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Abstract 

A complex mathematical mode1 that produces output values from input values 

is now commonly c d e d  a computer model. This thesis considers the problem 

of h d i n g  the global optimum of the response with few function evaluations. A 

s m d  number of function evaluations is desirable since the computer rnodel is often 

expensive (time consuming) to evaluate. 

The function to be optimized is modeled as a stochastic process from initial 

function evaluations. Points are sampled sequentially according to a criterion that 

combines promising prediction values with prediction uncertainty. Some grap hical 

tools are given that d o w  early assessrnent about whether the modeling strategy wiU 

work weIl. The approach is generalized by introducing a parameter that controls 

how global versus local the search strategy is. Strategies to conduct the optiiniza- 

tion in stages and for optimization subject to constraints on additional response 

variables are presented. 

Special consideration is given to the stopping criterion of the global optimiza- 

tion algorithm. The problem of achieving a tolerance on the global minimum can 

be represented by determining whether the first order statistic of N deperdent 

variables is greater than a certain value. An algonthm is developed that quickly 

det ermines bounds on the probability of this event . 

A strategy to explore high-dimensional data informdy through effect plots is 

presented. The interpretation of the plots is guided by pointwise standard errors of 

the effects which are developed. When used in the context of global optimization, 

the graphical analysis sheds light on the number and location of local optima. 
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Chapter 1 

Introduction 

This thesis is about global op timization of expensive-to-comput e computer models . 

The approach that we take is closely Iinked to computer experiments in that we 

repeatedly use methodology developed for computer experiments for modeling the 

unknown function to be optimized. The thesis is organized as follows: 

Chapter 2 @es a review of the analysis of computer experiments and corrirnents 

briefly on the connection with Kriging, a stochastic method of spatial prediction. 

As well as showing how to identify key features of computer model;. Chapter 3 

presents an illustrative exarnple for modeling a computer experiment. Even though 

Chapter 3 is not about optirnization, some of its aspects (particularly visualization) 

are inherently useful for the data-analytic approach to optirnization that we adopt 

later on. Along the way we introduce novel methodology for attaching staiidard 

errors for the estimates of main effects and interactions. We aIso present a method 

for finding a suitable nonlinear regression model when the functional relationship 

between response and explanatory variables is unknown. 

Chapter 4 presents a dat a-analytic approach for global op timization. Novel 

aspects include the use of diagnostics before optimizing an expensive- to-corriptit e- 
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function, using methodology for the analysis of computer experiments in the context 

of optimization, and the a d a b i l i t y  of a reliable stopping rule. 

Chapter 5 takes this approach to global optimization a step further adding three 

novel aspects: (i) a parameter that controls the balance between local and global 

components of the optimization; (ii) methodology for optimization in stages rather 

than one-point-at-a-time; and (iii) optimization subject to constraints on additional 

response variables. 

Chapter 6 gives an algorithm for the evduation of the CDF of the minimuni of 

N dependent variables. The algorithm is particularly fast when it is sufficient to 

specify whether certain bounds on the CDF are met. The algorithm incorporates 

three ideas that make it fast and therein lies the novelty. While this is a topic in 

its own right, we show how it can also be used as an alternative stopping rule for 

the global optimization algorithm introduced in Chapter 4. 

This thesis is computationally intensive. The examples shown throughotit were 

generated wit h the following software: ACED (Algorit hms for the Constructioii of 

Experiment al Designs) , software developed by William J . Welch? was used t hroiigh- 

out the thesis for aIl design aspects for computer experiments. GASP ( GAiissiaii 

Stochastic Processes), also software by William J. Welch, was used in Chapter 3 

for the analysis of computer experiments and for Figures 4.8 and 4.9. SPACE 

(Stochastic Processes Analysis of Computer Experiments) , software by Matthias 

Schonlau, was used for the analysis and optimization throughout except for Cliap- 

ter 3 and Figures 4.8 and 4.9. Appendix A contains a brief overview of the major 

components that a computer program for the design, analysis and optimization of 

computer models must contain. 



Chapter 2 

Review 

2.1 The Analysis of Computer Experiments 

A complex mathematical model that, given a set of input values, produces a set 

of output values is now commonly referred to as a computer model. The name 

stems fiom the necessity to have cornputers do the extensive computations. as 

almost always the mode1 cannot be written in closed form and/or it requires an 

iterative solution. Computer models are distinct from models of data from physical 

experiments in that they are often not subject to randorn error. A computer (the 

same computer architecture) fed with the same input will always produce the sarne 

output. Due to the lack of random error, traditional modeling approaches are not 

useful. For example, one of the principles of design of experiments, replication. 

leads to redundant information in computer experiments. 

This section gives a overview of the analysis of computer experiments. Relevant 

references include Currin et al. ( lggl) ,  Mitchell and Morris (l994),  Morris. Mitchell. 

and Yhisaker (1993), Sacks, Schiller, and Welch (1989), Sacks et al. (1989). and 

Welch et al. (1992). 



The Deterministic Mode1 

The data from a computer experïment consist of n vectors of covariate values (or 

inputs) denoted by xi,. . . , X, for d covariates and the corresponding response val- 

ues (or outputs) y = (yl, . . . , y,)'. Then the response is modeled by a linear model 

plus departures from the linear model: 

Response = Linear model + Systematic Departure. 

One convenient way of expressing the systematic departure function is to view it 

as a sample path fiom a suitably chosen stochastic process. This point of view. 

namely the resemblance of the systematic departure to a realization of a random 

function, respects the deterministic nature of a computer code. since a reakzatioii 

of a stochastic process is deterministic. but provides a s tocliastic frarriework for 

assessing uncertainty. The model can be written forrnally as: 

where [ f  (x), - - - , f ( x ) ]  are k known regression functions. 

(Pi, P 2 ,  . . , ,Bk) are the corresponding parameters. and Z(x) is a stochastic pro- 

cess. As a notational convention we write vectors and matrices in bold let ters. The 

covariance between the 2's at two inputs x = (xl , .  . . , xd), and x' = (z;. . . . .zd) is 

Cov(Z(x), Z ( x 1 ) )  = uiR(x, x'), (2.2) 

where R(-,  * )  is a correlation function that can be tuned to the data and ni is a 

scale factor, also called the process variance. 

We require the stochastic process to be stationary. which implies that E ( Z ( x ) )  = 



CHAPTER 2. REWEW 5 

0, and that the covariance between the 2's at  points x and d depends only on 

x - x', that is on their relative location, not on x and x', that is on the locations 

themselves. For computational reasons it is convenient to choose a correlation 

function that adopts the so called produet correlation rule: 

While there are many choices, a sufficiently flexible and commonly used correlation 

family is the following: 

where B j  2 O and O < pj 5 2. The pj's can be interpreted as smoothness parameters. 

The response surface is smoother with respect to xj as pj increases. In fact. the 

correlation function and hence the sample path Z is infinitely differentiable for 

p = 2 in a rnean square sense. The 6's indicate how local the estimate is. If the 

0's are large, only data points in the immediate vicinity of a given point are highly 

correlated with that point and are thus influentid on the prediction of that point. 

If the 0's are srnall, points further away are still highly correlated and still influence 

the prediction of that point. 

The deterministic nature of the problem is kept because R(x ,  x) = 1. For tliis 

reason, the predictor is an interpolator. 

We use the correlation family (2.3) throughout the thesis. With two parameters 

for each dimension this family is very flexible yet it is not too costly for parameter 

estimation (see dso the discussion in Sacks, Welch, Mitchell, and Wynn. 1989). 



Measurernent Error 

In the presence of measurement error equation (2.1) can be easily modified to 

where Z is the systematic departure and c is the measurement error. In that case. 

the variance must reflect this change, Var ( Y ( x ) )  = u: + oz, and the covariance 

becomes 

Cov(Y(x),Y(xt)) = o:R(x,x') 

Cov(Y(x),Y(x)) = a: 

2 2 Var(Y (x)) = a, + oc. 

where the covariances (2.5) and (2.6) strictly refer to two distinct observatioiis 

(which for (2.6) are replicates), the variance (2.7) refers to only one observatioxi. 

cr: is the process variance as defined in (2.2), a: is the error variance' and R is 

the correlation function as defined in (2.3). Equivalently, the correlation in the 

presence of measurement error is 

u 

Cor(Y(x), Y (x')) = 2 R(x ,  x') 
cr2 

where the correlations in (2.8) and (2.9) strictly refer to two distinct observations 

(which in (2.9) are replicates), and o2 = o: + G:. 
The fiaction 01/n2 constitutes an additional correlation parameter; its value 

has to be optimized as well. Except for this redefinition the randorn error model is 

treated just like the deterministic model. 
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Best Linear Unbiased Predictor 

We now introduce some more notation, before we derive the best linear predictor 

of Y at an untried input x. Let 

F =  

be the n x k expanded design matrix, let 

be the vector of correlations between the 2's at the design sites XI, . . . . x,. let 

be the vector of k known regession functions, let R be the n x n correlation matrix 

with element i, j d e h e d  by R ( x i , x j )  in (2.3) and let the untried input be x. For 

data y = (x,. . . , Y,)t, the mode1 in (2.1) is written as 

where F is the above defined expanded design matrix, P = (P1,P2,. . . !Ok) the 

correspondhg parameters, and z = (Z(xl), . . . , Z(x-))' the stochastic process. 



For any linear predictor c i y  of Y ( x )  the mean squared error of prediction is : 

The last equation follows if we impose the unbiasedness constraint F' c, = f.. Tlùs 

constraint follows from equating 

and 

for all B. 
Introducing lz Lagrange multipliers X for the k equations FtcX = fz and taking 

the derivative with respect to c ,  in (2.11) yields 

o : ~ c ,  - afr, - FA = O . 

Together with the unbiasedness constraint we have a system of two sets of equations 

in the two unknown vectors c, and X : 
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We rewrite this system in matrix form : 

The best linear unbiased predictor is then 

This can also be written as 

- 
where p = (FtR-lF)-lFtR-ly is the generalized least squares estimator of P .  It 

turns out it is also the MLE, as will be derived later. 

The MSE of the estimate can be derived by substituting (2.12) in (2.11): 

Another way of looking at this is to consider y and Y ( x )  together. assiimirig 

they are jointly normally distributed: 



Shen, we can understand Y(x) as the conditional expectation of I ( z )  = Y(+)ly. 

More precisely, 

where 

Equations (2.16) and (2.14) are equivalent . Equation (2.15) differs from (2.17). 

because the estimation of p is ignored in the latter case. 

Maximum Likelihood Estimation 

We consider now the problem of finding maximum likelihood estimates of the iin- 

known parameters: ,B in ( 2 4 ,  O, in (2.2). 0 = (BI,&. . . . .Od) in (2.3). p = 

(pl, p2,  . . . , pd)  in (2.3), and in the case of random error $ in (2.9). .4ssiirriing 

the stochastic process is Gaussian, the Ioglikelihood up to an additive constant is 

Given the correlation parameters O and p, by differentiation with respect to 0. the 

MLE of is the generalized least squares estimator 

The MLE of cr: is 
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If we substitute 5; and back into (2.18) we obtain 

This function of the data and the-correlation parameters B and p has to be nu- 

merically maximized. Direct maximum likelihood estimation is very expensive to 

cornpute. Hence, an algorithm which introduces the parameters sequentially is of- 

ten introduced to cut down on computing time. For example, see the algorithm 

described in Welch et d. (1992). 

Bayesian Approach 

Alternatively, instead of viewing y as a realization of a stochastic process. one can 

take a Bayesian point of view and predict y(x) by the posterior meai 

where y. denotes data at the design points. Currin et al. (1991) take this approacli. 

representing prior uncertainty by a Gaussian stochastic process with k e d  mean and 

variance, thus without a pnor to represent the uncertainty in the mean. û arid p . 

Because of this, they corne to the same result as displayed in equations (2.16) 

and (2.17). Estimation of the parameters is then also performed by the Maximum 

Likelihood method. See ais0 Morris, Mitchell, and Ylvisaker (1993) in the context 

of the Bayesian point of view. 



2.2 Stochastic Methods of Spatial Prediction 

(Kriging) 

The stochastic process model presented in the previous section has traditionally 

been used in geostatistics under the name of Kriging for the exploration of gold 

mines, oil fields, etc.. Since this stochastic process model is used frequently in 

this thesis, a bnef overview of Kriging is given here. For more extensive reviews 

the reader is referred to Cressie (1993), Journel and Ruijbregts (1978), and, for 

nonlinear Kri,&g, also Rivuirard (1994). 

The word "Kriging" is synonymous with optimal spatial prediction. It has 

been termed after a South-Afican mining engineer with the name Krige. who first 

popularized stochastic methods for spatial prediction. 

When the underlying stochastic process is Gaussian and a quadratic Ioss func- 

tion is chosen, then an optimal predictor is given by E(Y(x) ly , ) .  Because of the 

Gaussian assumption, the predictor is a linear function of x. 

Usudy the following additional model assumption is made: 

where Z(. )  is a random process with mean 0, and p ( . )  is a parametric mode1 spec- 

ifying the mean structure. 

Simple Kriging 

The simplest Kriging models are ones where the mean structure p (x) and the covari- 

ance structure Cov( Z(x) , Z(YC')) are assumed known. Furt hermore, the predict or 

is assumed to be a linear function of the data. 
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The optimal predictor can then be derived as 

Often the mean and the covariance structure are not known. The ordinary Krig- 

ing method therefore relaxes the assumption of full knowledge of mean and the 

covariance structure. 

Ordinary Kriging 

The mean p ( x )  is unknown, but assumed constant. The ruidom function Z is 

stationary. The predictor is a linear function of the data and is uniformly unbiased. 

i.e. E(ij(x))  = p. 

This method no longer requkes f d  knowledge of the mean: however. it on?y 

allows for stationary models. In the following method. a class of non-stationary 

models is introduced through a nonst ationary mean structure. 

Universal Kriging 

The mean structure is given by 

The random function Z is stationary. Furthermore, the predictor is linear in the 

data and uniformly unbiased. 

The analysis of computer experiments uses the Universal Kriging approach. Un- 

like Kriging models in geos tatis tics, however, computer experiments are considered 

to  be deterministic. This difference is reflected in the covariance structure. Another 

clifference is that correlations for Kriging are u s u d y  estirnated by variograms (e.g.. 

Cressie, 1993) whereas computer experiments typicdy use maximum likelihood 

estimation. 



Chapter 3 

Understanding Key Features of 

Cornputer Codes via Graphical 

Analyses 

3.1 Introduction 

Cornputer models or codes are now frequently used in engineering design, and in 

many other areas of physical science. For instance. the main example discussed 

here concerns the engineering design of a solar collecter. This code computes an 

increase in heat transfer effectiveness, y, resulting from an engineering innovation. 

The design is charactenzed by six factors (engineering parameters) XI. . . . . xc. 

Further details will be given in Section 3. As is often the case, the code is expensive 

to cornpute and the engineers wanted to understand key features of the cornplex 

functional relationships embodied in their cornputer code. In particular, they were 

interested in possible nonlinearities and interactions. 
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Figure 3.1 shows scatter plots of the response against each x variable in t iirn for 

Figure 3.1: Scatter Plots of y versus xi, i=l  . . . 6. 

data from an experiment on the solar collecter code. They indicate some trend in 

the relationship between y and xz and xs. However, the scatter plots do not show. 

for example, the strong relationship in 2 4 ,  because it is masked by the effects of the 

other covariates. This would not matter if the effects were d linear and additive. 

but, as we s h d  see in Section 3, the effect of x4 is highly nonlinear. With nonlinear 

effects, we need to know the form of the mode1 to be fitted, and simple plotting of 

the data does not suggest a class of nonlinear parametric models here. Moreover. 
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nonlinearities are common in computer experiments, because the inputs often cover 

wide ranges. 

There is already some work on the design and analysis of cornpu ter experiments. 

