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Abstract

In this study, we consider the problem of allocating human operator assistance in a
system with multiple autonomous robots. Each robot is assigned with an independent
mission, each defined as a sequence of tasks. While executing a task, a robot can either
operate autonomously or be teleoperated by the human operator to complete the task at
a faster rate. We are interested in finding a schedule of teleoperated tasks in order to
minimize the system makespan. Makespan is the time elapse from the initial time to the
time that all robots finish their missions. Both deterministic and stochastic models of robot
task completion times are considered in this study. We first show that the deterministic
problem of finding the optimal teleoperation schedule is NP-Hard. We then formulate the
problem as a Mixed Integer Linear Program, which can be used to optimally solve small
to moderate-sized instances. We also develop an anytime algorithm that makes use of the
system structure to provide a fast and high-quality solution of the operator scheduling
problem, even for larger instances. Our key insight in this algorithm is to identify blocking
tasks in greedily-created schedules and iteratively remove those blocks to improve the
quality of the solution. Through numerical simulations, we demonstrate the benefits of the
proposed algorithm as an efficient and scalable approach that outperforms other common
solution techniques. Expanding research to the stochastic setting, where task duration
is random variable to represent uncertainty of robot capabilities and environments, we
developed a parameterized replanning policy. This policy selectively chooses to update
the schedule based on task observations. The parameter can be used to control the trade-
off between performance and efficiency. The resulting policy demonstrates good planning
competence in both average and worst cases. Results also show significant reduction in
resource requirements for replanning, with little to no compromise in performance, when
compared to the policy that replans on every task completion.

iv



Acknowledgements

This research is supported in part by the Natural Sciences and Engineering Research
Council of Canada (NSERC) and in part by the Innovation for Defence Excellence and
Security (IDEaS) Program of the Canadian Department of National Defence through grant
CFPMN2-037.

v



Table of Contents

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Deterministic Scheduling Problem 7

2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Hardness Proof: Reduction from 2p1n-3SAT . . . . . . . . . . . . . . . . . 8

2.3 Compute Makespan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 MILP Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Extension to Multiple Operators . . . . . . . . . . . . . . . . . . . . 14

2.4.2 Solving the MILP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Anytime Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.1 Greedy Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.2 Block Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.3 Iterative Greedy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Baseline Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7.1 Scalability Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

vi



2.7.2 Comparison with the Optimal Schedule . . . . . . . . . . . . . . . . 23

2.7.3 Comparison with other Greedy Algorithms . . . . . . . . . . . . . . 24

2.7.4 Problem Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Stochastic Scheduling Problem 28

3.1 Stochastic Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Selective Replanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Teleoperated Task Completion . . . . . . . . . . . . . . . . . . . . . 31

3.2.2 Autonomous Task Completion . . . . . . . . . . . . . . . . . . . . . 31

3.2.3 Task {k, j} in Schedule . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.4 Task {k, j} not in Schedule . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Baseline Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Discussion and Summary 41

References 43

APPENDICES 49

A Properties of Exopnential and Hypoexponential Distribution 50

A.0.1 Exponential Distribution . . . . . . . . . . . . . . . . . . . . . . . . 50

A.0.2 Hypoexponential Distribution . . . . . . . . . . . . . . . . . . . . . 51

A.0.3 Expand for k Hypoexponential Variables . . . . . . . . . . . . . . . 52

vii



List of Figures

1.1 Information flow in the multi-robot teleoperation scheduling system . . . . 3

2.1 Converting 2p1n-3SAT formula teleoperator scheduling problem instance . 10

2.2 Example of Greedy Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Example for Block Removal . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Iterative Greedy Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Relative performance of the Iterative Greedy methods compared to the op-
timal solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Performance comparison of baseline solution techniques to the proposed
algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7 Scheduling of Iterative Greedy, Greedy Insertion and MILP Solution on a
Multi-robot Mission Instance. . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Selective Replan Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Performance comparison of different policies for stochastic problem in aver-
age case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Performance comparison of different policies for stochastic problem in worst
20% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Performance of Selective replan policy with number of Replanning . . . . . 40

viii



List of Tables

2.1 Program Run Time of MILP and Iterative Greedy (in seconds) . . . . . . . 23

3.1 Average Number of Replanning Done under Different Policies . . . . . . . . 37

ix



Chapter 1

Introduction

Autonomous mobile robot teams have been widely used in manufacturing and related
sectors resulting in improved productivity and reduced risk to human workers. Such robot
teams are able to function autonomously on their own, while also bearing the capability of
making use of human assistance to further improve their performance [37], [24], [50], [13].
As it is challenging for human operators to supervise and assist a large number of robots on
their own [6], [10], a number of studies in the literature propose effective decision support
systems (DSS) to aid the human operator(s) in providing assistance [14], [41], [37], and
operation management to optimally allocate tasks in human robot teams [22].

In this thesis, we present such a DSS for a multi-robot system comprising a fleet of
autonomous robots with a human operator available to teleoperate the robots to speed
up their missions, given their availability. Figure 1.1 presents an overview of the problem
setup, showing K robots navigating in a city-block-like environment and going through a
series of tasks. A task in this example may refer to navigating through the robot route,
crossing a road, going through a crowded area, and etc. Our model may also apply to
manufacturing assembly line and a task can be considered as a step of the assembly line,
such as tightening the screw or mounting a part. Robots in the team can be either ho-
mogeneous or heterogeneous. Each task is characterized by different completion times,
depending on whether the task is executed autonomously or under teleoperation. There is
a human operator available, who can assist/teleoperate at most one robot at a time. All
robots are capable of completing their respective tasks on their own, but can be assisted
by a human operator to speed up the task completion. In the deterministic case, task com-
pletion time is fixed value. However, in the stochastic case, to represent robot capability
to handle uncertain environment, task completion times are characterized using random
variables. The DSS provides the operator with a teleoperation schedule that specifies which
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task of a robot should be executed via teleoperation, and in what order. If a robot task
is scheduled for teleoperation, then the robot and operator must wait for each other to
be available before starting this task. Thus, a schedule specifies the teleoperation actions
for the operator and the wait actions for all robots and the operator. For the stochastic
system, in addition to find such a teleoperation schedule, the DSS also needs to identify
deviation of task execution from the schedule and provides schedule update accordingly.
The problem objective is to find a teleoperation schedule and schedule update policy (in
stochastic case) for both the human operator and robots that minimizes the time taken
until all robot missions are complete.

This thesis documents the following contributions:

1. We show that the operator scheduling problem for multiple robots with determinis-
tic task duration is NP-Hard using a reduction from a variant of the Satisfiability
problem called 2p1n-3SAT problem in Section 2.2.

2. We formulate a Mixed Integer Linear Program (MILP) that can be used to generate
optimal schedules for the given deterministic problem in Section 2.4. An extension
to a multiple-operator version of the problem is also developed and documented in
Subsection 2.4.1.

3. We present an anytime algorithm that iteratively generates teleoperation schedules
for the given problem in Section 2.5. The algorithm is capable of solving much larger
instances of the given problem than the MILP formulation.

4. The algorithm is evaluate using numerical simulations in Section 2.7. The results
show that our method provides an efficient and scalable solution compared to other
approaches.

5. We develop an online parameterized policy that identify the need and suitable method
for schedule update in Section 3.2. The policy guides the team in stochastic environ-
ment with efficient replanning method and relatively less times of replanning.

6. The online policy is evluated using numerical simulations in Section 3.4. It improves
the team efficiency in both average and worse case scenarios.
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Figure 1.1: Information flow in the multi-robot teleoperation scheduling system with K robots.
A robot k are assigned with an independent series of tasks. Given mission information, solver
computes the schedule, which is then converted to information about task timing for both operator
and robots. The operator assists on tasks assigned by the schedule.

