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Abstract 

Manufacturing smarter and more reliable vehicles is a progressing trend in the automotive industry. 

Many of today’s vehicles are equipped with driver assistant, automated driving and advanced stability 

control systems. These systems rely on measured or estimated information to accomplish their tasks. 

Evidently, reliability of the sensory measurements and the estimate information is essential for desirable 

operation of advanced vehicle subsystems. 

This thesis proposes a novel methodology to detect vehicle sensor faults, reconstruct the faulty sensory 

signals and deliver fault-tolerant estimation of vehicle states. The proposed method can detect failures 

of the longitudinal, lateral and vertical acceleration sensors, roll rate, yaw rate and pitch rate sensors, 

steering angle sensor, suspension height sensors, and motor torque sensors. The proposed structure can 

deliver fault-tolerant estimations of the vehicle states including the longitudinal, lateral and vertical tire 

forces, longitudinal and lateral velocities, roll angle, and pitch angle. Road grade and bank angles are 

also estimated in this method even in presence of sensor faults. 

The unified structure in this thesis is realized by fusion of analytical redundancy relations, fault 

detection observers and adaptive state estimation algorithms. The proposed method can isolate the 

faults for vehicle stability and control systems and deliver accurate estimation of vehicle states required 

by such systems despite sensor failures.  

The methods developed in this thesis are validated through experiments and can operate reliably in 

various driving scenarios. 

 



 

 v 

Acknowledgements 

Foremost, I would like to thank my supervisors Prof. Amir Khajepour and Prof. William Malek for 

their encouragement, guidance, knowledge, patience, and genuine kindness during my research. They 

will always be my role models. 

I also would like to acknowledge the financial support of the Automotive Partnership Canada, 

Ontario Research Fund and General Motors. Special thanks to Dr. Bakhtiar Litkouhi, Dr. Shih-Ken 

Chen and GM Research and Development teams for their support and considerations on evaluating the 

proposed methods. 

I am also grateful for supports of my colleagues in the Mechatronic Vehicle Systems laboratory, in 

particular Kevin Cochran and Jeff Graansma, for their assistance during the experimental verification 

of this research. 

I would also like to express my gratitude to my friends Ayyoub Rezaeian, Saber Fallah and Ehsan 

Hashemi for their technical assistance and valuable discussions throughout this project. 

Most importantly, this work would not have been possible without the love and support of my wife, 

Dr. Elahe Marandi, and my family to whom this thesis is dedicated. 

 



 

 vi 

Dedication 

To my brilliant and lovely wife, Elahe, and to my dear mother Shahnaz, my amazing sister and brother, 

Hanieh and Ehsan, and to my dear father Hamid whose memory will always be with me. 



 

 vii 

Table of Contents 

Examining Committee Membership ....................................................................................................... ii 

Author’s Declaration ............................................................................................................................. iii 

Abstract ................................................................................................................................................. iv 

Acknowledgements ................................................................................................................................ v 

Dedication ............................................................................................................................................. vi 

List of Figures ....................................................................................................................................... xi 

List of Tables ........................................................................................................................................ xv 

Chapter 1 Introduction ............................................................................................................................ 1 

1.1 Motivation .................................................................................................................................... 1 

1.2 Objectives ..................................................................................................................................... 3 

1.3 Thesis Outline ............................................................................................................................... 5 

Chapter 2 Literature Review and Background ....................................................................................... 7 

2.1 Sensor Fault Detection and Isolation ............................................................................................ 7 

2.1.1 Analytical Redundancy Relations for Sensor Fault Detection .............................................. 7 

2.1.2 Parity Relations for Sensor Fault Detection .......................................................................... 8 

2.1.3 Observe-Based Sensor Fault Detection ................................................................................. 9 

2.1.4 Kalman Filters for Fault Detection and Fault-Tolerant State Estimation ............................ 10 

2.2 Common Types of Sensor Faults ............................................................................................... 11 

2.3 Fault Detectability and Isolability .............................................................................................. 12 

2.4 Sensor Fault Detection in Automotive Applications .................................................................. 13 

2.5 Fault-Tolerant Estimation of Vehicle States .............................................................................. 14 

2.6 Summary .................................................................................................................................... 16 



 

 viii 

Chapter 3 Fault Detection and Signal Reconstruction for Roll Rate, Pitch Rate and Suspension Height 

Sensors.................................................................................................................................................. 18 

3.1 Introduction ................................................................................................................................ 18 

3.2 Analytical Redundancy Relations for Suspension Height Sensors ............................................ 19 

3.3 Roll and Pitch Dynamics ............................................................................................................ 22 

3.4 Unknown Input Observers for Roll and Pitch Dynamics ........................................................... 23 

3.5 Analytical Redundancy Relations for Roll Rate and Pitch Rate Sensors ................................... 26 

3.6 Detection and Isolation of Sensor Faults .................................................................................... 28 

3.6.1 Generating and Processing Suspension Height Residuals ................................................... 29 

3.6.2 Generating and Processing Roll Rate Residuals .................................................................. 30 

3.6.3 Generating and Processing Pitch Rate Residuals ................................................................ 31 

3.6.4 Decision Logic for Detection and Isolation of Sensor Faults .............................................. 31 

3.7 Fault Detectability and Isolability Analysis ............................................................................... 33 

3.8 Reconstruction of Faulty Signals ................................................................................................ 34 

3.9 Experiment Results ..................................................................................................................... 34 

3.9.1 Fault Detection and Signal Reconstruction for Roll Rate Sensor ........................................ 37 

3.9.2 Fault Detection and Signal Reconstruction for Pitch Rate Sensor ...................................... 41 

3.9.3 Fault Detection and Signal Reconstruction for Suspension Height Sensor ......................... 44 

3.10 Summary .................................................................................................................................. 48 

Chapter 4 Fault Detection and Signal Reconstruction for Accelerations, Yaw Rate and Steering Angle 

Sensors.................................................................................................................................................. 49 

4.1 Introduction ................................................................................................................................ 49 

4.2 Vehicle Model ............................................................................................................................ 50 

4.3 Analytical Redundancy Relations for Lateral Acceleration Sensor ........................................... 52 



 

 ix 

4.4 Analytical Redundancy Relations for Longitudinal Acceleration Sensor .................................. 55 

4.5 Analytical Redundancy Relations for Vertical Acceleration Sensor .......................................... 56 

4.6 Analytical Redundancy Relations for Yaw Rate Sensor ............................................................ 57 

4.7 Analytical Redundancy Relations for Steering Angle Sensor .................................................... 58 

4.8 Detection and Isolation of Sensor Faults .................................................................................... 59 

4.8.1 Generating and Processing the Residuals ............................................................................ 60 

4.8.2 Decision Logic for Detection and Isolation of Sensor Faults .............................................. 61 

4.9 Fault Detectability and Isolability Analysis ............................................................................... 62 

4.10 Reconstruction of Faulty Signals .............................................................................................. 63 

4.11 Experiment Results ................................................................................................................... 64 

4.11.1 Experiment Results when all Sensors are Functional ........................................................ 64 

4.11.2 Fault Detection and Signal Reconstruction for Lateral Acceleration Sensor .................... 67 

4.11.3 Fault Detection and Signal Reconstruction for Longitudinal Acceleration Sensor ........... 70 

4.11.4 Fault Detection and Signal Reconstruction for Vertical Acceleration Sensor ................... 72 

4.11.5 Fault Detection and Signal Reconstruction for Yaw Rate Sensor ..................................... 74 

4.11.6 Fault Detection and Signal Reconstruction for Steering Angle Sensor ............................. 77 

4.12 Summary .................................................................................................................................. 79 

Chapter 5 Fault-Tolerant Estimation of Vehicle States ........................................................................ 80 

5.1 Introduction ................................................................................................................................ 80 

5.2 Detection of Torque Sensor Faults, Reconstruction of Faulty Signals and Fault-Tolerant 

Estimation of Longitudinal Tire Forces ........................................................................................... 81 

5.3 Fault-Tolerant Estimation of Vertical Tire Forces ..................................................................... 84 

5.4 Fault-Tolerant Estimation of Lateral Tire Forces ....................................................................... 85 

5.5 Fault-Tolerant Estimation of Longitudinal and Lateral Velocities ............................................. 89 



 

 x 

5.6 Unified Structure for Fault-Tolerant Estimation of Vehicle States ............................................ 90 

5.7 Experiment Results ..................................................................................................................... 91 

5.7.1 Experiment Results when all Sensors are Functional .......................................................... 92 

5.7.2 Fault-Tolerant Estimation of States When Lateral Acceleration Sensor is Faulty .............. 95 

5.7.3 Fault-Tolerant Estimation of States When Longitudinal Acceleration Sensor is Faulty ... 100 

5.7.4 Fault-Tolerant Estimation of States When Vertical Acceleration Sensor is Faulty .......... 103 

5.7.5 Fault-Tolerant Estimation of States When Yaw Rate Sensor is Faulty ............................. 106 

5.7.6 Fault-Tolerant Estimation of States When Motor Torque Sensor is Faulty ...................... 108 

5.8 Summary .................................................................................................................................. 111 

Chapter 6 Conclusions and Future Work ........................................................................................... 113 

6.1 Conclusions .............................................................................................................................. 113 

6.2 Future Work ............................................................................................................................. 115 

References .......................................................................................................................................... 117 

Appendix A UKF Estimation Approach ............................................................................................ 127 

 



 

 xi 

List of Figures 

Figure 1.1. A closed-loop vehicle control system including the proposed method ................................ 4 

Figure 3.1. Structure of the proposed fault detection and signal reconstruction method ..................... 18 

Figure 3.2. Suspension kinematics and sensor locations ...................................................................... 20 

Figure 3.3. Roll and pitch dynamics on roads with grade and bank angles ......................................... 22 

Figure 3.4. Estimation of redundant roll rate, pitch rate and suspension heights ................................. 28 

Figure 3.5. Test vehicle, sensors and instrumentation setup ................................................................ 35 

Figure 3.6. Longitudinal and lateral accelerations during the roll rate fault detection test .................. 37 

Figure 3.7. Suspension heights and trajectory of the vehicle during the roll rate fault detection test .. 37 

Figure 3.8. Roll rate residuals and fault threshold when the roll rate sensor is faulty.......................... 38 

Figure 3.9. Pitch rate and suspension height residuals when the roll rate sensor is faulty ................... 39 

Figure 3.10. Detection of the roll rate sensor fault and estimation of the fault magnitude .................. 39 

Figure 3.11. Estimation of road grade and bank angles when roll rate sensor is faulty ....................... 40 

Figure 3.12. Reconstruction of the faulty roll rate signal ..................................................................... 40 

Figure 3.13. Longitudinal and lateral accelerations during the pitch rate fault detection test .............. 41 

Figure 3.14. Suspension heights and trajectory of the vehicle in the pitch rate fault detection test ..... 41 

Figure 3.15. Pitch rate residuals when the pitch rate sensor is faulty ................................................... 42 

Figure 3.16. Roll rate and suspension height residuals when the pitch rate sensor is faulty ................ 42 

Figure 3.17. Detection of the pitch rate sensor fault and estimation of the fault magnitude ................ 43 

Figure 3.18. Estimation of the road grade when pitch rate sensor is faulty ......................................... 43 

Figure 3.19. Reconstruction of the faulty pitch rate signal .................................................................. 44 

Figure 3.20. Longitudinal and lateral accelerations during the suspension height fault detection test 44 

Figure 3.21. Suspension heights and trajectory of the vehicle in the suspension fault detection test .. 45 

Figure 3.22. Suspension height residuals when the rear-right suspension sensor is faulty .................. 45 

Figure 3.23. Roll rate and pitch rate residuals when the rear-right suspension sensor is faulty ........... 46 

Figure 3.24. Detection of the suspension height sensor fault and estimation of the fault magnitude .. 46 

Figure 3.25. Reconstruction of the faulty rear-right suspension height signal ..................................... 47 

Figure 3.26. Fault-tolerant estimation of roll and pitch angles............................................................. 47 

Figure 4.1. Overall structure of the fault detection and signal reconstruction method......................... 49 

Figure 4.2. Vehicle model .................................................................................................................... 51 

Figure 4.3. Fault detection and signal reconstruction process .............................................................. 60 



 

 xii 

Figure 4.4. Driver commands and and trajectory of the vehicle during the meanuever with no fault . 65 

Figure 4.5. Lateral acceleration virtual sensors and residuals .............................................................. 66 

Figure 4.6. Longitudinal acceleration virtual sensors and residuals ..................................................... 66 

Figure 4.7. Vertical acceleration virtual sensors and residuals ............................................................ 66 

Figure 4.8. Yaw rate virtual sensors and residuals ............................................................................... 67 

Figure 4.9. Steering angle virtual sensors and residuals ....................................................................... 67 

Figure 4.10. Driver commands and trajectory of the vehicle during the maneuver with lateral 

acceleration sensor fault ....................................................................................................................... 68 

Figure 4.11. Detection of lateral acceleration sensor fault ................................................................... 69 

Figure 4.12. Reconstruction of the faulty lateral acceleration signal ................................................... 69 

Figure 4.13. Driver commands and trajectory of the vehicle during the maneuver with longitudinal 

acceleration sensor fault ....................................................................................................................... 70 

Figure 4.14. Detection of longitudinal acceleration sensor fault .......................................................... 71 

Figure 4.15. Reconstruction of the faulty longitudinal acceleration signal .......................................... 71 

Figure 4.16. Driver commands and trajectory of the vehicle during the maneuver with vertical 

acceleration sensor fault ....................................................................................................................... 72 

Figure 4.17. Detection of vertical acceleration fault ............................................................................ 73 

Figure 4.18. Reconstruction of the faulty vertical acceleration signal ................................................. 73 

Figure 4.19. Driver commands and trajectory of the vehicle during maneuver with yaw rate sensor 

fault ....................................................................................................................................................... 74 

Figure 4.20. Wheel angular velocities during the lane-change maneuver on the wet road .................. 74 

Figure 4.21. Detection of the yaw rate sensor fault .............................................................................. 75 

Figure 4.22. Reconstruction of the faulty yaw rate signal .................................................................... 76 

Figure 4.23. Adaptive virtual sensor weights for reconstruction of the yaw rate fault ........................ 76 

Figure 4.24. Driver commands and trajectory of the vehicle during the maneuver with steering angle 

sensor fault ........................................................................................................................................... 77 

Figure 4.25. Detection of steering angle sensor fault ........................................................................... 78 

Figure 4.26. Reconstruction of the faulty steering angle signal ........................................................... 78 

Figure 5.1. Detection of torque sensor faults and fault-tolerant estimation of vehicle states ............... 80 

Figure 5.2. Wheel dynamics ................................................................................................................. 81 

Figure 5.3. Fault-tolerant estimation of vertical tire forces .................................................................. 85 



 

 xiii 

Figure 5.4. Adaptive UKF for fault-tolerant estimation of lateral tire forces ....................................... 87 

Figure 5.5. Unified structure for sensor fault detection, signal reconstruction and fault-tolerant 

estimation of vehicle states ................................................................................................................... 90 

Figure 5.6. Vehicle sensors, actuators and instrumentations for verification of the results ................. 91 

Figure 5.7. Driver commands and trajectory of the vehicle during the step-steer maneuver with no 

sensor fault ........................................................................................................................................... 93 

Figure 5.8. Estimation of longitudinal tire forces when there is no sensor fault .................................. 94 

Figure 5.9. Estimation of lateral tire forces when there is no sensor fault ........................................... 94 

Figure 5.10. Estimation of vertical tire forces when there is no sensor fault ....................................... 95 

Figure 5.11. Driver commands and trajectory of the vehicle during the DLC maneuver with lateral 

acceleration sensor fault ....................................................................................................................... 96 

Figure 5.12. Reconstruction of the faulty lateral acceleration signal ................................................... 96 

Figure 5.13. Fault-tolerant estimation of vertical tire forces when lateral acceleration sensor fails .... 97 

Figure 5.14. Fault-tolerant estimation of lateral tire forces when lateral acceleration sensor fails ...... 98 

Figure 5.15. Fault-tolerant estimation of lateral velocity when lateral acceleration sensor fails ......... 99 

Figure 5.16. Fault-tolerant estimation of roll angle when lateral acceleration sensor fails .................. 99 

Figure 5.17. Driver commands during the stop-and-go maneuver with longitudinal acceleration sensor 

fault ..................................................................................................................................................... 100 

Figure 5.18. Reconstruction of the faulty longitudinal acceleration signal ........................................ 100 

Figure 5.19. Fault-tolerant estimation of vertical tire forces when longitudinal acceleration sensor 

fails ..................................................................................................................................................... 101 

Figure 5.20. Fault-tolerant estimation of pitch angle when longitudinal acceleration sensor fails .... 102 

Figure 5.21. Fault-tolerant estimation of longitudinal velocity when longitudinal acceleration sensor 

fails ..................................................................................................................................................... 102 

Figure 5.22. Driver and controller commands during the DLC maneuver with vertical acceleration 

sensor fault ......................................................................................................................................... 103 

Figure 5.23. Reconstruction of the faulty vertical acceleration signal ............................................... 104 

Figure 5.24. Fault-tolerant estimation of vertical tire forces when vertical acceleration sensor fails 104 

Figure 5.25. Fault-tolerant estimation of lateral tire forces when vertical acceleration sensor fails .. 105 

Figure 5.26. Driver commands and trajectory of the vehicle during the DLC maneuver with yaw rate 

sensor fault ......................................................................................................................................... 106 



 

 xiv 

Figure 5.27. Reconstruction of the faulty yaw rate signal .................................................................. 106 

Figure 5.28. Fault-tolerant estimation of longitudinal velocity when yaw rate sensor fails ............... 107 

Figure 5.29. Fault-tolerant estimation of lateral velocity when yaw rate sensor fails ........................ 107 

Figure 5.30. Driver commands and trajectory of the vehicle during the acceleration and braking 

maneuver with motor torque sensor fault ........................................................................................... 108 

Figure 5.31. Total longitudinal force residual when front-left torque sensor fails ............................. 109 

Figure 5.32. Wheel torque residuals when front-left torque sensor fails ............................................ 109 

Figure 5.33. Detection of front-left torque sensor fault and estimation of the fault magnitude ......... 110 

Figure 5.34. Reconstruction of the faulty front-left torque signal ...................................................... 110 

Figure 5.35. Fault-tolerant estimation of longitudinal tire forces when front-left torque sensor fails 111 



 

 xv 

List of Tables 

Table 3.1. Fault signatures for isolation of roll rate, pitch rate and suspension height sensor faults ... 32 

Table 3.2. Reconstruction of roll rate, pitch rate and suspension height signals .................................. 34 

Table 3.3. Vehicle parameters .............................................................................................................. 36 

Table 3.4. Parameters for residual processing and sensor fault detection ............................................ 36 

Table 4.1. Fault signatures for detection of sensor faults ..................................................................... 61 

Table 4.2. Decision logic for detection of sensor faults and reconstruction of faulty signals .............. 63 

Table 4.3. Parameters for residual processing, fault detection and signal reconstruction .................... 64 

Table 5.1. Decision logic for detection of torque sensor faults and reconstruction of faulty signals ... 84 

Table 5.2. UKF parameters .................................................................................................................. 92 

Table 5.3. Parameters for residual processing and fault-tolerant estimation ........................................ 92 

Table 5.4. Tire force estimation errors when there is no sensor fault .................................................. 93 

Table 5.5. Vertical and lateral tire force estimation errors when lateral acceleration sensor fails ....... 98 

Table 5.6. Vertical tire force estimation errors when longitudinal acceleration sensor fails ............. 101 

Table 5.7. Vertical and lateral tire force estimation errors when vertical acceleration sensor fails ... 105 



 1 

Chapter 1 

Introduction 

1.1 Motivation 

Reliability of sensory measurements and estimated vehicle states is a paramount objective in 

automotive applications. Many advanced vehicle systems such as stability controllers, automated 

driving systems and x-by-wire mechanisms rely on information measured by on-board sensors and 

estimated vehicle states for their operation. Consequently, there is an increasing demand to ensure 

reliable operation of such systems even in case of sensor failures. 

For vehicle control systems, the following information is usually measured directly by sensors: 

• Vehicle accelerations (longitudinal, lateral, and vertical): 

These accelerations are typically measured by an inertial measurement unit (IMU) and are required 

in electronic stability control systems (ESC) [1], adaptive cruise control systems (ACC) [2], 

autonomous driving systems [3], etc. 

• Vehicle angular rates (yaw, roll and pitch rates): 

Many commercial vehicles are equipped with a 3-axis IMU that measures the yaw rate. Some higher-

end vehicles are equipped with a 6-axis IMU that measures yaw, pitch and roll rates. The angular 

rates are mainly used in ESC systems [4], rollover prevention systems [5] and active suspension 

systems [6].  

• Steering angle: 

Usually, an incremental encoder is used to measure the steering angle. The steering angle 

measurement is necessary for implementation of steer-by-wire systems [7], active steering stability 

systems [8], driver assistant systems [9] and autonomous driving systems [10]. 

• Wheel torques: 

Wheel torques are measurable in electric vehicles equipped with independent wheel motors and are 

directly used in torque vectoring applications [11]. Although these measurements are not available 

in conventional vehicles, approximate or estimated values of the wheel torques can be obtained by 

using the engine torque and a model of the transmission system. Wheel torques are increasingly being 

used in modern traction control and stability systems [12].  
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• Wheel angular velocities: 

Encoders are widely used to measure wheel angular velocities and provide this information to 

different vehicle control subsystems such as anti-lock braking system (ABS) [13] and traction control 

systems (TCS) [14]. For electric vehicles, wheel angular velocities are available from both the ABS 

system and the electric motor resolvers. Detection of wheel angular velocity faults is not studied in 

this thesis since the redundant sensors are commonly available. 

• Suspension heights: 

Suspension height sensors are mainly employed in active suspension and roll control systems [15]. 

Linear transducers are the main type of suspension height sensors in automotive applications [16].  

In addition to direct use of the sensory signals by control systems, such signals are essential sources 

of information for estimating immeasurable or costly to measure vehicle states. The most important 

examples of such states include: 

• Tire forces: 

It is important to monitor the longitudinal, lateral and vertical tire forces due to their substantial 

effects on the vehicle dynamics [17]. Many advanced vehicle stability and control applications 

require information about the tire forces for their operation [18]. Tire forces can be measured by 

wheel force/moment sensors [19], but this is not a preferred option for commercial vehicles due to 

cost and mounting challenges. Therefore, estimation is the method of choice to calculate the 

magnitude of tire forces [20]. Such estimations rely on the vehicle sensors (e.g. steering angle, 

accelerations, angular rates, wheel angular velocities, etc.) to calculate the tire forces using linear or 

nonlinear observers [21]. 

• Vehicle velocity: 

Longitudinal and lateral velocities are used by vehicle control systems and tire models to calculate 

vehicle and tire slips. These slips are important indicators of vehicle stability/instability [22]. 

Estimation techniques are the most common means to calculate these velocities and slips [23]. Such 

methods rely on sensory information, e.g. accelerations, angular rates and steering angle, to estimate 

the velocities and calculate the longitudinal and lateral slips in the tires [24]. 

• Vehicle roll and pitch angles: 
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Vehicle roll and pitch angle are required in advanced control systems due to their effects on the 

vertical tire forces and sprung mass dynamics [25]. These angles are not usually measured in 

commercial vehicles. Estimation methods are the main tools to provide the roll and pitch angle 

information for such control systems [26]. 

• Road grade and bank angles: 

Road grade and bank angles considerably affect the vehicle dynamics. Such disturbances also affect 

vehicle stability, e.g. in terms of rollover and lateral stability [27]. Accurate measurement of these 

angles in real-time is not practical since cost-effective sensors to deliver such measurements are not 

available. Therefore, estimation of these angles is the main practical solution considered by many 

recent studies [28]. 

In summary, whether obtained directly through measurements or indirectly through estimations, 

vehicle dynamic states are required for a wide variety of vehicle stability and control applications. 

Noticeably, malfunction of the sensors and/or inaccuracy of the estimated states may result in unreliable 

performance of vehicle systems. Hence, such malfunctions must be properly mitigated if encountered. 

Installation of redundant sensors may help to achieve a desirable performance even with sensor failures.  

However, the number and type of sensors for estimation or control purposes are important in the vehicle 

manufacturing due to unit cost. Therefore, achieving reliable measurements and accurate estimation of 

states using a minimal vehicle sensor set are among the most important objectives for the automotive 

suppliers and OEMs. 

Any practical fault diagnosis solution for automotive applications should comply with the relevant 

safety and reliability requirements. In terms of safety, vehicle control systems are usually designed to 

be robust against certain levels of sensor measurement errors. Sensor anomalies beyond such robustness 

levels shall be detected with a minimal rate of false negatives (i.e. minimum number of undetected 

sensor faults during the vehicle operation). In terms of reliability, false positives should also be 

minimized since incorrect diagnosis of a healthy sensor can impact the availability of vehicle features, 

cause customer dissatisfaction and impose warranty costs.  

1.2 Objectives 

The main objective of this thesis is to develop a comprehensive methodology for detection of sensor 

faults, reconstruction of the faulty sensory signals, and accurate estimation of vehicle dynamic states 
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despite sensor failures. Figure 1.1 shows how the proposed method in this thesis communicates with a 

closed loop vehicle control system. The objective of the proposed methodology is to guarantee that the 

vehicle control systems receive fault-free sensory information and a reliable set of estimated vehicle 

states, even when a fault occurs.  

 

Figure 1.1. A closed-loop vehicle control system including the proposed method 

Considering the main goal of this work, the following are detailed objectives of this thesis: 

The first objective is to detect failure of sensors that are commonly used in vehicle control systems 

including steering angle sensor, longitudinal, lateral and vertical acceleration sensors, roll rate, yaw rate 

and pitch rate sensors, suspension height sensors and motor torque sensors. The fault detection 

performance needs to be timely (to prevent undesirable operation of vehicle systems), accurate (in terms 

of correctly detecting and localizing the fault), and reliable (in terms of avoiding false positives). 

The second objective of this thesis is to reconstruct the faulty sensory signal when any of the 

abovementioned sensors fails. The reconstructed signal shall be precise in terms of reporting the actual 

state of the vehicle even during demanding maneuvers.  

The third objective is to deliver the fault-tolerant estimation of vehicle states despite the sensor faults. 

These states include the longitudinal, lateral, and vertical tire forces, longitudinal and lateral velocities, 

body roll and pitch angles, and road angles.  

Additionally, this thesis intends to accomplish the above objectives using a common sensor set 

available in commercial vehicles, and does not presume availability of additional information such as 
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prior knowledge of the road friction coefficient, road grade/bank angles, fault patterns, etc. Therefore, 

methods developed in this thesis can operate in real-world driving scenarios. 

1.3 Thesis Outline 

In the second chapter of this thesis, the background of sensor fault detection, fault isolation and fault-

tolerant estimation is studied. Various techniques for detection of sensor faults and reconstruction of 

faulty signals are explored, and the concepts of fault detectability and isolability are discussed. 

Subsequently, the literature of sensor fault diagnosis is reviewed with emphasis on detection of vehicle 

sensor faults and fault-tolerant estimation of states for vehicle dynamic control applications. 

In the third chapter, a structure is proposed for detection of sensor faults and reconstruction of faulty 

signals for sensors that are commonly used in rollover prevention and active suspension systems 

including roll rate, pitch rate and suspension height sensors. This structure combines vehicle’s roll 

dynamics, pitch dynamics, and sprung mass kinematics with unknown input observers and a sensor 

fault detection module. Kinematic interactions between the road angles and the vehicle states are 

considered in the proposed method. Next, detectability and isolability of the faults is discussed and an 

approach for reconstruction of faulty signals is presented. Effectiveness of the proposed method in fault 

detection and signal reconstruction is demonstrated through experimental results.  

Chapter four focuses on detection of sensor faults and reconstruction of faulty signals for sensors 

that are mainly used in the vehicle handling and stability control systems including the steering angle, 

yaw rate and acceleration sensors. A structure is presented which generates a set of virtual sensor 

measurements using vehicle models and estimated vehicle states. The virtual sensors are then compared 

with the actual sensor measurements in a fault detection module to detect and localize the faults. 

Reconstruction of the faulty sensory signals is achieved by processing the virtual sensor signals in an 

observer. Several experiment results are provided to demonstrate effectiveness of the proposed 

approach in various driving scenarios. 

Chapter five presents a unified structure for fault-tolerant estimation of vehicle states including the 

tire forces and vehicle velocity. First, a set of disturbance observers combined with a fault detection 

and signal reconstruction module are designed to detect/reconstruct the motor torque sensor faults. This 

method enables fault-tolerant estimation of longitudinal tire forces. Next, estimation of vertical tire 

forces is discussed where the load transfer equations combined with the reconstructed acceleration 

signals and the estimated roll/pitch angles provide the fault-tolerant estimations. For lateral tire forces, 
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an adaptive unscented Kalman filter is designed in which effects of sensor faults are mitigated by 

leveraging the reconstructed input signals and adapting the measurement equations. For longitudinal 

and lateral velocities, fault-tolerance is realized by feeding the reconstructed input signals into 

kinematic estimators. Next, the unified structure that connects the abovementioned fault detection, 

signal reconstruction and fault-tolerant estimation modules is discussed, and the comprehensive fault 

tolerance strategy is summarized. Several experimental case studies are presented at the end to evaluate 

performance of the proposed method in a variety of driving conditions with different sensor failure 

scenarios. 

Chapter six presents the conclusions and contributions of this thesis and mentions opportunities of 

future work in this domain. 
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Chapter 2 

Literature Review and Background 

This Chapter reviews the literature on sensor fault detection and fault-tolerant estimation of states. 

Various methods for detection of sensor faults are investigated and concepts of fault detectability and 

isolability are studied. The recent literature on implementation of these concepts for automotive 

applications is reviewed, limitations of the prior art is discussed and opportunities to develop more 

practical and robust solutions in this domain is presented. 

2.1 Sensor Fault Detection and Isolation 

Fundamentally, all fault detection approaches rely on comparisons between redundant information [29]. 

