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Abstract

Program reduction is a highly practical, widely demanded technique to help debug
language tools, such as compilers, interpreters and debuggers. Given a program P which
exhibits a property ψ, conceptually, program reduction iteratively applies various program
transformations to generate a vast number of variants from P by deleting certain tokens,
and returns the minimal variant preserving ψ as the result.

A program reduction process inevitably generates duplicate variants, and the number
of them can be significant. Our study reveals that on average 62.3% of the generated vari-
ants in HDD, a state-of-the-art program reducer, are duplicates. Checking them against
ψ is thus redundant and unnecessary, which wastes time and computation resources. Al-
though it seems that simply caching the generated variants can avoid redundant property
tests, such a trivial method is impractical in the real world due to the significant memory
footprint. Therefore, a memory-efficient caching scheme for program reduction is in great
demand.

This thesis is the first effort to conduct systematic, extensive analysis of memory-
efficient caching schemes for program reduction. We first propose to use two well-known
compression methods, i.e., ZIP and SHA, to compress the generated variants before they
are stored in the cache. Furthermore, our keen understanding on the program reduction
process motivates us to propose a novel, domain-specific, both memory and computation-
efficient caching scheme, Refreshable Compact Caching (RCC). Our key insight is two-
fold: 1 by leveraging the correlation between variants and the original program P , we
losslessly encode each variant into an equivalent, compact, canonical representation; 2 we
periodically remove stale cache entries to minimize the memory footprint over time.

Our evaluation on 20 real-world C compiler bugs demonstrates that caching schemes
help avoid issuing redundant queries by 62.3%; correspondingly, the runtime performance
is notably boosted by 15.6%. With regard to the memory efficiency, all three methods use
less memory than the state-of-the-art string-based scheme STR. ZIP and SHA cut down the
memory footprint by 73.99% and 99.74%, compared to STR; more importantly, the highly-
scalable, domain-specific RCC dominates peer schemes, and outperforms the second-best
SHA by 89.0%.
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Chapter 1

Introduction

Given a program P and a property ψ that P exhibits (e.g., P triggers a bug in an interpreter
when the interpreter is executing P ), program reduction aims to produce a smaller program
P ′ that still exhibits ψ by removing tokens irrelevant to ψ from P [43, 31, 39].

Various program reduction techniques have been proposed and widely used in many
applications, especially in the development of language tools, e.g., compilers, interpreters,
debuggers and static program analyzers [43, 31, 37, 6, 35, 39]. For example, both the GCC
and LLVM communities have explicitly recommended that a bug-triggering test program
should be minimized before it is reported in the bug tracking systems [12, 28]. This reason
is that a bug-triggering test program in C needs to have only thirty lines of code on
average [38]; whereas in practice, such a test program collected from real-world programs
or generated by automated compiler testing techniques [2, 42, 26, 7] usually has at least
several thousand lines of code. Without program reduction, it is a challenging task for
developers to investigate bug reports. Furthermore, as highlighted by a recent article
in SIGPLAN [11], program reduction facilitates numerous other applications in software
engineering and programming languages, such as optimization [36], fuzzing [33], program
understanding and slicing [3].

Unfortunately, program reduction is computationally expensive and can even take days
to finish reducing a program [42, 25]. Thus, it is beneficial for all potential users to improve
the efficiency of program reduction Conceptually, program reduction maintains a minimal
program min, which satisfies ψ throughout the program reduction process, and initially
min is P . Program reduction 1 applies different program transformations to generate a
vast number of variants from min by strategically deleting certain tokens, 2 tests each
variant on whether or not it still preserves ψ, and 3 sets the variant preserving ψ as min;
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this process is repeated until min cannot be further minimized, and min is returned as the
final result. (More details on the algorithm is discussed in §2.2.) In the above process,
the procedure of checking a variant against ψ is referred to as a query to the property
in this thesis, and queries usually account for a major portion of the overall time spent
by the program reduction [17]. Some existing program reduction techniques also attempt
to avoid generating uninteresting variants to improve the efficiency of program reduction
[31, 17, 18, 39].

To understand the bottleneck of program reduction in terms of efficiency, we dive into
the process and investigate the generated variants. We reveal that on average 62.3%
and 23.6% of the generated variants in HDD [31] and Perses [39] are duplicates in our
benchmark, as different program transformations may generate exactly the same variant
by deleting different tokens. In other words, a significant amount of time is spent checking
unnecessary duplicate variants against ψ. If we cache such variants to avoid the redundancy,
the program reduction efficiency is likely to be improved.

The state of the art of caching scheme for program reduction is string-based caching [19],
i.e., caching variants as strings or sequences of tokens, referred to as STR. However, our
study reveals that such a trivial approach does not scale especially when P is large, due to
its impractical memory consumption, which also concerns C-Reduce [34]. A large program
P , unfortunately, is rather common; in extreme cases, program reducers crash due to Out-
of-Memory Error (OOM). An effective and efficient caching scheme for program reduction
is thus necessary.

In this study, we take the first step to explore memory-efficient caching schemes for
program reduction via compression. Specifically, we first leverage the following two readily
available compression techniques to compress the source code of variants and cache the
compressed source code instead of the original, uncompressed source code.

• Zip algorithm is a widely used, lossless data compression technique that reduces the
size of large texts. Before being added to the cache, the string-based representation
of each variant is compressed using the popular, general-purpose ZLIB compression
library [13, 10]. This caching scheme is referred to as ZIP.

• Hashing is yet a popular lossy data compression technique that maps strings of
various sizes to fixed-size values. A hash code is computed from the string-based
representation and then added to the cache; specifically, SHA512 is used in this
work [14, 23], due to its strong guarantee of collision resistance. We refer to this
caching scheme as SHA.
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However, from our comprehensive evaluations we find that the these two techniques still
suffer from monotonic increase of memory consumption, and scalability issues among differ-
ent program reducers. Therefore, after analyzing the characteristics of program reduction
algorithms and the generated variants in depth, we gain the following two key insights.

Insight 1 Every variant is derived from the current minimal program min during program
reduction by deleting some tokens. Therefore, the sequence pv of tokens in each variant
v is a subsequence of the sequence pmin of tokens in min.

Insight 2 As a result, when a program becomes the new min, any variant v in the cache
that is not a subsequence of this min, can be safely removed from cache as v will no
longer be accessed.

Based on these two insights, we propose a novel, domain-specific, memory and computation-
efficient caching scheme, namely, Refreshable Compact Caching (RCC).

Based on the first insight, RCC computes a compact encoding for each variant to be
added to the cache. This encoding is a set of slicing intervals in pmin that assembles pv.
Such a lossless compression algorithm considerably reduces the memory footprint. When
required, the compact encoding can be rapidly uncompressed back to the original program
variant. By leveraging the second insight, RCC periodically refreshes the cache to avoid
memory leaks. Specifically, upon finding a new min during the program reduction process,
RCC identifies and removes the cached variants that will never be accessed in the rest of the
process. Cache refreshing further reduces the memory footprint by avoiding accumulating
cache entries over time, and it thus improves scalability.

Conceptually, the domain-specific RCC is advantageous in practice compared to general
caching schemes. Unlike ZIP, RCC compresses a variant into an array of integers with-
out encoding each individual token. In contrast to SHA, RCC is an information-lossless
compression algorithm, the foundation of refreshable caching that further minimizes the
memory footprint of caching during program reduction.

We have implemented the proposed caching schemes on top of HDD and Perses, two
state-of-the-art program reduction algorithms. Our evaluation on 20 real-world C compiler
bugs demonstrates that caching schemes help avoid issuing redundant queries by 62.3% and
23.6% in HDD and Perses respectively. The runtime performance is notably boosted by
15.6% and 13.8%. As for the memory efficiency, caching scheme ZIP (using 3.95 GB on
average) and SHA (39.8 MB) cut down the memory footprint by 73.99% and 99.74% in
HDD, compared to the baseline STR (15.17 GB). Furthermore, the highly-scalable, domain-
specific RCC (4.4 MB) dominates peer schemes, and it outperforms the second-best SHA
by remarkably 89.0%. A similar pattern of memory consumption is observed in Perses.
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Contributions. This thesis makes the following contributions.

• We propose three caching schemes that are effective in improving the memory perfor-
mance of caching in program reduction. These caching schemes are agnostic to most
program reduction algorithms, and can be easily integrated into various program
reduction tools and combined with other program reduction techniques, benefiting a
great variety of researchers and developers.

• We propose a domain-specific caching scheme for program reduction. By leveraging
the keen knowledge that variants are subsequences of the minimal program, RCC
combines the compact encoding and cache-refresh algorithm to drastically reduce the
memory footprint with great scalability. We formally prove the safety of refreshable
cache and confirm with our evaluation.

