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Abstract

The 5G RAN functions can be virtualized and distributed across the radio unit (RU),
distributed unit (DU), and centralized unit (CU) to facilitate flexible resource management.
Complemented by multi-access edge computing (MEC), these components create network
slices tailored for applications with diverse quality of service (QoS) requirements. However,
as the requests for various slices arrive dynamically over time and the network resources are
limited, it is non-trivial for an infrastructure provider (InP) to optimize its long-term rev-
enue from real-time admission and embedding of slice requests. Prior works have leveraged
Deep Reinforcement Learning (DRL) to address this problem, however, these solutions ei-
ther do not scale to realistic topologies, require re-training of the DRL agents when facing
topology changes, or do not consider the slice admission and embedding problems jointly.
In this thesis, we use multi-agent DRL and Graph Attention Networks (GATs) to address
these limitations. Specifically, we propose novel topology-independent admission and slic-
ing agents that are scalable and generalizable to large and different metropolitan networks.
Results show that the proposed approach converges faster and achieves up to 35.2% and
20% gain in revenue compared to heuristics and other DRL-based approaches, respectively.
Additionally, we demonstrate that our approach is generalizable to scenarios and substrate
networks previously unseen during training, as it maintains superior performance without
re-training or re-tuning. Finally, we extract the attention maps of the GAT, and analyze
them to detect potential bottlenecks and efficiently improve network performance and InP
revenue through eliminating them.
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Chapter 1

Introduction

The decomposition of the Fifth Generation (5G) radio access network (RAN) plays a key
role in the 5G New Radio (NR) architecture. The RAN protocol stack, i.e., baseband
unit (BBU) functions in 4G, can be split into radio unit (RU), distributed unit (DU), and
central unit (CU), which provides flexibility in distributing network functions across the
RAN to meet latency and bandwidth requirements of varying services. Multi-access edge
computing (MEC) can further facilitate stringent quality of service (QoS) guarantees by
placing application servers close to end-users. By leveraging Network Function Virtualiza-
tion (NFV), the 5G infrastructure provider (InP) can cater to a variety of MEC-enabled
use-cases (e.g., cloud gaming, remote surgery) with variable QoS requirements, providing
end-to-end (E2E) isolated and differentiated networks for each application, i.e., network
slices. However, to achieve efficiency and revenue gains from network slicing, coordinated
and dynamic management of the entire 5G system is imperative, including the RAN, MEC,
core, and the transport networks connecting them.

Metropolitan 5G networks usually consist of multi-level nodes—access, aggregation,
and core—interconnected by mesh-like or multi-ring topologies [8, 9]. Connected to the
cell sites are the access nodes, which are linked to the core by aggregation nodes. Central-
ized sites and links offer more resources, but incur more transport latency and bandwidth
as unprocessed data travels to the higher-layer sites. From the InP’s perspective, centraliz-
ing RAN and MEC virtual network functions (VNFs) can increase multiplexing gains (e.g.,
power consumption and maintenance [10]), and prevent computing bottlenecks at the ac-
cess, provided that the delay constraints and bandwidth requirements of individual VNFs
are met. Therefore, to ensure the optimal placement of VNFs, technical and cost-effective
trade-offs between throughput, latency, and centralization must be considered.
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MEC is best suited to services requiring very high bandwidth and ultra-low latency,
such as virtual reality and mission-critical applications. Requests for these services are
generated dynamically over time by slice tenants, such as service providers. Slices consist
of RAN (i.e., RU, DU, CU) and MEC VNFs, along with virtual links (VLs) that connect
them, collectively referred to as Virtual Networks (VNs). However, the addition of MEC
complicates the RAN slicing problem by imposing the E2E MEC service latency require-
ments on top of the latency requirements of individual RAN components. InPs generate
revenue from accepting and accommodating network slice requests, but not all requests
can be met due to resource limitations in the substrate network. Moreover, the revenue
earned for each request may vary depending on factors such as the tenant’s subscription
and QoS requirements. Therefore, to maximize the long-term revenue, the InP should: i)
perform admission control (AC) in a way that maximizes the long-term revenue, ii) place
the RAN and MEC VNFs according to their delay and processing requirements, and iii)
route traffic from the originating cell site to the core, which is the Internet’s interface to
the mobile infrastructure. We refer to the latter two (i.e., ii and iii) decisions as slicing.

1.1 Motivation

The problem of RAN/MEC slicing has previously been investigated in an offline manner
[11, 12, 13], i.e., assuming all slice requests are known in advance. Recently, deep rein-
forcement learning (DRL) has shown promising performance in the RAN slicing [14] and
AC problems [15, 16] in an online, but disjoint setting. Sulaiman et al. [1] designed a
joint AC and RAN slicing solution and showed that a joint solution not only makes for a
more practical 5G slice orchestration scenario, but that it also benefits the InPs in terms
of the long-term revenue. They designed their solution based on a simple multi-tier net-
work using multi-agent DRL (MADRL) and demonstrated its superior performance over
its single-agent counterpart. However, they use multi-layer perceptron (MLP) models for
both slicing and AC, which limits scalability and generalizability across different networks.

With MLP architectures, information about the network state, which includes the
topology, and features of all nodes and links, is passed to the model as a whole, i.e., as
a flattened specifically ordered vector. Moreover, the formats of these feature vectors are
defined during model initialization and training. As a result, with the slightest topological
variation, e.g., node/link failure or network expansion, the model becomes obsolete and
requires re-training or re-tuning. The state-of-the-art DRL-based approaches for slicing
often rely on MLP-based architectures [14, 17, 18] which fail to operate on previously
unseen topologies and require training the model from scratch. Training a deep neural
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network from scratch can be prohibitive, especially in a highly dynamic environment, or
under tight service delay requirements. In addition, it is also infeasible to train separate
models for all possible topology variations, as it would lead to an exponential number of
models.

1.2 Contributions

In this work, we integrate multi-agent DRL with Graph Neural Network (GNN), which
provides promising topology-independent feature extraction capabilities [19]. More specif-
ically, we use a recent variant of the popular Graph Attention Networks (GATs) [20],
GATv2 [21], which is a spatial-based GNN model (cf., Section 2.3.1). Spatial-based meth-
ods are popular for their efficiency, flexibility, and generalizability and work by propagating
node features across edges [19]. In GATs, an attention mechanism is used that effectively
exploits the structural characteristics of networks by learning how each node is influenced
by its neighbours. In addition, different from all other GNNs, they can take the edge
features directly into account. Utilizing GATv2 and a novel learning model, we propose a
generalizable RAN/MEC slicing DRL agent. For AC, we employ an MLP with a fixed-size
input that consists of features of the 4 nodes and edges where VNFs (i.e., RU, DU, CU,
and MEC) and VLs are respectively placed, and the slice request information. Such input
is independent of the topology, so the MLP-based AC agent is able to operate in presence
of changing network conditions.

The main contributions of this thesis are:

• The problem of joint AC and MEC/RAN slicing in 5G metropolitan networks under
E2E service delay and resource constraints is modeled as an integer linear program-
ming (ILP) problem and proven to be NP-hard.

• A novel solution for the joint online AC and slicing problem is proposed using
multi-agent DRL. For slicing, a generalizable GNN-based DRL agent, and for AC,
a topology-independent MLP is devised, which allows both of them to operate on
arbitrary topologies.

• The proposed approach is evaluated and compared to greedy and state-of-the-art
heuristics, and DRL-based solutions. Our model outperforms the baselines by up to
35.2% in the overall revenue gain.
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• The robustness and generalization of our slicing and AC agents are evaluated under
varying network conditions. The agents outperform other heuristic approaches by up
to 25.5% even in large-scale previously unseen network topologies.

• The attention maps of different topologies are extracted from the GNN-based deep
model of the slicing agent. It is shown that these maps can be utilized to identify
bottlenecks and improve capacities of select nodes to efficiently increase InP revenue.

1.3 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we provide a brief background
on the problems of RAN slicing and admission control and go through the technical details
of deep reinforcement learning and graph neural networks. We then review the state of the
art that inspired this work and discuss the challenges that were present when designing the
solution. Chapter 3 explores the system model of RAN slicing and mathematically formu-
lates the joint AC and MEC/RAN slicing problem. The proposed method is introduced in
Chapter 4 and in Chapter 5, we evaluate it and provide insight into its advantages over the
existing methods. Finally, Chapter 6 concludes the thesis and introduces possible research
extension directions.
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Chapter 2

Background

2.1 Slicing and Admission Control

The 5G RAN is responsible for providing the connection between the mobile device and
the core network and comprises chains of network functions (e.g., High-PHY, Low-PHY,
etc.) that belong to the NR protocol stack [3]. These functions perform a variety of
tasks, such as managing the allocation of radio resources in the network, including the
allocation of spectrum and the assignment of frequencies to different devices, and man-
aging the movement of mobile devices within the network, including handovers between
base stations and the tracking of devices. In legacy RAN architectures, these functions
were placed statically, which could potentially lead to bottlenecks and under-utilization of
the network infrastructure. However, with a greater emphasis on virtualization and the
use of software-defined networking (SDN) technologies, and the adoption of Cloud RAN
(C-RAN) in 5G mobile networks, the substrate network has been re-imagined as a network
of interconnected sites, each consisting of a number of commodity servers or nodes. NFV
allows an InP to virtualize these resources and facilitates flexible and strategic placement
of the VNFs at different sites. This move from a conventional one-size-fits-all network in-
frastructure towards more flexible networks allows for intelligent decision making through
analyzing the network trends. This results in a minimization of bottlenecks, maximiza-
tion of infrastructure utilization, and cost savings by reducing hardware procurement and
maintenance, leading to a higher InP revenue.

In a metro 5G RAN, the interconnected sites can form a variety of shapes, based on the
requirements. In a ring topology, nodes (e.g., base station or access point) are arranged
in a circular configuration, with each node connecting to two other stations. This creates
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Figure 2.1: High-level view of closed-loop, autonomous management and orchestration of
VNFs in 5G C-RAN
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a closed loop of stations that allows data to be transmitted in a continuous loop. A
spur topology is similar to a ring topology, but with one or more sites that are connected
to the ring at a single point. A multi-ring RAN topology consists of multiple rings of
nodes connected together, which allows for greater coverage and capacity, as data can be
transmitted among nodes on different rings as well as within a single ring. One advantage
of ring and spur topologies is that they are relatively simple and easy to set up, as there
are fewer connections to be made between the nodes. However, they can be less resilient
to failures, as a break in the ring or spur can disrupt communication for all the nodes in
the network. In contrast, mesh topologies, where each node is connected to multiple other
nodes, are generally more resilient to failures, as data can be transmitted between each
pair of nodes using multiple paths.