Such redundancies are either physical (sensor redundancy) or mathematical. Satellites and aircrafts are 

normally equipped with multiple redundant sensors to ensure a reliable operation [30]. Even some 

modern vehicles use redundant sensors for diagnosis purposes. The main issue with the physical 

redundancy is the associated costs and complexity of packaging redundant sensors in the system. 

Therefore, mathematical methods for detection and mitigation of faults are the preferred and cost- 

effective approach for a wide variety of applications.  

There are three main steps in developing a fault-tolerant system [31]. 

• Fault detection: detecting occurrence of faults that result in unreliable behavior of the system. 

• Fault isolation: locating the failed sensor in the system. 

• Fault management: taking actions to mitigate the undesirable consequences of the faults. 

A comprehensive overview of the recent sensor fault detection, isolation and mitigation techniques 

is available in the trilogy [32], [33], [34] and more recently in [35]. The most common fault detection 

approaches from the literature are discussed in the next sections.  

2.1.1 Analytical Redundancy Relations for Sensor Fault Detection 

Analytical redundancies are mathematical compatibility conditions between the inputs (𝑈), sensory 

measurements (𝑌), and parameters of the system (𝑃) [36]. These relations are often expressed by a set 

of constraint equations at each time step (𝑡): 
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{𝑓(𝑢(𝑡), 𝑦(𝑡), 𝑝(𝑡)) = 0   |     𝑢(𝑡) ∈ 𝑈, 𝑦(𝑡) ∈ 𝑌, 𝑝(𝑡) ∈ 𝑃}  (2-1) 

Deviations from the constraint model when a fault occurs are called residuals (𝑅): 

𝑅(𝑡) = 𝑓(𝑢(𝑡), 𝑦(𝑡), 𝑝(𝑡))  (2-2) 

The residuals are zero or upper-bounded by a certain threshold for normal operational conditions. 

Therefore, if the analytical redundancy relations are designed properly, residuals of larger magnitudes 

can indicate the fault in the system.  

As an example, analytical redundancy relations are used in [37] to identify the optimal placement of 

sensors such that all the possible redundancy constraints can be extracted for detecting the faults in a 

laboratory-scale coupled tank systems.  

Speed, simplicity, low computational complexity, and feasibility of real-time implementation are 

among the key advantages of the analytical redundancy approach [36]. However, such relations cannot 

be easily identified when the system is highly nonlinear or has high-order and cross-coupled dynamics. 

2.1.2 Parity Relations for Sensor Fault Detection 

Parity relations approach is a more systematic method to extract the analytical redundancies [38]. In 

this approach, the residuals are generated as differences between the model and the sensor outputs. 

Consider a linear-time-invariant (LTI) system such as: 

𝑋̇(𝑡) = 𝐴𝑋(𝑡) + 𝐵𝑈(𝑡) + 𝑁ℱ(𝑡)  (2-3) 

𝑌(𝑡) = 𝐶𝑋(𝑡) + 𝑀ℱ(𝑡)   (2-4) 

where 𝐴 is the state matrix, 𝐵 is the input matrix, 𝐶 is the output matrix, ℱ is the fault vector, 𝑀 is the 

senor fault matrix and 𝑁 is the actuator fault matrix. For this system, the redundancy equation can be 

obtained by taking derivatives of (2-4) up to the order of 𝑞 ≤ 𝑛 where 𝑛 indicates order of the system. 

These derivatives are then combined to create an augmented system [39]: 

𝑌̅(𝑡) = 𝑇̅𝑋(𝑡) + 𝐺̅𝑈̅(𝑡) + 𝑄̅ℱ̅(𝑡)   (2-5) 

𝑌̅(𝑡) =

[
 
 
 
𝑌(𝑡)

𝑌̇(𝑡)
⋮

𝑌(𝑞)(𝑡)]
 
 
 
, 𝑈̅(𝑡) =

[
 
 
 
𝑈(𝑡)

𝑈̇(𝑡)
⋮

𝑈(𝑞)(𝑡)]
 
 
 
, ℱ̅(𝑡) =

[
 
 
 
ℱ(𝑡)

ℱ̇(𝑡)
⋮

ℱ(𝑞)(𝑡)]
 
 
 
, 𝑇̅(𝑡) = [

𝐶
𝐶𝐴
⋮
𝐶𝐴𝑞

],    
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𝐺̅(𝑡) =

[
 
 
 
 

0
𝐶𝐵
𝐶𝐴𝐵
⋮

𝐶𝐴𝑞−1𝐵

0
0
𝐶𝐵
⋮

𝐶𝐴𝑞−2𝐵

0
0
0

…

⋯
⋯   

0
0

⋯   0
⋱
𝐶𝐵

0
0]
 
 
 
 

,  𝑄̅(𝑡) =

[
 
 
 
 

𝑀
𝐶𝑁
𝐶𝐴𝑁
⋮

𝐶𝐴𝑞−1𝑁

0
𝑀
𝐶𝑁
⋮

𝐶𝐴𝑞−2𝑁

0
0
𝑀

…

⋯
⋯   

0
0

⋯   0
⋱
𝐶𝑁

0
𝑀]
 
 
 
 

 

To eliminate the unknown state vector 𝑋(𝑡), both sides of (2-5) can be multiplied by a vector 𝑤𝑇, 

where 𝑤𝑇is designed to satisfy the conditions in (2-7): 

𝑤𝑇𝑌̅(𝑡) = 𝑤𝑇𝑇̅𝑋(𝑡) + 𝑤𝑇𝐺̅𝑈̅(𝑡) + 𝑤𝑇𝑄̅ℱ̅(𝑡)   (2-6) 

𝑤𝑇𝑇̅ = 0 and 𝑤𝑇𝑄̅ = 0  (2-7) 

Subsequently, the residual vector is obtained as a function of the augmented inputs and outputs: 

𝑅(𝑡) = 𝑤𝑇𝑌̅(𝑡) − 𝑤𝑇𝐺̅𝑈̅(𝑡)  (2-8) 

Since these residuals indicate the difference between the model and the sensor measurements, a fault 

can be detected if the residuals exceed a predefined threshold.   

More details on the parity approach and processing of the residuals are available in [31]. An accurate 

knowledge of the model is crucial in this method. The parity approach can be extended to nonlinear 

systems and can be combined with optimization techniques to generate more robust residuals [40].   

2.1.3 Observe-Based Sensor Fault Detection 

In the observer-based fault detection approach, occurrence of a fault is detected via comparison of the 

measured signals and their estimated counterparts provided by an observer [41], [42]. The observed 

signals are usually constructed using the estimated states and a model of the system [43]. For systems 

with multiple sensors, the observer-based approach usually requires a bank of observers to cover all 

potential failures [44]. 

As an example, a bank of observers is designed in [45] for detection of sensor faults in an autonomous 

helicopter. The number of observers in the bank is equal to the number of helicopter sensors. Each 

observer is designed to reconstruct one sensor output. Therefore, a sensor fault can be detected by 

comparing the estimated and the measured outputs. Despite nonlinearity of the actual helicopter system, 

linear observers are used due to the limited onboard computing resources. The computational 

complexity issue for the bank of observers approach is also discussed in [46]. 
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2.1.4 Kalman Filters for Fault Detection and Fault-Tolerant State Estimation 

The general idea of using Kalman filters for fault detection was first proposed in [47]. Considering a 

liner discrete time system with a process noise 𝓌[𝑘] and a sensor noise 𝓋[𝑘] at each sample time 𝑘:  

𝑋[𝑘 + 1] = 𝐴𝑋[𝑘] + 𝐵𝑈[𝑘] +𝓌[𝑘]  (2-9) 

𝑌[𝑘 + 1] = 𝐶𝑋[𝑘] + 𝓋[𝑘]  (2-10) 

a Kalman filter can be designed to estimate the state vector 𝑋[𝑘] provided that the noise vectors are 

Gaussian, uncorrelated, and white random signals with zero means. Covariances of these noises also 

needs to be known a-priori. The difference between the measured outputs 𝑌 and the estimated outputs 

𝑌̂ in the Kalman filter approach is called the innovation vector 𝛾[𝑘]: 

𝛾[𝑘] = 𝑌[𝑘] − 𝑌̂[𝑘] = 𝑌[𝑘] − 𝐶𝑥[𝑘|𝑘 − 1]  (2-11) 

This innovation vector is expected to have a zero mean and a known covariance when there is no 

fault. Therefore, detection of faults can be achieved by monitoring statistical properties of the 

innovation vector. Several extensions of this concept for fault detection are presented in the recent 

literature [48]. 

For fault detection in nonlinear systems, the Extended Kalman Filter (EKF) can be employed to 

handle the nonlinear dynamics. A bank of EKFs is designed in [49] to detect the faults in a marine gas 

turbine process. In addition to the main EKF which uses a nonlinear model of the system, additional 

EKFs are designed such that each filter uses a model that represents a specific faulty operational 

condition. When a fault occurs, the EKF that produces a better matching residual among the bank 

indicates location of the fault.  

The Unscented Kalman Filter (UKF) approach is also widely used for fault detection and fault-

tolerant state estimation. In [50], a federated bank of  UKFs is developed for fault-tolerant estimation 

of satellite attitude states. The bank contains a set of local UKFs and a master estimator. Each local 

UKF estimates the states using a local sensor. The locally estimated states are then fused in the master 

estimator and a sensitivity factor is defined based on the error covariance matrices of the UKFs. Upon 

occurrence of a fault, the sensitivity factor exceeds a normal threshold and localizes the fault. The faulty 

sensor is then excluded from the estimation process and the master estimator relies on the remaining 

healthy sensors to deliver the fault-free estimations.   
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An adaptive UKF for attitude estimation of a satellite is proposed in  [51]. Theoretical error (i.e., the 

error between the actual system and the model) and the real error (i.e., the error between the estimated 

and measured signals) are compared to adaptively reconfigure the estimation structure. When the real 

error exceeds the theoretical error, the measurement equation is updated to assign a smaller Kalman 

gain to the failed sensor. Therefore, the estimator relies on the model of the system more than the 

measurements. Consequently, the sensor fault less severely impacts the estimation results.  

More details about the UKF method will be presented in the next chapters of this thesis.  

2.2 Common Types of Sensor Faults 

Sensor faults may occur due to various reasons including wear and tear, long-term usage, physical 

changes in the sensor, environmental variations such as temperature changes, miscalibration, issues in 

the communication channels, etc. When a fault occurs, the output signal from the sensor may exhibit a 

specific pattern. The most common types of these fault patterns can be categorized as follows [52]: 

• Bias: a constant offset from the nominal state that the sensor is measuring.  

• Drift: a time varying offset from the nominal state. Such drifts can be linear or nonlinear. 

• Scaling (or gain fault): an output from the sensor which a scaled factor of the nominal state. The 

scaling factor may be constant or time varying. 

• Stuck-output: a constant output from the sensor where the reported measurement is stuck at a 

certain value. 

• Excessive noise: a random time series output from the sensor in which the noise magnitude is 

considerably larger than the noise level during normal operation of the sensor. 

• Intermittency: deviations from the nominal state, where the deviation intermittently appears and 

disappears.  

• Loss of signal: a loss of communication between the receiving module and the sensor. Most 

commonly, a loss of signal results in receiving a constant zero signal from the sensor.  

Some studies in the literature propose methods to detect specific subsets of these fault types. In such 

studies, the fault pattern is assumed to be known a-priori. Evidently, designing more comprehensive 
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fault-tolerant systems which ensure detectability and isolability of all the above failures without such 

restrictions is a preferred solution [53]. 

2.3 Fault Detectability and Isolability  

In all of the aforementioned fault detection methods, a major objective is to design the algorithm such 

that ideally all faults can be detected and their location in the system can be identified. Such objectives 

are investigated under the topic of fault detectability and isolability. 

Fault detectability focuses on making a binary decision on the absence of all faults (ℱ(𝑡) = 0) or 

presence of any fault in the system (ℱ(𝑡) ≠ 0). For a linear system such as the one described by (2-3)-

(2-4), it can be shown that all faults 𝑓𝑖(𝑡) ∈ ℱ(𝑡) are detectable if and only if: 

𝐶(𝑠𝐼 − 𝐴)−1𝑁𝑖 +𝑀𝑖 ≠ 0  (2-12) 

where 𝑁𝑖 and 𝑀𝑖 are the i-th column of matrices 𝑁 and 𝑀, respectively [54]. If (2-12) holds, then a set 

of residuals 𝑅(𝑡) can be designed to detect presence of a fault in the system. Such residuals can be 

constructed using any of the fault detection methods introduced in the previous sections. 

For nonlinear systems, a generic measure of detectability is not available except for certain classes 

[55]. Detectability for such systems is usually analyzed by creating a set of residuals and investigating 

whether the residuals can generate sufficient indications to detect the faults. In other words, given a set 

of residuals 𝑅(𝑡) in a nonlinear system, the fault vector ℱ(𝑡) is detectable if and only if there exists a 

non-zero residual 𝑟𝑖(𝑡) ∈ 𝑅(𝑡) when a fault 𝑓𝑖(𝑡) ∈ ℱ(𝑡) is non-zero.  

Fault isolability is a stronger condition than fault detectability. The objective in fault isolation is to 

identify the location of each fault in the system. For the linear system described by (2-3)-(2-4), all faults  

𝑓𝑖(𝑡) ∈ ℱ(𝑡), 𝑖 = 1,… , 𝑙 are isolable if and only if  

𝑟𝑎𝑛𝑘[𝐶(𝑠𝐼 − 𝐴)−1𝑁1 +𝑀1  …   𝐶(𝑠𝐼 − 𝐴)
−1𝑁𝑙 +𝑀𝑙] = 𝑙 (2-13) 

where 𝑙 is the number of faults in the fault vector ℱ(𝑡) [54]. In other words, for the faults to be isolable, 

the transfer function between each fault and outputs of the system needs to be unique.  

Similar to detectability, a generic fault isolability metric is not available for nonlinear systems. To 

investigate isolability in such systems, usually several subsets of the residual vector are grouped 

together and are called fault signatures 𝑆, where 𝑆 ⊂ 𝑅(𝑡). If two distinct signatures 𝑆𝑖 and 𝑆𝑗 can be 
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constructed for faults 𝑖 and 𝑗, then the two faults can be distinguished from each other. For complete 

fault isolability, distinct signatures need to be identified for all the faults in the system, if possible.  

2.4 Sensor Fault Detection in Automotive Applications 

Fault detection and mitigation strategies for automotive applications have been increasingly 

investigated in the literature. Many studies have focused on detection of faults in specific vehicle 

subsystems: 

• Steering system sensors [56][57][58][59] 

• Suspension system sensors [60][61][62] 

• Drivetrain sensors [63][64][65] 

• Braking system sensors [66][67][68] 

The main drawback in subsystem-based sensor fault detection is the associated complexity. Real-

time fault detection using separate modules for each vehicle subsystem also poses challenges in terms 

of synchronization and a coordinated system-level response to failures. A few of more generic 

approaches available in the literature are discussed in this section. 

Fault-tolerant control of an electric vehicle subject to the steering angle sensor faults is presented in 

[69]. A model-based estimation of the steering angle is obtained using a planar vehicle dynamics model 

with linear tires combined with a model of the steering actuator. Measurements of the yaw rate, lateral 

acceleration and the steering motor current are fed to an EKF to estimate the front steering angle and 

generate the residuals. 

Fault detection for sensors used in lateral and vertical dynamic control systems is discussed in [70]. 

Analytical redundancy relations are derived in this paper by modeling the kinematic relations between 

the measured variables. Comparison of these redundancies and the measured signals generates the 

residuals, and a fuzzy decision-making system is proposed for diagnosis of the faults. This paper 

separates the lateral and vertical dynamics of the vehicle. 

Observer-based diagnosis of the roll rate sensor is investigated in [71]. A linear observer estimates 

the roll rate of the vehicle using a bicycle model, roll dynamics, and acceleration measurements. This 

approach requires some assumptions such as a small rate of change for the road bank profile. Moreover, 

to overcome the drawbacks caused by the simplified kinematic model, this approach only operates 



 

 14 

when certain model validity conditions are satisfied and therefore cannot continuously monitor the roll 

rate sensor. 

Roll rate fault detection for heavy vehicles with active anti-roll-bars and active suspensions is 

discussed in [72] and [73]. In these papers, kinematic relations between the roll state, lateral 

acceleration, yaw state, and anti-roll-bar moments are employed to design multiple observers for 

monitoring the roll rate sensor. The dynamic interaction between the lateral acceleration and the roll 

angle is modeled as a simple lag filter and effects of road bank and grade angles are assumed negligible. 

Detection of height sensor faults for an electric air suspension system is investigated in [74]. Roll 

and pitch dynamics are combined with the kinematics of the sprung mass to detect the sensor faults. 

However, effects of road grade and bank angle are neglected in this paper and a fixed fault threshold is 

used which may cause false positives. A similar approach is employed in [15] to design a fault-tolerant 

controller for a suspension system. Roll and pitch angles are assumed to be small in this study.  

An example of a more general solution, detection of sensor and actuator faults in a scaled autonomous 

electric vehicle is investigated in the series [75], [76], [77]. A sliding mode bank of observers together 

with model-based analytical redundancies and parity relations are designed in these papers to detect the 

sensor faults. The experimental results demonstrate successful detection of faults in wheel encoders, 

GPS position and velocity sensors. However, the steering wheel angle is assumed to be small and 

suspension dynamics is neglected in these papers. Moreover, accurate GPS position and velocity 

measurements are essential in this approach, while such data is often not available in commercial 

vehicles. 

Another more complete layout to detect vehicle sensor faults using a residual generator together with 

a residual processor is presented in [78]. To improve the fault detection performance, history of the 

residuals and the known fault patterns are embedded in the residual processor unit. Therefore, a fault 

can be more accurately detected if it matches a known fault pattern. This approach is implemented on 

a test vehicle and its performance is verified through experiments. Fault patterns should be known a-

priori in this approach. 

2.5 Fault-Tolerant Estimation of Vehicle States 

There are several studies in the literature that focus on estimation of vehicle states, e.g. tire forces [19], 

[21], and vehicle velocity [23], [24]. The general approach in such studies is to design an estimation 
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algorithm which uses the sensory information to estimate the states [79]. Many of these structures are 

designed to be robust against modeling disturbances and measurement noises [80]. However, sensor 

faults can dramatically affect the performance of such systems. There are a few papers in the literature 

that investigate this issue for automotive applications.  

A model-based fault-tolerant roll angle estimation structure for a roll stability control system is 

presented in [5]. This approach considers fusion of an eigenstructure assignment technique with a set 

of analytical redundancy relations. A steady-state estimator for the vehicle roll angle provides the 

benchmark to detect the fault and reconstruct the roll rate sensor data. To reduce the effects of the 

consequent inaccuracies in transient conditions, a dynamic factor based on the understeer coefficient is 

incorporated into the design. This approach is limited to certain operational regions and switching 

between the steady-state and transient conditions might cause practical problems associated with 

stability. 

Robust estimation of the sideslip angle subject to a lateral acceleration sensor bias is presented in 

[81]. A hybrid model is developed which combines vehicle kinematics, dynamics, and road bank angle 

disturbances. The hybrid model is then used in an adaptive EKF which relies on the kinematic model 

augmented with the road bank model. The EKF can deliver real time estimations of the tire cornering 

stiffnesses and overcome the lateral acceleration bias. 

Effects of partial loss of sensor data on the estimation of vehicle longitudinal velocity and sideslip 

angle are investigated in [82]. An adaptive fault-tolerant EKF estimator is designed to comprehend the 

randomness of data loss intervals. The estimator uses a fading factor to improve the state and parameter 

evolutions and reduce the influence of the sensor loss on the estimated states. 

A more general approach for fault-tolerant estimation of lateral velocity, road grade and road bank 

angle is presented in [83]. This study considers failures of lateral acceleration, yaw rate and steering 

angle sensors. It is assumed that the vehicle is equipped with different stability control subsystems such 

as active front steering (AFS), vehicle dynamic control (VDC) and roll stability systems (ROS), each 

equipped with their dedicated set of sensors. Consequently, independent and redundant lateral 

acceleration and yaw rate sensors are assumed available. With these assumptions, a general guideline 

for using these sensors to manage the faults is presented.  

There are other similar studies in the literature that consider reconstruction of sensor faults for 

estimation of certain vehicle states [84][85]. Although combining some of these approaches may help 
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to estimate a larger subset of the required vehicle states, such a combination will not be efficient in 

terms of computational complexity. Moreover, many of the available approaches rely on redundant [83] 

or uncommon [86] sensors that may not be available in commercial vehicles. 

2.6 Summary 

This chapter reviewed the recent literature on sensor fault detection, fault isolation and fault-tolerant 

estimation techniques. A review of the relevant literature focusing on automotive applications of these 

methods was also presented.  

Many of the available studies in the literature developed separate modules for detection of certain 

vehicle sensor faults. Considering the number of sensors used by vehicle control systems, this approach 

is inefficient in terms of computational complexity, synchronization challenges and a system-level 

response to failures.  

Some of the available fault detection studies in the literature are sensitive to changes in vehicle 

dynamic conditions such as wheel slips. Many of these methods use predefined fixed criteria to detect 

sensor faults and are therefore prone to false positives which negatively impacts their reliability when 

the operational conditions change. 

Using redundant or uncommon sensors that are not available in commercial vehicles is another 

drawback that prevents practical application of some of the available approaches.  

Although several studies have focused on fault-tolerant estimation and control systems, to the best 

of the authors’ knowledge, fault-tolerant estimation of tire forces has not yet been discussed in the 

literature.  

To address the above issues, this thesis proposes a unified fault-tolerant estimation method that can 

deliver three main functionalities: 

• Reliable detection of sensor faults  

• Accurate isolation and reconstruction of faulty sensory signals 

• Precise estimation of vehicle states despite the sensor failures 

This structure is realized through fusion of unknown input observers, disturbance observers, adaptive 

estimation structures, analytical redundancy relations and a set of fault detection and signal 

reconstruction modules. 
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The approach in this thesis is a more comprehensive solution compared to the available literature in 

terms of covering a wider range of vehicle sensors and vehicle dynamic states. Additionally, the 

proposed method uses a sensor set that is commonly available in commercial vehicles and does not 

presume availability of additional information such as prior knowledge of the road friction coefficient, 

road grade/bank angles, fault patterns, etc. 

Effectiveness of the proposed approach is verified through experimental case studies. The 

experiments are performed in a variety of driving maneuvers, road conditions and sensor failure 

scenarios. 

The proposed approach and the experiment results are presented in the next three chapters of this 

thesis. 
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Chapter 3 

Fault Detection and Signal Reconstruction for Roll Rate, Pitch Rate 

and Suspension Height Sensors 

This chapter presents a novel structure to detect and mitigate failures of the roll rate, pitch rate and 

suspension height sensors. This structure combines the vehicle roll dynamics, pitch dynamics, sprung 

mass kinematics, unknown input observers, and a sensor fault detection and signal reconstruction 

module. The result is a structure that can estimate the states and reconstruct the faulty signals. Unknown 

road bank and road grade angles, which are not practically measurable using conventional vehicle 

sensors, are also estimated in this approach. Detectability and isolability of the sensor faults using this 

structure is analytically verified in this chapter. Effectiveness of the proposed method in detection of 

faults and reconstruction of faulty signals is demonstrated through several vehicle road tests. 

3.1 Introduction 

General structure of the proposed method is illustrated in Figure 3.1.  

 

Figure 3.1. Structure of the proposed fault detection and signal reconstruction method 
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In this structure, analytical redundancy relations and unknown input observers are designed to 

estimate the variables that are supposed to be measured by the vehicle sensors. Comparing these 

estimations with values reported by the roll rate, pitch rate and suspension height sensors is the main 

idea in cross-checking the sensors’ health and detecting the faults.  When there is no fault in the system, 

the estimated outputs and actual sensors should deliver similar measurements assuming that the models, 

analytical redundancy relations and the observers are sufficiently accurate. Therefore, the differences 

between the estimated outputs and the sensor measurements fall below certain thresholds. The residual 

processor monitors these differences and reports a fault state to the decision logic if any residual 

exceeds its threshold. The decision logic monitors the fault states and detects/isolates the fault using 

the residual patterns. If a sensor fault is detected, the signal reconstruction module reconstructs the 

faulty signal using the observer estimations, arbitrates between the faulty and reconstructed signals, 

and delivers the fault-tolerant signals to the other vehicle systems. Dynamic interactions between the 

road angles and vehicle states are also considered in this approach. A detailed description of the 

proposed method is discussed in the next sections. 

3.2 Analytical Redundancy Relations for Suspension Height Sensors 

A schematic of the sprung mass kinematics is illustrated in Figure 3.2 [87]. This model helps to estimate 

the suspension height at each corner (𝛥𝑧𝑖𝑗) using the measurements from the sensors installed on the 

other three corners. Roll angle (𝜙𝑣) and pitch angle (𝜃𝑣) of the vehicle body relative to the vehicle 

frame are also estimated using suspension height sensors at each corner. These multiple estimations 

will be used in the following sections to extract the analytical redundancy relations and 

detect/reconstruct the sensor faults. 

The frame coordinate system (𝑥𝐹 , 𝑦𝐹 , 𝑧𝐹)  is attached to the vehicle frame. Sensor position vectors 

(𝜌𝑖𝑗) in this frame are described by: 

𝜌𝑓𝑙 = [𝐿𝑓 𝑑/2 𝛥𝑧𝑓𝑙]𝑇  (3-1) 

𝜌𝑓𝑟 = [𝐿𝑓 −𝑑/2 𝛥𝑧𝑓𝑟]𝑇  (3-2) 

𝜌𝑟𝑙 = [−𝐿𝑟 𝑑/2 𝛥𝑧𝑟𝑙]
𝑇  (3-3) 

𝜌𝑟𝑟 = [−𝐿𝑟 −𝑑/2 𝛥𝑧𝑟𝑟]
𝑇  (3-4) 
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Figure 3.2. Suspension kinematics and sensor locations 

where 𝐿𝑓 and 𝐿𝑟 are the longitudinal distances between the origin 𝑂𝐹 and the front and rear axles, 

respectively, and 𝑑 is the track width. The subscript 𝑖𝑗 ∈ {𝑓𝑙, 𝑓𝑟, 𝑟𝑙𝑙, 𝑟𝑟} indicates the front-left (𝑓𝑙), 

front-right (𝑓𝑟), rear-left (𝑟𝑙) and rear-right (𝑟𝑟) corners.  

Relative position between any two corners 𝑖𝑗 and 𝑚𝑛 is denoted by the vector 𝜌𝑖𝑗,𝑚𝑛: 

 𝜌𝑖𝑗,𝑚𝑛 = 𝜌𝑚𝑛 − 𝜌𝑖𝑗      𝑖𝑗,𝑚𝑛 ∈ {𝑓𝑙, 𝑓𝑟, 𝑟𝑙𝑙, 𝑟𝑟}  (3-5) 

The cross product of two non-parallel relative position vectors yields the normal vector of the body 

plane (𝒩): 

 𝒩 = 𝜌𝑖𝑗,𝑚𝑛 × 𝜌𝑖𝑗,𝑝𝑞       ∀ 𝑖𝑗,𝑚𝑛, 𝑝𝑞 ∈ {𝑓𝑙, 𝑓𝑟, 𝑟𝑙, 𝑟𝑟}  (3-6) 

Therefore, by using any three suspension height sensor data, the corresponding normal vectors can 

be written as: 

𝒩−𝑓𝑙 = 𝜌𝑟𝑙,𝑟𝑟 × 𝜌𝑟𝑟,𝑓𝑟  (3-7) 

𝒩−𝑓𝑟 = 𝜌𝑓𝑙,𝑟𝑙 × 𝜌𝑟𝑙,𝑟𝑟  (3-8) 

𝒩−𝑟𝑙 = 𝜌𝑟𝑟,𝑓𝑟 × 𝜌𝑓𝑟,𝑓𝑙  (3-9) 

𝒩−𝑟𝑟 = 𝜌𝑓𝑙,𝑟𝑙 × 𝜌𝑓𝑙,𝑓𝑟   (3-10) 
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where the subscript −𝑖𝑗 represents the case in which the suspension height from the corner 𝑖𝑗 is not 

used in calculation of the normal vector. Subsequently, components 𝒩𝑖𝑗
𝑥 ,𝒩𝑖𝑗

𝑦
,𝒩𝑖𝑗

𝑧 of the normal vectors 

(3-7)-(3-10) and sensor position vector components 𝜌𝑖𝑗
𝑥 , 𝜌𝑖𝑗

𝑦
, 𝜌𝑖𝑗
𝑧  in (3-1)-(3-4) are used to estimate the 

suspension heights (𝛥𝑧̂𝑖𝑗𝑠) for each corner using the sensors installed at the other three corners:  

𝛥𝑧̂𝑓𝑙𝑠 = −(𝒩−𝑓𝑙
𝑥  𝜌𝑓𝑙

𝑥 +𝒩−𝑓𝑙
𝑦
𝜌𝑓𝑙
𝑦
+ℳ−𝑓𝑙)/𝒩−𝑓𝑙

𝑧   (3-11) 

𝛥𝑧̂𝑓𝑟𝑠 = −(𝒩−𝑓𝑟
𝑥  𝜌𝑓𝑟

𝑥 +𝒩−𝑓𝑟
𝑦
𝜌𝑓𝑟
𝑦
+ℳ−𝑓𝑟)/𝒩−𝑓𝑟

𝑧  (3-12) 

𝛥𝑧̂𝑟𝑙𝑠 = −(𝒩−𝑟𝑙
𝑥  𝜌𝑟𝑙

𝑥 +𝒩−𝑟𝑙
𝑦
𝜌𝑟𝑙
𝑦
+ℳ−𝑟𝑙)/𝒩−𝑟𝑙

𝑧    (3-13) 

𝛥𝑧̂𝑟𝑟𝑠 = −(𝒩−𝑟𝑟
𝑥  𝜌𝑟𝑟

𝑥 +𝒩−𝑟𝑟
𝑦
𝜌𝑟𝑟
𝑦
+ℳ−𝑟𝑟)/𝒩−𝑟𝑟

𝑧  (3-14) 

where the terms ℳ−𝑖𝑗 are calculated as: 

ℳ−𝑓𝑙 = −𝒩−𝑓𝑙
𝑥 𝜌𝑓𝑟

𝑥 −𝒩−𝑓𝑙
𝑦
𝜌𝑓𝑟
𝑦
−𝒩−𝑓𝑙

𝑧 𝜌𝑓𝑟
𝑧   (3-15) 

ℳ−𝑓𝑟 = −𝒩−𝑓𝑟
𝑥 𝜌𝑟𝑙

𝑥 −𝒩−𝑓𝑟
𝑦
𝜌𝑟𝑙
𝑦
−𝒩−𝑓𝑟

𝑧 𝜌𝑟𝑙
𝑧   (3-16) 

ℳ−𝑟𝑙 = −𝒩−𝑟𝑙
𝑥 𝜌𝑟𝑟

𝑥 −𝒩−𝑟𝑙
𝑦
𝜌𝑟𝑟
𝑦
−𝒩−𝑟𝑙

𝑧 𝜌𝑟𝑟
𝑧   (3-17) 

ℳ−𝑟𝑟 = −𝒩−𝑟𝑟
𝑥 𝜌𝑓𝑙

𝑥 −𝒩−𝑟𝑟
𝑦
𝜌𝑓𝑙
𝑦
−𝒩−𝑟𝑟

𝑧 𝜌𝑓𝑙
𝑧   (3-18) 

The four estimated suspension heights (𝛥𝑧̂𝑖𝑗𝑠) can be used as analytical redundancy relations.  