See, for example, Currin, Mitchell, Moms, and Ylvisaker (fggl), Sacks, Schiller. 

and Welch (1989), Sacks, Welch, Mitchell, and Wynn (1989), and Welch, Buck. 

Sacks, Wynn, Mitchell, and Morris (1992). The methods proposed in these refer- 

ences take into account the deterministic nature of a code like the solar collector 

computer model. Given the same inputs, it always reproduces the same outptit(s). 

Typically, the code will be expensive to run, e-g., it solves a large number of differ- 

ential equations which may require several hours or more of computer time. 

So far work on the design and analysis of computer experiments has focused 

on finding a good cheap-to-compute nonpararnetric surrogate (i.e.. predictor) for 

the computer model. In the solar collector example, however, expianation rat lier 

than prediction is the overriding objective. The class of nonparametric predictors 

suggested in the above references and (2.14) is unsuitable for this task: They are 

computationally cheap approximations, but t hey are nonet lieless niatlierriat icaily 

complex. 

In this chapter we propose to explore key features of computer codes such as 

nonlineari ties and interactions by testing specific hypo t heses about t heir functional 

form. To facilit ate hypotheses generation, that is identifying key features. we in- 

troduce some new methodology for at t aching standard errors to the nonpararrietric 

estimates of the effects. W e  then construct parametric models that embody the hy- 

~othesized key features. The parametric framework allows us to test key features. 

and thus to conhm them. As will be shown, the visualization of effects is fairly 

automatic. 

An overview of the chapter is as follows. Section 2 first outlines the nonparamet- 
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ric method we use for analyzing data fiom a computer experiment. It has several 

advantages, but it is by no means the only method that might accomplish this task. 

Section 2 then explains how key features of the nonparametric model can be identi- 

fied graphically and confirmed by building parametric models. Section 3 states two 

theorems, special cases of which explain how to estimate efFects and their standard 

errors. Section 4 demonstrates these ideas using the solar collecter code. Section 5 

concludes with some discussion, including comments on the choice of experimental 

design and alternative modeling approaches. 

3.2 Identieing Key Features of Computer Codes 

Identifying key features of the relationship between input and output variables is 

easy if there is only one covariate. A simple scatter plot reveals the functional 

relationship, which for a computer model is exact since the relationship is deter- 

ministic. Then the data analyst often chooses to fit a parametric model to the data. 

where a class of (possibly nonlinear) models might be siiggested by the scat ter plot. 

This approach was used in a case study presented in Bates and Watts (1988. Section 

3.13) for physical experimental data which contained random error. While the data 

from a computer experiment contain no random error, the objective here rernains 

the same, Le., to summarize the relationship between input and output variables 

in a concise way. 

Scat ter plots are not very usefd for the identification of functional relat ionships 

where there is more than one covariate, however. The relationship between the 

response and each covariate can be masked by the relationships between the re- 

sponse and the other covariates (e.g., Montgomery and Peck, 1982, Section 4.2.5). 

To overcome the masking problem, a plot of a function involving only the covariate 
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of interest is needed. In other words, the effects of the other covariates need to be 

eliminated. Such plots will be considered shortly, after some preliminaries. 

First, a b&f overview of the nonparametric predictor used in this chapter is 

given because it plays a key role in the method proposed shortly. The data from a 

cornputer experiment consist of n vectors of covariate values (or inputs) denoted by 

XI,. . . , x, for the d - dimensional covariates XI,. . . , zd as specified by a particular 

experimental design. The corresponding response values (for a particular output 

variable) are denoted y = (yi, . . . , y,)t. Then, following the approach of, e.g., Welch 

et al. (1992), the response y is treated as a realization of a stochastic process: 

where E ( Z ( x ) )  = O and Cov(Z(w),Z(x)) = cr:R(w,x) for two input vectors w 

and x. The conelation function R(-. 0 )  can be tuned to the data. and is assumed 

here to have the form: 

where Bj  2 O and O < pj 5 2. The pj's  can be interpreted as smootliness 

parameters-the response surface is smoother with respect to xj as pj increases- 

and the Bj's indicate how local the estimate is. If the B j ' s  are large, only data at 

points in the immediate vicinity of a given point are highly correlated with Y at 

that point and are thus influential in the prediction at that point. If the B j ' s  are 

s m d ,  data at points further away are still highly correlated and still influence the 

prediction at that point. Conelation functions other than (3.2) could be chosen. for 

example Matérn (Yaglom, 1987, p.139). While Matérn7s correlation function does 
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give more control over smoothness, it is also more expensive and not clear that it 

is a better choice in practice (see also the discussion in Sacks, Welch, Mitchell, and 

W p ,  1989). 

The best linear unbiased predictor of Y at an untried x can be shown to be (see 

(2.14) with F = 1 and f, = 1): 

where r(x) is the n x 1 vector of the correlations between Y ( x )  and y, is the 

generalized least squares estimator of P ,  R is the n x n correlation matrix with 

element i, j defined by R(xi, x j )  in (3.2) and 1 is an n x 1 vector of 1's. Except 

for very large n this predictor is cheap to compte .  The cost of one evaluation of 

the likelihood is of order n3, but the evaluation of the predictor is only of order n. 

While this predictor has proven to be accurate for numerous applications. it does 

not reveal the relationship between y and zl, . . . , xd in a readily interpretable way. 

Consequently, this predictor is unsuit able for ezplaining the functional relationship 

between the conriates and the response. 

RecaU that in order to identify the functional relationship between a group of 

covariates and the response, the effect of these covariates needs to be isolated froni 

the others. When we want to isolate the effect of a single covariate, the true main 

effect of the covariate can be defined in the following two ways: 

1. Integrating out the other factors. The main effects are defined as: 

(Sacks, Welch, Mitchell, and Wynn, 1989). 
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For simplicity we assume a hyper-rectangular integration region in x. Esti- 

mates of & ( ~ i )  and their standard errors are discussed fwther in the next 

section. 

2. Keepzng the other variables f i e d .  For example, the other variables might be 

fixed at their respective midranges. Standard errors for the estimated effects 

using this method are available directly frorn MSE(I,) as given for example 

in (Sacks, Welch, Mitchell, and Wynn, 1989). 

In both calcdations, the unknown y(*) needs to be replaced by Y(x) from 

Equation (3.3). The first approach may be preferred because it is analogous to 

analysis of variance in that all the other covariates are averaged out. Note also tliat 

integrating p(x) is numerically easy to perform if the x region is cuboidal aiid if the 

correlations are in product from as in (3.2).  In a similar fashion. the effect of two 

or more covariates can be investigated by integrating out all the otlier covariates 

or fixing the other conriates at specific values. 

Main effects for each xi and effects of, Say, two covariates for each pair (xi, z j )  

can then be displayed graphically. By choosing a tentative model for each of the 

effect plots which displays some key feature (i.e., impacts the response), an o v e r d  

model can be developed by adding up all the corresponding candidate models. Tlie 

standard errors for the effects are useful here in that they may guide the choice of 

tentative models. They are further discussed in the next section. 

If there are no interactions (and hence, additivity holds) the d-dimensional prob- 

lem has been reduced to d one-dimensional problems. If large interactions are 

present , then the interacting covariates need to be considered jointly. Covariates 

might then be grouped so that covariates in two difTerent groups do not interact. 

Provided that the groups contain no more than two variables. candidate ~tiodels 
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may still be identified from contour plots of the response. For larger sized groups. 

such plots will generally not be helpful. In this case, when faced with many inter- 

actions, transforming the response rnay help in reducing the apparent complexity. 

Experience with a number of computer models, however, suggests the complexity 

of computer models tends to arise from additive nonlinearities rather than tkough 

interactions. 

Subsequently, the key features summarized in the parametric mode1 can be 

confirmed by fit ting it using standard nonlinear regression techniques. S t artirig 

values for the parameter estimates can often be estimated from the effect plots. 

3.3 Estimates for Effects and their Standard Er- 

rors 

Suppose we want to plot the estimated effect of some of the x variables. derioted 

by XeReor The rernaining x variables? denoted by x0,, . have to be ixitegated out 

of the predictor. The effect is 

where V is the volume of the xout repion over which we integrate. For example. 

for the main effect of r i  in the solar collecter application with six explanatory 

variables, xeneCt = xi, and the plotting coordinates for the estimated mairi effect 

of XI, ji(xl), require an integration over x,,, = (x2, . . . , x6)( for each value of xl 

plotted. The integral in (3.4) is easy to approximate if the x-space is cuboidal. and 

if the correlation function is a product of correlation functions for each x variable. 
( 1  1 (ml Numerically, we approximate (3.4) by a sum over a grid of m points x,,,, . . . . x,,, 
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representing the x,,, space. Thus (3.4) becomes 

We now show how to estimate (3.5) and the standard error associated with the 

estimate. In fact, we prove a more general result for estimating linear combinations 

of K's, which we show later c m  also be used for estimates of interactions and their 

standard errors. Both theorems are new work. 

Theorem 1: The best linear unbiased predictor (BLUP) of C biK is bi?(xi). 

Theorem 2: The mean squared error of C b i g  is 

- 
where b = ( b i ,  b 2 , .  . . , b,), f = Ci bifzi, and P = Ci biïZi . The standard error of 

We prove both theorems in Appendix B. 

AU effects or linear combinations of effects can be written as C b i x  with suitable 

coefficients bi, i = 1 . . . nz. Then the estimates of the effects are given by Theorem 1 

and their standard errors by Theorem 2. 

For (3.5), Theorem 1 with bi = llm, i = 1,. . . ,m states that the BLUP of 

the effects given by (3.5) is the corresponding sum of estimated function values. 

Moreover, Theorem 2 gives a pointwise standard error for the estimated effect. 

Appendix B contains further examples showing how Theorems 1 and 2 can be used 

and explains why (3.6) is easy to evaluate. 



CHAPTER 3. KEY FEATURES OF COMPUTER CODES 

3.4 Application to a Solar Collector Code 

In t his section, the proposed method is applied to an expensive-to-compute com- 

puter model for the heat exchange effectiveness between the air and an unglazed 

transpired-plate solar collector with dot-like perforations (henceforth, referred to 

as holes). The use of equally spaced dot-like holes replaces the unredistic assump- 

tion of infinitesirnally s m d  and infinitesimally close holes and thus, represents an 

engineering novelty in the design of unglazed solar coUectors. Golneshan (1994) 

showed that the heat exchange effectiveness for these solar collectors is a func- 

tion of six covariates, (1) inverse wind velocity, (2) dimensionless slot width. (3) 

Reynolds number, (4) admitt ance, (5) dimensionless plate t hickness. and (6)  t lie 

radiative Nusselt nurnber, as defined by a system of differential equations. The 

cornputer code (Cao, 1993) solves the system of differe~itial equations for giveii 

covariate values and requires around two hours of computing tirne on a worksta- 

tion. The response considered here is the increase in heat exchange effectiveness 

attributed to the heat transfer in the holes from the hole sides and is expressed as 

a- percentage (0-100). For further details, see Cao (1993). For notational sirnplici ty 

the six covariates Iisted above will be referred to as XI, x2, . . . . x~ and the response 

Y- 

The mechanical engineers who had developed the solar collector code were in- 

terested specifically in explaining the impact of the six covariates (which are design 

factors) on the response, heat exchange effectiveness; ultimately, the explanat ion 

would help to identify better solar collector designs. Note that such understand- 

ing was not apparent from inspecting the system of difFerentia1 equations. The 

engineers were also interested in developing a surrogate parametric model because 

empirical models of this type existed in the literature for solar collectors based on 
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older technologies; they had no preconceived idea of what form the mode1 should 

take because the collectors with slot-like holes represented state-of-the-art t echnol- 

ogy. Hence, the need arose for performing an experiment on the solar collecter 

code, ie., a computer experiment. 

The experimental design used for the computer design was one that filled the 

six dimensional cuboidal region, a swcded space filling design. Specificdy. a 

Latin hypercube design (McKay, Beckman, and Conover, 1979) consisting of 100 

points was chosen in which the minimum distance between points (i.e.' the covariate 

vectors) in low-dimensional projections was maximized. The design was found using 

ACED ( Algorithms for Constructing Experiment al Designs) which was developed 

by Welch. Ali the two-dimensional projections of the Latin hypercube design can 

be seen in Figure 3.2 which shows that the design is indeed space-mng. 

Scatter plots of the data (Figure 3.1) indicate a possible linear trend in z2 and 

xg. The remaining relationships, if' any, are masked by the presence of the otlier 

covariates. In the following, the proposed method for identifying key featiires of 

the computer code will be applied. 

The stochastic process predictor (3.3) with the correlation function (3.2) was 

fit for the response using the software GaSP (Gaussian Stochastic Processes), de- 

veloped by Welch. GaSP also estimates the correlation parameters Bi and pi .  

j = 1.. . d,  as well as u: via the maximum likelihood approach. 

The predictor appears to be reasonably accurate. Main effect and joint effects 

plots, generated by integrating out the other covariates, are as shown in Figure 

3.3 for covariates X I  through 16 and Figure 3.4 for the pairs (x2, xs) and (x4, xS). 

respectively. By joint effect, we mean (3.5) where xenKt includes two variables and 

xo,t all other variables. 

The main effect for covariate XG is very flat , and all but two two-way interactions 
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Figure 3.2: Two Dimensional Projections of the Latin Hyperciihe Design. 

are close to zero everywhere. These effects were considered negligible by the 

engineers. The features displayed in the main effect plots suggest t hat the effects of 

X I  and x3 are approximately linear and the effects of x2 and x5 are approximately 

quadratic. 

The main effect plot for x4 is rather ragged. Although the plot gives a good 

indication of the apparently nontinear x4 effect, it is doubtful that the triie 14 

relationship is that bumpy. One possible explanation is that the cornputer code 

may have some numerical convergence problems in certain regions of the x space. 
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Figure 3.3: Main effect plots. The Middle Line is the Estimated Effect. tlie Upper 
and Lower Lines are Approximate 95% Pointwise Confidence Limits Based on the 
Standard Error Given by Theorem 2. 

This possible erratic behavior may then be erroneously attributed to z4 which 

clearly has the most nonlinear or complex impact on the response. Engineering 

knowledge suggests that the increase in heat efficiency is a monotone increasing 

function of the admittance rate of the plate x4. The head engineer commented: 

"The slight blip in the curve is almost certainly due to some numerical probleiri" 

(Hoilands, 1995, personal communication). Therefore, we do not mode1 tlie lit tle 

down peak at xq = 300. 
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oadio o d i r  orizo O -  0.a 

Figure 3.4: Joint Effects (left) and Standard Error Plots (right) for (x2, 24 aiid 
(xq, 2 5 ) .  The Standard Error is Given by Theorem 2. 

Plots of the main effects using the method of fixing the other variables at their 

respective midranges rather than averaging them out, result in very sirnilar graplis. 

For example, Figure 3.5 shows the Method 2 main effect plot for z4. 

The nonlinear shape of the z4 main effect plot which appears to approach an 

asymptote can be captured by a Michaelis-Menten model (Bates and Watts, 1985. 

p. 329); the Michaelis-Menten mode1 has long been used to model the behavior of 

a limiting chernical reaction which nses at a decreasing rate to an asymptote. It 

also arises in the context of a reciprocal link function in generalized linear models. 
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Figure 3.5: Predicted Y(x) versus z4, Keeping All Other I Variables Fixed at Their 
Midranges (Method 2). The Middle Line is the Estimated Effect. the Upper and 
Lower Lines are Approximate 95% Pointwise Confidence Limits. 

where an inverse linear response function is assumed (McCullagh and Nelder. 1989. 

p. 291). We reparameterize the Michaelis-Menten mode1 to make the nonlinear 

fitting numericdy easier: 

where Po = i/-yo and Pt = 7i/yo 

Both x2 and x5 appear to be quadratic. For the joint effect, we notice that 

when x5 increases, the response rises more rapidly when x2 is low than when x 2  is 

high. This points to the presence of interaction. Nonet heless, the interaction does 
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not seem very complex and we try the simplest f o m  for the interaction te=, xlxs. 