The 5G mobile networks are poised to support a wide range of services, primarily
categorized into enhanced Mobile Broadband (eMBB), Ultra-Reliable Low-Latency Com-
munications (URLLC), and massive Machine-Type Communications (mMTC), based on
their QoS requirements (e.g., bandwidth, latency and mobility). eMBB slices are designed
to support high-bandwidth applications, such as streaming video and online gaming. They
typically require high capacity and are optimized for high data rates. URLLC slices are
designed to support real-time applications that require ultra-low latency and high reliabil-
ity, such as remote surgery and autonomous driving. mMTC slices are designed to support
the communication needs of a large number of machine-type devices, such as sensors and
smart meters. They are optimized for low data rates and long battery life. Network slicing
is a key enabling technology to offer isolated E2E virtual networks in 5G, that are tailored
to satisfy the specific QoS requirements of different services on the same infrastructure.
Network slices can include chains of RAN and core VNFs. The placement (i.e., Virtual
Network Embedding (VNE)) of RAN VNFs in 5G C-RAN should consider the service type
and its Service-Level Agreements (SLAs).

Having MEC allows computing resources to be placed at the edge of the network, closer
to users and devices. This can improve the performance and latency of applications and
services that rely on large amounts of data processing, such as augmented reality, virtual
reality, and real-time analytics. In the context of RAN slicing, MEC can be used to create
slices that are optimized for specific services that require low latency and high-bandwidth
connectivity, for a smooth and immersive user experience. MEC can be implemented in a
number of different ways, including using edge servers, edge clouds, or edge data centers.
By bringing computing resources closer to the network edge, MEC can help to reduce the
amount of data that needs to be transmitted over long distances, improving performance
and quality of experience. Moreover, it can help to offload processing from the core network,
improving overall network efficiency.
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Accepting a slice-request (SR) contributes to the InP’s revenue. However, given an InP’s
limited resources, it is impossible to serve all incoming SRs. Additionally, the amount of
revenue that SRs bring may also vary (e.g., based on their priority or QoS requirements).
Therefore, an AC decision must be made for each incoming SR, such that it maximizes
the InP’s long-term revenue. Since, in practice, the slice-request traffic is not known in
advance, there is also a need for algorithms that can predict future slice-request traffic
based on the past traffic and make intelligent slice admission decisions based on these
predictions. Reinforcement Learning (RL) can learn to optimize a given objective even
without a comprehensive system model. This makes RL combined with Deep Neural
Networks (DNNs) particularly suitable for these types of problems with complex system
models.

For the system design, in this work, we consider the MAPE (i.e., monitor, analyze,
plan, execute) control loop [22, 23] to facilitate closed-loop, autonomous management
and orchestration of VNFs in 5G C-RAN, as depicted in Fig. 2.1. The monitor module
intelligently collects data from the substrate network and sends it to the analyze module.
From raw data, the analyze module extracts useful information and computes various
metrics required for visualization and planning (e.g., QoS, network infrastructure state).
The processed data and information regarding incoming SRs are received by the plan
module.

The plan module performs intelligent slice orchestration and performance management
using AI/ML techniques [24]. The proposed intelligent AC and slicing schemes in this the-
sis are sub-components of the performance management component, which are responsible
for the admission and embedding of network slices. These sub-components can be em-
ployed either concurrently (i.e., both output their decisions independently) or sequentially
(i.e., each sub-component can use the output of the other to make its decision). If an SR
is admitted, the slice orchestrator passes the appropriate commands (e.g., instantiation
of VNFs, links) to the execute module which in turn directs VNF orchestrator, network
controller and Radio Intelligent Controller (RIC) components to set up the virtual ma-
chines, transport paths, and RAN radio resources in the substrate network, respectively.
The RIC, introduced and standardized by the O-RAN Alliance [25], provides advanced
control and configuration functionality for efficient management of RAN infrastructure. In
this work, we simulate a substrate network, so the monitor, analyze and execute modules
do not present a research challenge, and we only describe the pertinent system design of
the AC and slicing components.
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2.2 Deep Reinforcement Learning

In reinforcement learning, an agent interacts with an environment to learn a policy that
maximizes the expected cumulative reward by proposing actions [26]. The interaction
between the RL agent and the environment can formally be described using a markov
decision process (MDP). The agent-environment interaction in this thesis spans an infinite
horizon, i.e., the agent acts continuously. Therefore, we consider infinite horizon MDP
defined by the tuple (O, A, r, ρ, ρ0, γ), where O is the state space, A is the action
space, r : O × A × O → R is the reward function, ρ : O × A × O → [0, 1] is the state
transition probability distribution, ρ0 is the initial state distribution, and γ is the discount
factor. The aim of the RL agent is to learn either a deterministic policy π : O → A or a
stochastic policy π : O × A → [0, 1] that maximizes the expected discounted return given
as Gt =

∑∞
k=t+1 γ

k−t−1rk, where rk is the reward at time step k.

For policy π, the state value function Vπ, state-action value function Qπ, and the
advantage function Aπ are defined as [26]:

Vπ(o) = Eπ [Gt | ot = o] , ∀o ∈ O, (2.1)

Qπ(o, a) = Eπ [Gt | ot = o, at = a] , ∀o ∈ O, ∀a ∈ A, (2.2)

Aπ(o, a) = Qπ(o, a)− Vπ(o), ∀o ∈ O, ∀a ∈ A, (2.3)

i.e., the expected return of starting from state o in the case of Vπ(o), and starting from
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state o and taking the action a in the case of Qπ(o, a). Aπ(o, a) measures the relative state-
action value of taking action a in state o as compared to the state value of state o. The
state-value and state-action value functions are collectively referred to as value functions.

When the number of possible states and actions is small, a tabular method can be
used to store the value functions and derive an effective policy. However, this method
becomes inefficient as the size of the state and action space increases. DRL approximates
these tables using deep neural networks, which have the ability to generalize to previously
unseen states, while involving a relatively smaller number of learnable parameters. Fig. 2.2
provides an overview of DRL, where the agent interacts with the environment by sending
action at inferred from running policy π at time t, and receiving reward rt and observation
ot. at, rt, and ot are then used by the agent to make updates to the policy network π.

DRL policy optimization algorithms in the literature are mainly divided into 3 cat-
egories: (i) value-based, (ii) policy-based, and (iii) Actor-Critic. Value-based methods
entail learning either of the value functions and leveraging it to derive an optimal policy.
Policy-based methods, on the other hand, can directly learn the optimal policy. Finally,
Actor-Critic methods enfold learning both a value function (i.e., Critic) and policy (i.e.,
Actor) and have been shown to lead to faster empirical convergence [26]. In the thesis
we employ the Proximal Policy Optimization (PPO) Actor-Critic method as our DRL
algorithm, which we briefly discuss in the next section.

2.2.1 Proximal Policy Optimization

Let πθ denote the stochastic policy in DRL, i.e., the Actor neural network parameterized
by the weights θ. Similarly, vϕ denotes the value function, i.e., the Critic neural network
parameterized by the weights ϕ. Policy-based methods learn neural network parameters
using optimization methods such as policy-gradient. Line-search methods and trust-region
methods present two distinct classes of such optimization methods. With line-search meth-
ods, the policy is improved by taking a step in the direction of the gradient that leads to
a maximum increase in the objective function. With trust-region methods, on the other
hand, a surrogate objective function is computed using a linear or quadratic approxima-
tion of the actual objective function. But these approximations are only accurate within
a ‘trust-region’. Therefore, trust-region methods optimize the policy parameters by iter-
atively approximating the objective function and finding the optimal parameters for that
surrogate objective while staying within the trust-region. Trust-region policy optimization
(TRPO) [27] and proximal policy optimization (PPO) [? ] are two of the well-known
trust-region methods in this area. TRPO formulates the policy update as a constrained
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optimization problem:

θk+1 = argmax
θ

Êt

[
πθ(at|st)
πθk(at|st)

Âπθk (st, at)

]
s.t. Êt [KL [πθk(.|st), πθ(.|st)]] ≤ δ

(2.4)

where θk and θ are the policy parameters before and after the update, respectively, KL
is the Kullback–Leibler divergence, and δ is the hyperparameter that defines the size of
the trust-region in terms of the KL-divergence between the two policies. Here, Ê denotes
the empirical expectation and Ât is the empirical advantage function. Ât can be estimated
using Generalized Advantage Estimator (GAE) [? ]. ? ] modify the TRPO algorithm and
propose the PPO algorithm. They show that the constrained optimization problem in 2.4
can be replaced by truncating the new to old policy ratio to avoid deviating too much from
the old policy.

In PPO, at each training iteration k, first the set of trajectories Dk = {mi}, where
mi = {s0, a0, r0, · · · , sT , aT , rT} are collected by running action at sampled from policy πθk

at state st and receiving reward rt and next state st+1. Then, the parameters of the actor
(θ) and critic (ϕ) networks are updated as:

θk+1 = argmax
θ

1

|Dk|T
∑
m∈Dk

T∑
t=0

min(rt(θ)Â
πθk (st, at), clip(ϵ, rt(θ))Â

πθk (st, at)), (2.5)

ϕk+1 = argmin
ϕ

1

|Dk|T
∑
m∈Dk

T∑
t=0

(
vϕ(st)− R̂t

)2
, (2.6)

where rt(θ) =
πθ(at|st)
πθk

(at|st) and R̂t is the discounted cumulative reward. The authors show that

this unconstrained optimization step leads to a faster empirical convergence and better
overall performance.

