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Abstract

Due to the increasing penetration of renewable resources and demand response instru-
ments in the electricity markets, generation planning models have become more complex
and require detailed information on the inherent structure of the system, including gen-
erator and demand parameters. Demand should be met by cost-effective, adaptable, and
efficient power plants, to ensure that it is met even in the worst-case scenarios, such as
an unanticipated peak or the failure of a critical generating unit. On the other hand,
there is a need to consider short-term details in the Planning problems to address the
needed system flexibility due to sudden changes in demand and renewables’ generation.
Such short-term details increase the size of the models and their related computations. As
a result, there is a trade-off between the complexity of the computation and the level of
short-term operational details, which should be considered.

Accessing electricity infrastructure data in North America is often difficult due to the
lack of open data standards and the proprietary nature of much of the data. The regulations
and policies surrounding the data also vary significantly from province to province, making
it difficult to access the data uniformly. Additionally, privacy and security considerations
can limit access even further. Despite these limitations, there are indirect methods such
as inverse optimization(IO) to derive the market parameters using publicly available data;
examples of these parameters include generator costs of generation, their capabilities, etc.
The discovery of unobservable information via IO could aid energy models to account for
operational details without increasing the complexity of their problem. Furthermore, this
information can inform policymakers on potential interventions to improve the efficiency
of the electricity market.

In this research, a MIP model is developed to incorporate capital and operational costs
associated with long-term planning problems. The operational costs of each technology are
assumed to be approximated by a series of step-wise functions so that model outcomes, such
as generation output, are as close as possible to real-world electricity market generation.
The proposed method employs a two-stage algorithmic framework using data-driven inverse
optimization and regression. In the first stage, a series of constraints are generated based on
relationships between cost and electricity prices. In the second stage, these constraints on
costs are added to a problem that finds and reconciles the parameters of the cost functions.
To evaluate the performances of the proposed IO-based method, it was applied to a DC-
OPF model using the IEEE 24-bus system, which helped eliminate power flow constraints.
This approach was then applied to a long-term planning model using Ontario’s electricity
market data. The results indicate that the proposed approach could find a close solution
to the conventional models. In the long-term planning model, the IO-based approach
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showed more moderate investment policies, while the traditional methods tend to over or
under-invest.
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Chapter 1

Introduction

The world’s population is growing, and the trend is anticipated to be ascending in the
future. Since there is a strong correlation between population growth and electricity usage,
it can be concluded that electricity demand will also rise. However, due to the scarcity
of fossil fuels in the long run, as the world population grows and the available fossil fuel
resources gradually deplete, these resources cannot be reliable as our primary source of
electricity generation. Furthermore, it has been established that the consumption of fossil
fuels is the direct source of carbon emissions [4]. Since the beginning of the industrial
revolution, a 40 percent growth in the emissions of CO2 has occurred and this is primarily
due to the consumption of fossil fuels. Despite the uncertainty about the scale of the effects
of greenhouse gas emissions, developing non-fossil fuel-based systems is still a reasonable
decision.

Based on reports of the International Energy Agency (IEA), [3], there are estimates
that by 2050, more than half of the world’s power generation may be from renewable
resources. Besides, there is currently a trend toward using renewable energy resources
more frequently worldwide. For instance, 29 percent of the energy generated worldwide
in 2021 came from renewable resources. Increased use of renewable energy in the power
mix will undoubtedly increase uncertainty and unpredictability. The main origin of this
uncertainty is the variable nature of these renewable resources and atmospheric and climatic
conditions. The amount of power generated may be accurately predictable when utilizing
conventional non-renewable energy sources like coal, natural gas, and oil. Unless there are
unanticipated equipment problems, electricity market operators typically had total control
over how much power they generate each hour when renewable resources had little share
in the generation mix. The main driver behind this total control over power generation
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is the ability of operators to alter typical generator outputs in response to power demand
and constraints placed on the generators.

Adding renewable energy resources to a power system will significantly impact both
short-term and long-term planning in the markets. Short-term planning involves deciding
which generators are On and how much they are generating. At the same time, long-
term planning models not only include these decisions but also involve decisions regarding
expanding the existing capacities. The primary reason for the impact of renewables on
these models is the intermittent nature of renewable energy generation. One of the main
downsides of this intermittency for renewable resources is their reliability because operators
have little control over when the wind blows or the sun shines. As a result, power system
problems had become more complex than when renewables did not have much role, and
operators have begun to plan generation differently.

In short-term operational problems, such as unit commitment (UC), electricity market
operators generally deal with decisions such as selecting the generators that need to be
On, and when they should be On. In this problem, decisions are generally taken hourly.
One of the main features affecting these decisions is ramping capability of generators. A
generator’s ramping capacity is the rate at which it can raise or decrease its output. Market
operators consider ramping limitations to limit which generators can ramp up or down to
meet changing demand. Renewable energy sources’ variability and unpredictability require
having these ramping capabilities to reconcile the unpredictable rise and fall of electricity
generation.

In the long-term planning problem, in addition to the decisions that need to be taken
in a short-term planning problem, decisions such as investment in different generators
or transmission lines need to be incorporated. Short-term planning decisions are usually
incorporated in long-term planning models to make investment decisions that respect the
fluctuations and dynamics of generation and load on different days of the year and in
different scenarios. Generally, considering all of these fluctuations and scenarios in a long-
term planning model makes the problem computationally intractable. Nevertheless, these
fluctuations are necessary for today’s energy markets considering the more significant role of
renewable resources, while historically, they were omitted and left for short-term planning
problems. Hence, there is a trade-off between computational tractability and how closely
the dynamics of load and generation are expected to be met.

This thesis attempts to demonstrate the importance of including short-term planning
features as specified before with low granularity in long-term expansion planning problems.
In addition, a novel inverse optimization algorithmic framework is proposed to compensate
for the short-term details that are not considered. These details are either not directly
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available as a source of information, or omitted to have a more computationally tractable
problem.

This thesis is organized as follows: Chapter 2 provides background on long-term plan-
ning, electricity markets, and inverse optimization, a technique that finds unknown pa-
rameters in an operations research problem, Chapter 3 provides a two-step algorithmic
framework to derive the unknown parameters that approximate cost function of different
generators, Chapter 4 discusses two long-term planning models using fixed operational
costs, and an IO approximated cost functions, and Finally, Chapter 5 provides a summary
and some potential areas for further study.

1.1 Motivation

1.1.1 Long-term planning

Based on the annual reports published by IESO, power consumption has many drivers, in-
cluding but not limited to the economy, population, technology, energy price, and consumer
behavior, [1]. Even though many factors affect power consumption and as a result system-
wide load, grid-level demand in Ontario’s energy market has been mostly flat during the
past five years (2016-2021). Ontario electricity market forecasts predict ongoing growth,
notably in the residential and commercial sectors, and continued agricultural expansion.
Hence, the province is entering a period of increased demand and decarbonization measures
and economic recovery are the two main key factors leading the way for new technologies
and sources of energy.

In the 2020s, Ontario’s nuclear fleet’s available capacity will undergo a significant trans-
formation. Resource requirements will rise due to Pickering NGS’s retirement and addi-
tional renovations at Darlington NGS and Bruce NGS that might result in protracted
outages. It is anticipated that by the end of 2023 a total of 9.6 GW of capacity in the
nuclear sector would need refurbishment. Refurbishments of some of these generators in-
cluding Darlington and Bruce are anticipated to finish in 2026 and 2033. Furthermore,
several IESO and Ontario Electricity Financial Corporation commitments and generating
contracts will expire in the coming decade. Many contracts have already reached the end
of their terms, and expirations are expected to skyrocket as by the end of 2030. Figure 1.1
illustrates the trend of these expirations and how they affect the total installed capacity if
no investments happen.

Resource adequacy, which specifies the system’s supply and demand balance, is integral
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Figure 1.1: Total installed capacity in GW without reacquisition of expired contracts

to power system dependability. For example, severe weather and generator failures might
cause demand to outpace supply for an extended period. A sound system can reduce
these hazards. The IESO analyses several hazards when determining resource sufficiency.
Because of weather circumstances, actual demand may be higher or lower than projected.
Due to planned maintenance or equipment breakdown, resources may be unavailable in
real-time. Variable generators, such as wind and solar, may deliver relatively low levels of
adequate capacity due to their reliance on climatic circumstances. Finally, big projects,
such as ongoing nuclear refurbishments, may have delays in resuming service and a greater
outage rate once they do.

In order to illustrate the need for future investments the continuous availability of the
existing resources would be assumed. Figure 1.2 shows the energy adequacy outlook in
Ontario with this assumption. As can be seen, existing generation units are sufficient to
supply the majority of demand through the mid-2030s. An energy shortage arises at the
end of the planned horizon, mainly owing to rising demand. In the absence of continuous
availability of existing supplies beyond contract expiration, an energy deficit occurs in 2026
and accelerates beginning in 2029.
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Figure 1.2: Energy adequacy outlook without continued availability of existing resources
(driven based on the annual reports published by IESO)

All in all, given the ongoing trends in the Ontario energy market, long-term capacity
expansion planning is of utmost importance.

1.1.2 IO-approximated cost functions

As more renewable variability and price-responsive agents are added to the electricity grid,
more accurate modeling of their behaviors and interactions becomes a necessity. This
necessity roots in the significant variability of these agents in short-term operations of
the electricity market. Neglecting the growing participation of these agents would mean
investment needs in the future would not incorporate the flexible operations of renewables,
gas-fired units, or storage units such as batteries.

While employing estimated cost of operations in the market can be a good source in
many studies, they cannot provide operational outcomes close to real-world operations.
Market outcomes in each hour are dependent on the bids and offers the market operator
receives from market participants and the technical limitations of the grid. From system to
system, only parts of these details are available to the general public, making the modeling
of these systems prone to errors. As a result, inverse optimization, an area of operations
research is generally employed to approximate these invisible or hidden details in the mar-
ket. Inverse optimization assumes the market outcomes are optimal or close to optimality
and tries to reconcile and approximate model parameters given these assumptions.
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A series of non-decreasing linear convex cost functions for each of the market partici-
pants allows for modeling and reproducing the market outcomes using the limited knowl-
edge of the market. This would allow more reliable investment planning on the market
participants with high variability in their generation or operations.

1.2 Literature review

1.2.1 Expansion planning

Models for generation expansion planning include two layers of decision-making: invest-
ment and operational layers. While investment decisions are often made on an annual or
decennial basis, operational short-term decisions are made more frequently (for example,
hourly). As a result, a typical long-term investment planning model would incorporate
more operational decisions than investment decisions. Adding more operational decisions
leads to increased computational complexity and as a result a difficult mathematical prob-
lem. Several papers in the literature have proposed various solutions to this problem.

In the literature, most researchers apply a series of techniques to reduce the size of
their problem because of memory and time limits. However, there are other benefits asso-
ciated with reducing the size of a problem. The authors of [30] emphasize one advantage
of this approach: running multiple planning models quickly and doing sensitivity analysis
and model debugging. While picking representative days/hours/time slices can substan-
tially influence model outputs, the benefits of lower computational expenditure exceed the
penalties associated with less granular model inputs [55].

One of the early works in this area, [17], attracted attention to the impacts of non-
dispatchable technologies, such as Solar, and Wind, on the system load profile. The
authors propose a stochastic approach to modifying the annual load in the system and
selecting several operating conditions from it. In [63], a deterministic approach is devised
to expansion planning that considers the unpredictability in demand and resource profiles
by using representative time slices. Each season is represented by one day, and each day
by 4 time slices. In addition, they take into account a super-peak time slice in the summer
for a total of 17 time slices. In [51], every year is considered as 4 seasons, and each season
is represented by three days with hourly granularity. The authors of [9] recommended two
approaches: the first was to utilize wind and load duration curves, and the second was
to use k-means clustering to model geographical correlations. Because of the examination
of representative hours within each day, the work of this study violates the chronological
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sequence of hours and hence intertemporal correlations and operational constraints (for
example, ramp-up and ramp-down constraints). The authors of [66] offered a completely
different technique, using states and transition tables to represent operational details in a
generation expansion planning model utilizing principles from control theory. The authors
state this method could offer a more realistic picture of system outcomes such as power
pricing and overall cost. The authors of [56] created a measure for selecting representative
days in expansion planning exercises in storage systems, and they demonstrated how to
employ this measure. In [7], the authors worked on transmission-expansion planning and
developed a novel technique to determine representative operating conditions. In contrast
to earlier works that concentrate on more frequent situations, the authors of this research
emphasize essential network conditions. The authors of [54] proposed the term ”Snapshot
selection” to reduce the size of the planning problem as well as capture the temporal vari-
ability. The authors of [42] employed two algorithms, k-means, and hierarchical clustering
methods, to find representative days instead of operating hours or time slices. With this ap-
proach, they could model the intertemporal operating constraints and capture correlations
in the data.

This research shares the same goals with the literature in that it tries to reduce the
size of the long-term planning problem and increase its computational traceability while
considering realistic operational, short-term, constraints. As a result of this, investment
decisions are made based on all operational dynamics of the system and therefore, are more
reliable. The realistic operational constraints in a problem set could cause computational
intractability due to the growing number of decision variables and constraints. This thesis
proposes a two-stage algorithmic framework that considers the econometric behavior of the
generators in the electricity market, without considering all of these realistic operational
constraints to alleviate the interactivity issues.

1.2.2 Inverse optimization

Inverse optimization is a branch of operations research that aims to impute unknown
parameters in standard optimization problems. These parameters can be found in either
the objective function or the constraints, or both. In the literature, there are numerous
examples of applications of inverse optimization. This method is employed in different
problem contexts including linear problems [6], conic problems[34], convex problems [40],
integer problems [61], multi-objective problems [18], and variational inequality problems
[11].

Inverse optimization has found applications in a wide range of disciplines, in addition
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to distinct problem formulations. In particular, it has been applied to the area of power
systems in two sets of models, Market-clearing models, and Agent demand models [21].

The modern-day electricity grid is facing an increasing number of price-responsive con-
sumers. Price-responsive consumers can control their expenditures in response to wholesale
electricity prices. Accurately predicting the demand for these consumers helps retailers,
and market operators make better planning decisions. Inverse optimization is employed to
estimate the utility functions of consumer demand models, which can eventually be used
to predict demands. Authors of [60] proposed an inverse optimization methodology that
uses bi-level programming to infer the market bid parameters of a pool of price-responsive
consumers. In [59] a novel IO approach is proposed to estimate a total load of a pool of
price-responsive buildings in the short term. Authors of [43] employed IO to estimate the
demand response characteristics of price-responsive consumers. In [27] inverse optimiza-
tion is employed to propose a two-step estimation procedure and model the behavior of a
pool of electric Vehicles (EVs).

In most North American electricity markets, a market operator is normally in charge of
arranging output and power flow. In the meantime, a market operator should also consider
different operational restrictions as well as demand bids for future dates. The problem of
arranging the outputs of generators and power flow is called a market-clearing problem.
This market-clearing problem is often described as a linear optimization problem that is
solved on a daily basis at scheduled intervals. Moreover, the final allocations (solutions,
or to be more specific generation levels), prices (shadow prices of the supply-demand con-
straints), and bid functions are released to ensure market transparency. The authors of [13]
employed inverse optimization models that use publicly accessible information as input to
infer parameters that were not previously observable and represent institutional restric-
tions. Being aware of these unobservable characteristics in an energy market, for example,
can lead to a better knowledge of transmission capacity, which can lead to information
regarding bidding tactics or investment decisions. In [58] an IO-based method is proposed
to estimate rival marginal offer prices for a strategic producer in day-ahead market with
network constraints. The authors of [69] employed an IO approach in the context of gen-
eration expansion planning to design an incentive policy for the promotion of renewable
resources.

This thesis proposes a two-step algorithmic framework to estimate the cost functions
of each of the generators in an electricity market. This market has unknown features
such as transmission lines and flow information. Inverse optimization, as a result, is used
to find a series of cost functions that best satisfy the known constraints and adjust to
the market outcomes even though some information was unknown. These cost functions
have a non-decreasing convex linear structure to find a linear relationship between a set
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of explanatory variables. This proposed algorithmic framework has been implemented for
two sample test cases, namely IEEE 24 bus test system, and the Ontario energy market
to show its effectiveness in following the short-term dynamics of an electricity market with
unknown parameters. Finally, the calculated cost functions are employed in a long-term
planning model to evaluate their effectiveness in long-term problems and incentivizing units
such as renewables, and batteries.
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Chapter 2

Background

In this chapter, the background of this thesis is discussed in more detail. Different electricity
markets are discussed in the first section, and then the capacity expansion planning problem
is provided. Finally, inverse optimization methods are discussed and some theoretical
backgrounds are provided.

