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Abstract

Missing data problems are frequently encountered in biomedical research, social sci-
ences, and environmental studies. When data are missing completely at random, a complete-
case analysis may be the easiest approach. However, when data are missing not completely
at random, ignoring the missing values will result in biased estimators. There has been
a lot of work in handling missing data in the last two decades, such as likelihood based
methods, imputation methods, and bayesian approaches. The so-called matrix completion
algorithm is one of the imputation approaches that has been widely discussed in the miss-
ing data literature. However, in a longitudinal setting, limited efforts have been devoted
to using covariate information to recover the outcome matrix via matrix completion, when
the response is subject to missingness.

In Chapter 1, the basic definition and concepts of different types of correlated data are
introduced, and matrix completion algorithms as well as the semiparametric approaches
are also introduced for handling missingness in the literature of correlated data analysis.
The definition of robust estimation and interference in causal inference are also presented
in this chapter.

In Chapter 2, we consider the prediction of missing responses in a longitudinal dataset
via matrix completion. We propose a fixed effects longitudinal low-rank model which
incorporates both subject-specific and time-specific covariates. The missingness mechanism
is allowed to be missing at random, and the inverse probability weighting approach is
utilized to debias the traditional quadratic loss in the matrix completion literature. To solve
the optimization problem, a two-step optimization algorithm is proposed which provides
good statistical properties for the estimation of the fixed effects and the low-rank term. In
the theoretical investigation, the non-asymptotic error bounds on the fixed effects and the
low-rank term are presented. We illustrate the finite sample performance of the proposed
algorithm via simulation studies and apply our method to both a Covid-19 and PM2.5
emissions dataset.

In Chapter 3, we consider the partial interference setting, that is, the whole population
can be partitioned into clusters where the outcome of each unit depends on the interven-
tion on other units within the same cluster, but not on the units in different clusters. We
also assume that the confounders are subject to nonignorable missingness. We propose
three distinct consistent estimators for the direct, indirect, total, and overall effect of the
intervention on the outcome, and derive the asymptotic results accordingly. A compre-
hensive simulation study is carried out as well to investigate the finite sample properties
of the proposed estimators. We illustrate the proposed methods by analyzing the data
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collected from an Acid Rain Program, which was launched to reduce air pollution in the
USA by encouraging the scrubber’s installation on power plants, where the records of some
operating characteristics of the power generating facilities are subject to missingness.

In Chapter 4, we focus on the estimation of network causal effects. Under the setting
of nonignorable missing confounders, we develop a multiply robust estimation procedure
that gains extra protection against model misspecification. Compared with doubly robust
estimators proposed in Chapter 3, the proposed multiply robust estimators are consistent
if either one pair of the propensity score of treatment and missingness mechanism, or the
joint model of confounders and the outcome, is correctly specified. The finite performance
of the proposed methods under different missingness rates and cluster sizes is investigated,
and we further illustrate the proposed methods with the same real data used in Chapter
3.

We conclude this thesis and discuss the future work in Chapter 5. Specifically, in
Section 5.1, we summarize the contributions of the chapters in this thesis. In Section 5.2,
we discuss the extension of Chapter 2, where the construction of confidence intervals for
the low-rank term and the estimated fixed effects are investigated. Finally, in Section 5.3,
we briefly discuss the potential extensions of Chapters 3 and 4 to a more general setting.
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Chapter 1

Introduction

1.1 Correlated Data

Generally, correlated data can be classified into different types according to the correspond-
ing types of correlation. In Sections 1.1.1 and 1.1.2, we introduce the basic definitions and
steps of statistical analysis of two types of correlated data: longitudinal data and network
data. In Section 1.2, we introduce the three most widely-adopted missing data patterns
and possible reasons that lead to missingness. In Section 1.3, matrix completion algorithms
are introduced for handling large incomplete data matrices. In Section 1.4, we provide an
introduction to the robust estimation, and we introduce network data in causal inference
literature in Section 1.5.

1.1.1 Longitudinal Data

A longitudinal study refers to a research design that involves repeated observations of the
same variables over short or long periods of time across a sample of units. Following Diggle
et al. [2002], let Yij and xij denote a response variable and a length p vector of explanatory
variables for a unit j at time t, respectively, where i = 1, 2, · · ·m and j = 1, 2, · · · , ni.
Let Yi = (Yi1, Yi2, · · ·Yini

)T be the vector of repeated outcomes for subject i. Assume
E(Yi) = µi, V ar(Yi) = Vi be the mean and covariance matrix for the outcome of subject i,
respectively, where Cov(Yij, Yik) = vijk. The total number of responses of all units across
all time points is denoted by N =

∑m
i=1 ni.
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A simple but widely utilized model for conducting longitudinal data analysis is a mul-
tiple linear regression model that has the following expression:

Yij = xTijβ + εij,

where β = (β1, β2, · · · βp) is a length p vector of unknown regression coefficients, and εij
are random variables representing model error terms, which account for measurement error
and other sources of random variation, including the within-unit variation of the responses
in this fixed effects model specification. The regression model has the following matrix
form:

Yi = XT
i β + εi,

where Xi is a ni × p matrix and εi = (εi1, εi2, · · · εini
)T .

The primary interest of longitudinal studies lies in the investigation of the effects of
change over time, and there are many merits of conducting such studies. First, they are
more powerful than a cross-sectional study when the interest is to explore how responses
vary over time with covariates. For example, a longitudinal study can help reduce the bur-
den of collecting a sizable number of subjects required for cross-sectional studies. Besides,
the variability caused by unmeasured characteristics such as environmental exposures can
be controlled in the estimation from a longitudinal study. However, such effects of en-
vironmental exposures can obscure the estimation in cross-sectional studies. Second, a
longitudinal study can separate the cohort and time effects because it can focus on each
unit’s response trajectories, but the cross-sectional study may not be suitable in the case
when the variation among people is large.

With repeated measurements, numerous methods have been proposed to facilitate lon-
gitudinal data analysis. A simple, but limited, strategy is to reduce the repeated values
into one or two summary statistics, then analyze each summary variable as a function of
covariates. There are also different approaches to model the individual responses Yij with
covariates xij such as modeling the mean of the responses, conditional expectation of Yij
given the subject-specific covariates, or utilizing the transition models when responses are
binary variables such as the following logistic regression model (Albert [2000]):

log

{
Pr(Yij|Yi,j−1, · · ·Yi1, xij)

1− Pr(Yij|Yi,j−1, · · ·Yi1, xij)

}
= xTijβ + αYi,j−1.

Another widely used model is the linear mixed effects model (Laird and Ware [1982]),
where both fixed and random effects are included in the model. For each individual i, the
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model has the following expression:

Yi = Xiα + Zibi + ei, i = 1, 2, · · ·m

where α denotes a p× 1 vector of fixed effects, bi is a k × 1 vector of random effects that
follows multivariate normal distribution N (0, D), D is a k× k positive-definite covariance
matrix, Zi is a known ni×k design matrix of random effects, ei is assumed to follow multi-
variate normal distribution N (0, Ri), and Ri is a ni×ni positive-definite covariance matrix.
Then it can be shown that the marginal distribution of Yi follows Yi ∼ N (Xiα,ZiDZ

T
i +Ri).

In practice, the model can be fitted with various packages including lme4 package in R (R
Core Team [2019]). More examples and detailed explanations of our setting for longitudinal
studies are presented in Chapter 2.

1.1.2 Network Data

A network (or graph) G = (V,E) is a mathematical structure consisting of a set V nodes
and a set E of edges, where elements of E are unordered pairs {u, v} of distinct vertices
u, v ∈ V . The number of vertices Nv = |V | and the number of edges Ne = |E| are called
the order and size of the graph G, respectively. The network density is defined by the ratio
of the number of edges |E| and the potential number of edges, that is, 2|E|/(n(n − 1)).
The following adjacency matrix A can be used to represent the structure of the network.

Aij =

{
1 edges exist from node vi to node vj

0 otherwise.

Note that the network defined above is named a so-called binary network, and it does not
work for weighted network where the entries of A may take any positive values.

Conventional regression analysis is not suitable for network data without any justifi-
cation. To see this, assume a network can be disconnected into different sub-networks
or groups such as hospitals in a local district where each hospital serves as its own sub-
network. Let Yij be the jth observation in the ith group, j = 1, 2, · · ·ni, and i = 1, 2, · · ·K,
that is, there are K disjoint groups with ni units in each group. Suppose

Yij = xTijβ + εij,

and
Cov(Yij, Yik) = σ2ρ,

3



where xij is length p explanatory variable of unit j in the group i, β = (β1, β2, · · · βp) is a
vector of unknown regression coefficients of length p, εij is the random error with zero mean
and variance σ2, and the covariance between any pair of the responses in the same group
equals σ2ρ, 0 ≤ ρ ≤ 1. Let β̂ be the ordinary least square(OLS) estimator of β. The OLS
estimator is unbiased. However, ignoring the dependency structure within the groups will
result in several problems. On one hand, the variance estimator of β̂ is incorrect. On the
other hand, using β̂ as the estimator will result in a loss of efficiency, that is, the variance
of β̂ is greater than that of the best-unbiased estimator (Ntani et al. [2021]). Further
discussion of this group network setting will be left to Section 1.5 and Chapter 3.

Many models and methods have been proposed to handle network data. The classical
models usually assume a likelihood function for the network data with some underlying
parameters. The most fundamental probabilistic model is Erdős-Rényi model, which was
first proposed by Erdős and Rényi [1960], where the presence of the edges between all
nodes are assumed to be i.i.d. Bernoulli random variables, and the model of the probability
density of the network has the following expression:

Pr(A|θ) =
∏
i,j

θAij(1− θ)1−Aij ,

where θ is the unknown parameter in the Bernoulli distribution. Several extended models
based on Erdős-Rényi model have also been proposed such as p1, p2 model, and exponential
(family) random graph models (ERGMs)(see Kolaczyk and Csárdi [2014] for more details).

Latent variable models aim to explain the underlying structure of the network through
some additional modeling. The stochastic block model introduced by Holland et al. [1983]
is one of the most widely used latent variable models that can detect network structures.
Assume that the nodes in a network can be partitioned into K clusters C = {C1, C2, · · · CK}.
Let block density matrix BK×K be a probability matrix with each of its entries B(i, j) equal
to the probability of any nodes u ∈ Ci and v ∈ Cj being connected by an edge. Then, the
model can be expressed as

g(µ) =
∑
i

∑
j

CijBijBji,

where Cij represents the cluster assignment matrix with Cij = 1 if node i belongs to cluster
Cj and 0 otherwise, µ = E(A), and g(·) is a link function. The probabilistic graphical
models such as the latent space model introduced by Hoff et al. [2002] and the latent
factor model by Hoff [2009] have also been proposed to help explain the latent structure
of the network.
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1.2 Missing Data Patterns

According to Rubin [1976], and still emphasized presently, there are three types of miss-
ingness: missing completely at random (MCAR), missing at random (MAR), and missing
not at random (MNAR). The missingness mechanism is MCAR if the missingness does not
depend on either observed or missing values, the missingness mechanism is MAR if the
missingness does not depend on the missing values, and MNAR refers to a missing data
process that can depend on both observed and missing values.

There are different reasons that may lead to missingness in correlated data. One reason
is non-response. For example, in the literature on survey sampling, the participant may feel
uncomfortable or highly sensitive when answering some of the questions in a questionnaire.
To be more specific, there are two types of non-response in the context of a network: unit
non-response and item non-response, where the unit non-response refers to the case when
both the outcome and out-going edges are completely missing for a unit, and the item
non-response refers to that either the outcome or certain out-going edges are missing. In
the case of longitudinal data, the non-response can be further distinguished by including
partial non-response, which is characterized by time dependency, and means that for some
units only at certain time points of the intended data collection are available. This is
often due to panel mortality or attrition, which results in completely missing cases after a
certain time point(Huisman and Steglich [2008]). In a longitudinal study, one omnipresent
reason is the existence of dropouts, where dropouts may occur when some participants
experience adverse treatment effects, or some participants change their living location and
can no longer participate in a given study. It is also common that intermittent missingness
happens, for example, in a blood test experiment, a participant may skip a few tests
occasionally during the study period. A further complication is when a person is observed
and either the response or at least one predictor is not available, for example, one or two
predictors are not available due to a lab error.

Examining the patterns of missingness can be performed in different ways. Plotting
trajectories of the response variable or the proportion of missingness across time is a
simple approach. It is also appealing to perform a formal statistical test for the types of
missingness on a given dataset. Little [1988] proposed a global test statistic for MCAR
where the asymptotic null distribution and small sample distribution are given when data
are subject to monotone missingness. Qu and Song [2002] proposed a testing procedure for
MCAR missingness mechanism with quadratic inference functions. In practice, it may be
difficult to distinguish between MAR and MNAR, one possible way is to conduct sensitivity
analysis, which is used for examining and quantifying the effects of departures of different
assumptions. There are various ways to conduct sensitivity analysis such as the pattern
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mixture model approach and selection model approach (Molenberghs and Verbeke [2000]).
Ma et al. [2005] extended the idea of index of sensitivity to nonignorability (ISNI) to
longitudinal data with nonignorable drop-outs. Since the literature on ISNI methods is
still evolving, there is no standard rule to perform the analysis.

One naive method to handle missingness is to delete all the units that contain missing
values and use only those units with complete observed data to conduct statistical analysis,
which is known as complete case analysis. In practice, the complete case analysis may be
acceptable if those with any incomplete data comprise less than 5% of the original sample
size. In a longitudinal study, instead of ignoring all of those subjects’ visits, one may use
available case analysis by just deleting the visits at which the missingness happens. Both
cases work well if the proportion of missingness is small. However, both complete case
analysis and available case analysis are no longer suitable if the proportion of missingness
is large or the missingness mechanism is not MCAR, as such deletion can result in severely
biased estimators of mean and regression coefficients. When data are not missing com-
pletely at random, various methods have been proposed to handle this issue such as inverse
probability weighting, EM algorithm, imputation, and maximum likelihood-based method;
see Tang and Ju [2018] for a review of more state-of-the-art approaches.

1.3 Matrix Completion

Matrix completion problems are frequently encountered in recommendation systems, com-
puter vision, and system identification studies. The goal of matrix completion is to estimate
unobserved elements in a matrix through observed elements. Without any restriction, this
problem is NP-hard. However, a data matrix usually has some special properties, and
these properties make it possible to perform matrix completion. For example, low rank
is one of these properties. If a low-rank assumption is made, matrix completion can be
characterized as the following optimization problem:

minimize rank(X)

subject to Xij = Mij, for (i, j) ∈ Ω,

where X is the unknown matrix, M is the true matrix, and Ω is the set of locations
at which entries are observed. Let PΩ : Rn×n → Rn×n be the orthogonal projection
onto the subspace of matrices which vanishes outside Ω (i.e., PΩ = X if (i, j) ∈ Ω, and
PΩ = 0 otherwise), so that the information about M can be given by PΩ(X).

Since the optimization problem above cannot be solved in practice, Candès and Recht
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[2009] proposed recovering the unknown matrix by minimizing the following nuclear norm
of X:

minimize ‖X‖?
subject to PΩ(X) = PΩ(M),

where ‖X‖? is the nuclear norm which is defined as the summation of singular values of
X. Then, after convex relaxation, the optimization problem can be solved by semi-definite
programming. Candès and Recht [2009] proved that under an incoherence assumption
and uniformly at random sampling scheme, with large probability, the solution to the
optimization program is unique and equal to the true matrix, provided that the number
of observed entries obeys m > O(n5/4log(n)), where m is the number of observed entries,
and n is the maximum of the number of rows and the number of columns. This is the
first theoretical result that shows that the lower bound of sampling complexity can be
utilized to evaluate whether a matrix can be exactly recovered, which opens the possibility
of exact matrix recovery. Candès and Tao [2010] improved their results by making a strong
incoherence assumption on matrices. With this assumption, the lower bound of sampling
complexity was further improved to O(nlog2(n)); this improvement is significant because
the strong incoherence assumption is satisfied by most matrices. More importantly, n5/4

is optimized to n, which can greatly reduce the sampling complexity for high-dimensional
matrices.

Although the feasibility of the exact matrix recovery has been proven, in practice, it is
more important to find an effective algorithm for solving the problem. Since minimization
of the nuclear norm problem can be transferred into a semi-definite programming problem,
it is natural to use a semi-definite toolkit package (e.g. SDPT3, SeDuMi) to get a solution,
but there are some issues when applying these tools. On one hand, most of these methods
use the interior point algorithm to solve convexity optimization problems. When the
dimension of the matrix is high, computing the Newton direction is time-consuming, while
another problem lies in the fact that the condition number can be really large when using
the conjugate gradient method to calculate the direction of Newton’s step, which results
in unstable numerical results. On the other hand, these general optimization methods are
inefficient because they do not use the low-rank property of the true matrix.

The Singular Value Thresholding (SVT) algorithm proposed by Candès and Tao [2010]
is the first spectral decomposition algorithm. The original idea is straightforward, as they
used matrix factorization to get a deeper understanding of the internal matrix structure
and generation process so that they can recover the true matrix. The optimization problem
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with convexity relaxation has the following expression:

minimize τ‖X‖? +
1

2
‖X‖2

F

subject to PΩ(X) = PΩ(M),

where ‖.‖F is the Frobenius norm, which is defined as the square root of the sum of squares
of the elements of the inside matrix. By Lagrange dual method,

Xk = Dτ (Y
k−1)

Y k = Y k−1 + δkPΩ(M −Xk),

where Dτ is an operator for each τ > 0. Assume X = UΣV T , and the singular values σi
are positive. Then we have

Dτ (X) = UDτ (Σ)V T

Dτ (Σ) = diag(max{σi − τ, 0}).

It has been proved when the learning rate δk is smaller than a Lipschitz constant, the
sequence {Xk} will converge to the true matrix M . In each iteration, both {Xk} and
{Y k} are estimators of the true matrix, since the estimation of {Y k} can be affected
by small singular values. Singular value thresholding was utilized to remove those small
singular values, with only key components being kept in each step.

However, one of the constraints in previous results is that all observed elements in the
data matrix should be accurate, which is too idealistic in practice. Candes and Plan [2010]
utilized the following additive noise model:

PΩ(Y ) = PΩ(M) + PΩ(Z),

where Y ∈ Rn1×n2 is the observed data matrix, M is the true matrix, and Z is a noise
term that may be stochastic or deterministic. They showed that if there exists a constant
δ such that ||PΩ(Z)||F ≤ δ, then the estimator M̂ obeys

‖M − M̂‖F ≤ 4

√
Cp min(n1, n2)

p
δ + 2δ,

i.e., the error is proportional to the magnitude of the noise, such that the error is small
when the noise level is small.
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In recent years, driven by the aforementioned fundamental theoretical studies, various
estimation and identification methods have been proposed when the objective matrix is
subject to missingness in matrix completion literature. Mazumder et al. [2010] proposed
an iterative algorithm Soft-Impute for computing low-rank approximations for incomplete
matrices, with convex relaxations of rank penalty term, on a grid of tuning parameter
values. The algorithm alternates between imputing missing values from a current singular
value decomposition, and updating the singular value decomposition using the current
imputed matrix. In the noiseless setting, Keshavan et al. [2010] proposed a three-step
algorithm called Optspace, which avoids the time-consuming SVD decomposition in every
iteration of the algorithm; they also showed that the unknown matrix can be exactly
recovered from O(n log(n)) entries, given that the true matrix is sufficiently unstructured
and the rank is O(1).

1.4 Robust Estimation

In causal inference literature, to reduce the bias of the average treatment effect estima-
tors, various methods have been proposed to adjust for confounders. One of the most
popular classes of methods is the inverse probability weighting (Rosenbaum and Rubin
[1983]) approach. The idea is to create a pseudo-population by weighting each subject by
the inverse of the probability of receiving the treatment conditional on the confounders,
such that the association between the treatment and confounders can be removed. In an
observational study, the propensity score model is generally unknown and needs to be es-
timated. However, in practice, the relationship between the covariates and the treatment
can be complicated and may be difficult to correctly specify the propensity score model. In
fact, the IPW estimators are highly sensitive to the specification and the estimation of the
propensity score models. To avoid the risk of biased estimators due to the incorrect specifi-
cation of propensity score models, robust estimation has gained more and more popularity
in causal inference and missing data problems. Robust estimation aims at adding pro-
tection against model misspecification by allowing the specification of multiple candidate
working models.

In Chapter 3, we propose a set of doubly robust estimators for four types of network
causal effects (the definitions of the network causal effects are given in 3). The doubly
robust estimator was first proposed by Robins et al. [1994] and Rotnitzky et al. [1998] in
the form of an augmented IPW estimator in missing data models. The methodology was
further discussed in Robins et al. [2000], Lunceford and Davidian [2004], Bang and Robins
[2005], and Kang and Schafer [2007]. Typically, a doubly robust (DR) estimator requires
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the estimation of two nuisance functionals: the propensity score and an outcome regression.
In missing data problems, an estimator is DR if it is consistent when either the missingness
mechanism or the conditional distribution of the outcome data is correctly specified. In
causal inference problems, an estimator is DR if it is consistent when either the conditional
probability of receiving the treatment or the conditional distribution of the outcome given
treatment and confounders is consistently estimated. When data are independent, it is
also well-known that the estimator achieves the semiparametric efficiency bound if both
models are correctly specified.

In Chapter 4, we propose a set of multiply robust estimators. The multiply robust
estimators have been studied in Han and Wang [2013], Han [2014a,b] and Han [2018]
based on the empirical likelihood approach. Compared with doubly robust estimators, the
multiply robust (MR) estimators add more protection against model misspecification by
allowing the postulation of a set of candidate parametric working models. An estimator is
MR if it remains consistent if any one of the candidate models, either for the propensity
score model or for the regression model, is correctly specified. When data are missing not
at random, Li et al. [2020a] constructed the multiply robust estimators by proposing the
calibration constraints directly on the score equations for the parameter of interest under
multiple working models.

1.5 Causal Inference with Interference

Over the past decade, the problem of inference in the treatment effect when data are subject
to missingness has drawn a great amount of attention. According to Rubin [1976], there
are two types of missingness: ignorable and nonignorable missingness. Ignorable miss-
ingness refers to missingness that is independent of the missing values, and nonignorable
missingness refers to missingness that is dependent on the missing values. The inference
for nonignorable missingness is more challenging than ignorable missingness because the
full data distribution is not fully identifiable without any assumptions, sometimes very
restrictive. Following Yang et al. [2019], we consider the group-level outcome-independent
missingness assumption, where the missingness is independent of the outcome conditional
on confounders and treatment, which is plausible when the covariates are collected at the
beginning of the study, and the outcome is collected long after the covariates are measured.

In most of the aforementioned work in handling missing data in the literature, meth-
ods rely on the Stable Unit Treatment Value Assumption (SUTVA) Rubin [1980]. SUTVA
states that (i) the potential outcome of each unit is unaffected by the treatment assignment
of any other unit, and (ii) there are no different versions of each treatment level. However,
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the first assumption, which is known as the no interference assumption Cox [1958], can
be violated in some scenarios. For example, in 1990, the Acid Rain Program was launched
to reduce ambient PM2.5 (atmospheric particulate matter (PM) that has a diameter of
fewer than 2.5 micrometers) by assigning power plants to install scrubber facilities Zigler
et al. [2016]. The monitored reduction of SO2 emission data at the location of one power
plant not only depends on its own scrubbers’ installation but may also be affected by the
intervention of power plants upwind. Another example comes from the nationally repre-
sentative US Population Assessment of Tobacco and Health (PATH) Study Hyland et al.
[2017], where researchers were interested in evaluating the influence of Electronic Nicotine
Delivery Systems (ENDS) and pharmaceutical cessation aids on persistent abstinence from
cigarette smoking and reduced cigarette consumption. In this study, it has been revealed
that one individual’s marital satisfaction and family members’ smoking status can affect
this individual’s smoking cessation, that is, the smoking cessation of one individual may
be affected by the intervention of other family members. More examples can also be found
in biomedical research, public health sciences, and social networking studies.

Various identification and estimation methods have been proposed in the scenario when
interference exists but the confounders and outcome are fully observed. Generally, there
are two types of interference: full interference and partial interference. Full interference
happens when the potential outcome of a unit is affected by the intervention of any other
unit that interferes with this unit. The network interference structure can be represented
by an adjacency matrix: the entries of which take the value on {0, 1} (e.g., if the unit i is
affected by the intervention on the individual j, then the entry of the matrix in ith row and
jth column equals one; otherwise, the value of the entry equals zero). Partial interference
is a special case of full interference where the adjacency matrix follows block diagonal
structure, the entry of the matrix is equal to zero if the unit of the corresponding row and
the unit of the corresponding column are not in the same block, that is, the interference
may happen between units in the same block but not between units in different blocks. In
this chapter, we consider the latter type of interference and focus on the semiparametric
estimation of four network treatment effects: the direct effect, indirect effect, total effect,
and overall effect (Tchetgen Tchetgen and VanderWeele [2012], Hudgens and Halloran
[2008], Liu et al. [2019], Papadogeorgou et al. [2019]). The definitions and illustrations of
these treatment effects are presented in Section 3.2. Bhattacharya et al. [2020] proposed a
general method for estimating causal effects under data dependence when the structure of
this dependence is not known a priori. Imai et al. [2021] proposed consistent estimators for
direct and spillover effects under the stratified interference assumption. Giffin et al. [2020]
proposed a generalized propensity score and a computational algorithm for estimating the
spillover effects.
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Chapter 2

Noisy Matrix Completion for
Longitudinal Data

2.1 Introduction

In modeling longitudinal data, there is an increasing interest in estimating the unknown
parameters in the models, when the responses and/or the covariates are subject to miss-
ingness. Fitzmaurice et al. [2012] discussed different types of missingness mechanisms and
proposed several methods for dealing with the missingness accordingly. Generally, dif-
ferent methods are reliable under different missingness patterns. When data are subject
to ignorable missingness, various approaches have been proposed to handle the missing-
ness. For example, multiple imputation (MI) replaces the missing values with plausible
values multiple times. MI includes parametric approaches and non-parametric approaches.
Multivariate imputation by chained equations (MICE)(Buuren and Groothuis-Oudshoorn
[2010]) is one of the parametric methods which, with the conditional distribution, regresses
each variable based on other variables during the imputation procedures. Maximum likeli-
hood approachDempster et al. [1977], Ibrahim [1990], Eekhout et al. [2015], fully Bayesian
inference such as Gibbs sampling Rubin [1976], and semiparametric methods Zhao et al.
[1996], Robins et al. [1994] have also been proposed for estimating the parameters of inter-
est.

In this chapter, we focus on imputing the missing responses with longitudinal data and
deriving the upper bounds for the estimation error based on matrix completion theories. To
analyze the longitudinal data, we utilize a longitudinal low-rank model based on the linear
fixed effects model. The unit- and time-specific covariates are included in the proposed
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model to improve the imputation accuracy. The linear fixed effects model with the unit-
and time-specific covariates has been widely utilized for modeling longitudinal data in
environmental studies, health research, and econometric problems. The following are some
examples that use the model or variants of it.

Example 1: Conroy et al. [2002] developed multiple models for the analysis of recapture
data for 2678 serins ringed in north-eastern Spain since 1985. The objec-
tive of the research was to explore the predictive relationship between the
survival of serins and the unit-specific and time-specific covariates. Time-
specific covariates included different types of weather conditions. Individual
covariates included body mass, wing length, interactions between body mass
and environmental factors, etc. A number of plausible models with different
combinations of the unit- and time-specific covariates were formed, and the
Akaike Information Criterion(AIC) was used to rank the fitted models.

Example 2: In econometric literature, there is some interest in investigating the effects of
the macroeconomic and bank-specific covariates on the non-performing loans
of a bank. For example, Mehmood et al. [2013] used a fixed effects model
to model the effects of macroeconomic factors(e.g., interest rate, and GDP)
and bank-specific covariates such as market share of the bank in the banking
market, return on assets of the bank, return on equity and statuary liquidity
requirements on non-performing loans in Pakistan from 2003 to 2012.

Example 3: Berry et al. [2004] utilized a modified empirical differentiated products de-
mand model on second-choice automotive purchases data. The data contains
both product-specific covariates and consumers’ characteristics, and the in-
teraction terms between consumer tastes and product characteristics were
included in the model to determine substitution patterns. The authors also
proposed moments estimators for the unknown parameters in the linear fixed
effects model and showed that the limiting distributions of the proposed es-
timators follow normal distributions.

