An Analysis and Benchmarking in
Autoware.Al and OpenPCDet
LiDAR-based 3D Object Detection
Models

by

Samuel Yigzaw

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Applied Science
in
Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2022

(© Samuel Yigzaw 2022

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

11

Abstract

Light Detection And Ranging (LiDAR) sensors are widely used in applications related
to autonomous driving. The ability to scan and visualize the 3D surroundings of the
vehicle as a point cloud is a particular strength of this sensor. Various different object
detection models have been proposed to provide bounding box predictions given a point
cloud. This thesis looks at two popular, open-source frameworks which provide solutions
to this problem, Autoware.Al and OpenPCDet.

The Autoware.Al framework provides models which use hand-crafted, non-neural net-
work based methods to solve LiDAR-based object detection, while the OpenPCDet frame-
work provides models based on neural networks. In this thesis, these models are compared
with each other on a custom labeled dataset. As expected, the results of this compar-
ison show that the non-neural network based Autoware.Al models perform significantly
worse than the neural network based OpenPCDet models. Additionally, it is shown that
amongst the OpenPCDet models, PV-RCNN performs better for detecting vehicles, SEC-
OND and PV-RCNN perform better for detecting pedestrians, and SECOND and Part-A?
Free perform better for detecting cyclists.

111

Acknowledgements

First and foremost, I would like to thank my supervisor, Sebastian Fischmeister, for
taking me on as a master’s student. My life is forever changed because of this, and for
this I am eternally grateful. Second, I would like to thank Nathan Liu, who was a good
friend during our undergraduate years together, and a great guide through our master’s
years together. Third, I would like to thank Takin Tadayon, who worked with me as part
of a larger project, and who never failed to help me with anything I needed.

v

Dedication

This is dedicated to my family. To my father, who I would always look to for advice
and counselling. To my mother, who would always give up everything to look after me.
And to my younger sister, who I pray would be able to reach great heights.

Table of Contents

List of Figures

List of Tables

Abbreviations

Nomenclature

1 Introduction

1.1
1.2
1.3

1.4

Goal of Object Detection Frameworks

What is LIDAR? oo
Data Representation
1.3.1 2D originaldata00
1.3.2 3D projection oo
1.3.3 2D Bird's Eye View
Thesis Outline

2 Object Detection Frameworks

2.1

Autoware. AL
2.1.1 lidar_euclidean cluster detect
2.1.2 lidar_shape_estimation
2.1.3 lidar_naive_l shape_detect

vi

ix

xi

xii

xiii

[B L . T “ N G R G R

o O o O O

2.2 OpenPCDet 9

221 SECOND 10
222 PointPillars 13
223 PointRCNN 14
2.2.4 Part-A? 16
225 PV-RCNN 17

3 Experiments 20
3.1 Metrics oo e 20
3.1.1 Average Precision (AP) oL, 21
3.1.2 FgScore 22
3.1.3 True Positive metricso 22

3.2 Parameters, Factors, Levels 23
3.2.1 Parameters 23

3.2.2 Factorsand Levels Lo 24

3.3 Experimental Setup 24
3.3.1 Data Collection 26

3.4 Integrity Assessment 27
3.4.1 Algorithm Comparison Method 27

3.5 Results 28
3.5.1 Autoware.Al. 28
3.5.2 OpenPCDet 30

3.6 Discussion 34
3.6.1 Autoware.Al Results, 34
3.6.2 OpenPCDet Results 34
3.6.3 Assumptions. 35
3.6.4 Application to DBL Project 37

vii

4 Conclusion
4.1 Recommendations

4.2 Future Work L
References
APPENDICES

A Precision-Recall Curves Using 100% and First 90% of Data

Viil

38
38
39

40

44

45

List of Figures

1.1
1.2

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6

Al
A2
A3

An example of a pointcloud

The same pointcloud, with bounding boxes placed over the detected objects

Normal estimation using small and large radii [2]
The step-by-step l-shape fitting process [27]
The generalized, modular structure of the OpenPCDet framework
Implementation of SECOND in the OpenPCDet framework
Implementation of PointPillars in the OpenPCDet framework
Implementation of PointRCNN in the OpenPCDet framework
Implementation of Part-A? in the OpenPCDet framework
Implementation of PV-RCNN in the OpenPCDet framework

Pipeline for processing data from data generation to final results
Graph of sanity checking time intervals between frames
Autoware.Al Model Precision-Recall Curves
OpenPCDet Model Precision-Recall Curves — Vehicle Class
OpenPCDet Model Precision-Recall Curves — Pedestrian Class
OpenPCDet Model Precision-Recall Curves — Cyclist Class

lidar_naive_l shape_detect PR-curve using 100% and first 90% of data . . .
lidar_shape_estimation PR-curve using 100% and first 90% of data
PointPillars PR-curve using 100% and first 90% of data.

X

4

SECOND PR-curve using 100% and first 90% of data 49

PointRCNN PR-curve using 100% and first 90% of data 50
PointRCNN IToU PR-curve using 100% and first 90% of data 51
Part-A? Anchor PR-curve using 100% and first 90% of data 52
Part-A? Free PR-curve using 100% and first 90% of data 53
PV-RCNN PR-curve using 100% and first 90% of data 54

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

3.10

3.11

3.12

Software parameters
Hardware parameters
Factors and levels
Statistical summary of the data of the time intervals (ms) between frames .
Autoware.Al Model Evaluations
OpenPCDet Model Evaluations for Vehicle Class
OpenPCDet Model Evaluations for Pedestrian Class
OpenPCDet Model Evaluations for Cyclist Class

Autoware models AP using 100% and first 90% of data, with percentage
difference shown

OpenPCDet models AP, for the vehicle class, using 100% and first 90% of
data, with percentage difference shown

OpenPCDet models AP, for the pedestrian class, using 100% and first 90%
of data, with percentage difference shown

OpenPCDet models AP, for the cyclist class, using 100% and first 90% of
data, with percentage difference shown

el

27

Abbreviations

ADAS Advanced Driver-Assistance Systems 1
ASE Average Scale Error 22
ATE Average Translation Error 22

BatchNorm batch normalization 12

BEV Bird’s Eye View 5

DBL Driver Behaviour Learning 2, 26, 37
FCN Fully Connected Network 11

GT ground truth 20

IoU Intersection over Union 14

LiDAR Light Detection And Ranging 1
NMS Non-Maximum Suppression 15

ReLU Rectified Linear Units 12
Rol Regions of Interest 14

ROS Robot Operating System 6, 26
RPN Region Proposal Network 12

VFE voxel feature encoding 11
VSA Voxel Set Abstraction 18

xii

Nomenclature

activation function A function which is used as a layer in deep learning to introduce
non-linearities into the output. This is necessary for neural networks to be universal
function approximators, as most functions are not linear. xiv

batch normalization A process which improves the speed and stability of deep learning,
by normalizing all of the inputs to a layer within a batch. 11

centroid The central point made by averaging the positions of a set of points. 7

classification A type of machine learning task where an input is assigned one of two or
more class labels. 15

downsample To decrease the resolution of data with respect to its spatial or temporal
dimensions. xiv, 5

flattened Transformed into a single-dimensional array. 17

Fully Connected Network A type of neural network where in every layer, all inputs are
connected to all outputs. xii, 11

ground truth The true labels for a dataset. xii, 20
Intersection over Union A metric to measure overlap between bounding boxes. It is
the area or volume of the intersection of the boxes divided by the area or volume,

respectively, of the union of the boxes. xii, 14

linear layer A neural network layer that outputs the product of the input with a learnable
matrix. 11

xiil

Non-Maximum Suppression A technique for removing redundant bounding boxes which
overlap each other. Often used at the end of an object detection network which pro-
duces too many predictions. xii, 15

normal The line perpendicular to a plane. 7

pool An operation, often done in neural networks, where a downsample is performed using
a specific operator, most commonly max and average. 17

Rectified Linear Units An activation function of the form:

0 =<0
r O0<zx

ReLU(x) = {

11

Regression A type of machine learning task where an input is assigned one or more
real-valued output values. 14

upsample To increase the resolution of data with respect to its spatial or temporal di-
mensions. 12

voxel A volumetric pixel. A 3D equivalent of a 2D pixel. An element of a voxel grid. 7

X1v

Chapter 1

Introduction

Current Advanced Driver-Assistance Systems (ADAS) are systems implemented in vehi-
cles which help with various driving tasks, such as cruise control, lane-switching, collision
warning, and parking, using sensor data from cameras, radars, Light Detection And Rang-
ing (LiDAR), and other sensors. They are designed to improve safety and convenience for
the driver. There are many different tools used in ADAS, some of which are [10]:

e Blind Spot Detection: Monitoring the blind spots in the side view mirrors.
e Rear Cross Traffic Alert: Monitoring the rear of the vehicle while it is reversing.

e Traffic Sign Assist: Monitoring the traffic signs and processing the information they
contain.

e Lane Departure Warning: Monitoring the lane markings for lane departure situations,
and warning the driver if the lane change seems unintentional.

e Emergency Brake Assist: Automatically breaking in dangerous situations, such as
potential rear-end collisions.

e Adaptive Cruise Control with Stop & Go: Monitoring and controlling the distance
to the vehicle in front, even in stop-and-go situations.

Different people have different driving styles. They may drive aggressively or defensively.
They may give more or less distance between themselves and preceding vehicles. They may
or may not shy away from large vehicles such as trucks. These ADAS are not personalized to

the people they assist. They are one-size-fits-all. We would like to develop a personalizable
ADAS which could complete driving tasks in a manner similar to the person it is driving,
which would be more comfortable for that person. The task of characterizing a driver’s
behaviours while driving is called Driver Behaviour Learning (DBL).

