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Abstract

A complex mathematical model that produces output values from input values
is now commonly called a computer model. This thesis considers the problem
of finding the global optimum of the response with few function evaluations. A
small number of function evaluations is desirable since the computer model is often
expensive (time consuming) to evaluate.

The function to be optimized is modeled as a stochastic process from initial
function evaluations. Points are sampled sequentially according to a criterion that
combines promising prediction values with prediction uncertainty. Some graphical
tools are given that allow early assessment about whether the modeling strategy will
work well. The approach is generalized by introducing a parameter that controls
how global versus local the search strategy is. Strategies to conduct the optimniza-
tion in stages and for optimization subject to constraints on additional response
variables are presented.

Special consideration is given to the stopping criterion of the global optimiza-
tion algorithm. The problem of achieving a tolerance on the global minimum can
be represented by determining whether the first order statistic of N dependent
variables is greater than a certain value. An algorithm is developed that quickly
determines bounds on the probability of this event.

A strategy to explore high-dimensional data informally through effect plots is
presented. The interpretation of the plots is guided by pointwise standard errors of
the effects which are developed. When used in the context of global optimization,
the graphical analysis sheds light on the number and location of local optima.

v
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Chapter 1

Introduction

This thesis is about global optimization of expensive-to-compute computer models.
The approach that we take is closely linked to computer experiments in that we
repeatedly use methodology developed for computer experiments for modeling the
unknown function to be optimized. The thesis is organized as follows:

Chapter 2 gives a review of the analysis of computer experiments and comments
briefly on the connection with Kriging, a stochastic method of spatial prediction.

As well as showing how to identify key features of computer models, Chapter 3
presents an illustrative example for modeling a computer experiment. Even though
Chapter 3 is not about optimization, some of its aspects (particularly visualization)
are inherently useful for the data-analytic approach to optimization that we adopt
later on. Along the way we introduce novel methodology for attaching standard
errors for the estimates of main effects and interactions. We also present a method
for finding a suitable nonlinear regression model when the functional relationship
between response and explanatory variables is unknown.

Chapter 4 presents a data-analytic approach for global optimization. Novel

aspects include the use of diagnostics before optimizing an expensive-to-compute-
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function, using methodology for the analysis of computer experiments in the context
of optimization, and the availability of a reliable stopping rule.

Chapter 5 takes this approach to global optimization a step further adding three
novel aspects: (i) a parameter that controls the balance between local and global
components of the optimization; (ii) methodology for optimization in stages rather
than one-point-at-a-time; and (iii) optimization subject to constraints on additional
response variables.

Chapter 6 gives an algorithm for the evaluation of the CDF of the minimum of
N dependent variables. The algorithm is particularly fast when it is sufficient to
specify whether certain bounds on the CDF are met. The algorithm incorporates
three ideas that make it fast and therein lies the novelty. While this is a topic in
its own right, we show how it can also be used as an alternative stopping rule for
the global optimization algorithm introduced in Chapter 4.

This thesis is computationally intensive. The examples shown throughout were
generated with the following software: ACED (Algorithms for the Construction of
Experimental Designs), software developed by William J. Welch, was used through-
out the thesis for all design aspects for computer experiments. GASP (GAussian
Stochastic Processes), also software by William J. Welch, was used in Chapter 3
for the analysis of computer experiments and for Figures 4.8 and 4.9. SPACE
(Stochastic Processes Analysis of Computer Experiments), software by Matthias
Schonlau, was used for the analysis and optimization throughout except for Chap-
ter 3 and Figures 4.8 and 4.9. Appendix A contains a brief overview of the major
components that a computer program for the design, analysis and optimization of

computer models must contain.



Chapter 2

Review

2.1 The Analysis of Computer Experiments

A complex mathematical model that, given a set of input values, produces a set
of output values is now commonly referred to as a computer model. The name
stems from the necessity to have computers do the extensive computations. as
almost always the model cannot be written in closed form and/or it requires an
iterative solution. Computer models are distinct from models of data from physical
experiments in that they are often not subject to random error. A computer (the
same computer architecture) fed with the same input will always produce the same
output. Due to the lack of random error, traditional modeling approaches are not
useful. For example, one of the principles of design of experiments, replication.
leads to redundant information in computer experiments.

This section gives a overview of the analysis of computer experiments. Relevant
references include Currin et al. (1991), Mitchell and Morris (1994), Morris, Mitchell.
and Ylvisaker (1993), Sacks, Schiller, and Welch (1989), Sacks et al. (1989). and
Welch et al. (1992).
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The Deterministic Model

The data from a computer experiment consist of n vectors of covariate values (or
inputs) denoted by x;, ... ,x, for d covariates and the corresponding response val-
ues (or outputs) y = (y1,...,yn)’- Then the response is modeled by a linear model

plus departures from the linear model:
Response = Linear model + Systematic Departure.

One convenient way of expressing the systematic departure function is to view it
as a sample path from a suitably chosen stochastic process. This point of view.
namely the resemblance of the systematic departure to a realization of a random
function, respects the deterministic nature of a computer code. since a realization
of a stochastic process is deterministic. but provides a stochastic framework for

assessing uncertainty. The model can be written formally as:

k
Y(x) = 3 Bifi(x) + Z(x), (2.1)
=1
where [fi(x), .-, f(x)] are k known regression functions.
(B1, P2, .. ,Bi) are the corresponding parameters, and Z(x) is a stochastic pro-

cess. As a notational convention we write vectors and matrices in bold letters. The

covariance between the Z’s at two inputs x = (zy,... ,z4), and X’ = (z}.... .z}) is

Cov(Z(x), Z(x')) = o2R(x, X'), (

o
3V
S—

where R(:,-) is a correlation function that can be tuned to the data and 7% is a

scale factor, also called the process variance.

We require the stochastic process to be stationary, which implies that E(Z(x)) =
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0, and that the covariance between the Z’s at points x and x’ depends only on
x — x’, that is on their relative location, not on x and x/, that is on the locations
themselves. For computational reasons it is convenient to choose a correlation

function that adopts the so called product correlation rule:

d
R(X, x') = H Rj(:l:j - 2:;)
j=1
While there are many choices, a sufficiently flexible and commonly used correlation

family is the following:

Rix,x) = [T exp(~8; |z - ). 23)
j=1
where §; > 0and 0 < p; < 2. The p;’s can be interpreted as smoothness parameters.
The response surface is smoother with respect to z; as p; increases. In fact. the
correlation function and hence the sample path Z is infinitely differentiable for
P = 2 in a mean square sense. The 8’s indicate how local the estimate is. If the
@’s are large, only data points in the immediate vicinity of a given point are highly
correlated with that point and are thus influential on the prediction of that point.
If the #’s are small, points further away are still highly correlated and still influence
the prediction of that point.
The deterministic nature of the problem is kept because R(x,x) = 1. For this
reason, the predictor is an interpolator.
We use the correlation family (2.3) throughout the thesis. With two parameters
for each dimension this family is very flexible yet it is not too costly for parameter

estimation (see also the discussion in Sacks, Welch, Mitchell, and Wynn, 1989).
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Measurement Error

In the presence of measurement error equation (2.1) can be easily modified to
k
Y(x) =D Bifi(x) + Z(x) + e(x), (2.4)
j=1

where Z is the systematic departure and € is the measurement error. In that case.
the variance must reflect this change, Var (Y(x)) = o2 + 4?2, and the covariance

becomes

Cov(Y(x),Y(x')) = o¢R(x,x) (2.5)
Cov(Y(x),Y(x)) = o (2.6)
Var(Y(x)) = o2+a2 (2.7)

where the covariances (2.5) and (2.6) strictly refer to two distinct observations
(which for (2.6) are replicates), the variance (2.7) refers to only one observation.
ol is the process variance as defined in (2.2), o2 is the error variance, and R is
the correlation function as defined in (2.3). Equivalently, the correlation in the

presence of measurement error is

Cor(Y(x),Y(x)) = SR(X,X') (2.8)
Cor(Y(x),Y(x)) = g—g- (2.9)

where the correlations in (2.8) and (2.9) strictly refer to two distinct observations
(which in (2.9) are replicates), and o2 = o2 + o2.

The fraction ¢?/a? constitutes an additional correlation parameter; its value
has to be optimized as well. Except for this redefinition the random error model is

treated just like the deterministic model.



CHAPTER 2. REVIEW 7

Best Linear Unbiased Predictor
We now introduce some more notation, before we derive the best linear predictor

of Y at an untried input x. Let

be the n x k expanded design matrix, let
r: = [R(x1,%),..., R(Xq. x)]*
be the vector of correlations between the Z’s at the design sites x;,... .x,. let
f(x) = [A(x), ..., fulx)]

be the vector of k known regression functions, let R be the n x n correlation matrix
with element ¢, 7 defined by R(x;,x;) in (2.3) and let the untried input be x. For
data y = (Y4, ... ,Y.)%, the model in {2.1) is written as

y=FB +z (2.10)

where F is the above defined expanded design matrix, 8 = (81,02,... .0k) the

corresponding parameters, and z = (Z(x1),...,2Z(xX,))* the stochastic process.
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For any linear predictor ciy of Y (x) the mean squared error of prediction is :

E(cty - Y(x))* = E[ciyy'ce + Y?(x) - 2ciyY(x)|
= E[cL(FB +2)(FB +2)'cy + (£ B + Z(2))*
—2¢4(FB +2)(£:8 + Z(z))|

= (cLFB —f.B8)* + cio’Rey + 02 — 2cto’r,

t 2 2 t 2
= c,o.Rex + 0, ~2cioir, . (2.11)

The last equation follows if we impose the unbiasedness constraint F* ¢, = .. This

constraint follows from equating
E(cyy) = c;FB

and

E(Y(x)) = £.8

for all 3.
Introducing k Lagrange multipliers A for the k equations Ftcy = f, and taking

the derivative with respect to c in (2.11} yields
a:ch - ofr,, —-FA=0

Together with the unbiasedness constraint we have a system of two sets of equations

in the two unknown vectors ¢y and A :

d’Rey —FA = o’r,;

Fte, = f.



CHAPTER 2. REVIEW 9

We rewrite this system in matrix form :

( 0 . ) ( —’\) ( . )
= . (2.12)
F a’R Cx olr,

The best linear unbiased predictor is then

9(x) = ey = (2, r2) : (2.13)
F R y

This can also be written as
#(x) =28 + r'(x)R~(y — FB), (2.14)

where 8 = (F*'R™'F)'F*R"y is the generalized least squares estimator of 8. It
turns out it is also the MLE, as will be derived later.
The MSE of the estimate can be derived by substituting (2.12) in (2.11):

MSE[(x)] = Elcty — Y(x)]?

= o[l +cLRey — 2cir,]

-1
0 F¢ f.

= o} [1-(f, rl) : (2.15)
F R r;

Another way of looking at this is to consider y and Y'(z} together. assnming

they are jointly normally distributed:

() ((2 ) (2 7))
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Then, we can understand Y'(z) as the conditional expectation of Y (z) = Y (z)|y.

More precisely,
Y(z) = Y(z)ly ~ N (p(z),0(z))

where

p(z) = f.8+r.R7(y —FB) (2.16)

a*(z) = o(1~riR7'r;). (2.17)

z

Equations (2.16) and (2.14) are equivalent. Equation (2.15) differs from (2.17).
because the estimation of 3 is ignored in the latter case.

Maximum Likelihocod Estimation

We consider now the problem of finding maximum likelihood estimates of the un-
known parameters: 3 in (2.1), o, in (2.2), 8 = (61,0>.... .6z) in (2.3). p =
(p1,p2,---,pa) In (2.3), and in the case of random error % in (2.9). Assuming

a

the stochastic process is Gaussian, the log-likelihood up to an additive constant is
-% [21n 02 +In detR + (y — FB)'R™}(y — FB)/7?| (2.18)

Given the correlation parameters 8 and p, by differentiation with respect to 3. the

MLE of 3 is the generalized least squares estimator
B = (F'R'F)"'F'R"'y . (2.19)
The MLE of ¢ is

(y - FB)'R™\(y — FB). (2.20)

6=

S|
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If we substitute 52 and B back into (2.18) we obtain
1 2
-——2—(n In o +IndetR).

This function of the data and the correlation parameters & and p has to be nu-
merically maximized. Direct maximum likelihood estimation is very expensive to
compute. Hence, an algorithm which introduces the parameters sequentially is of-
ten introduced to cut down on computing time. For example, see the algorithm
described in Welch et al. (1992).

Bayesian Approach

Alternatively, instead of viewing y as a realization of a stochastic process. one can

take a Bayesian point of view and predict y(x) by the posterior mean
y(x) = E[Y(x)ly.]

where y, denotes data at the design points. Currin et al. (1991) take this approach.
representing prior uncertainty by a Gaussian stochastic process with fixed mean and
variance, thus without a prior to represent the uncertainty in the mean. 8 and p .
Because of this, they come to the same result as displayed in equations (2.16)
and (2.17). Estimation of the parameters is then also performed by the Maximum
Likelihood method. See also Morris, Mitchell, and Ylvisaker (1993) in the context

of the Bayesian point of view.
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2.2 Stochastic Methods of Spatial Prediction
(Kriging)

The stochastic process model presented in the previous section has traditionally
been used in geostatistics under the name of Kriging for the exploration of gold
mines, oil fields, etc.. Since this stochastic process model is used frequently in
this thesis, a brief overview of Kriging is given here. For more extensive reviews
the reader is referred to Cressie (1993), Journel and Huijbregts (1978), and, for
nonlinear Kriging, also Rivoirard (1994).

The word “Kriging” is synonymous with optimal spatial prediction. It has
been termed after a South-African mining engineer with the name Krige. who first
popularized stochastic methods for spatial prediction.

When the underlying stochastic process is Gaussian and a quadratic loss func-
tion is chosen, then an optimal predictor is given by E(Y(x)|y,). Because of the
Gaussian assumption, the predictor is a linear function of x.

Usually the following additional model assumption is made:
Y(x) = p(x) + Z(x) .

where Z(.) is a random process with mean 0, and p(.) is a parametric model spec-
ifying the mean structure.

Simple Kriging

The simplest Kriging models are ones where the mean structure x(x) and the covari-
ance structure Cov(Z(x), Z(x')) are assumed known. Furthermore, the predictor

is assumed to be a linear function of the data.
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The optimal predictor can then be derived as
§(x) = p(x) + 'R(z — p).

Often the mean and the covariance structure are not known. The ordinary Krig-
ing method therefore relaxes the assumption of full knowledge of mean and the
covariance structure.

Ordinary Kriging

The mean p(x) is unknown, but assumed constant. The random function Z is
stationary. The predictor is a linear function of the data and is uniformly unbiased.
ie. E(y(x)) =p.

This method no longer requires full knowledge of the mean; however. it only
allows for stationary models. In the following method. a class of non-stationary
models is introduced through a nonstationary mean structure.

Universal Kriging

The mean structure is given by

k
p(x) = 3 B;fi(x).

=0

The random function Z is stationary. Furthermore, the predictor is linear in the
data and uniformly unbiased.

The analysis of computer experiments uses the Universal Kriging approach. Un-
like Kriging models in geostatistics, however, computer experiments are considered
to be deterministic. This difference is reflected in the covariance structure. Another
difference is that correlations for Kriging are usually estimated by variograms (e.g.,
Cressie, 1993) whereas computer experiments typically use maximum likelihood

estimation.



Chapter 3

Understanding Key Features of

Computer Codes via Graphical

Analyses

3.1 Introduction

Computer models or codes are now frequently used in engineering design, and in
many other areas of physical science. For instance, the main example discussed
here concerns the engineering design of a solar collector. This code computes an
increase in heat transfer effectiveness, y, resulting from an engineering innovation.
The design is characterized by six factors (engineering parameters), z;.... ..
Further details will be given in Section 3. As is often the case, the code is expensive
to compute and the engineers wanted to understand key features of the complex
functional relationships embodied in their computer code. In particular, they were

interested in possible nonlinearities and interactions.

14
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Figure 3.1 shows scatter plots of the response against each z variable in turn for

013 ofo
“

ogs
ops

SFe adis u;a_: ads v L R . . L

Figure 3.1: Scatter Plots of y versus z;,i=1 ... 6.

data from an experiment on the solar collector code. They indicate some trend in
the relationship between y and z, and zs. However, the scatter plots do not show.
for example, the strong relationship in z4, because it is masked by the effects of the
other covariates. This would not matter if the effects were all linear and additive,
but, as we shall see in Section 3, the effect of z4 is highly nonlinear. With nonlinear
effects, we need to know the form of the model to be fitted, and simple plotting of

the data does not suggest a class of nonlinear parametric models here. Moreover.
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nonlinearities are common in computer experiments, because the inputs often cover
wide ranges.