• Our comprehensive evaluations on 20 real-world C compiler bugs demonstrate that
caching help avoid issuing redundant queries by 62.3% and boost the runtime by
15.6%. Caching schemes ZIP and SHA cut down the memory footprint by 73.99%
and 99.74% against the baseline; the domain-specific RCC further outperforms the
second-best SHA by 89.0%.

• We have made our implementation, benchmarks, and evaluation scripts publicly avail-
able for reproducibility and replicability at https://github.com/uw-pluverse/
perses

4
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Chapter 2

Preliminaries

2.1 Sequences

This section introduces preliminary knowledge about sequences, since, in the rest of the
thesis, a program is represented as a sequence of tokens.

Let Σ be a set of elements. A sequence is an ordered list of elements denoted as
p = 〈t1, t2, · · · , tn〉, where ti ∈ Σ, 1 ≤ i ≤ n, and i ∈ N. Notation-wise,

index p[i] denotes ti, the i-th element in p; i starts from 1.

size |p| denotes the number n of elements in p, which is also referred
to as the size of p.

slice p[i : j] (i ≤ j ≤ |p|+1) represents a sequence 〈ti, ti+1, · · · , tj−1〉,
a continuous slice of p starting from p[i] inclusively and ending
at p[j] exclusively.

concatenation given p1 = 〈t11, t12, · · · , t1m〉 and p2 = 〈t21, t22, · · · , t2n〉, p1 + p2
denotes the concatenation of p1 and p2, namely, p1 + p2 =
〈t11, t12, · · · , t1m, t21, t22, · · · , t2n〉.

equality p1 = p2 if |p1| = |p2| ∧ ∀i ∈ [1, |p1|]. p1[i] = p2[i]

Definition 2.1.1 (Subsequence). A sequence p1 = 〈t11, t12, · · · , t1m〉 is a subsequence of
another sequence p2 = 〈t21, t22, · · · , t2n〉 if and only if there exists integers 1 ≤ i1 < i2 < · · · <
im ≤ n where t11 = t2i1, t

1
2 = t2i2, · · · , t

1
m = t2im. Notation-wise, this relation is written as

p1 v p2.
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Example. 〈1, 5〉 v 〈1, 3, 5〉, and 〈11, 3, 5〉 v 〈11, 3, 5〉.

Definition 2.1.2 (Proper Subsequence). A sequence p1 is a proper subsequence of another
program p2 if and only if p1 v p2 ∧ |p1| < |p2|. Notation-wise, this relation is written as
p1 @ p2.

Example. 〈3〉 @ 〈1, 3, 5〉, and 〈1, 5〉 @ 〈1, 3, 5〉.

Lemma 2.1.1 (Transitivity). Given three sequences p1, p2 and p3, p1 v p2 ∧ p2 v p3 ⇒
p1 v p3; similarly, p1 @ p2 ∧ p2 @ p3 ⇒ p1 @ p3.

Example. Given that 〈1〉 @ 〈1, 3〉, and 〈1, 3〉 @ 〈0, 1, 2, 3〉, the transitivity of the proper
subsequence implies 〈1〉 @ 〈0, 1, 2, 3〉.

Definition 2.1.3 (Lexicographic Order). Given two sequences of numbers p1 and p2, p1 <
p2 if and only if p1 and p2 satisfy one of the following conditions.

• ∃i ∈ [1,min (|p1|, |p2|)]. p1[1 : i] = p2[1 : i] ∧ p1[i] < p2[i]

• |p1| < |p2| ∧ (p1 = p2[1 : |p1|+ 1])

Example. 〈1, 2, 3〉 < 〈1, 3, 3〉, and 〈1, 2〉 < 〈1, 2, 3〉

6



2.2 Program Reduction

In this thesis, a program is represented as a sequence of tokens, 〈t1, t2, · · · , tn〉, where ti
(1 ≤ i ≤ n) is a token. Given a program P with a property of interest, P denotes the
search space of all the possible variants derivable from P by deleting some tokens, that is,
∀p ∈ P : p v P . Let B = {true, false} and p ∈ P, then the property can be defined as a
function ψ(p) : P→ B, where

ψ(p) =

{
true if p exhibits the property
false otherwise

2.2.1 Deletion-Based Program Transformation

We use T to denotes a set of deletion-based program transformations. Formally, a deletion-
based program transformation τ ∈ T is defined as a function τ : P → P, which generates
a new program by removing tokens from the non-empty input program. Mathematically,
|p| > 0 ∧ p ∈ dom(τ)⇒ τ(p) @ p, where dom(τ) denotes the domain of τ , and p ∈ dom(τ)
implies that the program transformation τ is applicable on the program p.

In this thesis, we focus on deletion-based program transformations, because most state-
of-the-art program reduction algorithms only support this category of program transfor-
mations, such as Delta Debugging (DD) [43], Hierarchical Delta Debugging (HDD) [31],
Generalized Tree Reduction (GTR) [17], Chisel [16], and Perses [39].

One exception is C-Reduce which supports program transformations out of this cat-
egory [35]: For example, C-Reduce uses Clang [29] to inline function calls to reduce the
number of function definitions, which increases the size of variants. However, the number of
such program transformations is small, and the main program transformations supported
in C-Reduce are still deletion-based, e.g., DD and HDD.
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Algorithm 1: Conceptual Workflow of Program Reduction
Input: P : the program to be reduced.
Input: ψ : P→ B: the property of interest.
Output: A minimal program min ∈ P s.t. ψ(min)

1 T: a set of deletion-based program transformations defined in §2.2.1
2 min← P
3 while true do
4 prev← min
5 for τ ∈ T do
6 if min 6∈ dom(τ) then continue
7 p← τ(min)
8 if ψ(p) then min← p

9 if |prev| = |min| then return min

2.2.2 Program Reduction without Cache

Algorithm 1 lists the common, overall workflow of program reduction. Most language-
agnostic program reduction algorithms [43, 31, 37, 17, 39, 16] follow this workflow, as long
as these algorithms transform programs by deleting tokens. For example, DD, HDD, Perses,
and Chisel generate variants by deleting tokens, and all their concrete workflows can be
conceptually generalized to Algorithm 1, though the differences in determining what tokens
to delete are typically divergent between the aforementioned program reduction algorithms.
T on line 1 denotes an abstract set of deletion-based program transformations described
in §2.2.1. The concrete program transformations in T depend on the concrete program
reducer; e.g., Perses supports more types of deletion-based program transformations than
DD and HDD.

Note that the workflow in Algorithm 1 is widely applicable, even to C-Reduce if we
relax T to include non-deletion-based program transformations supported by C-Reduce.
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2.2.3 Program Reduction with String-Based Cache

Algorithm 2 presents a general workflow of program reduction with a string-based cache
(referred to as STR) enabled [19], where each variant is represented by its source code.
The major differences from Algorithm 1 are 1 the introduction of the variable cache on
line 3, 2 the presence test of p in cache on line 10, and 3 adding the program that fails
the property test to cache on line 12.

The major drawback with Algorithm 2 is the vast memory footprint induced by cache
because each program in cache is represented with its source code (viz., line 9). Given
that program reduction tools generate a vast number of variant programs and majority of
them fail the property test, cache is monotonically growing due to line 12. This problem
can be exacerbated when the program to be reduced is large. For example, to reduce
subject clang-27137 with 174,538 tokens in Table 5.2, STR requires 690 MB memory to
cache variant programs in Perses; due to differences in supported program transformations,
it requires considerably more memory in HDD, exhausts a memory heap of 44 GB, and
triggers an out-of-memory (OOM) error during program reduction.

Algorithm 2: Program Reduction with STR
Input: P : the program to be reduced.
Input: ψ : P→ B: the property of interest.
Output: A minimal program min ∈ P s.t. ψ(min)

1 T: a set of deletion-based program transformations defined in §2.2.1
2 min← P
3 cache← ∅
4 while true do
5 prev← min
6 for τ ∈ T do
7 if min 6∈ dom(τ) then continue
8 p← τ(min)
9 cache_key← a string which is the source code of p

10 if cache_key ∈ cache then continue // p has been tested before.
11 if ψ(p) then min← p
12 else cache = cache ∪ {cache_key} // p does not preserve ψ, and is thus

cached.

13 if |prev| = |min| then return min

9



Chapter 3

A Motivating Example

We illustrate how duplicate programs are generated during the program reduction process
with an example in Figure 3.1. This example includes one original program in Figure 3.1a,
and a property of interest that the program exits with zero returned. Figure 3.1b–3.1j
show nine variants sequentially generated in the program reduction process; note that the
program reduction process is greatly simplified for illustrative purposes from a real program
reduction process by Perses by ignoring the other less interesting generated variants.