2.1 Electricity markets

An electricity market is a system that enables the exchange of electricity-related goods
and services [64]. More than a century of evolution in the electric power industry has
changed the economics of electricity markets significantly due to advances in technology,
dynamics of supply and demand, and policies. In the early 21st century heavily controlled
traditional electricity markets were replaced with several competitive markets for electricity
generation, transmission, distribution, and retailing [29]. The transition from traditional
market approaches to competitive ones involved a transformation of electricity from a
public service into a tradable good [67]. As of the 2020s, there are still large areas of the
United States and Canada that are operating under a traditional energy market.

The day-ahead market is a financial market in which various entities, including people
and businesses, can sell and buy electricity at a contractually binding price for the following
day. Because the prices are fixed at the start of the day, sellers and buyers are hedged
against changes and volatility during the day.

In a real-time electricity market, market participants are allowed to buy or sell elec-
tricity during an operating day. This market balances the differences between day-ahead
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commitments and the actual real-time demand and generation of electricity. Further, it
generates a different second financial settlement. This settlement would determine loca-
tional marginal prices (LMP), which could be used to charge participants in demand or
production that deviate from the day-ahead commitments.

2.1.1 Ontario Energy Market

The energy market in Ontario is structured as a competitive market that includes various
companies and stakeholders. Energy companies in Ontario are regulated by the Ontario
Energy Board (OEB) and must abide by the rules and regulations set out by this authority.
Market players include electricity generators, wholesalers, retailers, electric transmission
and distribution systems operators, and independent power producers.

Power producers are the primary source of energy; they are responsible for the creation
of electricity through their energy resources. In Ontario, there are three primary energy
sources: nuclear power, hydroelectric power, and natural gas. These power producers sell
the electricity they produce directly to large commercial and industrial customers, thereby
setting the spot price.

Wholesalers purchase electricity from power producers and sell it to electricity retailers,
who in turn sell it to residential and commercial customers. Reciprocally, retail customers
buy electricity from retailers and submit payments to the Ontario Energy Board. In order
to provide reliable service to customers, the system must always be stable and secure at a
high level.

Electricity generators, wholesalers, retailers, electric transmission and distribution sys-
tems operators, and independent power producers are all participants in the Ontario energy
market. However, the main players are Ontario Power Generation (OPG), Hydro One, and
Independent Electricity System Operator (IESO). OPG is the largest energy provider in
Ontario, responsible for generating approximately half of Ontario’s electricity needs. Hydro
One is responsible for operating and maintaining the province’s transmission and distribu-
tion systems, as well as managing hydroelectric assets. IESO is responsible for managing
the province’s power grid, monitoring electricity supply and demand in real time, and
ensuring that the market remains stable and secure.

The structure of the energy market in Ontario provides a competitive and reliable
energy delivery system. This structure ensures that energy prices remain competitive, and
energy is available to the public in an efficient and economic manner.
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2.2 Capacity expansion planning

The generation expansion planning (GEP) problem is an optimization problem that ensures
enough generation capacity is installed within the electric grid to satisfy the electricity
demand. Due to the aging of the current generation units and the increase in demand
over time [24], this problem is becoming a vital topic for energy system planning, which
necessitates careful examination of the required capacity by either refurbishment or the
construction of new ones. The planning horizon for such problems is 10 years to 20 years
[23], [45].

Satisfying demand continuously, economically, and efficiently is a complex task that
requires the inclusion of the worst-case scenarios, such as when an unanticipated load
occurs, or a key market participant fails to dispatch electricity or is unavailable due to
refurbishment.

There are two methods for solving the generation expansion planning problems: a) a
market framework, [38], [39] and b) a centralized approach [14], [47]. The former sug-
gests that profit-driven market players choose their expansion strategies to maximize their
predicted earnings by recouping their investment expenses and selling their electricity pro-
duction in the market. In contrast, the latter suggests that a central planner chooses the
generation growth strategy that is the most economical for the system.

The central planners determine a strategy for expanding the generation infrastructure
that would ideally result in an optimal system operation to effectively satisfy demand even
in worst-case scenarios. Various objective functions, such as maximizing social welfare, or
minimizing generation costs, might be considered for this purpose. This thesis focuses on
social welfare maximization in which the capital cost of building new generation capacities
is considered.

The aim of GEP is to determine the type and size of facilities to be built in the electricity
system in the coming years. The optimal type and size of the generating units are calculated
based on the current energy system’s structure, future demand, and modifications to the
system’s design. The decisions are impacted by the retirement of existing generators and
the costs of investing in and producing the suggested generating units.

The system topology must be represented in the GEP problem [37], [38]. As the
penetration of renewable energy generating units grows, the transmission network becomes
increasingly overloaded [12], forcing the installation of additional generating units to relieve
system congestion.

Aside from determining the best size and location for new generation capacities, it is also
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critical to establish the best time to develop them. The generation investment planning
could be done statically [22], [65], or dynamically [10], [14]. In the static approach, all
investment decisions are made at a single point in time. This reformulation provides a
rather simple problem. On the other hand, in the dynamic approach, we must make
investment decisions at different points. The dynamic approach provides a more accurate
outcome at the expense of model complexity or intractability.

2.2.1 Model Overview

The planning problems are commonly designed to minimize the cost of construction and
operations or maximize social welfare in which the construction decision variables are rep-
resented by binary variables and generation dispatch instructions are given by continuous
variables. This would create a MIP/MINLP problem while the system constraints should
be satisfied. The following sections describe the objective function and constraints of such
models.

2.2.2 Objective function

In the following equation, a cost minimization objective function is considered.

min Z =
∑
t∈T

(
∑

i∈I,g∈Gi

Kg
i,te
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i,g,t +

∑
j∈J

Kb
j,te

B
j,t +

∑
d∈D,h∈H,i∈I,g∈Gi

WdC
v
i,tpi,g,t,d,h+∑

i∈I,g∈Gi

Cf
i,tκ

G
i,g,t +

∑
j∈J

Cf
j,tκ

B
j,t + ρrnt δt +

∑
g∈Gi,d∈D

ρgt cut,d,h)
(2.1)

The objective function stated in 2.1 has several components. The first term is the total
generator capital costs,

∑
i∈I,g∈Gi,t

Kg
i,te

G
i,g,t. In this component, Ki,t stands for inflated

investments for technology i in year t throughout the planning horizon, and eGi,g,t stands
for the expansion for technology i, representative generator g in year t and is greater than
or equal to zero. As can be seen, the capital cost of each MW investment is multiplied by
the number of MW of investment. The term

∑
j∈J,t∈T Kb

j,te
B
j,t is the total storage capital

costs of storage j, where Kb
j,t stands for the capital costs associated with storage unit j

in year t, and eBj,t is a decision variable associated with the expansion of storage unit j.
This variable is greater than or equal to zero. The term

∑
d∈D,h∈H,i∈I,g∈Gi

WdC
v
i,tpi,g,t,d,h is
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variable generator costs, which are costs associated with each MW of electricity generation,
where Wd stands for the weight of the cluster that day d belongs to, Cv

i,t is the variable cost
of technology i in year t, and pi,g,t,d,h is the generation of representative generator g with

a greater than or equal to zero sign. The term
∑

i∈I,g∈Gi,t
Cf

i,tκ
G
i,g,t is associated with the

fixed generator cost, where Cf
i,t is fixed cost of technology i at year t, and κG

i,g,t is a decision
variable associated with the capacity at year t with a greater than or equal sign. The term∑

j∈J,t∈T Cf
j,tκ

B
j,t is the total fixed storage costs, where the total cost is a multiplication

of a fixed cost Cf
j,t and the storage capacity variable κB

j,t in year t. This variable has a
greater than or equal to zero sign. The term

∑
t∈T ρrnt δt is the penalty ρrnt for not reaching

planned goals about the market share of renewable resources, which is dependent on the
deficiency δt from renewable goals. This δt variable can take positive values. The last term,∑

g∈Gi,t∈T,d∈D,h∈H ρgt cut,d,h, is curtailment costs, in which the penalty (ρgt ) is associated with
each MW of curtailment variable cut,d,h of renewable resources’ generation. This variable
is greater than or equal to zero.

2.2.3 Model constraints

This section provides a more detailed description of the constraints included in long-term
planning. We would first provide the operational constraints, such as load balance, ramp-
up, and ramp-down, and then focus our attention on the constraints of long-term planning,
such as renewable generation penetration policies, retirement, refurbishment, and invest-
ments.

Operational constraints

The operational constraints refer to those which are reflecting the operations of the system
in each hour as follows:

Load balance constraint: Equations 2.2 demonstrate the balance between total
demand and supply by all energy storage and generators, in which the generations of
representative generators pi,g,t,d,h and discharge of energy storages pdisj,t,d,h which is multiplied

by their efficiency µj is equal to the load Lt,d,h, charging of energy storages pchj,t,d,h multiplied
by charging efficiency 1/µj, and renewable curtailments cut,d,h. The dual of this constraint
will provide us with the market price.
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∑
i∈I

∑
g∈Gi

pi,g,t,d,h +
∑
j∈J

µjp
dis
j,t,d,h = Lt,d,h +

∑
j∈J

1

µj

pchj,t,d,h + cut,d,h, ∀t ∈ T, d ∈ D, h ∈ H

(2.2)

Ramp up constraint: Equations 2.3 impose a bound, Rumax
i,g , on the amount a par-

ticular generator can increase (ramp up) its production from one hour to another. This
constraint only applies to hours after 2 AM as transversality constraints are the equations
that focus on the relation between hour 24 and hour 1.

pi,g,t,d,h − pi,g,t,d,h−1 ≤ Rumax
i,g , ∀I ∈ Id, g ∈ Gi, t ∈ T, d ∈ D, h ∈ H (2.3)

Ramp down constraint: Equations 2.4 impose a bound, Rdmax
i,g , on the amount a

particular generator can decrease (ramp down) its production from one hour to another.
This constraint only applies to hours after 2 AM as transversality constraints are the
equations that focus on the relation between hour 24 and hour 1.

pi,g,t,d,h−1 − pi,g,t,d,h ≤ Rdmax
i,g , ∀I ∈ Id, g ∈ Gi, t ∈ T, d ∈ D, h ∈ H (2.4)

Transversality constraints: Equations 2.5, and 2.6 are to ensure that the status and
production levels of a particular generator follow Rdmax

i,g , Rumax
i,g , from one day to another.

pi,g,t,d,1 − pi,g,t,d,24 ≤ Rumax
i,g , ∀I ∈ Id, g ∈ Gi, t ∈ T, d ∈ D (2.5)

pi,g,t,d,24 − pi,g,t,d,1 ≤ Rdmax
i,g , ∀I ∈ Id, g ∈ Gi, t ∈ T, d ∈ D (2.6)

Generator capacity constraint: Equations 2.7 ensure the amount of production of a
particular generator, pi,g,t,d,h, in addition to the capacity variable that is reserved, qsi,g,t,d,h,
would always be less than or equal to the existing capacity and the capacity that was
invested in year t, κG

i,g,t. Variable qsi,g,t,d,h is greater than or equal to zero.
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pi,g,t,d,h + qsi,g,t,d,h ≤ κG
i,g,t, ∀i ∈ Id, t ∈ T, d ∈ D, h ∈ H (2.7)

Minimum total spinning reserve constraint: Equations 2.8 ensure that the total
available reserved capacity (qsi,g,t,d,h) across all representative generators of different tech-
nology types is more than a ratio (Smin) of the load (Lt,d,h) at year t, day d, and hour
h.

∑
i∈Idis

∑
g∈Gi

qsi,g,t,d,h ≥ SminLt,d,h, ∀t ∈ T, d ∈ D, h ∈ H (2.8)

Minimum spinning reserve capacity constraint: Equations 2.9 ensure that the
reserved capacity (qsi,g,t,d,h) of a representative generator g of a particular technology i
should be greater than or equal to a generator’s nominal capacity κi,g,t multiplied by the
maximum ratio (F s

i ) that can add to spinning reserves.

qsi,g,t,d,h ≥ F s
i κi,g,t, ∀i ∈ Id, t ∈ T, d ∈ D, h ∈ H (2.9)

Minimum reserve margin constraint: Equations 2.10 ensure the minimum amount
of renewable energy generated in year t (fraction of maximum annual load, Rmin

t ) should
be less than or equal to the total available capacity, κG

i,g,t, that can be reliably calculated
toward the projected reserve need. Variable κG

i,g,t, takes positive values greater than or
equal to zero.

(1 +Rmin
t )Lmax

t ≤
∑
i∈Ir

Qv
i κ

G
i,g,t +

∑
i∈Id

κG
i,g,t ∀t ∈ T (2.10)

State of charge constraint: Equations 2.11 ensure that the state of charge of storage
unit j at hour h, scj,t,d,h, is dependent on the state of charge of the previous hour h− 1 in
addition to the amount of charging, pchj,t,d,h, and discharging pdisj,t,d,h, that happened at the

current hour h. Variables scj,t,d,h, p
ch
j,t,d,h, p

dis
j,t,d,h take values greater than or equal to zero.
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scj,t,d,h = scj,t,d,h−1 +
1

uj

pchj,t,d,h − ujp
dis
j,t,d,h, ∀j ∈ J, t ∈ T, d ∈ D, h ∈ H (2.11)

Charging rate constraint: Equations 2.12 ensure that if charging happens in one
of the storage units, it should be less than or equal to a maximum, bchj,t,d,hλjκ

B
j,t. This

maximum is calculated by multiplying the current existing capacity, κB
j,t, and a fraction of

the capacity that can be charged or discharged, λj. Variable bchj,t,d,h takes a binary value.

pchj,t,d,h ≤ bchj,t,d,hλjκ
B
j,t, ∀j ∈ J, t ∈ T, d ∈ D, h ∈ H (2.12)

Discharging rate constraint: Equations 2.13 ensure that if discharging, pdisj,t,d,h, hap-

pens in one of the storage units, it should be less than or equal to a maximum, bdisj,t,d,hλjκ
B
j,t.

This maximum is calculated by multiplying the current existing capacity and a fraction of
the capacity that can be charged or discharged. Variable bdisj,t,d,h takes a binary value.

pdisj,t,d,h ≤ bdisj,t,d,hλjκ
B
j,t, ∀j ∈ J, t ∈ T, d ∈ D, h ∈ H (2.13)

Constant state of charge in start and end of the day constraint: Equations
2.14 ensure that the state of charge of each battery at the end of the day, scj,t,d,24, should
be equal to that of the start of the day, scj,t,d,1.

scj,t,d,1 = scj,t,d,24, ∀j ∈ J, t ∈ T, d ∈ D (2.14)

Battery capacity constraint: Equations 2.15 and 2.16 ensure that the state of charge
of a storage unit would stay within a specific boundary with a maximum and minimum.

scj,t,d,h ≤ κB
j,t, ∀j ∈ J, t ∈ T, d ∈ D, h ∈ H (2.15)

scj,t,d,h ≥ κB,min
j,t , ∀j ∈ J, t ∈ T, d ∈ D, h ∈ H (2.16)
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No simultaneous charging and discharging constraint: Equations 2.17 ensure
that charging and discharging do not happen simultaneously. In these equations, bchj,t,d,h
and bdisj,t,d,h are binary variables that stand for whether charging or discharging happened
for storage unit j, at year t, day d, and hour h.

bchj,t,d,h + bdisj,t,d,h ≤ 1, ∀j ∈ J, t ∈ T, d ∈ D, h ∈ H (2.17)

Planning constraints

Renewable quota target constraint: Equations 2.18 ensure that the objectives and
policies to meet the minimum renewable deficiencies, RNmin

∑
d∈D

∑
h∈H Lt,d,h, are satis-

fied or otherwise δt, the gap from renewable energy targets during the year t, is penalized
in the objective function.

RNmin
∑
d∈D

∑
h∈H

Lt,d,h ≤ δt +
∑
d∈D

∑
h∈H

Wd(
∑
i∈Ir

pi,g,t,d,h − cut,d,h), ∀t ∈ T (2.18)

Generator active capacity constraint: Equations 2.19 ensure that the capacity of
generator g of technology types i at each year t + 1 during the planning horizon is equal
to the capacity of the previous year t, investment eGi,g,t+1, and depreciation that happened
(introduced by multiplying Di a fraction of available capacity after depreciation, by the
capacity). The previous year’s capacity is subject to depreciation, which means a small
fraction of the capacity is depreciated each year.

κG
i,g,t+1 = Diκ

G
i,g,t + eGi,g,t+1 ∀i ∈ I, g ∈ Gi, t ∈ T (2.19)

Battery active capacity constraint: Equations 2.20 ensure that the capacity of
storage unit j in year t+1 is a summation of capacity in the previous year t, investments,
and depreciation.

κB
j,t+1 = Djκ

B
j,t + eBj,t+1, ∀j ∈ J, t ∈ T (2.20)
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2.2.4 Transforming the model to MIP

Given the instances that make this model MINLP, the Big-M method is used to transform
these non-linear terms.