There is already some work on the design and analysis of computer experiments.
See, for example, Currin, Mitchell, Morris, and Ylvisaker (1991), Sacks, Schiller.
and Welch (1989), Sacks, Welch, Mitchell, and Wynn (1989), and Welch, Buck.
Sacks, Wynn, Mitchell, and Morris (1992). The methods proposed in these refer-
ences take into account the deterministic nature of a code like the solar collector
computer model. Given the same inputs, it always reproduces the same output(s).
Typically, the code will be expensive to run, e.g., it solves a large number of differ-
ential equations which may require several hours or more of computer time.

So far work on the design and analysis of computer experiments has focused
on finding a good cheap-to-compute nonparametric surrogate (i.e.. predictor) for
the computer model. In the solar collector example, however, ezplanation rather
than prediction is the overriding objective. The class of nonparametric predictors
suggested in the above references and (2.14) is unsuitable for this task: They are
computationally cheap approximations, but they are nonetheless mathematically
complex.

In this chapter we propose to explore key features of computer codes such as
nonlinearities and interactions by testing specific hypotheses about their functional
form. To facilitate hypotheses generation, that is identifying key features, we in-
troduce some new methodology for attaching standard errors to the nonparametric
estimates of the effects. We then construct parametric models that embody the hy-
pothesized key features. The parametric framework allows us to test key features.
and thus to confirm them. As will be shown, the visualization of effects is fairly
automatic.

An overview of the chapter is as follows. Section 2 first outlines the nonparamet-
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ric method we use for analyzing data from a computer experiment. It has several
advantages, but it is by no means the only method that might accomplish this task.
Section 2 then explains how key features of the nonparametric model can be identi-
fied graphically and confirmed by building parametric models. Section 3 states two
theorems, special cases of which explain how to estimate effects and their standard
errors. Section 4 demonstrates these ideas using the solar collector code. Section §
concludes with some discussion, including comments on the choice of experimental

design and alternative modeling approaches.

3.2 Identifying Key Features of Computer Codes

Identifying key features of the relationship between input and output variables is
easy if there is only one covariate. A simple scatter plot reveals the functional
relationship, which for a computer model is exact since the relationship is deter-
ministic. Then the data analyst often chooses to fit a parametric model to the data.
where a class of (possibly nonlinear) models might be suggested by the scatter plot.
This approach was used in a case study presented in Bates and Watts (1988. Section
3.13) for physical experimental data which contained random error. While the data
from a computer experiment contain no random error, the objective here remains
the same, i.e., to summarize the relationship between input and output variables
in a concise way.

Scatter plots are not very useful for the identification of functional relationships
where there is more than one covariate, however. The relationship between the
response and each covariate can be masked by the relationships between the re-
sponse and the other covariates (e.g., Montgomery and Peck, 1982, Section 4.2.5).

To overcome the masking problem, a plot of a function involving only the covariate
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of interest is needed. In other words, the effects of the other covariates need to be
eliminated. Such plots will be considered shortly, after some preliminaries.

First, a brief overview of the nonparametric predictor used in this chapter is
given because it plays a key role in the method proposed shortly. The data from a
computer experiment consist of n vectors of covariate values (or inputs) denoted by
Xi,... ,Xp for the d - dimensional covariates z,,... ,zq as specified by a particular
experimental design. The corresponding response values (for a particular output
variable) are denoted y = (y1,-. . ,yn)". Then, following the approach of, e.g., Welch

et al. (1992), the response y is treated as a realization of a stochastic process:
Y(x) =8+ Z(x), (3.1)

where E(Z(x)) = 0 and Cov(Z(w), Z(x)) = ¢2R(w,x) for two input vectors w
and x. The correlation function R(-.-) can be tuned to the data. and is assumed

here to have the form:
d
R(w,x) = H exp(—0;|lw; — =[P}, (3.2)
j=1

where 6; > 0 and 0 < p; < 2. The pj’s can be interpreted as smoothness
parameters—the response surface is smoother with respect to z; as p; increases—
and the 6;’s indicate how local the estimate is. If the §;’s are large, only data at
points in the immediate vicinity of a given point are highly correlated with Y at
that point and are thus influential in the prediction at that point. If the ;s are
small, data at points further away are still highly correlated and still influence the
prediction at that point. Correlation functions other than (3.2) could be chosen, for

example Matérn (Yaglom, 1987, p.139). While Matérn’s correlation function does
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give more control over smoothness, it is also more expensive and not clear that it
is a better choice in practice (see also the discussion in Sacks, Welch, Mitchell, and
Wynn, 1989).

The best linear unbiased predictor of ¥ at an untried x can be shown to be (see

(2.14) with F =1 and f, = 1):
Y(x) =8 +r'(x)R\(y — 14), (3.3)

where r(x) is the n x 1 vector of the correlations between Y (x) and y, B is the
generalized least squares estimator of 3, R is the n x n correlation matrix with
element i, j defined by R(x;,x;) in (3.2) and 1 is an n x 1 vector of 1's. Except
for very large n this predictor is cheap to compute. The cost of one evaluation of
the likelihood is of order n3, but the evaluation of the predictor is only of order n.
While this predictor has proven to be accurate for numerous applications. it does
not reveal the relationship between y and z,,... ,z4 in a readily interpretable way.
Consequently, this predictor is unsuitable for ezplaining the functional relationship
between the covariates and the response.

Recall that in order to identify the functional relationship between a group of
covariates and the response, the effect of these covariates needs to be isolated from
the others. When we want to isolate the effect of a single covariate, the true main

effect of the covariate can be defined in the following two ways:

1. Integrating out the other factors. The main effects are defined as:

p;(:l:,:) = %/Y(X) Hd:l:h

h#i

(Sacks, Welch, Mitchell, and Wynn, 1989).
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For simplicity we assume a hyper-rectangular integration region in x. Esti-
mates of u;(z;) and their standard errors are discussed further in the next

section.

2. Keeping the other variables fized. For example, the other variables might be
fixed at their respective midranges. Standard errors for the estimated effects
using this method are available directly from MSE(Ys) as given for example
in (Sacks, Welch, Mitchell, and Wynn, 1989).

In both calculations, the unknown y(x) needs to be replaced by Y (x) from
Equation (3.3). The first approach may be preferred because it is analogous to
analysis of variance in that all the other covariates are averaged out. Note also that
integrating ?(x) is numerically easy to perform if the x region is cuboidal and if the
correlations are in product from as in (3.2). In a similar fashion. the effect of two
or more covariates can be investigated by integrating out all the other covariates
or fixing the other covariates at specific values.

Main effects for each z; and effects of, say, two covariates for each pair (z;,z;)
can then be displayed graphically. By choosing a tentative model for each of the
effect plots which displays some key feature (i.e., impacts the response), an overall
model can be developed by adding up all the corresponding candidate models. The
standard errors for the effects are useful here in that they may guide the choice of
tentative models. They are further discussed in the next section.

If there are no interactions (and hence, additivity holds) the d-dimensional prob-
lem has been reduced to d one-dimensional problems. If large interactions are
present, then the interacting covariates need to be considered jointly. Covariates
might then be grouped so that covariates in two different groups do not interact.

Provided that the groups contain no more than two variables, candidate models
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may still be identified from contour plots of the response. For larger sized groups.
such plots will generally not be helpful. In this case, when faced with many inter-
actions, transforming the response may help in reducing the apparent complexity.
Experience with a number of computer models, however, suggests the complexity
of computer models tends to arise from additive nonlinearities rather than through
interactions.

Subsequently, the key features summarized in the parametric model can be
confirmed by fitting it using standard nonlinear regression techniques. Starting

values for the parameter estimates can often be estimated from the effect plots.

3.3 Estimates for Effects and their Standard Er-

rors

Suppose we want to plot the estimated effect of some of the z variables. denoted
by X.g.c.- The remaining z variables, denoted by x,,, . have to be integrated out

of the predictor. The effect is

1
Bkt = 77 [ V(X)X (3.4)

where V is the volume of the x_,, region over which we integrate. For example.
for the main effect of z;, in the solar collector application with six explanatory
variables, X_g.. = Z1, and the plotting coordinates for the estimated main effect
of z,, i(z,), require an integration over x,,, = (Z2,...,z¢)" for each value of z,
plotted. The integral in (3.4) is easy to approximate if the z-space is cuboidal, and
if the correlation function is a product of correlation functions for each z variable.

Numerically, we approximate (3.4) by a sum over a grid of m points x,(,f,)t, e xf,':t)
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representing the x_,, space. Thus (3.4) becomes

1 & i
#(xeﬁ'ect) = ; Z Y(xcﬂ'ecty Xglg), (35)

i=1

We now show how to estimate (3.5) and the standard error associated with the
estimate. In fact, we prove a more general result for estimating linear combinations
of Y:'s, which we show later can also be used for estimates of interactions and their

standard errors. Both theorems are new work.
Theorem 1: The best linear unbiased predictor (BLUP) of 3 b;Y; 1s 3 b:Y (x:).

Theorem 2: The mean squared error of Zb.;?,- 1s

- t ¢ -1 P
MSE(ib,—f’,-):o—f b‘Rb—-(f) (O ¥ ) (f) ., (3.6)
i=1 r F R - r

where b = (by,b,... ,by), £ = ¥, bf,,, and ¥ = ¥; birz, . The standard error of

L bY:is
SE (Z b,-)";) = J MSE ( Y) :
t=1 i=1

We prove both theorems in Appendix B.

All effects or linear combinations of effects can be written as 3 b;Y; with suitable
coefficients b;, 2 = 1...m. Then the estimates of the effects are given by Theorem 1
and their standard errors by Theorem 2.

For (3.5), Theorem 1 with b; = 1/m, ¢ = 1,... ,m states that the BLUP of
the effects given by (3.5) is the corresponding sum of estimated function values.
Moreover, Theorem 2 gives a pointwise standard error for the estimated effect.
Appendix B contains further examples showing how Theorems 1 and 2 can be used

and explains why (3.6) is easy to evaluate.
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3.4 Application to a Solar Collector Code

In this section, the proposed method is applied to an expensive-to-compute com-
puter model for the heat exchange effectiveness between the air and an unglazed
transpired-plate solar collector with slot-like perforations (henceforth, referred to
as holes). The use of equally spaced slot-like holes replaces the unrealistic assump-
tion of infinitesimally small and infinitesimally close holes and thus, represents an
engineering novelty in the design of unglazed solar collectors. Golneshan (1994)
showed that the heat exchange effectiveness for these solar collectors is a func-
tion of six covariates, (1) inverse wind velocity, (2) dimensionless slot width. (3)
Reynolds number, (4) admittance, (5) dimensionless plate thickness. and (6) the
radiative Nusselt number, as defined by a system of differential equations. The
computer code (Cao, 1993) solves the system of differential equations for given
covariate values and requires around two hours of computing time on a worksta-
tion. The response considered here is the increase in heat exchange effectiveness
attributed to the heat transfer in the holes from the hole sides and is expressed as
a-percentage (0-100). For further details, see Cao (1993). For notational simplicity
the six covariates listed above will be referred to as z,, z,,... . z¢ and the response
as y.

The mechanical engineers who had developed the solar collector code were in-
terested specifically in explaining the impact of the six covariates (which are design
factors) on the response, heat exchange effectiveness; ultimately, the explanation
would help to identify better solar collector designs. Note that such understand-
ing was not apparent from inspecting the system of differential equations. The
engineers were also interested in developing a surrogate parametric model because

empirical models of this type existed in the literature for solar collectors based on



CHAPTER 3. KEY FEATURES OF COMPUTER CODES ’ 24

older technologies; they had no preconceived idea of what form the model should
take because the collectors with slot-like holes represented state-of-the-art technol-
ogy. Hence, the need arose for performing an experiment on the solar collector
code, i.e., a computer experiment.

The experimental design used for the computer design was one that filled the
six dimensional cuboidal region, a so-called space filling design. Specifically, a
Latin hypercube design (McKay, Beckman, and Conover, 1979) consisting of 100
points was chosen in which the minimum distance between points (i.e., the covariate
vectors) in low-dimensional projections was maximized. The design was found using
ACED (Algorithms for Constructing Experimental Designs) which was developed
by Welch. All the two-dimensional projections of the Latin hypercube design can
be seen in Figure 3.2 which shows that the design is indeed space-filling.

Scatter plots of the data (Figure 3.1) indicate a possible linear trend in z, and
Ts. The remaining relationships, if any, are masked by the presence of the other
covariates. In the following, the proposed method for identifying key features of
the computer code will be applied.

The stochastic process predictor (3.3) with the correlation function (3.2) was
fit for the response using the software GaSP (Gaussian Stochastic Processes), de-
veloped by Welch. GaSP also estimates the correlation parameters 6; and p;.
j=1...d, as well as o2 via the maximum likelihood approach.

The predictor appears to be reasonably accurate. Main effect and joint effects
plots, generated by integrating out the other covariates, are as shown in Figure
3.3 for covariates z; through zs and Figure 3.4 for the pairs (z,, z5s) and (z4, zs),
respectively. By joint effect, we mean (3.5) where x,g... includes two variables and
Xout all other variables.

The main effect for covariate z¢ is very flat, and all but two two-way interactions
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Figure 3.2: Two Dimensional Projections of the Latin Hypercube Design.

are close to zero everywhere.  These effects were considered negligible by the
engineers. The features displayed in the main effect plots suggest that the effects of
z; and z3 are approximately linear and the effects of z, and zs are approximately
quadratic.

The main effect plot for z4 is rather ragged. Although the plot gives a good
indication of the apparently nonlinear z, effect, it is doubtful that the true z,4
relationship is that bumpy. One possible explanation is that the computer code

may have some numerical convergence problems in certain regions of the x space.
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Figure 3.3: Main effect plots. The Middle Line is the Estimated Effect. the Upper
and Lower Lines are Approximate 95% Pointwise Confidence Limits Based on the
Standard Error Given by Theorem 2.

This possible erratic behavior may then be erroneously attributed to z4 which
clearly has the most nonlinear or complex impact on the response. Engineering
knowledge suggests that the increase in heat efficiency is a monotone increasing
function of the admittance rate of the plate z;. The head engineer commented:
“The slight blip in the curve is almost certainly due to some numerical problemn™
(Hollands, 1995, personal communication). Therefore, we do not model the little

down peak at z4 = 300.
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Figure 3.4: Joint Effects (left) and Standard Error Plots (right) for (z.,zs) and
(z4,zs5). The Standard Error is Given by Theorem 2.

Plots of the main effects using the method of fixing the other variables at their
respective midranges rather than averaging them out, result in very similar graphs.
For example, Figure 3.5 shows the Method 2 main effect plot for z.

The nonlinear shape of the z4 main effect plot which appears to approach an
asymptote can be captured by a Michaelis-Menten model (Bates and Watts, 1988,
p. 329); the Michaelis-Menten model has long been used to model the behavior of
a limiting chemical reaction which rises at a decreasing rate to an asymptote. It

also arises in the context of a reciprocal link function in generalized linear models.
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Figure 3.5: Predicted Y (x) versus z4, Keeping All Other z Variables Fixed at Their
Midranges (Method 2). The Middle Line is the Estimated Effect. the Upper and
Lower Lines are Approximate 95% Pointwise Confidence Limits.

where an inverse linear response function is assumed (McCullagh and Nelder. 1989.
p- 291). We reparameterize the Michaelis-Menten model to make the nonlinear
fitting numerically easier:

y = 1 _ Yo T4
BPo+Pi/zs za+m

where 8y = 1/70 and 81 = 11/7-

Both z; and zs appear to be quadratic. For the joint effect, we notice that
when z;5 increases, the response rises more rapidly when z, is low than when z, is

high. This points to the presence of interaction. Nonetheless, the interaction does
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not seem very complex and we try the simplest form for the interaction term, z,zs.

For the joint effect between z4 and zs, we notice that for high values of zs
the sudden rise due to z4 seems to be more pronounced than for low values of zs.
Hence we hypothesize the existence of an interaction of the form h4(z4) 5 where
h4(.) is the main effect model for z4, i.e. the Michaelis-Menten model. For added
flexibility, we allow different parameters for the Michaelis-Menten term in £4(.) and
in the corresponding main effect term.

