

Deep Learning-Enabled Cerebrovascular Reactivity Processing Software

by

Yashesh Dasari

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Mechanical and Mechatronics Engineering

Waterloo, Ontario, Canada, 2022

© Yashesh Dasari 2022

 ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any

required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

 iii

Abstract

Magnetic Resonance Imaging (MRI) is a non-invasive medical imaging technique that is used to

generate high-resolution images of the brain. Blood oxygenation level dependent (BOLD) imaging is

a functional MRI technique that maps the differences in cerebral blood flow (CBF). Cerebrovascular

Reactivity (CVR) is a provocative test used with BOLD-MRI studies where a vasoactive stimulus is

applied and the corresponding changes in the CBF differences are analyzed. This test is analogous to

a cardiac stress test where the patient exercises and the change in heart blood flow are observed.

CVR is measured as the ratio of the change in BOLD signals to the change in the vasoactive

stimulus. The vasoactive stimulus used in this work is the arterial partial pressure of carbon dioxide.

The gas control for applying the stimulus is accomplished using a computer-controlled device called

RespirAct RA-MRTM. CVR studies can highlight abnormalities in the brain vasculature and therefore,

indicate underlying pathological conditions. Studies have demonstrated a close correlation between

an irregular CVR distribution and cerebrovascular diseases like Alzheimer’s disease, steno-occlusive

disease (SOD), stroke, and traumatic brain injury.

SOD is the most common cause of ischemic stroke all over the world. Patients with symptomatic

SOD are at a high risk of recurrent ischemic stroke. Therefore, information about the severity and

spatial location of irregular CVR at the brain tissue level can help guide clinical treatment. The

current generation of CVR analyses and assessments are conducted manually by a team of doctors

and radiologists, using their subject expertise and years of experience.

In this work, a next-generation CVR processing and visualization software application is presented

that furthers the research capabilities of CVR analyses. The proposed software is capable of

processing raw BOLD-MRI files and generating CVR maps. It is developed using open-source tools

and deployed as a stand-alone application that runs on a virtual machine. Additionally, convolutional

neural networks (CNNs) are designed to facilitate the screening of SOD patients by classifying the

CVR maps into healthy and unhealthy patients. Some popular pre-trained networks, like,

EfficientNetB0, InceptionV3, ResNet50, and VGG16 are fine-tuned to accomplish the target

classification.

For training the CNNs, the original dataset consisted of 68 healthy and 163 unhealthy images. To

increase the number of trainable samples and address the data imbalance, image augmentation

 iv

techniques were applied. An empirical evaluation-based design strategy is implemented for

optimizing the network architecture. The performance of different CNN architectures along with fine-

tuning of hyperparameters was analyzed and the most optimal network is presented. Results from

transfer learning are compared as well. Experiments indicated that a customized CNN with two

convolution layers with 32 filters and a hidden fully connected layer with 32 neurons produced the

best results. This model used batch normalizations and dropout regularization after the convolution

layers and the fully connected layer. It achieves high training/validation/prediction results consistent

with expert clinical readings.

The proposed software integrates the complete CVR research workflow, including file

management, processing MRI files, data visualization, and producing CVR maps, and serves as a

clinical decision support system, automating the workflow by 75% and providing a one-stop software

solution. It is suggested that this software is used as a research tool to produce CVR maps and make

data-driven decisions on SOD screenings, along with validation by experts.

Keywords: artificial intelligence- AI, cerebrovascular reactivity, convolutional neural network, deep

learning, magnetic resonance imaging, software development, steno-occlusive disease

 v

Acknowledgements

First, I would like to express my sincere gratitude to my supervisor, Professor Mir Behrad Khamesee,

for providing me with the opportunity to work under his invaluable supervision and for the patient

guidance and support he has provided throughout my master’s research.

I would also like to sincerely thank Dr. Joseph A. Fisher, Dr. James Duffin, Dr. David J. Mikulis,

Dr. Olivia Sobczyk, Mr. Julien Poublanc, Ms. Ece Su Sayin, and Mr. Harrison Levine for providing

their guidance and insights on the research topics. Special thanks to Mr. Kevin Morwood for his

continuous guidance and mentorship in software-related domains during this research.

I consider myself incredibly lucky to have worked with such a knowledgeable and encouraging

supervisor and research group, who have always cared about my work and well-being (especially

during the COVID period).

I am truly grateful to Professor Stewart McLachlin and Professor William Melek for being my

thesis readers and for taking out the time to provide valuable feedback and suggestions.

I also wish to acknowledge the financial support provided by the Natural Sciences and

Engineering Research Council of Canada (NSERC), Thornhill Research Inc., and the University of

Waterloo.

And finally, I would like to thank my family and friends in Canada and back home in India, for

always believing in me.

 vi

Dedication

I would like to dedicate my thesis to four beloved people who play an incredibly important role in my

life and are my pillars of strength: my mom (Dr. Shridevi Dasari), my dad (Mr. Shridhar Babu

Dasari), and my sisters (Ms. Poorvi Dasari, and Ms. Renuka Dasari). My ambitious plans of

pursuing graduate studies would not have been possible without their unwavering love and support.

I am truly grateful and honored to call you my family. Thank you for everything.

 vii

Table of Contents
Author’s Declaration .. ii

Abstract .. iii

Acknowledgements ... v

Dedication... vi

List of Figures ... xii

List of Tables ... xvii

List of Abbreviations ... xviii

Chapter 1 Introduction .. 1

1.1 Project Overview .. 1

1.2 Motivation .. 2

1.3 Objectives ... 3

1.4 Contribution to the Field .. 3

1.5 Thesis Outline ... 4

Chapter 2 Literature Review and Background ... 6

2.1 Cerebrovascular Reactivity .. 6

2.1.1 Vasoactive stimuli ... 8

2.1.2 DICOM and AFNI ... 10

2.1.3 CVR calculations ... 11

2.2 Software Development using Python ... 13

2.2.1 Software Development Life Cycle .. 14

2.3 Artificial Intelligence.. 15

2.3.1 Splitting Input Data ... 16

2.3.2 Deep Learning and Small Datasets .. 17

 viii

2.4 Artificial Neural Networks ... 18

2.5 Convolutional Neural Networks ... 20

2.5.1 Introduction ... 20

2.5.2 Components of a CNN .. 21

2.5.3 CNN Working Algorithm .. 26

2.5.4 CNN Architecture .. 27

2.6 Transfer Learning ... 28

2.7 Related work: Machine Learning and CVR ... 30

2.7.1 Application of Deep Learning in MRI .. 31

2.7.2 Application of Transfer Learning in MRI ... 32

Chapter 3 Problem Analysis .. 34

3.1 Problem Description ... 34

3.2 Software Requirements .. 35

3.2.1 Functional Requirements ... 35

3.2.2 Non-Functional Requirements ... 36

3.2.3 User Interface Requirements ... 36

3.3 Process Flow Diagrams .. 36

3.4 Software Architecture ... 38

Chapter 4 CVR Processing Software Development .. 39

4.1 Project Organization ... 39

4.2 Calculations and Interpolations .. 41

4.2.1 BOLD Calculations ... 41

4.2.2 PCO2 Interpolations ... 43

4.3 Plotting MRI images with Pydicom ... 43

 ix

4.4 GUI Design ... 45

4.5 File Management .. 46

4.6 Processing MRI files .. 48

4.7 Plotting ... 50

4.7.1 Base Plot .. 50

4.7.2 Plot Synchronization ... 51

4.8 CVR Calculations and Visualization .. 53

4.9 Software Validation .. 54

4.9.1 Study 1 ... 54

4.9.2 Study 2 ... 56

4.10 Final Product .. 59

Chapter 5 Convolutional Neural Networks for Screening SOD .. 60

5.1 Experimental Setup .. 60

5.2 Data Analysis ... 61

5.3 Data Pre-Processing.. 62

5.3.1 Data Augmentation .. 63

5.4 Network Design Methodology ... 64

5.4.1 Key Definitions ... 64

5.4.2 Network Design ... 65

5.4.3 Customized CNNs: Common Network Settings ... 65

5.4.4 Convolution Operation: Feature Extraction .. 66

5.5 Baseline CNN Model ... 72

5.5.1 Dropout Regularization ... 72

5.5.2 Batch Normalization .. 73

 x

5.5.3 Batch Size .. 73

5.5.4 Network Performance .. 73

5.5.5 Test set ... 74

5.5.6 Modeling and Execution Scripts.. 75

5.6 CNN Model Optimization .. 76

5.7 Network Width and Depth .. 76

5.7.1 Additional Convolutional Layers .. 78

5.8 Performance Evaluation ... 80

5.9 Prediction Capabilities.. 81

5.10 Advanced Hyperparameters ... 82

5.11 Transfer Learning ... 83

5.11.1 Common Network Settings ... 83

5.11.2 AlexNet-based CNN .. 84

5.11.3 Inception V3 .. 85

5.11.4 Other Pre-Trained Networks ... 85

5.11.5 Transfer Learning: Results .. 85

5.11.6 Transfer Learning: Prediction Results ... 87

5.12 Results Analysis ... 87

5.12.1 Proposed CNN ... 88

Chapter 6 Discussions .. 91

6.1 Key Contributions .. 91

6.1.1 CVR Software: Testing and Scalability ... 92

6.1.2 CNN Design: Main Findings ... 92

6.1.3 Customized CNN: Incorrect prediction ... 93

 xi

6.2 Proposed Workflow .. 95

6.3 Future Work ... 97

Chapter 7 Conclusions ... 99

References ... 101

Appendices .. 115

Appendix A: CVR Software Workflow .. 116

A.1 Software Launch .. 116

A.2 File Management ... 117

A.3 Processing MRI Files... 118

A.4 Plotting Workflow ... 120

A.4.1 Aligning the BOLD and PCO2 plots .. 121

A.4.1 Plotting CVR Maps .. 123

Appendix B: Programs and Scripts .. 124

B.1 Extracting Repetition Time .. 124

B.2 Importing CO2 data ... 124

B.3 Data Pre-Processing ... 126

B.4 Defining CNN architectures .. 127

B.5 Training CNN models .. 127

B.6 AlexNet Modeling ... 129

B.7 Importing InceptionV3 .. 130

 xii

List of Figures

Figure 2.1: CVR maps of two subjects color coded as per the color scale shown and placed over the

corresponding anatomical scans. Maps in the top are measured in a healthy subject. Note the increase

in CVR (which is an expected response with respect to the change in the vasoactive stimulus for a

healthy subject) indicated by positive values for CVR and colored red. Maps in the bottom show an

abnormal CVR response measured in a patient with SOD. Note the reduced CVR in the left

hemisphere of the brain, indicated by negative values for CVR and colored blue................................. 7

Figure 2.2: The RespirAct RA-MR device used for controlling gas delivery in breathing studies [25] 9

Figure 2.3: A system block diagram of the RespirAct RA-MR device for an MRI study. The Control

Room is shown on the left and the MRI Room on the right [28] ... 10

Figure 2.4: A detailed view of the voxels.1D file that contains the BOLD response across brain voxels

over the MRI duration .. 13

Figure 2.5: Representation of Artificial Intelligence and its subsets, Machine Learning, and Deep

Learning.. 15

Figure 2.6: A typical neural network with the input layers, hidden layers, and output layers (during

the forward pass). The dots represent additional neurons in each layer depending on the network

architecture. The dashed lines separate the three types of layers ... 20

Figure 2.7: The output matrix [right] obtained by convolving a 7x7 input matrix [left] against a 3x3

kernel [middle] with a stride of 1 ... 22

Figure 2.8: Max pooling operation with a 2x2 filter and a stride of 2. Notice how it extracts the

maximum value from the filters [represented by the different colors] ... 25

Figure 2.9: A sample CNN architecture with the different types of layers .. 26

Figure 2.10: Representation of the transfer learning mechanism. Inception V3, trained on the

ImageNet dataset is fine-tuned to use its pre-trained weights on the new dataset and accomplish the

target objective ... 30

Figure 3.1: Process flow diagram of the CVR Processing Software .. 37

Figure 3.2: Process flow diagram of the CVR Processing-Assessment Software workflow 38

 xiii

Figure 4.1: The working directory used for the CVR Processing software development. The icons

used in this figure are from Flaticon [106] ... 40

Figure 4.2: Python modules developed for the CVR Processing software, located in the src folder ... 40

Figure 4.3: Comparison of the CVR maps obtained from two approaches of calculating the percentage

difference in BOLD. The maps in the left image were obtained by subtracting the mean from

individual BOLD values and then dividing by the mean BOLD to calculate the percentage BOLD

change, represented by equation (4.1). In the maps in the right image, the ratio of individual BOLD

values to mean BOLD was used to calculate the percentage BOLD change, represented by equation

(4.2) .. 42

Figure 4.4: Anatomical and BOLD images for a subject plotted using the Pydicom and Matplotlib

libraries. Left image shows the anatomical MRI image corresponding to the fifth slice. And right

image shows the BOLD MRI image for the same slice ... 44

Figure 4.5: The three views for the Anatomical MRI images. Top left image shows the axial view, top

right image shows the sagittal view, and the bottom image shows the coronal view 44

Figure 4.6: CVR Processing Software GUI design. Label 1 shows the main window. Label 2 shows

the notebook style frames with 3 tabs [View/Upload MR files; Execute AFNI; Plot CVR]. Label 3

shows the frame corresponding to tab 1: View/Upload MR Files. Label 4 shows the different widgets

(buttons and text) on the frame of tab 1 ... 46

Figure 4.7: Folders and structured directory created for “Subject 1” as the subject ID 47

Figure 4.8: File uploading interface ... 48

Figure 4.9: Static plots of the BOLD and PCO2 data on a common time scale. The shifting buttons

that allow plot synchronization are placed below the plotting interface .. 51

Figure 4.10: The interactive matplotlib interface for achieving the synchronization requirements. The

user is required to define the area of analysis using a rectangular selector tool, shown as the red-

colored rectangular area on the plot. The small squares and circles around the red rectangle allow the

user to resize the selected area .. 52

Figure 4.11: CVR maps produced using AFNI programs. The three views of the brain MRI images

are shown: Sagittal (top left), Coronal (bottom left), and a 5 x 5 mosaic stack of the Axial images

(right) .. 53

Figure 4.12: A comparison of the BOLD and PCO2 plot synchronization obtained using the CVR

software developed in this work [top] and the current generation tools [bottom] 55

 xiv

Figure 4.13: A comparison of the CVR maps of a healthy control subject produced using the CVR

software [left] and the current generation tools [right]. As observed, there are very minimal

differences in the two sets of maps ... 56

Figure 4.14: A comparison of the BOLD and PCO2 plot synchronization obtained using the CVR

software developed in this work [top] and the current generation tools [bottom] for study 2 57

Figure 4.15: A comparison of the CVR maps of an unhealthy subject produced using the CVR

software [left] and the current generation tools [right] for test case 2 .. 58

Figure 4.16: The final GUI of the CVR software. This interface shows the plotting tab of the

software, the plotting interface along with the interactive buttons to align the BOLD and PCO2 plots

 .. 59

Figure 5.1: 5x5 mosaic images of the CVR maps used as the input data for training the convolutional

neural networks. CVR maps in images (A) [left] and (B) [right] were measured in a healthy subject,

and a patient with the SOD, respectively ... 62

Figure 5.2: A comparison of the healthy and unhealthy datasets, and the distribution of the original

dataset into train, validation, and test sets .. 63

Figure 5.3: A set of feature maps produced after the convolution operation using a 3x3 kernel. Note

how the convolutional layer preserves the spatial resolution of the input image 67

Figure 5.4: A sample input image belonging to an unhealthy patient. Note the spread of blue gradients

on the left hemisphere of the brain ... 68

Figure 5.5: Four feature maps obtained by feeding the sample input image into a convolution layer of

16 filters with a 3 x 3 kernel size. The feature maps are plotted using the 'Viridis' color scale in

Matplotlib. Observe how each of the feature map highlights a different attribute from the input image.

For example, in the top left, the boundaries between the blue and red color regions are established.

The top right image presumably highlights the textures created by the color distribution. The bottom

right image highlights the spatial distribution and intensity of the blue gradients 70

Figure 5.6: CVR maps belonging to the unhealthy category. The variations in the distribution of the

blue color gradients across the four samples can be observed. The feature extractor highlights these

different spatial locations of the blue gradients, and the feature attributes are used to label them

accordingly ... 71

Figure 5.7: The accuracy plots obtained from training the network with two batch normalization

layers after the convolution and the fully connected layers (Baseline-5) ... 75

 xv

Figure 5.8: A comparison of validation accuracy obtained with and without batch normalization using

the architecture of Model-3 .. 77

Figure 5.9: Confusion matrix for the best performing customized CNN on the test dataset. TN is a

true negative, FN is a false negative, FP is a false positive, and TP is a true positive 82

Figure 5.10: Comparison of the training accuracy obtained by the pre-trained networks and AlexNet-

based CNN after fine-tuning for the classification of CVR maps .. 86

Figure 5.11: Comparison of the validation accuracy obtained by the fine-tuned pre-trained networks

and AlexNet-based CNN .. 86

Figure 5.12: A schematic representation of the proposed CNN architecture. Conv 2D is a 2-

dimensional convolution layer and FC is a fully connected layer. The number of filters (or neurons)

are shown inside the round brackets ... 89

Figure 6.1: The SOD patient sample in the test set that was incorrectly labelled by the proposed

customized CNN .. 94

Figure 6.2: A schematic representation of the proposed CVR processing and assessment workflow

using the CVR software and CNN-based classifier tool. The icons used in this figure are from

Flaticon [115] ... 96

Figure A.1: Software launch page. This is the first window that is displayed on executing the software

application. Clicking the OK button displays the next interface. The cancel button closes the

application window .. 116

Figure A.2: The main menu tab. The subject ID can be entered here. The Next button hides the main

menu tab and opens new tabs corresponding to the next steps in the software workflow 117

Figure A.3: View/Upload MR Files tab. The View Files button displays the input files in the

respective folders. Upload buttons allow the user to upload the required input files. The status below

the button provides information about the file checks ... 118

Figure A.4: Execute AFNI tab after initiating the processing routine. Note the progress bar shows the

current progress along with a brief description of the undergoing process. 119

Figure A.5: Plot CVR tab. A study name corresponding to the current analysis is required in the text

entry box. A list of previously completed analyses is displayed to the right of the entry box. These can

be used to directly display the CVR maps .. 120

Figure A.6: Displaying the MR sequence information extracted from “Events.txt” file. The start and

end values are entered in the input text boxes and the Next button is clicked 121

 xvi

Figure A.7: Synchronizing PCO2 and BOLD time series. The plot interface is displayed along with a

set of instructions to synchronize the two plots. Once aligned, the Generate CVR Files button is

clicked .. 122

Figure A.8: Selecting the area of interest using the rectangle selector tool. The small square buttons

allow re-sizing the selected area ... 123

 xvii

List of Tables

Table 2.1: A sample output file for the BOLD values obtained from an MRI analysis 13

Table 2.2: Different convolution matrix and its effect on the input image [54] 23

Table 4.1: Tkinter widgets used and their respective functions [112], [113], [114] 45

Table 4.2: A step-by-step list of AFNI modules used to realize the CVR workflow [115] 49

Table 5.1: Server specifications used for training the networks ... 60

Table 5.2: The different packages and libraries used for the experimentations of CNNs 61

Table 5.3: The final train, validation, and test datasets after applying the image augmentations 64

Table 5.4: The hyperparameters investigated to optimize the CNN architecture 65

Table 5.5: Comparison of model performance in terms of training and validation accuracy and loss. In

the architecture, convX represents a convolution layer with X filters, denseX represents a fully

connected layer with X nodes, dropX represents a dropout layer with a dropout rate of X, and BN

represents a batch normalization layer. Accuracy is on a scale of 0-1, 1 representing a 100% accuracy

 .. 74

Table 5.6: The different CNN architectures investigated to study the effect of network width on the

performance. The dropout layers (represented as drop) used a dropout rate of 0.5 79

Table 5.7: Best network performance achieved in terms of training and validation accuracy [scale: 0-

1] and loss, along with the number of training cycles (Epochs). The best values are highlighted in

bold. Since the validation performance was defined as the primary metric in this work, the best model

is identified based on validation accuracy and loss. ... 80

Table 5.8: The AlexNet-based architecture designed for CVR classification. The layers native to the

AlexNet network are highlighted in bold. The second half of the network divided in the table

represent the customized layers added for the target classification. ... 84

Table 5.9: Performance of all the CNN models experimented on the CVR datasets. CNN1 is the most

optimal customized network trained from scratch. Other networks are the pre-trained networks fine-

tuned for CVR classification. The best results are shown in bold. ... 87

Table 5.10: Architecture of the proposed CNN model. The dotted line separates the feature extractor

(the convolution layers) from the fully connected layers which classify the CVR maps. 90

 xviii

List of Abbreviations

AI Artificial Intelligence

BOLD Blood Oxygenation Level Dependent

CBF Cerebral Blood Flow

CVR Cerebrovascular Reactivity

CNN Convolutional Neural Network

MRI Magnetic Resonance Imaging

SOD Steno-Occlusive Disease

1

Chapter 1

Introduction

“The chief function of the body is to carry the brain around.”

-Thomas Alva Edison

1.1 Project Overview

Magnetic Resonance Imaging (MRI) is a non-invasive medical imaging technique that is used to

generate high-resolution images of the body’s organs and tissues. It uses magnetic fields and

computer-generated radio waves to create these images [1]. Cerebrovascular Reactivity (CVR) is a

provocative test used with MRI studies to analyze the changes in cerebral blood flow (CBF) when an

external stimulus is applied, to highlight abnormalities in regions of the brain [2]. CVR closely relates

to the health of the brain vasculature and is a key parameter used to identify underlying

cerebrovascular diseases like stroke, small vessel disease, and dementia [3].

Steno-occlusive disease (SOD) is a brain disorder that involves an arterial occlusion (blockage) or

stenosis (narrowing) in regions of the brain [4]. A compensatory mechanism for SOD is the

development of new vessels, called collateral blood vessels, to bypass the obstruction. CVR analysis

can be used to assess the net hemodynamic consequences of SOD and developed collateral blood

flow [5].

The current generation of CVR processing and assessment is conducted manually by a team of

experts. The master’s research discussed in this thesis developed software tools to further the

processing, visualization, and automation standards for CVR studies. The research involved

conceiving and engineering an in-house CVR processing and visualization software application to

process raw BOLD-MRI files and produce the corresponding CVR maps. Using the CVR maps

produced, convolutional neural networks (CNNs) are implemented to facilitate the screening of SOD

patients by discriminating between healthy control subjects and unhealthy patients.

 2

1.2 Motivation

Cerebrovascular diseases include several different types of conditions that affect cerebral blood flow.