The term bchj,t,d,hκ
B
j,t is replaced by the variable ηchj,t,d,h which takes values greater than or

equal to zero. As such these new constraints are added to our problem:

ηchj,t,d,h ≤ κB
j,t, ∀j ∈ J, t ∈ T, d ∈ D, h ∈ H (2.21a)

ηchj,t,d,h ≥ κB
j,t −M(1− bchj,t,d,h), ∀j ∈ J, t ∈ T, d ∈ D, h ∈ H (2.21b)

ηchj,t,d,h ≤ Mbchj,t,d,h, ∀j ∈ J, t ∈ T, d ∈ D, h ∈ H (2.21c)

ηchj,t,d,h ≥ 0, ∀j ∈ J, t ∈ T, d ∈ D, h ∈ H (2.21d)

Similarly, the term bdisj,t,d,hκ
B
j,t is replaced by the variable ηdisj,t,d,h which takes values greater

than or equal to zero. As such these new constraints are added to our problem:

ηdisj,t,d,h ≤ κB
j,t, ∀j ∈ J, t ∈ T, d ∈ D, h ∈ H (2.22a)

ηdisj,t,d,h ≥ κB
j,t −M(1− bdisj,t,d,h), ∀j ∈ J, t ∈ T, d ∈ D, h ∈ H (2.22b)

ηdisj,t,d,h ≤ Mbdisj,t,d,h, ∀j ∈ J, t ∈ T, d ∈ D, h ∈ H (2.22c)

ηdisj,t,d,h ≥ 0, ∀j ∈ J, t ∈ T, d ∈ D, h ∈ H (2.22d)

2.3 Inverse optimization

Inverse optimization is a subfield of operations research. In contrast to the common stream
of most optimization problems, where the goal is to compute optimal decisions given a
set of specified constraints and objective functions, in the inverse optimization context,
the optimal solutions to the problem are given, and it is expected to estimate specific
parameters either in the objective function or in the constraints. This issue has gotten
much interest in recent years, both in terms of mathematics and applications. This section
will give some background information on this area of operations research.

In recent years, there has been a surge of interest in both the mathematics and ap-
plications of inverse optimization. In most applications, we face an observable data set
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of decisions and must develop an optimization model that best reproduces these observa-
tions. These application fields cover a wide range of themes, including but not limited to
power systems, healthcare, and transportation. Decision variables might include electric-
ity consumption patterns in power systems, and utility functions can be approximated. In
healthcare systems, decision variables might be medical treatments, and to be estimated
could be clinical treatment objectives that best fit with observed decisions. In trans-
portation systems, decision variables might represent routing decisions, and route-choice
preferences could be approximated.

The forward (traditional) problem and the required attributes of the inverse model are
two of the most important aspects influencing the tractability of an inverse optimization
problem. Because each application field has unique assumptions and details, several inverse
models and solution methodologies exist. All models, however, may be thought of as a
mixture of three dimensions.

The forward problem’s structure is the first dimension. A problem’s structure might be
linear, convex, integer (discreet optimization), or sequential (for example, Markov decision
processes). The second dimension is the type of parameters to be approximated. These
parameters might be in the objective function, the set of constraints, or both, which sig-
nificantly impacts the tractability of the inverse optimization problem. The third and last
dimension is the inverse optimization model’s expectations, whether it should approximate
the parameters such that it fully optimizes the observed decisions or whether an imperfect
measure of fitness is also desired. These three dimensions, in order, can also be considered
as three steps in a sequence that must be considered for building an inverse optimization
problem.

Classical and data-driven inverse optimization are labels associated with two sets of
problems discussed in the third dimension. In early literature on inverse optimization,
classical inverse optimization approaches, mainly used to reformulate the inverse model,
dominated. These models are applied to problems that necessitate optimality of the deci-
sions. On the other hand, data-driven models focus on scenarios when we have noisy data
or imperfections in our decision variables. For that, other levels of complexity are added
to the problem on top of the classical methodologies.

2.3.1 Fundamentals of Inverse Optimization

Formulating an inverse optimization problem starts by defining a parametric forward op-
timization problem that incorporates the decision-making process of one or more agents.
Next, given a set of observed decisions, the inverse problem tries to find the parameters of
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this problem such that the decisions are exact exactly optimal or close to optimality. Here,
we start by formulating these two problems.

The forward problem

The parametric forward problem can include parameters in both the objective function
and the set of constraints. Equation 2.23 below identifies the general formulation for a
constrained optimization problem. The term g is the vector of cost parameters associated
with each decision variable x, A is the matrix of constraint parameters associated with
inequality constraints, and likewise, G is the matrix of constraint parameters associated
with the equality constraints.

min cTx (2.23a)

s.t. Ax ≤ b (2.23b)

Gx = h (2.23c)

x ≥ 0 (2.23d)

The inverse problem

When looking at a data collection of decisions, these decisions might be the consequence
of several variations on a particular problem. Consider an agent that solves the decision-
making process in a variety of settings. Given this data set, an inverse optimization method
computes a parameter vector that optimizes the aggregate fit of the linked forward models
to the decision set. An estimated parameter set is considered a perfect fit for the decision
set if the decisions that are the outcome of the rebuilt model are in the decision set. 2.24 is a
general formulation of an inverse problem based on the forward problem formulated before.
In this model, x0 represents the optimal solutions to the primal problem, c0 represents the
prior knowledge about cost c and L is a loss function that minimizes the distance between
c and c0.

min L(c, c0) (2.24a)

s.t. Aπ ≤ c (2.24b)

π(Ax0 − b) = 0 (2.24c)
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λ(Gx0) = 0 (2.24d)

π ∈ R+ (2.24e)

This problem includes the set of optimality conditions such that the set of decisions x0

becomes optimal, given the loss function L that is considered.

Choosing a Structure for an Inverse Model

Inverse optimization, as previously indicated, offers a wide range of applications. As a
result, the chosen structure is heavily influenced by the application area—most applications
in the literature deal with design or estimation problems.

Inverse optimization is used in design applications to create systems that provide the
desired outputs or decisions, [46], [57], [5]. The decision sets of the agents are considered
to be known in these sets of problems. Hence the emphasis is mainly on classical inverse
optimization approaches.

In the estimation applications of inverse optimization, which are the subject of this
study, model parameters are calculated using decision inputs reflecting observed agent
behavior, [50], [11], [41]. In this case, the data-driven inverse optimization can generate
parameters no matter whether some of the decision sets are infeasible, noisy, inaccurate,
or even not optimal. This feature of data-driven inverse optimization enables it to cope
with massive decision data sets obtained from noisy environments, irregular behavior, or
unexpected contextual characteristics.

2.3.2 Classical inverse optimization

This section will examine inverse optimization methods for forward problem structures.
For each of these problem structures, we demonstrate that we can formulate and solve
the forward problem by considering the optimality conditions associated with our forward
problem.

The literature’s most common objective function in the context of inverse optimization
is stated in the equation below, which is a general formulation for an inverse optimization
problem. g is the feasible set, and Cinv is the inverse feasible set.

ming{∥c− c∗∥ | c ∈ Cinv, c ∈ c}
The following characterization of the inverse feasible set is provided in early classical

inverse optimization problems such as [6].
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Cinv = {c|f(x∗, g) ≤ f(x, g),∀x ∈ X(c)}

In this equation, for x∗ to be optimal, the value associated with objective function
f(x∗, c) should be necessarily less than or equal to all feasible solutions. Using this equation
to find the parameters requires us to iterate through all feasible solutions. This is the main
reason why early research in inverse optimization focused on problems with a finite set
of feasible solutions. Examples of these forward models include shortest path problems
[15], spanning tree models [68], and minimum cost flow models [32]. Since practically
enumerating all of the technically feasible solutions for the forward problem is intractable,
in future research, new alternative characterizations are developed for the feasible inverse
set.

Estimating the objective function

One of the earliest frameworks for inverse optimization and, in particular, for estimating
the objective function was proposed by [6]. This framework estimates the objective for
a general bounded linear forward problem. In this work, the authors demonstrate that
the inverse problem associated with the forward problem is linear. They characterize the
inverse feasible set Cinv by considering the complementary slackness constraints that are
one of the principal conditions of the optimality of a solution. On the other hand, other
researchers use strong duality; examples of these works include [20], [62], and [28].

These works emphasize that multiple equivalent formulations for an inverse optimiza-
tion problem are associated with a forward problem. For example, the property 1 shows
the formulation of an inverse problem based on the complementary slackness.

Property 1 (Complementary Slackness) x∗ is an optimal solution for the forward
problem, and π an optimal solution for the dual problem, if and only if these conditions
hold: 1) dual feasibility constraints ATπ = c, π ≥ 0 and 2) complementary slackness
(Ax∗ − b)Tπ = 0

As a result of this property, the final inverse problem that should be solved to uncover
the unknown parameters is stated in equations 2.25.

minπ,c ∥c− c∗∥n (2.25a)

s.t. ATπ = c (2.25b)
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(Ax∗ − b)Tπ = 0 (2.25c)

c ∈ C (2.25d)

π ≥ 0 (2.25e)

In this problem, n represents the norm that is used. If the norm is 1 or ∞, the inverse
problem 2.25 will become a linear program.

An equivalent formulation for the inverse problem is the application of strong duality.
Property 2 states the conditions that are needed to be met to construct an inverse problem
based on strong duality.

Property 2 (Strong Duality) x∗ is an optimal solution for the forward problem, and
π an optimal solution for the dual problem, if and only if these conditions hold: 1) dual
feasibility constraints ATπ = c, π ≥ 0 and 2) strong duality cTx∗ = πT b.

As a result of this property, the final inverse problem that should be solved to uncover
the unknown parameters is stated in the equations 2.26.

minπ,c ∥c− c∗∥n (2.26a)

s.t. ATπ = c (2.26b)

cTx∗ = πT b (2.26c)

c ∈ C (2.26d)

π ≥ 0 (2.26e)

Estimating parameters in the constraints

Parameters could be on either the left-hand-side of a constraint, A, or the right-hand-side,
b. Authors of [19] consider a forward problem where the right-hand-side of each constraint
b is known, and the left-hand-side A should be estimated through inverse optimization.
They explained that for a solution x∗ to be optimal, it should at least satisfy one equality
constraint. As a result, the equation below demonstrates the inverse feasible region:

X inv = {A|∃π ≥ 0 : ATπ = c, cTx∗ = πT b}
According to [19], we can get an optimal solution to the inverse problem by altering the

adjacent facet until x∗ satisfies the appropriate constraint. Given a set of constraints such
as Ax∗ ≥ b, we will try to find the closest facet {x|Ajx ≥ bj and then perturb it until the
corresponding constraint is satisfied.
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2.3.3 Data-driven inverse optimization

As mentioned at the beginning of this chapter, the emphasis in a data-driven inverse
optimization environment is on recovering model parameters while considering solutions
that may be infeasible, noisy, erroneous, or even not optimum. This allows us to work
with enormous volumes of data. In this part, we will offer a quick introduction to several
loss functions and solution techniques in the context of inverse optimization. Most inverse
optimization literature focuses on convex forward models with observable input parameters
like u ∈ U . We can define the convex forward model stated below for a given input ûi.

minx {f(x, ûi, c)|g(x, ûi, c) ≤ 0} (2.27)

In practice, because there are visible differences between instances, these uIs capture
them. In the context of a data-driven problem, we witness a data set of decisions, and

optimum solution sets D := (x̂i,X opt
i (c))

N

i=1 that are drawn independently and identically
from a probability distribution P . To represent the empirical distribution associated with
the data set, we may use PN :=

∑N
i=1 δ(x̂i,X opt

i (c)). A unit probability mass is represented

by δ in this equation. If we assume l() to represent the loss function, we can write a
data-driven inverse optimization problem as follows:

Z(l,PN) := minc∈C
1

N

N∑
i=1

l(x̂i,X opt
i (c)) (2.28)

The equation mentioned in 2.28 might incorporate another term beyond the loss func-
tion associated with breaches in the inverse-feasibility. This term can refer to any application-
specific objective.

Distance from the optimal solution set

A straightforward method for estimating the error of a forward problem concerning an
optimal solution such as x̂ is to calculate its distance for x̂. We can define the minimum
distance loss function as follows:

L(x̂,X opt(θ)) := minx∈X opt ||x− x̂||2 (2.29)

This equation calculates the 2-norm distance of x from the optimal set. The Inverse
Distance problem is the data-driven inverse optimization problem Z with the loss above.
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Consider the convex forward models described in the model 2.27 parameterized by ûi in
[8]. The authors show that 2.27 is a statistically consistent estimator of g for these models.

Violating the KKT conditions

In [40], an inverse optimization problem method is considered in which KKT optimality
conditions could be violated. The authors proposed a series of loss functions to incorporate
the degrees of deviation to optimality. For each sample (xk, pk), we denote rkineq the residuals
associated with the violation of the inequality constraints in the forward problem, rkeq the
residuals associated with the violation of equality constraints in the forward problem, rkcomp

the residuals associated with the violation of complementary slackness constraints, and rkstat
as residuals associated with the violation of stationary constraints. For each sample, the
primal residuals are fixed and do not depend on the parameters we are estimating in the
objective. As a result, the problem below is the final model to be solved.

min
∑
k

L(rkcomp, r
k
stat) (2.30)

s.t. π ≥ 0 ∀k (2.31)
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Chapter 3

Inverse optimization for DC-OPF

This chapter presents two DC-OPF models and then determines their unknown parameters
using a novel optimization method. Long-term planning models frequently employ these
operational models to incorporate more short-term operational details into investment de-
cisions. A correct estimation of these unknown parameters can provide many advantages in
modeling different market agents and reducing the computational complexity of expansion
planning models that include operational constraints.

As the long-term model in the background section specifies, each planning model has
a set of parameters. Some of these parameters can be estimated using publicly available
data sources from the electricity market operators or academic studies. In general, most
parameters are specific to the type and location of a generator. For example, different
technologies have different technical features (parameters), and if they are renewable gen-
erators their location comes into the scene. These features in addition to details of grid
topology are proprietary information and therefore, they are difficult to obtain, and the
provided estimations need to generate the desired outcomes.

In this chapter, these unknown features are approximated into a cost function, the
parameters of which are to be estimated. Estimating the cost function of each market agent
would reduce the need to consider the operational details of their behavior and activity.
As a result of these cost approximations, the size of the problem is significantly reduced,
and future problems become computationally tractable. Hence, an inverse optimization
method is employed to find an approximation for these parameters. This section discusses
the suggested method in more detail.
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3.1 Operational Model

In this section, two operational models are presented. The first is a DC optimal power flow
(OPF) problem. The OPF problem is frequently used in practice to determine day-ahead
and real-time allocations and prices in energy markets. While in practice, transmission
constraints are non-linear in nature, this model features linearized transmission constraints.
Despite the frequent use of OPF problems, details of transmission constraints are difficult
to obtain. As a result, a second approach is presented: the approximate optimal power flow
with extended costs (OPF-EC). The OPF-EC incorporates the transmission costs implied
by each generator’s power output as part of their generation cost.

3.1.1 DC Optimal Power Flow problem

The OPF problem is the benchmark allocation problem in this thesis and determines energy
production at a set of generators over a single operating day. This model features a set
of buses connected by transmission lines. Each bus has a load and a set of co-located
generators. Each generator is indexed by g, is located at a particular bus r, and can
produce pi,g,d,h MWh of electricity. Each generator faces some technical limits, including
an upper bound for its generation κi,g, ramping limits Rumax

i,g,d and Rdmax
i,g,d , and bounds on

the difference in generation at starting and ending hours of the day. Each transmission line
between buses r and s, namely rs, has a maximum capacity of Pmax

rs and the voltage angles
θr,d,h. The objective function minimizes the generation costs. These generation costs are
a function of a set of parameters β, pi,g,d,h, and the load Lr,d,h. The parameters β are
estimated in the following sections using inverse optimization.