To confirm the key features found, we then fit the overall model consisting of
linear effects in z,, z;, 3, and s, a quadratic effect in z, and zs, the Michaelis-
Menten model for z4, the bilinear term for (z2, z5), and the interaction term between
the main effect model for z4 and zs using standard nonlinear regression software

which gave

7 = 0.09 + 0.86z; — 7.60z; — 0.00031z3 + 135.97z2 + 2.88z5 — 21.02z3

4 ZT4ZTs
0.0025——% — _ 474 2.30— 4%
+0.0025 557 225 + 230 75 30

All of the parameters were significant at the 0.0001 level, except for the multiplica-
tive parameter for the main effect for z4 (0.0025), which was marginally significant
at the 0.05 level. Also, adding z¢ reveals that z¢ is not significant at the .10 level.
Further, when replacing the interaction model h4(z4)zs with the bilinear term z4z5
the latter is not significant. Although the data contain no random error so that
significance testing has no theoretical grounds here, the results of the significance
tests do indicate the importance of the various effects relative to the ability of the
overall model to fit the data. Alternatively taking the Bayesian point of view. one
could calculate posterior model probabilities. Note that the model contains only

twelve parameters but fits the 100 data points quite well as indicated by the cor-
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responding cross validation plot given in Figure 3.6. The fact that the parametric
nonlinear model does not fit the data quite as well as the nonparametric model is
not surprising, since the parametric model is much simpler. The cross validated

root MSE is defined as

3 (i — 9-i(x:))

n

Cross Validated RootMSE = \,

=1
where §_;(x;) is the cross validated prediction value at x; based on all but the ith
observation. The better the fit is, the smaller is the cross validated root MSE. Here

they are .0059 for the nonparametric and .0071 for the parametric model.
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Figure 3.6: Cross Validation Predictions from the Parametric Nonlinear Model.
The Line Predicted Response = Actual Response is Shown. The Cross Validation
Root MSE is .0071 .
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3.5 Discussion

The examples presented in nonlinear regression books typically deal with only a
single covariate z, where the functional relationship between z and the response y
is unknown. On the other hand, the method proposed here can be applied to an
arbitrarily large number of covariates.

Throughout this chapter, we have used model (3.1) for the initial nonparametric
analysis. Other nonparametric methods, like Generalized Additive Models. could
be used. However, the model we use has three main theoretical advantages: first.
the model is truthful to the deterministic nature of the data, second, error bounds
for the effects are available, and third, interactions do not need to be modeled
explicitly.

For a comparison in practice, we fit a Generalized Additive Model (GAM) to the
data (see Figure 3.7). We choose Generalized Additive Models for its popularity
and because the algorithm is readily available in Splus. The cross validation plot
for GAM in Figure 3.8 shows a slight bias at the upper and lower range of the
response. The cross validated root MSE is .0133, more than twice as large as the
one for the stochastic model (Figure 3.9) and almost twice as large as the one for
the parametric model (Figure 3.6). The effects for the GAM Model are the same
but they are less obvious. Due to the smoothing the sudden rise for low values
of z4 is not as clear. At present GAM software does not support nonparametric
interactions. Hastie and Tibshirani (1990, section 9.5) suggest among other things
examining the residuals for interaction. Due to the lack of error bounds it is more
difficult to assess, for example, the effect of zg.

Breiman (1991) criticized algorithms for producing “only one picture” of the

functional relationship, thus ignoring the many other “pictures” which are almost
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Figure 3.7: Main Effect Plots from the Generalized Additive Models (GAM) Ap-
proach. Except for Scaling of the Vertical Axes, the Plots Represent the Default
Setting in Splus. The Rug at the Bottom Indicates Frequencies.

as good. The error bounds given for the effects can serve here as an assessment of
the variability of the effect fit.

There are certainly other ways to identify key aspects of input-output relation-
ships. For example, clever residual analyses in the hand of a skilled data analyst
may well lead to the same results. For the solar collector experiment. an added
variable (partial regression) plot for z, based on a linear regression model for the

remaining covariates shows the effect of z4 is nonlinear, albeit with considerable
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Figure 3.8: Cross Validation Predictions from the GAM Model. The Line Predicted
Response = Actual Response is Shown. The Cross Validation Root MSE 1s .0133 .

scatter as displayed in Figure 3.10. This success is not surprising since the as-
sumption of a linear model for the remaining variables turns out to be a good
approximation. If the true model had contained several strong nonlinearities, then
added variable plots on their own would not have sufficed. It might also be possible
to find the interactions with residual analysis, though with considerable difficulty.

Elaborate residual analyses are often not done for three reasons: (1) They are
hard to do, especially when the “true” model contains more than one nonlinear
effect. (2) Data analysts, especially inexperienced ones, may not always know
about them. (3) They can take a lot of time to perform. The method presented

here is easy and fairly automatic for detecting nonlinear effects and interactions.
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Figure 3.9: Cross Validation Predictions from the Nonparametric Stochastic Pro-
cesses Model. The Line Predicted Response = Actual Response is Shown. The
Cross Validation Root MSE is .0059 .

It is not a panacea for all functional relationships, however. If the relationship
cannot be transformed to near additivity with few or no interaction effects. then
identification of key features with several covariates will still be a challenge. For
most of these cases, it 1s doubtful whether alternate methods will work either.

The effect plots play a key role in the proposed method and their resolution
depends on the experimental design used. The Latin hypercube design is a desirable
choice because the design points fill the experimental region well and produce high-
resolution plots.

Originally, a 45-2 fractional factorial design was considered for the solar collector

computer experiment. While the choice of a fractional factorial or even full factorial
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Figure 3.10: Added variable plot for z,.

design would lead to estimates that are uncorrelated, there would have been several
di'awbacks, however. First, if only a few covariates (factors) had an impact. the
design effectively collapses into a design in the active factors with replications.
But, replications in a computer experiment are non-informative because of the
deterministic nature of the computer code and therefore would have been a waste
of resources. Second, it could have been easy to miss an unknown effect by only
experimenting at a few different points for each factor. For example. the exact
nature of the nonlinear z, effect would have been difficult to identify with ouly
four levels; in fact, the dramatic nonlinear behavior of z4 surprised the engineers.
Analogous arguments apply for interactions. Third, the decision of where to place

the levels becomes much more crucial for the factorial design; lower dimensional
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projections of Latin hypercube design typically conmsist of n distinct and spread-
out points so that their exact position is less important. Finally, a 45-2 fractional
factorial design would have required 256 runs. Contrast this with the 100-run Latin
hypercube design that was used; even fewer runs might have been sufficient.
Computer experiments typically use such space filling designs so the proposed
method is particularly suited to computer experiments. While physical experiments
typically collect much less data than computer experiments, in principle the pro-
posed method can be applied to physical experiments by adding a random error

term to the model.



Chapter 4

A Data Analytic Approach to
Bayesian Global Optimization

4.1 Introduction

Global optimization, that is the search for a global extremuin. is a problem fre-
quently encountered. Sometimes it is extremely costly to evaluate a function for
an engineering design. For example, Frank (Davis, 1996) says about experiences at

Boeing:

“Designing helicopter blades to achieve low vibration is an extreme ex-
ample of a problem where it is prohibitively expensive to compute re-

sponses for large numbers of design alternatives.”

For such applications one is interested in minimizing the total number of function
evaluations needed to find the global extremum.
When function evaluations are extremely expensive, it appears sensible to ex-

amine previous function evaluations, that is already sampled points, very carefully.

37
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It is of particular interest to discover potential optimization problems before large
amounts of sampling resources are spent.

In this chapter we introduce a set of diagnostic plots which early on assess the
likely success of the global optimization method. If a problem is diagnosed, it is of-
ten possible to overcome it fully or partially by optimizing a suitable transformation
of the response rather than the untransformed response.

The method proposed in this chapter deals with the unconstrained global op-
timization problem, minimize f(x) where x = (z;,...,zq). This includes the
class of problems with simple constraints like a; < z; < b;, ¢ = 1.... .d. since
these problems can be transformed to unconstrained global optimization problens.
Throughout we assume without loss of generality that the extremum of interest is
a minimum.

The outline of this chapter is as follows. In Section 2 we review briefly the
Bayesian global optimization approach and introduce a more flexible stochastic
model in that framework. Also, a theorem concerning convergence of Bayesian
global optimization is given. Section 3 describes the diagnostic plots. We show
how they are used to assess and improve the model fit and hence the effectiveness
of the global optimization method. Section 4 shows by means of several examples
from the optimization literature that this approach is very efficient in terms of the

number of function evaluations required. Section 5 concludes with some discussion.

4.2 Expected Improvement Algorithm

This algorithm is based on the idea that any future sampled point constitutes a
potential improvement over the minimal sampled value up to the present stage.

Uncertainty about the function value at a point to be sampled is dealt with by cal-
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culating the expected improvement, based on some statistical model. The ezpected
improvement criterion is equivalent, we show later, to one-step-ahead optimality in
Bayesian Global Optimization.

The expected improvement algorithm proceeds in five steps:

1. Choose a small initial set of sampled points spread over the entire z space.

Evaluate the true function at these points.
2. Model the true function using all previous function evaluations.

3. Search over x for the maximum expected improvement in f. The location of

the maximum is the next sampled point.

4. Compute a stopping criterion based on the maximum expected improvewent.

If the criterion is met stop.
5. Evaluate the true function at the new sampled point. Go to Step 2.

Note that after each sampling step the predictor is updated (Step 2). and the
expected improvement as a function of x is redefined in Step 3.

For Step 1, Latin hypercube sampling schemes (McKay et al.. 1979) are particu-
larly useful, because they have a space filling property, i.e. they uniformly cover the
z domain to explore the function globally. The number of points sampled at this
initial stage is somewhat arbitrary. We choose about 10 points per active variable
because one needs at least that many points to obtain a reasonably good fit for
moderately complex functions (Welch, personal communication).

For the modeling approach in Step 2 we use a stochastic process with a more
flexible correlation structure than has been previously employed in the Bayesian

global optimization literature. This is discussed further in Section 2.1.



CHAPTER 4. BAYESIAN GLOBAL OPTIMIZATION 40

The expected improvement criterion in Step 3 is based on the idea that any addi-
tional function evaluation constitutes a potential reduction of the minimal function
evaluation found so far. This is discussed further in Section 2.2.

For Step 4, we propose to stop when the maximum of the expected improvement
is smaller than a tolerance value; smaller in absolute value or relative to the current

minimal function value. Step 5 consists of evaluating the next sampled point.

4.2.1 Modeling Approach

Suppose that, after an initial experimental design (set of sampled points) or at
some stage of the algorithm, we have n vectors x;,... ,x, at which the function
f has been evaluated. Each vector x is d-dimensional for the d covariates (or
inputs) z;,...,z4. The corresponding response values (or outputs) are denoted
Y = (¥1,--- ,ya)". Then, following the approach of Chapter 2 or, e.g.. Welch et al.
(1992), the response is treated as a random function or a realization of a stochastic

process:
Y(x) =8+ Z(x), (4.1)

where E(Z(x)) = 0 and Cov(Z(w), Z(x)) = ¢*R(w,x) for two inputs w and x.
The correlation function R(-,-) can be tuned to the data. Here it is assumed to
have the form:

d
R(W, x) = H exp(—G,—]w,- bt I:J'ij), (42)

=1

where §; > 0 and 0 < p; < 2. The p;’s can be interpreted as parameters which

indicate the smoothness of the response surface (smoother as the p’s increase) and



CHAPTER ¢. BAYESIAN GLOBAL OPTIMIZATION 41

the #’s indicate how local the predictor is (more local as the 8’s increase).
The best linear unbiased predictor of y at an untried x can be shown to be (see

(2.14) withF=1and f. =1 ):
§(x) = B+ r'(x)R7'(y — 18), (4.3)

where r(x) is the n x 1 vector of correlations R(x,x;) in (4.2) for : = 1.....n
between Z at x and each of the n sampled points, R is a n xn correlation matrix with
element (i,7) defined by R(x:,x;) in (4.2), 8 = (1*'R™'1)"!1'y is the generalized
least squares estimator of 3, and 1 is a vector of 1's.

The mean squared error (MSE) of the predictor can be derived as (see (2.15)

with F=1andf, =1}

o 1)\ (1
MSE[j(x)] = s*(x) = ¢? [1 = (1 %) ( ) ( ) . (4.4)
1 R Iz

The predictor based on the correlation function (4.2) in (4.3) has proven to
b-e accurate for numerous applications, see e.g. Currin et al. (1991), Sacks et al.
(1989a), Sacks et al. (1989b), Welch et al. {1992). Mockus (1989) used a Wiener
field instead.

In practice, o? defined after (4.1) and the correlation parameters 6, ... .64 and
P1,.--,pa in (4.2) have to be tuned to the data. We use maximum likelihood

estimation; see, for example, Welch et al. (1992) for details.

4.2.2 Expected Improvement

We will now derive the expected improvement criterion.
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If the function is sampled at x to determine y = f(x) then the improvement I

over f2. , the minimal sampled function value after n evaluations, is defined as

min?

:r:t'n-y lf < :rlu'n.
I= VS Tmin (0, [ — ).

0 otherwise

The expected improvement is given as

fvm'n

E() = [ (fr = )90y, (45)

-0

where ¢() is the probability density function representing uncertainty about y.
Mockus (1989) proposed a generalization by specifying a loss function on the

sequential n-step optimization strategy S, :
L(Sn, f) = fmin — min f(z).

i.e., loss is defined as the difference between the global minimum and the best

function value found after n steps. The risk, or the average loss is then given as

E(L(Ss, f)) = E(fnin) — E(min f(z)). (4.6)

An optimal strategy is defined as one that minimizes the risk (4.6). Computing
an optimal strategy turns out to be computationally infeasible for even a moderate
number of points n. The standard approach then is to relax the n-step optimality
to one-step optimality. The criterion for one-step optimality is equivalent to (4.5).

To predict Y'(x) at an untried x, we have y(x) from (4.3) with a mean squared
error given by (4.4). For notational simplicity, we omit the dependence on x. and

denote y(x) by § and the mean squared error by s®. If we further assume that
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the random function Y(x) is Gaussian, then y is also normal. Thus, we represent
uncertainty about the true y by saying it is N(#,s?). The expected improvement

in (4.5) can be expressed as

(frm — §)@(fRnl) 4 sp(fan=l) if s> 0
0 fs=0

E(l)= (4.7)

where ¢() and ®() denote the probability density function and the cumulative
distribution function of the standard normal distribution. The first term in (4.7) is
the predicted difference between the current minimum and y at x, penalized by the
probability of improvement. The second term is large when y(x) is close to f2;, and
s is large, i.e., when there is much uncertainty about whether y(x) will beat f2. .
Thus, the expected improvement will tend to be large at a point with predicted

value smaller than f7

. and/or where there is much uncertainty associated with
the prediction.

A practical problem, though, is finding the global maximum of the expected
improvement criterion over a continuous region. Expected improvement is zero at
sampled points. As distance from all sampled points increases, so does s. one of the
factors leading to large expected improvement. Random starting points are chosen
such that in each coordinate the random point is halfway between two adjacent
design points. Since the original design was space filling, it is ensured that the
entire x-space is covered with local optimization tries. This does not guarantee to
find the global maximum, of course. Mockus (1994) states in this context “[...] there
is no need for exact minimization of the risk function”, because we only determine
the point of the next observation.

The following theorem holds for the expected improvement algorithm when the

number of possible sampling points is finite:



CHAPTER 4. BAYESIAN GLOBAL OPTIMIZATION 44

Theorem 3 : Suppose we use the Gaussian model (4.1) and the covariance function
(4.2) is such that the mean square error of prediction in (4.4) is positive for any
unsampled point x. Further, suppose the number of possible sampling points is
finite. Then the expected improvement algorithm will visit all the sampling points
and hence will always find the global minimum.

Proof: Given in Appendix C.

4.3 Diagnostics

The success of the Bayesian minimization algorithm depends on having a valid
model. The better the model the more likely the algorithm will terminate quickly
and with an accurate tolerance on the minimum. For this reason one would like
to assess the performance of the modeling approach as soon as possible. that is
after the initial function evaluations. When the model does not fit well it is often
possible to improve the fit through appropriate transformations of the response. For
this purpose we propose four diagnostic plots to be used after the initial function
evaluations have been obtained. All of them are based on the concept of cross
validation.

Cross validation is a statistical technique often used for assessing a model’s
predictive capability, when it is not convenient to test the model at further sampled
points. It consists of setting aside and predicting a small portion of the data from
a model based on the remaining larger portion of data. Most commonly only one
point at a time is set aside, and cross validation is performed once for each point
left out. In this chapter we always use leave-one-out cross validation.