In this study, we develop a two-step estimation procedure to estimate the fixed effects
and the low-rank term in the proposed model. We further show the performance of the
proposed methods in terms of the estimation error via both the theoretical analysis and
the simulation studies.
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The rest of the chapter is organized as follows. In Section 2.2, we introduce the notation
and assumptions. In Section 2.3, we propose a longitudinal low-rank model and a two-
step estimation algorithm for solving the optimization problem. In Section 2.4, we present
the non-asymptotic error bounds for the estimated outcome matrix, the first-order fixed
effects, and the low-rank term. The finite sample performance of the proposed algorithm is
illustrated through simulation studies in Section 2.5, and the proposed algorithm is applied
to both the Covid-19 and the SO2 emissions dataset in Section 2.6.

2.2 Notations and Setup

Let Y ∈ RN×T denote the outcome matrix, the values of which may be subject to miss-
ingness, N represents the number of units, and T represents the number of time points.
Let X ∈ RN×P denote the unit-specific covariate matrix, and Z ∈ RT×Q denote the
time-specific covariate matrix. Let R ∈ RN×T denote the missingness indicator, more
specifically, Rij = 1 if Yij is observed, and Rij = 0 if Yij is missing. Let Y O

i and Y M
i denote

the vector of observed and missing responses on the ith subject, respectively. Here, we only
consider that the outcome is subject to missingness and the covariate matrices X and Z
are assumed deterministic and complete. Let L ∈ RN×T denote a low-rank matrix, and
rL denote the rank of L, where we assume rL << min(N, T ). Let e1, e2 · · · eN denote the
standard basis of RN . Let Eij be a matrix with all entries equal to zero except that its
(i, j)th entry is equal to 1, where 1 ≤ i ≤ N and 1 ≤ j ≤ T . We consider the following
decomposition of the target outcome matrix:

YN×T = XN×PHP×QZ
′
T×Q + LN×T + εN×T , (2.1)

where HP×Q is a fixed effects coefficient matrix, and εN×T is a random error term. Let

εij = ε
(1)
ij + ε

(2)
ij ∀1 ≤ i ≤ N, 1 ≤ j ≤ T, where ε

(1)
ij represents presumed serial correlation

and ε
(2)
ij represents the random noise term.

Our model shares some similarities with the model proposed by Athey et al. [2018], in
which the time-varying covariates are also included. Robin et al. [2020] also proposed a
similar decomposition, where the matrix of interest is decomposed as the summation of
the main effects and the low-rank term, and a negative quasi-likelihood function is utilized
as the loss function. Our model differs from the previous work in two main aspects. First,
we assume that the low-rank term includes higher-order main and interaction terms, and
we let the random error term be a combination of serial correlation and random noise
instead of the random noise only. Under this assumption, we focus on estimating the
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main and first-order interaction terms. Second, we consider the missingness mechanism
as MAR (Little and Rubin [2019]), i.e., Pr(Rij = 1|Y,X,Z) = Pr(Rij = 1|Y O, X, Z). In
this chapter, not only are the statistical guarantees for the estimator of L shown, but
the statistical properties for the estimator of the fixed effects coefficient matrix are also
provided. The proposed method is also similar to recovering the principal components of
the data matrix (Candès et al. [2011]), but our focus here is to impute the missing values.

Let A,B ∈ RN×T . The Kronecker product is denoted by A ⊗ B, and the trace inner
product is defined as

〈A,B〉 := tr
(
AB>

)
.

The following matrix norms are used for the remainder of this paper.

1. The Schatten p-norms: The singular values of the matrix A are denoted by σi,

1 ≤ i ≤ min(N, T ), and ‖A‖p =
(∑min(N,T )

i=1 σpi (A)
) 1

p
.

2. Nuclear norm: ‖A‖∗ = trace
(√

ATA
)

=
∑min{N,T}

i=1 σi(A).

3. Operator norm:

‖A‖op = sup

{
‖Av‖
‖v‖

: v ∈ V with v 6= 0

}
.

If we specifically choose the Euclidean norm on both RN and RT , then the matrix
norm given to a matrix A is the square root of the largest eigenvalue of the matrix
ATA. This is equivalent to the largest singular value of A.

4. Frobenius norm: The Frobenius norm is a special case of Lp,q norm when p =
q = 2. This norm can be defined in various ways:

‖A‖F =

√√√√ N∑
i=1

T∑
j=1

|aij|2 =
√

trace (ATA) =

√√√√min{N,T}∑
i=1

σ2
i (A).

5. L∞ norm: ‖A‖∞ = max1≤i≤N,1≤j≤T
∑N

i=1

∑T
i=1 | aij |.

6. L1 norm: ‖A‖1 = max1≤i≤N,1≤j≤T
∑N

i=1

∑T
i=1 |aij| .

7. L2(Π) norm: ‖A‖L2(Π) =
√
E〈A,X〉2, where X is sampled from a probability

measure on RN×T .
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Here, we also make the following assumptions:

Assumption 1 (covariate terms constraints). There exists constants Cx, Cz, and Cxz such
that ‖X‖∞ < Cx, ‖Z‖∞ < Cz, ‖Z ⊗X‖∞ < Cxz, and ‖L‖∞ < CL.

Assumption 1 is an extension of the conditions that ‖L‖∞ < ∞, ‖X‖∞ < Cx, and
‖Z‖∞ < Cz, which guarantees that the fixed effects term is finite.

Assumption 2 (propensity score constraints). There exist positive constants p1 and p2

such that 0 < p1 ≤ Pij = Pr(Rij = 1|Y O
i. , Xi., Zj.) ≤ p2 < 1 a.s., where Pr(Rij =

1|Y O, X, Z), or P for short, is the propensity score model (or matrix) for missingness.

Assumption 2 states that every entry in the matrix has a positive probability to be
either observed or missing, which rules out the case when some individuals at some time
points can never be observed or always be observed.

Assumption 3 (random error term constraints). (a) E(ε) = 0, ‖E(ε2)‖∞ < ∞. (b)

{ε(1)
ij }1≤i≤N,1≤j≤T are σ sub-Gaussian random variables, and {ε(1)

i. }1≤i≤N are independent

of each other. (c) {ε(2)
ij }1≤i≤N,1≤j≤T are i.i.d. τ sub-Gaussian random variables.

Assumption 3 (a) states that the random error is centered and has a finite variance. In
(b), both ε(1) and ε(2) follow sub-Gaussian distributions.

2.3 A Longitudinal Low-rank Model and a Two-step

Estimation Algorithm

The classic inverse probability weighting (IPW) estimator was first proposed by Horvitz
and Thompson [1952] in the survey sampling literature. The idea is to create a pseudo-
population by weighting each subject by the inverse of the conditional probability of receiv-
ing the treatment. The classic IPW can also be extended to the setting when the outcome
is subject to missingness. The widely used way to correct the bias is to weight each subject
by the inverse of the propensity score for missingness, i.e., 1/Pr(R = 1|Y O, X, Z). The
weighted objective function has the following representation:

arg min
H,L

E

{
R

Pr(R = 1|Y O, X, Z)
‖Y − (XHZ

′
+Xα1T

′
+ 1Nβ

′
Z
′
+ L)‖2

F

}
+λH‖H‖1 + λL‖L‖?,

(2.2)
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where αP×1 denotes a vector of unknown parameters for fixed unit effects, β1×Q denotes
fixed time effects, H is the coefficient matrix for the first-order interaction terms among
time-specific and unit-specific covariates, L is a low-rank matrix representing the higher-
order main effects and interaction effects, and 1N and 1T are column vectors with all
entries equal to one, the dimensions of which are N and T , respectively. The penalty
terms λH‖H‖1 and λL‖L‖? are incorporated to avoid overfitting, and λH , λL > 0 are the
respective regularization parameters.

To reduce the computational burden, notice that the previous optimization problem
can be expressed in a more compact way: the terms Xα1T

T and 1Nβ
TZT can be incor-

porated into the term XHZT , and the optimization problem is equivalent to the following
representation:

arg min
H,L

E

{
R

Pr(R = 1|Y O, X, Z)
‖(X̃H̃Z̃ ′ + L)− Y ‖2

F

}
+ λH‖H̃‖1 + λL‖L‖?,

where

X̃ =
(
XN×P

... IN×N

)(IP×P 0P×1
0N×P 1N

)
, (2.3)

Z̃ =
(
ZT×Q

... IT×T

)(IQ×Q 0Q×1
0T×Q 1T

)
, (2.4)

H̃ =

(
H α
βT 0

)
, (2.5)

IN×N and IT×T are identity matrices, and 0P×1, 0N×P, 0Q×T, and 01×Q are matrices with
all entries equal to zero. For the rest of this paper, we use X, H and Z instead of X̃,H̃
and Z̃, respectively, to avoid excess notation. Let

F (H,L) =
1

NT

N∑
i=1

T∑
j=1

Rij

P̂r(Rij = 1|Y O
i , Xi., Zj.)

{(XHZT )ij + Lij − Yij}2,

and

Fλ̄(H,L) = F (H,L) + λH‖H‖1 + λL‖L‖?,

where λ̄ = (λH , λL), and P̂r(Rij = 1|Y O
i , Xi., Zj.) is a consistent estimator of Pr(Rij = 1|

Y O
i , Xi., Zj.), which can be obtained via maximum likelihood. We then aim to minimize

Fλ̄(H,L) under the constraints that ‖H‖∞ <∞ and ‖L‖∞ <∞, i,e., (Ĥ, L̂) ∈ arg minH,L
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Fλ̄(H,L). We will further explain the constraints on the parameter space in Section 2.4.

Let M = f(x,z)(H)+L = XHZT+L, where f(x,z)(H) = XHZT . Let M∗ = XH∗ZT+L∗

denote the true value ofM . Let Ĥ, L̂ and M̂ be the estimators ofH, L, andM , respectively.
The minimization of F (H,L) can be solved by different algorithms. For example, stochastic
gradient descent, proximal gradient descent, and the Adagrad algorithm (see Bottou et al.
[2018] for a review of more advanced optimization algorithms) can all be utilized to solve
this optimization problem. Coordinate gradient descent (CGD) proposed by Yun and
Toh [2011] is one of those algorithms with Q-linear convergence rate, which can also be
extended to the setting when there are multiple variables that need to be updated. The
minimization of the above convex optimization problem can be solved by the adaptive
CGD algorithm in an iterative way. Note that Athey et al. [2018] also mentioned that
iterative coordinate descent can be used to solve such a convex function. Here, we provide
the details of the estimation procedure, and focus on showing how the unit-specific and
time-specific covariates can benefit the imputation accuracy in a longitudinal setting. In
each iteration step (n), we update H and L by the following rule: first, the search direction
for H is

d
(n)
H ∈ arg min

d∈RP×Q

{
F (Ĥ(n) + d, L̂(n)) + λH ||Ĥ(n) + d||1

}
∈ arg min

d∈RP×Q

1

NT

N∑
i=1

T∑
j=1

Rij

P̂r(Rij = 1|Xi., Zj.)
{f(x,z)(d)ij − (Yij − M̂ (n)

ij )}2 + λH‖Ĥ(n) + d‖1.

(2.6)

Notice that the l1 penalty term in Equation (2.6) includes the summation of the current
update Ĥ(n) and the search direction for Ĥ(n). To simplify the problem, we rewrite the
above optimization problem in the following way such that it can be directly solved with
well-developed packages in R, such as the glmnet package in R Hastie and Qian [2014]:

H
(n+1)
temp ∈ arg min

H∈RP×Q

1

NT

N∑
i=1

T∑
j=1

Rij

P̂r(Rij = 1|Y O
i , Xi., Zj.)

[
f(x,z)(H)ij − {(Yij −M (n)

ij ) + f(x,z)(H
(n))ij}

]2

+ λH‖H‖1

∈ arg min
H∈RP×Q

1

NT

N∑
i=1

T∑
j=1

Rij

P̂r(Rij = 1|Y O
i , Xi., Zj.)

{
f(x,z)(H)ij − (Yij − L(n)

ij )

}2

+ λH‖H‖1.

(2.7)
Specifically, the above minimization problem is equivalent to a weighted lasso problem with
l1 penalty term, which can be solved numerically with glmnet. Thus, the estimated search
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direction is calculated by d̂
(n)
H = Ĥ

(n+1)
temp − Ĥ(n), and the intermediate estimator M̂ (n),int of

M is equal to
M̂ (n),int = fx,z(Ĥ

(n) + τ
(n)
H d̂

(n)
H ) + L(n),

where τ
(n)
H is the step size that is selected by the following steps of the adapted Armijo rule

Bertsekas [1997]. First, choose τ 0
H > 0 as an initial step size, and let τ

(n)
H be the largest

element of {τ 0
Hβ

j}j=0,1··· satisfying

F (Ĥ(n) + τ
(n)
H d̂

(n)
H , L̂(n)) + λH‖Ĥ(n) + τ

(n)
H d̂

(n)
H ‖1 ≤ F (Ĥ(n), L̂(n)) + λH‖Ĥ(n)‖1 + τ

(n)
H σ∆

(n)
H ,

(2.8)
where 0 < β < 1, 0 < σ < 1, 0 < γ < 1,

∆
(n)
H = − 2

NT

N∑
i=1

T∑
j=1

Rij

P̂r(Rij = 1|Y O
i , Xi., Zj.)

(Yij − M̂ (n)
ij )(f(x,z)(d̂

(n)
H )ij)

+ γ
1

NT

N∑
i=1

T∑
j=1

Rij

P̂r(Rij = 1|Y O
i , Xi., Zj.)

(f(x,z)(d̂
(n)
H )ij)

2

+ λH(‖Ĥ(n) + d̂
(n)
H ‖1 − ‖Ĥ(n)‖1).

(2.9)

The first and second terms in ∆
(n)
H are the first and second order derivatives of the objective

function, respectively. The above Armijo rule is a popular inexact line search condition,
where larger step sizes are accepted if we choose larger γ and smaller σ. The basic intuition
of the Armijo rule is to find a small step size such that the objective function has a sufficient
decrease in each iteration. Let dH = 0, and we have the following representation for the
search direction of the low-rank matrix L:

d
(n)
L ∈ arg min

d∈RN×T

1

NT

N∑
i=1

T∑
j=1

Rij

P̂r(Rij = 1|Y O
i , Xi., Zj.)

{
dij −

(
Yij − M̂ (n),int

ij

)}2

+λL‖L̂(n) + d‖?.

(2.10)

Then,

L
(n+1)
temp ∈ arg min

L∈RN×T

1

NT

N∑
i=1

T∑
j=1

Rij

P̂r(Rij = 1|Y O
i , Xi., Zj.)

[
Lij −

{
Yij − f(x,z)(Ĥ

(n+1))

}]2

+λL‖L‖?.
(2.11)
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The above minimization problem is equivalent to a weighted matrix completion problem,
where each individual is weighted by the inverse of estimated propensity score for miss-
ingness, i.e., 1/P̂r(Rij = 1|Y O

i , Xi., Zj.). Notice that L(n) is estimable as we restrict the
summation of the square loss only over those observed entries. Then, the estimated search
direction for L is d̂

(n)
L = L̂

(n+1)
temp −L̂(n), and we have the following expression of the estimator

for M in the next iteration:

M̂ (n+1) = fx,z(Ĥ
(n) + τ

(n)
H d̂

(n)
H ) + (L̂(n) + τ

(n)
L d̂

(n)
L ),

where τ
(n)
L is the step size selected by the following adapted Armijo rule. Similarly as

before, we first choose τ 0
L > 0 as an initial step size, and let τ

(n)
L be the largest element of

{τ 0
Lβ

j}j=0,1··· satisfying

F (Ĥ(n) + τ
(n)
H d̂

(n)
H , L̂(n) + τ

(n)
L d̂

(n)
L ) + λL‖L̂(n) + τ

(n)
L d̂

(n)
L ‖?

≤F (Ĥ(n) + τ
(n)
H d̂

(n)
H , L̂(n)) + λL‖L̂(n)‖? + τ

(n)
L σ∆

(n)
L ,

(2.12)

where 0 < β < 1, 0 < σ < 1, 0 < γ < 1, and

∆
(n)
L = − 2

NT

N∑
i=1

T∑
j=1

Rij

P̂r(Rij = 1|Y O
i , Xi., Zj.)

(Yij − M̂ (n),int
ij )(d̂

(n)
L,ij)

+ γ
1

NT

N∑
i=1

T∑
j=1

Rij

P̂r(Rij = 1|Y O
i , Xi., Zj.)

(d̂
(n)
L,ij)

2

+ λL(‖L̂(n) + d̂
(n)
L ‖? − ‖L̂

(n)‖?).

(2.13)

For the sake of clarity, the steps of the proposed algorithm are summarized as below.

2.4 Theoretical Results

In this section, we aim to derive the l2 estimation error of the estimated parameters when
serial correlation exists. Notice that related results have also been discussed in some
previous work, e.g., Klopp et al. [2014], Klopp et al. [2017], Athey et al. [2018], Robin
et al. [2019] and Hamidi and Bayati [2019]. The main difference lies in that we need to
account for the stochastic error term of the serial correlation in our setting, as well as
provide the non-asymptotic error bounds for the estimated fixed effects. For the sake of
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Algorithm 1 Two-step Matrix Completion Algorithm

Input: Unit-specific covariates X, time-specific covariates Z, and observed outcome
matrix Y .
Initialize: Ĥ(0) and L̂(0) are generated via ordinary least squares estimation.

for ‖Ĥ
(n+1)−Ĥ(n)‖F
‖Ĥ(n)‖F

> ε or ‖L̂(n+1)−L̂(n)‖F
‖L̂(n)‖F

> ε do

Step 1: Compute Ĥ(n+1) by Equation (2.7) with glmnet package in R;
Step 1.5 : Compute intermediate estimator M̂ (n),int;
Step 2: Compute L̂(n+1) by Equation (2.11) with softImpute algorithm.

end for
Output: Compute Ŷ = XĤZ

′
+ L̂.

completeness, we first prove the global convergence of our algorithm, which is summarized
in Theorem 2.4. Since the updates of Ĥ and L̂ in each iteration satisfy the line search
condition, the objective function is always non-increasing after the updates of each of the
parameters. The proof of Lemma 2.1 is an adaptive version of Proposition 3.1 in Tseng
and Yun [2009].

Lemma 2.1. The Fλ̄(H
n, Ln) is monotonically non-increasing.

The proof of Lemma 2.1 is given in Section 2.8. It follows that the updates of estimated
unknown parameters H and L belong to the level set defined as

lev(Fλ̄) = {(H(n), L(n))|Fλ̄(H(n), L(n)) ≤ Fλ̄(H
0, L0)},

where (H0, L0) is the starting point of the proposed algorithm. Since the objective function
is non-increasing according to Lemma 2.1, we proceed by showing the following Lemma,
which is the condition for proving the existence of minimizer stated in Lemma 2.3.

Lemma 2.2. The level sets lev(Fλ̄) are compact. The proof is given is Section 2.8.

Lemma 2.3. There exists at least one minimizer (H?, L?) for the objective function Fλ̄(H,L),
i.e., ∀H ∈ RP×Q, and L ∈ RN×T , Fλ̄(H,L) ≥ Fλ̄(H

?, L?).

The main tool for proving Lemma 2.3 is Weierstrass’s Theorem (Apostol [1974]), which
states that every continuous function in a compact set attains its minimum, the formal
proof for the lemma is shown in Section 2.8.

Theorem 2.4. Under Assumptions 1 and 2, assume {H(n), L(n)} are generated by the pro-
posed algorithm, then, every cluster point of {H(n), L(n)} is a stationary point of Fλ̄(H,L).
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Next, to derive the estimation error bounds for Ŷ , Ĥ, and L̂, we proceed by the follow-
ing steps. First, we start by showing that the error bounds for Ŷ depend on the summation
of two terms: the first term is proportional to ‖∆H‖1, and the second term is proportional
to ‖∆L‖F , given that the regularization parameters satisfy λH ≥ ‖

∑N
i=1

∑T
j=1 εijRijEij‖∞,

and λL ≥ ‖
∑N

i=1

∑T
j=1 εijRijEij/P̂r(Rij = 1|Y O

i , Xi., Zj.)‖op. Second, we show the proba-

bilistic upper bounds for the stochastic errors ‖
∑N

i=1

∑T
j=1 εijRijEij‖∞ and ‖

∑N
i=1

∑T
j=1 εijRijEij/

P̂r(Rij = 1|Y O
i , Xi., Zj.)‖op. In the proposed algorithm, we require the regularization pa-

rameters λH and λL to be greater than these two upper bounds, respectively. The ex-
pression of the non-asymptotic error bounds is presented in Lemma 4 and Lemma 5,
respectively. Thirdly, we define the following two constrained sets with respect to H and
L:

CH(θH) :=

{
H ∈ RP×Q

∣∣∣∣‖H‖1 ≤ 1, ‖H‖2
L2(Π) ≥ θH

}
,

and

CL(r, θL) :=

{
L ∈ RN×T

∣∣∣∣‖L‖∞ ≤ 1, ‖L‖2
L2(Π) ≥ θL, ‖L‖? ≤

√
r‖L‖F

}
.

We will present that the restricted strong convexity property (RSC) holds on these two
constrained sets. Such property was first proven to hold in matrix completion problems
by Negahban and Wainwright [2012], and similar work can also be found in Klopp et al.
[2014] and Athey et al. [2018]. Roughly speaking, we will show if ∆H ∈ CH(θH) and
∆L ∈ CL(r, θL), with high probability, E(‖∆L‖2

F ) is smaller than ‖∆L‖2
F with an additional

term, and E(‖∆XHZT‖2
F ) is smaller than ‖∆XHZT‖2

F with an additional term.

Lemma 2.5. With probability 1− exp(−t), the stochastic error ‖
∑N

i=1

∑T
j=1 εijRijEij‖∞

has the following probabilistic upper bound:

‖
N∑
i=1

T∑
j=1

εijRijEij‖∞ ≤ 2
√

log(2NT ) + t

(√
Tσ + τ

)
.

Lemma 2.5 shows the explicit expression of the probabilistic upper bounds for the
stochastic error with respect to λH . Notice that the above expression contains the term√
Tσ+τ , which indicates that the infinity norm of this stochastic error term is proportional

to the magnitude of the variance of the random error. Thus, as we will show in the following
theorems, the additional term

√
Tσ + τ deteriorates the estimation error of the estimated

fixed effects, the low-rank term, and the imputed outcome matrix.

Lemma 2.6. With probability 1−exp(−t), the probabilistic upper bound for the stochastic
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error ‖
∑N

i=1

∑T
j=1 εijRijEij/P̂r(Rij = 1|Y O

i , Xi., Zj.)‖op has the following expression:

‖
N∑
i=1

T∑
j=1

εij
Rij

P̂r(Rij = 1|Y O
i , Xi., Zj.)

Eij‖op

≤(c?1 + c?2) max

[{
16 max{T log(N), N log(T )}σ2 + 2 max(N, T )τ 2

p1

}
×
√
t+ log(N + T ),{

16σ2emax{T log(N), N log(T )}
p1

+
2 max(N, T )

√
Tτ

p1

log

(√
Tp1

τ

)}
×
(
t+ log(N + T )

)]
.

Lemma 2.6 shows the expression of the upper bound for the stochastic error with respect
to λL. The main idea is to decompose the random error term into the serial correlation
and the independent random noise components and apply Bernstein’s inequality to both
parts. The idea is similar to some of the previous work in the matrix completion literature,
but differs in that such decomposition provides more information on the dependency of
the upper bounds for Ĥ and L̂ on the covariance structure of the serial correlation and the
variance of random noise. To be more specific, the above representation of the stochas-
tic error is the maximum of the two terms, where both terms consist of the variance of
serial correlation and the random noise. Thus, it implies that the operator norm of this
stochastic error is positively correlated with the variance of the random error. With such
decomposition, similar results can also be achieved by extending the model to the setting
when the random error also includes some subordinate random effects. Since this is beyond
the scope of the paper, we will leave it as future work.

Theorem 2.7. Assume λH ≥ 2‖
∑N

i=1

∑T
j=1 εijRijEij‖∞/NT , and

λL ≥ 4‖
∑N

i=1

∑T
j=1 εij

Rij

Pr(Rij=1|Xi.,Zj.)
Eij‖op/NT , we have the following representation of the

upper bound for M̂.

1

NT

∥∥∥∥R ◦ (M̂−M?)

P̂

∥∥∥∥2

F

≤ 6λL
√

2rL‖∆L‖F + 2λH‖∆H‖1.

Interpretation of Theorem 2.7: The above error bound, which quantifies the l2
estimation error of the imputed matrix on the observed data, can be decomposed as the
summation of the error bound for the estimated fixed effects matrix and the error bound
for the estimated low-rank matrix. However, the estimated error for the whole outcome
matrix (or the root mean square error) cannot be directly obtained through the above
inequality. To make progress, in Theorem 2.9, we will show that the restricted strong
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convexity (RSC) holds on the constraint set defined for Ĥ, with the tuning parameter λH
satisfying the condition in Lemma 2.8. Similarly, in Theorem 2.11, we will show that the
RSC holds on the subspace of the constraint set of L̂, where the definition of the constraint
set for Ĥ and L̂ will be given in the proof of Lemma 2.8 and Theorem 2.11, respectively.
Then, the error bound for the estimated outcome matrix can easily be obtained via the
summation of the error bound for the estimated fixed effects and the low-rank matrix.

Lemma 2.8. Assume λH ≥ 6CxCz

(
2CL/p1 + ‖

∑N
i=1

∑T
j=1 RijεijEij/Pij‖∞

)
/(NT ), we

have the following inequality:

1

2

N∑
i=1

T∑
j=1

Rij

Pij
〈X∆HZT , Eij〉2 ≤ 4λH‖H?‖1.

Theorem 2.9. Suppose λH ≥ 6CxCz

(
2CL/p1 +‖

∑N
i=1

∑T
j=1RijεijEij/Pij‖∞

)
/(NT ), the

following probabilistic upper bound holds.

Pr

{
p1

2
‖X∆HZT‖2

F >
N∑
i=1

T∑
j=1

Rij〈X∆HZT , Eij〉2 +
c?H
p1

(E‖
N∑
i=1

T∑
j=1

ζijRijEij‖∞)2

}
≤ 1

(N + T )2
,

where c?H is a large enough constant, the value c?H is shown in Section 2.8.

Assume c?H is defined the same as that in Theorem 2.9. Combining the results of Lemma
2.8 and Theorem 2.9, with probability 1− 1/(N +T )2, we have the following upper bound
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for the square of the root mean square error (RMSE) of X∆HZT ,

1

NT
‖X∆HZT‖2

F ≤ 1

NT

N∑
i=1

T∑
j=1

Rij〈X∆HZT , Eij〉2 +
c?H

NTp1

(E||
N∑
i=1

T∑
j=1

ζijRijEij||∞)2

≤ 1

NT
4λH ||H?||1 +

c?H
NTp1

(E||
N∑
i=1

T∑
j=1

ζijRijEij||∞)2

≤ 24CHCxCz
NT

(
2CL
p1

+ ||
∑N

i=1

∑T
j=1RijεijEij
Pij

||∞
)

+
c?H

NTp1

≤ 24CHCxCz
NT

{
2CL
p1

+
2
√

log(2NT ) + t(
√
Tσ + τ)

p1

}
+

c?H
NTp1

(2.14)

where ζij are i.i.d. Rademacher random variables. As shown above, the square of RMSE
of the estimated fixed effects term will converge to zero as max{N, T} goes to infinity.

Lemma 2.10. Suppose λL ≥ 6

(
2CL

√
max(N, T )/p1+‖

∑N
i=1

∑T
j=1 RijεijEij/P̂ij‖op

)
/(NT ),

then the following inequality holds:

1

2

N∑
i=1

T∑
j=1

Rij

P̂ij
〈∆L, Eij〉2 ≤ 2λL‖∆L‖?.

Theorem 2.11. Assume λL ≥ 6

(
2CL

√
max(N, T )/p1 + ‖

∑N
i=1

∑T
j=1 RijεijEij

/P̂ij‖op
)
/(NT ), then we have the following representation of probabilistic upper bound:

Pr

{
p1

2
‖∆L‖2

F >

N∑
i=1

T∑
j=1

Rij〈∆L, Eij〉2 +
c?LrL?

p1

(E‖
N∑
i=1

T∑
j=1

ζijRijEij‖op)2

}
≤ 1

(N + T )2
,

where c∗L is some numerical constants. Let the value of λL equal to 6

(
2CL

√
max(N, T )/p1+

||
∑N

i=1

∑T
j=1 RijεijEij/Pij||op

)
/(NT ). Then, with probability 1− 1/(N +T )2, we have the
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following upper bound for the square of the RMSE of the estimator L̂ by Lemma 2.10:

1

NT
‖∆L‖2

F ≤ 1

NT

N∑
i=1

T∑
j=1

Rij〈∆L, Eij〉2 +
c?LrL?