For the joint effect between x4 and xs, we notice that for high values of x5 

the sudden rise due to x4 seems to be more pronounced than for low values of 2 5 .  

Hence we hypothesize the existence of an interaction of the form h4(x4) x~ where 

hl( . )  is the main &ect model for 2 4 ,  i.e. the Michaelis-Menten model. For added 

flexibility, we d o w  dinerent parameters for the Michaelis-Menten term in h4( . )  and 

in the corresponding main effect term. 

To confirrn the key features found, we then fit the overall model consisting of 

linear effects in XI, xz, x3, and xs, a quadratic effect in xz and xs, the Michaelis- 

Menten model for x4, the bilinear term for (x2, x5), and the interaction term between 

the main effect rnodel for x4 and xs using 

which gave 

standard nonlinear regession software 

AU of the parameters were significant at the 0.0001 level, except for the multiplica- 

tive parameter for the main effect for x4 (0.0025), which was margindy significant 

at the 0.05 level. Also, adding xs reveals that r6 is not significant at the -10 level. 

Further, when replacing the interaction model h4(x4)x5 with the bilinear term x4r5 

the latter is not significant. Although the data contain no random error so that 

significance testing has no theoretical grounds here, the results of the significance 

tests do indicate the importance of the various effects relative to the ability of the 

overall model to fit the data. Alternatively taking the Bayesian point of view. one 

could calculate posterior model probabilities. Note that the model contains only 

twelve parameters but fits the 100 data points quite well as indicated by the cor- 
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responding cross validation plot given in Figure 3.6. The fact that the parametric 

nonlinear model does not fit the data quite as well as the nonparametric model is 

not surprising, since the parametic model is much simpler. The cross validated 

root MSE is defined as 

- - -  --- - --- 

Cross Validated RootMSE = J ( ~ i  - $-i(*)12 

72 

where t j- i(=) is the cross validated prediction value at  x; based on all but the ith 

observation. The better the fit is, the srnaller is the cross validated root MSE. Here 

they are .O059 for the nonparametric and .O071 for the parametric model. 

Figure 3.6: Cross Validation Predictions from the Parametric Nonlinear Model. 
The Line Predicted Response = Actual Response is Shown. The Cross Validation 
Root MSE is -0071 . 



CHAPTER 3. KEY FEATURES OF COMPUTER CODES 

3.5 Discussion 

The examples presented in nonlinear regression books typicdy deal with only a 

single covariate x, where the fùnctional relationship between x and the response TJ 

is unknown. On the other hand, the method proposed here can be applied to an 

arbitrarily large number of covarïates. 

Throughout this chapter, we have used model (3.1) for the initial nonpararnetric 

analysis. O ther nonparametric methods, like GeneraIized Additive Models. codd 

be used. However, the rnodel we use has three main theoretical advantages: first. 

the mode1 is truthful to the deterministic nature of the data, second, error bounds 

for the effects are available, and third, interactions do not need to be modeled 

expli ci t ly. 

For a cornparison in practice, we fit a Generalized Additive Model (GAM) to the 

data (see Figure 3.7). We choose Generalized Additive Models for its popiilarity 

and because the algorithm is readily available in Splus. The cross validatioii plot 

for GAM in Fiorne 3.8 shows a slight bias at the upper and lower range of the 

response. The cross validated root MSE is -0133, more than twice as large as the 

one for the stochastic model (Fiove 3.9) and a h o s t  twice as large as the one for 

the parametric model (Fiorne 3.6). The effects for the GAM Model are the sanie 

but they are less obvious. Due to the smoothing the sudden rise for low values 

of x4 is not as clear. At present GAM software does not support nonpararrietric 

interactions. Hastie and Tibshirani (1990, section 9.5) suggest among other things 

examining the residuals for interaction. Due to the lack of error bounds it is more 

difficult to assess, for example, the efTect of z6. 

Breieiman (1991) criticized algorithms for producing "only one picture" of the 

functional relationship, thus ignoring the many O t her "pic t ures7' which are alrnos t 
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Figure 3.7: Main Effect Plots from the Generalized Additive Models (GAM) Ap- 
proach. Except for Scaling of the Vertical Axes, the Plots Represent the Default 
Setting in Splus. The Rug at the Bottom Indicates Frequencies. 

as good. The error bounds given for the effects can serve here as an assessrnent of 

the variability of the effect fit. 

There are certainly other ways to identify key aspects of input-output relation- 

ships. For example, clever residual analyses in the hand of a skilled data analyst 

may well lead to the same results. For the solar collecter experiment. an adcled 

variable (partial regression) plot for x4 based on a linear regression mode1 for the 

remaining covariates shows the effect of x4 is nonlinear, albeit with considerable 
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Figure 3.8: Cross Validation Predictions from the GAM Model. The Line Predicted 
Response = Actual Response is Shown. The Cross Validation Root MSE is -0133 . 

scatter as displayed in Figure 3.10. This success is not surprising since the as- 

sumption of a linear model for the rernaining variables tums out to be a good 

approximation. If the true model had cont ained several strong nonlinearities, t hen 

added variable plots on their own would not have sufficed. It might also be possible 

to find the interactions with residual analysis, though with considerable difficulty. 

Elaborate residual analyses are often not done for three reasons: (1) They are 

hard to do, especially when the "true" model contains more than one nonlinear 

effect. (2) Data analysts, especially inexperienced ones! may not always know 

about them. (3) They can take a lot of time to perform. The method presented 

here is easy and fairly automatic for detecting nonlinear effects and interac tio~is. 
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Fi,we 3.9: Cross Validation Predictions from the Nonparametric S tochas tic Pro- 
cesses Model. The Line Predicted Response = Actual Response is Showii. The 
Cross Validation Root MSE is -0059 . 

It is not a panacea for all functional relationships, however. If the relatioiiship 

cannot be transformed to near additivity with few or no interaction effects. tlien 

identification of key features with several covariates will still be a challenge. For 

most of these cases, it is doubtful whether aiternate methods will work either. 

The effect plots play a key role in the proposed method and their resoliition 

depends on the experimental design used. The Latin hypercube design is a desirable 

choice because the design points fill the experimental region well and produce high- 

resolution plot S. 

Originally, a 4'-' fractional factorid design was considered for the solar collecter 

computer experiment. While the choice of a fractional factorial or even full factorial 
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Figure 3.10: Added variable plot for x4. 

design would lead to estimates that are uncorrelated, there would have been several 

drawbacks, however. First, if' only a few covariates (factors) had an impact. the 

design effectively collapses into a design in the active factors with replications. 

But, replications in a computer experiment are non-informative because of the 

deterministic nature of the computer code and therefore would have been a waste 

of resources. Second, it could have been easy to miss an unknown effect by only 

experimenting at a few different points for each factor. For example. the exact 

nature of the nonlinear x4 effect would have been dificult to identify with oxily 

four levels; in fact, the dramatic nonlinear behavior of x4 surprised the engineers. 

Analogous arguments apply for interactions. Third, the decision of where to place 

the levels becomes much more crucial for the factorial design; lower dimensional 
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projections of Latin hypercube design typicdy consist of n distinct and spread- 

out points so that their exact position is less important. F indy ,  a fractional 

factorid design would have required 256 nuis. Contrast this with the 100-run Latin 

hypercube design that was used; even fewer runs might have been sufficient. 

Computer experiments typically use such space filling designs so the proposed 

method is particularly suited to computer experiments. While physical experiments 

typically collect much less data than computer experiments, in principle the pro- 

posed method can be applied to physical experiments by adding a random enor 

term to  the model. 



Chapter 4 

A Data Analytic Approach t o  

Bayesian Global Optimization 

4.1 Introduction 

Global optimization. that is the search for a global extremuili. is a probleiii fre- 

quently encountered. Sometimes it is extremely cost!y to evaluate a functiori for 

an engineering design. For example. Frank (Davis, 1996) says about experiences at 

Boeing: 

"Designing helicopter blades to achieve low vibration is an extreme ex- 

ample of a problem where it is prohibitively expensive to compute re- 

sponses for large numbers of design alternatives." 

For such applications one is interested in rninimizing the total nurnber of function 

evaluations needed to find the global extremum. 

When function evaluations are extremely expensive, it appears sensible t O ex- 

amine previous function evaluations, that is aheady sampled points, very carefdy. 
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It is of particular interest to discover po tential optimization problems before large 

amounts of sampling resources are spent. 

In this chapter we introduce a set of diagnostic plots which early on assess the 

likely success of the global optimization method. If a problem is diagnosed, it is of- 

ten possible to overcome it f d y  or partially by optimizing a suitable transformation 

of the response rather than the nntransformed response. 

The method proposed in this chapter deals with the unconstrained global op- 

timization problem, minimize f (x) where x = (xl, . . . , xd). This includes the 

class of problems with simple constraints like ai 5 xi 5 bi, i = 1. . . . . d .  since 

these problems can be transfoxmed to unconstrained global optimization protlerns. 

Throughout we assume without loss of generality that the extremum of interest is 

a minimum. 

The outline of this chapter is as follows. In Section 2 we review briefly the 

Bayesian global optimization approach and introduce a more flexible stochastic 

mode1 in that framework. Also, a theorem concerning convergence of Bayesian 

global optimization is given. Section 3 describes the diagnostic plots. We show 

how they are used to assess and improve the mode1 fit and hence the effectiveriess 

of the global optimization method. Section 4 shows by means of several examples 

fiom the optimization literature that this approach is very efficient in terms of the 

number of function evaluations required. Section 5 concludes with some discussion. 

4.2 Expected Improvement Algorithm 

This algorithm is based on the idea that any future sampled point constitutes a 

potential improvement over the minimal sampled value up to the present stage. 

Uncertainty about the function value at a point to be sampled is dealt with by cal- 
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culating the expected improvement, based on some statistical model. The e q e c t e d  

improvement criterion is equivalent, we show later, to one-step-ahead optimality in 

Bayesian Global Optimization. 

The expected improvement algonthm proceeds in five steps: 

1. 

2. 

3. 

4. 

5. 

Note 

Choose a small initial set of sampled points spread over the entire x space. 

Evaluate the true function at these points. 

Mode1 the true function using all previous function evduations. 

Search over x for the maximum expected improvement in f .  The location of 

the maximum is the next sampled point. 

Compute a stopping criterion based on the maximum expected improvelrie~it . 

If the criterion is met stop. 

Evaluate the true function at the new sampled point. Go to Step 2. 

that after each sampling step the predictor is updated (Step 2).  aiid the 

expected improvement as a function of x is redefined in Step 3. 

For S tep 1, Latin hypercube sampling schemes (McKay et al.. 1979) are particii- 

lady useful, because they have a space filling property, i.e. they uniformly cover the 

x domain to explore the function globdy. The number of points sampled at this 

initial stage is somewhat arbitrary. We choose about 10 points per active variable 

because one needs at le& that many points to obtain a reasonably good fit for 

moderat ely complex functions ( Welch, personal communication ) . 
For the modeling approach in Step 2 we use a stochastic process with a more 

flexible correlation structure than has been previously employed in the Bayesian 

global op timization literature. This is discussed f u t  her in Section 2.1. 
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The expected improvement aiterion in Step 3 is based on the idea that any addi- 

tional fùnction edua t ion  constitutes a potential reduction of the minimal function 

evaluation found so far. This is discussed further in Section 2.2. 

For Step 4, we propose to stop when the maximum of the expected improvement 

is smaller than a tolerance value; smaller in absolute value or relative to the current 

minimal function value. Step 5 consists of evaluating the next sampled point. 

4.2.1 Modeling Approach 

Suppose that, after an initial experimental design (set of sampled points) or at 

some stage of the algorithm, we have n vectors xi,. . . ,x, at which the ftinction 

f has been evaluated. Each vector x is d-dimensional for the d covariates (or 

inputs) XI,. . . , xb The corresponding response values (or outputs) are denoted 

y = ( y  , . - . , y ) .  Shen, following the approach of Chapter 2 or: e-g.. Welcli et al. 

(1992), the response is treated as a random function or a realization of a stochastic 

process: 

where E ( Z ( x ) )  = O and Cov(Z(w), Z(x)) = u2R(w, x) for two inputs w and x. 

The correlation function R(- ,  a) can be tuned to the data. Here it is assumed to 

have the forrn: 

where B j  1 O and O < pj < 2. The pj's can be interpreted as parameters which 

indicate the smoothness of the response surface (smoother as the p's increase) and 
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the 0's indicate how local the predictor is (more local as the 19's increase). 

The best linear unbiased predictor of y at an untried x can be shown to be (see 

(2.14) with F = 1 and f, = 1 ): 

where r(x) is the n x 1 vector of correlations R(x,  x;) in (4.2) for i = 1. . . . . n 
between Z at x and each of the n sampled points, Ris a n x n  correlation matrix with 

dernent (i. j )  defined by R(%: x j )  in (4.2)? = (ltR-'1)-'lty is the generalizecl 

least squares estimator of pl and 1 is a vector of 1's. 

The mean squared error (MSE) of the predictor can be derived as (see (2.15) 

with F = 1 and f, = 1 ): 

The predictor based on the correlation function (4.2) in (4.3) Lias proven to 

be accurate for numerous applications, see e.g. Currin et al. (1991), Sacks et al. 

(1989a), Sacks et al. (1989b), Welch et al. (1992). Mockus (1989) used a Wiener 

field ins tead. 

In practice, uZ defined after (4.1) and the correlation parameters Oi? . . . . Bd and 

p l , .  . . ,pd in (4.2) have to be tuned to  the data. We use maximum likeliliood 

estimation; see, for example, Welch et al. (1992) for details. 

4.2.2 Expected Improvement 

We will now derive the expected improvement criterion. 
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If the function is sampled at x to determine y = f (x) then the improvement 1 

over fzin, the minimal sampled function value after n evaluations, is defined as 

The expected improvernent is given as 

where 40 is the ~robability density function representing uncertainty about y. 

Mockus (1989) ~roposed a generalization by specifying a loss function on the 

sequential n-step optimization strategy Sn : 

Le., loss is defined as the difference between the global minimum and the best 

function value found after n steps. The risk, or 

E (L (Sn ,  f )) = E ( f , i n )  - 

the average loss is then given as 

E(*n f (4). (4.6) 

An optimal strategy is defined as one that minimizes the risk (4.6). Computing 

an optimal strategy turns out to be computationally infeasible for even a moderate 

number of points n. The standard approach then is to relax the n-step optimality 

to one-step optimality. The criterion for one-step optimality is equivalent to (4.5). 

To predict Y(x) at an untried x, we have c(x) from (4.3) with a mean sqiiared 

error given by (4.4). For notational simplicity, we omit the dependence on x. and 

denote i ( x )  by ij and the mean squared error by s2. If we further assurue that 
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the random function Y ( x )  is Gaussian, then t j  is also normal. Thus, we represent 

uncertainty about the tme y by saying it is N(& s2). The expected improvement 

in (4.5) can be expressed as 

where 4 ( )  and a() denote the probability density function and the cumulative 

distribution function of the standard normal distribution. The f i s t  term in (4.7) is 

the predicted difference between the current minimum and y at x. penalized by the 

probability of improvement. The second term is large when y(x) is close to f;. and 

s is large, i.e., when there is much uncertainty about whether y(x) will beat f;;,. 

Thus, the expected improvement will tend to be large at a point with predicted 

value s m d e r  than fmin and/or where there is much uncertainty associated with 

the prediction. 

A practical problem, though, is findinp the global maximum of the expected 

improvement criterion over a continuous region. Expected improvement is zero at 

sampled points. As distance from all sampled points increases, so does S. one of t lie 

factors leading to large expected improvement. Random starting points are cliosen 

such that in each coordinate the randorn point is halfway between two adjacerit 

design points. Since the original design was space filling, it is ensiired that the 

entire x-space is covered with local optimization tries. This does not guarantee to 

find the global maximum, of course. Mockus (1994) states in this context "[ ...] there 

is no need for exact minimization of the risk function", because we only determine 

the point of the next observation. 