We remove case ¢ from (4.3) and (4.4) to obtain y_;(x:;) and s_;(x;). The

notation emphasizes that case 7 is removed when predicting at x;. Cross-validated
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standardized prediction errors (residuals), for example, can be written as

Y —y-i(xi)
=B (4.8)

We propose the following four diagnostic plots:

1. A plot of the cross validation predictions versus the true y’s, t.e. y_;(x;)

versus y;, to indicate prediction accuracy.

2. A plot of the cross validated standardized errors versus the cross validated
predictions, i.e., e; in (4.8) versus y_i(x;). This plot assesses whether the es-
timated uncertainty in prediction is realistic. The standardized errors should
not lie far outside about [—2,2] or. if many points are plotted. [—3.3]. We
are particularly concerned that estimated prediction accuracy is realistic for

smaller predicted values, 7, as they are of most interest in minimization.

3. A quantile-quantile (Q-Q) plot of the ordered cross validated standardized
errors versus quantiles from the standard normal distribution. If the normal
approximation in deriving (4.7) is valid, we should see a straight line through

the origin with slope 1.

4. A plot of the cross validated expected improvements versus the true function
values, i.e., E(I) evaluated at x; based on y_;(x;) and s_;(x;) versus y;. Thus.
we pretend that x; was just introduced and compare the expected improve-
ment with the function value actually achieved. If the expected improvement
criterion is to find further points with good improvement, the lowest y's to

date should be associated with the highest expected improvements.

If the plots indicate a poor fit, a transformation of the data can often improve
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the fit. This is possible because the transformed data may more closely resemble a
realization of a Gaussian stochastic process.

It is often useful to visualize the estimated function surface, as that may give
some idea of the number of local minima or it might be possible to rule out certain
regions of the x-space as a potential location for the global minimum with a high
degree of confidence. In more than two dimensions visualization of the function
surface is not straightforward. Instead, we estimate and plot main and joint effects.
i.e., the response as a function of only one or two variables at a time. The main
effect of z; is obtained by averaging out from the predictor §(x) all z variables
except z;. Similarly, joint effects of two variables are obtained by averaging out all

but two variables of interest (see e.g. Welch et al., 1992 or Section 3.3).

4.4 Examples

Our methodology is aimed at optimizing functions that are very expensive to com-
pute, for example finite-element codes. It is convenient, however, to take example
functions from the optimization literature. They demonstrate many qualitative
features of real functions. They are often highly nonlinear and have several lo-
cal optima. Moreover, using these well-known test-examples facilitates comparison

with previous methods.

4.4.1 Branin Function (Br)

The Branin function (Térn and Zilinskas 1989) is

51 , 5 1
f(:l:]_,zg) = (zz - 4_”2'131 + ;21 - 6)2 + 10(1 - ‘8?) COS(Il) + 10.

(4.9)
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The z ranges are -5 < z; < 10 and 0 < z; < 15. The function has three global
minima.

Initially, we sample the function at 21 points generated by a Latin Hypercube
experimental design (Welch, work in progress). The choice of 21 is motivated by
the rule of thumb “10 times the number of active variables”. Choosing 21 points
rather than 20 conveniently spaces points at 5% of the range.

Since the Branin function has only two z variables, in addition to looking at
the proposed diagnostics we are able to visualize the function. Contour plots of
the estimated function from (4.3) along with the 21 initial points can be seen in
Figure 4.1a. For comparison Figure 4.1b shows the true function; it is seen that
the predictor based on the correlation function (4.2) is fairly accurate here.

The four diagnostic plots can be seen in Figure 4.2. Figure 4.2a shows the func-
tion is extremely well fit except for the largest (and hence most uninteresting) value
of y. Figure 4.2b shows that the standardized residuals are all in the range [—2.2].
Even the one point with a big error in Figure 4.2a has a moderate standardized
residual, i.e., its large error is in line with the measure of uncertainty provided by
the standard error. Figure 4.2¢ indicates that the normal approximation is fairly
good. Figure 4.2d clearly attaches the highest expected improvement to the lowest
y. Some of the smaller y’s have some expected improvement, while the expected
improvement for larger y's is essentially 0. The diagnostic plots indicate that the
model fits well and the expected improvement strategy is promising.

We then start the expected improvement algorithm. The points from the initial
21-point experimental design (denoted by dots) and from the sequential optimiza-
tion (denoted by their respective numbers) can be seen in Figure 4.3.

We can see that the sequential points cluster around the three global optima.

The minimal sampled function value after a total of 33 function evaluations is
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(a) Contour Plot of the Estimated Function. Dots Indicate Sampled Points.
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X1
(b) Contour Plot of the True Function

Figure 4.1: Branin Function: Contour Plots of the Estimated and True Function
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Figure 4.2: Branin Function: Diagnostic Plots
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LN

Figure 4.3: Branin Function: Initial Experimental Design (Dots) and Points In-
troduced by the Sequential Minimization (Case Numbers). Contours of the True
Function are Shown.
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0.39790, the true minimum is about 0.39788. The relative tolerance for the stopping
criterion was set to .0001.

Table 4.1 gives an overview of tolerances and other performance criteria for
the expected improvement algorithm applied to the Branin function and other
functions. Table 4.2 compares the number of function evaluations needed by various
global optimization methods. The functions are from the test suite of functions

introduced by Dixon and Szegé (1978) which is often used for comparison purposes.
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More extensive tables are given in Torn and Zilinskas (1989) and Jones et
al. (1993). There are some difficulties associated with comparing the numbers
in Table 4.2 since the stopping criteria are all different. Often stopping rules do
not exist and instead the number of function evaluations is reported when the
optimization first reaches a specified tolerance value of the (in practice unknown)
global minimum. Mockus’ (1989) Bayesian method using a Wiener field needs 189
function evaluations.

The 3-dimensional Hartman function (H3) which is also part of the test suite
introduced by Dixon and Szegé (1978) is dealt with analogously to the Branin func-
tion (Br). The diagnostics look similar and no transformation is needed. Results

are given in Tables 4.1 and 4.2.

4.4.2 Goldstein-Price Function (Gp)

The Goldstein-Price function (Térn and Zilinskas, 1989) also has two independent

variables:

f(zlaxZ) =
[1+ (21 + 22 + 1)*(19 — 142, + 323 ~ 14z, + 6212, + 323)]

x [30 + (22, - 3z,)%(18 — 32z, + 122% + 48z, — 36z,z, + 27z§)] . (4.10)

The variables z, and z, are both defined on the interval [—2,2]. The Goldstein-
Price function has one global minimum that is equal to 3 at (0, —1). Not far from
the global minimum, there are three local minima. The function values range over
several orders of magnitudes.

The initial experimental design is identical to the one used for the Branin func-
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Br Gp H3 H6 Sh10
Transformation none In none In inverse
Initial Observations 21 21 30 51 40
Total Observations 33 106 38 125 131
Target Relative Tolerance .00010 .00010 .00010 .00010 .01000
Actual Relative Tolerance .00002 .00001 .0000%9 .00006 .00380
N until Target Rel. Tol. Reached 29 95 38 124 82

Table 4.1: Function Evaluations and Tolerances for Test Functions: Branin Func-
tion(Br), Goldstein-Price Function(Gp), 6-dimensional Hartman Function (H6). 3-
dimensional Hartman Function (H3), Shekel Function with 10 Local Optima (Sh10).
“N until Target Rel. Tol. reached” Refers to the Number of Points Until the Target
Tolerance on the Original Scale was First Actually Reached. All Tolerances are on

the Original Scale.

Authors Br Gp H3 H6é Shlo
Kostrowicki and Piela (91) * 120 200 200 12000
Perttunen (90) 97 82 264 * 250
Perttunen and Stuckman (90} 109 113 140 175 109
Mockus (78) 189 362 513 1232 1209
Zilinskas (80a) 164 165 363 627 2224
Zilinskas (86) 133 153 285 531 533
Jones, Perttunen, Stuckman (93) 195 191 199 571 145
Schonlau (97) 33 106 38 125 131

Table 4.2: Function Evaluations of Global Optimization Algorithms Based on Sta-
tistical Models of Objective Functions for Test Functions : Branin (Br). Goldstein-
Price (Gp), the 3- and 6-dimensional Hartman functions (H3,H6) and the Shekel
Function with 10 Local Optima (Sh10). The Symbol * Indicates that the Method
was not Applied to the Test Function. This Table is Compiled from more Extensive
Tables in Térn and Zilinskas (1989, Table 8.8) and Jones et al. (1993).
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(a) Contour Plot of the Estimated Function. Dots Indicate Sampled Points.
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(b) Contour Plot of the True Function
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Figure 4.4: Goldstein-Price Function: Contour Plots of the Estimated and True

Function
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tion, scaled to suit the range of the z-variables of the Goldstein-Price function.
Figure 4.4 compares the estimated function after initial modeling with the con-
tours of the true function.

The diagnostic plots for the Goldstein-Price function can be seen in Figure 4.5.
The first plot indicates that the function is predicted poorly, even if the largest
function value is ignored. The second plot has one very large standardized residual
of about 4. Thus, the standard error is underestimating prediction uncertainty,
and the expected improvement algorithm is in danger of terminating prematurely.
It appears, however, that the standardized residuals are larger for large predicted
values. The Q-Q plot highlights the one very large standardized residual. The cross
validated expected improvement plot indicates that there i1s little discriminating
power between large and small y values.

The function values of the initial sample range over several orders of magnitude.
and the cross validated residuals seem to be increasing with the magnitude of the
response. This is suggestive of a logarithmic transformation of the response. We
refit the model in In(y) and obtain another set of diagnostic plots (Figure 4.6).
The first plot now shows more relationship, though accuracy is is not as good as
for the Branin function. There is no apparent trend in the second plot any more.
and the standardized residuals are roughly within [—2,2]. The Q-Q plot shows
that the (fairly large) uncertainty of prediction is well represented by the normal
approximation. Overall, we have a predictor that is fairly inaccurate given only
21 sampled points, but the amount of uncertainty is well estimated by our model.
That the In transformation promises to work reasonably well is confirmed by the
last plot which shows that, with the exception of one point, low true values give
the largest expected improvements.

The points from the initial 21-point experimental design (denoted by dots) and
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Figure 4.5: Goldstein-Price Function: Diagnostic Plots
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the sequential optimization (denoted by their respective numbers) can be seen in
Figure 4.7. The optimization initially focuses on a local minimum close to the
global minimum. After the local minimum is explored the algorithm finds the
global minimum. The algorithm stops after a total of 106 observations. The global
minimum on the In scale is approximately 1.09861. The smallest function evaluation
sampled is also 1.09861. The absolute tolerance for the stopping criterion was set
to .0001 corresponding to a relative tolerance of .0001 on the original scale. The

results for different global optimization algorithms can be seen in Table 4.2.

Figure 4.7: Ln Goldstein-Price Function: Initial Experimental Design (Dots) and
Points Introduced by the Sequential Minimization (Case Numbers). Contours of

the True Function are shown.
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4.4.3 Hartman 6 Function (H6)

The Hartman 6 function (Térn and Zilinskas, 1989) is

4 6
f(zla"' 7z5)=—zci €Xp [—ZatJ(IJ—pU)Z} . (411)
i=1 =1
where ¢;, pi;, and a;; are coefficients given in Table 4.3. The z ranges are 0 < z; < 1
fort=1,...,6. There is one minimum.
1 aij,j=1,...,6 ¢
1| 10 3 17 35 1.7 8 1
2.0 10 17 1 8§ 14{1.2
3 3 35 1.7 10 17 8 3
41 17 8 .05 10 1 141 3.2

p,'_,'.,j = 1,... ,6
1312 1696 .5569 .0124 .8283 .5886
2329 4135 8307 .3736 .1004 .9991
2348 1451 .3522 .2883 .3047 .6650
4047 8828 8732 .5743 .1091 .0381

> W N o

Table 4.3: Hartman 6 Function: Coefficients for (4.11)

For the initial experimental design we choose 51 points (the choice of 51 results
in convenient spacing at 1/50 of the range). Diagnostic plots for the Hartman 6
function are similar to those for the Goldstein-Price function. Again a In transfor-
mation is suggested. (In fact, —In(—y) was used as the original 51 function values
are all negative.)

Since the Hartman 6 function is six-dimensional, visualization of the estimnated
function surface is not straightforward. Therefore, we inspect main and joint effects

instead. Figure 4.8 shows main effects of z,, z4 and zs, and Figure 4.9 the joint
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effect between z5 and z¢ for the transformed Hartman 6 function. The pointwise
confidence intervals plotted are based on the standard error given by Theorem 2.
A normal distribution for uncertainty is assumed stemming from the assumption
that the process is Gaussian. The remaining main effects and joint effects are ap-

proximately constant. From these plots it appears that the function is probably
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Q. _-- .‘-;- 1 '_- ~-- . (o] ‘_ ,‘t -
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x1 x4 x5

Figure 4.8: Main effects for z,, 4 and zs of the Hartman 6 Function with Transfor-
mation —In(~y). The Middle Line is the Estimated Effect. the Upper and Lower
Lines are Approximate 95% Pointwise Confidence Limits.

unimodal. One might even be tempted to proceed with a local minimization al-
gorithm, using starting values from the graphical analysis. Furthermore, from the
graphs it is clear that the global minimum occurs with z;, z; and z5 roughly in
[0.1,0.5], while zg will be in [0.5,1.0]. The remaining variables, z, and z;, are
relatively unimportant.

The insights from the initial graphical analysis could be used to reduce the
search space, but we apply the expected improvement algorithm to —In(—y) with
all six variables on [0,1] to facilitate comparison. Two dimensional projections of

the experimental design and the points resulting from the sequential optimization
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Figure 4.9: Joint Effect of z5 and z¢ and its Pointwise Standard Error for the
Hartman 6 Function with Transformation —Iln{-y).

can be seen in Figure 4.10.

We can see that the algorithm explores the edges and also clusters around one
single point which indeed is the minimum. During the minimization. only 74 ad-
ditional points were sampled, a total of 125 points. The minimal value found is
—1.20066 on the transformed scale; the true minimum equals —1.20068. The abso-
lute tolerance was set to 0.0001 or a relative tolerance of .0001 on the original scale.
The results for different global optimization algorithms can be seen in Table 4.2.

Mockus’ (1989) Bayesian algorithm needs 1232 observations.

4.4.4 Shekel 10 Function (Sh10)

The remaining functions in the suite introduced by Dixon and Szegd (1978) are the

4-dimensional Shekel family of which we present only the most difficult one, the
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Figure 4.10: —In(—y) Hartman 6 Function: Initial Experimental Design and Points
Introduced by the Sequential Minimization.

Sh10 function with 10 local optima:

10 1
) == A== a0 T =

i=1

(4.12)

where x = (z,, 23, 23, £4) and the ¢; and A; are coefficients and coefficient vectors
given in Table 4.4. The z rangesare 0 < z; < 10for:=1,... ,4.

The Shekel 10 function is relatively flat with the exception of 10 sharp wells
for the local optima. Figure 4.11 shows a marginal view of the well at the global
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i A(i) ci
114 4 4 4 |1
2|1 1 1 1.2
3(8 8 8 8 (.2
416 6 6 6 |.4
513 7 3 7| .4
612 9 2 9 |.6
719 &5 3 3 |.3
818 1 8 1 |.7
916 2 6 2 |.5
10|17 36 7 36| .5

Table 4.4: Shekel 10 Function: Coefficients for (4.12)

minimum. For the minimization of the 4-dimensional Shekel 10 function we choose
40 starting points.

Figure 4.12 is an attempt to visualize the first 131 four-dimensional data points
for the Shekel function. Each observations is represented by four points; one for
each dimension. For example, suppose that the first of the four dimensional obser-
vations for the Shekel 10 Function is given by (2,5, 7,0). For visualization, the four
dimensional observation is represented by four points in two dimensional space:
(0.7,1), (1.0,2), (1.2,3) and (0.0,4). The first coordinate of each point is standard-
ized such that the range limits (0 and 10 for the Shekel Function) are represented
by 0.5 and 1.5, the second is just an increasing integer valued counter. The range
of 0.5 to 1.5 is chosen such that its midrange represents the observation number,
here 1.0 corresponding to the first observation. (A different range length could be
chosen as long as it is the same for all observations.)