Step 0: Initially, the minimal program min is the original input p0 in Figure 3.1a, and
this program exits with zero.

Step 1–3: Three variants as shown in Figure 3.1b, Figure 3.1c and Figure 3.1d are
generated from min by removing one or more statements, but none of them is semantically
valid w.r.t. the C language specification and thus not of interest. Note that the program
p3 in Figure 3.1d is generated for the first time, and will be repeatedly generated later.

Step 4: Another variant p4 is derived from min, and satisfies the property, and thus p4
becomes the new min. Any new variant in the future will be generated from p4.

Step 5, 6: Two variants p5 and p6 are generated from p4 by deleting one statement, but
neither of them satisfies the property. However, p5 is duplicate to p3, and this duplicate
incurs an unnecessary query to the property.

Step 7: The variant p7 in Figure 3.1h is generated from p4 by deleting two tokens a
and + from the return statement return a + 0;. This variant preserves the property and
becomes the new min.

Step 8: From the new minimal program p7, p8 as shown in Figure 3.1i is generated by
deleting the return statement, and this is the third time the same variant is generated.

10



Without caching, this variant issues another redundant query to the property.

Step 9: The variant p9 is generated by deleting the variable definition from p7, and this
is the final result of the program reduction.

In this example program reduction run, a program as shown in Figure 3.1d is generated
three times, and it requires three queries to the property of which two are redundant. As
mentioned in §1, queries to the property account for the majority of the program reduction
time. It will be desirable to eliminate such redundant queries to shorten the program
reduction time with memory efficient caching scheme, the focus of this thesis.

3.1 Caching Program Variants in Program Reduction

This section briefly describes how caching helps avoid redundant property queries, and how
ZIP, SHA, and RCC reduces memory footprint compared to Algorithm 2 [19].

STR. Algorithm 2 prevents redundant queries by saving the source code of the variants
that do not satisfy the property in cache. For example, p3 in Figure 3.1d is represented as
the following string by the encoding Algorithm 2.

“int main ( ) { int b = 9 ; return a + 0 ; }”

In Java, this string object takes up at least 86 bytes excluding the meta data added by
the Java Virtual Machine, i.e., 86 bytes from the 43 characters (a character in Java is two
bytes).

ZIP. To reduce the memory footprint of the trivial string representation, we exploit the
popular ZLIB library [13, 10], a lossless compression algorithm. It effectively compresses
the string representation into a byte array. For example, ZIP compresses p3 to a byte array
of 48 elements.

SHA. We investigate another popular, more aggressive but lossy compression technique,
hash algorithm. Specifically, the hash function SHA-512 produce a 512-bit digest from the
string representation [14, 23], e.g., SHA hashes p3 into a 512-bit digest (64 bytes) in Java.

RCC. By leveraging keen insights in program reduction, we propose a domain-specific
caching scheme RCC to efficiently avoid redundant property queries. In RCC, p3 is ever en-
coded as a compact representation, 〈1, 11, 21, 22〉, 〈1, 11, 16, 17〉 or 〈1, 11, 14, 15〉 throughout
the program reduction process.

11



The details of the encoding process will be introduced in §4.3.2. Intuitively, every two
integers in the array correspond to a continuous range of tokens in min. For example, in
〈1, 11, 21, 22〉, 1 and 11 refer to min[1 : 11]; 21 and 22 refers to min[21 : 22]. At any time
during program reduction, the cache key of p3 only occupies 16 bytes (4 ∗ 4, each int in
Java is 4-byte), compared to the 86 bytes by STR.

The other key feature of RCC is refreshable caching. RCC is able to determine whether
a variant will never be generated in the future. If yes, such a variant will be removed
from cache. For example, at the time when p4 in Figure 3.1e is being generated, cache =
{p1, p2, p3}; after p4 is tested to satisfy the property and set as min, RCC is able to ac-
curately predict that p2 will never be generated, and thus removes p2 from cache, which
makes cache = {p1, p3}.

3.2 Challenges of Caching Variants during Program Re-
duction

In practice, caching variants is usually complicated and challenging. Unfortunately, pro-
viding large programs as input to program reduction are rather common, as these pro-
grams are either collected from real-world software or generated by automated testing
techniques [2, 42, 26, 7].

When the initial program P is large, the total number of queries usually increases
considerably, and thus the difference in memory footprint between different caching schemes
can be amplified. For example, the subject clang-27137 in Table 5.2 has 173,538 tokens,
HDD issues as much as 720,875 queries. HDD with STR exhausts a memory heap of 44
GB, and eventually crashes with OOM. With ZIP, HDD successfully finishes the program
reduction process, consuming 18.7 GB of memory. Given the consistent digest size, SHA is
sensitive to the number of queries and requires 85.8 MB to reduce the subject. Exceedingly,
RCC demands only 4.4 MB at peak.
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1 int main() {
2 int a = 0;
3 int b = 9;
4 return a + 0;
5 }

(a) p0, ψ(p0) = true

1 int main() {
2
3
4
5 }

(b) p1, ψ(p1) = false

1 int main() {
2
3 int b = 9;
4 return a + 0;
5 }

(c) p2, ψ(p2) = false

1 int main() {
2 int a = 0;
3
4
5 }

(d) p3, ψ(p3) = false

1 int main() {
2 int a = 0;
3
4 return a + 0;
5 }

(e) p4, ψ(p4) = true

1 int main() {
2 int a = 0;
3
4
5 }

(f) p5, ψ(p5) = false

1 int main() {
2
3
4 return a + 0;
5 }

(g) p6, ψ(p6) = false

1 int main() {
2 int a = 0;
3
4 return 0;
5 }

(h) p7, ψ(p7) = true

1 int main() {
2 int a = 0;
3
4
5 }

(i) p8, ψ(p8) = false

1 int main() {
2
3
4 return 0;
5 }

(j) p9, ψ(p9) = true

Figure 3.1: An illustrative example of a program reduction process.
Figure (a) shows the original program, and the property of interest is that the program
returns zero. Figures (b)–(j) are nine variants sequentially generated during the program
reduction process. Figures (d), (f), and (i) with captions in blue show duplicate variants,
and Figures (a), (e), (h) and (j) with captions in lime show the minimal variants satisfying
the property.
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Chapter 4

Methodologies

This section details the design of the three caching schemes proposed in this thesis, namely
ZIP, SHA, and RCC. The main objective is to reduce the memory footprint of the program
representation without noticeable runtime overhead, such that each cache key is compact
in size within the cache. To the best knowledge of the authors, this is the first effort to
conduct systematic, extensive analysis of memory-efficient caching schemes to speed up
program reduction.

4.1 Lossless Compression: ZIP

Zip algorithm is a lossless compression technique representative, which effectively com-
presses data. ZLIB is a well-known, general-purpose lossless data compression library,
which is widely used across different platforms (e.g., Linux, macOS, and iOS) [13, 10].
The main algorithm, DEFLATE, is capable of compressing a variety of data with limited
system resources. Additionally, there is no theoretical limitation to the data size being
compressed.

ZIP cache scheme compresses the string representation of a variant program into a byte
array, which is then used as the cache key. Note that ZLIB provides controls to computing
resources, and we prefer better compression level for minimal memory footprint rather
than the speed of compression. And §5.3 shows that the runtime overhead of the way we
use ZLIB is practically negligible.
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4.2 Lossy Compression: SHA

Hash algorithm is an irreversible process of converting data into hash values of fixed length
(a.k.a., digest). The original data cannot be recovered; thus, hash algorithm is a lossy
compression technique. Hash algorithms are widely used in internet security and digital
certificates, but we are interested in applying it to the string representation of a variant
program.

We adopted SHA-512 over alternative hash functions for two main reasons. 1 Secure
hash algorithm (SHA) is well supported by available libraries and easy to deploy. 2
SHA512 provides the strongest guarantee of collision resilience, where different string inputs
are less likely to have the same digest [14, 23]. Note that even the collision chance is slim,
if hash collision ever occurs, it is possible for a program reducer to produce a different
program reduction result, which could be sub-optimal. SHA consistently compresses the
string representation of variant programs of different sizes into a 512-bit digest (64 bytes),
which is then used as the cache key.

4.3 Domain-Specific Compression: RCC

Finally, this section describes the design and algorithms of RCC, a novel, domain-specific,
memory-efficient caching scheme for program reduction. RCC includes two key concepts
compact encoding and refreshable caching, both of which are based on the following insights
neglected in the literature.1

Insight 1 At any time during program reduction, let min be the minimal program found at
that time (initially, min is P ), then any variant p that is generated later is a subsequence
of min, i.e., p @ min.

Insight 2 For any program p, s.t., p 6v min, p will never be generated later by any deletion-
based program transformation.