Of the many forms, stroke is the most common type. According to the World Stroke Organization

(WSO), 1 in 4 people over the age of 25 will have a stroke in their lifetime [6]. As per the statistical

reports from Centers for Disease Control and Prevention, 6.5 million people suffered from a form of

stroke in the United States alone in 2015 [7]. According to the World Health Organization (WHO)

website, around 15 million people worldwide suffer from stroke annually. From this stroke-affected

population, 5 million patients die, and another 5 million patients suffer from a permanent disability

[8]. SOD is the most common cause of ischemic stroke all over the world [9].

As discussed above, CVR can play a vital role in identification and diagnosis of underlying

cerebrovascular diseases. Therefore, information about the severity and spatial location of irregular

CVR at the brain tissue level can help guide clinical treatment.

The current generation of CVR processing is conducted using a variety of software products. Some

of the intermediate steps of the CVR research workflow also required the use of paid software, for

example, MATLAB [10], to produce the output files. The workflow consisted of executing individual

shell scripts in a particular sequence to accomplish the required CVR analysis. Additionally,

researchers at participating institutions used efficient, but self-made, programs to realize the

workflow. Although these practices produce the CVR maps, there can be differences in the produced

output which makes it difficult to standardize the findings. Additionally, depending on customized

shell scripts requires subject expertise and therefore limits the broad utilization of this workflow.

Finally, CVR assessment is conducted manually by a team of doctors and radiologists using their

subject expertise.

Therefore, there was an opportunity to build a software solution that could integrate and

standardize the research workflow across all participating researchers, transitioning from licensed

software to open-source tools, and allowing the distribution of a standalone application package to the

collaborators. Extending the CVR software capabilities, this research implements deep learning

models to support clinicians and researchers in making data-driven decisions and facilitate the

screening of patients with SOD.

 3

1.3 Objectives

The primary objective of this thesis is to explain the design and development an in-house CVR

processing software that integrates and standardized the CVR research workflow and propose a

clinical decision support system to screen SOD patients using deep learning. The developed software

is proposed as an advancement over the current processing tools as it transitions from the use of

licensed tools to open-source tools. The software package, being a standalone tool, is intended to

allow easy testing, troubleshooting, distribution, and maintenance. Finally, the easy-to-operate

software functionalities along with the streamlined workflow would allow users with minimal AFNI

expertise to process MRI data and produce CVR maps.

1.4 Contribution to the Field

The main contributions of this research work are as follows.

1) The in-house CVR Processing software developed in this work serves as a next-generation

processing and visualization tool enabling researchers access to a standardized and

streamlined CVR research workflow.

2) The CVR Processing software is developed using open-source tools only, addressing the

challenge of using licensed software that was used in the current workflow.

3) The CVR Processing software runs on a virtual machine which is operating system agnostic,

overcoming the barrier of operating system constraints.

4) To the best of the author’s knowledge, the research of implementing CNN and transfer

learning for classifying CVR maps obtained from prospective end-tidal targeting of carbon

dioxide (CO2), which is a specialized type of external stimulus in MRI studies, is novel.

5) The CNN proposed in this work successfully discriminates between healthy and unhealthy

patients with high accuracy on both the training and validation datasets. The network’s

generalization capabilities are consistent with clinical readings as it predicts the correct labels

for unseen samples in the prediction dataset with high accuracy.

 4

1.5 Thesis Outline

Chapter 1 introduces the research discussed in this thesis. It begins with a project overview, followed

by the motivations behind pursuing this research, the objectives of this thesis, and the contributions to

the field.

Chapter 2 explains the relevant background and the main findings from the literature review. The

discussions include the concepts of CVR, the products used to administer vasoactive stimulus,

underlying concepts of deep learning and convolutional neural networks, and the application of deep

learning in medical imaging. The current state of the application of deep learning in CVR is

highlighted to evaluate the novelty of this work.

Chapter 3 analyzes the problem space, detailing the software process flow diagrams and the

software requirements that were identified. Functional, non-functional, and user interface

requirements are discussed, and the software architecture is highlighted as well.

Chapter 4 details the underlying concepts and calculations to realize the CVR research workflow,

and the software development methodology used to build the CVR Processing software application.

The different components of the software are discussed, including the Graphical User Interface (GUI)

design, tools for file management, MRI processing software, and Matplotlib’s plotting modules.

Chapter 5 describes the design and optimization of CNNs to classify CVR maps into healthy and

unhealthy groups. Data pre-processing is described including the data analysis of the original datasets,

and image augmentation techniques, followed by the experimental setup, and the design

methodology. The methodology entails the design of customized CNNs and their optimization by

hyperparameter finetuning. Transfer learning is implemented using a few popular pre-trained

networks. The model performances are compared, and the most optimal network is proposed.

Chapter 6 discusses the results and main findings of the research. This includes discussions on the

capabilities and limitations of the CVR Processing software, analysis of the performance of different

CNN architectures investigated, and the most optimal network’s performance and limitations. A CVR

research and assessment workflow is proposed, and the future scope of this research is discussed.

Finally, Chapter 7 draws conclusions based on the research outcomes.

 5

Appendix-A discusses the workflow of the CVR software developed in this work along with the

GUI components at the different stages of the processing and visualization. Appendix-B presents and

explains the programs and scripts used in this work.

 6

Chapter 2

Literature Review and Background

2.1 Cerebrovascular Reactivity

Functional MRI (fMRI) is a type of MRI that produces images of blood flow to areas of the brain [2].

Blood oxygenation level dependent (BOLD) imaging is an fMRI technique that maps the differences

in cerebral blood flow (CBF) when an external stimulus is administered [11]. Cerebrovascular

Reactivity (CVR) is a provocative test used with BOLD-MRI studies, that measures the ability of the

brain to adjust the diameter of the vessels to compensate the cerebral blood flow when an external

vasoactive stimulus is applied [3]. Vasoactive stimulus is an agent that affects the blood vessels

diameters, and in turn manipulating the blood flow. The agent can either constrict the blood vessels

(narrowing it) or dilate them (widening it) [12].

In BOLD-MRI studies, the change in CBF is monitored by studying the corresponding changes in

the BOLD signals [13]. CVR is calculated as the ratio of the change in BOLD signal(s) to the change

in vasoactive stimulus applied. The abnormalities in the brain vasculature can then be identified by

measuring the difference in CVR between different regions of the brain. There are different types of

stimuli that can be used to conduct CVR studies, for example, transient reduction in mean arterial

blood pressure [14], injection of chemicals (like acetazolamide) [15], and an increase in blood partial

pressure of CO2 [16]. In this work, the partial pressure of CO2 is used as the stimulus. A detailed

explanation is presented in section 2.1.1.

An irregular CVR is associated with abnormalities in the brain vasculature, indicating underlying

pathological conditions [17]. Several studies have demonstrated the close correlation between an

impaired CVR and cerebrovascular diseases such as Steno-Occlusive Disease [18] [19], Alzheimer’s

disease [20] [21] [22], and small vessel disease [23]. The CVR values are calculated voxel-by-voxel

across the 3-dimensional volume of the brain and mapped over the corresponding anatomical scans

using a well-defined color scale. These color-coded maps can then be plotted as 2-dimensional slice-

by-slice images for clinical evaluation. CVR values can be color-coded and mapped onto the

 7

corresponding MRI anatomical map. Figure 2.1 shows CVR maps measured in a healthy and an

unhealthy subject. The underlying CVR calculations are discussed in section 2.1.3.

Figure 2.1: CVR maps of two subjects color coded as per the color scale shown and placed over

the corresponding anatomical scans. Maps in the top are measured in a healthy subject. Note

the increase in CVR (which is an expected response with respect to the change in the vasoactive

stimulus for a healthy subject) indicated by positive values for CVR and colored red. Maps in

the bottom show an abnormal CVR response measured in a patient with SOD. Note the reduced

CVR in the left hemisphere of the brain, indicated by negative values for CVR and colored blue

Steno-occlusive disease (SOD) is one of the most common causes of stroke around the world, and

arterial blockage is responsible for about 85% of stroke cases [9]. Additionally, another research

highlighted that patients with SOD were at high risks to develop recurrent ischemic stroke. The study

found a close correlation between impaired BOLD-CVR and the risk for recurrent ischemic stroke

[24]. And information about the spatial distribution of the irregular CVR and its intensity can help

highlight the presence of SOD. Therefore, accurate assessment of CVR can play a vital role in

guiding clinical treatment.

 8

2.1.1 Vasoactive stimuli

There is a wide variety of vasoactive stimuli that have been used by researchers to monitor CBF.

When there are changes in brain activity or perfusion pressure, metabolic coupling mechanisms

regulate the blood flow. These coupling mechanisms also react to changes in carbon dioxide and

hypoxia. Researchers and investigators have used this phenomenon to externally challenge the system

using a vasoactive stimulus and study the response [2].

Carbon Dioxide (CO2) as the vasoactive stimulus is a non-invasive technique that can be

effectively controlled and terminated. CBF has a close correlation with the changes in the partial

pressure of arterial CO2 in BOLD MRI studies. CO2 administration is considered safe. Despite these

advantages, one of the main challenges in controlling CO2 was the requirement of a ventilatory

system or voluntary rapid breathing. Also, when compared to chemicals whose dosage can be

monitored, controlling CO2 stimulus is difficult [2].

To address the issues discussed, the sponsors developed an automated device to reliably

administer changes in the end-tidal partial pressure of CO2 (Pa,CO2) [2]. The device is called the

RespirAct RA-MR and is shown in Figure 2.2. The details about its working mechanism and the

components are presented in the next section.

 9

Figure 2.2: The RespirAct RA-MR device used for controlling gas delivery in breathing studies

[25]

2.1.1.1 Prospective end-tidal targeting

Prospective end-tidal targeting is a gas flow method that is used to control the end-tidal partial

pressures of carbon dioxide (CO2) and oxygen (O2) gas concentration in spontaneous breath studies

[26]. The sponsors developed an innovative computer-controlled gas blender, called the RespirAct

RA-MR device, that can be used to control the gas delivery in breathing studies. The RA-MR device

can be used with MRI, Transcranial Doppler (TCD), and other imaging modalities. In an MRI study,

the RA-MR user interface and the control room unit are placed in the control room which

communicates with the MRI unit placed next to the MRI bed [27].

The main purpose of the RespirAct RA-MR device is to control the end-tidal partial pressure of

CO2 and O2 in spontaneously breathing subjects. The device has four main components as listed

below [28]:

1) RA-MR Control Room Unit

2) RA-MR User Interface

 10

3) RA-MR MRI Unit

4) RA-MR Subject Breathing Circuit and RA-MR Consumable Mask and Circuit.

A system block diagram of the RespirAct RA-MR device used in an MRI study is shown in Figure

2.3. The device saves the test files required for conducting CVR research workflow and obtaining the

CVR maps. The EndTidal file contains the data collected over the course of the entire test.

Specifically, it contains the measured end-tidal CO2 values for the breath during the test. This is used

for CVR calculations as explained in section 2.1.3. The Events file saves the time-stamped events

information over the course of the test. This information is used to define the area of interest for

conducting a specific study, by specifying the MRI sequence start and end values.

Figure 2.3: A system block diagram of the RespirAct RA-MR device for an MRI study. The

Control Room is shown on the left and the MRI Room on the right [28]

2.1.2 DICOM and AFNI

Digital Imaging and Communications in Medicine (DICOM) is the international standard for medical

imaging and related information. DICOM is recognized by the International Organization for

 11

Standardization as the ISO 12052 standard and is universally adopted for medical imaging [29].

DICOM interface defines the form and flow of biomedical images and related information between

computers using electronic messages [30].

Analysis of Functional NeuroImages (AFNI) is a software suite used for the analysis and

visualization of anatomical and functional MRI data. Its development began in 1994 and was mainly

written by RW Cox. AFNI is freely available for research purposes. AFNI runs under

Unix+X11+Motif systems, however, is not readily available for Windows operating systems [31].

AFNI can process MRI files produced using different types of scanners and in different formats.

The fundamental data storage produced by AFNI is a 3-dimensional (3-D) dataset that contains

multiple 3D arrays of voxel values. A voxel represents a value in a 3-D space, similar to what a pixel

does in a 2-D space. In this work, MRI formats such as DICOM (.DCM), MR image files (.MR), and

NIfTI-1 formatted datasets (.nii) were tested.

2.1.3 CVR calculations

For the protocol used in this thesis, CVR is calculated as the ratio of change in BOLD signals

(∆𝐵𝑂𝐿𝐷) to the increase in blood partial pressure of CO2 (∆𝑃𝐶𝑂2), as shown in equation (2.1) [32].

𝐶𝑉𝑅 =
∆ 𝐵𝑂𝐿𝐷

∆ 𝑃𝐶𝑂2
 (2.1)

In this thesis, the workflow to obtain CVR values consisted of the following steps:

1. Anatomical and BOLD DICOM files from the BOLD-MRI study are processed using AFNI,

producing intermediate AFNI format HEAD and BRIK files. The output file consists of

coordinates of the brain voxel (which is like pixels but in a 3-dimensional space) and the

corresponding BOLD values for the time duration of the MRI study. An example is shown in

Table 2.1. A detailed sample output file is shown in Figure 2.4. The column headers x, y, and

z values represent the coordinates of the voxel in the standard space. Similarly, i, j, and k

represent the voxel coordinates in the MNI (Montreal Neurological Institute) space. Ti (i from

1 to n; n being the last time step of the MRI sequence) represent the time series and the

corresponding BOLD values are registered at each time step. The right arrows show that the

table extends based on the time duration of the study, and the down arrows show that more

rows contain BOLD values for the different voxels across the brain.

 12

2. An average BOLD sequence is calculated by averaging the BOLD responses at a given time

step across all voxels (averaging the columns corresponding to the time steps). This average

BOLD value dataset is then plotted on a new time series based on an MRI parameter called

the response time [TR].

3. The PCO2 data in the units of mmHg is supplied from the RespirAct RA-MR device. This

PCO2 data is then resampled on the same time series as the BOLD values, the TR. This is

achieved by resampling the PCO2 data using a data interpolation technique.

4. Generally, there is a time delay between the external stimulus (PCO2) and the BOLD

response in the brain. Therefore, to calculate the CVR values, the two plots are synchronized,

and an area of study is defined using graphical tools. This is further explained in section 4.7.

5. For a given voxel, the percentage change in BOLD over time is calculated. The formula used

to calculate the average BOLD is shown in equation (2.2). This is repeated for each voxel.

𝑀𝑒𝑎𝑛𝐵𝑂𝐿𝐷 =
∑ 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙_𝐵𝑂𝐿𝐷

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝𝑠
 (2.2)

6. For each BOLD value, the percentage change with respect to the mean BOLD is calculated,

as shown in equation (2.3).

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝑐ℎ𝑎𝑛𝑔𝑒𝐵𝑂𝐿𝐷 =
𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝐵𝑂𝐿𝐷 ∗ 100

𝑀𝑒𝑎𝑛𝐵𝑂𝐿𝐷
 (2.3)

7. Finally, CVR is calculated for each voxel by computing the slope between the percentage

change in BOLD values and the corresponding PCO2 values over the time series. This is

again repeated for each voxel. Once the CVR values at different voxels (spatial locations) are

calculated, a color-coded CVR map can be plotted over the corresponding anatomical scan to

visualize and interpret the results.

 13

Table 2.1: A sample output file for the BOLD values obtained from an MRI analysis

x y z i j k T1 T2 T3

28 41 0 -8.73 -7.82 -4.5 1702 1183 1862

Figure 2.4: A detailed view of the voxels.1D file that contains the BOLD response across brain

voxels over the MRI duration

2.2 Software Development using Python

Python is an interpreted, object-oriented, high-level programming language. It can be used for

application development and scripting to work with existing components. It supports modules and

packages encouraging program modularity and code reuse. Python’s syntax is simple, easy to read,

and therefore has a low cost of program maintenance. Another major advantage of using Python is

that there is no compilation step which provides increased productivity [33].

Python can be used in several application domains, including, web and internet development,

computing, desktop graphical user interfaces (GUIs), software development, and e-commerce systems

[34]. Software developed using Python libraries can be packaged and published to a repository called

the Python Package Index (PyPI) [35]. The same can be used to install Python software developed by

others in the Python community.

 14

2.2.1 Software Development Life Cycle

Software Development Life Cycle (SDLC) consists of the stages typically used for a well-designed

software development process. SDLC defines the tasks that are required at various stages of the

development process. There are mainly six stages in an SDLC which are explained below [36].

Stage 1: Planning and requirement analysis

This is the planning stage where a project timeline is defined, and the high-level project

requirements are analyzed by the software developer based on the customer needs. This stage requires

that the developer assesses the customer inputs and conducts surveys to understand the products and

market.

Stage 2: Requirements Analysis

In this stage, the software requirements are outlined. Aspects like the functional requirements,

non-functional requirements and user interface requirements are analyzed. Developers often create a

software requirement specification (SRS) document to specify and list all the requirements.

Stage 3: Architecture Design

Based on the software requirements identified in stage 2, the next step is to define the best

architecture for the software design. The best design is proposed based on the customer’s needs and

other factors.

Stage 4: Developing software

This stage involved the development activities for the target software product. A specific

programming language and corresponding development tools are used for this. The development is

sometimes accompanied by simple testing routines depending on the testing plan.

The software development process is often tracked using a source-control tool, like GitHub [37].

Stage 5: Software Testing and Integration

Once the software is developed, the next step is to rigorously test the software. There are different

types of testing, like unit tests, integration tests, functional tests, end-to-end tests, acceptance testing,

performance testing, and smoke testing [38].

 15

Stage 6: Deployment and Maintenance

Once the testing is complete, the final product is ready for deployment and release. Once

deployed, it undergoes final testing in a real customer environment. If the software passes all the tests,

it is distributed to the customers. Based on customer feedback, the software undergoes further

changes and maintenance.

2.3 Artificial Intelligence

The invention of Artificial Intelligence (AI) stemmed from inventors dreaming of creating machines

that can think [39]. AI is a field of science and engineering that utilizes computers and machines to

enable problem-solving and decision-making. Today AI is making steep advancements with many

practical applications such as speech recognition, computer vision, understanding natural language,

heuristic classification, and game playing [40]. More commonly used terms, Machine Learning (ML)

and Deep Learning (DL) are subsets of AI. This is shown in Figure 2.5.

Figure 2.5: Representation of Artificial Intelligence and its subsets, Machine Learning, and

Deep Learning

A machine learning algorithm is an algorithm that learns from the data [39]. A commonly

accepted definition is: “A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P, if its performance at tasks in T, as measured by P,

improves with experience E” [41]. Conventional machine learning models require the input

 16

parameters to be structured and well-defined to obtain meaningful relations or patterns. Processing

raw input data to produce a suitable representation requires careful engineering and subject expertise

and this step is called feature engineering [42].

Representation Learning consists of algorithms that train a machine to automatically discover the

representations needed for making decisions using unprocessed and raw data. Deep Learning is a

subset of machine learning, and a type of representation learning, that is capable of automatically

extracting meaningful representations from the raw data. Deep Learning models consist of multiple

layers, each layer consisting of non-linear modules that transform the representation [39]. The

building blocks of a deep learning model are artificial neural networks (or neural networks). This is

discussed in section 2.4.

2.3.1 Splitting Input Data

In a machine learning task, the input data is typically split into three categories to train the model and

evaluate its performance. These categories are train, validation, and test sets, and each contains

distinct samples from the original input data. This is explained below.

1) Training set: It is a subset of the original input dataset that is used to train the model to learn

the patterns and key features. In each training cycle (epoch), the same training data is supplied

to the model.

2) Validation set: The models use the validation set to update the model hyperparameters and

configurations based on the performance during training. This process is repeated after each

epoch.

3) Test set: This is a separate dataset that is used after the model training and optimization are

complete. It essentially provides an unbiased final model performance and generalization

capabilities in terms of model accuracy, and precision, on unseen data.

The most common ratio used for splitting the input data is 80%-10%-10% for the training,

validation, and test sets, respectively. However, this ratio can be customized based on the specific

requirements of the project [43].

 17

2.3.2 Deep Learning and Small Datasets

Deep learning heavily relies on the amount of input data and typically requires large amounts of data

to achieve a stable performance. This requirement makes it challenging to implement deep models in

medical datasets given the limited number of input samples as compared to the learning parameters

[44].

A small dataset contains a small number of samples. The quantification of small depends on the

nature of the problem. Some of the challenges while working with a small dataset is [45]:

1) Outliers: An outlier is a sample that is significantly different from the other samples in the

dataset

2) Overfitting: The network performs well with the training set but performs poorly with the

unseen data

3) Sampling bias: the dataset fails to represent reality

4) Missing features: there might be a possibility that the network fails to identify all features

from the small dataset.

The shortage of training samples enables the non-linear hidden layers to learn complicated

relationships from the sampling noise which does not exist in the validation data [46]. This leads to

the network fitting too closely against the training data. This causes the network to perform poorly

against previously unseen data. This phenomenon is called overfitting [47].

Data augmentation and transfer learning are two commonly used countermeasures to address the

issues arising from data scarcity. The first technique involves artificially producing synthetic data

from the original dataset by implementing realistic modifications. In image analysis tasks,

modifications can include resizing, rescaling, cropping, horizontal and vertical flips, rotations,

shearing, and changes to brightness and contrast.

In the latter technique, the weights and parameters from a network trained on a different dataset

are transferred and used for the target objective. The concept of transfer learning is elaborated in

section 2.6.

 18

2.4 Artificial Neural Networks

Artificial neural networks (or neural networks) are a type of ML model that is inspired by the human

brain, mimicking the processing patterns of biological neurons [48]. A neural network uses a network

of functions to establish interpretations from the input data and map it to a specific output. The

uniqueness of these models lies in their ability to learn key characteristics, known as features, directly

from the input data. The learning algorithm is capable of learning key characteristics from the labeled

input dataset that is supplied during training. This means that the neural network does not need to be

provided with specific rules or characteristics for the input data [49]. The term “deep” in deep neural

networks essentially means that the network consists of three or more neural layers.

Neural networks are made up of node layers, consisting of the input layer, one or more hidden

layers, and an output layer. Each node is connected to the other nodes in the next layer and has an

associated weight and threshold. A node is activated if the output value in that node exceeds the

threshold value, and the information is passed on to the next layer. Otherwise, the node is not

activated, and the data is not forwarded [50].

The quintessential deep learning models are the multilayer perceptrons (MLPs), also called

feedforward neural networks. In abstract terms, the goal of an MLP is to approximate a function f* to

accomplish a learning task. Mathematically, for a given input “x” and output “y” and a learning

parameter “θ”, the network defines a mapping y = f (x, θ) and calculates the best values of θ that can

improve the function approximation [39]. In this study, this function is required to map an input

image (CVR map) to a patient category (healthy or unhealthy).

2.4.1.1 Working Algorithm

Each node can be considered a linear regression model. It will consist of input data, weights, a

threshold (or bias), and an output. Depending on the activation function, the formula used to calculate

the output from a node varies. This is discussed in section 2.5.2.2. For a binary step activation

function, the formula used by a node to calculate the output function [f(x)] for an input [xi], based on

the weights [wi], and a bias, is shown in equations (2.4) and (2.5) [50].

