
Measuring the Performance of Code
Produced with GitHub Copilot

by

Daniel Erhabor

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2022

© Daniel Erhabor 2022

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

GitHub Copilot is an artificially intelligent programming assistant used by many devel-
opers. While a few studies have evaluated the security risks of using Copilot, there has not
been any study to show if it aids developers in producing code with better performance.
We evaluate the performance of code produced when developers use GitHub Copilot ver-
sus when they do not. To this end, we conducted a user study with 32 participants where
each participant solved two C++ programming problems, one with Copilot and the other
without it and measured the running time of the participants’ solutions on our test data.
Our results suggest that using Copilot can produce code with a significantly slower running
time.

iii

Acknowledgements

I want to thank my supervisors, Meiyappan Nagappan, Samer Al-Kiswany, my collab-
orator on this work, Sreeharsha Udayashankar, the participants for participating in the
study, members of WASL and SWAG research groups, and other people who advised on
things related to this work.

As a member of the University of Waterloo, I acknowledge that this work took place
on the traditional territory of the Neutral, Anishinaabe and Haudenosaunee peoples.

iv

Dedication

I dedicate this thesis to my friends and family.

v

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

Dedication v

List of Figures ix

List of Tables x

1 Introduction 1

2 Background and Related Work 3

3 Programming Problems Solved by Participants 5

3.1 Problem selection . 5

3.2 Problem A . 6

3.3 Problem B . 7

4 Model Solutions to the Problems 9

4.1 Solution A . 9

vi

4.1.1 Level 0 . 9

4.1.2 Level 1 . 10

4.1.3 Level 2 . 11

4.1.4 Level 3 . 11

4.2 Solution B . 12

4.2.1 Level 0 . 12

4.2.2 Level 1 . 13

5 Participants 15

5.1 Participant Recruitment . 15

5.2 Difficulties Recruiting Professionals . 15

5.3 Participant Summary . 16

6 Experiment Design 19

6.1 Order of Solving the Problems . 19

6.2 Session Introduction and Tutorial . 19

6.3 Tasks . 20

6.4 Timing . 21

6.5 After the Problem . 21

6.6 Brief Post-session Interview . 21

7 Evaluation 22

7.1 RQ0 - Does using Copilot influence program correctness? 22

7.2 RQ1 - Is there a running time difference in code when using GitHub Copilot? 23

7.2.1 Approach . 23

7.2.2 Results . 24

7.2.3 Discussion . 24

7.3 RQ2 - Do Copilot’s suggestions sway developers to or from code with faster
running time? . 25

vii

7.3.1 Approach . 25

7.3.2 Statement Level Optimizations & Open-coding 26

7.3.3 Video Analysis . 28

7.3.4 Results . 28

7.3.5 Discussion . 29

7.4 RQ3 - Do characteristics of Copilot users influence the running time when
it is used? . 36

7.4.1 Approach . 36

7.4.2 Results . 37

7.4.3 Discussion . 37

8 Conclusion 40

8.1 Limitations . 40

8.2 Takeaways . 41

References 42

APPENDICES 46

A Full Description of the Problems Given to Participants 47

A.1 Problem A . 47

A.2 Problem B . 52

B Screening survey 58

C Tutorial 59

D Programming Surveys 61

D.1 First Programming Survey . 61

D.2 Second Programming Survey . 62

viii

List of Figures

1.1 Overview of Methodology . 2

2.1 Copilot in Action . 4

5.1 Distribution of Participants’ Developer Experience from Screening Survey
in Appendix B . 17

5.2 Distribution of Participants’ Familiarity with C++ from Screening Survey
in Appendix B . 18

7.1 Plot of Problem Comprehension for Problem A vs B. ”x” is the mean of
the 6-Point Likert-Scale in Table 7.4 and Appendix D 38

ix

List of Tables

6.1 Factorial Matrix of mode x problem . 19

6.2 Possible Orders of mode x problem . 20

7.1 Table of Invalid Runs . 23

7.2 Table of Statement-level Optimizations & remarks for Problem A 27

7.3 Table of Statement-level Optimizations & remarks for Problem B 28

7.4 Table of Input Data to Correlation Matrix 36

7.5 Correlation matrix for problem A . 36

7.6 Correlation matrix for problem B . 37

B.1 Screening Survey . 58

D.1 First Programming Survey . 62

D.2 Second Programming Survey Plus Demographics 64

x

Chapter 1

Introduction

Advances in natural language processing and deep learning have resulted in large language
models (LLMs) that can generate code from free-form text. With this, language models
like GPT-3 [27] have been extended to what Xu et al. [35] have termed Natural-Language-
to-Code (NL2Code) generators. Notably, Open AI’s extension of the GPT-3 language
model, Codex [28], and the production-ready product derived from it, GitHub Copilot [1],
are popular examples of NL2Code tools in use today. While some studies have shown
that developers generally may have a positive experience using GitHub Copilot, others
have shown that it could generate potentially vulnerable code. We present the first-ever
evaluation of Copilot from a performance perspective in systems programming. We con-
ducted the first user study on Copilot to evaluate the running time of the code generated
when developers use it. With the results from our study, we hope to answer the following
research questions:

RQ0: Does using Copilot influence program correctness?

RQ1: Is there a running time difference in code when using GitHub Copilot??

RQ2: Do Copilot’s suggestions sway developers to or from code with faster running
time?

RQ3: Do characteristics of Copilot users influence the running time when it is used?

To answer our research questions, we conduct a user study with 32 participants, where
each participant solved two programming problems in C++, one problem was solved with

1

A

B

P2

B.cppA.cpp

B.cpp A.cpp

A.cppB.cpp

A.cpp B.cpp

P1

P3

P4

Generating task design from problems

Assigning problems to participants

to counterbalance order-effects

Problem

selection

RQ1

RQ2

RQ3

runtime

survey data

video analysis

open coding

Figure 1.1: Overview of Methodology

Copilot and the other was solved without it. Our findings indicate that using Copilot
resulted in code with a slower running time.

The thesis is organized in the following way: We briefly go over some background
related to GitHub Copilot and some related work in Chapter 2. The process of creating
the problems the participants would solve and the rationale behind choosing the problems
is described in Chapter 3. Our model solutions to the problems are elaborated in Chapter 4
giving context to the problems. A summary of the participant recruitment process and the
participants is described in Chapter 5. We then present the experiment design in detail in
Chapter 6. An overview of the methodology can be seen in Figure 1.1. Penultimately, we
analyze and discuss the experiment’s results, answering our research questions in Chapter 7.
Finally, in Chapter 8, we talk about the takeaways and limitations of our study and
potential future directions.

2

Chapter 2

Background and Related Work

GitHub Copilot, the production-ready tool based on the Codex model by Open AI, can
be used as a Visual Studio Code extension to suggest code snippets to users when the
extension is activated. In this way, users can receive suggestions by starting to write the
code or by writing comments; either way, Copilot will suggest some snippets [1]. See
Figure 2.1 for an example of Copilot in action.

One of the early studies on Copilot was by Pearce et al. [31], where they wanted to
understand how often suggestions from Copilot were vulnerable and the contexts that made
Copilot suggest vulnerable code. To achieve this, they prompted Copilot to suggest code
in scenarios where the resultant suggestions could have been vulnerable or more secure.
Of the programs produced in response to the potentially vulnerable scenarios, 40% were
vulnerable.

A study by Sandoval et al. [32] in collaboration with Pearce from [31] wanted to
assess the security of code written by student programmers when assisted by an NL2Code
assistant (OpenAI’s code-cushman-001 model) like Copilot. They conducted a between-
subjects study with 58 computer science students where participants were tasked with
implementing operations of a Singly-Linked List in C. Contrary to [31], their results did
not show that Copilot had a conclusive impact on security.

Vaithilingam et al. [34] conducted a user study on 24 participants to understand how
programmers perceive and use Copilot; they found that programmers preferred to use
Copilot in their day-to-day programming tasks and found it helpful as a starting point.

3

Figure 2.1: Copilot in Action

4

Chapter 3

Programming Problems Solved by
Participants

Following in the same vein as Pearson et al.[31], we provided ”incomplete” code for par-
ticipants to implement as a solution to a given problem. By ”incomplete”, we mean that
we provided code stubs and accompanying documentation for the stubs participants were
asked to implement during the study. We call the stubs ”prompts” or ”problems” and
will use either of those terms interchangeably throughout this work. These prompts were
provided to participants in the form of a CPP file that contained the function declaration,
the unimplemented function definition that participants were expected to implement, i.e.,
the primary function, initialization functions and sanity checks to verify correctness. A
main function was also provided as an entry point to call the initialization functions, the
primary function, and the sanity checks in the appropriate order.

3.1 Problem selection

We chose two problem domains for our programming problems, file-system operations
and multithreaded programming. We chose these two areas because problems in those
domains tend to have a direct impact on application performance. With file I/O operations
accounting for about 30% - 80% of interactions in networked file systems [29], there is a need
for file system operations to be fast on storage devices [33]. Choosing a problem related to
file systems reflects this demand. Additionally, since modern computing is moving towards
a more parallel domain, there is a need to understand the bottlenecks of multithreaded

5

applications [30] and optimize accordingly. To reflect this, we chose a problem related to
false sharing, a typical multi-threading optimization problem that is relatively popular [2].

We chose problems that fit the following criteria: (1) the problem must have more
than one solution where each solution differs not in correctness but performance, (2) The
problem should be solvable with or without Copilot assistance in 30 minutes. Problem A
was in the file-system operations area, and problem B was in the multi-threading space.

3.2 Problem A

For this problem, participants were asked to read many records from three 1GB large
text files and write each record to the appropriate file combination. A file combination
is struct that contained a file identifier, a buffer to write the record to, and the offset for
the associated file. A record is a sequence of 5000 bytes. For this problem, participants
received a CPP file for prompt A and three large text files. We provide a summary of
relevant declarations for more context to the problem in Listing 3.1. The full function
signatures and the entirety of the CPP file with the accompanying documentation for
prompt A given to participants is in Appendix A.1.

1 #define RECORD_SIZE 5000

2 #define NUM_RECORDS 500000

3

4 const std::vector<std::string> FILE_NAMES = {

5 "large_file_1.txt", "large_file_2.txt", "large_file_3.txt"};

6

7 struct FileCombo {

8 int fileId;

9 int offset;

10 char buffer[RECORD_SIZE + 1];

11 };

12

13 void readFileCombos(std::vector<FileCombo> &fileCombos) {

14 // YOUR CODE GOES HERE

15 }

Listing 3.1: Summary of Problem A

6

3.3 Problem B

For this problem, participants were asked to use a certain amount of threads to set all the
values in a source array buffer to zero while setting all the values in a destination array
buffer to a particular value. However, they were not allowed to use assignment operations,
i.e., move and copy semantics were not allowed on either the source array buffer or the
destination array buffer. Participants were only allowed to increment or decrement the
values in the respective array buffers to solve the task. This restriction was in place
because we wanted threads to repeatedly write to an item in the array and thus show the
false sharing effect (depending on the implementation). We provide a summary of relevant
declarations for more context to the problem in Listing 3.2. The full function signatures
and the entirety of the CPP file with the accompanying documentation for prompt B given
to participants are in Appendix A.2.