4.3.1 Overall Workflow with RCC

Algorithm 3 lists the general workflow of program reduction with RCC. Compared to
Algorithm 2, there are two major differences:

Compact Encoding as Cache Key. On line 9 Algorithm 3 calls CompactEncode

1These two insights are equivalent with the insights in §1, but are re-illustrated using the annotation
defined by us.
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Table 4.1: Examples of Encoding
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p3
• • • • • • • • • • •
Encoding = 〈1, 11, 21, 22〉

p4
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Encoding = 〈1, 11, 16, 22〉

(a) Encoding w.r.t. p0
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p1
• • • • • •
Encoding = 〈1, 6, 16, 17〉

p3
p5
• • • • • • • • • • •
Encoding = 〈1, 11, 16, 17〉

p6
• • • • • • • • • • •
Encoding = 〈1, 6, 11, 17〉

p7
• • • • • • • • • • • • • •
Encoding = 〈1, 12, 14, 17〉

(b) Encoding w.r.t. p4
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p1
• • • • • •
Encoding = 〈1, 6, 14, 15〉

p3
p5
p8

• • • • • • • • • • •
Encoding = 〈1, 11, 14, 15〉

p9
• • • • • • • • •
Encoding = 〈1, 6, 11, 15〉

(c) Encoding w.r.t. p7

These three tables show the encoding process with respect to base program p0, p4, and
p7 respectively. The first row is the indices starting from one, and the second row lists
the corresponding tokens of the min programs. A continuous region of bullets with
colored background shows the interval of the compact interval-based encoding. For
instance, p2 in (a) indicates that a variant, p2, is derived from p0 by deleting successive
nodes from 7 to 11, and the consecutive regions, marked with bullets, are encoded
with the starting and ending node indices. Therefore, the encoding of p2 w.r.t. p0 is
〈1, 7, 12, 22〉.

to convert a program p to a compact (memory-efficient), equivalent representation as the
cache key. CompactEncode takes as input not only p, but also min to compute this cache
key, whereas the vanilla program reduction with string-based cache in Algorithm 2 uses
the source code of p (a sequence of characters) as the cache key on line 9. The compact
encoding scheme of RCC uses much less memory than STR, which will be detailed in §4.3.2.

Refreshable Caching. Algorithm 3 refreshes cache on line 13 when a new minimal
program is found. The cache-refresh algorithm identifies programs that will not be gener-
ated afterward based on Theorem 4.3.2 and removes them from cache to reduce memory
footprint. In contrast, the size of STR in Algorithm 2 monotonically increases, and there-
fore STR usually consumes a large amount of memory.

4.3.2 Compact Encoding of Programs

Definition 4.3.1 (Interval-Based Encoding). Given the minimal program min as the base
program and a program p, s.t., p v min, a sequence e of integers is an interval-based encod-
ing of p w.r.t. the base program min, if and only if e satisfies all the following properties,
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1. e has an even number of elements

2. ∀i ∈ [1, |e|). e[i] < e[i+ 1]

3.
∑|e|/2

i=1 min[e[2i− 1] : e[2i]] = min[e[1] : e[2]] + · · ·+ min[e[|e| − 1] : e[|e|]]] = p

∑n
i=1 si = s1 + s2 + · · ·+ sn represents a sequence by concatenating s1, s2, · · · , and sn.

Definition 4.3.2 (Padding). Given an interval [a, b) where a < b, the function pad(a, b)
denotes a continuous sequence p=〈a, a + 1, · · · , b − 1〉 by padding the interval with the
missing numbers. Formally, a = p[1], b− 1 = p[|p|], and ∀i ∈ [1, |p|− 1].p[i] + 1 = p[i+ 1].

Example. Given an interval [1, 4), pad(1, 4) = 〈1, 2, 3〉.

Definition 4.3.3 (Encoding Expansion). Given an interval-based encoding e and i ∈
[1, |e|/2], the encoding expansion operator expand() applies pad() to every interval [e[2i−
1], e[2i]), namely,

expand(e) =

|e|/2∑
i=1

pad(e[2i− 1], e[2i]) = pad(e[1], e[2]) + · · ·+ pad(e[|e| − 1], e[|e|])

Example. Assuming a program has the interval-based encoding e = 〈1, 4, 6, 9〉, then
expand(e) = pad(1, 4) + pad(6, 9) = 〈1, 2, 3〉+ 〈6, 7, 8〉 = 〈1, 2, 3, 6, 7, 8〉.

Definition 4.3.4 (Canonical Encoding). Given the minimal program min, a program p,
and an interval-based encoding e of p w.r.t. min, e is canonical if and only if expand(e)
is lexicographically minimum among all interval-based encodings of p w.r.t. min, i.e., 6
∃e′. expand(e′) < expand(e). Note that expand(e′) < expand(e) is the lexicographic order
defined in definition 2.1.3

Example. Table 4.1 lists three sets of encodings w.r.t. three different base programs,
and Table 4.1a shows the compact encoding of four programs w.r.t. p0. We take p2 as
a concrete example to illustrate definition 4.3.1 and definition 4.3.4. In Table 4.1a, the
canonical interval-based encoding of p2 is a compact array e = 〈1, 7, 12, 22〉:

1. e has an even number of elements (i.e., |e| = 4).

2. the elements in e are sorted in ascending order.
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3. the concatenation of p0[e[1] : e[2]] and p0[e[3] : e[4]] equals p2, that is, p0[e[1] :
e[2]] + p0[e[3] : e[4]] = p0[1 : 7] + p0[12 : 22] = p2.

4. e is the canonical encoding by definition 4.3.4. There is no other interval-based
encoding e′ such that expand(e′) lexicographically less than expand(e).

Note that p2 is generated from p0 by deleting int a = 0; (i.e., deleting p0[6 : 11]
from p0), and we can obtain the following origin information: p2[1 : 6] from p0[1 :
6], and p2[6 : 17] from p0[11 : 22]. This origin information can also be encoded
as a compact array e′′ = 〈1, 6, 11, 22〉, which satisfies the interval-based encoding
in definition 4.3.1. However, e′′ is not the canonical encoding for p2 because of
expand(e) < expand(e′′).

4.3.3 Evolution of Encoding

We refer to the canonical interval-based encoding as compact encoding in the rest of the
thesis. Specifically, the compact encoding of a program p is computed over a base program
min. For different base programs, the same program can have different encodings. For
example, in Table 4.1a the encoding of p3 w.r.t. p0 is 〈1, 11, 21, 22〉, whereas in Table 4.1b
its encoding w.r.t. p4 is 〈1, 11, 16, 17〉 and the one w.r.t. p7 is 〈1, 11, 14, 15〉 in Table 4.1c.

The function CompactEncode in Algorithm 4 computes the compact encoding of p
w.r.t. min. Starting from line 5, it iterates through p from the head. For each element p[i],
CompactEncode locates the first element matching p[i] in min from the position min_index
on line 6∼line 8. Please note that CompactEncode has found the start of an interval (i.e.,
min_index on line 8). In the following line 9∼line 11, this function searches for the end of
the current interval by continuously advancing both i and min_index, until min_index has
reached the end of min or min[min_index]6=p[i] on line 9; when the loop exits, min_index
is the end of the current interval, and added to the compact encoding on line 12. Note that
the parameter p of CompactEncode is a proper subsequence of min, so CompactEncode
always returns a valid canonical interval-based encoding.

The function CompactDecode is straightforward, as it reconstructs the program p from
its compact encoding by interpreting definition 4.3.1, especially the third condition in the
definition, i.e.,

∑|e|/2
i=1 min[e[2i− 1] : e[2i]] = p.

Time Complexity. Both algorithms are linear in terms of time complexity. In par-
ticular, the time complexity of CompactEncode is O(|p| + |min|), and CompactDecode is
O(|encoding|+ |min|).
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4.3.4 Cache Refresh

Throughout the whole duration of program reduction, there is a continuously updated
minimal program min which satisfies ψ. Initially min is P ; the size of min is monotonically
decreasing, because all variants are generated from min (viz., line 8 in Algorithm 3) and
min is updated to the variant satisfying ψ on line 12 in Algorithm 3; in the end min is the
final result of program reduction. Based on the procedure above, we have the following
property of min.

Lemma 4.3.1 (Subsequence Relation of Minimal Programs). Let mini denote the minimal
program at time ti, and minj denote the minimal one at time tj, where mini 6= minj and
ti < tj. Then minj is a proper subsequence of mini, i.e., minj @ mini.

Proof. In Algorithm 3, each minimal program is derived from its previous minimal program
(viz., line 8 and line 12). Therefore, the history of values of min from mini to minj can be
represented as a sequence h = 〈mini,mini+1,mini+2, · · · ,minj〉, where ∀k ∈ [1, |h|) : h[k +
1] @ h[k]. Based on the transitivity property in lemma 2.1.1, we can prove minj @ mini.