∑𝑤𝑖𝑥𝑖 + 𝑏𝑖𝑎𝑠

𝑚

𝑖=1

= 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑏𝑖𝑎𝑠
(2.4)

 19

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑓(𝑥) =

{

 1 𝑖𝑓 ∑𝑤𝑖𝑥𝑖 + 𝑏𝑖𝑎𝑠

𝑚

𝑖=1

≥ 0

0 𝑖𝑓 ∑𝑤𝑖𝑥𝑖 + 𝑏𝑖𝑎𝑠

𝑚

𝑖=1

< 0

(2.5)

A deep neural network or deep learning model is essentially a neural network with three or more

layers. A deep learning model breaks the complicated process of a learning task into a series of

simple mappings. Each layer of the network is responsible for extracting a specific interpretation of

the input data. In an image processing task, the hidden layers of the network extract abstract features

from the input images, for example, by identifying edges, corners, and contours [39]. A deep learning

model has multiple levels of representation that obtain more and more abstract representation with

each level [42].

To understand how a neural network works, consider the image classification task for a cat. There

are several possibilities for how an image of a cat might look and writing a code for every scenario

would be difficult. Neural networks use a generalized approach to extract characteristic information

from an image. Using multiple layers, the neural network identifies trends from the diverse dataset

and classifies the images by their similarities [49]. A typical neural network with the input, hidden,

and output layers is shown in Figure 2.6.

 20

Figure 2.6: A typical neural network with the input layers, hidden layers, and output layers

(during the forward pass). The dots represent additional neurons in each layer depending on

the network architecture. The dashed lines separate the three types of layers

2.5 Convolutional Neural Networks

2.5.1 Introduction

A Convolutional Neural Network (CNN) is a specialized type of deep learning model that employs a

linear mathematical operation called convolution. The uniqueness and benefits of using a CNN is it

reduces the number of parameters in an artificial neural network. They are one of the most popular

DL algorithms in processing data with grid-like topology, for example, images. The application of

CNNs in tasks related to computer vision rapidly increased after a breakthrough work that used this

network to almost halve the error rate for object detection using the ImageNet LSVRC-2010 contest’s

dataset [42][51].

A CNN is mainly comprised of convolution layers and fully connected layers. The convolution

layers extract meaningful representations from the raw input data and feed it to the fully connected

layers for the classification task. The first step is called feature extraction and the fully connected

 21

layers act as the classifier. Therefore, a CNN can be thought of as a combination of feature extractors

and a classifier. The different components of a CNN are explained in section 2.5.2.

In mathematical terms, convolution is a linear operation that multiplies a set of weights with the

input. CNNs are purposed to process data that can be represented as multiple arrays [52]. In an image-

related learning task, a CNN takes an order 3 tensor as its input, for example, an image with

dimensions of h rows, w columns, and 3 channels (R, G, B colors). This input then goes through a

series of layers, where each layer is responsible for a specific processing task. The different types of

layers in a CNN can be a convolution layer, a pooling layer, a normalization layer, a fully connected

layer, a loss layer, and so on [52]. In medical image analysis, CNNs are particularly effective because

of their ability to preserve local spatial relationships when filtering input images [53].

2.5.2 Components of a CNN

2.5.2.1 Convolutional Layer

In an image analysis task, the input function consists of pixel values at a position in the image

represented as an array of numbers. When the convolution is performed, the dot product between the

input and the filter is performed. And the filter is shifted to the next position in the image. This shift

length is defined as the stride. This process is repeated until the entire area of the image is covered,

and the obtained output is called a feature map [53]. Figure 2.7 shows the convolution operation on a

7 x 7 matrix with a 3 x 3 kernel.

The convolution operation is denoted with an asterisk (*). A convolution operation on input I(t),

with a filter K(a), and producing a feature map s(t) can be represented by equation (2.6) [39].

𝑠(𝑡) = (𝐼 ∗ 𝐾)(𝑡)
(2.6)

If t is limited to integer values only, the discretized equation is represented by equation (2.7) [39].

𝑠(𝑡) = ∑𝐼(𝑎). 𝐾(𝑡 − 𝑎)

𝑎

 (2.7)

 22

Figure 2.7: The output matrix [right] obtained by convolving a 7x7 input matrix [left] against a

3x3 kernel [middle] with a stride of 1

While using a convolution operation, the first argument is called the input, the second argument is

called the kernel (or a filter), and the output is commonly referred to as the feature map [39]. The

effects of different convolution matrices are explained in Table 2.2.

 23

Table 2.2: Different convolution matrix and its effect on the input image [54]

Operation Filter (3x3 matrix)

Identity 0 0 0
0 1 0
0 0 0

Edge Detection

1 0 −1
0 0 0
−1 0 1

0 1 0
1 −4 1
0 1 0

−1 −1 −1
−1 8 −1
−1 −1 −1

Sharpen 0 −1 0
−1 5 −1
0 −1 0

Box blur (normalized) 1

9
 [
1 1 1
1 1 1
1 1 1

]

Gaussian blur (approximation) 1

16
 [
1 2 1
2 4 2
1 2 1

]

2.5.2.2 Activation Functions

The layer following the convolution layer is an activation function that adds non-linearity to the

output. This is used to adjust or cut off the generated output after convolution, saturating the output

[55].

Sigmoid

The sigmoid [56] or logistic activation function produces values between 0 and 1. It is especially

used for models where a probability needs to be predicted. However, it can cause issues like a

vanishing gradient problem [57]. Therefore, it is commonly used in the output layer. Another

disadvantage of the sigmoid function is that it can disable the network from learning to delay the

convergence [58]. The function is shown in equation (2.8).

 24

𝜃(𝑥) =
1

1 + 𝑒−𝑥
 (2.8)

Tanh

Tanh is a shifted version of the sigmoid function and is bounded between -1 and 1. Tanh also has

the same disadvantage as the sigmoid function, and it can lead to a vanishing gradient problem [58].

The function is shown in equation (2.9).

𝑓(𝑥) =
𝑒2𝑥 − 1

𝑒2𝑥 + 1

(2.9)

Rectified Linear Unit (ReLU)

The ReLU activation function [59] converts any negative values to zero. ReLU accelerates the

neural network calculations and avoids the vanishing gradient problem [59]. For an input x to the

neuron, the function is shown in equation (2.10).

𝑓(𝑥) = {
𝑥, 𝑖𝑓 𝑥 ≥ 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.10)

Exponential Linear Unit (eLu)

The eLu activation function is similar to the ReLU but has a non-zero value for negative output

values. This helps the network converge faster and mitigate the vanishing gradient problem [58]. The

function is shown in equation (2.11).

𝑓(𝑥) = {
𝑥, 𝑖𝑓 𝑥 ≥ 0

𝛼(𝑒𝑥 − 1), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2.11)

2.5.2.3 Pooling Layer

The pooling layer reduces the number of parameters to be calculated and is used between the

convolutional and the activation layers. Its main purpose is down-sampling which reduces the

 25

complexity of the feature maps for the succeeding layers [60]. In image analysis, it reduces the width

and height of the image, thereby reducing the dimensionality of the features. The different types of

pooling operations are max-pooling, average pooling, and L2-normalization pooling. In this work, a

max-pooling layer is used, which essentially extracts the largest input value from the filter [59].

Figure 2.8 shows a simple max pooling operation.

Figure 2.8: Max pooling operation with a 2x2 filter and a stride of 2. Notice how it extracts the

maximum value from the filters [represented by the different colors]

2.5.2.4 Fully Connected Layer

The last layer in a CNN is the Fully Connected Layer. This essentially means that every neuron in the

layer before is connected to every neuron in the Fully Connected Layer. Like other layers, there can

be more than one fully connected layer depending on the required level of feature abstraction. The

main function of this layer is to use the output from the preceding layer as input and computes the

probability score for classification [59].

Figure 2.9 shows a sample CNN architecture composed of an input layer, a convolution layer, a

max pooling layer, a flatten layer, a fully connected layer, and an output layer.

 26

Figure 2.9: A sample CNN architecture with the different types of layers

2.5.2.5 Dropout Layer

Dropout [61] is a regularization method used to stochastically set the activations of hidden units to

zero [52]. The number of units to be removed is defined using a probability p ϵ (0, 1) value, also

called the dropout rate. The dropout layer functions only during the training phase. A dropout layer is

generally applied between two fully connected layers. Although dropout is not commonly used after

convolutional layers because max-pooling already accounts for spatial reduction, research has

indicated that adding a dropout layer after convolution layers can improve the model performance

[52] [62]. In this study, both these techniques are investigated.

2.5.3 CNN Working Algorithm

CNN mainly operates using two operations called forward propagation (also called a forward pass)

and backward propagation (also called a backward pass). During a forward pass, the outputs of the

layers are computed using the input variables from the previous layer. It calculates an output function

f(x, y) based on the inputs x and y. In a backward pass, the internal network parameters are updated to

optimize the loss function [63].

In a classification problem, the final output of the CNN model is calculated using a sigmoid or

softmax function. For a sigmoid function [equation (2.8)], as explained in section 2.4.1.2, the output

value is between 0 and 1. Based on the probability value for the given sample (either <0.5, or >= 0.5),

the output class is assigned. The cross-entropy loss function is most commonly used for evaluating

 27

the model performance. A Stochastic Gradient Descent (SGD) algorithm is typically used by a CNN

to optimize the network parameters and achieve an optimal loss function value. The performance of

the CNN can be evaluated using metrics like the train and validation accuracy and the loss functions.

2.5.4 CNN Architecture

The CNN architecture designed in this study was accomplished using Python-based machine learning

libraries, called TensorFlow [64] and Keras [65]. TensorFlow is an end-to-end machine learning

platform developed by Google. It operates on multidimensional arrays, also called tensors,

represented as tf.Tensor objects [64]. Keras is a Python-based deep learning Application

Programming Interface (API) that runs on top of TensorFlow [65]. The main data structures are layers

and models.

The main steps involved in designing a CNN are:

1) Data pre-processing

2) Defining a base model

3) Identifying the critical hyperparameters

4) Fine-tuning the identified hyperparameters

Data pre-processing involves performing data augmentations for small datasets, implementing

required image processing steps, splitting the entire dataset into the train, validation, and test sets, and

normalizing the input data before training [66]. The train set is the dataset used to fit the network and

on which the network learns. The validation set is used to provide an unbiased evaluation of the

network. This is typically used to fine-tune the hyperparameters. The test set is used to evaluate the

final model. It is used as a final testing step once the network is completely trained with the best

hyperparameter settings [67].

Hyperparameter is a configurable value that is set before the network training starts. The different

hyperparameters for a neural network are [66]:

1) Number of layers [network depth]

2) Number of neurons in each layer [network width]

3) Activation functions

 28

4) Optimizer

5) Learning rate

6) Batch size

7) Number of epochs

8) Dropout

9) L1/L2 regularization

The hyperparameters unique to CNN are [66]:

1) Kernel size

2) Padding

3) Stride

4) Number of channels

5) Pooling parameters

2.6 Transfer Learning

Transfer learning with CNN is the concept of transferring knowledge between networks at the

parametric level. The objective of such an experiment is to use a pre-trained network, which is trained

on generic features learned from a different image classification task and use these pre-trained

weights to accomplish the target image classification task (in our case, classifying CVR maps). There

are several publicly accessible pre-trained CNNs that can be downloaded and customized as per the

project’s needs [68].

There are broadly two approaches commonly applied for transfer learning activities. The first one

is to use the pre-trained network as a feature extractor and build a custom CNN model using the

features obtained. This is called a feature extractor. And the second one, called fine-tuning, involves

updating the parameters of the pre-trained network during model fitting [68].

Transfer Learning proves very effective in implementing CNNs to small datasets. If the dataset is

relatively small, the model starts to overfit. However, if a pre-trained model is used which has been

 29

trained on a much larger dataset, the learned features are more generic. This helps in addressing the

overfitting issue when this knowledge is transferred to a small dataset [69].

In this work, some of the popular models trained using the ImageNet dataset (ImageNet large scale

visual recognition challenge; ILSVRC) [70] were fine-tuned. AlexNet [71] is a first-generation CNN

model that was developed in 2012. It is a shallow model as compared to other ImageNet-trained

models that were developed more recently. The success of AlexNet boosted CNN research in

computer vision tasks after it won the ImageNet large scale visual recognition challenge (ILSVRC) in

2012 [68].

Another popular model is the Inception [72], also called GoogLeNet, which outperformed

AlexNet and set new benchmarks in the ILSVRC, in 2014. This model introduced a block concept

employing different sized filters and then concatenating the multiple outputs before passing it to the

deep networks [68]. The latest model of the inception family is the InceptionV3. VGG [73] is another

deep CNN consisting of 16 (VGG-16) or 19 (VGG-19) layers. VGG-16 is another popular pre-trained

model for image classification. VGG models stack consecutive convolution layers followed by the

pooling layers. In a VGG-16 network, there are 13 convolution layers, 5 pooling layers, and 3 dense

layers.

A big challenge while using very deep networks is the vanishing gradient problem, where the

parameters of the initial layers in the network are poorly updated. ResNet (also called the Residual

Net) [74] addressed this issue by proposing residual blocks and bypass or skip connections between

layers.

EfficientNet [75] proposed a compound coefficient-based scaling method to provide a more

structured way to scale up CNNs. The family of EfficientNet networks achieved state-of-the-art

accuracy in several widely used transfer learning datasets, including, CIFAR-100, and Flowers.

A typical transfer learning architecture is shown in Figure 2.10. The figure demonstrates the

mechanism of fine-tuning the Inception V3 model which is trained originally using the ImageNet

dataset. The pre-trained weights of the Inception model are used and the last layer(s), for example, the

output layer, are reconstructed to suit the target objective.

 30

Figure 2.10: Representation of the transfer learning mechanism. Inception V3, trained on the

ImageNet dataset is fine-tuned to use its pre-trained weights on the new dataset and accomplish

the target objective

2.7 Related work: Machine Learning and CVR

Some of the widely used machine learning techniques in medical imaging are support vector

machines (SVMs) [76], neural networks [77], k-nearest neighbor classifier [78], linear discriminant

analysis [79], and boosting-based learning [80]. Kloppel et al. successfully used SVMs to classify

structural MRI for AD detection and obtained an accuracy of 96% [81]. Waddle et al. (2020)

investigated the application of support vector machine (SVM) algorithms to identify cerebrovascular

impairment [82]. A study investigated LDA with Fisher’s discriminant rule, k-nearest neighbor (k-

NN), and nonlinear SVMs to classify brain tumor types using MRI [83].

 31

2.7.1 Application of Deep Learning in MRI

The main advantages of using a deep learning model with medical image processing are [84]:

1. Deep learning is capable of extracting features automatically from the input dataset.

Therefore, it does not require subject expertise or manual feature engineering.

2. Deep learning has the ability to extract unique features customized to a particular application,

that might not be discovered by manual feature engineering.

Several studies have investigated the application of deep learning models to accomplish wide-

ranging medical imaging tasks including image classification, detection of anatomical and cellular

structures, localization, object detection, segmentation, registration, and computer-aided disease

diagnosis [85], [86], [87].

Farooq et al. designed a deep CNN pipeline for a 4-way classification task using MRI scans. The

models are experimented on the ADNI dataset on a GPU-based processing system and obtained state-

of-the-art results. The proposed model successfully classified three diseases, including Alzheimer’s

(AD), mild cognitive impairment (MCI), late mild cognitive impairment (LMCI), and healthy group.

The prediction accuracy achieved is 98.8% [88]. Hashemzehi et al. used a hybrid model consisting of

a neural autoregressive distribution estimation (NADE) and a CNN for brain tumor detection using

brain MRI images. This model achieves a high classification performance using images belonging to

three classes of brain tumors [89].

Salehi et al. designed a CNN and achieved an accuracy of 99% in classifying AD using MRI

datasets. Chen et al. used a CNN to predict the cerebrovascular reserve in Moyamoya disease using a

simultaneous [15O]-water PET/MRI dataset [90]. Hussein et al. designed a two-phase deep learning

model that translated MRI images to Positron Emission Tomography (PET) and then classified the

images into healthy control, Moyamoya disease, intracranial atherosclerotic steno-occlusive disease

(ICSD), and stroke. The average accuracy for the classification task was 96.38% [91].

Chen et. al. proposed a deep learning network that predicts cerebrovascular reserve by using PET-

plus-MRI and MRI-only images, thereby making the use of an acetazolamide vasodilator redundant.

The study used simultaneous oxygen 15-labeled water PET and MRI and assessed results before and

after the vasosimulation. The analyses were conducted on patients with Moyamoya disease and

healthy subjects [92].

 32

Nie et al. proposed a 3D CNN-based architecture to use multi-channel data for feature extraction.

The deep learning models are implemented for the task of feature extraction from several brain

imaging datasets, like, T1 MRI, fMRI, and DTI. Using the features, a support vector machine is used

to predict the overall survival time for tumor patients [93].

Hou et al. investigated the application of deep learning to detect vascular abnormalities using

cerebrovascular reactivity (CVR) and bolus arrival time (BAT) maps of the brain obtained using

resting state fMRI studies [94]. Dhar et al. investigated the application of single 2D U-net deep

learning architecture is discussed, which delineated the intracranial hemorrhage and perihematomal

edema [95].

So far, the research discussed involved the detection, classification, and prediction of diseases

using various medical imaging techniques. Zhu et al. reviewed the other domain of the application of

deep learning in medical imaging, for creating and enhancing stroke imaging. In the review, the

application of deep learning in stroke imaging particularly using Computed Tomography (CT) and

MRI is discussed [96].

2.7.2 Application of Transfer Learning in MRI

Many researchers have implemented the concept of transfer learning in accomplishing tasks

related to medical imaging. Talo et. al. implemented the CNN-based ResNet34 model to successfully

classify brain images into normal and abnormal classes using 613 MR images. Techniques like image

augmentation, optimal learning rate finder, and fine-tuning were used [69].

Maqsood et al. used the popular pre-trained network, AlexNet, for both binary and multiclass

classification of 3D MRI images. The network is trained over segmented and unsegmented images.

The overall accuracy obtained during the classification of multi-class unsegmented images was

92.85% [97].

Yuan et. Al. developed a novel multiparametric MR model using transfer learning to classify

prostate cancer. This study uses the pre-trained model as a feature extractor. The model is then fine-

tuned to classify the images and the achieved accuracy is 86.92%. The feature extractor achieves

performance better than similar deep learning models built on hand-crafted features [98].

A very interesting work, which provides direction to the future of the research discussed in this

thesis, investigates the application of transfer learning methods for domain adaptation to

 33

accommodate the differences in MRI scan parameters. The study investigated white matter

hyperintensity segmentation by training CNN on MRI images. The findings conclude that transferring

pre-trained weights of the model trained on one set of MRI images to a different set of MRI images

achieved a dice score of 0.63, and outperformed a new network trained on the new MRI images from

scratch [99]. This is an indication that the weights obtained in this thesis could be potentially

extended to a different CVR dataset.

Based on this literature review, it can be established that several studies have successfully

implemented deep learning models to classify MRI images using various modalities and using

different types of stimuli to map CVR responses. Researchers have also successfully used pre-trained

models to suit the target classification objectives, achieving high model performance. This research

extends the application of deep learning models to classify CVR maps obtained using the novel

prospective end-tidal targeting of carbon dioxide.

 34

Chapter 3

Problem Analysis

3.1 Problem Description

As described in the introduction, the current generation of CVR analyses is conducted using shell

scripts and a variety of programs that need to be executed in a specific order to obtain the CVR maps.

Several shortcomings were identified in the current generation of CVR processing tools. Therefore,

the objective of this project was to develop an in-house CVR processing and visualization software

application, engineered using open-source programming tools. The software was intended to be used

as a research tool to process raw BOLD-MRI files in the DICOM format and produce the

corresponding CVR maps using AFNI modules. The developed application was required to have a

simple and clear workflow, allowing it to be operated with minimal subject expertise. Another key

requirement of this software was to allow users with little to no AFNI expertise to process and

visualize CVR maps. Finally, the software would provide a framework to investigate the application

of deep learning models to classify CVR maps. This deep learning-based classification tool is

integrated as an independent module into the proposed software and is discussed in the next chapter.

Additionally, the clinical assessments of CVR maps relied on a team of radiologists and doctors

who made judgments based on their subject expertise and years of experience. The objective of this

research was to extend the screening capabilities of the CVR software. Convolutional Neural

Networks (CNNs) are investigated to classify CVR maps into healthy and unhealthy categories.

Although existing literature has research that used conventional machine learning and deep learning

models for CVR analysis and classification, the implementation of CNNs to classify CVR maps

obtained using the prospective end-tidal targeting of CO2 is unprecedented as per the author’s best

knowledge.

 35

3.2 Software Requirements

As discussed in section 1, the current generation of CVR processing tools had several shortcomings.

Researchers at the participating institutions were consulted to evaluate the requirements and outline

the research workflow currently used. Based on the consultation and the sponsor’s needs, the

functional, non-function, and user interface requirements of the software were identified. These are

discussed below.

3.2.1 Functional Requirements

The functional requirements of the CVR Processing software are listed below.

1) The software should create a main input folder with the patient’s name and three sub-folders

for anatomical, BOLD, and MR sequence information

2) The software should create the main output folder

3) The software should allow users to view the input files in the corresponding folders

4) The software should allow users to upload the input files in the corresponding folders

5) The software should check if the input files are placed in the correct sub-folders

6) The software should display the status of the input files

7) The software should execute a series of AFNI executable files to realize the processing

workflow, using the raw DICOM input files and producing AFNI HEAD/BRIK files

8) The software should plot the BOLD signals and PCO2 values on a dual-axis plot

9) The software should allow users to synchronize the PCO2 curve with the BOLD curve

10) The software should allow users to select an area of interest once the plots are synchronized

11) The software should calculate the CVR values across the brain voxels and write to an output

file

12) The software should plot the CVR maps using AFNI executable file

13) The software should save the CVR maps in a JPEG format in the main output folder

 36

3.2.2 Non-Functional Requirements

The non-functional requirements of the CVR Processing software are listed below.

1) The software should be operating system agnostic

2) The software should not experience critical failures

3) The software should support one patient analysis at a time

4) The software should allow multiple CVR studies for the same patient

5) The software should not use any paid or licensed tools

6) The software should be easy-to-use

7) The software should allow easy distribution to the participating institutions

3.2.3 User Interface Requirements

The user interface requirements of the CVR Processing software are listed below.

1) The software should be a standalone GUI application; with the exception of using AFNI

modules when required

2) The software should display a warning message stating that the software is an investigational

device and must be used by qualified investigators only

3) The GUI should display readable and easy-to-understand instructions for the users

4) The software should display a status message when a task is completed

3.3 Process Flow Diagrams

As described in the background, CVR studies require a series of computational steps to produce the

CVR maps for a given subject. Based on the research workflow used by our sponsors, a process flow

diagram was developed highlighting the key steps required to accomplish a CVR analysis. This is

shown in Figure 3.1.

