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Abstract

Deep learning has been widely used in Two Dimensional (2D) computer vision and has
led to the realization that machine learning techniques have become one of the key re-
search directions for future scientific research. In 2D computer vision, CNN[49], RNN[34],
SENet[40], Transformer[89], as well as many other algorithms show amazing results in 2D
data. With the accelerating development of computer version technologies, the exploita-
tion of 2D data is insufficient for machine learning research and researchers considering
the transfer of 2D computer vision algorithms to Three Dimensional (3D) domain. Point
clouds is an important expression of 3D data. The more detailed information found in
3D point cloud data compared to 2D point cloud data, it has accelerated research in
recent years, which has led to significant breakthroughs in artificial intelligence, deep
learning, autonomous driving, tracking, and other domains. There have been a large
number of deep learning methods recently proposed based on point clouds. PointNet[72],
P4Transformer[21], and SampleNet[47] show significant success in 3D domain. Disorder
and sparse shape make a challenge in designing deep neural networks for point clouds
processing.

In chapter one, we will introduce the background of point clouds, the existing pub-
lic datasets and evaluation metrics, then investigate and analyze deep learning methods
based on classification of point clouds. In chapter two, we will introduce generation of
point clouds and analyse the existing methods based on classification and segmentation.
Furthermore, we investigate attention mechanism in computer vision, includes background
of attention mechanism, evolution of attention mechanism, spatial and channel attention
in vision and point cloud-based attention model in deep learning. Based on the chapter one
and two analyse and investigation, we found that this data type’s ability to provide depth
information, point sparsity and disorder pose a challenge in designing appropriate deep
neural networks to process them and it is still challenging to explore local relationships
in point clouds data. so, in chapter three, in order to better extract features and obtain
geometric information we will propose a point attention (PointAT) model and propose
attention value (AT value) model for feature fusion to apply geometric relationship to the
data. Then, we propose a new spatial and channel attention-based network (SCA). The
SCA is the overall structure of the network, and the main purpose is to connect PointAT
and AT value model, then capturing meaningful geometric information by applying the
geometric relationship between point clouds patches to the model, then propose an auto
pooling framework to extract global features. In this work, we concentrate on learning
geometric relationship between point cloud data. For this purpose, we introduce a point
attention model based on spatial and channel attention to learn the geometric relationship
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between point clouds, and further combine the geometric relationship with the point cloud
data by the AT Value Model. Finally, we introduce an adaptive downsampling structure,
Autopooling. This downsampling structure considers each point’s importance weight and
picking key points adaptively, which can be used with convolutional networks. Extensive
experiments conducted on two benchmark datasets (ModelNet40[96] and ShapeNet[11])
clearly demonstrate the effectiveness of our SCA and SCA-Auto (SCAA with Auto pool-
ing) methods. Finally, in chapter four, we summary our contribution, and significant of
study findings and limitations of proposed methods. Then, we get future research directions
based on our analyse and investigation.
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Chapter 1

Introduction

1.1 Background

1.1.1 Purpose and Objective

With the accelerating development of computer version technologies, there are various
deep learning methods for 2D data that are widely used. However 2D computer vision
models lack the capacity to fully capture the structure they aim to represent. Research
that considers transferring 2D computer vision algorithms to 3D fields rectify this lack.
This data type can provide depth information; unfortunately, point sparsity and disorder
pose a challenge when designing appropriate deep neural networks to process them. In
addition to this, it is still challenging to explore local relationships in point cloud data.
The purpose of this thesis is to examine the effect geometric information between point
cloud data has on the model and to perform classification and segmentation tasks on the
data. This thesis provides an overview of the current state of research and development
regarding point cloud data under deep learning and summarizes the point cloud public
dataset.

1.1.2 Public Datasets

With the emphasis on point cloud and deep learning, as well as the improvement of the data
collection research, it is possible to use a large amount of point cloud public data. Based
on the point cloud method for deep learning, this article is divided into three different
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sections,datasets for classification, detection, tracking and segmentation (see Table 1.1),
Data sources are summarized in Table 1.2.

Point cloud-based classification is divided into 3 branches: 3D point cloud, point cloud
action recognition, and point cloud pose estimation. There are real 3D scenes, non-rigid
objects, and rigid object datasets types, as shown in Table 1.1. Real 3D scene datasets
contain a variety of common objects with different levels, and enviroment noise which make
these datasets more difficult to pre-process. Rigid object datasets and non-rigid object
datasets are synthetic datasets, and there is no environmental nor background noise. The
non-rigid object datasets are more fine-grained, and have more point details and more
boundaries for object depiction compared to rigid object datasets, which have a defined
shape and proper particle orientation.

For point cloud-based detection and tracking in Table 1.1, there are three types of
scenes features: driving scenes, room scenes, and indoor scenes. The driving scene datasets
are used for autonomous driving, which includes the vehicle data suite. The room scene
datasets are collected from the room. The indoor scene datasets include large-scale indoor
areas, like the classroom and the office.

For point cloud-based segmentation in Table 1.1, the scene features under this category
are divided into several subcategories: indoor scenes, outdoor scenes, and urban scenes.
The urban scenes are sparse data; Unlike outdoor scenes, indoor scenes have corresponding
depth and segmentation maps.

1.1.3 Evaluation Metrics

Different sections have different evaluation metrics, as shown in Table 1.3. For point cloud
classification, Overall Accuracy (OA), Mean Class Accuracy (mAcc), MIoU, Error Rate
(ER), and Mean Average Precision (mAP) are frequently used evaluation metrics. OA is
the accuracy for the whole data set (irrespective of category), while MAcc is calculated for
each category and then averaged. Error rate describes the percentage of misclassification
by the classifier. Intersection over Union (IoU) measures the degree of overlap between the
prediction frame and the true frame. Average Precision (AP) is the area under the curve
drawn using different combinations of precision and recall points. MAP is the average
of AP values for all categories. For point cloud detection and tracking, common evalua-
tion metrics include MAP, Multiple Object Tracking Accuracy (MOTA), Multiple Object
Tracking Precision (MOTP), Mostly Tracked (MT), Mostly Lost (ML), and F1-Score (F1-
Score). These metrics are used to evaluate the effectiveness of the model. For point cloud

2



Table 1.1: A summary of Existing Datasets for Point Cloud
Classification Dataset

3D Point Cloud Dataset
Datasets Name Year Samples Classes Training Test Object Feature

Sydney Urban Objects [17]2013 588 14 - - Real 3D Scenes
ModelNet10 [95] 2014 4899 10 3991 605 Rigid Object
ModelNet40 [95] 2014 12311 40 9843 2468 Rigid Object
ShapeNet [11] 2015 51190 55 - - Non-rigid Object
SHREC15 [50] 2015 1200 50 - - Non-rigid Object

ScanObjectNN [88] 2019 2902 15 2321 581 Real 3D Scenes
Point Cloud Action Recognition Dataset

Datasets Name Year Samples Classes Training Test Object Feature
MSR-Action3D [53] 2010 567 20 - - Rigid Object
SUN RGB-D [83] 2015 10335 37 5285 5050 Real 3D Scenes

NTU RGB+D 60 [78] 2016 56880 60 40320 16560 Real 3D Scenes
ScanNet [16] 2017 12283 17 9677 2606 Real 3D Scenes

NTU RGB+D 120 [55] 2019 114,480 120 - - Real 3D Scenes
Point Cloud Pose Estimation Dataset

Datasets Name Year Samples Classes Training Test Object Feature
HPS [31] 2021 300K - - - Real 3D Scenes

Detection and Tracking Dataset
Datasets Name Year Samples Classes Training Test Scenes Feature
KITTI [25] 2012 80256 8 7481 7518 Driving

SUN RGB-D [83] 2015 10335 37 5285 5050 Room
S3DIS [2] 2016 - 13 - - Indoor & Room

ScanNetV2 [16] 2017 - 18 - - Room
RBO [64] 2018 - – - - Room

Argoverse [12] 2019 323557 15 205942 78143 Driving
H3D [71] 2019 - 8 - - Driving

Waymo Open [85] 2019 - 4 - - Driving
nuScenes [10] 2019 40157 10 28130 6008 Driving
Lyft L5 [38] 2020 - 9 - - Driving
CODD [3] 2021 - - - - Driving

Segmentation Dataset
Datasets Name YearPoints SamplesClasses Type Scenes Feature Sensors
Synthia [77] 2016 - 13 - Outdoor -
S3DIS [2] 2016 273M 20 Static point cloud Indoor Matterport

ScanNet [16] 2017 768000M 13 RGB-D Intdoor RGB-D
Semantic3D [32] 2017 4009M 8 Static point cloud Outdoor TLS

SemanticKITTI [8] 2019 4549M 28 sequential point cloud Outdoor MLS
Toronto-3D [87] 2020 78.3M 8 Static point cloud Urban MLS

SemanticPOSS [69] 2020 216M 14 sequential point cloud Outdoor -
SensatUrban [42] 2020 2847M 13 Static point cloud Urban UAV
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Table 1.2: A Summary of Existing Datasets for Point Cloudn
Classification Dataset

3D Point Cloud Dataset
Datasets Name Data Sources

Sydney Urban Objects [17] https://www.acfr.usyd.edu.au/papers/SydneyUrbanObjectsDataset.shtml
ModelNet10 [95] https://modelnet.cs.princeton.edu/
ModelNet40 [95] https://modelnet.cs.princeton.edu/
ShapeNet [11] https://shapenet.org/
SHREC15 [50] https://www.cs.cf.ac.uk/shaperetrieval/shrec15/