7

1 const int INIT_SRC_VAL = (1 << 17);

2 const int SIZE = (1 << 11);

3 const int THREAD_COUNT = 4;

4

5 struct Item {

6 private:

7 int val;

8 Item(const Item&);

9 Item(Item&&);

10 Item& operator=(const Item&);

11 Item& operator=(Item&&);

12 public:

13 Item() { val = 0; }

14 Item(int i) { val = i; }

15

16 int get() { return val; }

17

18 void operator++() { ++val; }

19 void operator++(int) { val++; }

20

21 void operator--() { --val; }

22 void operator--(int) { val--; }

23 };

24

25 Item src[SIZE];

26 Item dst[SIZE];

27

28 void schedule() {

29 // YOUR CODE GOES HERE

30 }

Listing 3.2: Summary of Problem B

8

Chapter 4

Model Solutions to the Problems

We created what we term ”model” solutions to the problems. Because there was more
than one solution to each problem, each solution we derived differed only in performance
and not correctness. We itemize our solutions here and categorize them into Level 0 (L0),
Level 1 (L1), Level 2 (L2), and Level 3 (L3) for problem A and Level 0 (L0) and Level 1
(L1) for problem B.

4.1 Solution A

4.1.1 Level 0

We consider a naive implementation wherein calls to open, seek, read, and close are made
for each fileCombo in fileCombos. (See Listing 4.1)

9

1 void readFileCombos(std::vector<FileCombo> &fileCombos) {

2 for(auto &fileCombo: fileCombos){

3 ifstream in;

4 in.open (FILE_NAMES[fileCombo.fileId], std::ios::binary);

5 in.seekg(fileCombo.offset);

6 in.read (fileCombo.buffer, RECORD_SIZE);

7 in.close();

8 }

9 }

Listing 4.1: Our Naive Level 0 (L0) Solution to Problem A

4.1.2 Level 1

One step further from the naive implementation is acknowledging that only three files are
being interacted with; thus, we do not need to open and close a file for each fileCombo

in fileCombos. Our optimization involves opening all the files in FILE_NAMES first, then
processing each fileCombo in fileCombos, then closing all the files. (See Listing 4.2)

1 void readFileCombos(std::vector<FileCombo> &fileCombos) {

2 std::vector<ifstream> files(FILE_NAMES.size());

3 for (int i = 0; i < FILE_NAMES.size(); ++i) {

4 files[i].open(FILE_NAMES[i], std::ios::binary);

5 }

6 for (FileCombo & fc: fileCombos) {

7 files[fc.fileId].seekg(fc.offset);

8 files[fc.fileId].read(fc.buffer, RECORD_SIZE);

9 }

10 for (ifstream & f: files) {

11 f.close();

12 }

13

14 }

Listing 4.2: Our Level 1 (L1) Solution to Problem A

10

4.1.3 Level 2

As a further step from L1, in this implementation, we sort the fileCombos by fileId and
break ties by offset. This way, reading the record from an offset in a specific file will be
sequential and not random. (See Listing 4.3).

1 void readFileCombos(std::vector<FileCombo> &fileCombos) {

2 std::sort(fileCombos.begin(), fileCombos.end(),

3 [](const FileCombo &a, const FileCombo &b) {

4 if (a.fileId != b.fileId) {

5 return a.fileId < b.fileId;

6 }

7 return a.offset < b.offset;

8 });

9

10 for (FileCombo &fc : fileCombos) {

11 ifstream in;

12 in.open (FILE_NAMES[fileCombo.fileId], std::ios::binary);

13 in.seekg(fc.offset);

14 in.read(fc.buffer, RECORD_SIZE);

15 in.close();

16 }

17 }

Listing 4.3: Our Level 2 (L2) Solution to Problem A

4.1.4 Level 3

A step further from L2 is a combination of the L1 optimization we did in 4.1.2 and the L2
optimization we did in 4.1.3. (See Listing 4.4).

11

1 void readFileCombos(std::vector<FileCombo> &fileCombos) {

2 std::vector<ifstream> files(FILE_NAMES.size());

3 for (int i = 0; i < FILE_NAMES.size(); ++i) {

4 files[i].open(FILE_NAMES[i], std::ios::binary);

5 }

6

7 std::sort(fileCombos.begin(), fileCombos.end(),

8 [](const FileCombo &a, const FileCombo &b) {

9 if (a.fileId != b.fileId) {

10 return a.fileId < b.fileId;

11 }

12 return a.offset < b.offset;

13 });

14

15 for (FileCombo & fc: fileCombos) {

16 files[fc.fileId].seekg(fc.offset);

17 files[fc.fileId].read(fc.buffer, RECORD_SIZE);

18 }

19

20 for (ifstream & f: files) {

21 f.close();

22 }

23

24 }

Listing 4.4: Our Level 3 (L3) Solution to Problem A

4.2 Solution B

4.2.1 Level 0

We consider a naive implementation to be a solution where each thread starts at the re-
spective indices 0, 1, 2, and 3 (where THREAD_COUNT is 4) in the src and dst arrays. Each
thread then decrements and increments the Item in src and dst, respectively. (See List-
ing 4.5). After processing the respective Item, each thread moves THREAD_COUNT steps until
the next index, i.e., 4, 5, 6, and 7 and processes the Item therein. We consider this the

12

naive solution because false sharing is present because each thread invalidates the same
64-byte cache line when decrementing and incrementing the Item at src and dst arrays.

1 void work(int start) {

2 for (int i = start; i < SIZE; i += THREAD_COUNT) {

3 for (int j = 0; j < INIT_SRC_VAL; ++j) {

4 --src[i];

5 ++dst[i];

6 }

7 }

8 }

9

10 void schedule() {

11 std::thread threads[THREAD_COUNT];

12 for (int i = 0; i < THREAD_COUNT; ++i) {

13 threads[i] = std::thread(work, i);

14 }

15 for (int i = 0; i < THREAD_COUNT; ++i) {

16 std::threads[i].join();

17 }

18 }

Listing 4.5: Our Naive Level 0 (L0) Solution to Problem B

4.2.2 Level 1

Our second optimization level is to avoid false sharing by dividing each array (src and dst)
into THREAD_COUNT slices and assigning a single thread to process each Item in that slice.
While we acknowledge that aligning the Item struct definition in Listing 3.2 to 64 bytes
(the cacheline size) could be another way of avoiding false sharing, we chose not to give
participants the flexibility of modifying the struct definition and thus potentially violating
the time limit constraint for the problem. (See Listing 4.6)

13

1 void work(int start, int end) {

2 for (int i = start; i < end; ++i) {

3 for (int j = 0; j < INIT_SRC_VAL; ++j) {

4 --src[i];

5 ++dst[i];

6 }

7 }

8 }

9

10 void schedule() {

11 int slice = SIZE / THREAD_COUNT;

12 std::thread threads[THREAD_COUNT];

13 for (int i = 0; i < THREAD_COUNT; ++i) {

14 threads[i] = std::thread(work, i * slice, (i + 1) * slice);

15 }

16

17 for (int i = 0; i < THREAD_COUNT; ++i) {

18 threads[i].join();

19 }

20 }

Listing 4.6: Our Level 1 (L1) Solution to Problem B

14

Chapter 5

Participants

5.1 Participant Recruitment

Participants were recruited mainly via the mailing list for computer science graduate stu-
dents and snowballed to other interested participants. We focused on systems developers.
We consider participants as systems developers if they had taken a systems course includ-
ing but not limited to Operating Systems, Distributed Systems, or Computer Networking.
We also considered individuals as system developers if they were involved in systems de-
velopment professionally, with open-source contributions included.

To be eligible for the study, potential participants needed access to an internet browser
and GitHub Copilot on VSCode at the time. They also must be a system developer as
described above, must have had at least a few months of programming experience, and
must have had some familiarity with the C++ programming language. Additionally, to be
eligible, participants could not be employed by Open AI or GitHub or involved with the
development of GitHub Copilot at the time.

To check if potential participants were eligible to participate, they were sent a Qualtrics
screening survey after they had read and signed the consent form declaring their intent to
participate. Details of the screening survey can be found in Appendix B.

5.2 Difficulties Recruiting Professionals

At the halfway point of our desired participant goal, we paused participant recruitment to
analyze the preliminary data we had obtained. On looking at the snapshot of participants’

15

solutions to problem A, we noticed that not a single participant had implemented any of the
three levels of optimizations we had considered when designing the problem. At the time,
most of the participants had been graduate students with sound systems backgrounds,
i.e., they were part of a research group that focused on systems. However, we decided
to diversify our participant pool by including professional systems developers. The initial
process of attempting to recruit professional systems developers started with contacting
alums of the affiliated university who were known to be working as systems developers.
Additionally, we looked for contributors to systems projects on GitHub that were primar-
ily implemented in C++. The advanced search feature was used to find projects that
contained the keywords ”systems”, ”operating systems,” or ”database”. We fine-grained
our search to projects with a dedicated social platform where interested parties connect,
i.e., Discord [4] and Internet Relay Chat (IRC) [8]. Projects such as SerenityOS[14] and
SkiftOS[15] had active Discord communities; however, there was a paucity of interested
potential participants in the study.

Attempts to garner interest in the study from said project contributors were met with
either backlash or suggestions to reach out to other Discord communities such as the osdev
(Operating Systems Development) [12] discord and the associated IRC. Upon interacting
with the osdev community on the Discord and IRC platforms, there was a general unwill-
ingness to participate in the study, with community members citing potential copyright
issues with Copilot and other negative perceptions of GitHub Copilot, GitHub, and Mi-
crosoft. Thankfully, recruitment efforts paid off as a few (less than we would have liked)
professionals were willing to participate in our study and thus met our desired participant
goal.

5.3 Participant Summary

We recruited a total of 32 participants for the study, where 8 were professionals in systems
programming or contributors to open-source systems projects. 23 were graduate students
with a systems research area at the time of participating and one was a sessional lecturer
but was previously a graduate student with a systems research focus. The distribution of
the participants’ experience is in Figure 5.1 and their familiarity with C++ is in Figure 5.2.
Participants were compensated $50 for their time and the study was approved by Research
Ethics Board (REB# 44162) at the affiliated university.

16

1

3

5

7

9

11

13

3.0 3.5 4.0 4.5 5.0
devExp

co
un

t

Figure 5.1: Distribution of Participants’ Developer Experience from Screening Survey in
Appendix B

17

1

3

5

7

9

11

13

15

17

2 3 4 5
familiarCPP

co
un

t

Figure 5.2: Distribution of Participants’ Familiarity with C++ from Screening Survey in
Appendix B

18

Chapter 6

Experiment Design

6.1 Order of Solving the Problems

Given our within-subjects experimental design where one participant solves one problem
with Copilot and then the other problem without it, we needed to ensure that any order
effects are counterbalanced across all 32 participants. To this end, we present a factorial
matrix where the prompts (A and B) are the column labels, and the modes (C and NC)
are the row labels which indicate using Copilot and not using Copilot respectively. (See
Table 6.1). We further expand this matrix to the product of prompts and modes. Four
possible orders of problem x mode are generated (See Table 6.2).