 37

Figure 3.1: Process flow diagram of the CVR Processing Software

With a framework available to conduct CVR analyses, the CNN classifier furthers the CVR

research workflow. Since the original software was developed following object-oriented design

principles, the CNN model was also developed as a separate module that can be easily integrated into

the software workflow. The process flow diagram for the CVR Processing-Assessment workflow is

shown in Figure 3.2.

 38

Figure 3.2: Process flow diagram of the CVR Processing-Assessment Software workflow

3.4 Software Architecture

The first step in developing the software was to identify the appropriate development tools. Based on

the software requirements listed in section 3.2, Python was identified as a well-suited programming

language. Python is an open-source language that has a relatively easier syntax and integrates with

other programs seamlessly. It also supports object-oriented techniques allowing quick modifications

to the application modules. Additionally, Python enables GUI applications that can be ported to

several Python libraries and system calls. Finally, Python provides a better structure to be scaled as

compared to shell scripts [100].

The software was developed using PyCharm IDE [101] on a Linux-based environment installed on

a virtual machine (VM). VM is a software-only compute resource that runs on a physical host

machine [102]. Bitbucket is used as the version-control tool [103].

 39

Chapter 4

CVR Processing Software Development

4.1 Project Organization

An object-oriented software development methodology was followed [104]. Classes were used to

create customized data structures and methods to define the functions. The program codes were

developed as separate modules, and these modules were imported as per the requirement. This section

discusses the functionality and features of the proposed software.

The object-oriented principles allowed the software to be flexible and the main GUI design

attributes can be changed by modifying a few parameters in the GUI module. All other modules, and

therefore GUI pages, inherit these features automatically. Using object-oriented principles also

allowed for a faster development and deployment process because modules communicate with one

another, and codes do not have to be written from the scratch. A modular code structure allowed easy

feature upgrades and testing of the modules individually and independently using a unit test suite.

Modules also allowed us to separate the code into smaller parts storing related data and functionality

[105].

The project repository was organized following the standard recommendations [105]. The main

folder is called cvr_proc denoting CVR_Processing (software). In the main folder, the src folder

contains the scripts. The docs folder contains the images and files required for the application

interface. The tests folder has the unit test scripts used to test the individual modules from the src

folder. The README.md is a markdown file that contains basic information about the project,

installation steps, and a guide to running the program. Figure 4.1 shows the repository structure. The

module-based scripts developed for the application are shown in Figure 4.2. The file default.txt

contains meta-information for the color scale of the CVR maps.

 40

Figure 4.1: The working directory used for the CVR Processing software development. The

icons used in this figure are from Flaticon [106]

Figure 4.2: Python modules developed for the CVR Processing software, located in the src

folder

 41

4.2 Calculations and Interpolations

4.2.1 BOLD Calculations

As discussed in section 2.1.3, CVR is calculated as the ratio of the change in BOLD values with

respect to the change in the end-tidal PCO2. There were two different approaches that were used to

assess the BOLD changes. The first formula calculated the percentage changes in BOLD by

subtracting the mean BOLD value from each of the individual BOLD values in each voxel. The

second formula did not subtract the mean BOLD value. The two approaches are shown in equations

(4.1) and (4.2).

∆𝐵𝑂𝐿𝐷𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒(1) =
𝐵𝑂𝐿𝐷(𝑖) − 𝐵𝑂𝐿𝐷𝑀𝑒𝑎𝑛

𝐵𝑂𝐿𝐷𝑀𝑒𝑎𝑛
∗ 100 (4.1)

∆𝐵𝑂𝐿𝐷𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒(2) =
𝐵𝑂𝐿𝐷(𝑖)

𝐵𝑂𝐿𝐷𝑀𝑒𝑎𝑛
∗ 100 (4.2)

The difference in the corresponding percent change in BOLD obtained using the two approaches

for the given subject was less than 0.01. This difference did not cause a significant difference in the

CVR maps produced. This is observed in Figure 4.3 as the key regions of blue and red remains the

same. As discussed in section 2.1, as per the color scale used, the red regions represent a positive

CVR value, highlighting a regular CVR response in the brain regions. The blue regions represent an

abnormal CVR response in the brain regions, indicated by negative CVR values. Based on the

feedback from researchers and senior scientists, equation (4.2) was used as the default formula for

CVR studies. However, a separate module allows the user to change to the other method. This was

implemented as a beta feature and is accessible only by internal researchers.

 42

Figure 4.3: Comparison of the CVR maps obtained from two approaches of calculating the

percentage difference in BOLD. The maps in the left image were obtained by subtracting the

mean from individual BOLD values and then dividing by the mean BOLD to calculate the

percentage BOLD change, represented by equation (4.1). In the maps in the right image, the

ratio of individual BOLD values to mean BOLD was used to calculate the percentage BOLD

change, represented by equation (4.2)

In an MRI study, the repetition time is the duration of time between successive pulse sequences

applied to the same brain slice [107]. The repetition time (TR value) can be extracted from any of the

DICOM images using the Pydicom library. The script to extract the TR value is presented below. The

repetition_time method reads the first DICOM file in the BOLD dataset and extracts the

metainformation stored in the [0x0018, 0x0080] index. This corresponds to the repetition time used

for the given analysis.

Once the average change in BOLD values is calculated for all the voxels and the TR values are

extracted, we create a new time series dataset based on the TR scale. For example, if there are 4

BOLD values for a given voxel, the time series is constructed as a list: [0, 2.4, 4.8, 7.2]. The BOLD

values are then plotted against this new time series instead of linear x-values. The program used to

extract the TR value is described in Appendix-B, section B.1.

 43

4.2.2 PCO2 Interpolations

The administered end-tidal PCO2 is logged in the EndTidal file generated by the RespirAct RA-

MR device [25]. The PCO2 values are observed in real-time with the MRI study. The software reads

the column headers and stores the data under "PCO2 (mmHg)" and "MR Time(s)". Due to various

reasons, some entries may be missing, and the files store them as none values. The software ensures

that these values are not stored. The program that accomplishes these functions is presented in

Appendix-B, section B.2.

As discussed in section 2.1, CVR is calculated as the slope between the change in BOLD signal(s)

with respect to the change in PCO2 administered. Therefore, the PCO2 is interpolated from its

original real-time MRI time scale to a common time series used for BOLD. This creates a data point

for PCO2 at the same time series as the BOLD values, allowing further CVR calculations.

The interpolation to convert the PCO2 data to the time series of BOLD was achieved using the

Cubic spline data interpolator (scipy.interpolate.CubicSpline) [108].

4.3 Plotting MRI images with Pydicom

As the first step towards conceiving an MRI processing software, plotting the MRI images was

accomplished using the Pydicom package [109]. The Pydicom module allows the development of

Python programs to interact with the DICOM datasets. We used the anatomical and BOLD DICOM

files for a subject to plot the respective MRI results. The program prompted the user to enter a slice

number to view the 2-dimensional image of that slice. When the slice number is entered, the program

creates the plot using the Matplotlib modules [110]. The images visualized for a test case are shown

in Figure 4.4 and Figure 4.5.

Although the anatomical plots have a good resolution, the BOLD images were poorly constructed,

as shown in Figure 4.4. Additionally, the research workflow heavily relied on AFNI programs.

Therefore, it was decided that the plotting workflow would be accomplished using AFNI programs

and not Pydicom.

 44

Figure 4.4: Anatomical and BOLD images for a subject plotted using the Pydicom and

Matplotlib libraries. Left image shows the anatomical MRI image corresponding to the fifth

slice. And right image shows the BOLD MRI image for the same slice

Figure 4.5: The three views for the Anatomical MRI images. Top left image shows the axial

view, top right image shows the sagittal view, and the bottom image shows the coronal view

 45

4.4 GUI Design

The first page that the software displayed, the landing page, required to have a user warning as per the

company policies. The Tkinter package [111] was used for designing the GUI of the application. The

GUI consisted of the main application window, a notebook that contained multiple tabs, and widgets

placed on the different tab frames. The notebook design allowed the software to be a single-

windowed application. Some of the Tkinter widgets used in this work are shown in Table 4.1 with a

brief description of their functionality. The different components of the GUI are shown in Figure 4.6.

Table 4.1: Tkinter widgets used and their respective functions [112], [113], [114]

Sr. No. Widget Name Functionality

1 Notebook Allows creation of tabs and corresponding pages. Creates a child

pane associated with the selected tab

2 Frame A container widget inside which other widgets can be organized

3 Label Creates single-line captions or images

4 Entry Used to accept a single-line text field entry from user

5 Button Displays a button in the application

6 Canvas Used to draw shapes in the application

7 Scrollbar Enables scrolling feature to other widgets

8 ImageTk

(From PIL)

Used to create Tkinter Photoimage from PIL images

For regulatory purposes, a warning message was required stating that the software is an

investigational device that was to be used by qualified investigators only. To ensure that the user

reads and agrees to the warning, an OK button was added to the landing page. And in case, the user is

not qualified, the software can be closed using the Cancel button. The OK button hides the tab

containing the warning message and opens the tabs used for the next steps in the same notebook.

 46

Figure 4.6: CVR Processing Software GUI design. Label 1 shows the main window. Label 2

shows the notebook style frames with 3 tabs [View/Upload MR files; Execute AFNI; Plot CVR].

Label 3 shows the frame corresponding to tab 1: View/Upload MR Files. Label 4 shows the

different widgets (buttons and text) on the frame of tab 1

4.5 File Management

To streamline the research workflow to conduct a CVR analysis, each analysis was linked to a subject

ID. The subject ID acted as the first step to the CVR workflow and linked the input and output

directories for the corresponding study. If the entered subject ID corresponded to a previously

completed analysis, the directories were pre-populated according to the steps completed previously.

And in case of a new analysis, the software creates the respective input and output folders linked to

the subject ID.

For a given study, three types of input files are required, and the software creates three folders.

The Anat folder contains the anatomical files of the subject in the DICOM format. The Bold folder

contains the corresponding BOLD-MRI files of the subject in the DICOM format. The RA Files

 47

folder contains the files generated by the RespirAct RA-MR device including Events.txt and

EndTidal.txt, which are the files of interest.

The software pastes the output files generated from processing the raw files from the input folder

into the Output folder corresponding to the subject ID. These are mainly two categories of the output

files, the first generated using the AFNI modules, and the second generated using a mix of plotting

tools and AFNI modules.

Figure 4.7: Folders and structured directory created for “Subject 1” as the subject ID

When a new analysis is started, with a unique subject ID, the software creates the folders in the

directory structure shown in Figure 4.7. The software then allows users to view and upload the

required input files from the user interface itself. The View Files and Upload Files buttons open a

pop-up window that allows the user to handle the files. The software recognizes MRI files in two

formats, namely, .MR (MR scan image), and .DCM (DICOM). To accommodate the NIfTY formats, a

separate module was developed that used a slightly modified AFNI workflow. The file-uploading

interface is shown in Figure 4.8.

 48

Figure 4.8: File uploading interface

4.6 Processing MRI files

Once the required input files are organized in the corresponding folders, the next step is to use AFNI

modules to process the input DICOM files and produce the intermediate files that can be used for

further processing. For processing the input files, the CVR software makes a series of system calls to

execute the AFNI programs. For this research, the required AFNI programs were installed on a

Linux-based virtual machine.

The first program is Dimon [115], which is used to monitor and organize the acquisition of the

DICOM image files. It uses the meta-information contained within the DICOM file and uses the

‘image number’ to organize the sequence of the input files. The Dimon program allows for some

additional options which can be used to realize specific functionality. Once the files are organized, the

to3d program is used which creates 3-dimensional datasets from 2-dimensional image files. The

AFNI documentation recommends using to3d as an additional option with the Dimon program.

The next AFNI program used is the 3dTshift [115]. It shifts the voxel (which is like pixels but in a

3-D space) time series in the input dataset to ensure that all the slices are aligned to the same temporal

origin. The 3dvolreg program is used to register the volume of each 3-D sub-brick from the input

dataset to the base brick. The 3dAutomask converts the 3-D and time series from the input dataset to

 49

produce brain-only mask dataset. The 3dmaskdump produces ASCII format file values from the input

dataset, producing the voxels.1D file. This is the intermediate output file of interest which is used to

extract BOLD values for the CVR calculations [115].

The software executes additional AFNI programs to further obtain more intermediate files. The

complete series of AFNI executables used for the CVR workflow in this work are listed in Table 4.2.

Table 4.2: A step-by-step list of AFNI modules used to realize the CVR workflow [115]

Step No. AFNI module Description

1 Dimon Reads and organizes the DICOM files in the specified folder

2 to3d Converts the 2-D image files into 3-D AFNI format datasets

3 3dtshift Shifts the voxel time series in the input dataset to ensure that the

separate slices are aligned on the same temporal origin

4 3dvolreg Registers the sub-bricks from the BOLD input dataset to the base

brick (the original space)

5 3dAutomask Converts the input EPI 3D+time or a skull-stripped anatomical

input dataset into a brain-only mask

6 3dmaskdump Uses the input dataset to write an ASCII file values. voxels.1D file

is created

7 ANAT to3d to3d function used for the anatomical dataset

8 3dAllineate Converts the anatomical dataset to the MNI space using affine

(matrix) transformation of space

9 3dAllineate Converts the BOLD dataset to the MNI space

10 3dAutomask Same as step 5 but using the MNI space datasets

11 3dmaskdump Uses the input dataset to write an ASCII file values but for the MNI

dataset

12 3dresample Rewrite the dataset in the new orientation, with the new voxel size

 50

Once these steps are completed, we have both the BOLD and the anatomical datasets in the same

space (original space) with a resolution of 64x64x39 pixels. Some of the steps used for producing the

voxels.1D file are repeated to generate the respective anatomical and BOLD datasets in the MNI

space.

4.7 Plotting

Once the intermediate HEAD/BRIK files are produced in the output folder, the software allows for

multiple CVR analyses for the same subject. Therefore, for a given subject ID, the steps required to

obtain the intermediate HEAD/BRIK files need to be performed only once. Now, for each CVR

analysis, a study name has to be entered. If an already completed study is being plotted again, the

corresponding study name can be entered. The software displays the names of the already completed

studies.

For creating the required plots, Matplotlib was used. It is a Python library that enables creation of

static, animated, and interactive visualizations [110]. The CVR software uses two of these features-

static plots of BOLD and PCO2, and interactive alignment of the two plots.

The main functions of the plotting modules identified were:

1) Import the BOLD data

2) Change the x-axis values to a new time series based on the repetition time

3) Import the PCO2 data

4) Resample the PCO2 data using a cubic spline interpolation on the same time series as BOLD

5) Plot BOLD and PCO2 on a dual y-axis plot, enabling visualizing both on the same plot

6) Allow the user to displace the PCO2 curve and align it with the BOLD plot

7) Allow the user to select an area to calculate the corresponding CVR values

4.7.1 Base Plot

The first step for the plotting module was to create the static plots of BOLD and PCO2 data. The data

to be plotted was imported using the os modules [116] to read the corresponding files. Both these data

are plotted on a common time series x-axis. However, given the nature of the study, the BOLD and

PCO2 curves are not aligned naturally. There is usually a time delay between the time stamps when

 51

the external stimulus is administered and when the brain responds to compensate. As shown in Figure

4.9, the PCO2 curve is offset to the right for the two study sequences, step, and ramp. The secondary

axis for creating a dual plot was accomplished using the Axes.twinx function [117].

Figure 4.9: Static plots of the BOLD and PCO2 data on a common time scale. The shifting

buttons that allow plot synchronization are placed below the plotting interface

4.7.2 Plot Synchronization

To calculate CVR, it is required that the two plots are aligned. For this synchronization, Matplotlib

buttons were added to the GUI window, as seen in Figure 4.9. In all the use cases, the PCO2 curve

needed to be shifted left. Therefore, two options were provided for left shifts. The plot could be

shifted by 1 unit or 10 units depending on the requirement. In case of excessive shifting to the left, the

shift right button shifts the PCO2 curve to the right by 1 unit. The reset button plots the base PCO2

plot in the raw form.

Once the two plots are aligned, the next step is to define an area of analysis. For example, for the

analysis of the step sequence, the start and end points for the dataset are required. The software allows

for defining the endpoints by drawing a rectangle over the plotting interface. This feature was realized

using the rectangle selector widget in the Matplotlib library [118]. It allows the user to use the mouse

button and movement to select the start and end points on the plot and saves the x- and y- coordinates

 52

for the four corners. The plotting interface was embedded in the application window, to the Plot CVR

tab, using Matplotlib’s backends module [119].

In the study shown in Figure 4.9, two sequences of the vasoactive stimulus were applied. The first

sequence is a step response (highlighted inside the red rectangle). The red curve represents the

vasosimulation, in the form of end-tidal PCO2. The blue curve represents the BOLD response to the

applied step sequence. After a time delay, a ramp sequence is applied, which is plotted as the pointed

curve following the step sequence.

The synchronized plots along with the area of interest selected (the step response) on the plotting

interface can be seen in Figure 4.10.

Figure 4.10: The interactive matplotlib interface for achieving the synchronization

requirements. The user is required to define the area of analysis using a rectangular selector

tool, shown as the red-colored rectangular area on the plot. The small squares and circles

around the red rectangle allow the user to resize the selected area

 53

4.8 CVR Calculations and Visualization

The final step of the CVR research workflow is to calculate the CVR values and plot them voxel-by-

voxel across the brain. The software uses the scipy.stats module linregress to calculate the slope of

the regression line [120]. The slope values for the different data points of BOLD and PCO2, along

with the voxel coordinates are written in an output file.

Finally, the AFNI programs are used to visualize the CVR maps. This is shown in Figure 4.11.

The interface shows the sagittal, coronal, and axial views of the CVR maps plotted over the

anatomical images of the subject. As it can be observed in the CVR maps, the subject has reduced

CVR response in the left hemisphere of the brain, indicated by the blue gradients. This indicates an

irregular CVR response and highlights the presence of an underlying abnormality.

Figure 4.11: CVR maps produced using AFNI programs. The three views of the brain MRI

images are shown: Sagittal (top left), Coronal (bottom left), and a 5 x 5 mosaic stack of the

Axial images (right)

 54

4.9 Software Validation

To validate that the software’s workflow and calculations met the research standards, the CVR maps

obtained from the software were compared with the ones obtained from the currently used processing

tools (shell scripts and licensed software). The key aspects that needed validation were the

interpolation process and plotting interface, and the final CVR maps. Two test cases were analyzed

using the two methods and the results were compared. Step and ramp increases in the CO2 were

applied to both these subjects.

4.9.1 Study 1

This study involved a step and a ramp stimulus administered over 800 seconds. The files were

processed using the software and the static plots were created. A comparison of the plot generated

using the software and that obtained from the shell scripts is shown in Figure 4.12.

A few differences were observed between the two figures. First, the x-axis scale used in the CVR

software pertained to the normal time series. Whereas it represents the repetition time (TR = 2.4 s) on

the other plot. Additionally, the y-axis values on the two plots use two different ways of representing

the change in BOLD signals. The CVR software plots the change in average BOLD values, whereas

the right image plots the percentage change in BOLD. Although these are visible differences, they do

not affect the CVR workflow directly. The main objective of this plotting step is to synchronize the

BOLD and PCO2 data and to define the endpoints of the area of interest.

The CVR maps obtained using the two software tools were plotted and compared. This is shown

in Figure 4.13. For the given study, both maps look very similar with only minor differences. The

regions of blue color are consistent in both, and the interpretability of the maps is the same.

 55

Figure 4.12: A comparison of the BOLD and PCO2 plot synchronization obtained using the

CVR software developed in this work [top] and the current generation tools [bottom]

 56

Figure 4.13: A comparison of the CVR maps of a healthy control subject produced using the

CVR software [left] and the current generation tools [right]. As observed, there are very

minimal differences in the two sets of maps

4.9.2 Study 2

The second study used to validate the software also consisted of a step and a ramp response.

However, the data in this study had more noise as compared to study 1. The software successfully

created the plot, which was interpretable and comparable with the plots developed using existing

methods. Figure 4.14 shows a comparison of the two plots.

 57

Figure 4.14: A comparison of the BOLD and PCO2 plot synchronization obtained using the

CVR software developed in this work [top] and the current generation tools [bottom] for study

2

Once again, the corresponding CVR maps were visualized, as shown in Figure 4.15. As can be

noticed, there were some differences between the two sets of plots. First, the maps produced using the

CVR software do not smoothen the edges of the blue and red-colored areas. The reason behind this

was identified as a difference in thresholding values set while the CVR maps were generated.

Secondly, minor deviations can be observed in the spatial distribution of the blue areas, particularly

 58

noticeable in the fourth row. This was attributed to the difference in the sequence start and end values.

The CVR software enables the user to manually drag and select the area of interest. In the current

generation tool, the user manually enters the start and end values. In conclusion, the CVR maps still

convey the same information, with negligible differences, therefore, validating the software’s outputs.

Figure 4.15: A comparison of the CVR maps of an unhealthy subject produced using the CVR

software [left] and the current generation tools [right] for test case 2

 59

4.10 Final Product

Once the software package was developed and tested on the local machine, it needed to be built,

packaged, and published to a repository for distribution. Poetry, a Python dependency management

and packaging tool were used for this purpose [88]. The packaged software file was uploaded to a

private repository.

The CVR Processing Software developed in this work successfully accomplishes the CVR

research workflow. It is a standalone software that runs on a virtual machine. The virtual machine

already comes pre-installed with the required AFNI modules and Python libraries required to

complete the CVR research. The CVR maps generated at the end of the workflow represent linear

CVR. The final version of the proposed CVR software is shown in Figure 4.16.

A detailed software workflow is explained in Appendix A.

Figure 4.16: The final GUI of the CVR software. This interface shows the plotting tab of the

software, the plotting interface along with the interactive buttons to align the BOLD and PCO2

plots

 60

Chapter 5

Convolutional Neural Networks for Screening SOD

In this chapter, the design and optimization of the convolutional neural network (CNN) architecture

to classify CVR maps into healthy control subjects and unhealthy categories is discussed. CVR maps

stacked in a 5x5 mosaic format were supplied to the networks for training and an empirical

evaluation-based design methodology was implemented to optimize the network architecture and

fine-tune the network’s hyperparameters. The CNN is designed using the Tensorflow [64] and Keras

[65] libraries. The section begins by describing the experimental setup, followed by an analysis of the

input dataset, the pre-processing of the input data, and finally the network design methodology. Some

common issues encountered while using our limited dataset, for example, overfitting and noise, are

also discussed. Finally, transfer learning is implemented using some of the popular pre-trained

models, and the results are analyzed.

5.1 Experimental Setup

The first topic to be discussed is the computational setup used to conduct the experiments. The design

and optimization of the convolutional neural networks were conducted on the university lab server,

physically located in the Maglev Microrobotics laboratory [121]. The server specifications are

explained in Table 5.1. The same computational resources were used consistently for all experiments

discussed in this chapter.