NTp1

(E‖
N∑
i=1

T∑
j=1

ζijRijEij‖op)2

≤ 4λLp2

NT
‖∆L‖? +

c?LrL?

NTp1

(E‖
N∑
i=1

T∑
j=1

ζijRijEij‖op)2

≤ 16
√

2rL?λLp2

NT
‖∆L‖F +

c?LrL?

NTp1

(E‖
N∑
i=1

T∑
j=1

ζijRijEij‖op)2

≤ 16
√

2rL?p2

NT

(√
max(N, T )CL

p1

+ ‖
∑N

i=1

∑T
j=1 RijεijEij
P̂ij

‖op
)

+
c?Lmin(N, T )rL?

max(N, T )p1

.(2.15)

Remark: Here, we assume that min{N, T} is equal to (max{N, T})δ, where δ ∈ (0, 1) is
a constant. For example, in the scenario that the number of units increases faster than the
number of time periods, we let both T and N increase, but T increases only at a certain
rate of N .

Theorem 2.9 establishes the upper bound for the root mean square error of the main
and the first-order interaction terms in the proposed model, i.e., ‖X∆HZT‖2

F/NT . Note
that on the right-hand side of the inequality 2.14, the upper bound contains two terms.
In the first term, the numerator has a logarithmic factor 2

√
log(2NT ) + t multiplied by

the magnitude of the random error
√
Tσ + τ . In both the first and the second terms,

the denominator is a polynomial function of NT . Therefore, the square of the RMSE will
converge to zero as the dimension of the matrix becomes sufficiently large.

Theorem 2.11 establishes the upper bound for the root mean square error of the low-
rank term, i.e., ‖∆L‖2

F/NT . The derived upper bound in inequality 2.15 has two terms,
where the numerator in the first term includes

√
max(N, T ) and an operator norm, which

is bounded above by the polynomial function NT . Besides, the second term converges to
zero as the max(N, T ) becomes sufficiently large. Therefore, the RMSE will converge to
zero as the dimension of the outcome matrix grows.

Notice that the quantification of the statistical variation of the estimators is beyond
the scope of this chapter, we will leave it as a future research topic and briefly discuss
potential extensions in Section 2.7 and Chapter 5.

26



2.5 Simulation Studies

In this section, we study the finite sample performance of the proposed two-step algorithm
via a comprehensive simulation study. As shown in the theoretical analysis, the perfor-
mance of the proposed algorithm is dependent on the dimension of the outcome matrix
and the probability of missingness. To investigate the ability of the proposed algorithm to
handle the missingness, we consider two different missing data patterns, MCAR and MAR,
under three different missing rates: 30%, 50%, and 70%. We conduct the simulation study
in the following steps.

First, we start by considering the scenario when the outcome of 100 individuals has
evaluated over 30 time points under 30% missing rate. We generate a unit-specific covari-
ate matrix X100×5 and a time-specific covariate matrix Z30×5. The unit-specific covariate
matrix is generated from N (0.5, 0.1), and the time-specific covariate matrix is generated
from N (1.5, 0.1), where N (µ, σ2) denotes normal distribution with mean µ and variance
σ2. We generate a low-rank matrix LN×T with rank 2. We generate the random noise
term by N (0, τ 2), where τ 2 is the variance of noise term that is calculated by setting the
signal-to-noise ratio (SNR) to be 1, i.e., SNR = E(signal2)/τ 2 = 1 where E(signal2) =∑N

i=1

∑T
j=1((XHZT +L)ij−µsig)2/(NT −1), and µsig =

∑N
i=1

∑T
j=1(XHZT +L)ij/(NT ).

The serial correlation term is generated by N (µ,Σ), where Σij = σ2ρ|i−j|, σ2 = τ 2 and
ρ = 0.5. To obtain the performance of the proposed method under different levels of cor-
relation, we also show the results of ρ = 0.2 and ρ = 0.8. To investigate the effect of
including the serial correlation in the proposed longitudinal low-rank model, we generate
the complete outcome matrix Y from N (XHZT + L, E) in two scenarios. In the first sce-
nario, E100×30 is the variance of random noise itself. In the second scenario, E100×30 is the
summation of the covariance of the serial correlation and the variance of random noise.

Second, under MCAR, the missingness indicator matrix RN×T is generated for three
different settings from the Bernoulli distribution with probability 0.3, 0.5 and 0.7, respec-
tively. In the scenario when the data are assumed MAR, for simplicity, we assume the
propensity score of the missingness as the logistic model: logit{Pr(Rij = 1|Y O

i , Xi., Zj.)} =
β0 +β1Xi.+β2Zj.. In order to compare the results with those in the scenario when data are
MCAR, let β0 = −0.7, β1 = (−0.6,−0.5,−0.4,−0.3,−0.2) and β2 = (−0.1, 0, 0.1, 0.2, 0.3),
such that the total missing rate is 70%. Similarly, when missing rate is 50%, let β0 =
−0.61, β1 = (−0.51,−0.41,−0.31,−0.21,−0.11) and β2 = (−0.01, 0.09, 0.19, 0.29, 0.39).
When missing rate is 30%, let β0 = −0.54, β1 = (−0.44,−0.34,−0.24,−0.14,−0.04) and
β2 = (0.06, 0.16, 0.26, 0.36, 0.46). Based on the missingness probability matrix R, the train-
ing set indices are generated, and the set of the remaining entries of the outcome matrix,
which contains all the true values of the outcome matrix, is used for testing.
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Third, the estimators β̂ and L̂ are calculated via the proposed two-step algorithm.
Note that although the proposed algorithm provides restrictions on the choice of tuning
parameters, in practice, we find the optimal values of tuning parameters via K-fold cross-
validation. More specifically, we choose the tuning parameters λH and λL by 10-fold cross-
validation over the two-dimensional grid of 10 different values of λL and 100 different values
of λH that are evenly distributed on the log scale. The maximum value of the sequence
of tuning parameters λL is computed via the singular value of the original matrix with
missing values replaced by zero. We also consider the dimension of the outcome matrix to
be 1000× 30, 1000× 100, and repeat the above procedures 200 times accordingly.

To provide more insight into how the unit-specific and the time-specific covariates in-
formation can benefit the accuracy of imputation, we compare the proposed approach with
two existing imputation methods: a) a penalized estimator for contaminated incomplete
outcome matrix without utilizing the covariate information, proposed by Koltchinskii et al.
[2011]) multivariate imputation by chained equations (MICE) by Buuren and Groothuis-
Oudshoorn [2010] with the unit- and time- specific covariates, which has also been widely
used in drawing imputations from different types of datasets, including longitudinal data.
In MICE, the number of draws is set to 5 in our setting. Across the whole simulation,
we use root mean square error (RMSE) (or test error) and mean square error (MSE) to
evaluate the performance of the algorithms, the definitions of which are presented below:

MSE =
‖R ◦ (Y − Ŷ )‖2

F

‖R ◦ Y ‖2
F

, RMSE =
‖(Y − Ŷ )‖F√

NT
. (2.16)

where ◦ denotes Hadamard product (also known as element-wise product). The MSE mea-
sures the bias of the estimated observed values, and the RMSE measures the performance
of the algorithm on the estimation of the whole matrix.

For the scenarios when the error term is only the random noise, and the dimension of
the outcome matrix is 100×30, 1000×30 and 1000×100, the MSE, RMSE, and empirical
standard errors are presented in Tables 2.1, 2.2 and 2.3, respectively. The simulation
results, where the serial correlation was included in the model, are presented in Table 2.4.
First, for the proposed algorithm and the other two methods, note that both the MSE
and RMSE decrease as the values of N and T increase, that is, the proposed algorithm as
well as the two competing methods perform better as the dimension of the outcome matrix
increases, which is consistent with our theoretical results (e.g., under 30 % missing rate and
the MCAR missingness mechanism, the MSE of the proposed algorithm are 0.013 and 0.009,
and the RMSE are 0.439 and 0.433, when the dimension of the outcome matrix are 100×30
and 1000 × 30, respectively). Second, the estimators of the proposed algorithm perform
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well compared with the other two methods in terms of having smaller MSE and RMSE.
Third, it is worth noting that the multiple imputation approach has inferior performance
in terms of having a large MSE compared with the other two methods in all the scenarios.
We speculate one of the reasons is that we utilize the general fixed effects model during the
MI procedure instead of a low-rank model, which treats the low-rank term as the intercept
term when fitting the regression models. Besides, we did not perform variable selection
here, which can lead to biased estimators for both coefficient matrices H and L. Again,
we aim to show that the proposed two-step estimation procedure that utilized both the
unit-specific and the time-specific covariates can produce estimators with smaller MSE
and RMSE compared with (i) other existing matrix completion algorithms that do not use
such information, or (ii) other imputation algorithms in the longitudinal setting that do
not consider the low-rank property of the original matrix.

Table 2.1: MSE and RMSE (empirical standard errors are in brackets) of the proposed two-
step matrix completion algorithm (TSMC), multiple imputation (MI), and the traditional
matrix completion algorithm (TMC) when the dimension of response matrix is 100× 30.

MCAR MAR
70% 50% 30% 70% 50% 30%

TSMC MSE 0.019[0.005] 0.012[0.002] 0.013[0.012] 0.035[0.022] 0.0126[<0.001] 0.015[0.004]
RMSE 0.780[0.102] 0.502[0.044] 0.439[0.122] 0.947[0.212] 0.684[0.023] 0.665[0.097]

MI MSE 0.502[0.053] 0.488[0.051] 0.482[0.052] 0.475[0.064] 0.485[0.059] 0.477[0.057]
RMSE 1.337[0.131] 1.137[0.110] 1.137[0.110] 1.335[0.143] 1.124[0.110] 1.124[0.111]

TMC MSE 0.078[0.041] 0.037[0.080] 0.051[0.058] 0.070[0.081] 0.032[0.040] 0.038[ 0.071]
RMSE 1.507[0.366] 0.988[0.100] 0.994[0.145] 1.237[0.251] 0.032[0.040] 1.114[0.112]

2.6 Application

2.6.1 Covid-19 data

In this section, we apply the proposed methods on a Covid-19 dataset to estimate the
potential contaminated data. We first describe the Covid-19 dataset and discuss the reasons
for missingness or contamination; we also introduce the chosen unit-specific and time-
specific covariates, and their potential influence on the outcome variable. Second, we
apply the proposed low-rank model and the algorithm to the data. The data are collected
from 304 main cities in China from January 19, 2020, to February 29, 2020. We consider
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Table 2.2: MSE and RMSE (empirical standard errors are in brackets) of the proposed
two-step matrix completion algorithm (TSMC), the multiple imputation (MI), and the
traditional matrix completion algorithm (TMC) when the dimension of response matrix is
1000× 30.

MCAR MAR
70% 50% 30% 70% 50% 30%

TSMC MSE 0.022[0.013] 0.010[<0.001] 0.009[0.007] 0.024[0.004] 0.015[0.001] 0.014[0.001]
RMSE 0.751[0.155] 0.473[0.022] 0.433[0.129] 0.780[0.057] 0.681[0.031] 0.659[0.032]

MI MSE 0.464[0.034] 0.470[0.050] 0.469[0.049] 0.483[0.045] 0.471[0.048] 0.473[0.050]
RMSE 1.431[0.094] 1.426[0.130] 1.426[0.140] 1.466[0.049] 1.437[0.138] 1.438[0.139]

TMC MSE 0.059[0.062] 0.037[0.060] 0.044[0.045] 0.035[0.010] 0.037[0.060] 0.035[0.050]
RMSE 1.158[0.187] 1.02[0.090] 0.989[0.131] 0.938[0.116] 1.121[0.092] 1.099[0.085]

Table 2.3: MSE and RMSE (empirical standard errors are in brackets) of the proposed
two-step matrix completion algorithm (TSMC), the multiple imputation (MI), and the
traditional matrix completion algorithm (TMC) and the test error when the dimension of
response matrix is 1000× 100.

MCAR MAR
70% 50% 30% 70% 50% 30%

TSMC MSE 0.019[0.002] 0.013[0.001] 0.008[0.006] 0.024[0.004] 0.015[0.001] 0.014[0.001]
RMSE 0.797[0.060] 0.638[0.026] 0.433[0.144] 0.800[0.049] 0.684[0.023] 0.673[0.028]

MI MSE 0.443[0.043] 0.488[0.058] 0.422[0.037] 0.478[0.061] 0.437[0.077] 0.470[0.039]
RMSE 1.367[0.115] 1.437[0.152] 1.436[0.132] 1.479[0.131] 1.350[0.140] 1.351[0.138]

TMC MSE 0.041[0.040] 0.035[0.040] 0.046[0.050] 0.041[0.014] 0.032[0.041] 0.035[0.030]
RMSE 1.133[0.060] 1.049[0.060] 1.020[0.120] 1.133[0.157] 1.275[0.160] 1.157[0.049]

the recorded number of cases per day as the outcome variable. We exclude the responses
from the city of Wuhan as part of the dependent variable in the modeling because of the
unique epidemic pattern of the virus in the city, though other information from Wuhan
may play a role in the analysis, as can be seen below.

Regarding the explanatory variables, in the dataset, four important unit-specific co-
variates are included: the population density, the number of doctors, the gross domestic
product(GDP), and the distance between cities and Wuhan. These factors may affect the
change in the number of confirmed cases. For example, if the population density is high,
then the virus can spread among individuals with higher speed and probability; the number
of doctors affects the speed of admission and the treatment of patients; GDP is a measure
of economic performance, which affects both the level of government assistance and the
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Table 2.4: MSE and RMSE (empirical standard errors are in brackets) of the proposed
two-step matrix completion algorithm (TSMC), the multiple imputation (MI) and the
traditional matrix completion algorithm (TMC) when the random error term contains
serial correlation, and (a) the dimension of response matrix is 1000× 100, the missing rate
is 30%, and the missingness mechanism is MCAR; (b) the dimension of response matrix
is 1000 × 30, the missing rate is 50%, and the missingness mechanism is MAR; (c) the
dimension of response matrix is 100 × 30, the missing rate is 30%, and the missingness
mechanism is MCAR.

(a) (b) (c)
TSMC MSE 0.007[0.002] 0.015[0.001] 0.015[0.008]

RMSE 0.455[0.114] 0.615[0.034] 0.440[0.150]
MI MSE 0.464[0.034] 0.470[0.050] 0.469[0.049]

RMSE 1.431[0.094] 1.426[0.130] 1.426[0.140]
TMC MSE 0.041[0.038] 0.035[0.057] 0.052[0.080]

RMSE 1.035[0.080] 1.115[0.095] 1.090[0.166]

ability to deal with an emergency, and the distance from Wuhan influence the transmission
of the virus among cities.

We also include five important time-specific covariates in the data: the weather condi-
tion, the daily confirmed cases in Wuhan, the day indicating the time that the pandemic
lied in the study period, and the day effect, where the day effect is defined as a categorical
variable indicating the time period the cities’ lockdown; the weather condition includes
wind speed and temperature in Wuhan, which affects the social activities and the popula-
tion flow, and the number of daily confirmed cases in Wuhan is included as the early cases
in the other cities could be traced back to the patients out of Wuhan in the early stage.

For the Covid-19 dataset, it has been recognized that with high probability, the records
of infections may be subject to missingness or contamination. For example, Hao et al.
[2020] stated that the estimated ascertained rate of the confirmed cases is 87% in Wuhan.
On one hand, it is inevitable that the individuals with asymptotic symptoms or in the
incubation period are unlikely to be recorded. On the other hand, the missingness may
occur due to concern for self-isolated infected patients providing the data during the panic
time at the beginning of the pandemic. Besides, the improper collection of data, as well as
the limited capacity of testing can also result in potential missingness. In the application,
we consider the daily confirmed cases that are equal to zero as missing values. It is plausible
because we observe that in most of the cities, the number of recorded cases starts from
zero and then goes up to higher values. At the beginning of the pandemic, it is counter-
intuitive that the number of cases suddenly drops down to zero. Therefore, it is possible
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that the zero values after non-zero values are incorrectly recorded. Moreover, the imputed
values that are close to zero will be approximated as zero, because the number of cases
is an integer. If the neighbor values are zero, then the estimated value would be close
to zero and be approximated as zero. To model the missingness mechanism, in Figure
2.1, we present the proportion of daily non-zero confirmed cases in different tiers of the
cities divided according to the GDP across the time periods that are partitioned by the
time-specific indicator variable. Notice that Tier-1 cities have the highest GDP, and there
are four of them in China; Tier-1.5 cities are the next highest in GDP, and there are 15
of them; there are 60 cities in Tier-2, and the rest of the cities are classified as lower tier
cities. As shown in Figure 2.1, Tier-1.5 cities have the largest proportion of observations,
and lower-tier cities have a relatively smaller proportion of observations. Besides, all the
cities achieved their peak between the lockdown date of the Hubei province and mid-
February. For cities in all tiers except Tier-1, the rate of observations first increases until
mid-February, and then decreases afterward, indicating the effects of city lockdown as well
as the other time-specific covariates on the spread of the virus. Notice that Tier−1.5
cities have a relatively larger rate of missingness because smaller cities have fewer health
resources and lagging information. To reduce the computational burden, we include the
indicator variable for tiers and the indicator variable for the time period as the explanatory
variables in the logistic model for the missingness mechanism. The parameters and the
matrix of the probability of the observations are estimated through the maximum likelihood
approach, accordingly. It is also worth noting that the outcome data are count data, that
is, all entries in the outcome matrix are positive integer numbers, and such data may need
proper modeling. For example, Cao and Xie [2015] proposed two sets of efficient algorithms
for recovering incomplete data sets under the Poisson measurements assumption. In the
real data application, to avoid complex modeling and assumptions for the outcome data,
together with that the fact that the proportion of the imputed entries that are negative
is small (< 1%) compared with the size of the whole dataset, we simply put the negative
values to be equal to zero.

Figure 2.2 displays four cities’ trajectories of daily confirmed cases. For Tier-1 cities
such as Beijing and Shanghai, two curves have similar patterns. During the time period
from Feb 2 to Feb 29, the number of confirmed cases increased before mid-February, reached
a peak at around Feb 16, and then decreased afterward, which indicates the potential
positive effects of the policies proposed by the Chinese government such as the cities’
lockdown, the public health intervention, and better health resource allocation.

For estimation, we use 10-fold cross-validation to train the model and tune the hyperpa-
rameters. Since there is 31% missingness in the dataset, at each time, 30% of observations
are chosen as the validation set, and the remaining observations are used for training. The
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unknown parameters in the missingness mechanism model are estimated from the training
set via the maximum likelihood approach. The estimated main and interaction effects are
summarized in Table 2.6, where the last row of the table displays the estimated main effects
of unit-specific covariates, and the last column of the table presents the estimated main
effects of time-specific covariates. Notice that the estimated effects of two indicator vari-
ables for city and province lockdown are negative, which indicates that the intervention of
the lockdown is effective in preventing the transmission of people among the cities as well
as the spread of the virus. Besides, the interaction effects between Wuhan’s lockdown and
the density are negative, but the interaction between Hubei’s lockdown and the density is
positive, indicating that Wuhan’s lockdown may be more effective in reducing the number
of cases infected. It is also worth noting that the effects of the distance from Wuhan are
large compared with other effects, which implies that the cities far from Wuhan are less
affected by the outbreak of the virus in Wuhan.

Figure 2.1: Plot of proportion of observed data for Tier-1,Tier-1.5, Tier-2, and lower-tier
cities across four different pandemic time periods.
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Figure 2.2: Curves of confirmed cases for the four example cities: Beijing, Shanghai,
Qianjiang and Anqing, where the solid red line, green line, blue line, and purple line
represent the city Anqing, Beijing, Qianjiang, and Shanghai, respectively.
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Figure 2.3: Curves of confirmed cases for the four example cities: Beijing, Shanghai,
Qianjiang and Anqing, where the solid blue line represents the original daily confirmed
cases over 42 days, the red solid line represents the 7-day moving average, and the green
dashed line represents the predictions on each day using the proposed algorithm.

Table 2.5: Estimation of main and interaction effects of unit-specific covariates and time-
specific covariates in Covid-19 data.

Density Hospital GDP Distance from Wuhan Main Effects

Day 0.26 0 0.02 -0.13 1.21

Wuhan lockdown -0.31 0 -0.12 -1.38 -1.77

Hubei lockdown 0.4 0 0.07 1.76 -1.96

Daily cases in Wuhan 0 -0.18 0.11 -0.45 0.49

Temperature -0.19 0.2 0 -0.78 -0.64

Wind speed 0.8 -0.08 0.4 2.3 -2.48

Main Effects 0 -0.74 0 -3.27 NA
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2.6.2 SO2 emissions data

In this section, we applied the proposed methods to power plants’ SO2 emissions dataset.
The monthly emissions data are collected from 1256 coal-fired electricity-generating units
(EGUs) across the U.S.A (Zigler et al. [2016]), where there is 16.26% missingness in the
outcomes. Coal-fired power plants are one of the primary sources of electrical generation
in 19 states in the U.S.A. Figure 2.4 shows the distribution of coal-fired power plants and
the corresponding linked monitors. We include five unit-specific covariates: the heat input

Figure 2.4: Map of the distribution of the power plants in the U.S.A. Each gray circle
corresponds to the area covered by a monitor around a power plant.

Source by: https://www.washingtonpost.com/graphics/national/power-plants.

rate, the capacity of the EGU, the number of scrubbers (flue-gas desulfurization equipment
or controls) installed, the sulfur content, and the operation time, as these characteristics
may affect the change of the amount of emissions of SO2. For example, the sulfur content
refers to the amount of sulfur per ton of coals. The installation of scrubbers is a primary
strategy for power plants to reduce the emissions of SO2. The heat input rate and the
capacity of the EGU are the measures of the power of the EGUs, which further affects the
amount of pollution they can generate per unit of time. For the operation time, the more
time the EGUs are operated, the more pollutants they may generate.

36

https://www.washingtonpost.com/graphics/national/power-plants


We include three time-specific covariates from the dataset: the average temperature
by month, the average precipitation by month, and the quarter indicator. The average
temperature and precipitation may affect the spread of SO2. The quarter indicator, which
is defined as the categorical variable indicating the quarter that the month belongs to, is
included because it may affect the investment of the power plants on the maintenance and
update of the generators, which further affects the generation capacity of the power plants
Henry and Pratson [2019].

For the SO2 emissions data, the monthly records of the amount of emissions may
be subject to missingness due to different reasons. For example, the missingness may
be caused by monitor failures and errors, power outages, system crashes, undetectable
pollutant levels, and filter changes (Imtiaz and Shah [2008]). To model the missingness
mechanism, we include both the unit-specific and time-specific covariates as explanatory
variables in the logistic model. The parameters and the matrix of the probability of the
observations are estimated through the regularized maximum likelihood approach described
in Section 2.3. The left subplot in Figure 2.5 shows the number of missing values across
different months, where the second and the third quarter contain relatively more missing
values, and the right subplot shows the number of unobserved values within different levels
of capacity.

Figure 2.5: Plot of the number of unobserved data across 12 months, and for different
levels of capacity.

The estimated main and interaction effects are summarized in Figure 2.6. Notice that
the estimated main effect of the number of scrubbers is negative, which indicates that
installing scrubbers has a positive effect on reducing the ambient SO2 emissions. The esti-
mated main effect of operation time is zero, which implies that it may have less effect on
SO2 emissions compared with the other unit-specific covariates. For time-specific covari-
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Table 2.6: Estimation of main and interaction effects of unit-specific covariates and time-
specific covariates in SO2 emissions data.

Heat input rate Capacity Scrubbers Sulfer content Operation time Main Effects
Quarter 1 24.71 0 -7.83 24.37 10.44 -8.85
Quarter 2 11.53 4.64 12.40 34.82 -26.26 0
Quarter 3 0 13.32 -10.59 15.21 0 0
Quarter 4 -6.84 0 -54.36 9.51 8.54 4.89
Temperature 0 0 0 1.8 0 0
Precipitation 4.06 0 0 0 0 -8.35
Main Effects 44.96 149.50 -131.79 205.95 0 NA

ates, the estimated main effects of temperature and precipitation, and the interaction effect
of the temperature and the precipitation with unit-specific covariates are relatively low, in-
dicating that the two time-specific covariates may have relatively low effect on the ambient
SO2 emissions. Besides, the interaction effects between the number of scrubbers and the
second quarter are positive, but the interaction effects between the number of scrubbers
and the third quarter are negative, which indicates that the scrubbers’ installation may
have a greater effect on reducing the ambient SO2 in the third quarter of the year than in
the second quarter. It is also worth noting that the estimated main and interaction effects
of weather conditions are smaller compared with the other covariates, which implies that
recorded SO2 emissions are less affected by the weather conditions. The cross-validated
errors of the proposed algorithm, MI, and TMC are 0.75, 1.38, and 1.69, respectively.

2.7 Discussion

In this Chapter, we proposed a fixed effect low-rank model for longitudinal data and a
corresponding iterative algorithm for imputing the missing outcomes. In Section 2.4, we
showed the non-asymptotic error bounds for the estimated main effects, interaction effects,
the low-rank term, and the imputed outcome matrix.

The novel feature of this paper lies in two main aspects. First, we consider the random
error term as the summation of the serial correlation and the random noise and focus on
estimating the fixed effects and the low-rank term. In Section 2.4, we showed that the
non-asymptotic error bounds for the low-rank term as well as the imputed matrix are
dependent on the magnitude of the variance of the random term. Notice that we used
multivariate normal distribution as an example to illustrate our methods in Section 2.4 to
derive the closed form of the upper bound, but it can be extended to other settings with
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various distributional assumptions. Second, we consider the MAR missingness mechanism
and utilized the inverse probability weighting approach to reduce the bias.

One limitation of the proposed algorithm is that our method did not estimate the
covariance matrix of the serial correlation. Incorporating the spatial correlation into con-
sideration may improve the performance of our algorithm. Also, throughout the paper,
we did not consider the inference problem, although the variation of the low-rank term
and the fixed effect term can be measured using a re-sampling technique such as the boot-
strap. However, the confidence interval may be too wide, and thus, be sub-optimal. When
there is no covariate information and the data are missing completely at random, Chen
et al. [2019] proposed a debiased estimator for the low-rank term. How to construct the
confidence intervals for both the fixed effects and the low-rank term with missing not at
random correlated data is left for future investigation. In data application, we treat the
zero values as missing values, but the records with higher values could also be incorrect.
Therefore, it is interesting to consider the measurement error instead of missing values in
future research.

Incorporating the time-specific and unit-specific covariates is an important avenue for
optimizing the conventional matrix completion algorithm when applying it to a longitu-
dinal dataset. Beyond the unit-specific and time-specific covariates, it is also a promising
direction to extend the proposed methods to a longitudinal dataset with unit-level time-
varying covariates to recover the missing outcomes.

2.8 Proof of Theorems

This section contains all the proofs of Theorems and Lemmas.

Lemma 2.1, 2.2, and 2.3 are necessary conditions for Theorem 1. Since the updates of
Ĥ and L̂ in each iteration satisfy the line search condition, the objective function is always
non-increasing after the updates of each of the parameters. The proof of Lemma 2.1 is
adapted from Proposition 3.1 in Tseng and Yun [2009].

2.8.1 Proof of Lemma 2.1

Proof. Assume

d
(n)
H ∈ arg min

d∈RP×Q

{
F (H(n) + d, L(n)) + λH‖H + d‖1

}
,
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and

d
(n)
L ∈ arg min

d∈RN×T

{
F (H(n+1), L(n) + d) + λL‖L+ d‖?

}
.

Let α1, α2 ∈ (0, 1) denote step sizes for H and L respectively, and H(n+1) = H(n) +α1d
(n)
H .

Then we have

Fλ̄(H
(n) + α1d

(n)
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(n)
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{
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Fλ̄(H

(n) + α1d
(n)
H , L(n))− Fλ̄(H(n), L(n))

}
.

The remaining proof follows from the proof of Lemma 1 in Tseng and Yun [2009]. For the
first term in the above equation, we have
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By convexity of the nuclear norm and l1 norm, we have
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Similarly, we have

Fλ̄(H
n + α1d

n
H , L

n)− Fλ̄(Hn, Ln)

≤ α1

[
− 2

NT

N∑
i=1

T∑
j=1

Rij

Pr(Rij = 1|Y O
i , Xi., Zj.)

{
Yij − (XH(n)ZT + L(n))

}(
Xd

(n)
H ZT

)
+λH

{
‖H(n) + d

(n)
H ‖1 − ‖H(n)‖1

}]
,

and

− 2

NT

N∑
i=1

T∑
j=1

Rij

Pr(Rij = 1|Y O
i , Xi., Zj.)