The four points corresponding to an observation are then connected such that

they form a piecewise linear line. An extra point at mid-range with coordinates
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x1

Figure 4.11: Shekel 10 Function: Plot of y versus z; where z, = z; = z4, = 4.0.
This is a Marginal Plot of the “Sharp Well” at the Global Minimuimn.

(1,0) is also connected for better orientation. Since the first coordinate of this extra
point is at mid-range, it always corresponds to the observation number.

Each subsequent line is offset by 1 unit in the first coordinate from the previous
one: the first coordinate of the i** point has the range of i — 0.5 to 7 + 0.5, and the
extra point has the coordinates (z,0).

As a result, observations with the same (similar) coordinates have the same
(similar) lines except for the offset. Note that depending on the length of the range

chosen, lines corresponding to adjacent observations may overlap. Details in form
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Figure 4.12: Inverse Shekel 10 Function: Visualization of the Design (40 points)
and Points Sampled During Minimization (91 points)
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of a Splus function are given in Appendix D.

The lines corresponding to the first 40 sampled points in Figure 4.12 are all
dissimilar because they represent a space filling sample. After the initial 40 function
evaluations, the algorithm chooses observations 41 — 44 in different locations, which
may be interpreted as a global search. The f7.,. decreases slightly. Observations
45 — 86 (except observation 59) home in on the global minimum, representing a
local search. From then on the observations are spread throughout the space, i.e.
they represent a global search. During this global search f2. does not decrease
any more. Figure 4.12 makes the duality between local search (similar lines) and
global search (dissimilar lines) very clear.

Upon discovery of the global “sharp well”, the MLE adjusts the estimate of the
standard error upwards which leads to an increase in the expected improvement. In
what follows, the model accounts for the possibility of undiscovered similar “sharp
wells”. As a result the expected improvement remains approximately constant
during the global search while the algorithm starts to fill the 4-dimensional space
with points to rule out that possibility. We therefore decided to set the target
tolerance to 0.01 for the Shekel 10 function leading to 131 function evaluations. At
about that time it becomes clear that the algorithm essentially tries to fill the space
more densely. We would be suspicious of any algorithm that will terminate easily

before it can rule out the possibility of further “sharp wells”.

4.5 Discussion

In this chapter we have used the Bayesian approach to Global Optimization with
the objective of reducing the number of function evaluations needed and still termi-

nating with reliable error tolerances. We have achieved this goal by improving the
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fit of the stochastic model in two ways: (1) by replacing the commonly used Wiener
field with the more flexible generalized exponential correlation function and (2) by
assessing model adequacy and if needed attempting to improve it by an appropriate
transformation.

Since the correlation function for the stochastic process model adopted here is
much more flexible than the Wiener process correlation function, it is no surprise
that it leads to a smaller number of function evaluations. The examples given
demonstrate that the difference can be quite substantial.

This difference comes at the cost of a greater computational burden which makes
the method very ineffective if the target function is cheap to evaluate. Further. the
evaluation of the predictor requires the inversion of a correlation matrix of size n.
where n is the sample size. Realistically, this puts an upper bound on the number
of function evaluations that can be analyzed at a few hundred. Since the method
proposed specifically aims to reduce the number of function evaluations needed.
this is not an issue in practice for many problems.

Mockus (1989) used the expected improvement algorithm for a fixed number
of observations and then proceeded with a local optimization technique. The local
optimizer used the minimal sampled function value as a starting value. The ra-
tionale is that locally the stochastic model is less effective, and a steepest descent
model will reach the required accuracy faster. A local optimization technique could
similarly follow on the algorithm that we present.

Finally, visualization of the response function provides insight into the qual-
itative features of the input-output relationship. In an engineering context. this

insight is useful for assessing trade-offs and suggesting new engineering approaches.



Chapter 5

Extensions to Bayesian Global

Optimization

5.1 Introduction

In this chapter we consider several further aspects of Bayesian Global Optimization.
In Section 5.2 we generalize the expected improvement criterion by introducing an
additional parameter. The additional parameter determines how global versus local
the search will be. This will be illustrated with the Goldstein-Price function.

In the outline of the expected improvement algorithm we have always assumed
that we were to sample one point at a time. Section 5.3 relaxes this assumption
and addresses the question of how to sample several points at a time. Again, we
use the Goldstein-Price function for illustration.

In Section 5.4 we consider the problem of finding the global minimum subject

to constraints on additional response variables. An example from the automotive

industry is given.

67
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5.2 Generalized Expected Improvement

The expected improvement algorithm works very well especially when the unknown
function is well approximated by the stochastic process model. Given the corre-
lation parameters, the expected improvement criterion optimally chooses where to
sample one point according to an average case analysis. The paradigm of the aver-
age case analysis, given the correlation parameters, thus ultimately determines the
balance between the global and local components of the search. When the correla-
tion parameters are poorly estimated, an average case analysis is not sensible. and
typically the search is too local.

It is therefore desirable to introduce a version of the expected improvement
algorithm that searches more globally. We achieve this goal in this section by
generalizing the expected improvement criterion to include an additional integer-
valued parameter, g (for global). The larger the value g takes the more globally
will the algorithm tend to search.

If the function is sampled at x to determine y = y(x) then the improvement to

the power of g, I9, is defined as

(n _y)g if!j(f,’,;,‘n

J9 — min ( 5_1)
0 if otherwise
where g = 0,1,2,.... For g = 0 taking the expectation yields the probability of
improvement:
E(I°) = P(z < i) = 2(f )
where f. = &f"—y The probability of improvement has been used as a criterion
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in an axiomatically-based algorithm by Zilinskas (see Torn and Zilinskas . 1989) !.
For g =1,2,... it is possible to show (see Appendix E) that E(I9) is

k=0

E(I")‘S"Z( 1)* (L) e (5:2)

and the T} are given by (see Appendix E)

i=j

—(fmin) [TV Frca O T2 2 4 p7 5 if k is odd

Te =1 (Frmin) (2 — 1) — 6(f i) [S55 Fra P IHEL (20 - 1) + £
(5.3)

if £ is even
Alternatively, the T} satisfy the recursive equation (see Appendix E)
- —¢(f mzn)f mxnk—l + (k - I)Tk-2 (54)

with starting points Ty = ®(f".;.) and T} = ~¢@(f'n;.). This latter equation is
easier to program.

For example, for the special cases ¢ = 1,2,3 and s > 0 we obtain from (5.2):

E(I) = s(fmn®(fin) + $(fmin))
E(’) = 8 ((frin + DO(fmim) + Frind(Fmin))
E(I°) = 8 ((fin’ +3F mia)2(fmin) + 2+ frmin )0 F o))

Of course, g = 1 reproduces the expected improvement derived earlier in (4.7).

1Table 4.2 includes comparisons with two different version of this algorithm
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The case g = 2 is interesting as
E(I*) = [E(])]® + Var(I) . (5.5)

The criterion in (5.5) consists of (a monotone transformation of) the original crite-
rion, the expected improvement E(/), and the variation of the improvement Var([).
The variation tends to be larger further away from sampled points and thus repre-
sents a global component.

There is a tradeoff in choosing between small improvement with large probability
(local search) versus large improvement with small probability (global search). As
g increases larger improvements receive more weight and the search is more global.

In practice the question arises which value of g to choose. There are two indi-
cators that show that the choice of § = 1 may be undesirable: when the diagnostic
plots indicate that the unknown model is poorly approximated by the stochastic
process model even after transformation and/or when the design contains points
which are very close to one another. As g increases the points will spread out nore.
which can be used as a rough guide to what value g should take. The choice of
g = 0, or the probability of improvement, results in a more local search and is prob-
ably not advisable unless one is reasonably certain that the approximate location
of all local optima has been established.

The relative and absolute stopping criteria based on E(/) no longer apply for
the generalized expected improvement. Instead of E(I), we use [E(I9)]'/4 for g > 1.
Since I is nonnegative and /7 is a convex function of I for I > 0. Jensen's inequality
applies and yields [E(9)]*/9 > E(I). Assuming the same tolerances. stopping rules
based on [E([9)]*/9 will tend to sample more points. To avoid possible confusion,

note that /¢ is maximized over x (not /) and that the function is not convex in x.



CHAPTER 5. EXTENSIONS TO BAYESIAN GLOBAL OPTIMIZATION 71

5.2.1 Example: Goldstein-Price Function

In this section we minimize the Goldstein-Price function with g = 2 and g =5
(g9 = 1 was dealt with in Section 4.4.2). We use E(I9)'/9 < .001 as the absolute
stopping criterion on the log scale for all three minimizations. This corresponds to
a relative tolerance of approximately .001 on the untransformed scale. Table 5.1
summarizes the results of both minimizations and the corresponding one for g = 1

that was seen earlier in Figure 4.7 (where the targeted tolerance was .0001). From

| Actual Rel Tol n
g=1 | .006 96
g=2 | .000008 127
g=>5 | .000037 173

Table 5.1: Ln Goldstein-Price Function: Comparison of Minimizations where
g =1,2,5. The Target Tolerance for the Stopping Criterion was .001 in All Cases.
“Actual Rel Tol” Refers to the Relative Tolerance on the Original Scale, “n” to the
Number of Function Evaluations until the Stopping Criterion is Met.

Table 5.1, we see that the number of function evaluations increases considerably as
g increases. However, we attribute this mostly to the problem that the stopping
criterion E(I9)'/¢9 < .001 is harder to meet for larger g values.

The final designs can be seen in Figure 4.7 (for g = 1, first 56 points only).
Figure 5.1 (for g = 2) and Figure 5.2 (for g = 5). With increasing global parameter
the points are more spread out. For g = 5 the optimization does not get initially
stuck in the local optimum as is the case for g =1 and g = 2. On the other hand,
g = 5 also samples many points in areas that are uninteresting in hindsight.

Both for ¢ = 2 and g = 5 the actual relative tolerances obtained are very low,
especially when compared with that achieved for ¢ = 1. The tolerance values are
expected to be lower as the number of function evaluation increases and the more

local the search is (i.e. small g) - provided that the global minimum is found.
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Figure 5.1: Ln Goldstein-Price Function: Initial Experimental Design (Dots) and
Points Introduced by the Sequential Minimization with ¢ = 2 (Case Numbers).

For the Goldstein-Price function, one would probably prefer a minimization
with g > 1, especially since the first few points chosen with g = 1 are very close to
one another.

Incidentally, minimization for the Branir function with ¢ = 2 and g = 5 results
in virtually identical designs except that the points are sampled in a slightly different

order.
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Figure 5.2: Ln Goldstein-Price Function: Initial Experimental Design (Dots) and
Points Introduced by the Sequential Minimization with g = 5 (Case Numbers).

5.3 Sequential Design in Stages

The expected improvement algorithm is a sequential one-point-at-a-time algorithm.
For many applications sampling one point at a time is unrealistic. For one, unless
the sampling can be computer automated it is very time consuming. Second. it
may also be more cost effective to have only a few stages where at each stage a
number of points are sampled. In other words, sampling m points at a time may

be a lot cheaper than sampling at m stages.
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In order to select m further points, generalizing (4.5), we would ideally find

design points X,41,--- ,Xn+m that maximize
Ey,Ey, ... Ey, (In) (5.6)

where 11,Y3,...Y,, are the random variables corresponding to the m point design

and the m-step improvement I[,, over f7. is defined as
Im = maX(O, f“min —Yi,--- Yf"miﬂ. - ym)-

Unfortunately, this is a much harder problem than (4.5) due to the fact that it
involves multiple integrals with normal densities. Rather than computing the inte-
grals numerically, which would be very time consuming, we suggest an alternative
strategy.

We simplify (5.6) in two ways : (a) we compute the expectations sequentially
rather than jointly and (b) we update at each step the estimate of the standard
error o (but not f7...). The two simplifications induce the following expected

improvement at the (n + i)* step :

s (frin®(fin) + 6(f i) i s7F) >0

_ (5.7)
0 if s(*H) =

E(n+i) (I) —

where 2 = 1,... ,mand f. = &'"-";:,ﬂ Note that s(®*) the standard error of

min s(n .

prediction at x,,; depends only on x,;: and the correlation parameters. not on the

(unknown) response. We do not update s(™ in f7. because this would imply that

we know the difference f. — (™ with greater certainty than we actually do and

would lead to an agglomeration of points at one site.
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The first simplification is similar to forward selection in linear regression, in
that instead of computing the optimal subset of n variables, sequentially the best
variable at each step is chosen. Unlike in forward selection, however, where the effect
of the inclusion of any one variable can be fully assessed, the predictor necessary
to compute the expected improvement is only known for the first step. Hence the
second simplification is introduced.

One might argue that this sampling strategy should be used instead of the Latin
Hypercube scheme for selecting the initial set of sampling points. This is not pos-
sible because f'J; cannot be computed. One could use one or two initial starting
points to overcome this problem and then use the sampling strategy proposed in
this section. Unfortunately, this does not work well either. because the true surface
is very poorly approximated with so few points.

The sequential design in stages can also be applied to the generalized expected

improvement methodology. As before with E([), the criterion E(/9) is a function

n
min"®

of s and f’ The expected improvement to the power of g at the i** step can

therefore be obtained from (5.2) where only s is updated :

g
: : N B R
EOI) = (sOY (1| | frin T
k=0 k
where the T). are defined as before.
After the initial function evaluations and before starting a one-point-at-a-time

minimization, it may be useful to generate one stage of the sequential design to

find out whether the search is likely to proceed too locally.
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5.3.1 Example: Goldstein-Price Function

Here we are demonstrating the design in stages with the {n Goldstein-Price Function

where the global parameter is g = 2. After the initial 21 function evaluations we

proceed in stages of 10 points each. The stopping criterion is \/E([?) < .001.
After 13 stages or a total of 151 points the stopping criterion is met. Figure 5.3

shows the final design. After the initial stage, stage 1 chooses points close to one of

Figure 5.3: Ln Goldstein-Price Function: Initial Experimental Design (Dots) and
13 stages of 10 Points Each Introduced by the Sequential Minimization in Stages

with g = 2 (Stage Numbers).

the local optima. One of the points in stage 2 comes relatively close to the global
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optimum. From stage 3 onwards the function value of that point is known and,
as a consequence, stages 3 and 4 sample exclusively around the global optimun.
Actually, stage 4 points are much more closely clustered around the global optimum
than stage 3 points. Due to the agglomeration of points around the global optirnum
this is difficult to make out in Figure 5.3. From stage 5 onwards many of the points
are selected globally, through most of the stages still contain some points near the
global minimum.

Compared to the one-point-at-a-time minimization of the In Goldstein-Price
function with g = 2 in Section 5.2.1, the number of function evaluations has gone
up from 127 to 151. Both minimizations achieve about the same relative tolerance
on the original scale which is smaller than .00001. Overall, the minimization in

stages exhibits a greater spread of points.

5.4 Minimization Subject to Constraints on Ad-
ditional Response Variables

In this section we consider the problem of minimizing a function subject to con-
straints on c¢ additional response variables. A strategy is offered treating the pre-
dictions for the ¢ + 1 respouse variables as statistically independent. The strategy
for the dependent case is outlined and still requires the specification of a certain
covariance matrix (explained further below). In many practical applications it may
be adequate to assume that prediction errors for several response variables are
approximately independent.

Denote the ¢ response functions acting as constraints by g;(x),... ,g9.(x) and
suppose we want to minimize y(x) subject to a; < g;(x) < b; for i =1,2,... ,c.

For example, in the next section we have two measured outputs: one, undesirable
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piston motion, is to be minimized and the other, friction of a piston, may never
exceed a certain value. We define the improvement subject to constraints, [.(x). as
i —y(x) fy(x)< fo.., a; < gi(x) <b; fori=1,2,...,¢c
I(x) =
0 otherwise
where, like in Chapter 4, f7. is the minimum (feasible) y-value amongst the current

7 runs.

The expected improvement subject to constraints can then be derived as follows:

Eygi g2 9.(le) = Ey (Em ----- 9e|!l(Ic))
b be
= Ey (-/G s max(f:,;n - Y, 0) fgl _____ gely dgl ,__dgc)

1 Ge

b, be
= E, (max(f:zin - .7/:0)/0 A faro gely gy - - 'dyc) (5.8)

Equation (5.8) could be evaluated numerically, if the multivariate normal distribu-
tion MVN(y,g1,-..,9gc) was completely specified. The covariance matrix is parti-
tioned, with blocks on the diagonal corresponding to the within variable covariance
structures, given by ¢2;R;, ¢ = 1,... ,c. Unfortunately the off diagonal blocks.
corresponding to the between variable covariance structure, are unknown. It is not
trivial to specify a sensible covariance structure between variables, because it is
difficult to show that the resulting correlation structure is positive definite. It may
be possible to borrow some ideas from the cokriging literature (e.g. Cressie. 1993.
Section 3.2.3).