The orders in Table 6.2 enforced a requirement that our participant pool be a multiple
of four. Hence, we recruited 32 participants for the study.

axes A B
C C x A C x B
NC NC x A NC x B

Table 6.1: Factorial Matrix of mode x problem

6.2 Session Introduction and Tutorial

The session was done remotely on an online conferencing platform. It started with the
facilitator introducing the study, confirming the participant’s consent to participate, and

19

first second Participant ID
1 C x A NC x B P1
2 NC x B C x A P2
3 NC x A C x B P3
4 C x B NC x A P4

Table 6.2: Possible Orders of mode x problem

then confirming the participant’s number (the participant ID given to the participant once
eligibility and consent were given before the session). The facilitator then continued by
explaining the overview of participant responsibility. They then requested the participant’s
consent to record the audio and the screen during the session. Finally, the experimenter
gave a tutorial on what was expected, from opening the problem in VSCode to using
Copilot to accept, reject, and view all suggestions and zipping the edited code files. (See
Appendix C for more details on the tutorial)

6.3 Tasks

Participants were given two C++ programming problems to solve within 30 minutes each.
Each prompt was self-contained within a CPP file within a compressed folder, i.e., partic-
ipants were given a ZIP file that contained a CPP file which contained the prompt. The
ZIP file was sent to the participant via the online conferencing platform’s chat feature or
a Google Drive link if technical issues with the ”Upload File” feature ensued.

Upon opening the unzipped folder in VSCode, it was emphasized that the contents
of the CPP files should not be visible until the experimenter indicated otherwise. After
verbally confirming that the folder was open in VSCode and their browser was ready, the
participant was asked to share their entire screen.

The facilitator then confirmed that (1) all extensions were disabled except for the Copi-
lot extension.1(2) the participant could easily switch between their browser and VSCode.
At this point, it was further emphasized that the browser and other resources or references
could be used in addition to GitHub Copilot.

1keybinding related extensions like VSCode Vim[25] and ModalEdit[11] and SSH-related extensions like
Remote - SSH[23] and WSL[24] were the only exceptions allowed

20

6.4 Timing

Once the above requirements were met, the facilitator let the participant know they would
solve the problem within 30 minutes. Moreover, the participant will be alerted when 20
minutes were left, 10 minutes were left, 5 minutes were left, and when the timer ran out.
Following this, they were asked to open up the prompt (the contents of the CPP file should
be visible), activate Copilot (if Copilot was to be used for this problem), and start. At this
point, the experimenter started the timer.

6.5 After the Problem

Once the participant declared that they were done or if the timer ran out, the experimenter
stopped the timer and instructed them to compress the entire folder and send it via the chat
feature or other means (Google Drive link or email). The experimenter let the participant
know they were stopping the timer before actually stopping it, so participants were aware
of the finality of declaring that they were done with the programming task.

Upon sending the compressed folder containing the edited code files, participants were
asked to deactivate Copilot (if activated) and close their VSCode window, browser window,
and other references they had opened. The intent was to minimize any learning effects
upon encountering the second problem. The participant was then sent a link to a survey to
complete. Upon completing the survey, the participant could take a break before beginning
the second problem.

The instructions and procedure for the second problem were the same as the first
differing only in the survey at the end. The second survey contained demographic questions
in addition to the initial survey questions. Details of the first and second surveys are
outlined in Appendix D.

6.6 Brief Post-session Interview

Following the session, participants were asked for feedback about the study, GitHub Copilot
or anything they wanted to share.

21

Chapter 7

Evaluation

All participants’ code was run on a Linux machine running Ubuntu 20.04 with eight-
core Intel Xeon D-1548 at 2.0 GHz, 64GB ECC Memory (4 x 16 GB DDR4-2133 SO-
DIMMs), and 256 GB NVMe flash storage and compiled with gcc version 9.3.0 (Ubuntu
9.3.0-17ubuntu1 20.04) [7]. We ran each participant’s code 32 times to accommodate any
slight variations in running time between each run. Additionally, the filesystem cache was
cleared for each run of the 32 runs for each participant’s code.

In events where the participant’s code did not compile, the participant’s code was
not run and thus not analyzed. In events where participants’ code did compile and run
without error but failed the sanity checks, the running time was recorded but not used in
the analysis, i.e., we only considered correct solutions before looking at the performance.
Additionally, in an event where the participant’s code did compile but ran with an error,
the running time was not obtained and thus was not analyzed. A particular occurrence of
this ensued when a participant’s code produced a segmentation fault error even though it
compiled successfully.

7.1 RQ0 - Does using Copilot influence program cor-

rectness?

As a precursor to our main research questions, we note that out of 32 participants where 16
attempted to solve problem A with Copilot and another 16 without it, all 16 participants’
solutions passed the sanity checks when Copilot was used. However, 4 out of 16 code

22

snippets either did not compile (P15 and P7), ran and failed the sanity checks (P3), or ran
with errors (P23) when Copilot was not used for problem A.

In problem B, however, we note that out of 32 participants where 16 attempted to solve
problem B with Copilot and 16 without it, we see that 14 participants’ code passed the
sanity checks both when Copilot was used and when not used. The 2 ”invalid” solutions
where Copilot was used either did not compile (P15) or ran and failed the sanity checks
(P32). The 2 ”invalid” solutions where Copilot was not used, compiled but failed the sanity
checks (P30 and P6). See Table 7.1 for a summary of the invalid solutions where partID
is the anonymized participant ID, problem is the problem type A or B, mode indicates
whether Copilot was used (C) or not (NC), compiled indicates whether the code compiled
(TRUE) or not (FALSE) and passed indicates whether their code passed the sanity checks
(TRUE) or not (FALSE). NULL, if their code did not compile or had a runtime error.

partID problem mode compiled passed
1 P32 B C TRUE FALSE
2 P30 B NC TRUE FALSE
3 P23 A NC TRUE NULL
4 P15 A NC FALSE NULL
5 P15 B C FALSE NULL
6 P7 A NC FALSE NULL
7 P6 B NC TRUE FALSE
8 P3 A NC TRUE FALSE

Table 7.1: Table of Invalid Runs

7.2 RQ1 - Is there a running time difference in code

when using GitHub Copilot?

7.2.1 Approach

To answer this question, we compare the running time of all 32 runs of the participants’
source files for problems A and B. We use the non-parametric Wilcoxon rank sum test in
R [26] wilcox_test() to compare the running times.

23

7.2.2 Results

For valid solutions to problem A with Copilot (n1 = 16 x 32), the summary statistics are as
follows: mean - 34.86 s, median - 34.85 s, min - 33.82 s, max - 36.02 s. For valid solutions
to problem A without Copilot (n2 = 12 x 32), the summary statistics are as follows: mean
- 26.02 s, median - 34.47 s, min - 4.045 s, max - 35.84 s. On comparing the running times
of solutions to problem A for not using Copilot with using Copilot (p = 3.4e-34), we find
the results to be statistically significant. In this way, we observe that not using Copilot
was about 29% faster than using Copilot to solve problem A when comparing the mean
running time.

For further context into the running time, we also ran our L1, L2, and L3 solutions for
problem A for 32 runs alongside the participants’ source for a fairer evaluation. Our model
L1 solution had a mean of 30.59 s and is 13% faster and 16% slower than solutions with
Copilot assistance and without Copilot assistance, respectively. Our model L2 solution
averages 7.565 s and is 129% and 110% faster than participants’ solutions when using
Copilot and not Copilot, respectively. Our model L3 solution had a mean of 5.288 s and is
147% and 132% faster than participants’ solutions when using Copilot and not Copilot,
respectively.

Similarly, for valid solutions to problem B with Copilot (n1 = 14 x 32), the summary
statistics are as follows: mean - 1898 ms, median - 945.4 ms, min - 612.1 ms, max -
7356 ms. For valid solutions to problem B without Copilot (n2 = 14 x 32), the summary
statistics are as follows: mean - 1628 ms, median - 943.9 ms, min - 494.9 ms, max - 6761
ms. On comparing the running times of solutions to problem B when Copilot was used
versus when it was not used (p = 0.000058), we also find the results to be statistically
significant. Further, we also observe that not using Copilot for problem B was about 15%
faster than using Copilot.

We provide a similar context into the running time by running our L1 solutions for
problem B for 32 runs alongside the participants’ source for a fairer evaluation. Our
model L1 solution averages at 581.4 ms and consequently 106% and 95% faster than
participants’ solutions when using Copilot and not using Copilot respectively.

7.2.3 Discussion

Our results suggest that developers may benefit from Copilot-unaided code. We give
further context to these results by highlighting some participants’ Copilot-unaided solutions

24

whose mean running times were close to or better than the model solutions highlighted in
Chapter 4.1 and Chapter 4.2.

For problem A, while our model L3 solution in Listing 4.4 had a mean running time
of 5.288 s, P31’s noteworthy Copilot-unaided solution had a mean running time of 4.547
s beating our model solution by 15%. If we observe their solution in Listing 7.1, we note
that their solution used the L3 optimization for problem A discussed in Chapter 4.1.4.
Additionally, in lines 4 - 7 a map was used to associate each fileId with a vector of
fileCombos for the associated file. The pre-processing in this step allowed them to sort
each vector of fileCombos belonging to a file (line 9), open the file once (lines 11 - 12),
process all the fileCombos (lines 13 - 16) and then close the file once (line 17). While
the fundamental concept of the L3 optimization is present, some implementation details
are slightly different and such may have contributed to the observed speed-up. It is also
pertinent to mention that P31 had ideas to add another optimization that could have
potentially reduced the running time of their code further if there had been sufficient time
to debug their solution. From the comments from their code (removed for clarity) and
the video analysis in Chapter 7.3.3, it would seem the potential improvement involved an
application of memcpy [10] ”to avoid overlaps”.

For problem B, a noteworthy mention using the L1 solution with some model statement-
level optimizations explained in Chapter 7.3 was P17’s Copilot-unaided solution. Their
code had a mean running time of 636.4 ms which was 9% slower when compared to the
model L1 solution in Chapter 4.2.2 which had a mean running time of 581.4 ms. P17’s
code in Listing 7.2 is resemblant to the model L1 solution in Listing 4.6.

7.3 RQ2 - Do Copilot’s suggestions sway developers

to or from code with faster running time?