2.2.2 Multi-Agent Deep Reinforcement Learning

In multi-agent DRL (MADRL), multiple DRL agents act in a shared environment to maxi-
mize the long-term return. Agents can be designed to operate cooperatively, competitively,
or in a mixed setting, based on the training paradigm. In independent training, each agent
is trained independently using a separate reinforcement learning algorithm. This can be
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useful when the agents are not interacting with each other or when the interactions are rel-
atively simple. Cooperative training is used when the agents are trained to work together
to achieve a common goal, through designing a shared reward function that encourages the
agents to collaborate, or using techniques such as centralized training with decentralized
execution. In the competitive training paradigm, the agents are trained to compete with
each other in order to maximize their own rewards. In this method, each agent’s reward
is against the other agent’s reward, resulting in a rivarly among the agents. For mixed
training, the agents are trained to both cooperate and compete with each other in order
to achieve a complex goal. For instance, in a game with multiple players, the agents may
need to cooperate in order to defeat a common enemy, but also compete with each other
for resources or points. This can involve using a centralized critic network to evaluate the
value of different actions taken by the agents, and decentralized actor networks to predict
the best actions to take. The choice of training paradigm depends on the specific goals
and constraints of the problem, as well as the characteristics of the agents and the en-
vironment. In this work, we aim to train both agents to maximize the InP’s revenue by
admitting more and higher-priority slices. Therefore, we utilize the cooperative training
paradigm and shape the reward function to converge to the same objective.

Multi-agent settings often violate the fundamental assumptions underlying the theo-
retical foundation of single-agent RL that are necessary to guarantee convergence [28]. For
example, when multiple RL agents are concurrently learning and acting in a common envi-
ronment, the environment becomes non-stationary from the perspective of any individual
agent. This can prevent the agents’ policies from converging towards the optimal even
when the goals of different agents are aligned.

2.3 Graph Neural Networks

Graph data differ from other types of data in several aspects, as they present a non-
Euclidean data structure. For instance, Convolutional Neural Networks (CNNs) consider
the correlation among adjacent pixels in an image by passing a kernel across it. However,
images are comprised of a fixed grid of pixels that do not change throughout the data. Such
a method cannot be applied to graphs, due to their complexity and dynamicity. GNNs are
neural models designed to operate directly on graph-structured data and have numerous
variants. The main goal of a GNN is to learn a low-dimensional vector representation for
each node hv, which can be used for different learning tasks. ConvGNNs are a popular
variant of GNNs that extend the convolutional operator to graphs, motivated by the success
of the CNN in computer vision. ConvGNNs stack multiple graph convolutional layers to
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extract high-level representations and have two categories: spectral-based and spatial-based
[19].

The first category, including the popular Graph Convolutional Networks (GCN) [29],
perform graph convolutional operation on the entire graph at once in the Fourier domain
and thus suffers from poor scalability and generalizability. Spatial-based GNNs address
these limitations by implementing graph convolutions leveraging a message-passing tech-
nique among the neighboring nodes of the graph to learn their relationship. As a result,
they are able to capture the spatial correlation present in different parts of the graph,
irrespective of its structure. In recent years, numerous variations of such architecture have
been proposed.

In spatial-based methods, input graph nodes’ representations
{
hv ∈ RF | v ∈ V

}
are

aggregated with those of their neighbours. The combined representations are then passed
through a transformation function g (e.g., a dense layer and a non-linearity) to output new
representations

{
h′
v ∈ RF ′ | v ∈ V

}
. Specifically, for each node, we perform

h′
v = g (hv, AGGREGATE ({hu |u ∈ Nv})) , (2.7)

where Nv is the set of neighbours of node v and AGGREGATE can be any permutation
invariant function, e.g., mean. The selection of g and AGGREGATE in the update process
contributes the most variance among different spatial-based models [21].

2.3.1 Graph Attention Networks

Many GNN models assume the contributions of the neighbouring nodes on the central
node’s representation are either identical or pre-determined (e.g., [19]) in the aggregation
process. In Graph Attention Network (GAT) [20], however, a learned attention layer is used
to output a representation based on the weighted average of neighbours’ representations.
In addition, this method allows us to consider edge features huv ∈ RFe by including them
in the input of the attention layer.

GATv2 [21] has a simple adjustment to the way attention is calculated in GAT, allowing
it to provide a more expressive attention layer that is dependent on the query node as
opposed to GAT’s static attention layer. The attention mechanism which is defined by
scoring function e : RF × RF ′ → R in both of these methods calculates the relative
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concat/average

Figure 2.3: GAT layer

importance of the features of the neighbor u to the node v as:

GAT : e(hv, hu) = LeakyReLU
(
a⊤. [Whv∥Whu∥Wehvu]

)
,

GATv2 : e(hv, hu) = a⊤LeakyReLU (W . [hv∥hu∥hvu]) , (2.8)

where a, W , and We are learned and ∥ is the concatenation operator. Using Softmax
function, attention scores are then normalized across all neighbours and are used to calcu-
late a new representation for each node by a weighted average (cf., Fig. 2.3) followed by a
nonlinearity activation layer (σ):

h′
v = σ

(∑
u∈Nv

softmaxNv (e(hv, hu)) .Whu

)
. (2.9)

Note that once the parameters of attention mechanism and linear transformation, i.e.,
a and W , are learned, alleviating the need for re-training with each topological variation
and only (2.8) and (2.9) should be recalculated for affected nodes. In this thesis, we use
GATv2 because it has shown to be theoretically and empirically superior to GAT [21].
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2.4 Related Work

There are numerous works in the literature that address AC and network slicing [24, 30].
In this section, we review these works with an emphasis on ML-based approaches.

2.4.1 Admission Control

The authors in [31, 16] focus on AC with the objective of maximizing long-term InP rev-
enue. Dandachi et al. [31] propose a traditional RL-based approach for 5G slice admission
and congestion control. Even though they consider a slice as a set of VNFs, the substrate
network is only considered in aggregate. That is, instead of modeling the substrate net-
work as a collection of interconnected sites or nodes, each with its own limited resources,
the network is modeled as a single node with a certain amount of resources. This simpli-
fies the slice embedding problem to an unrealistic degree. Van Huynh et al. [16] leverage
DRL for slice AC and resource allocation, but similar to [31], they model slices and the
substrate network in aggregate and do not address the RAN slicing problem in terms of
multidimensional resource allocation and transport network topology. In addition, both of
these works do not consider the dynamic nature of request arrivals.

Pujol Roig et al. [32] propose a DRL-based approach for dynamic VNF management
and orchestration. Requests arrive for a list of individual NFs and are embedded on a pool
of homogeneous servers in the CU or in the remote cloud. Instead of a binary admission
decision, when a new request arrives, a DRL agent decides to either scale the corresponding
VNF vertically by allocating more resources to it, instantiate a new VNF on a separate
server, or offload the VNF to the cloud. Their objective is to minimize the incurred resource
and latency costs. Although the authors deal with the VNF request in a dynamic manner,
their model only caters to individual VNFs instead of a network slice. Bega et al. [33]
propose an RL-based slice admission solution for maximizing InP revenue. They employ
two separate RL agents for estimating revenue in the case of accepting and rejecting SRs,
respectively. The authors extended their work in [34] using DRL. However, these works
only consider radio resources and require knowledge of the arrival process. ? ] propose an
online network slice brokering solution to maximize multiplexing gains. The problem is
modeled as a budgeted lock-up multi-armed bandit problem, a variation of the well-known
multi-armed bandit problem. Nevertheless, similar to [32, 33, 34], the authors model a
network slice as only requiring a number of Physical Resource Blocks (PRBs), whereas a
RAN slice consists of a number of functions each with its own latency, computing, and
communication resource requirements.
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? ] propose a policy-based RL algorithm for slice AC in 5G C-RAN. However, the
arriving SRs in their work, already specify the required computing resources at the remote
and central sites based on the latency requirement. This sidesteps an important aspect of
slicing, where all of an SR’s functions can be placed at either the remote (e.g., for URLLC
applications) or the centralized location (e.g., for mMTC applications). Additionally, the
selection of the central location (i.e., remote data center) is done using a heuristic after the
AC decision has been made. This precludes the AC agent from knowing the embedding
before making the admission decision and can lead to performance degradation in resource-
constrained environments.

2.4.2 Slicing

The works discussed in this section assume that SRs will be accepted until resources are
saturated. Therefore, online proactive AC is not factored into the problem, and the focus
is on optimizing the efficiency (e.g., delay, resource cost, utilization) of resource allocation.
Koo et al. [17] leverage DRL for network slicing when requests are served immediately or in
batch mode. They consider multi-dimensional resource allocation (e.g., VMs, bandwidth,
memory) with delay requirement that includes the processing delay of SRs. However, the
authors consider a slice in aggregate.

In contrast, Solozabal et al. [18] use Neural Combinatorial Optimization paradigm for
delay-aware service function chain placement. The authors incorporate resource capacity
and delay constraints into the objective using Lagrange relaxation. They employ a DRL
model architecture which incorporates an encoder-decoder design based on stacked Long
Short-term Memory cells. The model can decide the placement for the whole chain of
VNFs. However, to simplify the path selection, the servers are assumed to be connected
through a star topology.

Yu et al. [35] were the first to investigate the 3-layer RAN slicing in the context of metro
networks. They analyzed the problem of CU/DU placement and routing to minimize the
number of central offices (COs) housing the functions under fronthaul delay and capacity
constraints. The authors showed that the increased flexibility of a 3-layer RAN architecture
leads to a higher consolidation of COs. Based on the same architecture, Xiao et al. [36]
proposed a MILP and a heuristic to optimize energy efficiency by modelling the power
consumption of different components of the network, while Yu et al. [37] investigated
isolation-aware slicing and proposed a heuristic for minimizing the number of active COs
or wavelengths under isolation and latency constraints. Marotta et al. [38] addressed the
same problem but also took into account the reliability requirements of different slices.
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The basic idea behind the heuristic methods adopted in these works is to first place the
functions using analytical modelling and heuristic methods and then route using variants of
the shortest-path algorithm. In addition, they work in an offline setting, i.e., an objective
function is optimized over all the requests.

Gao et al. [14] developed a DRL-based method for online RAN function placement
and routing from RU to the data center with the objective of minimizing the number of
active COs, bandwidth, and transport latency. However, their evaluation is limited to
a single service (i.e., slice) type and they do not consider different E2E service latency
constraints and slices with finite operation time. The works in [11, 12, 13] investigated
function placement in the context of MEC-enabled RAN. They modeled the problem of
minimizing the operational cost under delay and capacity constraints as an ILP and solved
it using Benders Decomposition [11, 12] and DRL [13]. However, in these methods, the
problem is considered in an offline setting and placement is decided for each cell instead of
each request.