{
Yij − (XH(n)ZT + L(n))

}(
Xd

(n)
H ZT

)
+λH

{
‖H(n) + d

(n)
H ‖1 − ‖H(n)‖1

}
≤ − 1

NT

N∑
i=1

T∑
j=1

Rij

Pr(Rij = 1|Y O
i , Xi., Zj.)

(
d

(n)
H

)2

< 0.

2.8.2 Proof of Lemma 2.2

Proof. Since the objective function Fλ̄(H,L) is lower bounded by constant 0, together with
the fact that Fλ̄(H,L) is continuous on RP×Q×RN×T , then the level sets lev(Fλ̄) are closed.
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We now prove the boundedness of lev(Fλ̄) by contradiction. Assume that ∀ r0 > 0,
∃H†, L† s.t. ‖H†−H0‖2 + ||L†−L0||2 > r2

0. WLOG, assume ||H†−H0||2 > r2
0/2, then we

have

Fλ̄(H
†, L†) =

1

NT
‖ 1

Pr(R = 1|Y O, X, Z)
(XH†ZT + L† − Y )‖2

F + λH‖H†‖1 + λL‖L†‖?

=
1

NT
‖ 1

Pr(R = 1|Y O, X, Z)
{X(H† −H0)ZT + (L† − L0) + (XH0ZT + L0 − Y )}‖2

F

+λH‖H† −H0 +H0‖1 + λL‖L† − L0 + L0‖?
> Fλ̄(H

0, L0),

which contradicts with the definition of level sets lev(Fλ̄). Thus, the level sets lev(Fλ̄) are
bounded.

2.8.3 Proof of Lemma 2.3

Proof. By Weierstrass’s Theorem and Lemma 2.2, since the level sets {(H(n), L(n)) | Fλ̄(H(n),
L(n)) ≤ Fλ̄(H

0, L0)} are compact sets, and Fλ̄(H,L) is a continuous function, then Fλ̄(H,L)
attains its minimum on this level set, that is, there exists (H?, L?) such that Fλ̄(H

(n), L(n)) ≥
Fλ̄(H

?, L?) ∀ n ∈ Z+.

2.8.4 Proof of Theorem 2.4

Proof. Suppose (H†, L†) is an accumulation point of (H(n), L(n)), let (H(nk), L(nk)) be a
subsequence of (H(n), L(n)) that converges to (H†, L†). Thus, the subsequence of search

direction (d
(nk)
H , d

(nk)
L ) → 0, and we have (d†H , d

†
L) = 0, by Lemma 2 of Tseng and Yun

[2009], (H†, L†) is a stationary point of Fλ̄(H,L). Since Fλ̄(H
(n), L(n)) is monotonically

non-increasing and bounded from below, then by Lemma 2.3, limn→∞ Fλ̄(H
(nk), L(nk)) =

Fλ̄(H
†, L†), i.e., the limit of objective function exists and must converge to the global

optimum.
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2.8.5 Proof of Lemma 2.5

Proof. Recall that εij = ε
(1)
ij + ε

(2)
ij ∀1 ≤ i ≤ N, 1 ≤ j ≤ T, where ε

(1)
ij stands for the serial

correlation and ε
(2)
ij represents the random noise term.

Pr

{
‖

N∑
i=1

T∑
j=1

εijRijEij‖∞ > 2t

}

= Pr

{
‖

N∑
i=1

T∑
j=1

(ε
(1)
ij + ε

(2)
ij )RijEij‖∞ > 2t

}

≤ Pr

{
‖

N∑
i=1

T∑
j=1

ε
(1)
ij RijEij||∞ + ‖

N∑
i=1

T∑
j=1

ε
(2)
ij RijEij‖∞ > 2t

}

≤ Pr

{
‖

N∑
i=1

T∑
j=1

ε
(1)
ij RijEij‖∞ > t

}
+ Pr

{
‖

N∑
i=1

T∑
j=1

ε
(2)
ij RijEij‖∞ > t

}

≤ Pr

{
max

1≤i≤N
|
T∑
j=1

εij| > t

}
+ Pr

{
max

1≤i,j≤N∨T
|ε(2)
ij | > t

}
≤ 2N exp{− t2

2Tσ2
}+ 2NT exp(− t2

2τ 2
).

Thus, with probability 1− 2 exp(−t), we have

‖
N∑
i=1

T∑
j=1

εijRijEij‖∞ ≤ 2
√

log(2NT ) + t

(√
Tσ + τ

)
.
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2.8.6 Proof of Lemma 2.6

Proof. In order to prove Lemma 2.6, we need to utilize the following Bernstein inequality.
Recall that ψ1 norm is defined as follows,

Ui = inf

{
K > 0 : Eexp(

‖Z‖
K

) ≤ e

}
.

Let Z1, Z2 · · ·Zn be i.i.d random matrices with dimension m1×m2 that satisfies E(Z) = 0.
Suppose that Ui < U for some constant U , then there exists a constant c? > 0 such that
for all t > 0, with probability 1− e−t,

‖
n∑
i=1

Zi‖op ≤ c? max

{
σz
√
t+ log(m1 +m2), U log(

U

σz
)(t+ log(m1 +m2))

}
,

where

σz = max

{
‖

n∑
k=1

E(ZkZ
T
k )‖op, ‖

n∑
k=1

E(ZT
k Zk)‖op

}
,

and
‖Z‖op = λmax(Z).

Then, we have the following representation for the stochastic error:

Zi =
T∑
j=1

εij
Rij

Pr(Rij = 1|Y O
i , Xi., Zj.)

Eij

=
T∑
j=1

(ε
(1)
ij + ε

(1)
ij )

Rij

Pr(Rij = 1|Y O
i , Xi., Zj.)

Eij

=
T∑
j=1

ε
(1)
ij

Rij

Pr(Rij = 1|Y O
i , Xi., Zj.)

Eij +
T∑
j=1

ε
(2)
ij

Rij

Pr(Rij = 1|Y O
i , Xi., Zj.)

Eij

= Z
(1)
i + Z

(2)
i ,

44



where Z
(1)
i =

∑T
j=1 ε

(1)
ij

Rij

Pr(Rij=1|Y O
i ,Xi.,Zj.)

Eij and Z
(2)
i =

∑T
j=1 ε

(2)
ij

Rij

Pr(Rij=1|Y O
i ,Xi.,Zj.)

Eij. No-

tice that

‖
N∑
i=1

T∑
j=1

εij
Rij

Pr(Rij = 1|Y O
i , Xi., Zj.)

Eij‖op = ‖
N∑
i=1

Zi‖op

≤ ‖
N∑
i=1

Z
(1)
i ‖op + ‖

N∑
i=1

Z
(2)
i ‖op

In the remaining proof of this Lemma, we aim to provide upper bounds for both ‖
∑N

i=1 Z
(1)
i ‖op

and ‖
∑N

i=1 Z
(2)
i ‖op. Let K1 = 16σ2emax{T log(N), N log(T )}/p1. Then, we have

E exp

{‖∑T
j=1 ε

(1)
ij

Rij

Pr(Rij=1|Y O
i ,Xi.,Zj.)

Eij‖op
K1

}
≤ E exp(

‖
∑T

j=1 ε
(1)
ij RijEij‖op
K1p1

)

≤ E exp(

∑T
j=1 ‖ε

(1)
ij RijEij‖op
K1p1

)

≤ E exp(
1T · ε(1)

i·
K1p1

)

= exp

{
1TΣ1

2(K1p1)2
)

}
≤ exp

{
T 2σ2

2K2
1p

2
1

}
≤ e,

and
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‖
N∑
i=1

E{Z(1)
i (Z

(1)
i )T}‖op = ‖

N∑
i=1

E(
T∑
j=1

Rij

Pij
ε2ijei(N)ei(N)T )‖op

≤ E( max
1≤j≤T

ε2ij
4σ2

)
4σ2

p1

‖
N∑
i=1

E{
T∑
j=1

Rijei(N)eTi (N)}‖op

≤ 8N

p1

logE

[
exp

{
1

4
max

1≤j≤T
(
ε2ij
σ2

)

}]
≤ 8N

p1

logE

[
max

1≤j≤T
exp

{
1

4
(
ε2ij
σ2

)

}]
≤ 8N

p1

log
∑

1≤j≤T

E

[
exp

{
1

4
(
ε2ij
σ2

)

}]
=

8N

p1

log
∑

1≤j≤T

1√
1− 4 · 1

2

≤ 16N log(T )σ2

p1

.

Similarly, we can get the following upper bound for ‖
∑N

i=1E{(Z
(1)
i )T (Z

(1)
i )}‖op:

‖
N∑
i=1

E{(Z(1)
i )T (Z

(1)
i )}‖op ≤

16T log(N)σ2

p1

.

Thus, we have

σZ(1) ≤
16 max{T log(N), N log(T )}σ2

p2
1

.

By applying the matrix version of Bernstein inequality, there exists a constant c?1, such
that with probability 1− e−t,

‖
N∑
i=1

Z
(1)
i ‖op ≤ c?1 max

{
16 max{T log(N), N log(T )}σ2

p2
1

√
t+ log(N + T ),

16σ2emax{T log(N), N log(T )}
p1

(
t+ log(N + T )

)}
.
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Let K2 = 2 max(N, T )
√
Tτ/p1, since {ε(2)

ij }1≤i≤N,1≤j≤T are i.i.d. τ−Sub Gaussian random
variables, we have

E exp

{‖∑T
j=1 ε

(2)
ij

Rij

Pr(Rij=1|Y O
i ,Xi.,Zj.)

Eij‖op
K2

}
≤

N∏
i=1

{
E exp

(‖ε(2)
ij RijEij‖op
K2p1

)}
≤ exp

(
Tτ 2

2K2p1

)
≤ e,

and

‖
N∑
i=1

E{Z(2)
i (Z

(1)
i )T}‖op = ‖

N∑
i=1

E(
T∑
j=1

Rij

Pij
ε2ijei(N)ei(N)T )‖op

≤
∥∥∥∥ 1

p2
1

N∑
i=1

T∑
j=1

E

{
Rijei(N)eTi (N)

}
E

(
ε2ij

)∥∥∥∥
op

≤
∥∥∥∥σ2

p1

N∑
i=1

T∑
j=1

E

{
Rijei(N)eTi (N)

}∥∥∥∥
op

≤ 2Nτ 2

p1

.

Similarly, we have

‖
N∑
i=1

E{Z(2)
i (Z

(1)
i )T}‖op ≤

2Tτ 2

p1

.

Thus,
σZ(2) ≤ 2τ 2 max(N, T )/p1.

Applying the matrix Bernstein Inequality, there exists a constant c?2 such that with prob-
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ability 1− e−t,

‖
N∑
i=1

Z
(2)
i ‖op ≤ c?2 max

{
2 max(N, T )τ 2

p1

√
t+ log(N + T ),

2 max(N, T )
√
Tτ

p1

log

(√
Tp1

τ

)(
t+ log(N + T )

)}
.

Combining the above inequalities, with probability 1− e−t,

‖
N∑
i=1

Zi‖op ≤ (c?1 + c?2) max

[{
16 max{T log(N), N log(T )}σ2 + 2 max(N, T )τ 2

p1

}
·√

t+ log(N + T ),{
16σ2emax{T log(N), N log(T )}

p1

+
2 max(N, T )

√
Tτ

p1

log

(√
Tp1

τ

)}
·(

t+ log(N + T )

)]
.

2.8.7 Proof of Theorem 2.7

Proof. Notice that

Fλ̄(H,L) = F (H,L) + λH‖H‖1 + λL‖L‖?

=
1

NT

N∑
i=1

T∑
j=1

Rij

P̂r(Rij = 1|Y O
i , Xi., Zj.)

{(XHZT )ij + Lij − Yij}2 + λH‖H‖1,e + λL‖L‖?.

Inspired by Theorem 1-4 in Koltchinskii et al. [2011] and main results in Klopp et al.
[2014], this proof contains two main sections. In the first section, we show that ‖Ĥ−H?‖2

F ,
‖L̂−L?‖2

F and ‖M̂ −M?‖2
F are upper bounded, where Ĥ and L̂ are estimated parameters

in the proposed algorithm, H? and L? are true parameters, and M̂ = XĤZT + L̂, M? =
XH?ZT + L?. In the second part, we present that under some mild conditions, E[‖Ĥ −
H?‖2

F ] and E[‖L̂− L?‖2
F ] are upper bounded by some constants with high probability.
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By definition of Ĥ and L̂, we have

F (Ĥ, L̂) + λH‖Ĥ‖1 + λL‖L̂‖? ≤ F (H?, L?) + λH‖H?‖1 + λL‖L?‖?.

Rearranging terms in the above inequality, we have

1

NT

N∑
i=1

T∑
j=1

Rij

P̂r(Rij = 1|Y O
i , Xi., Zj.)

{Yij − M̂ij}2

− 1

NT

N∑
i=1

T∑
j=1

Rij

P̂r(Rij = 1|Y O
i , Xi., Zj.)

{Yij −M?
ij}2

≤ λH(‖H?‖1 − ‖Ĥ‖1) + λL(‖L?‖? − ‖L̂‖?),

and

1

NT

N∑
i=1

T∑
j=1

Rij

P̂r(Rij = 1|Y O
i , Xi., Zj.)

〈M? − M̂, Eij〉2

≤ − 2

NT

N∑
i=1

T∑
j=1

Rij

P̂r(Rij = 1|Y O
i , Xi., Zj.)

εij〈M? − M̂, Eij〉

+λH(‖H?‖1 − ‖Ĥ‖1) + λL(‖L?‖? − ‖L̂‖?)

= − 2

NT

N∑
i=1

T∑
j=1

Rij

P̂r(Rij = 1|Y O
i , Xi., Zj.)

εij〈(XH?ZT )− (XĤZT ), Eij〉

− 2

NT

N∑
i=1

T∑
j=1

Rij

P̂r(Rij = 1|Y O
i , Xi., Zj.)

εij〈L? − L̂, Eij〉

+λH(‖H?‖1 − ‖Ĥ‖1) + λL(‖L?‖? − ‖L̂‖?),

where ε is the random error matrix. Let

U1 = − 2

NT

N∑
i=1

T∑
j=1

Rij

P̂r(Rij = 1|Y O
i , Xi., Zj.)

εij〈(XH?ZT )− (XĤZT ), Eij〉

+λH(‖H?‖1 − ‖Ĥ‖1),
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and

U2 = − 2

NT

N∑
i=1

T∑
j=1

Rij

P̂r(Rij = 1|Y O
i , Xi., Zj.)

εij〈L? − L̂, Eij〉+ λL(‖L?‖? − ‖L̂‖?).

By duality of trace norm, we have

U2 = − 2

NT

N∑
i=1

T∑
j=1

Rij

Pr(Rij = 1|Y O
i , Xi., Zj.)

εij〈L? − L̂, Eij〉

+λL(‖L?‖? − ‖L̂‖?)

≤ 2

NT
‖∆L‖?‖

∑N
i=1

∑T
j=1 εijRijEij
P̂

‖op + λL(‖L?‖? − ‖L̂‖?).

Assume

λL ≥ 4‖
∑N

i=1

∑T
j=1 εijRijEij
P̂

‖op/(NT ).

Then,

U2 ≤
3

2
λL‖∆L‖? ≤ 6λL

√
2rL‖∆L‖F .

Also, by duality between l1 norm and l∞ norm, we have the following upper bound for U1:

U1 = − 2

NT

N∑
i=1

T∑
j=1

Rij

P̂r(Rij = 1|Y O
i , Xi., Zj.)

εij〈(XH?ZT )− (XĤZT ), Eij〉

+λH(‖H?‖1 − ‖Ĥ‖1)

≤ 2

NT
||
∑N

i=1

∑T
j=1 εijRijEij
P̂

‖∞‖X∆HZT‖1 + λH(‖H?‖1 − ‖Ĥ‖1)

≤ 2

NT
CxCz‖

∑N
i=1

∑T
j=1 εijRijEij
P̂

‖∞‖∆H‖1 + λH(‖H?‖1 − ‖Ĥ‖1).

Assume

λH ≥
2

NT
CxCz‖

∑N
i=1

∑T
j=1 εijRijEij
P̂

‖∞.
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Then,

U1 ≤
2

NT
CxCz‖

∑N
i=1

∑T
j=1 εijRijEij
P̂

‖∞‖∆H‖1 + λH‖∆H‖1

≤ 2λH‖∆H‖1.

Combining inequalities for U1 and U2, we have

1

NT

∥∥∥∥R(M̂ −M?)

P̂

∥∥∥∥2

F

=
1

NT

N∑
i=1

T∑
j=1

Rij

P̂r(Rij = 1 | Xi., Zj.)
〈M? − M̂, Eij〉2

≤ 6λL
√

2rL‖∆L‖F + 2λH‖∆H‖1.

2.8.8 Proof of Lemma 2.8

Proof. By optimality condition in Theorem 3.1.24 in Nesterov [2018], ∃g?1 ∈ ∂‖H?‖1, g?2 ∈
∂‖L?‖? such that

〈 2

NT

N∑
i=1

T∑
j=1

Rij

Pij
(XĤZT + L̂− Y ), X(H? − Ĥ)ZT 〉+ λH〈g?1, H? − Ĥ〉 ≥ 0.
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Since 〈g?1, Ĥ −H?〉 ≥ ‖Ĥ‖1 − ‖H?‖1, we have

λ(‖Ĥ‖1 − ‖H?‖1) ≤ 〈 2

NT

N∑
i=1

T∑
j=1

Rij

Pij
(XĤZT + L̂− Y ), X∆HZT 〉

= 〈 2

NT

N∑
i=1

T∑
j=1

Rij

Pij
{(XĤZT + L̂)− (XH?ZT + L̂)}, X∆HZT 〉

+〈 2

NT

N∑
i=1

T∑
j=1

Rij

Pij
{(XH?ZT + L̂)− (XH?ZT + L?)}, X∆HZT 〉

+〈 2

NT

N∑
i=1

T∑
j=1

RijεijEij
Pij

, X∆HZT 〉

≤ 2

NT

N∑
i=1

T∑
j=1

−Rij

Pij
‖〈X∆HZT , Eij〉‖2

+
2

NT

N∑
i=1

T∑
j=1

‖X∆HZT‖1
2CL
p1

+
2

NT

N∑
i=1

T∑
j=1

‖X∆HZT‖1‖
∑N

i=1

∑T
j=1RijεijEij
Pij

‖∞

≤ 2

NT

N∑
i=1

T∑
j=1

CxCz‖∆H‖1
2CL
p1

+
2

NT

N∑
i=1

T∑
j=1

CxCz‖∆H‖1||
∑N

i=1

∑T
j=1 RijεijEij
Pij

‖∞.

Thus, we have

λ(‖Ĥ‖1 − ‖H?‖1)

≤ 2

NT
CxCz(||Ĥ‖1 + ‖H?‖1)

(
2CL
p1

+ ‖
∑N

i=1

∑T
j=1RijεijEij
Pij

‖∞
)
.

Let λH ≥ 3 2
NT
CxCz

(
2CL
p1

+ ‖
∑N

i=1

∑T
j=1RijεijEij
Pij

‖∞
)

. Then, we have ‖Ĥ‖1 ≤ 2‖H?‖1.
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Let M̃ (1) = XH?ZT + L̂, and M̃ (2) = XĤZT + L?, we have

1

NT

N∑
i=1

T∑
j=1

Rij

Pij

(
〈M̃ (1) − M̂, Eij)〉

)
≤ − 2

NT

N∑
i=1

T∑
j=1

Rij

Pij
〈X(H? − Ĥ)ZT , εijEij〉

+λ(‖H?‖1 − ‖Ĥ‖1)

≤ λ(‖H?‖1 + ‖Ĥ‖1) + λH‖H?‖1

= 4λH .

Notice that

LHS ≥ 1

NT

N∑
i=1

T∑
j=1

Rij

Pij

(
〈M̃ (1) − M̂, Eij〉

)

=
1

2

1

NT

N∑
i=1

T∑
j=1

Rij

Pij

(
〈M̃ (1) −M? +M? − M̂, Eij)〉

)

≥ 1

2

N∑
i=1

T∑
j=1

Rij

Pij

(
〈M̃ (1) −M?, Eij〉2 + 〈M? − M̂, Eij〉2

)

≥ 1

2

N∑
i=1

T∑
j=1

Rij

Pij
〈X∆HZT , Eij〉2.

Combining the above inequalities, we have

1

2

N∑
i=1

T∑
j=1

Rij

Pij
〈X∆HZT , Eij〉2 ≤ 4λH‖H?‖1
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2.8.9 Proof of Theorem 2.9

Proof. Define ‖B‖L2(Π) as

‖B‖2
L2(Π) = E(

N∑
i=1

T∑
j=1

Rij〈B, Eij〉2).

Recall that the constraint set CH(θH) is defined as follows,

CH(θH) :=

{
H ∈ RP×Q

∣∣∣∣‖H‖1 ≤ 1, ‖H‖2
L2(Π) ≥ θH

}
.

Let θH = 8c2
H log(N+T )/ log(6/5). If ‖∆H‖2

L2(Π) > θH , then ∆H/(3aH∨cH) = ∆H/(3aH) ∈
CH(θH), and ‖∆H/(3aH)‖1 ≤ 1. Denote ζij be i.i.d. Rademacher random variables. In
the remaining of this proof, we show that with high probability, the following probabilistic
upper bounds holds,

Pr

{
p1

2
‖X∆HZT‖2

F >
N∑
i=1

T∑
j=1

Rij〈X∆HZT , Eij〉2 +
c?H
p1

E(‖
N∑
i=1

T∑
j=1

ζijRijEij‖∞)2

}
≤ 2 exp(−c?H log(

6

5
)θH),

where c?L is a constant. Define the bad event as

B :=

{
∃A ∈ CH(θH) s.t. ‖XAZT‖2

L2(Π)−
N∑
i=1

T∑
j=1

Rij〈XAZT , Eij〉2 >
1

2
‖XAZT‖2

L2(Π)+θH

}
.

To make progress, we need to bound the probability of this bad event. Let ξ = 6
5
, we first

define the subset of constraint set as

C ′(θH , K) :=

{
A ∈ CH(θH) | K ≤ ‖XAZT‖2

L2(Π) ≤ ξK

}
.

Next, define the subset of bad event B as

Bl :=

{
∃A ∈ C(θH , K) s.t. ‖XAZT‖2

L2(Π)−
N∑
i=1

T∑
j=1

Rij〈XAZT , Eij〉2 >
1

2
‖XAZT‖2

L2(Π)+θH

}
.
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Then, CH(θH) =
⋃∞
l=1 C ′(θH , ξl−1θH), if ∃A ∈ CH(θH), then ∃l s.t. A ∈ C ′(θH , ξl−1θH).

Define

ZK := sup
A∈C′(r,θL,K)

{
‖XAZT‖2

L2(Π) −
N∑
i=1

T∑
j=1

Rij〈XAZT , Eij〉2
}
,

and

Z̃K := sup
A∈C′(r,θL,K)

{∣∣∣∣‖XAZT‖2
L2(Π) −

N∑
i=1

T∑
j=1

Rij〈XAZT , Eij〉2
∣∣∣∣}.

We aim to prove the following inequality via Massart’s Inequality:

Pr

{
ZK ≥

5ξK

24
+ 8CxCzE

(∥∥∥∥ N∑
i=1

T∑
j=1

ζijRijEij
∥∥∥∥)} ≤ exp{−c ∗ log(ξ)θL}.

Notice that Pr(ZK > t) ≤ Pr(Z̃K > t). Thus, if Z̃K holds for the above inequality, ZK
also satisfies it. To utilize Massart’s Inequality, we need to bound the E(Z̃K) as well as
the variance term V ar(Z̃K).

By symmetrization argument and Talagrand’s contraction inequality, we have

E(Z̃K) ≤ 2E

{
sup

A∈C′(θH ,K)

∣∣∣∣ N∑
i=1

T∑
j=1

ζijRij〈XAZT , Eij〉2
∣∣∣∣}

≤ 8E

{
sup

A∈C′(θH ,K)

∣∣∣∣ N∑
i=1

T∑
j=1

ζijRij〈XAZT , Eij〉
∣∣∣∣}

≤ 8E

{
sup

A∈C′(θH ,K)

CxCz‖A‖1

∥∥∥∥ N∑
i=1

T∑
j=1

ζijRijEij
∥∥∥∥
∞

}

≤ 8E

{
sup

A∈C′(θH ,K)

CxCz

∥∥∥∥ N∑
i=1

T∑
j=1

ζijRijEij
∥∥∥∥
∞

}

≤ 8CxCzE

{∥∥∥∥ N∑
i=1

T∑
j=1

ζijRijEij
∥∥∥∥
∞

}
.
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For the variance term,

sup
A∈C′(r,θL,K)

V ar(Z̃K) = sup
A∈C′(θH ,K)

V ar

{
‖XAZT‖2

L2(Π) −
N∑
i=1

T∑
j=1

Rij〈XAZT , Eij〉2
}

≤ sup
A∈C′(θH ,K)

E

{∥∥∥∥ N∑
i=1

T∑
j=1

Rij〈XAZT , Eij〉
∥∥∥∥4}

≤ NT sup
A∈C′(r,θL,K)

E

{∥∥∥∥ N∑
i=1

T∑
j=1

Rij〈XAZT , Eij〉
∥∥∥∥2}

≤ NT (ξlθL).

Thus, by Massart’s theorem, we have

Pr

{
Z̃K >

5

24
ξlθL + 8CxCzE

(∥∥∥∥ N∑
i=1

T∑
j=1

ζijRijEij
∥∥∥∥
∞

)2}
≤ exp(−c?θLξl).

The union bound implies

Pr

(
B
)
≤

∞∑
l=1

{
Pr(Bl)

}
≤ exp{−c? log(ξ)θL}

1− exp{−c? log(ξ)θL}
≤ 2 exp{−c? log(ξ)θL}

≤ 1

(N + T )2
.
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2.8.10 Proof of Lemma 2.10

Proof. By optimality condition, we have

〈 2

NT

N∑
i=1

T∑
j=1

Rij

Pij
(XĤZT + L̂− Y ), L? − L̂〉+ λH〈g?2, L? − L̂〉 ≥ 0.

Since 〈g?2, L̂− L?〉 ≥ ‖L̂‖? − ‖L?‖?, we have

λL(‖L̂‖? − ‖L?‖?) ≤ 〈 2

NT

N∑
i=1

T∑
j=1

Rij

Pij
(XĤZT + L̂− Y ),∆L〉

= 〈 2

NT

N∑
i=1

T∑
j=1

Rij

Pij
{(XĤZT + L̂)− (XĤZT + L?)},∆L〉

+〈 2

NT

N∑
i=1

T∑
j=1

Rij

Pij
{(XĤZT + L?)− (XH?ZT + L?)},∆L〉

+〈 2

NT

N∑
i=1

T∑
j=1

RijεijEij
Pij

,∆L〉

≤ 2

NT

N∑
i=1

T∑
j=1

−Rij

Pij
‖〈∆L, Eij〉‖2

+
2

NT
‖∆L‖?

2CL max(N, T )

p1

+
2

NT
‖∆L‖?‖

∑N
i=1

∑T
j=1 RijεijEij
Pij

‖op.
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Let λL ≥ 3 1
NT

(
2CL max(N, T )

p1

+ ‖
∑N

i=1

∑T
j=1RijεijEij
Pij

‖op
)

. Then, we have

2

3
λL‖∆L‖? ≥ λL(‖L̂‖? − ‖L?‖?)

= λL(‖L? + PL?⊥(∆L) + PL?(∆L)‖? − ‖L?‖?)
≥ λL(‖L? + PL?⊥(∆L)‖? − ‖PL?(∆L)‖? − ‖L?‖?)
= λL(‖L?‖? + ‖PL?⊥(∆L)‖? − ‖PL?(∆L)‖? − ‖L?‖?)
= λL(‖PL?⊥(∆L)‖? − ‖PL?(∆L)‖?),

and
3(‖PL?⊥(∆L)‖? − ‖PL?(∆L)‖?) ≤ 2(‖PL?⊥(∆L)‖? + ‖PL?(∆L)‖?).

Together with the fact that ‖PL?(∆L)‖F ≤ ‖∆L‖F and rank(PL?(∆L)) ≤ 2rL? , we have

‖∆L‖? ≤
√

32rL?‖∆L‖F .

Similarly, we can have the following upper bounds for 1
NT

Rij

Pij
〈∆L, Eij〉:

1

NT

N∑
i=1

T∑
j=1

Rij

Pij

(
〈M̃ (2) − M̂, Eij)〉

)
≤ − 2

NT

N∑
i=1

T∑
j=1

Rij

Pij
〈L? − L̂, εijEij〉

+λ(‖L?‖? − ‖L̂‖?)

