this equation, the ROM is enforced by the two terms and the passive equation itself is
independent of the muscle activation.

o( ) = ki€? + k€ (2.12)
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Figure 2.3: Comparison of the normalized passive hip torque results for hip extension to
exion for the models designed by Yoon and Mansour [74] and Andersen al. [3].

Figure 2.3 compares the normalized passive hip torque results for hip extension to
exion for the models designed by Yoon and Mansour and Andersaet al. The model
parameters were determined from two di erent participants that completed the motion.

Yamaguchi [72] uses the terms®™ and  to de ne the feasible ROM in their double
exponential passive function (Equation 2.13) which is easily adapted to other joints due
to the parameter's physical meaning. A viscous damping term was also added with a
recommend linear damping coe cient ofc=0:1INm rad 1.

o(i1 )= ke 2C ) kge (T ) ¢l (2.13)

Yamaguchi's equation was later applied to the model of the golf swing used by McNally
and McPhee [50].

2.2.5 Activation Functions
The activation function aims to capture the activation of muscles and provides a torque

between the minimum isometric torque ., and the maximum isometric torque max.
Often, two main strategies are applied. The rst strategy employs a function to capture the
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activation dynamics of the model [46, 50, 73], and the second uses an activation parameter,
a, that is often between 0 and 1 to scale the isometric torque depending on the muscle
activation, or relative muscle e ort [6, 33, 51]. The latter method is usually applied to an
optimal control problem.

MacKenzie and Sprigings [46] used an activation curve to take into account the muscle
activation and deactivation times for their model of the golf swing. In Equation 2.14,and
t0are the time it takes for the MTG to activate and de-activate, andt, is the activation
time constant. One thing to note about this equation is that the activation always leads to
maximum muscle torque when the MTG is activated, and the muscle activation cannot be
controlled further, making this equation more applicable to sports applications. McNally
and McPhee [50] extended this equation by adding an exponential that acts to smooth the
transition between activation and deactivation. Figure 2.4 shows the normalized activation
function used by McNally and McPhee where the activation time was set to 0 seconds and
deactivation time was set to 0.6 seconds.

A= max 1 € e 1 e (2.14)

Figure 2.4. The normalized activation function used by McNally and McPhee [50] where
the activation time was set to 0 seconds and deactivation time was set to 0.6 seconds.

Millard et al. [51], Brown and McPhee [6], and Jansen and McPhee [33] applied an
activation term, a, to directly solve for the activation torque. This allows for torques less
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than or equivalent to the maximum isometric torque. Jansen and McPhee speci cally used
an activation term of -1 to 1 to simulate the di erence between muscles causing exion and
extension. In recent works by Jianget al. [34], a similar activation term has been applied
to their work of synthesising realistic human motion, where they are using novel machine
learning techniques to solve for torque limits.

2.3 Summary

In summary, there are many methods previously used to develop an MTG for a single DOF
joint. Dynamometry has been used to provide experimental data to t the functions that

de ne an MTG [3, 6, 20, 23, 38, 73]. However, there has not been a consensus on which
style of functions to use. For torque-angle scaling, polynomial functions provide a simple
approach, particularly for parameter tting [6, 23]. In terms of torque-velocity scaling
functions, a piecewise style function provides a better t for both concentric and eccentric
motions compared to a power-based model [23]. Passive torques are often minimal, except
when outside an individual's ROM, which is then commonly represented by a double ex-
ponential function [3, 29, 57, 72]. Finally, the activation function tends to vary depending
on the application, but for most forward dynamic simulations, an activation level that is
controlled is applicable [6, 33, 51].

There are some general limitations to the MTG. These include the fact that bone-
on-bone contact forces cannot be modeled using an MTG [51] and that antagonist co-
contractions are not individually accounted for in the model [20]. One large limitation is
the fact that an MTG can currently only be applied to single DOF joints, which often
results in forward dynamic simulations being restricted to planar motions [19, 34, 18].
A previous approach applied two single DOF MTGs operating in horizontal and vertical
directions and scaled them using a torque ratio term [49]. However, this approach does not
consider the impact of the coupling between the two DOF of the joint, and to date there
is no single MTG that is capable of providing torque for a three-dimensional motion [48].
Therefore, there is an opportunity to improve the MTG such that the coupling between
two joint angles is considered in order to design an MTG for multi-DOF motion.
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Chapter 3

Multi-Degree-of-Hreedom Muscle
Torque Generator Model

The de nitions for the multi-DOF MTG are outlined in this chapter. Di erent coupling
equations are presented to evaluate the e ect that the degree of coupling has on the model.
Finally, equations for the torque-angle and torque-velocity scaling functions as well as the
passive and activation functions are outlined.