ScanObjectNN [88] https://hkust-vgd.github.io/scanobjectnn/
Point Cloud Action Recognition Dataset

Datasets Name Data Sources
MSR-Action3D [53] https://sites.google.com/view/wanqingli/data-sets/msr-action3D
SUN RGB-D [83] https://rgbd.cs.princeton.edu/

NTU RGB+D 60 [78] https://rose1.ntu.edu.sg/dataset/actionRecognition/
ScanNet [16] http://www.scan-net.org/

NTU RGB+D 120 [55] https://rose1.ntu.edu.sg/dataset/actionRecognition/
Point Cloud Pose Estimation Dataset

Datasets Name Data Sources
Human POSEitioning System [31] http://virtualhumans.mpi-inf.mpg.de/hps/

Detection and Tracking Dataset
Datasets Name Data Sources
KITTI [25] http://www.cvlibs.net/datasets/kitti/

SUN RGB-D [83] https://rgbd.cs.princeton.edu/
S3DIS [2] http://buildingparser.stanford.edu/dataset.html

ScanNetV2 [16] http://www.scan-net.org/
RBO [64] https://zenodo.org/record/1036660/#.Yostf-zMJhE

Argoverse [12] https://www.argoverse.org/
H3D [71] https://usa.honda-ri.com/h3D

nuScenes [10] https://www.nuscenes.org/
Lyft L5 [38] https://level-5.global/

Waymo Open [85] https://waymo.com/open/
CODD [3] https://github.com/eduardohenriquearnold/CODD

Segmentation Dataset
Datasets Name Data Sources
ScanNet [16] http://www.scan-net.org/
S3DIS [2] http://buildingparser.stanford.edu/dataset.html

Synthia [77] https://www.v7labs.com/open-datasets/synthia-dataset
Semantic3D [32] https://www.semantic3D.net/

SemanticKITTI [8] http://www.semantic-kitti.org/
Toronto-3D [87] https://github.com/WeikaiTan/Toronto-3D

SemanticPOSS [69] http://www.poss.pku.edu.cn/
SensatUrban [42] https://github.com/QingyongHu/SensatUrban
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Table 1.3: A Summary of Evaluation Metrics for Point Cloud Datasets Classification,
Detection and Tracking, and Segmentation

Evaluation Metrics

Point Cloud
Classification

Overall
Accuracy(OA)

mean Class
Accuracy
(mAcc)

mean Intersection
Over Union

(mlou)
Error Rate

mean Average
Precision
(mAP)

-

Point Cloud
Detection &
Tracking

Multiple Object
Tracking Accuracy

(MOTA)

Multiple Object
Tracking Precision

(MOTP)

Mostly Tracked
(MT)

Mostly Lost
(ML)

mean Average
Precision
(mAP)

Fl
-Score

Point Cloud
Segmentation

Pixel Accuracy
(Global Acc)

mean
Accuracy(mA)

mean Intersection
over Union
(mloU)

Overall
Accuracy(OA)

- -

segmentation, Pixel Accuracy (Global Acc) (Pixel Accuracy (Global Acc)), MAP, MIoU
and OA are the most commonly used evaluation metrics.

1.2 Point Clouds

1.2.1 Point Cloud in Theory

We first briefly introduce relationship between point clouds and 3D images. A 3D im-
age is a special form of information expression, and its features are expressed as data in
3Dof space. These expressions include: depth maps (expressing the object’s distance from
the camera in grayscale), geometric models (created by Computer Aided Design Software
(CAD)), and point cloud models (all reverse engineering devices take objects and make
them sample into point clouds). Compared to 2D images, 3D images can achieve natu-
ral object background decoupling due to the additional dimension of information. Point
cloud data is the most common and basic 3D model. Point cloud models are often ob-
tained directly from measurements, with each point matching a measured point without
any processing measures, Therefore, they contain the largest amount of information. The
information hidden in point clouds needs to be extracted by other extraction methods; the
process of extracting information in point clouds is 3D image processing.

A point cloud is a data structure usually used to represent 3D geometries. It is a massive
set of points in spatial coordinates, directly represented by extracting 3D information from
a stereo-vision camera, as well as a depth map representation that can be generated using
RGB-D [1]. Figure 1.1 is point cloud of an airplane.
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Figure 1.1: Point Cloud of an Airplane [95]
.

1.2.2 Point Cloud Characteristic

Point cloud data is different from traditional Pure, Red, Green, and Blue (RGB) images
in that the data is not regularly arranged. It has two important characteristics: (1)
displacement invariance (2) rotation invariance [72].

Displace invariance implies that the order of storage in the point cloud is independent
of the point cloud, and disrupting the order of each row does not affect an original point
cloud [72]. This feature can be found by dropping certain rows of the point cloud data
in order, as shown in Figure 1.2, 1.3, 1.4, 1.5, 1.6, 1.7. It can be seen that deleting point
cloud data sequentially does not delete a certain continuous region of the point cloud, but
instead makes the original point cloud sparse.

Rotational invariance refers to how in 3D space, point cloud data is 3D, and 3D coor-
dinate rotation does not change the structure or form of the original data. Therefore, two
important characteristics of point cloud data arise: (1) displacement invariance (2) rota-
tion invariance. These two characteristics determine that algorithms cannot be designed
in the same way as traditional images.
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Figure 1.2: Remaining number of point
clouds after deleting half of them in or-
der: 8192

Figure 1.3: Remaining number of point
clouds after deleting half of them in or-
der: 4096

Figure 1.4: Remaining number of point
clouds after deleting half of them in or-
der: 2048

Figure 1.5: Remaining number of point
clouds after deleting half of them in or-
der: 1024

Figure 1.6: Remaining number of point
clouds after deleting half of them in or-
der: 512

Figure 1.7: Remaining number of point
clouds after deleting half of them in or-
der: 256
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1.3 Object Classification

1.3.1 3D Object Classification on Point Clouds

Currently, 2D classification methods have become very prosperous. For example, ViT [19]
has achieved excellent results by applying the Transformer method for classification by
using the attention mechanism. Point cloud classification becomes challenging, due to the
unstructured form of the data and the variation in the amount of data. [30].

The regular pipeline for point cloud-based classification involves extracting features
from point cloud datasets to get the global features. By embedding the global features with
several classifiers, as shown in Figure 1.8, labels can be achieved. In the early deep learning
tasks for point clouds, models and methods are implemented based on classification tasks
and priority. For example, MVCNN [84] performs the classification task by composing
data from multiple views and performing aggregation of the data under each view.

Figure 1.8: Regular Pipeline of Point Cloud Classification[9].

1.3.2 3D Object Classification Methods on Point Clouds

Based on Two Dimensional Methods

SqueezeSeg [93] was proposed by Bic hen Wu et al,. in 2017. A lightweight convolutional
neural network was used to achieve real-time semantic, instance classification of 3D ob-
jects in point clouds. In order to easily process the 2D convolutional neural network, the
point cloud data is first projected to obtain the front view, then the input image is feature
extracted and using the SqueezeSeg [93] convolutional network, the output is optimized
using the conditional Random Field (CRF) . Geometric shared network (GS-Net) [101]
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can specifically and efficiently learn point descriptors, reduce losses due to image trans-
formations, and improve the robustness of the model. The GSC module in GS-Net can
effectively capture both local and global geometric features, making the model significantly
more effective in classification tasks. The VIASeg [113] model, in which the authors convert
color information to data-level embedded in point cloud data, was designed so that the
colour information of the image provides rich visual information and improves the classi-
fication performance. This approach is a multi-modal (visual + point cloud) combination
approach. LU-Net [48] extracts high-level 3D features for each point of the point cloud ,
then projects these features to a 2D multi-channel front view. This model benefits from
high level 3D feature extraction and embeds 3D local features into the 2D image, which
allows the model to be used effectively. RangeNet++ [65] was proposed by Andres Milioto
et al,. in 2019. This model projects the 3D data to a 2D front view. This model has high
classification performance on point cloud data and obtains the full label of the original
point cloud.

Based on 3D Methods

JSNet [110] extracts features from the original point cloud data In order to improve the
feature discrimination, a feature fusion method is incorporated to perform feature fusion
at backbone for different levels. Using the joint instance semantic segmentation module,
semantic features are subsequently embedded in the space and feature fusion is performed
to improve feature robustness. Furthermore, the model aggregates the fused features into
the feature space to improve the classification task. MPNet [82] was proposed by Tong He
et al,. in 2020. Due to the complex 3D structure of point cloud data and the irregular
distribution of point cloud data it become more difficult to process the distribution and
learning of point cloud data, MPNet [82] utilizes a memory module to achieve small batch
processing. Each small batch of samples is learned and memorized to achieve memory en-
hancement, to reduce the problem of category imbalance. SceneEncoder [98] was proposed
as a scene encoding module to achieve enhanced global information. This module can filter
categories that do not belong and perform classification tasks. A regional collinearity loss
was designed to approach features and neighboring points of the same label to improve
feature recognition. The SceneEncoder [98] achieved State of the Art (SOTA) experimental
effects.
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1.4 Significance and Contributions

As we can see in this subsection, because of the sparsity and irregularity of the point
cloud data, CNN in 2D does not work directly on the 3D point cloud data, which requires
the point cloud data to be transformed first. SqueezeSeg [93], Geometric Shared Network
(GS-Net) [101], VIASeg [113], LU-Net [48] and RangeNet++ [65] project 2D point cloud
data to the 2D plane, and use different methods to improve the projection. Thus, it can be
inferred that the methods in the projection of 3D data to 2D will be more diverse, which is
an interesting and intuitive idea since the projection process leads to loss of information.
JSNet [110], MPNet [82], SceneEncoder [98], which are all based on 3D data, the point
cloud data is directly input to the model and the feature information is extracted in 3D
space. In this process, the point clouds data can be helped by adding feature fusion and
attention mechanism. In future work, the missing information due to sparsity of point
cloud data can be complemented by incorporating additional methods to provide richer
information.