≤ ‖∆L‖?
2

NT
‖
∑N

i=1

∑T
j=1 RijεijEij
Pij

‖op + λL‖L?‖?

= ‖∆L‖?
(

2

NT
‖
∑N

i=1

∑T
j=1RijεijEij
Pij

‖op + λL

)
≤ 2λL‖∆L‖?.
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Then,

LHS ≥ 1

NT

N∑
i=1

T∑
j=1

Rij

Pij

(
〈M̃ (2) − M̂, Eij〉

)

=
1

2

1

NT

N∑
i=1

T∑
j=1

Rij

Pij

(
〈M̃ (2) −M? +M? − M̂, Eij)〉

)

≥ 1

2

N∑
i=1

T∑
j=1

Rij

Pij

(
〈M̃ (2) −M?, Eij〉2 + 〈M? − M̂, Eij〉2

)

≥ 1

2

N∑
i=1

T∑
j=1

Rij

Pij
〈∆L, Eij〉2.

2.8.11 Proof of Theorem 2.11

Proof. Recall the definition of ‖B‖L2(Π) is

‖B‖2
L2(Π) = E(

N∑
i=1

T∑
j=1

Rij〈B, Eij〉2),

and the constraint set CL(r, θL) is defined as follows:

CL(r, θL) :=

{
L ∈ RN×T‖L‖∞ ≤ 1, ‖L‖2

L2(Π) ≥ θL, ‖L‖? ≤
√
r‖L‖F

}
.

Let η = 32rL? , θL = 8c2
L log(N + T )/ log(6/5), and ζij be i.i.d. Rademacher random

variables. For the rest of the proof, we show that with high probability, the following
probabilistic upper bounds holds,

Pr

{
p1

2
‖∆L‖2

F >
N∑
i=1

T∑
j=1

Rij〈∆L, Eij〉2 +
c?LrL?

p1

E(‖
N∑
i=1

T∑
j=1

ζijRijEij‖op)2

}
≤ 2 exp(−c?Llog(

6

5
)θL),
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where c?L is a constant. Define the bad event as

B :=

{
∃A ∈ C(r, θL) s.t. ‖A‖2

L2(Π) −
N∑
i=1

T∑
j=1

Rij〈A, Eij〉2 >
1

2
‖A‖2

L2(Π) + θL

}
.

Similarly, as in the proof of Theorem 3, to proceed, we need to bound the probability of
this bad event. Let ξ = 6

5
, we first define the subset of constraint set as

C ′(r, θL, K) :=

{
A ∈ CL(r, θL)|K ≤ ‖A‖2

L2(Π) ≤ ξK

}
.

Next, we define the subset of bad event B as

Bl :=

{
∃A ∈ C(r, θL, K) s.t. ‖A‖2

L2(Π) −
N∑
i=1

T∑
j=1

Rij〈A, Eij〉2 >
1

2
‖A‖2

L2(Π) + θL

}
.

Then, C(r, θL) =
⋃∞
l=1 C ′(r, θL, ξl−1θL), if ∃A ∈ C(r, θL), then ∃l s.t. A ∈ C ′(r, θL, ξl−1θL).

Define

ZK := sup
A∈C′(r,θL,K)

{
‖A‖2

L2(Π) −
N∑
i=1

T∑
j=1

Rij〈A, Eij〉2
}
,

and

Z̃K := sup
A∈C′(r,θL,K)

{∣∣∣∣‖A‖2
L2(Π) −

N∑
i=1

T∑
j=1

Rij〈A, Eij〉2
∣∣∣∣}

We aim to prove the following inequality via Massart’s Inequality:

Pr

(
ZK ≥

5ξK

24
+
c?LrL?

p1

E(‖
N∑
i=1

T∑
j=1

ζijRijEij‖op)2

)
≤ exp{−c ∗ log(ξ)θL}.

Notice that Pr(ZK > t) ≤ Pr(Z̃K > t), thus if Z̃K holds for the above inequality, ZK also
satisfies it. To utilize Massart’s Inequality, we need to bound the E(Z̃K) as well as the
variance term V ar(Z̃K).

60



By symmetrization argument and Talagrand’s contraction inequality, we have

E(Z̃K) ≤ 2E

{
sup

A∈C′(r,θL,K)

∣∣∣∣ N∑
i=1

T∑
j=1

ζijRij〈A, Eij〉2
∣∣∣∣}

≤ 8E

{
sup

A∈C′(r,θL,K)

∣∣∣∣ N∑
i=1

T∑
j=1

ζijRij〈A, Eij〉
∣∣∣∣}

≤ 8E

{
sup

A∈C′(r,θL,K)

‖A‖?
∥∥∥∥ N∑
i=1

T∑
j=1

ζijRijEij
∥∥∥∥
op

}

≤ 8E

{
sup

A∈C′(r,θL,K)

√
η||A||F

∥∥∥∥ N∑
i=1

T∑
j=1

ζijRijEij
∥∥∥∥
op

}

≤ 8E

{
sup

A∈C′(r,θL,K)

√
η

p1

||A||F
∥∥∥∥ N∑
i=1

T∑
j=1

ζijRijEij
∥∥∥∥
op

}

= 8

√
η

p1

√
ξKE

{∥∥∥∥ N∑
i=1

T∑
j=1

ζijRijEij
∥∥∥∥
op

}

≤ 1

2

{
5

12
(ξlθL) +

64η

p1

∥∥∥∥ N∑
i=1

T∑
j=1

ζijRijEij
∥∥∥∥
op

}
.

For the variance term,

sup
A∈C′(r,θL,K)

V ar(Z̃K) = sup
A∈C′(r,θL,K)

V ar

{
‖A‖2

L2(Π) −
N∑
i=1

T∑
j=1

Rij〈A, Eij〉2
}

≤ sup
A∈C′(r,θL,K)

E

{∥∥∥∥ N∑
i=1

T∑
j=1

Rij〈A, Eij〉
∥∥∥∥4}

≤ NT sup
A∈C′(r,θL,K)

E

{∥∥∥∥ N∑
i=1

T∑
j=1

Rij〈A, Eij〉
∥∥∥∥2}

≤ NT (ξlθL).
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Thus, by Massart’s theorem, we have

Pr

{
Z̃K >

5

24
ξlθL +

c?LrL?

p1

E(‖
N∑
i=1

T∑
j=1

ζijRijEij‖op)2

}
≤ exp(−c?θLξl).

The union bound implies

Pr

(
B
)
≤

∞∑
l=1

{
Pr(Bl)

}
≤ exp{−c? log(ξ)θL}

1− exp{−c? log(ξ)θL}
≤ 2 exp{−c? log(ξ)θL}

≤ 1

(N + T )2
.

62



Chapter 3

Estimation of Network Causal Effects
with Confounders Missing Not at
Random

3.1 Introduction

There is limited work discussing the estimation of network treatment effect when con-
founders are subject to nonignorable missingness. Sun and Liu [2021] proposed a doubly
robust estimator when data were subject to nonignorable missingness, where the data are
assumed to be independent and the interference was ignored in the data application. Un-
like Sun and Liu [2021], we study the partial interference setting and propose three pairs
of semiparametric estimators: inverse probability weighting (IPW), regression, and doubly
robust (DR) estimators for the four types of network treatment effects. Here, the regres-
sion estimator is an estimator for the average potential outcome in the causal inference
framework and is different from that in survey sampling literature. Compared to the non-
interference setting, there are several challenges in this new setting. For example, the IPW
and DR estimators require the joint modeling of unit-level propensity scores, where the
existence of extreme probabilities may lead to high-variance estimators. To circumvent
the problem of varying cluster sizes, we propose self-normalized IPW and DR estimators,
which can be viewed as stabilized versions of and have smaller variances than their respec-
tive conventional estimators. In this paper, we consider the direct interference pattern,
where the outcome of one unit is affected by other units only through their treatment
assignment, and the missingness of one unit is not affected by other units. To model the
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joint propensity score of missingness and treatment, we provide a concrete example in Sec-
tion 3.3.1 to better illustrate the procedure of the model specification and the parameter
estimation.

The rest of the chapter is organized as follows: we start by introducing the notation and
assumptions in Section 3.2. The construction of the IPW estimator is presented in Section
3.3. The performance of the proposed methods is further illustrated via simulation studies
in Section 3.4. Since this is ongoing work, additional simulation studies and analysis of real
data are under construction. We leave the discussion of the construction of the regression
estimator and the doubly robust estimator in Section 3.6.

3.2 Notation and Assumptions

Following Perez-Heydrich et al. [2014] and Tchetgen Tchetgen and VanderWeele [2012], we
consider a finite population of size N , which can be partitioned into K mutually exclusive
groups, and each group i has Ni units, where 1 ≤ i ≤ K and 1 ≤ Ni ≤ N −K + 1. Let
Xij = (X1ij, X2ij, · · ·Xpij) denote p-dimensional confounders of unit j in the group i, the
values of which may be subject to missingness, and let Xi = (Xi1, Xi2, · · ·XiNi

) be the
confounders of all units in the group i. Let Rij = 1 if Xij is complete and Rij = 0 if
Xij is missing. In this paper, we consider the single missingness pattern, that is, Rij = 0
if any components of the confounders of unit j in the group i are missing. We leave
the extension to multiple missingness patterns as a future research direction. Let Yij
and Aij denote the observed outcome and treatment status for unit j in the group i,
respectively, and Yi = (Yi1, Yi2, · · · , YiNi

) and Ai = (Ai1, Ai2, · · · , AiNi
) denote the vectors

of observed outcome and treatment indicators, respectively, for all units in the group i.
Assume Ai(−j) = (Ai1, · · · , Aij−1, Aij+1, · · ·AiNi

) is the vector of treatment status for all
units in the group i except for individual j. Let aij, ai(−j) and ai denote possible values of
Aij , Ai(−j) and Ai, respectively. Suppose A(n) is the set of vectors of all possible treatment
assignments of length n. Then, there are 2Ni possible treatment assignments in group i,
and ai ∈ A(Ni).

We consider the scenario when only X is missing while the other variables are fully
observed. Suppose the treatment is assigned with an α-strategy where every unit in a
group is assigned to the treatment with average treatment allocation probability α. In a
randomized trial, the probability of being treated is fully determined by the treatment allo-
cation probability. However, in observational studies, whether or not an individual receives
the treatment assignment is not only determined by the treatment allocation strategy but
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dependent on his/her choice of participation in the study. To avoid the additional mod-
eling of participation (probability of the participation status given confounders), we will
model the probability of the treatment indicator conditional on confounders directly. Let
Yij(ai) and Yij(aij, ai−j) denote the potential outcome for unit j in the group i under
treatment allocation ai, where ai = (ai1, . . . ai,j−1, aij, ai,j+1, . . . ai,Ni

), and denote Yi(ai)
as the vector of potential outcomes for all units in the group i under strategy α. Let
Ȳi(a, α) = N−1

i

∑Ni

j=1

∑
ai(−j)∈A(Ni−1) Yij(a, ai(−j))Pα,x(ai(−j)) denote the average potential

outcome for group i, where Pα,x(ai(−j)) = Pr(Ai(−j) = ai(−j)|Aij = aij, Xi) is the probabil-

ity of Ai(−j) = ai(−j) in group i. Let Ȳi(α) = N−1
i

∑Ni

j=1

∑
ai∈A(Ni)

Yij(ai)Pα,x(ai(−j)) denote
the marginal average potential outcome for group i.

There are different treatment allocation strategies that can be deployed. For example,
in the cholera vaccine study Hudgens and Halloran [2008], Pα,x(ai(−j)) =

∏
j′ 6=j α

aij′ (1 −
α)1−aij′ , that is, the treatment allocation strategy does not depend on individuals’ char-
acteristics. Once the individuals choose to participate in the trial, they are classified into
different groups. For each group, the individuals are assigned the vaccine randomly with
probability α. On the other hand, in the Acid Rain Program study, the intervention of
scrubber installation is encouraged by federal regulations. However, the assignment of the
intervention is also affected by the characteristics of power plants such as size and heat
input. To account for the influence of confounders on the treatment allocation probability,
Papadogeorgou et al. [2019] models Pα,x(ai(−j)) as logit{Pα,x(ai(−j))} = ξαi +δXi, where ξ

(α)
i

satisfying (N−1
i )

∑Ni

i=1 expit(ξ
(α)
i + δXi) = α is a parameter to be estimated, and δ is some

pre-fixed value, more details can be found in Section 3.5. We adopt the same modeling
strategy in this paper.

The average potential outcome and the marginal average potential outcome are defined
as µaα = E(Ȳi(a, α)) and µα = E(Ȳi(α)), respectively. Then, the direct effect (or the
population average treatment effect) is defined as

DE(α) = E(Ȳi(1, α)− Ȳi(0, α)) = µ1α − µ0α. (3.1)

For the acid rain program study, the direct effect represents the difference in the amount
of PM2.5 emissions when a power generating facility is equipped with scrubbers compared
to when scrubbers are not installed. For policies α0 and α1, the indirect effect is defined
as

IE(α0, α1) = E(Ȳi(0, α1)− Ȳi(0, α0)) = µ0α1 − µ0α0 , (3.2)

which represents the difference in the amount of PM2.5 emissions when a power generating
facility is not equipped under a different treatment allocation policy. The total effect is
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denoted by
TE(α1, α1) = E(Ȳi(1, α1)− Ȳi(0, α0)) = µ1α1 − µ0α0 , (3.3)

which corresponds to the combination of both the direct effect and the indirect effect. The
overall effect is defined as

OE(α0, α1) = E(Ȳi(α1)− Ȳi(α0)) = µα1 − µα0 , (3.4)

which represents the difference in the amount of PM2.5 emissions for units under one cover-
age probability of scrubbers’ installation compared to units with another level of coverage
probability. In Section 3.3, we focus on estimating the direct effect. The estimation of
the other network causal effects can be approached in a similar way, and we present the
results of four types of network causal effects in the data application. For the purpose of
estimation with incomplete confounders, we assume the type of interference to be direct
interference (see more details in Ogburn et al. [2020]), where the interference happens only
through the effect of the treatment assignment on other units in the same clusters. We
leave more sophisticated interference types such as contagion interference and allocation in-
terference as future research directions. Throughout this paper, we also make the following
assumptions:

1. Causal Consistency Assumption: a subject’s potential outcome under their ob-
served treatment assignment is equal to the outcome that will actually be observed,
that is, Yij =

∑
ai∈A(Ni)

1(Ai = ai)Yij(ai).

2. Exchangeability Assumption: for each group, the treatment vector Ai is assumed
to be conditionally independent with potential outcomes given confounders Xi, that
is, Ai ⊥⊥ Yi(ai)|Xi.

3. Positivity Assumption: Pr(Aij = aij|Xi) > 0 and Pr(Rij = 1|Ai, Xi) > 0 for all
Ai and Xi.

It has been shown in Ding and Geng [2014] that without any assumptions, the joint
distribution of (Ai, Yi, Xi) is not fully identifiable. For identification purposes, we as-
sume that the missingness mechanism for confounders Xi satisfies the group-level outcome-
independent missingness assumption, which is modified from the outcome-dependent miss-
ingness assumption in Yang et al. [2019], that is, Ri ⊥⊥ Yi|Ai, Xi. The associated causal
diagram is shown in Figure 3.1. The assumption is plausible if the confounders are mea-
sured long before the outcome data are collected. For example, as mentioned in Yang
et al. [2019], the potentially exposed children and their neighborhoods were more carefully
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measured than those that were not at risk of exposure in the water crisis study in Flint,
Michigan U.S., which implies that the missingness may depend on both the measured con-
founders and the exposure status. In addition, the health status of the children was tested
long after the confounders (e.g., age) were collected. Thus, the missingness of confounders
is independent of the outcome conditional on all the other relevant information including
observed confounders and exposure status.

Figure 3.1: The causal diagram for the group-level outcome independent missingness as-
sumption, where the dashed line represents the conditional independence between Yi and
Ri, 1 ≤ i ≤ Ni.

Ri Ai Yi

Xi

3.3 Estimation

3.3.1 Inverse Probability Weighting

In this section, we propose an IPW estimator for network treatment effects when con-
founders are subject to a nonignorable missingness mechanism. The idea of construct-
ing the IPW estimator is to weigh each individual with the inverse of the probability
of receiving the treatment, such that the association between confounders and treatment
assignment can be removed. However, since X is not fully observed, Pr(A|X) is not
estimable without further adjustment. Besides, even if the data are fully observed, we
cannot directly apply the IPW as the data are not independent within the same group.
To address this, we utilize the inverse of the group-level joint propensity score of treat-
ment assignment and missingness mechanism as the weight for each subject, that is,
1/Pr(Ai, Rij|Xi), i = 1, 2, ...K, j = 1, 2, ...Ni, and replace the number of individuals in
each group by the sum of inverse joint propensity scores within the group.

To obtain the group-joint propensity score modeling for the treatment and missingness,
we assume P (Rij = 1|Aij, Xij) is correctly specified as P (Rij = 1|Aij, Xij; γ), and P (Aij =
1|Rij = 1, Xij) is correctly specified as P (Aij = 1|Rij = 1, Xij; δ). The unknown parameter
γ can be estimated using generalized methods of moments, and δ can be estimated via the
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maximum likelihood approach. After obtaining the estimates of P (Rij = 1|Aij, Xij) and
P (Aij = 1|Rij = 1, Xij), the joint density of treatment A and missingness R conditional
on confounders X can be parameterized as follows Chen [2007]:

Pr(a, r|x) =
ψ(a, a0, r, r0|x) Pr(r|a0, x) Pr(a|r0, x)∑1

r=0

∑1
a=0 ψ(a, a0, r, r0|x) Pr(r|a0, x) Pr(a|r0, x)

, (3.5)

where r0 = 1, a0 = 1, and

ψ(a, a0, r, r0|x) =
Pr(r|a, x) Pr(r0|a0, x)

Pr(r|a0, x) Pr(r0|a, x)
.

We then construct the IPW estimator for the population average potential outcome with
estimated parameters as

µ̂ipwaα =
1

K

K∑
i=1

Ŷ IPW
i (a, α) =

1

K

K∑
i=1

∑Ni

j=1 ŵ
aα
ij Yij∑Ni

j=1 ŵ
aα
ij

; (3.6)

and estimator of the marginal average potential outcome. is defined as

µ̂ipwα =
1

K

K∑
i=1

Ŷ IPW
i (α) =

1

K

K∑
i=1

∑Ni

j=1 ŵ
α
ijYij∑Ni

j=1 ŵ
α
ij

, (3.7)

where

ŵaαij =

Ni∑
j=1

1(Aij = a)1(Rij = 1)Pα,x(Ai(−j))

P̂r(Ai, Rij|Xi; δ̂, γ̂)
, (3.8)

ŵαij =

Ni∑
j=1

1(Aij = a)1(Rij = 1)Pα,x(Ai)

P̂r(Ai, Rij|Xi; δ̂, γ̂)
, (3.9)

where Ŷ IPW
i (a, α) =

∑Ni

j=1 ŵ
α
ijYij/

∑Ni

j=1 ŵ
α
ij, and

∑Ni

j=1 ŵ
α
ijYij/

∑Ni

j=1 ŵ
α
ij. Assume the esti-

mation equations for δ and γ are
∑K

i=1 ψδ(Oi; δ) = 0 and
∑K

i=1 ψγ(Oi; γ) = 0, respectively,

where Oi = (Xi, Yi, Ai, Ri). Let ψIPWa (Oi;µ1α, γ, δ) = Ŷ IPW
i (1, α) − µ1α, and ψIPWa (Oi;

µ0α, γ, δ) = Ŷ IPW
i (0, α)− µ0α. Then the estimated parameter θ̂IPW = (δ̂, γ̂, µ̂IPW1α , µ̂IPW0α )

is a solution of the following estimation equations:

K∑
i=1

ψIPW (Oi;θ) = 0, (3.10)
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where ψIPW (Oi;θ) = {ψδ(Oi; δ), ψδ(Oi; γ), ψIPWa (Oi;µ1α, γ, δ), ψ
IPW
a (Oi;µ0α, γ, δ)}T . The

true values of unknown parameter θ = (δ, γ, µ1α, µ0α) is the solution to
∫
ψIPW (o; θ)dF (o; θ) =

0, where F denotes the cumulative function of Oi. We show an example below of using the
equations (3.6) and (3.7) to obtain the IPW estimators. For example, we may assume:

• logit{Pr(Aij = 1|Xij = xij, Rij = 1, bi; δ)} = δ0 + δ1xij + bi,

• logit{Pr(Rij = 1|Aij = aij, Xij = xij; γ)} = γ0 + γ1aij + γ2xij ,

• Yij = β0 + β1 + β2 · (aij, fa(ai(−j)))T + β3xij + ζi,

• logitPα,x(ai(−j)) = ξ + δxij ,

where fa(·) is a summary function that represents the other units’ effect on the same
cluster, ζi ∼ N (0, σ2

ζ ) and bi ∼ N (0, σ2
b ) represent the random effects that introduce the

dependency between units in the same cluster. Assume p̂ar(Xi) = Pr(Aij′ , Rij|Xij, bi, δ̂, γ̂).
The estimate of the joint probability of Pr(Ai, Rij|Xi) can be obtained by

P̂r(Ai, Rij|Xi, δ̂, γ̂) =

∫ ∞
−∞

Ni∏
j′=1

p̂ar(Xi)
Aij(1− p̂ar(Xi))

1−Aijf(bi)dbi, (3.11)

and p̂ar(Xi) is obtained by equation (3.5). The consistency and asymptotic normality of
the IPW estimator are presented in Theorem 3.1 below.

Theorem 3.1. Under assumptions 1-3, if P (Aij = 1|Rij = 1, Xij; δ) and P (Rij = 1|Aij =
1, Xij; γ) are correctly specified, then IPW estimator µ̂IPWaα is consistent for µaα, and

√
K(θ̂IPW − θ)

d−→ N (0,ΣIPW ),

as K goes to infinity, where ΣIPW = U(θ)−1V (θ){U(θ)−1}T , U(θ) = E{−∂ψIPW (Oi;θ)/∂θT},
and V (θ) = E{ψIPW (Oi;θ)ψIPW (Oi;θ)T}.

The proof of Theorem 3.1 is given in Section 3.7.

3.3.2 Regression

In this section, we first introduce the idea of constructing the estimation equation for
the regression estimator. Notice that by exchangeability assumption, we can estimate the
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causal effect by regressing Y on A and X, and then marginalize over X if confounders
are fully observed. However, if confounders are subject to nonignorable missingness, we
cannot directly estimate the causal effect because we do not know the distribution of
the confounders in the whole population. To recover the full data distribution, we need to
obtain the joint probability density of X and Y conditional on A and R = 0 for each group,
which requires estimation of the odds ratio model and the group level joint probability
density of X and Y conditional on A and R = 1. First, we model f(Yij|Ai, Xij, Rij = 1) as
f(Yij|Ai, Xij, Rij = 1; β), and model f(Xij|Ai, Rij = 1) as f(Xij|Ai, Rij = 1; β). We then
define the odds ratio function OR(X, Y |A) as

OR(Xij, Yij|Ai) = log
f(Xij, Yij|Ai, Rij = 0)f(Xij = x0, Yij|Ai, Rij = 1)

f(Xij, Yij|Ai, Rij = 1)f(Xij = x0, Yij|Ai, Rij = 0)

= log
P (Rij = 0|Ai, Xij, Yij)P (Rij = 1|A,Xij = x0, Yij = 0)

P (Rij = 1|A,Xij, Yij)P (Rij = 0|Ai, Xij = x0, Yij = 0)

= log
P (Rij = 0|Ai, Xij)P (Rij = 1|Ai, Xij = x0)

P (Rij = 1|Ai, Xij)P (Rij = 0|Ai, Xij = x0)

= log
f(Xij|Ai, Rij = 0)f(Xij = x0|Ai, Rij = 1)

f(Xij|Ai, Rij = 1)f(Xij = x0|Ai, Rij = 0)
, (3.12)

where 1 ≤ i ≤ K, 1 ≤ j ≤ Ni, and x0 is an arbitrary fixed constant. For simplicity, we let
x0 = 0 in the subsequent sections. Since the last equation does not depend on Y , we can
simplify the notation OR(Xij, Yij|Ai) as OR(Xij|Ai), which we model as OR(Xij|Ai; ζ).
Thus, we can parameterize the joint probability density of X and Y conditional on A and
R = 0 as

f(Xij, Yij|Ai, Rij = 0; β, ζ) =
exp{OR(Xij|Ai; ζ)}f(Xij, Yij|Ai, Rij = 1; β)

E[exp{OR(Xij|A; ζ)}|Ai, Rij = 1; β]
. (3.13)

The parameter ζ can be estimated from the equation
∑K

i=1 ψζ(Oi; ζ) = 0, where ψζ(Oi; ζ)
has the following expression:

(1−Ri)
T

{
l(Ai, Yi)− E{l(Ai, Yi)|Ai, Ri = 0; β̂, ζ}

}
, (3.14)
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where l(A, Y ) are pre-defined vectorized differentiable functions, and

E{l(Ai, Yij)|Ai, Rij = 0; β̂, ζ} =

∫
exp{OR(Xij|Ai; ζ)}f(Xij, Yij|Ai, Rij = 1; β)l(Ai, Yij)dy

E[exp{OR(Xij|Ai; ζ)}|Ai, Rij = 1; β]
.

(3.15)
Then, f(Xij, Yij|Ai; β, ζ) can be obtained by f(Xij, Yij|Ai, Rij = 0; β, ζ) and f(Xij, Yij|Ai, Rij =
1; β, ζ) becauseR andA are fully observed. Note that f(Yij|Ai, Xij; β, ζ) ∝ f(Xij, Yij|Ai; β, ζ),
thus we can obtain the regression estimators. More specifically, let gij(ai, xi) = E(Yij|Ai =
ai, Xi = xi, Rij = 1), then the regression estimators for the average potential outcome and
the marginal average potential outcome have the following expressions:

µ̂regaα =
1

K

K∑
i=1

Ŷ reg
i (a, α)

=
1

K

K∑
i=1

[
1

Ni

Ni∑
j=1

∑
ai(−j)

1(Rij = 1)ĝij(ai, Xi; β̂)Pα,x(ai(−j))

+
1

Ni

Ni∑
j=1

∑
ai(−j)

1(Rij = 0)Pα,x(ai(−j))E{ĝij(ai, Xi; β̂)|Ai = ai, Rij = 0; β̂, ζ̂}
]
,(3.16)

and

µ̂regα =
1

K

K∑
i=1

Ŷ reg
i (α)

=
1

K

K∑
i=1

[
1

Ni

Ni∑
j=1

∑
ai

1(Rij = 1)ĝij(ai, Xi; β̂)Pα,x(ai)

+
1

Ni

Ni∑
j=1

∑
ai

1(Rij = 0)Pα,x(ai)E{ĝij(ai, Xi; β̂)|Ai = ai, Rij = 0; β̂, ζ̂}
]
,(3.17)

where β̂ is the MLE of β, and ζ̂ is an estimator of ζ by equation (3.14). Assume the
estimation equation for β is

∑K
i=1 ψβ(Oi; β) = 0. Let ψrega (Oi;µ1α, ζ, β) = Ŷ reg

i (1, α)−µ1α,

and ψrega (Oi;µ0α, ζ, β) = Ŷ reg
i (0, α)− µ0α denote the estimation equations for µ1α and µ0α,

respectively. Then the estimated parameter θ̂reg = (β̂, ζ̂, µ̂reg1α , µ̂
reg
0α ) is a solution of the
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following estimation equations:

K∑
i=1

ψreg(Oi;θ) = 0. (3.18)

The consistency of the regression estimators is shown in Theorem 3.2 below.

Theorem 3.2. If the baseline outcome regression model f(Yij|Ai, XijRij = 1; β) and the
conditional distribution of observed confounders f(Xij|Ai, Rij = 1) are correctly specified,
then the regression estimator µ̂regaα is consistent for µaα, and

√
K(θ̂reg − θ)

d−→ N (0,Σreg),

as K goes to infinity, where Σreg = U(θ)−1V (θ){U(θ)−1}T , U(θ) = E{−∂ψreg(Oi;θ)/∂θT},
and V (θ) = E{ψreg(Oi;θ)ψreg(Oi;θ)T}.

The proof of Theorem 3.2 is given in Section 3.7.