7.3.1 Approach

We wanted to understand how suggestions from Copilot swayed participants to produce
code with slower or faster running times. To this end, we took the last snapshot of the
participants’ submitted code and categorized each participant’s code for problems A and
B. We labelled participants’ code according to the optimizations discussed in Chapter 4.
The author of this work and a collaborator separately looked through the source code for
all participants and labelled each solution for problem A with either L0, L1, L2, or L3
to indicate the levels of optimizations that participants used. Similarly, for problem B,

25

1 bool compareByOffset(const FileCombo* a, const FileCombo* b) { return

(a->offset < b->offset); }↪→

2

3 void readFileCombos(std::vector<FileCombo> &fileCombos) {

4 std::map<int, std::vector<FileCombo*>> combosByFile;

5 for (FileCombo& combo : fileCombos) {

6 combosByFile[combo.fileId].push_back(&combo);

7 }

8 for (auto combos : combosByFile) {

9 std::sort(combos.second.begin(), combos.second.end(),

compareByOffset);↪→

10 int previousOffset = 0-RECORD_SIZE-1;

11 std::ifstream in;

12 in.open(FILE_NAMES[combos.first]);

13 for (FileCombo* combo : combos.second) {

14 in.seekg(combo->offset);

15 in.read(combo->buffer, RECORD_SIZE);

16 }

17 in.close();

18 }

19 }

Listing 7.1: P31’s L3 Solution to Problem A without Copilot

they were labelled as L0 or L1. Additionally, they also noted programming constructs
that participants used that could potentially increase or decrease the running time and
tried to group similar constructs. We term these ”programming constructs” categories as
statement-level optimizations. With the presence of these statement-level optimizations,
we create another category to encompass the levels of optimizations described in Chapter 4
and call them concept-level optimizations from this point.

7.3.2 Statement Level Optimizations & Open-coding

After the author and the collaborator finished labelling participants’ source files with the
concept-level optimizations and statement-level optimizations, they came together to re-
solve disagreements on the concept-level optimizations and to discuss emerging patterns

26

1 void schedule() {

2 const int NUM_PER_THREAD = SIZE / THREAD_COUNT;

3 auto threadFunc = [NUM_PER_THREAD](int index){

4 int start = NUM_PER_THREAD * index;

5 int end = min(NUM_PER_THREAD * (index+1), SIZE);

6 for (int j = start; j < end; j++) {

7 for (int k = 0; k < INIT_SRC_VAL; k++) {

8 src[j]--;

9 dst[j]++;

10 }

11 }

12 };

13 vector<thread> threads;

14 for (int i = 0; i < THREAD_COUNT; i++) {

15 threads.push_back(thread(threadFunc, i));

16 }

17 for (int i = 0; i < THREAD_COUNT; i++) {

18 threads[i].join();

19 }

20 }

Listing 7.2: P17’s L1 Solution to Problem B without Copilot

in the statement-level optimizations and remarks. Upon resolving the disagreements they
came up with a set of themes to encompass the statement-level optimizations. A summary
of the categories of statement-level optimizations encoded for problem A and problem B
are in Table 7.2 and Table 7.3 respectively.

Encoding Summary
L*F Used <fstream> [6] library for any of the concept-level optimizations L0, L1, L2, or L3
L*C Used <cstdio> [3] library for any of the concept-level optimizations L0, L1, L2, or L3
L*U Used <unistd.h> [22] and <fcntl.h> [5] libraries for any of the concept-level optimizations L0, L1, L2, or L3
NCLOSE Did not close file
EXCEPT Added file.exceptions(...) [18] to catch possible exceptions
ASSERT Asserted that no error flags were set after file operations using good() [19] method and other assertions to ensure program correctness
READ COMBO Helper function for processing a single fileCombo in fileCombos and by calling open(), seek(), read(), and close() in order
BEGIN Explicit seek from std::ios_base::beg [17] in call to seekg() [20]
OC WITHIN Opened and closed the files within the same loop as processing each fileCombo in fileCombos

BINARY Added a ”binary” flag to the open call using std::ios::binary [16] or similar
MAP Used a map [21] to associate a file with all the fileCombos associated with that file

Table 7.2: Table of Statement-level Optimizations & remarks for Problem A

27

Encoding Summary
NT No threads used
ONET Only one thread was used. Equivalent to not using threads
MISSING LOOP Failed to loop to decrement src[i] to zero and to increment dst[i] to INIT_SRC_VAL. This is an incorrect solution.
ITER NAIVE Made SIZE X INIT_SRC_VAL repeated calls to dst[i].get() or src[i].get() while decrementing src[i] and incrementing dst[i]

ITER LESS NAIVE Made SIZE repeated calls to src[i].get() or dst[i].get() while decrementing src[i] and incrementing dst[i]

ITER FAST No calls to src[i].get() or dst[i].get() while decrementing src[i] and incrementing dst[i] but iterated up to INIT_SRC_VAL

2LOOPS Decremented src[i] to 0 then incremented dst[i] to INIT_SRC_VAL instead of in lockstep
1LOOP Decremented src[i] and incremented dst[i] in lockstep
SPLIT src[i] is decremented using a separate thread and dst[i] is incremented using a separate thread
SPLIT2 Like SPLIT but src[i] decremented using 2 threads after being divided into 2 slices and dst[i] incremented using 2 threads after being divided into 2 slices
MANY SPLIT Spawned SIZE threads where each thread handled src[i] and dst[i]. There could be context switches since not enough threads on machine
LOCKS Used locks.
RACET Race conditions in thread spawning without locks leading to incorrect results
HARDT Hardcoded thread spawning instead of dynamic based on THREAD_COUNT

PTHREAD Used pthread_create and pthread_join [13] to create and join threads instead of std::thread methods
SPAWN SEP Spawned THREAD_COUNT threads to process src[i] then wait to finish then spawn another THREAD_COUNT threads for dst[i] then wait to finish
OPENMP Used parallel for in OpenMP.

Table 7.3: Table of Statement-level Optimizations & remarks for Problem B

7.3.3 Video Analysis

Using the themes generated in Table 7.2 and Table 7.3, the author went through all 32
screen-shared recordings of participants solving the problem when Copilot was used and
tracked the accepted suggestions or series of accepted suggestions that participants ac-
cepted that swayed them to the solutions that fit their themes.

7.3.4 Results

For problem A, where Copilot was used, 15 of the 16 correct solutions used the L0 naive
implementation with the <fstream> [6] family of library functions and thus were categorized
as L0F. Additionally, few remarks were made as most solutions only used the naive L0F
implementation in Chapter 4.1.1. Some solutions were remarked as NCLOSE because they
failed to close the files after reading from them. Some solutions also landed in the BINARY
category. From the video analysis, it would seem that Copilot largely gave L0F suggestions,
and participants simply accepted them without editing. Participants also seemed only to
want to confirm that the sanity checks passed before declaring they were done with the
problem.

In problem B, we notice a relatively balanced use of concept-level optimizations and
varied use of statement-level optimizations and remarks for correct solutions with Copilot.
From 14 of 16 source snippets with correct solutions, we note that 9 of those solutions used
the L1 concept-level optimizations of avoiding false sharing. Notably, 1 of the 9 (P23) was
classified as L1 because it avoided false sharing by using OpenMP to handle the multi-
threaded execution. 2 of the 14 solutions were encoded as L0 even though false sharing
was absent because they either did not use any threads (P7) or used only one thread (P3)

28

for the problem. 3 (P4, P11 and P19) of the 14 solutions were encoded as L0 because
false sharing was present in their solutions. Additionally, statement-level remarks such as
2LOOPS or 1LOOP were prevalent in the solutions.

Moreover, ITER NAIVE and ITER FAST were also common categories that emerged.
Rarer categories like OPENMP, ONET and NT also appeared in a few cases. From the
video analysis, Copilot initially suggested incomplete snippets leaning toward L0. Par-
ticipants would accept the snippets and try to get the rest of the solution to work by
debugging. In other cases, participants wrote comments about dividing an array into
THREAD_COUNT chunks, and Copilot would suggest snippets leaning towards L1.

7.3.5 Discussion

For problem A with Copilot, there was an interesting case where P22 was swayed via
Copilot’s suggestions to use L1U (Level 1 optimization but using the <unistd.h> [22] and
<fcntl.h> [5] I/O functions). From the video analysis, we observe that the participant
was largely responsible for coming up with concept-level L1 optimization in that they only
declared a vector of file descriptors before the suggestions to use L1U with NCLOSE came
along, which the participant accepted. However, P22 remarked that they ”had to do more
post-hoc checking” instead of ”figuring out how to solve the problems”; that it was ”a
different approach of how they would solve the problem”. We also note that while their
solution used the L1 concept-level optimization, the average running time for their solution
was 35.48 s which was 15% slower than our model L1 solution in Chapter 4.1.2. This
running time difference may be related to differences in the I/O implementation details in
the <unistd.h> and the <fcntl.h> libraries versus the <fstream> [6] library. See a snippet of
P22’s solution to problem A that was done with Copilot in Listing 7.3.

In solutions to problem B done with Copilot, we noticed that solution with the least
mean running time at 677.8 ms was from P12, which used the L1 concept-level optimiza-
tion, and landed in the 1LOOP and ITER LESS NAIVE themes for the statement-level
remarks. From the video analysis, the initial incomplete solutions accepted by the partici-
pant were leaning towards 1LOOP, NT and the incorrect solution of MISSING LOOP. P12
was primarily responsible for implementing the code in the ITER LESS NAIVE statement-
level remark because they ”didn’t think Copilot understood them[me] well when they[I] told
it to increment or decrement” and ”just gave up and wrote it themself[myself]”. However,
the L1 suggestion to split the thread into slices was accepted by the participant without
much editing. P12 also remarked that ”Copilot was useful”, and they ”usually just google”
what Copilot would have suggested. We also note that their solution was 16% slower than

29

1 void readFileCombos(std::vector<FileCombo> &fileCombos) {

2 std::vector<int> file_descriptors;

3 for(auto fname : FILE_NAMES) {

4 int fd = open(fname.c_str(), O_RDONLY);

5 file_descriptors.push_back(fd);

6 }

7 for(auto &combo : fileCombos) {

8 lseek(file_descriptors[combo.fileId], combo.offset, SEEK_SET);

9 read(file_descriptors[combo.fileId], combo.buffer, RECORD_SIZE);

10 }

11 }

Listing 7.3: P22’s L1U Solution to Problem A with Copilot

our model L1 solution in Listing 4.6 which could be because the model L1 solution used
ITER FAST and 1LOOP statement level optimizations. See a snippet of P12’s solutions
to problem B that was done with Copilot in Listing 7.4.