Point cloud data in its 3D representation is now widely used and referenced in various
areas with great importance. Point cloud data can play an important role in the explo-
ration of 3D space. In point cloud classification tasks, it provides important information
for human-related tasks, the data it provides important information for human-related
tasks, such as point cloud action recognition, P4Transformer [21], PSTNet [22], PoseNet
[111], HandVoxNet [61], PVN3D [36], point cloud pose estimation PointContrast [97],
HandVoxNet [61] and PVN3D [36]. In point cloud detection and tracking, Transformer3D-
Det(T3D) [109], VoteNet [18], Channel-wise Transformer 3D Object Detection (CT3D)
[79], Group-Free [59], 3DETR [66], Semantic Point Generation (SPG) [102],Range-Guided
Cylindrical Network [74], RangeDet [23],PV-RCNN [81] and CenterPoint [103] can be ap-
plied to automatic driving, tracking, etc. In point cloud segmentation, SqueezeSeg [93],
Geometric Shared Network (GS-Net) [101], VIASeg [113], LU-Net [48], RangeNet++ [65],
JSNet [110], MPNet [82], and SceneEncoder [98] perform the segmentation task well. These
models perform more accurate extraction of global to local features. Main methods include
adding attention mechanism, adding more information to the original point cloud data, and
mining sequence information in spatial and temporal dimensions.

Point cloud data can present objects well in 3D , which contains detailed information.
Therefore, methods to mine information becomes critical. PointContrast [97] and MPNet
[82] improved the model effect by extracting local features. We believe this is a fruitful
and useful research direction. In the process of mining local information, we can avoid
losing global information after extracting local features by performing joint local and global
feature extraction.
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3D point cloud data has been of great use for researchers to study 3D real information;
however, due to non-dense expressions of point cloud data, which present a sparse state,
there is no information in the surrounding areas of points. This has become a major area
for research. By filling the missing information in the non-dense representation of point
cloud, we think this is a very worthy research direction. Few studies have been conducted
focusing on supplementing point cloud data with missing information in this context here.
In HandVoxNet [61], researchers add depth maps to supplement the missing information of
point cloud data. In Semantic Point Generation (SPG) [102], semantic data and original
point cloud data are fused for data tolerance to reproduce the original point cloud missing
data. VIASeg [113] embeds colour information into the point cloud data to provides rich
visual information to the point cloud data

Data processing in 2D images have been very diverse, including data enhancement,
data fusion, data inversion, and data transformation. There has been great progress in
data processing for 2D data and many algorithms have been proposed. In 3D data, data
processing of 3D data has also attracted attention. PointAugment [52] performed data
fusion of the enhanced 2D data with 3D data. SampleNet [47] added a projection operation
to transform the data and achieved a new point cloud sampling. LU-Net [48] extracted
the point cloud data with high-level features and embedded 3D local features into 2D
data to obtain the new point cloud data. RangeNet++ [65] researchers used projected the
2D data to get 3D data. JSNet [110] performed a fusion of different layers of backbone
features using a data fusion method. The above papers have shown that data processing
for 3D point cloud data is a very effective model enhancement method, increasing the
robustness of the model and improving the model effectiveness by. There are still many
data processing methods that are worth developing in order to obtain new data to increase
the training data.

The attention mechanism is one of the most popular techniques in machine vision and
has been used with amazing results in many computer vision tasks [46]. Its application in
neural networks has also made it a prominent topic. In [46], researchers have observed that
humans do not process a whole scene; instead a person’s attention will select information
the mind deems key to guide later decisions. This selective screening of the whole greatly
eliminates invalid features and reduces complexity. Feature extraction can be performed
accurately and efficiently for the object in the model. P4Transformer [21], Transformer3D-
Det(T3D) [109], VoteNet [18], Channel-wise Transformer 3D Object Detection (CT3D)
[79], Group-Free [59], 3DETR [66] applied the attention mechanism to the their respective
models and achieved successful results on the whole effect of the model. From these
papers, the main focus of many existing models based on attention mechanisms is on
feature extraction and analysis of weights for feature tasks which has have the advantage
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of improving the overall performance effect of the model in a very direct way. However,
there is little attention to the problem of localization accuracy, Thus, localizing attention
regions is a worthwhile study and interest point for the future. In particular, in 3D point
cloud data, there is a problem of overlap in the range of attention regions, which makes
it possible to design new attention models in three-point cloud data as the focus of future
attention.

Many loss functions have been proposed to improve the capability of networks and
further optimize models. The common loss functions are Cross-Entropy Loss, Center Loss,
Triplet Loss, etc. In 3D point cloud, researchers have also designed new loss functions for
point cloud data, such as PointInfoNCE Loss [97], to further better optimize the model
for higher performance. The effect of different loss functions on point cloud data is a very
important direction.

Point cloud models are built using two streams, 2D-based and 3D-based methods. The
2D-based method mainly converts 3D point cloud data into 2D maps for various tasks.
The 3D-based approach inputs 3D point cloud data directly into the model. There are
now also methods that combine 2D and 3D methods. Using fused image information to
help with 3D tasks is also an interesting idea.

From this, modality can be represented as a source or expression of information. The
purpose of Multi-modal Machine Learning (MMML) is to perform via machine learning
thus lending to the ability to process and understand multi-modal information [6]. In ma-
chine vision, multi-modal learning can be formed between image, video, audio, and seman-
tics. Researchers can complement point cloud data by adding information from different
modalities to the point cloud data. Some researchers have tried to use fluid mechanics to
help improve overall model performance. For example, by considering hydrodynamic nat-
ural flow phenomenon, AdvectiveNet[ [35] processed point cloud data, PointContrast [97]
added depth differences to estimate depth complementary information, and HandVoxNet
[61] added depth maps for pose estimation. Multi-modal point cloud data remains a worth
problem for future research as it can be used for data complementation or to help the
overall model.

There is a novel approach which integrates point cloud data tasks into the pipeline of
other related tasks. Many multi-channel methods are already proposed. For example, point
cloud-based classification models PointContrast [97], point cloud-based pose estimation
PoseNet [111], HandVoxNet [61], PVN3D [36], and point cloud-based 3D methods JSNet
[110]. In the subsequent tasks, exploring how to better utilize and implement the multi-
channel approach and use other tasks to better facilitate effective mining of point cloud
data is an important future research direction.

12



1.5 Summary

In chapter one, we introduced the background of point clouds, the existing public datasets
and evaluation metrics, then investigate and analyze deep learning methods based on
classification of point clouds. Point cloud data in its 3D representation is now widely
used and referenced in various areas with great importance. Point cloud data can play an
important role in the exploration of 3D space. In chapter two, we will illustrate what is the
point cloud data, the generation of point clouds, then we will analyse the point cloud-based
methods by analysing classification task, segmentation task and attention in vision.

For the above research content, our research intends to focus on the following three
aspects: (1) an overview study about point clouds. (2) proposing the problems faced by
point clouds based on deep learning according to the research; (3) proposing solutions and
model SCA according to the problems. The specific technical route is shown in 1.9.

Figure 1.9: The image of technical route
.
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Chapter 2

Literature Review

2.1 Generation of Point Clouds

2.1.1 LIDAR

With the emergence of cutting-edge 3D acquisition technologies, 3D sensors, such as Li-
DARs, and RGB + Depth Map (RGB-D) cameras [14], are becoming increasingly afford-
able and available. 3D data acquired by these sensors can provide rich geometric, shape,
and scale information, which usually needs be represented with different formats including
point cloud, mesh, volumetric and multi-view images [30]. LiDARs, also known as Laser
Radar (LADAR) (Laser Detection and Ranging), is an active remote sensing device that
uses lasers as the emitting light source and optoelectronic detection technology. It analyzes
the reflected energy level, the amplitude, frequency, and phase of the reflected wave spec-
trum on the target surface by measuring the distance travelled from the laser emitted from
the sensor to the target surface, and then precisely solves target information and displays
accurate 3D structure information of the target. The laser point cloud data, obtained from
a vehicle-mounted laser scanning system, emits laser signals to the surrounding area and
collects the reflected laser signals. Through field data collection and combining navigation
and point cloud solving, it is possible to calculate accurate spatial information of these
points. Unlike cameras and radar, LiDARs can operate in any light condition, which is
necessary for self-driving cars. Cameras, radars, and other technologies can help vehicles
visualize surroundings, as shown in 2.1. However, once it is dark or raining, camera tech-
nology cannot provide the high-resolution images needed for cars to accurately see and
distinguish between people and other objects, so LiDARs are still the sensor that offers
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the highest range accuracy and best angular resolution.

Figure 2.1: Illustration of Structured LiDARs [24].