1.1 Related Work

Human-multi-robot teams have found their application in search-and-rescue [34], [5], [44],
smart factory operation [23], home care for seniors [2], and package delivery [14]. Robots
possess the characteristics of tirelessness and high physical powers, while human workers
are intelligent, flexible, and able to find their ways out of unfamiliar and complicated
situations [22], [11]. Thus, human robot collaboration [22] and human supervision on
robot mission [28] are studied in recent researches. Objectives of those human-robot-
team studies include improving mission time, work quality, task allocation, and human
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preference [28], [33], [47]. In many recent studies for human robot collaboration, human and
robots can work on tasks independently or collaboratively in a shared space [20], [26], [8].
Human supervision and assistant to guarantee the work quality or handle critical tasks
was also presented in [28], [48], [15]. However, such a team composition also brings the
risk of increasing operator workload and decreasing in their situational awareness [45], [36].
In [9], the authors show that scheduling the operator’s attention can improve the efficiency
of control over multi-robot system. Therefore, such systems can benefit from having a DSS
that decides how to distribute human assistance among different robots or autonomous
systems [7], [37], [12]. In addition, update on task allocation based on observation and
prediction model is able to provide human robot team with good guidance and reduce the
negative effect on efficiency and work quality brought by environment and agent capability
uncertainty [39], [28], [49].

The problem of scheduling human assistance among multiple robots has similarities with
disciplines of multi-robot supervision, queuing theory, and task scheduling and sequencing.
All these studies propose some forms of DSS, where an advising agent guides the human
operator(s) on a robot (or task) which they should assist, with specified time. This advice
can take form of an online allocation, like in [14], or a pre-determined offline schedule, like
in [21]. In human-supervised multi-robot systems, frameworks such as sliding autonomy
that considers factors like coordination and situational awareness are shown to improve
understanding of such systems [31], [16]. In [15], robots generate task and motion plan
options with probability of delay and use human intervene to improve the plan to prevent
delay and work overload for robots. Research on effective interaction interfaces also aims
to facilitate human supervision of robot teams [42], [25]. For task allocation in human
robot collaboration system, various constraints and objectives are considered to achieve
synergy. In [20], a problem of human and robots working in a shared space with temporal
and spatial constraints is optimized to achieve less completion time. Ergonomics are also
consider as an objective in [32] when incorporating robots team to existing pure human
manufacturing process. Work, presented in [29], assesses difficulty of task associated with
object features and task procedures during task distribution among human and robots.
Our work is concerned with providing instructions to human operator on how to allocate
their attention among different robots.

In the queuing discipline, efficient techniques have been developed to enable a human to
service a queue of tasks [19]. However, the model that we study is different from a queuing
model as it is possible for the robots to complete their tasks without the help of operators,
and there is no pre-defined order in which tasks (of different robots) are required to be
processed.

Related studies in scheduling literature present methods to schedule processing of dif-
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ferent tasks to minimize performance metrics like makespan, idle time and etc [35]. A
common way of solving the scheduling problem is through the linear programming and
constraint programming [20], [43], [27], [17], which can be used to obtain optimal solutions
for scheduling problems. In the literature, we also find scalable methods to approximately
solve a MILP for large instances which may take MILP hours to find the minima. For
example, the study presented in [38] makes use of a heuristic procedure for a single ma-
chine job scheduling. However, in our system not all tasks are required to be scheduled,
and tasks from different robots are not required to be in any particular order. Methods
like rolling-horizon splits problems into smaller pieces based on time and pursue the local
optimal [3]. In contrast to the problem considered in [3], our problem is highly-coupled
over time, and thus there aren’t natural breakpoints in time to decompose the problem.
In [1], aggregated models are used to schedule distributed energy resource, such that the
computation complexity caused by uncertainty is reduced. Authors of [18] presents a novel
approach, in which a model-free pair ranking heuristic mimicking apprenticeship that learns
scheduling policy from human or expert demonstration is studies and developed.

Research work about task allocation also considers uncertainty from many sources and
provides strategies to improve the team performance. For example, uncertainty introduced
by human is modelled or predicted for task planner design in [33], [26], [8], [49]. Differ-
ently, in [15], robot workload is the source of uncertainty. Also, in [40], uncertainty is
represented by contingency tasks raised by dynamic environment. In our study, uncer-
tainty caused by unsure robot capability in uncertain environments is considered for task
duration. Strategies of handling uncertainty including encoding the problem into a Markov
Decision Process and using probabilistic solver [43], and take measurement on agents to
assess their capability and attentively schedule the team [49].

Two closely related works to our problem are presented in [48], [21]. These studies
propose solutions to scheduling of operators, and robot planning for multi-robot system
having critical configurations where operator attention/input is required to proceed. While
sharing a similar goal with these studies (minimizing mission time), our system lacks the
presence of any such critical configurations or states, and every task can be completed both
autonomously and under teleoperation.

Work presented in [28] studies a similar problem to ours. In that literature, researchers
study task allocation in human multirobot collaborative environment with possible use of
human supervisions for work quality purpose. The combined objective of work quality,
workload and completion time is optimized in their paper. A MILP formulation is devel-
oped to model the problem and give optimal nominal solution. Online reallocation happens
when system observation shows a need, and the reallocation is done applying MILP with
nominal and updated values. Our work develops an anytime offline algorithm that is ver-
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ified to be time efficient. The online schedule update policy presented in this thesis also
accesses the necessity of replan, but more than one method of replan is used in the policy
and will be picked based on the team state.
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Chapter 2

Deterministic Scheduling Problem

2.1 Problem Statement

In Chapter 2, we consider a deterministic system consisting of a human operator supervising
a fleet of K autonomous robots. Each robot k ∈ K := {1, . . . , K} is assigned a mission
pk ∈ P := {p1, . . . , pK}, which is a pre-defined sequence of tasks. To complete its mission
pk, the robot k is required to complete Nk tasks. The jth task of robot k is denoted as ekj .
For each task, a robot can either operate autonomously or be teleoperated by the human
operator. Executing a task ekj takes time αk

j if the robot operates autonomously and time
βk
j (≤ αk

j ) if it is teleoperated1. αk
j and βk

j are fixed values for a given task ekj .

There is a DSS that provides a teleoperation schedule for the operator. A complete
teleoperation schedule contains the information of when to start each task of every robot
and which of the tasks are teleoperated. This information also tell us if a robot or an
operator needs to wait before starting a task. However, since the completion times for
each task are known, this teleoperation schedule can be presented in a more compact form
as only a sequence of teleoperated tasks. The timing information can be computed in
polynomial time from this sequence using the time αk

j and βk
j .

For our problem, we consider a schedule S as a sequence of tasks ⟨s1, . . . , sn⟩ where each
si corresponds to the index {k, j} of some task ekj for k ∈ {1, . . . , K}, j ∈ {1, . . . , Nk} that

1In this paper we consider βk
j ≤ αk

j , i.e., teleoperation is at least as fast as autonomous operation.
However, even for cases when this condition does not hold, the analysis and algorithms presented in this
paper apply without any changes, as the tasks where autonomous operation is faster than teleoperation
are not considered for scheduling.
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is required to be teleoperated. Once the mission starts, the human operator teleoperates
the specific tasks in the order provided by the schedule S, i.e., task s1 followed by s2 and
so on. If at the end of some task si = ekj , the robot k is not yet ready for the required
task (executing its previous tasks), the operator waits for the robot to arrive at the start
of ekj . Likewise, if the robot is ready for the task si, but the operator is still working on a
previous task si′ where i′ < i, then the robot waits for the operator.

The mission ends when all robots complete their respective sequence of tasks. A com-
mon metric of measuring performance of such systems is the time elapsed until all robot
missions are complete, called the makespan [30], denoted as µ(S,P) ∈ R>0.

We impose the following assumptions on the problem:

(A1) The operator can teleoperate at most one robot at a time.

(A2) A task’s mode of operation cannot change once the task is started, i.e., an operator
must teleoperate a robot throughout a task, and they cannot join a task which already
started autonomously.

(A3) All robots may start with the first task in their respective missions at or after the
time t = 0.

The objective is to solve the following optimization.

Problem 1. Given the set K of robots, the missions {p1, . . . , pK} for each robot, and
the fixed autonomous and teleoperation completion times αk

j and βk
j for each task, find a

schedule S that minimizes the makespan µ(S,P).

To begin, we establish that this problem is NP-Hard.

2.2 Hardness Proof: Reduction from 2p1n-3SAT

To prove Problem 1 is NP-hard, we introduce an NP-complete variant of Satisfiability called
2p1n-3SAT [46]. In 3SAT problems, we are given a Boolean formula as a conjunction of
several clauses where each clause is a disjunction of exactly 3 literals. A literal is either
a variable or its negation. In 2p1n-3SAT, each variable shows up exactly twice, and its
negation shows up exactly once [46].