Model 3.1 is the OPF problem. Equations 3.1b are supply-demand balance constraints;
these constraints ensure that the generation units that are connected to a bus in addition
to the transmitted electricity from other buses would satisfy the load at that specific bus.
Equations 3.1c represent the ramping-up constraints, and 3.1d represent the ramping-down
constraints; these constraints ensure that the generations units do not exceed their technical
capabilities to increase or to decrease their generation levels. Equations 3.1e and Equations
3.1f show the transversality constraints; these constraints ensure that the generation units
would be within a boundary when a day starts and ends (hour 1 and hour 24). This is
intuitive, as generation from the end of one day cannot abruptly change in the first hour
of the next day. Equations 3.1g and Equations 3.1j represent a lower-bound and an upper-
bound on the capacity of each of the generation units. Finally, Equations 3.1h demonstrate
transmission constraints, and Equations 3.1i represent reference bus constraints that ensure
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the direction of electricity flow satisfies the demand in different buses.

mind Z =
∑

(i,g)∈Ωr,r∈Ψ

(
∑
h∈H

pi,g,d,hC
v
i (θ, pi,g,d,h, Lr,d,h)) (3.1a)

s.t.
∑

(i,g)∈Ωr

pi,g,d,h +
∑
s∈Er

brs.(θr,d,h − θs,d,h)− Lr,d,h = 0, σ1,r,d,h, ∀r ∈ Ψ, h ∈ H (3.1b)

− pi,g,d,h + pi,g,d,h−1 +Rumax
i,g ≥ 0, σ2,i,g,d,h, ∀(i, g) ∈ Ωr, h ̸= 1

(3.1c)

− pi,g,d,h−1 + pi,g,d,h +Rdmax
i,g ≥ 0, σ3,i,g,d,h, ∀(i, g) ∈ Ωr, h ̸= 1

(3.1d)

− pi,g,d,24 + pi,g,d,1 +Rumax
i,g ≥ 0, σ4,i,g,d,h, ∀(i, g) ∈ Ωr (3.1e)

− pi,g,d,1 + pi,g,d,24 +Rdmax
i,g ≥ 0, σ5,i,g,d,h, ∀(i, g) ∈ Ωr (3.1f)

− pi,g,d,h + κi,g ≥ 0, σ6,i,g,d,h, ∀(i, g) ∈ Ωr, h ∈ H
(3.1g)

− brs.(θr,d,h − θs,d,h) + Pmax
rs ≥ 0, σ8,r,s,h, ∀r ∈ Ψ, s ∈ Er, r ̸= s, h ∈ H

(3.1h)

θREF,h = 0, σ9,∀h ∈ H (3.1i)

pi,g,d,h ≥ 0, σ7,i,g,d,h, ∀(i, g) ∈ Ωr, h ∈ H
(3.1j)

3.1.2 Approximate Optimal Power Flow with Extended Costs
(OPF-EC)

The Approximate Optimal power flow with Extended Costs (OPF-EC) is a model used
throughout this study due to the limitations in the data sources employed in the case
studies. This model is built on the original OPF problem but lacks transmission line
constraints. As a result, this model can be interpreted as a single bus system where all
the market participants and loads are connected to one bus. All other features are similar
to the OPF problem: electricity generation by each unit is bound to an upper-bound κi,g,
and generation difference from one hour to the next hour should be within a bound Rumax

i,g,d

and Rdmax
i,g,d , and finally the generation of a unit at the end of the day and the start of the

day should respect a boundary.
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Model 3.2 represents the OPF-EC problem. In this model, Equations 3.2b repre-
sent supply-demand balance constraints, Equation 3.2d represent ramp-up constraints,
Equation 3.2e represent ram-down constraints, Equation 3.2f and Equation 3.2g represent
transversality constraints, Equation 3.2h represent capacity constraints for power genera-
tors, and Equation 3.2i represent the positivity of generation as a set of constraints.

minpi,g,d,h Z(p; d) =
∑

i∈I,g∈Gi

wi,g(
∑
h

pi,g,d,hC
v
i,g,d,h(β, pi,g,d,h, Ld,h)) (3.2a)

s.t.
∑

i∈I,g∈Gi

wi,gpi,g,d,h − Ld,h = 0, σ1,d,h, ∀h ∈ H (3.2b)

− pi,g,d,h + pi,g,d,h−1 +Rumax
i,g,d ≥ 0, σ2,i,g,d,h, ∀i ∈ I, h ̸= 1, g ∈ Gi (3.2c)

− pi,g,d,h + pi,g,d,h−1 +Rumax
i,g,d ≥ 0, σ2,i,g,d,h, ∀i ∈ I, h ̸= 1, g ∈ Gi (3.2d)

− pi,g,d,h−1 + pi,g,d,h +Rdmax
i,g,d ≥ 0, σ3,i,g,d,h, ∀i ∈ I, h ̸= 1, g ∈ Gi (3.2e)

− pi,g,d,24 + pi,g,d,1 +Rumax
i,g,d ≥ 0, σ4,i,g,d,h, ∀i ∈ I, g ∈ Gi (3.2f)

− pi,g,d,1 + pi,g,d,24 +Rdmax
i,g,d ≥ 0, σ5,i,g,d,h, ∀i ∈ I, g ∈ Gi (3.2g)

− pi,g,d,h + κi,g ≥ 0, σ6,i,g,d,h, ∀i ∈ Id, h ∈ H, g ∈ Gi (3.2h)

pi,g,d,h ≥ 0, σ7,i,g,d,h, ∀i ∈ I, h ∈ H, g ∈ Gi (3.2i)

3.2 Inverse optimization

Model 3.2 which was introduced in the previous section is employed to estimate the pa-
rameters, β, of a set of ascending cost functions, Cv

i,g. The objective is to ensure that the
model outcomes such as pi,g,d,h, as well as locational market price σ1,d,h would be optimal
or close to optimality. In inverse optimization, this model is called a forward problem.

Since the goal is to estimate an approximation for the cost function of each generator,
there is a need to reformulate the OPF EC problem as an inverse optimization problem.
This means there is a need to build another model considering the optimality conditions of
the OPF EC operational model. Equation 3.3 is the Lagrangian function associated with
this model, from which most optimality conditions are driven. These constraints are dual
feasibility, complementarity, and primal feasibility constraints.
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L =
∑

i∈I,g∈Gi

wi,g(
∑
h∈H

pi,g,d,hC
v
i,g,d,h)− σ1,d,h(

∑
i∈I,g∈Gi

wi,gpi,g,d,h − Ld,h)−
∑

i∈I,h ̸=1,g∈Gi

(σ2,i,g,d,h(

− pi,g,d,h + pi,g,d,h−1 +Rumax
i,g,d))−

∑
i∈I,h ̸=1,g∈Gi

σ3,i,g,d,h(−pi,g,d,h−1 + pi,g,d,h +Rdmax
i,g,d)

−
∑

i∈I,g∈Gi

(σ4,i,g,d(−pi,g,d,24 + pi,g,d,1 +Rumax
i,g,d))−

∑
i∈I,g∈Gi

(σ5,i,g,d(−pi,g,d,1 + pi,g,d,24

+Rdmax
i,g,d))−

∑
i∈I,h∈H,g∈Gi

(σ6,i,g,d,h(−pi,g,d,h + κi,g))−
∑

i∈I,h∈H,g∈Gi

(σ7,i,g,d,h(pi,g,d,h))

(3.3)

Equations 3.4a-d show the dual problem associated with the operational model. This
model is built to derive dual feasibility constraints, one of the three set of equations that
should be considered to make an inverse optimization problem.

maxσ Z =
∑

i∈I,g∈Gi,h∈H

(−σ1,d,hLd,h + σ2,i,g,d,hRumax
i,g,d + σ3,i,g,d,hRdmax

i,g,d + σ4,i,g,dRumax
i,g,d

+ σ5,i,g,dRdmax
i,g,d + σ6,i,g,d,hκi,g)

(3.4a)

s.t. wi,gC
v
i,g,d,h − wi,gσ1,d,h − σ2,i,g,d,h+1 + σ3,i,g,d,h+1 − σ4,i,g,d + σ5,i,g,d + σ6,i,g,d,h

− σ7,i,g,d,h = 0,∀i ∈ I, h = 1, g ∈ Gi

(3.4b)

wi,gC
v
i,g,d,h − wi,gσ1,d,h + σ2,i,g,d,h − σ2,i,g,d,h+1 − σ3,i,g,d,h + σ3,i,g,d,h+1

+ σ6,i,g,d,h − σ7,i,g,d,h = 0, ∀i ∈ I, h ̸= 1, 24, g ∈ Gi

(3.4c)

wi,gC
v
i,g,d,h − wi,gσ1,d,h + σ2,i,g,d,h − σ3,i,g,d,h + σ4,i,g,d − σ5,i,g,d + σ6,i,g,d,h

− σ7,i,g,d,h = 0,∀i ∈ I, h = 24, g ∈ Gi

(3.4d)

Equations B.2 below demonstrate complementarity constraints associated with the op-
erational model. Complementarity constraints are one of the three constraints in an inverse
optimization problem.

σ1,d,h(
∑

i∈I,g∈Gi

wi,gpi,g,d,h − Ld,h) = 0, ∀h ∈ H (3.5a)
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σ2,i,g,d,h(−pi,g,d,h + pi,g,d,h−1 +Rumax
i,g,d) = 0, ∀i ∈ I, h ̸= 1, g ∈ Gi (3.5b)

σ3,i,g,d,h(−pi,g,d,h−1 + pi,g,d,h +Rdmax
i,g,d) = 0, ∀i ∈ I, h ̸= 1, g ∈ Gi (3.5c)

σ4,i,g,d(−pi,g,d,24 + pi,g,d,1 +Rumax
i,g,d) = 0, ∀i ∈ I, g ∈ Gi (3.5d)

σ5,i,g,d(−pi,g,d,1 + pi,g,d,24 +Rdmax
i,g,d) = 0, ∀i ∈ I, g ∈ Gi (3.5e)

σ6,i,g,d,h(−pi,g,d,h + κi,g) = 0, ∀i ∈ Id, h ∈ H, g ∈ Gi (3.5f)

σ7,i,g,d,h(pi,g,d,h) = 0, ∀i ∈ I, h ∈ H, g ∈ Gi (3.5g)

The third set of constraints to be considered is primal feasibility constraints. Given our
problem’s assumption that production levels in the market are optimal, these constraints
are satisfied and, therefore, trivial.

Since for the IO model pi,g,d,hs have known parameters, all the values within the paren-
theses in the constraint set B.2 are known, and as a result, based on whether the value is
zero, greater than zero, or less than zero these constraints can be split into two categories:

• If the constraints in the primal problem are binding (which means the value within
the parentheses is zero), then the dual variable would be free in its value

• If the constraints in the primal problem are non-binding (the value within the paren-
theses is non-zero), then the dual variable would be zero.

As a result of this step, a set of simplified constraints are generated on how different
generators behave in the scenarios of each observation.

Equations 3.6a, 3.6b, and 3.6c are showing how the cost function f is calculated in each
of the cases (h = 1, h = 24, and h ̸= 1, 24).

Cv
i,g,d,h(pi,g,d,h, Ld,h, β) = (wi,gσ1,d,h + σ2,i,g,d,h+1 − σ3,i,g,d,h+1 + σ4,i,g,d − σ5,i,g,d − σ6,i,g,d,h

+ σ7,i,g,d,h)/wi,g,∀i ∈ I, h = 1, g ∈ Gi

(3.6a)

Cv
i,g,d,h(pi,g,d,h, Ld,h, β) = (wi,gσ1,d,h − σ2,i,g,d,h + σ2,i,g,d,h+1 + σ3,i,g,d,h − σ3,i,g,d,h+1

− σ6,i,g,d,h + σ7,i,g,d,h)/wi,g,∀i ∈ I, h ̸= 1, 24, g ∈ Gi

(3.6b)

Cv
i,g,d,h(pfi,g,d,h, Ld,h, β) = (wi,gσ1,d,h − σ2,i,g,d,h + σ3,i,g,d,h − σ4,i,g,d + σ5,i,g,d − σ6,i,g,d,h

+ σ7,i,g,d,h)/wi,g,∀i ∈ I, h = 24, g ∈ Gi

(3.6c)
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Below a set of scenarios are mentioned. Each of these scenarios for the status of the
dual variables helps us understand the IO model in more detail. With these cases in mind,
a combination of cases could happen for our Cv

i,g,d,h. These combinations of cases are
represented in the equations A.1, A.2, and A.3 in Appendix.

Production capacity constraints =


Binding UB, σ6,i,g,d,h ≥ 0, σ7,i,g,d,h = 0 (3.7a)

Binding LB, σ6,i,g,d,h = 0, σ7,i,g,d,h ≥ 0 (3.7b)

Not binding, σ6,i,g,d,h = 0, σ7,i,g,d,h = 0 (3.7c)

Ramping constraints =


Binding UB, σ2,i,g,d,h ≥ 0, σ3,i,g,d,h = 0 (3.8a)

Binding LB, σ3,i,g,d,h ≥ 0, σ2,i,g,d,h = 0 (3.8b)

Not binding, σ2,i,g,d,h = 0, σ3,i,g,d,h = 0 (3.8c)

Transversality constraints =


Binding UB, σ4,i,g,d,h ≥ 0, σ5,i,g,d,h = 0, if h = 1, 24 (3.9a)

Binding LB, σ5,i,g,d,h ≥ 0, σ4,i,g,d,h = 0, if h = 1, 24 (3.9b)

Not binding, σ4,i,g,d,h = 0, σ5,i,g,d,h = 0, if h = 1, 24 (3.9c)

Using the formula stated above, some economic insights can be extracted from the
operations of different market participants and how they affect the cost attribute associated
with them. For example, a time slot can be understood wherein a particular generator is
not producing at its maximum, and it does not hit its ramping limits, nor is it in starting
or ending hours of the day. In this particular scenario, using equations mentioned before it
can be realized that Cv

i,g(pi,g,d,h, Ld,h, β) = σ1,d,h. Using this idea, a constrain and reconcile
approach is proposed that uses the economic rationality of market participants to find
constraints over the costs being approximated. In addition, a set of assumptions should
be considered for approximating the costs. Among these assumptions is that the cost
functions should be non-decreasing, and these estimations should not be time-dependent,
which means the parameters of the cost function should not be indexed by time, but the
model inputs could be indexed by the time given the dynamic nature of the market.
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3.2.1 Constrain and reconcile approach

The constrain and reconcile approach is a two-step algorithmic framework. In the first
step, constrain step, based on the existing econometric knowledge set, a set of constraints
is generated. These constraints limit the scope of the parameters of cost functions that
need to be estimated. In the second step, the generated constraints in the previous step are
included in another optimization problem. This optimization problem is called reconcile
step and its objective is to find cost functions within the scope of their limits that best
satisfy the requirements of the problem. These requirements may be violated due to the
approximations and assumptions so far; as such, the objective is to minimize these viola-
tions. This algorithmic framework has a principal assumption underlying it. That is, the
extended cost function approximated using inverse optimization is consistent concerning
the parameters in β. In addition, it is assumed that the system cost for each generator
increases in a manner that is affine concerning total renewable generation and total load
in the system.

Step 1 - Constrain:

Given the econometric knowledge set, in the first step of this proposed approach, the
attention is focused on finding three categories of constraints on compatible supply cost
functions. These constraints separate each of the time slots of the data set based on whether
the cost associated with that specific generator has been below, equal, or higher than the
price in the market. For example, if a generator at a particular time is generating at its
maximum capacity and ramping constraints are not active, it means that it must have been
economically sound for it to behave like that, as a result of which, it can be concluded that
the cost of production at this level must have made sense, which is equivalent to saying
the cost was at or below the market price.

Problem 3.10 shows a formulation of a problem called the constrain step. The main
goal is to find a set of feasible costs where their absolute distance from the market price
is as far as possible. This is the reason why the sense of the objective in this problem is
maximization. The estimated costs in this step are only used for the purpose of distin-
guishing between the three sets of constraints. These costs are indexed by generator and
period and used to identify the constraints. For example, if the feasible cost is below the
market price a constraint ensures this is added to a set of constraints.

Constraints 3.11 identify the measure of distance. Equations 3.12, 3.13, and 3.14 are
the set of dual constraints associated with the operational problem. Equations 3.15 to 3.21
are complementarity constraints associated with the equality, and inequality constraints
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in the operational problem, respectively. The three sets of constraints derived in this step
will be the foundation of our second step, reconcile. Our second stage algorithm tries to
minimize violations of these three categories of constraints.

max Z = |ϵi,g,d,h| (3.10)

s.t.