This work focuses on interpreting LiDAR sensor data for use in DBL. LiDAR data is
a very important source of information for DBL. It provides a complete worldview of the
surroundings of the vehicle, showing all objects as clusters of points in a point cloud. This
provides the contextual information for what is happening in the environment when the
driver performs certain manoeuvres.

1.1 Goal of Object Detection Frameworks

The goal of 3D LiDAR-based object detection frameworks is to produce bounding boxes
which match objects which were present in the pointcloud. A pointcloud is a set of points
in 3D space which corresponds to a scene. Figure 1.1 shows a point cloud representing a
scene of the surroundings of a vehicle on the road. A bounding box is a 3D rectangular
prism which is positioned and aligned to accurately bound, or cover, an object in a scene.
Figure 1.2 shows the same scene as before, but with bounding boxes in blue covering objects
that are predicted to be in the scene. The KITTI dataset [15] and others parameterize
this bounding box as (z,v, z,l,w, h,0), where x,y, z represent the location of the center
of the bounding box, [, w, h represent the scale of the bounding box, and 6 represents the
orientation on the horizontal plane.

The problem of assigning bounding boxes to objects in a scene described by a point
cloud is non-trivial. There is ambiguity over which points should be considered together as
a group, especially for the clustering sub-problem that is used in the non-neural network
based approaches. For neural network based approaches, learning the specific exact shape
of objects will not help, since objects of various classes come in various shapes and sizes
within those classes. The model should be able to handle these differences.

1.2 What is LiDAR?

LiDAR is a system which uses lasers to measure the distances of objects. Typically, multiple
laser beams are swept around the surroundings, which enables creating a map of the 3D
surroundings. LiDAR assumes light to travel at a constant speed, so measuring the time

Figure 1.1: An example of a pointcloud

it takes for a beam that was just fired to reflect off of an object and return gives you the
information of how far away that object is.

The LiDAR system used for this project was a Velodyne HDL-32E [12]. Its datasheet
lists it as having a range of 80m-100m, with a 360° Horizontal FOV (Field of View), and a
+10.67° to —30.67° Vertical FOV. This means that it is able to see the complete horizontal
surroundings of the vehicle, while being able to see up to 10.67° above the horizontal plane
and down to 30.67° below the horizontal plane. It has 32 LiDAR channels, which allows it
to capture 32 data points vertically as it sweeps around horizontally.

1.3 Data Representation

The data coming from the LiDAR sensor could be represented in various different ways,
depending on the part of the pipeline, from sensor to object detection model, which the
data is being used in.

Figure 1.2: The same pointcloud, with bounding boxes placed over the detected objects

1.3.1 2D original data

The Velodyne HDL-32E, sweeps 360° with 32 lasers, which are aligned between a range of
vertical angles. As the device completes a single turn, each data point has a correspond-
ing vertical value and horizontal angle value. Additionally, the returning light gives the
distance value and return intensity value. These distance values can be placed in a 2D
array, with the height of the array representing the vertical location of the data point (e.g.,
its elevation angle), and the width of the array representing the horizontal location of the
data point (e.g., its azimuth angle). In this way, each frame of data is densely represented
with a 2D array. This representation is called a range image.

1.3.2 3D projection

The dense 2D representation described above has a clear bias. It has an origin at the
center of the LiDAR, and objects closer to the LiDAR will appear bigger than objects
further away. Furthermore, the Vertical FOV being a range of angles, rather than a range

of heights, in addition to the Horizontal FOV also being a range of angles, causes the
projection to 2D to be a perspective projection. Perspective projections are distorted
when the objects being imaged move tangentially to the sensor.

In order to perform object detection,it can be advantageous to normalize and remove
distortions. This can be accomplished by inverse projecting the data back into 3D. This
inverse projection can be done because all of the information needed is available. The
position in the array of each data point corresponds to the elevation angle and azimuth
angle, while the value of the data point corresponds to the distance from the LiDAR sensor.
This allows for the transformation of the coordinate system from the spherical coordinate
system of the perspective projection to the Cartesian coordinate system, which is free from
distortions and size changes.

1.3.3 2D Bird’s Eye View

The 3D Cartesian coordinate system solves the issue of distortions and size changes, but
comes with another issue. The data is no longer densely represented. With the 2D
representation, the size of the data per frame was array_length % array_height. In the
3D representation, each point is stored as its x, y, and z coordinates, so this turns into
3 x number_of_points. Since the number of points is the same as with the 2D representa-
tion, this turns into 3 x array_length x array_height, or 3 times the amount of data needed
to represent the 2D representation.

Some object detection models may choose to compress this data in order to perform
computations more quickly. One such compression is by using a Bird’s Eye View (BEV)
projection. This entails taking a downsample of the z-axis (the height dimension) from
the data. The way that this downsample is performed may vary, from taking some sort of
average to trying to encode each pillar of data points in some way. In the BEV projection,
in contrast to a range image, not only is distortion removed, but also relevant objects (such
as vehicles) typically do not overlap.

1.4 Thesis Outline

In chapter 2, a breakdown of the models that will be compared is given. The section is
divided between the Autoware.Al models and the OpenPCDet models. In chapter 3, the
experiment is outlined and the results of the experiment are given. In chapter 4, the thesis
is concluded.

Chapter 2

Object Detection Frameworks

In this chapter, the Autoware. Al and OpenPCDet frameworks are discussed. This includes
the architectures of the various object-detection models that will be tested and compared
in the next chapter.

2.1 Autoware.Al

Autoware.Al [1] is an open source all-in-one autonomous vehicle framework. It has tools
for perception, tracking, prediction, localization, planning, and control. The software is
built on Robot Operating System (ROS), an open source middleware framework developed
for use in robotics and autonomous vehicles. For the purposes of the DBL project, the
focus was put on the perception capabilities. Most of the algorithms for perception are
hand-crafted, meaning that they do not use neural networks. This is in contrast with
OpenPCDet, which exclusively uses neural network based algorithms. For Autoware.Al,
the hand-crafted perception algorithms are all based off of lidar_euclidean_cluster_detect, a
hand-crafted algorithm which clusters points together based on their Euclidean distance.

2.1.1 lidar_euclidean _cluster_detect

The function lidar_euclidean_cluster_detect [7] is designed to produce clusters of points
based on their Euclidean distance proximity. This is achieved in four steps, the first
three of which are optional preprocessing steps, and the last of which performs the actual
detection and publishing of clusters. The four steps are as follows:

6

Voxel-based Downsampling

Voxel-based Downsampling [3] is a downsampling method which divides the scene into a
3D grid. Each cell in the grid is a voxel. Any points inside a voxel will be averaged into
a central point, called a centroid. Then all of those points are replaced with this centroid.
Depending on how fine the grid is made, there is a trade off between the number of points
removed and how accurate the final result will be.

A RANSAC-based ground-plane estimation algorithm

This algorithm, based on RANSAC [I1] to estimate which points belong to the ground
plane so that they can be removed. The algorithm estimates a plane and thresholds points
by their distance to this plane. This is for the purpose of focusing the cluster generation
on relevant objects.

Difference-of-Normals

Difference-of-Normals [4] [2] [18] is a final filtering method before clustering starts. First,
a plane tangent to each point is estimated and its normal is taken. This estimation takes
into account the neighbouring points. This procedure is done twice, once with a small
neighbourhood and once with a large neighbourhood. The small neighbourhood represents
the fine detail of the surface, which is susceptible to noise. The large neighbourhood
represents the large-scale structure of the surface, which can overgeneralize the structure.
This is shown in Figure 2.1.

P = {p17p27' .. 7pN}

:. ﬁ(p,']“l) .: ﬁ(pars) /.:‘ Aﬁ(p7TSarl)
FEEEEEEEnnnn?d ay EEEEEEEEEnnn?d
large radius small radius difference of normals

Figure 2.1: Normal estimation using small and large radii [2]

Once the normals of the tangent estimates is taken, their difference is then taken. If
this difference is large, it means that the normals, and thus the estimated tangent planes,

were very different for the different scales, and that therefore, that point sits in a rough
surface. If the difference is small, it means that the estimated tangent planes are very
similar for the different scales, and therefore, the given point sits in a smooth surface. If
it sits in a smooth surface, the point does not contribute any new information and can be
removed.

Euclidean Cluster Extraction

Euclidean Cluster Extraction [5] [28] is the main clustering algorithm, after all the pre-
processing is done to filter out the excess points. In this algorithm, the point cloud is
converted into a kd-tree. This is a type of binary tree where at each level, the nodes spec-
ify a value along a dimension, and it’s children are split across that value. This provides
a data structure to perform an approximate but efficient nearest neighbours search with.
The algorithm used is [28]:

1. create a kd-tree representation for the input point cloud dataset P;

2. set up an empty list of clusters C', and a queue of the points that need to be checked
Q;

3. then for every point p; € P, perform the following steps:

e add p; to the current queue Q;
e for every point p; € @) do:

— search for the set PP of point neighbors of p; in a sphere with radius r < dy,;
— for every neighbor pF € PF, check if the point has already been processed,
and if not add it to Q;

e when the list of all points in () has been processed, add () to the list of clusters
C, and reset () to an empty list

4. the algorithm terminates when all points p; € P have been processed and are now
part of the list of point clusters C'.

This list of clusters is then returned as a list of point clouds. This algorithm serves as the
foundation upon which the later algorithms are built.