The 2p1n-3SAT problem and the decision version of the scheduling Problem 1 are as
follows:
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Problem 2 (2p1n-3SAT ). Given a Boolean expression in the 2p1n format with K clauses
with v variables, does there exist an assignment to the variables that makes the formula
evaluate to true?

Problem 3 (Possible-Makespan). Given K robots, the missions {p1, . . . , pK} for each
robot, and the autonomous and teleoperation task completion times α and β 2 for every
task of each robot, and a target time µ ∈ R>0, does there exist a schedule S that results
in a makespan µ(S,P) ≤ µ

Proposition 1. Problem 3 (Possible-Makespan) is NP-Complete.

Proof. We begin the proof by proposing a reduction from Problem 2 to Problem 3:

Reduction: To reduce an instance ϕ of Problem 2 into an instance ψ of Problem 3, we
replace the literals in the Boolean formula with tasks in robots missions. Each clause in
the formula corresponds to a robot in the scheduling problem. Fixing the order of variables
arbitrarily, we create robot a mission from literals in a clause using the following four rules:

1. If a literal is the first positive appearance of a variable in the Boolean formula ϕ,
we add two consecutive tasks in robot’s mission. The first task has autonomous
completion time α = z and teleoperation time β = z − δz, for some z, δz ∈ R>0 and
0 < δz ≪ z (e.g., z = 100, δz = 1). For the second task, α = β = z.

2. If a literal is the second positive appearance of a variable in ϕ, we again add the same
two tasks as the first case, but in reverse order.

3. If a literal is the negative appearance of a variable, we add a single task in robot’s
mission with α = 2z and β = 2z − δz.

4. For each variable that is not present in the clause (when there are more than three
variables), we add a single task in robot’s mission with α = β = 2z.

With this reduction, an instance of Problem 2 with v variables is converted to an
instance of Problem 3 with µ = 2zv. An example reduction is illustrated in Fig. 2.1.

Under the reduction given above, the generation of ψ from ϕ takes polynomial time
as one needs to parse each literal in every clause only once, and generate tasks in robots
missions (a constant time operation) for each of those literals.

2Here, we omit subscript k and j from expressions of α and β for ease of notation.
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Figure 2.1: Converting 2p1n-3SAT formula ϕ with four clauses to missions of four robots. Each
mission is shown as a sequence of differently-colored tasks. Blue and red tasks have a difference
of δz between their α and β, and grey tasks have no difference between their α and β.

Trivially, Possible-Makespan is in NP. Given a schedule S, it takes polynomial time to
verify the if makespan is less than µ, by computing the makespan with the solution S and
team information P .

Therefore, the NP-Completeness of Problem 3 follows directly from Lemmas 1 and 2.

Lemma 1. Under the reduction given in Proposition 1, if ϕ is a true instance of Problem 2,
then ψ is a true instance of Problem 3.

Proof. For the purpose of the proof, we call the tasks in ψ where α > β as effective tasks.
In order to have ϕ to be true, each clause must have at least one true literal by definition.
The reduction is designed in a way that effective tasks corresponding to positive variables
in different clauses do not overlap with each other. Therefore, if ϕ is a true instance of
Problem 2, then it is possible to teleoperate the effective tasks corresponding to at least
one true literal in each clause.

This will result in a reduction of at least δz in the travelling time of each robot, so the
makespan is less than 2zv. For example, Fig. 2.1 shows a true instance of the problem, and
the schedule marked as red-colored tasks ⟨s1, s2, s3, s4⟩ results in a makespan µ(S,P) =
2zv − δz.
Lemma 2. Under the reduction given in Proposition 1, if ψ is a true instance of Problem 3,
then ϕ is a true instance of Problem 2.

Proof. Since every robot in ψ has the same autonomous task completion time, each of
them must have at least one effective task teleoperated to have a makespan less than
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2zv. The tasks are arranged in a way that a variable and its negation’s effective task
cannot both present in a satisfying schedule to result in a µ < 2zv.(due to overlap in their
times). Therefore, we can choose one teleoperated task from each robot mission, and set its
corresponding literal to be true. This will result in an assignment for which ϕ is true.

Since the decision problem Possible-Makespan is in NP-Complete, the problem of find-
ing the optimal teleoperation schedule in Problem 1 is NP-Hard. Since all constraints in
our problem are linear time constraints, we formulate our problem as a mixed integer linear
program (MILP), which has been used to formulate a wide range of NP-Hard problems.

2.3 Compute Makespan

Given the deterministic problem set-up and schedule S = ⟨s1, . . . , sn⟩, we will show how
to compute the makespan of the team. Each element in S is a task index, which records
the corresponding robot and task number. The operator teleoperates tasks in S one by
one. Robots run tasks not in S autonomously, but when a robot reaches the start of a
task in S, it will be teleoperated, or wait for the operator if the operator is still busy with
a previous task in S. Similarly, if the operator reaches the start of a task in S, but the
corresponding robot is still busy with its earlier task, the operator will wait for the robot.
For all robots, we initialize a recording variable lastVisitedTask, L := {l1, . . . , lK} =
0, and robotCompletionTime, T := {T 1, . . . , TK} = 0. Also, we initialize a variable
operatorWorkTime, T opt = 0, to track the operator work time.

The algorithm goes through the schedule vector one by one. For example, at time of
T opt(which is initially 0), with s1 = {k, j}, we find the time needed for robot k to complete
tasks in between robot k’s lastVisitedTask and s1 autonomously (there may be 0 task
in between), recorded as tbwt, and add tbwt to T k. Then, compare the magnitude of T k

and T opt. If T k ≥ T opt, robot k will be ready for s1 later than or at the same time as
the operator, so T k = T k + βk

j . However, if T k < T opt, operator will be ready for the
s1 later than robot k, so T k = T opt + βk

j . Lastly, we update the operator working time
to s1 completion time, T opt = T k, and robot k’s lastVisitedTask, lk = j. Then, we
proceed to next task in S, with time equals to the updated T opt. After, we loop through
all tasks in S, we check if there is any autonomous tasks left for each robot, and add
time needed for those tasks to each T k. A pseudo code for this procedure is presented in
Algorithm 1. According to the definition of makespan, µ = max(T [k]) for k ∈ K. Please
note P contains task information (task sequence, task duration under autonomous and
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teleoperation modes) for K robots. S is the schedule containing index for tasks with the
order of teleoperation.

Algorithm 1 Robot Completion Time

Input: P , S
Output: T
1: Initialize L = 0, T = 0, T opt = 0
2: for i ∈ ⟨1, . . . , n⟩ do
3: {k, j} ← si
4: for h ∈ ⟨L[k] + 1, . . . , j − 1⟩ do
5: T [k]← T [k] + αk

h

6: T [k]← max(T [k], T opt) + βk
j

7: T opt ← T [k], L[k]← j
8: for k ∈ K do
9: for j ∈ ⟨L[k] + 1, . . . , Nk⟩ do

10: T [k]← T [k] + αk
j

11: return T

2.4 MILP Formulation

Since the Problem 1 is proved to be NP-Hard, we first encode it as a MILP. In the MILP
formulation, our objective is to find a schedule S that minimizes team makespan µ(S,P),
subject to conditions on system dynamics and task ordering.

We begin by introducing three variables for each task: (1) xkj , a binary teleoperation
variable for task ekj , (2) τ kj , the scheduled start time for ekj , and (3) εkj , the finish time for
ekj , which can be expressed as a sum of the τ kj and the task completion time under the
schedule, i.e.,

εkj = τ kj + (1− xkj )αk
j + xkj β

k
j . (2.1)
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A MILP can then be formulated as follows:

Minimize: µ̄

Subject to: µ̄ ≥ εkNk ∀ k ∈ K, (2.2)

τ k1 ≥ 0, ∀ k ∈ K, (2.3)

τ kj ≥ εkj−1, ∀ k ∈ K, j ∈ {2, . . . , Nk}, (2.4)

xkj + xli = 2 =⇒ τ kj ≥ εli or τ li ≥ εkj ,

∀ k, l ∈ K; k ̸= l,

∀ j ∈ {1, . . . , Nk},
∀ i ∈ {1, . . . , N l}, (2.5)

xkj ∈ {0, 1},∀ k ∈ K, j ∈ {1, . . . , Nk}. (2.6)

Constraint (2.2) restricts the time needed for every robot to complete its mission to be
not more than the objective µ̄. Constraint (2.3) sets the earliest start time for the robots.
This constraint is not critical to the problem setup, but it gives a time reference to the
program.