1 int getChunkSize(int id) {

2 return (SIZE / THREAD_COUNT) + 1;

3 }

4 int getChunkStart(int chunk) {

5 return chunk * getChunkSize(chunk);

6 }

7 int getChunkEnd(int chunk) {

8 return min (getChunkStart(chunk) + getChunkSize(chunk), SIZE);

9 }

10

11 void* workerFunc(void *arg) {

12 int id = (int64_t)arg;

13 int start = getChunkStart(id);

14 int end = getChunkEnd(id);

15

16 for (int i = start; i < end; i++) {

17 assert(src[i].get() == INIT_SRC_VAL);

18 assert(dst[i].get() == 0);

19 while (src[i].get() != 0) {

30

1 void moveValues(int start, int end);

2

3 void moveValues(int start, int end){

4 int temp;

5 for(int i = start; i < end; i++){

6 temp = src[i].get();

7 for (int j = 0; j< temp; j++){

8 dst[i].operator++();

9 src[i].operator--();

10 }

11 }

12 }

13

14 void schedule() {

15 thread threads[THREAD_COUNT];

16 int thread_size = SIZE/THREAD_COUNT;

17 int start = 0;

18 int end = thread_size;

19 for(int i = 0; i < THREAD_COUNT; i++){

20 threads[i] = thread(moveValues, start, end);

21 start = end;

22 end += thread_size;

23 }

24 for(int i = 0; i < THREAD_COUNT; i++){

25 threads[i].join();

26 }

27 }

Listing 7.4: P12’s L1 Solution to Problem B with Copilot

20 if (INIT_SRC_VAL > 0) {

21 src[i]--;

22 dst[i]++;

23 } else {

24 src[i]++;

25 dst[i]--;

26 }

31

27 }

28 assert(src[i].get() == 0);

29 assert(dst[i].get() == INIT_SRC_VAL);

30 }

31 return NULL;

32 }

33

34 void schedule() {

35 pthread_t threads[THREAD_COUNT];

36 int createdThreads = 0;

37 for(int i = 0; i < THREAD_COUNT; i++) {

38 int err = pthread_create(&threads[i], NULL, workerFunc,

(void*)(int64_t) i);↪→

39 if (err != 0) {

40 // ... COMMENTED OUT SO NOT AFFECT CSV GENERATION

41 break;

42 }

43 // ... COMMENTED OUT SO NOT AFFECT CSV GENERATION

44 createdThreads++;

45 }

46 for(int i = 0; i < createdThreads; i++) {

47 int err = pthread_join(threads[i], NULL);

48 if (err != 0) {

49 // ... COMMENTED OUT SO NOT AFFECT CSV GENERATION

50 }

51 }

52 }

Listing 7.5: P24’s L1 Solution to Problem B with Copilot

Some interesting categories for statement level optimizations in problem B in Table 7.3
are worth taking a closer look at, notably, 2LOOPS, 1LOOP and ITER NAIVE and
ITER FAST. Our model L1 solution in Listing 4.6 uses 1LOOP, ITER FAST and also
avoids false sharing and averages at a mean of 581.4 ms. The closest Copilot-aided solu-
tion to the model solution in terms of running time was P12’s in Listing 7.4 with a mean
running time of 677.8 ms. At a close second was P24 (See Listing 7.3.5) with a mean run-
ning time of 784.0 ms, which avoided false sharing and used 1LOOP and ITER NAIVE.

32

1 void do_work(int begin, int end) {

2 for (int i = begin; i < end; i++) {

3 while (src[i].get() > 0) {

4 src[i]--;

5 }

6 while (dst[i].get() < INIT_SRC_VAL) {

7 dst[i]++;

8 }

9 }

10 }

11

12 void schedule() {

13 std::thread threads[THREAD_COUNT];

14 auto amount = SIZE / THREAD_COUNT;

15 for (int i = 0; i < THREAD_COUNT; i++) {

16 threads[i] = std::thread(do_work, i * amount, (i + 1) * amount);

17 }

18 for (int i = 0; i < THREAD_COUNT; i++) {

19 threads[i].join();

20 }

21 }

Listing 7.6: P27’s L1 Solution to Problem B with Copilot

This difference in running time between the model solution in Listing 4.6 and P24’s sug-
gests that using ITER FAST is better than using ITER NAIVE to update the source and
destination buffers when false sharing is avoided. If we also look at P27’s Copilot-aided
solution to problem B (See Listing 7.6), we notice that while it avoids false-sharing, it uses
2LOOPS and ITER NAIVE which earns it a mean running time of 925.1 ms. Comparing
P24’s with P27’s solution suggests that using 2LOOPS instead of 1LOOP to update the
source and destination buffers when false sharing is avoided could result in slower running
time. On the other hand, if we look at solutions where false sharing was used, we note that
both P11’s (See Listing 7.7) and P19’s (See Listing 7.8) Copilot-aided solutions had false
sharing present. However, their solutions used 2LOOPS with ITER NAIVE with a mean
running time of 1434 ms and 1LOOP with ITER NAIVE with a mean running time of
6202 ms, respectively. This difference in running time may suggest that using 1LOOP
instead of 2LOOPS could result in slower running time when false sharing is present, which

33

is different from when false sharing is absent, as with P24’s and P27’s solutions.

1 void schedule() {

2 thread threads[THREAD_COUNT];

3 for (int i = 0; i < THREAD_COUNT; i++) {

4 auto lambda = [i]() {

5 for (int j = i; j < SIZE; j += THREAD_COUNT) {

6 while(src[j].get()!=0) {

7 src[j]--;

8 }

9 while (dst[j].get() != INIT_SRC_VAL) {

10 dst[j]++;

11 }

12 }

13 };

14 threads[i] = thread(lambda);

15 }

16 for (int i = 0; i < THREAD_COUNT; i++) {

17 threads[i].join();

18 }

19 };

Listing 7.7: P11’s L0 Solution to Problem B with Copilot

34

1 void schedule() {

2 thread threads[THREAD_COUNT];

3 for (int i = 0; i < THREAD_COUNT; i++) {

4 threads[i] = thread([&](int i) {

5 for (int j = i; j < SIZE; j += 4) {

6 while (src[j].get() > 0) {

7 src[j]--;

8 dst[j]++;

9 }

10 }

11 }, i);

12 }

13 for (int i = 0; i < THREAD_COUNT; i++) {

14 threads[i].join();

15 }

16 }

Listing 7.8: P19’s L0 Solution to Problem B with Copilot

35

Data from participants’ solving
runtime Average of the running time of the 32 runs for each participant’s code obtained in RQ1 positive floating-point
mode Using Copilot (1) or not using Copilot (0) 1 or 0
time How long participants took to solve the problem obtained from see 6.4 and 6.5 minutes

Data from the screening surveys
devExp How much programming experience do you have? 5-Point Likert-scale
familiarCPP How familiar are you with the C++ programming language? 5-Point Likert-scale

Data from the first and second post-programming surveys
understandProblem How well did you understand the programming problem? 6-Point Likert-scale
confidentSolution How confident are you in your solution to the programming problem? 6-Point Likert-scale
timeDebugging How much time did you spend debugging your program (in minutes)? number between 0 and 30
timeBrowser How much time did you spend on your browser while solving the problem (in minutes)? number between 0 and 30

Data from demographics questions included from the second post-programming survey
familiarCopilot How familiar are you with Github Copilot? 6-Point Likert-scale
familiarVSCode How familiar are you with Visual Studio Code (VSCode)? 6-Point Likert-scale

Table 7.4: Table of Input Data to Correlation Matrix

runtime mode time understandProblem confidentSolution timeDebugging timeBrowser devExp familiarCPP familiarCopilot familiarVSCode
runtime 1.00 0.46 -0.22 0.03 0.24 -0.15 -0.40 -0.39 -0.12 -0.01 0.21
mode 0.46 1.00 -0.58 -0.27 -0.22 -0.29 -0.72 -0.33 -0.48 0.04 0.01
time -0.22 -0.58 1.00 -0.28 -0.26 0.67 0.75 0.17 0.33 -0.41 -0.33
understandProblem 0.03 -0.27 -0.28 1.00 0.59 -0.36 -0.06 -0.29 0.18 0.45 0.40
confidentSolution 0.24 -0.22 -0.26 0.59 1.00 -0.21 -0.09 -0.20 0.16 0.20 0.61
timeDebugging -0.15 -0.29 0.67 -0.36 -0.21 1.00 0.52 0.18 0.19 -0.48 -0.28
timeBrowser -0.40 -0.72 0.75 -0.06 -0.09 0.52 1.00 0.30 0.28 -0.09 -0.13
devExp -0.39 -0.33 0.17 -0.29 -0.20 0.18 0.30 1.00 0.29 -0.23 -0.40
familiarCPP -0.12 -0.48 0.33 0.18 0.16 0.19 0.28 0.29 1.00 0.08 -0.12
familiarCopilot -0.01 0.04 -0.41 0.45 0.20 -0.48 -0.09 -0.23 0.08 1.00 0.13
familiarVSCode 0.21 0.01 -0.33 0.40 0.61 -0.28 -0.13 -0.40 -0.12 0.13 1.00

Table 7.5: Correlation matrix for problem A

7.4 RQ3 - Do characteristics of Copilot users influ-

ence the running time when it is used?

7.4.1 Approach

To give further context to RQ1, we wanted to see if certain characteristics of the partici-
pants influenced the running time with Copilot. To this end, we used data from the screen-
ing survey in Appendix B that determined participant eligibility, the post-programming
survey for the first and second problem, demographics questions that were included as part
of the second programming survey (see Appendix D), the running time data we obtained
in Chapter 7.2, and the time participants spent on each problem obtained by the experi-
menter (see 6.4 and 6.5) and generated a Spearman correlation matrix to observe possible
relationships. A summary of the data used in the correlation matrix is in Table 7.4. The
data we used for this research question was only for valid solutions, i.e., solutions where
the running time was obtained (See Chapter 7).

36

runtime mode time understandProblem confidentSolution timeDebugging timeBrowser devExp familiarCPP familiarCopilot familiarVSCode
runtime 1.00 0.09 -0.21 -0.06 0.19 -0.04 -0.20 -0.30 -0.10 0.32 0.19
mode 0.09 1.00 -0.09 0.22 0.27 -0.34 -0.28 0.23 0.31 -0.04 0.05
time -0.21 -0.09 1.00 -0.29 -0.21 0.62 0.67 -0.13 -0.08 -0.13 -0.19
understandProblem -0.06 0.22 -0.29 1.00 0.42 -0.34 0.10 -0.06 -0.16 0.09 0.20
confidentSolution 0.19 0.27 -0.21 0.42 1.00 -0.26 -0.16 -0.02 -0.22 0.05 0.49
timeDebugging -0.04 -0.34 0.62 -0.34 -0.26 1.00 0.49 -0.11 -0.13 -0.05 -0.10
timeBrowser -0.20 -0.28 0.67 0.10 -0.16 0.49 1.00 -0.04 -0.26 -0.02 -0.21
devExp -0.30 0.23 -0.13 -0.06 -0.02 -0.11 -0.04 1.00 0.29 -0.08 -0.31
familiarCPP -0.10 0.31 -0.08 -0.16 -0.22 -0.13 -0.26 0.29 1.00 0.18 -0.06
familiarCopilot 0.32 -0.04 -0.13 0.09 0.05 -0.05 -0.02 -0.08 0.18 1.00 0.11
familiarVSCode 0.19 0.05 -0.19 0.20 0.49 -0.10 -0.21 -0.31 -0.06 0.11 1.00

Table 7.6: Correlation matrix for problem B

7.4.2 Results

In Table 7.5, we present a Spearman correlation matrix for problem A showing the
coefficients. We observe a positive correlation between mode and running time of 0.46
for problem A. We also notice a negative correlation between developer experience and
running time with a coefficient of -0.39. Also, we find that using Copilot is negatively
correlated with the time spent on the browser while solving the problem with -0.72 and
time spent on the problem overall with -0.58. We also see that time spent on the browser
was negatively correlated with the running time at -0.40.