The following theorem holds for the expected improvement algori t hm when the 

number of possible sampling points is finite: 
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Theorem 3 : Suppose we use the Gaussian model (4.1) and the covariance function 

(4.2) is such that the mean square error of prediction in (4.4) is positive for any 

unsampled point x. Further, suppose the number of possible sampling points is 

finite. Then the expected improvement algonthm will visit all the sampling points 

and hence will always find the global minimum. 

Proof: Given in Appendix C. 

4.3 Diagnostics 

The success of the Bayesian minimization algorithm depends on having a valid 

model. The better the model the more likely the algorithm will terminate quickly 

and with an accurate tolerance on the minimum. For this reason one would like 

to assess the performance of the modeling approacli as soon as ~ossible. that is 

after the initial function evaluations. When the model does not fit well it is often 

possible to improve the fit through appropriate transformations of the response. For 

this purpose we propose four diagnostic plots to be used after the initial functio~i 

evaluations have been obtained. AU of them are based on the concept of cross 

validation. 

Cross validation is a statistical technique often used for assessing a model's 

predictive capability, when it is not convenient to test the mode1 at furtlier sanipled 

points. It consists of setting aside and predicting a small portion of the data from 

a model based on the remaining larger portion of data. Most commonly only one 

point at a time is set aside, and cross validation is performed once for each point 

left out. In this chapter we always use leave-one-out cross validation. 

We remove case i fkom (4.3) and (4.4) to obtain i-;(x;) and s - ~ ( x ~ ) .  The 

notation emphasizes that case i is removed when predicting at xi. Cross-validatecl 
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st andardized prediction errors (residuals) , for example, can be m i t  ten as 

We propose the following four diagnostic plots: 

1. A plot of the cross validation predictions versus the true y's, i-e. c-i(xi) 

versus Yil to indicate prediction accuracy. 

2. A plot of the cross validated standardized errors versus the cross validated 

predictions, Le., e; in (4.8) versus t j - i ( ~ i ) .  This plot assesses whether the es- 

timated uncertainty in prediction is realistic. The standardized errors should 

not lie far outside about [-2,2] or. if many points are plotted. [-3.31. We 

are particularly concerned that estimated prediction accuracy is realistic for 

smaller predicted values, i, as they are of most interest in minimization. 

3. A quantile-quantile (Q-Q) plot of the ordered cross validated standardized 

mors  versus quantiles from the standard normal distribution. If the norrnal 

approximation in deriving (4.7) is d d ,  we should see a straight line through 

the origin with slope 1. 

4. A plot of the cross validated expected improvements versus the true fiiiiction 

values, i.e., E(1)  evaluated at x; based on &;(xi) and s-;(xi) versus y;. Thus. 

we pretend that xi was just introduced and compare the expected irnprove- 

ment with the function value actually achieved. If the expected improvement 

criterion is to find further points with good improvement, the lowest y's to 

date should be associated with the highest expected improvements. 

If the plots indicate a poor fit, a transformation of the data can often iruprove 
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the fit. This is possible because the transformed data may more closely resemble a 

realization of a Gaussian stochastic process. 

It is often usefd to visualize the estimated function surface, as that may give 

some idea of the number of local minima or it might be possible to d e  out certain 

regions of the x-space as a potential location for the global minimum with a high 

degree of confidence. In more than two dimensions visualization of the function 

surface is not straightforward. Instead, we estimate and plot main and joint effects. 

i.e., the response as a function of only one or two variables a t  a tirne. The main 

effect of x i  is obtained by averaging out from the predictor i ( x )  all x variables 

except xi. Similady, joint effects of two variables are obtained by averaginp out all 

but two variables of interest (see e.g. Welch et al-? 1992 or Section 3.3). 

4.4 Exarnples 

Our methodology is aimed at optimizing functions that are very expensive to com- 

pute, for example finite-element codes. It is convenient, however. to take example 

functions from the optimization literature. They demonstrate many qualitative 

features of real functions. They are often highly nonlinear and have several Io- 

cal optima. Moreover, using t hese well-known tes t-examples facilit ates cornparisori 

with previous methods. 

4.4.1 Branin Function (Br) 

The Branin function (Tom and 2ilinska~ 1989) is 
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The x ranges are -5 5 X I  5 10 and O 5 xz 5 15. The fùnction has three global 

minima. 

kutidy,  we sample the function at 21 points generated by a Latin Hypercube 

experimental design (Welch, work in progress). The choice of 21 is motivated by 

the d e  of thumb Y 0  times the number of active variables". Choosing 21 points 

rather than 20 conveniently spaces points at 5% of the range. 

Since the Branin function has only two x variables. in addition to looking at 

the proposed diagnostics we are able to visualize the function. Contour plots of 

the estimated function fiom (4.3) dong with the 21 initial points can be seen in 

Figure 4.la. For cornparison Fieme 4. lb  shows the true function; it is seen that 

the predictor based on the correlation function (4.2) is fairly accurate here. 

The four diagnostic plots can be seen in Figure 4.2. Figure 4.2a shows the func- 

tion is extremely well fit except for the largest (and hence mos t uninteres ting) value 

of y. Figure 4.2b shows that the standardized residuals are all in the range [-2.21. 

Even the one point with a big error in Figure 4.2a has a moderate standardized 

residual, Le., its large error is in line with the rneasure of uncertainty provided by 

the standard error. Figure 4 . 2 ~  indicates that the normal approximation is fairly 

good. Figure 4.2d clearly attaches the highest expected improvement to the lowest 

y. Some of the s m d e r  y's have some expected improvement, while the expected 

improvement for larger y's is essentidy O. The diagnostic plots indicate that the 

model fits well and the expected improvement strategy is promising. 

We then start the expected improvement algorithm. The points froni the initial 

2 1-point experimental design (denoted by dots) and from the sequential op tirniza- 

tion (denoted by their respective numbers) can be seen in Figure 4.3. 

We can see that the sequential points cluster around the three global optima. 

The minimal sampled function value &ter a total of 33 function evaluations is 
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(a) Contour Plot of the Estimated Function. Dots Indicate Sampled Points. 

X l  

(b) Contour Plot of the n u e  Function 

Figure 4.1: Branin Function: Contour Plots of the Estimated and True Function 
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Y 

(a) Cross-validated Predictions 
versus True Values 

Quanüles of Standard Nomral 

(c) Q-Q Plot of the Cross Vali- 
dated Residuals 

(b) S tandardized Cross-validated 
errors versus Predictions 

(d) Cross-validated Expected Irri- 
provernent versus True Values 

Figure 4.2: Branin Function: Diagnostic Plots 
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Figure 4.3: Branin Function: Initial Experimental Design (Dots) and Points In- 
troduced by the Sequential Minimization (Case Nurnbers). Contours of the True 
Function are Shown. 

0.39790, the tnie minimum is about 0.39788. The relative tolerance for the stopping 

criterion was set to .0001. 

Table 4.1 gives an overview of tolerances and other performance criteria for 

the expected improvement aigorithm applied to the Branin function and ot lier 

functions. Table 4.2 compares the number of function evaluations needed by varioiis 

global optimization methods. The functions are from the test suite of functions 

introduced by Dixon and Szego (1978) which is often used for cornparison purposes. 
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More extensive tables are given in T6rn and ~iluiskas (1989) and Jones et 

al. (1993). There are some difficulties associated with comparing the numbers 

in Table 4.2 since the stopping criteria are ail different. Often stopping rules do 

not exist and instead the number of function evaluations is reported when the 

optimization fmst reaches a specified tolerance value of the (in practice unknown) 

global minimum. Mockus' (1989) Bayesian method using a Wiener field needs 189 

function evaluations. 

The 3-dimensional Hartman function (H3) which is also part of the test suite 

introduced by Dixon and Szego (1978) is dealt with analogously to the Branin func- 

tion (Br). The diagnostics look similar and no transformation is needed. Results 

are given in Tables 4.1 and 4.2. 

4.4.2 Goldstein-Price Function (Gp) 

The Goldstein-Price function (Tom and ~ilinskas. 1989) also has two independent 

variables : 

The variables xi and x2 are both defined on the interval [-2,2]. The Goldstein- 

Pnce function has one global minimum that is equal to 3 at (O, -1). Not far frorn 

the global minimum, there are three local minima. The function values range over 

several orders of magnitudes. 

The initial experimental design is identical to the one used for the Branin func- 
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Br GP H3 H6 ShlO 
Transformation none ln none ln inverse 
Initial Observations 21  21 30 51 40 
Total Observations 33 106 38 125 131 
Target Relative Tolerance .O0010 .O0010 .O0010 .O0010 -01000 
Actual Relative Tolerance .O0002 .O0001 .O0009 .O0006 -00380 
N until T a r ~ e t  Rel. Tol. Reached 29 95 38 124 82 

Table 4.1: Function Evaluations and Tolerances for Test Functions: Branin Func- 
tion(Br), Goldstein-Price Function(Gp) , 6-dimensional Hartman Function (H6). 3- 
dimensional Hartman Function (H3), Shekel Function with 10 Local Op tirna (S1110). 
"N un t l  Target Rel. Tol. reached" Refers to the Number of Points UntiI the Target 
Tolerance on the Original Scale was First A c t u d y  Reached. AU Toleratices are on 
the Onginal Scale. 

Authors Br Gp H3 H6 
Kostrowicki and Piela (91) * 120 200 200 
Perttunen (90) 97 82 263 f 

Pert tunen and S tuckman (90) 109 113 140 175 
Mockus (78) 189 362 513 1232 
iilinskas (SOa) 164 165 363 627 
2ilinska.s (86) 133 153 285 531 
Jones, Perttunen, Stuckman (93) 195 191 199 571 
Schonlau (97) 33 106 38 125 

ShlO 

Table 4.2: Function Evaluations of Global Optimization Algorithms Based on Sta- 
tistical Models of Objective Functions for Test Functions : Branin (Br). Goldstei~i- 
Price (Gp), the 3- and 6-dimensional Hartman functions (H3,H6) and the Shekel 
Function with 10 Local Optima (ShlO). The Symbol * Indicates that the Method 
was not Applied to the Test Function. This Table is Compiled from more Extensive 
Tables in T6rn and 2ilinska~ (1989, Table 8.8) and Jones et al. (1993). 
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(a) Contour PIot of the Estimated Function. Dots Indicate Sampled Points. 

xl 
(b) Contour Plot of the True Function 

Figure 4.4: Goldstein-Price Function: Contour Plots of the Estimated and True 
Function 



CHAPTER 4. BAYEXAN GLOBAL OPTIMIZATION 54 

tion, scaled to  suit the range of the z-variables of the Goldstein-Price function. 

Figure 4.4 compares the estimated function after initial modeling with the con- 

tours of the true function. 

The diagnostic plots for the Goldstein-Price function can be seen in Figure 4.5. 

The first plot indicates that the function is predicted poorly, even if the largest 

function value is ignored. The second plot has one very large standardized residual 

of about 4. Thus, the standard error is underes timating prediction uncertainty. 

and the expected improvement algorithm is in danger of terminating prematiirely. 

It appears, however , that the standardized residuals are larger for large predicted 

values. The Q-Q plot highlights the one very large standardized residual. The cross 

validated expected improvement plot indicates that there is lit tle discri~riiiiatirig 

power between large and s m d  y values. 

The function values of the initial sample range over several orders of rnagni tude. 

and the cross validated residuals seem to be increasing with the magnitude of the 

response. This is suggestive of a logarithmic transformation of the response. We 

refit the model in h ( y )  and obtain another set of diagnostic plots (Figure 4.6). 

The ikst plot now shows more relationship, though accuracy is is not as good as 

for the Branin function. There is no apparent trend in the second plot any rriore. 

and the standardized residuals are roughly within [-2,2]. The Q-Q plot shows 

that the (faidy large) uncertainty of prediction is weLl represented by the normal 

approximation. Overail, we have a predictor that is fairly inaccurate given only 

21 sampled points, but the amount of uncertainty is well estimated by our model. 

That the ln transformation promises to work reasonably well is confirmed by the 

1 s t  plot which shows that, with the exception of one point. low true values give 

the largest expected improvements. 

The points from the initial 21-point experimental design (denoted by dots) and 
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y Predictions 

(a) Cross-validated Predictions (b) S tandardized Cross-validated 
versus True Values errors versus Predictions 

Quantiles of Standard Normai 

( c )  Q-Q Plot of the Cross Vali- (d) Cross-validated Expected Im- 
dated Residuals provernent versus True Values 

Figure 4.5: Goldstein-Price Function: Diagnostic Plots 
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(a) Cross-validated Predictions 
versus True Values 

Quantiles of Standard Nomral 

(c) Q-Q Plot of the Cross Vali- 
dated Residuals 

(b)  S tandardized Cross-validated 
Errors versus Predictions 

(d) Cross-validated Expected Im- 
provernent versus True Values 

Figure 4.6: Ln Goldstein-Price Function: Diagnostic Plots 
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the sequential optimization (denoted by their respective numbers) can be seen in 

Figure 4.7. The optimization initially focuses on a local minimum close to the 

global minimum. After the locd minimum is explored the algorithm finds the 

global minimum. The a l g o f i t h  stops after a total of 106 observations. The global 

minimum on the In scde is approximately 1.09861. The smallest function evaluation 

sampled is also 1.09861. The absolute tolerance for the stopping criterion was set 

to -0001 corresponding to a relative tolerance of -0001 on the original scale. The 

results for different global optimization algorithms can be seen in Table 4.2. 

Figure 4.7: Ln Golds tein-Price Function: Initial Experimental Design (Dots) and 

Points Introduced by the Sequentid Minimization (Case Numbers) . Contours of 

the True Function are shown. 
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4.4.3 Hartman 6 F'unction (H6) 

The Hartman 6 function ( T h  and ~ilinskas,  1989) is 

where ci, pi j ,  and a, are coefficients given in Table 4.3. The x ranges are O 5 xi 5 1 

for i = 1,. . . ,6.  There is one minimum. 

Table 4.3: Hartman 6 Function: Coefficients for (4.11) 

For the initial experimental design we choose 51 points (the choice of 51 results 

in convenient spacing at 1/50 of the range). Diagnostic plots for the Hartman 6 

function are similar to those for the Goldstein-Price function. Again a ln transfor- 

mation is suggested. (In fact, -In(-y) was used as the original 51 function values 

are all negative.) 

Since the Hartman 6 function is six-dimensional, visualization of the estimated 

function surface is not straightforward. Therefore, we inspect main and joint effects 

instead. Figure 4.8 shows main effects of xl, x,  and 2 5 ,  and Figure 4.9 the joint 
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effect between xs and Xe for the transformed Hartman 6 function. The pointwise 

confidence intervals plotted are based on the standard error given by Theorem 2. 

A normal distribution for uncertainty is assumed stemming from the assumption 

that the process is Gaussian. The remaining main effects and joint effects are ap- 

proximately constant. From these plots it appears that the function is probably 

Figure 4.8: Main effects for XI, x4 and 2 5  of the Hartman 6 Function with Tra~isfor- 
mation - ln(-y). The Middle Line is the Estirnated Effect. the Upper and Lower 
Lines are Approximate 95% Pointwise Confidence Limits. 

unimodal. One might even be tempted to proceed with a local minimization al- 

gorit hm, using s t art ing values from the grap hical analysis. Furt herrnore. fiorri the 

graphs it is clear that the global minimum occurs with XI' x4 and xs rouglily in 

[0.1,0.5], while 2 6  will be in [0.5,1.0]. The remaining variables, x2 and x3, are 

relatively unimport ant . 

The insights from the initial graphical analysis could be used to rediice the 

search space, but we apply the expected improvement algorithm to -ln(-y) witli 

aIl six variables on [0,1] to facilitate cornparison. Two dimensional projections of 

the experimental design and the points resulting from the sequential op tirnization 
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Figure 4.9: Joint Effect of x5 and xs and its Pointwise Standard Error for the 
Hartman 6 Function with Transformation -ln(-TJ). 

can be seen in Figure 4.10. 