Also related are works that consider the functional splitting problem in which the
placements of RAN functions are optimized on an interconnected set of DU and CU servers
[39, 40]. The authors in [41, 39] address the user-centric functional split problem, where
function placement decisions are made for each request. They model the problem as an ILP,
and propose solutions based on particle swarm optimization and deep learning, respectively.
However, the authors model the substrate network as only having a single RU and a single
CU. Wang and Zhang [40] consider a pool of DU and CU servers connected hierarchically
and maximize profit (i.e., the difference between revenue and cost) by using traditional RL.
However, to simplify the problem, the authors divide it into function embedding and radio
resource allocation, and solve them individually (i.e., using different Q-learning models)
rather than jointly. Sulaiman et al. [1] proposed an online joint RAN slicing and AC
solution under E2E service delay and resource constraints using multi-agent DRL. They
showed that the AC mechanism can lead to a higher revenue by preemptively rejecting low
priority slice requests. However, their method is not scalable and generalizable to large
and previously unseen substrate networks.

2.4.3 GNN-based Architectures

Recently, DL-based approaches using GNNs have been incorporated to address the prob-
lems of scalability and generalizability when working with graph-based network topologies.
The problem of RAN slicing shares many similarities with the VNE problem. VNE is a
resource allocation problem which involves mapping a virtual network to the substrate net-
work, and is highly studied using heuristic and mathematical modelling. However, these
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methods are either inefficient or impractical when the substrate network is a large-scale
graph. [24]. GNN-based architectures have been employed in networking for applications
such as VNE [42], traffic routing [43], and congestion prediction and interpretability [44],
to capture the spatial information hidden in the network topology [42] and benefit from
its generalizability to different topologies [43, 44]. Yan et al. [42] were the first to apply
DRL with GNNs, specifically GCN, to the VNE problem and showed that it can lead to
a higher acceptance ratio, performance and robustness. They also use a multi-objective
reward function with parallel training to improve convergence and performance. The DRL
agent places the VNFs one-by-one on substrate nodes with sufficient CPU and bandwidth,
and then, the shortest-path algorithm is utilized for routing between the selected nodes.
However, their approach does not consider E2E delay constraints and utilizes MLPs, which
limits its applicability to previously unseen networks.

Zhang et al. [45] investigated the same problem when VNs can dynamically change
over time. However, GNN-based DRL is solely used for the initial mapping and a heuristic
is leveraged to remap the VN when a change happens. Esteves et al. [46] extended the
approach in [42] by considering more resource types for each VNF and using heuristically
assisted DRL for faster convergence. However, the use of spectral-based GNN models (cf.,
Section 2.3.1) and dense layers in the learning model limit the applicability of these works
to static network topologies. Habibi et al. [47] employed a spatial-based graph autoencoder
to cluster similar substrate nodes based on their resources and accessibility. However, the
final node and link embeddings across clusters are decided using a Breadth-First Search
(BFS) algorithm which is not efficient.
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Chapter 3

Design

3.1 RAN and MEC Architecture

One of the main changes of the 5G NR transport network is the support for RAN functional
split. 3GPP proposed that the BBU functions in 4G/LTE can be decomposed in 5G NR
into three entities, RU, DU, and CU [3]. Fig. 3.1 outlines RAN functions in physical (RF,
PHY) and data link (MAC, RLC, PDCP) layers [48] and different split options proposed
by 3GPP [3]. This flexible and disaggregated RAN architecture facilitates RAN slicing
and enables network customization as per the needs of slice tenants. Moving from lower to
higher layer splits increases multiplexing and centralization gains at the cost of increased
bandwidth and higher delay.

Aligned with 3GPP and ITU-T recommendation [4], in this thesis, we consider options
2 and 7 for higher layer (CU/DU) and lower layer (DU/RU) splits, respectively, and use
the terms midhaul-I (MH-I) and fronthaul (FH) to refer to the corresponding transport
network segments. In addition, we assume, based on the control-plane/user-plane split,
that the CU includes only the user-plane PDCP function and control-plane functions are
placed in the core network (CN). This configuration is particularly useful for applications
that do not require rapid call establishment but require a low user-plane delay, e.g., cloud
gaming [8]. MEC can be integrated with the 5G network in various ways [5]. We assume
that the MEC includes edge application, as well as local user-plane functions (UPF) and
is connected through the midhaul-II (MH-II) and backhaul (BH) network to the CU and
CN, respectively. Finally, CN is connected to the Internet and provides access to other
parts of the network.
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Figure 3.1: Mapping RU, DU, CU, and MEC functions and FH, MH-I, MH-II, and BH
networks to the split points [3, 4, 5]

For each network slice, the individual RU, DU, CU, and MEC entities are virtualized
and placed at different physical locations according to their latency and resource require-
ments, and residual capacity in the substrate network. We assume RU is placed on the
access node connected directly to the originating cell and CN is placed on the core node,
which has abundant capacity, and therefore, we only decide the placement of DU, CU,
and MEC, and routing from the access site to the core node. The specifications of MEC
depend on the type of service, but we use the following formulations to calculate the com-
putation (ccpuDU and ccpuCU in Giga Operations Per Second (GOPS)) and bandwidth (λl in
Mbps) requirements of RAN components and their interconnecting transport segments,
respectively.

ccpuRU = kRU
1 BA+ kRU

2 BAL, (3.1)

ccpuDU = kDU
1 BA2L+ kDU

2 BALM + kDU
3 A, (3.2)

ccpuCU = kCU
1 A, (3.3)

λl = kl
1λ

new + kl
2, ∀l ∈ {FH,MH-I,MH-II,BH}, (3.4)

where k parameters in (3.1)-(3.4) are constant coefficients specific to different RAN func-
tions whose details can be found in [49, 50] and [51], respectively. λnew, B, A, L, and
M represent the service traffic, carrier bandwidth, number of antennas, traffic load, and
modulation (in bits per symbol). While MH-I (i.e., λMH-I) and MH-II (i.e., λMH-II) band-
width requirements for each slice request is almost equal to λnew, FH interface (i.e., λFH)
requires considerably higher bandwidth. The bandwidth requirement at the BH network
(i.e., λBH) depends on the amount of Internet traffic of each type of service. Moreover, each
RAN component has a specific delay requirement. From the RAN perspective, for DU,
depending on the specific vendor implementation of the HARQ loop, it can be up to 2 ms
for the case where interleaving is done, and for CU, it could be up to 6 ms [50]. However,
since DU and CU are before MEC in the user-plane, their delay requirements depend on
both the respective RAN component and the E2E service latency, i.e., the minimum value
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Figure 3.2: Virtual network model of service s

should be considered.

3.2 System Model

Substrate Network: We consider a network architecture consisting of N access and
aggregation sites equipped with dedicated processing capabilities. Access nodes can be
connected to one or multiple cell sites. We also consider a core1 node with abundant
resources which can host the CN. These nodes are connected through an undirected graph
G = (V , E), where V is the union of N and core node (index 0), and E is the set of all
physical links. We denote by Ccpu

v and Cram
v the maximum computing and RAM resource

capacities of each node v ∈ V , respectively. Also, each link e ∈ E has a certain bandwidth
capacity, Be, and delay, de.

Services: We consider a set of S services, i.e., MEC applications. Throughput and
E2E service delay constitute QoS metrics, and are denoted by λnew

s and Dsrv
s , respectively.

RAN and MEC form a VN consisting of a chain of five VNFs, F = {f0, · · · , f4}, namely,
RU, DU, CU, MEC, and CN, and four VLs L = {l1, · · · , l4}, namely, FH, MH-I, MH-II,
and BH (cf., Fig. 3.2). For each service s, we can denote the computing and memory
resource requirements of VNF f , and bandwidth requirement on VL l by ccpus,f , c

ram
s,f , and

λs,l, respectively. The CPU and bandwidth requirements can be calculated according
to equations (3.2)-(3.4) for RAN VNFs. We assume that RAM requirements follow the
same pattern as computation requirements for RAN VNFs. For MEC, these requirements
depend on the computational complexity of the specific application. The delay requirement
of VNF f is also shown by Ds,f , which for MEC is equal to Dsrv

s .

Slice Requests (SRs): Requests arrive for different services over time. We charac-
terize each generic SR k by its service type, the access node on which this request was first
submitted, nsrc

k , offered revenue, pk, and the set of time slots it needs to receive service

1Formulation can trivially be extended to networks with more than one core node.
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(i.e., operation time), Tk = {tarvk , · · · , tarvk + τk − 1}. We analyze the system over period
T and denote the set of all SRs for service s and for all the services that arrive over this
period by Ks and K, respectively.

3.3 Problem formulation

Given the knowledge of future SRs, the offline RAN slicing and AC problem should decide
about the admission of each SR and the embedding of its corresponding VN, i.e., placing
VNFs over physical nodes and routing traffic between them through physical links.

Decision variables: Let α = [αk]k∈K denote admission matrix, where αk ∈ {0, 1}
denote whether SR k is admitted (αk = 1) or not (αk = 0). VNF embedding decisions are
defined by the matrix X = [xk

f,v]r∈R,f∈F ,v∈V , where xk
f,v ∈ {0, 1} indicate whether VNF f

of SR k has been placed on physical node v (xk
f,v = 1) or not (xk

f,v = 0). In this work,
we consider single-path routing, i.e., each VL is mapped to one physical path. Let q ∈ Q
denote a simple path in the physical network. A path is a sequence of links between two
nodes src(q), dst(q) ∈ V . We assume ∅ ∈ Q for which src(q) = dst(q), to consider co-
location of VNFs. So, we define matrix Y = [ykl,q]k∈K,l∈L,q∈Q to describe VL embedding

decisions, where ykl,q ∈ {0, 1} indicates whether the traffic of VL l in SR k has passed

through q (ykl,q = 1) or not (ykl,q = 0).