Similarly, for problem B, we present a correlation matrix with the coefficients in
Table 7.6. Like problem A, we also observe a positive correlation between using Copilot
and running time with a coefficient of 0.09. However, unlike problem A, this correlation
is weaker. Developer experience is also negatively correlated with running time with a
coefficient of -0.30. Also, like problem A, we find that mode is negatively correlated with
time spent on the browser with a coefficient of -0.28, however, unlike problem A it has a
weaker negative correlation with overall time spent on problem B with -0.09. We do see
still see that the time spent on the browser was negatively correlated with running time
at -0.20.

7.4.3 Discussion

While we notice some positive correlation between using Copilot and running time code
for A, our results suggest that problem B may have a weaker correlation. This observation
might suggest that using Copilot may have had less of an effect on running time for
problem B than it did for problem A. To explain this, we look at the running times like we
did in Chapter 7.2; however, in this case, we only consider the averages of all 32 iterations
per participant, i.e., P22’s snippet would be run 32 times, but we collect the average
running time of the all 32 iterations as a single data point.

37

For problem A with Copilot, the ”mean of means” (n1 = 16) running time for
valid solutions was 34.86 s and without Copilot (n2 = 14) was 26.02 s (note that this
is the same as what was reported in Chapter 7.2). When we compared the running time
of Copilot (n1 = 16) versus not using Copilot (n2 = 14) via the same test in Chapter 7.2,
we find the results still to be statistically significant (p = 0.0172).

For problem B with Copilot, the ”mean of means” (n1 = 14) running time for
valid solutions was 1898 ms and without Copilot (n2 = 14) was 1628 ms (also reported
in Chapter 7.2). However, comparing running time for Copilot (n1 = 14) versus without
Copilot (n2 = 14) was not statistically significant (p = 0.667). This could explain why
there was such a strong positive correlation between mode and running time for problem
A in Table 7.5 but a weak positive correlation for problem B in Table 7.6. This might also
be due to the nature of the solutions to problem B involving a helper function and problem
A not really needed any helper function unless a sort was involved. A more experienced
developer or someone with more expertise with C++ may not need helper functions
and simply use C++ lambdas [9] both for problem A (if using L2 or L3 concept-level
optimization) and problem B.

4.92857142857143

5.17857142857143

2

4

6

A B
problem

un
de

rs
ta

nd
P

ro
bl

em

Comparison of Problem Comprehension

Figure 7.1: Plot of Problem Comprehension for Problem A vs B. ”x” is the mean of the
6-Point Likert-Scale in Table 7.4 and Appendix D

We can also explain this by observing that using Copilot is negatively correlated with

38

developer experience and familiarity with C++ for problem A with coefficients of -0.33 and
-0.48. However, it is positively correlated for problem B with coefficients of 0.23 and 0.31,
respectively. This may suggest that developer experience and familiarity with C++ may
contribute to reducing running time when developers do not use Copilot. The perceived
difficulty of either problem may also explain this difference in problem A and problem
B if we observe the correlation data of using Copilot with how well either problem was
understood. In such a case, we notice a positive correlation with problem B at 0.22 and a
negative correlation at -0.27 with problem A. It may seem like Copilot may lull people into
a false sense of security depending on the nature of the problem being solved because the
running time had weak correlations with how well either problem was understood (0.03 for
problem A and -0.06 for problem B). However, if we compare the problem comprehension
regardless of Copilot usage, we observe a slightly different story (See Figure 7.1). We do not
find a statistically significant difference (p = 0.375) in problem comprehension of problem
A (n1 = 28) vs B (n2 = 28) when using the same non-parametric test in Section 7.2.

39

Chapter 8

Limitations and Takeaways

8.1 Limitations

We acknowledge the limitations of the representativeness of the programming problems
that participants solved. While system developers may generally be aware of file system
operations and multi-threading programming concepts, there could be more programming
concepts that are not represented in our study that developers could have been more
aware of. However, we argue that the domains of our problems are well represented in
many undergraduate level Operating Systems courses.

Because we were looking at the running time of participants’ code, one possible
limitation could have been that participants did not feel like they had enough time to
optimize their solution. However, on average all 32 participants spent approximately 17
minutes of the 30 minutes allotted on problem A and 20 minutes on problem B. The
takeaway from this is that participants may have been satisfied with their solution at
least 10 minutes before the time was up. Although it may seem that if participants were
explicitly told to optimize their code, the results of our study would have been slightly
different; however, we argue differently in that the crux of our research question is NOT
how well Copilot can generate highly performant code compared to a human developer
but if they are better off without it. The former research question would have required a
participant pool of system developers who were performance experts and the experiment
design and analysis would have to be different.

Additionally, we acknowledge that there could have been some participant selection bias

40

because in our recruitment stage we only selected participants that wanted to participate
in the study. It could be that our results would have been slightly different if the devel-
opers that were unwilling to participate actually did the study. A workaround to recruit
developers who would not have wanted to do the study because of negative perceptions
about GitHub Copilot would be to omit the details about using Copilot until the session
actually began. However, there are significant ethical concerns with this type of deception
in controlled human studies so this workaround would likely not be implemented in the
experiment design.

8.2 Takeaways

This work evaluated the performance of code generated by the self-proclaimed AI pro-
gramming assistant GitHub Copilot by conducting a user study on systems programmers.
While our study suggests that there may be some value in using Copilot to generate correct
code, it also suggests that developers are better off without it when it comes to reducing
running time. Even though we recommend that more experienced systems developers are
better off without Copilot in their day-to-day tasks, we acknowledge that Copilot and oth-
ers like it are a step in the right direction for programmers. With GitHub Copilot being
one of the first production-ready programming assistants that are gaining ubiquity in mod-
ern software development, more research needs to be done on not only acknowledging its
limitations but also its strengths. As our study is one of the first to evaluate Copilot from
a performance perspective in systems programming, we hope future work can build off our
experiment design to more granularly analyze Copilot’s suggestions when developers use
it.

41

References

[1] About github copilot. https://docs.github.com/en/copilot/

overview-of-github-copilot/about-github-copilot. Accessed: 2022-11-08.

[2] Common systems programming optimizations & tricks. https://paulcavallaro.

com/blog/common-systems-programming-optimizations-tricks/. Accessed:
2022-10-04.

[3] cstdio - c library to perform input/output operations. https://cplusplus.com/

reference/cstdio/. Accessed: 2022-11-14.

[4] Discord. https://discord.com/. Accessed: 2022-10-02.

[5] fcntl.h - file control options. https://pubs.opengroup.org/onlinepubs/7908799/

xsh/fcntl.h.html. Accessed: 2022-11-14.

[6] fstream - input/output file stream class. https://cplusplus.com/reference/

fstream/fstream/. Accessed: 2022-11-14.

[7] gcc-9 9.3.0-17ubuntu1 20.04 source package in ubuntu. https://launchpad.net/

ubuntu/+source/gcc-9/9.3.0-17ubuntu1~20.04. Accessed: 2022-11-12.

[8] Internet relay chat (irc). https://www.irchelp.org/. Accessed: 2022-10-02.

[9] Lambda expressions. https://en.cppreference.com/w/cpp/language/lambda. Ac-
cessed: 2022-11-17.

[10] memcpy - copy block of memory. https://cplusplus.com/reference/cstring/

memcpy/. Accessed: 2022-10-27.

[11] Modaledit - modal editing in vs code. https://marketplace.visualstudio.com/

items?itemName=johtela.vscode-modaledit. Accessed: 2022-10-01.

42

https://docs.github.com/en/copilot/overview-of-github-copilot/about-github-copilot
https://docs.github.com/en/copilot/overview-of-github-copilot/about-github-copilot
https://paulcavallaro.com/blog/common-systems-programming-optimizations-tricks/
https://paulcavallaro.com/blog/common-systems-programming-optimizations-tricks/
https://cplusplus.com/reference/cstdio/
https://cplusplus.com/reference/cstdio/
https://discord.com/
https://pubs.opengroup.org/onlinepubs/7908799/xsh/fcntl.h.html
https://pubs.opengroup.org/onlinepubs/7908799/xsh/fcntl.h.html
https://cplusplus.com/reference/fstream/fstream/
https://cplusplus.com/reference/fstream/fstream/
https://launchpad.net/ubuntu/+source/gcc-9/9.3.0-17ubuntu1~20.04
https://launchpad.net/ubuntu/+source/gcc-9/9.3.0-17ubuntu1~20.04
https://www.irchelp.org/
https://en.cppreference.com/w/cpp/language/lambda
https://cplusplus.com/reference/cstring/memcpy/
https://cplusplus.com/reference/cstring/memcpy/
https://marketplace.visualstudio.com/items?itemName=johtela.vscode-modaledit
https://marketplace.visualstudio.com/items?itemName=johtela.vscode-modaledit

[12] Operating systems development. https://wiki.osdev.org/Expanded_Main_Page.
Accessed: 2022-10-03.

[13] pthreads(7) — linux manual page. https://man7.org/linux/man-pages/man7/

pthreads.7.html. Accessed: 2022-11-14.

[14] Serenity os. https://serenityos.org/. Accessed: 2022-10-03.

[15] Skift os. https://skiftos.org/. Accessed: 2022-10-03.

[16] std::ios base::openmode. https://en.cppreference.com/w/cpp/io/ios_base/

openmode. Accessed: 2022-11-14.

[17] std::ios base::seekdir. https://en.cppreference.com/w/cpp/io/ios_base/

seekdir. Accessed: 2022-11-14.

[18] std::ios::exceptions. https://cplusplus.com/reference/ios/ios/exceptions/.
Accessed: 2022-11-14.

[19] std::ios::good. https://cplusplus.com/reference/ios/ios/good/. Accessed:
2022-11-14.

[20] std::istream::seekg. https://cplusplus.com/reference/istream/istream/

seekg/. Accessed: 2022-11-12.

[21] std::map. https://cplusplus.com/reference/map/map/. Accessed: 2022-11-14.

[22] unistd.h - standard symbolic constants and types. https://pubs.opengroup.org/

onlinepubs/7908799/xsh/unistd.h.html. Accessed: 2022-11-14.

[23] Visual studio code remote - ssh. https://marketplace.visualstudio.com/items?
itemName=ms-vscode-remote.remote-ssh. Accessed: 2022-10-02.

[24] Visual studio code wsl. https://marketplace.visualstudio.com/items?

itemName=ms-vscode-remote.remote-wsl. Accessed: 2022-10-02.

[25] Vscodevim - vim emulation for visual studio code. https://marketplace.

visualstudio.com/items?itemName=vscodevim.vim. Accessed: 2022-10-01.

[26] Wilcoxon rank sum and signed rank tests. https://stat.ethz.ch/R-manual/

R-devel/library/stats/html/wilcox.test.html. Accessed: 2022-10-16.