3.3.3 Doubly Robust Estimation

In this section, we aim to propose a DR estimator µ̂aα in the sense that it is consistent
if either the propensity score models or the baseline regression models, but not necessar-
ily both, are correctly specified. The typical DR estimator involves two parts, where the
first part is the regression term, and the second part is the inverse probability weighted
residuals of the regression estimator. In our case, when confounders are missing not at
random, both the propensity score of missingness and the outcome regression model con-
tain the odds ratio model. Therefore, the specification of propensity score models and the
regression models are not independent. Hence, the specification of the propensity score
models and the regression model cannot be fully separated. More specifically, in our set-
ting, the specification of both the propensity score of missingness and the modeling of
probability f(xij, yij|ai, rij = 0) requires the modeling of the odds ratio OR(xij|ai), that is,
OR(xij|ai) lies in the intersection of the IPW estimator and the regression estimator. Thus,
to construct the DR estimator, we assume OR(x|a; ζ) is always correctly specified, and the
proposed DR estimator is consistent if either the IPW models, Pr(aij = 1|rij = 1, xij; δ)
and Pr(rij = 1|aij = 1, xij; γ), are correctly specified or the outcome regression model
conditional on the observed values, f(yij|ai, xij, rij = 1, β) and f(xij|ai, rij = 1, β), are cor-

rectly specified, where γ = (γ
′
, ξ). ξ is obtained by solving the equation

∑K
i=1 ψζ(Oi; ξ) = 0,
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where ψξ(Oi; ξ) = vT (Ai, Ri, Xi; γ̂
′
, ξ)φ(Ai, Yi; β̂, ξ),

v(Ai, Ri, Xi; γ̂
′
, ξ̂) =


Ri1

Pr(Ri1=1|Ai1,Xi1;γ̂′ ,ξ̂)
− 1

Ri2

Pr(Ri2=1|Ai2,Xi2;γ̂′ ,ξ̂)
− 1

· · ·
RiNi

Pr(RiNi
=1|AiNi

,XiNi
;γ̂′ ,ξ̂)
− 1

 , and (3.19)

φ(Ai, Yi; β̂, ξ̂) =


l(Ai1, Yi1)− E{l(Ai1, Yi1) | Ai, Ri1 = 0; β̂, ξ̂}
l(Ai2, Yi2)− E{l(Ai2, Yi2) | Ai, Ri2 = 0; β̂, ξ̂}

· · ·
l(AiNi

, YiNi
)− E{l(AiNi

, YiNi
) | Ai, RiNi

= 0; β̂, ξ̂}

 (3.20)

Since the confounders are not fully observed, we replace the weights in the residuals of the
regression estimator in the traditional DR estimator by the joint probability of A and R
conditional on X, and the construction of the regression estimator term is similar as that
in Section 3.3.2. Hence, the DR estimator has the following representation:

µ̂draα =
1

K

K∑
i=1

[ Ni∑
j=1

[
E{ĥaij(Ai, Xi, Yi)|Ai = ai, Rij = 0; δ̂, γ̂, β̂}

+
1(Rij = 1)

Pr(Rij|Ai = ai, Xi; γ)

{
ĥaij(Ai, Xi, Yi)− E{ĥaij(Ai, Xi, Yi)|Ai = ai, Rij = 0; δ̂, γ̂, β̂}

}]]
,

(3.21)

and

µ̂drα =
1

K

K∑
i=1

[ Ni∑
j=1

[
E{ĥij(Ai, Xi, Yi)|Ai = ai, Rij = 0; δ̂, γ̂, β̂}

+
1(Rij = 1)

Pr(Rij|Ai, Xi; γ)

{
ĥij(Ai, Xi, Yi)− E{ĥij(Ai, Xi, Yi)|Ai, Rij = 0; δ̂, γ̂, β̂}

}]]
,

(3.22)

where haij(Ai, Xi, Yi; δ, γ, β), hij(Ai, Xi, Yi; δ, γ, β) have the following expressions:

haij(Ai, Xi, Yi; δ, γ, β) = waαij (Yij − gij(Ai, Xi; β)) +
1

Ni

∑
ai(−j)

Pα,x(ai(−j))gij(a,Xi, β), (3.23)
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hij(Ai, Xi, Yi; δ, γ, β) = wαij(Yij − gij(Ai, Xi; β)) +
1

Ni

∑
ai

Pα,x(ai)gij(a,Xi, β), (3.24)

waαij =
1(Aij = a)Pα,x(Ai)

Pr(Ai|Xi; δ, γ)

/ Ni∑
j=1

1(Aij = a)Pα,x(Ai)

Pr(Ai|Xi; δ, γ)
, (3.25)

and

wαij =
Pα,x(Ai)

Pr(Ai|Xi; δ, γ)

/ Ni∑
j=1

Pα,x(Ai)

Pr(Ai|Xi; δ, γ)
. (3.26)

The basic idea of the construction of haij(Ai, Xi, Yi; δ, γ, β) lies in that equation (3.23) is a
doubly robust estimator of µaα, in the sense that the expectation of ha(A,X, Y ) converges
to µaα when data are fully observed, that is, E{

∑Ni

j=1 h
a
ij(Ai, Xi, Yi; δ, γ, β)} = µaα, if either

the IPW models or regression models are correctly specified. When the propensity score
models are correctly specified,

E{
Ni∑
j=1

haij(Ai, Xi, Yi; δ, γ, β)}

= E

[ Ni∑
j=1

{
waαij Yij +

∑
ai(−j)

Pα,x(Ai(−j))gij(a,Xi, β)− waαij gij(Ai, Xi; β)

}]
= µipwaα .

Similarly, when the baseline regression models have been correctly specified, it is obvious
to see that the expectation of the first part of the equation (3.23) is equal to zero, and the ex-
pectation of the second part is the regression estimator, that is, E{

∑Ni

j=1 h
a
ij(Ai, Xi, Yi; δ, γ, β)} =

µregaα . Therefore, to obtain the doubly robust estimator when confounders are subject
to non-ignorable missingness, we can replace the observed outcomes and regression esti-
mator in the conventional residuals weighted DR estimator by haij(Ai, Xi, Yi; δ, γ, β) and
E{hij(Xi, Yi; δ, γ, β)|Ai, Rij = 0}, respectively. Hence, the constructed estimator can be
viewed as a new residuals weighted DR estimator, where the weights are the inverse of the
estimated propensity score of missingness, and the residuals come from the constructed
haij(Ai, Xi, Yi; δ, γ, β) instead of the regression estimator. By allowing either one of the sets
of models to be correctly specified, the doubly robustness property can also be achieved
accordingly. For estimating α, δ, and β, the estimators can be obtained by the maximum
likelihood approach using observed data when R = 1. The estimation equation for α, δ,
β can be written as

∑K
i=1 ψα(Oi;α) = 0,

∑K
i=1 ψδ(Oi; δ) = 0, and

∑K
i=1 ψβ(Oi; β) = 0, re-
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spectively. Let ψdra (Oi;µ1α, ξ, β) = µ̂dr(1, α)− µ1α, and ψdra (Oi;µ0α, ξ, β) = µ̂dr(0, α)− µ0α

denote the estimation equations for µ1α and µ0α, respectively. Then the estimated param-
eter θ̂dr = (α̂, δ̂, β̂, ξ̂, µ̂dr1α, µ̂

dr
0α) is a solution of the following estimation equations:

K∑
i=1

ψdr(Oi;θ) = 0. (3.27)

The consistency and asymptotic normality of the proposed DR estimator are summarized
in the following theorem.

Theorem 3.3. Assume OR(Xij|Ai; ξ) is correctly specified, if either (a) Pr(Rij = 1|Aij =
1, Xi; γ

′
) and Pr(Aij = 1|Rij = 1, Xij; δ) or (ii) f(Yij|Ai, Xij, Rij = 1; β) and f(Xij|Ai, Rij =

1; β) are correctly specified; then the DR estimator µ̂draα is consistent for µa, where µ̂draα is
obtained from equation (3.21), and

√
K(θ̂dr − θ)

d−→ N (0,Σdr),

as K goes to infinity, where Σdr = U(θ)−1V (θ){U(θ)−1}T , U(θ) = E{−∂ψdr(Oi;θ)/∂θT},
and V (θ) = E{ψdr(Oi;θ)ψdr(Oi;θ)T}.

The proof of Theorem 3.3 is given in Section 3.7.

3.4 Simulation

In this section, we conduct a simulation study to illustrate the proposed IPW, regression,
and DR estimator. First, under setting 1 (S1), we generate a population of size N = 10000,
and randomly classify the whole population into K = 100 mutually exclusive groups with
Ni = 100 individuals in each group. For each individual, the covariate X1 is generated
from the Bernoulli distribution with probability 0.5, and the covariate X2 is generated
from the standard normal distribution. To generate treatment and missing indicators, we
assume two logistic models. We assume a mixed effects logistic model logit{Pr(Aij = 1 |
Rij = 1, Xij = xij, bi)} = 0.1 + 0.2x1ij − 0.1x2ij + bi for the propensity score of treatment,
where bi is the group-level random effect term generated from N (0, σ2), i.e., the normal
distribution with mean 0 and variance σ2. We assume a logistic model logit{Pr(Rij =
1 | Aij = aij, Xij = xij)} = 1 + aij + 1.2x1ij − 0.5x2ij for the propensity score model of
missingness. Then the joint propensity score for treatment and missingness with random
effects Pr(aij, rij = 1|xij, bi) is calculated according to equation (3) in Chen [2007], and

75



the missingness indicator Rij and the treatment indicator Aij are generated from the joint
propensity score, which is given by the following equation:

Pr (Ai, Rij = 1 | Xi) =

∫ ni∏
j′=1

{
h11
ij′(bi)

}Aij
{
h01
ij′ (bi)

}(1−Aij)
fb
(
bi;σ

2
)
dbi,

where harij (bi) = Pr(aij = a, rij = r|xij, bi). Finally, we generate the outcome Yij from
Yij = 1 + 2x1ij − 3x2ij + 0.5x1ijx2ij + 2aij + 3pi(ai) + εij, where pi(ai) is the proportion of
units in group i that receive the treatment, and {εij}1≤i≤K,1≤j≤Ni

are i.i.d. random noise
terms generated by N (0, σ2). We consider four settings for the number of observations and
the variance of the group effect:

(S1) N = 10000, K = 50, and σ2 = 0.25;

(S2) N = 10000, K = 50, and σ2 = 0.16;

(S3) N = 12000, K = 200, and σ2 = 0.25;

(S4) N = 12000, K = 200, and σ2 = 0.16.

Second, letting α = 0.5, the propensity score models are correctly specified as Pr(aij =
1|rij = 1, xij; δ) = logit−1(δ1 + δ2x1ij + δ3x2ij + bi) and Pr(r = 1|a, x; γ) = logit−1(γ1 +
γ2a + γ1x1ij + γ2x2ij). The parameter δ = (δ1, δ2, δ3) and γ = (γ1, γ2, γ3, γ4) are estimated
with lme4 Bates et al. [2015] package in R R Core Team [2019]. The regression model is
correctly specified as E(yij|ai, xi, rij = 1) = β0+β1aij+β2pi(ai)+β3x1ij+β4x2ij+β5x1ijx2ij.
The odds ratio function is correctly specified as η(xij|aij; ζ) = exp(ζ1x1 + ζ2x2). The
parameters β are estimated by MLE. Then, the IPW estimator, regression estimator, and
doubly robust estimators (DR-TT: when all models are correctly specified), i.e., µ̂ipwaα , µ̂regaα ,
µ̂draα, are calculated according to equations (3.6), (3.16), and (3.21), respectively.

Third, in the scenario when there exists model misspecification, DR estimator DR-TF
is calculated when the outcome model is misspecified as E(yij|ai, xi, rij = 1) = β0 +β1aij +
β3x1ij + β4x2ij + β5x1ijx2ij, and the propensity score models are correctly specified.

The DR estimator DR-FT is calculated when the propensity score of treatment is
incorrectly specified as Pr(aij = 1|rij = 1, xij; δ) = logit−1(δ1 + δ2x1ij + b

(1)
i ), and the

outcome model is correctly specified.

Finally, the DR estimator DR-FF is calculated when the propensity score for treatment
is incorrectly specified as Pr(aij = 1|rij = 1, xij; δ) = logit−1(δ1 + δ2x1ij + b

(1)
i ), and the
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outcome model is misspecified as E(yij|ai, xi, rij = 1) = β0 + β1aij + β3x1ij + β4x2ij +
β5x1ijx2ij.

The simulation study is repeated 1000 times, and the estimators of µ1α, µ0α , and
D̄E(α) are summarized in the following tables.

Table 3.1: Bias, empirical standard error (se), and standard deviation [in brackets] for IPW
estimators, regression estimators, and doubly robust estimators under S1, S2, S3, and S4.

IPW REG DR-TT DR-TF DR-FT DR-FF

S1

µ1,0.5 0.005[0.051] -0.037[0.013] -0.062[0.073] 0.043[0.072] 0.081[0.046] -0.102[0.191]

µ0,0.5 0.003[0.059] -0.003[0.047] -0.023[0.082] 0.023[0.080] 0.030[0.067] 0.054[0.072]

D̄E(0.5) 0.002[0.082] -0.033[0.130] -0.040[0.072] 0.020 [0.068] 0.050[0.091] -0.156[0.104]

se(µ1,0.5) 0.152 0.030 0.078 0.103 0.102 0.181

se(µ0,0.5) 0.110 0.032 0.102 0.110 0.085 0.138

se(D̄E(0.5)) 0.114 0.069 0.080 0.075 0.113 0.166

S2

µ1,0.5 0.035[0.109] 0.034[0.059] -0.018[0.042] 0.017[0.046] -0.023[0.047] 0.060[0.121]

µ0,0.5 0.018[0.122] -0.008[0.057] -0.005[0.042] -0.007[0.042] 0.041[0.061] -0.796[0.092]

D̄E(0.5) 0.016[0.118] 0.042[0.077] 0.020[0.052] 0.019 [0.058] -0.019[0.080] 0.860[0.142]

se(µ1,0.5) 0.302 0.079 0.054 0.052 0.041 0.084

se(µ0,0.5) 0.111 0.073 0.057 0.057 0.069 0.094

se(D̄E(0.5)) 0.234 0.069 0.067 0.064 0.088 0.171

S3

µ1,0.5 -0.005[0.180] 0.019[0.046] -0.009[0.041] 0.037[0.027] -0.004[0.031] -0.105[0.081]

µ0,0.5 -0.012[0.041] 0.021[0.042] -0.014[0.029] -0.020[0.028] 0.028[0.032] 0.049[0.081]

D̄E(0.5) 0.007[0.099] -0.002[0.010] 0.006[0.035] 0.057 [0.032] -0.03[0.041] -0.155[0.072]

se(µ1,0.5) 0.154 0.036 0.041 0.037 0.029 0.090

se(µ0,0.5) 0.045 0.038 0.042 0.037 0.018 0.110

se(D̄E(0.5)) 0.137 0.089 0.041 0.051 0.033 0.080

S4

µ1,0.5 0.110[0.162] 0.022[0.046] -0.030[0.018] 0.010[0.022] -0.011[0.032] 0.053[0.085]

µ0,0.5 -0.018[0.035] 0.013[0.038] -0.002[0.017] -0.001[0.017] 0.028[0.034] 0.053[0.085]

D̄E(0.5) 0.128[0.185] 0.008[0.019] -0.028[0.024] 0.011 [0.033] -0.040[0.042] 0.160[0.074]

se(µ1,0.5) 0.225 0.048 0.037 0.027 0.037 0.103

se(µ0,0.5) 0.149 0.048 0.037 0.027 0.028 0.120

se(D̄E(0.5)) 0.249 0.015 0.041 0.040 0.038 0.090

The bias and empirical coverages of the proposed estimators are shown in Table 3.1,
Table 3.2, and Figure 3.2, where the 95% Wald-type confidence intervals are constructed
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Table 3.2: Coverage Probability (%) of IPW estimators, regression estimators, and doubly
robust estimators under S1, S2, S3, and S4.

IPW REG DR-TT DR-TF DR-FT DR-FF

S1

µ1,0.5 97.0 91.0 94.7 92.8 98.5 0

µ0,0.5 96.0 91.0 91.2 94.0 95.5 0

D̄E(0.5) 95.5 89.5 90.5 92.5 93.0 0

S2

µ1,0.5 98.5 89.5 98.5 93.5 90.5 0

µ0,0.5 95.5 92.5 91.5 95.5 90.5 0

D̄E(0.5) 98.5 92.0 93.0 92.0 88.5 0

S3

µ1,0.5 95.5 93.0 96.2 94.8 96.8 59.8

µ0,0.5 96.0 93.0 95.0 93.6 94.8 69.8

D̄E(0.5) 97.0 95.5 97.2 96.0 89.2 56.6

S4

µ1,0.5 93.0 90.0 97.0 92.0 92.5 50.6

µ0,0.5 97.0 96.0 98.5 96.5 91.5 57.4

D̄E(0.5) 92.0 92.5 96.5 92.5 85.5 56.0
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Figure 3.2: Bias of the (1) IPW, (2) Regression, and DR estimators for µ1,0.5 and µ0,0.5

under four scenarios: (3) both propensity and outcome regression models are correctly
specified; (4) propensity score models are correctly specified; (5) when only outcome model
is correctly specified; (6) when neither the outcome regression model nor the IPW models
are correctly specified (The boxplot of µ̂dr0,0.5 in the second scenario is dropped because the
absolute value of the bias is greater than 0.2).

according to the asymptotic distribution of the proposed estimators in Theorems 3.1,3.2,
and 3.3. When both the IPW models and the regression model are correctly specified,
the IPW, regression, and DR estimators all perform well in terms of having small bias
and variances, and the DR robust estimator DR-TT has the smallest variance among all
the estimators.When the outcome regression model is correctly specified, the regression
estimator has the smallest variance among all the proposed estimators. When both the
model of the propensity score for treatment and the regression model are misspecified, the
bias of µ̂dr0α has the same magnitude with the other estimators when either the IPW or
the regression model, but not both, is correctly specified. As shown in Table 3.2, all three
estimators achieve nominal levels when corresponding models are correctly specified, which
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indicates the standard error formulas proposed in Theorem 3.1, 3.2, and 3.3 are valid; when
both propensity score and regression models are misspecified, the coverage probability of
the DR estimator decreases to zero.

3.5 Application

Particulate matter 2.5 (PM2.5) refers to tiny particles or droplets in the air that can
affect people’s short-term or even long-term health conditions such as respiratory issues,
increased mortality from lung cancer, and heart disease. A primary strategy to achieve
the reduction of ambient PM2.5 is the installation of flue-gas desulfurization equipment
or controls (“scrubbers”) to reduce the sulfur dioxide (SO2), nitrogen dioxide (NOx), and
carbon dioxide (CO2) emissions, which are three main air pollutants that mediate the
changes of PM2.5. In 1990, the U.S. Clean Air Act (CAA) amendments launched the
Acid Rain Program (ARP) to reduce the emissions of the ambient SO2, NOx, and CO2 by
regulating those power plants to install scrubbers on coal-fired electricity-generating units
(EGUs).

In this section, we apply the proposed estimators on a dataset from the U.S. EPA’s
Air Quality System (AQS) to estimate the causal effect of installing the scrubbers on the
reduction of ambient NOx emissions. The dataset contains monthly emissions data from
1218 EGUs in the U.S. in 2004. The 1218 EGUs are classified into 40 clusters through
the linkage algorithm by Zigler et al. [2016]. Among 1218 EGUs, 913 EGUs installed the
scrubbers and 205 EGUs did not install the scrubbers. Five important characteristics of
the EGUs and the atmosphere are included in the data analysis: the heat input rate, the
capacity of the EGU, the amount of coal, the operation time, and the average tempera-
ture in the previous year. As these characteristics affect both the emissions of NOx and
the installation of scrubbers, they are treated as confounders of the causal relationship be-
tween the outcome and the treatment. For the treatment (scrubbers’ installation) coverage
probability, the average proportion of treated units among all the groups is 66.79%. For
the missingness in confounders, there is 15.76% missingness in the amount of coal, 2.25%
missingness in operation time, 21.69% missingness in heat input rate, 0.99% in capacity,
and 24.90% missingness in total. The missingness can be caused by multiple reasons such
as monitor errors (e.g., the operation time exceeds a certain time), the failure of recording,
and the changes in the filter. Since the units with fewer NOx emissions are less likely to dis-
close the baseline characteristics, and records of the baseline characteristics were measured
long before the emissions of NOx took place, it is plausible that the outcome-independence
assumption holds.
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We assume a linear fixed effect regression model for the outcome and assume differ-
ent mixed effects, and logistic regression models, for the propensity score of treatment
and missingness, respectively. To account for the dependency of the treatment allocation
strategy on the baseline characteristics, following Papadogeorgou et al. [2019], we assume
Pα,x(ai) as the logistic regression model: logit{Pα,x(ai)} = ξαi +

∑6
j=1 βiXij, where ξ is

estimated by solving the following equation,

1

Ni

Ni∑
j=1

expit (ξαi + βjXij) = α.

Since in the dataset, there are over 80% of units lying in the clusters with the average
proportion of units with scrubbers installed ranging from 0.3 to 0.8, we consider values of
α varying from 0.3 to 0.8.

Figure 3.3 presents the results of IPW, regression, and DR estimators for the direct
effect DE(α) across different values of α. When α = 0.3, D̄E(α) of the IPW, regression
and DR estimators are -29.45, -49.25, and -34.72, respectively. When α = 0.8, DE(α) of
the IPW, regression and DR estimators are -19.55, -21.99, and -17.44, respectively. The
estimated D̄E(α) are negative for all three estimators across different α values, indicating
that the intervention of installing scrubbers has a positive effect on reducing the emissions of
the tons of NOx, and there would be approximately 30 tons of NOx emissions fewer per unit
among the units with scrubbers installed compared to the units without scrubbers installed.
As α increases, D̄E(α) has an increasing trend, which implies that the intervention at one
EGU is beneficial for the reduction of the emissions of NOx, but the effect is smaller when
the proportion of the units within the same cluster that have scrubbers installed becomes
larger.

Let α be the average treatment coverage probability among 40 clusters, i.e., α0 = 0.67;
in this setting, IPW, regression, and DR estimates for the indirect ( ¯IE(0.6, α1)), total
effect ( ¯TE(0.6, α1)), and overall effect (ŌE(α1)) are given in Figure 3.4. The indirect
effect has a decreasing trend when α1 − α0 increases, and it is positive when α1 < 0.67
and negative when α1 > 0.67. For example, when α1 = 0.46, the DR estimate is 15.14,
and 95 % CI is (11.19, 19.76), which suggests that there would be 15.14 more tons of NOx

emissions if scrubbers had not been installed for units within groups with 46% coverage
compared to that with groups with 67% coverage of scrubber installation; when α1 = 0.75,
the estimate is -6.84 for DR estimator, and the corresponding 95 % CI is (-8.82,-5.40),
which implies that we would expect 3.90 tons of NOx emissions fewer if scrubbers had
not been installed for units within groups with 75% coverage compared to groups with
average coverage probability. It is also worth noting that the confidence intervals would

81



decrease as the difference between α0 and α1 decreases, which indicates that the decrease
in the variance of the estimator of µ0α and µ1α cannot offset the increase in the correlation
between the two estimators, because both the estimators are dependent on the treatment
allocation function Pα,x(a(i(−j)). The total effect of the proposed estimators, which combine
both the direct and the indirect effects, have a slightly decreasing trend when α increases.
For example, when α = 0.5, the IPW, regression, and DR estimates are -18.15, -25.70,
and -16.91, and the corresponding 95% CIs are (-21.38, -14.43), ( -30.27, -21.64), and (-
19.78, -14.05), respectively; when α = 0.75, the IPW, regression, and DR estimates are
-25.56, -28.35, and -22.29, and the corresponding 95% CIs are (-29.44,-21.71), (-31.56, -
24.85), and (-24.75,-19.83), respectively. Therefore, all three estimators indicate that there
would be fewer NOx emissions if the scrubber had been installed in a unit within groups
with higher coverage probability compared to the unit without scrubbers installed in groups
with lower coverage probability. The estimates of the overall effect of scrubber installation,
which quantify the difference in the tons of NOx emissions under two treatment allocation
strategies, suggest that there would be fewer NOx emissions within groups with a higher
average percentage of the coverage of scrubber installation.

Figure 3.3: Estimates and 95% Wald-type confidence intervals of D̄E(α) of scrubber in-
stallation for (1) IPW, (2) Regression, and (3) DR estimators with α ∈ (0.3, 0.8), where
the shadow area represents the pointwise confidence intervals.
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Figure 3.4: Estimates and 95% Wald-type confidence intervals of ¯IE(0.67, α), ¯TE(0.67, α),
and ŌE(0.67, α) of scrubbers’ installation for (1) IPW, (2) Regression, and (3) DR esti-
mators with α ∈ (0.3, 0.8), where the shadow area represents the pointwise confidence
intervals.

3.6 Discussion

In this paper, we constructed three consistent estimators: IPW, regression, and DR es-
timators for four types of network causal effects: the direct, indirect, total and overall
effects when the confounders are missing not at random. Under the group-level outcome-
independent missingness assumption, the IPW and regression estimators are consistent
and asymptotically normal if the corresponding models are correctly specified, and the
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consistency of the DR estimator requires that either the joint modeling of the propensity
score of treatment and missingness or the outcome regression model, but not necessarily
both, are correctly specified.

The proposed doubly robust estimator is based on the conventional DR estimators in
Kang and Schafer [2007] without interference. In the setting where interference exists, the
methodology avoids the assumption of SUTVA, and can recover the causal effect in the
whole population. To solve the problem of the extreme group-level joint propensity scores,
we propose self-normalized estimators to reduce the variance. In the real application,
we classify the power-generating facilities into different groups based on their geographical
locations and apply three proposed estimators on the incomplete clustered data. We further
show that the intervention of installing scrubbers has a positive effect on reducing the
emissions of NOx which, in turn, may potentially reduce the ambient PM2.5 and the
concentrations of ozone. The effect of scrubbers’ installation on one power-generating
facility decreases as the number of treated facilities increases within the same group.

One limitation of the proposed methods is that they can cause increased computational
burden when the number of units in each group increases, and it may not be suitable
to implement the estimators when the confounders are high-dimensional. Adapting the
proposed methods to handle high-dimensional data is an interesting direction for future
research. Another limitation lies in that the estimators do not work well for the cases when
the proportion of missingness is large. In this study, we only consider the setting under
partial interference only; how to draw causal effects in the network of general interference
remains uncovered, and we leave it as another future research. Besides, it is interesting to
consider multiple missingness patterns so that the information of confounders can be fully
utilized.
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3.7 Proof of Theorems

3.7.1 Proof of Theorem 3.1

Proof: In this section, we show the consistency of µ̂ipwaα . First, we notice that:

1

K

K∑
i=1

1

Ni

Ni∑
j=1

1(Aij = a)1(Rij = 1)YijPα,x(Ai(−j))

P̂r(Ai, Rij|Xi)

p−→ E

[
1

Ni

Ni∑
j=1

1(Aij = a)1(Rij = 1)YijPα,x(Ai(−j))

Pr(Ai, Rij|Xi)

]

= E

[
1

Ni

Ni∑
j=1

E

[
E

{
1(Rij = 1)

Pr(Rij|Ai, Xi, Yij)
|A,X, Y

}
1(Aij = a)YijPα,x(Ai(−j))

Pr(Ai|Xi)

∣∣∣∣X]]

= E

[
1

Ni

Ni∑
j=1

E

{
1(Aij = a)YijPα,x(Ai(−j))

Pr(Ai|Xi)

∣∣∣∣X}]

= E

[
1

Ni

Ni∑
j=1

∑
ai

1(aij = a)Yij(ai)π(ai(−j);α)

Pr(Ai = ai|Xi)
Pr(Ai = ai|Xi)

]

= E

[
1

Ni

Ni∑
j=1

∑
ai(−j)

Yij(ai)π(ai(−j);α)

]

= E

[
Ȳi(a, α)

]
= µaα,

and

E

Ni∑
j=1

1(Aij = a)Pα,x(Ai(−j))

P̂r(Ai, Rij|Xi)
= Ni.

Therefore, we have

E

[ Ni∑
j=1

{
1(Aij = a)1(Rij = 1)YijPα,x(Ai(−j))

P̂r(Ai, Rij|Xi)
−

1(Aij = a)Pα,x(Ai(−j))

P̂r(Ai, Rij|Xi)
µaα

}]
= 0.
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3.7.2 Proof of Theorem 3.2

Proof: The consistency of µ̂regaα follows below.