We can see that the algonthm explores the edges and also clusters arou~id orle 

single point which indeed is the minimum. During the minimization. only 71 ad- 

ditional points were sampled, a total of 125 points. The minimal value found is 

-1.20066 on the transformed scale; the true minimum equals -1.20068. The abso- 

lute tolerance was set to 0.0001 or a relative tolerance of -0001 on the original scale. 

The results for different global optimization algorithms can be seen in Table 4.2. 

Mockus' (1989) Bayesian algorithm needs 1232 observations. 

4.4.4 Shekel 10 Function (ShlO) 

The remaining functions in the suite introduced by Dùon and Szego (1978) are the 

4-dimensional Shekel family of which we present only the most difficult one. the 
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Figure 4.10: - In(-y) Hartman 6 Function: Initial Experimental Design and Points 
Introduced by the Sequential Minimization. 

ShlO function with 10 local optima: 

where x = ( x ~ ,  z2, 1 3 ,  z4) and the c; and Ai are coefficients and coefficient vectors 

given in Table 4.4. The z ranges are O 5 x; < 10 for i = 1, . . . ,4.  

The Shekel 10 function is relatively flat with the exception of 10 sharp wells 

for the local optima. Figure 4.11 shows a marginal view of the well at the global 



CHAPTER 4. BAYESIAN GLOBAL OPTIMIZATION 

Table 4.4: Shekel 10 Function: Coefficients for (4.12) 

minimum. For the minimization of the 4dimensional Shekel 10 function we choose 

40 starting points. 

Figure 4.12 is an attempt to visualize the h s t  131 four-dimensional data points 

for the Shekel function. Each observations is represented by four points: one for 

each dimension. For example, suppose that the first of the four dimensional obser- 

vations for the Shekel 10 Function is given by (2,5,7,0). For visualization, the four 

dimensional observation is represented by four points in two dimensional space: 

(0.7,1), (1.0,2), (1.2,3) and (0.0,4). The f i s t  coordinate of each point is standard- 

ized such that the range limits (O and 10 for the Shekel Function) are represented 

by 0.5 and 1.5, the second is just an increasing integer valued counter. The range 

of 0.5 to 1.5 is chosen such that its midrange represents the observation number. 

here 1.0 corresponding to the first observation. (A different range length could be 

chosen as long as it is the same for all observations.) 

The four points corresponding to an observation are then connected such that 

they form a piecewise linear line. An extra point at mid-range with coordinates 
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Figure 4.11: Shekel 10 Function: Plot of y versus xi where x z  = x3 = x4 = 4.0. 
This is a Marginal Plot of the "Sharp WeW at the Global Minimum. 

( 1 ,O )  is also connected for better orientation. Since the first coordinate of this extra 

point is at mid-range, it always corresponds to the observation number. 

Each subsequent line is offset by 1 unit in the first coordinate fkom the previous 

one: the first coordinate of the ith point has the range of i - 0.5 to i + 0.5. and the 

extra point has the coordinates (i, O). 

As a result, observations with the same (sirnila) coordinates have the same 

(similar) lines except for the offset. Note that depending on the length of the range 

chosen, lines corresponding t o adjacent observations may overlap. Details in form 
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Figure 4.12: Inverse Shekel 10 Function: Visualization of the Design (40 points) 
and Points Sampled During Minimization (91 points) 
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of a Splus function are given in Appendix D. 

The lines corresponding to the first 40 sampled points in Figure 4.12 are d 

dissimilar because they represent a space filling sample. After the initial 40 functio~i 

evaluations, the algorithm chooses observations 41 - 44 in diff'erent locations, which 

may be interpreted as a global search. The fmin decreases slightly. Observations 

45 - 86 (except observation 59) home in on the global minimum, representing a 

local search. From then on the observations are spread throughout the space. i.e. 

they represent a global search. During this global search fmi, does not decrease 

any more. Fi,pre 4.12 rnakes the duality between local search (similar lines) and 

global search ( dissimilar lines) very clear . 

Upon discovery of the global "sharp well" , the MLE acljus ts the estirriate of the 

standard error upwards which leads to an increase in the expected improvenient. In 

what follows. the mode1 accounts for the possibility of imdiscovered sirnilar *-sliarp 

wells". As a result the expected improvement remains approximately constant 

during the global search while the algorithm starts to fil1 the 4-dimensional space 

with points to d e  out that possibility. We therefore decided to set the target 

tolerance to 0.01 for the Shekel 10 function leading to 131 function evaluations. At 

about that time it becomes dear  that the algorithm essentially tries to fill the space 

more densely. We would be suspicious of any algorithm tliat will terminate easily 

before it can ride out the possibility of further "sharp wellso' . 

4.5 Discussion 

In this chapter we have used the Bayesian approach to Global Optimization with 

the objective of reducing the number of function evaluations needed and still termi- 

nating with reliable emor tolerances. We have achieved this goal by improvirig the 
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fit of the stochastic model in h o  ways: (1) by replacing the commonly used Wiener 

field with the more flexible generalized exponential correlation function and (2)  by 

assessing model adequacy and if needed attempting to  improve it by an appropriate 

transformation. 

Since the correlation function for the stochastic process model adopted here is 

much more flexible than the Wiener process correlation function, it is no surprise 

that it leads to a s m d e r  number of function evaluations. The examples given 

demonstrate that the difference can be quite substantial. 

This clifference comes at the cost of a geater  computational burden which makes 

the method very ineffective if the target function is cheap to evaluate. Furt her. the 

evaluation of the predictor requires the inversion of a correlation matrix of size a. 

where n is the sample size. Realistically, this puts an upper bound on the niimber 

of function evaluations that can be analyzed at a few hundred. Since the nietliod 

proposed specifically aims to reduce the number of function evaluations iieecled. 

this is not an issue in practice for many problems. 

Mockus (1989) used the expected improvement algorithm for a fixed niirnber 

of observations and then proceeded with a local optimization technique. Tlie local 

optimizer used the minimal sampled function value as a starting value. The ra- 

tionale is that locally the stochastic mode1 is less effective, and a steepest descelit 

mode1 will reach the required accuracy faster. A local optimization technique could 

similarly follow on the algorithm that we present. 

Findy,  visualization of the response function provides insight into the qual- 

itative features of the input-output relationship. In an engineering context . t his 

insight is useful for assessing trade-offs and suggesting new engineering approaches. 



Chapter 5 

Extensions to Bayesian Global 

Optimization 

5.1 Introduction 

In this chapter we consider several further aspects of Bayesian Global Optimization. 

In Section 5.2 we generalize the expected improvement criterion by introducing an 

additional parameter. The additional parameter det ermines how global versus local 

the search will be. This will be ilIustrated with the Goldstein-Price functio~i. 

In the outline of the expected improvement algorithm we have always asstinied 

that we were to sample one point at a time. Section 5.3 relaxes this assumption 

and addresses the question of how to sample severai points at a tirne. Again, we 

use the Goldstein-Price function for illustration. 

In Section 5.4 we consider the problem of finding the global minimum subject 

to constraints on additional response variables. An example from the automotive 

industry is given. 
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5.2 Generalized Expected Improvement 

The expected improvement algorithm works very well especially when the unknown 

function is well approximated by the stochastic process model. Given the corre- 

lation parameters, the expected improvement criterion op t i m d y  chooses where to 

sample one point according to an average case analysis. The paradigm of the aver- 

age case analysis, given the correlation parameters, thus ultimately determines the 

balance between the global and local components of the search. When the correla- 

tion parameters are poorly estimated. an average case analysis is not sensible. and 

typically the search is too local. 

It is therefore desirable to introduce a version of the expected improvement 

algorithm that searches more globally. We achieve this goal in this section by 

generalizing the expected improvement criterion to include an additional integer- 

valued parameter, g (for global). The larger the value g takes the more globally 

will the algorithm tend to search. 

If the function is sampled at x to determine y = y(x)  then the improvexne~it to 

the power of g, Ig, is defined as 

1 O if otherwise 

where g = 0,1,2,. . . . For g = O taking the expectation yields the probabili~y of 

improvement : 

where Pzin = 

E ( I O )  = P ( z  < f';,) = O(ftn min ) 

f". -g 
g ~ f .  The probability of improvement has been used as a criterion 
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in an axiornatically-based algorithm by iilinskas (see Tom and 2ilin~kas . 1989) l .  

For g = 1 ,2 ,  . . . it is possible to show (see Appendix E) that E (P) is 

and the f i  are given by (see AppendUr E) 

Alternatively, the TI; satisfy the recursive equation (see Appendix E) 

with starting points = CD( f tmin)  and Tl = -4( f'min). This latter eqiiatioii is 

easier to program. 

For example, for the special cases g = 1 , 2 , 3  and s > O we obtain from (5.3):  

Of course, g = 1 reproduces the expected improvement derived earlier in (4.7). 

'Table 4.2 includes cornparisons with two different version of this algorithm 
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The case g = 2 is interesting as 

The criterion in (5.5) consists of (a monotone transformation of) the original crite- 

rion, the expected improvement E (1) , and the variation of the improvement Var( 1). 

The variation tends to be larger further away from sampled points and thus repre- 

sents a global component. 

There is a tradeoff in choosing between small improvement with large probability 

(local search) versus large improvement with s m d  probability (global search). As 

g increases larger irnprovements receive more weight and the search is more global. 

In practice the question arises which value of g to choose. There are two indi- 

cators that show that the choice of g = 1 may be undesirable: when the diagnostic 

plots indicate that the unknown mode1 is poorly approximated by the stochastic 

process mode1 even after transformation and/or when the design contains points 

which are very close to one another. As g increases the points will spread out iriore. 

which can be used as a rough guide to what value g should take. The choice of' 

g = O, or the probability of improvement, results in a more local search and is prob- 

ably not advisable unless one is reasonably certain that the approximate location 

of ail local optima has been established. 

The relative and absolute stopping criteria based on E ( I )  no longer apply for 

the generalized expected improvement. Instead of E (1), we use [E(lg)ll/g for g 2 1. 

Since I is nonnegative and I g  is a convex function of 1 for I 2 O. Jensen's inequality 

applies and yields [ E ( P ) ]  'lg > E (I). Assuming the same tolerances. stopping riiles 

based on [E(Ig)ll/g will tend to sample more points. To avoid possible confusiori. 

note that I g  is maximized over x (not 1) and that the function is not convex in x. 
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5.2.1 Example: Goldstein-Price Function 

In this section we minimize the - Goldstein-Price function with g = 2 and 9 = 5 

(g = 1 was dealt with in Section 4.4.2). W e  use ~(1g) ' lg  < .O01 as the absolute 

stopping criterion on the log scale for all three minimizations. This corresponds to 

a relative tolerance of approximately .O01 on the untransformed scale. Table 5.1 

summarizes the results of both minimizations and the corresponding one for g = 1 

that was seen earlier in Figure 4.7 (where the targeted tolerance was -0001). From 

Actual Re1 Tol 

Table 5.1: Ln Golds tein-Price Function: Cornparison of Minimizations where 
g = 1,2,5. The Target Tolerance for the S topping Criterion was .O01 in AU Cases. 
"Actual Re1 Tol" Refers to the Relative Tolerance on the Original Scale. "ny to the 
Number of Function Evaluations until the Stopping Criterion is Met. 

Table 5.1, we see that the number of function evaluations increases considerably as 

g increases. However, we attribute this mostly to the ~roblern that the stopping 

criterion E( IQ) ' /~  < .O01 is harder to meet for larger g values. 

The final designs can be seen in Figure 4.7 (for g = 1. first 56 points orily). 

Figure 5.1 (for g = 2) and Figure 5.2 (for g = 5). Wi th increasing global pararieter 

the points are more spread out. For g = 5 the optimization does not get i ~ i i t i d y  

stuck in the local optimum as is the case for g = 1 and g = 2. On the other Iiand. 

g = 5 also samples many points in areas that are uninteresting in hindsight. 

Both for g = 2 and g = 5 the actual relative tolerances obtained are very low. 

especially when compared with that achieved for g = 1. The tolerance values are 

expected to be lower as the number of function evaluation increases and the more 

local the search is (Le. small g) - provided that the global minimum is found. 
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Figure 5.1: Ln Goldstein-Price Function: Initial Experirnental Design (Dots) and 
Points Introduced by the Sequential Minimization with g = 2 (Case Numbers). 

For the Goldstein-Price function, one would probably prefer a minimization 

with g > 1, especidy since the f i s t  few points chosen with g = 1 are very close to 

one another. 

Incidentally, minimization for the Branin function with g = 2 and g = 5 results 

in vktually identical designs except that the points are sampled in a slightly different 

order. 
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Figure 5.2: Ln Goldstein-Price Function: Initial Experimental Design (Dots) and 
Points Introduced by the Sequential Minimization with g = 5 (Case Numbers). 

5.3 Sequential Design in Stages 

The expected improvement algorithm is a sequential one-point-at-a-time algori t l m .  

For many applications sampling one point at a time is unrealistic. For one. tinless 

the sarnpling can be cornputer automated it is very tirne consuming. Second. it 

may dso be more cost effective to have only a few stages where at each stage a 

number of points are sampled. In other words, sampling m points at  a time rnay 

be a lot cheaper than sarnpling at m stages. 
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In order to select m further points, generalizing (4.5), we would ideally find 

design points &+I, . . . , &+, that maximize 

where Yi, Y2,. . . Y, are the random variables corresponding to the m point design 

and the m-step improvement I, over fmin is defined as 

Unfortunately. this is a much harder problem than (4.5) due to the fact tliat it 

involves multiple integrals with normal densi ties. Rather t han computinp the inte- 

gals numerically, which would be very time consuming, we suggest an alternative 

strategy. 

We simplify (5.6) in two ways : (a) we compute the expectations sequentially 

rather than jointly and (b)  we update at each step the estimate of the standard 

error o (but not f lin). The two simplifications induce the following expected 

improvement at the (n + i)th step : 

f" 
where i = 1, . . . , m and f'z, = -0. Note that s("+') the standard error of 

prediction at  xn+i depends only on Y+; and the correlation parameters. not on the 

(unknown) response. We do not update s(") in f'mi, because this would imply tliat 

we know the ciifference f:, - Y(") with greater certainty than we ac tudy  do and 

would lead to an agglomeration of points at  one site. 
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The f i s t  simplification is similar to forward selection in linear regsession, in 

that instead of computing the optimal subset of n variables, sequentially the best 

MIiable at  each step is chosen. Unlike in forward selection, however, where the effect 

of the inclusion of any one variable c m  be f d y  assessed, the predictor necessary 

to compute the expected improvement is only known for the first step. Hence the 

second simplification is introduced. 

One might argue that this sampling strategy should be used instead of the Latin 

Hypercube scheme for selecting the initial set of sampling points. This is not pos- 

sible because ftmin cannot be computed. One could use one or two initial starting 

points to overcome this problem and then use the sampling strategy proposed in 

this section. Unfortunately, this does not work well either. because the triie surface 

is very poorly approximated with so few points. 

The sequential design in stages can also be applied to the generalized expected 

improvement methodology. As before with E ( I ) ,  the criterion E( I g )  is a function 

of s and f fmi , .  The expected improvement to the power of g at the ith step c m  

therefore be obtained from (5.2) where only s is updated : 

where the Tk are defined as before. 

After the initial function evaluations and before starting a one-point-at-a-time 

rninimization, it may be useful to generate one stage of the sequential design to 

find out whether the search is likely to proceed too locally. 
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5.3.1 Example: Goldst ein-Price Function 

Here we are demonstrating the design in stages with the ln Goldstein-Price Function 

where the global parameter is g = 2. After the initial 21 function evaluations we 

proceed in stages of 10 points each. The stopping criterion is J E ( 1 2 )  < -001. 