43

https://wiki.osdev.org/Expanded_Main_Page
https://man7.org/linux/man-pages/man7/pthreads.7.html
https://man7.org/linux/man-pages/man7/pthreads.7.html
https://serenityos.org/
https://skiftos.org/
https://en.cppreference.com/w/cpp/io/ios_base/openmode
https://en.cppreference.com/w/cpp/io/ios_base/openmode
https://en.cppreference.com/w/cpp/io/ios_base/seekdir
https://en.cppreference.com/w/cpp/io/ios_base/seekdir
https://cplusplus.com/reference/ios/ios/exceptions/
https://cplusplus.com/reference/ios/ios/good/
https://cplusplus.com/reference/istream/istream/seekg/
https://cplusplus.com/reference/istream/istream/seekg/
https://cplusplus.com/reference/map/map/
https://pubs.opengroup.org/onlinepubs/7908799/xsh/unistd.h.html
https://pubs.opengroup.org/onlinepubs/7908799/xsh/unistd.h.html
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-ssh
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-ssh
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-wsl
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-wsl
https://marketplace.visualstudio.com/items?itemName=vscodevim.vim
https://marketplace.visualstudio.com/items?itemName=vscodevim.vim
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/wilcox.test.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/wilcox.test.html

[27] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. Language models are few-shot learners, 2020.

[28] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea
Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Fe-
lipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth
Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Niko-
las Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saun-
ders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra,
Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie
Mayer, Peter Welinder, Bob McGrew, Dario Amodei, SamMcCandlish, Ilya Sutskever,
and Wojciech Zaremba. Evaluating large language models trained on code, 2021.

[29] Andrew W. Leung, Shankar Pasupathy, Garth Goodson, and Ethan L. Miller. Mea-
surement and analysis of large-scale network file system workloads. In USENIX 2008
Annual Technical Conference, ATC’08, page 213–226, USA, 2008. USENIX Associa-
tion.

[30] Sheheeda Manakkadu and Sourav Dutta. Bandwidth based performance optimization
of multi-threaded applications. In 2014 Sixth International Symposium on Parallel
Architectures, Algorithms and Programming, pages 118–122, 2014.

[31] Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and
Ramesh Karri. An empirical cybersecurity evaluation of github copilot’s code con-
tributions. CoRR, abs/2108.09293, 2021.

[32] Gustavo Sandoval, Hammond Pearce, Teo Nys, Ramesh Karri, Brendan Dolan-Gavitt,
and Siddharth Garg. Security implications of large language model code assistants:
A user study, 2022.

44

[33] Yongseok Son, Heon Young Yeom, and Hyuck Han. Optimizing i/o operations in file
systems for fast storage devices. IEEE Transactions on Computers, 66(6):1071–1084,
2017.

[34] Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. Expectation vs. expe-
rience: Evaluating the usability of code generation tools powered by large language
models. In Extended Abstracts of the 2022 CHI Conference on Human Factors in Com-
puting Systems, CHI EA ’22, New York, NY, USA, 2022. Association for Computing
Machinery.

[35] Frank F. Xu, Bogdan Vasilescu, and Graham Neubig. In-ide code generation from
natural language: Promise and challenges. ACM Trans. Softw. Eng. Methodol., 31(2),
mar 2022.

45

APPENDICES

46

Appendix A

Full Description of the Problems
Given to Participants

A.1 Problem A

1 /**

2 * PLEASE READ ENTIRE FILE CAREFULLY BEFORE YOU BEGIN.

3 * Your goal in this exercise is to read

4 * many records from large text files and

5 * write them to a buffer. A record

6 * is a series of bytes in a large text file.

7 *

8 */

9

10 #include <algorithm>

11 #include <fstream>

12 #include <iostream>

13 #include <random>

14 #include <string>

15 #include <vector>

16

17 using namespace std;

18

19 /** The size of each record in bytes*/

20 #define RECORD_SIZE 5000

47

21

22 /** The number of records to read*/

23 #define NUM_RECORDS 500000

24

25 /** Global vector of strings which are the file names of some large text

files↪→

26 * in your working directory. You may assume that each file is at least

1GB (1e9↪→

27 * bytes) in size and contains random text.

28 * Because it is impractical to send several 1GB files, we have provided

10MB↪→

29 * (1e7 bytes) files instead for easier debugging

30 * DO NOT EDIT!

31 */

32 const std::vector<std::string> FILE_NAMES = {

33 "large_file_1.txt", "large_file_2.txt", "large_file_3.txt"};

34

35 /** The size of the file in bytes. Ideally this should be

36 * 1e9 bytes (1GB) but it is impractical to send out

37 * such a large file.

38 * DO NOT EDIT!

39 */

40 #define FILE_SIZE 1e7

41

42 /** A struct representing a file combination

43 * DO NOT EDIT!

44 */

45 struct FileCombo {

46 int fileId; /** A valid index in `FILE_NAMES` */

47 int offset; /** A valid seek position for a file at

`FILE_NAMES[fileId]`*/↪→

48 char buffer[RECORD_SIZE + 1]; /** The output buffer */

49 };

50

51 std::vector<FileCombo> createCombos();

52 void sanityCheck(std::vector<FileCombo> &combos);

53

54 void readFileCombos(std::vector<FileCombo> &fileCombos);

48

55

56 /**

57 * Implement the `readFileCombos` function that reads all the records from

the↪→

58 * vector of file combinations `fileCombos` and writes each record to the

59 * `buffer` member of the `FileCombo` struct. Each record is `RECORD_SIZE`

60 * bytes. You may assume that reading `RECORD_SIZE` bytes from any file in

61 * `FILE_NAMES` starting at any seek position, `offset` in `fileCombos`

will↪→

62 * never throw an error.

63 *

64 */

65

66 /**

67 * Example

68 *

69 * * * * * * example_file.txt * * * * * *

70 * fourLettTextUsedHereAlsoHere

71 * * * * * * EOF * * * * * *

72 *

73 * * * * * * program.cpp * * * * *

74 * #define RECORD_SIZE 4

75 * #define NUM_RECORDS 4

76 * const std::vector<std::string> FILE_NAMES = {"example_file.txt"};

77 *

78 * void readFileCombos(std::vector<std::string> &fileCombos,

79 * std::vector<char[RECORD_SIZE + 1]> &buffer);

80 *

81 * int main() {

82 * std::vector<FileCombo> fileCombos = {

83 * {.fileId = 0, .offset = 4, .buffer = ""},

84 * {.fileId = 0, .offset = 20, .buffer = ""},

85 * {.fileId = 0, .offset = 8, .buffer = ""},

86 * {.fileId = 0, .offset = 24, .buffer = ""},

87 * };

88 * readFileCombos(&fileCombos);

89 * return 0;

90 * }

49

91 * * * * * * EOF * * * * * *

92 *

93 * fileCombos is now

94 * {

95 * {.fileId = 0, .offset = 4, .buffer = "Lett"},

96 * {.fileId = 0, .offset = 20, .buffer = "Also"},

97 * {.fileId = 0, .offset = 8, .buffer = "Text"},

98 * {.fileId = 0, .offset = 24, .buffer = "Here"},

99 * }

100 *

101 */

102

103 void readFileCombos(std::vector<FileCombo> &fileCombos) {

104 // YOUR CODE GOES HERE

105 }

106

107 int main() {

108 // Main function

109 std::vector<FileCombo> fileCombos = createCombos();

110

111 readFileCombos(fileCombos);

112

113 // Uncomment the below line to test for correctness

114 sanityCheck(fileCombos);

115 return 0;

116 }

117 /**

118 * Generates vector of `FileCombo` structs of size `NUM_RECORDS`

119 * where each `fileId` member is a random index from `FILE_NAMES`

120 * and each `offset` member is a random valid seek position for the file

at↪→

121 * `FILE_NAMES[fileId]`.

122 * DO NOT EDIT!

123 */

124 std::vector<FileCombo> createCombos() {

125 std::random_device rd;

126 std::mt19937 gen(rd());

127 std::uniform_int_distribution<int> fileIdDis(0, FILE_NAMES.size() - 1);

50

128 std::uniform_int_distribution<int> offsetDis(0,

129 FILE_SIZE - (2 *

RECORD_SIZE));↪→

130

131 std::vector<FileCombo> combos;

132 for (int i = 0; i < NUM_RECORDS; ++i) {

133 FileCombo fc = {.fileId = fileIdDis(gen), .offset = offsetDis(gen),

""};↪→

134 combos.push_back(fc);

135 }

136 return combos;

137 }

138

139 /**

140 * Checks that the `buffer` member of each `FileCombo` struct in `combos`

141 * is the correct record.

142 * DO NOT EDIT!

143 */

144 void sanityCheck(std::vector<FileCombo> &combos) {

145 printf("Running Sanity Checks...\n");

146 for (int i = 0; i < NUM_RECORDS; ++i) {

147 std::ifstream in;

148 in.open(FILE_NAMES[combos[i].fileId]);

149 in.seekg(combos[i].offset);

150 char temp[RECORD_SIZE + 1] = "";

151 in.read(temp, RECORD_SIZE);

152 in.close();

153 if (std::string(combos[i].buffer) != std::string(temp)) {

154 printf("combos[%d].fileId = %d\n", i, combos[i].fileId);

155 printf("combos[%d].offset = %d\n", i, combos[i].offset);

156 printf("combos[%d].buffer = %s\n", i, combos[i].buffer);

157 printf("instead of\ncombos[%d].buffer = %s\n", i, temp);

158 printf("Check Failed!\n");

159 return;

160 }

161 }

162 printf("All Checks passed!\n");

163 }

51

Listing A.1: Full CPP File for Problem A

A.2 Problem B

1 /**

2 * PLEASE READ ENTIRE FILE CAREFULLY BEFORE YOU BEGIN.

3 * Your goal in this exercise is to apply multithreaded programming to

4 * set all the values in a source array buffer to zero while setting all

the↪→

5 * values in a destination array buffer to a particular value. However,

you are↪→

6 * only allowed to increment or decrement the values in the respective

array↪→

7 * buffers. Assignment operations (move and copy) are not allowed on

either the↪→

8 * source array buffer or the destination array buffer.

9 *

10 */

11

12 #include <algorithm>

13 #include <iostream>

14 #include <thread>

15

16 using namespace std;

17

18 /**

19 * The intial value of every `val` member in

20 * `src` array for the problem statement

21 * 2 ^ 17 = 131072

22 */

23 const int INIT_SRC_VAL = (1 << 17);

24

25 /**

26 * The size of the arrays in the problem statement

27 * 2 ^ 11 = 2048

28 */

52

29 const int SIZE = (1 << 11);

30

31 /**

32 * Number of threads you are permitted to use

33 * for the problem statement

34 */

35 const int THREAD_COUNT = 4;

36

37 /**

38 * A struct containing an integer that can only

39 * be incremented or decremented.

40 * DO NOT EDIT!