Treating the variables y,q;,... ,g. as statistically independent, (5.8) simplifies
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to

Eyvgl ----- ge (IC)

= E,(I) H (®g; (b:) — By (as))

i=1,...,c

= Ey(I) Pla1 <G, <b)) Plaz< Gy <b;) --- Pla. <G < b). (5.9)

That is, treating the response variables as statistically independent the expected
improvement is multiplied by the probability that each constraint is met. Equation
(5.9) does not require the between variable covariance structure and can thus easily

be computed.

5.4.1 Example: Piston Application

To illustrate this we will use an example from the automotive industry. We waut to
minimize undesirable piston motion (pmaz) such that the friction of a piston (mnp)
does not exceed a certain value. A piston is a part of the engine in an automobile
that moves up and down in an engine cylinder igniting fuel during every cycle. The
two piston functions are related to two design variables (x-variables).

The piston problem originally included a second constraint as well as three
additional x-variables. For illustration purposes and simplicity we have extracted
the most interesting feature of this problem involving only one constraint and two
x-variables.

Figure 5.4 gives contour plots of of the true objective and the true constraint,
respectively. Since the contour levels for pmaz are irregularly spaced to accentuate
features of the minimization region, we also give a perspective plot of pmaz (Figure

5.5). The actual constraint is mp < 3.
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Figure 5.4: Piston Application: Contour Plot of the True Function for mp (top)
and pmaz (Bottom)



CHAPTER 5. EXTENSIONS TO BAYESIAN GLOBAL OPTIMIZATION 81

Figure 5.5: Piston Application: Perspective Plot of pmaz

As we can see from Figures 5.4 and 5.5, the x-space that meets this constraint
is fairly flat compared to the slope in the lower right corner. The global (uncon-
strained) minimum with pmaz = 30.117 is located at (0.00035, 0.103) outside of the
constrained region. The lowest point in the constrained region is (0.00035.0.214)
with pmaz = 31.323, also a near global minimum. The function has a number of
further local minima.

Initially, we evaluate the function again at 21 sites. Diagnostic plots for mp
and pmaz are shown in Figures 5.6 and 5.7, respectively. The plots indicate mp
is well fit. For pmaz, we can see from Figure 5.7a that a large proportion of

points has relatively low function values. While the overall fit is good, the most
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Figure 5.6: Piston Application: Diagnostic Plots for mp
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interesting points with low function values are poorly fit. Figure 5.7d confirms
this; the cross validated improvements for low function values are somewhat out
of order. We tried several transformations for prmaz none of which improved the
diagnostic plots. We therefore proceed without a transformation, but because of
potential modeling problems we are inclined to use g > 1 for minimization.

For the one-point-at-a-time minimization we use ¢ = 2. The criterion for se-
lecting the next sampling site derived from (5.9) is thus E,.,(/?) P(mp < 3). The
result of the one-point-at-a-time minimization of pmaz subject to the constraint
on mp can be seen in Figure 5.8.

The algorithm explores two local minima intensively. and samples a number of
points in the lower left corner close to the boundary of the constraint where the
response values are also relatively low. The remainder of the function evaluations
are fairly wide spread; they can be interpreted as a global search. Virtually no
points are sampled outside of the constrained region because the constraint is a
relatively simple function and modeled very well.

A total of 89 points were sampled before a stopping criterion with a relative
tolerance of .0001 was met. At this point the actual relative tolerance was smaller
than 1077.

The pmaz = 35 contour line demarks two valleys, which join up in the lower
left corner. One of the valleys contains the lowest function value in the constrained
region and the other one contains the (unconstrained) global minimum. This sec-
ond valley, which we will call the southern valley for reference, falls completely
outside the constrained region. It is very unfortunate that none of the initial 21
function evaluations fall inside the southern valley. Not surprisingly. the valley is
not captured by the model.

We make the minimization problem harder by shifting the constraint from mp <
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3 to mp < 3.5, thus including about half of the southern valley into the constrained
minimization region (lengthwise). The new constrained global minimum is located

on the boundary of the constrained region near the unconstrained global minimum.

x2
0.15 0.20 0.25

0.10

0.05

.
o %
0.0002 0.0003 o0.0b04 0.0b0s o0.0bos 0.0b07 0.0008
x1

Figure 5.8: Piston Application: Initial Experimental Design (Dots) and Points
Introduced by the Sequential Minimization (Case Numbers) for ¢ = 2. Contours
of pmaz and mp = 3 (dotted). The Dotted Contour Line mp = 3 Represents the
Boundary of the Constrained Region.

With ¢ = 2 the minimization fails to discover the southern valley. A more

cautious global search with g = 5 can be seen in Figure 5.9. This search explores
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the southern valley along the boundaries of the constrained region. While the
smallest local minimum in the interior of the constrained region is explored and
several local minima along the boundary are established, the constrained global

minimum along the boundary of the constrained region is not found.
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Figure 5.9: Piston Application: Initial Experimental Design (Dots) and Points
Introduced by the Sequential Minimization (Case Numbers) for g = 5. Contours of
pmaz and mp = 3.5 (dotted). The Latter one (dotted) Denotes the Boundary of

the Constrained Region.

The function values of the local minimum in the northern valley (pmaz =
31.323) and the constrained global minimum along the boundary (pmaz = 31.223)
are very close and the function has been evaluated in the vicinity of both minima.

Since for higher g values we aim to search more globally, it is not surprising that
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the algorithm fails to distinguish more accurately between those two minima.
The relative stopping criterion of .001 is met after 131 observations. At this

point the actual relative tolerance is .003.



Chapter 6

Fast Evaluation of the CDF of the
Minimum of N Dependent

Variables

6.1 Introduction

In this chapter we develop an algorithm for evaluating the cumulative distribution
function for the minimum of N dependent variates, when the mean, covariance. and
possible higher order moments are known. Intermediate steps of the algorithm give
a sequence of (not necessarily nested) lower and upper bounds on the cumulative
probability. This, we show later, can be applied as a stopping criterion for the
minimization algorithms in Chapters 4 and 5.

When it is sufficient to determine whether a specified bound on the cumulative
probability is met, the algorithm will often be able to terminate in a very small

fraction of the time it would be required to compute the exact minimum. Therein

88
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lies the algorithm’s principal strength.

For example, consider the first order statistic (or the minimum) of four vari-
ables, Zi,... ,Z,, denoted by Z,.4 = min(Z,,...,Z;). Suppose one wants to know
whether

P(Zy4<h)<a (6.1)

is true for given h (any real number) and « in [0,1]. We will show that the CDF
probability of ordered variables in (6.1) can be rewritten in terms of CDF prob-
abilities of unordered variables generated by all possible subsets of the variables
21y ..., 2. For example, the CDF probability for the unordered variables Z; and
Zsyis P(Z, < h,Z3 < h). The four variables generate 2* possible subsets of vari-
ables that have to be evaluated. This chapter explains why it is usually sufficient
to evaluate only a small number of these 2* subsets in order to determine whether
(6.1) is true. In fact, in the context of our applications it appears that only uni-
variate, bivariate and occasionally trivariate CDF probabilities need be evaluated
to determine whether (6.1) is true.

This chapter is organized as follows : Section 2 outlines the basic algorithm.
Section 3 applies several modifications to the basic algorithm which improve com-
putational speed considerably. Section 4 makes some algorithmic considerations
including the choice of a suitable data structure. Section 5 gives an illustrative
hypothetical example. In Section 6 we show how a certain first order statistic can
be used as a stopping rule for the minimization algorithm presented in Chapter 4.

Examples are given.
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6.2 A Basic Algorithm

The basic algorithm has three components: First, we show how the cumulative
distribution function of the first order statistic (or, equivalently, the minimum) of
n random variables from any joint distribution can be computed following Maurer
and Margolin (1976). Secondly, we show that by performing the calculations in
a certain order, we obtain successively lower and upper bounds on the cumula-
tive probability. Thirdly, we discuss how to compute the cumulative distribution
functions of unordered variables required for the implementation of Maurer and

Margolin’s (1976) method.

6.2.1 Computing the CDF of a first order statistic

Maurer and Margolin (1976) develop a formula for computing the cumulative distri-
bution function of any subset of order statistics from dependent random variables.
We state their result here for the special case where the subset consists of only the

first order statistic.

Theorem (Maurer and Margolin, 1976) : Let Z = (Z,,2,..... Zn) be a
vector of N dependent random variables and let A denote a real number. Then the

cumulative distribution function of the first order statistic Z;.5 is given as

P(Zyn < h)= Z( 1%+ > P(Ni.(Z. < h)). (6.2)

a=1 H1<f2<...<Ja

This result is a direct application of the inclusion-exclusion formula, in which events

A; are defined as A; = {Z; < h}. In terms of the inclusion-exclusion formula,
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P(Zy.x < h) can be interpreted as the probability that at least one event of {A4;} .
i=1...n,is realized.

It is worth noting that this result is completely general, in particular. it does
not require exchangeability of the random variables.

Equation (6.2) involves joint cumulative distribution functions of subsets of

(unordered) variables. Their evaluation will be considered later.

6.2.2 Upper and Lower Bounds

For notational convenience, denote

Sa = Z P(n:nzl(ZJ'm S h)) .

N <fH<...<ja

Then (6.2) can be rewritten as

N
P(Zin < h) =) (-1)**'S,. (6.3)

a=1

Feller (1968, Chapter 4, equation 5.2) gives formula (6.3) except that he uses
general events A; rather than specific events A; = {Z; < h}. Then. if in (6.3) only
the first ¢ terms are retained (1 < ¢ < N), and the remaining ones are dropped.
“the error (i.e., true value minus approximation) has the sign of the first omitted
term [...], and is smaller in absolute value.” (Feller, 1968. Section IV.5(c)). That
is,

N
By (-1)'S:] < Ser. (6.4)

i=t+1

where t € (1,2,... ,N —1).
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Hence, by omitting terms, we can generate upper and lower bounds on Z;.u,

depending on whether ¢ is even or odd:

t
Z(-1)°+15a < P(Zun <h) t is even

a=1

t
Y (-1)**'S, > P(Zun <h) tisodd (6.5)

a=1

where 1 <t < N.
We will illustrate this by means of an example. Suppose the total number of

variables is N = 3. Then, according to (6.2), the CDF of the 1** order statistic is

given as

P(Z1a<h)=P(Z, Sh)+ P(Z: <h)+ P(Z3 £ h)~P(Z1 <h.Z; <h)
—P(Z1 < h, 23 < h)—P(Z; < h, Zs < h)+P(Z, < h,Z2 < h, Za < h) = 51— 52+ 55

After the computation of the univariate CDF’s we have an upper bound
0< P(Z,3) < 5.
The computation of S, leads to a lower bound
51— 852 < P(Z3) < 5.

and finally the computation of S3 leads to the answer 5; — S, + 53 (¢ odd in (6.5)
with equality). If there were more than three variables, the computation of S3
would lead to a new upper bound replacing the old one, S; to a new lower bound,

and so forth.
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6.2.3 Evaluating the CDF of a Multivariate Distribution

The algorithm described in this chapter only depends on the multivariate distribu-
tion of the random variables in that a function calculating the CDF of the multi-
variate distribution (of unordered variables) has to be supplied.

If a direct evaluation of a multivariate CDF is not possible, it is always possible
to calculate the CDF using a Monte Carlo technique. That has the advantage that
the variance of the estimate does not depend on the number of dimensions but
rather on the sample size used in the simulation. Depending on the distribution at
hand, there may be other approaches, too.

In the special case of a multivariate normal distribution, a strategy to evaluate
the multiple normal integrals does exist (Schervish. 1984) but is computationally
too costly. Dedk(1980) proposes a sophisticated modification of the Monte Carlo
approach, which is our method of choice. Dedk’s (1980) approach is described in
detail in Appendix F.

It turns out that the algorithm proposed below only uses the evaluation of the
CDF of the bivariate and occasionally the trivariate normal distribution. since so
far the algorithm has terminated in all cases before any 4-variate or higher normal
distribution would have been needed. The CDF of a univariate normal distribu-
tion can be evaluated directly (e.g. Press et al., 1992, Chapter 6). A more careful
implementation of the algorithm might also incorporate methods for the bivariate

and trivariate cases, thus avoiding Monte Carlo techniques completely.
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6.3 Reducing the Number of Terms to be

Evaluated

For practical purposes, the basic algorithm is still not very useful as it requires
an immense amount of computations when the number of dimensions is large. The
number of CDF probabilities to be computed for N variables is 2V —1. The number
thus grows exponentially as a function of N.

In this section we offer two modifications of the basic algorithm, which drasti-

cally reduce the number of probabilities to be evaluated. For later reference we will

call them Reduction 1 and Reduction 2.

6.3.1 Reduction 1

For the first reduction we exploit the fact that
P(A,B) < min(P(A4), P(B)) (6.7)

where A and B are two events. An event may consist of more than one condition.
eg. A={Z, <h,...,2Z, <h}, where a is the cardinality of s.

For example, suppose for an arbitrary subset of variables s we find that
P(A)=P(Z,, < h,... . Z,, < h) <e§,

where ¢ is small. Then all CDF probabilities P(A, B;), where B; is an arbitrary
event, i.e. all CDF probabilities of sets of variables that contain s as a subset. are
smaller than e. Provided e was sufficiently small to be considered negligible. none

of them needs to be computed.

In the above example, only one set was used to determine whether the subset
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need be computed. To fully exploit (6.7), we want to consider all possible subsets,

since
P(Ni_; A;) < I‘Délg P(Nje.Aj) (6.8)

where A; are events, S is the set of all (proper) subsets of the set of variables of
interest. Rather than considering all possible subsets S, it suffices to consider all
subsets of size n — 1 because

mip P(Nje,Aj) = mip  P(Niess A5) (6.9)

n-1 esn—l

where S,_; is the set of all subsets of size n — 1.
We will now show that (6.9) is true. Since S,.; C S, the left hand side of (6.9)
is smaller or equal to the right hand side. For an arbitrary s* € S there exists

8% _y € Sy such that s* C s;_,. Hence
P(Njesr Aj) 2 PNica;_ Ai)

Hence the left hand side of (6.9) is greater or equal to the right hand side. Therefore
(6.9) holds.

6.3.2 Reduction 2

Suppose one is interested in knowing whether P(Z;.y < h) < a is true, rather than
evaluating P(Z;.y < h) exactly. Roughly speaking, the second reduction exploits
the fact that in order to determine whether P(Z,.xy < h) < a is true it may suffice to
compute P(Z;.pr < h), where M < N and Z,,...,Zp form a subset of Z,,... ,Zn.

For joint probabilities of a number of events we were able to obtain an inequal-
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ity (6.7) by noticing that as we increase the number of events the joint probability
cannot increase. The operators “Joint Probability” and “Minimum” behave in the
same way: For the minimum of a number of variables as we increase the number of

variables the minimum cannot increase either. Analogously to (6.7) we have
min(Sr, S\sr) = min (min(Sy), min(Swar)) (6.10)

where Sy and Sny\ar represent sets of variables and Sy = Sa + Syyum. Due to

idiosyncrasies of the operator “Minimum” in (6.10) equality is attained when the

two inequalities min(Sy) < min(Sy) and min(Sy) < min(Sy\ar) are combined.
Moreover, the CDF probabilities for the minimum at a given h cannot decrease:

P (min(Z;) < h) > min [P (min(Z;) < h) P ( min (Z) < h)] .

€SN iE€Sar 1I€SN\Af
(6.11)

We rewrite (6.11) for ease of notation with the minimum replaced by the first
order statistic and drop the second argument of the minimum on the right hand

side:
P(Zy.n < h) > P(Z1.m < h). (6.12)

Suppose we knew whether P(Z,; € h) > a is true for a subset of ¢ variables.
Then this knowledge may bear relevant information about whether P(Z,;.y < h) > a

is true:

P(Zyi <h)>a, hence P(Z;;y < h)>a
P(Z,: < h) < @, no relevant information ,

where Z;.; is the first order statistic of a set of 7 variables nested in the set of N
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variables. If knowledge about P(Z;; < h) > a can be obtained before P(Z,.x < k)
is fully evaluated, then the remaining calculations may no longer be necessary. If
it is possible to gain that knowledge at no additional cost then this is useful.