Body roll angle 𝜃𝑣−𝑖𝑗  and pitch angle 𝜙̂𝑣−𝑖𝑗, in the scenario that the suspension height sensor 𝑖𝑗 is 

not used, can be calculated by projecting the corresponding body normal vector (𝒩−𝑖𝑗) on the frame 

plane. Consequently, four analytical redundancy relations can be obtained for the body roll angle: 

𝜙̂𝑣−𝑓𝑙 = 𝑐𝑜𝑠
−1

𝒩−𝑓𝑙
𝑦

‖𝒩−𝑓𝑙‖
 (3-19) 

𝜙̂𝑣−𝑓𝑟 = 𝑐𝑜𝑠
−1

𝒩−𝑓𝑟
𝑦

‖𝒩−𝑓𝑟‖
 (3-20) 

𝜙̂𝑣−𝑟𝑙 = 𝑐𝑜𝑠
−1 𝒩−𝑟𝑙

𝑦

‖𝒩−𝑟𝑟‖
 (3-21) 

𝜙̂𝑣−𝑟𝑟 = 𝑐𝑜𝑠
−1 𝒩−𝑟𝑟

𝑦

‖𝒩−𝑟𝑟‖
 (3-22) 
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Similarly, four analytical redundancy relations are obtained for the pitch angle: 

𝜃𝑣−𝑓𝑙 = 𝑐𝑜𝑠
−1 𝒩−𝑓𝑙

𝑥

‖𝒩−𝑓𝑙‖
 (3-23) 

𝜃𝑣−𝑓𝑟 = 𝑐𝑜𝑠
−1 𝒩−𝑓𝑟

𝑥

‖𝒩−𝑓𝑟‖
 (3-24) 

𝜃𝑣−𝑟𝑙 = 𝑐𝑜𝑠
−1 𝒩−𝑟𝑙

𝑥

‖𝒩−𝑟𝑙‖
 (3-25) 

𝜃𝑣−𝑟𝑟 = 𝑐𝑜𝑠
−1 𝒩−𝑟𝑟

𝑥

‖𝒩−𝑟𝑟‖
 (3-26) 

The set of twelve analytical redundancy relations that were derived in this section will be used in the 

following sections to detect the sensor faults.  

3.3 Roll and Pitch Dynamics 

In this section, two observers are designed to estimate the vehicle body’s roll and pitch angular rates as 

well as the road grade and bank disturbances. These estimations will be used to cross-check the roll 

rate and the pitch rate sensor measurements and detect any respective faults. The observers are designed 

using the roll and pitch dynamic models shown in Figure 3.3. 

 

Figure 3.3. Roll and pitch dynamics on roads with grade and bank angles 

The roll and pitch dynamics are formulated in (3-27) and (3-28), respectively: 

[
𝜙̇𝑣
𝜙̈𝑣
] = [

0 1
−𝐾𝜙

𝐼𝑥+𝑚𝑠 𝐻𝑅𝐶
2

−𝐶𝜙

𝐼𝑥+𝑚𝑠 𝐻𝑅𝐶
2
] [
𝜙𝑣
𝜙̇𝑣
] + [

0
𝑚𝑠𝐻𝑅𝐶

𝐼𝑥+𝑚𝑠 𝐻𝑅𝐶
2
] [𝑣̇𝑦 + 𝑣𝑥𝜓̇ + 𝑔𝑠𝑖𝑛(𝜙𝑣 +𝛷r)] (3-27) 

[
𝜃̇𝑣
𝜃̈𝑣
] = [

0 1
−𝐾𝜃

𝐼𝑦+𝑚𝑠 𝐻𝑃𝐶
2

−𝐶𝜃

𝐼𝑦+𝑚𝑠 𝐻𝑃𝐶
2
] [
𝜃𝑣
𝜃̇𝑣
] + [

0
𝑚𝑠𝐻𝑃𝐶

𝐼𝑦+𝑚𝑠 𝐻𝑃𝐶
2
] [−𝑣̇𝑥 + 𝑣𝑦𝜓̇ + 𝑔𝑠𝑖𝑛(𝜃𝑣 + 𝛩𝑟)]  (3-28) 
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where 𝜃̇𝑣 and 𝜙̇𝑣 are the body pitch and roll rates, respectively, 𝛩𝑟 is the road grade angle and 𝛷𝑟 is the 

road bank angle. The vehicle longitudinal and lateral velocities (𝑣𝑥   and 𝑣𝑦) and the yaw rate (𝜓̇) are 

the inputs to the observers. 𝐼𝑥 and  𝐼𝑦 represent the moments of inertia about the 𝑥 and y axes of the 

body coordinate frame, respectively, 𝑚𝑠 is the sprung mass, 𝑔 is the gravitational acceleration, 𝐶𝜃 and 

𝐾𝜃 are pitch damping and stiffness coefficients, respectively and 𝐶𝜙 and 𝐾𝜙 are roll damping and 

stiffness coefficients, respectively. 𝐻𝑃𝐶 represents the distance between the pitch center (PC) and the 

center of gravity (CG) and 𝐻𝑅𝐶 is the distance between the roll center (RC) and CG. 

For implementation on a vehicle, the model is discretized with a sample time of 0.005 seconds using 

the method described in [88]. The sample time is set to 0.005 seconds. Consider the discretized version 

of the roll dynamics: 

𝑥𝜙[𝑘 + 1] =  𝐴𝜙𝑥𝜙[𝑘]  +  𝐵𝜙𝑢𝜙[𝑘] (3-29) 

𝑦𝜙[𝑘] = 𝐶𝜙𝑥𝜙[𝑘] + 𝐷𝜙𝑢𝜙[𝑘] (3-30) 

where 𝑥𝜙 ∈ ℝ
2 is the state vector, 𝑦𝜙 ∈ ℝ

1 is the output and 𝑢𝜙 ∈ ℝ
1 is the input. Since the road bank 

angle is not measurable using onboard vehicle sensors, the input term (𝑢𝜙[𝑘] = 𝑣̇𝑦 + 𝑣𝑥𝜓̇ +

𝑔𝑠𝑖𝑛(𝜙𝑣 +𝛷𝑟)) is treated as an unknown input into the roll dynamics.  

3.4 Unknown Input Observers for Roll and Pitch Dynamics 

An unknown input observer (UIO) [89][90] is designed here to estimate the road bank angle (𝛷𝑟) along 

with the roll rate of the vehicle body (𝜙̇𝑣). The available measurement for the observer is the roll angle 

of the vehicle body (𝜙̂𝑣) obtained by the suspension height sensors as described in the previous section. 

The output of the system (3-30) over 𝐿 + 1 time steps can be augmented as: 

[
 
 
 
 
𝑦𝜙[𝑘]

𝑦𝜙[𝑘 + 1]

⋮
𝑦𝜙[𝑘 + 𝐿]]

 
 
 
 

⏟      
𝑦𝜙[𝑘:𝑘+𝐿]

=

[
 
 
 
𝐶𝜙
𝐶𝜙𝐴𝜙
⋮

𝐶𝜙𝐴𝜙
𝐿
]
 
 
 

⏟    
𝒪𝐿𝜙

𝑥𝜙[𝑘] +

[
 
 
 

𝐷𝜙 0 … 0

𝐶𝜙𝐵𝜙 𝐷𝜙 … 0

⋮ ⋮ ⋱ ⋮
𝐶𝜙𝐴𝜙

𝐿−1𝐵𝜙 𝐶𝜙𝐴𝜙
𝐿−2𝐵𝜙 ⋯ 𝐷𝜙]

 
 
 

⏟                      
𝒥𝐿𝜙

[
 
 
 
 
𝑢𝜙[𝑘]

𝑢𝜙[𝑘 + 1]

⋮
𝑢𝜙[𝑘 + 𝐿]]

 
 
 
 

⏟      
𝑢𝜙[𝑘:𝑘+𝐿]

 (3-31) 

where 𝒪𝐿𝜙 ∈ ℝ
(𝐿+1)×2 is the observability matrix for the pair (𝐴𝜙, 𝐶𝜙) and the 𝒥𝐿𝜙 ∈ ℝ

(𝐿+1)×2(𝐿+1)  

is called the invertibility matrix for the system (𝐴𝜙, 𝐵𝜙 , 𝐶𝜙, 𝐷𝜙) [90].  
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An unknown input observer can be designed for this system to estimate the state 𝑥𝜙[𝑘] and the 

unknown input 𝑢𝜙[𝑘: 𝑘 + 𝐿] if and only if the system is strongly detectable, which translates to 

satisfying the following conditions for some positive integer 𝐿 [90]: 

𝑟𝑎𝑛𝑘(𝒥𝐿𝜙) − 𝑟𝑎𝑛𝑘(𝒥𝐿𝜙−1) = 𝑛𝑢  (3-32) 

𝑟𝑎𝑛𝑘 [
𝐴𝜙 − 𝑧𝐼𝑛 𝐵𝜙
𝐶𝜙 𝐷𝜙

] = 𝑛𝑢 + 𝑛𝑥     ∀𝑧 ∈ ℂ,   |𝑧| ≥ 1  (3-33) 

where 𝑛𝑢 is the number of inputs and 𝑛𝑥 is the number of states.  

Verifying that the system satisfies the conditions (3-32)-(3-33) for 𝐿 = 1 is straightforward. 

Therefore, since the system is strongly detectable, an unknown input observer with the following form 

is proposed to simultaneously estimate the roll states (𝑥𝜙[𝑘]) and the unknown input (𝑢𝜙[𝑘]): 

𝑥𝜙[𝑘 + 1] = 𝐸𝜙𝑥𝜙[𝑘] + 𝐹𝜙𝑦𝜙[𝑘: 𝑘 + 𝐿]  (3-34) 

𝑢̂𝜙[𝑘] = [
𝐵𝜙
𝐷𝜙
]
−1

[
𝑥𝜙[𝑘 + 1] − 𝐴𝜙𝑥𝜙[𝑘]

𝑦𝜙[𝑘] − 𝐶𝜙𝑥𝜙[𝑘]
]  (3-35) 

where 𝐸𝜙 ∈ ℝ
2 and 𝐹𝜙 ∈ ℝ

2×(𝐿+1) are the observer gain matrices. To analyze stability of the observer, 

the state estimation error is defined as: 

𝑒𝜙[𝑘 + 1] = 𝑥𝜙[𝑘 + 1] − 𝑥𝜙[𝑘 + 1]  (3-36) 

The error dynamics can be calculated using (3-29), (3-30), (3-31), (3-34) and (3-36): 

𝑒𝜙[𝑘 + 1] = 𝐸𝜙𝑒𝜙[𝑘] + (𝐸𝜙 − 𝐴𝜙 + 𝐹𝜙𝑂𝐿𝜙)𝑥𝜙[𝑘] + 𝐹𝜙𝐽𝐿𝜙𝑢𝜙[𝑘: 𝑘 + 𝐿] − 𝐵𝜙𝑢𝜙[𝑘] (3-37) 

By choosing 𝐸𝜙 and 𝐹𝜙 gains such that 

a) |𝜆𝑖(𝐸𝜙)| < 1  (3-38) 

b) 𝐸𝜙 − 𝐴𝜙 + 𝐹𝜙𝒪𝐿𝜙 = 0    (3-39) 

c) 𝐹𝜙𝐽𝐿𝜙 = [𝐵𝜙 0…0]   (3-40) 

where 𝜆𝑖(𝐸𝜙) is the i-th (𝑖 ∈ {1, 2}) eigenvalue of the matrix 𝐸𝜙 , the error dynamics is asymptotically 

stable and 𝑒[𝑘] → 0. Therefore, 𝑥𝜙[𝑘] → 𝑥𝜙[𝑘] and 𝑥𝜙[𝑘 + 1] → 𝑥𝜙[𝑘 + 1], and the states can be 

estimated. Consequently, using the proposed observer, roll rate of the body (𝜙̂̇𝑣) is estimated without 
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using the roll rate sensor itself. Four independent estimations for the roll rate (𝜙̂̇𝑣−𝑖𝑗 , 𝑖𝑗 ∈

{𝑓𝑙, 𝑓𝑟, 𝑟𝑙𝑙, 𝑟𝑟}) are obtained using this observer when it is fed with the calculated roll angles from the 

previous section (𝜙̂𝑣−𝑖𝑗). Moreover, stability of the error dynamics (3-37) together with the system 

model (3-29)-(3-30) and the unknown input equation (3-35) guarantee that 𝑢̂ 𝜙[𝑘] → 𝑢𝜙[𝑘]. 

Consequently, the road bank angle (𝛷𝑟) can be estimated using the observer after the unknown input 

is estimated from (3-35): 

𝑢̂𝜙[𝑘] = 𝑣̇𝑦[𝑘] + 𝑣𝑥[𝑘]𝜓̇[𝑘] + 𝑔𝑠𝑖𝑛(𝜙̂𝑣[𝑘] + 𝛷̂𝑟[𝑘]) (3-41) 

𝛷̂𝑟[𝑘] = 𝑠𝑖𝑛
−1 (

𝑢̂𝜙[𝑘]−𝑣̇𝑦[𝑘]−𝑣𝑥[𝑘]𝜓̇[𝑘]

𝑔
) − 𝜙̂𝑣[𝑘]  (3-42) 

where yaw rate of the vehicle (𝜓̇) is measured by the IMU sensor in commercial vehicles. Longitudinal 

and lateral velocity of the vehicle (𝑣𝑥 and 𝑣𝑦) can be estimated using available approaches in the 

literature [91] and will be discussed in the next chapters.  

Following the same process, a similar observer is designed to estimate the pitch rate of the vehicle 

body (𝜃̇𝑣) and the unknown road grade angle (𝛩𝑟): 

𝑥𝜃[𝑘 + 1] = 𝐸𝜃𝑥𝜃[𝑘] + 𝐹𝜃𝑦𝜃[𝑘: 𝑘 + 𝐿]  (3-43) 

𝑢̂𝜃[𝑘] = [
𝐵𝜃
𝐷𝜃
]
−1

[
𝑥𝜃[𝑘 + 1] − 𝐴𝜃𝑥𝜃[𝑘]

𝑦𝜃[𝑘] − 𝐶𝜃𝑥̂𝜃[𝑘]
]  (3-44) 

Stability and convergence of the pitch observer can be proven following the same process described 

earlier. The measurement for the pitch observer is the pitch angle of the vehicle body. Four independent 

estimations of the pitch rate (𝜃̂̇𝑣−𝑖𝑗 , 𝑖𝑗 ∈ {𝑓𝑙, 𝑓𝑟, 𝑟𝑙𝑙, 𝑟𝑟})  can be obtained when the observer is fed 

with the four estimated roll angles from the suspension kinematics in the previous section. 

Consequently, the road grade angle (𝛩𝑟) can be estimated using the pitch UIO, after the unknown 

input is estimated from (3-44): 

𝑢̂𝜃[𝑘] = −𝑣̇𝑥[𝑘] + 𝑣𝑦[𝑘]𝜓̇[𝑘] + 𝑔𝑠𝑖𝑛(𝜃𝑣[𝑘] + 𝛩𝑟[𝑘]) (3-45) 

𝛩̂𝑟[𝑘] = 𝑠𝑖𝑛
−1 (

𝑢̂𝜃[𝑘]+𝑣̇𝑥[𝑘]−𝑣𝑦[𝑘]𝜓̇[𝑘]

𝑔
) − 𝜃𝑣[𝑘]  (3-46) 
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3.5 Analytical Redundancy Relations for Roll Rate and Pitch Rate Sensors  

The measurements provided by the vehicle roll and pitch rate sensors (𝜙̇𝑠 and 𝜃̇𝑠, respectively) are 

affected both by the vehicle body motion and the rate of change of the road bank and grade angles [87]. 

Estimations for the sensory roll and pitch rates are obtained in this section by using the estimated body 

roll rate, body pitch rate, road grade and road bank angles from the previous section. 

In Figure 3.2, the auxiliary coordinate system (𝑥𝐴, 𝑦𝐴, 𝑧𝐴) represents a rotation of the global 

coordinates about the 𝑧𝐺 axis. Magnitude of this rotation is equal to the vehicle yaw angle (𝜓) [92]. 

The vehicle frame coordinate system (𝑥𝐹 , 𝑦𝐹 , 𝑧𝐹)  is fixed on the frame. The global coordinates 

(𝑥𝐺 , 𝑦𝐺 , 𝑧𝐺) can be transformed to the vehicle frame axes using Euler angles 𝜓, 𝜃 and 𝜙. These angles 

are successive rotations about 𝑧𝐺 , 𝑦𝐴 and 𝑥𝐹, respectively. The angular velocity of the frame relative to 

the global axis system can be described as: 

Ω̇𝐹 = ℛ𝐹
𝐺Ω̇  (3-47) 

in which Ω̇ = [𝜙̇ 𝜃̇ 𝜓̇]𝑇 represents the rate of Euler angles and Ω̇𝐹 = [𝜙̇𝐹 𝜃̇𝐹 𝜓̇𝐹]
𝑇 is the rotation 

rate of the frame relative to the global coordinates. The rotation matrix 𝑅𝐹
𝐺 can be expressed as: 

ℛ𝐹
𝐺 = ℛ𝑥𝐹,𝜙 [

𝜙̇
0
0

]+ℛ 𝑦𝐴,𝜃 [
0
𝜃̇
0
]+ℛ𝑥𝐹,𝜙 ℛ𝑦𝐴,𝜃 ℛ𝑧𝐺,𝜓 [

0
0
𝜓̇
] (3-48) 

where ℛ𝐹,𝜙 shows rotation by an angle 𝜙 about the 𝑥𝐹 axis, ℛ𝑦𝐴,𝜃 is rotation by an angle 𝜃 about 

the 𝑦𝐴 axis, and ℛ𝑧𝐺,𝜓 represents rotation by an angle 𝜓 about the 𝑧𝐺 axis. ℛ𝐹
𝐺 can be found by 

substituting these rotation matrices in (3-48): 

ℛ𝐹
𝐺 = [

1 0 −𝑠𝑖𝑛(𝜃)
0 sin (𝜙) sin (𝜙) cos (𝜃)
0 −sin (𝜙) cos (𝜙) cos (𝜃)

]  (3-49) 

Road grade (𝛩𝑟), road bank (𝛷𝑟) and relative heading (𝛹𝑟) angles are rotations between the vehicle 

frame and the auxiliary axis system (𝑥𝐴, 𝑦𝐴, 𝑧𝐴). The rate of change of the road angles Ω̇𝑟 =

[𝛩𝑟̇ 𝛷𝑟̇ 𝛹𝑟̇]
𝑇 is equal to the angular velocity of the vehicle frame relative to the auxiliary coordinate 

system and can be expressed using the following transformation: 

Ω̇𝑟 = (ℛ𝑦𝑎,𝜃)
𝑇
[
𝜙̇
0
0

] + [
0
𝜃̇
0
] = [

cos (𝜃) 0 0
0 1 0

−sin (𝜃) 0 0
] Ω̇ (3-50) 
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Substituting Ω̇ from (3-47) into (3-50) yields: 

Ω̇𝑟 = [

cos (𝜃) sin (𝜙) sin (𝜃) cos (𝜙) sin (𝜃)
0 cos (𝜙) −sin (𝜙)

−sin (𝜃) −sin (𝜙) sin (𝜃)tan (𝜃) −cos (𝜙) sin (𝜃) 𝑡𝑎𝑛(𝜃)
] Ω̇𝐹 = ℛ𝑟

𝐹Ω̇𝐹 (3-51) 

where ℛ𝑟
𝐹 represents the transformation between the road and frame angles. The relative road heading 

(𝛹𝑟) is not a focus of this thesis. For road grade and bank angles, (3-51) can be reduced to: 

Ω̇𝑟 = [
cos (𝜃) 𝑠𝑖𝑛 (𝜙) sin (𝜃) cos (𝜙) sin (𝜃)
0 cos (𝜙) −sin (𝜙)

] Ω̇𝐹 = 𝜒𝑟
𝐹Ω̇𝐹 (3-52) 

where the reduced Ω̇𝑟 = [𝛩̇𝑟   𝛷̇𝑟  ]
𝑇 represents the rate of the change of the road grade and bank 

angles and 𝜒𝑟
𝐹 is the rotation matrix from the road to the frame. Therefore, frame rotation rates can be 

expressed using the pseudo inverse (𝜒𝑟
𝐹)−1: 

Ω̇𝐹 = (𝜒𝑟
𝐹)−1Ω̇𝑟  (3-53) 

Roll and pitch rate sensors are mounted on the vehicle sprung mass which has the body-fixed 

coordinate system (𝑥𝐵 , 𝑦𝐵, 𝑧𝐵). These sensed angular rates Ω̇𝑠 = [𝜙̇𝑠 𝜃̇𝑠 𝜓̇𝑠]
𝑇 are influenced by 

angular rates of the body relative to the frame Ω̇𝑣 = [𝜙̇𝑣 𝜃̇𝑣 𝜓̇𝑣]
𝑇 and the frame angular rate Ω̇𝐹: 

Ω̇𝑠 = Ω̇𝑣 +ℛ𝐵
𝐹Ω̇𝐹  (3-54) 

Since the body-fixed coordinate system has consecutive rotations of 𝜙𝑣 around 𝑥𝐹 and 𝜃𝑣 around the 

𝑦𝐹 axis of the vehicle frame, the rotation matrix ℛ𝐵
𝐹  can be obtained as: 

ℛ𝐵
𝐹 = [

cos (𝜃𝑣) sin (𝜙𝑣) sin (𝜃𝑣) −cos (𝜙𝑣) sin (𝜃𝑣)
0 cos (𝜙𝑣) sin (𝜙𝑣)

sin (𝜃𝑣) −cos (𝜃𝑣) sin (𝜙𝑣) cos (𝜙𝑣) cos (𝜃𝑣)
] ≈ [

1 0 0
0 cos (𝜙𝑣) sin (𝜙𝑣)
0 −sin (𝜙𝑣) cos (𝜙𝑣)

] (3-55) 

The relationship between the roll/pitch rate sensor measurements, vehicle pitch/roll rate, and road 

angle rates can be described by substituting (3-53) and (3-54) in (3-55): 

Ω̇𝑠 = Ω̇𝑣 +ℛ𝐵
𝐹(𝜒𝑟

𝐹)−1Ω̇𝑟 = Ω̇𝑣 +ℛ𝐵
𝑟 Ω̇𝑟  (3-56) 

where ℛ𝐵
𝑟 = 𝑅𝑏

𝑓
(𝜒𝑟

𝑓
)
−1

 shows the rotation between the road and the body-fixed axes. Conclusively, 

the analytical redundancy relation between roll/pitch sensor measurements, body angular rates and road 

angular rates can be summarized as:  
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𝜙̇𝑠 = 𝜙̇𝑣 +ℛ𝐵
𝑟
1
(𝜃𝑣 , 𝜙𝑣)𝛷̇𝑟  (3-57) 

𝜃̇𝑠 = 𝜃̇𝑣 +ℛ𝐵
𝑟
2
(𝜃𝑣, 𝜙𝑣)𝛩̇𝑟  (3-58) 

where ℛ𝐵
𝑟
1
, ℛ𝐵

𝑟
2
 are components of ℛ𝐵

𝑟 = [ℛ𝐵
𝑟
1
ℛ𝐵
𝑟
2]
𝑇. Various estimated body roll and pitch angles 

from the UIOs can be fed into (3-57)-(3-59) to obtain estimates for the roll rate and pitch rate sensors, 

when certain suspension height measurements are not used in the process: 

𝜙̂̇𝑠−𝑖𝑗 = 𝜙̂̇𝑣−𝑖𝑗 +ℛ𝐵
𝑟
1
(𝜃𝑣−𝑖𝑗 , 𝜙̂𝑣−𝑖𝑗) 𝛷̂̇𝑟−𝑖𝑗        (3-59) 

𝜃̂̇𝑠−𝑖𝑗 = 𝜃̂̇𝑣−𝑖𝑗 +ℛ𝐵
𝑟
2
(𝜃𝑣−𝑖𝑗 , 𝜙̂𝑣−𝑖𝑗) 𝛩̂̇𝑟−𝑖𝑗  (3-60) 

3.6 Detection and Isolation of Sensor Faults 

Figure 3.4. summarizes the previous sections and shows the process to estimate the analytically 

redundant roll rate, pitch rate and suspension heights.  

 

Figure 3.4. Estimation of redundant roll rate, pitch rate and suspension heights 
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The estimated outputs (𝛥𝑧̂𝑖𝑗𝑠 , 𝜙̂̇𝑠−𝑖𝑗 , 𝜃̂̇𝑠−𝑖𝑗 , 𝑖𝑗 ∈ {𝑓𝑙, 𝑓𝑟, 𝑟𝑙𝑙, 𝑟𝑟}) are used in the following sections to 

generate the residuals, detect sensor faults and reconstruct the faulty sensory signals. 

3.6.1 Generating and Processing Suspension Height Residuals 

For each corner, the suspension height residual (𝑅𝑧𝑖𝑗) is defined as the difference between the estimated 

height (𝛥𝑧̂𝑖𝑗) and the measured height by the sensor (𝛥𝑧𝑖𝑗𝑠): 

𝑅𝑧𝑖𝑗 = |𝛥𝑧𝑖𝑗𝑠 − 𝛥𝑧̂𝑖𝑗|             𝑖𝑗 ∈ {𝑓𝑙, 𝑓𝑟, 𝑟𝑙𝑙, 𝑟𝑟}   (3-61) 

Four residuals are created, each corresponding to one corner. When there is no fault in the system, 

residuals fall below a certain threshold. While many available studies in the literature use fixed 

thresholds [93], there are some drawbacks: 

• Disturbances, nonlinearities and uncertainties may cause spikes or larger than normal residuals, 

even when there is no sensor fault, which can cause false positives. 

• If a larger fixed fault threshold is used to reduce false positives, then the algorithm will not be 

able to detect the faults with smaller magnitudes (i.e. will be prone to false negatives) and/or 

will be slower (higher excitation and more time is required for the residuals to pass the large 

threshold). 

To overcome such difficulties, adaptive fault thresholds are developed in this thesis to evaluate the 

residuals more effectively for a more reliable fault detection. The adaptive thresholds are calculated 

based on driving conditions. The threshold for the suspension height residuals is formulated as: 

𝑇𝑧 = 𝐵𝑠𝑧 + 𝐵𝑑𝑧(|𝑎𝑥| + |𝑎𝑦|)  (3-62) 

where 𝑇𝑧 is the fault threshold, 𝐵𝑠𝑧 is a static bound that determines a fixed minimum value for the 

threshold and 𝐵𝑑𝑧 is a constant gain that adds the effects of longitudinal and lateral excitations to the 

threshold. In this thesis, the static fault thresholds are set to 10% of the operational range of the sensory 

signals. Dynamic thresholds are tuned over a set of vehicle maneuvers (including harsh maneuvers at 

the stability limits) to achieve zero false positives in the test scenarios. Such a tuning can reduce the 

risk of false positives in the real-world driving scenarios.  

For further robustness against false positives in transient regions, evaluation of the adaptive threshold 

is performed over a time window as: 
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𝑇𝑑,𝑧 = max (𝑇𝑧[𝑘], 𝑇𝑧[𝑘 − 1]… ,  𝑇𝑧[𝑘 −𝑊𝑧])  (3-63) 

where 𝑊𝑧 is the length of the time window and 𝑇𝑑,𝑧 is the dynamic fault threshold. When a residual 

exceeds the dynamic threshold (𝑅𝑧𝑖𝑗 >𝑇𝑑𝑧), a fault state counter (𝑛𝑧𝑖𝑗, initially set to zero) is 

incremented in the algorithm: 

𝑛𝑧𝑖𝑗[𝑘] = 𝑛𝑧𝑖𝑗[𝑘 − 1] + 1  (3-64) 

Although every single incidence of crossing the threshold can be treated as fault, practically and by 

definition, a malfunction should persist over a period of time to be labeled as a fault [29]. In this thesis, 

if a residual 𝑅𝑧𝑖𝑗  is above the threshold (i.e. the fault persists) for 𝑁𝑧 consecutive sample times (𝑛𝑧𝑖𝑗 >

𝑁𝑧), the algorithm concludes that the malfunction is persisting and sets a fault state 𝑆𝑧𝑖𝑗 to one. 

However, failure of each corner sensor will result in all four residuals to exceed the thresholds due to 

the kinematic relation between the corner heights. Subsequently, four fault states are perceived and 

their corresponding flag is set to one. Hence, the fault cannot yet be localized by only using the 

suspension height residuals and fault states. The four fault states 𝑆𝑧𝑖𝑗, which have the same value, are 

therefore combined into a single fault state 𝑆𝑧. Localization of the fault will be performed using the 

roll/pitch rate residuals and a decision logic module described in the next sections. 