2.1.2 lidar_shape_estimation

Function lidar_shape_estimation [9] implements this paper [38]. The algorithm described
in this paper takes in point clusters, generated from lidar_euclidean_cluster_detect, and fits
rectangles around each cluster. This is done while ignoring the height dimension, so only
two dimensions are taken into account. The algorithm works by trying to fit rectangles
oriented at a sequence of angles to the cluster, and then evaluating the fit using a criterion.
At each angle orientation, the points are projected onto two perpendicular lines which
represent the rectangle edges. One criterion that may be used is area. In this criterion,
the length of the spread of points on each projection are multiplied together. The minimal
value using this metric corresponds to the rectangle orientation that was the tightest fitting
on the point cluster. Once this optimal value is chosen, the side lengths of the rectangle
are chosen to fit the cluster, and together with the orientation, are returned.

2.1.3 lidar_naive_l_shape_detect

Function lidar_naive_1_shape_detect [8] implements this paper [27]. This is an alternate
algorithm which does the same task as the previous lidar_shape_estimation. It takes in
point clusters generated from lidar_euclidean_cluster_detect and fits rectangles around each
cluster. This also ignores the height dimension. The process is shown in Figure 2.2. The
way this algorithm works is by first selecting the two furthest points in a cluster. These are
then assumed to be the two opposing corners of the object that the cluster is representing.
Next, a line is drawn to connect these two points, and every point in the cluster has its
minimum distance from this line measured. The point which is furthest from this line is
assumed to be the third corner, the one nearest to the LIDAR sensor. Rotating this point
around the center of the line will then give the final fourth corner.

2.2 OpenPCDet

OpenPCDet [35] is an open source 3D point cloud object detection framework. It hosts
code bases for several models, and allows for training and testing. The code for each model
is heavily refactored in order for them to fit within a modular framework. This structure
is shown in Figure 2.3. This is possible because many of the different models are based off
of each other. In particular, PointPillars [21] takes from SECOND [30], and PV-RCNN
[30] takes from Part-A? [33], which itself takes from PointRCNN [32] and SECOND. In
addition to this, Shaoshuai Shi was the lead author of the papers for PointRCNN, Part- A2,

Figure 2.2: The step-by-step l-shape fitting process [27]

and PV-RCNN, as well as the lead contributor to OpenPCDet. OpenPCDet is the official
repository for the codebases of those papers authored by Shaoshuai Shi. All of these models
were trained on the KITTI dataset [15]. KITTI’s LIDAR dataset only has points in front
of the vehicle, so these models were all trained to look for objects in the front half of the

Backbone2D

A

Map_to_BEV |--»|

Encoder
conv2d

DenseHead

RPN Head

A4

vehicle.
Backbone3D

3D
o iR "| SparseConv
a ’
3 Poi tI: t
= . ,| Point Feature
&) PointNet++ Encoding
= i
o !
o v

RolHead Proposal Layer

A

Rol feature extraction

Point Head

v

Rol Head

-

Figure 2.3: The generalized, modular structure of the OpenPCDet framework

2.2.1 SECOND

Prediction Results

SECOND [36] stands for Sparsely Embedded CONvolutional Detection. It divides the
scene into voxels, encodes the voxel features, performs sparse convolutions, and then uses a

10

region proposal network to provide the final bounding box. It’s refactored implementation
in OpenPCDet is shown in Figure 2.4. The original paper divided SECOND into the
following four sections:

Backbone3D Backbone2D DenseHead
. 30 ReShape | | Encoder
VFE s . o BEV 2 RPM Head
¥
r Foint Featura -
' ;
RolHead Proposal Layer ol feature extraction Rol Head

Figure 2.4: Implementation of SECOND in the OpenPCDet framework

Point Cloud Grouping

The point cloud is divided into a 3D voxel grid. Voxels with points in them are saved with
their location in space, and the number of points in them is stored. A limit is placed on
the total number of voxels.

Voxelwise Feature Extractor

This is taken from VoxelNet [39]. A voxel feature encoding (VFE) layer is used to extract
voxelwise features. A VFE is implemented by a Fully Connected Network (FCN). For every
point within a voxel, the point is passed through a linear layer, a batch normalization [19]
layer and a Rectified Linear Units [23] layer, outputting point-wise features. These point-
wise features are max-pooled together within their voxels to create the voxel-wise features.
Two of these VFE layers are used in series, followed by an FCN layer.

Sparse Convolutional Middle Extractor

This part is based off of Spatially-sparse convolutional neural networks [16] and Subman-
ifold Sparse Convolutional Networks [17]. The idea here is that a 3D CNN will be used
to produce features from the Voxelwise Feature Extractor, but a regular 3D CNN would
run very slowly, because it would scale to the cube of the size of the scene. However, most

11

of the space in a scene is empty, as it is essentially an inverse projection of the originally
2D LiDAR sensor data. To take advantage of this emptiness, a new kind of 3D convolu-
tional network, a Sparse Convolutional Network, is used. This network uses several sparse
convolutional layers, which work as follows:

1. The input sparse voxels are indexed, collected together, and along with all the output
voxels which could be reached with the convolutional kernel, are put in a matrix table
called Rule.

2. These output voxels are not unique, since two nearby input voxels could reach the
same output voxel, depending on the size of the kernel. The output voxels are
uniquely indexed, meaning that each output voxel located in space is assigned a
unique index value.

3. The entries in Rule are then assigned these output indices. Rule is now a dense
representation of the data, and parallelizable operations on a GPU can be performed
with it.

In the Sparse Convolutional Middle Extractor, several layers of normal and submanifold
sparse convolutional layers are used to downsample the z-axis and reduce the dimensions of
the data to 2D. The difference between normal and submanifold sparse convolutional layers
is in which output voxels are affected by an input voxel. In the normal case, any output
voxel reachable by the convolutional kernel is affected, whereas in the submanifold case,
only output voxels which are active (i.e. have input data in their location) are affected.
Submanifold layers are used to not spread the data out and increase the number of active
voxels. Finally, the sparse data is converted into dense 2D feature maps ready for the
Region Proposal Network.

Region Proposal Network (RPN) Detection Head

This part is based on SSD [22]. Several stages of multiple blocks of convolution, batch
normalization (BatchNorm), and Rectified Linear Units (ReLU) layers are applied. In
each block, the first convolutional layer downsamples the input using an appropriate stride.
Each stage does this downsampling to a different degree. At the end of each stage, a block
containing a deconvolutional layer is used instead, to upsample the data back up to what
it was originally. This has the effect of making the different stages find features of various
sizes in the data. The final data from each stage is concatenated together to produce the
output bounding boxes.

12

2.2.2 PointPillars

PointPillars [21] is an algorithm which divides the scene into columns of data points (pillars)
in order to encode each pillar, turning the 3D scene into a BEV image, which can then
be passed through a regular image object detection network to find bounding boxes. It’s
refactored implementation in OpenPCDet is shown in Figure 2.5. The original paper
divided PointPillars into the following three sections:

Backbone3D Backbone2D DenseHead
|]
VFE |—» Pass — PilarScatter |+ Encoder o RPN Head
: ; e
i
PoiniMai++ MHIF'H;::F& N uupupapa i Paint Haad
=. i
RolHead Proposal Layer Rl feature extraction Rol Head

Figure 2.5: Implementation of PointPillars in the OpenPCDet framework

Pillar Feature Net

This divides the scene into pillars which are then encoded, creating a BEV pseudo-image.
First, each point in the pillar is augmented with additional information. It starts with x,
y, z, and reflectance r. These values come from the LiDAR device. Then, z., y., z., where
the subscript ¢ denotes the distance to the centroid of the points in the pillar, are added.
Lastly, =, and y, are added, where the subscript p denotes distance to the central line of
the pillar itself. There are D = 9 data points per LiDAR point. In the overall scene, there
is a limit P placed on the number of pillars, and a limit N placed on the number of points
per pillar. If the number of points in a pillar exceeds N, a random sample is taken. If

it falls short, it is padded with zeros. The overall scene is described in an array of size
(D,P,N).

The following part is similar to the VFE described in the SECOND section, except
that it is performed on pillar voxels instead of cubic voxels. For each point of size D, a
simplified version of PointNet [24] is used, followed by a layer of BatchNorm and ReLU,
to encode the data into an array of size C'. Finally, a max operation is done over the N
points in a pillar to arrive at the final data for a scene being of size (C, P). Each pillar,
which corresponds to a location in 2D space, now has a data point of size C' associated

13

with it. The pseudo-image is now of size (C, H,W), where H and W are the height and
width of the pseudo-image.

Backbone (2D CNN)

The backbone processes the pseudo-image into a high-level representation. It is similar
to what was used in VoxelNet [39]. It consists of two parts, a feature extractor network
which produces features at lower and lower resolutions with respect to the image space,
and a second network which upsamples and concatenates the features from the feature
extractor. The feature extractor consists of a series of blocks which perform convolution
with a number of 3 x 3 2D convolution layers. After the convolutions, BatchNorm and
ReLU are applied. The whole block takes the input with a stride of S. This results in each
block lowering the resolution of its features by a factor of S, allowing it to pay attention
to larger-scale features.

The second network takes the outputs of each of these blocks and upsamples them all
to the size of the original pseudo-image. BatchNorm and ReLU are again applied to these
outputs. All of these are then concatenated together for the final detection head to use.

Detection Head

This uses the high-level representation to find bounding boxes. Similarly to SECOND, this
uses SSD [22] to produce the 3D bounding boxes. The boxes are matched to the ground
truth in the horizontal plane using 2D Intersection over Union (IoU). Regression is then
performed for the height and vertical displacement.