2.1.2 Depth Camera (3D Camera)

With the rapid development of machine vision and artificial intelligence, and other tech-
nologies that use scene modeling, object recognition, and environment recognition are
increasingly used. In contrast to traditional 2D cameras, depth cameras can obtain depth-
of-field information by shooting space, so as to obtain target 3D information and later
build 3D models. Depth cameras include Structured-light cameras, Stereo-vision cameras,
and Time-Of-Flight (TOF) cameras. Structured-light cameras use a near-infrared laser
to project light with certain structural characteristics to a subject, which is captured by
a special infrared camera. This structured light (generally streak structured light based
on the encoding pattern enshape, encoding as Mantis Vision, Realsense (F200) structured
light, with a scattered structured light apple (primesense), will be collected depending on
depth information of a subject. Computing units will convert the structured light pattern
into depth information to obtain the 3D structure, as shown in Figure 2.2.

Stereo-vision cameras, based on parallax principles, uses an imaging device to acquire
two images of an object from different locations to obtain 3D object geometry information
by calculating position deviations between corresponding points of images. RGB stereo-
vision cameras are very dependent on pure image feature matching, so they work very
poorly in low light or over-exposure situations, and it is also difficult to extract and match
features if there is a lack of texture in the subject scene itself.
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Figure 2.2: Illustrate of Structured Light [27].

TOF cameras transmit modulated light pulses through an infrared emitter, reflect them
when they encounter an object, receive the reflected light pulses with a receiver, and
calculate distance to an object based on round-trip time of light pulses. This modulation
method requires high requirements for transmitter and receiver, and light speed is so fast
that there is an extremely high accuracy requirement for time measurement. In practical
applications, it is usually modulated into a pulse wave (usually a sine wave), and when it
encounters an obstacle with diffuse reflection, the reflected sine wave is then received by
a specially designed Complementary Metal-Oxide-Semiconductor Sensor (CMOS Sensor).
When the waveform produces a phase shift, and the distance from the object to the depth
camera can be calculated by the phase shiftas shown in Figure 2.3.

Figure 2.3: Illustrate of TOF [33].
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2.2 Classification

There are three different classifications of point cloud-based methods: 3D point cloud-
based methods, point cloud with action recognition methods, and point cloud with pose
estimation methods. In each of these subsections, we will review some well-known deep
network models that have been widely acknowledged and used repeatedly in point cloud-
based deep learning, as shown in Figure 2.4.

Figure 2.4: Point Cloud Based Methods for Classification.

2.2.1 3D Point Cloud Based Methods

Currently, there are several models directly consuming the raw point cloud datasets without
losing information. These frameworks advance the research of 3D scene by enable better
learning of feature representations for point cloud processing, such as PointWeb [107],
Mo-Net [44], SRINet [86].

PointNet [72] is the first method that inputs point cloud data directly to deep learn-
ing models as shown in Figure 2.5. The paper details the theoretical basis of point cloud
data, performs further analysis, and proposes the PointNet [72] model structure based on
the proposed theoretical basis. The basic process of PointNet [72] is to form an n × 3
2D tensor (where n represents the number of point clouds) by taking the whole set of
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point cloud data of one frequency as input to ensure the model-specific spatial transfor-
mation invariance. Global features are then extracted after feature extraction of the data
by using multilayer perceptron, and classification and the segmentation task can be fi-
nally performed. PointNet [72] performs classification well by extracting global features,
but local feature extraction capabilities are poor, making it difficult to analyze complex
scenes. PointNet++ [73] modifies the feature extraction based on PointNet [72] to extract
local features, and the deep features are extracted using a multilayer network structure,
as shown in Figure 2.6. AdvectiveNet [35] applies the natural flow phenomena in fluid
dynamics to the point cloud processing, and builds a new deep learning method to process
point cloud. The Eulerian-Lagrangian representation of physics is introduced to imple-
ment mining particle features, giving a new perspective to view and solve the classification
task of point cloud. PointContrast [97] proposes an unsupervised training method, which
combines the idea of 3D representation to build a new loss function called PointInfoNCE
Loss [97]. The point cloud is adjusted (rotated, scaled) and local features are extracted so
that the new loss function may be constructed by contrasting matching features with non-
matching features in the point cloud. PointAugment [52] considers characteristics of the
3D data space domain, and the 2D data augmentation method to obtain new samples from
the original sample data. After data augmentation, new samples are sent to the classifier
for training and then the classifier results are to the augmenter for training to achieve an
iterative process. This is the first attempt to augment 3D data. This attempt considers
the characteristics of point cloud data. SampleNet [47] perform a differentiable acquisi-
tion to approximate point cloud sampling and incorporate a soft projection operation to
change the representation by using the local position weight value coordinates in the initial
point cloud. [72], [73], [52] use point cloud feature to mine local feature. [35], [47] perform
novel feature extraction methods to achieve more effect results. Point-BETR [104] combine
point cloud and Transformer structure from natural language processing to encode points,
build masked language modeling for self-supervised training, and translate point clouds
into language-like words, as shown in Figure 2.7. GLRV [20] proposes an unsupervised
adaptation method to modelling internal structures in point clouds and marking target
samples using voting

2.2.2 Point Cloud with Action Recognition Methods

In the subsection, We introduce famous and important methods. In these methods,
point clouds are used for action recognition which is a critical part of classification tasks.
P4Transformer [21], proposed in 2021, uses point space-time(PST) [22] to extract features
by using new convolution allowing for the encoding of the time-space structure to be effec-

18



Figure 2.5: The structure of PointNet [72].

Figure 2.6: The structure of PointNet++ [73].

Figure 2.7: The structure of Point-BETR [104].
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tively processed. In order to avoid difficult point tracing and easy failure in the absence
of colour information caused by point tracking the Transformer is applied to process point
cloud data by using the P4Transformer model [21] to simulate the original point cloud
video. P4Transformer [21] includes 4D convolution and Transformer model [89], which
are respectively are used to display the spatial structure and capture the information of
the point cloud video. The attention mechanism is introduced for self-focusing on local
features, and the weights obtained from Transformer [89] are used to determine the con-
ditions for merging similar parts. PSTNet [22] mine the spatial and temporal dimensions
of point cloud data and propose point space-time (PST) [22] convolution for the sequence
information representation of point cloud data. The PST convolution is used to separate
the spatial and temporal dimensions, allowing spatial and temporal convolutions are used
to capture the local structure and simulate the space dynamics, respectively.

2.2.3 Point Cloud with Pose Estimation Methods

In these methods, point cloud are used for pose estimation task. Joint Depth-Pose Learn-
ing without PoseNet [111] improves the traditional method of using the learning ability of
the model to obtain priories information from large amounts of data for training in monoc-
ular estimation and position estimations. Proposing Joint Depth-Pose Learning without
PoseNet [111] solves the scale geometric problem. HandVoxNet [61] implements pose esti-
mation from a single depth map. It estimates the joint coordinates by inputting a single
voxelized depth map, then estimates the heat map of the joint points using V2V-PoseNet
[68]. Finally, it will combine both of them to form the resultant 3D hand shape. The
PVN3D[36] model first performs feature extraction using the feature extraction module,
inputs the features into the 3D keypoint detection module and instance semantic segmen-
tation module to predict each key point, centroid and semantic segmentation respectively,
and then utilizes a clustering algorithm.

2.2.4 Summary and Analyze

In the above reviewed and analyzed papers on point cloud classification, it can be found
that the algorithms utilize the features and data structure of point cloud data well. Because
of the special characteristics of point cloud data in 3D space, the methods of analyzing
point cloud data are more diverse. PointNet [72], PointNet++ [73], PointAugment [52],
and PSTNet [22] use 3D structural features of point cloud data to mine and propose new
models, such as the distinction between spatial and temporal dimensions of point cloud
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data, and the combination of 3D data spatial dimensions and 2D data augmentation.
AdvectiveNet[ [35], SampleNet [47], P4Transformer [21], PSTNet [22], HandVoxNet [61],
and PVN3D [36] use the feature extraction method to extract local features more accurately
in point clouds. Joint Depth-Pose Point Contrast [97] creates a new loss function to reduce
point overlap in point clouds.

2.3 Segmentation

Point cloud based segmentation uses point cloud datasets as the input directly, using the
regular pipeline for point cloud based segmentation as shown in Figure 2.8. In this section,
point cloud based segmentation is divided into two different categories, 2D based and 3D
based methods, this shown in Figure 2.9. The 2D based method projects the point cloud to
a 2D plane and applies traditional 2D semantic segmentation network to do the processing.
Alternatively, the 3D based method extracts the feature information directly in 3D space.

Figure 2.8: Regular Pipeline for Point Cloud Segmentation

2.3.1 Based on Two Dimensional Methods

SqueezeSeg [93] was proposed by Bic hen Wu et al,. in 2017. In this study, a lightweight
convolutional neural network was used to achieve real-time semantic, instance segmentation
of 3D objects in point cloud. In order to easily process the 2D convolutional neural network,
the point cloud data is first projected to obtain the front view, then the input image is
feature extracted and segmented using the SqueezeSeg [93] convolutional network. Finally
the output is further optimized using the conditional Random Field (CRF), as shown in
Figure 2.10. Geometric Shared Network (GS-Net) [101] can specifically and efficiently learn
point descriptors, reduce losses due to image transformations, and improve the robustness
of the model. The GSC module in GS-Net can effectively capture both local and global
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Figure 2.9: Point Cloud Based Methods for Segmentation.

Figure 2.10: The structure of SqueezeSeg [93].