3.6.2 Generating and Processing Roll Rate Residuals 

Four roll rate residuals (𝑅𝜙−𝑖𝑗) are formulated which indicate the difference between the estimated roll 

rates and the roll rate sensor measurement: 

𝑅𝜙−𝑖𝑗 = |𝜙𝑠̇ − 𝜙̂̇𝑠 −𝑖𝑗|           𝑖𝑗 ∈ {𝑓𝑙, 𝑓𝑟, 𝑟𝑙𝑙, 𝑟𝑟}  (3-65) 

The threshold for the roll rate is constructed as: 

𝑇𝜙 = 𝐵𝑠𝜙 + 𝐵𝑑𝜙(|𝑎𝑦|)  (3-66) 

𝑇𝑑,𝜙 = 𝑚𝑎𝑥 (𝑇𝜙[𝑘], 𝑇𝜙[𝑘 − 1], … ,  𝑇𝜙[𝑘 −𝑊𝜙]) (3-67) 

where 𝐵𝑠𝜙  determines a fixed static bound for the threshold, the constant 𝐵𝑑𝜙 adds the effect of lateral 

excitations to the threshold, and 𝑊𝜙 is the length of the time window to calculate the dynamic threshold 

(𝑇𝑑,𝜙). A fault state counter (𝑛 𝜙−𝑖𝑗, initially set to zero) is incremented in the algorithm if a residual 

𝑅𝜙−𝑖𝑗  is above the threshold (𝑅𝜙−𝑖𝑗 > 𝑇𝑑,𝜙): 
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𝑛𝜙−𝑖𝑗(𝑘) = 𝑛𝜙−𝑖𝑗(𝑘 − 1) + 1  (3-68) 

If the fault persists for 𝑁𝜙−𝑖𝑗 consecutive sample times (𝑛𝜙−𝑖𝑗 > 𝑁𝜙−𝑖𝑗), the algorithm sets the 

corresponding fault state (𝑆𝜙−𝑖𝑗) to one. 

3.6.3 Generating and Processing Pitch Rate Residuals 

Similar to the previous section, four pitch rate residuals (𝑅𝜃−𝑖𝑗) are formulated which indicate the 

difference between the estimated pitch rates and the pitch rate measured by the sensor: 

𝑅𝜃−𝑖𝑗 = |𝜃𝑠̇ − 𝜃̂̇𝑠 −𝑖𝑗|                     𝑖𝑗 ∈ {𝑓𝑙, 𝑓𝑟, 𝑟𝑙𝑙, 𝑟𝑟} (3-69) 

The threshold for the pitch rate is defined as: 

𝑇𝜃 = 𝐵𝑠𝜃 +𝐵𝑑𝜃(|𝑎𝑥|)  (3-70) 

𝑇𝑑,𝜃 = 𝑚𝑎𝑥(𝑇𝜃[𝑘], 𝑇𝜃[𝑘 − 1],… ,  𝑇𝜃[𝑘 −𝑊𝜃])  (3-71) 

Definitions of  𝐵𝑠𝜃 , 𝐵𝑑𝜃, 𝑊𝜃 and 𝑛 𝜃−𝑖𝑗   are similar to the previous section. If a residual 𝑅𝜃−𝑖𝑗  is above 

the dynamic threshold (𝑅𝜃−𝑖𝑗 > 𝑇𝑑,𝜃 ) the fault state counter is incremented: 

𝑛𝜃−𝑖𝑗[𝑘] = 𝑛𝜃−𝑖𝑗[𝑘 − 1] + 1  (3-72) 

The algorithm sets the corresponding fault state (𝑆𝜃−𝑖𝑗) to one if the fault persists for 𝑁𝜃−𝑖𝑗  

consecutive sample times (𝑛𝜃−𝑖𝑗 > 𝑁𝜃−𝑖𝑗). 

3.6.4 Decision Logic for Detection and Isolation of Sensor Faults 

Detection and localization of sensor faults is performed using the residuals described in the previous 

sections. Consider a case where the suspension height sensors and the pitch rate sensor are healthy, and 

the roll rate sensor is faulty. In this case, the following behavior is expected: 

• The suspension height residuals in (3-61) are not impacted by the roll rate sensor fault and fall 

below their thresholds. Therefore, the fault state for the suspension height sensors is equal to 

zero [𝑆𝑧] = [0]. 

• The inputs to the roll observer (𝜙̂𝑣−𝑖𝑗, 𝑖𝑗 ∈ {𝑓𝑙, 𝑓𝑟, 𝑟𝑙, 𝑟𝑟})  are correct since these inputs are 

calculated using the healthy suspension height sensors. Therefore, the observer can accurately 
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estimate the vehicle’s roll rate. Since the roll rate sensor is faulty, its measurement (𝜙𝑠̇) would 

not match with the four estimated roll rates from the observer (𝜙̂̇𝑠 −𝑖𝑗, 𝑖𝑗 ∈ {𝑓𝑙, 𝑓𝑟, 𝑟𝑙, 𝑟𝑟}). 

Consequently, the roll residuals in (3-65) exceed the thresholds and result in four roll fault 

states equal to one [𝑆𝜙−𝑓𝑙  𝑆𝜙−𝑓𝑟  𝑆𝜙−𝑟𝑙  𝑆𝜙−𝑟𝑟] = [1 1 1 1].  

• The inputs to the pitch UIO (𝜃𝑣−𝑖𝑗) are correct since these inputs are calculated using the 

healthy suspension height sensors. Therefore, the estimated pitch rates by the observer 

(𝜃̂̇𝑠 −𝑖𝑗, 𝑖𝑗 ∈ {𝑓𝑙, 𝑓𝑟, 𝑟𝑙, 𝑟𝑟}) are accurate and match the pitch rate measurement from the healthy 

pitch rate sensor (𝜃𝑠̇). Consequently, Pitch rate residuals in (3-69) all fall below their thresholds 

and pitch fault states are equal to zero [𝑆𝜃−𝑓𝑙  𝑆𝜃−𝑓𝑟  𝑆𝜃−𝑟𝑙  𝑆𝜃−𝑟𝑟] = [0 0 0 0].  

Combining the above fault states generates a fault signature  for the roll rate sensor fault: 

[𝑆𝑧 𝑆𝜙−𝑓𝑙  𝑆𝜙−𝑓𝑟  𝑆𝜙−𝑟𝑙  𝑆𝜙−𝑟𝑟  𝑆𝜃−𝑓𝑙  𝑆𝜃−𝑓𝑟  𝑆𝜃−𝑟𝑙  𝑆𝜃−𝑟𝑟] = [0 1 1 1 1 0 0 0 0].  

Similarly, fault signatures can be obtained for the other possible sensor faults as listed in Table 3-1. 

As an example, Table 3.1 shows that failure of the front-left suspension height sensor generates the 

fault signature [𝑆𝑧 𝑆𝜙−𝑓𝑙  𝑆𝜙−𝑓𝑟  𝑆𝜙−𝑟𝑙  𝑆𝜙−𝑟𝑟  𝑆𝜃−𝑓𝑙  𝑆𝜃−𝑓𝑟  𝑆𝜃−𝑟𝑙  𝑆𝜃−𝑟𝑟] = [1 0 0 1 1 0 1 0 1].  

Table 3.1. Fault signatures for isolation of roll rate, pitch rate and suspension height sensor faults  

Fault Signature 
Faulty Sensor 

𝛥𝑧𝑓𝑙𝑠 𝛥𝑧𝑓𝑟𝑠  𝛥𝑧𝑟𝑙𝑠 𝛥𝑧𝑟𝑟𝑠  𝜙𝑠̇ 𝜃̇𝑠 No Fault 

𝑆𝑧 1 1 1 1 0 0 0 

𝑆𝜙−𝑓𝑙 0 0 1 1 1 0 0 

𝑆𝜙−𝑓𝑟  0 0 1 1 1 0 0 

𝑆𝜙−𝑟𝑙 1 1 0 0 1 0 0 

𝑆𝜙−𝑟𝑟 1 1 0 0 1 0 0 

𝑆𝜃−𝑓𝑙 0 1 0 1 0 1 0 

𝑆𝜃−𝑓𝑟 1 0 1 0 0 1 0 

𝑆𝜃−𝑟𝑙 0 1 0 1 0 1 0 

𝑆𝜃−𝑟𝑟 1 0 1 0 0 1 0 



 

 33 

These fault signatures will be used in the next sections to detect and isolate the sensor faults.  

3.7 Fault Detectability and Isolability Analysis 

The information in Table 3-1 can be summarized into a fault signature matrix 𝐺  to analyze detectability 

and isolability of the faults [94]. In the absence of noises and disturbances, 𝐺 can be considered as a 

transfer function between the fault vector ℱ and the fault state vector (or residual vector) 𝒮: 

𝒮 =  𝐺 ℱ  (3-73) 

For 𝑛𝐹 number of faults and 𝑛𝑅 number of residuals, 𝐺 is a 𝑛𝑅 × 𝑛𝐹 matrix. Each element in this 

matrix, 𝐺(𝑝, 𝑞), represents sensitivity of the fault state (or residual) 𝑝 to the fault in sensor 𝑞. Using the 

fault signature matrix 𝐺 and by defining 𝐺𝑞 as the column 𝑞 in G, fault detectability, complete fault 

detectability and fault isolability conditions can be checked for (3-73) as follows (derived from [94]): 

1) Fault detectability: fault 𝑞 is detectable if and only if  𝑟𝑎𝑛𝑘[𝐺𝑞] > 0. 

2) Complete fault detectability: the system is completely fault detectable (i.e., all sensor faults can 

be detected) if and only if 𝑟𝑎𝑛𝑘[𝐺𝑞] > 0 for all 𝑞 = 1,… , 𝑛𝐹. 

3) Fault isolability: fault 𝑞 is isolable (i.e., the faulty sensor can be localized) if and only if 𝐺𝑞 is a 

unique column in 𝐺. 

For the fault vector ℱ = [ℱΔ𝑧𝑓𝑙𝑠  ℱΔ𝑧𝑓𝑟𝑠  ℱΔ𝑧𝑟𝑙𝑠  ℱΔ𝑧𝑟𝑟𝑠  ℱ𝜙̇𝑠  ℱ𝜃̇𝑠]
𝑇

and the fault state vector 𝒮 =

[𝑆𝑧 𝑆𝜙−𝑓𝑙  𝑆𝜙−𝑓𝑟  𝑆𝜙−𝑟𝑙  𝑆𝜙−𝑟𝑟  𝑆𝜃−𝑓𝑙  𝑆𝜃−𝑓𝑟  𝑆𝜃−𝑟𝑙  𝑆𝜃−𝑟𝑟]
𝑇

 in Table 3.1, the fault signature matrix can be 

expressed as: 

𝐺 =

[
 
 
 
 
 
 
 
 
1 1 1 1 0 0
0 0 1 1 1 0
0 0 1 1 1 0
1 1 0 0 1 0
1 1 0 0 1 0
0 1 0 1 0 1
1 0 1 0 0 1
0 1 0 1 0 1
1 0 1 0 0 1]

 
 
 
 
 
 
 
 

  (3-74) 

Since 𝑟𝑎𝑛𝑘[𝐺𝑞] > 0 for all columns in 𝐺 and all columns are unique, the proposed fault detection 

algorithm satisfies the fault detectability, complete fault detectability and fault isolability conditions. 
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Consequently, all individual sensor faults  ℱΔ𝑧𝑓𝑙𝑠 , ℱΔ𝑧𝑓𝑟𝑠 , ℱΔ𝑧𝑟𝑙𝑠 , ℱΔ𝑧𝑟𝑟𝑠 , ℱ𝜙̇𝑠 and  ℱ𝜃̇𝑠  can be detected 

and localized using the proposed algorithm.  

The result of this decision can be expressed in the format of a compact fault signature  𝒮 =

[𝑆𝑧𝑓𝑙  𝑆𝑧𝑓𝑟  𝑆𝑧𝑟𝑙  𝑆𝑧𝑟𝑟  𝑆𝜙̇ 𝑆𝜃̇] to indicate the faulty sensor. 

3.8 Reconstruction of Faulty Signals 

When a fault is detected by the algorithm, the faulty signal can be reconstructed using the estimated 

states as indicated in Table 3.2. This table is constructed using the outputs of the process in Figure 3.4 

which generated the estimations for these signals. 

Table 3.2. Reconstruction of roll rate, pitch rate and suspension height signals 

Faulty sensor Reconstructed signal Input to the roll UIO Input to the pitch UIO 

Δ𝑧𝑓𝑙𝑠 Δ𝑧̂𝑓𝑙𝑠 𝜙̂𝑣−𝑓𝑙 𝜃𝑣−𝑓𝑙 

Δ𝑧𝑓𝑟𝑠  Δ𝑧̂𝑓𝑟𝑠  𝜙̂𝑣−𝑓𝑟 𝜃𝑣−𝑓𝑟 

Δ𝑧𝑟𝑙𝑠 Δ𝑧̂𝑟𝑙𝑠 𝜙̂𝑣−𝑟𝑙 𝜃𝑣−𝑟𝑙 

Δ𝑧𝑟𝑟𝑠  Δ𝑧̂𝑟𝑟𝑠  𝜙̂𝑣−𝑟𝑟 𝜃𝑣−𝑟𝑟 

𝜙̇𝑠 𝜙̂̇𝑠 
1

4
∑ 𝜙̂𝑣−𝑖𝑗 𝑖𝑗   

1

4
∑ 𝜃𝑣−𝑖𝑗 𝑖𝑗   

𝜃𝑠̇ 𝜃̂̇𝑠 
1

4
∑ 𝜙̂𝑣−𝑖𝑗 𝑖𝑗   

1

4
∑ 𝜃𝑣−𝑖𝑗 𝑖𝑗   

3.9 Experiment Results 

Figure 3.5 shows the electrified SUV that is used for experimental verification of the methos in this 

thesis. The vehicle is equipped with multiple sensors and onboard processing units in addition to the 

stock vehicle sensors.  

The RT2500 Inertial and GPS Navigation Systems from OxTS Company is used to measure the 

longitudinal, lateral and vertical accelerations as well as roll, yaw and pitch rates. Four suspension 

height measurement sensors from Delphi Company are installed on the four corners of the vehicle to 

measure deflection of each corner. Four additional laser height measurement sensors are also mounted 

on the four corners to verify the fault detection results. Data from these laser sensors is not used in the 

fault detection algorithms. All sensors transmit their data over the CAN-bus communication channel. 

A dSPACE Autobox controller is used as the onboard processor to receive the sensor data and execute 
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the fault detection algorithm. The algorithm is developed in MATLAB/Simulink, compiled using the 

dSPACE target compiler and implemented in the Autobox controller. Sampling rate for the sensor data 

and execution rate of the embedded code is 200 Hz. 

 

Figure 3.5. Test vehicle, sensors and instrumentation setup 

Accuracy of the signal reconstruction process after detection of the fault is evaluated using the 

normalized root mean square of the error (NRMSE) metric: 

𝑁𝑅𝑀𝑆𝐸 =
√∑ (𝑞̂(𝑘)−𝑞(𝑘))

2
/𝑘𝑞

𝑘𝑟+𝑘𝑞
𝑘=𝑘𝑟

max
𝑘=𝑘𝑟,…, 𝑘𝑟+𝑘𝑞

(|𝑞(𝑘)|) 
   (3-75) 

where 𝑘𝑟 is the first sample time when reconstruction begins, 𝑘𝑞 is the number of reconstructed samples 

during the maneuver, 𝑞̂ is the reconstructed signal and 𝑞 is the actual signal.  
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Vehicle parameters are obtained through manufacturer data or by online identification [95][96]. 

Table 3.3 summarizes these parameters. The parameters used in the fault detection algorithm are 

summarized in Table 3.4.  

Table 3.3. Vehicle parameters 

Parameter Description Unit Value 

𝐶𝜃 Pitch damping coefficient [𝑁. 𝑠/𝑚] 2.52 × 104 

𝐶𝜙 Roll damping coefficient [𝑁. 𝑠/𝑚] 0.63 × 104 

𝑑 Track width [𝑚] 1.62 

𝐻𝐶𝐺 Distance from ground to CG [𝑚] 0.647 

𝐻𝑃𝐶  Distance from pitch center to CG [𝑚] 0.54 

𝐻𝑅𝐶 Distance from roll center to CG [𝑚] 0.54 

𝐼𝑥 Roll moment of inertia [𝑘𝑔.𝑚2] 967 

𝐼𝑦 Pitch moment of inertia [𝑘𝑔.𝑚2] 2710 

𝐼𝑧 Yaw moment of inertia [𝑘𝑔.𝑚2] 4600 

𝐼𝑤 Wheel moment of inertia [𝑘𝑔.𝑚2] 3.6 

𝐾𝜃 Pitch stiffness coefficient [𝑁/𝑚] 2.08 × 105 

𝐾𝜙 Roll stiffness coefficient [𝑁/𝑚] 1.51 × 105 

𝐿𝑓 Distance from front axle to CG [𝑚] 1.41 

𝐿𝑟 Distance from rear axle to CG [𝑚] 1.43 

𝑚𝑠 Sprung mass [𝑘𝑔] 1989 

𝑚 Total vehicle mass [𝑘𝑔] 2270 

𝑟𝑒 Effective tire radius [𝑚] 0.32 

 

Table 3.4. Parameters for residual processing and sensor fault detection 

Parameter Value Parameter Value Parameter Value 

𝐵𝑠𝜙  0.05 𝐵𝑠𝜃 0.05 𝐵𝑠𝑧 0.01 

𝐵𝑑𝜙 0.002 𝐵𝑑𝜃 0.002 𝐵𝑑𝑧 0.0015 

𝑁𝜙−𝑖𝑗 20 𝑁𝜃−𝑖𝑗 20 𝑁𝑧 100 

𝑊𝜙 500 𝑊𝜃 500 𝑊𝑧 500 
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3.9.1 Fault Detection and Signal Reconstruction for Roll Rate Sensor 

As the first case study, performance of the proposed method in detection of a roll rate sensor fault and 

reconstruction of the faulty signal is analyzed in this section. A sine-steer maneuver is performed on a 

road with combined bank and grade angles. Longitudinal and lateral accelerations of the vehicle during 

the maneuver are shown in Figure 3.7. The vehicle is first accelerated to a speed of 50kph and then the 

steering maneuver is performed.  

   

Figure 3.6. Longitudinal and lateral accelerations during the roll rate fault detection test 

Variation of the suspension heights and trajectory of the vehicle are shown in Figure 3.7. The vehicle 

starts on the green dot and finishes the maneuver on the red dot. Bank angle of the road is around 2 

degrees at the start and transitions to zero in the middle of the maneuver. Road grade angle is 2 degrees 

throughout the maneuver. 

   

Figure 3.7. Suspension heights and trajectory of the vehicle during the roll rate fault detection test 
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A roll rate sensor fault is injected at 𝑡 = 7𝑠 by replacing the measured roll rate with a zero signal for 

the rest of the maneuver. Roll rate residuals are illustrated in Figure 3.8. The residuals are below the 

adaptive threshold before the fault occurs. Once the fault is injected, 𝑅𝜙−𝑓𝑙 , 𝑅𝜙−𝑓𝑟 , 𝑅𝜙−𝑟𝑙 and 𝑅𝜙−𝑟𝑟 

residuals exceed the thresholds and generate the fault states equal to one for 𝑆𝜙−𝑓𝑙, 𝑆𝜙−𝑓𝑟 , 𝑆𝜙−𝑟𝑙, and 

𝑆𝜙−𝑟𝑟. 

 

Figure 3.8. Roll rate residuals and fault threshold when the roll rate sensor is faulty 

Pitch rate and suspension height residuals are shown in Figure 3.9. Pitch residuals are all below the 

threshold for the entire maneuver, therefore 𝑆𝜃−𝑓𝑙, 𝑆𝜃−𝑓𝑟 , 𝑆𝜃−𝑟𝑙 and 𝑆𝜃−𝑟𝑟 are all zero. Similarly, 

suspension height residuals are below their respective threshold. Therefore, the suspension fault state 

residual 𝑆𝑧 is zero during the maneuver. These fault states generate the fault signature 

[𝑆𝑧 𝑆𝜙−𝑓𝑙  𝑆𝜙−𝑓𝑟  𝑆𝜙−𝑟𝑙  𝑆𝜙−𝑟𝑟  𝑆𝜃−𝑓𝑙  𝑆𝜃−𝑓𝑟  𝑆𝜃−𝑟𝑙  𝑆𝜃−𝑟𝑟]=[0 1 1 1 1 0 0 0 0]  which corresponds to failure of 

the roll rate signal according to Table 3.1. The compact fault signature is [𝑆𝑧𝑓𝑙  𝑆𝑧𝑓𝑟  𝑆𝑧𝑟𝑙  𝑆𝑧𝑟𝑟  𝑆𝜙̇ 𝑆𝜃̇] =

[0 0 0 0 1 0] which indicates failure of the roll rate sensor.  
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 Figure 3.9. Pitch rate and suspension height residuals when the roll rate sensor is faulty 

Figure 3.10 shows that the algorithm detects the fault at 𝑡 = 7.1𝑠 and correctly estimates the fault 

magnitude. The road grade angle and road bank angle are also estimated by the unknown input 

observers. The result is shown in Figure 3.11.  

 

Figure 3.10. Detection of the roll rate sensor fault and estimation of the fault magnitude 
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Figure 3.11. Estimation of road grade and bank angles when roll rate sensor is faulty 

As soon as the algorithm detects the fault, it starts reconstructing the faulty roll rate signal using the 

unknown input observers and the estimated states. The reconstructed roll rate is illustrated in Figure 

3.12 and is compared to the actual roll rate of the vehicle and the faulty signal.  

 

Figure 3.12. Reconstruction of the faulty roll rate signal 

The NRMSE of the reconstructed roll rate signal with respect to the actual roll rate of the vehicle is 

7.22% in this case study. The results confirm the desirable performance of the proposed method in 

terms of reliable estimation of the road grade/bank angles, accurate detection of the roll rate fault, and 

precise reconstruction of the faulty signal.  
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3.9.2 Fault Detection and Signal Reconstruction for Pitch Rate Sensor 

Detection of a bias fault on the pitch rate sensor and reconstruction of the faulty signal is explored in 

this section. The maneuver involves acceleration and braking on a road with two degrees of grade angle. 

Longitudinal and lateral accelerations of the vehicle are shown in Figure 3.13. Suspension height 

measurements and trajectory of the vehicle are illustrated in Figure 3.14. 

  

Figure 3.13. Longitudinal and lateral accelerations during the pitch rate fault detection test 

  

Figure 3.14. Suspension heights and trajectory of the vehicle in the pitch rate fault detection test 

The fault in this case study is a bias of 0.1 rad/s added to the pitch rate signal from the beginning of 

the maneuver. Figure 3.15 illustrates pitch rate residuals, which are above the thresholds for the entire 

maneuver. Figure 3.16 shows the roll rate and suspension height residuals which are all below their 

respective thresholds for the entire maneuver.  
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Figure 3.15. Pitch rate residuals when the pitch rate sensor is faulty 

  

Figure 3.16. Roll rate and suspension height residuals when the pitch rate sensor is faulty 
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The residuals generate a fault signature of [𝑆𝑧 𝑆𝜙−𝑓𝑙  𝑆𝜙−𝑓𝑟  𝑆𝜙−𝑟𝑙  𝑆𝜙−𝑟𝑟  𝑆𝜃−𝑓𝑙  𝑆𝜃−𝑓𝑟  𝑆𝜃−𝑟𝑙  𝑆𝜃−𝑟𝑟]=[0 0 

0 0 0 1 1 1 1] which corresponds to the failure of the pitch rate sensor according to Table 3.1. The 

compact fault signature is [𝑆𝑧𝑓𝑙  𝑆𝑧𝑓𝑟  𝑆𝑧𝑟𝑙  𝑆𝑧𝑟𝑟  𝑆𝜙̇ 𝑆𝜃̇] = [0 0 0 0 0 1]. Figure 3.17 shows that the fault 

is detected at 𝑡 = 0.1s and the fault magnitude is correctly estimated. The result for estimation of the 

road grade angle by the observer is shown in Figure 3.18. 

 

Figure 3.17. Detection of the pitch rate sensor fault and estimation of the fault magnitude 

 

Figure 3.18. Estimation of the road grade when pitch rate sensor is faulty 

After detecting the fault, the proposed method reconstructs the faulty pitch rate signal using the 

observer and the estimated estates. The result is shown in Figure 3.19. Despite the excessive 

acceleration and the nonlinear longitudinal motion during the maneuver, the proposed method can 

accurately reconstruct the faulty signal. The NRMSE for reconstruction of the pitch rate signal in this 

case study is 8.53%. 
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Figure 3.19. Reconstruction of the faulty pitch rate signal 

3.9.3 Fault Detection and Signal Reconstruction for Suspension Height Sensor 

Detection of a suspension height sensor fault and reconstruction of the faulty signal is discussed in this 

section. A figure-eight maneuver with a harsh lateral acceleration is performed on a flat road for this 

case study. Longitudinal and lateral acceleration of the vehicle during the maneuver are shown in Figure 

3.20. 

  

Figure 3.20. Longitudinal and lateral accelerations during the suspension height fault detection test 

An actual faulty laser height sensor is installed on the rear-right corner that produces intermittent 

random faults with no specific patterns during the maneuver. An additional suspension height sensor is 

also mounted on the rear-right corner to verify the fault detection results. Data from the healthy sensor 

is not used in the algorithm and is only utilized to verify the results. Therefore, the algorithm receives 
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healthy signals from the front-left, front-right and rear-left sensors, and a faulty signal from the rear-

right sensor as shown in Figure 3.21.  

 

Figure 3.21. Suspension heights and trajectory of the vehicle in the suspension fault detection test 

Suspension height residuals are illustrated in Figure 3.22. The results show that all residuals exceed 

their thresholds at 𝑡 = 1.8 𝑠 which corresponds to the first instance at which the rear-right sensor 

produces a large error. 

 

Figure 3.22. Suspension height residuals when the rear-right suspension sensor is faulty 
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Roll rate and pitch rate residuals are shown in Figure 3.23. Certain roll rate and pitch rate residuals 

also exceed their threshold during this maneuver. Based on the residuals, the algorithm generates a fault 

signature of [𝑆𝑧 𝑆𝜙−𝑓𝑙  𝑆𝜙−𝑓𝑟  𝑆𝜙−𝑟𝑙  𝑆𝜙−𝑟𝑟  𝑆𝜃−𝑓𝑙  𝑆𝜃−𝑓𝑟  𝑆𝜃−𝑟𝑙  𝑆𝜃−𝑟𝑟]=[1 1 1 0 0 1 0 1 0] which indicates 

failure of the rear-right suspension sensor when processed by the decision logic in Table 3.1. The 

compact fault signature is [𝑆𝑧𝑓𝑙  𝑆𝑧𝑓𝑟  𝑆𝑧𝑟𝑙  𝑆𝑧𝑟𝑟  𝑆𝜙̇ 𝑆𝜃̇] = [0 0 0 1 0 0]. The fault is detected at 𝑡 =

1.945𝑠 and the fault magnitude is estimated by the proposed method as shown in Figure 3.24. 

   

Figure 3.23. Roll rate and pitch rate residuals when the rear-right suspension sensor is faulty 

 

Figure 3.24. Detection of the suspension height sensor fault and estimation of the fault magnitude 
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After detecting the fault, the algorithm starts reconstructing the failed signal using the healthy 

sensors. NRMSE of the reconstruction error is 18.24% in this case study. Figure 3.25 compares the 

faulty signal, the reconstructed signal and the actual suspension height received from the parallel 

healthy sensor.  

 

Figure 3.25. Reconstruction of the faulty rear-right suspension height signal 

Fault-tolerant estimation of body roll and pitch angles is achieved by using the reconstructed signal 

as shown in  Figure 3.26. Without fault-tolerance, roll and pitch angle estimations are impacted by the 

faulty sensor and large estimation errors are observed. On the other hand, the fault-tolerant estimation 

continues to deliver accurate results by switching to the reconstructed signal after the fault is detected. 

 

Figure 3.26. Fault-tolerant estimation of roll and pitch angles 
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3.10 Summary 

This chapter presented a structure for detection of roll rate, pitch rate, and suspension height sensor 

faults and reconstruction of the faulty signals. A method was proposed to generate unique signatures 

for sensor faults using unknown input observers combined with the vehicle kinematic and dynamic 

models. Detectability and isolability of the faults by the proposed method was analytically verified 

using the characteristics of the fault signature matrix. The analytical redundancies and the estimated 

states from the unknown input observers were used to reconstruct the sensor faults after detection.  

Road test experiments were performed on an instrumented vehicle which demonstrated effectiveness 

of the proposed method in various driving conditions and with different sensor failure scenarios 

including loss off signal, bias, and random faults. Reliable and fast fault detection, accurate 

reconstruction of the faulty signal, robustness against road disturbances, and robustness against false 

positives are among the features of the proposed methodology. 

The proposed structure can be integrated with various vehicle control systems such as active 

suspension and rollover prevention systems to ensure their reliable performance of such systems even 

in presence of sensor faults.   
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Chapter 4 

Fault Detection and Signal Reconstruction for Accelerations, Yaw 

Rate and Steering Angle Sensors  

This chapter proposes a structure for detection of longitudinal acceleration, lateral acceleration, vertical 

acceleration, yaw rate, and steering angle sensor faults and reconstruction of faulty signals. Using 

vehicle kinematic and dynamic models together with the estimated vehicle states, a method is proposed 

to detect the sensor faults and localize the faulty sensor. After detecting the fault, reconstruction of the 

faulty sensory signal is achieved by using a random walk observer with adaptive weights. Detectability 

and isolability of the faults using the proposed approach is verified using properties of the fault 

signature matrix. Finally, several experimental case studies are conducted to demonstrate the 

effectiveness of the proposed approach in various driving scenarios. 

4.1 Introduction 

General structure of the proposed approach is shown in Figure 4.1.  