3.1 De nition of Model Joint Torques and Angles

The multi-DOF MTG model aims to capture the coupling between two major motions of
the shoulder: shoulder plane of elevation, and shoulder elevation as de ned according to
the International Society of Biomechanics (ISB) [71]. Two angles were de ned to describe
these two motions. The rst angle, i, is de ned as the angle of the plane of elevation
of the humerus relative to the thorax. The second angle,,, is de ned as the angle of
elevation of the humerus relative to the thorax (measured from -Y). Figure 3.1 depicts the
coordinate system and angle de nitions for the model. The coordinate system is de ned
using the ISB standards and is for the right arm with the person facing towards positive
X.

Clinically, shoulder plane of elevation is de ned as horizontal adduction when the
humerus moves horizontally across and towards the chest and is de ned as horizontal
abduction when it moves horizontally away from the chest [53]. Shoulder elevation is clini-
cally de ned as abduction when the plane of elevation,;, is 0 degrees and forward exion
when the plane of elevation is 90 degrees [71].
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Figure 3.1: Torque and angle de nitions for shoulder plane of elevation and shoulder
elevation. The coordinate system is de ned for the right arm with the person facing
towards positive X.

To fully describe the model, one torque was de ned per DOF. The rst torque,, is
the torque responsible for shoulder plane of elevation and is about Y in the direction of
the rst DOF ( ;). The second torque, », is the torque responsible for elevation and is
about -x' in the direction of the second DOF (). Each of these torques are individually
determined by considering the coupling between the two DOF. The resultant torque, is
in the direction of , which is de ned in Figure 3.1.

The shoulder joint has a large ROM [66], ranging from 0 to 140 degrees in horizontal
adduction and O to 167 degrees in forward exion on average [54]. In order to reduce the
ROM for the model to simplify the data collection process, the model use case was de ned
to be for lifting and reaching motions. Therefore, ; was de ned to be between 0 and 120
degrees and ; between 60 and 160 degrees. This ensures that the joint angles are within
the normal shoulder ROM, while removing the lower ranges of elevation which aren't as
commonly used for lifting motions. Figure 3.2 shows a visualization of the ROM de ned
for the multi-DOF shoulder MTG.
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Figure 3.2: Visualization of ROM de ned for the multi-DOF shoulder MTG model. The
anterior and posterior directions are de ned.

3.2 Coupling Equations

To develop the MTG forms for ; and », the standard single DOF MTG equation seen in
Equation 2.1 can be used as a template. One of the goals of this work is to determine the
impact that di erent degrees of coupling between the two DOF has on model accuracy.
To do this, models were developed that show limited coupling between the DOF, position
coupling (such that the torque-scaling function is dependent on two DOF), and position and
velocity coupling (where both the torque-angle and torque-velocity scaling are dependent
on the two DOF).

First, equations for ; and , were developed with limited coupling. To achieve this,
multiple single DOF MTG models were developed across the range of the secondary DOF-.
For ,, the torque-angle scaling, torque-velocity scaling, and passive function can be de-
termined with respect to ; and 4. If these functions are determined with respect to; at
speci ¢ points of ,, then the elevation torque given limited coupling between the two an-
gles is achieved. This is seen in Equation 3.1, where ve single DOF MTGs are determined
when , is at 60, 85, 110, 135, and 160 degrees. These angles were chosen in order to span
the ROM examined. Linear interpolation between the curve ts was used to determine the
torque scaling at points that lay between the discrete values o§.
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1= act ! (—1-) ( 1) + p( 1) for > = 60, 85, 110, 135, 160 deg (31)

A similar approach was used for the limited coupling case for. The torque-angle
scaling, torque-velocity scaling, and passive scaling for the horizontal plane of elevation
torques can be determined with respect to,. The single DOF MTG can be determined at
ve ; angles (when ; is equal to 0, 30, 60, 90, and 120 degrees) to determine our limited
coupling equation for , (Equation 3.2). Again, the angles of ; were chosen such that
the ROM studied was fully examined. Linear interpolation between values of was again
applied.

2= act (=) (2)+ p(2)for 1= 0, 30,60, 90, 120 deg (3.2)

Next, the position coupling cases were developed for the two torques. In this case, the
torque-angle scaling function and passive function are dependent on two angles, while the
torque-velocity scaling function is dependent on only one angular velocity. Equations 3.3
and 3.4 below describe the position coupling MTGs for, and ,, respectively.