Figure 2.11: The structure of Geometric Shared Network (GS-Net) [93].
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geometric features, making the model significantly more effective in segmentation tasks as
shown in Figure 2.11. In the VIASeg [113], the authors convert color information to data-
level embedded in point cloud data. This is done so that the color information of the image
provides rich visual information and improves the semantic segmentation performance.
This approach is a multimodal (visual + point cloud) combination approach. LU-Net
[48] extracts high-level 3D features for each point of the point cloud , then projects these
features to a 2D multi-channel front view. This model benefits from high level 3D feature
extraction and embeds 3D local features into the 2D image, which allows the model to be
used effectively. RangeNet++ [65] was proposed by Andres Milioto et al,. in 2019. This
model projects the 3D data to a 2D front view. Despite this, the model performs well the
full semantic segmentation of the point cloud data and obtains the full semantic label of
the original point cloud.

2.3.2 Based on 3D Methods

JSNet [110] extracts features from the original point cloud data. In order to improve the
feature discrimination, a feature fusion method is incorporated to perform feature fusion
at backbone for different levels. Then, using the joint instance semantic segmentation
module, semantic features are embedded in the space and feature fusion is performed to
improve feature robustness. Furthermore, the model also aggregates the fused features
into the feature space to improve the semantic segmentation. MPNet [82] was proposed by
Tong He et al,. in 2020. The structure of point cloud data is 3D, which is complex. Also,
the distribution of point cloud data is irregular, which makes it more difficult to process
the distribution and learning of point cloud data. Then leads MPNet [82] to introduces the
method of memory module to achieve small batch processing. Each small batch of samples
is learned and memorized to achieve memory enhancement, achieving to reduce the problem
of category imbalance. SceneEncoder [98] was proposed, where a scene encoding module is
used to achieve enhanced global information. The module can filter the categories that do
not belong and perform semantic segmentation. On the other hand, a regional collinearity
loss was designed to approach features and neighboring points of the same label to improve
feature recognition. The experimental effect of SceneEncoder [98] also achieved SOTA.

2.3.3 Summary and Analysis

As we can see in this subsection, because of the sparsity and irregularity of point cloud
data, CNNs in 2D does not work directly on 3D point cloud data. This requires the point
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cloud data to be transformed first. The 2D-based methods, SqueezeSeg [93], Geometric
Shared Network (GS-Net) [101], VIASeg [113], LU-Net [48], and RangeNet++ [65] project
the point cloud data to the 2D plane, and add different methods to improve the projection
effect during the projection process. Thus, the methods in the projection of 3D data to
2D will be more diverse. This is an interesting and intuitive idea since the projection
process leads to loss of information. The other class of models, based on 3D processing,
including JSNet [110], MPNet [82], SceneEncoder [98] the point cloud data is directly
input to the model and the feature information is extracted in 3D space. In this process
the semantic segmentation of point cloud can be helped by adding feature fusion, attention
mechanism. In future work, the missing information due to sparsity of point cloud data can
be compensated for incorporating more effective methods to provide richer information.

2.4 Attention in Vision

2.4.1 What is the Attention Mechanism

The Attention Mechanism is obtained from intuition, based in the limited attention re-
sources used to efficiently filter out high-value information from a large amount of infor-
mation. Deep learning has been widely used in different types of tasks such as Nature Lan-
guage Processing (NLP)[39], image classification, and speech recognition, and has achieved
remarkable results. Therefore, understanding the working principle of the attention mech-
anism principles crucial. Figure 2.12 shows the evolution of attention mechanisms.

2.4.2 Evolution of Attention Mechanisms

In 2014, the Google Mind team published the paper ”Recurrent Models of Visual Atten-
tion” [67] leading researchers to pay attention to the Attention mechanism, and this paper
proposed to use it on an Recurrent Neural Networks (RNNs) model for image classifica-
tion, resulting in a good performance. Subsequently, Bahdanau et al. published the paper
”Neural Machine Translation by Jointly Learning to Align and Translate” [5], which pro-
posed using the Attention mechanism on machine translation tasks to perform translation
and alignment becoming the first publication to apply the Attention mechanism in NLP.
Then, in the paper ”Show, Attend and Tell: Neural Image Caption Generation with Visual
Attention” [99], published by Xu et al. successfully applied the Attention mechanism to
the Image Caption domain. Thereafter, the Attention mechanism has been widely used
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Figure 2.12: The Evolution of Attention Mechanisms.

in various deep learning tasks based on RNNs neural network models. In 2017, Google
published a paper ”Attention is all you need” [89], which proposed to use self-attention
mechanism to learn text representation on machine translation. Figure 2.12 shows the
general progress trend of Attention mechanism research. [100] first introduced visual at-
tention in 2015, which presents soft and hard, pioneering the attention model for 2D visual
processing. [60] proposed two modified versions of attention, known as global attention
and local attention. With wide success use of attention models, various attention models
such as RNN Encoder-Decoder [15], GATs [90], and MA-CNN [112] have further extended
the attention model in the network framework. However, Convolutional Neural Network
(CNNs) and RNNs are still used as the base models as location information cannot be
modeled. [89] uses a novel model Transformer, and proposes self attention and multi-head
attention, which can ignore sequence problem of position information, which are already
widely used for various vision task. Recently, [19] presented a Vision Transformer, ViT,
based on a structure of encoder to decoder in Transformer, and implements Transformer
in computer vision and achieved SOTA results on public datasets.

However, in point cloud data, point clouds are sparse and disordered, each point does
not hold semantic information, which still leads to a huge challenge in processing point
cloud data.

2.4.3 Spatial and Channel Attention in Vision

Spatial attention and channel attention was already used in many computer vision tasks.
[70] proposed a Bottleneck Attention Module(BAM) which employs spatial or channel
attention improving network characterization effectively. [92] presented a CBAM model,
a simple and effective feedforward convolutional neural network attention module, which
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achieves effective determination for high focus points of images. [41] introduced a novel
input weight distribution for attention model SENet, which applies channel attention in
vision, as shown in Figure 2.13. [43] designed STN, which used channel attention for
feature extracting. [13] presented SCA-CNN structure, which combine the spatial and
channel attention in CNN.

Figure 2.13: The structure of Squeeze-and-Excitation block [41].

Inspired from the image patch generation structure used in ViT [19], and the weighting
relationship in spatial and channel attention, we propose a point weight relationship module
(PointAT), which splits the point clouds data into patches (point clouds patches), uses
spatial and channel attention to extract local features from the point clouds patches and
obtains the intensity of attention relationship between the point clouds patches.

2.4.4 Point Cloud-based Attention Model in Deep Learning

Using the attention mechanism has become a trend in many models, as well as in point
cloud data. Because of the irregularity and disorder of point clouds data, it is not easy to
process point clouds data directly by using convolutional networks. In contrast, attention
models are a sort invariant, computation non dependant on point connections. [28] intro-
duced point cloud transformer (PCT), which use the attention model for data processing
and capture point cloud features. The model is made up of an encoder and decoder struc-
ture in the PCT, giving model with good global attention feature learning ability. [28],
[108] are good to apply a 2D Transformer model to 3D point clouds data. To contrast the
PCT, this implementation applies vector attention, which is the main conceptual difference
between the two models. Nevertheless, the spatial and channel dimensions in point clouds
data still show that local relationships in point clouds data are not effectively used, and it
is still challenging to explore local relationships in point clouds data.
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P4Transformer [21] split points cloud data and extracts local features using a four-
dimensional convolution of points with encodable spatio-temporal local structure informa-
tion. Voxel Transformer [63] applies local Attention and dilated Attention in a multi-head
attention mechanism, which is used to explore local information and gradually increases
the search step to expand the search range, achieving information extraction from local to
global, respectively. Finally, CT3D [80] includes region proposal and channel-wise Trans-
former, where spatial context modeling of key points is performed and using channel-wise
reweighting to enrich the information.

Large numbers of methods also employ attention and Transformer model. [59] proposed
Group-Free, which include self-attention model and cross attention model. [66] introduced
an end-to-end Transformer model, which combines feature points of local features, then
uses a transformer to encode and decode.

In contrast to the above models, our network SCA is based on the spatial and chan-
nel attention mechanism to explore the geometric relationship between point clouds, and
applies the geometric relationship strength to the model to fully and effectively use the
attention model to explore local features of point clouds.

2.5 Summary

In chapter two, we introduced generation of point clouds and analyse the existing methods
based on classification and segmentation. Furthermore, we investigate attention mecha-
nism in computer vision, includes background of attention mechanism, evolution of atten-
tion mechanism, spatial and channel attention in vision and point cloud-based attention
model in deep learning. Based on the chapter one and two analyse and investigation, we
found that this data type’s ability to provide depth information, point sparsity and disor-
der pose a challenge in designing appropriate deep neural networks to process them and it
is still challenging to explore local relationships in point clouds data. so, in chapter three,
in order to better extract features and obtain geometric information we will propose a
point attention (PointAT) model and propose attention value (AT value) model for feature
fusion to apply geometric relationship to the data. Then, we will propose a new spatial
and channel attention-based network (SCA). The SCA is the overall structure of the net-
work, and the main purpose is to connect PointAT and AT value model, then capturing
meaningful geometric information by applying the geometric relationship between point
clouds patches to the model, then propose an auto pooling framework to extract global
features.
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Chapter 3

SCA-Net: Spatial and Channel
Attention-based Network for 3D
Point Clouds

The disordered and sparse form of point clouds data in 3D space makes it challenging
to explore internal relationships in point clouds data. In contrast to 2D data, the dis-
order and sparse form of point clouds data make it more difficult for neural networks to
process point clouds data [29]. Point 4d transformer (P4Transformer) [21], Point cloud
transformer (PCT) [29] has pioneered applying the attention mechanism to point clouds
data processing. PCT [29] extracts local attention of point clouds by inputting point cloud
data directly into the attention module, PCT ensures local attention of point clouds with
rotation and order invariance, and benefits from attention mechanism in Transformer [89]
which can ignore the disorder of point clouds data and well use attention model for feature
extraction. P4Transformer [21] splits images to perform effective local feature extraction
of point clouds.