 

Figure 4.1. Overall structure of the fault detection and signal reconstruction method 
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This model-based sensor fault detection method is developed based on the idea of virtual sensors. 

Virtual sensor, which is a mathematically estimated expected value for a sensor measurement, is 

calculated using the vehicle model, estimated vehicle states, analytical redundancy relations and the 

other vehicle sensors. When there is no fault in the system, the virtual and actual sensor should deliver 

similar measurements assuming that the model and estimations are sufficiently accurate. Therefore, the 

difference between measurements delivered by the virtual and actual sensors falls below a certain 

threshold. The thresholds are designed to adapt with respect to vehicle excitations and to facilitate a 

faster and a more reliable fault detection. The residual processor monitors the sensors and detects the 

sensor faults when there is a significant difference between the actual and virtual sensors. Consequently, 

the residual processor provides fault signatures to the decision logic to localize the fault. After detecting 

a fault, the algorithm reconstructs the failed signal using virtual sensor values and a random walk 

observer with adaptive weights. These weights manage contribution of each virtual sensor in 

reconstruction of the faulty sensory signal. Finally, the algorithm arbitrates between the healthy and 

reconstructed sensory signals and outputs the fault-free data to the other estimation or control modules 

in the vehicle.  

4.2 Vehicle Model 

The fault detection, signal reconstruction and fault-tolerant estimation algorithms in this chapter are 

developed using a vehicle model shown in Figure 4.2 [97]. This model covers the major states of vehicle 

dynamics that are important in vehicle stability and control applications. Using the pitch plane model 

in Figure 4.2-(a), vertical tire forces on the front and rear axles, 𝐹𝑧𝐹𝑡 and 𝐹𝑧𝑅𝑟, can be calculated as: 

𝐹𝑧𝐹𝑡 = 𝐹𝑧𝑓𝑙 + 𝐹𝑧𝑓𝑟 = −𝑚
𝐻𝐶𝐺−𝐻𝑃𝐶(1−𝑐𝑜𝑠(𝜃𝑣))

𝐿𝑓+𝐿𝑟
[𝑎𝑥𝑠𝑐𝑜𝑠(𝜃𝑣) − 𝑎𝑧𝑠 𝑠𝑖𝑛(𝜃𝑣)] −

𝑚
𝐿𝑟+𝐻𝑃𝐶 sin(𝜃𝑣)

𝐿𝑓+𝐿𝑟
[𝑎𝑥𝑠 𝑠𝑖𝑛(𝜃𝑣) + 𝑎𝑧𝑠 𝑐𝑜𝑠(𝜃𝑣)]  (4-1) 

𝐹𝑧𝑅𝑟 = 𝐹𝑧𝑟𝑙 + 𝐹𝑧𝑟𝑟 = −𝑚
𝐻𝐶𝐺−𝐻𝑃𝐶[1−𝑐𝑜𝑠(𝜃𝑣)]

𝐿𝑓+𝐿𝑟
[𝑎𝑥𝑠 𝑐𝑜𝑠(𝜃𝑣) − 𝑎𝑧𝑠 𝑠𝑖𝑛(𝜃𝑣)] +

𝑚
𝐿𝑓−𝐻𝑃𝐶𝑠𝑖𝑛 (𝜃𝑣)

𝐿𝑓+𝐿𝑟
[𝑎𝑥𝑠 𝑠𝑖𝑛(𝜃𝑣) + 𝑎𝑧𝑠 𝑐𝑜𝑠(𝜃𝑣)] (4-2) 

where 𝑎𝑥𝑠 , 𝑎𝑦𝑠 and  𝑎𝑧𝑠 are the acceleration measurements from the sensors in the longitudinal, lateral 

and vertical directions, respectively, and 𝐹𝑧𝑖𝑗 represents the individual vertical tire forces for each 

wheel. 
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                               (a) Pitch dynamics                                (b) Roll dynamics 

 
                          (c) Single-track dynamics                   (d) Double-track dynamics 

Figure 4.2. Vehicle model  

Effects of the vertical forces can be considered as a virtual mass added on the front and rear axles 

(𝑚𝐹𝑡 and 𝑚𝑅𝑟, respectively) [97]: 

𝑚𝐹𝑡 =
𝐹𝑧𝐹𝑡

𝑎𝑧𝑠
  (4-3) 

𝑚𝑅𝑟 =
𝐹𝑧𝑅𝑟

𝑎𝑧𝑠
 (4-4) 

Using these virtual masses together with the roll plane model in Figure 4.2-(b) and Equations (4-1)-

(4-4), the vertical force on the front-left tire can be calculated by taking the moments about the front-

right tire contact point: 

𝐹𝑧𝑓𝑙 = −𝑚𝐹𝑡

𝑑

2
−𝐻𝑅𝐶 𝑠𝑖𝑛(𝜙𝑣)

𝑑
[𝑎𝑧𝑠 𝑐𝑜𝑠(𝜙𝑣) − 𝑎𝑦𝑠 𝑠𝑖𝑛(𝜙𝑣)] − 𝑚𝐹𝑡

𝐻𝐶𝐺−𝐻𝑅𝐶(1−𝑐𝑜𝑠(𝜙𝑣))

𝑑
[𝑎𝑧𝑠 𝑠𝑖𝑛(𝜙𝑣) +

𝑎𝑦𝑠 𝑐𝑜𝑠(𝜙𝑣)]  (4-5) 



 

 52 

Similarly, vertical forces acting on the other tires are calculated as: 

𝐹𝑧𝑓𝑟 = −𝑚𝐹𝑡

𝑑

2
+𝐻𝑅𝐶 𝑠𝑖𝑛(𝜙𝑣)

𝑑
[𝑎𝑧𝑠 𝑐𝑜𝑠(𝜙𝑣) − 𝑎𝑦𝑠 𝑠𝑖𝑛(𝜙𝑣)] +𝑚𝐹𝑡

𝐻𝐶𝐺−𝐻𝑅𝐶[1−𝑐𝑜𝑠(𝜙𝑣)]

𝑑
[𝑎𝑧𝑠 𝑠𝑖𝑛(𝜙𝑣) +

𝑎𝑦𝑠 𝑐𝑜𝑠(𝜙𝑣)]  (4-6) 

𝐹𝑧𝑟𝑙 = −𝑚𝑅𝑟

𝑑

2
−𝐻𝑅𝐶 𝑠𝑖𝑛(𝜙𝑣)

𝑑
[𝑎𝑧𝑠 𝑐𝑜𝑠(𝜙𝑣) − 𝑎𝑦𝑠 𝑠𝑖𝑛(𝜙𝑣)] − 𝑚𝑅𝑟

𝐻𝐶𝐺−𝐻𝑅𝐶(1−𝑐𝑜𝑠(𝜙𝑣))

𝑑
[𝑎𝑧𝑠 𝑠𝑖𝑛(𝜙𝑣) +

𝑎𝑦𝑠 𝑐𝑜𝑠(𝜙𝑣)]  (4-7) 

𝐹𝑧𝑟𝑟 = −𝑚𝑅𝑟

𝑑

2
+𝐻𝑅𝐶 𝑠𝑖𝑛(𝜙𝑣)

𝑑
[𝑎𝑧𝑠 𝑐𝑜𝑠(𝜙𝑣) − 𝑎𝑦𝑠 𝑠𝑖𝑛(𝜙𝑣)] +𝑚𝑅𝑟

𝐻𝐶𝐺−𝐻𝑅𝐶[1−𝑐𝑜𝑠(𝜙𝑣)]

𝑑
[𝑎𝑧𝑠 𝑠𝑖𝑛(𝜙𝑣) +

𝑎𝑦𝑠 𝑐𝑜𝑠(𝜙𝑣)]  (4-8) 

Using the single-track model in Figure 4.2-(c), longitudinal, lateral and yaw dynamics can be 

expressed as: 

𝑎𝑥 =
1

𝑚
(𝐹𝑥𝑓 𝑐𝑜𝑠(𝛿) + 𝐹𝑥𝑟 − 𝐹𝑦𝑓 𝑠𝑖𝑛 (𝛿))  (4-9) 

𝑎𝑦 =
1

𝑚
(𝐹𝑦𝑟 + 𝐹𝑦𝑓 𝑐𝑜𝑠(𝛿) + 𝐹𝑥𝑓 𝑠𝑖𝑛(𝛿))  (4-10) 

𝜓̈ =
1

𝐼𝑧
 ((𝐹𝑦𝑓 𝑐𝑜𝑠(𝛿) + 𝐹𝑥𝑓 𝑠𝑖𝑛(𝛿))𝐿𝑓 − 𝐹𝑦𝑟 𝐿𝑟) (4-11) 

Where 𝑚 is the vehicle mass, 𝐼𝑧 is the yaw moment of inertia, 𝜓̇ is the yaw rate, 𝛿 is the steering angle, 

and: 

𝐹𝑥𝑓 = 𝐹𝑥𝑓𝑙 + 𝐹𝑥𝑓𝑟 (4-12) 

𝐹𝑥𝑟 = 𝐹𝑥𝑟𝑙 + 𝐹𝑥𝑟𝑟 (4-13) 

𝐹𝑦𝑓 = 𝐹𝑦𝑓𝑙 + 𝐹𝑦𝑓𝑟 (4-14) 

𝐹𝑦𝑟 = 𝐹𝑦𝑟𝑙 + 𝐹𝑦𝑟𝑟  (4-15) 

The vehicle model will be used in the next sections to generate multiple analytical redundancy 

relations for each sensor and enable detection, isolation and reconstruction of faulty sensory signals.  

4.3 Analytical Redundancy Relations for Lateral Acceleration Sensor 

Sensor measurement for the lateral acceleration of the vehicle is a function of vehicle kinematic states: 
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𝑎𝑦 = 𝑣̇𝑦 + 𝑣𝑥𝜓̇ + 𝑔𝑠𝑖𝑛(𝜙𝑣 +𝛷𝑟) (4-16) 

where 𝑣̇𝑦 is the acceleration component due to the lateral slip, 𝑣𝑥𝜓̇ is the acceleration component due 

to the vehicle yaw motion and 𝑔𝑠𝑖𝑛(𝜙𝑣 +𝛷𝑟) is the acceleration due to the vehicle roll and road bank 

angles. In general, 𝑣̇𝑦 is considerably smaller than the other terms in (4-16)  [70]. Therefore, the vehicle 

lateral acceleration can be approximated as: 

𝑎𝑦 ≅ 𝑣𝑥𝜓̇ + 𝑔𝑠𝑖𝑛(𝜙𝑣 +𝛷𝑟)  (4-17) 

In (4-17), longitudinal velocity of the vehicle is needed and can be approximated using the wheel 

angular velocities (𝜔𝑖𝑗) and the tire effective radius (𝑟𝑒): 

𝑣𝑥(𝜔𝑖𝑗, 𝛿) ≅ (
𝜔𝑟𝑟+𝜔𝑓𝑙

2
𝑟𝑒) ≅ (

𝜔𝑓𝑟+𝜔𝑓𝑙

2
𝑟𝑒) 𝑐𝑜𝑠(𝛿) ≅

1

2
[(
𝜔𝑟𝑟+𝜔𝑓𝑙

2
𝑟𝑒) + (

𝜔𝑓𝑟+𝜔𝑓𝑙

2
𝑟𝑒) 𝑐𝑜𝑠(𝛿)] (4-18) 

or using an observer to account for any uncertainties and improve the accuracy [92]. The observer is 

constructed as: 

𝑣̇𝑥 = 𝑎𝑥 − 𝑔𝑠𝑖𝑛(𝜃𝑣 + 𝛩̂𝑟) + ∑𝐾𝑣𝑥(𝑎𝑥 , 𝜔𝑖𝑗)(𝑣𝑥𝐶𝐺←𝑖𝑗 − 𝑣𝑥) (4-19) 

where 𝑣𝑥𝐶𝐺←𝑖𝑗 represents the CG velocity when this velocity is derived from the 𝑖𝑗 corner. These 

velocities are calculated using the yaw rate, wheel angular velocities and the double track model in 

Figure 4.2-(d): 

𝑣𝑥𝐶𝐺←𝑓𝑙 = 𝑟𝑒𝜔𝑓𝑙 cos(𝛿) + 𝜓̇
𝑑

2
  (4-20) 

𝑣𝑥𝐶𝐺←𝑓𝑟 = 𝑟𝑒𝜔𝑓𝑟 cos(𝛿) − 𝜓̇
𝑑

2
  (4-21) 

𝑣𝑥𝐶𝐺←𝑟𝑙 = 𝑟𝑒𝜔𝑟𝑙 + 𝜓̇
𝑑

2
  (4-22) 

𝑣𝑥𝐶𝐺←𝑟𝑟 = 𝑟𝑒𝜔𝑟𝑟 − 𝜓̇
𝑑

2
  (4-23) 

In (4-19), 𝐾𝑣𝑥(𝑎𝑥, 𝜔𝑖𝑗) is the observer gain which also determines contribution of each wheel in 

estimation of the longitudinal velocity based on the wheel slip conditions. Selecting the best wheel for 

estimation of the longitudinal velocity is well documented in the literature [91][98]. Proof of stability 

and convergence of the observer is given in [99] for both zero and non-zero slip conditions. In this 

thesis, the observer (4-19) is implemented using a Kalman filter [100]. The Kalman gain 𝐾𝑣𝑥(𝑎𝑥, 𝜔𝑖𝑗) 

is modified based on the wheel slip conditions such that when there is no wheel slip, all wheels have 
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similar effects in the estimation process. For example, if the front-left wheel is locked or is excessively 

spinning, 𝐾𝑣𝑥(𝑎𝑥, 𝜔𝑓𝑙) is set to a small value and consequently the front-left wheel does not contribute 

to the estimation process. 

Using the estimated 𝑣𝑥 and Equation (4-17), the first analytical redundancy relation for the lateral 

acceleration signal is formulated as: 

𝑎̃𝑦1 = 𝑣𝑥𝜓̇ + 𝑔𝑠𝑖𝑛(𝜙̂𝑣 + 𝛷̂𝑟)  (4-24) 

where 𝜙̂𝑣 and 𝜙̂𝑟 were estimated in the previous chapter. Functionally, 𝑎̃𝑦1
 can be considered as a 

virtual lateral acceleration sensor. Although the difference between this virtual sensor and the actual 

lateral acceleration measurement can indicate presence of a fault, a single virtual sensor is not sufficient 

to locate the faulty sensor (e.g., to determine if the lateral acceleration sensor is faulty or the yaw rate 

signal used in (4-24) is faulty and causes the mismatch). Therefore, a second virtual sensor is needed 

to generate additional information for localizing the fault. 

To design the second virtual lateral acceleration sensor, an approximate for the yaw rate is found 

using Equations (4-20) and (4-21): 

𝜓̇ ≅ (
𝜔𝑓𝑟−𝜔𝑓𝑙

𝑑
𝑟𝑒) 𝑐𝑜𝑠(𝛿)  (4-25) 

From Equations (4-17), (4-18) and (4-25), the second virtual lateral acceleration sensor is formulated 

as: 

𝑎̃𝑦2 =
1

2
[(
𝜔𝑟𝑟+𝜔𝑟𝑙

2
𝑟𝑒) + (

𝜔𝑓𝑟+𝜔𝑓𝑙

2
𝑟𝑒) 𝑐𝑜𝑠(𝛿)] (

𝜔𝑓𝑟−𝜔𝑓𝑙

𝑑
𝑟𝑒) 𝑐𝑜𝑠(𝛿) + 𝑔𝑠𝑖𝑛(𝜙̂𝑣 + Φ̂𝑟) (4-26) 

Using the two virtual sensors (4-24) and (4-26), an estimate for the lateral acceleration of the vehicle 

without using the lateral acceleration sensor is defined as: 

𝑎̂𝑦𝑠 =  (𝑤𝑎𝑦,1𝑎̃𝑦1 + 𝑤𝑎𝑦,2𝑎̃𝑦2) (4-27) 

where 𝑎̂𝑦 is the estimated lateral acceleration for the sensor. The weight factors 𝑤𝑎𝑦,1 and 𝑤𝑎𝑦,2 are 

automatically tuned based on the wheel slip conditions and using a distribution function: 

{

𝑤𝑎𝑦,1 = 1 − 𝑤𝑎𝑦,2

𝑤𝑎𝑦,2 =
1

2
𝑒
−
(100max(|𝜆𝑓𝑗|,   | 𝜆𝑟𝑗|))

2

2𝜎2

  (4-28) 
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where 𝜎 is a constant parameter and 𝜆𝑖𝑗 is an approximated slip ratio: 

{
𝜆𝑓𝑗 =

𝑟𝑒𝜔𝑓𝑗cos (𝛿)−𝑣̂𝑥

max (𝑟𝑒𝜔𝑓𝑗cos (𝛿),𝑣̂𝑥)
              front wheels

𝜆𝑟𝑗 =
𝑟𝑒𝜔𝑟𝑗−𝑣̂𝑥

max (𝑟𝑒𝜔𝑟𝑗−𝑣̂𝑥)
                       rear wheels

  (4-29) 

These adaptive weights help to improve the accuracy of the estimated lateral acceleration in nonlinear 

driving conditions. Additionally, in case that the longitudinal acceleration or yaw rate sensor is 

diagnosed as faulty (which will be discussed in the next sections), the first virtual sensor 𝑎̃𝑦1 is no 

longer reliable. Therefore, 𝑎̃𝑦1 should be eliminated from the fault detection and signal reconstruction 

process. The residual processor executes this elimination by setting  𝑤𝑎𝑦,1  to zero and 𝑤𝑎𝑦,2 to one.  

4.4 Analytical Redundancy Relations for Longitudinal Acceleration Sensor 

The first virtual sensor for the longitudinal acceleration of the vehicle is designed using the single-track 

vehicle model in Figure 4.2-(d). Lateral force on the rear track (𝐹𝑦𝑟) is found from (4-10): 

𝐹𝑦𝑟 = 𝑚𝑎𝑦 − 𝐹𝑦𝑓 cos(𝛿) − 𝐹𝑥𝑓sin (𝛿)  (4-30) 

By replacing the calculated 𝐹𝑦𝑟 in (4-11) and simplifying, lateral tire force on the front track is 

expressed as: 

𝐹𝑦𝑓 =
𝑚𝑎𝑦𝐿𝑟+𝐼𝑧𝜓̈−𝐹𝑥𝑓(𝐿𝑓+𝐿𝑟)sin (𝛿)

 (𝐿𝑓+𝐿𝑟)cos (δ)
  (4-31) 

Using Equations (4-9), (4-12), (4-13) and (4-31), longitudinal acceleration of the vehicle can be 

expressed as a function of the yaw rate, lateral acceleration and longitudinal tire forces: 

𝑎𝑥 =
1

𝑚
((𝐹𝑥𝑓𝑙 + 𝐹𝑥𝑓𝑟) cos(𝛿) + (𝐹𝑥𝑟𝑙 + 𝐹𝑥𝑟𝑟) −

𝑚𝑎𝑦𝐿𝑟+𝐼𝑧𝜓̈−(𝐹𝑥𝑓𝑙+𝐹𝑥𝑓𝑟)(𝐿𝑓+𝐿𝑟) sin(𝛿)

(𝐿𝑓+𝐿𝑟)cos(𝛿)
sin(𝛿)) (4-32) 

An approach for estimation of the longitudinal tire force for each wheel will be discussed in the next 

chapter. Assuming that accurate estimations of longitudinal tire forces are available, the first virtual 

sensor for longitudinal acceleration of the vehicle is defined as: 

𝑎̃𝑥1 =
1

𝑚
((𝐹̂𝑥𝑓𝑙 + 𝐹̂𝑥𝑓𝑟) cos(𝛿) + (𝐹̂𝑥𝑟𝑙 + 𝐹̂𝑥𝑟𝑟) −

𝑚𝑎𝑦𝐿𝑟+𝐼𝑧𝜓̈−(𝐹̂ ̂𝑥𝑓𝑙+𝐹̂𝑥𝑓𝑟) (𝐿𝑓+𝐿𝑟)sin(𝛿)

(𝐿𝑓+𝐿𝑟)cos (𝛿)
sin(𝛿)) (4-33) 

where 𝐹̂𝑥𝑖𝑗 are the estimated longitudinal tire forces. 
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To design the second virtual sensor, kinematic description of the longitudinal acceleration is 

considered: 

𝑎𝑥 = 𝑣̇𝑥 − 𝑣𝑦𝑟 + 𝑔𝑠𝑖𝑛(𝜃𝑣 + 𝛩̂𝑟)  (4-34) 

Assuming that 𝑣𝑦 is significantly smaller than the other terms in Equation (4-34), the longitudinal 

acceleration can be approximated as: 

𝑎̃𝑥2 = 𝑣̇𝑥 + 𝑔𝑠𝑖𝑛(𝜃𝑣 + 𝛩̂𝑟)  (4-35) 

where 𝜃𝑣 and 𝛩̂𝑟 are available from the previous chapter, and 𝑣̇𝑥 is obtained using the following 

observer: 

𝑣̇𝑥 =
∑ 𝐹̂𝑥𝑖𝑗 cos(𝛿)

𝑚
− 𝑔𝑠𝑖𝑛(𝜃𝑣 + 𝛩̂𝑟) + ∑𝐾𝑎𝑥 (

∑ 𝐹̂𝑥𝑖𝑗 cos(𝛿)

𝑚
, 𝜔𝑖𝑗) (𝑟𝑒𝜔𝑖𝑗cos (𝛿) − 𝑣𝑥 ) (4-36) 

where the observer gain 𝐾𝑎𝑥(
∑ 𝐹̂𝑥𝑖𝑗 cos(𝛿𝑖𝑗)

𝑚
, 𝜔𝑖𝑗) determines contribution of each wheel in estimation of 

the longitudinal acceleration depending upon the wheel slip conditions.  

Using the two virtual sensors given by (4-33) and (4-35), longitudinal acceleration of the vehicle can 

be estimated as: 

𝑎̂𝑥𝑠 = (𝑤𝑎𝑥,1𝑎̃𝑥1 +𝑤𝑎𝑥,2𝑎̃𝑥2)  (4-37) 

where weights. 𝑤𝑎𝑥,1 and 𝑤𝑎𝑥,2 are designed similar to Equations (4-28) and (4-29). In case that the 

lateral acceleration or yaw rate sensor is diagnosed as faulty, the first virtual sensor is not reliable and 

is eliminated by the residual processor, 𝑤𝑎𝑥,1 is set to zero and 𝑤𝑎𝑥,2 is set to one. 

4.5 Analytical Redundancy Relations for Vertical Acceleration Sensor 

From the kinematic model in Figure 3.2, vertical position of the CG can be found from the corner 

positions: 

Δ𝑧𝐶𝐺 = Δ𝑧𝑖𝑗 + 𝐿𝑖𝑗𝜃𝑣 +
𝑑𝑖𝑗

2
𝜙𝑣 (4-38) 

where Δz𝐶𝐺 is the vertical displacement of CG. Coefficients 𝐿𝑖𝑗 and 𝑑𝑖𝑗 for each corner are defined as: 

𝐿𝑓𝑙 = 𝐿𝑓𝑟 = 𝐿𝑓       (4-39) 

𝐿𝑟𝑙 = 𝐿𝑟𝑟 = −𝐿𝑟       (4-40) 
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𝑑𝑓𝑙 = 𝑑𝑟𝑙 =
𝑑

2
       (4-41) 

𝑑𝑓𝑟 = 𝑑𝑟𝑟 = −
𝑑

2
             (4-42) 

Consequently, vertical acceleration of the CG relative to the corners can be expressed as: 

𝑎𝑧𝐶𝐺 = Δz̈𝑖𝑗 + 𝐿𝑖𝑗𝜃̈𝑣 +
𝑑𝑖𝑗

2
𝜙̈𝑣 (4-43) 

Considering that fault-tolerant estimations for the corner suspension sensors and roll/pitch sensors 

are available from the method presented in Chapter 3, the first virtual sensors for the vertical 

acceleration is defined as: 

 𝑎̃𝑧1 = Δẑ̈𝑖𝑗 + 𝐿𝑖𝑗 𝜃̂̈𝑣 +
𝑑𝑖𝑗

2
𝜙̂̈𝑣             𝑖𝑗 ∈ {𝑓𝑙, 𝑓𝑟, 𝑟𝑙, 𝑟𝑟} (4-44) 

The second virtual sensor for vertical acceleration is found using the estimated vertical forces. In 

(4-5)-(4-8), the vertical acceleration is replaced by a constant gravity to make the force approximation 

independent of the vertical sensor measurement. Consequently, the approximated virtual sensor can be 

expressed as: 

𝑎̃𝑧2 =
1

𝑚
∑ 𝐹̂𝑧𝑖𝑗            𝑖𝑗 ∈ {𝑓𝑙, 𝑓𝑟, 𝑟𝑙, 𝑟𝑟} (4-45) 

Using the two virtual sensors given in Equations (4-44)-(4-45), vertical acceleration of the vehicle is 

estimated as: 

𝑎̂𝑧𝑠 = (𝑤𝑎𝑧,1𝑎̃𝑧1 +𝑤𝑎𝑧,2𝑎̃𝑥2)  (4-46) 

The weights 𝑤𝑎𝑧,1 and 𝑤𝑎𝑧,2 are tuned by the residual processing unit similar to the previous cases.  

4.6 Analytical Redundancy Relations for Yaw Rate Sensor 

The first yaw rate virtual sensor 𝜓̃̇1 is formulated using Equation (4-17): 

𝜓̃̇1 = {

𝑎𝑦−𝑔𝑠𝑖𝑛(𝜙̂𝑣+Φ̂𝑟)

𝑣̂𝑥 
                 𝑣𝑥2 ≥ 𝑣0  

(
𝜔𝑟𝑟−𝜔𝑟𝑙

𝑑
𝑟𝑒)                  𝑣𝑥2 < 𝑣0   

  (4-47) 

For lower speeds (𝑣𝑥 < 𝑣0 where 𝑣0 is a sufficiently low speed), the yaw rate is approximated using 

the difference between the rear-left and rear-right wheel speeds to prevent a division by zero. In (4-47), 

𝑣𝑥 is the estimated longitudinal velocity as described in the previous section. The only difference is that 
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in Equations (4-20)-(4-23), 𝜓̇ is replaced with the following equations to make the velocity estimation 

independent from the yaw rate: 

𝑣𝑣𝑥𝐶𝐺←𝑓𝑙
= 𝑟𝑒𝜔𝑓𝑙 cos(𝛿) + (

𝜔𝑟𝑟−𝜔𝑟𝑙

2
𝑟𝑒)  (4-48) 

𝑣𝑣𝑥𝐶𝐺←𝑓𝑟
= 𝑟𝑒𝜔𝑓𝑟 cos(𝛿) − (

𝜔𝑟𝑟−𝜔𝑟𝑙

2
𝑟𝑒)  (4-49) 

𝑣𝑣𝑥𝐶𝐺←𝑟𝑙
= 𝑟𝑒𝜔𝑟𝑙 + (

𝜔𝑟𝑟−𝜔𝑟𝑙

2
𝑟𝑒)  (4-50) 

𝑣𝑣𝑥𝐶𝐺←𝑟𝑟
= 𝑟𝑒𝜔𝑟𝑟 − (

𝜔𝑟𝑟−𝜔𝑟𝑙

2
𝑟𝑒)  (4-51) 

The second yaw rate virtual sensor is designed using (4-25): 

𝜓̃̇2 = [(
𝜔𝑓𝑟−𝜔𝑓𝑙

𝑑
𝑟𝑒) 𝑐𝑜𝑠(𝛿)]  (4-52) 

Subsequently, an estimate for the sensory yaw rate (𝜓̂̇s) is obtained using the two virtual sensors 

given in Equations (4-47) and (4-52): 

𝜓̂̇s = (𝑤𝜓̇,1 𝜓̃̇1 +𝑤𝜓̇,2 𝜓̃̇2)  (4-53) 

where the weights 𝑤𝜓̇,1 and 𝑤𝜓̇,2 are designed similar to Equations (4-28)-(4-29). In case that the lateral 

acceleration or longitudinal acceleration sensor is diagnosed as faulty, the first virtual sensor 𝜓̃̇1 is no 

longer reliable and should be eliminated from the fault detection and signal reconstruction process. In 

such a scenario, 𝑤𝜓̇,1 is set to zero and 𝑤𝜓̇,2 is set to one by the residual processor. 

4.7 Analytical Redundancy Relations for Steering Angle Sensor 

The first virtual sensor for the steering angle can be obtained from (4-32). Defining 𝐶1, 𝐶2, 𝐶3 and 𝐶4 

coefficients as follows and re-writing Equation (4-32) using the 𝐶𝑖 coefficients give: 

𝐶1 = 𝑚𝑎𝑥 − (𝐹𝑥𝑟𝑙 + 𝐹𝑥𝑟𝑟) (4-54) 

𝐶2 = 𝐹𝑥𝑓𝑙 + 𝐹𝑥𝑓𝑟 (4-55) 

𝐶3 =
𝑚𝑎𝑦𝐿𝑟+𝐼𝑧𝜓̈

𝐿𝑓+𝐿𝑟
  (4-56) 

𝐶1 = 𝐶2cos(𝛿) − 𝐶3 tan(𝛿) +𝐶2 tan(δ)sin(𝛿)  (4-57) 
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The numerical solution of (4-57) can be used as the first virtual sensor for the steering angle (𝛿1). 

Finding this real-time numerical solution in onboard processing units with constrained resources might 

pose practical challenges. As an alternative, the virtual sensor can be obtained from a steady state 

handling dynamic model [101]: 

𝛿1 = (
2

𝑣𝑥𝐶𝐺←𝑟𝑙+𝑣𝑥𝐶𝐺←𝑟𝑟
)
2

𝑎𝑦 [(𝐿𝑓 + 𝐿𝑟) + 𝐾𝑢𝑠 (
𝑣𝑥𝐶𝐺←𝑟𝑙+𝑣𝑥𝐶𝐺←𝑟𝑟

2
)
2

] (4-58) 

where 𝐾𝑢𝑠 is the understeer coefficient of the vehicle. 