Admission and embedding constraint: If SR k is admitted, it will remain in
the system throughout its operation time, t ∈ Tk, and the corresponding VN should be
embedded into the substrate network. The following constraint ensures the embedding of
each VNF and VL of an SR on one physical node and one physical path, respectively, if
and only if it is admitted:

αk =
∑

v∈Vk,f

xk
f,v =

∑
q∈Q

ykl,q, ∀k, f, (3.5)

where Vk,f ⊆ V includes the physical nodes on which VNF f of SR k can be placed. As
discussed, the placement is decided for DU, CU, and MEC for which Vk,1 = Vk,2 = Vk,3 =
V ,∀k. However, for the sake of formulation, we also define VNF embedding variables for
CN and RU and set Vk,4 = {0} and Vk,0 = {nsrc

k } to impose the placement of CN and RU
on the core node and originating access site, respectively.

Routing constraints: The problem of selecting paths for embedding each VL can
be framed as the well-known unsplittable multi-commodity flow problem [52]. Therefore,
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routing variables specified by VL embedding matrix, Y, should meet the below flow con-
servation constraint, where src(l), dst(l) ∈ F are source and destination VNFs of VL l:∑

q∈Q:
src(q)=v

ykl,q −
∑
q∈Q:

dst(q)=v

ykl,q = xk
src(l),v − xk

dst(l),v, ∀k, v, l. (3.6)

Capacity constraints: The assigned resources to VNFs and VLs should not exceed
the capacity of nodes and links in the substrate network. These constraints are expressed
as: ∑

s∈S

∑
k∈Ks
:t∈Tk

∑
f∈F

ccpus,f x
k
f,v ≤ Ccpu

v , ∀v, t ∈ T , (3.7)

∑
s∈S

∑
k∈Ks
:t∈Tk

∑
f∈F

crams,f xk
f,v ≤ Cram

v , ∀v, t ∈ T , (3.8)

∑
s∈S

∑
k∈Ks
:t∈Tk

∑
l∈L

∑
q∈Q
:e∈q

λs,ly
k
l,q ≤ Be, ∀e, t ∈ T . (3.9)

In the above expressions, the total used resources at time t are computed as the sum of
resource requirements of active embedded SRs at that time, i.e., each SR k for which
t ∈ Tk.

Delay constraints: Finally, E2E service delay and individual VNF latency constraints
for each SR are expressed as:∑

l∈L:
l≤f

∑
q∈Q

ykl,q
∑
e∈q

de ≤ Ds,f , ∀s, k ∈ Ks, 1 ≤ f ≤ 3. (3.10)

Objective: The goal of the InP is to grant SRs that lead to the highest long-term
revenue. We can formulate the problem of RAN slicing and AC while optimizing the
revenue of InP over all the requests (or period T ) as

max
α,X,Y

∑
k∈K

pkτkαk subject to (3.5)− (3.10).

The above problem has linear constraints and includes integer variables, and hence it is an
ILP problem. This problem is NP-hard in the offline setting since if delay constraints are

23



set large enough to eliminate (3.10), it will become the VNE problem which is NP-hard
[53]. In the next chapter, we propose a DRL-based approach to tackle this problem in the
online setting, where SRs information is not available beforehand.

3.4 Challenges

3.4.1 Large Problem Space

The primary challenge of this work is with regards to the scope of the problem and the
current capacity of DRL. In DRL, the problem space refers to the set of all possible states,
actions, and transitions that the agent can encounter as it interacts with its environment.
A large problem space can pose several challenges for an agent trying to learn an opti-
mal policy. With the increase in substrate network size, the agent must process sizable
information to make viable decisions. Additionally, the number of possible slice embed-
ding decisions increases exponentially with network size. Such circumstances reside in the
limits of what DRL can successfully tackle and thus, require the use of more sophisticated
learning algorithms and more powerful computing resources to train complex DNNs that
are more difficult to train [54]. Therefore, it is crucial to optimize the training scenario for
the algorithm by designing a reward function that leads to the optimal policy, while also
reducing the action space by breaking down the problem into multiple stages.

In this work, we simplify the problem by breaking down the slicing action into multiple
steps, each pertaining to a single VNF placement. Moreover, we design a model architecture
that divides the large observation/action space into node-wise values, as opposed to dealing
with massive flattened vectors. This will be explained further in Chapter 4.

3.4.2 Low Action Temporal Correlation

Since slice requests arrive randomly in different locations of the substrate network and delay
constraints limit the valid VNF placement decisions to a relatively small neighborhood of
nodes, the impacts of a certain slice placement decision do not affect the decisions of the
agent until far into the future. To elaborate further, for instance, if a slice embedding
creates a bottleneck, the section of the network where this bottleneck is located will be
affected. However, due to the large number of physical nodes, it might take several new
requests until a new slice request arrives in the bottleneck’s vicinity.
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This is not in-line with an optimal DRL scenario, where as previously explained (cf.,
2.2.1), the majority of algorithms operate by comparing the effects of an action (i.e.,
the received reward) with the expected reward. If the received reward is higher than
anticipated, the agent learns to increase the probability of selecting that action, and vice
versa. The discount factor γ dictates how far into the future the agent considers when
analyzing the impacts of its decisions, by calculating the discounted sum of rewards at
each step. If this parameter is set too large, the differences between the actual and the
expected sum of rewards become unnoticeable, leaving no margin of error and hindering
the agent’s training process. Alternatively, if this value is set too small, the impacts of each
action will be ignored. Furthermore, this challenge is intensified when each of the slicing
decisions is spread into multiple steps, furthering reward sparsity. To solve this issue, we
opted to train the models on a smaller topology, which reduced the sparsity of the action
impacts. However, the trained models are still able to maintain their performance on larger
topologies, as evident by the results (cf., Fig. 5.15).

3.4.3 Limited Valid Actions

As previously mentioned, with large substrate networks and constrained end-to-end delays,
valid actions are limited to a relatively small portion of the overall available physical nodes.
The larger the network or the more restrictive the delay constraints, the proportion of the
valid to invalid placements becomes smaller. Since the DNN model starts with randomized
weights, the DRL agent’s initial decisions are totally random. If the aforementioned pro-
portion becomes too low, the agent will get trapped in a loop of invalid actions, collecting
poor trajectories that will be used to train the model. This severely degrades the training
performance. Conventional action selection methods deal with these invalid actions by is-
suing a large negative reward as a disincentive. However, with the ratio of valid to invalid
actions in our case, such technique would hinder the agent’s ability to learn and converge
on an optimal policy.

Training on a smaller topology did not mandate employing a technique to handle this
issue. However, when testing on larger topologies, we utilize action masking [55] which
enables the slicing agent to explore in a smarter way by masking out invalid actions at
any given state. For discrete action spaces, the actor outputs a logit per action. These
logits are used to calculate an action selection probability distribution using the Softmax
function. In action masking, invalid actions’ logits are manually adjusted to −∞, which
translates to a probability of zero in the Softmax function. This way, we force the agent
to select from the remaining valid actions.
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3.4.4 Complexity of the Optimal Policy

Reward design is an important aspect of designing any RL-based solution. As equations
(2.5)-(2.6) suggest, when taking an action, a DRL agent not only takes the immediate
reward into account but also the discounted rewards it expects to receive in the future.
Consequently, the agent is able to learn meaningful state-action values for the state-action
pairs for which it receives no immediate reward. The more fine-grained the rewarding
function is, the higher is the chance of a successful DRL application. A detailed rewarding
function gradually guides the agent towards the optimal policy. In contrast, the sparsity
of the reward greatly affects the convergence of a DRL agent’s policy, as it would have
to spend more training steps to find the path to the optimal policy. This makes learning
from sparse rewards one of the major challenges in DRL [56]. Reward shaping refers
to providing the agent with additional carefully designed rewards, such that they guide
the agent towards the desired behavior faster. Careless reward shaping can often lead to
unintended behavior [57]. For example, if a self-driving car is only given a positive reward
each time it moves towards the final destination, it may learn to move in circles without
ever actually reaching the final destination.

Nevertheless, finding sub-objectives that can lead to the optimal policy and can be
translated into specific rewards is not always trivial. In the problem of RAN slicing in
metropolitan 5G networks, the immensity of the problem in both temporal and spatial
aspects, makes hand-tuned näıve policies inadequate for framing the rewarding function.
For instance, positive reinforcement for placement of the virtual functions closer to the
core (i.e., a centralized approach) is not guaranteed to be in-line with the optimal policy.
Alternatively, utilizing an ILP method to extract the optimal solution is proven to be
computationally infeasible for large topologies. Therefore, we employed a reward function
that involves just the achieved revenue for the AC agent and the total deployed slice
requests for the Slicing agent, to ensure that the agent only moves towards increasing the
total achieved revenue.

3.4.5 Generalizable Model Architecture

The main novelty of this work is regarding its ability to accommodate varying substrate net-
work topologies, without the need to re-tune or re-train the trained model. To accomplish
this, our DNN model would have to be indifferent to the topology. Fully connected neural
network layers are most commonly used in artificial neural networks, however, these layers
are reliant on fixed input/output dimensions and ordering. A novel design is required,
such that it is not only able to operate with different sized and ordering input/output, but
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that it also maintains a general understanding of the graph structures. GNNs are most
suitable for this task, however, they are notoriously difficult to train [58]. As a result, they
are commonly combined with additional fully connected layers, improving their perfor-
mance at the cost of eliminating their generalizability [42, 45, 46]. However, in this work,
we refrained from doing so and employed a novel architecture that works with arbitrary
substrate networks. The architecture is explained in details in Chapter 4.
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Chapter 4

Solution

4.1 GNN-based Multi-agent DRL Framework

The online scenario requires that SRs be handled one-by-one as they arrive, without being
aware of future SRs, such that the total revenue of the InP is maximized over the long
term. When a request arrives, the online DRL-based solution should decide on its admission
and VN embedding based on the current network state. To maximize InP revenue, the
agent should be rewarded for successful embeddings and revenue generation. However,
such reward design may lead to unintended behaviour, as it is not clear whether the lost
revenues are a consequence of suboptimal previous admission or embedding actions. To
tackle this issue, similar to [1], we use two agents, slicing and AC, that operate in a
coordinated manner.

In our proposed solution, called GNN-AC-SL, first, the slicing agent optimizes the em-
bedding based on the SR’s specifications and network state to maximize the number of
embedded requests. The AC agent then decides whether to accept the SR based on the
embedding decision, the system state, and the SR’s information, so that long-term revenue
is maximized. Even though decoupling AC and slicing reduces the action space, the slicing
agent still has to select a chain in the substrate network that has |V||F| possibilities. We
reduce the action space of the slicing agent by transforming VN embedding into a sequence
of VNF embeddings. As a result, the slicing agent must only choose between the physical
nodes at each time. This section will provide a detailed explanation of the two DRL-based
agents.