Constraint (2.4) ensures that the jth task of a robot mission can only starts after the
(j − 1)th task is completed. Constraint (2.6) restricts the variables xkj to be a binary
variable. Constraint (2.5) specifies no two tasks can be teleoperated with an overlapping
time interval. Note that Constraint (2.5) above is presented as an implication and is not
written as a linear constraint. However, it can be converted to a set of linear constraints
(for example, by using the Big-M method), which are supported directly by many mixed
integer linear program solvers [4]. In order to convert Constraint (2.5) to Python Gurobi
API encodable expressions, we need three auxiliary binary variables: C, D, E, for each
pair of ekj and eli, and the constraint is decomposed into:

C = xkj ∧ xli,
C = 1 =⇒ D + E = 1,

D = 1 =⇒ τ kj ≥ εli,

E = 1 =⇒ τ li ≥ εkj .
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∧ in the above expression is the logic AND. C = 1 only when both xkj and xli are 1, so
it means the same as xkj + xli = 2.

For instance, the implication D = 1 =⇒ τ kj ≥ εli can be represented using two linear
conditions Dτ kj −Dεli ≥ 0; D ∈ {0, 1}. The above implications are now written as indicator
constraints, which are supported directly by Gurobi.

Note: To implement constraint (2.5), we can limit the ranges to k ∈ {1, . . . , K−1}, l ∈
{k, . . . , K}, which eliminates the repetitions in constraint checking, thus more efficient.

2.4.1 Extension to Multiple Operators

It is worth noting that we can directly extend the MILP to handle the multi-operator-
multi-robot setting. In this case we have a set of M operators M := {1, . . . ,M}, and use
binary variable xkjm to indicate whether ekj is teleoperated by operator m ∈ M. Though
the operators are identical, we still need to index them to make sure teleoperated tasks
with time overlapping are assigned to different operators.

A constraint is required to bound
∑

m∈M xkjm, since each task can be assigned to at
most one operator: ∑

m∈M

xkjm ≤ 1, ∀ k ∈ {1, . . . , K}, j ∈ {1, . . . , Nk}. (2.7)

Consequently, changes are made in expressions for εkj and Constraint (2.5). In single-
teleoperator setting, if two edges are both scheduled to be teleoperated, the travelling time
of two cannot overlap. Analogously, with multiple operators, if two edges are scheduled to
be teleoperated by the same operator (i.e., xkjm = 1 and xlim = 1), the traveling time of the
two cannot overlap. Thus constraint (2.5) is modified as

xkjm + xlim = 2 =⇒ τ kj ≥ εli or τ li ≥ εkj . (2.8)

Constraint (2.6) is repeated for all xkjm.

2.4.2 Solving the MILP

A globally optimal solution to a MILP can be found using solvers like Gurobi or CPLEX.
In this project, MILP is implemented using Python and solved with Gurobi API. However,

14



as mentioned earlier, while such solvers are effective for small problem instance, they do
not scale to large instances involving many robots, each with ten or more tasks in its
mission. In the next section, we present an efficient anytime algorithm that makes use of
the problem structure to provide a fast and high-quality solution of Problem. 1.

2.5 Anytime Algorithm

In this section, we present a greedy algorithm called Iterative Greedy. The algorithm
begins by greedily creating a schedule to improve the team’s makespan, until no further
improvements can be made by adding tasks of a makespan robot to the schedule. Our
key insight here is to then identify blocking tasks in such greedily-created schedules and
iteratively remove those blockages to improve the solution. The algorithm cycles between
two routines: Greedy Insertion and Block Removal.

2.5.1 Greedy Insertion

This routine creates a teleoperation schedule by greedily selecting tasks from the mission
of a robot whose total time currently equals the makespan (called a makespan robot).

Definition 1 (Greedy Insertion). For a given schedule S, let robot k be a robot achieving
the makespan (i.e., last task’s finish time εk

Nk = µ(S,P)). We call the addition of a task
eki to schedule S a Greedy Insertion if the addition of eki directly reduces εk

Nk , without
increasing the team makespan.

Pseudo-code for the Greedy Insertion algorithm is presented in Algorithm 2. In the
algorithm, given a schedule S, we first identify the set of all makespan robots, denoted as
K. We then determine the best task ek, defined as the task that reduces εk

Nk , the mission
time of any robot k ∈ K by the most, while not increasing the makespan µ(S,P). This
task is then added to the schedule with the position that gives the best performance.

Note: The best task in the Greedy Insertion algorithm is defined as the one which
results in the most reduction in mission time of any makespan robot.

An example is shown in Fig. 2.2 to illustrate its operation. Robot 3 is the makespan
robot, and has two tasks currently not in the schedule. Select the one with more time
reduction, and this addition to the schedule will reduce µ(S,P).
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Algorithm 2 Greedy Insertion

Input: P , S
Output: S ′

1: Initialize ∆ε∗ = 0, S ′ = S
2: Calculate mission time εk

Nk for k ∈ {1, . . . , K} given P , S
3: K ← argmaxk{ε1N1 , . . . , εKNK}
4: for k ∈ K do
5: Find the Best task ek, with time reduction ∆εk

Nk and corresponding schedule Sk

given P , S
6: if ∆εk > ∆ε∗ then
7: ∆ε∗ ← ∆εk

Nk ; S ′ ← Sk

8: return S ′

Figure 2.2: Example of Greedy Insertion. Robot 3 is the makespan robot, and by teleoperating
its last task, we reduce its total mission time.
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2.5.2 Block Removal

A schedule created using Greedy Insertion gives a feasible (locally optimal) solution but
such a schedule often results in considerable and frequent idle times for the operator.
However, even when the system’s makespan cannot be improved further by adding more
tasks of makespan robots to the schedule, it may be possible to improve the makespan
by adding tasks from other robots. This is the idea behind the Block Removal technique,
which works by finding and eliminating blocking tasks and reduces the team makespan by
reducing waiting times in the schedule. We begin to introduce the details of this technique
with the following definitions.

Definition 2 (Idle Time). For any two adjacent tasks sj and sj+1 in schedule S =
⟨s1, . . . , sn⟩, the idle time is defined as the time between task sj finish time and sj+1

start time. Since task durations are fixed values and all robots are released at the initial
time, the start and finish time for each task can be calculated with S and P . For s1, if its
start time > 0, idle time is simply the start time of itself.

Definition 3 (Blocking Task and Blocking Robot). A task sj+1 in schedule S is called
a blocking task if the idle time between sj and sj+1 is greater than zero3. The robot to
which task sj+1 belongs to is called a blocking robot.

A blocking task is called so because it prevents a task in the makespan robot’s plan
from getting teleoperated or being teleoperated at an earlier time. Reducing the starting
time of the blocking task indirectly results in a smaller makespan or allows for further
makespan decrease in future iterations.

With above, the Block Removal operation can be defined.

Definition 4 (Block Removal). Given a schedule S, let robot k be a robot whose mission
duration is longest, such that the mission completion duration of this robot is the makespan
(i.e., εk

Nk = µ). We call the addition/insertion of a task ek′i from a non-makespan robot k′ to
the schedule S a Block Removal if the addition of ek′i reduces or allows further reduction on
εk
Nk , without increasing the team makespan. Such addition results in removal of blockage

(idle time removed or reduced) by the robot k′ in the schedule.
3Depending on the application, it may be useful to set a threshold ϵ ∈ R>0 on the idle time between

sj and sj+1 to consider sj+1 as a blocking task. For example, we can set ϵ = min{βk
j }. In this case, if

there is an idle time less than the minimum teleoperation time, inserting any task here only delays the
execution of later tasks in the schedule. Thus, such an idle time cannot help improve the makespan and
we may skip it.
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Pseudo-code for the Block Removal algorithm is presented in Algorithm 3. In the
algorithm, we start by finding the blocking task in the schedule with the largest start time.
This is because for most of time, there is no idle time between blocking task with the latest
start time and the makespan robot’s last teleoperated edge, and blocking can be resolved
efficiently. We then try to add a task from the blocking robot’s mission to the schedule
such that it reduces the start time of the blocking task. If such an addition is possible, we
return the updated schedule, else we discard this task and move to the blocking task with
next largest starting time, until we reach the beginning of the schedule.