Similarly, the second virtual sensor for the steering angle is defined as: 

𝛿2 =
2

𝑣𝑥𝐶𝐺←𝑟𝑙+𝑣𝑥𝐶𝐺←𝑟𝑟
𝜓̇ [(𝐿𝑓 + 𝐿𝑟) + 𝐾𝑢𝑠 (

𝑣𝑥𝐶𝐺←𝑟𝑙+𝑣𝑥𝐶𝐺←𝑟𝑟
2

)
2

] (4-59) 

The estimated steering angle of the vehicle using the two virtual sensors is defined as: 

𝛿𝑠 = (𝑤𝛿,1𝛿1 +𝑤𝛿,2𝛿2)  (4-60) 

If the yaw rate sensor is faulty, then the second residual is no longer reliable. Therefore, the residual 

processor sets 𝑤𝛿,2 to zero and 𝑤𝛿,1 to one to solely rely on the first virtual sensor. Similarly, if the 

lateral acceleration sensor is faulty, 𝑤𝛿,1 is set to one and 𝑤𝛿,2 is set to zero to solely rely on the first 

virtual sensor. At very low speeds, where there is no correlation between the steering angle of the 

vehicle and other vehicle states, both weights are set to zero and the fault detection process is paused 

for the steering angle sensor to avoid false positives. An example for this scenario is when the vehicle 

is stationary. In this scenario the steering wheel can be rotated without generating any lateral 

acceleration and yaw rate. 

4.8 Detection and Isolation of Sensor Faults 

The flowchart illustrated in Figure 4.3 explains the fault detection and signal reconstruction process 

using the virtual sensors. This process generates residuals, detects faults using a decision logic, 

reconstructs the failed signal in an adaptive estimator and arbitrates between the healthy sensor data or 

the reconstructed signals when a fault is detected. A detailed description of the process is presented in 

the next sections. 
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Figure 4.3. Fault detection and signal reconstruction process 

4.8.1 Generating and Processing the Residuals 

The residual processing steps are similar to what was presented in the previous chapter. For each sensor  

𝑞 ∈ {𝑎𝑥𝑠 , 𝑎𝑦𝑠 , 𝑎𝑧𝑠 , 𝜓𝑠̇, 𝛿𝑠}, two residuals are generated using the virtual sensors (𝑞̃1, 𝑞̃2): 

𝑅𝑞,𝑖 =
|𝑞 − 𝑞̃𝑖|       𝑖 ∈ {1, 2}        (4-61) 

Calculate residuals (𝑅𝑞,1,  𝑅𝑞,1) 
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The residual processor computes the fault bounds (𝐵𝑠𝑞 , 𝐵𝑑𝑞), adaptive thresholds (𝑇𝑞 , 𝑇𝑑,𝑞), time 

window (𝑊𝑞), fault state counter (𝑛𝑞) and checks the persistency against the fault window (𝑁𝑞). If a 

residual 𝑅𝑞,𝑖 is above the thresholds and the persistence is confirmed, the corresponding fault state 

(𝑆𝑞,𝑖) is set to one by the algorithm. These residual processing steps in Figure 4.3 are executed once 

per each sensor 𝑞 to cover the five sensors discussed in this chapter. The fault state flags 𝑆𝑞,𝑖 ∈

{𝑆𝑎𝑥,1, 𝑆𝑎𝑥,2, 𝑆𝑎𝑦,1, 𝑆𝑎𝑦,2, 𝑆𝑎𝑧,1, 𝑆𝑎𝑧,2, 𝑆𝜓̇,1, 𝑆𝜓̇,2, 𝑆𝛿,1, 𝑆𝛿,2} are then sent to the decision logic module for 

detecting and localizing the sensor faults. 

4.8.2 Decision Logic for Detection and Isolation of Sensor Faults 

Effects of each sensor fault on the entire set of residuals need to be evaluated to localize the fault. 

Consider a case where the lateral acceleration sensor (𝑎𝑦𝑠) is faulty, and all other sensors are healthy. 

In this case, the fault directly impacts the lateral acceleration residuals 𝑅𝑎𝑦,1, 𝑅𝑎𝑦,2. Moreover, since the 

lateral acceleration sensor measurement is directly or indirectly used in calculation of virtual sensors 

𝑎̃𝑥1 , 𝑎̃𝑧2, 𝜓̃̇1, and 𝛿1, the lateral acceleration fault also impacts 𝑅𝑎𝑥,1, 𝑅𝑎𝑧,2, 𝑅𝜓̇,1 and 𝑅𝛿,1. The rest of 

the residuals are not impacted in this case. Therefore, the fault signature for the lateral acceleration 

sensor fault is [𝑆𝑎𝑥,1 𝑆𝑎𝑥,2 𝑆𝑎𝑦,1 𝑆𝑎𝑦,2 𝑆𝑎𝑧,1 𝑆𝑎𝑧,2 𝑆𝜓̇,1 𝑆𝜓̇,2 𝑆𝛿,1 𝑆𝛿,2]=[1 0 1 1 0 1 1 0 1 0]. Similarly, 

explicit fault signatures can be assigned to each possible sensor fault as listed in Table 4.1.  

Table 4.1. Fault signatures for detection of sensor faults  

Fault Signature 
Faulty Sensor 

𝑎𝑥𝑠 𝑎𝑦𝑠 𝑎𝑧𝑠  𝜓̇𝑠 𝛿𝑠 No Fault 

𝑆𝑎𝑥,1 1 1 0 1 1 0 

𝑆𝑎𝑥,2 1 0 0 0 1 0 

𝑆𝑎𝑦,1 1 1 0 1 1 0 

𝑆𝑎𝑦,2 0 1 0 0 1 0 

𝑆𝑎𝑧,1 0 0 1 0 0 0 

𝑆𝑎𝑧,2 1 1 1 0 0 0 

𝑆𝜓̇,1 1 1 0 1 1 0 

𝑆𝜓̇,2 0 0 0 1 1 0 

𝑆𝛿,1 1 1 0 0 1 0 

𝑆𝛿,2 0 0 0 1 1 0 
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4.9 Fault Detectability and Isolability Analysis 

As discussed in the previous chapter, fault detectability and isolability can be investigated using the 

fault signature matrix. For the fault state 𝒮 = [𝑆𝑎𝑥,1 𝑆𝑎𝑥,2 𝑆𝑎𝑦,1 𝑆𝑎𝑦,2 𝑆𝑎𝑧,1 𝑆𝑎𝑧,2 𝑆𝜓̇,1 𝑆𝜓̇,2 𝑆𝛿,1 𝑆𝛿,2]
𝑇
 

and the fault vector ℱ = [ℱ𝑎𝑥𝑠  ℱ𝑎𝑦𝑠  ℱ𝑎𝑧𝑠  ℱ𝜓̇𝑠  ℱ𝛿𝑠]
𝑇
, the signature matrix is constructed using Table 4.1: 

𝐺 =

[
 
 
 
 
 
 
 
 
 
1 1 0 1 1
1 0 0 0 1
1 1 0 1 1
0 1 0 0 1
0 0 1 0 0
1 1 1 0 0
1 1 0 1 1
0 0 0 1 1
1 1 0 0 1
0 0 0 1 1]

 
 
 
 
 
 
 
 
 

  (4-62) 

Since 𝑟𝑎𝑛𝑘[𝐺𝑞] > 0 for all columns in 𝐺 and all columns in 𝐺 are unique, the proposed fault 

detection algorithm satisfies the fault detectability, complete fault detectability and fault isolability 

conditions. Consequently, all individual sensor faults  ℱ𝑎𝑥𝑠 , ℱ𝑎𝑦𝑠 , ℱ𝑎𝑧𝑠 , ℱ𝜓̇𝑠  and  ℱ𝛿𝑠 can be detected and 

localized using the proposed algorithm.  

Further analysis of Table 4.1 and the signature matrix 𝐺 verifies that evaluating a reduced set of fault 

states is sufficient to detect and isolate the faults. As an example, if both 𝑆𝑎𝑦,1 and 𝑆𝑎𝑦,2 are equal to 

one, then there is a sufficient indication for the lateral acceleration sensor fault regardless of the other 

fault state values. Therefore, to reduce complexity and save computational resources, the decision logic 

for detection and isolation of the faults can be updated as summarized in Table 4-2.  

Consequently, the modified fault signature matrix is updated as: 

𝐺 =

[
 
 
 
 
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1]

 
 
 
 

  (4-63) 

which still meets the detectability and isolability conditions since all columns are non-zero and unique. 

The updated decision logic will be used in the next section for reconstruction of faulty signals. 
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Table 4.2. Decision logic for detection of sensor faults and reconstruction of faulty signals  

Fault Signature 
Faulty Sensor 

𝑎𝑥𝑠 𝑎𝑦𝑠 𝑎𝑧𝑠 𝜓𝑠̇ 𝛿𝑠 No Fault 

𝑆𝑎𝑥 = 𝑆𝑎𝑥,1 & 𝑆𝑎𝑥,2 1 0 0 0 0 0 

𝑆𝑎𝑦 = 𝑆𝑎𝑦,1 & 𝑆𝑎𝑦,2 0 1 0 0 0 0 

𝑆𝑎𝑧 = 𝑆𝑎𝑧,1 & 𝑆𝑎𝑧,2 0 0 1 0 0 0 

𝑆𝑎𝑦 = 𝑆𝜓̇,1 & 𝑆𝜓̇,2 0 0 0 1 0 0 

𝑆𝛿 = 𝑆𝛿,1 & 𝑆𝛿,2 0 0 0 0 1 0 

4.10 Reconstruction of Faulty Signals 

When a sensor fault is detected by the algorithm, the failed signal can be reconstructed using the virtual 

sensors. For each sensor 𝑞 ∈ {𝑎𝑥𝑠 , 𝑎𝑦𝑠 , 𝑎𝑧𝑠 , 𝜓̇𝑠, 𝛿𝑠}, a weighted average of the corresponding virtual 

sensor values (𝑤𝑞,1𝑞̃1 + 𝑤𝑞,2𝑞̃2) can be used to estimate the sensor measurement (𝑞̂) and reconstruct 

the failed signal. The wights 𝑤𝑞,1 and 𝑤𝑞,2 have a default value of 0.5 and are further modified by the 

algorithm depending upon the sensor faults and vehicle dynamics conditions (e.g., wheel slips). 

Consequently, the reconstructed signals 𝑎̂𝑥𝑠 , 𝑎̂𝑦𝑠 , 𝑎̂𝑧𝑠 , 𝜓̂̇𝑠 and  𝛿𝑠 can be obtained as: 

[𝑎̂𝑥𝑠  𝑎̂𝑦𝑠  𝑎̂𝑧𝑠  𝜓̂̇𝑠 𝛿𝑠] = [𝑤𝑎𝑥,1𝑎̃𝑥1 +𝑤𝑎𝑥,2𝑎̃𝑥2    𝑤𝑎𝑦,1𝑎̃𝑦1 +𝑤𝑎𝑦,2𝑎̃𝑦2    𝑤𝑎𝑧,1𝑎̃𝑧2 +

𝑤𝑎𝑧,1𝑎̃𝑧2    𝑤𝜓̇,1𝜓̃̇1 +𝑤𝜓̇,1𝜓̃̇2    𝑤𝛿,1𝛿1 +𝑤𝛿,1𝛿2]
𝑇
  (4-64) 

To better manage noises and uncertainties, instead of a simple averaging of the virtual sensor values 

in (4-64), a random walk observer method [19] is integrated in the system to estimate the reconstructed 

signals. The aggregated system covering the sensors and residuals is summarized with states 𝑥𝑠 and 

measurements 𝑦𝑠: 

𝑥𝑠 = [𝑎𝑥𝑠 , 𝑎𝑦𝑠 , 𝑎𝑧𝑠 , 𝜓̇𝑠, 𝛿𝑠]
𝑇

   (4-65) 

𝑦𝑠 = [𝑤𝑎𝑥,1𝑎̃𝑥1 +𝑤𝑎𝑥,2𝑎̃𝑥2    𝑤𝑎𝑦,1𝑎̃𝑦1 +𝑤𝑎𝑦,2𝑎̃𝑦2   𝑤𝑎𝑧,1𝑎̃𝑧2 +𝑤𝑎𝑧,1𝑎̃𝑧2    𝑤𝜓̇,1𝜓̃̇1 +

𝑤𝜓̇,1𝜓̃̇2    𝑤𝛿,1𝛿1 +𝑤𝛿,1𝛿2]
𝑇

   (4-66) 

System dynamics is summarized as: 
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𝑥𝑠[𝑘 + 1] = 𝐴𝑠𝑥𝑠[𝑘] +𝓌s   (4-67) 

𝑦𝑠[𝑘] = 𝐻𝑠(𝑥𝑠[𝑘], 𝑢𝑠[𝑘]) + 𝓋s   (4-68) 

where 𝐴𝑠 = 𝐼5×5 is the state matrix, 𝓌s represents the process uncertainties and 𝓋s represents the 

measurement noise. The measurement function 𝐻𝑠 is obtained from Equation (4-66) and the virtual 

sensor equations in the previous sections. The random walk observer is implemented using the UKF 

method to estimate the states and deliver the reconstructed states (𝑥𝑠 = [𝑎̂𝑥𝑠 , 𝑎̂𝑦𝑠 , 𝑎̂𝑧𝑠 , 𝜓̂̇𝑠, 𝛿𝑠]). More 

details on the random walk observer and the UKF method is provided in Chapter 5. 

4.11 Experiment Results 

The experimental results for detection of sensor faults and reconstruction of faulty signals in a variety 

of driving maneuvers are presented in this section. The test vehicle and parameters are similar to the 

setup that was reviewed in Chapter 3. Parameters for the fault detection and signal reconstruction 

algorithm are summarized in Table 4.3. 

Table 4.3. Parameters for residual processing, fault detection and signal reconstruction 

Parameter Value Parameter Value Parameter Value 

𝐵𝑠𝑎𝑥  0.5 𝐵𝑠𝑎𝑧  0.5 𝐵𝑠𝛿  0.5 

𝐵𝑑𝑥 0.04 𝐵𝑑𝑎𝑧  0.15 𝐵𝑑𝛿 0.05 

𝑁𝑎𝑥 30 𝑁𝑎𝑧 20 𝑁𝛿  10 

𝑊𝑎𝑥 300 𝑊𝑎𝑧 500 𝑊𝛿 500 

𝐵𝑠𝑎𝑦  1 𝐵𝑠𝜓̇ 0.08 𝑤𝑞,𝑖 0.5 

𝐵𝑑𝑎𝑦  0.2 𝐵𝑑𝜓̇  0.14 𝜎 3.2 

𝑁𝑎𝑦  30 𝑁𝜓̇ 10 𝑣0 1 

𝑊𝑎𝑦  200 𝑊𝜓̇ 300 𝐾𝑢𝑠 25 

4.11.1 Experiment Results when all Sensors are Functional 

As the first case study, a step-steer maneuver combined with longitudinal excitations is executed while 

all sensors are functioning properly. The objective is to evaluate accuracy of the virtual sensors and 

verify that the algorithm does not generate false positives when there is no sensor fault. Driver’s steering 
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wheel command, wheel torque commands, longitudinal velocity and trajectory of the vehicle are shown 

in Figure 4.4.  

 

Figure 4.4. Driver commands and and trajectory of the vehicle during the meanuever with no fault 

Experiment results for lateral acceleration virtual sensors and residuals are shown in Figure 4.5. The 

results illustrate that the virtual sensors can accurately replicate the actual measured lateral acceleration 

of the vehicle. In the middle of the maneuver and when the vehicle is excited in the lateral direction, 

the adaptive threshold has increased to prevent potential false alarms that might have been generated 

due to model uncertainties and residual spikes. Both residuals are below the adaptive threshold for the 

entire maneuver and no fault is detected by the algorithm.  

Similarly, virtual sensor measurements and residuals for the longitudinal acceleration, vertical 

acceleration, yaw rate and steering angle sensors are shown in Figure 4.6 to Figure 4.9.  



 

 66 

  

Figure 4.5. Lateral acceleration virtual sensors and residuals 

  

Figure 4.6. Longitudinal acceleration virtual sensors and residuals 

  

Figure 4.7. Vertical acceleration virtual sensors and residuals 
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Figure 4.8. Yaw rate virtual sensors and residuals 

  

Figure 4.9. Steering angle virtual sensors and residuals 

The results demonstrate reliable performance of the virtual sensors to replicate sensor measurements 

and illustrate advantages of the adaptive threshold in terms of avoiding false positives.  

4.11.2 Fault Detection and Signal Reconstruction for Lateral Acceleration Sensor 

Performance of the proposed structure for detection of a lateral acceleration sensor fault and 

reconstruction of the faulty signals is analyzed during a double-lane-change (DLC) maneuver. Driver’s 

steering wheel command, wheel torque commands and trajectory of the vehicle are shown in Figure 

4.10. The lane change portion of the maneuver is performed at the speed of 40kph. Lateral acceleration 

fault is injected at 𝑡 = 3.5𝑠 by replacing the measured lateral acceleration with a zero signal for the rest 

of the maneuver. 
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Figure 4.10. Driver commands and trajectory of the vehicle during the maneuver with lateral 

acceleration sensor fault 

Lateral acceleration residuals and the fault state are shown in Figure 4.11. Both residuals exceed the 

adaptive threshold after the fault occurs. The algorithm detected the fault at 𝑡 = 3.65𝑠 and sets the 

lateral acceleration fault state to one. The result also shows that the algorithm reliably estimated the 

actual magnitude of the fault using the virtual sensors (𝑎̃𝑦1
, 𝑎̃𝑦2

).  

After detecting the fault, the algorithm starts reconstructing the lateral acceleration signal using the 

virtual sensors. The reconstructed signal is compared with the actual lateral acceleration of the vehicle 

and the faulty signal in Figure 4.12. The result shows that the lateral acceleration signal is successfully 

reconstructed after detection of the fault. In this case study, the NRMSE for the reconstructed signal is 

7.68%. 

The reconstructed signal can be used by other vehicle estimation and control modules to continue a 

reliable operation despite the sensor fault. Fault-tolerant estimation of vehicle states using such 

reconstructed signals will be studied in Chapter 5. 
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Figure 4.11. Detection of lateral acceleration sensor fault 

 

Figure 4.12. Reconstruction of the faulty lateral acceleration signal 
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4.11.3 Fault Detection and Signal Reconstruction for Longitudinal Acceleration 

Sensor 

A lane-change maneuver followed by a harsh braking is executed to evaluate the performance of the 

proposed method in terms of detection of a longitudinal acceleration sensor fault and reconstruction of 

the faulty signal. Driver commands and trajectory of the vehicle are shown in Figure 4.13. 

 

 

Figure 4.13. Driver commands and trajectory of the vehicle during the maneuver with longitudinal 

acceleration sensor fault 

The sensor fault in this case is a scaling fault (gain fault). The fault is injected such that the sensor 

reports 10% of the actual lateral acceleration of the vehicle after 𝑡 = 7𝑠.  

Longitudinal acceleration residuals and the fault state are shown in Figure 4.14. The results show 

that the fault is detected at 𝑡 = 7.15𝑠 and the fault magnitude is reliably estimated using the virtual 

sensors.  

Figure 4.15 shows the reconstructed longitudinal acceleration signal and verifies accurate 

reconstruction of the failed signal by the proposed method. In this case study, the NRMSE for 

reconstruction of the longitudinal acceleration signal is 4.53%. The high-frequency noise on the 

reconstructed signal is due to the unfiltered input signals which feed into the virtual sensors (e.g. wheel 
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angular velocities, accelerations, etc.). Filtering was avoided to prevent a phase shift in the 

reconstructed signal. 

  

   

Figure 4.14. Detection of longitudinal acceleration sensor fault 

 

Figure 4.15. Reconstruction of the faulty longitudinal acceleration signal 
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4.11.4 Fault Detection and Signal Reconstruction for Vertical Acceleration Sensor 

Performance of the proposed algorithm in detection of a vertical acceleration sensor fault and 

reconstruction of the faulty signal is investigated during an acceleration/braking maneuver. Driver’s 

steering wheel command, wheel torque command, vehicle speed and trajectory of the vehicle are shown 

in Figure 4.16. 

 

  

Figure 4.16. Driver commands and trajectory of the vehicle during the maneuver with vertical 

acceleration sensor fault 

A vertical acceleration fault is injected at 𝑡 = 3𝑠 by replacing the measured vertical acceleration with 

a zero signal for the rest of the maneuver. Experiment results for detection of the fault are shown in 

Figure 4.17. Both residuals exceed the adaptive threshold as soon as the fault occurs. Consequently, the 

algorithm detected the fault at 𝑡 = 3.1𝑠 after confirming the persistence and correctly estimated the 

fault magnitude. The failed signal is reconstructed for the rest of the maneuver as shown in Figure 4.18.  
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During the reconstruction period, the NRMSE is 1.22% which confirms the desirable performance 

of the proposed method in terms of accurate reconstruction of the faulty signal. 

 

Figure 4.17. Detection of vertical acceleration fault 

 

Figure 4.18. Reconstruction of the faulty vertical acceleration signal 
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4.11.5 Fault Detection and Signal Reconstruction for Yaw Rate Sensor 

Detection of a bias fault on the yaw rate measurement and reconstruction of the faulty signal is studied 

in this section. The vehicle performs a lane-change maneuver on a wet sealer with a low friction 

coefficient (𝜇 ≈ 0.4). Driver’s steering wheel command, torque commands and trajectory of the 

vehicle are shown in Figure 4.19.  Figure 4.20 shows the wheel angular velocities during the maneuvers.  

    

 

Figure 4.19. Driver commands and trajectory of the vehicle during maneuver with yaw rate sensor 

fault 

  

Figure 4.20. Wheel angular velocities during the lane-change maneuver on the wet road 
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Significant wheel slips are observed especially on the front wheels during this maneuver. This is 

expected considering the road surface condition and the aggressive steering and braking commands.  

From the beginning of the maneuver, a constant bias of 0.1 𝑟𝑎𝑑/𝑠 is added to the measured yaw rate 

by the sensor. Yaw rate residuals, fault state, virtual sensor values, and the estimated fault magnitude 

are shown in Figure 4.21. The residuals are above the adaptive fault threshold from the beginning of 

the maneuver and the algorithm detects the fault at 𝑡 = 0.05𝑠.   

   

  

Figure 4.21. Detection of the yaw rate sensor fault 

Figure 4.22 compares the actual, faulty and reconstructed signals. The result shows the desirable 

reconstruction of the yaw rate signal despite the unfavorable road surface condition, wheel slips and 

the aggressive steering command. The adaptive weights (𝑤𝜓̇,1, 𝑤𝜓̇,2) for contribution of the virtual 

sensors (𝜓̂̇1, 𝜓̂̇2) in the reconstruction process are shown in Figure 4.23. These weights are 

automatically modified by the proposed method during the maneuver. In regions with considerable 
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wheel slips, the algorithm reduced the effect of the second yaw rate virtual sensor (𝜓̂̇2). This is 

desirable since the second virtual sensor relies on wheel angular velocities and is less accurate when 

there is a high wheel slip. 

 

Figure 4.22. Reconstruction of the faulty yaw rate signal 

 

Figure 4.23. Adaptive virtual sensor weights for reconstruction of the yaw rate fault 

In this case study, the NRMSE for the reconstructed yaw rate is 11.28%. The results confirm a 

desirable reconstruction performance and showcase advantages of the adaptive estimator in terms of a 

more accurate reconstruction of the failed signal in challenging driving conditions. 
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4.11.6 Fault Detection and Signal Reconstruction for Steering Angle Sensor 

Performance of the proposed structure in detection of a steering angle sensor fault and reconstruction 

of the faulty signal is analyzed during a slalom maneuver. Driver’s steering wheel command, wheel 

torque commands and trajectory of the vehicle are shown in Figure 4.24.  

 

 

Figure 4.24. Driver commands and trajectory of the vehicle during the maneuver with steering angle 

sensor fault 

A stuck-output fault is considered in this case study. The fault is injected such that when the steering 

angle reaches 5 degrees, the sensor gets stuck in this value and continues to output this fixed 

measurement until the end of the maneuver. The fault occurs at t = 1.58s in this case study.  

Figure 4.25 shows that the steering angle residuals exceed the adaptive threshold after the fault 

occurs. The steering angle fault is detected at 𝑡 = 1.725𝑠 and the fault magnitude is estimated using 

the virtual sensor values. 

Figure 4.26 shows that the faulty steering angle signal is accurately reconstructed after detection of 

the fault. In this case study, the NRMSE for the reconstructed steering angle is 5.91%. 
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Figure 4.25. Detection of steering angle sensor fault 

 

 Figure 4.26. Reconstruction of the faulty steering angle signal 
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4.12 Summary 

This chapter presented a structure for detection of longitudinal acceleration, lateral acceleration, vertical 

acceleration, yaw rate, and steering angel sensor faults and reconstruction of the faulty signals. As the 

first step for the fault detection process, a set of virtual sensors were developed using the vehicle 

models, estimated vehicle states and analytical redundancy relations. These virtual sensors helped to 

generate residuals and unique fault signatures for the fault detection process. A systematic method to 

detect and isolate sensor faults using the residuals was discussed which benefits from several 

advantages including the adaptive fault thresholds. Detectability/isolability of faults was verified using 

the properties of the fault signature matrix. After detecting the sensor faults, reconstruction of the faulty 

signals was executed using an estimator with adaptive weights to manage contribution of virtual sensors 

in the reconstruction process. The weights are adapted depending upon the driving condition and the 

remaining healthy sensor set.  

Several experimental case studies were conducted to evaluate the performance of the proposed 

structure. Various types of sensor faults including loss of signal, bias, stuck-output and scaling faults 

were considered in the case studies. The experiments covered several driving maneuvers including step-

steer, acceleration/braking, lane change, double-lane-change, and slalom maneuvers on a variety of 

road surface conditions.  

The results verified the effectiveness of the proposed structure in terms of avoiding false positives, 

fast detection of sensor faults and accurate reconstruction of the faulty sensory signals. 
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Chapter 5 

Fault-Tolerant Estimation of Vehicle States 

This chapter presents a novel structure for detection of torque sensor faults and fault-tolerant estimation 

of vehicle states. Combination of the fault detection, signal reconstruction and estimation methods in 

thesis is also discussed here. Finally, experimental case studies are presented to demonstrate the 

effectiveness of the proposed approach in various driving scenarios with different sensor faults. 

5.1 Introduction 

General structure of the proposed method for detection of torque sensor faults, reconstruction of the 

faulty signals, and fault-tolerant estimation of vehicle states is illustrated in Figure 5.1.  

 

Figure 5.1. Detection of torque sensor faults and fault-tolerant estimation of vehicle states 
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In this structure, first a set of disturbance observers combined with a residual processor and a decision 

logic is designed to detect the motor torque sensor faults for the electric vehicle. This module can 

reconstruct the faulty signal and provide fault-tolerant estimation of longitudinal tire forces even when 

a torque sensor fails. Estimation of vertical tire forces is discussed next, where the reconstructed 

acceleration signals from the previous chapter combined with the estimated roll/pitch angles and load 

transfer equations deliver the fault-tolerant estimates. For lateral tire forces, an adaptive UKF is 

designed in which effects of measurement faults are mitigated by leveraging the reconstructed input 

signals and adapting the measurement equations. Fault-tolerant estimation of longitudinal and lateral 

velocities is achieved by feeding the reconstructed input signals into kinematic velocity estimation 

methods. Details of the proposed methods are discussed in the next sections. 

5.2 Detection of Torque Sensor Faults, Reconstruction of Faulty Signals and 

Fault-Tolerant Estimation of Longitudinal Tire Forces 

A set of disturbance observers is designed to achieve fault-tolerant estimation of longitudinal tire 

forces in presence of motor torque sensor faults. The wheel dynamics model in Figure 5.2 describes the 

relationship between longitudinal tire forces (𝐹𝑥𝑖𝑗), wheel angular velocities (𝜔𝑖𝑗), traction torques 

(𝜏𝑑𝑖𝑗), and brake torques (𝜏𝑏𝑖𝑗) for each wheel [97]: 

𝐼𝑤𝜔̇𝑖𝑗 = 𝜏𝑑𝑖𝑗 − 𝜏𝑏𝑖𝑗 − 𝑟𝑒𝐹𝑥𝑖𝑗           𝑖𝑗 ∈ {𝑓𝑙, 𝑓𝑟, 𝑟𝑙, 𝑟𝑟} (5-1) 

where 𝐼𝑤 is the wheel moment of inertia about its spin axis and 𝑟𝑒 is the effective tire radius. Since the 

longitudinal tire force appears as an external disturbance into the wheel dynamics (5-1), a disturbance 

observer is considered here to estimate this force. 