In recent years, Attention Mechanism [100] has been widely used in computer vision
tasks and obtained excellent results. Attention mechanism [100] was proposed by Xu et
al. in 2015. In contrast to traditional neural network Long Short Term Memory networks
(LSTM) [37], Gate Recurrent Unit (GRU) [15], Attention Mechanism [100] overcomes
the sequence alignment and model transformation problems. The inherent data location
information in RNNs [106] networks (e.g., LSTM, GRU) is quite important for training
models, but limits batching capability of samples and reduces the training capability of
neural networks. Thus far, the predominant methods of employing attention are spatial
and channel attention. [41].
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Spatial attention focuses on which part of the spatial dimension is meaningful. For the
input feature map, it performs average pooling and max pooling in one channel dimension,
splices the two obtained feature maps in channel dimension, downscales them by using a
convolutional layer, then generates spatial weight coefficients by the activation function,
finally multiplies weight coefficients with the original feature map to get a final output
feature map, as shown in Figure 3.1.

Figure 3.1: The structure of spatial attention.

Channel attention focuses on which channel features are meaningful, input feature map
and perform average pooling and max pooling respectively to get two feature maps, giving
them deeper meaning and sharing parameters through the neural network, then share the
parameters and add the two feature maps together. Finally, the weight coefficients are
multiplied with the original feature map to obtain a final output feature map as shown in
Figure 3.2.

Figure 3.2: The structure of channel attention.

Inspired by the Attention model’s success in 2D computer vision tasks, we propose a
novel framework SCA for point cloud attention learning based on the spatial attention and
channel attention. In order to achieve this, we propose to employ attention to uncover the
geometric relationship between different point cloud patches, and we define this relationship
as geometric relationship. From here, we capture this geometric relationship for geometric
features that are meaningful for point cloud understanding.

In our model, we find that there is an geometric relationship between different regions of
the point cloud data. As shown in Figure 3, this geometric is inherent to point cloud data,
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Figure 3.3: The structure of geometric relationship.

there are different degrees of correlations between different distribution regions in point
clouds, and this correlation is invariant to data transformation. Given this geometric, we
create a model that takes advantage of this, Our model uses the geometric relationship
between point clouds to improve model efficiency. The main advantages and contributions
of this paper are summarized as follows:

1. We propose a model leveraging the attention mechanism to learn the geometric
relationship between point clouds in point cloud data. This is done through a proposed
attention feature fusion method for exploration of relationship correlations.

2. We propose a new attention-based mechanism for point clouds learning framework,
named SCA, which is well suited to handle disordered, unstructured point clouds data.

3. Through extensive experiments, the proposed framework is shown to achieve SOTA
performance in classification and segmentation tasks.

Besides, we also introduce an adaptive downsampling structure we name Autopooling.
This model considers each point’s importance weight and picking key points adaptively.
This structure preserves the original information and order. Additionally, this structure
can be easily migrated to other networks.
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3.1 Spatial and Channel with Attention network in

Point Cloud (SCA)

In contrast to the above models, the SCA is based on the spatial and channel attention
mechanism to explore the geometric relationship between point clouds, and apply the
geometric relationship strength to the model to fully and effectively use the attention
model to explore local features of point clouds.

In this section, we first illustrate Spatial and channel with attention network (SCA)
framework, and how Point Attention (PointAT) establishes relationship strength between
point cloud features to the model and successfully explores the relationship strength be-
tween point clouds features data with different weights. We also shows how to establish
relationship strength and model combination in attention value model(AT value model)
to achieve feature fusion, and eventually implement it for classification and segmentation
tasks. Firstly, we introduce the concept of Spatial and channel with attention network
(SCA) separately, and apply the geometric relationship between point clouds to the model.
Then, we present how point attention (PointAT) and AT value model can be used to extract
geometric relationships between point clouds and apply feature fusion to the model.

Figure 3.4: The structure of Spatial and channel with Attention network (SCA).

A general structure of the Spatial and channel with Attention network (SCA) is shown
in Figure 3.4. The SCA is the overall structure of the network, and the main purpose is
to connect PointAT and AT value model, apply the geometric relationship between point
clouds to the model, then propose a auto pooling framework to extract to global features.
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Firstly, it divides input data into three local patch partitioned contains plentiful geometric
information to better extract local features and prepare for subsequent exploration of geo-
metric relationships. Following the splitting, each point clouds are input into the PointAT
model, which contains the spatial and channel attention (described below), and the atten-
tion weights are effectively obtained between the point cloud, and we find that they have
different correlations, which indicates that there are geometric relationships between the
point cloud. We input this geometric relationship obtained from PointAT into the AT value
model, then perform feature fusion to obtain new data between the geometric relationship
and the original point cloud. The newly formed point clouds data consequently has richer
information and explore the geometric relationship strength between point clouds data,
learning the relationship strength information of each points. From here, we propose a
new global feature extraction method, Auto pooling. Because all points contain geometric
relationship information, we further employ the attention mechanism in the pooling layer
to get better global features.

The model accepts as input a point cloud point ∈ RN×d with N points each having
d-dimensional feature vector. We divide point clouds into several local point cloud patches.
pi ∈ RNi×d(i ∈ N) as several local point cloud patches are input to PointAT, and geometric
Intensity relationships between point clouds are learned using the PointAT module to
obtain point cloud weights wi(i ∈ N). From here, the weights are connected in feature
space by AT value model for feature fusion, and then linear transformation is performed.

Vector a = wipi, a = N, (1)

Fv = concat ( Vector 1, Vector 2 . . . Vector a) , v = N, (2)

Fo = fAutopooling (Fv) , o = N, (3)

Where Vector a represents a weight vector obtained after the AT value model, Fv uses
concat to splice vectors in preparation for subsequent Auto pooling. In order to extract
effective global features and apply the learned geometric relationship between point clouds
data to the model, we propose a novel auto pooling layer to extract global features, and
Fo is global feature which is obtained from Fv after auto pooling.

3.2 Point Attention (PointAT)

In our model, we find that there is an geometric relationship between point cloud data
as shown in Figure 3.5. We use PointAT model to explore the geometric relationship
between point cloud data by adding temporal and spatial attention mechanisms to the
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Figure 3.5: The structure of Point Attention (PointAT).

model in Figure 5. First, we consider point embedding in the model by splitting original
data into patches. pi ∈ R(Ni×d)(i ∈ N) is used as new point cloud data input to PointAT.
A shared neural network is used here and the point data has 128 dimensions in multi-layer
perception. And spatial attention is added to extract the point cloud geometric relations
at spatial dimension. The combined features of cross-spatial dimensions by global pooling.
generate a 1×1×C matrix, combining across spatial dimension features by global pooling
and generate a 1×1×C matrix, Subsequently add weight values to each output to form
weight features and add two fully-connected layers. Then calculate weights between point
cloud data by sigmoid function, the output method in the following way. Where wi is the
weight value of the PointAT output, and Fglobal pooling (pi) is the maximum downsampling
of input data. The above process is only used to extract the point cloud weight values
without changing and reducing the number of point clouds.

wi = FPointaT (Fglobal pooling (pi) ,W )

= FPointat (FFC (Fglobal pooling (pi) ,W )) , (4)

Fglobal pooling (pi) =
1

Ni × d

Ni∑
N1

d∑
1

pi (Ni × d) , (5)
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Figure 3.6: The structure of Attention Value Model (AT value model).
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3.3 Attention Value Model (AT value model)

The main approaches of data fusion are early-fusion, data-level fusion, late-fusion or
decision-level fusion and intermediate-fusion. Data fusion often accompanies insufficient
complementary among multiple data points and generates a large amount of redundant
information. In this paper, we adopt inputting point clouds data into models separately
to get their weight values, effectively avoiding generating a lot of redundant information.
And the generated errors are independent and do not affect each other, it does not lead
to further error accumulation. Attention Value model performs data fusion on point cloud
data and weights to get a new weight vector in Figure 3.6. By leveraging the point cloud
geometric relationship and the original data together, each points has different weight
coefficients within it, which significantly improves model feature extraction effectiveness.
Perform data fusion operation on point cloud data pi ∈ R(Ni×d)(i ∈ N) and geometric
intensity relations wi(i ∈ N).

Vector a = wipi, a = N, (6)

3.4 Auto Pooling

Figure 3.7: The structure of Attention Value Model (AT value model).
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In this section, we propose a new automatic downsampling method that can be used for
deep neural networks, as shown in Figure 3.7. A new solution for feature extraction, this
method for weight selection of feature vectors in arbitrary neural networks. By considering
each point’s importance without changing the original data, we effectively retain important
points in the point cloud and reduce unnecessary points. Moreover, this downsampling
layer can be used together with convolutional networks. The main structure of this adaptive
downsampling layer is as follows.