Algorithm 3 Block Removal

Input: P , S
Output: S ′

1: Initialize: S ′ = S
2: s← blocking task with largest starting time
3: Find task e′ that reduces the start time of s
4: if e′ exists then
5: return Updated schedule S ′

6: else
7: Go to line 2 and repeat for blocking task with next largest start time until no more

blocking tasks are present
8: return S ′

An example is shown in Fig. 2.3 to illustrate this operation. Given the schedule gener-
ated in Fig. 2.2, further Greedy Insertion is not possible. Adding task of e31 to the schedule
does not reduce makespan because the task final task of Robot3, e32, will have to wait until
the operator finishes the task e12 (the blocking task). Instead, if we add e11 to S, it reduces
the makespan by reducing the start time of the blocking task e12.
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Figure 2.3: Example for Block Removal. Makespan Robot 3’s mission time is reduced indirectly
by teleoperating e11.
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2.5.3 Iterative Greedy

Starting with an empty teleoperation schedule, the Iterative Greedy algorithm first gener-
ates an intermediate schedule using Alg. 2. Using this schedule, we try the Block Removal
routine using Alg. 3. The schedule is iteratively improved by applying Alg. 2 and Alg. 3
one after the other, until both of these algorithms stop to make improvements in a given
schedule S, which is then selected as the final output.

Algorithm 4 Iterative Greedy

Input: P
Output: S

Initialization : S = [ ], done = 0.
1: while not done do
2: S ′ ← Greedy Insertion(P , S)
3: if S ′ = S then
4: S ′ ← Block Removal(P , S)
5: if S ′ = S then
6: done = 1
7: S ← S ′

8: return S

Runtime of Iterative Greedy: Letting N̄ :=
∑K

k=1N
k, each iteration of Greedy Insertion

can be implemented to run in O(N̄) time. Similarly, each iteration of Block Removal runs
in O(N̄) time. Since at most N̄ tasks can be added to the schedule, the overall runtime of
Iterative Greedy is bounded by O(N̄2).
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Figure 2.4: Iterative Greedy starts with an empty schedule and repeatedly call Greedy Insertion
to expand the schedule. When Greedy Insertion fails to expand the schedule, Block Removal is
called. When both cannot expand the schedule, algorithm terminates.
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2.6 Baseline Heuristics

We consider the following baseline solution methods to assess the performance of the Iter-
ative Greedy algorithm.

MILP Solution: The MILP formulation in Section 2.4 is implemented and solved
with Python Gurobi API. Solving the formulation directly gives us xkj and τ kj for each task.

Naïve Greedy: Under this algorithm, the operator is simply scheduled to teleoperate
the next available task of the makespan robot. If the makespan robot is still executing a
task, the operator waits for the robot.

Comparison Greedy: We have also developed the Comparison Greedy algorithm,
which compares between alternatives given an intermediate schedule. We compute the
finish time of the last task in the current schedule, and determine the task ekj that the
makespan robot will be executing at that time. We then pick the better of the two alterna-
tives: 1) Adding ekj to the schedule, and have the makespan robot wait for the operator at
start of ekj , or 2) Adding ekj+1 to the schedule and have the operator wait for the makespan
robot to complete ekj .

Greedy Insertion: To assess the improvement brought by the Block Removal step,
we compare the schedule generated by only Greedy Insertion defined in Algorithm 2.

2.7 Evaluation and Results

In this section, we present performance results for a simulated multi-robot scheduling
problem under the following methods (details in Section 2.6): 1) Optimal schedule (solution
of the MILP formulation), 2) Iterative Greedy, 3) Greedy Insertion, 4) Comparison Greedy,
and 5) Naïve Greedy. The problem and the solution frameworks for all algorithms were
implemented using Python. The Gurobi Python API is used for the MILP solution.

To generate an instance, for each task of each robot, two numbers are sampled from a
uniform random distribution and are rounded to 2 decimal places. One is used as the task
working time under teleoperation βk

j , and the sum of two is used as the autonomous time
αk
j :

βk
j ∼ U [10, 20], ∆τ kj ∼ U [0, 10],

αj
j ← βk

j +∆τ kj . (2.9)
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2.7.1 Scalability Test

We begin the evaluations by looking at the computation time of MILP and Iterative Greedy
on different problem sizes (number of robots and tasks in their missions), as specified in
Table 2.1. The computation times shown in the table are the average of 100 instances for
each case. Along both dimensions of the problem size, the number of robots and number of
tasks, the computation time of MILP increases at a very high rate. Computation time of
Iterative Greedy algorithm remains below 0.01 seconds for all test cases in Table 2.1. Even
for larger instances, where MILP solution is unavailable, the computation time of Iterative
Greedy algorithm grows at a much slower rate. For example, for a problem instance with
4 robots and 40 tasks each, its average computation time is 5.22 seconds. For reference,
the simulations were run on a laptop computer with 4 core, 2.1 GHz processor and 16 GB
RAM.

Table 2.1: Program Run Time of MILP and Iterative Greedy (in seconds)

K = 2
Nk = 11

K = 3
Nk = 5

K = 3
Nk = 8

K = 3
Nk = 11

K = 4
Nk = 11

MILP 0.30 0.4 0.80 10.16 109.22

Iterative
Greedy <0.01 < 0.01 <0.01 <0.01 <0.01

2.7.2 Comparison with the Optimal Schedule

The Iterative Greedy algorithm is compared against the optimal schedule to validate its
applicability for our problem. The optimal schedule using MILP formulation cannot be
computed for larger problem instances, due to its poor scalability, therefore this test is
limited to small-sized problems. The relative performance (ratio of the makespan under
Iterative Greedy algorithm to the optimal schedule) is shown in Fig. 2.5. For each size,
100 instances were generated using the random instance generation mentioned earlier.

We observe that the performance of the Iterative Greedy algorithm is comparable to
that of optimal schedule. As the number of robots increases, the distribution of relative
performance slowly shifts away from 1. However, the makespan under the Iterative Greedy

23



Figure 2.5: Relative performance of the Iterative Greedy methods compared to the optimal so-
lution for number of robots K ∈ {2, 3, 4}, and number of tasks Nk ∈ {5, 8, 11} for all robots.
Each plot shows the distribution of 100 instances based on their relative performance (ratio of
makespan under Iterative Greedy method to the optimal makespan). The x-asix, Relative Per-
formance, is calculated using the makespan of Iterative Greedy divided by the optimal makespan
(MILP solution)). The y-axis is percentage of instance that falls in the bin.

algorithm is still within 5% of the optimal schedule for over 90% of the instances under all
test cases. For reference, the team makespan without teleoperation is, on average, 20.73%
more than the optimal for these test cases.

2.7.3 Comparison with other Greedy Algorithms

Next, we compare the performance of the Iterative Greedy algorithm with the Greedy
Insertion, Comparison Greedy and Naïve Greedy algorithms on larger problem instances.
Note that it is also possible to combine the Iterative Greedy algorithm with any of these
greedy algorithms. We include performance results from such combinations to demonstrate
its effects on greedily-generated schedules. For the comparison, under each test condition
(given number of robots and tasks in their missions), 100 problem instances are created in a
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similar way as before. Fig. 2.6 shows performance comparison of the different algorithms.
The y-axis of Fig. 2.6 is the makespan of baseline policies divided by the makespan of
Iterative Greedy, then minus 1. Iterative Greedy has the best performance among all
algorithms, and we observe 6 to 10% improvement over the baseline Naïve Greedy algorithm
for small to moderate problem size. We observe that, as the number of robots increases, the
difference between the performance of all algorithms start to diminish. This supports the
intuition that as number of robots increases, the human operator is required to distribute
their time to more and more robots, thus decreasing their effectiveness. From the plots,
we also observe the effectiveness of the Iterative Greedy in improving relative performance
when applied in combination with Naïve Greedy and Comparison Greedy. This indicates
that the Iterative Greedy technique can be used to further improve any greedily-generated
schedule.