1= act (=) (1 2+ p(1 2 (3.3)

2= at 1(2) (1 2+ p( 1 2) (3.4)

Finally, an additional step was taken from the position coupling equations to develop
models that include both position and velocity coupling. For this case, the torque-angle
scaling and passive functions maintain the dependency on two angles as done in the position
coupling case, and an additional degree of coupling is added to the torque-velocity scaling
function such that it is dependent on two angular velocities instead of one. Equations 3.5
and 3.6 below describe the position and velocity coupling MTGs fok and , respectively.

1= at 1 (w2 (1 2+ p(1 2 (3.5)

2= aat (w2 (1 2+ p(1 2 (3.6)

Table 3.1 o ers a summary of the 2 DOF MTG equations developed to explore di erent
degrees of coupling. To explore model accuracy, subject-speci ¢ and general models were
developed.
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Table 3.1: Summary of Coupling Equations

Method | Coupling Equations
o 1= at (=) (2)+ p()for = 60,85, 110, 135, 160 de
1 limited

2= aa 1(2) (2)+ p(2)for 1= 0,30, 60,90, 120 deg

5 1= at (=) (1 20+ p( 1 2)

2= act (2 (1 2+ p( 15 2)

3 15 act (w2 (15 27+ p(1 2)

2= at (w2 (1 2+ p(1 2

3.3 Muscle Torque Generator Function Equations

For the di erent degrees of coupling, di erent torque-angle scaling, torque-velocity scaling,
and passive functions must be developed. As discussed in Chapter 2, a polynomial torque-
angle scaling function is a simple and e ective function to use for parameter tting [6, 23].
Therefore, a polynomial curve was used for the limited degree of coupling case for the
torque-angle scaling function. For the coupling cases that include position coupling, a
polynomial surface was used.

It was found that piecewise functions o er a good representation of the concentric and
eccentric torques seen in the torque-velocity scaling function [23]. To maintain a simple
model, polynomial curves and surfaces were considered. Therefore, two polynomial curves,
one curve for concentric motions when the angular velocity is greater than 0 deg/s and the
other for eccentric motions when the angular velocity is less than 0 deg/s, were used for
methods that didn't include velocity coupling. For the velocity coupling case, piecewise
polynomial surfaces were used. A drawback of the piecewise curves is that while these
functions t well to the data and are continuous, they are not di erentiable when_is zero
and are therefore of class C

Since the MTG ROM evaluated is within the ROM of the shoulder, it was expected
that passive torques would have a minimal impact [72]. As the double-exponential function
is mainly applicable to torques outside the ROM, polynomial curves and surfaces were
applied for the passive torque function similarly to what was done for the torque-angle
scaling function.
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One thing to be noted is that the MTG functions for ; and , will be di erent and
depend on the data gathered for plane of elevation torques and elevation torques, respec-
tively. As dierent curves and surfaces can provide a better t depending on the data,
curves and surfaces up to the third-degree were evaluated for the best t. To avoid over-
tting, higher-order curves and surfaces were not considered. For notation, curves will be
denoted asm-Curve, wherem is the order of the polynomial curve up to 3 and surfaces
will be denoted asm; n-Surface wherem is the degree of the rst independent variable
up to 3 and n is the degree of the second up to 3. Equation 3.7 shows an example of a
2,3-Surface torque-angle scaling function and Equation 3.8 shows an example of a torque-
velocity scaling function that uses a 2-Curve for the concentric motion and a 1-Curve for
the eccentric. The parametersp are to be t using experimental data.

(15 2)= Poot P1o 1+ Po1 2+ P20 %+ P11 1 2t Po2 §+ P21 % 2t P12 1 §+ Po3 S’ (3.7)

8 2
% P+ tP22+tpPs  + O
!(—r):§ (3.8)
PLst P2 +<0

Finally, the activation function must be considered to determine how much, and ,
are contributing to the total force production, where the total torque production, , is
the sum of the two torque vectors in the direction of . An activation term approach,
similar to that in previous works was applied [6, 33, 51], where the activation torque,,
is the product of an activation term (@; and a, for the plane of elevation and elevation,
respectively) and the isometric torque, max , for the speci ed direction. Equation 3.9 shows
the activation function for ; or .

acty;» = max 1;231;2 (3.9)

Two di erent approaches were used to determine the activations; and a,. First, the
activations were assumed to be related to the resultant torque direction,, where the
activations had a sine and cosine relationship as seen in Equations 3.10 and 3.11. This
was inspired by vector addition, as the magnitude of the two activations will equate to
1. Figure 3.3 shows hova; and a, change given for the rst activation approach. This
ensures that if the motion was only in the plane of elevation, for example; would go to
1, while a, would go to O such that there is no elevation torque contribution.
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a; = cos (3.10)

a, = sin (3.11)

Figure 3.3: The sine and cosine relationship af and a,, and the resultant torque direction
for the rst activation approach.