Example. in the contrived program reduction process in Figure 3.1, min has four
values from the start of the program reduction till the end, i.e., p0, p4, p7 and p9. It is
trivial to see p9 @ p7 @ p4 @ p0.

Theorem 4.3.2 (Safety of Cache Refresh). Let min denote the minimal program at any
time t during a program reduction process. If p 6@ min, then p will never be generated by
any program transformation in T in the remainder of the program reduction process after
t.

Proof. Proof by contradiction. Assume p can be generated by τ ∈ T from the minimal
program min′ at time t′ (t′ > t), i.e., p = τ(min′). As τ is a program transformation
which deletes tokens from min′, we have p @ min′. Based on lemma 4.3.1, we know
min′ @ min. Based on the transitivity of the subsequence relation in lemma 2.1.1, we can
further conclude p @ min, which contradicts the condition p 6@ min in the theorem.

Again in Figure 3.1, right after p2 is generated and tested not to satisfy the property,
p2 is added to cache. But when the second min variant p4 is found, we see that p2 is not a
subsequence of p4, and according to Theorem 4.3.2, we can safely remove p2 from cache.
Moreover, we cannot compute a compact encoding for p2 w.r.t. either p4 or p7. This is also
why in Table 4.1, p2 only appears in Table 4.1a w.r.t. p0, but not in the other two tables.
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Algorithm 3: Program Reduction with RCC
Input: P : the program to be reduced.
Input: ψ : P→ B: the property of interest.
Output: A minimal program min ∈ P s.t. ψ(min)

1 T: a set of deletion-based program transformations defined in §2.2.1
2 min← P
3 cache← ∅
4 while true do
5 prev← min
6 for τ ∈ T do
7 if min 6∈ dom(τ) then continue
8 p← τ(min)
9 cache_key← CompactEncode(min, p)

10 if cache_key ∈ cache then continue
11 if ψ(p) then
12 min← p

// Refresh cache with the new minimal program.
13 cache← RefreshCache(cache, prev,min)
14 else cache← cache ∪ {cache_key}
15 if |prev| = |min| then return min

16 Function RefreshCache(old_cache, prev, min):
Input: old_cache: the cache used previously
Input: prev: the previous min
Input: min: the current/new min

17 cache← ∅
18 for encoding ∈ old_cache do
19 p′ ← CompactDecode(prev, encoding)
20 if p′ 6@ min then continue
21 cache← cache ∪ {CompactEncode(min, p′)}
22 return cache
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Algorithm 4: Compact Encoding and Decoding
1 Function CompactEncode(min, p):

Input: min: a program, s.t., p @ min
Input: p: a program to compute an encoding for.
Output: The canonical, compact encoding of p w.r.t. min

2 result← []
3 min_index← 0
4 i← 0
5 while i < |p| do

// scan for the start of the next interval.
6 while min[min_index] 6= p[i] do
7 min_index← min_index + 1

8 result← result + [min_index]
// scan for the exclusive end of the next interval.

9 while min_index ≤ |min| ∧min[min_index] = p[i] do
10 min_index← min_index + 1
11 i← i+ 1

12 result← result + [min_index]

13 return result

14 Function CompactDecode(min, encoding):
Input: min: a program
Input: encoding : a canonical, compact encoding of a program p w.r.t. min
Output: p: the program of which encoding is w.r.t. min

15 p← []
16 for i← 1 to |encoding|/2 do
17 start← encoding[2 ∗ i− 1]
18 end← encoding[2 ∗ i]
19 p← p+ min[start : end]

20 return p
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Chapter 5

Evaluation

We conducted comprehensive evaluations to demonstrate the advantages of the proposed
caching schemes in the following aspects: 1 memory efficiency, 2 effectiveness in speed-
ing up program reduction, and 3 generality to work with different program reduction
algorithms. We have also conducted ablation experiments to investigate the effect of the
two main components of RCC: compact encoding and cache refreshing.

5.1 Experiment Design

5.1.1 Baseline

Our baseline is the string-based caching (STR) algorithm discussed in §2.2.3, the state of
the art [19]. To validate the generality, we implemented the proposed caching schemes
(ZIP, SHA, and RCC) on top of DD, HDD and Perses, state-of-the-art program reduction
algorithms. However, our evaluations mainly focus on HDD and Perses, as they are effective
for reducing structured inputs whereas DD is not [19].

5.1.2 Research Questions

We aim to answer the following research questions in our evaluation.

RQ1 (Memory Efficiency): Which caching scheme demonstrates the best memory effi-
ciency in program reduction?
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We measure and compare the memory footprint of STR, ZIP, SHA, and RCC in HDD
and Perses. Concretely, for each caching scheme, we measure the peak memory footprint
as the worst-case space complexity, and we also profile the history of memory consumption
over time to reveal the trend of memory consumption and the scalability.

RQ2 (Program Reduction Efficiency): Which caching scheme offers the most speedup
in program reduction?

We run HDD and Perses without caching or with different caching schemes on the
benchmark and measure time and the number of queries. We then particularly compare
the program reduction runs without caching to those with caching in terms of program
reduction efficiency (i.e., number of queries and reduction time). Moreover, by comparing
the number of queries using STR and RCC, we can also validate the safety of cache refresh-
ing in RCC, i.e., none of the removed entries in RCC will be generated in the subsequent
program reduction process.

RQ3 (Effect of Compact Encoding and Refreshable Caching): How do compact
encoding and refreshable caching in RCC affect the memory efficiency?

To study compact caching, the lossless, domain specific compression technique in RCC,
we implement CC scheme by disabling cache refreshing in RCC on top of Perses. We then
compare Perses+CC against other schemes to contrast the effect of compact encoding.

We implemented Perses+RSTR by adding cache refreshing to STR, and then plot the
memory consumption over time to observe the memory footprint changes before and after
cache refreshing events.

5.1.3 Evaluation Settings

Benchmark Suite. To reassemble a realistic workload for program reduction algo-
rithms, we use the benchmark suite collected by Perses [39], which is also used in Chisel [16].
It consists of 20 subjects, each of which is a large C program that triggers a bug in a stable
compiler release. These programs have 94,486 tokens on average, and triggers either a crash
or miscompilation bug in compilers. The sizes of subjects and the diverse types of bugs
make sure that this benchmark is representative of real-world use scenarios of program
reductions.

Experiment Environment. All experiments were carried out on a desktop running
Ubuntu 20.04 LTS with an AMD Ryzen 5 3600 CPU and 48 GB RAM. The heap size of
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the JVM was limited to 44 GB.

Cache Profiling. We used ObjectExplorer [1] to measure the memory footprint of
the cache object. Since memory profiling is time-consuming and can introduce overhead,
we conducted evaluations of memory footprint and time measurement in separate runs.

5.2 RQ1: Memory Efficiency

We study the memory efficiency in two aspects. 1 we measure the peak memory footprint
of different caching schemes to investigate their worst-case space complexity. 2 we study
the scalability w.r.t. to the size of input programs to evaluate which scheme has better
scalability when the input size increases.

5.2.1 Memory Footprint

Table 5.1 shows the peak cache size in Kilobytes (a.k.a., the memory consumption/footprint
of caching) of different caching schemes in HDD and Perses.

Memory Footprint in HDD. All proposed caching schemes outperform the state-of-
the-art STR scheme (shown in Table 5.1). RCC demonstrates the best memory efficiency
by reducing the peak memory footprint by 99.97%. On average, the peak cache size of
HDD+RCC is minimal, around 4.4 MB (as shown in column 5), compared to HDD+STR,
which requires 15.17 GB (in column 2). SHA is the second best alternative scheme, requir-
ing 39.8 MB on average. Although ZIP reduces the memory footprint by 73.99%, it still
consumes 3.95 GB on average.

Note that HDD+STR even exhausts the entire heap of 44 GB and triggers OOM on
three subjects, clang-27137, gcc-70127 and gcc-70586. We exclude the three subjects when
computing the mean, and standard deviation for HDD+STR; thus, the actual statistical
numbers of memory footprint in HDD+STR are expected to be much larger. The three
proposed caching scheme with different level of compression successfully carry out the
program reduction process for all 20 subjects without OOM.