As will be shown later, one can arrange the order in which the individual com-
ponents of P(Z,.y < h) are calculated such that whether P(Z,; < h) < a is true
or not is known before all individual components of P(Z;.y < h) are evaluated.
Moreover, it 1s possible to successively determine whether P(Z,; < h) > « is true
for all variables : = 1... N. While this does put constraints in the order of evalu-
ation of the individual components, it also comes at no additional computational
cost except for some book keeping.

A situation in which we are interested in knowing whether P(Z,.y < h) < a is
true or not, might arise, for example, if we are interested in whether a critical value
or significance level is met. If we perform a sequence of significance tests until the
significance level is met, then P(Z;.y < h) > a holds except for the very last test.
when the significance level is actually met. That means that the above reduction
is going to be useful every single time except the last time.

Not only do Reductions 1 and 2 reduce the number of CDF probabilities to be
calculated. The probabilities avoided are those for higher dimensions, which are

more computationally intensive.

6.4 Algorithmic Considerations

In this section we motivate the choice of a tree-based data structure. We explain
how the data structure lends itself to implementation of the two reductions. An
algorithm for the computation of the first order statistic is outlined.

N variables generate 2V different subsets of variables, including the empty set.
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Figure 6.1: Generating All Possible Subsets of Four Variables in a Tree Structure

We arrange all subsets into a tree, whose root branches out into all N univari-
ate CDF'’s, the univariate branch’s generate all bivariate CDF’s, these in turn all
trivariate CDF’s and so forth.

Figure 6.1 depicts a tree for N = 4 variables. The root at level 0 is denoted
by a 0, level 1 contains all the univariate CDF’s, level 2 below contains all the
bivariate CDF’s, and so forth. At any given level 7, the ¢ variables corresponding
to a particular branch are given by that branch’s number, and all numbers of that
branch’s parent, grandparent, great-grandparent etc.

There are several reasons why we choose a tree structure over. for example. a

list. These reasons fall into two categories : memory requirements and cpu-time.

e (Memory) For any joint probability of ¢ variables, only the label of the last
variable has to be stored. For example, in Figure 6.1, for the joint probability

for the variables 1 through 4 only the label ‘4‘ is depicted in level 4.

¢ (Memory) Not all joint probabilities have to be created (that is, stored). If
according to reduction 1 or 2 some probabilities are not needed, their indices

do not have to even be created in the tree. This is further illustrated in the
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examples.

¢ (CPU-time) The ordering of a tree structure makes it very easy and fast to
exploit part of reduction 1 (checking of one subset of size n — 1). In a list

structure, extensive searches have to be done to implement reduction 1.

o (CPU-time) Any particular element can be accessed fast, which is relevant for
the implementation of the remainder of reduction 1 (checking of the remnaining
n — 1 subsets of size n — 1). A joint probability of 7 variables can be accessed
in ¢ steps. Assuming that a search mechanism is necessary for each level in a

list, up to N choose 7 elements have to be searched in level 1.

It is easy to lose the basic structure of an algorithm when too many details

obstruct the view. For this reason only a bare-bones algorithm is given in Figure

6.2.

6.5 An Example Based on Hypothetical Data

We base this example on 4 variables. The tree structure for this situation is depicted

in Figure 6.1. Assume that a = .05 and we want to decide whether P(Z;4 < h) > a.
Furthermore, suppose that P(Z, < h) < €, P(Zy < h) = .3, P(Z: < h) < e.

and P(Z4 < h) =.5. Also, suppose S, = .25.

Basic Algorithm

Each level generates a new bound. All the univariate CDF’s on level 1 constitute

S1 and hence generate the first upper bound. All the bivariate CDF’s on level 2

generate S,, and S§) — S, forms the first lower bound. The trivariate CDF’s generate

a new upper bound, and so forth.
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1=10 initialize the number of variables
DO construct tree with i variables
1=1+4+1 increase the number of variables
J=0 initialize the current level (of the tree)
DO
I=7+1 increase the current level under investigation

calculate S; compute probabilities on level j (descendants
from i variables)
adjust lower/upper bounds for i variables by S;
UNTIL (lower bound > a OR upper bound< a
OR full tree for i variables searched)
UNTIL (¢ = N OR lower bound > a )
IF (lower bound > a) THEN 1% order statistic > a
IF (upper bound < a) THEN 1% order statistic < a
IF (= N AND N is odd) THEN 1* order statistic = lower bound
IF (: = N AND N is even) THEN 1* order statistic = upper bound

Figure 6.2: Algorithm for Computing the First Order Statistic

The sum S, can be calculated to be S; ~ .8. Then S; — S» >~ 0.55. Since
S1 — S, constitutes a lower bound, and the lower bound is greater = .05. no
further calculations need to be done. That is the 4 trivariate and the 4-variate
CDF do not need to be calculated.

Basic Algorithm with Reduction 1
If at any given node the corresponding CDF is smaller than ¢, all descendents of
that branch will have a CDF smaller than € and will thus all be ignored.

All four univariate CDF’s have to be evaluated as well as the bivariate CDF cor-
responding to variables 2,4. The remaining 1,1 CDF’s don’t have to be evaluated.
All but one of them are either descendants of variable 1 or 3 (Reduction 1). or they
are in level 3 or higher (level 2 is a bound), or both. The CDF corresponding to

2,3 does not have to be evaluated because it contains 3 as a subset, even though
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2,3 is not a descendant of 3.

Basic Algorithm with both Reductions

Reduction 2 states that rather than computing all CDF’s for all N variables, it may
suffice to look all CDF’s for a smaller number of variables. Hence we first look at all
CDF'’s corresponding to the first variable, then at the ones for the first 2 variables.
and so forth.

We start out just considering variable 1. Since P(Z; < h) < ¢, we need to in-
crease the set of variables. We consider variables 1 and 2. We only need to compute
P(Z; < h), since P(Z, < h) is known already and the bivariate probability need
not be calculated. Since P(Z,., < h)) = .3 > a, we know that P(Z,4 < h) > a.
too. Hence, after evaluating only the two univariate probabilities for variables 1
and 2, we are done.

Note that if any one of the univariate probabilities is greater than a we know
that P(Z,.4 < h) > a holds. This suggests reordering the variables in order of
decreasing univariate CDF probability. The ordering of N variables however would
come at an additional cost proportional to Nlog(/N). Incidentally. looking at umni-
variate probabilities, the reordering of variables. or. more generally. the idea of
splitting a set of variables into subsets in different ways is related to fully exploit-
ing (6.11) (rather than dropping one of its arguments) and is also analogous to (6.8)

in Reduction 1.

6.6 Application: A Stopping Rule Based on a

First Order Statistic

In this section we argue that a certain first order statistic can be used as a stopping

rule for the minimization algorithm presented in Chapter 4.
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In Chapter 4 we based the stopping rule on the expected improvement. We

would stop the algorithm when one or both of the two following criteria are met:

max,(E(I)) < (Absolute Tolerance)
maxy(E£([))
lff?xinl

< (Relative Tolerance)

where maxx(E(I)) is the maximum expected improvement at any given step.

This stopping rule has some undesirable properties. First, we cannot guarantee
that the maximal expected improvement has been found. Therefore we may base
the stopping criterion on a smaller number than we should, which would tend to
lead to a premature termination of the algorithm.

Second, the fact that we always use the mazimal expected improvement rather
than expected improvement at a given point constitutes a multiple comparison
problem. On average, the observed improvement is much smaller than the (maxi-
mal) expected improvement. This would then lead to a too conservative stopping
rule, that is the stopping rule would terminate too late. The tradeoff between these
two issues is unclear. In either case, both premature and late termination of the
algorithm are undesirable.

Third, knowing that the improvement over the current minimum f., is on
average smaller than a tolerance value may not be very satisfactory for a particular
stopping problem. The decision to stop is made only once and may require a more
conservative approach.

Rather than basing the stopping rule on the expected one-step-ahead reduction
in the target function, it may be conceptually more appropriate to base a stopping
rule on the difference between the current minimum f?. and the global minimum.

Unfortunately the global minimum is unknown and it is not possible to obtain a
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lower bound on the global minimum without making additional assumptions such
as the existence of a Lipschitz condition with known Lipschitz constant (see also
Betro, 1991).

Alternatively, one might ask : What is the probability that the global minimum
and f*

7. are no farther apart than a tolerance value & for this particular problem?
Our alternate Stopping Rule proposes to stop when this probability is very small,
i.e. when

P(Global Minimum < f2.. ~ &) < perit

where 4 is the tolerance value with § > 0, and p;; in [0,1] is a critical value.

It is not clear how to calculate the distribution of the minimum over a continuous
region. Therefore, we simplify the problem by discretizing it: we consider a large
number of points N that fill the continuous space well. The distribution of the
global minimum then becomes the distribution of the first order statistic of N
points.

In other words, the decision to stop sampling is made when

Fyy o (fmin — ) < Perit

where Y}.» denotes the first order statistic of Y3, Y2, ... . Ya. Typically, p..;; = 0.01.
Theoretically, it makes little sense to set § = 0. Unless f7. happens to be
a local minimum in the modelled function, one is guaranteed to beat fI... in its
immediate vicinity. Practically, unless some of the discrete points are extremely
close to one another, the choice of § = 0 is fine.
The problem of computing the first order statistic of dependent random variables

with known moments has been considered in this chapter. For this application

we are interested in the special case of the first order statistic of a multivariate
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normal distribution. Recall that all points Y are assumed to be distributed as a

multivariate normal distribution
Y ~ MVN(Y,Z).

We calculate the first order statistic of a regular grid with 10 points in each
dimension (i.e., for each explanatory variable). The 10 points are equally spaced
between the lower and upper bound in each dimension, and include the bounds
themselves. Depending on the number of explanatory variables the task to compute
the first order statistic of the grid points can be quite formidable. When there are
two explanatory variables, the grid contains 100 points, six explanatory variables
already leads to a grid with 1 million points.

The time that is needed to compute first order statistics depends very much
on the data, and specifically on whether higher order CDF probabilities need to
be calculated or not. We have calculated first order statistics using the algorithm
outlined in this chapter with up to ten thousand variables. That means that from
about four dimensions onwards it becomes too time consuming to compute the first
order statistic every time.

In six dimensions with 1 million points, if the stopping rule is met we still need
to evaluate all 1 million univariate CDF probabilities. That in itself is too time
consuming. Further reductions therefore must contain a reduction in the number
of grid points. For example, it may be possible to determine a priori areas in the
d dimensional space which are unlikely to lead to an improvement and then to

disregard grid points that fall into these areas.
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6.6.1 Examples: Branin and Goldstein-Price function

We now give examples for the use of the first order statistic as a stopping criterion.
The first order statistic is calculated each time after a new point is sampled. The
stopping criterion is met when P(Z,.y < f2..) < a. In fact, we require that the
stopping criterion be met three times in sequence to be on the safe side.

For both the Branin and the Goldstein-Price function we use a 10 x 10 Grid, i.e.
N =100, e = 107!°, a = .01, § = 0, and the Monte Carlo sample size for bivariate
and Iﬁgher order CDF probabilities is 1000.

The result for the Branin function can be seen in Table 6.1. Without the
reductions and bounds introduced in this chapter, the computation of each order
statistic would require the evaluation of 2! — 1 CDF probabilities. It turns out
that only univariate probabilities need to be evaluated. For observations 21 through
25 a single univariate probability exceed «, so that the stopping criterion could not
be met. From observation 26 onwards the stopping criterion was met. Only a very
small number of the univariate CDF probabilites exceeded e.

The algorithm terminates after sampling 28 points, compared to 33 points with
the tolerance stopping criterion in Table 4.1. It is difficult to compare the two
stopping rules in terms of number of function evaluations. For the first order
statistic a finer grid may increase the function evaluations. Likewise, a greater
tolerance value would decrease the number of function evaluations for the tolerance
criterion.

Results for the Goldstein-Price function are presented in Table 6.2. The stopping
criterion is reached after a total of 99 points as opposed to 106 with the tolerance
stopping rule in Table 4.1. The first few order statistics are evaluated very fast
since in each case there is a single univariate CDF probability greater than a. All

but one of the remaining order statistics are evaluated in under five minutes of
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Sample wuniv. univ.>¢ univ.> a CPU-time f....
Size _count count (sec
21 17 2 * .5 5.246
22 10 2 * 4 3.586
23 18 4 * 5 2337
24 52 3 * .8 0.582
25 52 3 * 9 0.513
26 100 2 1.3 0419
27 100 2 1.4 0.430
28 100 1 1.5 0.400

Table 6.1: The First Order Statistic Stopping Criterion Applied to the Branin
Function: “univ. count” is the Number of Univariate CDF Probabilities Evaluated;
“univ. > € count” is the Number of Univariate CDF Probabilities Evaluated that
are Greater than 1071%; “univ. > a” is an Indicator Whether a Single Univariate
CDF Probability is Greater than a. The Full Grid has 10 x 10 = 100 Points. a is
0.01, eis Set to 10-1°, and 4 = 0.

CPU-time. One order statistic (at sample size 95) requires the evaluation of nearly
16000 trivariate CDF probabilities and takes 2 hours of CPU-time. The aim of a
more careful implementation of the algorithm should be to avoid if possible the
calculation of trivariate and higher order probabilities.

It is interesting to see how the number of univariate CDF probabilities required
jumps from 55 at sample size 36 back to 2 at sample size 37. This is a consequence of
changes in the mle-estimates of the parameters. It happens that with the new mle-
estimates one of the first two points on the grid has a univariate CDF probability

greater than a.
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Sample wuniv. biv. triv. univ.> € univ. > @ CPU-time ™ in
Size count count count count sec
21 33 10 * .2 4.3653
22 43 13 * .2 4.3653
23 43 21 * .2 3.5031
24 43 21 * .2 3.4610
25 43 12 * .2 3.4610
26 43 13 * 3 3.4610
34 54 105 15 15.3 3.4381
35 55 120 16 17.5 3.4287
36 55 120 16 17.3 3.4287
37 2 2 * 0.3 3.4287
38 7 21 7 3.3 2.3954
39 9 36 9 5.5 2.3954
40 9 36 9 56 2.3954
79 11 55 11 10.0 1.0989
80 12 65 165 12 75.6 1.0989
81 12 66 12 12.2 1.0989
82 17 136 17 24.2 1.0989
83 17 135 560 17 243.6 1.0989
84 16 120 16 21.1 1.0989
94 51 780 40 148.8 1.0989
95 70 1539 15950 56 7192.2 1.0989
96 70 1540 56 296.9 1.0989
97 100 15 3.8 1.0989
a8 100 15 44 1.0989
99 100 15 4.1 1.0989

Table 6.2: The First Order Statistic Stopping Criterion Applied to the Goldstein-

Price Function:

“univ‘

count” is the Number of Univariate CDF Probabilities

Evaluated; “biv. count” is the Number of Bivariate CDF Probabilities Evaluated:

“triv. count” is the Number of Trivariate CDF Probabilities Evaluated;

“univ.

> € count” is the Number of Univariate CDF Probabilities Evaluated that are
Greater than 107'%; “univ. > &” is an Indicator Whether a Single Univariate CDF
Probability is Greater than a. The Full Grid has 10 x 10 = 100 Points. a is 0.01,
and €is Set to 1071°,



Chapter 7

Concluding Remarks

In this thesis we have been considering the problem of finding the global optimum
of expensive-to-compute computer models with few function evaluations. We have
achieved this goal at the cost of a considerable computational burden. Optimization
starts taking a long time when several hundred observations are needed until the
stopping criterion is met. The three major time consuming factors are in decreasing
order: the computation of the maximal expected improvement over the range of x.
the maximum likelihood estimation of the parameters, and the computation of the
first order statistic when used as stopping criterion.

Having said that, for most industrial applications a large number of runs is
probably unrealistic. Also, the goal of many industrial applications is not exact
optimization but rather a good design that is noticeably better than the previous
one. For example, for one application in chemical engineering we are currently
looking at, the engineer is interested in reviving a former experiment if, based on
previous data, it looks as though we can find a design site with a response value
several percent higher than the best previously known one.

The computation of the first order statistic of N dependent variables has been
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greatly speeded up using the two reductions and the bounds. However, in order
to use it successfully as a stopping criterion and to use it in higher dimensions,
further time reductions need to follow. Given all the knowledge about the function
gained through the computation of the first order statistic, one wonders whether it
might be possible to use this knowledge in deciding on the next sampling site, thus
replacing the expected improvement criterion.