28



4.1.1 RL Environment

As previously mentioned, each RL solution includes a state (observation) space definition,
an action space definition, and a reward function. In this section, we will explain how we
converted the slicing and admission control problems into DRL scenarios.

State (st): For the slicing agent, we represent the state of the whole system as a graph,
i.e., st = (V , E), with node and edge attributes. Since VNFs will be placed one-by-one,
the current VNF should also be considered in the state of the system. We define the node
features by Xsl = [Xsl

v ]v∈V , where X
sl
v ∈ RF sl

is the feature vector of node v and consists of
its maximum and remaining CPU and RAM, its tier in the substrate network (i.e., access,
aggregate or core), and the delay and remaining bandwidth from the last placed VNF.
Moreover, Xsl

v includes features of the current SR and its VNFs, namely the operation
time, the index and delay budget of the current VNF, and the required CPU and RAM by
the last and the current VNFs.

Similarly, the matrix Xsl,e = [Xsl,e
vu ](v,u)∈E represents the edge features of the whole

graph, where Xsl,e
vu ∈ RF sl,e

is the feature vector of the edge between nodes v and u and
includes the maximum and remaining bandwidth capacity, and the link delay.

Different from the slicing agent, the AC agent only considers the hosting nodes and
edges of the substrate network based on the given embedding decided by the slicing agent,
and incorporates the amount of required resources from them into their features. The
input feature of the AC agent is an F ac-dimensional vector Xac ∈ RF ac

which includes the
hosting nodes’ maximum and remaining CPU and RAM, the tier in the substrate network,
and the requested CPU and RAM by the embedding, along with the embedding’s sum of
requested bandwidth across the substrate network, the SR’s operation time, and the SR’s
revenue.

Action (at): There are only two possible actions for the AC agent: accepting or reject-
ing the current slice request, i.e., AC’s action space is equal to Aac = {0, 1}. The slicing
agent, however, has to select a chain in the substrate network that has |V||F| possibilities.
We reduce the action space of the slicing agent by transforming VN embedding into a
sequence of VNF embeddings. As a result, the slicing agent must only choose between
eligible physical nodes at each time. For each SR, we embed four VNFs in a sequence and
VL associated with each VNF is embedded using a shortest-path algorithm. Thus, for the
slicing agent, the set of all possible actions is limited to the number of substrate nodes,
i.e., Asl = V .

Reward (rt): A total reward of +1 is given to the slicing agent for the successful
embedding of all four RAN functions, and partial embedding is not rewarded in order
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Algorithm 1: Slicing and Admission Control
Input: action at, current agent δcurr
Output: next state st+1, reward rt, next agent δnext

1 rt ← 0
2 if δcurr ==“Slicing” then
3 if checkActionFeasibility(at) then
4 embedding.add(at)
5 if len(embedding) == 4 then // SR embedding is complete
6 rt ← 1
7 δnext ←“Admission Control”

8 else
9 moveToNextVNF()

10 δnext ← “Slicing”

11 else
12 moveToNextSliceRequest() // infeasible SR
13 embedding ← ∅
14 δnext ←“Slicing”

15 else if δcurr ==“Admission Control” then
16 if at == 1 then // SR is admitted for deployment
17 deploy(embedding)
18 rt ← revenue

19 δnext ←“Slicing”, go to Line 12

20 st+1 ← readState()
21 return st+1, rt, δnext

for the agent to learn to embed the requests in their complete form. Using this system,
a rewarding decision includes up to four steps until an SR embedding succeeds or fails.
Likewise, the AC agent receives +1 reward for admission of each SR.

Alg. 1 outlines the simulated RL environment algorithm. At each timestep, the envi-
ronment receives the action and the id of the agent which issued it. In case the action
was issued by the slicing agent, the environment checks the feasibility of the action, i.e.,
whether the VNF placement satisfies all constraints or not. If the action does not violate
any SLAs, it is added to the current embedding; otherwise, the environment rejects the
current slice request, resets the embedding, and moves on to the arrival of the next slice
requests. If every VNF in the SR has been placed, the environment calls the AC agent for
the next iteration. If the AC agent decides to deploy the current slice request, the respec-
tive resources are deducted from the overall capacity of the network, else, the environment
moves on to the arrival of the next slice request.
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Figure 4.1: Slicing agent model architecture

4.1.2 Training Algorithm

We train both AC and slicing agents together as a multi-agent DRL scenario and utilize
the PPO algorithm, as it is one of the leading DRL methods.

The NN architecture of actor and critic modules for the slicing agent is shown in
Fig. 4.1. As previously explained, a specific design is required so that the model can
support previously unseen topologies, without re-tuning. In the actor, first, the node-wise
input is passed through two fully connected (FC) layers to create embeddings that are later
used by the GNN layers. Although these layers are FC, they operate on a per-node basis,
meaning network information is fed to them as a batch of single-node feature vectors, Xsl

v ,
which has a constant size F sl. Therefore, even if the number or the order of nodes changes,
it will not affect the output of the model.

Next, three GATv2 layers are used, each with three attention heads of size 32, that are
required in order to share information among neighboring nodes and thus, pass knowledge
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Figure 4.2: Admission control agent model architecture

across the graph. Finally, the model outputs a single value per node, and a Softmax
function is used to determine the node-selection probability distribution. Note that the
GNN models used in the previous works (e.g., [42]) required embedding the link features
into the node by aggregating the features of the edges which directly link to that node.
Using GATv2 in this work, we are able to pass the network state as a graph-structured
data with features for both nodes and edges.

While designing GNN-based models, a total number of 2 to 4 GNN layers is usually
recommended, as they have been found to be effective in practice for many graph-related
tasks while not overly increasing the risk of over-smoothing [19]. Over-smoothing occurs
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when a GNN with a large number of layers propagates information too far through the
graph, causing the node representations to become indistinguishable from one another.
Through experiments, we found 3 GATv2 layers to achieve the best performance during
evaluation. However, 2 additional FC layers were proven necessary due to the complexity
of the problem at hand. While these FC layers improve the performance of the model in
capturing node information, they do not include the message-passing process that could
potentially contribute to the over-smoothing problem.

Due to the simpler objective of the critic model and the fact that it is only used
during the training phase in which the topology is fixed, we use an MLP model for it
which has a faster convergence time. The model is fed with the flattened |st|-dimensional
representation of the state st that is stripped of some repetitive features. In the same
vein, as explained in Section 4.1.1, since the input dimensions of the AC agent remain
static regardless of the substrate network size and since it has a small action space of size
2, we opt for a less complex MLP-based architecture for the AC agent which consists of
four fully connected layers, as shown in Fig. 4.2. This model’s actor outputs two values
corresponding to acceptance and rejection of the current slice request. A Softmax function
is used to generate an action probability distribution, from which the final action is drawn.
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Chapter 5

Performance Evaluation

5.1 Simulation Setup

We consider four delay-sensitive MEC applications shown in Table 5.4 with corresponding
MEC delay, CPU and RAM usage of the MEC VNF, and backhaul traffic [7]. Parameters
of other VNFs and VLs in the VN are derived as discussed in Chapter 3, and displayed
in Tables 5.1-5.3 with RU configuration of 20MHz, 4x4 MIMO, and 64QAM. A simulation
is run for 2000 time units with random SRs arriving heterogeneously at different access
nodes with a total rate of 1 SR per time unit. Each SR has an operation time following a
normal random distribution of N (300, 25) and is uniformly assigned to a MEC application
and to a priority class (i.e., high-priority (HP) or low-priority (LP)). Each slice request has
a random revenue based on its MEC application and following the distributions in Table
5.4, and a HP SR offers twice the revenue of a LP SR.

Table 5.1: RU characteristics [7]

Application
RU CPU
(GOPS)

RU RAM
(GiB)

RU
Latency (ms)

λnew

(Mbps)

Remote Surgery (RS) 1608 32.16 0.25 20
Cloud Gaming (CG) 1640 32.8 0.25 100
Virtual Reality (VR) 1640 32.8 0.25 100
Video Streaming (VS) 1680 33.6 0.25 200
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Table 5.2: DU characteristics [7]

Application
DU CPU
(GOPS)

DU RAM
(GiB)

DU
Latency (ms)

DU
Traffic (Mbps)

Remote Surgery (RS) 312.4 6.25 1 139
Cloud Gaming (CG) 362.2 7.25 2 651
Virtual Reality (VR) 362.2 7.25 2 651
Video Streaming (VS) 424.4 8.5 2 1291

Table 5.3: CU characteristics [7]

Application
CU CPU
(GOPS)

CU RAM
(GiB)

CU
Latency (ms)

CU
Traffic (Mbps)

Remote Surgery (RS) 100 2 1 20
Cloud Gaming (CG) 100 2 5 100
Virtual Reality (VR) 100 2 6 100
Video Streaming (VS) 100 2 6 200

Table 5.4: MEC applications with characteristics and corresponding revenues [7]

Application
MEC CPU
(GOPS)

MEC RAM
(GiB)

MEC
Latency (ms)

Backhaul
Traffic (Mbps)

Revenue

Remote Surgery (RS) 200 10 1 10 N (80, 5)
Cloud Gaming (CG) 1500 30 5 30 N (80, 10)
Virtual Reality (VR) 2000 60 10 30 N (100, 10)
Video Streaming (VS) 150 10 200 60 N (70, 10)
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Figure 5.1: Baseline metropolitan 5G network used for training

We train our agents on the topology shown in Fig. 5.1, which comprises of 10 access
nodes, 2 aggregation nodes, and 1 core node. CPU capacities are equal to 4000, 6000, and
12000 GOPS, and RAM capacities are 100, 150, and 300 GB, for access, aggregation, and
core nodes, respectively. Links connecting access nodes to each other and to aggregation
nodes are Tier 1 links (cf., Fig. 5.1) and have a capacity of 2 Gbps and transmission delay
of 1.8 ms. Other links are called Tier 2 links and have a capacity of 3 Gbps and a delay of
4.8 ms [8].