Memory Footprint in Perses. A similar pattern can be observed in the Perses
implementation (Table 5.1). With an average cache size of 3.84 MB (in column 9),
Perses+RCC outperforms Perses+STR by 97.96% in terms of memory consumption, fol-
lowed by Perses+SHA (4.3 MB) and Perses+ZIP (35.2 MB).
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Table 5.1: Peak Cache Size (KB) in HDD and Perses

Bug HDD Perses
STR ZIP SHA RCC STR ZIP SHA RCC

clang-22382 3,278,569 1,400,121 30,829 3,827 41,926 11,141 3,795 3,206
clang-22704 26,982,067 4,037,096 27,572 4,481 284,370 49,637 4,206 4,516
clang-23309 12,831,908 2,947,573 49,323 5,375 109,749 24,942 4,062 3,347
clang-23353 9,143,238 1,786,036 48,802 3,864 74,954 16,710 3,779 3,279
clang-25900 11,553,691 1,714,629 35,341 4,119 118,617 24,318 4,041 3,667
clang-26350 29,939,211 6,681,769 39,560 4,235 296,302 57,797 4,349 4,028
clang-26760 27,427,226 4,192,774 24,399 4,581 242,213 38,225 4,428 4,717
clang-27137 OOM 18,782,150 85,814 4,441 690,371 128,146 4,933 4,434
clang-27747 1,098,357 244,044 14,459 4,438 28,818 8,917 4,363 4,428
clang-31259 11,920,068 2,025,703 42,355 4,203 90,520 19,864 3,991 3,423
gcc-59903 13,980,675 2,001,552 39,958 4,165 156,417 26,736 4,356 3,498
gcc-60116 8,240,990 1,192,748 40,805 4,549 153,262 28,290 4,467 3,640
gcc-61383 8,927,198 1,488,463 38,577 4,245 83,359 18,278 4,164 3,297
gcc-61917 15,998,852 1,918,573 30,704 4,084 143,610 20,566 4,220 3,721
gcc-64990 39,418,193 3,900,152 36,634 4,339 273,912 32,631 4,395 4,225
gcc-65383 10,018,352 2,046,879 33,274 3,962 76,970 17,604 3,821 3,389
gcc-66186 10,166,856 1,452,940 35,734 4,258 75,912 15,498 4,102 3,418
gcc-66375 16,918,375 3,311,742 44,542 5,035 119,537 34,692 4,212 3,562
gcc-70127 OOM 6,948,302 48,285 4,362 270,622 46,075 4,493 4,276
gcc-70586 OOM 10,837,910 48,842 4,592 439,516 83,440 5,040 4,736

Mean 15,167,284 3,945,558 39,790 4,358 188,548 35,175 4,261 3,840
%Diff. w.r.t. STR 0% 73.99% 99.74% 99.97% 0% 81.34% 97.74% 97.94%
Ratio w.r.t. RCC 3480.5 905.4 9.1 1.0 49.1 9.2 1.1 1.0

1 OOM: The statistics of HDD+STR excludes the three subjects with Out-of-Memory Error
2 %Diff. w.r.t. STR : (STR− [Caching Scheme])÷ STR× 100%.
3 Ratio w.r.t. RCC : [Caching Scheme]÷ RCC.

Note that there is a considerable difference in the average memory footprint between
Perses+STR (188.5 MB) and HDD+STR (15.2 GB). The reason is that Perses generates
much fewer variants than HDD during the program reduction and thus fewer queries [39].
Since the cache size in STR is proportional to the number of generated variants, the cache
in Perses with fewer queries is much smaller than that of HDD.

Memory Footprint over Time. Figure 5.1 visualizes the history of memory con-
sumption of caching schemes in Perses over time on gcc-70586 (the subject with the most
tokens, i.e., 212,159). It depicts that STR demands a significant, increasing amount of
memory over 400 MB; ZIP manages to operate under 100 MB, while SHA and RCC require
only a fraction of the memory consumption.
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As a program reduction process progresses, RCC continuously uses less memory,
whereas other schemes monotonically use more memory over time. The reason is that
RCC periodically removes elements from the cache based on Theorem 4.3.2, while peer
schemes have no cache refreshing capability.

0 2000 4000 6000 8000
Time (s)

0

100

200

300

400

C
ac

he
 S

iz
e 

(M
B

)

Perses+ZIP
Perses+STR
Perses+RCC
Perses+SHA

(a) Overview

0 2000 4000 6000 8000
Time (s)

3.0

3.5

4.0

4.5

5.0

C
ac

he
 S

iz
e 

(M
B

)

Perses+RCC
Perses+SHA

(b) Zoom-in details

Figure 5.1: Memory Consumption over Time on subject gcc-70586.
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Figure 5.2: Peak cache size in log scale (y-axis) v.s. input program size (x-axis) on 20
subjects in HDD and Perses.
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5.2.2 Scalability

We study the scalability of different caching schemes by analyzing the correlation between
the memory footprint and the size (i.e., number of tokens) of programs.

Figure 5.2a and Figure 5.2b plot the peak cache size of proposed caching schemes
and the baseline w.r.t. the size of programs in HDD and Perses, respectively. With the
information on program sizes in columns 1 and 2 in Table 5.2, we rearranged all the 20
subjects in the ascending order of the number of tokens and plotted the corresponding
cache size in log scale. A positive slope indicates a caching scheme requires more memory
when the size of input programs increases. STR and ZIP demands more memory when the
size of input programs increase; thus, they are more sensitive to the input size changes.
SHA with constant 512-bit cache keys has a relative flat curve, but it is subjected to the
cache entry accumulation issue as shown in Table 5.1. Lastly, RCC is more scalable; the
cache size barely increases when the input program size scales up (e.g., 10 folds, from
21,068 to 212,259 tokens).

Table 5.1 alone also demonstrates that RCC has better scalability than alternative
schemes. For instance, for all 20 subjects, HDD+RCC consumes a stable amount of mem-
ory between 3.83 MB and 5.03 MB. On the other hand, we observe alternative schemes
consume considerably more memory when reducing large subjects. For HDD+STR, the
cache size varies from 3 GB to more than 40 GB; for the largest subjects, the experiment
script crashes due to memory limitations. We also observe a fluctuation from 244 MB to
18 GB and from 14 MB to 85 MB in HDD+ZIP and HDD+SHA respectively.

Answer to RQ1: While all proposed caching schemes improves the memory
efficiency, RCC outperforms alternative schemes, with minimal memory footprint
and the best scalability. Compared to STR, it reduces the peak memory footprint
by 99.97% and 97.96% in HDD and Perses respectively. Although RCC is effortless
to implement, if using existing approaches, SHA provides competitive performance.
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Table 5.2: Program Reduction Efficiency Comparison in HDD.

HDD
Original No Caching CachingBug
Tokens Query Time Rt Query STR ZIP SHA RCC Rt

clang-22382 21,068 277,875 7,447 194 104,365 4,311 4,882 4,391 4,247 194
clang-22704 184,444 187,756 9,454 81 71,332 7,510 8,522 7,553 7,526 81
clang-23309 38,647 425,270 21,869 1,035 170,858 15,416 18,526 15,590 15,284 1,035
clang-23353 30,196 369,429 13,219 143 140,689 8,848 10,309 9,275 8,780 143
clang-25900 78,960 304,086 11,063 462 110,807 7,736 8,854 7,652 7,546 462
clang-26350 123,811 349,363 42,556 429 128,894 38,450 44,248 38,757 38,247 429
clang-26760 209,577 198,665 18,283 303 69,616 16,634 18,331 16,640 16,037 303
clang-27137 174,538 720,875 161,203 531 263,615 OOM 164,175 156,042 151,565 531
clang-27747 173,840 88,391 2,852 332 34,949 1,954 2,133 1,883 1,807 332
clang-31259 48,799 331,105 18,824 590 123,879 13,798 15,284 13,853 13,590 590
gcc-59903 57,581 300,152 13,961 582 115,782 11,078 11,644 11,071 10,596 582
gcc-60116 75,224 301,551 13,876 1,304 118,644 10,155 10,777 10,135 9,968 1,304
gcc-61383 32,449 287,983 12,616 427 111,117 9,406 10,341 9,291 9,048 427
gcc-61917 85,359 235,201 11,735 232 88,062 8,976 10,092 9,126 8,648 232
gcc-64990 148,931 276,496 28,262 410 104,233 26,236 26,987 25,065 24,355 410
gcc-65383 43,942 255,674 10,217 236 96,766 7,069 8,288 7,455 7,158 236
gcc-66186 47,481 271,593 17,055 713 101,520 12,051 13,473 12,668 12,546 713
gcc-66375 65,488 353,516 30,988 856 131,267 23,254 25,636 23,431 22,916 856
gcc-70127 154,816 397,070 64,905 669 143,913 OOM 60,259 57,852 55,910 669
gcc-70586 212,259 374,272 68,442 967 145,284 OOM 69,216 63,133 62,670 967

Mean 100,371 315,316 28,941 525 118,780 13,111 27,099 25,043 24,422 525
1 All time is measured in seconds. Columns STR, ZIP, SHA, RCC show the reduction time(in seconds).
2 Rt is the number of tokens after reduction.