ϵi,g,d,h = Cv
i,g,d,h(pi,g,d,h, Ld,h, β)− σ1,d,h ∀i ∈ I, g ∈ Gi, d ∈ D, h ∈ H (3.11)

wi,gC
v
i,g,d,h − wi,gσ1,d,h − σ2,i,g,d,h+1 + σ3,i,g,d,h+1 − σ4,i,g,d + σ5,i,g,d + σ6,i,g,d,h

− σ7,i,g,d,h = 0,∀i ∈ I, h = 1, g ∈ Gi

(3.12)

wi,gC
v
i,g,d,h − wi,gσ1,d,h + σ2,i,g,d,h − σ2,i,g,d,h+1 − σ3,i,g,d,h + σ3,i,g,d,h+1

+ σ6,i,g,d,h − σ7,i,g,d,h = 0,∀i ∈ I, h ̸= 1, 24, g ∈ Gi

(3.13)

wi,gC
v
i,g,d,h − wi,gσ1,d,h + σ2,i,g,d,h − σ3,i,g,d,h + σ4,i,g,d − σ5,i,g,d + σ6,i,g,d,h

− σ7,i,g,d,h = 0,∀i ∈ I, h = 24, g ∈ Gi

(3.14)

σ1,d,h(
∑

i∈I,g∈Gi

wi,gpi,g,d,h − Ld,h) = 0, ∀h ∈ H (3.15)

σ2,i,g,d,h(−pi,g,d,h + pi,g,d,h−1 +Rumax
i,g,d) = 0, ∀i ∈ I, h ̸= 1, g ∈ Gi (3.16)

σ3,i,g,d,h(−pi,g,d,h−1 + pi,g,d,h +Rdmax
i,g,d) = 0, ∀i ∈ I, h ̸= 1, g ∈ Gi (3.17)

σ4,i,g,d(−pi,g,d,24 + pi,g,d,1 +Rumax
i,g,d) = 0, ∀i ∈ I, g ∈ Gi (3.18)

σ5,i,g,d(−pi,g,d,1 + pi,g,d,24 +Rdmax
i,g,d) = 0, ∀i ∈ I, g ∈ Gi (3.19)

σ6,i,g,d,h(−pi,g,d,h + κi,g) = 0, ∀i ∈ Id, g ∈ Gi (3.20)

σ7,i,g,d,h(pi,g,d,h) = 0, ∀i ∈ I, h ∈ H, g ∈ Gi (3.21)

Figure 3.1 demonstrates the three most common econometric scenarios for a generator
when ramping constraints are not active. If a generator in a particular hour h is generating
electricity at its maximum limits, it can be concluded that its generation cost must have
been below the market price of electricity; otherwise, generation would not be economical.
In this scenario, the constraint associated with time-slot h would be a member of Cle.
Likewise, suppose a generator generates at a level between its lower and upper bound
limits in the time slot h. In that case, its generation cost must have been equal to the
market price of electricity. Otherwise, this generator should have generated more electricity
closer to its upper bound if the cost was below. If the cost was higher than the market
price of electricity, it should have generated closer to its lower bound limits. In this case,
the constraint associated with time-slot h would be a member of Ceq. Finally, if a generator
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is not generating at time-slot h, or in other words, is Off, it must not have been economical
for it to generate electricity; in other words, its cost of generation must be above the
market price of electricity. In this case, the constraint associated with time-slot h would
be a member of Cge.

Figure 3.1: The three scenarios in the behavior of a generator in the market when ramping
constraints are not active

Step 2 - Reconcile:

The reconciliation step derives cost function parameters consistent with the constraints
(Ceq, Cgr, Cle) determined in the constrain step. The algorithmic framework allows for
many possibilities regarding the parametric form of the generator cost functions and the
parameter estimation. These parameters may include a range of factors that impact the
cost to generate and deliver energy from the target generator to the target destination. In
the empirical work discussed in 4, these parameters include a constant β1, the coefficient
of productions β2, the coefficient of the load β3, and the coefficient of total renewable
generator productions β4. It is assumed that generator costs are a linear function of
these variables and coefficients. Problem 3.22 shows a formulation solving this particular
problem. This simple linear regression algorithm minimizes the squared magnitude of
constraint violations.
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In Equation 3.23, on the left-hand side, generator costs are calculated in day d and
hour h. On the right-hand side, there are a market price and two variables αi,g,d,h and
δi,g,d,h which penalize cases when it is hard to precisely model a cost function that respects
the set of constraints from the constrain step of the algorithm. The variable αi,g,d,h takes a
value when there is a violation of the three sets of constraints discussed before. However,
the variable δi,g,d,h takes a value when there is no violation of any of the constraints, in
other words, it only takes a value for the sake of maintaining the balance of left-hand-side
and right-hand-side this constraint.

minβ,α,δ Z =
∑
i,g,d,h

α2
i,g,d,h (3.22)

s.t.

βi,g
1 + βi,g

2 pi,g,d,h + βi,g
3 Ld,h + βi,g

4

∑
i∈Ir

pi,g,d,h = σd,h + αi,g,d,h

+ δi,g,d,h, ∀i ∈ I, g ∈ Gi, d ∈ D, h ∈ H

(3.23)

δi,g,d,h = 0, ∀i ∈ I, g ∈ Gi, (d, s) ∈ Ceq
i,g (3.24)

δi,g,d,h ≥ 0, ∀i ∈ I, g ∈ Gi, (d, s) ∈ Cgr
i,g (3.25)

δi,g,d,h ≤ 0, ∀i ∈ I, g ∈ Gi, (d, s) ∈ Cle
i,g (3.26)

For instance, if a time slot has a constraint in C⌉⨿ then if the supply cost 3.24 is not
able to be equal to σd,h then δi,g,d,h takes value. Depending on whether the left-hand side
of the 3.23 is greater than or lesser than σd,h on the right-hand side, the value δi,g,d,h takes
range from negative to positive values.

3.3 Application of Inverse Optimization to Derive Costs

Inverse optimization is employed to determine the parameters of the OPF-EC and approxi-
mate the generation and system costs. Figure 3.2 shows the procedure of how IO is applied
and validated in the context of an independent energy system operator (IESO).
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Figure 3.2: Summary of how the constrain-and-reconcile algorithm is used

In this diagram, the market operator, such as IESO, solves a mathematical problem
to determine the market outcomes. These outcomes are published to the public and are
accessible. Using these outcomes, a set of market features are derived. These market
features include ramping rates and hourly demand. These features are parameters of the
OPF-EC. The proposed two-step algorithmic framework is built on top of these two sources
of data and employs inverse optimization to rebuild the model that the market operator
solves such that the market outcomes are close to real-world outcomes.

3.3.1 IEEE test Case Results

In order to check the validity of the proposed two-stage constrain and reconcile approach,
it is employed for a modified version of an IEEE 24-BUS test system. Figure 3.3 shows a
schematic view of this test system. The IEEE Reliability Test System single-area version
[31] serves as the foundation and is modified for use in the energy market and power
system operating studies. The most important reason why this test system is selected for
our study is that most test systems are only a snapshot of a power system and therefore
lack operational details such as ramping constraints, reserve constraints, and any other
constraint that incorporates operational details, the updated version of IEEE 24-BUS test
system provided in [48] include most details that are required for a power system operation
studies. For limiting the computational difficulty, and making it easier to understand
the correlation of the most important factors (for example, productions) with the cost
function approximations, certain details are omitted. These details include reserve costs
and constraints, minimum up-time, and downtime constraints.
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Figure 3.3: IEEE 24-bus test system, taken from [48]

Before applying the proposed methods to the IEEE 24 BUS Test system, it is worth
mentioning how we have used this system. Since this test system comes with 24 buses, as
such we will have different locational marginal prices for each bus. In order to make our
IEEE 24 bus system resemble the level of information, and technical considerations that
are visible in the larger electricity market considered, here we propose a method. This
approach is also an inverse optimization method that finds uniform prices that are good
enough to satisfy the optimality conditions of a market clearing problem. This IO approach
will help extrapolate and relate the results of this system with future larger systems.
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For the sake of simplicity, some of the features of the original model have been simplified
and as such model, a simplified IEEE 24-bus-test-system is used. This simplified model
is solved to generate market outcomes that are needed for further steps. These market
outcomes are production levels pc,d,h, and locational marginal prices σ1,i,d,h. We assume
that these data are known to all market participants as it is in many energy markets.

IO model to recover a uniform price for the whole market

As is the case for many energy markets, there are some components of data that are deemed
confidential and as a result not published. An example of such data is transmission limits
and power transmissions. If the real-world model is reduced such that there would only be
one bus in the system, and as a result, all the loads and generators are connected to that
one bus, electricity prices would not be locational. In a real-world energy market such as
Ontario, there are some side payments to recover for the costs of some participants. These
side payments are necessary because many operational details have not been accounted for
when clearing the market. In addition, there is no information about the extra payments
market operators make, but it can be assumed that these payments are a result of not
considering operational details.

Appendix B contains a market clearing that is suitable for all locations. This problem
tries to find and reconcile a market price that is reflective of the market realities such
as transmission line congestion. Finding such a market price might violate some of the
requirements or assumptions of the problem such as optimality of the generation levels and
dispatching.

The uniform market price is essential for the analysis of this section as the models
to recover unobservable information in the market rely on the limited information avail-
able in the market. In addition, this part discusses how omitting some of this locational
information would affect the ability to recover them, or reproduce market outcomes.

Load

The IEEE test case in this section is a snapshot of a 24-bus test system. As a result,
the study of various scenarios requires having different demand levels and trajectories.
Here, load profiles are generated by scaling the original IEEE 24-BUS system loads using
data from the Ontario energy market. Table 3.1 shows the node locations as well as the
load at each node as a percentage of the total system demand. Based on this table and
representative days in a particular year in the Ontario energy market, a set of load profiles
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have been produced that match the capabilities of the generators in the IEEE 24 bus
system. Here, it is assumed that percentages of system load remain fixed for all of the
generated demand scenarios.

Table 3.1: Node location and distribution of the total system demand [48]

Load # Node % of system load Load # Node % of system load

1 1 3.8 10 10 6.8
2 2 3.4 11 13 9.3
3 3 6.3 12 14 6.8
4 4 2.6 13 15 11.1
5 5 2.5 14 16 3.5
6 6 4.8 15 18 11.7
7 7 4.4 16 19 6.4
8 8 6 17 20 4.5
9 9 6.1

Table 3.2: IEEE 24-BUS system: Technical data of generating units

Unit # Node Pmax
i (MW) Pmin

i (MW) RU
i RD

i

1 1 152 30.4 120 120
2 2 152 30.4 120 120
3 7 350 75 350 350
4 13 591 206.85 240 240
5 15 60 12 60 60
6 15 155 54.25 155 155
7 16 155 54.25 155 155
8 18 400 100 280 280
9 21 400 100 280 280
10 22 300 300 300 300
11 23 310 108.5 180 180
12 23 350 140 240 240

The modifications that have been considered for the updated IEEE 24-BUS test system
data set are provided here. Since one of the common ways to reduce the complexity of
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capacity expansion planning models is to consider representative days, here, some load pro-
files are generated for each of these representative days in the context of the IEEE 24-BUS
test system. The Ontario energy market is considered as a sample and its representative
days are found. Using the load profiles of a sample market such as the Ontario energy
market, the load distributions across all of the buses can be scaled to make sure there are
different demand scenarios.

The process of finding representative days in the Ontario energy market and in the
context of load profile generation includes an application of k-means clustering on the
demand data. Figure 3.4 demonstrates what some of the load profiles look like. As can be
seen, the load profiles from Ontario have been scaled based on the maximum load that is
reported by [48]. In addition, a careful look at the figure provided shows how the clustering
algorithm has identified similar load profiles as representatives.

Figure 3.4: Scaled total demand for three daily profiles with a maximum demand of 300
MWs

Actual production levels

Figures 3.5 demonstrate the utilization of each of the 12 generators in an IEEE 24-BUS
test system from three representative generators. The utilization starts from 0, with no
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use of the generator capacity, to 1, using the capacity at its maximum level. As can be
seen, generators 6 to 12 are mostly dispatched and produced at their maximums, however,
generators 1 to 5 are mostly idle or marginal. These states of the time-slots would form
the constraints on the costs estimated for each generator.

Figure 3.5: Percentage utilization of the maximum capacity of each of the 12 generators
in 3 different representative days

Locational marginal prices

In order to reflect the operational dynamics of our test case, figures 4.3 are provided. These
prices in the market at each hour and bus are locational marginal prices driven directly by
the EDP (Economic dispatching problem) dual variables associated with the load-balance
constraints at each bus. As seen during the early morning and late nights, the prices across
the network fall because of the overall decrease in total demand and rise during the day as
the demand increases. In some time slots, we see spikes and falls in prices, mainly because
of the congestion in transmission lines.

Figure 3.6: IEEE distribution of prices in 3 different sample representative days
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IO two-step algorithmic framework results

This section employs the proposed two-step algorithmic framework in the IEEE 24-Bus
test system. The result of the first step is three sets of constraints. These constraints are
used in the second step to find cost function parameters such that the output of the cost
function would respect them. The second-step model places constraints on how closely the
predicted cost resembles the actual market price as more equality constraints are added
to the equation. More inequality constraints also lead to anticipated costs deviating from
the base market price and rising or falling below it. Figure 3.7 represents the number of
constraints associated with each of the discussed sets for each generator. As can be seen,
generators 6 to 12 have a majority of lesser than constraints, while in contrast, generators 3,
4, and 5 have a majority of Greater than constraints. Given this distribution of constraints,
it can be expected that a generator 8, at most hours, would be producing at its maximum.
Likewise, it can be expected that generator 5 would be Off and inactive almost all the
time.

Figure 3.7: Distribution of time-slots in terms of their relationship with the market price

Comparison of market outcomes

Figures 3.8 demonstrate a comparison of the market outcomes of the IEEE model and its
simplified rebuilt model with estimated costs. These example results are estimated using
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in-sample data. A rebuilt model is a market-clearing problem based on observable infor-
mation and assumptions. This model is used for validation to see whether the results of
this assumed market problem would match the real-world market outputs. Here, While
there are visible differences in times, we can find an exact match between the results in
most examples. This shows the inverse optimization approach recovered the most funda-
mental basics of operational behaviors. However, this does not mean that all confidential
information is retrieved, as there are also some mismatches. Model bias and unobservable
market details, such as transmission conditions and contracts, could be the main reasons
for a mismatch. For example, for generator 11, although it is expected that the market
outcome of the rebuilt model matches the reality, there are some apparent differences. The
reason is mismatching in other generators cause over-generation and under-generation, and
as a result, this generator should compensate for these generations, which means even more
mismatches.

Figure 3.8: Comparison between rebuilt model and actual generation levels in different
generators
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Evaluation

In this section, numerical metrics are identified to assess the two-step IO approach’s effec-
tiveness in simulating market participants’ operational behavior. Here, the accumulated
absolute hourly error is used as the metric. The proportion of the error about the origi-
nal production is measured using an MAE percentage, calculated to show a comparative
meaning to comprehend the dimensions of each of the MAE values.

Table 3.3 presents an hourly calculated measure of fit between the results of the rebuilt
model using IO-approximated cost functions and real-world data. Most generators with a
mix of the three categories of constraints have an error rate ranging from 16 percent to
36 percent. The generators 6 to 12, with a majority of lesser than constraints, have an
error range of 0 to as high as 66 percent of the initial capacity. In particular, generators
10 and 11 have the highest error rate among all of the generators. When generators have
many equality constraints, we have more precise information regarding the cost function,
otherwise just a couple of bounds.

Table 3.3: Error metrics for inverse optimization application to IEEE 24-bus test system

Generator Accumulated absolute hourly error MAE MAE percentage

1 25427.505 35.315 23.2%
2 17507.627 24.316 15.9%
3 90688.078 125.955 35.9%
4 134152.959 186.323 31.5%
5 6623.491 9.199 15.3%
6 369.098 0.512 0.3%
7 3317.463 4.607 2.9%
8 0 0 0%
9 0 0 0%
10 142061.555 197.307 65.7%
11 124886.333 173.453 55.9%
12 6431.083 8.932 2.5%

3.3.2 Application of IO Algorithm to IESO

This section employs the proposed two-stage IO-based algorithm for a case study of the
Ontario energy market, IESO. The IESO is a wholesale market serving the province of
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Ontario and publishes its market outcomes regularly. These market outcomes include the
generation levels of each generator and market prices. In addition to market outcomes,
some technical features of the market participants can be indirectly calculated using the
published market outcomes. These technical features include ramping capabilities and the
minimum and maximum capacity of the generators. This section presents these market
features and data for a subset of the generators. The two-stage algorithm is applied to this
problem. Finally, a market-clearing problem is rebuilt using the cost approximations in
the previous step, and the results (generation levels) are compared with real-world data.

IESO market characteristics & data

IESO publishes hourly data on the generation levels for each of the 112 generators spread
across Ontario. In addition, the uniform market price is available on the same granularity
level, hourly. The market outcomes are essential to the proposed two-stage algorithmic
framework in that it not only gives the problem the optimal or close to optimal generation
levels but also gives an indirect perspective of the technical capabilities. For example, con-
sidering the generation levels of a particular generator throughout its lifespan, maximum
and minimum levels of generation can be estimated. Likewise, considering the changes in
the generation levels of these generators would allow the calculation of an upper bound
and a lower bound on the ramping abilities of these generators. Here, a snapshot of the
data is provided. Instead of representing all days, a small subset of days and generators
are selected for representation purposes.

Capabilities of the generators in the Ontario energy market include the maximum
generation levels, and the maximum and minimum ramp-up and ramp-down rates. These
features of our model are determined using publicly available data.

Representative generator Capability Cluster weight

PICKERINGB-G8 523 3
BRUCEB-G5 873 7

PICKERINGA-G1 520 1
PICKERINGB-G6 531 4

BRUCEA-G4 839 1
DARLINGTON-G2 913 1

BRUCEB-G6 810 1

Table 3.4: Capability and weight of each of the representative generators of nuclear type
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Representative generator Capability Clustering weight

HALTONHILLS-LT.G3 304 7
DPNTMTLND 49 34

GREENFIELD ENERGY CENTRE-G4 492 1
STCLAIRCGS 585 1
NAPANEE-G3 447 3

GREENFIELD ENERGY CENTRE-G1 195 5
TASARNIA 409 1

Table 3.5: Capability and weight of each of the representative generators of gas type

Representative generator Capability Clustering weight

DESJOACHIMS 404 2
REDROCK 37 47
SAUNDERS 1002 1
CHENAUX 128 5
BECK2 1438 1

Table 3.6: Capability and weight of each of the representative generators of hydro type

Tables 3.4, 3.5, and 3.6, provide a subset of nuclear, gas, and hydro generators selected
using a clustering method, namely k-means, and their capability.