2.7.4 Problem Instance

Fig. 2.7 shows an example instance of the scheduling problem with three robots. First,
the Greedy Insertion algorithm generates a schedule that reduces makespan but contains
long gaps (idle time) in operator’s schedule. Then the Block Removal algorithm removes
these gaps and results in a schedule with very little idle time for the operator. The MILP
solution shows that a better performing schedule is possible even with a greater idle time.
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Figure 2.6: Performance comparison of baseline solution techniques to the proposed Iterative
Greedy algorithm. The plots show relative performance of different techniques for up to 4 robots
and 70 tasks each. 26



Figure 2.7: Scheduling of Iterative Greedy, Greedy Insertion and MILP Solution on a Multi-robot
Mission Instance. 27



Chapter 3

Stochastic Scheduling Problem

3.1 Stochastic Problem Statement

We consider a system consisting of one human operator supervising a fleet of K identical
autonomous robots. Each robot k ∈ K := {1, . . . , K} is assigned a mission pk ∈ P :=
{p1, . . . , pK}. To complete its mission pk the robot k is required to complete a sequence
of Nk tasks. The jth task of robot k is denoted as ekj . For each task, a robot can either
operate autonomously or be teleoperated by the human operator. Task durations in the two
operating modes are random variables with a known underlying distribution model. Mean
values of these random variables are independent across tasks and reflect task difficulty
levels. Task duration for ekj under autonomous operation is denoted by random variable
Ak

j with corresponding mean αk
j . Similarly, task duration under teleoperation is denoted

as Bk
j with a mean of βk

j . In later sections, we refer to αk
j and βk

j as nominal values. Also,
we denote the realization of autonomous and teleoperated completion time using lowercase
characters: akj and bkj . The human operator teleoperates the robots according to schedule
S := ⟨s1, s2, . . .⟩, which is a sequence of tasks to be teleoperated.

We can use logic shown in the Algorithm 1 to find expression for completion of each
robot give a schedule S with random variable task duration, T = {T 1, . . . , TK}, the
makespan of the team is determined by the maximum of all robot completion time, µ =
max{T 1, . . . , TK}.

We studied and derived properties of exponential distribution and hypoexponential
distribution (summation of independent exponential random variables with different pa-
rameters). If task completion time random variables follow exponential distribution, those
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properties give us the formula for expected makespan E(µ) of simple examples. However,
there are some limitations of those properties which needs to be further solved, so that
they can be applied on more complicated examples. The derivation of those properties are
included in Appendix A.

Problem 4. (Stochastic Scheduling) Given the set K of robots, the missions {p1, . . . , pK}
for each robot, and random autonomous and teleoperation task durations Ak

j and Bk
j , find

a policy for computing schedule S that minimizes the expected makespan E(µ).

Our goal for the Stochastic Scheduling problem is to minimize the expected makespan
E(µ) given an instance of Problem 4 by finding a policy that computes a teleoperation
schedule and updates that schedule given a state of the team X t at time t. The state of
the team includes the task that each robot is working on (or waiting to start) in pk, and
the robot being teleoperated, if any.

Since robots completion times are random variables, we define the expected makespan
of the system as:

Definition 5 (Expected Makespan). Let, X t be the state of the team and St be the
schedule in use at time t. At time t, given the team state X t and schedule St, the expected
makespan is given by E(µ|X t,St) = E(maxk∈K{T k|X t,St}).

3.2 Selective Replanning

Form our literature review, stochastic human multi-robot task allocation problems take
the approach of replanning or dynamic scheduling based on observation along task exe-
cution. [28], [33]. Also, through our study and experiment on the system represented in
Problem 4, replanning according to team state during mission execution improves the av-
erage performance over realizations of one instance. As the replanning happens while the
team is executing missions, and the replanning trying to optimize performance based on
in-time observation of the system, it should be time efficient, and in the best case, with
negligible computation time.

The first step movement of the operator and robots need to be determined before we go
into replanning. At this point, the only information is P which includes each robot’s tasks
and the nominal completion time for each task under autonomous mode and teleoperation.
As random variables are used to represent task durations, over infinitely many realization
of an instance of Problem 4, each robot may have a chance to be the makespan robot,
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so an approach to obtain a smaller expected makespan is reducing the completion time of
robot(s) that with largest or larger chance to contribute to the expected makespan over
infinitely many realizations, as the expected makespan can also be seen as the average of
makespan over infinitely many realizations of an instance.

Say robot k is associated with an indicator function I(k); I(k) takes the value 0 when
robot k is not the makespan robot for an instance of Problem 4, or takes the value of 1 if
it is the makespan robot. Again, due to the stochastic setup, the makespan robot is not
constant over multiple realization of an instance.

Definition 6 (Expected Makespan Robot). The expected makespan robot is defined as
the robot k that has the largest probability to have its indicator function equals 1, k =
argmax

k∈K
P(I(k) = 1).

For the initial schedule which determines the first step for all agents, if it can minimize
the contribution of robots to the expected makespan, it will help the team move towards a
smaller expected makespan. As the nominal completion time is also the expected comple-
tion time of each task in long run, the makespan robot of the deterministic Problem 1 has
larger chance to be makespan robot in realization of the corresponding instance of stochas-
tic Problem 4. The proposed solution for Problem 1, Iterative Greedy, works by reducing
the completion time of the deterministic makespan robot, and it is time-efficient. Thus,
we use the schedule S obtained by applying Iterative Greedy with nominal task duration
to instruct the first step of robots and operator. S stores the indices of teleoeprated tasks
with the order of teleoepration.

With the first step decided, we propose an upper bound frequency for replan which is
task completion. If we replan using a frequency higher than this, replanning will happen
when all robots are in the middle of a task. Because of the uncertainty of task completion
time, the schedule that replanned when all robots are in the middle of tasks, may not still be
an ideal one any more when any robot finishes its task and has the work force to execute the
replanned schedule. Every time a task (let’s call it ekj−1) completes, Algorithm 5: Branch
Policy is called to find the best next step movement for robot k or the robot k and the
operator, depending on the operation mode of ekj−1.

In our system, task completion is divided into Autonomous Task Completion ({k, j −
1} ̸∈ S) and Teleoperated Task Completion ({k, j − 1} ∈ S). The later one also frees the
operator work force. Based on this, these are two main branches of our policy.
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3.2.1 Teleoperated Task Completion

When a teleoperated task {k, j − 1} finishes, robot k and the operator are both free. We
need to determine the next step movement for both. Once the operator finishes teleoper-
ating the task {k, j − 1}, the policy first checks if the execution of ekj−1 deviates from the
nominal value more than a certain amount using inequality 3.1.

|bkj−1 − βk
j−1|/βk

j−1 > δ (3.1)

δ is a positive constant. Inequality 3.1 measures the deviation of realization bkj−1 of
ekj−1 from the nominal value βk

j−1. If inequality 3.1 is satisfied, a partial schedule will be
computed for tasks that haven’t started yet using Iterative Greedy and nominal task
duration. Time needed for tasks that are under operation will be taken into account using
exponential distribution model, but those tasks’ operation mode will not be changed in
the partial schedule planning.

User can tune δ based on preference or performance needed. When δ is closer to 0,
the policy is sensitive to the difference between realization and nominal value, and more
replanning will happen. However, of course, the average makespan is expected to be lower
with higher frenquncy of replanning. As the value of δ increases, replanning will be less
frequent.

In the simulation, the progress of the schedule S is tracked by a schedule pointer Ptr.
Ptr moves to the next teleoperated task once ekj−1 is done in our simulation system. Thus,
when the partial schedule is computed, the task that Ptr is points will be a task that
haven’t started yet. Thus, the partial schedule will be concatenated to S after the position
of Ptr− 1, as shown in Line 4 of Algorithm 5.

3.2.2 Autonomous Task Completion

When robot k completes task ekj−1 autonomously, the branch will go down one level to
check if the robot’s next task ekj is in the remaining part of the schedule S. Different
strategies will be applied to two sub-branches based on situation assessed.