 

Figure 5.2. Wheel dynamics 

Proposition: considering wheel dynamics for each wheel: 

𝐼𝑤𝜔̇𝑖𝑗 = 𝜏𝑖𝑗𝑠 − 𝑟𝑒𝐹𝑥𝑖𝑗  (5-2) 
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where 𝜏𝑖𝑗𝑠 is the sensed torque acting on the wheel 𝑖𝑗: 

 𝜏𝑖𝑗𝑠 = 𝜏𝑑𝑖𝑗 − 𝜏𝑏𝑖𝑗  (5-3) 

the following observer can estimate the longitudinal tire force: 

𝐼𝑤𝜔̇̂𝑖𝑗 = 𝜏𝑖𝑗𝑠 − 𝑟𝑒𝐹̂𝑥𝑖𝑗 + Λ𝜔̃𝑖𝑗  (5-4) 

𝐹̂𝑥𝑖𝑗 =
𝜏𝑖𝑗−𝐼𝑤ω̇𝑖𝑗

𝑟𝑒
− (𝐾𝑃𝜔̃𝑖𝑗 + 𝐾𝐼 ∫ 𝜔̃𝑖𝑗𝑑𝑡 + 𝐾𝐷𝜔̇̃𝑖𝑗) (5-5) 

where 𝐾𝑃 , 𝐾𝐼 , 𝐾𝐷 and Λ are constant observer gains, 𝐹̂𝑥𝑖𝑗 is the estimated longitudinal force and 

𝜔̃𝑖𝑗 = 𝜔𝑖𝑗 − 𝜔̂𝑖𝑗  (5-6) 

Proof: Error dynamics can be calculated by subtracting Equation (5-4) from Equation (5-2): 

𝐼𝑤𝜔̇̃𝑖𝑗 + 𝑟𝑒𝐹̃𝑥𝑖𝑗 + Λ𝜔̃𝑖𝑗 = 0  (5-7) 

where: 

𝐹̃𝑥𝑖𝑗 = 𝐹𝑥𝑖𝑗 − 𝐹̂𝑥𝑖𝑗 (5-8)   

Differentiating Equation (5-7) results in: 

𝐼𝑤𝜔̈̃𝑖𝑗 + 𝑟𝑒 𝐹̇̃𝑥𝑖𝑗 + Λ𝜔̇̃𝑖𝑗 = 0  (5-9) 

in which 𝐹̇̃𝑥𝑖𝑗 can be calculated from Equation (5-2) and Equation (5-5): 

𝐹̇̃𝑥𝑖𝑗 = 𝐹̇𝑥𝑖𝑗 − 𝐹̇̂𝑥𝑖𝑗 = 𝐾𝑃𝜔̇̃𝑖𝑗 + 𝐾𝐼𝜔̃𝑖𝑗 + 𝐾𝐷𝜔̈̃𝑖𝑗  (5-10) 

Finally, error dynamics can be expressed by replacing Equation (5-10) in Equation (5-9): 

(𝐼𝑤 + 𝑟𝑒𝐾𝐷)𝜔̈̃𝑖𝑗 + (Λ + 𝑟𝑒𝐾𝑃)𝜔̇̃𝑖𝑗 + (𝑟𝑒𝐾𝐼) 𝜔̃𝑖𝑗  = 0 (5-11) 

By choosing the observer gains such that 𝐾𝐷 >
−𝐼𝑤

𝑟𝑒
, 𝐾𝑃 > 0, 

Λ

𝐾𝑃
> −𝑟𝑒 and 𝐾𝐼 > 0, the error 

dynamics is stable, thus 𝜔̃𝑖𝑗 ⟶ 0 and 𝜔̇̃𝑖𝑗 ⟶ 0. Consequently, Equation (5-7) shows that 𝐹̃𝑥𝑖𝑗 ⟶ 0 

and Equation (5-8) shows that 𝐹̂𝑥𝑖𝑗 ⟶ 𝐹𝑥𝑖𝑗 .  

For the electric vehicle in this thesis, the effective torque on each wheel is available from the in-

wheel motor feedbacks. For conventional vehicles, these torques can be calculated using the brake 

torque, engine torque, and models of the brake, transmission and differential systems. Since the 
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observer receives wheel torque as inputs, a wheel torque sensor fault results in an incorrect estimation 

of the longitudinal tire force for that wheel. Therefore, the total longitudinal force residual (𝑅Σ𝐹𝑥) will 

exceed a predefined threshold: 

𝑅Σ𝐹𝑥 = |(𝐹̂𝑥𝑓𝑙 + 𝐹̂𝑥𝑓𝑟) cos(𝛿) + 𝐹̂𝑥𝑟𝑙 + 𝐹̂𝑥𝑟𝑟 −𝑚𝑎𝑥| (5-12) 

Similar to the previous chapters, the residual processor computes the fault bounds (𝐵𝑠𝐹𝑥 , 𝐵𝑑𝐹𝑥), the 

adaptive threshold (𝑇𝑑,𝐹𝑥), time window (𝑊𝐹𝑥), fault state counter (𝑛𝐹𝑥) and checks the persistency 

against the fault state window size (𝑁𝐹𝑥). If the residual 𝑅Σ𝐹𝑥 is above the thresholds and the persistence 

is confirmed, the fault state flag (𝑆𝐹𝑥) is set to one.   

To isolate the fault, four additional residuals (𝑅𝜏𝑖𝑗) are defined which compare the command torque 

(𝜏𝑖𝑗𝑐) and the feedback torque (𝜏𝑖𝑗𝑠) reported by the sensor:  

𝑅𝜏𝑖𝑗 = |𝜏𝑖𝑗𝑐 − 𝜏𝑖𝑗𝑠|              𝑖𝑗 ∈ {𝑓𝑙, 𝑓𝑟, 𝑟𝑙, 𝑟𝑟}  (5-13) 

In normal conditions with no faults, the feedback from the motor is equal to the driver’s command 

and 𝑅𝜏𝑖𝑗  is below a threshold 𝑇𝑑,𝜏. A mismatch between the command torque and the feedback torque 

can have two underlying reasons:  

1) Torque sensors are healthy, but a motor is applying a different torque than commanded: in this 

situation, since the sensed torques are correct and the estimated longitudinal forces by the 

observers are still accurate, the main total longitudinal force residual (𝑅Σ𝐹𝑥) will still be below 

its threshold. Therefore, the algorithm won’t detect a motor fault and avoids false positives. 

2) Torque sensor for the 𝑖𝑗 motor is faulty: in this situation, since the estimated 𝐹̂𝑥𝑖𝑗 using the faulty 

torque signal is not accurate, both the total longitudinal force residual (𝑅Σ𝐹𝑥) and the 

corresponding motor torque residual (𝑅𝜏𝑖𝑗) exceed their thresholds. Therefore, the algorithm can 

identify the faulty sensor (𝜏𝑖𝑗𝑠) and set its corresponding fault state (𝑆𝜏𝑖𝑗) to one. 

Table 5.1 summarizes the decision logic and the signal reconstruction method. For the fault state 

vector 𝒮 = [𝑆𝜏𝑓𝑙  𝑆𝜏𝑓𝑟  𝑆𝜏𝑟𝑙  𝑆𝜏𝑟𝑟  𝑆Σ𝐹𝑥]
𝑇
 and the fault vector ℱ = [ℱ𝜏𝑓𝑙  ℱ𝜏𝑓𝑙  ℱ𝜏𝑓𝑙  ℱ𝜏𝑓𝑙]

𝑇
, the fault signature 

matrix is obtained as: 
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𝐺 =

[
 
 
 
 
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 1]

 
 
 
 

 (5-14) 

which satisfies the detectability, complete detectability and isolability conditions.  

When a torque sensor fault is detected, the fault is reconstructed using the estimated forces from the 

other healthy sensors and the longitudinal dynamics of the vehicle. If there is no fault, all observers 

operate normally, receive the sensed torque for their wheel and deliver the estimation of longitudinal 

tire force for their corresponding tire. If a torque sensor is diagnosed as faulty, then the reconstructed 

torque from Table 5.1 is fed to the impacted observer to achieve the fault-tolerant estimation of the 

longitudinal tire force for that tire. 

Table 5.1. Decision logic for detection of torque sensor faults and reconstruction of faulty signals 

Faulty 

Sensor 

Residuals 

Above 

Thresholds 

Fault 

State 

Flag 

Reconstructed Motor Torque Signal 

𝜏𝑓𝑙𝑠 𝑅𝜏𝑓𝑙  𝑎𝑛𝑑 𝑅Σ𝐹𝑥 𝑆𝜏𝑓𝑙  𝜏̂𝑓𝑙 = 𝐼𝜔̇𝑓𝑙 +
𝑟𝑒

cos(𝛿)
[𝑚𝑎𝑥𝑠 − (𝐹̂𝑥𝑓𝑟 cos(𝛿) + 𝐹̂𝑥𝑟𝑙 + 𝐹̂𝑥𝑟𝑟)] 

𝜏𝑓𝑟𝑠 𝑅𝜏𝑓𝑟  𝑎𝑛𝑑 𝑅Σ𝐹𝑥 𝑆𝜏𝑓𝑟  𝜏̂𝑓𝑟 = 𝐼𝜔̇𝑓𝑟 +
𝑟𝑒

cos(𝛿)
[𝑚𝑎𝑥𝑠 − (𝐹̂𝑥𝑓𝑙 cos(𝛿) + 𝐹̂𝑥𝑟𝑙 + 𝐹̂𝑥𝑟𝑟)] 

𝜏𝑟𝑙𝑠 𝑅𝜏𝑟𝑙  𝑎𝑛𝑑 𝑅Σ𝐹𝑥 𝑆𝜏𝑟𝑙 𝜏̂𝑟𝑙 = 𝐼𝜔̇𝑟𝑙 + 𝑟𝑒[𝑚𝑎𝑥𝑠 − (𝐹̂𝑥𝑓𝑙 cos(𝛿) + 𝐹̂𝑥𝑓𝑟 cos(𝛿) + 𝐹̂𝑥𝑟𝑟)] 

𝜏𝑟𝑟𝑠 𝑅𝜏𝑟𝑟  𝑎𝑛𝑑 𝑅Σ𝐹𝑥 𝑆𝜏𝑟𝑟 𝜏̂𝑟𝑟 = 𝐼𝜔̇𝑟𝑟 + 𝑟𝑒[𝑚𝑎𝑥𝑠 − (𝐹̂𝑥𝑓𝑙 cos(𝛿) + 𝐹̂𝑥𝑓𝑟 cos(𝛿) + 𝐹̂𝑥𝑟𝑙)] 

None 𝑅Σ𝐹𝑥 or None N/A None 

 

5.3 Fault-Tolerant Estimation of Vertical Tire Forces 

Vertical tire forces acting on each wheel were formulated in chapter 4 as functions of the longitudinal, 

lateral and vertical accelerations as well as roll and pitch angles: 

𝐹̂𝑧𝑖𝑗 = 𝑓(𝑎𝑥𝑠 , 𝑎𝑦𝑠 , 𝑎𝑧𝑠 , 𝜃𝑣 , 𝜙𝑣) (5-15) 
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Consequently, these estimated forces are sensitive to the longitudinal, lateral and vertical acceleration 

sensor faults. Moreover, since suspension height and roll/pitch rate sensor faults impact estimation of 

roll and pitch angles, the vertical tire forces are also impacted by these sensor faults.  

To obtain fault-tolerant estimation of the vertical tire forces, the reconstructed acceleration signals 

from Chapter 4 (𝑎̂𝑥𝑠 , 𝑎̂𝑦𝑠 , 𝑎̂𝑧𝑠) and fault-tolerant estimations of roll/pitch angles from Chapter 3 (𝜃𝑣, 𝜙̂𝑣) 

are fed to the vertical force estimator. Figure 5.3 summarizes this process. 

 

Figure 5.3. Fault-tolerant estimation of vertical tire forces 

It is noteworthy that the proposed approach can be extended to other vertical tire force estimation 

methods available in the literature. As an example, in [102] suspension deflections and corner 

stiffness/damping coefficients are used to estimate the vertical tire force for each corner. The 

reconstructed suspension height signals from this thesis can be fed into the vertical tire force estimation 

method in [102] to obtain fault-tolerant estimation of the corner vertical forces. 

5.4 Fault-Tolerant Estimation of Lateral Tire Forces 

An adaptive unscented Kalman filter is designed here for fault-tolerant estimation of lateral tire forces. 

UKF does not require calculation of the Jacobian matrix and linearization of the system around 

operating points. This is the main benefit of UKF compared to other available methods for nonlinear 

state estimation such as extended Kalman filter (EKF). 

To design the estimator, first lateral tire forces on the front and rear axles are approximated based on 

the distribution of vertical tire forces [97]: 

𝐹̂𝑦𝑓,𝑎 =
𝐹̂𝑧𝑓𝑙+𝐹̂𝑧𝑓𝑟

𝐹̂𝑧𝑓𝑙+𝐹̂𝑧𝑓𝑟+𝐹̂𝑧𝑟𝑙+𝐹̂𝑧𝑟𝑟
𝑚𝑎𝑦𝑠              (5-16) 

𝐹̂𝑦𝑟,𝑎 =
𝐹̂𝑧𝑟𝑙+𝐹̂𝑧𝑟𝑟

𝐹̂𝑧𝑓𝑙+𝐹̂𝑧𝑓𝑟+𝐹̂𝑧𝑟𝑙+𝐹̂𝑧𝑟𝑟
𝑚𝑎𝑦𝑠  (5-17) 
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In harsh driving maneuvers with high wheel slippage, these approximated latera axle forces (𝐹̂𝑦𝑓,𝑎 ,

𝐹̂𝑦𝑟,𝑎) are not accurate. To overcome this issue, vehicle handling dynamics is integrated into the 

estimator to develop a robust scheme for accurate and fault-tolerant estimation of the lateral forces. 

A random walk observer method [19] is used here to develop the estimator. The state vector (𝑋) is 

defined as: 

𝑋 = [𝑥1 𝑥2]
𝑇  (5-18) 

𝑥1 = 𝐹𝑦𝑓 − 𝐹̂𝑦𝑓,𝑎  (5-19) 

𝑥2 = 𝐹𝑦𝑟 − 𝐹̂𝑦𝑟,𝑎   (5-20) 

These states are treated as random signals with an identity dynamics matrix impacted by the process 

noise vector (𝓌): 

𝑋̇ = 𝐼2×2𝓌  (5-21) 

The measurement equation is defined as: 

𝑌 =  𝐻(𝑋, 𝑈) + 𝓋  (5-22) 

where 𝓋 is the measurement noise, 𝑈 = 𝛿  is the input, and 𝐻(𝑋, 𝑈) is the measurement matrix. The 

measurement vector 𝑌 is expressed as: 

𝑌 =

[
 
 
 

𝑚𝑎𝑥𝑠 − (𝐹̂𝑥𝑓 𝑐𝑜𝑠(𝛿) + 𝐹̂𝑥𝑟 − 𝐹̂𝑦𝑓,𝑡 𝑠𝑖𝑛(𝛿))

𝑚𝑎𝑦𝑠 − (𝐹̂𝑦𝑓 𝑐𝑜𝑠(𝛿) + 𝐹̂𝑦𝑟,𝑎 + 𝐹̂𝑥𝑓 𝑠𝑖𝑛(𝛿))

𝐼𝑧𝜓̇𝑠 − (( 𝐹̂𝑦𝑓,𝑎 𝑐𝑜𝑠(𝛿) + 𝐹̂𝑥𝑓 𝑠𝑖𝑛(𝛿)) 𝐿𝑓 − 𝐹̂𝑦𝑟,𝑎  𝐿𝑟)]
 
 
 
+ 𝓋 (5-23) 

Using this measurement and assuming that: 

1) Accurate estimations of the longitudinal and vertical tire forces are available from the previous 

sections (𝐹̂𝑥𝑖𝑗 = 𝐹𝑥𝑖𝑗 ,  𝐹̂𝑧𝑖𝑗 = 𝐹𝑧𝑖𝑗) 

2) If a sensor fails, an accurate reconstructed signal for that sensor is available from Chapter 4 

(𝑎̂𝑥𝑠 = 𝑎𝑥𝑠 ,  𝑎̂𝑦𝑠 = 𝑎𝑦𝑠 ,  𝜓̂̇𝑠 = 𝜓̇𝑠,  𝛿𝑠 = 𝛿𝑠) 

then 𝐻(𝑋, 𝑈) can be expresses as a function of the states and the input steering angle using Equations 

(4-9)-(4-11): 
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𝐻(𝑋, 𝛿) = [

−𝑥1 𝑠𝑖𝑛(𝛿)

𝑥1 cos(𝛿) + 𝑥2
𝑥1 𝑐𝑜𝑠(𝛿) 𝐿𝑓 − 𝑥2𝐿𝑟

] = [

− sin(𝛿) 0
cos(𝛿) 1
𝐿𝑓 cos(𝛿) −𝐿𝑟

] [
𝑥1
𝑥2
] (5-24) 

Consequently, the discrete time state-space model can be summarized as: 

𝑋𝑘 = 𝐼2×2𝑋𝑘−1 +𝓌𝑘  (5-25) 

𝑌𝑘 = 𝐻(𝑋𝑘 , 𝛿𝑘) + 𝓋𝑘  (5-26) 

Using this model, the UKF method introduced in [103] and used in [97] is adopted for estimation of 

lateral tire forces. The algorithm is modified in this thesis to maintain a reliable estimation performance 

even when a sensor is faulty. The overall process is shown in Figure 5.4. Details about the UKF method 

are provided in Appendix A.  

 

Figure 5.4. Adaptive UKF for fault-tolerant estimation of lateral tire forces 

In summary, UKF includes the following three main steps: 
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1) Calculating a set of carefully chosen weighted sample points, called sigma points, around each 

state of the system. 

2) Predicting the covariance matrix, outputs and states using the sigma points. This prediction is 

performed using the estimated states and the error covariance matrices from the previous 

sample time (𝑘 − 1). 

3) Updating the states and covariance matrices using measurements at the current sample time 

(𝑘) using the sigma points, estimated states from the previous sample time, and the error 

covariance.  

When a sensor fails, the main issue arises in the third step when UKF uses sensor measurements to 

update the measurement covariance matrix: 

𝒫𝑌̅𝑘𝑌̅𝑘 = ∑ 𝑤𝑖
(𝑐)
( 𝛾𝑖,𝑘|𝑘−1 − 𝑌̅𝑘|𝑘−1)

2𝑛
𝑖=0 × ( 𝛾𝑖,𝑘|𝑘−1 − 𝑌̅𝑘|𝑘−1)

𝑇
+ℛ (5-27) 

where 𝑛 is the number of states, 𝑖 = 0,2,… , 2𝑛 indicates sigma points, 𝑤𝑖
(𝑐)

 is a constant weight for the 

covariance of sigma points, 𝒫𝑌̅𝑘𝑌̅𝑘 is the innovation covariance, 𝑌̅𝑘|𝑘−1 is the predicted output, 𝛾𝑖,𝑘|𝑘−1 

is the predicted measurement and ℛ is the measurement noise covariance matrix. Normally, ℛ is a fixed 

diagonal matrix containing statistical information about the expected sensor noise levels. When the 

noise characteristic of a sensor changes, the initially set value for ℛ is no longer valid. Such a change 

may produce an unstable estimation performance [104].  

An approach for adapting the UKF parameters for sensors with time varying noise characteristics is 

presented in [105]. A similar approach is developed in this thesis to adapt ℛ when a reconstructed signal 

is used in the estimation process. The idea is to update ℛ over a time window and obtain its updated 

estimate (ℛ̂) after detection of the fault. The updated matrix ℛ̂ is calculated using predicted outputs by 

the model and the observed measurements: 

ℛ̂  = 𝒞𝑘 + ∑ 𝜔𝑖
(𝑐)
( 𝛾𝑖,𝑘|𝑘−1 − 𝑌̅𝑘|𝑘−1)

2𝑛
𝑖=0 × ( 𝛾𝑖,𝑘|𝑘−1 − 𝑌̅𝑘|𝑘−1)

𝑇
 (5-28) 

𝒞𝑘 =
1

𝑊
∑ (𝑌𝑗 − 𝑌̅𝑗|𝑗−1)
𝑘
𝑗=𝑘−𝑊+1 × (𝑌𝑗 − 𝑌̅𝑗|𝑗−1)

𝑇
 (5-29) 

where 𝑊 represents the time window. After the fault is detected and reconstructed, Equations (5-28) 

and (5-29) are used to adapt the estimator, maintain stability and achieve a desirable estimation 

performance. 
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Using the estimated states from the proposed adaptive UKF (𝑋̅𝑘), lateral tire forces on the axles 

(𝐹̂𝑦𝑓 , 𝐹̂𝑦𝑟) are obtained from (5-19) and (5-20): 

[
𝐹̂𝑦𝑓

𝐹̂𝑦𝑟
] = 𝑋̅𝑘 + [

𝐹̂𝑦𝑓,𝑎

𝐹̂𝑦𝑟,𝑎
]  (5-30) 

Lateral tire forces on each wheel are then calculated by distributing the axle forces between the left 

and right tires considering the load transfer effects: 

𝐹̂𝑦𝑓𝑙 =
𝐹̂𝑧𝑓𝑙

𝐹̂𝑧𝑓𝑟+𝐹̂𝑧𝑓𝑙
𝐹̂𝑦𝑓  (5-31) 

𝐹̂𝑦𝑓𝑟 =
𝐹̂𝑧𝑓𝑟

𝐹̂𝑧𝑓𝑟+𝐹̂𝑧𝑓𝑙
𝐹̂𝑦𝑓  (5-32) 

𝐹̂𝑦𝑟𝑙 =
𝐹̂𝑧𝑟𝑙

𝐹̂𝑧𝑟𝑟+𝐹̂𝑧𝑟𝑙
𝐹̂𝑦𝑟  (5-33) 

𝐹̂𝑦𝑟𝑟 =
𝐹̂𝑧𝑟𝑟

𝐹̂𝑧𝑟𝑟+𝐹̂𝑧𝑟𝑙
𝐹̂𝑦𝑟  (5-34) 

where 𝐹̂𝑧𝑖𝑗 is the estimated vertical tire force from the previous section and 𝐹̂𝑦𝑖𝑗 are the estimated lateral 

tire forces for each wheel. 

5.5 Fault-Tolerant Estimation of Longitudinal and Lateral Velocities 

A method to estimate the longitudinal velocity was discussed in Chapter 4. The same estimator is used 

here and is fed with the reconstructed longitudinal acceleration signal (𝑎̂𝑥𝑠) and the reconstructed yaw 

rate signal in the transformation (𝑣𝑥𝐶𝐺←𝑖𝑗) when any of these sensors are faulty: 

𝑣̇𝑥 = 𝑎̂𝑥𝑠 − 𝑔𝑠𝑖𝑛(𝜃𝑣 + 𝛩̂𝑟) + ∑𝐾𝑣𝑥(𝑎̂𝑥, 𝜔𝑖𝑗)(𝑣𝑥𝐶𝐺←𝑖𝑗 − 𝑣𝑥) (5-35) 

For estimation of the lateral velocity, the kinematic relation between the lateral states is considered, 

the reconstructed lateral acceleration and yaw rate signals are fed to this kinematics, and lateral velocity 

is obtained as: 

𝑣𝑦 = ∫(𝑎̂𝑦𝑠 − 𝑔𝑠𝑖𝑛( 𝜙̂𝑣 + 𝛷̂𝑟) − 𝜓̂̇𝑠𝑣𝑥)𝑑𝑡 (5-36) 

More comprehensive methods for estimation of lateral velocity are available in the literature 

[99][106].  These methods can be fed with the reconstructed signals from this thesis to deliver a more 

precise estimation in presence of the sensor faults.  



 

 90 

5.6 Unified Structure for Fault-Tolerant Estimation of Vehicle States 

Several fault detection, signal reconstruction and fault-tolerant estimation modules were discussed in 

this thesis. The unified structure that connects these modules is illustrated in Figure 5.5.  

 

Figure 5.5. Unified structure for sensor fault detection, signal reconstruction and fault-tolerant 

estimation of vehicle states 

In this structure, any sensor measurement  𝑞𝑠 is first received by a single module (𝑞𝑠 ∈

{𝑎𝑥𝑠 , 𝑎𝑦𝑠 , 𝑎𝑧𝑠 , 𝜓̇𝑠, 𝜙̇𝑠, 𝜃̇𝑠, Δ𝑧𝑓𝑙𝑠
, Δ𝑧𝑓𝑟𝑠

, Δ𝑧𝑟𝑙𝑠, Δ𝑧𝑟𝑟𝑠, 𝜏𝑓𝑙𝑠, 𝜏𝑓𝑟𝑠 , 𝜏𝑟𝑙𝑠, 𝜏𝑟𝑟𝑠, 𝛿𝑠}). The receiving module 

diagnoses the sensory signal and produces the corresponding 𝑞̂𝑠 as the output (𝑞̂𝑠 ∈

{𝑎̂𝑥𝑠 , 𝑎̂𝑦𝑠 , 𝑎̂𝑧𝑠 , 𝜓̂̇𝑠, 𝜙̂̇𝑠, 𝜃̂̇𝑠, Δẑ𝑓𝑙𝑠 , Δẑ𝑓𝑟𝑠 , Δẑ𝑟𝑙𝑠 , Δẑ𝑟𝑟𝑠 , 𝜏̂𝑓𝑙𝑠, 𝜏̂𝑓𝑟𝑠, 𝜏̂𝑟𝑙𝑠, 𝜏̂𝑟𝑟𝑠, 𝛿𝑠}). As discussed before, each 𝑞̂𝑠 

contains the actual sensor measurement if there is no fault, and contains the reconstructed signal when 

the sensor is faulty.  
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Consequently, the fault-tolerant estimators in this thesis either receive the healthy sensory data or the 

reconstructed signal and deliver accurate estimation of states (𝒳̂) even when a sensor is faulty (𝒳̂ ∈

{𝜙̂𝑣 , 𝜃𝑣, 𝜙̂̈𝑣 , 𝜃̂̈𝑣, 𝛷̂𝑟 , 𝛩̂𝑟, 𝑣𝑥 , 𝑣̇𝑥, 𝑣𝑦, 𝑣̇𝑦, 𝐹̂𝑥𝑓𝑙 , 𝐹̂𝑥𝑓𝑟, 𝐹̂𝑥𝑟𝑙 , 𝐹̂𝑥𝑟𝑟, 𝐹̂𝑦𝑓𝑙 , 𝐹̂𝑦𝑓𝑟, 𝐹̂𝑦𝑟𝑙 , 𝐹̂𝑦𝑟𝑟 , 𝐹̂𝑧𝑓𝑙 , 𝐹̂𝑧𝑓𝑟 , 𝐹̂𝑧𝑟𝑙 , 𝐹̂𝑧𝑟𝑟}). 

5.7 Experiment Results 

Several experimental case studies are conducted to verify the effectiveness of the proposed fault-

tolerant estimation structure. Figure 5.6 shows the complete test setup for these experiments. 

 

Figure 5.6. Vehicle sensors, actuators and instrumentations for verification of the results 

Four electric motors from the Amp Motors Company are installed to provide independent traction to 

the four wheels. Driver’s accelerator pedal command is processed in the dSPACE Autobox controller 

and is commanded to the motors through the CAN communication channel. To verify the fault-tolerant 

tire force estimation results, wheel load measurement devices from the Michigan Scientific Corporation 
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are mounted on each wheel. These devices measure the longitudinal, lateral, and vertical forces and 

moments acting on the center of each wheel. Calibration and signal conditioning for the load wheel 

measurement sensors is performed using the load wheel interface system. Steering wheel angle of the 

vehicle is available from the vehicle’s stock steering encoder. Steering angle of the front wheels is 

obtained from the stock steering wheel angle sensor and the reduction ratio of the steering mechanism. 

Angular velocity of each wheel is available from the stock encoders. The fault-tolerant estimation 

algorithm is compiled and run in the Autobox controller. Sampling rate for the sensor data and 

execution rate of the embedded code is set at 200 Hz. 

Parameters of the UKF algorithm are summarized in Table 5.2. Definition of these parameters are 

provided in Appendix A. The parameters are tuned using the guidelines suggested in [107]. The rest of 

the fault-tolerant estimation parameters used in the experiments are summarized in Table 5.3. 

Table 5.2. UKF parameters 

Parameter Value Parameter Value 

𝑛 2 𝑋0 [0 0]𝑇 

𝛼 0.8 𝒬 10−2𝐼2×2 

𝜖 0.5 ℛ0 10−4𝐼3×3 

𝛽 2 𝒫0 105𝐼2×2 

Table 5.3. Parameters for residual processing and fault-tolerant estimation 

Parameter Value Parameter Value 

𝐾𝑃 150 𝐵𝑠𝐹𝑥  0.01 

𝐾𝐷 5 𝐵𝑑𝐹𝑥  0.0015 

𝐾𝐼 0.001 𝑁𝐹𝑥 100 

Λ 50 𝑊𝐹𝑥 500 

 

5.7.1 Experiment Results when all Sensors are Functional 

Performance of the proposed structure is first studied when all sensors are functioning properly. Tire 

force estimation results during the same step-steer with acceleration and braking maneuver as in Section 

4.11.1 are presented here. Driver commands and the vehicle trajectory are shown in Figure 5.7.  
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Figure 5.7. Driver commands and trajectory of the vehicle during the step-steer maneuver with no 

sensor fault 

Figure 5.8, Figure 5.9 and Figure 5.10 show the results for estimation of longitudinal, lateral and 

vertical tire forces, respectively. The results confirm that estimated tire forces match the measurements 

from the wheel load sensors for all wheels. The estimation errors are summarized in Table 5.4. The 

maximum NRMSE is 10.98% for longitudinal tire forces, 12.02% for lateral tire forces and 4.48% for 

vertical tire forces. The results demonstrate that the tire forces are estimated successfully despite the 

aggressive steering and harsh acceleration/braking commands during the maneuver.  

Table 5.4. Tire force estimation errors when there is no sensor fault 

Estimated Force NRMSE Estimated Force NRMSE Estimated Force NRMSE 

𝐹̂𝑥𝑓𝑙 8.20 % 𝐹̂𝑦𝑓𝑙 6.40 % 𝐹̂𝑧𝑓𝑙 3.09 % 

𝐹̂𝑥𝑓𝑟 4.85 % 𝐹̂𝑦𝑓𝑟 11.33 % 𝐹̂𝑧𝑓𝑟 4.48 % 

𝐹̂𝑥𝑟𝑙 7.41 % 𝐹̂𝑦𝑟𝑙  7.95 % 𝐹̂𝑧𝑟𝑙  3.88 % 

𝐹̂𝑥𝑟𝑟 10.98 % 𝐹̂𝑦𝑟𝑟  12.02 % 𝐹̂𝑧𝑟𝑟  4.39 % 
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Figure 5.8. Estimation of longitudinal tire forces when there is no sensor fault 

 

Figure 5.9. Estimation of lateral tire forces when there is no sensor fault 
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Figure 5.10. Estimation of vertical tire forces when there is no sensor fault 

5.7.2 Fault-Tolerant Estimation of States When Lateral Acceleration Sensor is Faulty 

Failure of the lateral acceleration sensor impacts the estimation of vertical tire forces, lateral tire forces 

and lateral velocity of the vehicle. For this case strudy, the vehicle performs a DLC maneuver which 

starts on a wet sealer (𝜇 ≈ 0.4) and transitions to a dry pavement (𝜇 ≈ 0.9). Driver’s steering wheel 

command, wheel torque commands and trajectory of the vehicle are shown in Figure 5.11. The vehicle 

is first harshly accelerated to the speed of 55 kph and then the DLC maneuver is executed. 