Likewise, ramping rates stated in the tables 3.7, 3.8, and 3.9 are driven by the market
outcomes in the Ontario energy market. These rates are calculated by measuring each
generator’s maximum increase or decrease in generation levels.
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Nuclear representative generators Maximum ramp-up rate Maximum ramp-down rate

BRUCEA-G4 135 151
BRUCEB-G5 127 154
BRUCEB-G6 3 5

DARLINGTON-G2 10 9
PICKERINGA-G1 13 8
PICKERINGB-G6 12 4
PICKERINGB-G8 34 10

Table 3.7: Ramping rates for each representative generator selected from the nuclear gen-
erators.

Gas representative generators Maximum ramp-up rate Maximum ramp-down rate

DPNTMTLND 32 36
GREENFIELD ENERGY CENTRE-G1 87 119
GREENFIELD ENERGY CENTRE-G4 165 196

HALTONHILLS-LT.G3 91 154
NAPANEE-G3 159 252
STCLAIRCGS 351 315
TASARNIA 142 140

Table 3.8: Ramping rates for each representative generator selected from the gas generators.

Hydro representative generators Maximum ramp-up rate Maximum ramp-down rate

BECK2 295 358
CHENAUX 56 91

DESJOACHIMS 143 145
REDROCK 19 19
SAUNDERS 216 208

Table 3.9: Ramping rates for each representative generator selected from the hydro gener-
ators.

Application of the proposed two-stage algorithmic framework

Here, the proposed two-stage IO-based algorithmic framework is employed for the Ontario
energy market case study. In the first stage of the algorithm, three categories of economic
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constraints are derived. Figure 3.9 demonstrates the distribution of each of these three
categories in a subset of 112 generators existing in the Ontario energy market. As can be
seen, most generators have a majority of constraints belonging to the equality set. This is
mainly because limits on the generation of these generators are calculated in a data-driven
approach. As a result, the higher limits could be higher than the limits in reality.

Figure 3.9: Distribution of time-slots for each of the generators

One of the primary reasons a novel two-stage inverse optimization algorithm is pro-
posed is to ensure that when operational models are run based on market characteristics,
the market results match, correlate, and eventually roughly align with real-world market
behavior. Figures 3.10, 3.11, and 3.12 demonstrate three different days of generation lev-
els comparison between the IO model generation and actual generation of gas-fired units,
hydro units, and biofuel units. These example results are estimated using in-sample data.
As can be seen, there is a close match on most days between Gas and Hydro generators.
However, biofuel generators do not match the generations in reality. These mismatches in
the biofuel sector are negligible compared to the extent of generation in Gas and Hydro
and, as a result, can be omitted. Nevertheless, model bias and unobservable market details
such as transmission constraints and contracts could be the main reasons if a mismatch
occurs.
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Figure 3.10: Production comparison between IO generated market outcome and real-world
Ontario energy market outcomes on 2020-07-08

Figure 3.11: Production comparison between IO generated market outcome and real-world
Ontario energy market outcomes on 2020-07-10

51



Figure 3.12: Production comparison between IO generated market outcome and real-world
Ontario energy market outcomes on 2020-12-17

Evaluation

The three categories of Gas, Hydro, and Biofuel were the focus of the IO method employed
here because renewable resources like wind, solar, and nuclear energy are not as price
responsive as other generating technologies. The proportion of the error about the origi-
nal production is measured using an MAE percentage, calculated to show a comparative
meaning to comprehend the dimensions of each of the MAE values.

For gas, the MAE percentage is 24.27 percent of the original capacity, while the MAE
for hydro generators is higher and 32.17 percent. This may be for a number of reasons, for
example, hydro generators have other non-price considerations such as not flooding small
villages that could affect the results and are not modeled in this study. Likewise, biofuel
generators generally have stable levels of generation which mean lower levels in comparison
to their capacity.

Table 3.10: Error metrics for inverse optimization application to Ontario energy market

Technology Total absolute error MAE MAE percentage
Gas 16154269.03 1844.09 24.27%

Hydro 15860452.65 1810.55 32.17%
Biofuel 322007.28 36.75 12.67%
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Chapter 4

Inverse Optimization for Long-term
Planning Models

As shown in Chapter 2, long-term planning models are used to prescribe the optimal
generation mix to satisfy demand while minimizing cost or maximizing social welfare, and
meeting the technical and regulatory constraints. These long-term planning models could
be used by system operators such as IESO. There are many different cost components
including but not limited to operational, and investment costs that are involved in such
models. Since the estimation of cost parameters in these models is a complex task, in this
chapter an IO-based method is proposed to both simplify the models and reach plausible
outcomes. This problem can be used by independent energy system operators to reduce
the original size of their problems and propose an optimal generation mix.

This chapter is outlined as follows: first, the developed methodology is described in-
cluding the modifications to the long-term planning models based on the IO approach
provided in Chapter 2, Chapter 3, and methods for model reduction, and then numerical
examples using data from Ontario is provided. The IO-based model is further validated by
comparing results with a similar model with the given cost parameters from other sources.

4.1 Methodology

The provided methodology in this section, which is to estimate the cost parameters using
inverse optimization is based on Chapter 2 where the formula of long-term planning is
provided and Chapter 3 where the approximations of IO-based model is provided.

53



In addition, to reduce the computational complexity of the long-term planning model,
we employ a clustering method, namely k-means, to find representative days d and gener-
ators g. These model reductions, help have a more computationally tractable model and
pave the way for more scenario analysis in the future.

4.1.1 Applications of inverse optimization to long-term planning
models

The long-term planning model is presented in Chapter 2, equations 2.1 to 2.22d. In order to
estimate the cost parameters Ci,t, in this section, a set of non-decreasing linear convex cost
functions are provided. As a result, the proposed model is not different from the model
introduced in Chapter 2 except for the cost of operations, where costs are replaced by
functions in the form of f(β, pi,g,t,d,h, Lt,d,h) = βi,g

0 +pi,g,t,d,hβ
i,g
1 +

∑
i∈Ir pi,g,t,d,hβ

i,g
2 +Lt,d,hβ

i,g
3 .

These functions are estimated using a two-step algorithmic framework and discussed in
more details in Chapter 3. In the first step, three categories of daily time slots are derived
based on econometric concepts and inverse optimization. In the second step, a model
based on regression analysis is provided to estimate cost parameters that group daily time-
slots into the three categories derived in the previous step. These functions and their
parameters β are estimated for each generator g of each technology i. The summary of
these parameters is provided in Table 4.1.

Table 4.1: Summary of parameter estimations using a novel inverse optimization algorith-
mic framework

Technology # generators β0 β1 β2 β3

Gas 52 -37617.6 (3075.6) 555.01 (1170.909) 3.904 (0.456) 9.362 (0.381)
Hydro 56 -53358.1 (16151.24) 845.08 (998.401) 4.349 (0.667) 9.481 (0.952)
Biofuel 4 -14.09 (0.263798) 0.169 (0.142) 0.0037 (0.00033) -1E-08 (2.51E-15)

4.1.2 Methods for model reduction

Long-term planning models are computationally costly due to a large number of variables
and parameters defined over a long planning horizon. For example, when presenting de-
mand in each hour, through a 20-year planning horizon, there is a need for 24× 365× 20
demand parameters. Therefore, a wide variety of methods to reduce the size of the planning
problems while ensuring the reliability and accuracy of the power systems are maintained.
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One common approach is to select the representative days or timeslices representing an
electricity grid’s behavior, instead of including all of the details over a long time. These
representative time periods can be obtained using various methods including clustering
algorithms in which similar entities are grouped together.

While every algorithm has its own strengths and weaknesses, the k-means algorithm is
among the most popular clustering methods which are widely employed in the literature.
We assume that in this section, different items we need to group are provided as vectors.

In the k-means clustering algorithm, each item in a data set is assigned a cluster with
a centroid that is closer to that particular point than all other cluster centroids [44]. One
of the most significant advantages of the k-means algorithm over other algorithms is its
speed. On the other hand, one of the downsides of the k-means clustering algorithm is that
it requires that the data would be in similarly sized hyper-spherical clusters [35]. In this
study, the most commonly used algorithm k-means approach [36], is employed by providing
two entries as inputs, a set of points or vectors, and a number that specifies the number of
clusters, k. In the second stage, the algorithm is initialized by setting the iteration counter
to zero and then randomly assigning each point to one of two starting clusters. In general,
the clustering algorithm’s final result is heavily reliant on the initial cluster assignment.

Using these assignments, the next step is to iteratively find new assignments by re-
calculating the centroid of each of the clusters. After the centroids are found, the closest
centroid to each point is the primary determinant of which cluster that point will belong
to. In this step, even though many distance metrics could be employed, the Euclidean
distance d(x, x

′
) would be used as in 4.1. This iterative procedure is continued as long as

reassignments are not necessary between two rounds.

One common method to find the k, number of clusters, in the k-means algorithm is the
elbow method. This method visualizes the cluster solutions by plotting the sum of squared
errors (SSE) or inertia for different values of k and determining the “elbow” or “inflection
point”. The inflection point is the point after which further increase in k produces a
negligible decrease in SSE. This method helps to choose the right value of k, which is the
number of clusters that best suits the data. Due to its simplicity, the elbow method is the
most commonly used method for finding the optimal value of k for k-means clustering.

d(x, x
′
) =

√√√√ n∑
j=1

(xj − x
′
j) (4.1)
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Representative day selection

There are two requirements when selecting representative days. First, the employed method
should be able to generate representative days quickly, and second, they should respect
all of the crucial correlations in the data. In order to respect related correlations, the
electricity demand is clustered and renewable availability is represented in the capacity-
expansion model.

When choosing representative days, there are two criteria to consider. First, the tech-
nique we use should be able to create these representative days quickly, and second, they
should also respect all of the data’s critical relationships. To account for these relation-
ships, renewable availability and demand are clustered in a group. First, vectors of demand
are defined in day d, V D

d :

V D
d = (V D

d,1, V
D
d,2, V

D
d,3, ..., V

D
d,24), ∀d = 1, 2, 3, ...365 (4.2)

Similarly, vectors of wind generation in day d, V W
d are defined as follows:

V W
d = (V W

d,1 , V
W
d,2 , V

W
d,3 , ..., V

W
d,24), ∀d = 1, 2, 3, ...365, (4.3)

And finally, the vectors of solar generation, V S
d are defined as follows:

V S
d = (V S

d,1, V
S
d,2, V

S
d,3, ..., V

S
d,24), ∀d = 1, 2, 3, ...365, (4.4)

These vectors are ordered by the hour of the day in order not to lose the temporal
sequence of observations. Vectors Vd are also defined as the vector of day d short-term
operational details data:

Vd = (V D
d , V W

d , V S
d ),∀d = 1, 2, 3, ...365, (4.5)

Finally, Vd has all the information related to the operational conditions on which the
clustered days are calculated. As a result, clustering based on the collection of points
V1, ..., V365 would result in a set of days ensuring to capture of a wide variety of operating
conditions. To respect the intraday serial correlation between the operational details, the
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temporal sequence of the operational data should be preserved. In the proposed approach,
the chosen representative days would completely respect these correlations.

Figure 4.1a illustrates the load duration curve of clustered and unclustered data. Here,
a k = 10 is considered for the purpose of clustering. The number of clusters, k, is calculated
through an elbow method. Now, a different number of samples could be selected from each
of these clusters. The figure shows mismatches for each number of representative days
that are selected. Likewise, figures 4.1b and 4.1c show the wind and solar duration curve.
Significant matches in solar-duration curves, especially when the number of representative
days is close to one month can be noticed. In general, overestimations in total load in
Ontario, underestimations for wind generators, and suitable matches in solar duration-
curve are observed.

(a) Total load (b) Wind (c) Solar

Figure 4.1: Load curve comparison of different numbers of representative days

Representative generator selection

Generators participating in an electricity market could have various capacities and tech-
nical details. They are in different locations, and each has specific geographical features.
Each province’s area, such as Ontario, has different levels of availability for wind, solar,
and hydro, making some of the generators more valuable to the grid. Refraining from
considering these operational details when investing would mean our investment decisions
did not consider geographical and technical constraints that exist in reality. While there
is a trade-off here regarding the number of generators selected to represent technology,
considering all of them would also be trivial because some generators are technically and
geographically similar. On the other hand, considering more representative generators for
a particular technology would mean many more constraints are needed to be considered
and, as a result, a more complex cost function to be estimated with many more break
points. This would result in a function that considers more operational scenarios and, as
a result, is less prone to noise and outliers.
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k-means algorithm is employed for the purpose of this section. The k is estimated using
an elbow method. This algorithm is explained in previous sections and the results are also
presented when the operational models in 3 are studied.

To show the effectiveness of this clustering approach to model the specifics of the market
load, here, load duration curves for renewable resources and total load are provided. Figure
4.2a provides a comparison between clustered generators’ total generation and actual IESO
data set. As can be seen, the clustered set of generators tends to slightly underestimate
loads. Further, figures 4.2b and 4.2c demonstrate the effectiveness of clustered generators
for respectively solar and wind resources. As can be seen, in contrast to the total load,
wind and solar generation have been closely matched by clustered generators.

(a) Total load (b) Wind (c) Solar

Figure 4.2: Comparison of load duration curve in Ontario generation and generation built
based on representative generators

4.2 Numerical results

This section provides the results of a generation expansion planning model for the Ontario
energy market by first using fixed-cost parameters affecting investment decisions over time
and then providing the results of the planning model with estimated cost functions obtained
in Section 4.1.1.

4.2.1 Model parameters and inputs

A long-term expansion planning model is covered in section 2.2. This model featured a large
number of decision variables that would be obtained by the solution of the optimization
problem, as well as parameters and constants that must be included. An algorithmic
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framework for recovering estimated cost functions is covered in Chapter 3. On the other
hand, other model parameters can be derived from yearly reports and a literature study
or analysis of market outcomes.

This section discusses model inputs such as technical parameters, investment costs,
capacity factors, and long-term parameters and assumptions.

Generator technical parameters

Most operating technical parameters, such as maximum capability, ramp-up, and ramp-
down rates, are already provided in the previous chapter. Tables 3.4, 3.5, 3.6 represent
the capability of each of the representative generators, and 3.7, 3.8, and 3.9 represent the
ramp-up and ramp-down rate capabilities.

Operating costs

Fixed operating costs shown in Table 4.2 provide the data that are used for showing the
significance of IO-approximated cost functions.

Table 4.2: Variables cost of generation for each technology ($/MWh)

Nuclear Gas Hydro Biofuel Solar Wind

Operating cost 10.3 27.77 4.13 30.07 0 0

Capacity factors

The capacity factor measures a power generation unit’s total usage. It is computed by
dividing a power plant’s yearly generation by the product of the nameplate capacity and
the number of hours. In other words, the capacity factor evaluates a power plant’s output
in relation to its most significant output potential under ideal conditions. Because most
power plants typically operate below their maximum capacity, a capacity factor may be
considered a measure of how many hours the power plant worked in a period of time and
at what percentage of its overall capability.

Figures 4.3 demonstrate the average capacity factor of three types of technologies in
the Ontario energy market. As shown in the capacity factor of renewable generators such
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as solar and wind, they vary significantly throughout the day due to the availability of
such resources, while nuclear is constantly available during the day.

These capacity factors play a significant role in the long-term planning model discussed
before. They model the output of price-takers in the market using a number between zero
and one. This number is then multiplied by the available capacity of that generator or
technology to form the final generation.

(a) Wind (b) Solar (c) Nuclear

Figure 4.3: Average hourly capacity factor of Wind power plants in Ontario energy market

Long-term planning parameters and assumptions

Load: As predicted by IESO, Ontario’s total load is expected to increase by 1.7 percent
per year until 2042 [2]. As a result, Figure 4.4 shows how the total demand in Ontario
would increase over the span of the next twenty years from 2021 to 2041.

Figure 4.4: Total annual demand over the span of planning horizon
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Expected lifetime of generation units: Each generator based on its type has an
expected lifetime which plays an important role in the long-term planning models as it
identifies how depreciation factors affect the available generation mix. Table 4.3 presents
these parameters.

Table 4.3: The expected lifetime of generators of different technology types

Technology Expected lifetime

Nuclear 40
Hydro 25
Gas 50

Biofuel 40
Solar 30
Wind 25

Capital costs: Investment costs on different technologies play a significant role in
determining particular investments. These costs could change over time due to the advent
of newer technologies or an update to their efficiency. On the other hand, operational costs
affect the daily operations of generations within an electricity market. They could affect
the investment costs if the operating expenses add up and justify the investment in other
units.