5.1.1 Implementation

We used RLlib’s [59] implementation of PPO, alongside Ray’s Tune platform [60] for train-
ing and hyper-parameter optimization. The training was carried out on an NVIDIA A100
GPU and took 139 hours. For hyper-parameter optimization, we utilized the population-
based training (PBT) technique [61] and final results were achieved using the values in
Table 5.5. Inspired by genetic algorithms, in PBT, multiple neural networks are trained
in parallel using varying hyperparameters. After a predefined period of training, the best-
performing model’s weights are copied across the rest of the models and the hyperparam-
eters are refined to employ both exploitation and exploration.
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Table 5.5: GNN-AC-SL training hyper-parameters

Parameter AC Slicing

PPO clipping 0.05 0.2
entropy coefficient 0.1 0.0001
gamma 1 0.99

lambda 1
learning rate 1e-05
gradient clipping 10
SGD iters 50
batch size 372000

5.2 Baselines

The following heuristic and DRL-based methods are implemented for comparison. DRL-

AC and MLP-AC-SL are the only baselines with an intelligent AC module. Others greedily
admit all feasible SRs.

• Centralized: a heuristic that places VNFs as close to the core node as allowed by
delay and capacity constraints. In this approach, first, a path is drawn from the
access node where the SR arrives to the closest core node. The physical nodes in
this path are sorted from the core to the access node, and the VNFs in the chain
are sorted from the last (MEC) to the first (RU). At each step, the current VNF
in the list is placed and the algorithm moves on to the next VNF, if the current
physical node has enough capacity to host it. Otherwise, the algorithm moves on to
the next node in the list. If, all the VNFs are placed before going through all physical
nodes, the slice request is considered successfully deployed, else, it is rejected and the
algorithm moves on to the arrival of the next slice request.

• Node-Ranking (NR): a heuristic for isolation-aware RAN slicing with delay con-
straint. We consider the scenario of the highest isolation level in [37], with the
objective of minimizing active sites. In this approach, all the physical nodes are
ranked according to their CPU, RAM, and bandwidth usage, as well as their delays
from the originating access node and their tiers. The highest ranking node is selected
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to host the current VNF. If there is not enough capacity on the selected nodes to
host their respective VNFs, the slice request is considered rejected.

• GRC: a heuristic approach that proposes a novel metric, called global resource ca-
pacity (GRC), to rank the embedding potential of each substrate node [62]. After
ranking the physical nodes, the algorithm applies greedy load-balancing to embed
each virtual node sequentially on the first physical node with enough available pro-
cessing capacity. Next, the shortest path routing is adopted to create a path for
embedding each virtual link. In order to optimize this work for metro 5G slicing,
we add the RAM capacities into consideration by averaging CPU and RAM, when
dealing with node capacities. Moreover, we only select among the physical nodes
that satisfy the delay and bandwidth constraints.

• DRL-AC: slicing is performed using the Centralized algorithm, while the admission
is decided by the DRL-based AC agent.

• [MLP/GNN]-SL: in these two approaches, slicing is managed by a DRL agent based
on MLP/GNN architecture. However, all feasible slices are admitted and deployed,
i.e., there is no admission policy.

• MLP-AC-SL: multi-agent DRL-based method that uses MLP architecture for both
agents similar to [1].

Additionally, to calculate the upper-bound in terms of the achieved revenue of the joint
slicing and AC solution in the training scenario, we utilize the Gurobi Optimizer for solving
the MILP defined in Section 3.3.

5.3 Results

5.3.1 Training

We train each model for 180 million training steps and plot the progress in terms of the
total revenue achieved per episode in Fig. 5.2. The MILP solution achieves a revenue of
99563 with an accuracy of 93.85%. However, the MILP solution must work in an offline
manner, i.e., when all the SRs are known in advance. This is not applicable to a real-life
scenario where the SRs arrive over time and without previous knowledge. This removes
the required prediction from the problem, which simplifies it by a great margin, resulting
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Figure 5.2: Episode revenue during training

in the huge gain in revenue compared to the DRL-based approaches. Moreover, it is
computationally infeasible as each evaluation takes 10 hours on an 8-core 3.3 GHz Intel
Xeon CPU. Even though the training of the DRL approaches takes 139 hours, in the end
we have models that are able to generate slicing and AC decisions for any scenario in the
order of sub-seconds. In contrast, the MILP takes 10 hours to generate slicing and AC
decisions for a single set of 2000 SRs. Therefore, the MILP result is presented only as a
theoretical upper-bound of the achievable revenue in this evaluation scenario and should
not be compared with the rest of the approaches as a practical solution.

Since GNNs are optimized for graph data, GNN-based approaches, i.e., GNN-AC-SL

and GNN-SL, have faster convergence and higher performance compared to their MLP-
based counterparts, respectively. Moreover, DRL-AC converges the fastest due to its small
action space, albeit to a local optimum, as the slicing performance of the Centralized ap-
proach prevents it from reaching its full potential. However, once the intelligent AC and
slicing agents are combined, they can operate in harmony and reach their maximum ca-
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Figure 5.3: InP revenue with improvement relative to Centralized. Each bar also displays
the portion of LP/HP SRs admitted.

pacity. Moreover, all the DRL-based approaches outperform the heuristic approaches once
sufficiently trained.

5.3.2 Evaluation

Once the training ends, the best performing model checkpoint is restored to perform the
evaluations. For evaluation, the exploration is disabled, changing the action selection
policy from stochastic sampling to deterministic (i.e., selecting the action with the highest
probability), thereby improving the revenue margins slightly. In Fig. 5.3, the total revenue
and the portion of HP and LP SRs admitted are shown. The percentage improvement of
all approaches relative to Centralized is also shown above each bar.

Among the baselines, the Centralized approach performs the worst, as it greedily places
near the core, leading to bandwidth bottlenecks, especially with high-throughput SRs and
in the more crowded links. Moreover, this approach tends to ignore potential hosts nearby,
even if they have the capacity, as it only considers the nodes in the shortest path towards
the core. Next, NR performs relatively similarly since ranking works on a feature weighting
basis that requires manual fine-tuning based on SR type and substrate network, rendering
it inefficient for different networks. In this regard, GRC performs better, since its ranking
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Figure 5.4: CPU utilization across the network nodes. It should be noted that there is a
single core.

approach does not require manual adjustment and their global resource capacity metric is
generalizable.

The heuristic approaches are followed by DRL-based methods. Although DRL-AC takes
advantage of an intelligent AC, it is stuck on a local optimum, deploying high-priority SRs
only. This is a result of the inability of the Centralized approach to avoid bottlenecks and
accommodate more SRs. Consequently, with inefficient embeddings and less overall SR
embeddings offered to the AC agent, it chooses to skip LP SRs completely. Next, we have
the two slicing-only approaches that follow the same pattern as observed in Fig. 5.2, with
GNN-SL achieving a slightly higher revenue than MLP-SL. These approaches deploy the
same number of HP SRs as LP SRs, since they greedily admit all feasible SRs. Following,
are the two joint slicing and AC solutions. As GNN-SL is shown to be a more efficient
slicing solution compared to MLP-SL, the AC agent in GNN-AC-SL is also able to admit
more HP SRs in the network without creating bottlenecks. Such advantage makes GNN-

AC-SL the highest achieving approach in terms of the overall gained revenue, with 35.2%
higher revenue when compared to Centralized.

Figures 5.4 and 5.5 compare the distribution of links and nodes utilization across the
substrate network. The Centralized approach has the highest utilization of higher-tier
nodes, however, it falls behind DRL-based slicing algorithms when considering access
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Figure 5.5: Link bandwidth utilization across the network. Links connecting the Core node
to the Main nodes are Tier 2, while the rest are Tier 1.

nodes. In fact, Centralized and consequently DRL-AC have the highest variation of uti-
lization across access nodes. This shows that the Centralized method is not able to balance
the load across the substrate network and utilize the available capacity in the access nodes.
In contrast, GRC displays less variance in its node/link utilization, which is a result of its
superior node ranking approach leading to a better load-balancing performance. Further-
more, GNN-based solutions exhibit a higher utilization of higher-tier nodes when compared
to the MLP-based methods without creating link bottlenecks. Finally, the addition of the
AC module generally lowers the utilization to reserve space for prospective HP SRs.

Fig. 5.6 shows an in-depth look at slicing decisions of each method for all SR types, i.e.,
MEC applications. VS and RS SRs are deployed more than VR and CG in all approaches,
as they are less demanding in terms of processing capacity. RS SRs have a restrictive
delay tolerance which limits their placement to their originating access nodes. On the
other hand, VS SRs have the most utilization of the aggregate and core nodes due to their
relaxed delay requirements. Compared to MLP-based approaches, GNN-based methods
aim to increase the deployment of higher-paying CG and VR SRs at the cost of less SRs
of type RS and VS. In this regard, DRL-AC rejects too many VS SRs when compared to
MLP-AC-SL and GNN-AC-SL.
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(a) Remote Surgery (RS) (b) Cloud Gaming (CG)

(c) Virtual Reality (VR) (d) Video Streaming (VS)

Figure 5.6: VNF placement of different methods for each slice type, i.e., MEC application

5.3.3 Robustness and Generalizability Analysis

5G networks observe different trends over time, therefore, it is imperative that the utilized
orchestration algorithms are able to cope with changing network conditions. In this section,
we evaluate the robustness and generalizability of the trained agents by deviating the
evaluation conditions from the training scenario. As previously mentioned, during training,
the proportion of HP slice requests arriving is set to 50%. Fig 5.7 plots the impact of
changing this proportion on the total InP revenue for different approaches.

Since slicing-only approaches are imperceptive to the revenues offered by the slice re-
quests and are tasked only with proposing successful slice embeddings, their total revenue
stays linearly relative to the proportion of the HP requests. In addition, as the proportion

43



Figure 5.7: Revenue vs. HP SR proportion

of HP SRs approaches 0 or 1, the AC effect diminishes, resulting in GNN-AC-SL, MLP-
AC-SL, and DRL-AC performing similarly to their slicing-only counterparts. Furthermore,
with few HP SRs in the lower end of the spectrum, the difference between MLP-AC-SL and
GNN-AC-SL is more prominent, which is due to a better slicing performance, as previously
demonstrated.