The second activation approach solved for independent activations directly from ex-
perimental isokinetic data, operating under the assumption that activations; and a, are
constant in time for a given . Since the data is isokinetic and does not contain angular
dependencies, the standard form of the MTG (Equation 2.1) can be simpli ed to the form
expressed in Equation 3.12. The activation torques for a direction are expressed using
Equation 3.9. If the activations are constant, then the component torques and , of the
isokinetic torques are equivalent to the isometric torque for the component torque direction,

max » the activation for the direction for the given , a , and an unknown torque-velocity
scaling function that is dependant on the angular velocity in the direction of , s(! ).
Equation 3.13 expresses this relationship for a plane of elevation torque. Further details of
this approach are outlined in Chapter 4.

()= ac () (3.12)

1= max; & S(! ) (3.13)
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Chapter 4

Shoulder Experiments

The contents of this chapter describe the methods to collect and process data used to
t subject-speci ¢ and general MTG functions for the shoulder. In order to develop the
functional coupling MTG equations outlined in Section 3.1, experimental data was gathered
to generate equations for the torque-angle scaling, torque-velocity scaling, and passive
functions.

4.1 Setup

4.1.1 System Used

Testing was conducted using the Biodex System 4 Prb (Biodex Medical Systems, Inc,
Shirley, NY). The Biodex is a computerized dynamometer that is used in sports and
orthopedic medicine, neurorehabilitation, and research. The Biodex allows for a specic
joint in the body to be isolated, and the net joint torque can be measured in di erent
modes of operation. For this study speci cally, the shoulder joint was isolated and the
iIsometric, isokinetic, and passive modes were utilized to measure the net shoulder torques.

4.1.2 Joint Alignment

To ensure accurate torque measurements, the axis of the Biodex must be aligned with
a participant's anatomical joint center [27]. The Shoulder Joint Center (SJC) can be

24



approximated as 10.4% of the distance from the acromion to the radiale, with the three-
dimensional position lying on the longitudinal axis between the two bony landmarks [13].
Participants' bony landmarks were palpated and the 10.4% distance was marked. The
Biodex was tted with a custom 3D-printed part that secured a laser pointer in the center
of the Biodex crank. The laser pointer was used to align the Biodex crank center with the
marker at the participant's SJC. Work done in [5] has shown that the SJC is often not
stationary throughout the movement. The movement of the SJC can be attributed to the
fact that shoulder joint mobility is not only the motion of the glenohumeral joint, but is also
the motion of the scapula gliding along the thorax, also known as scapulothoracic-gliding
[66]. Until 120 degrees in elevation, shoulder mobility is due to the glenohumeral joint.
However, past this, the motion is also a result of scapular gliding. This can contribute to
the movement of the SJC at higher elevations. To minimize the movement of the SJC,
all participants were instructed to keep their back (with a speci ¢ focus on the scapula)
against the seat of the Biodex. Two straps, one across each participant's shoulder was used
to prevent movement outside of the shoulder joint during testing. Participants were also
instructed to keep their elbow and wrist joints locked in a neutral and straight position.

With the alignment process mentioned, the Biodex crank angle measurement was used
as the shoulder angle, as done in the previous Biodex testing by Brown [5]. In this work, an
electrogoniometer was used to determine if there was any discrepancy between the Biodex
crank angle measurement and the angle of the elbow joint. It was determined that the
Biodex crank angle was an accurate representation of the elbow joint angle, most likely
due to the rigid handle that connected the person and the Biodex. The shoulder joint and
elbow joint used the same rigid attachment, and therefore Brown used the Biodex crank
angle as a measurement of the shoulder, instructing participants to keep their back against
the seat similarly to what was done for this work. The same grip attachment was used
in this study, and therefore the Biodex crank angle measurements were also used as the
shoulder joint angle.