2.2.3 PointRCNN

PointRCNN [32] is a 2-stage algorithm for generating 3D bounding boxes. The first stage is
a bottom-up 3D proposal generator which segments the point cloud into Regions of Interest
(Rol). The second stage refines the proposals to generate the final bounding boxes. Its
implementation in OpenPCDet is shown in Figure 2.6.

Bottom-up 3D proposal generation

Pointwise features are learned using PointNet++ [25]. From these features, the foreground
points are segmented out. Foreground points are defined as points which would belong

14

Backbone3D Backbone2D DenseHead

30 1 | Enceder |
VFE ol Map_to BEV |-+ = * RPN Head
i 4 [}
PoiniNetr+ [— Pass Point Head
Paint Cloud Region PointRCNMN
RolHead Proposal Layer Pooli Head

Figure 2.6: Implementation of PointRCNN in the OpenPCDet framework

to a bounding box, no matter the label. Thus, to train this part of the network, the
ground-truth bounding boxes are all that is required.

Next, bin-based 3D bounding box generation is performed. In this step, for each point
in a segment, a bounding box is calculated. First, the centroid of the bounding box is
calculated using a combination of classification and regression. Classification is done first
by binning the points along the horizontal plane, and the regression is done within those
bins. Along the vertical axis, only regression is used. Orientation is also calculated with
classification and regression, just as with the horizontal center. Regression is used on the
object’s dimensions. Finally, Non-Maximum Suppression (NMS) is used to select the best
bounding box for each segmented object.

Point cloud region pooling

This stage is meant to refine the bounding boxes from the previous stage. First, for
each bounding box proposal, an enlarged version is created, and every point within this
enlarged bounding box is taken, whether the point is foreground or background. These
points contain their location, intensity, foreground/background status, and the learned
features from PointNet++.

Next, for each bounding box, the points are transformed into a coordinate system
aligned with the bounding box. This means that the orientations and centroid locations for
each bounding box are zero within their own coordinate systems. This is called a canonical
transformation. These points are then fed through several fully-connected layers before
they are concatenated with the bounding box proposal data and fed into PointNet+-+
again.

From here, bin-based 3D bounding box generation is performed in almost the same way

15

as described in the Bottom-up 3D proposal generation section above. One change is that
coordinates of the ground-truth bounding boxes are transformed to match the coordinate
system for each bounding box. This then produces the final 3D bounding boxes.

2.2.4 Part-A?2

Part-A? [33] builds upon the work from PointRCNN. It consists of two main stages, a
part-aware stage and a part-aggregation stage. The part-aware stage learns to predict
segmentation proposals, as well as intra-object part locations, which are the locations of
each point relative to the overall object. The training information for this comes freely with
the orientation of the ground-truth bounding boxes. The part-aggregation stage learns to
aggregate the parts learned in the previous stage to fine-tune the segmented proposals. It’s
implementation in OpenPCDet is shown in Figure 2.7.

Backbona3D Backbane2D DenseHead
a0 ReShape Encadar
VFE SparseCony twBEV [| convad RPN Hood
[] l = =
PoiniNate+ - ¥ Pass Point Head
RolHead Proposal Layer +| Rol-awara Pooling + PartAZ Head

Figure 2.7: Implementation of Part-A? in the OpenPCDet framework

Part-aware stage

This part starts with 3D sparse convolution like SECOND. This is used as the initial
encoder-decoder network, instead of PointNet++ as used in PointRCNN. As with PointR-
CNN, foreground points are then segmented out. Next, intra-object part locations are
calculated. For each point, it’s relative position within the ground-truth bounding box is
learned. It is normalized across the size and orientation of the bounding box, so that all
points per bounding box are within the range of [0, 1], with the center being at [0.5,0.5, 0.5].

Lastly, two different approaches are tested to perform proposal generation, which seg-
ments out proposals for each bounding box. An anchor-free approach is essentially the
approach used in PointRCNN to perform proposal generation. Additionally, there is an

16

anchor-based approach. In this approach, the downsampled output of the initial encoder
is taken. This output is in a 2D BEV format. Similar to SECOND, an RPN then takes
this input in. This RPN has two predefined 3D anchors per class per location on the
horizontal plane, one aligned with the x-axis and one aligned with the y-axis. An anchor
is a predetermined bounding box which serves as a starting point for regression. They are
associated with the ground truth bounding boxes using IoU. The anchor-free method is
more memory efficient, since it does not require filling the space with predefined anchors,
but the anchor-based method has a slightly higher recall rate.

Part-aggregation stage

Canonical transformations, as described in the PointRCNN section are applied to the 3D
bounding box proposals generated by the anchor-free or anchor-based approaches, the
encoder-decoder output, as well as the intra-object part locations and semantic segmen-
tations. Following this, the 3D bounding box proposals are segmented into voxels. An
average-pool is then performed on the intra-object part location points located within
each voxel, as well as a max-pool on the encoder-decoder output within each voxel. Av-
erage pooling is done on the intra-object part location points so that the average location
data within a voxel can be retained, whereas max-pooling for the encoder-decoder output
retains the most prominent features within a voxel. These two outputs are then brought
together and passed through a sparse convolutional network with several sparse convolu-
tional layers. The outputs are then flattened and passed through an FCN, outputting the
final bounding boxes ready for scoring and refinement by regression using IoU with the
ground truth bounding boxes.

2.2.5 PV-RCNN

PV-RCNN [30] builds on top of Part-A% It aims to bring together the more accurate
contextual information of point-based methods with the greater efficiency and higher-
quality 3D object proposals of voxel-based methods. There are three steps to this approach.
First, a 3D voxel CNN is used to extract features and generate proposals, which is similar
to previous methods. Next, a voxel-to-keypoint step summarizes the voxels into a few
feature keypoints. Lastly, a point-to-grid step aggregates the feature keypoints to Rol
grids for scoring and refinement. It’s implementation in OpenPCDet is shown in Figure
2.8.

17

Backbone3D Backbone2D DenseHead

0 ReShape Encoder
WE SparseConv to BEV B conv2d RPN Head
|
Pointhet++ WEA + Point Head
RolHead Froposal Layer Rol-grid Poaiing mﬂ"

Figure 2.8: Implementation of PV-RCNN in the OpenPCDet framework

3D Voxel CNN

The scene is divided into voxels and the coordinates and reflectance values of the points
within each voxel are average-pooled. Several sparse convolutional layers then downsample
the data by factors of 2. The output is then turned into a BEV, and the anchor-based
proposal generator from Part-A? is used to produce proposals.

Voxel-to-keypoint Scene Encoding via Voxel Set Abstraction

A number n of keypoints is selected from the scene using the Farthest Point Sampling
algorithm, which is an algorithm that selects the n points which are furthest from each
other in a sample. A process called Voxel Set Abstraction (VSA) is then used to aggregate
the voxel features for each keypoint. For each keypoint, the voxel outputs of each separate
downsampling level of the 3D Voxel CNN are taken. For each level, all of the non-empty
voxels within a specified distance to the keypoint are selected, and their feature data and
coordinates are taken. PointNet is then used on this to transform this data into a feature
vector for the keypoint. This occurs for multiple downsample layers, as well as for multiple
distance values, which gathers data on multiple scales and resolutions.

This data is enriched by adding to each set of keypoint features the data from the
original point from the raw point cloud as well as the bilinearly-interpolated data from
the nearest surrounding voxel values from the final 3D Voxel CNN downsampled output.
Finally, these keypoints correspond to either foreground or background points, as defined
in the PointRCNN section. For the next step, which conducts proposal refinement, the
foreground points are more important. Because of this, the points which are predicted to
be foreground points are weighed more heavily than the ones predicted to be background

18

points. This is trained, as in the PointRCNN section, using the unambiguous and well
separated ground-truth bounding boxes.

Keypoint-to-grid Rol Feature Abstraction for Proposal Refinement

The 3D bounding box proposals generated by the 3D Voxel CNN are taken here. For
each proposal, a set of uniformly sampled voxels is taken, with dimensions 6 x 6 x 6.
A set abstraction process similar to the VSA is used in order to aggregate the keypoint
features for each sampled voxel. For each voxel, keypoints within a specified distance to
the voxel have their features and relative coordinates taken and passed into PointNet to
be transformed into a single feature vector per voxel. This also occurs using the keypoints
generated using the multiple downsample layers, as well as for multiple distance values.
Finally, the features for all the sampled voxels within the proposal are aggregated, and
then, as with Part-A2, are flattened and passed through an FCN, outputting the final
bounding boxes ready for scoring and refinement by regression using IoU with the ground
truth bounding boxes.

19

Chapter 3

Experiments

In this chapter, the entirety of the experiment is discussed. This includes the metrics used
to quantify and compare the performances of the models, the variables associated with this
experiment, the experimental setup, the integrity assessment, the comparison method, and
the final results.

3.1 Metrics

When doing object detection, the model produces predictions, which are compared against
the ground truth (GT).