After 13 stages or a total of 151 points the stopping criterion is met. Figure 5.3 

shows the final design. After the initial stage, stage 1 chooses points close to one of 

Figure 5.3: Ln Goldstein-Price Function: Initial Experimental Design (Dots) and 
13 stages of 10 Points Each Introduced by the Sequential Minimization in Stages 

+ 

with g = 2 (Stage Numbers). 

the local optima. One of the points in stage 2 cornes relatively close to the global 
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optimum. From stage 3 onwards the function value of that point is known and. 

as a consequence, stages 3 and 4 sample exclusively around the global optimum. 

Actually, stage 4 points are much more closely clustered around the global optimum 

than stage 3 points. Due to the agglomeration of points around the global op tirnum 

this is difficult to make out in Figure 5.3. Frorn stage 5 onwards many of the points 

are selected globdy, through most of the stages still contain some points near the 

global minimum. 

Compared to the one-point-at-a-time minimization of the ln Goldstein-Price 

function with g = 2 in Section 5.2.1, the number of function evaluations has gorie 

up £rom 127 to 151. Both minimizations achieve about the same relative tolerance 

on the miginal scale which is s m d e r  than .00001. Overd. the mininiization in 

stages exhibits a greater spread of points. 

5.4 Minimization Subject to Constraints on Ad- 

ditional Response Variables 

In this section we consider the problern of minirnizing a function subject to cou- . 

straints on c additional response variables. A strategy is offered treatirig the pre- 

dictions for the c + l response variables as statistically independent. The strategy 

for the dependent case is outlined and still requises the specification of a certain 

covariance matrix (explained further below) . In many practical applications i t may 

be adequate to assume that prediction errors for several response variables are 

approximately independent. 

Denote the c response functions acting as constraints by gl (x), . . . , g,(x) and 

suppose we want to minimize y(x) subject to a; < gi(x)  < bi for i = 1 , S ,  . . . . c. 

For example, in the next section we have two measured outputs: one, undesirable 
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piston motion, is to be minimized and the other, friction of a piston, may never 

exceed a certain value. We d e h e  the improvement subject to constraints, I , (x ) ,  as 

where, like in Chapter 1, fm, is the minimum (feasible) y-value amongs t the current 

n runs. 

The expected improvement subject to constraints can then be derived as follows: 

Equation (5.8) codd be evaluated numerically. if the rnultivariate normal distribu- 

tion MVN(y, 91, . . . , g,) was compIetely specified. The covariance matrix is parti- 

tioned, with blocks on the diagonal corresponding to the within variable covariaiice 

structures, given by O$%, i = 1:. . . , c. Unfortunately the off diagonal blocks. 

corresponding to the between variable covariance structure, are unknown. It is not 

trivial to specify a sensible covariance structure between variables. because it is 

difficult to show that the resulting correlation structure is positive definite. It rnay 

be possible to borrow some ideas from the cokriging literature (e.g. Cressie. 1993. 

Section 3.2.3). 

Treating the variables y, gl , . . . , gc as statistically independent. (5.5) siniplifies 
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to 

That is, treating the response variables as statistically independent the expected 

improvement is multiplied by the probability that each constraint is met. Equation 

(5.9) does not require the between variable covariance structure and can thus easily 

be computed. 

5.4.1 Example: Piston Application 

To illustrate this we will use an example from the automotive industry. We waut to 

minimize undesirable piston motion (pmax) such that the friction of a piston ( m p )  

does not exceed a certain value. A piston is a part of the engine in an automobile 

that moves up and down in an engine cylinder igniting fuel during every cycle. Tlie 

two piston functions are related to two design variables (x-variables). 

The piston problem origindy included a second constraint as well as three 

additional x-variables. For illustration purposes and simplicity we have extracted 

the most interesting feature of this problem involvi~ig only one constraint aiid two 

x-variables . 
Figure 5.4 gives contour plots of of the true objective and the true constraint. 

respectively. Since the contour levels for p a x  are irregdarly spaced to accentuate 

features of the minimization region, we also give a perspective plot of pmax  (Figure 

5.5). The actual constraint is mp < 3. 
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Figure 5.4: Piston Application: Contour Plot of the True Function for rnp (top) 
and pmax (Bottom) 
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Fiorne 5.5: Piston Application: Perspective Plot of pmaz 

As we can see from Figures 5.4 and 5.5, the x-space that meets this constraint 

is fairly flat compared to the slope in the lower right corner. The global (uncon- 

strained) minimum with pmaz = 30.117 is located at  (0.00035,0.103) outside of the 

constrained region. The lowest point in the constrained region is (0.00035.0.214) 

with pmaz = 31.323, also a near global minimum. The function has a nuniber of 

further local minima. 

Initially, we evaluate the function again at  21 sites. Diagnostic plots for r r ~ p  

and p a x  are shown in Figures 5.6 and 5.7, respectively. The plots indicate rnp 

is well fit. For pmaz, we can see from Figure 5.7a that a large proportion of 

points has relatively low function values. While the overall fit is good, the most 
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(a) Cross-validated Predictions 
versus True Values 

(b)  Standardized Cross-validatecl 
errors versus Predic tions 

Quantiles ol Standard Normal 

( c )  Q-Q Plot of the Cross Vali- 
dated Residuds 

Figure 5.6: Piston Application: Diagnostic Plots for rnp  
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(a) Cross-validated Predictions 
versus True Values 

Quaniiles of Standard Nomial 

(c) Q-Q Plot of the Cross Vali- 
dated Residuals 

pmax Prediclians 

(b) Standardized Cross-validated 
errors versus Predictions 

(d) Cross-validated Expected Im- 
provernent versus True Values 

Figure 5.7: Piston Application: Diagnostic Plots for pmax 
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interesting points with low function values are poorly fit. Figure 5.7d c o n h s  

this; the cross validated improvements for low function values are somewhat out 

of order. We tried several transformations for pmax none of which improved the 

diagnostic plots. We therefore proceed without a transformation, but because of 

potential modeling problems we are incbned to use g > 1 for minimization. 

For the one-point-at-a-tirne minimization we use g = 2. The criterion for se- 

lecting the next sampling site derived kom (5.9) is thus Emp(12) P(np < 3).  The 

result of the one-point-at-a-time rninirnization of pmax subject to the constraint 

on mp can be seen in Figure 5.8. 

The algorithm explores two local minima intensively. and samples a nuniber of 

points in the lower left corner close to the boundary of the constraint wliere the 

response values are also relatively low. The rernainder of the function evaluatioiis 

are fairly wide spread; they can be interpreted as a global search. Virtually no 

points are sampled outside of the constrained region because the constraint is a 

relatively simple function and modeled very weIl. 

A total of 89 points were sampled before a stopping criterion with a relative 

tolerance of .O001 was met. At t h s  point the actual relative tolerance was siiialler 

than 

The pmax = 35 contour line demarks two valleyï, which join up in the lower 

left corner. One of the d e y s  contains the lowest function value in the constrained 

region and the other one contains the (unconstrained) global minimum. This sec- 

ond d e y ,  which we will c d  the southern valley for reference, falls completely 

outside the constrained region. It is very unfortunate that none of the iriitid 21 

function evaluations fall inside the southern d e y .  Not surprisingly. the valley is 

not captured by the model. 

We make the minimization problem harder by shif'ting the constraint from rnp < 
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3 to mp < 3.5, thus including about half of the southern d e y  into the constrained 

minimization region (Iengthwise). The new constrained global minimum is located - 

on the boundary of the constrained region near the unconstrained global minimum. 

Figure 5.8: Piston Application: Initial Experimental Design (Dots) and Points 
Introduced by the Sequential Minimization (Case Numbers) for g = 2. Contours 
of p a x  and mp = 3 (dotted). The Dotted Contour Line m p  = 3 Represents the 
Boundary of the Constrained Region. 

With g = 2 the minimization fails to discover the southern valley. A more 

cautious global search with g = 5 can be seen in Figure 5.9. This search explores 
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the southern d e y  along the boundaries of the constrained region. While the 

smdest  local minimum in the interior of the constrained region is explored and 

several local minima dong the boundary are established, the constrained global 

minimum along the boundary of the constrained region is not found. 

Figure 5.9: Piston Application: Initial Experimental Design (Dots) and Points 
Introduced by the Sequential Minimization (Case Numbers) for g = 5. Contours of 
p a x  and mp = 3.5 (dotted). The Latter one (dotted) Denotes the Boundary of 
the Constrained Region. 

The function values of the bcal minimum in the northern valley ( p m n z  = 

31.323) and the constrained global minimum dong the boundary (pmax  = 31.373) 

are very close and the function has been evaluated in the vicinity of both minima. 

Since for higher g values we aim to search more globally, it is not surprising that 
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the algorithm fails to distinguish more accurately between those two minima. 

The relative stopping criterion of .O01 is met after 131 observations. At this 

point the actual relative tolerance is .003. 



Chapter 6 

Fast Evaluation of the CDF of the 

Minimum of N Dependent 

Variables 

6.1 Introduction 

In this chapter we develop an idgorithm for evaluating the cumulative distribution 

function for the minimum of N dependent variates, when the mean. covariance. and 

possible higher order moments are known. Intermediate steps of the algorithm give 

a sequence of (not necessarily nested) lower and upper bounds on the cumulative 

probability. This, we show later, can be applied as a stopping criterion for the 

minimization algorithms in Chapters 4 and 5. 

When it is s f ic ien t  to determine whether a specified bound on the cumulative 

probability is met, the algorithm will often be able to terminate in a very small 

fraction of the time it would be required to compute the exact minimum. Therein 
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lies the algorithm's principal s trength. 

For example, consider the fist order statistic (or the minimum) of four vari- 

ables, &, . . . , Z4, denoted by 21:4 = min(&, . . . , Z4). Suppose one wants to know 

whether 

is true for given h (any real number) and a in [O, 11. We will show that the CDF 

probability of ordered variables in (6.1) can be rewritten in texms of CDF prob- 

abilities of unordered variables generated by all possible subsets of the variables 

Zl, . . . , Z4. For example, the CDF probability for the unordered variables Zl and 

Z3 is P(Zi 5 h, Za 5 h). The four variables generate 24 possible subsets of vari- 

ables that have to be evaluated. This chapter explains why it is usually siifficient 

to evaluate only a small number of these 24 subsets in order to determine whether 

(6.1) is true. In fact, in the context of our applications it appears that only uni- 

variate, bivariate and occasionally trivariate CDF probabilities need be evaliiated 

to determine whether (6.1) is true. 

This chapter is organized as foIlows : Section 2 outlines the basic algorithm. 

Section 3 applies several modifications to the basic algorithm which improve corn- 

putational speed considerably. Section 4 makes some algorithmic consideratioiis 

including the choice of a suitable data structure. Section 5 gives an illiistrative 

hypothetical example. In Section 6 we show how a certain first order statistic can 

be used as a stopping rule for the minimization algorithm presented in Chapter 4. 

Examples are given. 
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6.2 A Basic Algorithm 

The basic algonthm has three cornponents: First, we show how the cumulative 

distribution fimction of the fist order statistic (or, equivalently, the minimum) of 

n random variables from any joint distribution can be computed following Maurer 

and Margolin (1976). Secondly, we show that by performing the calculations in 

a certain order, we obtain successive~y lower and upper bounds on the cumula- 

tive probability. Thirdly, we discuss how to compute the cumulative distribution 

functions of unordered variables required for the implementation of Maurer and 

Margolin's (1976) method. 

6.2.1 Computing the CDF of a first order statistic 

Maurer and Margolin (1976) develop a formula for computing the cumulative distri- 

bution function of any subset of order statistics from depeudent random variables. 

We state their result here for the special case where the subset consists of only the 

first order statistic. 

Theorem (Maurer and Margolin, 1976) : Let Z = (21, 2,. . . . . ZN) be a 

vector of N dependent random variables and let h denote a real number. Then the 

cumulative distribution function of the f i s t  order statistic Z1:N is given as 

This result is a direct application of the inclusion-exclusion formula, in which events 

Ai are defined as Ai = (Zi  5 h). In terms of the inclusion-exclusion formula. 
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P(ZIzN 5 h )  can be interpreted as the ~robability that a t  least one event of { A i )  . 
i = 1. . . n, is realized. 

It is worth noting that this result is completely general. in particular. it does 

not require exchangeability of the random variables. 

Equation (6.2) involves joint cumulative distribution functions of subsets of 

(unordered) variables. Their evaluation will be considered later. 

6.2.2 Upper and Lower Bounds 

For notational convenience, denote 

Then (6.2) can be rewritten as 

Feller (1968, Chapter 4, equation 5.2) gives formula (6 .3)  except that lie uses 

general events Ai rather than specific events A; = {Zi < h). Then. if in (6.3) only 

the first t terms are retained (1 5 t < N), and the rernaining ones are dropped. 

"the error (Le., true value minus approximation) has the sign of the first ornitted 

term [...], and is s m d e r  in absolute value." (Feller, 1968. Section IV.S(c)). That 

is, 

where t E (1,2,. . . , N - 1). 
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Hence, by omitting terms, we can generate upper and lower bounds on 

depending on whether t is even or odd: 

t 

~ ( - 1 ) " + ' S a  5 P(Zl:N<h) t i seven 

t 

E(-i)""S. 2 P(Z,:, 5 h )  t is odd 

where 1 5 t 5 N .  

We will illustrate this by means of an example. Suppose the total number of 

variables is N = 3. Then, according to (6.2), the CDF of the 1" order statistic is 

After the computation of the univariate CDF's we have an upper bound 

The computation of S2 leads to a lower bound 

and finally the computation of S3 leads to the answer SI - S2 + S3 ( t  odd in (6.5) 

with equality). If there were more than three variables, the computation of S3 

would lead to a new upper bound replacing the old one, S4 to a new lower bound. 

and so forth. 
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6.2.3 Evaluating the CDF of a Multivariate Distribution 

The algonthm described in this chap ter only depends on the multivariate dis tribu- 

tion of the random variables in that a function calculating the CDF of the multi- 

Mnate distribution (of unordered variables) has to be supplied. 

Ifa direct evaluation of a multivariate CDF is not possible, it is always possible 

to calculate the CDF using a Monte Carlo technique. That has the advantage tliat 

the variance of the estimate does not depend on the nurnber of dimensions biit 

rather on the sample size used in the simulation. Depending on the distribution at 

hand, there may be other approaches, too. 

In the special case of a multivariate normal distribution, a strategy to evaluate 

the multiple normal integrah does exist (Schervish. 1984) but is computationally 

too costly. Deiik(1980) proposes a sophisticated modification of the Monte Carlo 

approach, which is our method of choice. Deak's (1980) approach is described in 

d e t d  in Appendix F. 

It tunis out that the algorithm proposed below only uses the evaluation of the 

CDF of the bivariate and occasionally the trivariate normal distribution. since so 

far the algorithm has terminated in al l  cases before any Cvariate or higher nornial 

distribution would have been needed. The CDF of a univariate norrrial distribu- 

tion can be evaluated directly ( e g  Press et al.. 1992, Chapter 6 ) .  A iriore carefiil 

implementation of the algorithm might also incorporate niethods for the bivariate 

and trivariate cases, t hus avoiding Monte Carlo techniques complet ely. 
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6.3 Reducing the Number of Terms to be 

Evaluat ed 

For practical purposes, the basic algonthm is stiU not very usefd as it requires 

an immense amount of cornputations when the number of dimensions is large. The 

number of CDF probabilities to be cornputed for N variables is 2N - 1. The number 

thus grows exponentially as a function of N. 

In this section we offer two modifications of the basic algorithm, which drasti- 

cally reduce the number of probabili ties to be evaluated. For later reference we will 

c d  them Reduction 1 and Reduction 2. 

6.3.1 Reduction 1 

For the first reduction we exploit the fact that 

where A and B are two events. An event may consist of more than one coriditiori. 

e.g. A m (Z., < h, . . . , Z,, < h) ,  where a is the cardinality of 3. 