3.2.3 Task {k, j} in Schedule

In this sub-branch, at time t, the robot k’s next task ekj is in schedule S, and there could be
≥ 0 tasks between the current teleoperated task s′ = {h, i} and {k, j}. The replanning for
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this branch is straight forward. We would compare the nominal autonomous completion
time of the ekj and teleportation completion time following the original schedule, and choose
the one that gives earlier nominal completion time for ekj . The time needed for operator to
be ready for ekj depending on how long the operator needs from the current time t to finish
teleoperation tasks prior to ekj . This time is called T opt

kj . If we neglect the situation where
operator waits for robots, T opt

kj can b computed using the sum of nominal teleoperation
task completion time. Then, the expected completion time for ekj under teleoperation is
T opt
kj +βk

j , since operator will definitely be ready for ekj later than robot k. If αk
j ≤ T opt

kj +βk
j ,

then S = S\{ekj}. Robot k will run ekj autonomously. Otherwise, waiting for the operator
may benefit robot k more, so robot k will wait for the operator.

Letting robot k run ekj autonomously can be analyzed in two situations: 1) the robot
has only autonomous tasks left, and 2) the robot has one or more teleoperated task left.
For 1), the robot may finish its task autonomously, and other than serious delay happening
to this robot, its work has not interference with the rest of the team and/or makespan.
For 2), without delay in following tasks, the robot will be further ahead of the operator,
but we can simply ask the robot to wait for the operator at the beginning of the next
teleoperated task of teleoperation for this task is desired. This means the decision of
running ekj autonomously, given αk

j ≤ T opt
kj , will not impact the peformance of the team in

a negative way.

3.2.4 Task {k, j} not in Schedule

When robot k is ready for task ekj at time t, and ekj is not in S, the decision to be made
here is whether there is a need to teleoeprate ekj and when should it be teleoeprated. The
demand for replanning here would increase, if execution of ekj−1 deviates from the nominal
value. Thus, the percentage difference of actual and nomianl value of ekj−1’s duration is
checked using inequality 3.2

(akj−1 − αk
j−1)/α

k
j−1 > δ (3.2)

δ here is the same as the one in inequality 3.1. Absolute value is not applied in inequal-
ity 3.2, not like in 3.1. This is decided through experiment with our simulation. Without
absolution value, inequality 3.2 performs about the same as with absolute value, and re-
sults in less rounds of replan for a given size of instances. If inequality 3.2 is not satisfied,
then no replanning is needed and robot k will run ekj autonomously.

However, if inequality 3.2 is satisfied, the policy moves on to check if ekj can have an
earlier finish time by making it the next task to teleoperate. T opt

current the expected time
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needed for the operator to finish its current task. If αk
j ≤ T opt

current + βk
j , then for sure there

is a chance that robot k will benefit from be teleoperated. And, a partial schedule will
be computed for tasks that have not started yet, using Iterative Greedy with nominal
values of task completion time. The partial schedule will be concatenated to S after the
position of Ptr, shown in Line 13 of Algorithm 5). Robot k will follow this partial schedule
for the operation of ekj .

Algorithm 5 Branch Policy

Input: P , S, Ptr, X t, δ
1: if {k, j − 1} ∈ S then
2: if |bkj−1 − βk

j−1|/βk
j−1 > δ then

3: partialS = IterativeGreedy(P , X t)
4: S = S[1 : Ptr− 1] + partialS
5: else
6: if {k, j} ∈ S then
7: if αk

j ≤ T opt
kj + βk

j then
8: delete {k, j} from S
9: else

10: if (akj − αk
j )/α

k
j > δ then

11: if αk
j ≥ T opt

current + βk
j then

12: partialS = IterativeGreedy(P , X t)
13: S = S[1 : Ptr] + partialS
14: Follow S

In Algorithm 5, Iterative Greedy is expanded to take team state X t as an input,
so that Iterative Greedy will clearly know which tasks are those have not started yet and
those are under execution.
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Figure 3.1: Selective Replan Flow Chart
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3.3 Baseline Policies

We consider the following baseline solution methods to assess the performance of the pre-
sented Selective Replan Policy. These policies differ in terms of when and how they update
the schedule given the current state of the system. Note that, in all of those polices, we
still only replan schedule when at least one robot is available to start its next task (i.e.
Task Completion).

No Replanning: Given a problem instance, a schedule is obtained using iterative
greedy presented in Section 2.5, with nominal task duration. This schedule is then followed
until all robots complete their missions.

Always Replanning: Under this policy, we start with a schedule obtained using the
No Replanning policy. Every time a robot finishes a task, an updated schedule is obtained
using the iterative greedy policy given current state of the system and nominal value of
task duration. Tasks already in progress are excluded from being scheduled.

Makespan-Triggered Replanning: Every time a robot finishes a task, expected
makespan of the system is computed (Sampling 100 times for the problem and take the
average makespan.). If the new value is larger than the previous computed expected
makespan, then an updated schedule is obtained using the iterative greedy policy given
current state of the system. This policy tries to limit the number of schedule recomputa-
tions by only running iterative greedy algorithm if expected makespan increases beyond
the previous estimate.

Naïve Greedy Policy: Under this policy, every time a task from the schedule is
completed, the operator is simply scheduled to teleoperate the next available task of the
expected makespan robot (Sampling 100 times for the problem, and sum the completion
time for each robot only when they are the makespan robot of a turn. Take the robot has
largest sum.). If the makespan robot is still executing a task, the operator waits for the
robot.

3.4 Evaluation and Results

In this section, we validate the efficacy of the proposed solution approach using a simulated
multi-robot stochastic scheduling problem. We present performance comparison for the
scheduling problem under the following policies: 1) No Replanning, 2) Always Replanning,
3) Selective Replanning, 4) Makespan-Triggered Replanning, and 5) Nav̈e Greedy. The
problem and the solution frameworks for all algorithms were implemented using MATLAB.
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We set up the system with K robots working on independent missions each consisting
between n1 and n2 tasks. To generate an instance, for each task of each robot, two numbers
are sampled from a uniform random distribution and are rounded to 2 decimal places. One
is used as the nominal task duration under teleoperation λβ, and the sum of two is used
as the nominal task duration under autonomous operation λα:

λβ ∼ U [30, 60], ∆τ ∼ U [0, 40],

λα ← λβ +∆τ. (3.3)

The probability model for task duration is chosen to be exponential distribution. In the
system, a robot communicates with the scheduler only when a task is finished. Exponential
distribution has the memoryless property, and it suits to describe a situation like robot
keeping trying a task until it is successfully completed. Typical examples are a robot
trying to go across the street at where is no traffic light and robot trying to grab a highly
deformed item.

For testing, 1000 problem instances were created for a given instance size and each
instance was simulated 100 times under each of the above solution methods. Average
makespan of the problem instance was recorded at the end of the simulations.

Fig. 3.2 shows the average makespan of the simulated system with policies relative to
the deterministic estimate in percentage difference. This measurement is called Relative
Difference in Makespan (Rµ) and is defined in equation 3.4. µ(Sp) is the average makespan
achieved following a policy, and µd is the deterministic estimation of makespan computed
using nominal task duration.

Rµ =
µ(Sp)− µd

µd
(3.4)

Rµ is obtained for various team sizes (number of robots and tasks in missions). In
the figure, we have the following observations: 1) As number of robots in the system
increases, the relative performance of all policies degrade. 2) As number of tasks in robots’
missions increase, the relative performance of all policies improves slightly. 3) The Always-
Replanning policy performs the best with the Selective-Replanning being quite similar in
performance.

In addition to take the Rµ average of 100 iterations for each problem instance, we
capture the worst 20 realizations out of 100 and take average for these portion. Fig. 3.3
shows the Selective Replan outperforms most other policies in the worst 20% cases, with
a minor disadvantage when compared to the Always Replan policy. An interesting finding
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here is the Makespan-Triggered Policy outperforms the Greedy Policy in worst 20%, while
the converse happens in the average case.

The main advantage of the Selective Replanning policy is seen when we look at the
number of schedule replan that it executes. Table 3.1 shows the average number of times
that the schedule is replanned under three different policies with varying number of robots
and range for number of tasks per robot. Recall that the Offline and the Greedy policies
do not replan the schedule. From the table, we observe the following:

1) The Makespan-triggered replanning policy results in the least amount of replanning
followed by the Selective-replanning and then the Always replanning policy.