Lateral acceleration sensor fault is injected at 𝑡 = 2𝑠 by replacing the measured lateral acceleration 

with a zero signal for the rest of the maneuver. Figure 5.12. compares the reconstructed lateral 

acceleration signal with the actual lateral acceleration of vehicle and the faulty signal. The fault is 

detected by the algorithm at 𝑡 = 2.15𝑠 and is reconstructed for the rest of the maneuver. NRMSE of 

the reconstructed signal is 7.07% in this case study. The actual lateral acceleration is between −7.95 

and +6.86 which verifies that the vehicle is operating in the nonlinear region. The result shows that the 

signal is successfully reconstructed despite the harsh lateral excitation and nonlinearities.  
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 Figure 5.11. Driver commands and trajectory of the vehicle during the DLC maneuver with lateral 

acceleration sensor fault 

 

Figure 5.12. Reconstruction of the faulty lateral acceleration signal 

Experiment results for fault-tolerant estimation of vertical tire forces are shown in Figure 5.13. For 

each wheel, the fault-tolerant estimated force is compared with the following signals: 

• The measured vertical tire force from the wheel load measurement sensors 
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• The estimated vertical tire forces when the estimation algorithm uses the faulty lateral 

acceleration sensor instead of the reconstructed signal (i.e., no fault tolerance).  

 

Figure 5.13. Fault-tolerant estimation of vertical tire forces when lateral acceleration sensor fails 

Before the fault occurs, the estimation results are identical with and without fault tolerance, as 

expected. After the fault occurs, the estimator with no fault tolerance doesn’t receive accurate 

information about the lateral acceleration of vehicle and therefore fails to comprehend the lateral load 

transfer between the left and right wheels. Consequently, its estimation results show large errors when 

the vehicle performs the lane change maneuver. On the other hand, the fault-tolerant estimator 

continues to deliver accurate estimations of the vertical tire forces as soon as the fault is detected and 

reconstructed.  

Experiment results for fault-tolerant estimation of lateral tire forces are shown in Figure 5.14. The 

results illustrate that without fault-tolerance, failure considerably affects the estimation performance. 

This is expected since the lateral acceleration measurement plays a crucial role in estimation of lateral 

tire forces. Meanwhile, the proposed fault-tolerant UKF method continues to reliably estimate the 

lateral forces after the fault is detected. 
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Figure 5.14. Fault-tolerant estimation of lateral tire forces when lateral acceleration sensor fails 

Table 5.5 summarizes the performance of vertical and lateral tire force estimators with and without 

fault tolerance.  

 Table 5.5. Vertical and lateral tire force estimation errors when lateral acceleration sensor fails 

Estimated 

Force 

NRMSE  

Without Fault 

Tolerance 

NRMSE  

With Fault 

Tolerance 

Estimated 

Force 

NRMSE  

Without Fault 

Tolerance 

NRMSE  

With Fault 

Tolerance 

𝐹̂𝑧𝑓𝑙 22.35 % 4.52 % 𝐹̂𝑦𝑓𝑙 29.13 % 8.12 % 

𝐹̂𝑧𝑓𝑟 24.52 % 5.38 % 𝐹̂𝑦𝑓𝑟 35.27 % 8.44 % 

𝐹̂𝑧𝑟𝑙  18.99 % 4.75 % 𝐹̂𝑦𝑟𝑙 45.73 % 14.95 % 

𝐹̂𝑧𝑟𝑟  19.09 % 5.28 % 𝐹̂𝑦𝑟𝑟 47.82 % 17.49 % 

 

Lateral acceleration sensor fault also impacts the estimation of the lateral velocity. Figure 5.15 shows 

the estimation results. Without fault tolerance, the kinematic estimator produces large errors due to the 

inaccurate lateral acceleration input. On the other hand, the fault-tolerant estimator mitigates this issue 

since it uses the reconstructed lateral acceleration signal. 
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Figure 5.15. Fault-tolerant estimation of lateral velocity when lateral acceleration sensor fails 

In this thesis, vehicle roll and pitch angles were estimated using the suspension height and roll/pitch 

rate sensors and are not impacted by the lateral acceleration sensor fault.  For vehicles without active 

suspension and roll/pitch rate sensors, a common approach in the literature is to estimate the roll/pitch 

angles as a function of longitudinal/lateral accelerations, assuming roll/pitch rates are small [27]: 

𝜙̂𝑣 =
𝑚𝑠 𝑎𝑦𝑠  𝐻𝑅𝐶

𝐾𝜙
  (5-37) 

𝜃𝑣 = −
𝑚𝑠𝑎𝑥𝑠 𝐻𝑃𝐶

𝐾𝜃
  (5-38) 

Failure of lateral acceleration sensor impacts estimation of roll angle using (5-37). Figure 5.16 shows 

the results of this estimation approach with and without fault tolerance. The result confirms that the 

estimator can maintain a desirable performance using the reconstructed lateral acceleration signal. 

 

Figure 5.16. Fault-tolerant estimation of roll angle when lateral acceleration sensor fails 
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5.7.3 Fault-Tolerant Estimation of States When Longitudinal Acceleration Sensor is 

Faulty 

Failure of the longitudinal acceleration sensor mainly impacts the estimation of vertical tire forces and 

longitudinal velocity of the vehicle. A stop-and-go maneuver on a dry pavement is considered here to 

evaluate the performance of the proposed method in terms of mitigating the longitudinal acceleration 

sensor faults. Driver commands for this maneuver are shown in Figure 5.17. 

   

Figure 5.17. Driver commands during the stop-and-go maneuver with longitudinal acceleration sensor 

fault 

A stuck-output sensor fault is injected in this case study such that when the longitudinal acceleration 

reaches 1 𝑚/𝑠2, the sensor gets stuck in this value and continues to output this fixed measurement. The 

fault occurs at 𝑡 = 0.89s in this maneuver. Figure 5.18 shows the reconstruction results. The fault is 

detected at 𝑡 = 1.025𝑠 and is reconstructed with a NRMSE of 4.43%.  

 

Figure 5.18. Reconstruction of the faulty longitudinal acceleration signal 
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Experiment results for estimation of vertical tire forces are shown in Figure 5.19. Without fault-

tolerance, the estimator fails to comprehend effects of the longitudinal load transfer which leads to large 

estimation errors when the vehicle is excited in the longitudinal direction. On the other hand, the fault-

tolerant estimator delivers a reliable estimation performance despite the sensor fault. Estimation errors 

are listed in Table 5.6. 

 

Figure 5.19. Fault-tolerant estimation of vertical tire forces when longitudinal acceleration sensor 

fails 

Table 5.6. Vertical tire force estimation errors when longitudinal acceleration sensor fails 

Estimated 

Force 

NRMSE  

Without Fault 

Tolerance 

NRMSE  

With Fault 

Tolerance 

Estimated 

Force 

NRMSE  

Without Fault 

Tolerance 

NRMSE  

With Fault 

Tolerance 

𝐹̂𝑧𝑓𝑙 16.09 % 4.33 % 𝐹̂𝑧𝑟𝑙 13.87 % 3.09 % 

𝐹̂𝑧𝑓𝑟 15.26 % 6.31 % 𝐹̂𝑧𝑟𝑟 14.24 % 3.47 % 
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For vehicles with no suspension height and pitch rate sensors, Equation (5-38) can be used to estimate 

the pitch angle. Figure 5.20 shows the results of this estimation approach. The result shows that the 

fault-tolerant estimator can maintain a desirable estimation performance using the reconstructed signal. 

  

Figure 5.20. Fault-tolerant estimation of pitch angle when longitudinal acceleration sensor fails 

For estimation of the longitudinal velocity, the estimator uses longitudinal acceleration of the vehicle 

as a measurement and therefore is impacted by the sensor fault if not mitigated. Figure 5.21 compares 

estimation of the longitudinal velocity with and without fault tolerance.  

 

Figure 5.21. Fault-tolerant estimation of longitudinal velocity when longitudinal acceleration sensor 

fails 

If the fault is not mitigated, the observer erroneously detects large wheel slips, excludes all wheel 

angular velocities from the estimation process and estimates the longitudinal velocity by integrating the 

failed longitudinal acceleration. Therefore, the estimation result is inaccurate except when the actual 
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longitudinal acceleration of the vehicle is 1 𝑚/𝑠2 (i.e., when the actual longitudinal acceleration 

matches the value reported by the faulty sensor). The fault-tolerant estimate is however accurate for the 

entire maneuver. The NRMSE is 1.49% for the fault-tolerant estimation compared to 59.66% without 

fault-tolerance. 

5.7.4 Fault-Tolerant Estimation of States When Vertical Acceleration Sensor is Faulty 

Failure of the vertical acceleration signal impacts performance of the vertical and lateral tire force 

estimators. A DLC maneuver is performed in this section and a loss of sensitivity fault is injected on 

the vertical acceleration signal. The sensor reports 50% of the vertical acceleration after 𝑡 = 4𝑠. A 

torque vectoring controller is active during this maneuver which modifies the driver’s torque command 

to keep the vehicle stable. Driver’s steering command and the resultant torque commands (driver plus 

controller) are shown in Figure 5.21.  

  

 

Figure 5.22. Driver and controller commands during the DLC maneuver with vertical acceleration 

sensor fault 

Figure 5.23 shows reconstruction of the faulty vertical acceleration signal. The fault is detected at 

𝑡 = 4.1𝑠 and the algorithm reconstructs the failed signal for the rest of the maneuver. The 

reconstruction NRMSE is 6.05% in this case study.  
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 Figure 5.23. Reconstruction of the faulty vertical acceleration signal 

The results for fault-tolerant estimation of vertical and lateral tire forces are shown in Figure 5.24 

and Figure 5.25, respectively.  

  

Figure 5.24. Fault-tolerant estimation of vertical tire forces when vertical acceleration sensor fails 
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Figure 5.25. Fault-tolerant estimation of lateral tire forces when vertical acceleration sensor fails 

Estimation errors are shown in Table 5.7. The results demonstrate that fault-tolerant estimators 

outperform the estimators with no fault tolerance. The higher lateral force estimation errors in this case 

study compared to the previous cases are due to the simultaneous occurrence of the fault, the aggressive 

maneuver and activation of the torque vectoring controller which makes the lateral tire force estimation 

more challenging.  

Table 5.7. Vertical and lateral tire force estimation errors when vertical acceleration sensor fails 

Estimated 

Force 

NRMSE  

Without Fault 

Tolerance 

NRMSE  

With Fault 

Tolerance 

Estimated 

Force 

NRMSE  

Without Fault 

Tolerance 

NRMSE  

With Fault 

Tolerance 

𝐹̂𝑧𝑓𝑙 28.96 % 5.42 % 𝐹̂𝑦𝑓𝑙 19.51 % 8.80 % 

𝐹̂𝑧𝑓𝑟 29.38 % 5.41 % 𝐹̂𝑦𝑓𝑟 22.27 % 10.16 % 

𝐹̂𝑧𝑟𝑙  34.52 % 5.12 % 𝐹̂𝑦𝑟𝑙 26.91 % 22.53 % 

𝐹̂𝑧𝑟𝑟  33.92 % 4.59 % 𝐹̂𝑦𝑟𝑟 24.80 % 20.95 % 
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5.7.5 Fault-Tolerant Estimation of States When Yaw Rate Sensor is Faulty 

This case study focuses on fault-tolerant estimation of longitudinal and lateral velocities in presence of 

a yaw rate sensor fault. Figure 5.26 shows the lane change maneuver performed on the wet sealer (𝜇 =

0.4) for this case.  

  

 

Figure 5.26. Driver commands and trajectory of the vehicle during the DLC maneuver with yaw rate 

sensor fault 

A faulty zero yaw rate signal is injected at 𝑡 = 3𝑠. The algorithm detects the fault at 𝑡 = 3.225𝑠 and 

reconstructs the signal as shown in Figure 5.27. The NRMSE for reconstruction of the signal is 9.46%. 

 

Figure 5.27. Reconstruction of the faulty yaw rate signal 
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The longitudinal velocity estimator uses the yaw rate to transfer the corner velocities to the CG. 

Therefore, it is impacted by the yaw rate fault. The experiment result in Figure 5.28 confirms this impact 

and shows that without fault tolerance the estimator faces difficulties when the vehicle is performing 

the lane change maneuver. On the other hand, the fault-tolerant estimator can reliably overcome such 

difficulties and accurately estimate the longitudinal velocity despite the sensor fault.  

 

Figure 5.28. Fault-tolerant estimation of longitudinal velocity when yaw rate sensor fails 

Similarly, the lateral velocity estimator relies on the yaw rate measurement and is impacted by the 

yaw rate sensor fault if not mitigated. Figure 5.29 shows the results of this estimator with and without 

fault tolerance. 

 

Figure 5.29. Fault-tolerant estimation of lateral velocity when yaw rate sensor fails 
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5.7.6 Fault-Tolerant Estimation of States When Motor Torque Sensor is Faulty 

As the final case study, fault-tolerant estimation of longitudinal tire forces in presence of a motor torque 

sensor fault is discussed in this section. Driver commands, longitudinal velocity and trajectory of the 

vehicle for the acceleration and braking maneuver in this case study are shown in Figure 5.30.  

 

  

Figure 5.30. Driver commands and trajectory of the vehicle during the acceleration and braking 

maneuver with motor torque sensor fault 

In this maneuver, the front-left torque sensor reports 25% of the actual feedback torque after 𝑡 = 1𝑠. 

The residual for the total longitudinal force is shown in Figure 5.31 and individual wheels torque 

residuals are shown in Figure 5.32. The total force residual and the front-left motor torque residual 

exceed their thresholds as soon as the fault occurs. This indicates failure of the front-left torque sensor 

according to the decision logic that was discussed in Table 5.1. 
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Figure 5.31. Total longitudinal force residual when front-left torque sensor fails 

 

Figure 5.32. Wheel torque residuals when front-left torque sensor fails 

Figure 5.33 shows that the proposed algorithm detects the fault at 𝑡 = 1.185𝑠 and correctly estimates 

the fault magnitude. Reconstruction of the front-left torque signal is shown in Figure 5.34. The faulty 

signal is successfully reconstructed and the NRMSE of the reconstructed signal is 9.28%. 
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Figure 5.33. Detection of front-left torque sensor fault and estimation of the fault magnitude 

 

Figure 5.34. Reconstruction of the faulty front-left torque signal  

The high frequency noise on the reconstructed signal is due to the unfiltered observer inputs 

(acceleration and wheel angular velocity signals). Filtering was avoided to prevent a phase shift in the 

reconstructed signal. 

Experiment results for fault-tolerant estimation of the longitudinal tire forces is shown in Figure 5.35. 

Without fault tolerance, the front-left tire force estimator produces large errors due to the faulty input 

torque signal (NRMSE 38.25%). On the other hand, the proposed fault-tolerant estimation structure 

successfully estimates the front-left longitudinal force. The NRMSE for fault-tolerant estimation is 

10.46%.  
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Since the other torque sensors are healthy, estimation results for the other tires are identical with and 

without fault tolerance. Estimation errors are 7.95% for the front-right tire, 4.54% for the rear-left tire 

and 5.64% for the rear-right tire. 

 

Figure 5.35. Fault-tolerant estimation of longitudinal tire forces when front-left torque sensor fails 

5.8 Summary  

This chapter presented a unified structure for fault-tolerant estimation of vehicle states including the 

longitudinal, lateral, and vertical tire forces, and longitudinal and lateral velocities. A set of disturbance 

observers were designed to detect the motor torque sensor faults and reconstruct the faulty signal. These 

observers delivered the fault-tolerant estimation of longitudinal tire forces. Fault-tolerant estimation of 

vertical tire forces was achieved by using the reconstructed signals and load transfer equations. For 

lateral tire forces, an adaptive UKF estimator was presented which receives the reconstructed inputs, 

adapts its measurement equation in response to faults, and delivers the fault-tolerant estimation of 

lateral forces for each tire. Fault-tolerant estimation of longitudinal and lateral velocities was achieved 

by using the kinematic observers which receive the reconstructed signals when a fault is present. 
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Moreover, this chapter combined the fault detection, signal reconstruction and fault-tolerant 

estimation modules that were developed in this thesis. The result is a unified structure that covers the 

full sensor set and delivers fault-tolerant estimation of the vehicle dynamic states. 

Finally, several experimental case studies were conducted to verify the effectiveness of the proposed 

approach during different driving maneuvers. Various sensor failure scenarios were considered in these 

experiments including loss of signal, stuck-output, loss of sensitivity, etc. Desirable performance of the 

proposed structure in terms of reliable detection of sensor faults, precise reconstruction of the faulty 

signal and accurate/fault-tolerant estimation of the vehicle states was demonstrated through the 

experiment results. 
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Chapter 6 

Conclusions and Future Work 

6.1 Conclusions  

This thesis presented a unified structure for detection of vehicle sensor faults, reconstruction of faulty 

sensory signals, and fault-tolerant estimation of vehicle states. The proposed structure can detect 

failures of the longitudinal, lateral and vertical acceleration sensors, roll rate, yaw rate and pitch rate 

sensors, steering angle sensor, suspension height sensors, and motor torque sensors.  

To ensure a robust fault detection performance and avoid false positives, adaptive thresholds were 

integrated in the fault detection modules. The proposed method does not require prior knowledge of 

the sensor fault pattern and can detect various types of sensor faults including loss of signal, scaling, 

intermittency, bias, stuck-output, excessive noise, etc. Detectability and isolability of the faults using 

this approach were verified in this thesis. After detecting a fault, the proposed structure can reconstruct 

the faulty sensory signal and effectively arbitrate between the healthy and reconstructed signals.  

Desirable performance of the proposed method in terms of timely detection of sensor faults and 

accurate reconstruction of the faulty signals was demonstrated through several experimental tests. The 

experiments covered various driving maneuvers, road conditions and sensor failure scenarios.  

Additionally, the unified structure in this thesis can deliver fault-tolerant estimations of the vehicle 

states including the longitudinal, lateral and vertical tire forces, longitudinal and lateral velocities, roll 

angle, and pitch angle. Road grade and bank angles are also estimated in this method even in presence 

of sensor faults. The above objectives were achieved by using a common sensor set available in 

commercial vehicles. The proposed method did not presume availability of additional information such 

as prior knowledge of the road friction coefficient, road grade/bank angles, fault patterns, etc.  

To detect and reconstruct failures of the roll rate, pitch rate and suspension height sensors, the 

proposed method combined a set of unknown input observers with the analytical redundancy relations 

derived from the roll, pitch and suspension dynamics. The interaction between the road angles and the 

vehicle states was considered in this design and the unknown road grade and bank disturbances were 

estimated in real-time. The outputs from the analytical redundancy relations and the unknown input 

observers generated unique residual patterns which were translated to unique fault signatures. 

Detectability and isolability of the faults were verified by using characteristics of the fault signature 



 

 114 

matrix. After detecting a fault, reconstruction of the faulty sensory signal was accomplished by using 

the remaining healthy sensors and the estimated states from the observers. Several experimental case 

studies were presented to demonstrate the effectiveness of the proposed approach in various driving 

scenarios. Reliable and fast detection of faults, accurate reconstruction of the faulty signal and 

robustness against road disturbances were among the features of the proposed methodology.  

To detect failures of the steering angle, yaw rate, and acceleration sensors, a set of virtual sensors 

were derived from the analytical redundancies and estimated vehicle states. The virtual sensors 

generated a sufficient set of residuals which guaranteed detectability and isolability of the faults. 

Reconstruction of the faulty signal was performed in a random walk observer with adaptive weights. 

These weights were designed to manage contribution of the virtual sensors in the reconstruction 

process, which enabled a reliable reconstruction performance in adverse driving conditions such as high 

wheel slips. Performance of this method was evaluated through experimental case studies during 

various driving maneuvers including step-steer, acceleration/braking, lane change, double-lane-change 

and slalom. These tests were performed on different road conditions. The experiment results verified 

the effectiveness of the proposed structure in terms of avoiding false positives, fast detection of sensor 

faults, and accurate reconstruction of the faulty signals. 

Detection of motor torque sensor faults was accomplished by designing a set of disturbance observers 

combined with a residual processor logic. The faulty torque signal was reconstructed using the 

remaining healthy torque sensors and the estimated states from the observers. Experimental results 

verified that this method can reliably detect the fault, localize the faulty torque sensor and reconstruct 

its signal. 

Fault-tolerant estimation of the vehicle states was another contribution of this thesis. The disturbance 

observers delivered the fault-tolerant estimation of longitudinal tire forces even in presence of a faulty 

torque sensor. Vertical tire forces were estimated by using the reconstructed acceleration signals, the 

estimated roll/pitch angles and the load transfer equations. For the lateral tire forces, an adaptive UKF 

estimator was presented which adapts its measurement equation when a sensor fails, and delivers the 

fault-free estimations for each tire. Fault-tolerant estimation of longitudinal and lateral velocities was 

achieved by using the kinematic observers which receive the reconstructed signals when a fault is 

present.  
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Several fault detections, signal reconstruction and fault-tolerant estimation modules were developed 

in this thesis. The unified structure which connected these modules was presented in Chapter 5. 

Subsequently, the unified structure was experimentally evaluated in several road tests. Performance of 

the estimators was studied in various sensor failure scenarios. The results showed that without fault 

tolerance, the estimation performance could significantly degrade when the faulty sensory signal is 

consumed by an estimator. On the other hand, the proposed fault-tolerant structure successfully 

detected the faults, reconstructed the faulty signals, and continued to provide reliable estimation results 

in all the attempted case studies. 

The proposed method can be implemented on onboard vehicle electronic control units to ensure that 

vehicle control systems receive fault-free sensory measurements and fault-tolerant estimations of the 

vehicle states. 

6.2 Future Work 

The results of this thesis can be improved and extended to more applications. A few suggestions are 

mentioned in this section to continue this work: 

• Real-time identification of vehicle parameters despite sensor faults: in this thesis, the nominal 

vehicle parameters were used to develop the proposed methods while the actual vehicle 

parameters might vary during the operation (e.g., vehicle mass and inertia variations due to the 

number of passengers, effective tire radius variations due to the tire pressure changes, etc.). To 

compensate for such parametric uncertainties, the static fault bounds were tuned conservatively 

to deliver larger fault thresholds and avoid false positives. Further extension of the concepts in 

this thesis can help identify the vehicle parameters during the operation, even in the presence 

of sensor faults. Availability of such real-time and robust parameters can help to lower the 

static fault thresholds, detect the sensor faults with smaller magnitudes, and improve the 

estimation performance. 

• Higher fidelity vehicle models: throughout this thesis, several vehicle models were used which 

collectively cover the major states of vehicle dynamics. The lower-level vehicle dynamic states, 

such as tire camber angles and the precise kinematics of the steering system, were not 

incorporated due to their smaller effects. To compensate for such modeling uncertainties and 

avoid false positives during harsh excitations, dynamic fault thresholds with higher gains were 
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included in the residual processors. Incorporation of higher fidelity vehicle models into the 

proposed method can help lower the dynamic threshold gains, detect the smaller faults and 

achieve a more precise estimation performance. 

• Higher fidelity estimation of vehicle lateral velocity: a simple kinematic model was used in this 

thesis for fault-tolerant estimation of lateral velocity. To compensate for the lower fidelity of 

the lateral velocity estimation, the rest of the estimators and fault detectors were designed to be 

less sensitive to, or independent of, the lateral velocity. More comprehensive methods for 

estimation of the lateral velocity can be integrated into the proposed structure to improve the 

performance. 

• Integration with vehicle control systems: many advanced vehicle systems such as stability 

controllers and autonomous driving systems rely on information measured by the onboard 

sensors and the estimated vehicle states for their operation. The methods presented in this thesis 

can be integrated with vehicle control systems to detect the sensor faults, reconstruct the faulty 

signals, provide fault-tolerant estimation of the states, and enable a fault-tolerant control 

performance.  

• Detection and mitigation of actuator faults: this thesis proposed methods for detection and 

mitigation of torque sensor and steering angle sensor faults. Similar methods can be developed 

to detect the actuator faults, localize the faulty actuator, and identify the actuator fault 

magnitude. Subsequently, fault-tolerant control strategies can be designed to reconfigure the 

control commands and effectively use the remaining healthy actuators to mitigate the fault and 

improve safety. 

• Extension to the emerging sensors and autonomous driving applications: with the recent 

industry trend to offer higher levels of autonomy, more vehicles are being equipped with 

advanced sensors such as perception cameras, radars, LiDARs and high-precision GPS 

systems. Since information from these sensors is increasingly being used in safety-critical 

applications, effective mitigation of such sensor faults is a paramount objective. There is an 

opportunity to extend the methods presented in this thesis for detection of faults and 

reconstruction of faulty signals in the above sensors, which can help to ensure a more reliable 

operation of autonomous driving systems. 
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Appendix A 

UKF Estimation Approach 

For a nonlinear system expressed in the state-space form as: 

𝑋𝑘+1 = 𝑓(𝑋𝑘,𝑈𝑘) +𝓌𝑘 (A-1) 

𝑌𝑘 = ℎ(𝑋𝑘 ) + 𝓋𝑘 (A-2) 

the UKF algorithm can estimate the states as follows: 

Initialization: 

𝑋̅0 = Ε[𝑋0] (A-3) 

𝒫0 = Ε[(𝑋0 − 𝑋̅0)(𝑋0 − 𝑋̅0)
𝑇] (A-4) 

where 𝑋̅0 is the initial state, 𝒫0 is the initial covariance and Ε is the expected value. 

Calculation and propagation of sigma points: 

𝒳𝑖,𝑘−1 = [𝑋̅0,𝑘−1, 𝑋̅𝑘−1 ±√(𝑛 + 𝜆)𝒫𝑘−1],     𝑖 = 0,1,… ,2𝑛  (A-5) 

𝜆 = 𝑛(𝛼2 − 1) + 𝛼2𝜖  (A-6) 

where 𝒳𝑖,𝑘−1 is the sigma point, 𝑋̅𝑘−1 is the estimated state, 𝒫𝑘−1 is the state covariance, 𝑛 is the 

number of states and 𝑖 = 0,1, … ,2𝑛 indicates the 2𝑛 + 1 sigma points. The constants 𝛼 and 𝜖 manage 

distribution of the sigma points around the mean value of the states. 

Time update: 

𝒳𝑖,𝑘|𝑘−1
∗ = 𝑓(𝒳𝑖,𝑘−1, 𝑈𝑘−1)  (A-6) 

𝑋̅𝑘|𝑘−1 = ∑ 𝑤𝑖
(𝑚)2𝑛

𝑖=0 𝒳𝑖,𝑘|𝑘−1
∗  (A-7) 

𝒫𝑘|𝑘−1 = ∑ 𝑤𝑖
(𝑐)2𝑛

𝑖=0 (𝒳𝑖,𝑘|𝑘−1
∗ − 𝑋̅𝑘|𝑘−1) × (𝒳𝑖,𝑘|𝑘−1

∗ − 𝑋̅𝑘|𝑘−1)
𝑇
+ 𝒬 (A-9) 

𝒳𝑖,𝑘|𝑘−1 = [𝑋̅𝑘−1, 𝑋̅𝑘−1 ±√(𝑛 + 𝜆)𝒫𝑘−1] (A-10) 

𝛾𝑖,𝑘|𝑘−1 = ℎ(𝒳𝑖,𝑘|𝑘−1) (A-11) 

𝑌̅𝑘|𝑘−1 = ∑ 𝑤𝑖
(𝑚)2𝑛

𝑖=0 𝛾𝑖,𝑘|𝑘−1 (A-12) 
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where 𝑤(𝑚) and 𝑤(𝑐) are scaler weights for the mean and covariance of the sigma points, respectively,  

𝛾𝑖,𝑘|𝑘−1 is the predicted measurement, 𝑌̅𝑘|𝑘−1 is the predicted output and 𝒬 is the process noise 

covariance. The weights are defined as:   

𝑤0
(𝑚)

=
𝜆

𝑛+𝜆
 (A-13) 

𝑤0
(𝑐)
=

𝜆

𝑛+𝜆
+ (𝑛 − 𝛼2 + 𝛽) (A-14) 

𝑤𝑖
(𝑚)

= 𝑤𝑖
(𝑐)
=

1

2(𝑛+𝜆)
 (A-15) 

where 𝛽 is a constant to incorporate prior knowledge of the distribution of 𝑋.  

Measurement update: 

𝒫𝑌̅𝑘𝑌̅𝑘 = ∑ 𝑤𝑖
(𝑐)
( 𝛾𝑖,𝑘|𝑘−1 − 𝑌̅𝑘|𝑘−1)

2𝑛
𝑖=0 × ( 𝛾𝑖,𝑘|𝑘−1 − 𝑌̅𝑘|𝑘−1)

𝑇
+ℛ (A-16) 

𝒫𝑋̅𝑘𝑌̅𝑘 = ∑ 𝑤𝑖
(𝑐)
(𝒳𝑖,𝑘|𝑘−1 − 𝑋̅𝑘|𝑘−1)

2𝑛
𝑖=0 × ( 𝛾𝑖,𝑘|𝑘−1 − 𝑌̅𝑘|𝑘−1)

𝑇
 (A-17) 

𝒦𝑘 = 𝒫𝑋̅𝑘𝑌̅𝑘𝒫𝑌̅𝑘𝑌̅𝑘
−1  (A-18) 

𝒫𝑘 = 𝒫𝑘|𝑘−1 −𝒦𝐾𝒫𝑌̅𝑘𝑌̅𝑘𝒦𝑘
𝑇 (A-19) 

𝑋̅𝑘 = 𝑋̅𝑘|𝑘−1 +𝒦𝑘(𝑌𝑘 − 𝑌̅𝑘|𝑘−1) (A-20) 

where 𝒫𝑌̅𝑘𝑌̅𝑘 is the innovation covariance, 𝒫𝑋̅𝑘𝑌̅𝑘 is the cross covariance, ℛ is the measurement noise 

covariance and 𝒦𝑘is the filter gain. 
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