µ̂regaα =
1

K

K∑
i=1

Ŷ reg
i (a, α)

=
1

K

K∑
i=1

[
1

Ni

Ni∑
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1
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]
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E{Yij(aij, ai(−j))|Xi; β̂, ζ̂}Pα,x(ai(−j))
]

= µaα.
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3.7.3 Proof of Theorem 3.3

Proof: If (a) Pr(Rij = 1|Ai = 1, Xi; δ) and Pr(Ai|Ri = 1, Xi; γ) are correctly specified,
the consistency of µ̂draα follows by the law of large numbers and the outcome independent
missingness assumption,

µ̂draα

=
1

K

K∑
i=1

1

Ni

[ Ni∑
j=1

[
E{ĥaij(Ai, Xi, Yi)|Ai = ai, Rij = 0; δ̂, γ̂, β̂}
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If (b) the regression model f(x, y|a, r = 1) is correctly specified, for any user-defined
differentiable function h(A,X, Y ), we have

E{h(ai, Xi, Yi) | ai, ri = 0} =

∫∫
η (ri = 0, ri0, xi, xi0 | ai) f(xi, yi | ai, ri = 1)h(ai, xi, yi)dxdy

E {η (ri = 0, ri0, xi, xi0 | ai) | ai, ri = 1}

=
E {η (ri = 0, ri0, Xi, x0 | a)h(ai, Xi, Yi) | ai, ri = 1}

E {η (ri = 0, ri0, Xi, xi0 | ai) | ai, ri = 1}

=
E {Riη (ri = 0, r0, Xi, x0 | ai)h(ai, Xi, Yi) | ai}

E {Riη (ri = 0, ri0, Xi, xi0 | ai) | ai}
.

Therefore, it is straightforward to see

E {Riη (ri = 0, ri0, Xi, xi0 | Ai)h(Ai, Xi, Yi) | Ai}
=E {Riη (ri = 0, ri0, Xi, xi0 | Ai) | Ai}E{h(Ai, Xi, Yi) | Ai, Ri = 0},

and

E{Riη (ri = 0, ri0, Xi, xi0 | Ai) {h(Ai, Xi, Yi)− E{l(Ai, Xi, Yi) | Ai, Ri = 0}} = 0.
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Hence, we can replace h(A,X, Y ) by ĥ(A,X, Y ) in the above equation, and the consistency
of µ̂aα follows below.

µ̂draα

=
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[
1

Ni

Ni∑
j=1

[
1(Rij = 1)

Pr(Rij = 0|Ai = ai, Xi; γ̂)

Pr(Rij = 1|Ai = ai, Xi; γ̂){
ĥaij(Ai, Xi, Yi)− E{ĥaij(Ai, Xi, Yi)|Ai = ai, Rij = 0; δ̂, γ̂, β̂}

}
+ 1(Rij = 1)

{
ĥaij(Ai, Xi, Yi)− E{ĥaij(Ai, Xi, Yi)|Ai = ai, Rij = 0; δ̂, γ̂, β̂}

}
+ E{ĥaij(Ai, Xi, Yi)|Ai = ai, Rij = 0; δ̂, γ̂, β̂}

]]
(by outcome independent missingness assumption)

= E

[
1

Ni

Ni∑
j=1

∑
ai(−j)

[
Rijĥ

a
ij(Ai, Xi, Yi) + (1−Rij)E{ĥaij(Ai, Xi, Yi)|Ai, Rij = 0; β̂, ξ̂}

]
Pα,x(ai(−j))

]

= E

[
1

Ni

Ni∑
j=1

∑
ai(−j)

E{ĝij(ai(−j), aij, Xi; β̂)|Ai, Rij}Pα,x(ai(−j))
]

= µaα.
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Chapter 4

Mutiply Robust Estimation of
Network Causal Effects

4.1 Introduction

Robust estimation in causal inference has drawn a great amount of interest in the past
ten years. Many doubly robust estimators have been proposed under different settings.
An estimator is doubly robust if it is consistent when either a propensity score model, or
an outcome regression model, but not necessarily both, are correctly specified. Bang and
Robins [2005] proposed doubly robust estimators when the outcome is possibly missing
at random. Miao and Tchetgen Tchetgen [2016] utilized a shadow variable to construct
the doubly robust estimators when the outcome is subject to nonignorable missingness.
Shardell et al. [2015] proposed a doubly robust augmented IPW (AIPW) estimator for the
effect of a time-varying exposure on the outcomes in a longitudinal study with dropout
and truncation by death. Tan [2020], Ning et al. [2020], and Tang et al. [2022] proposed
a doubly robust estimation procedure for drawing causal effects in the high-dimensional
setting.

There has been an increasing interest in the field of multiply robust estimators in recent
years, which are extensions of doubly robust estimators. Multiply robust estimators are
constructed to provide more protection against model misspecification. An estimator is
multiple robust if it is consistent when any one of the candidate models, either a propensity
score model or an outcome regression model, is correctly specified. Han and Wang [2013]
proposed a multiply robust estimator for the population mean of the response, given that
the outcome is missing at random. The estimator is consistent if at least one of the can-
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didate models, either for a propensity score or outcome regression, is correctly specified.
Han [2014a,b] further improved their multiply robust estimators by proposing a new com-
putational method, which overcomes the problems of multiple roots and non-convergence.
Li et al. [2020a] showed that the multiply robust estimators are special cases of doubly
robust estimators, and proposed a model mixing procedure for combining multiple candi-
date models. Zhang et al. [2019] proposed an empirical likelihood based approach to both
testing and estimation of the treatment effect in non-randomized pretest-posttest studies.
Following Han and Wang [2013], we consider the estimation of network treatment effects
when confounders are missing not at random.

In this chapter, we extend the multiply robust estimation with incomplete data to the
partial interference setting, where data can be grouped into disjoint clusters and observa-
tions within the same cluster are correlated. We consider both the scenario when data are
fully observed and the scenario when confounders are subject to nonignorable missingness.
The proposed methods are based on the empirical likelihood approach. In the first scenario
when data are complete, the conventional multiply robust estimation procedure is adjusted
by replacing the unit-level propensity score and outcome regression models with the group-
level propensity score models and outcome regression models. In the second scenario when
confounders are subject to nonignorable missingness, we developed a novel estimation pro-
cedure to overcome the difficulty of estimating the expectation of both outcome regression
models and the propensity scores.

The chapter is organized as follows. In Section 4.2, we introduce the notations and
assumptions. In Section 4.3, we introduce the developed multiply robust estimators based
on clustered data with and without missingness. The theoretical properties of the pro-
posed estimators are established, and the cluster-based bootstrapping method is utilized
to estimate the variance of the proposed estimators. In Section 4.4, we conduct a series
of simulation studies. In Section 4.5, we further illustrate the proposed estimators with a
real dataset on a network emissions application, and the summary of the paper is given in
Section 4.6.

4.2 Notation and Assumptions

Assume there are K disjoint groups of units. For i = 1, 2, ...K, let ni denote the number of
units in group i. Let Yi = (Yi1, Yi2, ..., Yini

) denote the observed outcome in group i, Ai =
(Ai1, Ai2, ..., Aini

) the binary treatment indicator for group i, Xij = (Xij,1, Xij,2, ..., Xij,p)
T

denote the vector of confounders of subject j in group i that may be subject to missingness,
andRij the indicator of observingXij , whereRij = 1 if any component ofXij is missingness
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and Rij = 0 if otherwise. Let Yij(ai) and Yij(aij, ai(−j)) denote the potential outcome for
unit j in group i under treatment allocation ai. The average potential outcome is defined
as µaα = E(Ȳi(a, α)), where Ȳi(a, α) = n−1

i

∑ni

j=1

∑
ai(−j)∈A(Ni−1) Yij(a, ai(−j))Pα,x(ai(−j)),

and Pα,x(ai(−j)) = Pr(Ai(−j) = ai(−j)|Aij = aij, Xi) is the treatment allocation probability,
which may depend on the confounders in an observational study. The direct effect (or
the population average treatment effect) is defined as DE(α) = E(Ȳi(1, α) − Ȳi(0, α)) =
µ1α−µ0α, the indirect effect is defined as IE(α0, α1) = E(Ȳi(0, α1)−Ȳi(0, α0)) = µ0α1−µ0α0 ,
the total effect is defined as TE(α1, α1) = E(Ȳi(1, α1) − Ȳi(0, α0)) = µ1α1 − µ0α0 , and the
overall effect is defined as OE(α0, α1) = E(Ȳi(α1)− Ȳi(α0)) = µα1 − µα0 . More discussion
on these causal effect estimands can be found in Section 3.2.

Assume the interference type is partial and direct interference, that is, there is no
interference between units in different groups, and the outcome of one unit is affected
only through the treatment assignment of another unit. This assumption is plausible if the
groups are geographically separated, and the treatment assignment of one unit is dependent
only on its own characteristics. We also make the causal consistency assumption, positivity
assumption, and the group-level outcome-independent missingness assumption throughout
the chapter. Formal definitions of these assumptions are given in Section 3.2.

4.3 Estimation

4.3.1 Multiply Robust with Interference

In this section, we assume that the interference exists and the data are fully observed.
To construct the multiply robust estimator, we postulate multiple candidate propensity
score models Pa = {πjA(xi;α

j), j = 1, 2, ...J} for Pr(Aij = a | Xi = xi), and multiple
candidate models A = {f lij(yij|ai,xi; βl), l = 1, 2, ...L} for the conditional distribution of
the outcome. Let {ml

ij(ai,xi; β
l), l = 1, 2, ...L} denote the set of corresponding outcome

regression models for the conditional expectation of the outcome on the treatment and
confounders, i.e., E(Yij|Ai = ai,Xi = xi). Let bi and ξi denote the normally and indepen-
dently distributed random effect terms in the propensity score models and outcome models
respectively, that induce the correlation among units within the same cluster. Usually, each
αj is estimated by maximizing the following binomial log-likelihood,

K∑
i=1

log{f j(Ai|Xi;α, ψb)},
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where

f j(Ai|Xi;α, ψb) =

∫ ni∏
j=1

(πjA(Xi;α
j))Aij(1− πjA(Xi;α

j))1−Aijfb(bi;ψb)dbi, (4.1)

and fb(bi;ψb) is the normal distribution with mean zero and variance ψb. Similarly, we
utilize the maximum likelihood approach to obtain the estimates of βl in each of the
candidate outcome regression models. In the literature, the most popular class of outcome
models for correlated data is the linear mixed effect model. Thus, we assume a linear
mixed effects model for the outcome model which has the following representation:

Yij = βl0 + βl1Aij + βl2f(Ai(−j)) + βl3Xij + βl4Xi(−j) + ξi + εij, (4.2)

where εij are random error terms, ξi is the random effect term that induces the dependency
among units in the same cluster, and f(·) is a summary statistics function of the treatment
vector that introduces the interference among units. Without loss of generality, we assume
that the true propensity score model is π1

A(xi;α
1), and the true outcome regression model

is m1(ai, xi; β
1). Let waij(Xi) = Pα,x(Ai(−j))/f(Aij = a,Ai(−j)|Xi), where a ∈ {0, 1}. It is

straightforward to verify that

E

[
waij(Xi)

{
πjA(Xi; α̂

j)− E
(
πjA(Xi; α̂

j)

)}
|Aij = a

]
= 0 (4.3)

E

[
waij(Xi)

{
ml
ij(Ai,Xi; β̂

l)− E
(
ml
ij(Ai,Xi; β̂

l)

)}
|Aij = a

]
= 0 (4.4)

Let θ̂j(α̂j) = 1/K
∑K

i=1 1/ni
∑ni

j=1 π
j
A(Xi; α̂

j) and η̂l(β̂l) = 1/K
∑K

i=1 1/(ni)
∑

j

∑
ai(−j)

ml
ij(

Aij = a,Ai(−j) = ai(−j); β̂
l)Pα,x(ai(−j)) be the empirical means for expectations E

(
πjA(Xi; α̂

j)

)
and E

(
ml
ij(Aij, Ai(−j), Xi; β̂

l)|Aij = a

)
, respectively. We replace the inner expectation in

(4.3) and (4.4) by the empirical estimates θ̂j(α̂j) and η̂l(β̂l), and utilize the empirical
likelihood approach to estimate the weights by maximizing

∏
i,j w

a
ij with the following
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constraints:∑∑
i,j:Aij=a

waij = 1,
∑∑
i,j:Aij=a

waijπ
j
(
Xi; α̂

j
)

= θ̂j(α̂j) (j = 1, . . . , J),

∑∑
i,j:Aij=a

waijm
l
ij

(
Ai,Xi; β̂

l
)

= η̂l(β̂l) (l = 1, . . . , L),
(4.5)

for a ∈ {0, 1}. Then, the empirical likelihood weights are obtained through the Lagrange
multiplier’s method, which has the following representation:

ŵaij =
1∑
i ni,a

1

1 + λ̂Tgij(α̂, β̂)
, (4.6)

where ni,a is the number of observations in the group i such that Aij = a,

α̂ =
{

(α̂1)
>
, (α̂2)

>
, . . . ,

(
α̂J
)>}>

, β̂ =

{(
β̂1
)>

,
(
β̂2
)>

, . . . ,
(
β̂L
)>}>

,

gij(α̂, β̂) =



π1
A (xi; α̂

1)− θ̂1

...

πJA
(
xi; α̂

J
)
− θ̂J

m1
ij

(
xi; β̂

1
)
− η̂1

...

mJ
ij

(
xi; β̂

L
)
− η̂L


,

and λ̂ is the solution of

U(λ̂) =
∑∑
i,j:Aij=a

gij(α̂, β̂)

1 + λ̂gij(α̂, β̂)
= 0. (4.7)

The proposed multiply robust estimator µ̂mr
aα for µ0

aα is given by solving the following
estimation equation:

K∑
i=1

Wi(Yi − µi,aα) = 0, (4.8)

whereWi = diag{ŵai11(Ai1 = a), ŵi21(Ai2 = a), · · · , ŵaini
1(Aij = a)}, and µaα = (µ1,aα, µ2,aα,

· · · , µK,aα)T . Then, under the regularity conditions similar to Theorem 2 in Han and Wang
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[2013], we have the following theorem,

Theorem 4.1. (Multiple robustness) Under suitable regularity conditions, if either (1) any
one candidate model of the propensity score of treatment is correctly specified, or (2) any
one of the candidates’ outcome models f(yij|ai,xi) are correctly specified, then µ̂mr

aα → µ0
aα

in probability as K →∞.

4.3.2 Multiply Robust Estimator with Confounders Missing Not
at Random

The methodology presented above is to estimate the network causal effects with complete
data. In this section, we extend the idea to the setting when confounders are subject
to nonignorable missingness. In equations (4.3) and (4.4), if we replace the group-level
propensity score of treatment with the group-level joint propensity score of treatment and
missingness, the two equations will still hold. Therefore, to obtain the multiply robust
estimators, the specification of a set of paired propensity score models of treatment given
observed data and the propensity score models of missingness are required for estimation.
First, we postulate multiple models Pa = {πjA(x;αj), j = 1, 2, ...J} for propensity score
of treatment Pr(Aij = 1 | Rij = 1,Xi = xi, bi), Pr = {πjR(x; γj), j = 1, 2, ...J} for
Pr(Rij = 1 | Ai = ai,Xij = xij). We postulate a set of candidate outcome models Ay =
{f l(y|a, x, r = 1; βly), l = 1, 2, ...L} for the outcome regression model f(Y |A,X,R = 1),
and a set of models Ax = {f (l)(a; βlx), l = 1, 2, ...L} for the distribution of confounders
f(X|A,R = 1), where bi are group-level random effect terms. Let βl = (βlx, βly)T . Each
pair of αj, γj are estimated through maximizing the following binomial likelihood,

K∏
i=1

∫ ni∏
j=1

{
h11
ij (bi)

}AijRij
{
h01
ij (bi)

}(1−Aij)Rij fb
(
bi;σ

2
)
dbi,

where harij (bi) = Pr(aij = a, rij = r|xij , bi). Similarly, under the group-level outcome-
independent missingness assumption, each βl is estimated through the maximum like-
lihood approach based on observed data. In order to recover the conditional expec-
tation of the outcome given the treatment and confounders from the observed samples
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(i = 1, 2, · · ·K, j = 1, 2, · · ·mi), we impose the following constraints on the weights wij:

K∑
i=1

mi∑
j=1

waij = 1, waij > 0,

K∑
i=1

mi∑
j=1

waijπ
j
AR

(
α̂j , γ̂j ;Xi

)
= θ̂jAR(α̂j, γ̂j) (j = 1, . . . , J)

K∑
i=1

mi∑
j=1

waijm
l
ij

(
β̂l;Ai,Xi

)
= η̂l(β̂l) (l = 1, . . . , L),

where θ̂jAR =
∑K

i=1

∑ni

j=1 π
j
AR (Xi; α̂

j, γ̂j) , and η̂l = 1/K
∑K

i=1 1/ni
∑ni

j=1

∑
ai(−j)

ml
ij(

Aij = a,Ai(−j) = ai(−j),Xi; β̂
l
)
Pα,x(ai(−j)), and πjAR

(
α̂j , γ̂j ;Xi

)
is obtained by equation

(3.11). Here, the first constraint is imposed for regularization, and the second to fourth
constraints equate the weighted average of each parametric function evaluated at the ob-
served samples to the corresponding unweighted sample mean. From the above constraints,
we can see θ̂jR(γ̂j), θ̂jA(α̂j) and η̂l(β̂l) are not estimable through sample average, because
Xi are subject to missingness. To make progress, we propose a novel procedure here to
estimate the expectation of model averages in this section. It is worth noting that Li et al.
[2020b] proposed a similar procedure to recover the population mean when the outcome is
subject to missingness. The main difference lies in two main aspects. First, the outcome
is missing not at random, but the confounders are assumed to be fully observed in their
setting. Thus, the expectation of their outcome models can be directly estimated through
the sample average. Second, they did not consider the cluster structure within the dataset.
Moreover, in order to guarantee consistency, one outcome model and one propensity score
model have to be correctly specified simultaneously in Li et al. [2020b], whereas in our
setting, the consistency of the estimator follows if one set of working models, either the set
of the propensity score models, or the set of the joint models of outcome and confounders,
but not necessarily the both, is correctly specified.

To proceed, we first notice that, for any vectorized differentiable function l(a, x, y), we
have

f(xij, yij | ai, rij = 0) =
η (rij = 0, r0, xij, x0 = 0 | ai) f(xij, yij | ai, rij = 1)

E {η (rij = 0, r0, Xij, x0 | ai) | ai, rij = 1}
, (4.9)
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and

E{l(aij, Xij, Yij) | ai, rij = 0} =

∫∫
η (rij = 0, r0, xij, x0 | ai) f(xij, yij | ai, rij = 1)l(aij, xij, yij)dxdy

E {η (rij = 0, r0, xij, x0 | ai) | ai, rij = 1}

=
E {η (rij = 0, r0, Xij, x0 | ai) l(aij, Xij, Yij) | ai, rij = 1}

E {η (rij = 0, r0, Xij, x0 | ai) | ai, rij = 1}

=
E {Rijη (rij = 0, r0, Xij, x0 | ai) l(aij, Xij, Yij) | ai}

E {Rijη (rij = 0, r0, Xij, x0 | ai) | ai}
,

(4.10)
where

η (rij, r0, xij, x0 | ai) =
Pr(rij | ai, xij) Pr (r0 | ai, x0)

Pr (r0 | ai, xij) Pr (rij | ai, x0)
(4.11)

=
Pr(rij | ai, xij, yij) Pr (r0 | ai, x0, yij)

Pr (r0 | ai, xij, yij) Pr (rij | ai, x0, yij)
(4.12)

=
f(xij, yij | ai, r0)f (x0, y0 | ai, rij)
f (xij, yij | ai, rij) f (x0, y0 | ai, r0)

, (4.13)

x0 = y0 = r0 = 0. Let lij(Xi) = Pr(Ai, Rij |Xi), then θ̂AR, j ∈ {1, 2, ..J}, l ∈ {1, 2, ...L}
are obtained by

1

K

K∑
i=1

1

ni

ni∑
j=1

[
(1−Rij)E

{
π̂jAR(Xi; α̂

l, γ̂l) | ai, rij = 0; β̂l, α̂j
}

+Rijπ̂
j
AR(Ai,Xi; γ̂

l)
]
,

(4.14)
and η̂lAR, l ∈ {1, 2, ...L} are obtained by

1

K

K∑
i=1

1

ni

ni∑
j=1

[
(1−Rij)E

{
m̂l
ij(Ai,Xi; β̂

l) | ai, rij = 0; β̂l, β̂′
l
}

+Rijm̂
l
ij(Ai,Xi; β̂

l)
]
,

(4.15)

where each β̂′
l

is estimated by solving

K∑
i=1

1

ni

ni∑
j=1

[(1−Rij){l(Ai, Yi)− E{l(Aij, Yij) | Ai, Rij = 0; β̂l, β̂′
l
}}] = 0. (4.16)
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To avoid excess notations, we use βl instead of (βl, β′l) for the rest of the chapter. Let

α̂T =
{(
α̂1
)T
, . . . ,

(
α̂J
)T
}
, γ̂T =

{(
γ̂1
)T
, . . . ,

(
γ̂J
)T
}

β̂T =

{(
β̂1
)T

, . . . ,
(
β̂L
)T
}
, and

gij(α̂, γ̂, β̂) =



π1
A (xi; α̂

1, γ̂1)− θ̂1
AR

...

πJR
(
xi; α̂

J , γ̂J
)
− θ̂JAR

m1
ij

(
ai,xi; β̂

1
)
− η̂1

...

mJ
ij

(
ai,xi; β̂

L
)
− η̂L


.

(4.17)

If ρT = (ρ1, ..., ρJ+L) is a (J + L)-dimensional vector satisfying the equation

K∑
i=1

mi∑
j=1

ĝij(α̂, γ̂, β̂)

1 + ρTĝij(α̂, γ̂, β̂)
= 0, (4.18)

then, by empirical likelihood theory, the solution to equation (4.17) is given by

ŵaij =
1∑
i ni,ar

1

1 + ρ̂Tĝij(α̂, γ̂, β̂)

with
1 + ρ̂Tĝij(α̂, γ̂, β̂) > 0, j = 1, . . . , ni,

where ni,ar is the number of observations in the group i satisfying Aij = a and Rij = 1.
In practice, directly solving equation (4.18) may lead to multiple roots. Therefore, in
order to guarantee uniqueness of the ρ, we utilize the methods proposed by Han [2014a]
to estimate ρ by minimizing the convex function F (ρ) = −

∑
i,j[log{1 + ρTĝij(α̂, γ̂, β̂)}].

Then, the proposed multiply robust estimator µ̂mr
aα for µ0

aα is obtained by solving the
following estimating equation:

K∑
i=1

Wi(Yi − µi,aα) = 0, (4.19)
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where Wi = diag{ŵai11(Ai1 = a)1(Ri1 = 1), ŵai21(Ai2 = a)1(Ri2 = 1), · · · , ŵaini
1(Aij =

a)1(Rini
= 1)}, and µaα = (µ1,aα, µ2,aα, · · · , µK,aα)T .

Theorem 4.2. (Multiple robustness) Under suitable regularity conditions, if either (1)
any one pair of candidate propensity score models, i.e., propensity score of treatment and
propensity score of missingness, are correctly specified, or (2) any one pair of the candidate
odds ratio model η(r, r0, x, x0) and the candidate joint density model f(x, y|a, r = 1) are
correctly specified, then µ̂mr

aα → µ0
aα in probability as K →∞.

The above multiple robustness theorem is different from that when data are fully ob-
served. Notice that the consistency of the proposed estimator only requires the correct
specification of either the propensity score model of treatment or the joint density model
of confounders and the outcome. When confounders are missing not at random, the joint
propensity score of missingness and the treatment requires the specification of the propen-
sity score model of treatment and the propensity score model of missingness. The joint
model of the confounders and the outcome conditional on missing data requires both the
specification of the odds ratio model and the specification of the joint model of the outcome
and the confounders given observed data.

Under partial interference, we assumed a linear and a logistic mixed effects model for
the outcome regression model and the propensity score of treatment. Although the cluster
structure does not explicitly affect the derivation of the proposed multiply robust estimator
after integration, as only marginal distribution models are utilized in the estimation pro-
cedure, the limiting distribution of the proposed estimators is dependent on the covariance
structure. Since the derivation of the asymptotic variance is challenging and is beyond the
scope of this paper, we leave it as a future research topic. To circumvent the difficulty of
variance estimation, we estimate the standard errors of the estimators by a cluster-based
bootstrapping procedure. More specifically, we take a simple random sample with the
replacement of K clusters from the original K clusters in the study population to form a
bootstrap sample {Oi = (Yij, Xij, Aij, Rij), i = 1, 2, · · ·K, j = 1, 2 · · ·ni}. Calculate
µ̂mr
n based on the B (e.g., B = 9999) bootstrap samples. Then, under some regularity

conditions, we have var(µ̂mr
n ) → se2(µ̂mr) in probability as n → ∞ (see more details in

Chen et al. [2021]).

4.4 Simulation

In this section, we study the finite performance of the proposed estimators. We first
generate a population with K = 200 groups, and ni = 40 units in each of the groups. For

99



each unit, the covariate X1 is generated from the Bernoulli distribution with expectation
0.5, and X2 is generated by the standard normal distribution.

In Scenario 1, we consider the case when data are fully observed. Let α = 0.5. The
treatment indicators are generated from a mixed effects logistic model logit{Pr(Aij = 1 |
Xij = xij, bi)} = −0.1 + 0.1x1ij − 0.2x2ij − 0.15x1ijx2ij + bi, where bi is group-level random
effect terms generated from N (0, 0.5). In Scenario 2, we assume the propensity score of
treatment as a mixed effects logistic model logit{Pr(Aij = 1 | Xij = xij, Rij = 1, bi)} =
0.2+0.1x1ij−0.1x2ij−0.1x1ijx2ij + bi. We let the model of propensity score of missingness
as logit{Pr(Rij = 1 | Aij = aij, Xij = xij} = 1 + 1.2aij − 0.5x1ij + 1x2ij. The missingness
rate is 15% under such a setting.

In both scenarios, the outcomes are generated from yij = 1 + 2aij + 2pi(ai) − 3x1ij +
0.5x2ij + 2x1ijx2ij + ξi + εij, where ξi ∼ N (0, 0.25) is the group level random effect terms
generated from N (0, 0.25), pi(ai) is the proportion of units in group i that receive the
treatment, and {εij}1≤i≤K,1≤j≤Ni

are i.i.d. random noise terms generated by N (0, 0.25).

Each candidate regression models and the propensity score models are fit, and the pa-
rameters αj, βl, and γj are estimated through the maximum likelihood approach. m̂l

ij(Ai,Xi; β̂),

π̂jA(Xi; α̂) and π̂jAR(Xi; α̂, γ̂) are calculated accordingly, where m̂l
ij(Ai,Xi; β̂) are calculated

by f̂ij(Yi|Ai,Xi; β̂) =
∫
f̂ij(Yi|Ai,Xi; β̂, ξi)dP (ξi)

The MR estimator is calculated according to the equations shown in Section 3.1. For
both Scenarios 1 and 2, three misspecified outcome models E[Yij | Ai, Xi] = β0 + β1Aij +
β2x1ij, E[Yij | Ai, Xi] = β0 + β1Aij + β2x2ij, and E[Yij | Ai, Xi] = β0 + β1x1ij + β2x2ij are
fit, and the parameters are calculated via MLE.

In Scenario 1, three misspecified propensity score models for treatment logit{Pr(Aij =

1 | Xij = xij, b
(1)
i )} = α0 + α1x1ij + bi, logit{Pr(Aij = 1 | Xij = xij)} = α0 + α1x2ij + bi,

logit{Pr(Aij = 1 | Xij = xij)} = α0 + α1|x1ij| + bi are fit and parameters are estimated
through MLE. In Scenario 2, when confounders are subject to missingness, two misspecified
propensity score models for missingness logit{Pr(Rij = 1 | Aij = aij, Xij = xij)} = γ0 +
γ1x1ij and logit{Pr(Rij = 1 | Aij = aij, Xij = xij)} = γ0 +γ1x2ij are fit, and one propensity
score model for treatment logit{Pr(Aij = 1 | Xij = xij, rij = 1, bi)} = α0 + α1x1ij + bi is
fit. The odds ratio model is specified η(r = 0, r0, x, x0; β

′
) = exp(β

′
1x1 + β

′
1x2), and the

parameters in the model are estimated by equation 4.16.

To further illustrate the performance of the proposed estimators under different miss-
ingness rates, we consider Scenario 3, where the propensity score and the regression models
are assumed to be the same as those in Scenario 2, but the true parameters in the propen-
sity score of missingness are set to be γ0 = (0.35, 1,−0.5, 1). In scenario 3, the missingness
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rate is 25%.

The simulation study is repeated 200 times under Scenarios 1, 2, and 3. The bias and
variance are summarized in Tables 4.1 and 4.2.