GT: Yes GT: No
Prediction: Yes | True Positive (TP) | False Positive (FP)
Prediction: No | False Negative (FN) | True Negative (TN)

Precision is the proportion of predicted objects that were correct. It is calculated as:

TP
TP+ FP

Recall is the proportion of GT objects that were predicted. It is calculated as:

TP
TP+ FN

20

3.1.1 Average Precision (AP)

In object detection, predicted bounding boxes are almost always off from the GT, since
they are supposed to predict location. In order to determine whether a prediction matches
with the GT, a metric may be used, such as IoU or distance between centroids. If they
meet a specific threshold, then the prediction is counted as a TP, and if not, then it is
counted as a FP. The nuScenes [11] detection benchmark uses the following metric:

“mean Average Precision (mAP): We use the well-known Average Precision
metric, but define a match by considering the 2D center distance on the ground
plane rather than intersection over union based affinities. Specifically, we match
predictions with the GT objects that have the smallest center-distance up to a
certain threshold. For a given match threshold we calculate average precision
(AP) by integrating the recall vs precision curve for recalls and precisions > 0.1.
We finally average over match thresholds of {0.5,1,2,4} meters and compute
the mean across classes.” [11]

The detection benchmark used for the experiments here, called 3D LiDAR BBox De-
tection Evaluation [20], works the same way as with nuScenes, except that it uses a single
threshold, and it keeps the class results separate instead of taking their mean. Thus, it
uses Average Precision instead of mean Average Precision.

Neural Network based classification predictions come with confidence scores that show
the model’s confidence that it’s prediction was correct. As higher confidence scores strongly
correlate with higher accuracy, only those predictions with a confidence score above a
certain threshold are used. This threshold is a parameter which can be adjusted. If the
threshold is raised, the precision will be raised, since there will be less FP, but the recall
will be lowered since there will be more FN. If the threshold is lowered, the recall will
be raised, since there will be less FN, but the precision will lowered since there will be
more FP. The better the model, the less FP and FN. This means that as the threshold
is decreased, a better model will be able recall more while retaining as much precision as
possible. Graphing the parametric function of precision vs recall, with the threshold being
the parameter, the larger the area under the curve, the better the model. This area under
the Precision-Recall curve is the Average Precision (AP). Higher AP means that the model
performs better.

For models that do not use neural networks, such as for the Autoware.Al models, a
confidence score is not provided. This undermines the ability to calculate a precision-recall
curve, and thus AP. To remedy this, a proxy to confidence score was used. This proxy was

21

the FEuclidean distance from the origin. The FEuclidean distance from the origin, just like
confidence score, is strongly correlated with higher accuracy, as closer objects are more
likely to get correctly labelled than farther objects. Using this metric, the precision-recall
curve and AP were both calculated.

3.1.2 Fj Score

This metric is similar to AP in that they both use precision and recall for their calculation.
With a given threshold, the precision and recall can be calculated, and from there, the Fj

score is given as:
precision x recall

Fg=(1+p5 —
p=01+5)BQ x precision + recall

The § parameter controls which factor will contribute more to the overall score. As § —

00, F3 —+ recall, and as B — 0,F3 — precision. Higher Fj score means that the

model performs better. In this experiment, I} score is used, treating precision and recall

as both equally important to the score. The maximum Fj score across all threshold values

is used.

3.1.3 True Positive metrics

nuScenes uses a set of additional metrics for TP which are matched with a threshold
distance of 2m from the center of the prediction to the center of the GT. 3D LiDAR BBox
Detection Evaluation also computes those metrics which specifically measure translation
and scale errors:

e Average Translation Error (ATE): Euclidean center distance in 2D in meters. In 3D
LiDAR BBox Detection Evaluation, a 3D version is also used.

e Average Scale Error (ASE): Calculated as 1 — IOU after aligning centers and orien-
tation.

These metrics separate the errors into those of translation and scale, which provides
deeper insights into how models perform with these different parts of bounding box pre-
diction. Lower errors mean that the model performs better.

22

3.2 Parameters, Factors, Levels

Parameters are elements in the experiment that are constant. These were necessary parts of
setting up the experiment and processing the data. Factors are elements of the experiment
that are to be changed, with the levels being the various different settings the factors can
be changed to.

3.2.1 Parameters

Table 3.1 shows the software parameters involved in this experiment. Autoware.Al and
OpenPCDet are the object detection frameworks that will be examined. These are listed
here as parameters because although they contain multiple models each which are consid-
ered as factors, the frameworks themselves are constant, unchanging codebases that will
be used within the experiment. SpConv, short for Spatially Sparse Convolution Library,
is a dependency for OpenPCDet, allowing the models that do sparse convolutions, such
as SECOND, to work. MATLAB Lidar Labeler is the software used to label the ground
truth data. Table 3.2 shows the hardware parameters involved in this experiment.

Table 3.1: Software parameters

Software Name Version Source

Autoware.Al 1.13.0 https://github.com/Autoware-
ATl/autoware.ai/releases/tag/1.13.0

Forked OpenPCDet 0.3.0+829d99¢c https://github.com/syigzaw/0penPCDet

SpConv 1.2.1 https://github.com/traveller59/
spconv/tree/v1.2.1

MATLAB Lidar Labeler R2021b https://www.mathworks.com/help/
lidar/ref/lidarlabeler-app.html

ROS Melodic http://wiki.ros.org/melodic

Table 3.2: Hardware parameters

Type Model
LiDAR Sensor Velodyne HDL-32e [12]
Participant Vehicle Lexus RX-450h

23

https://github.com/Autoware-AI/autoware.ai/releases/tag/1.13.0
https://github.com/Autoware-AI/autoware.ai/releases/tag/1.13.0
https://github.com/syigzaw/OpenPCDet
https://github.com/traveller59/spconv/tree/v1.2.1
https://github.com/traveller59/spconv/tree/v1.2.1
https://www.mathworks.com/help/lidar/ref/lidarlabeler-app.html
https://www.mathworks.com/help/lidar/ref/lidarlabeler-app.html
http://wiki.ros.org/melodic

3.2.2 Factors and Levels

The factors are the model type and the models themselves. Table 3.3 shows the levels for
these factors. PointRCNN IoU is the same as PointRCNN, but uses the IoU metric for
predicting the confidence of each box. Part-A? Anchor is Part-A? with the anchor-based
approach, and Part-A? Free is Part-A? with the anchor-free approach.

Table 3.3: Factors and levels

Model type Framework
Non-neural network based Autoware.Al
Neural network based OpenPCDet
The models Framework

Autoware.Al
Autoware.Al

lidar_naive_l_shape_detect
lidar_shape_estimation

PointPillars OpenPCDet
SECOND OpenPCDet
PointRCNN OpenPCDet
PointRCNN IoU OpenPCDet
Part-A? Anchor OpenPCDet
Part-A? Free OpenPCDet
PV-RCNN OpenPCDet
Classes OpenPCDet
N/A Autoware. Al
Vehicles OpenPCDet
Pedestrians OpenPCDet
Cyclists OpenPCDet

3.3 Experimental Setup

This section discusses the process by which the data was collected and transformed for
use in the experiment. Figure 3.1 shows a visual overview of the entire data processing
pipeline.

24

Participant drives on pre-
determined route, with sensors
recording surroundings

Y

LiDAR data is recorded in
the PCAP format and
stored on onboard hard
drives

A 4

The 3D LiDAR Detection
Evaluation code was forked,
with changes being made to

the ASE calculation

I

The data is transfered from
the hard drives to the

The PCAP file was
converted to a BAG file

server after the drive is
finished

The BAG file was
| converted to a Numpy file

using the ROS
Velodyne stack

1 using the python rosbag
APl and Numpy library

Y

Y

Y

The PCAP file was passed
to the MATLAB Lidar
Labeller for manual

The BAG drive file was
passed to Autoware to
produce its model outputs,

The Numpy file was passed
to OpenPCDet to produce its
model outputs, also as

The CSV file was imported
into python, cleaned, sanity

Ground Truth labelling also in BAG format Numpy files
Y Y
The Ground Truth The BAG flle was)
converted to a Numpy file
data was saved as a .
csyV file using the python rosbag
APl and Numpy library
Y
Y

The OpenPCDet output
Numpy files are compared to

checked, and converted to
a Numpy file

Y

Y

The Autoware output Numpy
files are compared to the
Ground Truth Numpy files
using the forked 3D LiDAR

Detection Evaluation code,
with the additional change of
using Euclidean distance
from the origin for sorting for
precision and recall

Y

the Ground Truth Numpy files|
using the forked 3D LiDAR
Detection Evaluation code

—

25

\ 4
The metric outputs of the

evaluation are recorded, along

with the precision-recall curve
figures

Figure 3.1: Pipeline for processing data from data generation to final results

3.3.1 Data Collection

This section discusses how participants were used to collect drive data and how that was
handled and processed for the DBL project that was the basis of this thesis.

Participant Drives

Participants with valid Ontario G or equivalent driving license who are willing to participate
in the study are found. The total commitment time is under 4 hours, with approximately
3 hours being dedicated to driving an approximately 1.5 hour pre-determined route twice.
The participants complete a safety orientation and a vehicle orientation, and a preliminary
test drive to make sure they are fit to proceed.

While driving on the route, a researcher will be accompanying in the front-passenger
seat. The researcher will observe and annotate any noteworthy circumstances, such as
weather conditions, emergency vehicles, accidents, etc.

Additionally, various sensors will capture the surrounding environment: a forward fac-
ing radar sensor, two rear facing radar sensors, a lidar sensor mounted on the roof of the
vehicle, two forward facing video cameras, and a forward facing thermal imaging camera.

Data Handling

The LiDAR data is saved as a PCAP (Packet CAPture) file. This file can be read with
various software, such as with MATLAB for labeling the GT, or with the ROS Velodyne
stack. The PCAP files are stored on a secured server accessible over FTP. The MATLAB
Lidar Labeller was used to create GT labels for one specific PCAP file. This file had 17,919
frames, which covers a duration of 29 min 51.9 sec.

ROS is an open source middleware robotics framework that facilitates communications
between different modules in a system. It uses a publisher /subscriber model, where mod-
ules publish data to a topic and other modules listen to that data by subscribing to that
topic. This allows for modular message passing and communication.