2) As the number of robots and tasks increases, the average amount of replanning also
increases under all three policies.

The results demonstrate that the Selective Replanning policy is able to perform just as
good as the policy that replans at every state change while reducing the amount of replan
on average by 55.85%.

Table 3.1: Average Number of Replanning Done under Different Policies

K = 2
Nk ∈ [5, 10]

K = 4
Nk ∈ [5, 10]

K = 6
Nk ∈ [5, 10]

K = 2
Nk ∈ [15, 20]

K = 4
Nk ∈ [15, 20]

K = 6
Nk ∈ [15, 20]

Always Replanning 13.1 26.3 38.7 32.7 65.5 98.5
Selective Replanning (δ = 0.4) 6.9 11.5 15.7 16.4 26.4 36.9

Makespan-Triggered Replanning 2.0 1.3 1.1 1.7 1.2 1.0
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Figure 3.2: Average system makespan under different policies relative to the deterministic esti-
mate.
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Figure 3.3: Worst 20% average system makespan under different policies relative to the determin-
istic estimate.
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Figure 3.4: Average system makespan of Selective replan policy and number of average replanning
executed for different values of δ relative to the deterministic estimate.
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Chapter 4

Discussion and Summary

We study a system consisting one human operator and multiple robots, with possible ex-
tension to multiple human operators. The goal is to schedule the human operator to a team
of multiple robots to help robot complete some challenging tasks with high efficiency, such
that the team makespan is minimized. Stochasticity is also considered in task completion
time of autonomous and teleoperation modes.

We first show that the deterministic version of the problem is NP-Hard through re-
duction from the 2p1n− 3SAT problem. MILP model is established for the deterministic
problem to generate the optimal solution. Due to the nonscalbility of MILP, we developed
the Iterative Greedy algorithm that cycles through two sub-routines: Greedy Insertion
and Block Removal. This algorithm repeatedly expand the teleoperation list by one task
every cycle. Greedy Insertion is the primary selection methods, and insertion from Block
Removal takes place to improve the schedule by removing blockages when needed. The al-
gorithm scales well with problem size shown in our simulation with instance up to 4 robots
and 70 tasks each. It finds schedule which performs close to MILP solution for small to
moderate sized problem. Also, it outperforms baseline greedy solutions. The Iterative
Greedy algorithm can be applied to any greedily-generated schedule to further improve the
performance.

A parameterized branch policy (Selective Replanning) utilizing Iterative Greedy for
re-planning is developed for the stochastic version of the problem. With the initial schedule
computed with Iterative Greedy, the policy checks if re-plan is needed with a serious of
conditions and decide the next step movement for agent(s) based on the terminal leaded
by condition checks. Users can change the parameter to adjust the frequency of re-plan,
based on user preference and performance level they are seeking. The simulation results
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show Selective Replanning only takes one third to half of replans compare to the Always
Replanning policy, and the average performance is almost the same to Always Replan for
parameter value up until 0.4. Selective Replanning achieves good average performance
with limited number of replans.

For future research, our interest mainly falls in developing more comprehensive human-
robot-collaboration model by incorporating more objective, such as workload, and con-
straints based on real-world collaboration setup and environment. Additionally, we are
interested in study different models of predicting the robot completion time, such as nor-
mal distribution with bounds. Instead of distribution of completion time, we can also try
a fixed distance with velocity prediction model.
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Appendix A

Properties of Exopnential and
Hypoexponential Distribution

A.0.1 Exponential Distribution

Suppose that X1 and X2 are independent random variables with distribution of Exp(λ1)
and Exp(λ2), the density function of X = max{X1, X2} can be determined as follow.

P (X1 ≤ x) = F1(x) =

∫ x

0

f1(x)dx.

P (X2 ≤ x) = F2(x) =

∫ x

0

f2(x)dx.

As X1 and X2 are indpendent,

P (X = max{X1, X2} ≤ x) = P (X1 ≤ x)P (X2 ≤ x).

FX(x) = F1(x)F2(x) = (1− e−λ1x)(1− e−λ2x).

Then, the density function for X is

fX =
d

dx
FX(x) = λ1e

−λ1x + λ2e
−λ2x − (λ1 + λ2)e

−(λ1+λ2)x.

The expectation of X = max{X1, X2} is

E(X) =

∫ ∞

0

xP (X = x)dx.
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=

∫ ∞

0

xfXdx.

=

∫ ∞

0

x(λ1e
−λ1x + λ2e

−λ2x − (λ1 + λ2)e
−(λ1+λ2)x)dx.

=
1

λ1
+

1

λ2
− 1

λ1 + λ2
.

A.0.2 Hypoexponential Distribution

Hypoexponential distribution is defined as the sum of independent exponential random
variables with different rate λ (generalized Erlang Distribution). Suppose there are G
independent exponentially distributed random variables Xg, g ∈ G = {1, . . . , G}, with rate
parameters {λ1, . . . , λG}, λi ̸= λj, given i ̸= j. The random variable X =

∑G
g=1Xg follows

Hypoexponential Distribution.

Hypoexponential distribution has the probability distribution function as the weighted
average of the individual exponential distribution. The weight for the gth element is denoted
by Wg, and expressed in Equation A.2.

f(X = x) =
G∑

g=1

Wg · (λge−λgx), (A.1)

Wg =
∏

j∈G\{g}

λj
λj − λg

. (A.2)

The cumulative distribution function F (X) for Hypoexponential is as follow:

P (X ≤ x) = F (x) =

∫ x

0

f(x)dx, (A.3)

=
G∑

g=1

Wg · (1− e−λgx).

Suppose that Y1 and Y2 are two independent Hypoexponentially distributed random
variables. Y1 is the sum of independent exponential random variables with rate {λg1 , . . . , λgG},
and Y2 is the sum of independent exponential random variables with rates {λh1 , . . . , λhH

}.
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Let Y = max{Y1, Y2}. Then the cumulative distribution function for Y is the multipli-
cation of cumulative distribution functions of Y1 and Y2.

FY (y) = FY1(y) · FY2(y), (A.4)

=

(
G∑
i=1

Wgi(1− e−λgiy)

)(
H∑
j=1

Whj
(1− e−λhj

y)

)
. (A.5)

We can obtain the probability density function f(Y ) by taking the first order derivative
of F (Y ) as shown in Equation A.6.

fY (y) =
d

dy
FY , (A.6)

=

(
G∑
i=1

Wgiλgie
−λgiy

)(
H∑
j=1

Whj
(1− e−λhj

y)

)

+

(
G∑
i=1

Wgi(1− e−λgiy)

)(
H∑
j=1

Whj
λhj

e−λhj
y

)
.

Finally, the expectation of Y is the first moment.

E(Y ) =
G∑
i=1

H∑
j=1

Wgi ·Whj
· ( 1

λgi
+

1

λhj

− 1

λgi + λhj

) (A.7)

A.0.3 Expand for k Hypoexponential Variables

Suppose that {Y1, . . . , YK} are K independent Hypoexponentially distributed random vari-
ables. Y1 is the sum of independent exponential random variables with rates {λg11, . . . , λg1G1},
and Yk is the sum of independent exponential random variables with rates {λgk1, . . . , λgkGk}.

Let Y = max{Y1, . . . , Yk}. Then, the cumulative distribution function for Y is the
multiplication of cumulative distribution functions of Y1 to Yk.
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FY (y) = FY1(y) · FY2(y) . . . · FYk
(y), (A.8)

=
k∏

i=1

(
Gi∑
j=1

Wgij(1− e−λgijy)

)
. (A.9)

To simplify the expression, let’s call each term in the above product

Pi =

(
Gi∑
j=1

Wgij(1− e−λgijy)

)
. (A.10)

We can obtain the probability density function f(Y ) by taking the first derivative of
F (Y ) as shown in the following equation.

fY (y) =
d

dy
FY , (A.11)

=
k∑

i=1

(( Gi∑
j=1

Wgijλgije
−λgijy

)
(A.12)

·
∏
l∈K\i

( Gl∑
l=1

Wgil(1− e−λgily)

))
(A.13)

The expression of expectation of Y can be obtained by finding first moment of fY (y)
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