5.3 RQ2: Program Reduction Efficiency

We evaluated the program reduction efficiency of the proposed caching schemes by mea-
suring the number of queries, reduction time, and the number of tokens before and after
program reduction. Table 5.2 and Table 5.3 show the information on both queries and
reduction time of different caching schemes in HDD and Perses. At a glance, the reduced
programs have the exact same number tokens with or without caching (comparing column
5 to column 11); it implies the caching is effective and does not change the behavior of
reducers.
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Table 5.3: Program Reduction Efficiency Comparison in Perses.

Perses
Bug Original No Caching Caching

Tokens Query Time Rt Query STR ZIP SHA RCC Rt

clang-22382 21,068 2,803 459 144 2,315 429 440 427 425 144
clang-22704 184,444 2,276 1,103 78 1,792 1,034 1,060 1,027 1,030 78
clang-23309 38,647 5,967 2,068 473 4,123 1,810 1,860 1,819 1,795 473
clang-23353 30,196 2,754 519 98 2,282 491 503 495 493 98
clang-25900 78,960 2,600 943 248 2,108 898 926 877 898 248
clang-26350 123,811 4,511 4,431 267 3,451 4,135 4,340 4,102 4,131 267
clang-26760 209,577 2,267 1,858 97 1,827 1,814 1,921 1,795 1,788 97
clang-27137 174,538 6,036 9,991 180 4,914 9,456 9,773 9,410 9,349 180
clang-27747 173,840 1,970 710 117 1,555 632 629 630 625 117
clang-31259 48,799 3,214 2,242 406 2,198 1,503 1,511 1,484 1,485 406
gcc-59903 57,581 4,825 3,223 174 3,854 2,991 3,126 2,994 2,975 174
gcc-60116 75,224 6,383 2,753 453 4,410 2,209 2,331 2,229 2,210 453
gcc-61383 32,449 4,338 2,045 497 3,303 1,812 1,854 1,789 1,780 497
gcc-61917 85,359 3,583 1,458 150 2,792 1,417 1,473 1,407 1,369 150
gcc-64990 148,931 3,573 2,219 269 2,649 1,942 2,188 1,990 1,926 269
gcc-65383 43,942 2,658 1,135 143 2,151 1,063 1,079 1,002 1,031 143
gcc-66186 47,481 3,755 2,885 328 2,927 2,037 2,346 2,029 2,013 328
gcc-66375 65,488 4,522 4,174 440 2,918 2,873 2,968 2,875 2,859 440
gcc-70127 154,816 3,106 4,177 301 2,507 3,472 3,583 3,426 3,430 301
gcc-70586 212,259 5,111 6,843 241 4,167 6,062 6,216 6,016 5,992 241

Mean 100,371 3,813 2,762 255 2,912 2,404 2,506 2,391 2,380 255
1 All time is measured in seconds. Columns STR, ZIP, SHA, RCC show the reduction time(in
seconds).

2 Rt is the number of tokens after reduction.
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5.3.1 Number of Queries

In program reduction, it may take considerable time to execute a property query and a
typical program reduction process can have thousands of queries. Thus, it is common to
use the number of queries to measure the program reduction efficiency [43, 31, 17, 39].
In this section, we aim to study whether the proposed schemes can effectively avoid the
redundant queries in program reductions.

As aforementioned, program reducers like HDD and Perses issue redundant queries. As
per numbers in Table 5.2, caching effectively reduces the number of queries issued in HDD
by 62.3% from 315,316 (column 3) to 118,780 (column 6). In Perses, caching only issues
2912 (column 6) queries compared to 3813 (column 3) by Perses alone. In conclusion,
caching is effective in reducing the number of queries in HDD and Perses.

Notice that STR, ZIP, SHA and RCC issue the same number of queries in both HDD
and Perses in Table 5.3; this consistency reveals the correctness of each scheme. It is worth
noting that RCC will not cause extra queries even though it refreshes the cache periodically.
This result confirms the safety of cache refreshing in RCC, i.e., the removed programs will
not be generated in the remaining program reduction process, formally proved in §4.3.4.

5.3.2 Reduction Time

Time is another important metrics to measure the efficiency of cache scheme in program
reductions. Among three proposed caching schemes and STR scheme, RCC offers the
most speedup in runtime performance (shown in Table 5.2 and Table 5.3). Comparing it
to program reduction without caching, RCC results in 15.6% faster program reduction in
HDD and 13.8% in Perses. Specifically, the average reduction time in HDD without caching
is approximately 8 hours (28,941 seconds in column 4, Table 5.2), while RCC shortens the
average reduction time to around 6.7 hours (24,422 seconds). Such an improvement in
efficiency will facilitate the debugging process and save the time and computation resources
for software developers.

Additionally, RCC manages to outperform alternative schemes in terms of reduction
time. Besides the three subjects with OOMs, HDD+RCC is 2.1% faster than HDD+STR
on available subject data. Using generic compression library, HDD+ZIP and HDD+SHA
requires additional 2,677 and 621 seconds on average to complete the program reduction
process. We notice that ZIP runtime performance is slower than STR on available subjects
due to the lossless compression process. In Perses, the performance of RCC and SHA is
comparable, but RCC still surpasses the baseline method STR by a small fraction (1%).
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Answer to RQ2: All caching schemes are equally effective in avoiding redundant
queries, by 62.3% in HDD and 23.6% in Perses. The domain-specific RCC is the
fastest and shortens the reduction time by 15.6% in HDD and 13.8% in Perses. The
results also confirmed the safety of refreshable cache, i.e., Theorem 4.3.2. Again,
SHA is a strong alternative caching scheme, especially for program reducers gener-
ating fewer variants than HDD, such as Perses.
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Figure 5.3: Memory Consumption over Time on subject gcc-70586.
Figure 5.3a compares on memory consumption over Time on subject gcc-70586.

Figure 5.3b shows a zoomed-in view by omitting Perses+STR.

5.4 RQ3: Effects of Compact Encoding and Cache Re-
freshing

To understand the individual effect of compact encoding and refreshable caching in RCC,
we conducted the following ablation study.

Compact Encoding. We constructed a variant caching scheme, CC, in Perses and
measured its peak cache size during the program reduction process (column 2 in Table 5.4).
Perses+CC is a variant of Perses+STR by replacing the string-based encoding with the
compact encoding proposed by us. It can also be viewed as a variant of Perses+RCC by
disabling the cache refreshing. The programs added into the cache will never be removed,
and the encoding of each program is always computed w.r.t. the input program.
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Table 5.4: Peak Cache Size (KB) of CC and RSTR

Peak Cache Size in Perses
Bug STR RSTR CC RCC

clang-22382 41,926 5,108 3,888 3,206
clang-22704 284,370 51,777 4,993 4,516
clang-23309 109,749 8,390 5,337 3,347
clang-23353 74,954 11,740 3,799 3,279
clang-25900 118,617 14,944 4,112 3,667
clang-26350 296,302 24,543 6,062 4,028
clang-26760 242,213 30,411 5,226 4,717
clang-27137 690,371 43,355 7,882 4,434
clang-27747 28,818 12,172 4,837 4,428
clang-31259 90,520 32,214 4,079 3,423
gcc-59903 156,417 19,913 5,373 3,498
gcc-60116 153,262 40,379 5,676 3,640
gcc-61383 83,359 7,128 4,759 3,297
gcc-61917 143,610 19,628 4,748 3,721
gcc-64990 273,912 53,883 5,503 4,225
gcc-65383 76,970 10,161 3,893 3,389
gcc-66186 75,912 7,942 4,275 3,418
gcc-66375 119,537 9,507 4,730 3,562
gcc-70127 270,622 22,655 5,156 4,276
gcc-70586 439,516 35,831 7,087 4,736

Mean 188,548 23,084 5,071 3,840
%Diff. w.r.t. STR 0.00% 90.31% 99.34% 97.94%
Ratio w.r.t. RCC 49.1 6.0 1.3 1.0

1 %Diff. w.r.t. STR : (STR− [Caching Scheme])÷STR× 100%.
2 Ratio w.r.t. RCC : [Caching Scheme]÷ RCC.

Compact encoding leads to a minimal peak cache size. Figure 5.3a shows the memory
consumption of Perses+CC is only a fraction of Perses+STR. Perses+CC considerably re-
duces the memory footprint (97.3% averagely). However, as shown in Figure 5.3b, without
cache refreshing, the memory footprint of Perses+CC accumulates over time and increases
from less than 5 MB to 7 MB eventually. In other words, the Compact Encoding is an
effective compression technique that can reduce the size of cache, while it cannot prevent
the increase of the cache size over time.