The ROS Velodyne stack is used to convert the PCAP file into the ROS-specific BAG
file type, as well as to pass that data to Autoware.Al to use. The data outputted by
Autoware.Al is also stored as BAG files. The bag files are then read using the ROS
Python library in order to convert the data into Numpy files. Each file is used to store
a single frame of data. The Numpy file version of the LiDAR data is then passed on to
OpenPCDet to use with its models.

26

The ground truth data was then cleaned. There were instances where the bounding
boxes were malformed in various ways. Sometimes, there were bounding boxes that ap-
peared in a frame and disappeared in the next. These bounding boxes did not correspond
with any actual object. These were removed, as they were not temporally consistent. Addi-
tionally, for each feature, a window five frames wide was passed along the time axis. There
were instances where certain values were incorrectly labelled either zero or a standard de-
viation away from it’s window of values. These values were replaced with the average of
the window, this average not consisting of itself in the case that it is a zero value. This
process smooths out incorrect outliers and removes incorrect zero values at the same time,
removing temporal inconsistencies in the ground truth labelled data.

3.4 Integrity Assessment

The GT LiDAR data was converted from the MATLAB format to Numpy files. These files
were sanity checked to make sure there were no issues. One sanity check was to make sure
that no frames were missing. The frequency of the frames is 10 Hz, so the time intervals
between each frame should be around 100 ms. After running the sanity check, Figure 3.2
was generated to show the intervals. Table 3.4 shows the output of calling the .describe()
method of the Pandas DataFrame containing the data. It shows a summary of the statistics
related to the data, most notably, the min, max, mean, and std.

Table 3.4: Statistical summary of the data of the time intervals (ms) between frames

count mean std min 25% 50% 5% max
17918.0 100.000245 0.219825 99.53 100.08 100.08 100.09 100.65

3.4.1 Algorithm Comparison Method

After the GT data was sanity checked, it was passed on to a forked version of 3D LiDAR
Detection Evaluation code [20]. Since the OpenPCDet models were trained on the KITTI
dataset, they were only trained to detect objects in front of them. In order to evaluate
them on the GT data, the 3D LiDAR Detection Evaluation code was also modified to
only consider GT data in the front half of the vehicle when evaluating the OpenPCDet
models. When evaluating the Autoware.Al models, classes were not considered, since the
Autoware.Al models cannot differentiate between classes. Additionally, the sorting for the

27

Time Intervals Between Frames

100.6 1

100.4 A

100.2 A

100.0 A

Interval Length (ms)

99.8 A

99.6

0 2500 5000 7500 10000 12500 15000 17500
Frame Number

Figure 3.2: Graph of sanity checking time intervals between frames

AP measurement was done on the Euclidean distance from the origin, as the Autoware.Al
models do not provide a confidence score. The evaluation produces AP, F} score, Average
2D Translation Error (A2TE), Average 3D Translation Error (A3TE), and ASE.

3.5 Results

Below are the results of the experiment performed on the models, split by framework.

3.5.1 Autoware.Al

Table 3.5: Autoware.Al Model Evaluations

Model AP Fy Score A2TE [m] A3TE [m] ASE [m?]
lidar_naive_l shape_detect 0.133 0.340 1.0903 1.1391 0.6940
lidar_shape_estimation 0.126 0.335 1.0841 1.2048 0.8771

28

Precision

1.0

0.8

o
o

o
>

0.2

0.0

Precision-Recall curve

i —— lidar_naive_| shape_detect
—— lidar_shape_estimation
0.0 0.2 0.4 0.6 0.8
Recall

Figure 3.3: Autoware.Al Model Precision-Recall Curves

29

1.0

3.5.2 OpenPCDet

Table 3.6: OpenPCDet Model Evaluations for Vehicle Class

Model AP F Score A2TE [m] A3TE [m] ASE [m?]
PointPillars 0.514 0.575 0.9971 1.0175 0.3182
SECOND 0.516 0.587 1.0251 1.0489 0.3224
PointRCNN 0.552 0.645 0.9832 1.0019 0.2969
PointRCNN IToU 0.536 0.627 1.0098 1.0276 0.2901
Part-A? Anchor 0.545 0.654 1.0404 1.0569 0.3256
Part-A? Free 0.477 0.618 1.0307 1.0432 0.3265
PV-RCNN 0.552 0.652 0.9671 0.9856 0.3106
Table 3.7: OpenPCDet Model Evaluations for Pedestrian Class
Model AP Fy Score A2TE [m] A3TE [m] ASE [m?]
PointPillars 0.124 0.240 1.2543 1.2726 0.4936
SECOND 0.273 0.392 1.2224 1.2364 0.4204
PointRCNN 0.168 0.321 1.2094 1.2412 0.4179
PointRCNN ToU 0.149 0.287 1.2499 1.3092 0.4260
Part-A% Anchor 0.141 0.262 1.2499 1.2662 0.4858
Part-A? Free 0.208 0.374 1.2516 1.2654 0.4755
PV-RCNN 0.225 0.357 1.2473 1.2604 0.4630
Table 3.8: OpenPCDet Model Evaluations for Cyclist Class
Model AP Fy Score A2TE [m] A3TE [m] ASE [m?]
PointPillars 0.046 0.110 0.8710 0.8947 0.3873
SECOND 0.346 0.399 0.8878 0.9142 0.5074
PointRCNN 0.281 0.419 0.8573 0.8851 0.2813
PointRCNN IToU 0.271 0.385 0.8777 0.8996 0.3366
Part-A% Anchor 0.279 0.372 0.8127 0.8427 0.4215
Part-A? Free 0.309 0.395 0.8363 0.8654 0.3883
PV-RCNN 0.185 0.283 0.8402 0.8598 0.3289

30

Precision

0.0

Precision-Recall curve

—— PointPillars
—— SECOND

—— PointRCNN

—— PointRCNN loU
—— Part-A~2 Anchor
—— Part-A"2 Free
—— PV-RCNN

0.0

0.2 0.4 0.6 0.8
Recall

1.0

Figure 3.4: OpenPCDet Model Precision-Recall Curves — Vehicle Class

31

Precision

Precision-Recall curve

1.0 - —— PointPillars
- SECOND
——— PointRCNN
—— PointRCNN loU

0.8 - Part-A"2 Anchor

' —— Part-A"2 Free
——— PV-RCNN

0.6

0.4

0.2 -

0-0 1 1 1 |

0.0 0.2 0.4 0.6 0.8

Recall

1.0

Figure 3.5: OpenPCDet Model Precision-Recall Curves — Pedestrian Class

32

Precision

Precision-Recall curve

PointPillars
SECOND
PointRCNN
PointRCNN loU
Part-A™2 Anchor
Part-A"2 Free
PV-RCNN

Recall

1.0

Figure 3.6: OpenPCDet Model Precision-Recall Curves — Cyclist Class

33

3.6 Discussion

This section discusses the results of the experiments for the Autoware.Al and OpenPCDet
models, as well as assumptions made during the experimentation and analysis.

3.6.1 Autoware.AlI Results

The two Autoware.Al models, lidar_naive_1 shape_detect and lidar_shape_estimation, per-
formed similarly in almost every metric used in the evaluation. For lidar_naive_l_shape_detect,
the AP is 5.26% larger, the F; score is 1.47% larger, the 3D ATE is 5.77% smaller, and
the ASE is 26.4% smaller. For lidar_shape_estimation, the 2D ATE was smaller by 0.57%.
The precision-recall curve, which shows the precision and recall for a given threshold while
varying the threshold, shows that lidar naive_l shape_detect can maintain a marginally
higher precision for the same recall than lidar_shape_estimation, and that the area under
its curve (the AP) is also larger. Other than the 26.4% difference with the ASE, the other
differences are not statistically significant between the two models.

3.6.2 OpenPCDet Results

Since many different OpenPCDet models are being evaluated, the best two results for each
metric are emboldened. This allows us to see which models consistently perform among
the best.

Vehicle Class

For the vehicle class, the model which consistently performs the best is PV-RCNN. It has
the highest AP and F) score, and the lowest 2D and 3D ATE. PointRCNN is another
model that also does really well, performing amongst the top 2 in all metrics aside from
F} score. PointPillars, SECOND, and Part-A? Free perform worse, with mostly low AP
scores and F} scores, high 2D and 3D ATE scores, and high ASE scores.

Pedestrian Class

For the pedestrian class, SECOND is the best performing model in every metric except
for A2TE, where it is the second best. No other model performs as well here. PointPillars

34

consistently performs poorly. This may be because pedestrians are tall, slim objects. In
PointPillars, the number of points in a pillar is capped, making tall objects lose more
points than short objects. Additionally, each point is augmented with data representing
that point’s distance from the center line of it’s corresponding pillar. For tall objects, there
will be more points which share similar values for this data before the pillar point limit is
reached, making this data more redundant.

Cyclist Class

For the cyclist class, SECOND performs the best for AP and second best for F; score.
Part-A? Anchor performs the best for A2TE and A3TE. PV-RCNN performs second best
for ASTE and ASE. In general, the different models each perform well in a couple of
metrics each, except for PointPillars. Again, this may be for the same reasons as with the
pedestrian class. Cyclists are narrow and tall, and so have a somewhat similar profile to
pedestrians.

3.6.3 Assumptions

An assumption made during the course of the experiment and analysis is that the timespan
of the analysis was long enough to accurately measure the performances of the various
models. In order to show that this is the case, precision-recall curves for all of the models
were made using 100% and the first 90% of the data. The AP values for these models are
shown in Tables 3.9, 3.10, 3.11, and 3.12.