The identification of nonlinearities and interactions in Chapter 3 is useful in a
broader context than just global optimization. It would be nice to be able to give
explicit rules as to how to use standard errors in the identification of key features.
This is likely a difficult task.

Theorems 1 and 2, despite their inconspicuousness, are quite powerful due to

their generality. They include many special cases, e.g.. interactions.



Appendix A

On Programming

Here we give a brief overview over the major components that a computer program

must contain for design, analysis, and minimization of computer models. The

components are :

e Latin-Hypercube Design
The initial set of points are designed by a Latin-Hypercube Design.

¢ Parameter Estimation

The parameters p, 8, 3, and o? are estimated via maximum likelihood.

e BLUP and MSE
The best linear unbiased estimator and the mean squared error are computed

at a new input x.

e Cross-Validation
The cross validated BLUP and MSE are computed for all design points.

e Visualization

Main effects and joint effects (or interactions) are computed.
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e Minimization
This includes both minimization in stages as well as point-by-point minimiza-

tion.

o (optional) First Order Statistic of a Multivariate Normal Distribution
This is only needed when the first order statistic is used as a stopping criterion

for the minimization.

SPACE (Stochastic Processes Analysits of Computer Experiments) by Matthias
Schonlau has implemented these steps with the exception of the Latin Hypercube
Design. The program contains more than 10000 lines of C code and in line com-

ments.



Appendix B

Addendum to Section 3.3

Here we prove Theorems 1 and 2 from Section 3.3 and give an example of how they
can be applied to estimating effects such as main effects and interactions.
Theorem 1: The best linear unbiased predictor (BLUP) of ¥; b:;Y; is 5; b:;Y (x:).
Proof: Let Y denote 3; b;Y(x;) and Z denote ; b;Z(x;). As before in Section 3.3
we define b = (by,bs,... ,by), f = T 0f,., and £ = ¥, bir,...

For any linear predictor cty of Y the mean squared error of prediction is :

E(cly-Y) = E [c‘yy‘c +7? - 2c‘yf’]
= E[c(FB +2)(FB +2)'c+ (B +2)
-2c!(FB + z)(*B + 2))
= (c'FB —f'8)? + c'¢’Rc + o’b‘Rb — 2¢'a’F
= c'o’Rc+o’b'Rb - 2c'o’F . (B.1)

The last equation follows from the unbiasedness constraint Ft ¢ = f.

Introducing k Lagrange multipliers A for the k equations Ftc = f and taking
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the derivative with respect to c in (B.1) yields
o’Rc—o’r -FA =0

Together with the unbiasedness constraint we have a system of two sets of equations

in the two unknown vectors ¢ and A :

d’Rc—FX = o’F (B.2)
Fie = . (B.3)

This can be solved for c to yield the best linear unbiased predictor:

i o B\ [o
j(x) = c'y = (£*.F) ( ) ( ) : (B.4)
F R y

This can also be written as
Zb‘y‘- =8 +FR Yy -FB) = Zb,-ff(x) : (B.5)

where 8 = (F*R-'F)~'F*R"'y is the generalized least squares estimator of 8. O
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Theorem 2: The Mean Squared Error of Zb,-f’,- is

¢ -1
. f 0o F
MSE(E bY;) = 0'2 b‘Rb — ( ) ( )

r F R

Proof: Using (B.2) first and then (B.3), equation (B.1) can be written as :

E(cty - Y)? = c'o’Rc + o’b'Rb —2c’0%F
= o2 (c*(f - FX) + b'Rb — 2c'f)
= o2 (f'\' + b'Rb ~ c'f) (B.7)

Working backwards and using (B.2) and (B.3) simultaneously we have:

t -1
£ 0 Ft f
af b‘Rb —
r F R r

t t
f A _
= 0'3 b‘Rb — ( ) ( ) = 0.3 [btRb —ft — Ctl-'] (B.8)

el

c
which is the same as (B.7). O

The expressions in equation (B.6) are easy to evaluate if

1. the correlation function R(X;,X;) is a product of correlations in each x vari-
able,
R(xl, XZ) = H R_.,-(:z:g-”, 2)‘(7-2)),
b

where z?) denotes the value of the j** z-variable for point x;, and
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2. the points representing the space of the variables integrated out, xf,t,)t, ceey xf,':t),

are a grid. Without loss of generality, suppose x,,, is the first ¢ of the z vari-
ables, z,,... ,z,, and the grid of x,,, values is

{z(l) .. (ml)}® ® {z(l) . (mq)}

where zg-i) is the #** grid value for variable z;, and Hf=1 m; = m.

For example, if these conditions hold, b*Rb in (B.6) becomes

B'RD = 3 bibi R ((Xeftots X0uk): (Xettect: Xbut))

(
= R(xeﬂ'ect’xeﬁ'ect) Z bibi'R f):}t xotul
i’
Since R(X gecrs Xegrece) = 1 this gives

b‘Rb = be R(z?,z{) .- R(z{, z(). (B.9)

In the case of main effects and overall effects of two or more variables, b; = 1/m.

i.e., constant, and the sum of products in (B.9) can be written as a product of
sums.

The computation of T is similar to (B.9). Because we restrict the terms in f(z)

to be polynomials z{* ... £3¢, i.e., a product in each of the z variables. the weighted

averages f are also simple to compute.

For a simple example, Table B.1 gives the coefficients b;, = = 1...m, needed for
Theorems 1 and 2 for various effects. The example is based on three variables with

2 levels each, 1.e. m = 8. Each row contains the coefficients for one level of an
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Ly Iz I3 ME I ME T2 JE Iy,T3 IE I,,T2

0 1 |0 1 |00 01 10 11 00 01 10 11
0 0 0].25 .25 -9 125 -125 -.125 125
0 0 11.25 .25 5 A28 -125 -.126 125
0 1 01].25 .25 ;) =125 1256 125 -.125
0 1 11.25 .25 .9 -.125 125 125 -.125
1 0 O 25 [ .25 ;) =125 125 125 -.125
1 0 1 251 .25 9 -125 125 125 -.125
1 1 0 .25 .25 S| 126 -126 -125 125
1 1 1 .25 .25 S | 125 -125 -.125 (125

Table B.1: Coefficients for Main Effects, Joint Effects and Interactions for the Use
of Theorems 1 and 2 Based on a 2 x 2 x 2 Grid on three Variables. “ME™ Denotes
Main Effect, “JE” the Joint Effect or Overall Effect of Two Variables. “IE” the
2-factor Interaction. The Two Levels of Each Variable are Denoted by 0 and 1.
Coeflicients that are Zero have been Omitted.

effect. For example, the joint effect for z,,z, at z, = 1 and z, = 0 is given in the

third column of the four joint effect columns.



Appendix C

Proof of Theorem 3

We prove Theorem 3 from Section 4.2.

Theorem 3 : Suppose we use the Gaussian model (4.1) and the covariance func-
tion (4.2) is such that the mean square error of prediction in (4.4) is positive for
any unsampled point x. Further, suppose the number of possible sampling points is
finite. Then the expected improvement algorithm will visit all the sampling points
and hence will always find the global minimum.

Proof: At already sampled points s equals zero, and therefore the expected im-
provement at points already sampled is zero (see equation 4.7). At points not
previously sampled s is strictly greater than zero; and hence so is the expected
improvement. This can be seen from (4.5): in the range of y € [~oo, f2,.) the
argument f2. —y is always positive, and since ¢(.) is non-degenerate ¢(y) is pos-
itive for y € [—oo, f'min)- Note we have used the fact that the tails of the normal
distribution do not drop to zero.

Then, as long as there are unsampled points, the algorithm will never sample a
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previously sampled point. Since the number of points is finite, the algorithm will
sample all points and the global minimum will be found. O

It is interesting to note that the proof does not require that the maximal ex-
pected improvement is found at each step (as long as the expected improvement
found is positive) nor does it require that the unknown function is approximated

well by the Gaussian stochastic process.



Appendix D

A Splus Function for the
Visualization of High Dimensional

Data

In this Appendix we give a Splus function that produces graphs for the visualization
of high dimensional data like the one in Figure 4.12.

The function takes one parameter, a, that determines the amount of overlap
among the lines. Individual lines on graphs with more overlap are harder to distin-
guish. On the other hand more overlap makes it possible to detect finer similarities
for groups of lines. The value a = 1 translates to no overlap with other lines,
a = 3 means overlap with the two neighboring lines, and so forth. Figure 4.12 was

produced with a = 3.

visualize <~ function(x, upperrange = 0, priorobs = 0, alpha = 3)
{

#upperrange: upper limit of desired x-range

#priorobs: number of obs before this plot (for label of x axis)
#alpha: stretch factor of differences to the left and right
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# (alpha=1 corresponds to no overlap of lines)

# 50 obs works well with alpha=1

# 100 obs needs alpha= 2 or 3 to see differences in lines
n <- nrow(x)
d <- ncol(x)

y <- matrix(rep(0, n * (d + 1) * 2), n * (d + 1), 2)
for(i in 1:n) {
y((d + 1) = (i - 1) + 1, 1] <- priorobs + i
y{(d+1) = (1 -1) +1, 2] <-0
for(j in 1:d) {
temp <- diff(range(x[, jJ))
y((d + 1) = (i - 1) + j + 1, 1] <- priorobs + i +
(alpha * (x[i, j]l - 0.5 * temp))/temp
yld +1) = (4 -1) +3j+1, 2] <-j
}
}
i <- 1 # set range up for plot
yi.range <- range(y[, 1])
if (upperrange != 0) {
y1l.range[2] <- max(upperrange, y1.range[2])
}
y2.range <- range(y[, 21)
plot(y[((i - 1) = (d +1) + 1):(i = (d + 1)), 1],
yI(E - 1) * (d+1) +1):(4 = (d+ 1)), 2],
type = "1", xlim = yl.range, ylim =
y2.range, xlab = "Observation", ylab = "Dimension'")
for(i in 2:n) {
lines(y[((i - 1) » (d + 1) + 1):(i = (d + 1)), 1],
yICE - 1) * (d+1) +1):(d * (d+ 1)), 2])



Appendix E

Derivation of the Generalized

Expected Improvement

In this Appendix we derive the equations (5.2), (5.3) and (5.4).

We can rewrite the improvement given in (5.1) as

otherwise

oo { ([ rin = 2V if 2 < foin and s >0
0

n_ _4g
where z = L}L and f7. = {min~¥

min P

For s > 0, taking the expectation yields

E(If) = sg/ "'"Z( 1) ( ) . .q—k L¢(z)z

k=0

= s"Z( 1)‘( ) frrw T

k=0
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where

f':u'n
T, = [ *¢(z)dz.

—co
We now calculate T}, using the partial integration technique, splitting the integrand
up into 2*°! and z¢(z) = —¢'(2):

T, = [ k=14(z )]!"'" - 1)/_:';‘” 2*72¢4(z)dz
= —f i H(frin) + (k= 1)Tees

This establishes the recursion formula. Since T is a function of T}._,, two starting
values, £ = 0 and k = 1, are needed:

Facl

Too= [ gla)dz = 8(f)

. ;2 f'min
[ oyt = - [y

T,
1 oo \/5;

—0c

We now prove by induction that (5.3) solves the recursive formula (5.4). The
proof is split up into two cases : k is odd, and k is even.
Case 1 : k1s odd.
The initial step for k£ = 1 can be easily verified. For the induction step:

=b(fmin) i+ (k= 1) Ty
= —¢(fr:‘nin)f’:1ink‘1
(k=3)/2 (k=3)/2
_'¢(f rrnn (!"— 1 [( Z fm:nZ(J-l) H 27') +fl::unL 3]

i=j
(k-3)/2 (k=1)/2

= (i) [f':.;n"“1+(k—1)f';ink‘ ( PO R | | 2)}

i=1 i=j
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(k—-1)/2 2(i—1) (k-1)/2
s ,,,)[';,n (z Tl 21)]=
j=1

Case 2 : kis even.

The initial step for £ = 0 can be easily verified. For the induction step:

_¢(f m:n)f min (A‘ - I)TL—Z

(k/2)-1

= — (i) i T+ (k=1) [ (2 = 1DE(f )

=1

pg (21 pog 1271) T
= ¢(f'min) [( “Df i+ 2 (-DF7T ]I (2i-1)
=2 i=j

-

k/2 e L T
= () 16— 1)~ 87 ) [ T ST g
=2

=1 i=3 ]



Appendix F
Deak’s algorithm

Deédk (1980, 1986, 1990) presents a modification of the Monte Carlo Method to
evaluate multivariate normal integrals. Specifically, he reduces the dimensionality
from » to n — 1 through a clever transformation which allows for easy exact evalua-
tion of one of the integrals. Furthermore, he makes use of the concept of antithetic
variables twice, once in the context of orthonormalized estimators. We will now
present the method in more detail.

Denote by f the indicator function

flx) =

0, otherwise

{1, ifx < h

where x is distributed as a multivariate normal vector, and h is the vector of
bounderies.

We are interested in calculating p

p=P{x<h}= / . [R F(x)d®(x) (F.1)

124



APPENDIX F. DEAK’S ALGORITHM 125

where ® is the CDF of the multivariate normal distribution. A simple unbiased

Monte Carlo estimator of p is then given by

1 N
91=1_V‘Zf(x£),

=1

where x; is a realization of x. A realization can be computed easily with Tq =
x, where T is the Choleski decomposition of the covariance matrix R such that
TT = R, and q = (q1,92,-.- ,9:) whose components are independent N(0.1)
random variables.

Dimensional reduction and antithetic variables

Further, q can be written as q = £z , where k is a x distributed random variable
with n degrees of freedom and distribution function F,. The vector z is uniformly
distributed on the surface S of the n-dimensional unit sphere (see also Rubinstein.
1981, p.89). Thus

+20
p=P(kTz <h) = /S /0 f(kTz)dF,(k)dV(Tz)

where V is the cumulative distribution function of Tz.

We rewrite the inner integral as follows:

aly)=[ o Fky)dFk)

where y = Tz and D denotes the integration domain (—oo, h].
We now make use of the method of antithetic variables. That is, we use nega-

tively correlated variables in the estimator with the aim to reduce the variance of
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their average. Here, instead of only using y, we also use ~y :

xly) =5 [ HEVIAFA(R) = Sleay) + ex(=y)]

Our unbiased estimate of p is now

1 N
6, = -ﬁzez()’i)—

i=1

where y; is a realization of y.

Evaluation of the integral e,(y)

We now describe how to evaluate the integral e:(y). The argument of the integra-
tion f(.) indicates whether the ray ry is in the domain D of interest or not. In
order to evaluate the integral we determine when the ray ry “enters” and “exits”
the domain D. There are at most one “entry” and one “exit”, because {—co. h]

forms a hyper-rectangle. Thus we need to find the constants ¢; and ¢, for which
ry €D if a<r<ec

We first determine constants ¢j; and cy; for each dimension seperately. We have

c1i = —00, ¢ = hi/y: if y; >0
c2i = hify:, coi = +o0 if i <0
Cli = —00, Czi = +0 if yu=0h>0
¢ = a, i =a if y: =0,h <0

where a is any real number. Since D = N%, D;, the D; representing one-dimensional
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half space, the constants ¢; and ¢, are determined by
€1 = max; ¢y, €2 = min; Cy;.

Knowing the “entry” and “exit” constants c¢; and c;, the integral e;(y) can be

easily determined as !

[ Fo(c2) = Fu(er) e <epenca>0
J Fn(—cl) + Fn(Cz) if g <c, 01 < 0,c2>0

2e5(y) =

Fu(—c1) — Fa(—c2) if ¢y < ¢a,¢1,c2 <0

0 if c 2c

\

Orthonormalized estimators

Rather than just generating one other point —y from y, orthonormalized estimators
generate many other points from locations regularly scattered over the surface of
the hyper-ball S. The extra points can be generated at much lower cost compared
to random points, and their regular location ensures a variance-reducing effect
(antithetic variables).

The idea is to form a basis in n-space generated by a initial (random) point y.
Including the negatives of all basis vectors, 2n points are generated in this way.
The corresponding estimator — averaging over the 2n points - is called O,.

For the estimator O, £ = 1,2,..., we generate in addition to the previous
ones all possible combinations of k basis vectors. The effect is that the points
are scattered more densely on the surface. As k increases the lower cost advantage
diminishes. In our implementation we use the estimator corresponding to O,, which

is recommended by Dedk (1980).

!Desk (1986, 1990) both contain a mistake in that he gives the third line of the equation as
F.(—c2) — Fu(—c)y) rather than Fp(—c1} ~ Fu(~—¢2).
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