41 */

42 struct Item {

43 private:

44 /** Private integer member*/

45 int val;

46

47 /** Private Copy and Move Cosntructors

48 * to prevent move and copy operations

49 */

50 Item(const Item&);

51 Item(Item&&);

52 Item& operator=(const Item&);

53 Item& operator=(Item&&);

54

55 public:

56 Item() { val = 0; }

57 Item(int i) { val = i; }

58 /** Returns the integer member `val`*/

59 int get() { return val; }

60

61 /** Increments the integer member `val`*/

62 void operator++() { ++val; }

63 void operator++(int) { val++; }

64

65 /** Decrements the integer member `val`*/

66 void operator--() { --val; }

53

67 void operator--(int) { val--; }

68 };

69

70 /**

71 * Global array of `Item` structs where each

72 * `val` member is initialized to `INIT_SRC_VAL`

73 */

74 Item src[SIZE];

75 void initSrc();

76

77 /**

78 * Global array of `Item` structs where each

79 * `val` member is initialized to 0

80 */

81 Item dst[SIZE];

82

83 void sanityCheck();

84

85 void schedule();

86 /**

87 * Using `THREAD_COUNT` threads, implement the function `schedule`

88 * which mutates the `val` member for each `Item` in `src` to 0 and the

89 * `val` member for each `Item` in `dst` to `INIT_SRC_VAL`. The `Item`

90 * struct only supports a `get()` method and increment and decrement

operations↪→

91 * and a few initialization constuctors. See the `Item` struct for more

details.↪→

92 *

93 * `src[0]++`, `++src[0]`, `src[0]--` or `--src[0]` are valid.

94 * `dst[i]++`, `++dst[i]` `dst[0]--` or `--dst[0]` are also valid.

95 * `Item p = Item(54)` is valid.

96 * `Item items[4] = {Item(1), Item(2), Item(3), Item(4)}` is valid.

97 * `items[4] = items[3]` is not valid.

98 * `items[4] = Item(32)` is not valid.

99 * `src[0] = 0` or `dst[0] = INIT_SRC_VAL` or `Item temp = src[0]` or

similar↪→

100 * are not valid.

101 *

54

102 */

103

104 /**

105 * Example

106 * 2 ^ 10 = 1024

107 * INIT_SRC_VAL = (1 << 10)

108 *

109 * 2 ^ 2 = 4

110 * SIZE = (1 << 2)

111 *

112 *

113 * Initial values for `src` and `dst`

114 * src = {

115 * {.val = 1024},

116 * {.val = 1024},

117 * {.val = 1024},

118 * {.val = 1024}

119 * }

120 *

121 * dst = {

122 * {.val = 0},

123 * {.val = 0},

124 * {.val = 0},

125 * {.val = 0}

126 * }

127 *

128 * Make the call to `schedule`

129 * schedule()

130 *

131 * Values for `src` and `dst` after `schedule` is called

132 * src = {

133 * {.val = 0},

134 * {.val = 0},

135 * {.val = 0},

136 * {.val = 0}

137 * }

138 *

139 * dst = {

55

140 * {.val = 1024},

141 * {.val = 1024},

142 * {.val = 1024},

143 * {.val = 1024}

144 * }

145 *

146 */

147

148 void schedule() {

149 // YOUR CODE GOES HERE

150 }

151

152 int main() {

153 // Main function

154 initSrc(); // DO NOT USE

155

156 schedule();

157

158 // Uncomment the line below to test for correctness

159 sanityCheck();

160 return 0;

161 }

162

163 /**

164 * Initializes the `val` member for each `Item` in `src`

165 * to `INIT_SRC_VAL`. Called in `main` once and never again.

166 * DO NOT EDIT or CALL!

167 */

168 void initSrc() {

169 for (int i = 0; i < SIZE; ++i) {

170 for (int j = 0; j < INIT_SRC_VAL; ++j) {

171 ++src[i];

172 }

173 }

174 }

175 /**

176 * Verifies that the `val` member for each `Item` in `src`

177 * is 0 and the `val` member for each `Item` in `dst`

56

178 * is `INIT_SRC_VAL`.

179 */

180 void sanityCheck() {

181 printf("Running Sanity Checks...\n");

182 bool isFail = false;

183 for (int i = 0; i < SIZE; ++i) {

184 if (src[i].get() != 0) {

185 printf("src[%d].get() = (%d) instead of (%d)\n", i, src[i].get(),

0);↪→

186 isFail = true;

187 }

188 if (dst[i].get() != INIT_SRC_VAL) {

189 printf("dst[%d].get() = (%d) instead of (%d)\n", i, dst[i].get(),

190 INIT_SRC_VAL);

191 isFail = true;

192 }

193

194 if (isFail) {

195 printf("Check Failed!\n");

196 return;

197 }

198 }

199

200 printf("All Checks Passed!\n");

201 }

Listing A.2: Full CPP File for Problem B

57

Appendix B

Screening Survey Given to
Participants to Determine Eligibility

How much programming experience do you have?
No experience 1
Less than 1 year 2
Between 1 year and 5 years (excluding) 3
Between 5 years and 10 years (excluding) 4
10 years or more 5
Do you have access to GitHub Copilot on VSCode?
No 1
No, but I have applied 2
Yes 3
Are you employed by Open AI or Github, or were you involved with the development of Github Copilot?
No 1
Yes, please explain: TEXT FIELD
Have you taken a systems course like Operating Systems, Distributed Systems, or Computer Networks?
No 1
Yes, please enter the course title: TEXT FIELD
How familiar are you with the C++ programming language?
Not familiar at all 1
Slightly familiar 2
Moderately familiar 3
Very familiar 4
Extremely familiar 5

Table B.1: Screening Survey

58

Appendix C

Tutorial

This chapter goes into the details of the tutorial that the experimenter gave the partici-
pants before they were given the first programming problem.

The facilitator started sharing their screen and got confirmation that the participant
could see the screen. They then demonstrated unzipping a ZIP file wherein a CPP
was compressed and opening the uncompressed folder in VSCode. Following that, they
checked that all VSCode extensions were disabled except for the Copilot extension for
VSCode. The experimenter then opened their browser and showed that they could
easily switch between their browser and VSCode. They also mentioned that partici-
pants are allowed to use their browser when solving either programming problem so
there was no ambiguity as to whether they were allowed to use their browser or not.
The experimenter activated Copilot and demonstrated using Copilot suggestions for
the prompt ”print hello world 8 times but on even times append an emoji”. The
experimenter demonstrated accepting a suggesting, rejecting a suggestion, toggling
between the next and previous suggestions, and then viewing all suggestions using the
”Open GitHub Copilot” menu option. See Figure 2.1 for the prompt and Copilot’s options.

They then demonstrated compiling the program with g++ hello.cpp -o hello -std=c++17

and running the program. The facilitator stressed that -std=c++17 must be used and that if
participants were on a Linux machine or were using Windows Subsystem for Linux (WSL),
they could add the -lpthread flag like so g++ hello.cpp -o hello -std=c++17 -lpthread. After
compiling and running the program, the experimenter demonstrated zipping up the entire
folder and sending the ZIP file via the online conferencing platform. The experimenter then
demonstrated deactivating Copilot, closing VSCode and closing the browser used for the
current problem. It was emphasized that this ”cleanup” must be done after each problem

59

is completed.

60

Appendix D

Programming Surveys Given to
Participants After Solving a Problem

D.1 First Programming Survey

61

Have you seen this programming problem before?
Prefer not to answer 1
No 2
Maybe 3
Yes 4
Have you solved this programming problem before?
Prefer not to answer 1
No 2
Maybe 3
Yes 4
How well did you understand the programming problem?
Prefer not to answer 1
Not well at all 2
Slightly well 3
Moderately well 4
Very well 5
Extremely well 6
How confident are you in your solution to the programming problem?
Prefer not to answer 1
Not confident at all 2
Slightly confident 3
Moderately confident 4
Very confident 5
Extremely confident 6
How much time did you spend debugging your program (in minutes)?
TEXT FIELD
How much time did you spend on your browser while solving the problem (in minutes)?
TEXT FIELD
What resources did you use to help you solve the problem (i.e. StackOverflow, GeeksForGeeks etc.)?
TEXT FIELD

Table D.1: First Programming Survey

D.2 Second Programming Survey

Have you solved this programming problem before?

Prefer not to answer 1
No 2
Maybe 3
Yes 4

62

Have you solved this programming problem before?

Prefer not to answer 1
No 2
Maybe 3
Yes 4

How well did you understand the programming problem?

Prefer not to answer 1
Not well at all 2
Slightly well 3
Moderately well 4
Very well 5
Extremely well 6

How confident are you in your solution to the programming problem?

Prefer not to answer 1
Not confident at all 2
Slightly confident 3
Moderately confident 4
Very confident 5
Extremely confident 6

How much time did you spend debugging your program (in minutes)?

TEXT FIELD

How much time did you spend on your browser while solving the problem (in minutes)?

TEXT FIELD

What resources did you use to help you solve the problem (i.e. StackOverflow, GeeksForGeeks etc.)?

TEXT FIELD

What is your highest level of education at the moment (degree awarded/ongoing)?

Prefer not to answer 1
Less than high school 2
High school graduate 3
Some college 4
2 year degree 5
4 year degree 6
Professional degree (Masters) 7
Doctorate 8
Other, please specify: TEXT FIELD

What is your current employment?

TEXT FIELD

63

How familiar are you with Github Copilot?

Prefer not to answer 1
Not familiar at all 2
Slightly familiar 3
Moderately familiar 4
Very familiar 5
Extremely familiar 6

How familiar are you with Visual Studio Code (VSCode)?

Prefer not to answer 1
Not familiar at all 2
Slightly familiar 3
Moderately familiar 4
Very familiar 5
Extremely familiar 6

Have you taken a security course like Computer Security & Privacy, Cryptography, or Network Security?

No 1
Yes, please enter the course title: TEXT FIELD

How familiar are you with the Python programming language?

Prefer not to answer 1
Not familiar at all 2
Slightly familiar 3
Moderately familiar 4
Very familiar 5
Extremely familiar 6

How familiar are you with the Java programming language?

Prefer not to answer 1
Not familiar at all 2
Slightly familiar 3
Moderately familiar 4
Very familiar 5
Extremely familiar 6

Table D.2: Second Programming Survey Plus Demographics

64

	Author's Declaration
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	Introduction
	Background and Related Work
	Programming Problems Solved by Participants
	Problem selection
	Problem A
	Problem B

	Model Solutions to the Problems
	Solution A
	Level 0
	Level 1
	Level 2
	Level 3

	Solution B
	Level 0
	Level 1

	Participants
	Participant Recruitment
	Difficulties Recruiting Professionals
	Participant Summary

	Experiment Design
	Order of Solving the Problems
	Session Introduction and Tutorial
	Tasks
	Timing
	After the Problem
	Brief Post-session Interview

	Evaluation
	RQ0 - Does using Copilot influence program correctness?
	RQ1 - Is there a running time difference in code when using GitHub Copilot?
	Approach
	Results
	Discussion

	RQ2 - Do Copilotâ•Žs suggestions sway developers to or from code with faster running time?
	Approach
	Statement Level Optimizations & Open-coding
	Video Analysis
	Results
	Discussion

	RQ3 - Do characteristics of Copilot users influence the running time when it is used?
	Approach
	Results
	Discussion

	Conclusion
	Limitations
	Takeaways

	References
	APPENDICES
	Full Description of the Problems Given to Participants
	Problem A
	Problem B

	Screening survey
	Tutorial
	Programming Surveys
	First Programming Survey
	Second Programming Survey