Table 5.1: Server specifications used for training the networks

Parameter Specifications

Processor Intel XII Gold 5218 CPU @ 2.30GHz (2 processors)

RAM 256 GB

System type 64-bit Operating System

Hard disk 3.62 TB

 61

The Python libraries and tools used for the experimentations are listed below in Table 5.2.

Table 5.2: The different packages and libraries used for the experimentations of CNNs

Package Version

Python 3.10.4

TensorFlow 2.9.1

Keras 2.9.0

Keras-Applications 1.0.8

Keras-Preprocessing 1.1.2

NumPy 1.22.4

Matplotlib 3.5.2

5.2 Data Analysis

The input images used to train the CNNs comprised 2-dimensional RGB images of the CVR maps of

different slices of the brain viewed in an axial orientation stacked in a mosaic format of 5x5. The

spacing between the axial CVR maps is set to 5 slices, meaning every 5th slice is plotted. The original

resolution of these mosaic images was 1280 x 1280 x 3 pixels. The CVR maps used in this work were

generated in the standard space. The CVR maps generated in the Montreal Neurological Institute

(MNI) standards were not considered due to the shortage of such samples. The dataset is obtained

from a diverse patient cohort from studies conducted by our sponsoring institute. The input data was

labeled by a team of experts and belonged to two classes: healthy subjects, and patients with the

steno-occlusive disease (SOD).

Figure 5.1 shows two sample images belonging to each class. Note the difference in the

distribution of the blue gradients across the brain regions, which represents decreased CVR in those

regions. And a decreased CVR highlights an abnormal vascular response to the stimulus. The spatial

distribution of the blue gradients is the key difference between a healthy and an unhealthy subject,

and this is the feature attribute that needs to be learned by the deep learning models to successfully

classify the maps.

 62

Figure 5.1: 5x5 mosaic images of the CVR maps used as the input data for training the

convolutional neural networks. CVR maps in images (A) [left] and (B) [right] were measured in

a healthy subject, and a patient with the SOD, respectively

The clinical procedure used to obtain the CVR maps using the prospective end-tidal targeting

(RespirAct RA-MR device) [122] is novel, and therefore the data availability was limited. The

original dataset consisted of mosaic images of 68 healthy subjects and 163 unhealthy patients. We

consider this a small dataset given the small number of trainable samples.

As discussed in section 2.3.2, in this work, image augmentation techniques and transfer learning

were implemented to address the challenges of using a small dataset. The augmentations applied are

discussed in section 5.3, and the pre-trained models used for transfer learning are discussed in section

5.7.

5.3 Data Pre-Processing

The first step to using the medical dataset was to anonymize the file names and remove any patient

information attached to the images. This was accomplished by developing a Python script that copied

only the CVR JPEG images and renamed the files to remove any patient-specific label or information.

The program is explained in Appendix-B, section B.3.

 63

The original dataset, consisting of 68 healthy subjects and 163 unhealthy patients, was split into

three categories, as described in section 2.3.2. The training dataset is used for training the model

where the model learns the features and patterns in the input data. The validation dataset is distinct

from the training set and is used to validate the model performance during training and update the

network parameters. This dataset is used to validate if the model is successful in learning important

parameters and indicates if the hyperparameters need to be tuned. Finally, the test set is used to

provide an unbiased performance metric for the model [123]. The dataset split is shown in Figure 5.2.

Figure 5.2: A comparison of the healthy and unhealthy datasets, and the distribution of the

original dataset into train, validation, and test sets

5.3.1 Data Augmentation

To address the shortage of the number of trainable samples and the data imbalance between the

two categories, data augmentation techniques were implemented in the training set. Additionally, to

accommodate real-world test cases, small augmentations were applied to the validation set. The

spatial resolution and orientation of the input mosaic images needed to be preserved to maintain a

standardized CVR analysis protocol (for example, the slice number and its relative placement on the

 64

mosaic). Therefore, the augmentations applied were small-scale and limited to the extent of not

affecting the original attributes. The augmentation operations used included rotation (range: 0-2),

shearing (range: 0.2), modifications to the brightness (range: 0.3-1.0), and horizontal flips. A few

participating institutions used horizontally flipped mosaic images for assessing CVR maps and

therefore the horizontal flips were included to extend the model capabilities to such studies. The test

set consisted of the images from the original dataset, without any modifications. The final sample size

used for training and validation is shown in Table 5.3.

Table 5.3: The final train, validation, and test datasets after applying the image augmentations

Dataset Healthy Unhealthy

Train 594 650

Validation 168 186

Test 6 16

5.4 Network Design Methodology

5.4.1 Key Definitions

Some of the terminologies used in this section are defined below [124].

1) Model parameters: The internal network parameters that are updated during the learning

process. These primarily include the model’s weights and biases.

2) Hyperparameters: The network variables that are adjusted (manually or using an automated

service) during successive trials of network training.

3) Batch size: Number of samples used in one iteration of the training. An iteration is a single

update of the model’s parameters.

4) Epoch: A complete training pass performed on the complete training dataset. The total

number of training iterations in an epoch is calculated by N/batch size, where N is the total

number of training samples.

 65

5.4.2 Network Design

The design methodology used in this work consisted of an empirical evaluation-based optimization

strategy which involved fine-tuning based on the model performance. The idea was to start the

experiments with a simple and shallow network and optimize the network configuration based on the

results. This small network was the baseline and the network hyperparameters were fine-tuned to

develop more optimized models. Some of the popular pre-trained models were also investigated to

implement the concept of transfer learning. The results of all the networks were compared and the

most optimal network is proposed.

The hyperparameters investigated during the fine-tuning of the customized CNNs are listed in

Table 5.4.

Table 5.4: The hyperparameters investigated to optimize the CNN architecture

Hyperparameter Values

Input image resolution 256 x 256, 512 x 512 pixels

Batch size 8, 16, 32, 64

Batch Normalization Default settings

Dropout regularization No dropout; rate = 0.2, 0.5

Network depth (number of layers) 2, 3 hidden layers

Network width (filters and nodes in each layer) 16, 32, 64, 128

Learning rate 0.001 (default), 0.0005

Kernel size 3x3, 5x5, 7x7

5.4.3 Customized CNNs: Common Network Settings

To train the neural networks considered in this study, the Adam optimization algorithm [125], which

is an extension of the stochastic gradient descent (SGD), is used. For all the models investigated in

this study, a Rectified Linear Units (ReLU) activation function [59] is used with the convolution

layers. The convolution layers are followed by a 2-dimensional max pooling layer [126] with a pool

size of 2x2, and a flatten layer [127]. The flatten layer flattens the multi-dimensional input tensor into

 66

a single dimension. The pooling operation was discussed in section 2.4.1.3. The hidden fully

connected (FC) layers use a ReLU activation function, and the output fully connected layer uses a

Sigmoid activation function. A binary cross-entropy loss function is used to compute the cross-

entropy loss between the true and the predicted outputs.

The networks were trained for up to 200 epochs. Early stopping callback is used while training the

model. It stops the training for the given network when the specified metric does not improve over a

specified epoch. Two arguments were used in this work which is monitor and patience. The metric to

be monitored is set using the monitor argument, and patience defines the number of epochs without

improvement when the model training can be stopped [128]. In this work, the validation loss

(val_loss) was monitored, with patience of 10 epochs.

5.4.4 Convolution Operation: Feature Extraction

This sub-section explains the feature extraction process of the convolution layers. The main learning

objective during feature extraction is to identify the key parameters from the image. Convolution

layers do this by capturing the spatial relations in the image using the filter. Additionally, these layers

reduce the number of trainable parameters while still preserving the important spatial relations.

 Figure 5.3 shows the overall process of feature extraction when one of the samples was fed to a

convolution layer with a 3x3 kernel. A detailed explanation of the process is explained below.

 67

Figure 5.3: A set of feature maps produced after the convolution operation using a 3x3 kernel.

Note how the convolutional layer preserves the spatial resolution of the input image

Consider a sample input mosaic image of the CVR maps as shown in Figure 5.4. When passed

through a convolution layer, features like the edges, the corners, the boundaries, and the color

gradients are identified. This can be observed in Figure 5.5. The figure shows four of the feature maps

obtained after the convolution operation, using a convolution layer of 16 filters and a kernel size of 3

x 3, and a stride of 1. The ReLU activation function was used. The plots are obtained using

Matplotlib, using the ‘Viridis’ color scale.

 68

Figure 5.4: A sample input image belonging to an unhealthy patient. Note the spread of blue

gradients on the left hemisphere of the brain

Notice how the different feature maps represent a specific representation in Figure 5.5. For

example, the map on the top left establishes boundaries between the blue and red color gradients. And

the map on the bottom right registers the location and spread of the blue color gradients. As discussed

in section 5.2, the main attribute that discriminates a healthy CVR map from an unhealthy one is the

spatial distribution of the blue color gradients. And as can be observed by the feature maps, the

convolution layer successfully highlights this attribute in some of its representations.

These attributes are then associated with the labeled class by the fully connected layers when it

tries to learn to discriminate between the two classes. Therefore, when these feature maps are passed

 69

on to the next layers, the corresponding relationships are used to calculate the probability of the image

being healthy or unhealthy. Based on this discussion, the network will significantly improve its

performance if a wide variety of CVR maps are used for training.

Figure 5.6 shows four additional samples from the unhealthy dataset to highlight the variations in

the spatial distribution of the blue color gradients. When convolution layers with 16 filters are used as

a feature extractor, multiple representations can be extracted from these images. And as the

convolution layer passes these representations to the next layers, there are more attributes associated

with the unhealthy class (and likewise the healthy class). This helps in improving the generalization

capabilities of the network and is expected to improve the model’s performance on the test set.

 70

Figure 5.5: Four feature maps obtained by feeding the sample input image into a convolution

layer of 16 filters with a 3 x 3 kernel size. The feature maps are plotted using the 'Viridis' color

scale in Matplotlib. Observe how each of the feature map highlights a different attribute from

the input image. For example, in the top left, the boundaries between the blue and red color

regions are established. The top right image presumably highlights the textures created by the

color distribution. The bottom right image highlights the spatial distribution and intensity of

the blue gradients

 71

Figure 5.6: CVR maps belonging to the unhealthy category. The variations in the distribution of

the blue color gradients across the four samples can be observed. The feature extractor

highlights these different spatial locations of the blue gradients, and the feature attributes are

used to label them accordingly

 72

5.5 Baseline CNN Model

As discussed earlier, the baseline model was a simple network. It consisted of an input layer, a

convolution layer with 8 filters, followed by a fully connected layer with 8 neurons, and an output

fully connected layer with 1 neuron.

The baseline model was trained with two input image resolutions, 256 x 256 and 512 x 512 pixels,

as the first set of experiments. The results obtained from training the baseline model indicated that the

input image resolution after downsizing had an insignificant effect on the training and validation

accuracy. However, the computational resources, specifically the training time and the memory,

required were higher for 512 x 512 pixels. Additionally, the baseline model was able to successfully

retrieve key spatial information from the 256 x 256 resolution images. Therefore, it was decided to

conduct the experiments using a 256 x 256 input image resolution.

The baseline model achieved a poor performance on the training and validation sets, achieving an

accuracy of 52.3% and 52.56%, respectively, after training for 54 epochs. There were signs of

overfitting on the training data as the binary cross-entropy loss for the validation set began to increase

with the training cycles. To address the overfitting, a dropout layer [61] was added after the fully

connected layer (with 8 nodes) with dropout rates of 0.2 (dropping 20% of the input nodes in the

hidden layer) and 0.5, respectively. A dropout of 0.2 did not improve the overfitting, however,

increasing it to 0.5 showed improved results.

5.5.1 Dropout Regularization

To address the issue of overfitting observed in the baseline model, the dropout rate used for the fully

connected layer was increased from 0.2 to 0.5, and model 2 was conceived. The optimized model

with a 0.5 dropout rate after the fully connected layer achieved a training and validation accuracy of

72.77% and 90.90%, respectively, after training for 21 epochs. As compared to the baseline model,

model 2 demonstrated improvements in the validation loss.

To extend the experimentations of dropout, an additional dropout layer was added after the

convolution layer. The dropout rate was set to 0.5. This further improved the network’s performance

on both the training and validation sets.

 73

5.5.2 Batch Normalization

Batch normalization, or batchnorm, is an effective normalization technique used between the layers of

a neural network to standardize data, and therefore, reparametrize deep networks. It essentially

applies a transformation to normalize the inputs supplied to a layer. It significantly accelerates the

learning process of a network and may improve the overall model performance through a small

regularization effect [129].

5.5.3 Batch Size

The next hyperparameter investigated was the batch size. The batch size represents the number of

samples fed into the model before the model is updated. Results produced using a small batch size of

8 demonstrated fluctuations (noise) in the validation accuracy. Four batch sizes were experimented

with model 2: 8, 16, 32, and 64. It was observed that an increase in the batch size reduced the noise,

improving the model performance.

The experiments conducted agreed with several studies that have investigated the effects of batch

size on the performance of CNNs [130, 131]. In this study, the models are trained with a batch size of

32 based on the experimental results and in agreement with the recommendations from Bengio [132].

5.5.4 Network Performance

The main findings and network performance obtained from the sensitivity studies using the baseline

network architectures are summarized in Table 5.5. As demonstrated by the performance of the

Baseline-3 model, adding dropout layers after both the convolution and the fully connected layer

improved the model performance, and the accuracy obtained on both the training and validation sets

demonstrated significant improvements. Adding a batch normalization layer after the convolution

layer further improved the results, however, the validation loss curve was not stable. Using two

batchnorm layers one after each of the hidden layers (Baseline-5) produced the best results. The

network details like the architecture, weights, and state of the trained models were saved using the

Keras save and load model Application Programming Interfaces (APIs) [133].

 74

Table 5.5: Comparison of model performance in terms of training and validation accuracy and

loss. In the architecture, convX represents a convolution layer with X filters, denseX represents

a fully connected layer with X nodes, dropX represents a dropout layer with a dropout rate of

X, and BN represents a batch normalization layer. Accuracy is on a scale of 0-1, 1 representing

a 100% accuracy

Model

Name

Architecture Epochs Train

Accuracy

Train

Loss

Validation

Accuracy

Validation

Loss

Baseline-1 conv8, dense8, dense1 54 0.5231 0.69 0.5255 0.70

Baseline-2 conv8, dense8, drop0.5,

dense1

20 0.7277 0.49 0.9091 0.37

Baseline-3

(Model-1)

conv8, drop0.5, dense8,

drop0.5, dense1

16 0.8977 0.21 0.8835 0.29

Baseline-4 conv8, BN, drop0.5,

dense8, drop0.5, dense1

40 0.8985 0.31 0.9176 1.89

Baseline-5

(Model-2)

conv8, BN, drop0.5,

dense8, BN, drop0.5,

dense1

42 0.967 0.06 0.97 0.09

The baseline-3 model achieved high accuracy and therefore the concept of using a dropout layer

after the convolution layer was of interest in this study. This model will be regarded as Model-1.

The performance of the network with two batchnorm layers (Baseline-5) on the training and

validation sets is shown in Figure 5.7. As can be observed, the accuracy plots begin to converge as the

model continues training. This model will be regarded as Model-2, representing the best performing

model from the baseline experiments.

5.5.5 Test set

To test the generalization capabilities of the Baseline-5 model, the saved model was used to classify

the CVR maps in the test set [6 healthy samples, 16 unhealthy samples]. The model accurately

classified all the healthy samples as healthy. However, the model inference for the unhealthy dataset

was 62.5% accurate with 10 correct and 6 incorrect predictions. Therefore, the overall prediction

accuracy was 72.7%.

 75

Figure 5.7: The accuracy plots obtained from training the network with two batch

normalization layers after the convolution and the fully connected layers (Baseline-5)

5.5.6 Modeling and Execution Scripts

All the experiments are conducted using server processing units (CPU) and the GPU is disabled. A

sequential model is defined, and the different layers are added using the Keras model.add() function.

The model is then compiled using the adam optimizer, a binary cross-entropy loss, and the metric to

be monitored is set as accuracy. The program used to define the model is presented in Appendix-B,

section B.4.

To train the networks with TensorFlow, the ImageDataGenerator [134] is used. The

ImageDataGenerator module creates tensor image data from the original datasets that can be used

with TensorFlow. It allows real-time data augmentation. This work used a rescaling argument to

normalize the input images. A ratio is defined for the rescaling that is multiplied by each pixel of the

image. A ratio of 1/255 is used to rescale the pixel values from the range of 0-255 to 0-1. The module

used to begin the training is explained in Appendix-B, section B.5.

 76

5.6 CNN Model Optimization

It was evident from training the baseline models that a training accuracy of around 90% was

successfully achieved, meaning the networks were performing well with the training dataset, also

indicating overfitting to the training set in some experiments. Additionally, based on the model

performance on the test set, there was an opportunity to improve the network’s performance on

unseen data. This implied that the generalization capabilities of the networks were the main area to be

evaluated. Therefore, a key emphasis was placed on validation accuracy. Setting the performance of

the best performing baseline model (Model-2) as a benchmark, the network performance in terms of

training and validation accuracy and loss were analyzed for other CNN architectures, and the other

network hyperparameters were fine-tuned to improve the model performance.

5.7 Network Width and Depth

The network width and depth were investigated next. These experiments included changing the

number of filters and nodes in the convolution layer and fully connected layer to change the network

width, respectively, and adding layers to change the network depth. The layers included dropout

layers, batch normalization layers, convolution layers, and fully connected layers. Two sets of

experiments regarding the network depth were conducted for a fixed network width- (a) adding

dropout layers, and (b) adding batch normalization layers.

 In Model-3, the filters used in the convolution layer were increased from 8 to 16, and the nodes in

the hidden fully connected layer were increased from 8 to 16. The architecture comprised of an input

layer, a convolution layer with 16 filters, followed by a hidden fully connected layer with 16 nodes,

and an output fully connected layer. The experiments involved adding dropout layers after the

convolution layer and the fully connected layer, one at a time, followed by adding two dropout layers.

Similar experiments were conducted for batch normalization.

The network’s performance declined as compared to Model-2. The network could only achieve an

accuracy slightly upwards of 50% during training and validation for all but one configuration.

However, the model performance was significantly better when two batch normalization layers were

added. The training and validation accuracy, in this case, were 99% and 92%, respectively. A

comparison between network performance in terms of validation accuracy between the two

architectures is shown in Figure 5.8. Both the networks used dropout layers with a dropout rate of 0.5

after the hidden layers and one of these used batch normalizations before the two dropout layers.

 77

Like Model-3, a series of experiments were conducted using a wider hidden fully connected layer,

increasing the nodes from 16 to 32 (Model-4). The convolution layer was unchanged, with 16 filters.

The best model performance achieved using this network configuration for the training and validation

sets was 85% and 91%. Adding batch normalizations after the two hidden layers improved the

network’s performance on the training set but decreased the validation accuracy.

Continuing the experimentation, the number of filters in the convolution layer and the nodes in the

dense fully connected layer were changed to conduct a sensitivity study. The combinations included

32, 64, and 128 filters and nodes.

Figure 5.8: A comparison of validation accuracy obtained with and without batch

normalization using the architecture of Model-3

 78

Similar to the findings from the baseline experiments, adding a dropout layer with a dropout rate

of 0.5 after the convolution layer produced improved results. Batch normalizations improved the

performance of the smaller networks (8 and 16 filters [and nodes]), however, deteriorated the

performance of the larger networks (32, 64, and 128 filters [and nodes]).

Based on this empirical evaluation, the network with 64 filters produced the best results on both

the training and validation sets, on much fewer training cycles. The best performing network

consisted of a convolution layer with 64 filters and a hidden fully connected layer with 64 neurons.

This model used two dropout layers, one after each hidden layer, but no batch normalization. Using

batch normalizations in this case significantly declined the validation accuracy, dropping it to 52%.

5.7.1 Additional Convolutional Layers

The next hyperparameter investigated was the network depth. The number of layers was increased,

and additional convolutional layers were added. Some of these architectures were inspired by the

VGG network architecture [73] where convolution layers are stacked.

The first model consisted of two consecutive convolution layers of 8 filters each, followed a fully

connected layer with 8 neurons, and a dropout layer with a dropout rate of 0.5. The number of

parameters for this network was 246,841. The best results were achieved when two dropout layers

were used, one after the two convolution layers, and the other after the dense layer, along with batch

normalizations right before the dropout layers. The network achieved a training and validation

accuracy of 98.84% and 92.04%, respectively, after training for 31 epochs. This is represented as

Model-10.

The second network developed consisted of two consecutive convolution layers of 8 filters each,

followed by a batchnorm layer, a dropout layer with a rate of 0.5, a fully connected layer with 16

neurons, and a dropout layer with a rate of 0.5. The best results achieved by the network obtained a

training and validation accuracy of 99.75% and 93.18%, respectively, after training for 36 epochs.

 Similarly, experiments were conducted with stacked convolution layers with 16, 32, and 64

filters. It was observed that the larger networks were overfitting to the training set. A complete list of

experiments conducted while investigating the effects of network width and depth is presented in

Table 5.6. The table shows the best performing network from each series of experiments on the given

 79

network width. In the table, conv represents a convolution layer, dense represents a fully connected

layer, drop represents a dropout layer with a dropout rate of 0.5, and BN represents a batchnorm layer.

 Table 5.6: The different CNN architectures investigated to study the effect of network width on

the performance. The dropout layers (represented as drop) used a dropout rate of 0.5

Model

name

of parameters Network architecture

Model-3 986,993 conv16, BN, drop, dense16, BN, drop, dense1

Model-4 8,258,561 conv16, drop, dense32, drop, dense1

Model-5 16,516,673 conv16, drop, dense64, drop, dense1

Model-6 16,517,313 conv32, BN, drop, dense32, BN, drop, dense1

Model-7 33,033,601 conv32, BN, drop, dense64, BN, drop, dense1

Model-8 66,066,305 conv64, drop, dense64, drop, dense1

Model-9 132,131,585 conv64, dense128, drop, dense1

Model-10 246,905 conv8, conv8, BN, drop, dense8, BN, drop, dense1

Model-11 492,969 conv8, conv8, drop, dense16, drop, dense1

Model-12 986,993 conv16, conv16, BN, drop, dense16, BN, drop,

dense1

Model-13 1,971,153 conv16, conv16, BN, drop, dense32, BN, drop,

dense1

Model-14 3,946,721 conv32, conv32, BN, drop, dense32, BN, drop,

dense1

Model-15 15,784,385 conv64, conv64, BN, drop, dense64, BN, drop,

dense1

 80

5.8 Performance Evaluation

The performance of the different CNN architectures investigated is shown in Table 5.7. The

performance metrics evaluated are the accuracy and loss for the training and validation datasets.