For example, suppose for an arbitrary subset of variables s we find that 

where E is s m d .  Then ail CDF probabilities P ( A ,  Bi), where Bi is an arbitrary 

event, i.e. ail CDF probabilities of sets of variables that contain s as a stibset . are 

smder  than E .  Provided c was sufficiently s m d  to be considered negtigible. iioiie 
- 

of them needs to be computed. 

In the above example, o d y  one set was used to determine whether the subset 
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need be computed. To f d y  exploit (6.7), we want to consider all possible subsets? 

where A; are events, S is the set of all (proper) subsets of the set of variables of 

interest. Rather than considering all possible subsets S, it suffices to consider all 

subsets of size n - 1 because 

where Snb1 is the set of dl subsets of size n - 1. 

We will now show that (6.9) is true. Since Sndl C S. the left hand side of (6.9) 

is smaller or equal to the right hand side. For an arbitrary s' E S there exists 

si-, E such that sœ E si-,  . Hence 

Hence the left hand side of (6.9) is geater  or equd to the right hand side. Therefore 

(6.9) holds. 

6.3.2 Reduction 2 

Suppose one is interested in knowing whether P(Zl:N < h)  < a is true. rather tlian 

evaluating P(ZlZN 5 h) exactly. Roughly speaking, the second reduction exploits 

the fact that in order to determine whether P(ZIzN  5 h )  < cr is true it may suffice to 

compute P(ZlZM 5 h), where M < N and Zi, . . . , ZM form a subset of 21,. . . , ZN. 

For joint probabilities of a number of events we were able to obtain an inequal- 
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ity (6.7) by noticing that as we increase the number of events the joint probability 

carmot increase. The operators "Joint Probability" and "Minimum" behave in the 

same way: For the minimum of a number of variabIes as we increase the number of 

variables the minimum cannot increase either. Analogously to (6.7) we have 

where SM and SN\M represent sets of variables and SN = SM + SN\M. Due to  
, 

idiosyncrasies of the operator "Minimum" in (6.10) equality is at t ained when the 

two inequalities min(&) 5 min(SM) and min(&) 5 min(SN\M) are combined. 

Moreover, the CDF probabilities for the minimum a t  a given h cannot decrease: 

We rewrite (6.11) for ease of notation with the minimum replaced by the first 

order statistic and drop the second argument of the minimum on the right hand 

side: 

Suppose we knew whether P(Z1:; 5 h) > a is true for a subset of i variables. 

Then this knowledge may bear relevant information about whether P(Zi:N 5 h)  > a 

is tme: 

P(Z1:; 5 h )  > a, hence P(ZLiN 5 h) > a 

P(Zl,; 5 h) < a, no relevant information. 

where Z1:; is the first order statistic of a set of i variables nested in the set of N 
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variables. If knowledge about P(& 5 h)  > a can be obtained before P(Zi:N 5 h)  

is f d y  evaluated, then the remaining calculations may no longer be necessary. If 

it is possible to gain that knowledge at  no additional cost then this is usefd. 

As will be shown later, one can arrange the order in which the individual corn- 

ponents of P ( Z I z N  < h)  are calculated such that whether P(Zls  5 h) < a is true 

or not is known before all individual components of < h) are evaluated. 

Moreover, it is possible to successively determine whether P ( Z I s  5 h) > a is true 

for al1 variables i = 1. . . N. While this does put constraints in the order of evalu- 

ation of the individual components, it also cornes at no additional computational 

cost except for some book keeping. 

A situation in which we are interested in knowing whether P(ZlZN < h)  < a is 

true or not. might arise. for example, if we are interested in whether a critical valiie 

or significance level is met. If we perform a sequence of significance tests uritil the 

significance level is met, then P(Z1:N 5 h )  > cr holds except for the very las t test. 

when the ~i~pificance level is actually met. That means that the above rediictiori 

is going to be usefd every single time except the last time. 

Not only do Reductions 1 and 2 reduce the number of CDF probabilities to be 

calculated. The probabilities avoided are those for higher dimensions. which are 

more computationdy intensive. 

6.4 Algorithmic Considerations 

In this section we motivate the choice of a tree-based data structure. We explain 

how the data structure lends itself to implementation of the two reductions. An 

algorithm for the computation of the first order statistic is outlined. 

N variables generate 2N different subsets of variables, including the empty set. 
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LEVEL 

Figure 6.1: Generating AU Possible Subsets of Four Variables in a Tree Structure 

We arrange all subsets into a tree, whose root branches out into all N univari- 

ate CDF's. the univariate branch's generate d bivariate CDF's. these in turn d 

trivariate CDF's and so forth. 

Figure 6.1 depicts a tree for N = 4 variables. The root at level O is denoted 

by a O, level 1 contains all the univariate CDF's, level 2 below contains all the 

bivariate CDF's, and so forth. At any given level i, the i variables corresponding 

to a particular branch are given by that branch's number, and d nurnbers of that 

branch's parent, gandparent, great-grandparent etc. 

There are severd reasons why we choose a tree structure over. for exarnple. a 

list. These reasons fall into two categories : memory requirernents and cpu-ti11ie. 

(Memory) For any joint probability of i variables, only the label of the last 

variable has to be stored. For example, in Figure 6.1, for the joint probability 

for the variables 1 through 4 only the label '4' is depicted in level4. 

(Memory) Not all joint probabilities have to be created (that is, stored). If 

according to reduction 1 or 2 some probabilities are not needed. tlieir indices 

do not have to even be created in the tree. This is further illustrated in the 
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examples. 

0 (CPU-time) The ordering of a tree structure makes it very easy and fast to 

exploit part of reduction 1 (chedung of one subset of size n - 1). In a list 

structure, extensive searches have to be done to implement reduction 1. 

(CPU-time) Any particular element can be accessed fast, which is relevant for 

the implementation of the remainder of reduction 1 (checking of the re~riainiiig . 

n - 1 subsets of size n - 1). A joint probability of i variables can be accessed 

in i steps. Assuming that a search mechanism is necessary for each level in a 

list, up to N choose i elements have to be searched in level i. 

It is easy to lose the basic structure of an algorithm when too many details 

obstmct the view. For this reason only a bare-bones algorithm is given in Figure 

6.2. 

6.5 An Example Based on Hypothetical Data 

We base this example on 4 variables. The tree structure for this situation is depicted 

in Figure 6.1. Assume that a = .O5 and we want to decide whether P(Zl,r 5 h )  > a. 

Furthermore, suppose that P(Z1 < h)  < e, P ( Z 2  < h )  = -3, P(& < h )  < E .  

and P(Z4  < h) = .5. Also, suppose S2 = -25. 

Basic Algorithm 

Each level generates a new bound. AU the univariate CDF's on level 1 constitute 

SI and hence generate the first upper bound. AU the bivariate CDF's on level 2 

generate S2, and SI - S2 forms the f i s t  lower bound. The trivariate CDF's generate 

a new upper bound, and so forth. 
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i = O  initialize the nurnber of variables 
DO construct tree witb i variables 

i = i + 1  increase the number of variables 
j = O  initialize the curent  level (of the tree) 
DO 

j = j + l  increase the curent  level under investigation 
calculate Sj compute probabilities on level j (descendants 

from i variables) 
adjust lower/upper bounds for i variables by Sj 

UNTIL (lower bound > a OR upper bound< a 
OR fidl tree for i variables searched) 

üNTIL ( i  = N OR lower bound > a ) 
[F (lower bound > a) THEN lgt order statistic > a 

[F (upper bound < a) THEN 1" order statistic < a 
[F (i = N AND N is odd) THEN 1'' order statistic = lower bound 
[F (i = N AND N is even) THEN lat order statistic = upper bound 

Fiorne 6.2: Algorithm for Computing the First Order Statistic 

The sum S1 can be calculated to be SI .5. Then Si - S2 2: 0.55. 

Si - Sz constitutes a lower bound. and the lower bound is greater u = -05. iio 

further calculations need to be done. That is the 4 trivariate and the &variate 

CDF do not need to be calculated. 

Basic Algorithm with Reduction 1 

If at any given node the corresponding CDF is smaller than E .  all descendents of 

that branch will have a CDF s m d e r  than e and wiIl thus ail be ignored. 

AU four univariate CDF's have to be evaluated as weU as the bivariate CDF cor- 

responding to variables 2,4.  The remaining 1 , l  CDF's don't have to be evaluated. 

All but one of them are either descendants of variable 1 or 3 (Reductioii 1). or they 

are in level 3 or higher (level 2 is a bound), or both. The CDF corresponding to 
- 

2,3  does not have to be evaluated because it contains 3 as a subset, even though 
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2,3 is not a descendant of 3. 

Basic Algorithm with both Reductions 

Reduction 2 states that rather than computing d CDF's for all N variables, it may 

suffice to look dl CDF's for a smder number of variables. Hence we first look at dl 

CDF's corresponding to the first variable, then at the ones for the &st 2 variables. 

and so forth. 

We start out just considering variable 1. Since P(Zi < h) < c, we need to in- 

crease the set of variables. We consider variables 1 and 2. We only need to compiite 

P(Z2 < h) ,  since P(Zi < h )  is known already and the bivariate probability need 

not be calculated. Since P(Zi,z 5 h ) )  = .3 > a. we know that P(Z1:4 5 h)  > a. 

too. Hence, after evaluating only the two univariate probabilities for variables 1 

and 2, we are done. 

Note that if any one of the univariate probabilities is greater than a we know 

that P(ZlZ4 5 h)  > a! holds. This suggests reordering the variables in order of 

decreasing univariate CDF probability. The ordering of N variables however wotild 

corne at an additional cost proportional to N log( N) . Incidentdy. looki~ig at u~ii- 

variate probabilities, the reordering of variables. or. more generaily. the idea of 

splitting a set of variables into subsets in different ways is related to f d y  exploit- 

ing (6.11) (rather than dropping one of its arguments) and is also analogous to (6.8 ) 

in Reduction 1. 

6.6 Application: A Stopping Rule Based on a 

First Order Statistic 

In this section we argue that a certain first order statistic can be used as a stopping 

rule for the minimization algorithm presented in Chapter 4. 
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In Chapter 4 we based the stopping d e  on the expected improvement. We 

would stop the algorithm when one or both of the two following criteria are met: 

max,(E(I)) < (Absolute Tolerance) 

mmx(E(')' < (Relative Tolerance) 
If2,l 

where max, (E(I ) )  is the maximum expected irnprovement at any given step. 

This stopping rule has some undesirable properties. First, we cannot guarantee 

that the maximal expected irnprovement has been found. Therefore we may base 

the stopping criterion on a smaller number than we should, which would tend to 

lead to a premature termination of the algorithm. 

Second, the fact that we always use the maximal expected improvement rather 

than expected improvement at a given point cons titut es a multiple cornparison 

problem. On average, the observed improvement is much s m d e r  than the (maxi- 

mal) expected improvement. This would then lead to a too conservative stoppi~ig 

rule, that is the stopping rule would terminate too late. The tradeoff between these 

two issues is unclear. In either case, both premature and late termination of the 

algorithm are undesirable. 

Third, knowing that the improvement over the current minimum fzi, is on 

average smaller than a tolerance value may not be very satisfactory for a particular 

stopping problem. The decision to stop is made only once and rnay require a more 

conservative approach. 

Rather than basing the stopping rule on the expected one-step-ahead reduction 

in the target function, it may be conceptually more appropriate to base a stopping 

d e  on the difference between the current minimum fi, and the global minimum. 

Unfortunately the global minimum is unknown and it is not possible to obtain a 
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lower bound on the global minimum without making additional assumptions such 

as the existence of a Lipschitz condition with known Lipschitz constant (see also 

Betro, 1991). 

Alternatively, one might ask : What is the probability that the global minimum 

and fmin are no farther apart than a tolerance value 6 for this particular problem? 

Our alternate Stopping Rule proposes to stop when this probability is very s m d ,  

Le. when 

P(G10bd Minimum < cin - 6 )  < Pcrit 

where 6 is the tolerance value with 6 1 0, and p&t in [O, 11 is a critical value. 

It is not clear how to calculate the distribution of the minimum over a continuous 

region. Therefore, we simplify the problem by discretizing it: we consider a large 

number of points N that f i l l  the continuous space well. The distribution of the 

global minimum then becomes the distribution of the first order statistic of N 

point S. 

In other words, the decision to stop sampling is made when 

where YiZN denotes the first order statistic of YI,  YI, . . . . YN. Typicdy, p,t = 0.01. 

Theoretically. it makes little sense to set 6 = O. Unless fk happens to be 

a local minimum in the modelled function, one is guaranteed to beat fmin in its 

immediate vicinity. Practicdy, unless some of the discrete points are extremely 

dose to one another, the choice of 6 = O is fme. 

The problem of computing the first order statistic of dependent random variables 

with known moments has been considered in this chapter. For this application 

we are interested in the special case of the f t s t  order statistic of a multivariate 
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normal distribution. Recall that all points Y are assumed to be distributed as a 

multivariate normal distribution 

We calculate the first order statistic of a regular grid with 10 points in each 

dimension (Le., for each explanatory variable). The 10 points are equally spaced 

between the lower and upper bound in each dimension, and include the bounds 

themselves. Depending on the number of explanatory variables the task to compute 

the first order statistic of the grid points can be quite formidable. When t here are 

two explanatory variables, the grid contains 100 points, six explanatory variables 

aheady leads to a grid with 1 million points. 

The time that is needed to compute first order statistics depends very much 

on the data, and specificdy on whether higher order CDF probabilities need to 

be calculated or not. We have calculated &t order statistics using the algorithm 

outlined in this chapter with up to ten thousand variables. That means that from 

about four dimensions onwards it becomes too time consuming to compute the first 

order statistic every time. 

In six dimensions with 1 million points, if the stopping rule is met we still need 

to evaluate all 1 million univariate CDF probabilities. That in itself is too time 

consuming. Further reductions t herefore must contain a reduction in the number 

of grid points. For example, it may be possible to determine a priori areas in the 

d dimensional space which are unlikely to lead to an improvement and then to 

disregard grid points that f d  into these areas. 
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6 -6.1 Examples: Branin and Goldstein-Price function 

We now give examples for the use of the h s t  order statistic as a stopping criterion. 

The first order statistic is calcdated each time &er a new point is sampled. The 

stopping miterion is met when P(ZIzN < fz) < a. In fact, we require that the 

stopping diterion be met three times in sequence to be on the safe side. 

For both the Branin and the Goldstein-Price function we use a 10 x 10 Grid, i.e. 

N = 100, c = 10-Io, n = -01, cf = 0, and the Monte Car10 sample size for bivariate 

and higher order CDF probabilities is 1000. 

The result for the Branin function can be seen in Table 6.1. Without the 

reductions and bounds introduced in this chapter. the computation of each order 

statistic wodd require the evaluation of 2loo - 1 CDF probabilities. I t  tunis out 

that only univariate probabilities need to be evaluated. For observations 21 through 

25 a single univariate probability exceed a, so that the stopping criterion could not 

be met. From observation 26 onwards the stopping criterion was met. Only a very 

small number of the univariate CDF probabilites exceeded E .  

The algorithm terminates after sampling 28 points, compared to 33 points with 

the tolerance stopping criterion in Table 4.1. I t  is difficult to compare the two 

stopping rules in terms of number of function evaluations. For the f i s t  order 

statistic a finer grid may increase the function evaluations. Likewise. a greater 

tolerance value wodd decrease the number of function evaluations for the tolerance 

cri terion. 

Results for the Goldstein-Price function are presented in Table 6.2. The stopping 

criterion is reached after a total of 99 points as opposed to 106 with the tolerance 

stopping d e  in Table 4.1. The 6rst few order statistics are evaluated very fast 

since in each case there is a single univariate CDF probability greater than a. AU 

but one of the remaining order statistics are evaluated in under five minutes of 
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Sample univ. univ.>a nniv.>a CPU-time tgin 
Size count count (sec) 

21 17 2 * -5 5.246 

Table 6.1: The First Order Statistic Stopping Criterion Applied to the Branin 
Function: "univ. countn is the Number of Univariate CDF Probabilities Evaluated; 
%niv. > E co-t7' is the Number of Univariate CDF Probabilities Evaluated that 
are Greater than 10-'O; "univ. > a" is an Indicator Whether a Single Univariate 
CDF Probability is Greater than a. The Full Grid has IO x 10 = 100 Points. cr is 
0.01' E is Set to IO-'', and b = 0. 