Fv = concat ( Vector 1, Vector 2 . . . Vector a) , (2)

Fo = fAutopooling (Fv) , o = N, (3)

fAutopooling (x) = fattention (fmaxpooling (x)) , (7)

fattention (y) = FFC (Fglobal pooling (y),W ) , (8)

3.5 SCA Networks for classification and Segmenta-

tion

Classification: In the point cloud classification task, the SCA classification network and
details graph as shown in Figure 3.4. In order to classify the point cloud data pi ∈
R(Ni×d)(i ∈ N) we provide the global features Fo to the classifier. In order to make a
better comparison, the classifier does not add a new model, and consists of two feedforward
neural networks (linear layers, BatchNorm, and ReLu layers), finally adding linear layers
for classification and predicting final results, marking the highest scoring categories.

Segmentation: Segmentation falls under the umbrella of classification, where we have
to each point’s label is predicted. We first connect the global features Fo and Fv. As
shown in Figure 3.4, the architecture of segmentation networks is basically similar to the
classification net- works, with the main difference being that each point’s classification
results are predicted.

3.6 Experiments and Evaluation

Now we evaluate SCA and SCA-Auto (SCAA with Auto pooling) performance on two pub-
licly available datasets, ModelNet40 [96] and ShapeNet [11], and perform a comprehensive
comparative analysis of these two models with other methods, including target classifica-
tion and segmentation. Each set was trained with the same negative log-likelihood loss
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Table 3.1: Comparison with state-of-the-art methods on the ModelNet40 classification
dataset. Acc. means overall accuracy. All results quoted are taken from the cited papers.

Method #points Acc.
PointNet [72] 1K 89.2%
PointNet++ [73] 1K 90.5%
NPCT [29] 1K 91.0%
DGCNN [91] 1K 91.84%
PointNet++ [73] 5K 91.9%
SO-Net [51] 1K 92.5%
PointCNN [54] 1K 92.5%
Point2Sequence [56] 1K 92.6%
Point Transformer [108] 1K 92.8%
DensePoint [57] 1K 92.8%
RSCNN [58] 1K 92.9%
SCA(this work) 1K 92.3%
SCAA(this work) 1K 93.4%

function with a learning rate of 0.001. We use Stochastic Gradient Descent (SGD) opti-
mizer, momentum weight decay set to 0.9 and 0.0008. Other training parameters including
batchsize, and epoch, will be given in subsequent datasets.

3.6.1 Classification on ModelNet40 Dataset

The Modelnet40 dataset is a 3D image classification dataset that contains all hand-drawn
CAD point cloud images. ModelNet40 [96] contains 12,311 meshed CAD models in 40
different categories. For better comparison, 9,843 models are used for training and 2468
models are used for testing. For the base model we used Pointnet [72] as the base model,
1024 points were sampled uniformly. For data augmentation, we perform random scaling
and rotation for the data in 3D space. In the training process, random translation in [-0.2,
0.2] was used, and we trained 250 epochs with an initial learning rate set to 0.001 and a
batchsize set to 8. The experimental results are shown in Table 3.1. The overall accuracy
of SCA was 92.3%, compared with PointNet [72] and PointNet++ [73], SCA improves by
3.1% and 1.8%, respectively. After adding Auto pooling module, SCAA improves by 1.1%
compared to SCA. Note that slicing original data as input is being done, which could in
principle further improve network performance.
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3.6.2 Attention on Value Task

We perform pre-training with the PointAT model and fine-tune the model to evaluate the
generalization ability of learning representations. We visualize feature weights in Figure
3.8. In Figure 3.8(a) and 3.8(b), visualized feature weights are obtained from Figure 3.8(a),
and after performing fine-tuning before and after fine-tuning ModelNet40 to obtain 3.8(b),
using PointAT model to calculate point cloud data weight values. Figures 3.8(a) and 3.8(b)
show that we have chunked data before it into PointAT model to better feature extraction
and improve the fine granularity. In Figure 3.8(b) after fine-tuning, we get the point cloud
feature weights, and it is obvious to see that each point cloud has different feature weights,
which indicates that feature is well filtering data under the attention mechanism.

Figure 3.8: The attention weights are visualized as attention values. We show modelNet40
data weight values for each part of features after PointAT.

3.6.3 PointAT Task

We use PointNet as the baseline. PointAT is used as a comparison experiment, as shown
in Figure 3.9 and 3.10. It can be seen that our method can separate features from different
classes well. In Figure 3.8 we can see that each point cloud data after chunking gets
geometric feature weight coefficients, which we can easily find that PointAT significantly
improves model learning ability from the experiments in Figure 3.9 and 3.10, and further
verifies that point feature weights help models learn more 3D objects’ information.
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Figure 3.9: PointAT is used as a comparison experiment.

Figure 3.10: PointAT is used as a comparison experiment.
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3.6.4 Auto Pooling

We propose the novel adaptive downsampling layer Auto pooling, we use PointAT as a
baseline for comparison experiments of SCA and SCAA respectively, SCAA changes max
pooling in model SCA to auto pooling as shown in Figure 3.11 and Figure 3.12. It can be
seen that auto pooling significantly improves convergence speed of the model and improves
model performance on datasets in both accuracy and speed.

Figure 3.11: SCAA changes max pooling in model SCA to auto pooling.

3.6.5 Segmentation task on ShapeNet dataset

Point cloud segmentation is always a challenging task, which aims to segment a 3D model
into multiple meaningful parts, that could be considered as a special form of classification.
We perform experiment evaluations on the ShapeNet dataset [11]. ShapeNetPart dataset
[11] consists 16 classes selected from the ShapeNetCore dataset and annotated with se-
mantic information for semantic segmentation task. ShapeNet Part consists of 16 classes,
50 parts, and a total 16846 samples. This sample set exhibits unbalanced characteristics.
Each sample contains more than 2000 points, which is a small dataset. There are 12137
training samples, 1870 validation sets, and 2874 test sets in this dataset, totaling 16881.

In training task, after Point AT, data was downsampled to 2048 points, retaining point
state part, using random panning in [-0.2,0.2] to increase input data, and training 250
epochs with initial learning rate set to 0.001 and batchsize to 8. In the test SCAA and
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Figure 3.12: SCAA changes max pooling in model SCA to auto pooling.

Table 3.2: Comparison on the ShaperNet part segmentation dataset. MIoU means part-
average Intersection-over-Union. All results quoted are taken from the cited papers.

Methods mIoU
airp
lane

bag cap car chair
ear

phone
guitar knife lamp laptop motor mug pistol rocket

skate
board

table

Kd-Net[45] 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81 94.9 57.4 86.7 78.1 51.8 69.9 80.3
PointNet [72] 83.7 83.4 78.7 82.5 74.9 89.6 73 91.5 85.9 80.8 95.3 65.2 93 81.2 57.9 72.8 80.6

PointNet++ [73] 85.1 82.4 79 87.7 77.3 90.8 71.8 91 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
PCNN [4] 85.1 82.4 80.1 85.5 79.5 90.8 73.2 91.3 86 85 95.7 73.2 94.8 83.3 51 75 81.8

DGCNN [91] 85.2 84 83.4 86.7 77.8 90.6 74.7 91.2 87.5 82.8 95.7 66.3 94.9 81.1 63.5 74.5 82.6
P2Sequence [56] 85.2 82.6 81.8 87.5 77.3 90.8 77.1 91.1 86.9 83.9 95.7 70.8 94.6 79.3 58.1 75.2 82.8
Point-BERT [105] 85.6 84.3 84.8 88 79.8 91 81.7 91.6 87.9 85.2 95.6 75.6 94.7 84.3 63.4 76.3 81.5
PointConv [94] 85.7 - - - - - - - - - - - - - - - -
PointCNN [54] 86.1 84.1 86.5 86 80.8 90.6 79.7 92.3 88.4 85.3 96.1 77.2 95.2 84.2 64.2 80 83

PCT [29] 86.4 85 82.4 89 81.2 91.9 71.5 91.3 88.1 86.3 95.8 64.6 95.8 83.6 62.2 77.6 83.7
SCA(this work) 85.5 85.2 85.4 86.3 79 91 81.5 92.4 87.4 85.4 95.3 75.1 94.6 84.3 61.7 77 84
SCAA(this work) 86.5 85.4 85.4 88.5 80.4 91.6 81.7 92.4 88 86.8 95.9 75 94.8 84.2 62 78.8 84.1
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SCAA models were trained with the same batch size, training epoch and learning rate
settings as for the normal estimation task. Table 3.2 shows segmentation results. The
mean IoU across all instance categories for each category was used as the evaluation metric,
which was given for each object category at the same time. Our SCA and SCAA achieved
85.5 and 86.5 mIoU, respectively. For each object category the results show that our SCAA
improved by 2.8% and 1% over PointNet [72] and SCA, respectively.
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Chapter 4

Conclusion

4.1 Significance of Study Findings

Point cloud is an important expression form of 3D data. It has enjoyed a continuous
development and attracted increasing attention due to its wide applications in many areas,
such as artificial intelligence, deep learning, autonomous driving, tracking. In order to
better use point cloud data for analysis and to explore future research directions, this
paper presents a comprehensive review of existing methods and publicly available datasets,
with a focus on the methods and research status of using point cloud data as direct input.
Despite this data type’s ability to provide depth information, point sparsity and disorder
pose a challenge in designing appropriate deep neural networks to process them and it is still
challenging to explore local relationships in point clouds data. Then, based on these review,
we propose a new Spatial and Channel Attention network (SCA). The SCA is the overall
structure of the network, and the main purpose is to connect PointAT and AT value model,
then capturing meaningful geometric information by applying the geometric relationship
(inconsistent relationship) between point clouds patches to the model, then propose a auto
pooling framework to extract to global features. In this work, we concentrate on learning
inconsistency relationship between point cloud data. For this purpose, we introduce a
point attention model based on spatial and channel attention to learn the inconsistency
relationship between point clouds, and further combine the inconsistency relationship with
the point cloud data by an Attention Value Model. Besides, we introduc a adaptive
downsampling structure, Autopooling. This downsampling structure consider each point’s
importance weight and picking key points adaptively, which can be used together with
convolutional networks. Extensive experiments conducted on two benchmark datasets
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(ModelNet40 and ShapeNet) clearly demonstrate the effectiveness of our SCA method.