Fig. 5.8 compares algorithms under different network loads resulting from changing SR
arrival rate. We observe that GNN-AC-SL maintains its superior performance consistently.
Moreover, as the arrival rate decreases, MLP-based approaches degrade significantly. This
corroborates the fact that MLP models can over-fit to the input and are less generalizable
in graph applications, when compared to GNNs, to the extent that with an arrival rate
of 0.2 SRs/timestep GNN-AC-SL outperforms MLP-AC-SL by 24%. Additionally, with an
arrival rate of 0.2 SRs/timestep, the scenario becomes trivial, as evident by the similar
performance of NR and GRC methods to DRL-based methods DRL-AC and GNN-SL.

Fig. 5.9 plots the achieved revenue of the algorithms under different network link ca-
pacities as a result of multiplying the bandwidths of all physical links by a coefficient. As
it can be observed the approaches follow the same performance patterns as Fig. 5.8, where
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Figure 5.8: Revenue vs. SR arrival rate

Figure 5.9: Revenue vs. changing link bandwidths
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Figure 5.10: Total deployed SRs vs. changing link bandwidths

Figure 5.11: Proportion of HP SRs deployed vs. changing link bandwidths
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GNN-AC-SL holds the highest achieved revenue consistently, while the MLP-based slicing
models MLP-SL and MLP-AC-SL lose significant performance when deviating from their
training scenarios. GNN-AC-SL outperforms MLP-AC-SL by 34.9% when the link capaci-
ties are set to 1.5× of the values used for training the model. In MLP-based models, the
input is fixed in size and order, therefore, each input neuron overfits to the training data
and its range. Since the link bandwidths are set to 2000 Mbps and 3000 Mbps for Tier-1
and Tier-2 links, respectively, the DNN is trained on a relatively small range of values (i.e.,
0-2000 and 0-3000 for neurons connected to Tier-1 and Tier-2 links’ input data, respec-
tively). Multiplying these values by 1.5 results in numbers far from what the model was
trained on, propagating errors throughout the model and resulting in a collapsed network
output. This problem is less noticeable in GNN-based architectures, where the same input
neurons are fed with every link and node’s data. This creates a more generalizable model
that is able to deal with a greater range of input values.

Moreover, with less link capacities, there is a higher chance of link bottlenecks, which
could potentially be avoided by smart admission control. Therefore, the DRL-AC approach
does not lose as much revenue in lower link bandwidths when compared to the slicing-only
models. We plot the total deployed SRs and the proportion of HP SRs in Figures 5.10 and
5.11, respectively. As it can be observed, the drops in achieved revenue of the MLP-based
models are due to a lower number of deployed SRs resulting from poor slicing decisions.

Following Fig. 5.9, in Fig. 5.12, we analyze the robustness of the algorithm against
varying node capacities, by multiplying the resource capacities (i.e., CPU and RAM) of all
the substrate nodes by a coefficient. In these experiments, GNN-based approaches main-
tained their performance levels even in network deviations, while MLP-SL and MLP-AC-SL

methods faced difficulties in lower node capacities. In the case of 1/2 overall node capacity,
GNN-AC-SL outperforms MLP-SL and MLP-AC-SL by 35.3% and 16.8%, respectively. The
number of total deployed SRs and the proportion of deployed HP SRs are shown in Figures
5.13 and 5.14, respectively. It should be noted that even though GNN-SL and MLP-SL
have the highest number of deployed SRs, their total achieved revenues remain lower than
the joint slicing and admission control solutions which utilize a higher proportion of HP
SRs.

To showcase the generalizability of our proposed model on different topologies, we
evaluate the models on unseen substrate networks, without re-training or re-purposing the
model. We only consider the heuristic and GNN-based approaches on these networks, since
MLP-based models are tied to a fixed input size and the previously trained MLP-based
methods cannot operate if the network changes. We consider a moderate-sized 31-node
synthetic network, and the 52-node real Milan network [6] shown in Fig. 5.16, which are
2.5× and 4× the size of the training network, respectively and have resource capacities and
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Figure 5.12: Revenue vs. changing node CPU and RAM capacities

delays similar to it. Fig. 5.15 plots the performance of the heuristic and GNN-based ap-
proaches on these networks, and as evident, GNN-AC-SL outperforms the heuristic baseline
by 25.5% and 25.1% in the synthetic and Milan topologies, respectively. However, with the
larger size and overall capacity of these networks, there are less bottlenecks. Consequently,
the impact of the AC approach is less notable and the percentages of improvements com-
pared to the Centralized baseline are lower. In general, these results confirm that while
trained on a small-scale network, our proposed GNN-AC-SL solution scales well to larger
real-world metropolitan networks.

Finally, we examine the robustness of the algorithms against dynamic network topolo-
gies, e.g., when nodes and links are disabled due to network shutdown. We Simulate
scenarios where nodes and their connecting links are disconnected from the network in five
stages. At each stage, the respective highlighted section in Fig. 5.17 is added to the pre-
viously failed nodes, increasing the magnitude of the failure. The impact of these changes
is shown in Fig. 5.18. Since the heuristic approaches are not biased towards a specific
topology, they maintain a smooth loss in revenue. However, GNN-AC-SL and GNN-SL
models exhibit irregularities in their achieved revenue. This could be contributed to specific
bottlenecks that happen due to a shift in slice arrival location distribution. Even though
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Figure 5.13: Total deployed SRs vs. changing node CPU and RAM capacities

Figure 5.14: Proportion of HP SRs deployed vs. changing ndoe CPU and RAM capacities
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Figure 5.15: InP revenue in large previously unseen networks

GNN-AC-SL maintains the highest performance, a more generalizable model would be
required to create more predictable outcomes in such cases.

5.3.4 Attention Map Analysis

As previously explained, GATs are based on the attention mechanism, which can be utilized
to extract important sections of the graph. In 5G infrastructure, the InP can make use
of this opportunity to increase the capacity in critical areas identified by analyzing the
attention scores from all neighboring nodes. Fig. 5.19 is generated from the attention layer
of the slicing agent when operating on the training topology, by calculating the average of
the attention scores of the last GATv2 layers towards each node at each step. The node
indices follow Fig. 5.1. As evident, nodes 1, 2, and 3 pay ample attention to nodes 6, 5, and
4, respectively, as they are leaf nodes and their states depend a lot on their only neighbors.
Furthermore, nodes 5 and 6 receive the highest attention scores among non-core nodes, as
they are critical nodes that bridge the two halves of the network. A bottleneck in any of
these nodes can prevent slices from crossing over to more desirable nodes on the other side
of the network. Finally, the core node has the second highest attention scores, as it plays
a critical role in hosting computation-heavy applications due to its larger capacity.

Similarly, we extract the attention maps of the Synthetic and Milan topologies, which
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Figure 5.16: New studied topologies: (a) is the synthetic network with 31 nodes and 54
links, and (b) is the Telecom Italia metro-regional network [6] with 52 nodes and 72 links.
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Figure 5.18: Impact of network failure on achieved revenue
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can be seen in Figs. 5.20 and 5.21, respectively. The goal of the final GATv2 layer in our
slicing agent’s model is to select the most suitable substrate node for hosting the current
VNF. Therefore, it will attend to nodes with more ideal states (e.g., higher available
capacities). We can utilize this fact to improve the capacities at less attended nodes,
indicating that they are currently facing bottlenecks. We assess the significance of these
attention values by changing the node capacities of the 10 most and least attended nodes
(excluding the core nodes) in the Milan topology and observing the changes in the achieved
revenue. We multiply these nodes’ resource capacities (i.e., CPU and RAM) and their
connecting links’ bandwidths by a coefficient and display the results in Figures 5.22 and
5.23. As expected, by focusing the resources at the less attended nodes, the InP experiences
a higher gain in revenue when compared to the highest attended nodes. Moving from a
resource coefficient of 0.5 to 1.5 results in a 8.8% and 9.9% improvement in the total
achieved revenue for the 10 most attended nodes with the Centralized and GNN-AC-SL
approaches, respectively. In contrast, these values are 23.8% and 14.4% for the 10 least
attended nodes, denoting a higher gain in revenue for a similar cost of upgrading the
resources.
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Figure 5.19: Extracted attention map of the slicing agent’s GATv2 layer when operating
on the training topology (Fig. 5.1). Some values are set to 0, since GATv2 calculates the
attention scores for pairs of neighboring nodes only.
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Figure 5.20: Extracted attention map of the slicing agent’s GATv2 layer when operating
on the Synthetic topology (Fig. 5.16a)

55



Figure 5.21: Extracted attention map of the slicing agent’s GATv2 layer when operating
on the Milan topology (Fig. 5.16b)
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Figure 5.22: Revenue vs. changing capacities of the 10 most attended nodes and their
connecting links in the Milan topology (Fig. 5.16b)

Figure 5.23: Revenue vs. changing capacities of the 10 least attended nodes and their
connecting links in the Milan topology (Fig. 5.16b)
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Chapter 6

Conclusions and Future Work

6.1 Conclusion

In this work, we addressed the problem of joint RAN/MEC slicing and AC in dynamic
metropolitan 5G networks using multi-agent DRL. Conventional DRL approaches in this
area are based on fully connected NN designs that are bound to the input/output data
dimensions and order, and as such, they fail to operate on topologies different than what
they were trained for. We proposed a GNN-based solution that can effectively scale to
large previously-unseen networks without the need for re-training. The results showed that
our proposed solution converges faster than the MLP-based counterparts and achieves as
much as 35.2% and 25.5% higher overall revenue, when compared to heuristic baselines,
on the training and unseen networks, respectively. Moreover, we showed that DRL-based
approaches that address only one aspect of the problem lead to a loss in potential InP
revenue. Additionally, our robustness and generalizability analysis showed that GNN-based
solutions for RAN slicing are more robust, due to the graph-based nature of metropolitan
5G infrastructures and GNNs’ ability to learn the complex structures of graphs. Finally,
we showed that using GATv2 allows for the extraction of an attention map that can assist
InPs in identifying network bottlenecks and efficiently improving network performance.

6.2 Future Work

As robust as the current solution is, it could still potentially benefit from varying substrate
networks and node/link capacities during training. A possible direction for future work is
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investigating the impact of training on random topologies and scenarios on generalization.
Furthermore, we can investigate dynamically scaling the resources allocated to SRs based
on their predicted demand. This can allow the network to accommodate more SRs by
leveraging over-booking.
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