4.2 Elevation Torque Data

The testing was broken down into three main sections: elevation torque, in which the
participant applied torque in the direction of , for isometric and passive tests, plane of
elevation torque, where the participant applied torque in the direction of, for isometric
and passive tests, and isokinetic tests, which vary the degree of elevation and plane of
elevation torques by changing the Biodex axis tilt, e ectively changing . This section
focuses on the elevation torques gathered.
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4.2.1 Subjects

10 males (24 4 years, 1.79 0.08m, 78.2 7.6kg) and 10 females (22 7 years, 1.63
0.06 m, 59.6 8.2 kg) participated in the study. The eligibility criteria of the study ensured
that participants had not experienced any pain during activities of daily living within the
past 6 months, as well as ensured that the participant did not have any shoulder pain or an
existing heart condition. The participants also did not have any prior experience with the
Biodex System. Ethics approval was obtained from the University of Waterloo Research
Ethics Board (REB 44157).

4.2.2 Isometric Test

For the isometric testing mode, the attachment arm of the Biodex was moved to a speci c
elevation to achieve a specic ,, and the chair of the Biodex was rotated to achieve
di erent planes of elevation, ;. The Biodex attachment arm then remained stationary
while the participant used their Maximum Voluntary Contraction (MVC) for 5 seconds.
Isometric torque was measured in elevation for 25 di erent combinations of, and ».

1 was measured at 0, 30, 60, 90, and 120 degrees apdvas measured at 60, 85, 110,
135, and 160 degrees. Three minutes of rest were given to participants between every ve
exertions with more on request to prevent the participant from fatiguing. Figure 4.1 shows
an example of the setup of an isometric test in elevation when is O degrees and, is 85
degrees.

4.2.3 Passive Test

In the passive testing mode, the chair of the Biodex was rotated to achieve a speci c plane
of elevation, ;, and the Biodex was set to elevate the participant's arm across the ROM

studied (60 deg , 160 deg). The Biodex moved the participant's arm at a rate of 5
deg/s while the participant provided no torque in order to measure only the passive torques
in the shoulder resisting the motion. Five passive tests were done, measuring the ROM of
o for ; at0, 30, 60, 90, and 120 degrees.
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Figure 4.1: Example of a participant setup when; is 0 deg and , is 85 deg for isometric
testing in elevation

4.3 Plane of Elevation Torque Data

4.3.1 Subjects

7 male (26 3 years, 1.80 0.07m, 79.0 7.7kg) and 6 female (24 6 years, 1.63
0.07m, 59.5 6.3kg) subjects who participated in the elevation torque data collection were
able to return and participate in the plane of elevation torque section of the study. The
eligibility criteria for the study remained the same.

4.3.2 Isometric Test

For the isometric tests, the chair of the Biodex was lowered such that the participant was
lying horizontally. The attachment arm of the Biodex was moved to di erent positions,
which corresponded to a dierent plane of elevation angle,;. The tilt of the Biodex

axis was modi ed such that di erent elevation angles, ,, could be achieved. Similar to
the elevation torque isometric study, the Biodex attachment arm remained stationary at
speci ed angles, and MVC was used for 5 seconds at each of these positions. Isometric
torques were measured in the plane of elevation for 25 di erent combinations qfand ».

1 was measured at 0, 30, 60, 90, and 120 degrees andias measured at 70, 85, 110, 135,

27






	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction
	Motivation and Goals
	Contributions
	Document Structure

	Background and Literature Review
	Muscle-Force Models
	Muscle Torque Generator Models
	Overall Model
	Torque-Angle Scaling Functions
	Torque-Velocity Scaling Functions
	Passive Functions
	Activation Functions

	Summary

	Multi-Degree-of-Freedom Muscle Torque Generator Model
	Definition of Model Joint Torques and Angles
	Coupling Equations
	Muscle Torque Generator Function Equations

	Shoulder Experiments
	Setup
	System Used
	Joint Alignment

	Elevation Torque Data
	Subjects
	Isometric Test
	Passive Test

	Plane of Elevation Torque Data
	Subjects
	Isometric Test
	Passive Test

	Isokinetic Data
	Data Processing

	Multi-Degree-of-Freedom Muscle Torque Generator Model Fitting and Comparison
	Parameter Fitting
	Methods
	Fitting Results

	Model Validation
	General Models
	Subject-Specific Models


	Conclusion
	Research Summary
	Limitations
	Recommendations and Future Work

	References
	APPENDICES
	Additional Muscle Torque Generator Functions from the Literature
	Muscle Torque Generator Model Parameters
	Completely General Model Parameters
	General Female Model Parameters
	General Male Model Parameters