Table 5.7: Best network performance achieved in terms of training and validation accuracy

[scale: 0-1] and loss, along with the number of training cycles (Epochs). The best values are

highlighted in bold. Since the validation performance was defined as the primary metric in this

work, the best model is identified based on validation accuracy and loss.

Model Name Epochs Train

Accuracy

Train Loss Validation

Accuracy

Validation

Loss

Model-1 16 0.8977 0.21 0.8835 0.29

Model-2 42 0.967 0.06 0.97 0.09

Model-3 14 0.9991 0.005 0.9204 0.177

Model-4 53 0.8531 0.3465 0.9176 0.3149

Model-5 16 0.9801 0.0459 0.9091 0.301

Model-6 10 1.00 0.01 0.5284 0.8745

Model-7 10 1.00 0.0054 0.5250 2.3896

Model-8 23 0.9867 0.0316 0.9488 0.2335

Model-9 12 1.00 0.0018 0.5284 1.1150

Model-10 31 0.9884 0.0285 0.9204 0.2554

Model-11 36 0.9975 0.0191 0.9318 0.19

Model-12 40 1.00 0.0043 0.9715 0.0776

Model-13 27 0.9983 0.0095 0.9176 0.3017

Model-14 46 1.00 0.0006 0.9801 0.0671

Model-15 10 1.00 0.0024 0.7642 0.5937

As can be observed, the best performance on the training and validation datasets was achieved by

Model-14 which stacks two convolution layers followed by a hidden fully connected layer. After

training for 46 epochs, the model achieved a training and validation accuracy of 100% and 98%,

respectively. There were other models which achieved comparable performance on the validation

dataset, including Model-2 (97%), Model-8 (94.88%), and Model-12 (97.15%). These networks were

tested on the test set to evaluate the generalization capabilities on unseen data. This is discussed next.

 81

5.9 Prediction Capabilities

The classification performance is also evaluated using some additional evaluation metrics [135]. In a

binary classification task, a confusion matrix is commonly used to measure network performance and

assess the model performance on unseen data. Based on the predictions, the outcomes can be

categorized into 4 types:

1) True Positive (TP): Number of samples that are classified correctly as yes or success

2) True Negative (TN): Number of samples that are classified correctly as no or failure

3) False Positive (FP): Number of samples that are classified incorrectly as yes or success

4) False Negative (FN): Number of samples that are classified incorrectly as no or failure

Based on these numbers, the performance can be evaluated using the formulas presented in

equations (5.1) and (5.2).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (5.1)

𝐸𝑟𝑟𝑜𝑟𝑟𝑎𝑡𝑒 =
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
= 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (5.2)

To evaluate the performance of the proposed CNN and the transfer learning models, the test

dataset used for the prediction task comprised of 6 healthy cases and 16 cases belonging to SOD

patients.

Model-14, which was trained from the scratch, successfully classified the healthy test samples.

The model successfully labelled 15 out of 16 samples from the SOD dataset. Based on these numbers,

the accuracy can be calculated using equation (5.1). Therefore, the overall accuracy of this model is

95.45%

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
6 + 15

0 + 6 + 1 + 15
=
21

22
= 0.9545 (5.3)

 82

Model-12 correctly labelled the healthy samples in the test set. However, it labelled 12 out of 16

samples correctly in the SOD set. The overall prediction accuracy of this model is 81.82%. Similarly,

Model-2 correctly labelled the healthy samples, and incorrectly labelled 6 out of 16 SOD samples.

The overall prediction accuracy is 72.72%. The confusion matrix corresponding to this is shown in

Figure 5.9.

Figure 5.9: Confusion matrix for the best performing customized CNN on the test dataset. TN is

a true negative, FN is a false negative, FP is a false positive, and TP is a true positive

5.10 Advanced Hyperparameters

On changing the kernel size using Model-14, there was a negligible effect on the network’s

performance on both training and validation datasets. Therefore, a 3 x 3 kernel size is recommended

for this dataset.

For the learning rate, three settings were experimented with: 0.001 (default), 0.0005, and the

module ReduceLROnPlateau [136]. ReduceLROnPlateau is a Keras module that reduces the learning

rate when the defined performance metric stops improving. Changing the learning rate from the

default value of 0.001 extended the training time but failed to improve the performance on the

training and validation datasets. Therefore, the default learning rate is recommended.

 83

5.11 Transfer Learning

As explained in section 2.5, using pre-trained models is an effective technique to implement CNNs

using relatively small datasets. In this work, we investigated some of the popular pre-trained models

trained using the ImageNet dataset (ImageNet large scale visual recognition challenge; ILSVRC).

These models included AlexNet [71], InceptionV3 [72], ResNet50 [74], and VGG16 [73]. AlexNet

and VGG16 are shallow networks with 8 and 16 trainable layers respectively. InceptionV3 and

ResNet50 are deeper networks with 48 and 51 trainable layers respectively [68]. These models,

except for AlexNet, are downloaded and imported from the Keras libraries.

The pre-trained models were imported with the pre-trained ImageNet weights. The imported

models were then fine-tuned to suit our classification task by freezing all the layers in the pre-trained

networks except for the classifier. We drop the final fully connected layer from these models since

this is tailored to classify the ImageNet dataset. Finally, we add some fully connected layer(s) to

achieve the classification task for our CVR dataset. The network architectures are explained in the

sub-sections below.

The transfer learning is applied as a fine-tuning workflow and consisted of four steps as described

below.

1) Load the base model (the pre-trained network) and load the pre-trained weights

2) Freeze all the layers in the base model. This is done by setting trainable = False

3) Customize the model layers, for example, the input and the output layers, on top of the output

from one of the layers from the base model

4) Train this new model using the CVR dataset.

5.11.1 Common Network Settings

Like the experiments in the design of customized CNN, the input images were re-sized to 224 x 224

pixels for training the pre-trained models, and for all the networks investigated in this section, an

early stopping criterion was used. A batch size of 32 was used for all networks. The monitored metric

was the validation loss (“val_loss”).

 84

5.11.2 AlexNet-based CNN

Keras does not have a readily available pre-trained AlexNet network that can be downloaded and

fine-tuned. Therefore, an AlexNet-inspired CNN was designed and trained from the scratch, like the

other customized CNNs. The architecture used in this experiment is shown in Table 5.8. The layers in

bold represent the core layers from the pre-trained network, and the layers starting from Flatten are

customized to classify the CVR maps. The program used to design the AlexNet is explained in

Appendix-B, section B.6.

Table 5.8: The AlexNet-based architecture designed for CVR classification. The layers native to

the AlexNet network are highlighted in bold. The second half of the network divided in the

table represent the customized layers added for the target classification.

Layer # filters @ kernel

size | stride

Size of feature

maps

Activation

Function

Parameters

Input - 227 x 227 x 3 - -

Conv 1 96 @ 11 x 11 | 4 55 x 55 x 96 ReLU 34944

Max Pool 1 3 x 3 | 2 27 x 27 x 96 - -

Conv 2 256 @ 5 x 5 | 1 27 x 27 x 256 ReLU 614656

Max Pool 2 3 x 3 | 2 13 x 13 x 256 - -

Conv 3 384 @ 3 x 3 | 1 13 x 13 x 384 ReLU 885120

Conv 4 384 @ 3 x 3 | 1 13 x 13 x 384 ReLU 1327488

Conv 5 256 @ 3 x 3 | 1 13 x 13 x 256 ReLU 884992

Max Pool 3 3 x 3 | 2 6 x 6 x 256 - -

Flatten 9216 - - -

Fully connected,

dropout = 0.5

4096 - ReLU 37752832

Fully connected,

dropout = 0.5

4096 - ReLU 16781312

Fully connected 1 - Softmax 4097

Total

Parameters

 58,290,945

 85

5.11.3 Inception V3

The program for loading the InceptionV3 pre-trained model and customizing it by adding final layers

is presented in Appendix-B, section B.7. As it can be seen, the top layer is excluded (include_top =

False) and the core layers are frozen using pre_trained_model.trainable = False. A flatten layer is

added after the output layer of the pre-trained model. After the flatten layer, the output shape is

(None, 51200). If an output layer is used directly, the difference between the input shape for this layer

coming from the flatten layer, and the classification output of (None, 1) would be huge. Therefore, an

additional fully connected layer (represented as dense) is used with 1024 neurons and a dropout with

a 0.5 probability. This method returns the model which can be used with our training dataset. As a

part of the fine-tuning process, the top two layers were unfrozen and re-trained with the CVR dataset

to utilize these layers during the training process. However, there were no improvements in the

results.

5.11.4 Other Pre-Trained Networks

Like the Inception V3 network design, the ResNet50 pre-trained model was imported while freezing

the lower convolution layers and adding fully connected layers. Only one fully connected layer was

added on top of the pre-trained network, with a Sigmoid activation function.

The VGG 16 pre-trained network was imported and customized to classify the CVR maps. Like

the ResNet50 architecture, only one classification output layer was added after the VGG network’s

feature transformer. And finally, the EfficientNetB0 model was imported, and the final layer was

customized, with one classification output layer.

5.11.5 Transfer Learning: Results

The early stopping module used while training the models stopped the training for the AlexNet and

InceptionV3 models after 17 and 14 epochs, respectively. Similarly, the EfficientNetB0, ResNet50,

and VGG16 models trained for 27, 85, and 25 epochs, respectively.

The AlexNet-based model achieved only 50% accuracy for both the training and validation

datasets. The EfficientNetB0 model achieved a similar accuracy of 51.5% on the training dataset and

a similar accuracy of 52.27% on the validation dataset. The InceptionV3 model achieved similar

performance on both datasets. The ResNet50 model continued training for longer before it could

stabilize the validation loss. After training for 85 epochs, the model achieved an accuracy of 52%.

 86

The VGG16 model produced the best results, achieving 99.83% and 94.88% accuracy on the training

and the validation datasets, respectively. A comparison of the training and validation accuracy

obtained from these models is shown in Figure 5.10 and Figure 5.11.

Figure 5.10: Comparison of the training accuracy obtained by the pre-trained networks and

AlexNet-based CNN after fine-tuning for the classification of CVR maps

Figure 5.11: Comparison of the validation accuracy obtained by the fine-tuned pre-trained

networks and AlexNet-based CNN

 87

5.11.6 Transfer Learning: Prediction Results

The best performing pre-trained network VGG correctly labeled all the samples from the unhealthy

class as SOD patients. However, it was not able to label healthy samples correctly, inferring that the

samples were SOD patients. Therefore, using equation (5.1), the overall prediction accuracy of the

VGG model is 72.72%. The same behavior was observed in other pre-trained model performances.

5.12 Results Analysis

The performance of all the pre-trained networks and the most optimal customized network is

compared in Table 5.9. The accuracy of the different models on the train, validation, and test datasets

are highlighted.

Table 5.9: Performance of all the CNN models experimented on the CVR datasets. CNN1 is the

most optimal customized network trained from scratch. Other networks are the pre-trained

networks fine-tuned for CVR classification. The best results are shown in bold.

Model Network Design Training

Accuracy (%)

Validation

Accuracy (%)

Prediction

Accuracy (%)

CNN1 Trained from scratch 100 98.01 95.45

AlexNet Trained from scratch 51.54 51.2 72.72

EfficientNetB0 Pre-trained network 51.5 52.3 72.72

InceptionV3 Pre-trained network 52.06 52.27 72.72

ResNet50 Pre-trained network 52.8 52.27 72.72

VGG16 Pre-trained network 99.83 94.88 72.72

Based on the model performance, the pre-trained networks are complicated for the small dataset

used in this study. The huge number of parameters and the complexity of the architecture of these

pre-trained network produces poor performance. However, VGG, a comparatively simpler and

smaller network, produced high accuracy and improved prediction results as compared to other

networks. The pre-trained networks have proven very successful with small datasets and there is an

opportunity to further fine-tune them to improve performance for the CVR dataset. For example,

 88

some experiments with the InceptionV3 included unfreezing the top two layers. This did not improve

the results, but more experiments are needed to optimize the transfer learning process. The

customized network trained from scratch produced the best results.

5.12.1 Proposed CNN

Based on the results discussed in section 5.8 and comparing them with the results from the pre-trained

networks, a customized CNN is proposed as the best-suited network for the considered classification

task with the CVR datasets to screen steno-occlusive disease patients. The network achieves high

accuracy on both the training and validation datasets and this performance translates to the test

dataset. Although the test dataset is small, consisting of 22 samples, the proposed network correctly

labels all but one, achieving a prediction accuracy of 95.45%.

The proposed CNN is a shallow network with two convolution layers with 32 filters and a 3x3

kernel stacked one after the other with a max pooling layer with a pool size of 2x2 in between,

followed by another max pooling layer (2x2 pool size), a batch normalization layer, a dropout layer

with a dropout rate of 0.5, a flatten layer, a fully connected layer with 32 neurons, another dropout

layer with a dropout rate of 0.5, and an output layer with 1 neuron. A schematic representation of this

network is shown in Figure 5.12.

 89

Figure 5.12: A schematic representation of the proposed CNN architecture. Conv 2D is a 2-

dimensional convolution layer and FC is a fully connected layer. The number of filters (or

neurons) are shown inside the round brackets

The network architecture is detailed in Table 5.10. The input layer consists of images of 256 x 256

pixels and 3 channels (R, G, and B). The total trainable parameters of this network are 3,946,721.

 90

Table 5.10: Architecture of the proposed CNN model. The dotted line separates the feature

extractor (the convolution layers) from the fully connected layers which classify the CVR maps.

Layer # filters @

kernel size |

stride

Output shape Activation

Function

Parameters

Input - 256 x 256 x 3 - -

2D Convolution 32 @ 3 x 3 | 1 254 x 254 x 32 ReLU 896

2D Max Pooling 2 x 2 | 3 127 x 127 x 32 - 0

2D Convolution 32 @ 3 x 3 | 1 125 x 125 x 32 ReLU 9248

2D Max Pooling 2 x 2 | 3 62 x 62 x 32 - 0

Batch

Normalization

- 62 x 62 x 32 - 128

Dropout (0.5) - 62 x 62 x 32 - 0

Flatten - 123008 - 0

Fully connected 32 32 ReLU 3936288

Batch

Normalization

- 32 - 128

Dropout (0.5) - 32 - 0

Fully connected 1 1 Sigmoid 33

Total Parameters 3,946,721

 91

Chapter 6

Discussions

6.1 Key Contributions

The Cerebrovascular Reactivity (CVR) software proposed in this research serves as a next-generation

tool that furthers the capabilities of CVR analyses, supporting experts in making judgments and

decisions. It successfully addressed the major concerns of the existing workflow, and the project

objectives were met. As discussed earlier, independent shell scripts were used to realize the

workflow. To use these scripts, special subject expertise and experience are required to execute the

scripts in the required order. Since the existing workflow did not have a standard application package,

troubleshooting and maintenance of the shell scripts is another challenge. And using other software

tools as a part of the workflow creates chances of non-standardized results.

The CVR software overcomes all these barriers as it requires minimal subject knowledge to be

operated, serves as a standalone tool, and is uploaded on a private repository which allows systematic

troubleshooting and maintenance. The CVR software standardizes the research workflow, automating

the overall process by an estimated 75%. A simple workflow and easy-to-use modules ensure that

users with minimal AFNI (Analysis of Functional NeuroImages) experience can also complete CVR

analyses using raw MRI files. From the developers’ point of view, the software is designed using

object-oriented principles and has a modular design. This ensures that new features can be seamlessly

added and helps in testing individual components using unit tests. The software can also be easily

scaled.

The CVR software package was deployed to a private repository, allowing easy distribution to

collaborators and participating institutions. As this research concluded, one of the partnering

companies, based in the United States, began testing their native datasets using the software. This

software successfully scaled to the new dataset in the NIfTI format and produced accurate CVR

maps. Using the same software and workflow across participating institutions will ensure that the

results are standardized and comparable. The virtual machine-based software solution also overcomes

operating system concerns, as it can be easily set up on any machine irrespective of the operating

 92

system. The virtual machine developed to support this work has the AFNI programs pre-installed,

therefore, acting as a one-stop solution to CVR analyses and assessments.

To further expedite the CVR assessment process, Convolutional Neural Networks (CNNs) were

investigated to be used with the CVR datasets. The first step was to create sufficient trainable samples

to be used with the CNNs. Data augmentation techniques were used to address data scarcity.

However, the data augmentations were small-scale to preserve the spatial features of the CVR maps.

The proposed CNN, a customized shallow network with two stacked convolution layers, produced

results consistent with clinical readings.

Since the CVR software is developed as a research tool and is undergoing testing before it can be

distributed, the financial aspects of the software have not been evaluated.

6.1.1 CVR Software: Testing and Scalability

The CVR software was rigorously tested using real-world clinical trials and CVR analyses. The

results obtained from the CVR software agreed with the results obtained from the existing tools. The

proposed software is capable of processing three types of raw MRI datasets: DICOM (.dcm), MR

(.mr), and NIfTY (.nii). Since the software uses the AFNI routine to process these files, the proposed

workflow is independent of the scanner used. However, the software can only process one type of

vasoactive stimulus, the prospective end-tidal targeting of partial pressure of arterial CO2 (Pa,CO2).

The software was used to process BOLD-MRI data obtained from one of the collaborators and it

successfully scaled to the much larger datasets. To compare the size of the two datasets, the voxels

datasets produced from in-house analyses were 100 MB and the ones from the collaborator were 1.9

GB. The algorithm was optimized to accommodate such large datasets, and the proposed upgrades

were successfully tested and published.

6.1.2 CNN Design: Main Findings

From the quantitative results shown in Table 5.7, several inferences can be made on the

hyperparameter fine-tuning experiments. First, the dropout rate played a significant role in addressing

the overfitting tendency of the network. Increasing the dropout probability to 0.5 improved the model

performance on the validation dataset and addressed the overfitting. Next, the batch-size experiments

indicated that increasing the batch size stabilized the noise in the validation results, improving the

performance. The recommended batch size of 32 was effective and produced consistent results in the

 93

experiments conducted. In terms of the network width and depth, several experiments were conducted

to understand how different layers and width affected the model performance. It was observed that,

given the relatively small datasets, shallower networks outperformed the deeper networks.

Four of the popular pre-trained networks were fine-tuned to be used with the CVR datasets.

AlexNet-based model underperformed in the target classification task. This experiment was

technically not a transfer learning workflow since the model was trained from scratch. It was intended

to investigate the performance of an AlexNet-inspired network. EfficientB0, Inception, and ResNet

did not perform well with the dataset and produced low accuracy. However, VGG produced

significantly improved results. The generalization capabilities of the pre-trained networks were not

adequate. These networks are unable to identify any healthy sample correctly.

Given the small datasets used to train the proposed CNN, there is a need to extend the network

training and conduct more experiments to further the generalization capabilities of the network. It is

suggested that the proposed CNN may be used as a research tool and the results obtained are

validated by human experts. As with any neural network, the scope of the proposed CNN classifier is

limited to the CVR studies conducted using the clinical workflow and color scales implemented at our

institute.

6.1.3 Customized CNN: Incorrect prediction

The proposed CNN incorrectly labeled one SOD patient as a healthy patient. The sample is shown in

Figure 6.1. As can be observed, this sample is an edge case and does not have a lot of blue gradients

in the grey matter of the brain. The blue gradients are not prominent, and the patient has a mild

cerebrovascular condition. A notable difference in this sample is that the reduced CVR response is

observed in the bottom slices of the brain (the last 2 elements in the bottommost row).

 94

Figure 6.1: The SOD patient sample in the test set that was incorrectly labelled by the proposed

customized CNN

 95

6.2 Proposed Workflow

The CVR processing and assessment software can be used as a start-to-end research workflow. The

proposed workflow shall begin in the Magnetic Resonance Imaging (MRI) room where the breathing

study is conducted by trained professionals to obtain the raw MRI datasets. The datasets can be

transferred to a local device that has the CVR software installed on it. Following this, the input

images can be processed to produce the corresponding CVR maps. The pre-trained CNN-based

classifier then calculates the probability of the class of the CVR map produced and labels it as a

healthy subject or a steno-occlusive disease (SOD) patient. The final output CVR map along with the

label is presented to the expert radiologists for validation and final comments. The workflow is

demonstrated in Figure 6.2.

 96

Figure 6.2: A schematic representation of the proposed CVR processing and assessment

workflow using the CVR software and CNN-based classifier tool. The icons used in this figure

are from Flaticon [115]

 97

6.3 Future Work

The success of this research can be established by the myriad of future directions it provides to the

sponsoring institutions in the field of computer-aided diagnostics (CAD). First, as discussed in

section 4.6, the AFNI programs produce intermediate output files in the MNI space too, in addition to

the standard space. However, the CVR software’s plotting capabilities are currently limited to the

standard space. An additional module can be easily developed and seamlessly integrated that can plot

CVR maps in the MNI space.

Second, currently, the software plots linear CVR maps based on the slope calculations between the

BOLD changes and the applied PCO2. There are several other types of maps that are used along with

the linear CVR maps to make clinical judgments. One such method is calculating the z-score for each

voxel and mapping the values using a z-map. There is an opportunity to add these features to the CVR

software.

Another future direction to the CVR software is overcoming the dependence on AFNI programs.

Although the AFNI program suite is well-established and comfortably integrates with the CVR

software, the required functionality can be achieved by developing in-house programs as well. The

source codes for AFNI modules are available publicly. The source code for these modules is written

in C programming.

Additionally, the senior software manager at a partnering institution identified an opportunity to

scale the CVR software as a cloud-based application. If successful, this project would add numerous

advantages over the current virtual machine-based software, including, cost savings, mobility,

increased collaboration, automatic software updates, and sustainability.

For furthering the CNN-based classification capabilities, it is important to collect more data. Since

the prospective end-tidal gas targeting is a recent discovery, there have not been many studies. As

more patients are analyzed, the proposed CNN should be retrained. Another direction to Artificial

Intelligence-based decisions would be to train the machine learning models on more abstract datasets.

For example, instead of using CVR maps to train the networks, extract features from the raw BOLD

signals and feed them into the networks.

Finally, this study did not investigate if the CNN models trained on the selected CVR dataset can

generalize to other CVR analyses, conducted using a different vasoactive stimulus, for example,

breath-hold, fixed inspired CO2, and chemical stimuli. This can potentially help establish a

 98

framework for using the pre-trained weights and biases from the model proposed in this study and

fine-tuning it to other CVR maps. As discussed in section 2.6.2, a study has found that such transfer

learning achieves better performance than training a new model from the scratch.

 99

Chapter 7

Conclusions

In this research, a next-generation Cerebrovascular Reactivity (CVR) processing and assessment

software was engineered that provides a platform for furthering the processing, visualization, and

research capabilities of the CVR research. CVR is a provocative test used with Blood Oxygenation

Level Dependent (BOLD)-MRI studies where a vasoactive stimulus is applied and the corresponding

changes in the CBF differences are analyzed. The research workflow used in this study uses

prospective end-tidal targeting of partial pressure of carbon dioxide as the vasostimulus. CVR studies

can highlight abnormalities in the brain vasculature and help identify the presence of cerebrovascular

diseases like Alzheimer’s disease, steno-occlusive disease (SOD), stroke, and traumatic brain injury.