Table 4.4: Capital investment costs of different market participants (1000$) driven from
Electricity Annual Technology Baseline (ATB) Data published by NREL

Technology Capital investment cost per year per MW in the planning horizon

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Nuclear 7334 7279 7257 7198 7044 7044 7007 6972 6934 6893 6846 6807 6755 6699 6653 6606 6556 6508 6463 6420
Gas 1049 1044 1042 1030 1025 1025 1021 1012 1008 1003 999 996 991 985 981 977 971 967 964 959

Hydro 4141 4141 4141 4141 4141 4141 4200 4259 4319 4378 4438 4497 4556 4616 4675 4735 4735 4735 4735 4735
Biofuel 4332.67 4319 4306 4278 4275 4275.1 4253 4232 4209 4185 4156 4133 4101 4068 4040 4012 3981 3953 3925 3900
Wind 1392 1348 1303 1259 1215 1171 1127 1083 1038 994 950 941 931 922 912 903 893 884 874 865
Solar 1377 1366 1256 1196 1136 1076 1016 956 896 836 776 769 762 755 748 741 734 728 721 714

Battery 1851 1736 1620 1512 1409 1310 1261 1218 1180 1145 1112 1098 1084 1070 1057 1043 1029 1015 1001 987

4.2.2 Fixed operational cost approach

A fixed cost approach for identifying costs in the objective function of our long-term plan-
ning problem, is a benchmark for representing the significance of our IO method. A
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long-term planning model with fixed operational costs uses a data similar to what is pro-
vided in Table 4.2. These costs are inflated throughout the planning horizon and remain
fixed for all generators of a specific technology. That means two generators A and B of a
technology type are equally dispatchable at a particular timeslot. The tie-breaker is only
their generation and ramp-up or ramp-down capability. In addition, a fixed operating cost
would mean the costs are not responsive to changes in the generation mix or the advent of
new cheaper technologies and demand volatility. Further, these costs are generally offered
competitively by market generators. In a fixed-cost approach, such competitive behavior
is not expected.

Operational outcomes

Operational outcomes are an essential aspect of planning models, and significant literature
has been developed on methods that try to incorporate them. This part discusses the day-
to-day operational outcomes during the planning horizon. A reliable investment model
would include market dynamics to propose wiser investment decisions, especially when
more uncertainty is being introduced daily.

Figures 4.5, 4.6, and 4.7 demonstrate the generation mix in a day in the first year,
after 10 years, and after 20 years. As can be seen, the extent of renewables and, as a
result, the generation of gas-fired units increased over time. This is reasonable, as more
participation in renewables means more uncertainly added to the grid and a more need for
generators that can accommodate it. Nevertheless, comparing these results per technology
with generation levels in the real world gives better comparison metrics. Figures 4.8, 4.9,
and 4.10 provide a more detailed comparison of generation levels in the first year. As can
be seen, there are significant gaps and mismatches between the generation levels in the
real world and the model, resulting in a need for methods to narrow down these gaps.

Figure 4.5: Generation by the hour and technology in a sample day in the first year of the
planning horizon
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Figure 4.6: Generation by the hour and technology in a sample day in the tenth year of
the planning horizon

Figure 4.7: Generation by the hour and technology in a sample day in the last year of the
planning horizon

Figure 4.8: Comparison of each generator’s aggregated generation on day 2020-02-05
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Figure 4.9: Comparison of each generator’s aggregated generation on day 2020-06-14

Figure 4.10: Comparison of each generator’s aggregated generation on day 2020-12-11

Investments

Figures 4.11 and 4.12 provide a summary of the investments throughout the planning
horizon and aggregated investments on each technology. One of the most prevalent points
regarding these investments is that they are comparatively higher than the long-term plan-
ning model with extended operational costs. This over-investment or under-investment
issue is because some scenarios are neglected or deemed less necessary.
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Figure 4.11: Investments in different technologies over the span of the planning horizon
using a fixed-cost approach

Figure 4.12: Aggregated investments in each technology

Generation mix

Figure 4.13 shows how the capacity of each of the technologies changes over the span of
the planning horizon. Renewables tend to have more share in the generation mix as there
are policy constraints in the long-term planning that penalize not meeting them. As a
result of more renewable contributions to the generation mix, more flexible generators are
needed which can be seen as well. Nevertheless, the maximum capacities throughout the
planning horizon are not comparable with the long-term model with an IO approximated
cost function as there are a lot more investments needed. This is one of the main reasons
long-term planning models in the literature tend to consider more short-term operational
details.
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Figure 4.13: Capacity of different technologies in the planning horizon using fixed-cost
approach

4.2.3 IO approximated operating cost approach

A long-term planning model with extended operational costs uses the data provided in
Table 4.1. These costs are calculated by factoring in different inputs such as total load in
the system, total renewable generation, and generation of the generator itself. These cost
functions approximate the precedence of dispatching for all of the generators. All other
features and parameters are the same as the fixed operational cost approach.

Operational outcomes

In order to check the reliability and performance of each of the market generators, here the
aggregated operational results of the Ontario energy market are provided over the span of
different years in the planning horizon. As the generation mix changes, the participation of
each of the generators also changes. This is shown using figures that illustrate operations
in the first year, after 10 years, and finally after 20 years. These figures are provided in
4.14, 4.15, and 4.16 respectively.

In the first year of operations, a large share of the nuclear technology and gas sector is
noticed in the generation mix which stands first and second respectively. This generation
mix changes as generation units depreciate and capacity expansion occurs in the market.
After ten years, the gas sector takes a more significant percentage of the generation mix.
This aligns with real-world scenarios that are foreseen for the Ontario energy market. After
twenty years, and as more nuclear technology retires, a larger share of wind power plants
and a significant increase in the participation of renewable in total are noticeable. This
participation, in part, is due to an increase in the available capacity of flexible generators
such as gas power plants.
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Figure 4.14: Generation by the hour and technology in a sample day in the first year of
the planning horizon using an IO-based cost approximation approach

Figure 4.15: Generation by the hour and technology in a sample day in the tenth year of
the planning horizon using an IO-based cost approximation approach

Figure 4.16: Generation by the hour and technology in a sample day in the last year of
the planning horizon using an IO-based cost approximation approach

Investments

Figures 4.17, and 4.18 respectively provide a detailed distribution of investments through-
out the planning horizon and an aggregated sum of these investments in each technology.
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As can be seen, the IO estimated extended costs have helped the model have more in-
vestment diversity. In addition, having a distribution of representative generators would
mean capacity factors of each of these generators, their technical capabilities, and their
extended operational costs are considered in the investment decisions. Generators are gen-
erally built in geographical areas with specific features in favor of that technology. As a
result, investment decisions neglecting these details would fail to consider these feasibility
requirements.

Figure 4.17: Investments in different technologies over the span of the planning horizon
using an IO-based cost approximation approach

Figure 4.18: Aggregated investments in each technology

Generation mix

Generation mix changes over time as older technologies retire, new policies about the
participation of different technologies are introduced, and demand increases over time.
Figure 4.19 provides a brief overview of changes in the capacity of different technologies
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throughout the planning horizon. We see steady increases in the availability of gas-fired
generators from the early years until the end of the planning horizon, as well as a steady
decrease in the capacity of nuclear power plants due to their depreciation. Spikes in
investment in renewables start mid-way in the planning horizon around 2030, with a higher
priority given to wind power generators.

Figure 4.19: Capacity of each of the technologies in the planning horizon

4.2.4 Summary of the results

The two-stage algorithmic framework provided in this study, can be generalized to any of
other markets with market clearing prices and partial information available. The results of
the fixed-cost and IO-based approaches are provided in the previous sections. Besides the
operational differences that these models have, and examples of these differences that are
provided in different parts of this thesis, the investment scenario and the final generation
mix of the two models have significant differences too. The first and most crucial difference
is the total final capacity between the two models. The fixed-cost approach tends to over-
invest in different technologies to meet the same operational and long-term constraints
and policies. This is justifiable as the fixed-cost approach cannot follow the generation
levels usually happening in the real world, thus requiring it to invest in more capacities
as it tends to underestimate or overestimate the role of different generators. The other
difference between the two approaches is the difference in the portfolio of investment. While
the IO-based approach tends to invest more in Solar generators, the fixed-cost approach
tends to invest more in Wind generators. Investments in the IO-based approach tend to
be spread over time, while a spike in investment can be noticed in the fixed-cost approach.
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4.3 Challenges and limitations

Like any other model, the model given in this study has inherent issues and limits. It
does not include all generators from all technology categories but clusters them to discover
a minimum collection. The model does not consider demand-side load increases, such as
intelligent thermostats or electric vehicles. Representative days are selected using one of
the clustering methods, and this does not mean that all scenarios including the extreme
cases are also considered. Most long-term expansion planning model results significantly
change based on the parameters that are included in the analysis, as such these parameters
could be altered for further scenario analysis, and as a result, they are a major limitation.

The proposed inverse optimization two-step algorithmic framework also comes with
certain limitations. First of all, these cost estimations are approximate and reconciliation
of different ideal parameters for different time slices. There are overestimations and un-
derestimations in generation levels of different generators in certain time slices because of
these approximations. Any mismatch would cause a domino effect for other mismatches
as the generation level of each of the generators complements each other. In addition, cost
functions are reliant on the generation mix available in the market, and as a result, cost
functions should be periodically estimated to have a better alignment with updated market
realities.
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Chapter 5

Conclusions

5.1 Summary

Electricity markets throughout the world are undergoing major generation mix transitions
as new, cheaper technology is deployed, older generating units retire, and new carbon-
emission-reduction measures are implemented. Long-term planning is required to extend
or repair existing generation technologies or introduce new ones. As the market becomes
more unpredictable due to rapid changes in customer behavior and the arrival of new
inexpensive technologies, long-term growth planning models must consider operational
instability within the market in their calculations. Prior research has demonstrated that
incorporating this detailed information has benefits, including reduced over- and under-
investment and the capacity to undertake trials and perform sensitivity analysis.

This research introduces a novel inverse optimization algorithmic framework for the
first time to model these operational details without explicitly introducing computational
complexity to the original long-term planning model. We compared our results with a
fixed-cost benchmark which is commonly used in the literature.

5.2 Contributions

This thesis proposes a two-stage algorithmic framework based on inverse optimization and
linear regression to approximate the cost functions of different generators in the market.
This approach is considered a data-driven inverse optimization approach because unlike
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the classical inverse optimization approaches which impose the optimality of the solutions,
the optimality conditions in data-driven approaches can be violated due the suboptimality
of solutions or their noisiness. This method is applied to long-term expansion planning
models for the first time, and the results have been analyzed. Its applicability in the
operational models is studied with two use cases, namely IEEE 24 Bus test system and the
Ontario energy market. Finally, the estimated non-decreasing convex cost functions are
employed in the long-term planning models to analyze the generation mix in the planning
horizon of the problem.

5.3 Future Work

The operational models used in this study primarily included linear terms. This ensured
a more tractable inverse-optimization approach and long-term planning model. Studying
operational models with integer and non-linear terms would be a topic for future studies.

The approximated cost functions estimated in this thesis only capture some of the op-
erational features of the generators. The estimations of market outcomes in our validation
step clearly show that errors in fitting the behavior of one generator could result in cas-
cading errors in other generator behaviors. As such, the study of scenarios when inverse
optimization can model the behavior of generators closely and when it cannot, would be
a topic for future research. We have used only three of the most intuitive scenarios in
this thesis for our research. However, these scenarios could be further expanded, and the
results verified. On the other hand, the cost estimations are considered linear; in future
research, this could be considered non-linear, and more data sources could be included in
the process.

Another future direction could be estimating these cost approximations every year in
the planning horizon based on the changes in the generation mix. The structure of the
cost function we estimate in this thesis is highly dependent on the generators’ capabilities
and the total electricity demand. Hence, having a series of these functions every year in
the planning horizon could provide an updated version of how generators respond to the
prices in the market and, as a result, more reliable operational details.

Finally, the estimated costs can be driven using other IO methods in the literature and
the results could be compared with our proposed approach.
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[13] John R Birge, Ali Hortaçsu, and J Michael Pavlin. Inverse optimization for the recov-
ery of market structure from market outcomes: An application to the miso electricity
market. Operations Research, 65(4):837–855, 2017.

[14] Audun Botterud, Marija D Ilic, and Ivar Wangensteen. Optimal investments in power
generation under centralized and decentralized decision making. IEEE Transactions
on Power Systems, 20(1):254–263, 2005.

[15] Didier Burton and Ph L Toint. On an instance of the inverse shortest paths problem.
Mathematical programming, 53(1):45–61, 1992.

[16] Michael L. Bynum, Gabriel A. Hackebeil, William E. Hart, Carl D. Laird, Bethany L.
Nicholson, John D. Siirola, Jean-Paul Watson, and David L. Woodruff. Pyomo–
optimization modeling in python, volume 67. Springer Science & Business Media,
third edition, 2021.

[17] Michael C. Caramanis, Richard D. Tabors, Kumar S. Nochur, and Fred C. Schweppe.
The introduction of nondiispatchable technologies a decision variables in long-term
generation expansion models. IEEE Transactions on Power Apparatus and Systems,
PAS-101(8):2658–2667, 1982.

[18] Timothy CY Chan, Tim Craig, Taewoo Lee, and Michael B Sharpe. Generalized
inverse multiobjective optimization with application to cancer therapy. Operations
Research, 62(3):680–695, 2014.

[19] Timothy CY Chan and Neal Kaw. Inverse optimization for the recovery of constraint
parameters. European Journal of Operational Research, 282(2):415–427, 2020.

[20] Timothy CY Chan, Taewoo Lee, and Daria Terekhov. Inverse optimization: Closed-
form solutions, geometry, and goodness of fit. Management Science, 65(3):1115–1135,
2019.

74



[21] Timothy CY Chan, Rafid Mahmood, and Ian Yihang Zhu. Inverse optimization:
Theory and applications. arXiv preprint arXiv:2109.03920, 2021.

[22] Angela S Chuang, Felix Wu, and Pravin Varaiya. A game-theoretic model for gen-
eration expansion planning: problem formulation and numerical comparisons. IEEE
transactions on power systems, 16(4):885–891, 2001.

[23] Wesley Cole, Bethany Frew, Trieu Mai, Yinong Sun, John Bistline, Geoffrey Blanford,
David Young, Cara Marcy, Chris Namovicz, Risa Edelman, et al. Variable renewable
energy in long-term planning models: a multi-model perspective. Technical report,
National Renewable Energy Lab.(NREL), Golden, CO (United States), 2017.

[24] Antonio J Conejo, Luis Baringo, S Jalal Kazempour, and Afzal S Siddiqui. Invest-
ment in electricity generation and transmission. Cham Zug, Switzerland: Springer
International Publishing, 119, 2016.

[25] Antonio J Conejo, Miguel Carrión, Juan M Morales, et al. Decision making under
uncertainty in electricity markets, volume 1. Springer, 2010.

[26] Anna Creti and Natalia Fabra. Capacity markets for electricity. 2003.