CPU-time. One order statistic (at sample size 95) requires the evaluation of nearly 

16000 t r i k a t e  CDF probabilities and takes 2 hours of CPU-tirne. The aim of a 

more careful implementation of the algorithm should be to avoid if possible the 

calculation of trivariate and higher order probabilities. 

It is interesting to see how the number of univariate CDF probabilities required 

jumps fiom 55 at sample size 36 back to 2 at sample size 37. This is a consequence of 

changes in the mle-estimates of the parameters. It happens that with the new rnle- 

estimates one of the first two points on the &d has a univariate CDF probability 

greater than a. 
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- -- . 

Sample univ. biv. t r i ~ .  uni~.> r u n i ~ .  > a CPU-time fzin 
Size count count count count sec 

21 33 

Table 6.2: The First Order Statistic Stopping Criterion Applied to the Goldstein- 
Price Function: "univ. count" is the Number of Univariate CDF Probabilities 
Evaluated; ubiv. count" is the Number of Bivariate CDF Probabilities Evaluated: 
"triv. count" is the Number of Trivariate CDF Probabilities Evaluated: *univ. 
> r countn is the Number of Univariate CDF Probabilities Evaluated that are 
Greater than 10-'O; "univ. > a" is an Indicator Whether a Single Univariate CDF 
Probability is Greater than a. The Full Grid has 10 x 10 = 100 Points. a is 0.01. 
and e i s Set to 10-1°. 



Chapter 7 

Concluding Remarks 

In this thesis we have been considering the problem of finding the global optimum 

of expensive-to-compte comput er models wit h few function evaluations. We have 

achieved this goal at the cost of a considerable cornputational burden. Optimization 

starts taking a long time when several hundred observations are needed until the 

stopping criterion is met. The three major time consnming factors are in decreasing 

order: the computation of the maicimal expected improvement over the range of x. 

the maximum likelihood estimation of the parameters, and the computation of the 

first order statistic when used as stopping criterion. 

Having said that. for most industrial applications a large number of runs is 

probably unrealistic. Also, the goal of many i n d u s t d  applications is not exact 

optimization but rather a good design that is noticeably better than the previous 

one. For example, for one application in chemical engineering we are currently 

looking at, the engineer is interested in reviving a former experiment if. based on 

previous data, it looks as though we can h d  a design site with a response value 

several percent higher than the best previously known one. 

The computation of the first order statistic of N dependent variables has been 
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greatly speeded up using the two reductions and the bounds. However, in order 

to use it successfdy as a stopping criterion and to use it in higher dimensions, 

further tirne reductions need to follow. Given ail the knowledge about the fuction 

gained through the compntation of the f ist  order statistic, one wonders whether it 

might be possible ta use this knowledge in deciding on the next sampling site, thus 

replacing the expected improvement criterion. 

The identification of nonlinearities and interactions in Chapter 3 is usefd in a 

broader context than just global optimization. It would be nice to be able to give 

explicit rules as to how to use standard errors in the identification of key features. 

This is likely a difEcult task. 

Theorems 1 and 2, despite their inconspicuousness, are quite powerfd due to 

t heir penerality. They include many specid cases. e-g.. interactions. 



Appendix A 

On Programming 

Here we give a b&f ovenriew over the major components that a computer program 

must contain for design, analysis, and minimization of cornputer models. The 

components are : 

Latin-Hypercube Design 

The initial set of points are designed by a Latin-Hypercube Design. 

Parameter Estimation 

The parameters p, 8 ,  /?, and a2 are estimated via maximum likelihood. 

BLUP and MSE 

The best linear unbiased estimator and the mean squared error are computed 

at a new input x. 

Cross-Validation 

The cross validated BLUP and MSE are cornputed for all design points. 

Visualization 

Main effects and joint effects (or interactions) are computed. 



Minimiza tion 

This indudes both minimization in stages as w d  as point-by-point minimiza- 

tion. 

0 (optional) FVst Order Statistic of a Multivariate Normal Distribution 

This is only needed when the f i s t  order statistic is used as a stopping criterion 

for the minimization. 

SPACE (Stochastic Processes Analysis of Computer Experiments) by Matthias 

Schonlau has implemented these steps with the exception of the Latin Hypercube 

Design. The program contains more than 10000 lines of C code and in line com- 

ment~. 



Appendix B 

Addendum to Section 3.3 

Here we prove Theorems 1 and 2 from Section 3.3 and give an example of how they 

can be applied to estimating effects such as main effects and interactions. 

Theorem 1: The best linear unbiased predictor (BLUP) of Ci b i x  is Ci b i I ( ~ ) .  

Proof: Let F denote Ci b i Y ( ~ )  and Z denote Ci b i Z ( ~ ) .  As before in Section 3.3 

we defme b = ( b 1 : b 2 , .  .. ,b , ) ,  .T = z i b i f Z i ,  and F = C i b i ï z i .  

For any Iinear predictor c'y of E the mean squared error of prediction is : 

The last equation follows from the unbiasednesç constraint Ft c = P. 
Introducing A Lagrange mdtipliers X for the k equations Ftc = f and taking 
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the derivative with respect to c in (B.1) yields 

Together with the unbiasedness constraint we have a system of two sets of equations 

in the two unknown vectors c and X : 

This can be solved for c to yield the best h e a r  unbiased predictor: 

This can also be written as 

where /3 = (FtR-lF)-lFtR-ly is the generalized least squares estimator of P.  O 
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Theorem 2: The Mean Squared Ersor of C b& iis 

Proof: Using (B.2) fist and then (B.3), equation (B.1) can be wrïtten as : 

Working backwards and using (B.2) and (B.3) simultaneously we have: 

which is the same as (B.7). O 

The expressions in equation (B.6) are easy to evaluate if 

1. the correlation function R(xt ,  x2) is a product of correlations in each x vari- 

able, 

R(x17 x2) = II R ~ ( Z ~ ) ?  z:)), 
j 

where zj.') denotes the value of the jth z-variable for point xl, and 
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(ml 2. the points representing the space of the variables integrated out, x,, . . . , xoU, , 

are a grid. Without loss of generality, suppose x,,, is the e s t  q of the x vari- 

ables, z 1, . . . , x,, and the grid of x,,, values is 

d where zf )  is the ith grid value for variable z j ,  and nj=, r n j  = m. 

For example, if these conditions hold, btRb in (B.6) becomes 

In the case of main effects and overall effects of two or more variables. bi = llm. 

Le.? constant. and the sum of products in (B.9) can be written as a product of 

sums. 

The computation of P is similar to (B.9). Because we restrict the terms in f ( x )  

to be polynomials xl l  ... x i d ,  i.e., a product in each of the x variables. the weighted 

averages f are also simple to cornpute. 

For a simple example, Table B. 1 gives the coefficients b;, i = 1 . . . rn, needed for 

Theorems 1 and 2 for various effects. The example is based on three variables with 

2 levels each, i.e. m = 8. Each row contains the coefficients for one lever of an 
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Table B-1: Coefficients for Main Effects, Joint Effects and Interactions for the Use 
of Theorems 1 and 2 Based on a 2 x 2 x 2 Grid on three Variables. "ME" Denotes 
Main Effect, "JE" the Joint Effect or O v e r d  Effect of Two Variables. "IE' the 
2-factor Interaction. The Two Levels of Each Variable are Denoted by O and 1. 
Coefficients that are Zero have been Omitted. 

effect. For example, the joint effect for XI, x2 at r l  = 1 and r l  = O is given in the 

third column of the four joint effect columns. 



Appendix C 

Proof of Theorem 3 

We prove Theorem 3 from Section 4.2. 

Theorem 3 : Suppose we use the Gaussian mode1 (4.1) and the covariance func- 

tion (4.2) is such that the mean square error of prediction in (4.4) is positive for 

any unsampled point x. Further, suppose the number of possible sampling points is 

finite. Then the expected improvement algorithm wiU visit all the sampling points 

and hence d l  always find the global minimum. 

Proofr At aheady sampled points s equals zero, and therefore the expected im- 

provernent a t  points already sampled is zero (see equation 4.7). At points not 

previously sampled s is strictly greater than zero, and hence so is the expected 

improvement. This can be seen from (4.5): in the range of y E [-a>, fL) the 

argument fm, - y is always positive, and since #(.) is non-degenerate #(y) is pos- 

itive for y E [-cm, fcin). Note we have used the fact that the tails of the normal 

distribution do not drop to  zero. 

Then, as long as there are unsampled points, the algorithm will never sample a 



previously sampled point. Since the number of points is finite, the algorithm will 

sample aU points and the global minimum will be found. Ci 

It  is interesting to note that the proof does not require that the maximal ex- 

pected improvement is found at each step (as long as the expected improvement 

found is positive) nor does it reqnire that the unknown function is approximated 

well by the Gaussian stochastic process. 



Appendix D 

A Splus Function for the 

Visualizat ion of High Dimensional 

Data 

In this Appendix we give a Splus function that produces graphs for the visualization 

of high dimensional data like the one in Figure 4.12. 

The function takes one parameter, a? that determines the amount of overlap 

among the lines. Individual lines on graphs with more overlap are harder to distin- 

guish. On the other hand more overlap makes it possible to detect finer similarities 

for groups of lines. The value a = 1 translates to no overlap with other Lines. 

cr = 3 means overlap with the two neighboring lines, and so forth. Figure 4.12 was 

produced with 

v i sua l i ze  <- 
< 
#upperrange: 
SCpriorobs: 
#alpha : 

a = 3. 

function(x, upperrange 

upper limit of des ireà  

= O ,  priorobs = O ,  alpha = 3) 

x-range 
number of obs before t h i s  plot ( for  label  of x ax i s )  
stretch factor  of d i f f  erences t o  the l e f t  and right 
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# (alpha4 corresponds to no overlap of lines) 
# 50 obs works uell with alphas1 
# 100 obs needs alpha= 2 or 3 to see differences in lines 

n <- nrou(x) 
d <- ncol(x) 
y <- matrix(rep(0, n * (d + 1) * 21, n * (d + l), 2) 
forci in 1:n) ( 

y[(d + 1) * (1 - 1 + 1 1 <- priorobs + i 
yC(d + 1) * i - 1 + 1 21 <- 0 
f o r ( j  in 1:d) ( 

temp <- diff(range(xC, j])) 
y[(d + 1) * (i - 1) + j + 1, 11 <- priorobs + i + 

(a lpha*  (*Ci, j] - 0.5 * temp))/temp 
yf(d + 1) * (i - 1) + j + 1, 21 <- j 

1 
1 
i <- 1 # s e t  range up for plot 
y 1. range <- range (y [, 11 ) 
if (upperrange ! = 0 )  { 

y 1. range C21 <- max (upperrange , y 1. range C21) 
1 
y2. range <- rangdy C, 21 
piot(yC((i - 1) * (d + 1) + l):(i * (d + 111, 11, 

yC((i - 1) * (d + 1) + l):(i * (d + l)), 21, 
type = "lm, xlim = y1 .range, ylim = 
y2. range, xlab = "Observat iontf, ylab = "Dimensiont') 

for(i in 2:n) { 
lines(y[((i - 1) * (d + 1) + 1) : (i * (d + 1)), 11, 
yC((i - 1) * (d + 1) + l):(i * (d + l)), 21) 

1 
1 



Appendix E 

Derivation of the Generalized 

Expected Improvement 

In this Appendix we derive the equations (5.2), (5.3) and (5.4). 

We can rewrite the improvement given in (5.1) as 

s g ( f f n ,  - z ) g  if z < ffm, and s > O 
p = 

1 O O t herwise 

p .  -,j 
whece z = 9 and = . 

For s > 0, taking the expectation yields 



where 

We now calculate Tk using the partial integration technique, splitting the integrand 

up into rk-l and z+(z) = -#(z): 

This establishes the recursion formula. Since Tk is a function of Tk.Zo two starting 

values, k = O and II = 1, are needed: 

We now prove by induction that (5.3) solves the recursive formula (5.4). The 

proof is split up into two cases : k is odd, and k is even. 

Case I : k is odd. 

The initial step for k = 1 can be easily verified. For the induction step: 

( k - 3 ) / 2  (k- l ) / 2  

= -#(f",n) + (k- i)ff",, 
j=l i= j 



Case 2 : k is even. 

The initial step for k = O can be easily verified. For the induction step: 



Appendix F 

Degk's algorithm 

Deiik (1980: 1986, 1990) presents a modification of the Monte Carlo Method to 

evaluate multivariate normal integrals. Specifically, he reduces the dimensionality 

fkom n to n - 1 through a clever transformation which dows for easy exact evalua- 

tion of one of the integrals. Furthermore. he makes use of the concept of antithetic 

variables twice, once in the context of orthonormalized estimators. We will now 

present the method in more detail. 

Denote by f the indicator function 

where x is distributed as a multivariate 

bounderies. 

We are interes ted in calculating p 

normal vector, and h is the vector of 
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where O is the CDF of the multivariate normal distribution. A simple unbiased 

Monte Carlo estimator of p is then given by 

where x- is a realization of x. A realization can be cornputed easily with Tq = 

x, where T is the Choleski decomposition of the covariance matrix R such that 

TT' = R , and q = (q,, qz,  . . . , qn) whose components are independent N(0.1) 

random variables. 

Dimensional reduction and antithetic variables 

Further, q can be written as q = kz , where k is a x distributed random variable 

with n degrees of freedorn and distribution function Fn. The vector z is unifordy 

distributed on the surface S of the n-dimensional unit sphere (see also Rubinstein. 

1981, p.89). Thus 

where V is the cumulative distribution function of Tz. 

We rewrite the inner integral as follows: 

where y = Ta and D denotes the integration domain ( -m, hl. 

We now make use of the method of antithetic variables. That is, we use nega- 

tively correlated variables in the estimator with the aim to reduce the variance of 



their average. Here, instead of only using y, we also use -y : 

Our unbiased estimate of p is now 

where yi is a realization of y. 

Evaluation of the integral e2(y) 

We now describe how to evaluate the integral et(y) .  The argument of the integra- 

tion f (.) indicates whether the ray ry is in the domain D of interest or not. In 

order to evaluate the integral we determine when the ray ry &enters" and "exits'. 

the domain D. There are at most one "entry" and one "exit", because (-m. h] 

forms a hyper-rectangle. Thus we need to find the constants ci and cz for which 

We first determine constants ci; and c2; for each dimension seperately. We have 

where a is any real number. Since D = nCl Di, the Di representing one-dimensional 
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half space, the constants cl and c2 are determined by 

cl =  ma^; cl;, C2 = C2i.  

Knowing the "entryn and "exit" constants cl and c2, the integral e2(y) can be 

easily determined as ' 

OrthonormaIized estimators 

Rather than just generating one other point -y from y, orthonormalized estimators 

generate many other points from locations regularly scattered over the surface of 

the hyper-bd S. The extra points can be generated at much lower cost compared 

to random points, and their regular location ensures a variance-reducing effect 

(antit hetic variables). 

The idea is to form a basis in n-space generated by a initial (random) point y. 

Including the negatives of all b a i s  vectors, 2n points are generated in this way. 

The corresponding estimator - averaging over the 272 points - is cded O1. 

For the estimator Clk, k = 1,2? . . . , we generate in addition to the previous 

ones all possible combinations of H basis vectors. The effect is that the points 

are scattered more densely on the surface. As k increases the lower cost aclvantage 

diminishes. In our implementation we use the estirnator corresponding to O*, which 

is recommended by De5k (1980). 

(1986, 1990) both contain a mistake in that he gives the third Iine of the equation as 
Fn (-c,) - Fa(-cl) rather than F,(-ci) - Fn(-q). 
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