SOD is the most common cause of stroke all over the world and therefore its detection can help guide

clinical treatment.

The current generation of CVR analysis and assessments was conducted manually by a team of

doctors and radiologists, using shell-scripts-based programs. The proposed software, built using open-

source tools, standardizes the CVR research workflow and is capable of processing anatomical and

BOLD MRI files and visualizing CVR maps. The software allows viewing and uploading input MRI

files, automatic screening functions to ensure the input files are correctly placed, and saves the output

files in a well-structured directory, providing a well-organized data uploading and extraction

platform. It provides advanced plotting features, allowing users to accomplish the plotting steps in the

same software interface. Finally, it makes system calls to AFNI programs to visualize the CVR maps.

The customized convolutional neural networks as well as the fine-tuned pre-trained networks are

capable of successfully identifying the key parameters in the CVR maps to discriminate between

healthy and unhealthy groups. An empirical evaluation-based network design methodology was

implemented to optimize the customized CNN architecture by fine-tuning the network

hyperparameters. The influence of the different hyperparameter settings is evaluated. The model

weights and biases are saved, and the model can be used to readily make predictions on new CVR

maps.

During the transfer learning experiments, the fine-tuned VGG16 model produces the best results

on both training and validation datasets, after training for 22 epochs. The model achieves a training

 100

and validation accuracy of 99.83% and 94.88% respectively. While this was a relatively simple

network, other pre-trained networks failed to perform well and their accuracy values were around

50%.

Based on the experiments, a shallow network trained from scratch is proposed as the most optimal

classifier. The generalization results of this model are consistent with expert clinical readings. To the

best of the authors’ knowledge, this research work on developing software tools for processing CVR

and screening SOD patients using convolutional neural networks does not put anyone at any potential

disadvantage. The proposed software is intended to be used as a research tool only, and it is

recommended that the results obtained are validated using human expertise.

 101

References

[1] Mayo Clinic. (2017). MRI - Mayo Clinic. Mayoclinic.org. Retrieved November 14, 2022, from

https://www.mayoclinic.org/tests-procedures/mri/about/pac-20384768

[2] Fierstra, J., Sobczyk, O., Battisti-Charbonney, A., Mandell, D. M., Poublanc, J., Crawley, A. P.,

Mikulis, D. J., Duffin, J., & Fisher, J. A. (2013). Measuring cerebrovascular reactivity: what

stimulus to use? The Journal of Physiology, 591(23), 5809–5821.

https://doi.org/10.1113/jphysiol.2013.259150

[3] Emilie Sleight, Michael S. Stringer, Ian Marshall, Joanna M. Wardlaw, and Michael J.

Thrippleton. Cerebrovascular reactivity measurement using magnetic resonance imaging: A

systematic review. Frontiers in Physiology, 12, 2021

[4] Martinez-Rodriguez J. E. Munteis E. Gomis M. Rodr´ıguez-Campello A. Jimenez-Conde J.

Cuadrado-Godia E. amp; Roquer J. Ois, A. Stenoocclusive arterial disease and early

neurological deterioration in acute ischemic stroke. 2008

[5] Fisher, J.A. (2016). The CO2 stimulus for cerebrovascular reactivity: Fixing inspired

concentrations vs. targeting end-tidal partial pressures. Journal of Cerebral Blood Flow &

Metabolism, 36(6), pp.1004–1011. Doi:10.1177/0271678x16639326

[6] WSO | World Stroke Organization. (2020). World Stroke Organization. Retrieved on November

14, 2022, from https://www.world-stroke.org/

[7] FastStats - Cerebrovascular Disease or Stroke. (2020). Retrieved on November 14, 2022, from

https://www.cdc.gov/nchs/fastats/stroke.htm

[8] WHO EMRO | Stroke, Cerebrovascular accident | Health topics. (2022). World Health

Organization - Regional Office for the Eastern Mediterranean.

https://www.emro.who.int/health-topics/stroke-cerebrovascular-accident/index.html

 102

[9] Lee PH, Oh SH, Bang OY, et alIsolated middle cerebral artery disease: clinical and

neuroradiological features depending on the pathogenesisJournal of Neurology, Neurosurgery

& Psychiatry 2004;75:727-732

[10] MATLAB - MathWorks. (2019). Mathworks.com. Retrieved November 14, 2022, from

https://www.mathworks.com/products/matlab.html

[11] Gaillard, F. (n.d.). BOLD imaging | Radiology Reference Article | Radiopaedia.org.

Radiopaedia. Retrieved November 14, 2022, from https://radiopaedia.org/articles/bold-imaging

[12] https://www.cancer.gov/publications/dictionaries/cancer-terms/def/vasoactive. (2011, February

2). www.cancer.gov. https://www.cancer.gov/publications/dictionaries/cancer-

terms/def/vasoactive

[13] Joseph A. Fisher and David J. Mikulis. Cerebrovascular reactivity: Purpose, optimizing

methods, and limitations to interpretation – a personal 20-year odyssey of (re)searching.

Frontiers in Physiology, 12, 2021

[14] MacKenzie, E. T., Farrar, J. K., Fitch, W., Graham, D. I., Gregory, P. C., & Harper, A. M.

(1979). Effects of hemorrhagic hypotension on the cerebral circulation. I. Cerebral blood flow

and pial arteriolar caliber. Stroke, 10(6), 711-718

[15] Vorstrup, S., Brun, B., & Lassen, N. A. (1986). Evaluation of the cerebral vasodilatory capacity

by the acetazolamide test before EC-IC bypass surgery in patients with occlusion of the internal

carotid artery. Stroke, 17(6), 1291-1298

[16] Poulin, M. J., Liang, P. J., & Robbins, P. A. (1996). Dynamics of the cerebral blood flow

response to step changes in end-tidal PCO2 and PO2 in humans. Journal of applied physiology,

81(3), 1084-1095

[17] Renata F Leoni, Kelley C Mazzetto-Betti, Afonso C Silva, Antonio C Dos Santos, Draulio B de

Araujo, Joao P Leite, and Octavio M Pontes-˜ Neto. Assessing cerebrovascular reactivity in

carotid steno-occlusive disease using mri bold and asl techniques, Jun 2012

[18] Daniel M Mandell, Jay S Han, Julien Poublanc, Adrian P Crawley, Andrea Kassner, Joseph A

Fisher, and David J Mikulis. Selective reduction of blood flow to white matter during

hypercapnia corresponds with leukoaraiosis. Stroke, 39(7):1993–1998, 2008

 103

[19] Daniel M Mandell, Jay S Han, Julien Poublanc, Adrian P Crawley, Jeff A Stainsby, Joseph A

Fisher, and David J Mikulis. Mapping cerebrovascular reactivity using blood oxygen level-

dependent mri in patients with arterial steno-occlusive disease: comparison with arterial spin

labeling mri. Stroke, 39(7):2021–2028, 2008

[20] Chen, J. J. (2018). Cerebrovascular-Reactivity Mapping Using MRI: Considerations for

Alzheimer’s Disease. Frontiers in Aging Neuroscience, 10.

https://doi.org/10.3389/fnagi.2018.00170

[21] Lidia Glodzik, Catherine Randall, Henry Rusinek, and Mony J de Leon. Cerebrovascular

reactivity to carbon dioxi eason iaheimer’s disease. Journal of Alzheimer’s disease, 35(3):427–

440, 2013

[22] Mauro Silvestrini, Patrizio Pasqualetti, Roberto Baruffaldi, Marco Bartolini, Yasmin Handouk,

Maria Matteis, Filomena Moffa, Leandro Provinciali, and Fabrizio Vernieri. Cerebrovascular

reactivity and cognitive decline in patients eason iaheimer disease. Stroke, 37(4):1010–1015,

2006

[23] Spencer L Waddle, Meher R Juttukonda, Sarah K Lants, Larry T Davis, Rohan Chitale,

Matthew R Fusco, Lori C Jordan, and Manus J Donahue. Classifying intracranial stenosis

disease severity from functional mri data using machine learning. Journal of Cerebral Blood

Flow & Metabolism, 40(4):705–719, 2020

[24] Sebök, M., van Niftrik, C. H. B., Germans, M. R., Katan, M., Kulcsar, Z., Luft, A., Regli, L., &

Fierstra, J. (2022). Recurrent stroke in symptomatic steno-occlusive disease: identifying

patients at high-risk using impaired BOLD cerebrovascular reactivity. Brain and Spine, 2,

101215. https://doi.org/10.1016/j.bas.2022.101215

[25] Chris. (2019, October 18). Made-in-Canada Technology may Help to Take Nobel Medicine

Prize Research from Test Tube to Patient Bedside. Thornhill Medical USA. Retrieved

November 14, 2022, from https://thornhillmedical.com/oct-18-2019-made-in-canada-

technology-may-help-to-take-nobel-medicine-prize-research-from-test-tube-to-patient-bedside/

[26] Slessarev, M., Han, J., Mardimae, A., Prisman, E., Preiss, D., Volgyesi, G., Ansel, C., Duffin,

J., & Fisher, J. A. (2007). Prospective targeting and control of end-tidal CO2 and O2

 104

concentrations. The Journal of Physiology, 581(3), 1207–1219.

https://doi.org/10.1113/jphysiol.2007.129395

[27] RespirAct® RA-MRTM. (n.d.). Thornhill Medical Canada. Retrieved November 14, 2022,

from https://thornhillmedical.ca/research/respiract-ra-mr/

[28] RespirAct® RA-MRTM Operator’s Manual. (n.d.). Thornhill Medical Canada. Retrieved

November 14, 2022, from https://thornhillmedical.ca/resources/respiract-ra-mr/manual/

[29] About DICOM- Overview. (n.d.). DICOM. https://www.dicomstandard.org/about-home

[30] Bidgood, W. D., Horii, S. C., Prior, F. W., & Van Syckle, D. E. (1997). Understanding and

Using DICOM, the Data Interchange Standard for Biomedical Imaging. Journal of the

American Medical Informatics Association, 4(3), 199–212.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC61235/

[31] afni.nimh.nih.gov. (n.d.). Afni.nimh.nih.gov. https://afni.nimh.nih.gov/

[32] Poublanc, J., Crawley, A. P., Sobczyk, O., Montandon, G., Sam, K., Mandell, D. M., Dufort, P.,

Venkatraghavan, L., Duffin, J., Mikulis, D. J., & Fisher, J. A. (2015). Measuring

Cerebrovascular Reactivity: The Dynamic Response to a Step Hypercapnic Stimulus. Journal

of Cerebral Blood Flow & Metabolism, 35(11), 1746–1756.

https://doi.org/10.1038/jcbfm.2015.114

[33] Python Software Foundation. (2019). What is Python? Executive Summary. Python.org;

Python.org. Retrieved November 14, 2022, from https://www.python.org/doc/essays/blurb/

[34] Applications for Python. (n.d.). Python.org. Retrieved November 14, 2022, from

https://www.python.org/about/apps/

[35] PyPI · The Python Package Index. (n.d.). PyPI. Retrieved November 14, 2022, from

https://pypi.org/

[36] Software Development Life Cycle (SDLC). (2020, February 26). GeeksforGeeks.

https://www.geeksforgeeks.org/software-development-life-cycle-sdlc/

[37] GitHub. (2018). https://github.com/. Accessed December 1, 2022

[38] Pittet, S. (2019). The different types of testing in Software | Atlassian. Atlassian.

https://www.atlassian.com/continuous-delivery/software-testing/types-of-software-testing

 105

[39] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press

[40] What is Artificial Intelligence (AI)? (n.d.). Www.ibm.com. Retrieved November 14, 2022,

from https://www.ibm.com/cloud/learn/what-is-artificial-intelligence#toc-deep-learn-

md_Q_Of3

[41] Mitchell, T. M. (1997). Machine learning. Mcgraw-Hill

[42] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep Learning. Nature, 521(7553), 436–444.

https://doi.org/10.1038/nature14539

[43] Train Test Validation Split: How To & Best Practices [2022]. (n.d.). Www.v7labs.com.

Retrieved December 15, 2022, from https://www.v7labs.com/blog/train-validation-test-

set#:~:text=Validation%20split%20helps%20to%20improve

[44] Alzubaidi, L., Zhang, J., Humaidi, A.J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría,

J., Fadhel, M.A., Al-Amidie, M. and Farhan, L. (2021). Review of deep learning: concepts,

CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1).

Doi:10.1186/s40537-021-00444-8

[45] Duca, A. L. (2022, February 19). Is a Small Dataset Risky? Medium.

https://towardsdatascience.com/is-a-small-dataset-risky-b664b8569a21

[46] Dietterich, T. (1995). Overfitting and undercomputing in machine learning. ACM Computing

Surveys, 27(3), pp.326–327. Doi:10.1145/212094.212114

[47] IBM Cloud Education. (2021, March 3). What is Overfitting? Www.ibm.com.

https://www.ibm.com/cloud/learn/overfitting#:~:text=Overfitting%20is%20a%20concept%20i

n

[48] IBM Cloud Education. (2020, August 17). What are Neural Networks? Www.ibm.com; IBM.

https://www.ibm.com/cloud/learn/neural-networks

[49] Build with AI | DeepAI. (2017). DeepAI. https://deepai.org/machine-learning-glossary-and-

terms/neural-network

[50] What are Neural Networks? (n.d.). www.ibm.com. Retrieved November 14, 2022, from

https://www.ibm.com/cloud/learn/neural-

networks#:~:text=Neural%20networks%20reflect%20the%20behavior

 106

[51] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep

convolutional neural networks. Communications of the ACM, 60(6), 84–90

[52] Wu, H. and Gu, X. (2015). Towards dropout training for convolutional neural networks. Neural

Networks, 71, pp.1–10. Doi:10.1016/j.neunet.2015.07.007

[53] Ker, J., Wang, L., Rao, J., & Lim, T. (2018). Deep Learning Applications in Medical Image

Analysis. IEEE Access, 6, 9375–9389. https://doi.org/10.1109/ACCESS.2017.2788044

[54] Albawi, S., Mohammed, T. A., & Al-Zawi, S. (2017). Understanding of a Convolutional Neural

Network. 2017 International Conference on Engineering and Technology (ICET), 1–6.

https://doi.org/10.1109/icengtechnol.2017.8308186

[55] Amor, E. (2020, May 29). Understanding Non-Linear Activation Functions in Neural

Networks. ML Cheat Sheet. https://medium.com/ml-cheat-sheet/understanding-non-linear-

activation-functions-in-neural-networks-

152f5e101eeb#:~:text=What%20does%20non%2Dlinearity%20mean

[56] Sharma, S., Sharma, S., & Athaiya, A. (2017). Activation functions in neural networks. towards

data science, 6(12), 310-316

[57] Hochreiter, S. (1998). The vanishing gradient problem during learning recurrent neural nets and

problem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based

Systems, 6(02), 107-116

[58] Shahriar Real (2020). Triple Pool Net: A novel robust Convolution neural network for

image/content classification. UWSpace. http://hdl.handle.net/10012/16539

[59] Agarap, Abien Fred (2018). Deep Learning using Rectified Linear Units (ReLU). [online]

arXiv.org. Available at: https://arxiv.org/abs/1803.08375

[60] Albawi, S., Mohammed, T. A., & Al-Zawi, S. (2017). Understanding of a Convolutional Neural

Network. 2017 International Conference on Engineering and Technology (ICET), 1–6.

https://doi.org/10.1109/icengtechnol.2017.8308186

[61] Srivastava, N., Hinton, G., Krizhevsky, A. and Salakhutdinov, R. (2014). Dropout: A Simple

Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research,

 107

[online] 15, pp.1929–1958. Available at:

https://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

[62] Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). SegNet: A Deep Convolutional

Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 39(12), 2481–2495. https://doi.org/10.1109/tpami.2016.2644615

[63] Shivam Kalra (2018). Content-based Image Retrieval of Gigapixel Histopathology Scans: A

Comparative Study of Convolution Neural Network, Local Binary Pattern, and Bag of visual

Words. UWSpace. http://hdl.handle.net/10012/13226

[64] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G., Davis, A.,

Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y.,

Jozefowicz, R., Kaiser, L., Kudlur, M., & Levenberg, J. (n.d.). TensorFlow: Large-Scale

Machine Learning on Heterogeneous Distributed Systems.

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45166.pdf

[65] Keras. (2019). Home - Keras Documentation. Keras.io. https://keras.io

[66] Ramesh, S. (2018, May 26). A guide to an efficient way to build neural network architectures-

Part II: Hyper-parameter…. Medium. https://towardsdatascience.com/a-guide-to-an-efficient-

way-to-build-neural-network-architectures-part-ii-hyper-parameter-42efca01e5d7

[67] Shah, T. (2017, December 6). About Train, Validation and Test Sets in Machine Learning.

Towards Data Science; Towards Data Science. https://towardsdatascience.com/train-validation-

and-test-sets-72cb40cba9e7

[68] Kim, H.E., Cosa-Linan, A., Santhanam, N. et al. Transfer learning for medical image

classification: a literature review. BMC Med Imaging 22, 69 (2022).

https://doi.org/10.1186/s12880-022-00793-7

[69] Talo, M., Baloglu, U. B., Yıldırım, Ö., & Acharya, U. R. (2019). Application of deep transfer

learning for automated brain abnormality classification using MR images. Cognitive Systems

Research, 54, 176-188

[70] ImageNet. https://www.image-net.org/update-mar-11-2021.php. Accessed 14 November 2022

 108

[71] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural

networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ, editors. Advances in neural

information processing systems 25. Curran Associates, Inc.; 2012. p. 1097–105

[72] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V.,

& Rabinovich, A. (2014). Going Deeper with Convolutions. ArXiv.org.

https://arxiv.org/abs/1409.4842

[73] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image

recognition. arXiv:14091556 [cs]. 2015

[74] He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. In: 2016 IEEE

conference on computer vision and pattern recognition (CVPR). Las Vegas, NV, USA: IEEE;

2016. P. 770–8

[75] Tan, M., & Le, Q. V. (2019). EfficientNet: Rethinking Model Scaling for Convolutional Neural

Networks. ArXiv.org. https://arxiv.org/abs/1905.11946

[76] Vapnik VN (1999). The nature of statistical learning theory (Statistics for Engineering and

Information Science). Springer, Heidelberg

[77] Jiang, J., Trundle, P., & Ren, J. (2010). Medical image analysis with artificial neural networks.

Computerized Medical Imaging and Graphics, 34(8), 617–631.

https://doi.org/10.1016/j.compmedimag.2010.07.003

[78] Handbook of Medical Imaging, Volume 2. Medical Image Processing and Analysis | (2000) |

Fitzpatrick | Publications | Spie. (n.d.). Spie.org. Retrieved November 14, 2022, from

https://spie.org/Publications/Book/831079?SSO=1

[79] Bankman, I. N. (2008). Handbook of Medical Image Processing and Analysis (Academic Press

series in biomedical engineering). Academic Press

[80] J. H. Morra, Z. Tu, L. G. Apostolova, A. E. Green, A. W. Toga and P. M. Thompson,

"Comparison of AdaBoost and Support Vector Machines for Detecting Alzheimer's Disease

Through Automated Hippocampal Segmentation," in IEEE Transactions on Medical Imaging,

vol. 29, no. 1, pp. 30-43, Jan. 2010, doi: 10.1109/TMI.2009.2021941

 109

[81] Klöppel, S., Stonnington, C. M., Chu, C., Draganski, B., Scahill, R. I., Rohrer, J. D., Fox, N. C.,

Jack, C. R., Jr, Ashburner, J., & Frackowiak, R. S. (2008). Automatic classification of MR

scans in Alzheimer's disease. Brain : a journal of neurology, 131(Pt 3), 681–689.

https://doi.org/10.1093/brain/awm319

[82] Waddle SL, Juttukonda MR, Lants SK, et al. Classifying intracranial stenosis disease severity

from functional MRI data using machine learning. Journal of Cerebral Blood Flow &

Metabolism. 2020;40(4):705-719. Doi:10.1177/0271678X19848098

[83] Zacharaki, E.I., Wang, S., Chawla, S., Soo Yoo, D., Wolf, R., Melhem, E.R. and Davatzikos, C.

(2009), Classification of brain tumor type and grade using MRI texture and shape in a machine

learning scheme. https://doi.org/10.1002/mrm.22147

[84] Applications of deep learning to MRI images: A survey. (2018). Big Data Mining and

Analytics, 1(1), 1–18. https://doi.org/10.26599/bdma.2018.9020001

[85] Shen, D., Wu, G., & Suk, H. I. (2017). Deep Learning in Medical Image Analysis. Annual

review of biomedical engineering, 19, 221–248. https://doi.org/10.1146/annurev-bioeng-

071516-044442

[86] Justin Ker, Lipo Wang, Jai Rao, and Tchoyoson Lim. Deep learning applications in medical

image analysis. IEEE Access, 6:9375–9389, 2018

[87] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio,

Francesco Ciompi, Mohsen Ghafoorian, Jeroen A. W. M. van der Laak, Bram van Ginneken,

and Clara I. Sanchez. A survey on deep learning in medical image analysis, Jun 2017

[88] A. Farooq, S. Anwar, M. Awais and S. Rehman, “A deep CNN based multi-class classification

of Alz’eimer’s disease using MRI,” 2017 IEEE International Conference on Imaging Systems

and Techniques (IST), 2017, pp. 1-6, doi: 10.1109/IST.2017.8261460

[89] Hashemzehi, R., Mahdavi, S. J. S., Kheirabadi, M., & Kamel, S. R. (2020). Detection of brain

tumors from MRI images base on deep learning using hybrid model CNN and NADE.