[27] Ricardo Fernández-Blanco, Juan Miguel Morales, Salvador Pineda, and Álvaro Porras.
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Appendix A

Generator behavior scenario trees

if h ̸= 1, 24 then



Case 3.7a


Case 3.8a

{
Case 3.8b: fv(i, g, h) = (−wi,gσ1,d,h − σ2,i,g,d,h − σ3,i,g,d,h+1 − σ6,i,g,d,h)/wi,g

Case 3.8c: fv(i, g, h) = (−wi,gσ1,d,h − σ2,i,g,d,h − σ6,i,g,d,h)/wi,g

Case 3.8c

{
Case 3.8b: fv(i, g, h) = (−wi,gσ1,d,h − σ3,i,g,d,h+1 − σ6,i,g,d,h)/wi,g

Case 3.8c: fv(i, g, h) = (−wi,gσ1,d,h − σ6,i,g,d,h)/wi,g

Case 3.7b


Case 3.8b

{
Case 3.8a: fv(i, g, h) = (−wi,gσ1,d,h + σ2,i,g,d,h+1 + σ3,i,g,d,h − σ7,i,g,d,h)/wi,g

Case 3.8c: fv(i, g, h) = (−wi,gσ1,d,h + σ3,i,g,d,h − σ7,i,g,d,h)/wi,g

Case 3.8c

{
Case 3.8a: fv(i, g, h) = (−wi,gσ1,d,h + σ2,i,g,d,h+1 + σ7,i,g,d,h)/wi,g

Case 3.8c: fv(i, g, h) = (−wi,gσ1,d,h + σ7,i,g,d,h)/wi,g

Case 3.7c



Case 3.8a


Case 3.8a: fv(i, g, h) = (−wi,gσ1,d,h − σ2,i,g,d,h + σ2,i,g,d,h+1)/wi,g

Case 3.8b: fv(i, g, h) = (−wi,gσ1,d,h − σ2,i,g,d,h − σ3,i,g,d,h+1)/wi,g

Case 3.8c: fv(i, g, h) = (−wi,gσ1,d,h − σ2,i,g,d,h)/wi,g

Case 3.8b


Case 3.8a: fv(i, g, h) = (−wi,gσ1,d,h + σ2,i,g,d,h+1 + σ3,i,g,d,h)/wi,g

Case 3.8b: fv(i, g, h) = (−wi,gσ1,d,h + σ3,i,g,d,h − σ3,i,g,d,h+1)/wi,g

Case 3.8c: fv(i, g, h) = (−wi,gσ1,d,h + σ3,i,g,d,h)/wi,g

Case 3.8c


Case 3.8a: fv(i, g, h) = (−wi,gσ1,d,h + σ2,i,g,d,h+1)/wi,g

Case 3.8b: fv(i, g, h) = (−wi,gσ1,d,h − σ3,i,g,d,h+1)/wi,g

Case 3.8c: fv(i, g, h) = (−wi,gσ1,d,h)/wi,g

(A.1)

In the cases A.1, an example case is when Capacity constraints are not active (3.7c), in
this case ramping constraints, could be active or inactive, let’s assume it is in active (3.8c),
now, the next hour could have any of the two situations already mentioned, either the
ramping constraint is active for it or not. If it is active (3.8a) then it could be claimed
that fv(i, g, h) ≥ σ1,d,h.
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if h = 1 then



Case 3.7a



Case 3.9a


Case 3.8a: fv(i, g, h) = (−wi,gσ1,d,h + σ2,i,g,d,h+1 + σ4,i,g,d − σ6,i,g,d,h)/wi,g

Case 3.8b: fv(i, g, h) = (−wi,gσ1,d,h − σ3,i,g,d,h+1 + σ4,i,g,d − σ6,i,g,d,h)/wi,g

Case 3.8c: fv(i, g, h) = (−wi,gσ1,d,h + σ4,i,g,d − σ6,i,g,d,h)/wi,g

Case 3.9b


Case 3.8a: fv(i, g, h) = (−wi,gσ1,d,h + σ2,i,g,d,h+1 − σ5,i,g,d − σ6,i,g,d,h)/wi,g

Case 3.8b: fv(i, g, h) = (−wi,gσ1,d,h − σ3,i,g,d,h+1 − σ5,i,g,d − σ6,i,g,d,h)/wi,g

Case 3.8c: fv(i, g, h) = (−wi,gσ1,d,h − σ5,i,g,d − σ6,i,g,d,h)/wi,g

Case 3.9c


Case 3.8a: fv(i, g, h) = (−wi,gσ1,d,h + σ2,i,g,d,h+1 − σ6,i,g,d,h)/wi,g

Case 3.8b: fv(i, g, h) = (−wi,gσ1,d,h − σ3,i,g,d,h+1 − σ6,i,g,d,h)/wi,g

Case 3.8c: fv(i, g, h) = (−wi,gσ1,d,h − σ6,i,g,d,h)/wi,g

Case 3.7b



Case 3.9a


Case 3.8a: fv(i, g, h) = (−wi,gσ1,d,h + σ2,i,g,d,h+1 + σ4,i,g,d + σ7,i,g,d,h)/wi,g

Case 3.8b: fv(i, g, h) = (−wi,gσ1,d,h − σ3,i,g,d,h+1 + σ4,i,g,d + σ7,i,g,d,h)/wi,g

Case 3.8c: fv(i, g, h) = (−wi,gσ1,d,h + σ4,i,g,d + σ7,i,g,d,h)/wi,g

Case 3.9b


Case 3.8a: fv(i, g, h) = (−wi,gσ1,d,h + σ2,i,g,d,h+1 − σ5,i,g,d + σ7,i,g,d,h)/wi,g

Case 3.8b: fv(i, g, h) = (−wi,gσ1,d,h − σ3,i,g,d,h+1 − σ5,i,g,d + σ7,i,g,d,h)/wi,g

Case 3.8c: fv(i, g, h) = (−wi,gσ1,d,h − σ5,i,g,d + σ7,i,g,d,h)/wi,g

Case 3.9c


Case 3.8a: fv(i, g, h) = (−wi,gσ1,d,h + σ2,i,g,d,h+1 + σ7,i,g,d,h)/wi,g

Case 3.8b: fv(i, g, h) = (−wi,gσ1,d,h − σ3,i,g,d,h+1 + σ7,i,g,d,h)/wi,g

Case 3.8c: fv(i, g, h) = (−wi,gσ1,d,h + σ7,i,g,d,h)/wi,g

Case 3.7c



Case 3.9a


Case 3.8a: fv(i, g, h) = (−wi,gσ1,d,h + σ2,i,g,d,h+1 + σ4,i,g,d)/wi,g

Case 3.8b: fv(i, g, h) = (−wi,gσ1,d,h − σ3,i,g,d,h+1 + σ4,i,g,d)/wi,g

Case 3.8c: fv(i, g, h) = (−wi,gσ1,d,h + σ4,i,g,d)/wi,g

Case 3.9b


Case 3.8a: fv(i, g, h) = (−wi,gσ1,d,h + σ2,i,g,d,h+1 − σ5,i,g,d)/wi,g

Case 3.8b: fv(i, g, h) = (−wi,gσ1,d,h − σ3,i,g,d,h+1 − σ5,i,g,d)/wi,g

Case 3.8c: fv(i, g, h) = (−wi,gσ1,d,h − σ5,i,g,d)/wi,g

Case 3.9c


Case 3.8a: fv(i, g, h) = (−wi,gσ1,d,h + σ2,i,g,d,h+1)/wi,g

Case 3.8b: fv(i, g, h) = (−wi,gσ1,d,h − σ3,i,g,d,h+1)/wi,g

Case 3.8c: fv(i, g, h) = (−wi,gσ1,d,h)/wi,g

(A.2)
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if h = 24 then



Case 3.7a



Case 3.9a


Case 3.8a: fv(i, g, h) = (−wi,gσ1,d,h − σ2,i,g,d,h − σ4,i,g,d − σ6,i,g,d,h)/wi,g

Case 3.8b: fv(i, g, h) = (−wi,gσ1,d,h + σ3,i,g,d,h − σ4,i,g,d − σ6,i,g,d,h)/wi,g

Case 3.8c: fv(i, g, h) = (−wi,gσ1,d,h − σ4,i,g,d − σ6,i,g,d,h)/wi,g

Case 3.9b


Case 3.8a: fv(i, g, h) = (−wi,gσ1,d,h − σ2,i,g,d,h + σ5,i,g,d − σ6,i,g,d,h)/wi,g

Case 3.8b: fv(i, g, h) = (−wi,gσ1,d,h + σ3,i,g,d,h + σ5,i,g,d − σ6,i,g,d,h)/wi,g

Case 3.8c: fv(i, g, h) = (−wi,gσ1,d,h + σ5,i,g,d − σ6,i,g,d,h)/wi,g

Case 3.9c


Case 3.8a: fv(i, g, h) = (−wi,gσ1,d,h − σ2,i,g,d,h − σ6,i,g,d,h)/wi,g

Case 3.8b: fv(i, g, h) = (−wi,gσ1,d,h + σ3,i,g,d,h − σ6,i,g,d,h)/wi,g

Case 3.8c: fv(i, g, h) = (−wi,gσ1,d,h − σ6,i,g,d,h)/wi,g

Case 3.7b



Case 3.9a


Case 3.8a: fv(i, g, h) = (−wi,gσ1,d,h − σ2,i,g,d,h − σ4,i,g,d + σ7,i,g,d,h)/wi,g

Case 3.8b: fv(i, g, h) = (−wi,gσ1,d,h + σ3,i,g,d,h − σ4,i,g,d + σ7,i,g,d,h)/wi,g

Case 3.8c: fv(i, g, h) = (−wi,gσ1,d,h − σ4,i,g,d + σ7,i,g,d,h)/wi,g

Case 3.9b


Case 3.8a: fv(i, g, h) = (−wi,gσ1,d,h − σ2,i,g,d,h + σ5,i,g,d + σ7,i,g,d,h)/wi,g

Case 3.8b: fv(i, g, h) = (−wi,gσ1,d,h + σ3,i,g,d,h + σ5,i,g,d + σ7,i,g,d,h)/wi,g

Case 3.8c: fv(i, g, h) = (−wi,gσ1,d,h + σ5,i,g,d + σ7,i,g,d,h)/wi,g

Case 3.9c


Case 3.8a: fv(i, g, h) = (−wi,gσ1,d,h − σ2,i,g,d,h + σ7,i,g,d,h)/wi,g

Case 3.8b: fv(i, g, h) = (−wi,gσ1,d,h + σ3,i,g,d,h + σ7,i,g,d,h)/wi,g

Case 3.8c: fv(i, g, h) = (−wi,gσ1,d,h + σ7,i,g,d,h)/wi,g

Case 3.7c



Case 3.9a


Case 3.8a: fv(i, g, h) = (−wi,gσ1,d,h + σ2,i,g,d,h+1 + σ4,i,g,d)/wi,g

Case 3.8b: fv(i, g, h) = (−wi,gσ1,d,h − σ3,i,g,d,h+1 + σ4,i,g,d)/wi,g

Case 3.8c: fv(i, g, h) = (−wi,gσ1,d,h + σ4,i,g,d)/wi,g

Case 3.9b


Case 3.8a: fv(i, g, h) = (−wi,gσ1,d,h + σ2,i,g,d,h+1 − σ5,i,g,d)/wi,g

Case 3.8b: fv(i, g, h) = (−wi,gσ1,d,h − σ3,i,g,d,h+1 − σ5,i,g,d)/wi,g

Case 3.8c: fv(i, g, h) = (−wi,gσ1,d,h − σ5,i,g,d)/wi,g

Case 3.9c


Case 3.8a: fv(i, g, h) = (−wi,gσ1,d,h + σ2,i,g,d,h+1)/wi,g

Case 3.8b: fv(i, g, h) = (−wi,gσ1,d,h − σ3,i,g,d,h+1)/wi,g

Case 3.8c: fv(i, g, h) = (−wi,gσ1,d,h)/wi,g

(A.3)
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Appendix B

IO model to recover a uniform price
for the whole market

As is the case for many energy markets, there are some components of data that are deemed
confidential and as a result not published. An example of such data is transmission limits
and power transmissions. If we reduce the real-world model such that we would have
only one bus and as a result, all the loads and generators are connected to that one bus,
we would end up having electricity prices that are not locational. In a real-world energy
market such as Ontario, we know that there are some side payments to recover for the
costs of some participants. These side payments are necessary because many operational
details have not been accounted for when clearing the market. In addition, we have no
information about the extra payments market operators make, but can assume that these
payments are a result of not considering operational details.

This section contains a market clearing that is suitable for all locations. This procedure
breaches some of the initial limits; however, we recognize that these violations are similar
to the side payments that a market operator must pay while simplifying its own operations.
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Lagrangian function:

L =
∑

r∈Ψ,g∈Ωr

(
∑
h∈H

pi,g,d,hC
v
g )−

∑
r∈Ψ,d∈D,h∈H

σ1,d,h(
∑
c∈Ωr

pi,g,d,h +
∑
s∈Er

brs.(θr,h − θs,h)− Lr,d,h)+∑
i∈I,g∈Ωr,d∈D,h̸=1

σ2,i,g,d,h(pi,g,d,h − pi,g,d,h−1 −Rumax
g ) +

∑
i∈I,g∈Ωr,d∈D,h̸=1

σ3,i,g,d,h(pi,g,d,h−1

− pi,g,d,h −Rdmax
g ) +

∑
r∈Ψ,g∈Ωr,d∈D,h∈H

σ4,i,g,d(pi,g,d,24 − pi,g,d,1 −Rumax
g )+∑

r∈Ψ,g∈Ωr,d∈D,h∈H

σ5,i,g,d(pi,g,d,1 − pi,g,d,24 −Rdmax
g ) +

∑
r∈Ψ,g∈Ωr,d∈D,h∈H

σ6,i,g,d,h(pi,g,d,h − κg)

+
∑

r∈Ψ,g∈Ωr,d∈D,h∈H

σ7,i,g,d,h(−pi,g,d,h) +
∑

r∈Ψ,s∈Ψ,h∈H

σ8,r,s,h(brs.(θr,h − θs,h)− Pmax
rs )

+ σ9θREF,h

Dual constraints

Cv
g − σ1,d,h − σ2,i,g,d,h+1 + σ3,i,g,d,h+1 − σ4,i,g,d + σ5,i,g,d + σ6,i,g,d,h − σ7,i,g,d,h = 0,

∀r ∈ Ψ, h = 1
(B.1a)

Cv
g − σ1,d,h + σ2,i,g,d,h − σ2,i,g,d,h+1 − σ3,i,g,d,h + σ3,i,g,d,h+1 + σ6,i,g,d,h − σ7,i,g,d,h = 0,

∀r ∈ Ψ, h ̸= 1, 24
(B.1b)

Cv
g − σ1,d,h + σ2,i,g,d,h − σ3,i,g,d,h + σ4,i,g,d − σ5,i,g,d + σ6,i,g,d,h − σ7,i,g,d,h = 0,

∀r ∈ Ψ, h = 24
(B.1c)

− σ1,d,h

∑
s∈Er

brs +
∑

∀k|r∈Ek

σ1,d,hbkr + σ8,r,s,h

∑
s∈Er

brs −
∑

∀k|r∈Ek

σ8,k,r,hbkr = 0,

∀r ∈ Ψ, h ∈ H

(B.1d)

− σ1,d,h

∑
s∈Er

brs +
∑

∀k|r∈Ek

σ1,d,hbkr + σ8,r,s,h

∑
s∈Er

brs −
∑

∀k|r∈Ek

σ8,k,r,hbkr + σ9 = 0,

r = REF, ∀h ∈ H

(B.1e)

Complimentary slackness constraints

σ1,d,h(
∑
c∈Ωr

pi,g,d,h +
∑
s∈Er

brs.(θr,t − θs,t)− Lr,d,h) = 0, ∀r ∈ Ψ, h ∈ H (B.2a)
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σ2,i,g,d,h(pi,g,d,h − pi,g,d,h−1 −Rui,g) = 0, ∀r ∈ Ψ, h ̸= 1 (B.2b)

σ3,i,g,d,h(pi,g,d,h−1 − pi,g,d,h −Rdi,g) = 0, ∀i ∈ I, g ∈ Gi, h ̸= 1 (B.2c)

σ4,i,g,d(pi,g,d,24 − pi,g,d,1 −Rui,g) = 0, ∀i ∈ I, g ∈ Gi (B.2d)

σ5,i,g,d(pi,g,d,1 − pi,g,d,24 −Rdi,g) = 0, ∀i ∈ I, g ∈ Gi (B.2e)

σ6,i,g,d,h(pi,g,d,h − κg) = 0, ∀i ∈ I, g ∈ Gi, h ∈ H (B.2f)

σ7,i,g,d,h(−pi,g,d,h) = 0, ∀i ∈ I, g ∈ G, h ∈ H (B.2g)

σ8,r,s,h(brs.(θr,h − θs,h)− Pmax
rs ) = 0, ∀r ∈ Ψ, s ∈ Er, h ∈ H (B.2h)

σ9θREF,h = 0, ∀h ∈ H (B.2i)

Model B.3 below is the final model solution which provides us with a uniform market
price. Since some of the constraints (B.1a) - (B.1e), and (B.2a) - (B.2g) could be vio-
lated penalty variables ϵ are introduced and put in the right-hand-side of each of these
constraints. Finally, we try to minimize this amount of penalty by including that in the
objective function.

minσ,ϵ

∑
r∈Ψ,d∈D,h∈H

|σ1,d,h − σ1,r,d,h|+
∑

r∈Ψ,h=1

|ϵ3a,r,h|+
∑

r∈Ψ,h̸=1,24

|ϵ3b,r,h|+
∑

r∈Ψ,h=24

|ϵ3c,r,h|

+
∑

r∈Ψ,h∈H

(|ϵ3d,r,h|+ |ϵ3e,r,h|) +
∑

r∈Ψ,h∈H

|ϵ4a,r,h +
∑

r∈Ψ,h̸=1

|ϵ4b,r,h|+
∑

i∈I,g∈Gi,h̸=1

|ϵ4c,i,g,h|

+
∑
g∈Gi

(|ϵ4d,g|+ |ϵ4e,g|) +
∑

i∈I,g∈Gi,h∈H

(|ϵ4f,i,g,h|+ |ϵ4g,i,g,h|) +
∑

r∈Ψ,s,h

|ϵ4h,r,s,h|+∑
h∈H

|ϵ4i,h|

(B.3a)

s.t. (B.1a) - (B.1e) (B.3b)

(B.2a) - (B.2g) (B.3c)

After this step which results in finding σ1,d,h, we can consider the assumptions of our
problem and consider a reduced model without any knowledge of the transmission con-
straints.
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