The results of the proposed multiply robust estimators for both Scenarios S1 and S2
with (1) K = 150, ni = 30 and (2) K = 250, ni = 50 are summarized in Table 4.1,
and the results for scenario 3 are summarized in 4.2. Notice that the proposed estima-
tors achieve smaller biases, if at least one set of models, either the set of the regression
models (outcome regression models and the distribution models of observed confounders)
or the set of propensity score models (propensity score of treatment and the missingness
mechanism), is correctly specified, which is consistent with Theorems 4.1 and 4.2. The
proposed estimators have relatively smaller biases for the scenario when both one set of
correct propensity score models and one set of correct joint models of the outcome and
the confounders are included in the candidate working models. When the missingness rate
is 25%, the proposed estimators have a relatively larger bias than those under 15% miss-
ingness rate, which implies that the estimators perform betters with a smaller missingness
rate. In Scenario 2-(2), the estimators have slightly smaller bias and variance compared to
Scenario 2-(1) due to the larger number of observations in each cluster. The results show
that the proposed estimators have improved the doubly robust estimators by providing
extra robustness against model misspecification.

4.5 Application

In this section, we apply the proposed estimators on the NOx emissions data to quantify
the causal effects of scrubbers’ installation on the reduction of the amount of NOx. The
motivation and introduction of the data can be found in Section 3.5. In this study, the
outcome variable Y is the amount of NOx emissions in each of 1218 coal-fired power
generating units and is measured across 24 months from Jan 2004 to Dec 2005 in the U.S.
The study population is split into disjoint clusters by their geographical locations and the
linkage algorithm (see more details in Section 3.5). We let X = (X1, X2, X3, X4, X5)T be
the confounders that are subject to missingness, where X1 represents the heat input rate,
X2 denotes the capacity of the EGU, X3 represents the operation time, X4 denotes the
amount of coal, and X5 denotes the average temperature. For the missingness rate, there
is 24.90% missingness in confounders in total. Specifically, there is 15.76% missingness in
the amount of coal, 2.25% missingness in operation time, 21.69% missingness in heat input
rate, 0.99% in capacity. The potential reasons for missingness can be found in Section 3.5.
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We consider two sets of propensity score models, wherein the first model of the propen-
sity score of treatment includes all main effects. In the second model of the propensity
score of treatment, we first include all the first-order interaction terms and utilize LASSO
(Tibshirani [1996]) to reduce the magnitude of the coefficients, where the tuning param-
eter is chosen via cross-validation. Specifically, the first set contains one linear logistic
model for the propensity score of missingness and one linear mixed effects logistic model
for the propensity score of treatment, that is, 1) logit{π(1)

R (Xij ; γ
1)} = γ1

0 +γ1
1Aij +γ1

2Xij ,

and logit{π(1)
A (Xij ;α

1)} = α1
0 + α1Xij + b

(1)
i . In the second set, the selected interac-

tion terms are included in the model of the propensity score of treatment. Let I denote
the set of the pair of indices of the selected first-order interaction terms using LASSO,
then we have 2) logit{π(1)

R (Xij ; γ
1)} = γ1

0 + γ1
1Aij + γ1

2Xij , and logit{π(2)
A (Xij ;α

(2))} =

α
(2)
0 +α

(2)
1 Xij +

∑
(k,v)∈I α

(2)
(k,v)XijkXijv + b

(2)
i . For the joint model of confounders and the

outcome, we first assume the density function of confounders f(xij|ai, rij = 1) asN (µx, σ
2
x),

where N (µx, σ
2
x) is the normal density function with mean µx and variance σ2

x. We consider
the outcome regression model as Yij = β0 + β2Aij + β3fs(Ai) + β4Xij + ξi + εij, where
fx(Ai) is the summary function that represents the proportion of the treated units in the
group i, εij are i.i.d. normally distributed random errors with mean zero and variance σ2

e ,
and the density of ξi is assumed to be N (0, σ2

ξ ) that introduce the dependency between
the units in the same cluster.

The estimated direct effect, indirect effect, total effect, and overall effect are summarized
in Table 4.3 and Figure 4.1. The standard errors as well as the 95% bootstrap confidence
intervals are estimated based on the cluster-based bootstrapping method. As we can see
from the above table, the estimated network causal effects show similar patterns with the
results presented in Section 3.5 using the proposed doubly robust estimator. For example,
for all α values, the estimated direct effects are smaller than zero, which is consistent with
the results in Section 3.5 that the scrubbers’ installation indeed has a positive effect on
the reduction of the amount of NO2. As α increases, the estimated direct effect increases,
implying that the effect of the installation of scrubbers decreases as the number of treated
units in the same group increases. Compared with the DR estimators, MR estimators
can provide more flexibility in the model specifications, hence it can lead to more reliable
estimates.
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Table 4.3: Estimated D̄E(α) (direct effect), ĪE(0.67, α) (indirect effect), T̄E(0.67, α) (total
effect), ŌE(α) (overall effect), and standard errors (SE) for the proposed multiply robust
estimators.

D̄E(α) ĪE(0.67, α) T̄E(0.67, α) ŌE(α)

α EST SE EST SE EST SE EST SE

0.30 -32.043 4.318 21.954 2.825 -10.089 3.642 21.476 2.966

0.40 -30.875 3.806 18.574 2.1647 -13.501 3.539 18.793 2.548

0.50 -25.365 3.035 12.190 1.669 -13.274 2.762 14.571 1.787

0.60 -22.315 2.208 4.073 0.369 -18.241 2.513 5.652 0.385

0.67 -18.871 1.503 0 0 -18.871 1.202 0 0

0.70 -20.148 2.234 -3.906 0.398 -24.055 1.867 -3.326 0.370

0.80 -17.943 2.382 -9.438 1.775 -27.381 2.260 -8.671 1.851

Figure 4.1: Estimates and 95% bootstrap CIs of D̄E(α), ¯IE(0.67, α), ¯TE(0.67, α), and
ŌE(α) of scrubbers’ installation for MR estimators with α ∈ (0.3, 0.8), where the shadow
area represents the pointwise confidence intervals.

105



4.6 Conclusion

In this chapter, we developed the multiply robust estimators for estimating network causal
effects under partial interference when confounders are missing not at random. The pro-
posed estimators can provide extra protection against model misspecification. Compared
with doubly robust estimators where the consistency is achieved if any one of the two sets
of working models is correctly specified, the extra robustness in multiply robust estimators
comes from the specification of multiple working models, and the consistency is achieved
if any one set of the candidate models is correctly specified.

In the current literature on multiply robust estimation when data are subject to missing-
ness, little effort has been devoted to the setting of interference. One of the main challenges
is to derive the asymptotic variance. To overcome the difficulty, we used a cluster-based
bootstrapping method to calculate the standard errors. In the data application, we provide
more robust evidence that the installation of scrubbers’ installation has a positive effect on
reducing the ambient PM2.5. It is also worth noting that the proposed estimators can have
a large bias if none of the working models is correctly specified. Therefore, the selection of
candidate working models is also important in practice.

There are several possible future research directions. First, the multiply robustness of
the proposed estimator with variable selection methods remains to be further investigated.
Second, under the current setting when the clustered data are missing not at random,
it is of interest to explore the derivation of closed-form asymptotic variance estimators,
and the efficiency of the proposed estimators also remains to be investigated. This paper
considers the missingness in confounders, where the unit is assumed to be missing if any
one component of the confounders of that unit is missing, it is possible to consider the
multiple missingness pattern so that the information of each unit can be utilized more
efficiently. Moreover, the performance of the proposed estimators in a more generalized
interference pattern such as general interference is also worth investigating, and we leave
it as a future research topic.

4.7 Proof of Theorems

In this section, we present the proof of Theorems 4.1 and 4.2.
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4.7.1 Proof of Theorem 4.1

Without loss of generality, assume that π
(1)
A (x;α) and f (1)(a, x; β) are correctly specified

models for the propensity score of treatment and the outcome regression model, respec-
tively. Let α? and β? be the corresponding true parameters. let α̂j and β̂l be the estimated
parameters for π

(l)
A (x;α) and f (l)(a, x; β), respectively. Assume there exist αj? and βl? such

that α̂l
p−→ αl? and α̂l

p−→ αl? as K → ∞. First, we show that the consistency of µ̂mr
aα when

π
(1)
A (x;α) is correctly specified. Note that when π

(1)
A (x;α) is correctly specified, we have

α̂1 → α1
? in probability, and α̂1

? = α?. Following the derivations similar to Han [2014a,b],
we notice that

1∑
i ni,a

K∑
i=1

ni,a∑
j=1

ĝij(α̂, β̂)Pα(Ai)/π
1
i,j (α̂1)

1 + λTĝij(α̂, β̂)Pα(Ai)/π1
i,j (α̂1)

=
1

θ1 (α̂1)

1∑
i ni,a

K∑
i=1

ni,a∑
j=1

ĝij(α̂, β̂)Pα(Ai)

1 +
π1
i,j(α̂1)−θ1(α̂1)

θ1(α̂1)
Pα(Ai) +

{
λ

θ1(α̂1)

}T

ĝij(α̂, β̂)Pα(Ai)

=
1

θ1 (α̂1)

1∑
i ni,a

K∑
i=1

ni,a∑
j=1

ĝ(α̂, β̂)Pα(Ai)

1 +
{

λ1+1
θ1(α̂1)

, λ2
θ1(α̂1)

, . . . , λJ+K

θ1(α̂1)

}
ĝij(α̂, β̂)Pα(Ai)

.

Therefore, the estimated weights ŵaij has the following representation,

1∑
i ni,a

θ1 (α̂1) /π1
i,j (α̂1)

1 + λ̂Tĝij(α̂, β̂, γ̂)/π1
i,j (α̂1)

, (4.20)
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and the consistency of µmr
aα follows:

K∑
i=1

ni∑
j=1

1(Aij = a)ŵaijYij(Ai)

=
K∑
i=1

θ1 (α̂1)∑
i ni,a

ni∑
j=1

1(Aij = a)Pα(Ai)/π
1
i,j (α̂1)

1 + λ̂Tĝi(α̂, β̂)Pα(Ai)/π1
i,j (α̂1)

Yij(Ai)

=
1

K

K∑
i=1

θ1 (α̂1)

ni,a

ni∑
j=1

1(Aij = a)Pα(Ai)/π
1
i,j (α̂1)

1 + λ̂Tĝi(α̂, β̂)Pα(Ai)/π1
i,j (α̂1)

Yij(Ai) + op(1)

p−→ E

[
1

ni

ni∑
j=1

1(Aij = a)Yij(Ai)Pα(Ai)

π1
i,j(α?)

]
.
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Second, if f (1)(a, x; β) is correctly specified, we have β̂1 → β1
? in probability, and β1

? = β?.
The consistency of µ̂mr

aα follows:

K∑
i=1

ni∑
j=1

1(Aij = a)ŵaijYij(Ai)

=
K∑
i=1

ni∑
j=1

1(Aij = a)ŵaij{Yij(Ai)−m1
ij(Ai, Xij; β̂

1)}

+
1

K

K∑
i=1

1

ni

ni∑
j=1

∑
ai(−j)

m1
ij(a, ai(−j), Xij; β̂

1)Pα(ai(−j))

=
K∑
i=1

ni∑
j=1

1(Aij = a)ŵaij{Yij(Ai)−m1
ij(Ai, Xij; β̂

1)}

+E

[
1

ni

ni∑
j=1

∑
ai(−j)

m1
ij(a, ai(−j), Xij; β?)Pα(ai(−j))

]
+ op(1)

=
1∑
i ni,a

K∑
i=1

ni∑
j=1

1(Aij = a){E1(Yij(ai)|Ai = ai, Xij)−m1
ij(Ai, Xij; β?)}

1 + λT?gij(α?,β?)

+E

[
1

ni

ni∑
j=1

∑
ai(−j)

m1
ij(a, ai(−j), Xij; β?)Pα(ai(−j))

]
+ op(1)

p−→ 1

Pr(A = a)
E

[
1(Aij = a){E1(Yij(ai)|Ai = ai, Xij)−m1

ij(Ai, Xij; β?)}
1 + λT?gij(α?,β?)

]
+E

[
1

ni

ni∑
j=1

∑
ai(−j)

m1
ij(a, ai(−j), Xij; β?)Pα(ai(−j))

]

=
1

Pr(A = a)
E

[
1

ni,a

ni∑
j=1

1(Aij = a){E1(Yij(ai)|Ai = ai, Xij)−m1
ij(Ai, Xij; β?)}

1 + λT?gij(α?,β?)

]
+ µ0

aα

= µ0
aα.

4.7.2 Proof of Theorem 4.2

Assume that π
(1)
A (x;α) and π

(1)
R (a, x; γ) are correctly specified propensity score of treatment

and propensity score of missingness, respectively. Let η(1)(r, x; β) and f (1)(a, x; β) be the
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correctly specified odds ratio model and joint model of confounders and the outcome. Let
α? and β? be the corresponding true parameters. let α̂1, γ̂1, and β̂1 be the estimated
parameters. First, we show that the consistency of µ̂mr

aα when π
(1)
A (x;α) and π

(1)
R (a, x; γ) are

correctly specified. Then, we have both α̂1 → α1
? and γ̂1

? → γ1
? in probability as K → ∞.

It is straightforward to observe that α? = α1
? and γ? = γ1

? . Similar to the derivations in
Theorem 4.1, we have

1∑
i ni,ar

K∑
i=1

ni,ar∑
j=1

ĝij(α̂, β̂, γ̂)Pα(Ai)/π
1
i,j (α̂1, γ̂1)

1 + λTĝij(α̂, β̂, γ̂)Pα(Ai)/π1
i,j (α̂1, γ̂1)

=
1

θ1 (α̂1, γ̂1)

1∑
i ni,a

K∑
i=1

ni,ar∑
j=1

ĝij(α̂, β̂, γ̂)Pα(Ai)

1 +
π1
i,j(α̂1,γ̂1)−θ1(α̂1,γ̂1)

θ1(α̂1,γ̂1)
Pα(Ai) +

{
λ

θ1(α̂1,γ̂1)

}T

ĝij(α̂, β̂, γ̂)Pα(Ai)

=
1

θ1 (α̂1, γ̂1)

1∑
i ni,ar

K∑
i=1

ni,ar∑
j=1

ĝ(α̂, β̂, γ̂)Pα(Ai)

1 +
{

λ1+1
θ1(α̂1,γ̂1)

, λ2
θ1(α̂1,γ̂1)

, . . . , λJ+K

θ1(α̂1,γ̂1)

}
ĝij(α̂, β̂, γ̂)Pα(Ai)

.

Therefore, we have the following representation of the estimated weights ŵarij :

1∑
i ni,ar

θ1 (α̂1, γ̂1) /π1
i,j (α̂1, γ̂1)

1 + λ̂Tĝij(α̂, β̂, γ̂)/π1
i,j (α̂1, γ̂1)

, (4.21)

and the consistency of µmr
aα follows:

K∑
i=1

ni∑
j=1

1(Aij = a)1(Rij = 1)ŵarij Yij(Ai)

=
K∑
i=1

θ1 (α̂1, γ̂1)∑
i ni,ar

ni∑
j=1

1(Aij = a)1(Rij = 1)Pα(Ai)/π
1
i,j (α̂1, γ̂1)

1 + λ̂Tĝij(α̂, β̂, γ̂)Pα(Ai)/π1
i,j (α̂1, γ̂1)

Yij(Ai)

p−→ E

[
1

ni

ni∑
j=1

1(Aij = a)1(Rij = 1)Yij(Ai)Pα(Ai)

π1
i,j(α̂

1, γ̂1)

]
= µ0

aα.
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Second, if f (1)(a, x; β),and η(1)(r, x; β′) are correctly specified, we have β̂1 p−→ β1
? , β̂

′1 p−→ β′1?
as K →∞, β1

? = β? and β′1? = β′?. The consistency of µ̂mr
aα follows:

K∑
i=1

ni∑
j=1

1(Aij = a)1(Rij = 1)ŵarij Yij(Ai)

=
K∑
i=1

ni∑
j=1

1(Aij = a)1(Rij = 1)ŵarij {Yij(Ai)−m1
ij(Ai, Xij; β̂

1)}

+
K∑
i=1

ni∑
j=1

1(Aij = a)1(Rij = 1)warijm
1
ij(a, ai(−j), Xij; β̂

1)

=
K∑
i=1

ni∑
j=1

1(Aij = a)1(Rij = 1)ŵarij {Yij(Ai)−m1
ij(Ai, Xij; β̂

1)}

+
1

K

K∑
i=1

1

ni

ni∑
j=1

∑
ai(−j)

[
1(Rij = 1)m1

ij(a, ai(−j), Xij; β̂
1)

+1(Rij = 0)E

{
m1
ij(a, ai(−j), Xij; β̂

1)

∣∣∣∣Ai(−j) = ai(−j), Xij, Rij = 0; β̂(1), β̂′
1
}]

Pα(ai(−j))

=
K∑
i=1

ni∑
j=1

1(Aij = a)1(Rij = 1)ŵaij{Yij(Ai)−m1
ij(Ai, Xij; β̂

1)}

+E

[
1

ni

ni∑
j=1

∑
ai(−j)

m1
ij(a, ai(−j), Xij;β?)Pα(ai(−j))

]
+ op(1)

=
1∑
i ni,a

K∑
i=1

ni∑
j=1

1(Aij = a)1(Rij = 1){E1(Yij(ai)|Ai = ai, Xij)−m1
ij(Ai, Xij;β? ∗ ∗966)}

1 + λT?gij(α?,β?,γ?)

+E

[
1

ni

ni∑
j=1

∑
ai(−j)

m1
ij(a, ai(−j), Xij;β?)Pα(ai(−j))

]
+ op(1)

p−→ 1

Pr(A = a)
E

[
1(Aij = a)1(Rij = 1){E1(Yij(ai)|Ai = ai, Xij)−m1

ij(Ai, Xij;β?)}
1 + λT?gij(α?,β?,γ?)

]
+E

[
1

ni

ni∑
j=1

∑
ai(−j)

m1
ij(a, ai(−j), Xij;β?)Pα(ai(−j))

]

=
1

Pr(A = a)
E

[
1

ni

ni∑
j=1

1(Aij = a)1(Rij = 1){E1(Yij(ai)|Ai = ai, Xij)−m1
ij(Ai, Xij;β?)}

1 + λT?gij(α?,β?,γ?)

]
+ µ0

aα

= µ0
aα.
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Chapter 5

Discussion and Future Work

5.1 Discussion

In this thesis, we proposed different approaches for handling missingness in correlated
data. As mentioned in Chapter 1, conventional regression methods may not be suitable
for correlated data, even if the data are complete. When data are subject to missingness,
simply ignoring the missing values may result in biased estimators when the missingness
mechanism is not MCAR, which is often the case in correlated data. To address these
issues, in Chapter 2, we discussed how to handle missingness in longitudinal data, and in
Chapters 3 and 4, we investigated how to deal with confounders missing not at random
with the goal of estimating causal effects under partial interference.

In the first project, in Chapter 2, we aim to impute missing longitudinal outcomes.
First, we proposed a longitudinal low-rank model that utilizes both unit-specific and time-
specific covariates. Second, based on the conventional matrix completion algorithms and
the LASSO algorithm, a two-step estimation procedure was proposed to solve the opti-
mization problem. In theoretical analysis, it was shown that including the unit-specific
and time-specific covariates is beneficial for improving the imputation accuracy. In sim-
ulation studies, it was further illustrated that the proposed low-rank longitudinal model
is better than both the conventional matrix completion and multiple imputation method.
Finally, we applied the proposed method on both Covid-19 and SO2 emissions datasets.

In the second project, in Chapter 3, we focused on drawing causal effects from incom-
plete network data, where we consider that the confounders are subject to nonignorable
missingness and the outcome is fully observed. We proposed three sets of estimators: IPW,
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regression, and doubly robust estimators. The IPW and regression estimators are consis-
tent and asymptotically normal if the corresponding working model is correctly specified.
The doubly robust estimator is consistent if either the propensity score models or the dis-
tribution of observed data is correctly specified. We applied the proposed estimators on
the NOx emissions dataset and presented the estimated causal effects based on the different
rates of treatment coverage.

The third project, covering Chapter 4, is an extension of the second project, where we
proposed multiply robust estimators by constructing the constraints based on a new esti-
mation procedure. The performance of the proposed estimators is illustrated via simulation
studies under different combinations of working models, cluster sizes, and the missingness
rate. In addition, the method was applied to the NOx emissions data analyzed in Chapter
3.

Section 5.2 below is an extension of Chapter 2, where we investigate the construction
of confidence intervals for both the low-rank term and the main effects as well as the inter-
action effects among the covariates. In Section 5.3, we discuss a few potential extensions
of Chapters 3 and 4 in the general interference setting.

5.2 Future Work on Matrix Completion

5.2.1 Introduction

In Chapter 2, we showed the non-asymptotic error bounds for the estimated main effects,
interaction effects, the low-rank term, and the whole imputed outcome matrix. The pre-
defined constants in the error bounds may result in a gap between the proposed theoretical
guarantee and the optimal guarantee. Besides, it is also important to quantify the statis-
tical variation of the estimated matrix to provide more confidence in the estimates.

In recent years, there is an increasing interest in deriving the confidence interval for
the imputed low-rank matrix estimated by noisy matrix completion algorithms. Xia [2019]
introduced a two-step procedure to construct confidence regions of the singular subspace
via double-sample splitting. Chen et al. [2019] constructed de-biased estimators for the
low-rank factors, under some mild conditions of sample size and noise level, they showed
that the proposed de-shrunken estimators can be decomposed as the summation of a resid-
ual matrix and a matrix that follows Gaussian distribution. They further presented the
distribution of the estimator for the original low-rank matrix by combining the estimators
of these two low-rank factors. Xia and Yuan [2019] proposed a double-sample debiasing and
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spectral projection procedure to produce an unbiased and asymptotically normal estima-
tor from the original estimator for the linear forms of large matrices. They also presented
the confidence interval and hypothesis testing procedure for the linear forms. Cai et al.
[2020] proposed an inferential procedure that can adapt automatically to unknown noise
distributions.

In most of the aforementioned work of constructing the confidence intervals for the
low-rank matrices, very limited efforts have been devoted to constructing the coefficient
matrices where the covariate information is included in the low-rank models, let alone the
cases where both the unit- and time-specific covariate are included in the model. One way
to construct the confidence region is to decompose the low-rank term into two low-rank
factors, derive the distribution of the estimators of the two low-rank factors, and then
try to derive the distributions of the original low-rank term based on the distribution of
these two terms. Finally, the confidence region for the main and interaction effects can be
constructed in a similar way, where a de-biasing procedure should be applied. In Section
5.2.2, we will first briefly recall some notations. In Section 5.2.3, we will show the steps
of the estimation algorithm as well as the final debiased estimators for the low-rank term
and the fixed effects.

5.2.2 Notation

Following Chen et al. [2019], assume the true outcome matrix, the residual matrix, and the
observed outcome matrix are denoted by Y ?, E, and Y , respectively, where the entries of
Y ? may be subject to missingness, and the residual matrix includes random noise and serial
correlation. The rank of the true outcome matrix is assumed to be r, and the singular value
decomposition of Y is given by Y ? = U?Σ?V ?T . Let A? = U?Σ?1/2 and B? = V ?Σ?1/2. Let
P be the probability matrix with each entry presenting the true probabilities of observations
of the corresponding entry in the outcome matrix. The definitions of the matrix norms are
the same as those introduced in Section 2.2.

5.2.3 Algorithm

Instead of using the convex relaxation of the low-rank penalty term in Equation 5.1, we
decompose the low-rank term L into two low-rank factors A and B. Then, the objective
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function has the following representation:

arg min
H,L

E

{
R

Pr(R = 1|X,Z)
||Y − (XHZT + ABT )||2F

}
+ λH ||H||1 +

λL
2

(||A||2F + ||B||2F ).

Assume Ĥ, Â, and B̂ are estimators for the true fixed effects matrix H? and the true low
rank term A? and B? estimated via any nonconvex algorithms (e.g., Zhao et al. [2015]),
respectively. Then the debiased estimators Hd, Ad, Bd and Ld can be represented in the
following way:

vec(Hd) = vec(Ĥ) +
1

NT
Mvec(Z ⊗X)T{vec(Y )− vec(Z ⊗X)vec(Ĥ)− vec(L)}, (5.1)

Ad = U(Σ +MIr)
1
2 , (5.2)

Bd = V (Σ +MIr)
1
2 , (5.3)

Ld = L̂+
1

NT
M{Y −XHZT − L̂} or Ld = AdBd1/2

, (5.4)

where M is some unknown matrix that needs proper construction. The basic intuition
comes from the debiased lasso, where M is a good approximation of the precision matrix
E{(Z ⊗ X)(Z ⊗ X)T} (e.g. see Javanmard and Montanari [2014] for more details). To
derive the confidence intervals for the low-rank term L, we first have the following theorem
to infer the distribution of the estimators of two low-rank factors A and B.

Theorem 5.1. The errors of the debiased estimators Ad and Bd have the following de-
composition:

AdHd − A? = ZA + ΨA,

and

BdHd −B? = ZB + ΨB,

where rows of ZA and ZB are independent and follow a normal distribution with zero mean
and finite variance, and Hd is the rotation matrix that satisfies the following condition:

Hd ∈ arg min
Hd∈Rr×r

‖AdHd − A?‖2
F + ‖BdHd −B?‖2

F .
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The residual term ΨA and ΨB are o(c?), where c? is some constant relevant to the probability
matrix and the correlation structure of residual term E.

With the above theorem, L̂− L? can be represented by ZA, ZB, A? and B?, it can be
shown L̂−L? also follows the normal distribution with zero mean and finite variance, and
the variance of L̂− L? can be derived accordingly.

5.3 Future Work on Network Causal Effects

In Chapters 3 and 4, we discuss the robust estimation of network causal effects under the
partial interference setting. However, for some real applications, it may be more reasonable
to assume the general interference setting, where the interference can take place between
any pair of units in the population. For example, for social network data, each person
in the network can not only be affected by his/her own friends, but also by the friends
of friends. In such a case, it may not be appropriate to assume that the population can
be grouped into disjoint clusters, and the group-level propensity scores are not directly
applicable to the estimation of causal effects without any adjustment.

Notice that in Chapters 3 and 4, the effect of the neighborhood treatment information
is included in the outcome regression models through a function that maps the treatment
vector to the proportion of treated units in the same cluster. The summary function is
based on domain knowledge and can lead to biased estimators if it is incorrectly specified
(Sävje [2021]). In the setting of general interference, the structure of the network can be
complicated, and it can be difficult to correctly capture all the neighborhood information
if using such a mapping function because the effect of each neighbor on the unit can be
different. Thus, it is interesting to further explore a more robust way to include neighbor-
hood information in the general network setting. For example, one may consider assigning
a weight to each neighborhood of units, where the values of those weights are dependent
on the social or geographical distances between the unit and each of its neighbors.

Moreover, even in the partial interference setting, the parametric modeling and assump-
tion can be sophisticated as the number of units in each cluster becomes large. The co-
variates in the regression models and the propensity score models can be high-dimensional
because the outcome and the treatment assignment of each unit may be dependent on
its neighbors’ covariates. Therefore, a potential research topic would be using machine
learning or deep learning methods to assist in the estimation of the propensity score and
the regression models. It is also of interest to further construct the doubly robust and
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multiple robust estimators based on the estimated models, and explore the semiparametric
efficiency and the convergence rate of those estimators.
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Geneviève Robin, Olga Klopp, Julie Josse, Éric Moulines, and Robert Tibshirani. Main
effects and interactions in mixed and incomplete data frames. Journal of the American
Statistical Association, 115(531):1292–1303, 2020. 14

James M Robins, Andrea Rotnitzky, and Lue Ping Zhao. Estimation of regression coeffi-
cients when some regressors are not always observed. Journal of the American statistical
Association, 89(427):846–866, 1994. 9, 12

James M Robins, Andrea Rotnitzky, and Mark van der Laan. On profile likelihood: com-
ment. Journal of the American Statistical Association, 95(450):477–482, 2000. 9

Paul R Rosenbaum and Donald B Rubin. The central role of the propensity score in
observational studies for causal effects. Biometrika, 70(1):41–55, 1983. 9

Andrea Rotnitzky, James M Robins, and Daniel O Scharfstein. Semiparametric regression
for repeated outcomes with nonignorable nonresponse. Journal of the american statistical
association, 93(444):1321–1339, 1998. 9

Donald B Rubin. Inference and missing data. Biometrika, 63(3):581–592, 1976. 5, 10, 12

Donald B Rubin. Randomization analysis of experimental data: The fisher randomization
test comment. Journal of the American Statistical Association, 75(371):591–593, 1980.
10

124

https://www.R-project.org/
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