Biocybernetics and Biomedical Engineering, 40(3), 1225–1232.

https://doi.org/10.1016/j.bbe.2020.06.001

[90] Chen, D. Y. T., Ishii, Y., Zhao, M. Y., Fan, A. P., & Zaharchuk, G. Using Deep Learning to

Predict PET Cerebrovascular Reserve in Moyamoya Disease from Baseline MRI

 110

[91] Hussein, R., Zhao, M., Shin, D., Guo, J., Chen, K. T., Armindo, R. D., Davidzon, G., Moseley,

M., & Zaharchuk, G. (2022). Multi-task Deep Learning for Cerebrovascular Disease

Classification and MRI-to-PET Translation. ArXiv:2202.06142 [Cs, Eess].

https://arxiv.org/abs/2202.06142

[92] Chen DYT, Ishii Y, Fan AP, Guo J, Zhao MY, Steinberg GK, Zaharchuk G. Predicting PET

Cerebrovascular Reserve with Deep Learning by Using Baseline MRI: A Pilot Investigation of

a Drug-Free Brain Stress Test. Radiology. 2020 Sep;296(3):627-637. doi:

10.1148/radiol.2020192793. Epub 2020 Jul 14. PMID: 32662761; PMCID: PMC7457949

[93] Nie, D., Zhang, H., Adeli, E., Liu, L., Shen, D. (2016). 3D Deep Learning for Multi-modal

Imaging-Guided Survival Time Prediction of Brain Tumor Patients. In: Ourselin, S.,

Joskowicz, L., Sabuncu, M., Unal, G., Wells, W. (eds) Medical Image Computing and

Computer-Assisted Intervention – MICCAI 2016. MICCAI 2016. Lecture Notes in Computer

Science(), vol 9901. Springer, Cham. https://doi.org/10.1007/978-3-319-46723-8_25

[94] Hou, X., Guo, P., Wang, P., Liu, P., Lin, D. D. M., Fan, H., Li, Y., Wei, Z., Lin, Z., Jiang, D.,

Jin, J., Kelly, C., Pillai, J. J., Huang, J., Pinho, M. C., Thomas, B. P., Welch, B. G., Park, D. C.,

Patel, V. M., & Hillis, A. E. (2022). Deep-learning-enabled Brain Hemodynamic Mapping

Using Resting-state fMRI. ArXiv:2204.11669 [Physics]. https://arxiv.org/abs/2204.11669

[95] Dhar, R., Falcone, G. J., Chen, Y., Hamzehloo, A., Kirsch, E. P., Noche, R. B., ... & Lee, J. M.

(2020). Deep learning for automated measurement of hemorrhage and perihematomal edema in

supratentorial intracerebral hemorrhage. Stroke, 51(2), 648-651

[96] Zhu, G., Chen, H., Jiang, B., Chen, F., Xie, Y., & Wintermark, M. (2022). Application of Deep

Learning to Ischemic and Hemorrhagic Stroke Computed Tomography and Magnetic

Resonance Imaging. Seminars in Ultrasound, CT and MRI, 43(2), 147–152.

https://doi.org/10.1053/j.sult.2022.02.004

[97] Maqsood, M., Nazir, F., Khan, U., Aadil, F., Jamal, H., Mehmood, I., & Song, O. Y. (2019).

Transfer learning assisted classification and detection of Alzheimer’s disease stages using 3D

MRI scans. Sensors, 19(11), 2645

 111

[98] Yuan, Y., Qin, W., Buyyounouski, M., Ibragimov, B., Hancock, S., Han, B., & Xing, L. (2019).

Prostate cancer classification with multiparametric MRI transfer learning model. Medical

physics, 46(2), 756–765. https://doi.org/10.1002/mp.13367

[99] Ghafoorian, M., Mehrtash, A., Kapur, T., Karssemeijer, N., Marchiori, E., Pesteie, M.,

Guttmann, C. R. G., de Leeuw, F.-E., Tempany, C. M., van Ginneken, B., Fedorov, A.,

Abolmaesumi, P., Platel, B., & Wells III, W. M. (2017). Transfer Learning for Domain

Adaptation in MRI: Application in Brain Lesion Segmentation. ArXiv:1702.07841 [Cs],

10435, 516–524. https://doi.org/10.1007/978-3-319-66179-7_59

[100] 10 Reasons Why Use Python For Web Development in 2022. (2021).

https://www.monocubed.com/blog/why-use-python/

[101] JetBrains. (2019). PyCharm. JetBrains; JetBrains. https://www.jetbrains.com/pycharm/

[102] VMware. (2022, January 27). What is a Virtual Machine? | VMware Glossary. VMware.

https://www.vmware.com/topics/glossary/content/virtual-machine.html

[103] Atlassian. (2019). Bitbucket. Bitbucket. https://bitbucket.org/product

[104] Python OOPs Concepts. (2016, May 16). GeeksforGeeks.

https://www.geeksforgeeks.org/python-oops-concepts/

[105] Structuring Your Project — The Hitchhiker’s Guide to Python. (n.d.). Docs.python-Guide.org.

Retrieved November 14, 2022, from https://docs.python-guide.org/writing/structure/#structure-

of-the-repository

[106] Folder free icons designed by Vectors Market. (n.d.). Flaticon. Retrieved November 14, 2022,

from https://www.flaticon.com/free-icon/folder_235251

[107] MRI Basics. (2020). Case.edu.

https://case.edu/med/neurology/NR/MRI%20Basics.htm#:~:text=Repetition%20Time%20(TR)

%20is%20the

[108] scipy.interpolate.CubicSpline — SciPy v1.9.3 Manual. (n.d.). Docs.scipy.org. Retrieved

November 14, 2022, from

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.html

[109] Pydicom. (n.d.). Pydicom.github.io. https://pydicom.github.io/

 112

[110] Matplotlib. (2012). Matplotlib: Python plotting — Matplotlib 3.1.1 documentation.

Matplotlib.org. https://matplotlib.org/

[111] Python Software Foundation. (2019). tkinter — Python interface to Tcl/Tk — Python 3.7.2

documentation. Python.org. https://docs.python.org/3/library/tkinter.html

[112] Python 3 - GUI Programming (Tkinter) - Tutorialspoint. (n.d.). Www.tutorialspoint.com.

https://www.tutorialspoint.com/python3/python_gui_programming.htm

[113] Tkinter Notebook Widget. (2021, January 6). Python Tutorial - Master Python Programming

for Beginners from Scratch. https://www.pythontutorial.net/tkinter/tkinter-notebook/

[114] ImageTk Module. (n.d.). Pillow.readthedocs.io.

https://pillow.readthedocs.io/en/stable/reference/ImageTk.html

[115] AFNI program -help files. (n.d.). Afni.nimh.nih.gov. Retrieved November 14, 2022, from

https://afni.nimh.nih.gov/afni/doc/program_help/index.html

[116] os — Miscellaneous operating system interfaces — Python 3.8.0 documentation. (2019).

Python.org. https://docs.python.org/3/library/os.html

[117] matplotlib.axes.Axes.twinx — Matplotlib 3.6.2 documentation. (n.d.). Matplotlib.org.

Retrieved November 14, 2022, from

https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.twinx.html

[118] Rectangle and ellipse selectors — Matplotlib 3.6.2 documentation. (n.d.). Matplotlib.org.

Retrieved November 14, 2022, from

https://matplotlib.org/stable/gallery/widgets/rectangle_selector.html

[119] Embedding in Tk — Matplotlib 3.6.0 documentation. (n.d.). Matplotlib.org.

https://matplotlib.org/stable/gallery/user_interfaces/embedding_in_tk_sgskip.html

[120] scipy.stats.linregress — SciPy v1.5.4 Reference Guide. (n.d.). Docs.scipy.org.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html

[121] Home. (2014, May 16). Maglev Microrobotics Laboratory. https://uwaterloo.ca/maglev-

microrobotics-laboratory/

[122] Mutch, W.A.C., Mandell, D.M., Fisher, J.A., Mikulis, D.J., Crawley, A.P., Pucci, O. and

Duffin, J. (2012). Approaches to brain stress testing: BOLD magnetic resonance imaging with

 113

computer-controlled delivery of carbon dioxide. PloS One, [online] 7(11), p.e47443.

doi:10.1371/journal.pone.0047443

[123] Baheti, P. (2021). Train, Validation, and Test Set: How to Split Your Machine Learning Data.

V7labs.com. https://www.v7labs.com/blog/train-validation-test-set

[124] Machine Learning Glossary. (n.d.). Google Developers.

https://developers.google.com/machine-learning/glossary

[125] Kingma, D.P. and Ba, J. (2014). Adam: A Method for Stochastic Optimization. [online]

arXiv.org. Available at: https://arxiv.org/abs/1412.6980

[126] Team, K. (n.d.). Keras documentation: MaxPooling2D layer. Keras.io.

https://keras.io/api/layers/pooling_layers/max_pooling2d/

[127] Team, K. (n.d.). Keras documentation: Flatten layer. Keras.io.

https://keras.io/api/layers/reshaping_layers/flatten/

[128] tf.keras.callbacks.EarlyStopping | TensorFlow Core v2.4.0. (n.d.). TensorFlow.

https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping

[129] Brownlee, J. (2019, January 17). How to Accelerate Learning of Deep Neural Networks With

Batch Normalization. Machine Learning Mastery. https://machinelearningmastery.com/how-to-

accelerate-learning-of-deep-neural-networks-with-batch-normalization/

[130] Kandel, I. and Castelli, M. (2020).The effect of batch size on the generalizability of the

convolutional neural networks on a histopathology dataset. ICT Express. [online]

doi:10.1016/j.icte.2020.04.010.

[131] Radiuk, P.M. (2017). Impact of Training Set Batch Size on the Performance of Convolutional

Neural Networks for Diverse Datasets. Information Technology and Management Science,

[online] 20(1), pp.20–24. Available at: https://itms-journals.rtu.lv/article/view/itms-2017-0003

[132] Bengio, Y. (2012). Practical recommendations for gradient-based training of deep architectures.

arXiv:1206.5533 [cs]. [online] Available at: https://arxiv.org/abs/1206.5533

[133] Save and load Keras models | TensorFlow Core. (n.d.). TensorFlow.

https://www.tensorflow.org/guide/keras/save_and_serialize

 114

[134] tf.keras.preprocessing.image.ImageDataGenerator. (n.d.). TensorFlow.

https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerato

r

[135] Dinov, I.D. Model Performance Assessment. In Data Science and Predictive Analytics;

Springer: Singapore, 2018; pp. 475–496

[136] Team, K. (n.d.). Keras documentation: ReduceLROnPlateau. Keras.io.

https://keras.io/api/callbacks/reduce_lr_on_plateau/

 115

Appendices

 116

Appendix A: CVR Software Workflow

This appendix presents a detailed workflow of the CVR processing software developed in this work.

A.1 Software Launch

On the virtual machine, the software can be launched by double-clicking on the desktop icon named

“CVR Proc Local”. A CVR Processing Software window is opened with a user warning page, as

shown in Figure A.1. The warning page explicitly highlights the user’s qualifications requirements.

Figure A.1: Software launch page. This is the first window that is displayed on executing the

software application. Clicking the OK button displays the next interface. The cancel button

closes the application window

The main menu tab is displayed once the user eligibility is confirmed, as shown in Figure A.2. The

user is required to enter a subject ID. A subject ID corresponds to the subject under investigation.

This can correspond to an existing analysis or a new one. If it is a new analysis, the software creates a

structured directory for the input and output files. If the required folders already exist (from a

previously completed analysis), the software reads the input and output files from these pre-populated

folders.

 117

Figure A.2: The main menu tab. The subject ID can be entered here. The Next button hides the

main menu tab and opens new tabs corresponding to the next steps in the software workflow

A.2 File Management

After entering the subject ID, all the other functionalities of the software, including, View/Upload

MR Files, Execute AFNI, and Plot CVR are enabled. View/Upload MR Files tab allows the user to

view and upload the input MR files in the respective input folders, as shown in Figure A.3. The steps

to upload new files is described below:

1. Click on the “Upload Anatomical MR Files” button.

2. Browse to the directory where your files are located.

3. Select the files to be uploaded. To select multiple files, left click on the first file using your

mouse, hold the shift button on your keyboard, and left click on the last file. This will

highlight all the selected files.

4. Click on the “Open” button to upload.

 118

Figure A.3: View/Upload MR Files tab. The View Files button displays the input files in the

respective folders. Upload buttons allow the user to upload the required input files. The status

below the button provides information about the file checks

A.3 Processing MRI Files

As described in section 4.6, the next step uses the AFNI programs to produce the HEAD and BRIK

files required to produce CVR maps. These output files are stored in the output directory.

Execute AFNI tab is used to view the interface to accomplish the task. The “Initiate AFNI routine”

button makes a system call to the required AFNI programs. The software starts the AFNI routine, and

a progress bar is displayed to show the progress, as shown in Figure A.4.

If the user has already completed this step for the entered subject ID, the software prompts a

status, AFNI output files already exist, proceed to ‘Plot CVR’, and this step of executing AFNI

workflow can be skipped. In this case, the button on display is “Re-initiate AFNI routine”. Re-

initiating the AFNI routine deletes the existing AFNI HEAD/BRIK files in the output directory and

executes the AFNI routine from the first step.

 119

Figure A.4: Execute AFNI tab after initiating the processing routine. Note the progress bar

shows the current progress along with a brief description of the undergoing process.

 120

A.4 Plotting Workflow

Once the AFNI output files are ready in the output directory (as described in section 4.6), the next

step is to extract BOLD information from the output file [voxels.1D], perform CVR calculations, and

display the CVR maps. To access the plotting options, Plot CVR tab is used, as shown in Figure A.5.

To begin an analysis, a study name is required. The software looks for the existing output files and

lists the analyses already completed. The user could view one of these existing maps by entering the

same name as displayed [without the quotes].

Figure A.5: Plot CVR tab. A study name corresponding to the current analysis is required in

the text entry box. A list of previously completed analyses is displayed to the right of the entry

box. These can be used to directly display the CVR maps

 121

A.4.1 Aligning the BOLD and PCO2 plots

The “Sync PCO2 and BOLD” button loads up and displays the MR sequence information from the

Events.txt file located in the ‘RA Files’ folder. The sequence start and end values need to be entered

in the two input boxes, and the “Next” button saves this information for the next step. This interface

is shown in Figure A.6

Figure A.6: Displaying the MR sequence information extracted from “Events.txt” file. The start

and end values are entered in the input text boxes and the Next button is clicked

On clicking the “Next” button, a set of instructions are displayed along with an interactive plot

that allows the user to synchronize the PCO2 time series with the corresponding BOLD time series.

The instructions and the plotting interface are shown in Figure A.7.

 122

Figure A.7: Synchronizing PCO2 and BOLD time series. The plot interface is displayed along

with a set of instructions to synchronize the two plots. Once aligned, the Generate CVR Files

button is clicked

The alignment of the plots can be achieved using the steps below:

1) Use the shift buttons placed below the plotting interface to adjust the PCO2 graph along its

x-axis.

2) Once the time series of both the plots are synchronized, select the area to be analyzed by

dragging the left mouse button inside the plot area, as shown in Figure A.8.

3) Click on the “Generate CVR Files” button to calculate the CVR slopes for the area selected.

 123

Figure A.8: Selecting the area of interest using the rectangle selector tool. The small square

buttons allow re-sizing the selected area

A.4.1 Plotting CVR Maps

To plot the CVR maps for the given analysis, click on the “Plot CVR” button in the same tab, as

shown in Figure A.7. This button launches an AFNI executable window that displays the CVR maps

in different views. The produced maps are discussed in detail in section 4.8.

This is the end of the CVR processing and visualization workflow.

 124

Appendix B: Programs and Scripts

This appendix presents and explains the Python programs and scripts used in this work.

B.1 Extracting Repetition Time

First, the Pydicom library reads the DICOM file using the read_file module. Next, the TR value

(in milliseconds) is stored in a variable by searching for the corresponding index in the meta

information of the DICOM file. Finally, the stored value is divided by 1000 to convert the time units

to seconds. The method returns the TR value which can be imported in other modules when required.

import pydicom as dcm
import os
path is a module developed to point the software to the corresponding directories
import path

def repetition_time(self):

 mr_files = os.listdir(self.working_path.dirBold)
 ds = dcm.read_file(os.path.join(self.working_path.dirBold, mr_files[0]))
 ds_value = ds[0x0018, 0x0080]
 pieces = str(ds_value).split('"')
 # TR value is stored in milliseconds which needs to be converted to seconds, therefore division by 1000.0
 time_scale = float(pieces[-2]) / 1000.0
 return time_scale

B.2 Importing CO2 data

The program developed to import and process the stimulus information (the PCO2 values) from the

RespirAct RA-MR device is explained here.

First, the import_pco_file module imports the file and creates a list of the entries found in the file.

The data is stored in a 2D list. The first row contains the column header, and the subsequent rows

contain the values.

The data_pco method imports the PCO2 data as a 2D list using the import_pco_file method. Two

additional lists are created that store the real time MRI time information and PCO2 values

respectively. Finally, the “None” entries are excluded from both the lists and the updated lists are

returned.

 125

def import_pco_file(self):
 endtidal_file = "EndTidal.txt"
 pco_data = list()
 with open(self.working_path.dirRa + "/" + endtidal_file, "r") as d:
 for line in d:
 pco_data.append(line.strip().split('\t'))

 return pco_data

def data_pco(self, sequence_start, sequence_end):

 pco_data = self.import_pco_file()

 pco_column = 0
 mr_time_column = 0

 for i in range(len(pco_data[0])):
 if pco_data[0][i] == "PCO2 (mmHg)":
 pco_column = i
 if pco_data[0][i] == "MR Time(s)":
 mr_time_column = i

 pco_x_values = [None]*len(pco_data)
 pco_y_values = [None]*len(pco_data)
 for i in range(1, len(pco_data)):
 if sequence_start <= float(pco_data[i][mr_time_column]) <= sequence_end:
 pco_x_values[i] = pco_data[i][mr_time_column]
 pco_y_values[i] = pco_data[i][pco_column]

 # Filtering "None" values:
 pco_y_values = [float(x) for x in pco_y_values if x is not None]
 pco_x_values = [float(x) for x in pco_x_values if x is not None]

 return pco_x_values, pco_y_values

 126

B.3 Data Pre-Processing

The program developed to copy the CVR maps from the complex data directories from the CVR

studies is presented here.

The glob.glob modules were used to scan through the directories and sub-directories and locate all

the files with the name “CVR_slope.jpg”. As these files were located, the shutil module was used to

copy and paste the files while anonymizing the file names.

Import os
import shutil
import glob

def main():
 # Enter the path of directory which has all patient folders
 patient_data_working_path = “Directory_with_patient_folders”

 # The files are pasted into the Paste folder
 paste_path = os.path.join(os.getcwd(), “Paste”)

 # Search for all files with the name CVR_slope.jpg and copy the file with a new name
 files = glob.glob(os.path.join(“r”, patient_data_working_path, “**”, “CVR_slope.jpg”), recursive=True)
 file_itr = 1
 for f in files:
 shutil.copyfile(f, os.path.join(“r”, paste_path, “patient_” + “_” + str(file_itr) + “.jpg”))
 file_itr += 1

if __name__ == ‘__main__’:
 main()

 127

B.4 Defining CNN architectures

The program used to define and modify the CNN architecture is presented here.

import keras.callbacks
import tensorflow as tf
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Dropout, Flatten, Dense

def model_definition(self):
 # Defining the sequential model
 model = Sequential()
 model.add(Conv2D(8, (3, 3), activation=’relu’, input_shape=(self.img_h, self.img_w, 3)))
 model.add(MaxPooling2D(pool_size=(2, 2)))
 model.add(Flatten())
 model.add(Dense(8, activation=’relu’))
 model.add(Dense(1, activation=’sigmoid’))

 opt = tf.keras.optimizers.Adam()
 model.compile(loss=’binary_crossentropy’,
 optimizer=opt,
 metrics=[‘accuracy’])
 model.summary()

 return model

B.5 Training CNN models

The module used to import the model defined using the module described in section B.4 is

explained here. Two tensor image data generators were created: train_datagen, and

validation_datagen. These were used to extract data from the training and the validation directories,

respectively. The callback was defined to realize the early stopping. The model that was defined

earlier was imported and model.fit() was used to begin the training. As discussed in section 5.5.4, the

weights and bias of the model were saved using the model.save() function.

from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import CSVLogger

def run_model(self):

 # Training and test directories

 128

 training_dir = “The_Training_Directory”
 validation_dir = “The_Validation_Directory”
 train_length = 1711
 validation_length = 428

 # Rescaling the images
 train_datagen = ImageDataGenerator(rescale=1. / 255)
 validation_datagen = ImageDataGenerator(rescale=1. / 255)

 train_generator = train_datagen.flow_from_directory(
 training_dir,
 target_size=(self.img_h, self.img_w),
 batch_size=self.batch_size_input,
 class_mode=’binary’)

 validation_generator = validation_datagen.flow_from_directory(
 validation_dir,
 target_size=(self.img_h, self.img_w),
 batch_size=self.batch_size_input,
 class_mode=’binary’)

 model = self.model_definition()

 csv_logger = CSVLogger(self.model_name+”_history_log.csv”, separator=”,”, append=True)

 callback = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=10)

 history = model.fit(train_generator,
 steps_per_epoch=train_length // self.batch_size_input,
 epochs=self.epochs_input,
 validation_data=validation_generator,
 validation_steps=validation_length // self.batch_size_input,
 callbacks=[csv_logger])

 # Saving the trained CNN model
 model.save(self.model_name+’.h5’)

 return None

 129

B.6 AlexNet Modeling

As discussed while designing customized CNN, a sequential model is used to define the AlexNet-

inspired network. All the layers are added successively, and the layer parameters are defined for each

layer. This method returns the model architecture which can be trained using the CVR dataset.

import keras
import tensorflow as tf
from keras import layers

def AlexNet(self):
 model = keras.models.Sequential([
 keras.layers.Conv2D(filters=96, kernel_size=(11, 11), strides=(4, 4), activation=’relu’,
 input_shape=(227, 227, 3)),
 keras.layers.BatchNormalization(),
 keras.layers.MaxPool2D(pool_size=(3, 3), strides=(2, 2)),
 keras.layers.Conv2D(filters=256, kernel_size=(5, 5), strides=(1, 1), activation=’relu’, padding=”same”),
 keras.layers.BatchNormalization(),
 keras.layers.MaxPool2D(pool_size=(3, 3), strides=(2, 2)),
 keras.layers.Conv2D(filters=384, kernel_size=(3, 3), strides=(1, 1), activation=’relu’, padding=”same”),
 keras.layers.BatchNormalization(),
 keras.layers.Conv2D(filters=384, kernel_size=(3, 3), strides=(1, 1), activation=’relu’, padding=”same”),
 keras.layers.BatchNormalization(),
 keras.layers.Conv2D(filters=256, kernel_size=(3, 3), strides=(1, 1), activation=’relu’, padding=”same”),
 keras.layers.BatchNormalization(),
 keras.layers.MaxPool2D(pool_size=(3, 3), strides=(2, 2)),
 keras.layers.Flatten(),
 keras.layers.Dense(4096, activation=’relu’),
 keras.layers.Dropout(0.5),
 keras.layers.Dense(4096, activation=’relu’),
 keras.layers.Dropout(0.5),
 keras.layers.Dense(1, activation=’softmax’)
])

 model.summary()
 return model

 130

B.7 Importing InceptionV3

import keras
import tensorflow as tf
from keras import layers

from keras.applications import InceptionV3

def Inception(self):
 pre_trained_model = InceptionV3(weights=’imagenet’,
 input_shape=(224, 224, 3),
 include_top=False)
 pre_trained_model.trainable = False
 x = layers.Flatten()(pre_trained_model.output)
 x = layers.Dense(1024, activation=’relu’)(x)
 x = layers.Dropout(0.5)(x)
 x = layers.Dense(1, activation=’sigmoid’)(x)

 model = Model(pre_trained_model.input, x)

 model.summary()

 return model