Table 3.9: Autoware models AP using 100% and first 90% of data, with percentage differ-
ence shown

Model 100% 90% % Difference
lidar_naive_l_shape_detect 0.133 0.127 4.51%
lidar_shape_estimation 0.126 0.119 5.56%

35

Table 3.10: OpenPCDet models AP, for the vehicle class, using 100% and first 90% of
data, with percentage difference shown

Model 100% 90% % Difference
PointPillars 0.514 0.494 3.89%
SECOND 0.516 0.494 4.26%
PointRCNN 0.552 0.532 3.62%
PointRCNN IoU 0.536 0.517 3.54%
Part-A? Anchor 0.545 0.533 2.20%
Part-A? Free 0.477 0.456 4.40%
PV-RCNN 0.552 0.542 1.81%

Table 3.11: OpenPCDet models AP, for the pedestrian class, using 100% and first 90% of
data, with percentage difference shown

Model 100% 90% % Difference
PointPillars 0.124 0.126 1.61%
SECOND 0.273 0.275 0.73%
PointRCNN 0.168 0.169 0.60%
PointRCNN IoU 0.149 0.151 1.34%
Part-A? Anchor 0.141 0.143 1.42%
Part-A? Free 0.208 0.209 0.48%
PV-RCNN 0.225 0.227 0.89%

Table 3.12: OpenPCDet models AP, for the cyclist class, using 100% and first 90% of data,
with percentage difference shown

Model 100% 90% % Difference
PointPillars 0.046 0.047 2.17%
SECOND 0.346 0.347 0.29%
PointRCNN 0.281 0.283 0.71%
PointRCNN IoU 0.271 0.273 0.74%
Part-A? Anchor 0.279 0.282 1.08%
Part-A? Free 0.309 0.31 0.32%
PV-RCNN 0.185 0.186 0.54%

36

The PR-curves comparing 100% data use and 90% data use are shown in Appendix
A. Looking at this data, for the Autoware models, the percentage differences of the AP
between 100% and 90% data usage are 4.51% for lidar naive_1_shape_detect and 5.56% for
lidar_shape_estimation. All of the OpenPCDet models have smaller percentage differences
across all their classes. For the vehicle class, the largest percentage difference is 4.40%, and
the smallest is 1.81%. For the pedestrian class, the largest percentage difference is 1.61%,
and the smallest is 0.48%. For the cyclist class, the largest percentage difference is 2.17%,
and the smallest is 0.29%. These are all very small percentage differences, which show that
the AP does not change by much when the amount of data used is changed. Thus, this
analysis supports the validity of the original results in Section 3.5.

3.6.4 Application to DBL Project

The original project that this thesis is based on is the DBL project. The comparisons
of the different frameworks and models ultimately provide quantitative analysis justifying
the use of a specific framework and model for the purposes of 3D object detection from
LiDAR data. To this end, the data in this thesis supports the use of PV-RCNN, from the
OpenPCDet framework, as the 3D LiDAR-based object detection model.

37

Chapter 4

Conclusion

In this thesis, an analysis and comparison of various 3D LiDAR-based object detection
frameworks and models was performed. The two frameworks analyzed were Autoware.Al, a
non-neural network based framework, and OpenPCDet, a neural network based framework.
Within Autoware.Al, the lidar_euclidean _cluster_detect algorithm was used as the base
clustering algorithm upon which lidar_naive_1_shape_detect and lidar_shape_estimation are
built. Within OpenPCDet, a modular framework was used to build all five models and
their variations.

4.1 Recommendations

For the Autoware.Al models, lidar_naive_l_shape_detect and lidar_shape_estimation, since
there was no associated confidence score to use for thresholding, Euclidean distance from
the origin was used instead. The overall AP scores and F} scores are far lower than the
scores for the OpenPCDet models on the vehicle class, and are instead comparable to the
scores of the OpenPCDet results on the pedestrian class.

For the OpenPCDet models, PointPillars struggles the most, possibly due to it viewing
the data as a collection of thin pillars, which especially leave out a lot of information from
pedestrian and cyclist classes. SECOND does well on the pedestrian class and the cyclist
class, having the highest AP in both. PointRCNN does very well with the vehicle class,
tying for first place with PV-RCNN in AP, and being amongst the lowest two for the
three error metrics. PointRCNN IoU performs worse than PointRCNN on most metrics.
Part-A? Anchor does well on the vehicle and cyclist classes. Part-A2 Free does well on the

38

pedestrian and cyclist classes. PV-RCNN performed the best out of all the models for the
vehicle class, and achieved the second highest AP in the pedestrian class. Interestingly, it
performed poorly in the cyclist class.

For prediction on vehicles, PV-RCNN is recommended. For prediction on pedestrians,
SECOND or PV-RCNN is recommended. For prediction on cyclists, SECOND or Part-A?
Free is recommended.

4.2 Future Work

For future work, it is recommended to continue looking at the development of the Autoware
and OpenPCDet platforms. Autoware.Al is being succeeded by Autoware.Auto. It is
based on ROS 2, and will focus on software engineering best practises, improved system
architecture, and reproducibility. OpenPCDet is continually developing, with new models
constantly coming out. It is the official codebase for Voxel R-CNN [13] and PV-RCNN++
[31], and contains the code for CenterPoint [37] as well. OpenPCDet is constantly adding
support for newer 3D LiDAR-based object detection models, and so it is expected that
even more models than these will also become available to look at in the future.

39

References

1]

2]

Autoware-ai. [Online|. Available: https://github.com/Autoware-AIL. Accessed: Nov
10, 2021. 6

Difference of normals based segmentation. [Online]. Available: https://pcl.
readthedocs.io/projects/tutorials/en/latest/don_segmentation.html.

Accessed: Nov 23, 2021. ix, 7

Downsampling a pointcloud using a voxelgrid filter. [Online|. Available: https:
//pcl.readthedocs.io/projects/tutorials/en/latest/voxel_grid.html.
Accessed: Nov 23, 2021. 7

Estimating surface normals in a pointcloud. [Online]. Available: https://pcl.
readthedocs.io/projects/tutorials/en/latest/normal_estimation.html. Ac-

cessed: Nov 23, 2021. 7

Euclidean cluster extraction. [Online|. Available: https://pcl.readthedocs.io/
projects/tutorials/en/latest/cluster_extraction.html. Accessed: Nov 24,
2021. 8

imm_ukf pda_track. [Online]. Available: https://github.com/Autoware-Al/core_
perception/tree/master/imm_ukf_pda_track. Accessed: Nov 28, 2021.

lidar_euclidean_cluster_detect. [Online]. Available: https://github.com/Autoware-
AT/core_perception/tree/master/lidar_euclidean_cluster_detect. Accessed:

Nov 21, 2021. 6

lidar_naive_l_shape_detect. [Online|. Available: https://github.com/Autoware-Al/
core_perception/tree/master/lidar_naive_l_shape_detect. Accessed: Nov 27,

2021. 9

40

https://github.com/Autoware-AI
https://pcl.readthedocs.io/projects/tutorials/en/latest/don_segmentation.html
https://pcl.readthedocs.io/projects/tutorials/en/latest/don_segmentation.html
https://pcl.readthedocs.io/projects/tutorials/en/latest/voxel_grid.html
https://pcl.readthedocs.io/projects/tutorials/en/latest/voxel_grid.html
https://pcl.readthedocs.io/projects/tutorials/en/latest/normal_estimation.html
https://pcl.readthedocs.io/projects/tutorials/en/latest/normal_estimation.html
https://pcl.readthedocs.io/projects/tutorials/en/latest/cluster_extraction.html
https://pcl.readthedocs.io/projects/tutorials/en/latest/cluster_extraction.html
https://github.com/Autoware-AI/core_perception/tree/master/imm_ukf_pda_track
https://github.com/Autoware-AI/core_perception/tree/master/imm_ukf_pda_track
https://github.com/Autoware-AI/core_perception/tree/master/lidar_euclidean_cluster_detect
https://github.com/Autoware-AI/core_perception/tree/master/lidar_euclidean_cluster_detect
https://github.com/Autoware-AI/core_perception/tree/master/lidar_naive_l_shape_detect
https://github.com/Autoware-AI/core_perception/tree/master/lidar_naive_l_shape_detect

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

lidar_shape_estimation. [Online]. Available: https://github.com/Autoware-Al/
core_perception/tree/master/lidar_shape_estimation. Accessed: Nov 27, 2021.
9

naive_motion_predict. [Online]. Available: https://github.com/Autoware-Al/
core_perception/tree/master/naive_motion_predict. Accessed: Nov 29, 2021.