Refreshable Caching. Similarly, we constructed a variant caching scheme,
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Perses+RSTR (see column 3 in Table 5.4) by adding cache refreshing capability to
Perses+STR. Instead of storing the string of the source code as the cache key to the
cache, we choose to add the list of program tokens, so that Perses+RSTR can restore these
variants from the cache keys and perform cache refreshing effectively.

Figure 5.3a illustrates the effect of cache refreshing by comparing Perses+RSTR with
Perses+STR. As unnecessary entries in the cache are removed when new min programs
are found, Perses+RSTR effectively reduces the peak cache size by 87.8% on average when
compared to Perses+STR. In summary, refreshable cache ensures that the cache contains
only the necessary elements during the program reduction process, resulting in relatively
small memory footprint. However, since the entry of RSTR is in the form of strings,
instead of compact encoding, the entire cache size is much larger than RCC, especially at
the beginning of program reduction process.

Answer to RQ3: Both compact encoding and cache refreshing are effective in
improving memory efficiency. Compact encoding minimizes the memory footprint
of each cache key, and cache refreshing removes stale cache keys in time to further
minimize the whole memory footprint of the cache.
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Chapter 6

Discussion

6.1 Caching for Delta Debugging

We also studied the impact of caching on DD. But DD is not as good at reducing structured
inputs, e.g., programs, as HDD and Perses; it issues more queries and takes much more
time to reduce a benchmark subject. Due to time limits, we could only finish a similar
experiment on one small subject, gcc-71626 (6,133 tokens). Table 6.1 shows the statistics.

Without caching, DD issues more than five millions queries and takes 21 hours to find
the 1-minimal output. With RCC, DD only issued 1.5 millions queries, which is 73.0%
improvement. The overall time is considerably reduced to around seven hours, which is
66.4% faster. Further, RCC outmatches STR in DD in terms of time and memory footprint.
Compared to STR (17.7 GB), RCC takes only 3.9 MB. This result further demonstrates
that RCC is a general approach for deletion-based program reduction algorithms.

Table 6.1: Comparison of STR and RCC on DD.

DD DD+STR DD+RCC

Query 5,477,887 1,480,695 1,480,695
Time (s) 76,241 26,722 25,648

Cache Size (KB) N/A 17,692,758 3,883
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6.2 Sized-Based Refreshing

An alternative cache-refresh algorithm for RCC is to record the size of each variant program
and remove any programs of which the sizes are equal to or larger than min from cache.
This is because the program reduction process starting from min will not generate any
variant programs that are larger in size than min. We refer to this alternative as size-based
refreshing and name the implementation as RCCsize. Algorithm 5 details the sized-based
refreshing in RCCsize. On line 5, RCCsize compares the size of program p with the size of
min and only keeps the programs of which the sizes are smaller than than min.

Algorithm 5: Size-Based Refreshing in RCCsize

1 Function SizeBasedRefreshCache(old_cache, prev, min):
Input: old_cache: the cache used previously
Input: prev: the previous min
Input: min: the current/new min

2 cache← ∅
3 for encoding ∈ old_cache do
4 p′ ← CompactDecode(prev, encoding)
5 if |p′| ≥ |min| then continue
6 cache← cache ∪ {CompactEncode(min, p′)}
7 return cache

Conceptually, the cache entries evicted by RCC are a superset of those by RCCsize,
because |p′| ≥ |min| is just one of the multiple sufficient conditions for p′ 6@ min. Specifically,
RCC removes the variant program entries from cache that cannot be derived from min in
the rest of the program reduction process; this process removes not only all the programs
that have equal or larger size than min, but also any programs that have smaller sizes than
min and are not proper subsequences of min.

To demonstrate the benefit of RCC over RCCsize, Figure 6.1 shows the memory footprint
and the cache entry count on subject clang-26760 in HDD and Perses. In terms of memory
footprint, the gap between RCC and RCCsize widens over time, especially towards the
end of the program reduction process. As for the cache key count, RCC constantly has
noticeably fewer cache key entries than RCCsize throughout the process in both HDD and
Perses. RCC removes more cache key entries and only has approximately 40% fewer entries
than RCCsize in HDD. Furthermore, size-based refreshing appears less effective in removing
cache key entries when the size of min is small, since the cache key entry count soars near
the end of the process in both HDD and Perses.
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Figure 6.1: Comparison between RCC and RCCsize in terms of Memory Footprint (Line)
and Cache Key Count (Area) over Time on subject clang-26760.

6.3 Threats to Validity

The subjects used in our benchmark suite may not cover all possible programming lan-
guages and bugs for program reduction. To mitigate it, we followed the previous studies in
program reduction [35, 24, 39] and used the same benchmark in the previous study in pro-
gram reduction [39]. The benchmark suite contains 20 C compiler bugs that are collected
from real bugs in GCC and LLVM repositories, which consists of programs that are the
common size of automatically generated files via fuzzing techniques such as CSmith [42]
and EMI [25]. These bugs cover both medium-scale and large-scale compiler bugs. Further-
more, the proposed caching schemes have no assumption on the language of the program
to be reduced and does not have any language-specific optimizations. Even though we used
the C/C++ programs in the evaluation, ZIP, SHA and RCC are general caching schemes
that can be used in the program reduction of other programming languages.
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Chapter 7

Related Work

We survey three lines of the closely related work.

7.1 Caching in Program Reduction

Hodován et al. [19] is the first literature on program reduction that formally presented the
idea of test outcome caching. Based on the observation that the different configuration
yields the same variant from time to time during the process, it leveraged the string-based
caching approach to store the pairs of the current best programs and their correspond-
ing test outcomes. Similarly, C-Reduce, a highly customized program reduction tool for
C/C++, employed a simple string-based cache approach at the level of passes to store the
entire current best program [35].

As we discussed and evaluated in previous sections, STR scheme has larger overheads
and poor scalability. In contrast, ZIP and SHA are memory-efficient; especially, RCC
presents a fresh way for efficient caching while offering enormous scaling potential.

7.2 General Caching Algorithms

Caching is widely applied to software systems [30, 5, 27], e.g., caching contents in networks
for better user experience. In general, an application stores either prefetched data or pre-
computed results into a cache to facilitate the execution. To be cost-effective and to enable
efficient use of data, caches must be relatively small [15]. The general caching algorithm
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leverages the locality of references, because temporal and spatial locality hint the likelihood
of data to be accessed next. When the cache is full, the algorithm must choose which items
to discard to make room for new ones; cache eviction algorithms aim to keep the cache a
constant, compact size. Classical algorithms include LRU [20, 32] and MRU [8, 9].

In the setting of program reduction, locality of references does not work well because
temporal locality rarely shows in program reduction. Furthermore, given the negligible
memory overhead of RCC, a program reduction algorithm equipped with RCC does not
need the classical cache eviction algorithms such as LRU and MRU to mitigate memory
overhead.

7.3 Optimization for Program Reduction

There have been a great number of program reduction techniques proposed in the literature
[18, 24, 17, 39, 43, 4, 41, 40]. Besides the cache, researchers also proposed other methods
to improve the performance of program reduction in diverse ways. For example, Hodován
et al. [19] proposed two optimization techniques as the pre-processing, including vertical
tree squeezing and unresolvable tokens hiding, in order to speed up program reduction.
Kalhauge et al. introduced J-Reduce for Java bytecode reduction [21], and recently they
further reduced bytecode propositional logic [22].

All proposed caching schemes belong to the same category of performance optimization
of program reduction. They provides a memory-efficient cache for program reduction,
which is orthogonal to other optimization techniques.
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Chapter 8

Conclusion

This thesis is the first effort to conduct systematic, extensive analysis of memory-efficient
caching schemes for program reduction. We introduce three effective schemes; two exploit
readily available compression libraries, namely ZIP and SHA. We also present a novel,
domain-specific caching scheme RCC to empower program reduction by compact encoding
and refreshable caching. Our evaluation on 20 real-world C compiler bugs demonstrates
that caching schemes help avoid issuing redundant queries by 62.3% and boost the runtime
performance by 15.6%. For memory efficiency, caching schemes ZIP (using 3.95 GB on aver-
age) and SHA (39.8 MB) cut down the memory overhead by 73.99% and 99.74%, compared
to the state-of-the-art STR (15.17 GB); furthermore, the highly-scalable, domain-specific
RCC (4.4 MB) dominates peer schemes, and outperforms the second-best SHA by 89.0%.
As generic, language-agnostic caching schemes, ZIP, SHA and RCC are readily applicable to
program reduction techniques and facilitate the program reduction. The implementation of
all caching schemes is publicly available at https://github.com/uw-pluverse/perses.
Moreover, RCC has been enabled by default in Perses, because of its efficiency and advan-
tageously low memory footprint compared to the others.
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