4.2 Limitations of Proposed Method

The attention-based mechanism model already shows strong model learning and general-
ization capabilities in the 3D field, however, there are limitations in a number of publicly
available point cloud data, which are very limited compared to other available data at
present. In addition, better data splitting and fusion methods can be performed for the in-
put point cloud data, which can improve the granularity of data and increase the integrity
of data. Moreover, the existing public point cloud data does not include various influencing
factors in realistic scenes and has limited data availability. On the other hand, with the
attention mechanism added, models will have information missing and the information or-
der cannot be aligned, we will continue to improve the models’ completeness continuously.
In the future, we plan to compare models in parallel in more diverse datasets to improve
model generalization ability.

4.3 Future Research Directions

4.3.1 More Effective Data Processing Methods

Data processing in 2D images have been very diverse, including data enhancement, data
fusion, data inversion, and data transformation. There has been great progress in data
processing for 2D data, and many algorithms have been proposed. In 3D data, data
processing of 3D data has also attracted attention. PointAugment [52] performed data
fusion of the enhanced 2D data with the 3D data. SampleNet [47] added a projection
operation to transform the data and achieved a new point cloud sampling. LU-Net [48]
extracted the point cloud data with high-level features and embedded 3D local features
into 2D to obtain the new point cloud data. RangeNet++ [65] researcher use projection
method to project the 3D data to get 2D data. JSNet [110] performs fusion of different
layers of backbone features using data fusion method. The above papers have shown that
data processing for 3D point cloud data is a very effective model enhancement method,
increasing the robustness of the model and improving the model effect by effective data
transformation of the point cloud data. There are still many data processing methods that
are worth designing new algorithms to obtain new data based on effective data processing
methods to increase the training data.
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4.3.2 Attention Mechanism

In recent years, attention has become the focus of research in machine vision [46]. The
attention mechanism is one of the most popular techniques nowadays and has been used
with amazing results in many computer vision tasks. Its application in neural networks
has also made it a hot topic. In [46], researchers indicate that humans are not very good
at processing the whole scene at once, but a person’s attention will choose selectively
some of the important information while observing the whole scene to guide the later
decisions. This selective screening of the whole greatly eliminates invalid features and
reduces complexity. Feature extraction can be performed accurately and efficiently for the
object in the model. P4Transformer [21], Transformer3D-Det(T3D) [109], VoteNet [18],
Channel-wise Transformer 3D Object Detection (CT3D) [79], Group-Free [59], 3DETR
[66] applied the attention mechanism to the model and achieved quite good results on the
whole effect of the model. From these papers, it is easy to find that the main focus of
many existing models based on attention mechanisms is on feature extraction and analysis
of weights for feature tasks, which has the advantage of improving the overall performance
effect of the model in a very direct way. However, there is little attention to the problem
of localization accuracy, and how to accurately localize attention regions is a worthwhile
study and interest point in the future. In particular, in 3D point cloud data, there is a
problem of overlap in the range of attention regions, which makes it possible to design new
attention models in three-point cloud data as the focus of future attention.

4.4 Research Summary

Point cloud data as a form of 3D data representation is now widely used in various areas
with great importance and references. Point cloud data can play an important role in the
exploration of 3D space. In point cloud classification tasks, it provides important informa-
tion for human-related tasks, such as point cloud action recognition P4Transformer [21],
PSTNet [22], PoseNet [111], HandVoxNet [61], PVN3D [36], point cloud pose estimation
PointContrast [97], HandVoxNet [61], PVN3D [36]. In point cloud detection and track-
ing, Transformer3D-Det(T3D) [109], VoteNet [18], Channel-wise Transformer 3D Object
Detection (CT3D) [79], Group-Free [59], 3DETR [66], Semantic Point Generation (SPG)
[102],Range-Guided Cylindrical Network [74], RangeDet [23],PV-RCNN [81], CenterPoint
[103] can be applied to automatic driving, tracking, etc. In point cloud segmentation,
SqueezeSeg [93], Geometric Shared Network (GS-Net) [101], VIASeg [113], LU-Net [48],
RangeNet++ [65], JSNet [110], MPNet [82], SceneEncoder [98] perform the segmentation
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task well, these models perform more accurate extraction from global to local by perform-
ing feature extraction on point cloud data, main methods are adding attention mechanism,
adding more information to the original point cloud data, and mining sequence informa-
tion in spatial and temporal dimensions. In the remaining part, we will propose several
interesting directions for future work on point cloud.

Point cloud data can present objects well in 3D, which contain detailed information, so
it becomes a key point that how to mine the key information. PointContrast [97], MPNet
[82] improved the model effect by extracting local features, and it is easy to find that
mining the local information of the point cloud and designing the algorithm from global to
local is an intuitive and effective idea. Based on the local information for more accurate
feature extraction, from how to perform accurate extraction for analysis and mining more
local information. We think this is also a good and useful research direction. In the process
of mining local information, we can avoid losing global information after extracting local
features by performing joint local and global feature extraction.

In recent years, 3D point cloud data has been of great use for researchers to study 3D
real information, but because the expression of point cloud data is not dense, presenting a
sparse state, there is no information in the surrounding areas of points, which has become
a breakthrough for research. By filling the missing information in the non-dense represen-
tation of point cloud, we think this is a very worthy research direction. There have been
some studies focused on supplementing point cloud data with missing information here.
In HandVoxNet [61] researchers add depth maps to supplement the missing information of
point cloud data. In Semantic Point Generation (SPG) [102] semantic data and original
point cloud data are fused for data tolerance to reproduce the original point cloud missing
data. VIASeg [113] embedding color information into the point cloud data provides rich
visual information to the point cloud data.

In recent years, many loss functions have been proposed to improve the capability of
networks and further optimize models. The common loss functions are Cross-Entropy Loss,
Center Loss, Triplet Loss, etc. In 3D point cloud, researchers have also designed new loss
functions for point cloud data, such as PointInfoNCE Loss [97], to further improve the
model effect to optimize the model performance. The effect of different loss functions on
point cloud data is a very important direction.

Point cloud models are built using two streams, 2D-based and 3D-based methods. The
2D-based method mainly converts 3D point cloud data into 2D maps for various tasks.
The 3D-based approach inputs 3D point cloud data directly into the model. There are
now also methods that combine 2D and 3D methods, and using fused image information
to help with 3D tasks is also an interesting idea.
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Modality can be represented as a source or expression of information. MMML, the
purpose of MMML is to perform through machine learning thus the ability to process and
understand multi-modal information [6]. In machine vision, multi-modal learning can be
formed between image, video, audio, and semantics. Researchers can complement point
cloud data by adding information from different modalities to the point cloud data. On the
other hand, some researchers have tried to use knowledge in fluid mechanics to help improve
overall model performance. For example, AdvectiveNet[ [35] used hydrodynamic natural
flow phenomena to process point cloud data, PointContrast [97] added depth differences
to estimate depth complementary information, and HandVoxNet [61] added depth maps
for pose estimation. Therefore, how to use this information for multi-modal point cloud
data complementation or to help the overall model to further explore deep relationships
remains a worthy problem for future research.

There is also a novel approach which integrates point cloud data tasks into the pipeline
of other related tasks. Many multi-channel methods are already proposed. For example,
point cloud-based classification models PointContrast [97], point cloud-based pose estima-
tion PoseNet [111], HandVoxNet [61], PVN3D [36], and point cloud-based 3D methods
JSNet [110]. In the subsequent tasks, exploring how to better utilize and implement the
multi-channel approach and use other tasks to better facilitate effective mining of point
cloud data is an important future research direction.

In this paper, we review various aspects of point cloud models based on classification.
To the best of our knowledge, the present work provide the first comprehensive review
of point cloud approaches with a focus on deep learning-based methods. Specifically, we
introduce the background and basics of point cloud data, then explain the difficulties faced
by point cloud data, the public dataset, and the evaluation criteria. After that, we ana-
lyze the algorithms from classification and segmentation. And under each classification,
we perform subdivisions. Then some popular neural networks are analyzed and reviewed,
these models are widely used, then we analyze these algorithms based on point cloud from
different perspectives. In classification module, it includes 3D point cloud, point cloud
action recognition, and point cloud pose estimation. In segmentation, it includes 2D and
3D based models. Then we briefly describe each of the related tasks. On the other hand,
based on the above review, we introduce a novel paradigm for 3D point cloud methods, us-
ing attentional model pre-training to learn inter-feature relationships between point clouds
to collect structural information for synthesizing new point cloud data. Experiments on
classification and segmentation of 3D point cloud tasks show that there are inconsistent
relationships between point clouds, and enable the model to learn and generalize substan-
tially better. In the meantime, Auto pooling, an unique adaptive downsampling frame-
work, was introduced. Figure 3.11 and Figure 3.12 illustrates the enhanced performance by
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demonstrating how auto pooling considers each point’s importance and adaptively chooses
significant points while preserving the information and order of the original data. We look
forward to potential application of inconsistency relationships between point clouds to the
model and will continue to investigate the model.
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