Object detection task - nuscenes. [Online|. Available: https://www.nuscenes.org/
object-detection. Accessed: Feb 12, 2021. 21

Velodyne hdl-32e datasheet. [Online]. Available: https://www.mapix.com/wp-
content/uploads/2018/07/97-0038_Rev-M_-HDL-32E_Datasheet_Web.pdf. Ac-
cessed: Nov 10, 2021. 3, 23

Jiajun Deng, Shaoshuai Shi, Pei-Cian Li, Wen gang Zhou, Yanyong Zhang, and
Hougiang Li. Voxel r-cnn: Towards high performance voxel-based 3d object detection.
In AAAI 2021. 39

Martin A. Fischler and Robert C. Bolles. Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated cartography.
Commun. ACM, 24:381-395, 1981. 7

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous
driving? the kitti vision benchmark suite. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2012. 2, 10

Benjamin Graham. Spatially-sparse convolutional neural networks. ArXiv,
abs/1409.6070, 2014. 11

Benjamin Graham and Laurens van der Maaten. Submanifold sparse convolutional
networks. ArXiv, abs/1706.01307, 2017. 11

Yani Andrew loannou, Babak Taati, Robin Harrap, and Michael A. Greenspan. Dif-
ference of normals as a multi-scale operator in unorganized point clouds. 2012 Sec-
ond International Conference on 3D Imaging, Modeling, Processing, Visualization &
Transmission, pages 501-508, 2012. 7

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. ArXiv, abs/1502.03167, 2015. 11

41

https://github.com/Autoware-AI/core_perception/tree/master/lidar_shape_estimation
https://github.com/Autoware-AI/core_perception/tree/master/lidar_shape_estimation
https://github.com/Autoware-AI/core_perception/tree/master/naive_motion_predict
https://github.com/Autoware-AI/core_perception/tree/master/naive_motion_predict
https://www.nuscenes.org/object-detection
https://www.nuscenes.org/object-detection
https://www.mapix.com/wp-content/uploads/2018/07/97-0038_Rev-M_-HDL-32E_Datasheet_Web.pdf
https://www.mapix.com/wp-content/uploads/2018/07/97-0038_Rev-M_-HDL-32E_Datasheet_Web.pdf

[20]

[21]

[22]

23]

[24]

[27]

28]

[29]

[30]

Jacob Lambert. 3d lidar bbox detection evaluation. [Online|. Available: https:
//github.com/jacoblambert/3d_lidar_detection_evaluation. Accessed: Feb 12,
2021. 21, 27

Alex H. Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar
Beijbom. Pointpillars: Fast encoders for object detection from point clouds. 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
12689-12697, 2019. 9, 13

W. Liu, Dragomir Anguelov, D. Erhan, Christian Szegedy, Scott E. Reed, Cheng-Yang
Fu, and Alexander C. Berg. Ssd: Single shot multibox detector. In ECCV, 2016. 12,
14

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltz-
mann machines. In ICML, 2010. 11

C. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet: Deep learning on
point sets for 3d classification and segmentation. 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 77-85, 2017. 13

C. Qi, L. Yi, Hao Su, and Leonidas J. Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. In NIPS, 2017. 14

Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote, Jeremy Leibs,
Eric Berger, Rob Wheeler, and Andrew Ng. Ros: an open-source robot operating sys-
tem. In Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA) Workshop
on Open Source Robotics, May 2009.

A.S. A. Rachman. 3d-lidar multi object tracking for autonomous driving: Multi-target
detection and tracking under urban road uncertainties. 2017. ix, 9, 10

Radu Rusu. Semantic 3d object maps for everyday manipulation in human living
environments. K[- Kiinstliche Intelligenz, 24, 11 2010. 8

Matthias Schreier. Bayesian environment representation, prediction, and criticality
assessment for driver assistance systems. at - Automatisierungstechnik, 65:151 — 152,
2017.

Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping Shi, Xiaogang Wang, and
Hongsheng Li. Pv-renn: Point-voxel feature set abstraction for 3d object detection.
2020 IEEE/CVFE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 10526-10535, 2020. 9, 17

42

https://github.com/jacoblambert/3d_lidar_detection_evaluation
https://github.com/jacoblambert/3d_lidar_detection_evaluation

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Shaoshuai Shi, Li Jiang, Jiajun Deng, Zhe Wang, Chaoxu Guo, Jianping Shi, Xiaogang
Wang, and Hongsheng Li. Pv-rcnn++: Point-voxel feature set abstraction with local
vector representation for 3d object detection. ArXiv, abs/2102.00463, 2021. 39

Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointrcnn: 3d object proposal
generation and detection from point cloud. 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 770-779, 2019. 9, 14

Shaoshuai Shi, Zhe Wang, Jianping Shi, Xiaogang Wang, and Hongsheng Li. From
points to parts: 3d object detection from point cloud with part-aware and part-
aggregation network. I[EEFE Transactions on Pattern Analysis and Machine Intel-
ligence, 43:2647-2664, 2021. 9, 16

Muhammad Sualeh and Gon woo Kim. Dynamic multi-lidar based multiple object
detection and tracking. Sensors (Basel, Switzerland), 19, 2019.

OpenPCDet Development Team. Openpcdet: An open-source toolbox for 3d object
detection from point clouds. https://github.com/open-mmlab/0OpenPCDet, 2020. 9

Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embedded convolutional detection.
Sensors (Basel, Switzerland), 18, 2018. 9, 10

Tianwei Yin, Xingyi Zhou, and Philipp Kréahenbiihl. Center-based 3d object detection
and tracking. CVPR, 2021. 39

Xiao Zhang, Wenda Xu, Chiyu Dong, and John M. Dolan. Efficient l-shape fitting for
vehicle detection using laser scanners. In 2017 IEEE Intelligent Vehicles Symposium,
June 2017. 9

Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point cloud based
3d object detection. 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4490-4499, 2018. 11, 14

Adam Ziebinski, Rafal Cupek, Hueseyin Erdogan, and Sonja Waechter. A survey of
adas technologies for the future perspective of sensor fusion. In Ngoc Thanh Nguyen,
Lazaros Iliadis, Yannis Manolopoulos, and Bogdan Trawinski, editors, Computational
Collective Intelligence, pages 135-146, Cham, 2016. Springer International Publishing.
1

43

https://github.com/open-mmlab/OpenPCDet

APPENDICES

44

Appendix A

Precision-Recall Curves Using 100%
and First 90% of Data

45

lidar_naive | shape_detect

1.0 - — 100%
. 90%
0.8
h"
0.6 -

0.2

0-0 I I T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure A.1: lidar_naive 1 shape_detect PR-curve using 100% and first 90% of data

46

lidar_shape_estimation

1.0 A — 100%
- 90%

0.8

0.6

0.2

0-0 I I T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure A.2: lidar_shape_estimation PR-curve using 100% and first 90% of data

47

PointPillars

Vehicle Class - 100%
Vehicle Class - 90%
Pedestrian Class - 100%
Pedestrian Class - 90%
Cyclist Class - 100%
Cyclist Class - 90%

1.0 A

0.8

Figure A.3: PointPillars PR-curve using 100% and first 90% of data

48

1.0

SECOND

1.0 A

0.8

0.6

0.4 1

0.2

Vehicle Class - 100%
Vehicle Class - 90%
Pedestrian Class - 100%
Pedestrian Class - 90%
Cyclist Class - 100%
Cyclist Class - 90%

0.0

0.0 0.2 0.4 0.6 0.8

Figure A.4: SECOND PR-curve using 100% and first 90% of data

49

1.0

PointRCNN

- \/ehicle Class - 100%
- \/ehicle Class - 90%
- Pedestrian Class - 100%
- Pedestrian Class - 90%
= Cyclist Class - 100%
= Cyclist Class - 90%

0.6 -I

0.4 1

0.2 - 1

0-0 1 1 1 |

0.0 0.2 0.4 0.6 0.8

Figure A.5: PointRCNN PR-curve using 100% and first 90% of data

20

1.0

PointRCNN loU

1.0 A

0.8

0.6

0.4 1

0.2

Vehicle Class - 100%
Vehicle Class - 90%
Pedestrian Class - 100%
Pedestrian Class - 90%
Cyclist Class - 100%
Cyclist Class - 90%

0.0
0.0

0.2

0.4

0.6 0.8

1.0

Figure A.6: PointRCNN IoU PR-curve using 100% and first 90% of data

ol

Part-A™2 Anchor

1.0 A

0.8

Vehicle Class - 100%
Vehicle Class - 90%
Pedestrian Class - 100%
Pedestrian Class - 90%
Cyclist Class - 100%
Cyclist Class - 90%

0.8

1.0

Figure A.7: Part-A? Anchor PR-curve using 100% and first 90% of data

o2

Part-A"2 Free

1.0 A

0.8

0.4 1

0.2

Vehicle Class - 100%
Vehicle Class - 90%
Pedestrian Class - 100%
Pedestrian Class - 90%
Cyclist Class - 100%
Cyclist Class - 90%

0.0
0.0

0.2

1.0

Figure A.8: Part-A? Free PR-curve using 100% and first 90% of data

23

PV-RCNN

1.0 A

Vehicle Class - 100%
Vehicle Class - 90%
Pedestrian Class - 100%
Pedestrian Class - 90%
Cyclist Class - 100%
Cyclist Class - 90%

0.0

0.0

Figure A.9: PV-RCNN PR-curve using 100% and first 90% of data

54

	List of Figures
	List of Tables
	Abbreviations
	Nomenclature
	Introduction
	Goal of Object Detection Frameworks
	What is LiDAR?
	Data Representation
	2D original data
	3D projection
	2D Bird's Eye View

	Thesis Outline

	Object Detection Frameworks
	Autoware.AI
	lidar_euclidean_cluster_detect
	lidar_shape_estimation
	lidar_naive_l_shape_detect

	OpenPCDet
	SECOND
	PointPillars
	PointRCNN
	Part-A2
	PV-RCNN

	Experiments
	Metrics
	Average Precision (AP)
	F Score
	True Positive metrics

	Parameters, Factors, Levels
	Parameters
	Factors and Levels

	Experimental Setup
	Data Collection

	Integrity Assessment
	Algorithm Comparison Method

	Results
	Autoware.AI
	OpenPCDet

	Discussion
	Autoware.AI Results
	OpenPCDet Results
	Assumptions
	Application to DBL Project

	Conclusion
	Recommendations
	Future Work

	References
	APPENDICES
	Precision-Recall Curves Using 100% and First 90% of Data

